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FOREWORD

The return of the congress to North America after 20 years of absence could not have
been in a more ideal location. The beauty of Banff and the many offerings of the Rocky
Mountains was the perfect background for a week of interesting and innovative
discussions on the past, present and future of geostatistics.

The congress was well attended with approximately 200 delegates from 19 countries
across six continents. There was a broad spectrum of students and seasoned
geostatisticians who shared their knowledge in many areas of study including mining,
petroleum, and environmental applications. You will find 119 papers in this two
volume set. All papers were presented at the congress and have been peer-reviewed.
They are grouped by the different sessions that were held in Banff and are in the order
of presentation.

These papers provide a permanent record of different theoretical perspectives from the
last four years. Not all of these ideas will stand the test of time and practice; however,
their originality will endure. The practical applications in these proceedings provide
nuggets of wisdom to those struggling to apply geostatistics in the best possible way.
Students and practitioners will be digging through these papers for many years to come.

Oy Leuangthong
Clayton V. Deutsch
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ACCOUNTING FOR GEOLOGICAL BOUNDARIES IN GEOSTATISTICAL
MODELING OF MULTIPLE ROCK TYPES

PAULA LARRONDO and CLAYTON V. DEUTSCH
Department of Civil & Environmental Engineering, 220 CEB,
University of Alberta, Canada, T6G 2G7

Abstract. Geostatistical simulation makes strong assumptions of stationarity in the
mean and the variance over the domain of interest. Unfortunately, geological nature
usually does not reflect this assumption and we are forced to subdivide our model area
into stationary regions that have some common geological controls and similar
statistical properties. This paper addresses the significant complexity introduced by
boundaries. Boundaries are often soft, that is, samples near boundaries influence
multiple rock types.

We propose a new technique that accounts for stationary variables within rock types and
additional non-stationary factors near boundaries. The technique involves the following
distinct phases: (i) identification of the rock types and boundary zones based on
geological modeling and the timing of different geological events, (ii) optimization for
the stationary statistical parameters of each rock type and the non-stationary mean,
variance and covariance in the boundary zones, and (iii) estimation and simulation using
non-stationary cokriging. The resulting technique can be thought of as non-stationary
cokriging in presence of geological boundaries.

The theoretical framework and notation for this new technique is developed.
Implementation details are discussed and resolved with a number of synthetic examples.
A real case study demonstrates the utility of the technique for practical application.

1 Introduction

The most common geostatistical techniques, such as kriging and Gaussian/indicator
simulation, are based on strong assumptions of stationarity of the estimation domains. In
particular, they are based in a second order stationary hypothesis, that is, the mean,
variance and covariance remain constant across the entire domain and they do not
depend on the location of the support points but only in the distance between them.

Once estimation domains have been selected, the nature of the boundaries between them
must be established. Domain boundaries are often referred to as either ‘hard’ or ‘soft’.
Hard boundaries are found when an abrupt change in the mean or variance occurs at the
contact between two domains. Hard boundaries do not permit the interpolation or
extrapolation across domains. Contacts where the variable changes transitionally across
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the boundary are referred as soft boundaries. Soft domain boundaries allow selected data
from either side of a boundary to be used in the estimation of each domain.

It is rather common that soft boundaries are characterized by a non-stationary behavior
of the variable of interest in the proximities of the boundary, that is, the mean, variance
or covariance are no longer constant within a zone of influence of one rock type into the
other, and their values depends on the location relative to the boundary. An example is
the increased frequency of fractures towards a boundary between geological domains of
structural nature. Faults or brittle zones are examples of this transition. The fractures
may cause the average to increase close to the boundary. The increase in the presence of
fractures will often lead to an increase in the variance closer to the boundary.

Although soft boundaries are found in several types of geological settings due to the
transitional nature of the geological mechanisms, conventional estimation usually treats
the boundaries between geological units as hard boundaries. This is primarily due to the
limitations of current estimation and simulation procedures. We will show that non-
stationary features in the vicinity of a boundary can be parameterized into a local model
of coregionalization. With a legitimate spatial model, estimation of grades can be
performed using a form of non-stationary cokriging. This proposal provides an
appealing alternative when complex contacts between different rock types exist. We
develop the methodology in the context of mining geostatistics, but it is widely
applicable in many different settings.

2 Theoretical Background

The technique involves the identification of stationary variables within each rock type
and additional non-stationary components near boundaries for the mean, variance and
covariance. For a geological model with K rock types or estimation domains, there are a
maximum of K(K —1)/2 boundary zones to be defined. Then, the continuous random

function Z(u) that represents the distribution of the property of interest can be
decomposed into K stationary random variables Zi(u) £=/,....K and a maximum of
K(K—-1)/2 non-stationary boundary variables Zg(u), with kp=1I,..K and

Zip(w)=Z(u) (Figure 1). By definition, the non-stationary variable will take values only
for locations within the maximum distance of influence of rock type k into rock type p.

The maximum distance of influence orthogonal to the boundary of rock type & into rock
type p is denoted dmax;,. A boundary zone is defined by two distances: dmax;, and
dmax,, since there is no requirement that the regions on each side of the boundary are
symmetric, that is, dmaxy,# dmax,.. The modeler using all geological information
available and his expertise should establish these distances.

When more than two rock types converge at a boundary, two or more rock types may
influence the boundary zone in the adjacent domain. In this case, precedence or ordering
rules should determine the dominant boundary zone. Although the behavior of a
property near a boundary could be explained by the overlapping of different geological
controls, the task of identifying the individuals effects of each rock type and their
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interactions can be quite difficult. Geological properties are not usually additive and
therefore the response of a combination of different rock types is complex. Only one
non-stationary factor will be considered at each location. The modeler should put
together the precedence rules based on the geology of the deposit. The relative timing of
intrusion, deposition or mineralisation events, geochemistry response of the protolith to
an alteration or mineralisation process could be used to resolve timing and important
variables. If the geological data does not provide sufficient information to establish a
geological order of events, a neutral arrangement can be chosen. In this case, the
precedent rock type p at a location will be the one to which the distance to the boundary
is the minimum over all surrounding rock types.

Zlu) A dimaz,, dma,,
RT, < 2 ar

The “complete”
variable

I
AN . S,

>
u

RT, RT

i Zk(“)
o i A A -

T EPTEE T T DAY '

Stationary
variables

RT, RT

Zifp( u)

my (1)

Non-stationary
boundary variable

u

Figure 1: Decomposition of a one-dimensional random function Z(u) in two stationary
variables Zy(u) and Z,(u), with constant mean and variance, and a non-stationary
boundary variable Z,(u), with a mean and variance that are functions of the distance to
the boundary.
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STATIONARY AND NON-STATIONARY STATISTICAL PARAMETERS

The mean function of the continuous random function Z(u) for a specific rock type &
will be the mean of the stationary variable Z(u) plus the mean of any corresponding
non-stationary variable Zg,(u). The stationary component of the mean (my) is
independent of location and is a constant value. The non-stationary component of the
mean (my,) is a function of the distance to the boundary, d,(u) and takes values different
than zero for locations within the boundary zone defined by rock types £ and p. The
mean of rock type £ is:

pk

m ,ifd ; (u;) > dmax
E{Z(u,)}= { ¢ o where u; € RT,

my + f(d,(w;)) , otherwise

where p is the adjacent rock type that shares a boundary with rock type £ and () is an
arbitrary function that describes the mean as a function of distance to the boundary.

Similarly, the variance of Z(u) for rock type k will be the sum of a constant stationary
variance (0;’) due to Z(u) and the independent non-stationary variance (O’kpz) due to
Zip(u). The variance of a random function Z(u) in a rock type £ is:

2 .
o ,ifd , (w;) = dmax
¢ P " Where u; € RT,

E{(Z(ui) —E{Z(ui)})z} _

o’ +g(d,(u,)) , otherwise

where p is the adjacent rock type that shares a boundary with rock type k and g(+) is an

arbitrary function that describes the variance as a function of distance to the boundary.

As with the mean and variance, the covariance structure between two rock types that
share a local non-stationary boundary consists of a stationary and a non-stationary
component.

Cov,(u;,v;) = E{(Z(w)) = m(u))-(Z(v;) = m(v,))} = Cov} (h) + Cov)® (u,, v,)

where h=u; — v;. Since Zi(u) and Z,(u) are independent random variables, the cross
terms are zero, therefore the covariance of Z(u) is the sum of the stationary and non-
stationary components. The combination of these components corresponds to a local
linear model of coregionalization.

The stationary component of the covariance can be calculated and modeled from data
pairs within the internal stationary portion of a rock type, that is u; and v; belong to rock
type k, and do not belong to any boundary zone.

To obtain the non-stationary component of the covariance model we will assume that
the shape of the spatial correlation of the non-stationary variable Ziy(u) kp=1,....K is
stationary and that it can be specified by the modeler. Due to the non-stationary nature
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of variable Z(u) at the boundary zone, this relative stationary spatial model has to by
scaled at each point by a non-stationary mean and variance. The relative standardized
variogram model for the boundary zone is:

Z()-m(u) Z(v))- m(v»}2

A _1
7kp(“i’vi)—2 E { o) o(v,)

where m(u) =my,(u)+m, and o(u)=o0y,(u)+o,. Expanding and reordering the
terms of the squared difference, and since E {Z (ui)z} = o-(u,-)2 +m(u;) and

E {Z (u,.)} =m(u;), the previous expression becomes:

. Covfs (u;,v;
Vip(W;, Vi) =1 - Cov (,v)
o(u;)-o(v;)

Reordering the terms and replacing the mean and variance by the sum of their stationary

and non-stationary components, we obtain an expression for the non-stationary
covariance model:

Cov?s(u. v;) :E{Z(ui)'Z(Vi)}_(mkp(vi)+mk)'(mkl)(ui)+mk)

271

== 74 (W, V) (04, (u) + 0) - (0, (V) + 0%.)

Currently we assume that the shape, anisotropies and nugget effect of the relative
standardized variogram are inputs from the modeler; only the range must be established
through an optimization algorithm.

3 Optimization of the Statistical Parameters

We need to find the optimum f(d;(w;)), g(d,;(u;)) and CovyS(u,,v,) that fit the

[ EEA
distribution of the random variable Z(u) at the boundary zone given the stationary
components of mean, variance and covariance, a set of precedence rules and the
maximum distances of influence within the rock type model.

We will consider that the non-stationary components of the mean and variance follow a
linear function of the distance to the boundary (d,). In this scenario, the optimization of
the parameter my, and kaz will be equivalent to optimizing estimates of the intercepts at
zero distance to boundary: ay, and by, considering a,= a,; and by, = byy.

The mean my, is optimized given that m is known from the experimental average of data
within rock type , outside any boundary zone. The objective function is:



8 P. LARRONDO AND C.V. DEUTSCH

ip

K P 5
0, = DD [ 2(u)) = (i + my, (uy)) |

k=1 p=1i=1

—

where z(u;) is the outcome value at every data location in the boundary zone, Ny, is the
total number of data in zone k-p, m . 18 the experimental average of all data in RTy and

outside any boundary zone, and my,(u;) is the non-stationary mean at location u;
calculated as:

(dmaxkp —d,, (ui))
dmaz,) -ay, for 0<d,, (u;) < dmax,,
dmax,, —d ;. (u;)
my, (u;) = ( dpmaxp: ) -ay, for 0<d, (u;) < dmax, (1
0 for dy, (u;) =2 dmax;,, and d ,; (w;) = dmax

The optimization of the mean can be achieved by iteratively modified a, Vkp, in a
random fashion while accepting all changes in gy, that reduce the objective function.
This is a simplified version of the simulated annealing formalism.

The optimum kaz, will be the one that minimizes the following objective function:

Ny,

> [rw? -6 o, 2w |

S
l\II4
M-

. . Lo A2,
where r(u;) is the residual value at every location in the boundary zone. 0, is the

experimental variance of all data within the stationary region of rock type &k and qu(ui)
is the non-stationary variance at location u; calculated from a linear expression for the
intercept by, similar to Equation 1.

Figure 2 shows the stationary and non-stationary mean and variance for a 1D synthetic
example. The optimum intercepts ay, and by, are in agreement with the reference.

To find the optimum covariance model we minimize the following objective function:
N

Oc,y = Z[é(z(“i)» Z(Vi)) = Cuop (Z(“i): Z(Vi)):|2

i=1
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where C denote the experimental covariance of the pair located at u; and v;, which is
just the multiplication of the two residual values: 7(u;)-7(v;), and Cyop the modeled

boundary covariance, corresponding to the sum of the stationary and non-stationary
component.

Finding the optimum covariance model of a boundary zone is equivalent to optimizing
the range of the relative standardized variogram scaled by the non-stationary standard
deviation. The range is iteratively modified by a random amount until the difference
between the experimental and modeled covariance is minimized. For this 1D example,
the optimum range of the non-stationary covariance structure (Figure 3) is 6.4 meters,
acceptably similar to the 10 meters range of the variogram used to obtain the reference.
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Figure 2: 1D example stationary and optimized non-stationary mean and variance.
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Figure 3: Optimum non-stationary covariance of 1D example (solid line), experimental
covariance from pairs within the boundary zone (dots) and original covariance of the
non-stationary component used to build the synthetic dataset (line/dots).
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4 Estimation in presence of local non-stationary boundaries

The basic linear regression equation for non-stationary simple cokriging is:
2 ()= m(u) = " 2, (w)-[2(u,) = m(u,)]
a=1

where z*(u) is the estimate at unsampled location u, m(u) is the stationary plus the non-
stationary mean value at location u, A,(u) is the weight assigned to datum z(u,), 7 is the
number of close data to the location u being estimated, and m(u,) are the » stationary
plus the non-stationary mean values at the data locations.

To find the optimal weights 4,(u), a=1,...,n the kriging system must be solved:

n
D" Ap(u) -Cov(u,,u,) =Cov(u,u,,) with &, f=1,....n
p=1

where A (u), a=I,.., n are the simple kriging weights, Cov(u,, wp), a.f=1,.., n
correspond to the data-to-data covariances, and Cov(u, u,), a=1,.., n are the data-to-
unknown location covariances. In the presence of local non-stationary boundaries, the
terms of the data covariance matrix and the vector of data-to-estimate covariances are
obtained combining the stationary and non-stationary covariance model components. If
both locations are in the same rock type and both are in the same boundary zone, the
covariance is the stationary plus the non-stationary covariances; otherwise, it is only the
stationary component. If they are in different rock types and both samples are in the
same boundary zone the covariance is the non-stationary component only. The
covariance is zero in all other cases.

For the 1D example, the kriging estimates reproduce well the reference, using as
conditioning data one of four grid nodes of the reference (Figure 4).

Grade
;

Distance (m)

Reference o KrigingEstm'late|

Figure 4: Reference versus kriging estimates, 1D example.
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5 Application

The rock type model of a porphyry copper deposit in Northern Chile was used to create
a reference image with simulated grades (Figure 5). This reference image was sampled
in a 100x100 meters grid. The geological model has five rock types and six non-

stationary soft boundaries.
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Figure 5: Section and level maps of the reference used for the 3D application.

The reference intercepts for the non-stationary mean and variance are well reproduced
by the optimization subroutines for all boundary zones, as well as the optimum ranges
compared to the range used in the transformed unconditional simulation.

The correlation between the estimates and the reference value is around 0.8 for each
boundary zone. The reference stationary means of each rock type is reproduced almost
exactly by the kriging estimation. The variance of the estimates is lower than the
reference, which is expected since kriging has a smoothing effect. The non-stationary
behavior of the mean is also very well reproduced by the proposed non-stationary
kriging as shown in Figure 6. Although the variance of the estimates in the boundary
zone is lower than the reference, as expected, the increasing trend toward the boundary
is well reproduced.

Boundary Zone 34 Boundary Zone 3-4
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Figure 6: Mean and variance of the kriging estimates versus the reference image at the
one of non-stationary boundary zone. Each point corresponds to the average/variance of
all grid nodes within a 5 meters interval of the distance to the boundary.
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Cross validation results show that the data are reliably estimated both in the stationary
and the non-stationary regions. In particular, for all data within the non-stationary
regions, if compared with ordinary kriging using a typical soft boundary approach, the
proposed methodology shows a higher coefficient of correlation (Figure 7).

Non-Stationary Cokriging Ordinary Kriging
9.5} imbar of data 5309 8.5 umber of data 5309
: - Number plotted 5308 iy Numiber plotted 5309
X Variable: mean 2,339 e & X Variablo: maan 2.141
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sid. dev. 1.527 std. dav. 1.527
5.5 i 5.5} =
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& =
3.5 £ 3.5
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1t.
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Figure 7: Cross validation comparison between the proposed methodology, non-
stationary cokriging, and ordinary kriging with soft boundaries.

6 Conclusions

This new technique provides a theoretically robust methodology to handle non-
stationary soft boundaries. The non-stationary features of the mean, variance and
covariance are parameterized into a legitimate local model of coregionalization.
Through this spatial model a non-stationary form of cokriging accounts for the changes
in mean and variance at the vicinity of boundaries. The kriging estimates reproduce the
non-stationary behavior of the conditioning data at the geological contacts, and it also
reproduces the stationary means of each rock type in the model. A decrease in the global
variance is due to the smoothing effect of kriging.

By construction, the kriging variance also has a non-stationary component. Since the
kriging variance is the missing variability that is reintroduced in simulation, its
implementation in the presence of local non-stationary boundaries will be delicate and is
part of the future work.
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DATA INTEGRATION USING THE PROBABILITY PERTURBATION
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Abstract. A new method, termed probability perturbation, is developed for solving non-
linear inverse problem under a prior model constraint. The method proposed takes a
different route from the traditional Bayesian inverse models that rely on prior and
likelihood distribution for stating, then sampling, from a posterior distribution. Instead,
the probability perturbation method relies on so-called pre-posterior distributions, which
state the distribution of the unknown parameter set given each individual data type
(linear or non-linear). Sampling consists of perturbing the probability models used to
generate the model realization, by which a chain of realizations is created that converge
to match any type of data. The probability perturbations are such that the underlying
spatial structure (prior model) of the stochastic algorithm is maintained through all
perturbations. A simple example illustrates the approach.

1 Introduction

Conditioning stochastic simulations is of the utmost importance in many applications of
geostatistics. Most of the current algorithms can condition to data that are linear or
pseudo-linear (i.e. linearized using transformations) and of a single-point nature, by
which it is understood that there is a linear relationship between data and the unknown
taken one at the time. For example, the technique of sequential simulation, either under
Gaussian or non-Gaussian assumptions, can be conditioned to hard data, (pseudo-linear)
block average data or soft data, the latter through some form of (linear) co-kriging.

Many applications of geostatistics call for the inclusion of non-linear and multiple-point
data. The relationship between data and unknown is provided through a complex multi-
dimensional transfer function, also termed a forward model. This function often is
modelled numerically through a partial differential equation (or its numerical
implementation) such as in aquifer models, pollution models, ecological models and for
models of flow in oil & gas reservoirs. Integrating this type of data into stochastic
simulation calls for an iterative solution (trial-and-error) of an often ill-posed inverse
problem. Sampling solutions such a Markov chain Monte Carlo within a Bayesian
framework have been proposed (Mosegaard and Tarantola, 1995; Omre and Tjelmeland,
1997) but are often prohibitive in terms of CPU when the forward model is expensive to
compute.
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In this paper a new and practical approach within the context of Bayesian inverse
modelling is presented. The method allows to condition stochastic simulations to
virtually any type of non-linear data. The principle of this method is simple: by
perturbing the probabilities models used to generate the model realization, a chain of
realizations is created that converge to match any type of data. It is shown that the
probability perturbations are such that the underlying spatial structure of the stochastic
algorithm is maintained through all perturbations. The probability perturbations can be
parameterized by a single parameter or by multiple parameters in order to provide
enough flexibility to match large models with a possible large set of non-linear data.

2 Bayesian inverse modelling

Inverse modeling consists of finding a set of model parameters m given some data d. In
the Earth Sciences the model parameters are often unknown material or rock properties
located on a 3D grid, e.g. unknown soil type or unknown petrophysical properties in the
subsurface. Most inverse problems are underdetermined, meaning that a joint
distribution of model parameters is possible given the data. In this paper, we will divide
the data into two sets: (1) dy, or “easy data” which have a simple linear or pseudo-linear
relationship with the model parameters, and (2) d, or “difficult data” which exhibit a
multi-point, non-linear relationship with m. For the data d;, many fast and robust direct
sampling methods exist for sampling the distribution of possible model realizations m.
To condition to data d,, iterative sampling is required. The posterior distribution from
which these samples are drawn is, in a Bayesian context, decomposed into a likelihood
and prior distribution

d,)= /(d,.d, |m)f(m) _f(d [m)/(d, m)f(m)

d,
fm /(d,.d,) /(d,.d,)

(M

where the likelihood f{d;, dy| m) is further decomposed into f{d; | m) and f{d,| m) under
the assumption of conditional independence. This assumption makes inference of the
likelihood feasible. The assumption of conditional independence is difficult to verify yet
may have considerable consequence to the model definition (model for the posterior
distribution).

The prior density f{m) describes the dependency between the model parameters. In a
spatial context such dependency refers to the spatial structure of m. The likelihood
density f{djm) models the stochastic relationship between the observed data and each
particular model m retained. This likelihood would account for model and measurement
errors. In the absence of any such errors, the data d and model m are related through a
forward model g

d=g(m)

Markov chain Monte Carlo methods encompass a set of iterative sampling techniques
for drawing samples from this posterior distribution. Popular sampling methods are
rejection sampling and the Metropolis sampler (Metropolis et al., 1953; Besag and
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Green, 1993; Mosegaard and Tarantola, 1995; Omre and Tjelmeland, 1997). These
samplers avoid specification of f{d) and are iterative in nature in order to obtain a single
sample m" of f{m|d). Generating multiple (conditioned to d) samples m”, (=1,....L in
this manner quantifies the uncertainty modeled in f{m|d).

While theoretically sounds, there are some important practical limitations to this
approach. First, obtaining iterative samples are CPU demanding and may take many
thousand of evaluations to converge. This is impractical when the forward model g takes
a few hours to compute (e.g. flow simulations, solving elastic wave equations).
Secondly, for reason of analytical convenience a Gaussian model is often adopted for
either likelihood and/or prior distribution. A Gaussian model limits modelling realistic
spatial structures on m. Moreover, the assumption of conditional independence in Eq.
(1) limits the proper modelling of the full dependence between data d; and the data d,.
In this paper we propose a method for dealing with both issues: (1) realistic non-
Gaussian prior and (2) alternatives to the conditional independence hypothesis.

3 Methodology

3.1 SAMPLING THE PRIOR

To emphasize non-Gaussianity, the methodology will be developed for binary model
parameters, although the method works equally well for multi-category and continuous
variables. At each location of a 3D grid an unknown model parameter m; is modelled

through a binary indicator variable

1 if the "event" occurs at u,
I(u,)=

0 else

where “event” could represent any spatially distributed phenomenon. The model
parameters are then given by the set of binary indicators

m={/(u)),[(u,),....[(uy)}
with joint (prior) distribution
S (m) = Prob{/(u,) =i(u,),/(u,) =i(u,),..., [(uy) = i(uy)}

In this paper we will use sequential simulation methods to sample from either prior or
posterior distribution, by relying on the following decomposition of the joint distribution

£(m) = Prob{I(u,) =1} x Prob{Z(u,) =1]i(u,)} x...x Prob{I(u,) =1]i(u,),....i(u, )}

Sequential sampling from each of these conditional distribution amounts to sampling
from a joint prior distribution. In actual field cases, prior information on m comes in the



16 J. CAERS

form of limited statistics (e.g. a spatial covariance). The type of multi-variate density f
always needs to be assumed. In all sequential simulation approaches, except Gaussian
simulation, the decision of distribution type is not made on the joint distribution, but on
the conditional distributions. An example of such approach is direct sequential
simulation (dssim, Journel, 1993), where the conditional distribution can be of any type,
as long as they have mean and variance provided by a simple kriging system. Another
example is snesim where the conditional distributions are derived from training images
(Strebelle, 2002).

3.2 SAMPLING THE POSTERIOR

To sample from the posterior, a similar sequential decomposition approach is
considered. For simplicity, the data d; constitute direct observations (hard data) of the
model parameters at a set of n spatial locations, but in general could constitute any linear
data,

d, ={i(u,),a=1,....n}

The relationship between the non-linear data and model parameters is modelled through
a forward model g

d, =g(m) = g(/(u,),/(u,),..., I (uy))

The goal is to draw samples from the joint (posterior) distribution of the model
parameters given the two data sets

f(m|d,,d,)=Prob{/(u,) =i(u)),/(u,) =i(u,),....I(uy) =i(uy) | {i(u,),a=1...,n}.d,}
To make this practically feasible, the following decomposition is used:

f(m|d,,d,)=Prob{/(u,)=1|{i(u,),a=1,...,n},d,}x
Prob{/(u,) =1]i(u),{i(u,),o=1,...,n},d,} x...x 2)
Prob{I(u,)=1]i(w,),...,i(u,_ ), {i(u,),o=1,...,n},d,}

Generating a sample of a (not explicitly stated) posterior distribution is equivalent to
generating sequential samples from conditional distributions of the type

Prob{/(u;)=1[i(u,),...,i(u, ), {i(u,),a=1,...,n},d,} = Prob(4, | B,,C)

with 4, ={I(u;)=1}; B, ={i(u)),...,i(u, ), {i(u,),0=1,...,n}}; C=d, ®

A simpler notation in terms of ‘A’ (unknown), ‘B’ (easy data) and ‘C’ (difficult data)
has been used to make further development clear. To further specify the conditionals in

Eq. (3), we propose a decomposition of Prob(4,|B;,C) into two pre-posteriors Prob(4,/B;)
and Prob(4,|C) using Journel’s decomposition (or tau-model, Journel, 2002) of the type
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c

Prob(Aj|Bf,C):L withx:b( j where:
' I+x

a
1-Prob(4; |B)) 1-Prob(4; |C) 1-Prob(4,)
= , C= - ,a=
Prob(4; |B)) Prob(4, | C) Prob(4;)

“4)

Working with pre-posteriors will lead to an approach that is different from a classical
Bayesian inversion which would involve the likelihoods Prob(B}4,) and Prob(C|A4)).
This difference will lead to a fundamentally different sampling method as well. Stating
“pre-posteriors”, instead of likelihoods, allows using (non-iterative) sequential
simulation, instead of (iterative) McMC.

The t-value in Eq. (4) allows modeling explicitly the full dependency between the B-
data and C-data. The case when t=1 is equivalent to an assumption of standardized
conditional independence. In the context of sequential simulation, the pre-posterior
Prob(4,(B;) is simply the conditional distribution of the unknown A4; given any
previously simulated nodes. The remaining pre-posterior Prob(4,/C) cannot be directly
estimated, instead, a new sampling technique termed probability perturbation is
introduced.

3.3 PROBABILITY PERTURBATION

Using sequential simulation, a sample realization can be drawn from the prior model,
conditioned to the data d;. If the pre-posterior Prob(4,/C) were known, then including
the data d, could be achieved through Eq. (4) and a sequential simulation from the
conditionals through Eq (2). Since this is not the case, the initial sample conditioned to
d;, will be used as an initial guess for further matching the data d, iteratively. To
achieve this, the unknown pre-posterior Prob(4,/C) is modelled using a single parameter
model in the following equation:

Prob(4, |C) =Prob(I(u;) =1|C) =(1-r) xiy(u)+r.xP(4,), j=1...,N  (5)

where r¢ is a parameter between [0,1], not dependent on u,. {iB(O)(uj), j=1,...,N} is an
initial realization conditioned to the d; data (B-data) only. Given Eq. (5), Prob(4,|C) can
be calculated for a given value of r¢ and for a given initial realization constrained to the
B-data. Next, the probability Prob(4,/C) is combined with Prob(4,B;) to form the
conditionals Prob(4,|B;,C) by which sequential simulation is possible, Eq. (2), and a new
realization {i(l)(uj), Jj=1,...,N} is generated. The new realization is dependent on the
initial realization and the value of r¢c. To get some more insight into the role of the value
rc, consider the examples in Figure 1. Each row shows in its first column an initial
realization {iB(O)(uj), j=1,...,N} generated with different sequential simulation methods.
The next columns contain realizations {i“)(uj—), j=1,...,N} for various values of r¢ and
using a random seed s’ different from the random seed used to generate the initial
realization. The important message of Figure 1 is that regardless of the value of 7~ the
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each realization honors the same spatial statistics as the initial model, i.e. the prior
distribution is maintained.

In case =0, then Prob(4,|C)= i;*(u;), hence per Eq (4) Prob(4,B,,C)= i;"(u). In
other words, the initial realization is re-created. In case rc=1, then Prob(4,|C)=P(4)), a
simple calculation using Eq. (4) shows that in that case Prob(4,/B;,C)= Prob(4,/B;). Since
the seed s’ is different from the seed s, the realization {i(”(u/), 7=1,...,.N} is
equiprobable with the initial realization {iB(O)(uj), j=1,...,N}. In other words, =1 entails
a “maximum perturbation” within the prior model constraints.

A value r¢ between (0,1) will therefore generate a perturbation {i(l)(uj,rc), 7=1,....,N}
between the initial realization and another equiprobable realization both conditioned to
the data d; and each honoring the prior model statistics. An optimal value for r¢ can be
picked by selecting the perturbation for which the mismatch between the forward model
simulation and actual data d,, namely

0(r) = |2 (u,, ) d, | (6)

i1s minimal.

3.4 PROBABILITY PERTURBATION ALGORITHM

The probability perturbation of the initial realization is likely to reduce the objective
function in Eq. (6), however, minimizing O(r¢) would only achieve a local minimum
since the perturbation takes place between just two equiprobable realizations. To further
reduce the objective function, the perturbations are iterated in the following algorithm:

e choose random seed
e generate an initial realization i (u,), v/
e change random seed
e Until the data d, are matched to some desired level
o  Minimize to get »”"
0() =[g (u,.r.))—d,
o  Change random seed
o Assign

() 1 ),
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Realizations generated using snesim (strebelle, 2000), binary case

Realizations generated using dssim (Journel, 1993), continuous case
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Figure 1: Left picture of each row is an initial guess realization, then followed by
perturbation of this initial realization parameterized by a parameter r¢.

3.5 REGIONAL PROBABILITY PERTURBATION

The probability perturbation method generates a perturbation between an initial guess
realization and another equiprobable realization that is parameterized using a single
parameter. In a spatial context this induces a perturbation of each individual model
parameter i(u)) that is, in probability, the same for all u;. Parameterizing a perturbation
using a single parameter may not effectively solve complex spatial inverse problem.

The above presented method does not restrict a higher order parameterization: the value
of rc can be made dependent on location

Prob(4, |C) = Prob(/(u,) =1|C) = (1= 7. (u,)) i’ (u,) +r(u,) x P(4,) (7)
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The use of (7) in the probability perturbation method now requires a multi-dimensional
optimization on all rc(w), j=1,...,N. To avoid a potentially difficult full multi-
dimensional search for the best r(u;), /=1,...,N, a region-wise parameterization of these
parameters is proposed. Consider M regions in the domain of study, each region R,,
m=1,..., M consists of a set of grid node locations,

— M ym
Rm - {ui 9uj n}
Which nodes belong to which region is a problem specific question. The number of
regions M however is likely to be considerably less than the number of grid nodes N.
The pre-posterior of Eq. (7) is rewritten using a region-wise parameterization as follows:

Prob(4™ |C) = Prob(I(u") =1|C) = (1- ") xi§ ") + 7 P(A™),  j=1,...,N

where the parameter 7™ is the same for all grid nodes u,«(’”) of region R,,. An efficient

strategy for jointly optimizing on all M r™ parameters is discussed in Hoffman and
Caers (2003).

4 Example

The aim of this paper is to present the inverse theory behind the probability perturbation
method which has been extensively researched and applied to real cases in the context of
inversion of flow data in oil reservoirs (Caers, 2003; Hoffman and Caers, 2004). We
refer the reader to these paper for practical examples.

In this paper, a simple but rather revealing example is presented and illustrated in Figure
2. The model consists of a grid with three nodes, u;, u, and u;. Each node can be either
black, /(u)=1 or white, /(u)=0. The model m is therefore simply

m = {/(u,),/(u,),1(uy)}

The spatial dependency of this simple 1D model is described by a 1D training image
shown in Figure 2. One can extract, by scanning the training image with a 3 x 1
template, the prior distribution, f{m), of the model parameters, as shown in Figure 2. To
test the probability perturbation method we consider two data: the first datum is a point
measurement (B-data, or “easy data”) namely, i(u;)=1 (a black pixel in the middle), the
second one is /(u;)+/(u,)+/(u;3)=2 (C-data or “difficult data”). The problem posed is:

Whatis Prob(/(u,)=1]i(u,)=17/(u,)+(u,)+1(u;)=2)?
or in simple notation P(A|B,C) ?
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Training image

Prior probabilities of the following realizations:

g T4 B
16 16

Figure 2: illustrative example: (top) 1D training image (bottom) derived from the
training image are the prior probabilities of the model m

A=

To get the answer we use four alternative techniques:
1

1. Get the true answer by elimination from the prior: Prob(4|B,C) = % = é
7+7
8 16
2. Using conditional independence (standardized)
LA
Prob(d) = &+ 4> 23 023 proba| By =t 165, 6
16 16 16 8 5 1+i+1 1 11 5
4 16 8 4
5 1
1616 3 1
Prob(4|C)=—10 16 _° .~
5 1 1 4 3
16 16 8

Applying Eq. (4) with t=1: x = % = Prob(4]|B,C) =§

3. Using Monte Carlo simulation on the probability perturbation algorithm (with
=1 in Eq. (4), Prob(4|B,C)=0.35

4. Using Monte Carlo simulation on the “gradual deformation of sequential
simulation” (Hu et al., 2001) Prob(4|B,C)=0.27

It is clear from comparing [1.] and [2.] that the conditional independence hypothesis is
not valid for this case.

While the PPM relies on the same assumption of conditional independence the result is
much closer to the true posterior probability. The reason for the latter observation can be
explained by means of Eq (5). In this equation, the pre-posterior Prob(/(u;)=1|C) is a
function of the data C through the parameter r¢, and, a function of an initial realization
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{i(w)),i(up)=1,i(uz)}. This initial realization depends itself on the pre-posterior
Prob(/(u))=1| B;) with B; depending on the random path taken. Hence, Eq. (5) forces an
explicit dependency between the Prob(/(u;)=1(B;) and Prob(/(u,)=1|C) prior to
combining both into Prob(/(u;)=1| B; ,C) using a conditional independence hypothesis
(Eq. (4) with t=1). At least from this simple example, one can conclude that the
sequential decomposition of the posterior into pre-posteriors has robustified the estimate
of the true posterior under the conditional independence hypothesis.

The same conclusion can be reached for the gradual deformation of sequential
simulation. In gradual deformation of sequential simulation one perturbs gradually the
random numbers used to draw from the various conditional distributions in Eq.(2), not
the conditional distributions themselves as in the probability perturbation method. It
appears that the gradual deformation of sequential simulation has an implicit model of
dependency between the B and C data different from the probability perturbation, and
more importantly different from the actual dependence.

The differences between the various methods are considerable. One can therefore
conclude that future research should focus on understanding better the basic model
assumptions, such as conditional independence, rather than focussing on developing
precise samplers of models that are based on poorly understood assumptions. Such
assumptions will have a first order effect on the ultimate space of uncertainty created.
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SPECTRAL COMPONENT GEOLOGIC MODELING: A NEW TECHNOLOGY
FOR INTEGRATING SEISMIC INFORMATION AT THE CORRECT SCALE

TINGTING YAO, CRAIG CALVERT, GLEN BISHOP,
TOM JONES, YUAN MA, LINCOLN FOREMAN
ExxonMobil Upstream Research Company,

Houston, TX 77252, U.S.A.

Abstract. Spectral component geologic modelling (SCGM) is a new technology
developed to properly account for both the scale and accuracy of any and all
interpretations derived from seismic data in building geologic models. Seismic data can
be integrated as spectral components which are volume- or map-based property
interpretations representing a specific and measurable scale. The SCGM method starts
with combining different spectral components together to build what is referred to as a
"tentative geologic model”, accounting for different scales and measurement accuracy of
information in each component. The tentative geologic model will then be further
constrained to honor the spatial continuity by substituting the amplitude spectrum of
current tentative model with the desired amplitude spectrum from the target variogram
model through spectral simulation. After that, the model will then be post processed to
first honor the target histogram and then well data. In addition to honoring one single
global variogram model, as do traditional geostatistical algorithms, SCGM has the
capability to model local variations or trends in the continuity range and dominant
azimuth direction of spatial continuity, by modifying the amplitude spectrum using
spectral simulation.

1 Introduction

Geologic modeling has been widely used in reservoir management to characterize the
rock-property heterogeneity that control pore-fluid storage and flow in a reservoir. For
many reservoirs, particularly those in discovery through early production stages, well
data may be sparse, and the well data alone are often insufficient to adequately constrain
the assignment of reservoir properties between the wells in the geologic model. For
such reservoirs, 3D seismic data have been increasingly used as an aid to assign these
properties in the geologic model.

However, the utilization of seismic data for modeling reservoir properties faces some
severe problems, possibly the most important being that of the difference in scale and
accuracy between the seismic and the well data. The traditionally used geostatistical
modeling methods integrate seismic data through kriging with local varying mean
(Goovaerts, 1997), block cokriging (Behrens, Macleod, and Tran, 1996; Yao, 2000), or
simulated annealing (Deutsch, Srinivasan, and Mo, 1996). These methods either
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wrongly treat the seismic data at the same scale as the geologic model, or make some
strong assumption about the relationship between the coarse-scale seismic data and fine-
scale well data (linear average as in block co-kriging). As a result, the geologic model
may not fully exploit information contained in the seismic data and may not honor the
input information.

The primary incentive for developing the SCGM method was to properly account for
both the limitation of scale and accuracy of any and all interpretations derived from
seismic data. Secondary incentives were to obtain a method that provides advanced
capabilities for controlling rock-property continuity in the geologic model, and that can
build or truly update a geologic model with new information quickly, based on spectral
simulation (Calvert et. al., 2000, 2001, 2002).

2 Review of spectral simulation

Spectral simulation is gaining wider application in building geologic models due to the
advantage of better honoring the spatial continuity of petrophysical properties, such as
reservoir property and shale volume. The spatial continuity structure is characterized by
a covariance/variogram model in the space domain and is represented by a density
spectrum in the frequency domain. Distinct from sequential simulation methods, spectral
simulation is a global method in the sense that a global density spectrum is calculated
once from variogram model and the inverse Fourier transform is performed on the
Fourier coefficient only once to generate a realization.

A spectral-simulation method, called Fourier Integral Method (FIM), has been proposed
to generate geologic-model realizations that honor the spatial structure of a random field

z(u)in one-, two-, or three dimensions (Borgman, Taheri, and Hagan, 1984; Gutjahr,

Kallay, and Wilson, 1987; Mckay, 1988; Pardo-Iguzquiza and Chica-Olmo, 1993). This
method is performed in the frequency domain, as opposed to the usual sequential-
Gaussian-simulation method performed in the space domain.

The spatial structure of a random field z (u) is characterized by the covariance C.(h) or

variogram ¥ _(/) in the space domain. In 1D, the covariance of z(u)is defined as the
convolution product (Bracewell, 1986):

C.(h)= f:z(u) <z(u+ h)du =z * e , where ;(u) = z(—u) (1)

The Fourier transform (FT) of the covariance into the density spectrum of z(z)in the
frequency domain exchanges convolution and multiplicative products:

s(@) = FT(C.)= FT(2)- FT(2) = Z(@)- Z" (@) =| Z(@) | )
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where Z(w) = FT(z) = Iz(u)e’imdu, and Z (@) is the complex conjugate. The term
s(@)is referred to as the density spectrum, |Z(w)| as the amplitude spectrum,
Z(@)=| Z(w@)| e " as the Fourier coefficient, and ¢(@) as the phase. The spectral-
simulation method is based on the correspondence between the space property, z(u),

and the frequency counterparts,s(@)and@(@), as illustrated in Figure 1. The
implementation details can be referred to Yao (1998, 2002)

Spatial Variable — - > Amplitude, Phase

Fourier Transform / Amplitud
o —- &

Inverse Transform

z(u)

Phase

P

Figure 1. The correspondence between the space domain variable, z , and the frequency
counterparts, (@) and @(@) .

There are several advantages of spectral simulation over traditional geostatistical
simulation. The spectral-simulation method is fast, particularly when based on the Fast
Fourier Transform (Kar, 1994; Lam, 1995; Bruguera, 1996; Mckay, 1998). It is a global
method in the sense that all of the amplitude-spectrum values over the whole field are
used simultancously to generate the simulated property. Therefore, the amplitude
spectrum, or variogram model in the space domain, can be honored globally over the
whole field instead of only within search neighborhoods as with the traditional
sequential-Gaussian simulation method. Actually, the variogram model is honored over
half field size, see Yao, 2002. A related advantage is that the separation of amplitude
(spatial continuity) and phase (spatial location) allows updating of models if new
information about either spatial continuity or location is obtained, or allows the
conditioning of models to local information; see Calvert et al (2001, 2002). In addition,
the advantage of spectral simulation in separating amplitude and phase information
allows the spatial continuity to be modified to account for this traditionally
unaccountable local information (Calvert et al., 2001, 2002).

3 Scale and accuracy of interpreted rock-property information: spectral
component

All data that we use for geologic interpretation are limited in the scale of rock-property
information that they contain, although we do not always appreciate the fact. For
example, seismic data cannot directly be used to predict high-frequency variability in
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rock properties because the seismic data contain no information at high frequencies. If

we attempt to use seismic data to estimate rock properties at scales that are outside of

the data frequency band, interpretation errors can result. A spectral component is a

volume- or map-based property interpretation representing only a specific and

measurable scale of the property to be modeled, such as porosity. It could be derived
from any data source or even from analogue information, representing all or a portion of
the reservoir volume being modeled. The following data represent some of the spectral

components (Figure 2):

e 3D volume from seismic amplitude calibration, which contains information only
within the seismic frequency band, typically about 15-75 Hz.

e 2D map from seismic facies or geologic interpretation, such as average porosity
map. This provides no information about the vertical variability in porosity values,
hence contains no information at any frequency above zero Hz in vertical direction.

e 1D trend from well data, such as compaction trend of porosity observed, i.e.,
pososity generally decreasing with burial depth according to a fairly predictable
function. This contains only low frequency information, e.g., 0-5 Hz, because slow
vertical changes represent low-frequency vertical variability.

Seismic Calibration Seismic Attribute Map Well-Derived Trends

Figure 2. Examples of spectral components at different scales.

These spectral components are generated from different sources - some may be
generated from data interpretation, whereas others may be generated from a concept or
an analogue. Different frequency components might have different accuracy - those
directly measured from well logs will be more accurate than others from qualitative
interpretation. In addition, a spectral component often contains information that spans a
bandwidth of frequencies. The measurement/interpretation accuracy could also change
with different frequency component. The new SCGM method will account for the
uncertainty or accuracy about each spectral component.

4 Overview of SCGM method

SCGM method involves constructing a geologic model by first mathematically
combining different spectral components together. The combined volume is referred to
as the "tentative geologic model", which might not represent all desired reservoir
characteristics and needs to be further constrained to honor the target statistics such as
variogram, histogram and well data. The constrained model can be further post
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processed to represent local variations in continuity trend and continuity azimuth, based
on spectral simulation. The generalized SCGM process is given in Figure 3.

3.1 Spectral Components 3.2 Tentative Geologic

3.3 Constrained Geologic

Honor
Targets
®  Histogra
> - S m
3.4. Vertical ° .
Variogra

Figure 3. General process of SCGM method.
4.1 BUILDING THE TENTATIVE GEOLOGIC MODEL

The SCGM method starts with combining different spectral components together to
build what is referred to as a "tentative geologic model", accounting for different scales
of information in each component and the different measurement accuracy. The
tentative geologic model represents the integration of all relevant data types to produce
an a priori geologic model. The least-complex tentative geologic model that can be built
is one in which all spectral components represent distinct or complementary frequency
bands. Such a tentative geologic model can be constructed by simply summing the
independent components. However, in reality, there will always be missing scales of
information. For any tentative geologic model that is built, if a frequency-band of
information is missing (e.g., high-frequency information), then this missing band of
information must be simulated within SCGM and added to the tentative geologic model.
It is also possible that information may be missing over a specific region within the
model area; in this case the data are simulated and added to the model, but only in that
specific region.

The process of building the tentative geologic model gets somewhat more complicated
when the individual spectral components overlap in their frequency content. The
spectral components may completely overlap in frequency content or they may partially
overlap. To properly integrate spectral components that have overlapping spectra, the
measurement or interpretation accuracy of each overlapping component must be known.
The accuracy can be quantified by a value between 0.0 and 1.0. Those components
having higher accuracy values will have relatively greater influence on the resulting
tentative geologic model, but only over those frequencies that overlap. Measurement or
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interpretation accuracy can also vary spatially. For example, the spectral component in
one location within the modeling area may be more accurate than in another due to the
interpreter's diligence. In this case, the tentative geologic model is constructed through
weighted averaging of the spectral components by location (i.e., different average
weight at different locations). Figure 3.2 shows a simple tentative model generated by
simply adding up different frequency components in Figure 3.1.

4.2 CONSTRAINING THE TENTATIVE GEOLOGIC MODELS

The tentative geologic model will not have all of the desired properties of geologic
model, e.g., it likely will not honor the well data or the target variogram and histogram.
The tentative geologic model is further constrained to honor these targets. The
constraining process is sequential, in that the model is modified first to honor the
variogram, second to honor the histogram, and finally to honor the well data.

e Honoring the desired spatial continuity. Spectral simulation is a perfect application
to update the tentative geologic model in an attempt to honor the spatial continuity
represented by the target variogram model. From the tentative geologic model, we
calculate its amplitude and phase spectrum. We only keep part of the amplitude
spectrum which we believe are reliable and substitute the other part with the target
one (representing the target variogram model), and keep the phase spectrum to
generate new Fourier coefficients. The inverse Fourier transform provides a model
that honors the spatial continuity represented by the target amplitude spectrum, as
well as the spatial distribution of high and low values observed in the tentative

geologic model, see Figure 4.
/“66‘ Disc

Original 3D Amplitude
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Figure 4. Schematic illustration of the process of spectral simulation, as implemented in
SCGM.

e Honoring the desired histogram. Quartile transform is used to force the distribution
of geologic model matches the target histogram. Each rock-property value in each
cumulative distribution function (CDF) corresponds to a probability quintile. The p
quintile of the cumulative distribution function (CDF) is transformed to the same p
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quintile of the CDF for the target histogram so that the CDF of the tentative
geologic model matches the target CDF. The quintile transform does not change the
relative rank of the data, hence also referred to as "rank-preserved transform".

e Honoring the well data. Following the steps of honoring the variogram model and
the histogram, the rock-property values at the well locations are reset to match the
actual well-data values. Resetting these values results in changes in the properties
assigned to these cells. These changes [(actual well value) - (current model value)]
are propagated to all tentative geologic model cells in the neighborhood of each
well; the magnitudes of the changes are weighted as a function of inverse distance
from the well.

Figure 3.3 shows a constraint model which honors the target variogram, histogram, and
well data. Note that the sequential implementation of first honoring variogram, then
honoring histogram, finally honoring well data might distort the target parameters
honored first such as varigoram and histogram by later honoring other target parameters
such as well data. Therefore, the ideal implementation would be iteratively repeat the
sequential honoring process to ensure all the target parameters are honored in the same
degree. However, many tests show that so long as the target parameters are consistent
with each other, the first iteration does 90% of the job of constraining the model to the
target. For speed purpose, we used only one iteration, but strongly suggest checking the
model to make sure all the targets are met without much distortion.

The SCGM process described above does properly account for the scale of the input
data, both in terms of the spectral component information (as represented in the phase
spectrum) and the target variogram model (as represented in the target amplitude
spectrum). As a result, SCGM can honor both the compositional information contained
in the tentative geologic model and the target variogram model, without compromising
either. Given the same input of variogram, histogram and well data, SCGM is proved to
honor the input information better than the traditional geostatistical methods such as
kriging with locally varying mean or collocated cokriging (Calvert et al., 2002).

In addition to honoring one single global variogram model, as do traditional
geostatistical algorithms, SCGM has the capability to model local variations or trends in
the range and dominant azimuth direction of spatial continuity, using spectral
simulation.

4.3 CONDITIONING TO THE LOCAL SPATIAL CONTINUITY TREND

In a geologic model, the three-dimensional spatial continuity of a rock property is
commonly controlled with geostatistical algorithms and a variogram that quantifies the
spatial variability of the rock property as a function of both separation distance and
direction. Geostatistical algorithms used in constructing geologic models assume
stationarity in the geologic characteristics of the modeled region, i.e., they assume that a
modeled rock property can be represented by a single set of statistical measures, which
are often referred to as "global" measures. For example, a single, global variogram
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model would be used to represent the spatial continuity of the rock property over the
entire modeled region.

However, we know that the geologic characteristics of the subsurface are non-stationary.
For example, the global spatial continuity of bed thickness in a reservoir can be
characterized by a global spherical variogram model with a range of 10 feet. However,
we can also observe a trend of thicker beds at the bottom and thinner beds on the top:
the thicker beds at the bottom might have a range of 20 feet and the thinner beds on the
top might have a range of 5 feet. To account for the local continuity trend beyond the
global variogram model, we use the local (variogram models with longest and shortest
ranges) and global variogram models to calculate the spectral amplitude ratios of the
local spectral amplitudes vs. the global one at different frequency bins. We interpolate
the local amplitude ratios in between according to the trend. This will provide one local
amplitude ratio for each frequency bin at each cell. Then, we decompose the model that
honors the global spectrum into different frequency components (represent each
frequency bin), and multiply each component by the corresponding local amplitude
ratio. The summed result of all the multiplied spectral components displays the local
continuity trend. The implementation details can be referred to Yao (2003).

Figure 3.4 gives examples of applying this method to impose a trend in vertical
continuity on a geologic model of shale volume. This example applied only one
continuity trend on the geologic model. If additional trends in spatial continuity are
desired, then treat the geologic model created before as a new starting geologic model
and apply the local trend using different global and local amplitude spectra that
represent the new trends. This will generate a geologic model that honors multi-
dimensional trends in spatial continuity.

Other algorithms available to account for non-stationary spatial continuity usually
separate the whole modeling area into different sub-areas and use a different variogram
model for each sub-area. Such a method addresses the non-stationarity of the large area,
but at the cost of artifact boundaries between sub-areas. Using spectral simulation and
manipulating the amplitude spectrum allows us to address explicitly the gradually
changing continuity trend.

4.4 CONDITIONING TO THE LOCAL SPATIAL CONTINUITY AZIMUTHS

Rock property continuity within a reservoir often shows anisotropy, i.e., continuity is
greater in one direction than in another. In addition, the local direction of greatest
continuity might change from one location to another within the reservoir. Consider
sediments deposited in a river channel. Paleo-hydrodynamics often control the
distribution of the lithological and petrophysical properties within the channel. We
know that the continuity of these properties is anisotropic, typically greatest along
channel and less continuous across channel. We also know that sinuosity may cause the
channel to locally vary in direction; therefore, the rock-property continuity will also
locally vary in direction, as with a meandering pattern.
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Methods used to introduce variable directions in rock-property continuity into the
geologic model are generally based on methods published by Xu (1996). Continuity
direction is varied according to an input grid of azimuths, which represent local
variations in continuity direction. Often, this grid is based on interpreted seismic facies,
i.e., the shape of the interpreted facies (e.g., sinuosity of a channel) is represented in the
azimuth data. To conditioning to the locally varying continuity azimuth, we first identify
the strings of connected nodes from the azimuth grids (Jones, et al., 2001). Then, we
simulate each string to have maximum continuity along that string, using 1D spectral
simulation. Finally, we put the simulated values back to the original nodes along the
string. Therefore, the continuity along a path that bends according to the azimuth data as
desired is reproduced (Craig, et al., 2002). The traditional pixel-based geostatistical
methods require that this path be represented locally by a straight line. If those segments
are small (i.e., the range of continuity is short), the curved line can be approximated well
with straight-line segments. However, if the segments are long (i.e., the range of
continuity is long), the curved line can not be approximated with straight-line segments.
This limitation practically manifests itself as a trade-off between honoring the azimuth
data and the target variogram range. The new SCGM method can simulate continuous
rock properties along a bent path, therefore, it should produce better results in situations
when long-range continuity is to be represented along a curved geologic feature, see
Figure 3.5.

4.5 UPDATING AN EXISTING GEOLOGIC MODEL

The process of updating of any existing geologic model with any new information is

very straightforward. For example, a new or alternative spectral component (e.g., from

seismic-volume interpretation) became available after the original model was built. To

incorporate this new information, we could update the original model by the following

process:

e  From the existing model, filter out and discard the information that is of the same
scale (frequency band) as the new spectral component,

e  Combine this filtered model with the new spectral component to create a tentative
geologic model

e Constrain the new tentative geologic model to satisfy other targets.

A new variogram or histogram target model can also be incorporated efficiently to

update the existing model.

5 Conclusions

SCGM is a new technology for integrating all the relevant data at their correct scale. It
starts with combining different spectral components together to build what is referred to
as a "tentative geologic model", accounting for different scales of information in each
component and the different measurement accuracy. Then, the tentative geologic model
is constrained to honor all the desired properties of geologic model such as honoring the
spatial continuity, histogram and well data. Spectral simulation is applied to honor the
spatial continuity globally as well as to gain speed advantage. In addition to honoring
one single global variogram model, as do traditional geostatistical algorithms, SCGM
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has the capability to model local variations or trends in the range and dominant azimuth
direction of spatial continuity, by modifying the amplitude spectrum using spectral
simulation.
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JOINT SIMULATIONS, OPTIMAL DRILLHOLE SPACING AND THE ROLE
OF THE STOCKPILE

A. BOUCHER, R. DIMITRAKOPOULOS and J.A. VARGAS-GUZMAN
WH Bryan Mining Geology Research Centre
The University of Queensland, Brisbane Qld 4072, Australia

Abstract. Infill and grade control drilling are a major cost in any mining operation.
Reduction of drilling density can considerably enhance the profitability of an operation
provided the cost from block misclassification is less than the savings in drilling. This
paper presents a general simulation based approach to assess the performance of
potential drilling schemes from the available deposit information. The approach
integrates joint simulation of correlated variables with the computationally efficient
minimum/maximum autocorrelation factors, multi-elements ore classification, and mine
planning considerations. The latter employs key indicators such as profit per tonne
mined and profit per tonne milled, as well as the potential use of a stockpile and its
discounting. A case study at the Murrin Murrin nickel-cobalt deposit, Western Australia,
is used to elucidate the proposed approach and to show the critical effect of planning
decisions on drilling.

1 Introduction

Infill drilling is a critical information collection process in mining operations leading to
substantial investment that can be in the order of millions of dollars. As a result, the
ability to assess the performance of potential drilling schemes, prior to drilling is
important. A reduction in drilling density could enhance the profitability of an operation,
if misclassification cost does not exceed the saving in drilling. At the same time,
additional information becomes counterproductive after the point of diminishing returns,
i.e. the cost of additional information exceeds its benefit. Past work in geostatistically
assessing additional drilling was based on estimation variances which largely reflect the
geometry of drilling configurations (Goovaerts, 1997) without any consideration of the
local grade variability and uncertainty (Ravenscroft, 1992), economic cost/benefit
analysis, or a link to mine planning decisions.

A stochastic simulation framework can be used to realistically address the assessment of
infill drilling patterns (e.g., Dimitrakopoulos, 2003). In the general case of multi-
element deposits, joint simulation of pertinent correlated variables is used to produce
realisations of an exhaustively known deposit. Such a realisation is treated as an
“actual” deposit and is subsequently virtually drilled. This new drilling information can
then be used to re-simulate the deposit leading to comparisons of block classifications
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and other indicators to the actual exhaustively known deposit. This way different
drilling schemes can be compared to make informed selection of a drilling strategy.

Computationally efficient joint simulation methods are essential for generating realistic
representation of “actual” deposit. Conventional co-simulation methods (e.g., Verly,
1993; Chiles and Delfiner, 2000) become inefficient when more than two variables are
considered. Collocated cosimulation with a Markov-type coregionalisation (Almeida
and Journel 1993) assumes a very specific coregionalisation and does not extend well
beyond two attributes.  Therefore, conditional simulation with the so-called
minimum/maximum autocorrelation factors or MAF (Switzer and Green 1984;
Desbarats and Dimitrakopoulos 2000) is advocated herein. MAF transforms attributes of
interest to uncorrelated factors that are independently simulated by any simulation
method and then reconstructed to realisations of the original variables reproducing their
cross and auto-correlation.

In addition to the orebody geology, mine planning aspects, such as stockpiling, also
affect the performance of the infill drilling patterns,. When low-grade ore blocks are
stockpiled, the performance of an infill drilling scheme is a function of how, when, and
if the stockpile would be processed in the future. The uncertainty linked to the
stockpiling strategy can be factored into the selection of a drilling scheme by
depreciating the stockpile value with a discount rate. If an ore block sent to the stockpile
is considered lost, the stockpile can be regarded as waste. Alternatively, if the stockpile
will be processed in coming years, a misclassified ore block in the stockpile makes no
difference and no penalty is necessary. Discount rates enable the comparison of the
different schemes by linking the two extreme scenarios.

In the next sections, the drilling optimisation method is outlined and is followed by a
brief discussion of simulation with MAF and the definition of economic indicators for
comparing drilling efficiency. Finally, the intricacies of the method are detailed in a case
study at the Murrin Murrin nickel-cobalt deposit, Western Australia.

2 A method for infill drilling assessment and optimisation

The following method, also schematized in Figure 1, is suggested to assess and compare
the performance of drilling patterns for a multi-element deposit:

Step 1: From the exploration drilling data available within the pit, jointly simulate a
representation of the deposit using min/max autocorrelation factors for the attributes
under study. This first realization is called the “actual” deposit.

Step 2: Sample the above actual deposit with the different infill drilling schemes of
interest.

Step 3: For each drilling scheme, jointly simulate with MAF the elements of interest
conditional to the data from the “actual” deposit in Step 2 above, to obtain several joint
realisations. Re-block the realizations for the attributes simulated to produce models of
mining blocks to be assessed.
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Step 4: Do grade control and classify the blocks (e.g. from their average grades) for each
sampling scheme (e.g., milling ore, stockpile and waste). Compare the classification to
the “actual” classification using, as economic indicators, the profit per tonne mined and
profit per tonne milled; calculated as discussed in a subsequent paragraph.

Step 5: Graph and assess the results with respect to the point of diminishing returns.
Repeat to assess sensitivity of the results.

L] . Real but
. . unknown

/ . " \dcpnsit

Future drilling scheme Simulated
lapplied on the actual and fully
deposit known
deposit
Simulated
and fully
known
deposit

@ Distribution of
pertinent
—/\ /\ indicators

Figure 1 Schematic workflow for the proposed methodology

3 Multivariate simulation with minimum/maximum autocorrelation factors

The multivariate deposit is cosimulated by orthonalising the grade attributes into three
factors deemed uncorrelated from each other. Each of these factor is then simulated
independently, and the simulated grade is obtained by back-rotating the factors into the
attribute space.

The minimum/maximum autocorrelation factors (MAF) is an orthogonalisation similar
to the well-known principal components analysis (PCA). The advantage of the MAFs
over the PCs is the extension of orthogonalisation to the non-zero lags. Principal
components (David, 1988) are uncorrelated at all lags only if they are derived from a
random field with an intrinsic coregionalisation. The MAFs uncorrelate a RF for all
lags with a linear model of coregionalisation containing at most two structures (Switzer
and Green 1984; Desbarats and Dimitrakopoulos 2000). Boucher (2003) and
Dimitrakopoulos and Fonseca (2003) have successfully used the MAF method to jointly
simulate grades in a mining environment.
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Switzer and Green (1984), later reviewed in Desbarats and Dimitrakopoulos (2000),
show how to obtain the factors through the eigenvectors of the matrix 2T, (#)B™",
where

B =cov[ Z(u) , Z(u) ]
2T, (h)y =cov][ Z(u)—Z(u + h), Z(u)—Z(u + h) ]

where B is the variance/covariance matrix of Z(u) , a multiGaussian RF, and I', (%) is
the variogram matrix at lag /.

The matrix A of orthogonalisation coefficients is such that

2, (B = ATAA (1)

Refer to Desbarats and Dimitrakopoulos (2000) for an equivalent but computationally
more efficient method to derive the coefficients A by performing two successive
principal component decompositions.

Each orthogonal factor Y,(u«),i=1,...,p is obtained with the coefficients a, constituting
the ith row of A.
Y, (u)=a,Z(u), i=1,..,p )

The new vector RF Y(u), is then, by construction orthogonalised at lag 0 and at lag h.
Z(u) is simulated by independently simulating each factor y; (u),i=1,..., p and back-

rotating them with the coefficient matrix:
z(u)=A" -y (u) A3)

In practice, the attributes are first normal score transformed and then rotated into
orthogonal factors. This prior transformation reduces the effect of skewed distributions
but potential problems may occur if the rank and the Pearson coefficient of correlation
of the original attribute differ too much.

4 Economic indicators

The key indicators suggested here are the profit per tonnes mined and profit per tonnes
milled. These are defined here, without loss of generality, using the case of a deposit
with two revenue generating elements and a third one that adversely affects production.
Consider an example of a Ni laterite deposit producing nickel and cobalt where
magnesium is a “penalty” element increasing processing costs.
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Taking into account the quantity of the penalty element (M) and a penalty factor
( kog ) the cost of classifying a block at location u in category k, C;°“'(u) is

expressed as
Total _ Drilling Mining Processing Mg Mg
CI™ () = (% O + €L e MM () -

The revenue from a block is expressed as

Ry(uw)= > Mi(uyrip'

i=1

where M’ is the quantity of revenue generated by metal i, (e.g., M™ is the quantity of

Nickel), 7 is the recovery of metal i when classified in category k and p' is the price

for attribute i.
The gross profit £, (u) generated by classifying a block at location u in group £ is

Fi(u) =R, (u) = C;™ (u) (4)

The final classification of a block at location u is such that it maximizes the gross
profit. A block will be classified in group £’ such that

k'= argmax F;(u)
J

The optimal drilling pattern is the one that would maximize the gross profit, such that
the sum of all Fy.(u;),j=1,...,N is maximal. Excessive infill drilling would increase

the cost and insufficient drilling would decrease the revenue.

Two indicators are used to assess the performance of the sampling scheme. The primary
one is the profit per tonne mined, which is the sum of the profit generated by the N
blocks inside the domain

N
p g w2 ) 5)

mined — N

which is an indication of the efficiency of the selection. The second indicator is the
profit per tonne milled

Z?;Fk’(uj)

v . (6)
Z_],-V:l 1 itiea (W ;)

Prilied =
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where / ;,.4(u;) takes the value one if the block located at u; is sent to the mill, and

takes zero otherwise. The profit per tonne milled indicates the quality of the ore being
selected. The difference between the two can be seen with a simple example. Consider
a case where some economics material has to be stockpiled to allow only very high
grade to the mill. Being profitable, the misclassification of this stockpile material in the
mill material will increase the revenue and, the tones mined being constant, the ratio
profit per tones mined will also increase. In contrast, the profit per tone milled will
decrease as the misclassified material generates less revenue than the high grade
material.

The conditional distribution of profit per tonne mined P, ., (5) and per tonne milled
P ia (6) are computed for each of the N, sampling scheme €); from their respective
conditional joint simulations, obtained from Eq. (1) to (3).

Pr (Pyinea < X | 2(w), Q;, i=1..,n) j=1..,Np
Pr (P <X |2(y,),Q;, i=1,..,n) j=L.,N,

5 Application at the Murrin Murrin deposit

The Murrin-Murrin nickel-cobalt deposit is located in the Eastern Goldfields Province,
Western Australia. It is hosted in weathered peridotites comprising of a ferrugious zone,
which is predominantly waste, and two ore bearing horizons, a smectite unit with a
transitional boundary to a magnesium enriched saprolite horizon (Jaine, 2003) The
Murin Murin operation provides a 4 Mtpa supply to the processing plant that recovers
nickel and cobalt. Given the magnesium content of the ore, the response of the mill feed
to pressure-acid leaching and the cost of acid consumption is a metallurgical issue.

In the case study that follows, exploration drillholes within the saprolite zone are
available from one of the open pits at Murrin Murin. Those holes, approximately
gridded on a 50x50 metre spacing, give 263 one metre composites. Grade control infill
drilling is typically performed on a 12.5 by 12.5 metre grid, with block size of 15x15
metre. A reduction in drilling would lead to direct saving in pre-mining costs whilst
additional information could improve the quality of mill feed, thus reducing contaminant
penalties and improving ore selection in addition to improving short term scheduling
performance of the mine. The choice of a bench height is also looked at, two and three
metre bench thicknesses are considered.

5.1 SIMULATING Ni, Co AND Mg WITH MAF

From the exploration drillholes, 4 actual deposits are simulated on point support: 2 with
two metre bench and 2 with three metre bench. After normal score-transform, the
nickel, cobalt and magnesium attributes are rotated into MAF space with expression (2).
Each of the factors is then simulated independently one from the other. Then rotated
back together into the Gaussian space and finally back-transformed into the original
space. Figure 2 shows some joint realisations of nickel, cobalt and magnesium of one
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actual deposit. The cross-variograms, shown in Figure 3, are well-reproduced thus
preserving the important spatial relationships between the attributes.

Co

Figure 2 Joint realisations of nickel, cobalt and magnesium. Light is low, dark is high.
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Figure 3 Reproduction of cross-correlation at all lags. The black crosses are the
experimental variogram values.
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5.2 SIMULATING THE DRILLING AND CLASSIFICATION PROCESS

The infill drilling information z(u,)={zy;(u,),zc,(U,),zy,W,)}, where u, are

the sampling locations, is obtained by virtually drilling the actual deposits with a
specific drilling scheme. Four (N, =4) regular sampling schemes, Q,,i=1,....4, are
considered:

Q: 12m x 12m (512 holes)
Q,: 18mx 12m (320 holes)
Qy: 18m x 18m (210 holes)
Q,: 25mx 25m (210 holes)

For each of these sampling, 30 cosimulations z"(u) are performed conditional to the
prior z(u;) (exploration holes) and posterior z(u,) (the virtual infill-sampling). There

are 480 ( 4 actual deposits x 4 sampling schemes x 30 cosimulations ) simulated
deposits to which the economics indicators would be applied. All those point-support
cosimulations are then upscaled into 338 (26x13) blocks of dimension 15x15 metre.
The block selection for each sampling scheme is based on the E-type mimicking the
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actual selection process for a mine operation. Finally, the profit per tonne mined and
profit per tonne milled are calculated with expressions (5) and (6).

Considering the material stockpiled as waste, Figure 4 shows the histograms of P, , ., for

all sampling configurations for the first actual on two and three metre bench heights.
First, all the schemes are profitable, i.e. no loss occurred, but some are more profitable
than the others. It is also noticeable that the mean decreases with a sparser drilling
pattern while the variance (and the coefficient of variation) increases. The 12x12
scheme is the most advantageous when considering both the efficiency and the
uncertainty.

12x12 18x12 18x18 25x25
m=6.05 m=5.40  m=4.78 m=4.51
o 2.0 291
2 o?=0.17| o=0.ca 0?=0.19 | 5 5 0°=0.60
2 : ] ‘ n
£ ' ' H
= i \H i Eﬂ‘jj ] minlilis »
. m=6.71 m=6.14 m=5.06 m=4.63
S  ¢*=020 0”=0.33 02=0.28 _02=0.63
g I ~
" il bo il
] 7| 7] E __H“ | [T I B
8 2 4 6

8 2 4 6 8

Figure 4 Histogram of profit per tones mined.

5.3 DISCOUNTING THE STOCKPILE AND EFFECTS ON DRILLING

In reality, the stockpile has a value that is neither ore nor waste. Stockpiling an
economic block may be seen as ‘money in the bank’ without interest, thus inducing an
opportunity cost. The cost of misclassifying an ore block as stockpile increases
according to the stockpile strategy, i.e. when that block will be mined. From the
banking analogy, the increase in cost depends on a discount rate and the number of years
the material is to be stockpiled. The revenue generated from the stockpile, say to be
mined in A¢ years, is expressed in today’s dollar (t=0)

Fy=(1+i)" F_, (M

where i is the discount rate. A higher discount rate, i.e. a higher uncertainty about the
stockpile strategy, will increase the misclassification cost.

The performance of the four infill drilling schemes is revisited by considering
uncertainty in the stockpiled strategy modelled by discount rates. The cost of stockpiling
marginal ore is investigated with six different discount rates on a period of 10 years. The
profit generated by the stockpile is transformed into dollars in ten years time with a
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specific discount rate. With a discount rate of zero, suggesting no cost of opportunity,
the stockpile is considered as ore. A high discount rate indicates that the stockpile lost
all its value, thus it is considered as waste. All other discount rates are intermediate
scenarios between these two “end-point” cases.

The profit per tonne mined is expressed in Australian dollar increment based on the
currently used 12m x 12m sampling grid. The median profit per tonne mined for the four
sampling scheme applied on actual #1 is shown in Figure 5. The upper left graph
considers the stockpile as waste and the lower right graph as ore. The profit per tonne
milled is shown in the same format in Figure 6.

For an increase of 8 cents per tonne in drilling cost between 12x12m and 25x25m, the
profit per tonne mined improves up to $2 (35%) at a high cut-off (stockpile as waste)
and of $0.50 at a lower cut-off (stockpile as waste). The 12x12m scheme is more
profitable, even at a low cut-off (stockpile as ore). The 12x18m scheme does not
decrease the profit too much and could also be appropriate for the deposit. The results
seem insensitive to the bench height. For actual #1 the 2m is better than the 3m, the
inverse is observed for the actual #2 therefore mining with 3m benches is appropriate.

i \\ \\

@
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5 . Discount rate Discount rate
e Stockpile as ore =0.06 =0.08

G 25

T o
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2 15 ]

g Discount rate Discount rate Stockpile as
- 4 =0.10 =0.20 waste

12x12 18x12 18x18 25x25

Figure 5 Median increment of profit per tonne mined. The median of the 12x12 metre
scheme is set to zero. The black lines are for the actual deposits on two metre bench, the
gray lines are for those on three metre bench.
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Figure 6 Median increment of profit per tonne milled. The median of the 12x12 metre
scheme is set to zero. The black lines are for the actual deposit on two metre bench, the
grey lines are for those on three metre bench.
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6 Comments and Conclusions

This study shows that multivariate deposits can be efficiently simulated by first
orthogonalising the attributes with the minimum/maximum autocorrelation factorisation.
Once the simulated values are back-rotated, the cross-correlation at all lags between
attributes is restored. The resulting realizations are then a better representation of the
deposit and are therefore more appropriate for further processing.

The economic consequences of the drilling patterns on a multivariate deposit is then
regarded on a large scale that takes into account some aspect of long-term planning,
specifically with regards to the strategy and uncertainty related to the stockpiled
material. The uncertainty of this material is translated into a discount rate, which
indicates the risk of losing a profitable block when stockpiled. The performance of the
drilling scheme can be assessed in a larger perspective than by the traditional
misclassification parameters. This study demonstrates how the main mine planning
decisions impact the lower level activities such as the spacing of the infill drilling.
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THEORY OF THE CLOUD TRANSFORM FOR APPLICATIONS

ODD KOLBJORNSEN and PETTER ABRAHAMSEN
Norwegian Computing Center, Oslo, Norway

Abstract. We present the multidimensional cloud transform and propose an
estimator for the transform. The estimation procedure is based on scatter plot
smoothing. The resulting transform does not introduce artificial discontinuities in
the transformed data, which is a common problem for the traditional estimates.
The method is compared to a traditional estimate in a synthetic example.

Key words: Non-Gaussian distribution, stochastic simulation, seismic conditioning

1 Introduction

Seismic data provide valuable information with high lateral resolution that im-
proves reservoir models. Geophysical variables such as acoustic impedance, shear
impedance and Poisson ratio are often available through out the reservoir as
results of seismic inversions. The cloud transform, see Bashore et al. (1994), is
a frequently used tool when incorporating one explanatory variable such as the
acoustic impedance into the reservoir model. The multi dimensional cloud trans-
form incorporates multiple explanatory variables in the transform. This is useful
as elastic inversions that provide multiple geophysical variables now are quite
common.

Traditional estimates of cloud transforms are constructed by introducing non-
geological facies, e.g. impedance classes. This method introduces artificial discon-
tinuities in the petrophysical simulations, and requires a large amount of well data
in order to obtain a reliable result. When the explanatory data have multiple
dimensions the traditional binning estimates will suffer due to lack of accuracy
and precision of the estimates because the number of bins increases dramatically
with the dimension.

In the current work we present the cloud transform using a probabilistic termi-
nology and propose estimators for the cloud transform that is based on scatter plot
smoothing. The major difference between the current approach and other scatter
plot smoothing approaches, e.g. Xu and Journel (1995) and Deutsch (1996), is that
we work with the cloud transform directly and do not consider the joint density.
The resulting estimates yield continuous transforms. Asymptotic expressions for
accuracy and precision are presented and discussed. Asymptotic convergence rates
are obtained such that for a given target distribution the asymptotically ideal
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smoothing factor can be computed. The convergence rate of the estimator is the
same as the convergence rate for the estimator of the density of the explanatory
variables in the transform. Thus it converges faster than the kernel estimator of
the joint density of response variable and explanatory variables.

A presentation of the cloud transform is given in section 2, the estimator and
asymptotic properties are given in section 3, synthetic example with comparison
of proposed estimators to the traditional estimate is given in section 4. At the end
there is a discussion and concluding remarks in section 5 and 6 respectively.

In what follows the function f denotes a generic density, where the random
variable(s) in question is implied by the argument(s) of f, e.g. f(x) and f(y)
denotes the density of X and Y respectively. Bold letters are used to denote
vectors, e.g. & € R®. The function F denotes a cumulative distribution function
the random variable in question is again implied by the argument, e.g. F(y) =
Prob(Y < y). Consequently f(y|x) and F(y|x) denotes the conditional pdf and
cdf for Y given X = x respectively. The quantile function that corresponds to the
cdf F is denoted F~1 such that by definition z = F~(F(z)).

2 The cloud transform

The cloud transform is a conditional inverse probability transform. Let X and
Y denote the explanatory and response variable respectively. Typically X is the
acoustic impedance and Y is the porosity. A stochastic simulation from f(z,y)
can be obtained by the following algorithm:

Algorithm 1:

i) Compute F(x)
it) Sample uj ~ Uniform [0, 1]
iii) Let x* = F~Y(u})
iv) Compute F(y|x*)
v) Sample u} ~ Uniform [0, 1] independent of u}
vi) Let y* = F~1(uj|z*)
vig) Return (z*,y*).
The transform in step #ii) is an inverse probability transform. The transform
in step vi) is the cloud transform. The multi dimensional cloud transform denotes
the case when the explanatory variable is multi dimensional, i.e. y = F~!(u|z).

For example can the components of & be the acoustic and the Poisson ratio.
In a spatial setting the cloud transform is applied pointwise, i.e.

Y(s) = F7H(U(s)]x(s)), (1)

with s being the spatial reference, Y'(s) being the response field, U(s) being a
p-field and x(s) being the given explanatory field. A p-field has the property that
the stationary distribution of a realisation of U(s) is uniform on [0, 1]. A spatially
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correlated p-field can for example be obtained as U(s) = ®(Z(s)), with ® being
the standard normal cdf; and Z(s) being a standard normal random field.

On a bounded domain the response field Y(s) defined in expression (1) is
almost surely continuous if f(x,y) is a density, U*(s) is almost surely continuous
and x(s) is continuous almost everywhere.

The following algorithm use the cloud transform to reproduce the conditional
distributions of Y (s) given x(s): Algorithm 2:

i) For all s in grid: compute F(y|xz(s))
ii) Sample a p-field u*(s) independent of x(s)

iii) For all s in grid: let y*(s) = F~1(u*(s)|z(s))

i) Return y*(s).

In step ii) the term independent is used in terms of independent stationary dis-
tribution; i.e. all information regarding Y'(s) given by x(s) is given through the
transform.

The cloud transform can also be used to reproduce joint multivariate distribu-
tions, by sampling in a sequential manner. The first variable is sampled according
to an inverse probability transform; the next variables are sampled using the cloud
transform given the previously sampled variables.

One can also imagine combinations of these two uses, by first simulating poros-
ity given geophysical variables and next simulate permeability given geophysical
variables and porosity.

The cloud transform become storage intensive as the dimension of the ex-
planatory variable increase. Its hard store a cloud transform with a reasonable
resolution if the dimension of the explanatory variable exceed four. In place of
storing the transform one may consider to estimate it each time it is needed. The
time requirement in this approach is prohibitive. In addition the number of data
needed for a reliable estimate increase rapidly with the dimension.

3 Estimation of multi dimensional cloud transform

In an applied setting the cloud transform is unknown, and must be estimated
from data. The estimator proposed here is based on the theory of kernel density
estimation as presented in Silverman (1986), main results are summarised below.
Other methods of density estimation see e.g. Donoho et al. (1996) and more re-
fined approaches to kernel smoothing see e.g. Sain and Scott (1996), can also be
developed into the setting of the cloud transform.

3.1 DENSITY ESTIMATION

Let X1, X5, ..., X,, be a given multivariate data set whose underlying density is
to be estimated. The kernel density estimator of the joint density is then

fla) = Zk (=5). )
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with & being the bandwidth; and the kernel k; : R? — R being a radially
symmetric unimodal probability density function such that

/Rd zizikq(x)de = 0;5,

where §;; is one if @ = j; zero otherwise. Define further the constant

Ba = / hg() Pz,
Rti

that is specific for the kernel kg .
A standard argument using Taylor expansions yields the asymptotic expression
for bias,

. Ch?_,
E{f@)} - 1@)=% V@), (3)
with V? being the Laplace operator in R® The asymptotic variance is
; . PBa
var {f(2)} = 1% f(a). (4)

Combining the two yields the mean squared error

MSE{f(:E)} = {E{f(a:)}—f(w)r-l—Var{f(w)}

4
P @P + D ), )

From this expression one obtain the optimal rate of convergence for the bandwidth
being,
hopt ~ nfl/(d+4) (6)

yielding the convergence rate of the mean squared error,
MSE { f(a:)} ~ (A (7)

The integrated mean square error (IMSE) is a common measure of error in density
estimation and is used to identify a common bandwidth for all € R?. It is however
not possible to find a universal bandwidth that is applicable of all densities since
the MSE and IMSE depend on the target density, see expression (5).

Consider also estimation of the cumulative distribution in one dimension, F'(x),
using the ordinary count estimator,

n
. L I(X; <z
Fa) = ZamIXis 1) (8)
n
with 7(X; < x) being one if its argument is true zero otherwise. This estimator
is unbiased and has variance according to the estimator of the probability in a
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binomial distribution. The mean squared error is thus identical to the variance

which is
Var {p(x)} _ Fl@)[l-F)] 9)

n

The convergence rate for the MSE of the count estimator is hence of order n=1.

This should be compared with the convergence rate of the density estimator, see
expression (7). In one dimension the convergence rate for the density is n~1+1/5,
The convergence rate of the cdf corresponds to d = 0 in expression (7).

3.2 CLOUD TRANSFORM ESTIMATION

Let (Y1, X1), (Y2, X5), ..., (Y, X,,) be a multivariate dataset for which the cloud
transform is estimated with Y and X being the response and explanatory variable
respectively. The kernel estimator of the joint density is then,

s 1 - z—X; y—Y;
f(m’y)mgkd< h >k1( Iy )» (10)

where the kernel is separated for x and y; and h, is the bandwidth used for
the response variable. The target for the estimation is the conditional cumulative
distribution F(y|z). When using the density estimate in expression (10) one can
obtain the estimator of F(y|x) as,

Sk (=) K (52)
F(ylx) = ST (2K ;
1= h

with Ki(y) = [Y_ ki(t)dt. The bias in the estimator in expression (11) has the
complexity

(1)

E{F(yla)} — F(ylz) ~ o(h® + h}).

The asymptotic variance has the complexity

Var {F(ylz)} ~o (n;d) .

The bound for the asymptotic variance is independent of h,,. This is intuitively ex-
plained by the fact that K (y/h,) in expression (11) is bounded whereas ki (y/hy)/hy
in expression (10) is unbounded when h, approaches zero. The usual trade off
between bias and variance is not needed in the direction of the response variable.
Thus let h, = 0 an introduce the unnormalised conditional cdf of ¥ given X,

Glyia) - [ " f(t 2yt = F(yle)f ().

The asymptotic bias for the case of hy, = 0 is

B{F(ylz)} — Flyla) = 2}1@) V2G(ga) - Fyla)V2f@)],  (12)
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and the asymptotic expression for the variance is

Var {F(y|w)} G

= W [F(ylz) (1 — F(y|z))]. (13)

It is interesting to compare this variance with the one obtained for estimating em-
pirical cumulative distributions in 1D. The factor [F(y|z) (1 — F(y|z))] /[nhef(x)]
can be interpreted as the binomial uncertainty given [nh?f(x)] data, see expres-
sion (9). The factor 4 is related to the kernel smoothing, see expression (4).

By combining the bias in expression (12) and the variance in expression (13)
to the mean squared error one see that the optimal rate of convergence for the
bandwidth is obtained by

hopt ~ n*l/(d+4)7

yielding the convergence rate for the mean squared error to be
MSE{F (y|®)} ~ n=4/ @+, (14)

This is the same rate of convergence as obtained for density estimation, see ex-
pression (7), but in expression (14) the dimension d refers to the dimension of the
explanatory variables.

Note in particular that an estimator of the cloud transform that is based on the
optimal kernel density estimator will have the convergence rate n'/(4+5) which is
suboptimal.

The factor 1/f(x) which occur both in expression (12) and (13) is large in
the flanks of f(x). This factor may be reduced by transforming the explanatory
variable to be approximately uniform on [0,1]%. In the case of a one dimensional
explanatory variable, the rank transform is uniform. In higher dimensions it is
possible to obtain approximate uniform distributions by sequentially estimating
the conditional transforms in the same manner as for the cloud transform, but
applying them to the explanatory variables. This transform reduce the variance in
the estimate but unfortunately the bias is increased trough the factor V2G(y; x).
The advantage is that the transform remains stable at the flanks. When the cloud
transform is used to model spatial phenomena the histogram based on well logs
have a smaller support than the histogram of the full field, due to the number
of samples. It is therefore importance to have a reliable estimate of the cloud
transform also towards the flanks of the distribution of the explanatory variable.

Note that the kernel estimator of the cloud transform corresponds to a den-
sity estimator for the explanatory variables. If the stationary distribution of the
explanatory variable is an exhaustive sampling of this distribution, the marginal
histogram of the dependent variables is exactly reproduced in the full field.

3.3 SPECIAL CASES

It is interesting to investigate the proposed estimator for cases in which one can
see the effect directly.

In the trivial case where there is no explanatory variable, the estimator is
identical to the empirical cdf of the response variable, see expression (8).
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If the response variable is independent of the explanatory variable, the es-
timator introduces local bias for the simulated response variable. However the
stationary distribution of the response variable will still be reproduced. In this case
it is obvious that an infinite bandwidth is optimal for the explanatory variable.

When the response variable is discrete, the estimator is identical to estimates
obtained by kernel density estimation for each level of the response variable. The
kernel density estimates for all classes have a common bandwidth. The probability
of a class at a given value of the explanatory variable is proportional to the density
estimate weighted with the number of data in this class.

If there is a functional relationship between the explanatory and the response
variables, the estimator blurs this relation. This introduces artificial uncertainty
in the predictions. The obvious choice in this case is to estimate this deterministic
relation instead of introducing the cloud transform which is a stochastic transform.

4 Example

The properties of the estimators are investigated in a synthetic example where
a relation between acoustic impedance and porosity is considered. In Figure 1
the scatter plot of the data that are used to estimate the transform is displayed
together with the cloud transform. A vertical line in the cloud transform yields a
cumulative distribution for the porosity increasing monotonically from zero at low
porosity values to one for high porosity values. In the figure both extreme ends
are coloured white in order to highlight the active region.
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Figure 1. Data and original transform. On the left is the scatter plot of the
1200 well observations that are used to estimate the transform. On the right is
the original cloud transform of the joint distribution of acoustic impedance and
porosity. All cumulative distributions are zero for low porosity values and one for
high values.

The binned estimator is compared with two estimators based on scatter plot
smoothing. The first use the basic variable, i.e. acoustic impedance, the second



52 O. KOLBJORNSEN AND P. ABRAHAMSEN

use the rank transform of the basic variable as explanatory variable in the cloud
transform. In Figure 2 the three estimated cloud transforms are displayed together
with the original transform. Both estimates based on scatter plot smoothing are
continuous whereas the binned estimate has clear discontinuities as the acoustic
impedance crosses the boarder between bins. The binned estimate and the un-
transformed scatter plot smoother become unstable at the ends. This is a result
of the high variance in the estimate in the extreme ends. The transformed scatter
plot smoother is stable at the ends, but the bias is evident in the figure.
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Figure 2. Original and estimated transforms. On the top left is the original
cloud transform i.e. the target of estimation, top right is the binned transform, on
bottom left is the estimate based on scatter plot smoothing, bottom right is the
estimate based on a rank transform of the acoustic impedance. All three estimates
are based on the 1200 well observations displayed in the scatter plot in Figure 1.

In order to compare statistical properties of the estimators of the cloud trans-
form the root integrated mean square error,

RIMSE {F(y|:c)} - < /R MSE{F(y|x)}dy>1/2,
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is computed for each value of the acoustic impedance. The mean squared error is
approximated by Monte Carlo integration using the following procedure. Generate
1000 independent data sets all consisting of 1200 data pairs. For each data set
estimate the transform and compute the squared deviation between this and the
true transform. The average of the 1000 squared deviations is the approximation
to the mean squared error. The results for the three estimators are displayed in
Figure 3, the density of the acoustic impedance, i.e. f(z), is overlaid in the figure.
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Figure 3. Pointwise root integrated mean square error. The root integrated
mean square error for three estimators considered. Overlaid is the density of
acoustic impedance. The range in the figure is about six times the standard
deviation for acoustic impedance.

In terms of root integrated mean square error both estimates based on scatter
plot smoothing outperform the binned estimate. The scatter plot smoother that
use the basic variable is better than the one based on the rank transform.

5 Discussion

The cloud transform can be used to reproduce any multivariate distribution; how-
ever the spatial dependence is hidden in the p-field. A scatter plot such as the one
in Figure 1 may indicate an underlying dichotomous random field. It is not obvious
how to create a p-field with desired spatial properties, e.g. channels. However if the
wells are dense compared with the correlation length of the random fields a p-field
originating from a transformed Gaussian field may be satisfactory. An alternative



54 O. KOLBJORNSEN AND P. ABRAHAMSEN

approach is to build a facies model with the desired spatial properties and build
separate cloud transforms for petrophysical modelling within each facies.

Scatter plots that are used for estimation of the cloud transform usually come
from well observations. This will result in data that are correlated and not inde-
pendent which is assumed in the calculations above. This will most likely have
the effect that the variance of the estimator is larger than given in expression (13)
above. The scatter plot may also come from rock physics simulations. In which
case it is likely that the data are independent and the results are strictly valid.

6 Concluding remarks

We have proposed two estimators for the cloud transform. Both estimators are
based on scatter plot smoothing and result in continuous estimates. The optimal
bandwidth of the estimator has the same convergence rate as for the density
estimation in the space of explanatory variables. There is however no need to
smooth in the direction of the response variable as this introduces additional bias.

In a test example both proposed estimators are found to perform better than
the traditional binning estimate in terms of root integrated mean squared error,
also the estimators are more appealing visually as they preserve continuity in the
estimate. The estimator based on the basic explanatory variable is the best of the
two estimators in terms of root integrated mean squared error. This estimator does
however have large variance at the ends of the interval resulting in an unstable
estimate. This can be unfortunate, see discussion in end of section 3.2.

When choosing estimator for the cloud transform one should not only consider
its theoretical properties, but also how the resulting estimate will be applied.
The authors prefer a slightly higher bias in order to preserve good properties, i.e.
smoothness, of the estimated transform at the flanks of the distribution of the
explanatory variable.
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Abstract.

The practical advantages and theoretical disadvantages of P-field simulation
are reviewed in the light of more than a decade of application and research since
it was first introduced. A case study example highlights the enduring attractions
of the algorithm: its flexibility and speed.

1 Introduction

When first introduced, probability field simulation was well-suited to certain types
of problems that were not well handled by other simulation algorithms available.
In particular, it adapted well to the situation where a prior: local distributions
were available. As it rapidly gained practical acceptance, largely because of its
speed, “P-field” simulation was also dismissed by some as a procedure lacking a
proper theoretical foundation — more of a clever algorithmic trick than a properly
conceived approach to stochastic spatial simulation.

In the past decade, the advantages and shortcomings of the procedure have
been illuminated through continued widespread application and theoretical re-
search. This paper begins with an overview of the theoretical background and the
usual practical implementation of P-field simulation. It then discusses theoretical
concerns and assesses their practical implications. A mining case study example
illustrates two enduring strengths of P-field simulation: flexibility and speed.

2 Overview and implementation

Let F[u;z] denote the cumulative distribution function (cdf) at location u of an
attribute Z. Any simulated value, zgm, represents a specific quantile of this local
cdf: the z-value at which F[u; z] reaches a probability p(u):

Zeim = F ! [u; p(u)] @
The p values are not spatially independent; this would preclude reproduction
of almost any desired spatial autocorrelation in Z. Instead, the p values must

be regarded as a realization of a random function P(u), and simulated with an
appropriate pattern of spatial continuity.
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P-field simulation therefore proceeds as follows:
1. Generate a non-conditional realization of P(u), i.e. a grid of spatially autocor-
related values that are uniformly distributed between 0 and 1.
2. Use P(u) to sample the local cdf Fu; z].

This procedure ensures that two of the common goals of conditional simulation
are met: conditioning data are honored, as is the target global distribution. The
global distribution of Z(u) is honored because the local cdfs are sampled using
U0, 1] values. As long as local cdfs correctly model local distributions of uncer-
tainty, sampling these with U[0, 1] values will preserve the global distribution.
Conditioning data are honored because local cdfs collapse to a spike at data
locations. Regardless of the probability value used to sample these zero-width
distributions, the simulated value will match the conditioning data value.

The third common goal of conditional simulation, the reproduction of the
variogram of Z(u), is not exactly guaranteed. Since the p(u) values are spatially
autocorrelated, the zgmy(u) will also be spatially autocorrelated, but the precise
nature of the autocorrelation of the zg, values is not directly controlled. The
resulting variogram of the zg,, values will not necessarily reflect the intended target
Z variogram model. As discussed later, it will often be very close to the desired
target but there are situations in which, despite having some spatial continuity,
the zgim values do not have exactly the desired pattern of spatial continuity.

3 Theoretical considerations

The first P-field papers (Srivastava, 1992; Froidevaux 1993) focused on algorithmic
details; little theoretical justification was provided and the acceptance of the pro-
cedure was due to its practical success. Theoretical investigations soon followed,
however, and links between the P-field approach and other conditional simulation
methods were eventually elucidated (e.g. Journel and Ying, 2001).

Although Journel (1995) proved that, in the absence of conditioning data,
P-field simulation correctly reproduces univariate and bivariate properties of Z,
Pyrcz and Deutsch (2001) pointed out that: i) if a stationary covariance model is
used for P, the covariance of Z is not stationary and is biased in the vicinity of
conditioning data and, ii) conditioning data usually appear as local extremes in
the realizations.

3.1 INFERRING THE LOCAL CDFS

P-field simulation does not concern itself with the determination of the local cdfs;
it considers them to have already been established. The origin of the local cdfs

1 This is usually done by generating non-conditional Gaussian values, Y (u), and then using
the inverse of the cumulative Gaussian distribution to transform the Y values to P values:
P(u) = G71[Y(u)]. The generation of spatially autocorrelated Gaussian values can be done
extremely rapidly using fast Fourier transform (FFT) algorithms or by efficient moving averages.
In applications where the local cdfs are Gaussian, the transformation from Y values to P values
can be skipped and the Y values are simply linearly transformed to a Gaussian distribution with
the proper mean and variance.
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does play a role in the theoretical analysis of the spatial structure of P. It is useful,
therefore, to elucidate some common cases for the determination of local cdfs and
to discuss how these impinge on the variogram model for P:

Case 1: Local cdfs not locally data-conditioned but are identified instead with the
prior marginal distribution of Z: Prob{Z(u) < z} = F(z).

Case 2: Local cdfs are not locally data-conditioned but are identified instead with
non-stationary prior distributions of Z: Prob{Z(u) < z} = F(u; z).

Case 3: Local cdfs are estimated from existing sample data using an appropriate
geostatistical technique: Prob{Z(u) < z} = F[u; z|(n)].

The single most important issue here is conditioning to sample data. This will
have a direct impact on the inference of the variogram model.

3.2 P-FIELD VARIOGRAM MODEL: STATIONARY OR NOT?

P-field simulation usually uses a stationary variogram model for P. This normal
practice follows from the original suggestion of Froidevaux (1993): that the P
variogram be modelled from the experimental variogram of the uniform transform
of the available data. As Pyrcz and Deutsch (2001) pointed out, howeer, if the
Z values are assumed to be second-order stationary, then the use of a stationary
variogram model for P is inconsistent. If P is defined as

P(u) = Flu; Z(u)] (2)

using data-conditioned local cdfs, then second-order stationarity of Z entails lack
of second-order stationarity for P. Cassiraga (1999) has shown that the range of
autocorrelation of P is linked to the spatial density of the conditioning data.

To date, theoretical analysis of P-field simulation has proceeded from the as-
sumption that the Z values have second-order stationarity, and that the P values
are defined using Equation 2 above. One could, however, take a different approach:
assume that the P values have second-order stationarity and that the Z values are
defined using Equation 1. P and Z play complementary roles in Equations 1 and
2, and the results of Cassiraga (1999) can be extended to demonstrate that if we
choose a random function model in which the P values are second-order stationary,
then the consequence is that the Z values cannot be; or, as also pointed out by
Pyrcz and Deutsch (2001), the stationarity of the P-field covariance makes the
covariance structure of Z dependent on the nearby conditioning data.

So with two alternate random function models — one that is better researched
and that chooses second-order stationarity for Z; the other that chooses second-
order stationarity for P and whose theory has barely been explored — the question
arises: which one is more appropriate? Though the tradition of geostatistics has
been to choose second-order stationarity as a Z property, it is worth considering
the pro’s and con’s of bestowing this property on P instead.

It is clear from the construction of the P-field that the P values are, globally,
first-order stationary; if they are not, then the local cdfs do not properly quantify
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the local probability distribution of Z. It is equally clear, from practice, that
in most interesting earth science applications, first-order stationarity of Z is a
questionable choice. Geostatistics has adopted the good practice of using local
search neighborhoods so that the dependence on stationarity becomes local; but
the practical success of local customization of estimation and simulation parame-
ters is consistent with the view that an assumption of global first-order stationarity
is rarely appropriate for Z.

Moving from the consideration of first-order stationarity to second-order sta-
tionarity, if the Z values are not first-order stationary, why does it make sense to
assume that they are, globally, second-order stationary? Might it not be better to
assign the property of second-order stationarity to a random variable, P, that is
known, by construction, to be globally first-order stationary?

The technical literature on P-field simulation has elucidated the fact that P
and Z cannot both be second-order stationary. Research remains to be done on the
theoretical consequences of the user’s choice on which of the two complementary
random variables this property will be assigned to.

3.3 LOCAL EXTREMES AT DATA LOCATIONS

When hard data are used to locally condition cdfs, a sample at u will typically
have a very strong influence on the cdf at an adjacent location, u’. If the local cdf
F[u’; z|(n)] has been estimated geostatistically, then its mean will tend to be very
close to the adjacent data value, z(u), and its variance will be small. Given this
situation, if the p values in the vicinity of u are significantly less than 0.5, then
z(u) will be a local maximum in the realization. Conversely, if the nearby p values
are larger than 0.5, then z(u) will be a local minimum. The conditioning data,
z(u), will not be noticeable as a locally extreme artifact in the realization only if
the nearby probability field values are around 0.5.

4 Discussion

4.1 DECOUPLING CDF ESTIMATION FROM SAMPLING

The practical advantage of P-field simulation stems from the decoupling of the
sampling of cdfs from their estimation. As with other geostatistical simulation
procedures, the local cdfs in a P-field approach can be established through some
form of kriging; they can also be derived directly from secondary information. In
many petroleum applications, for example, geophysics or petrophysics can provide
constraints on rock properties such as porosity and permeability, and on structural
properties such as thickness and depth to top of reservoir. In such situations, local
cdfs can be built directly from geophysical data and no kriging is required; all that
remains is the appropriate sampling of the geophysically-derived local cdfs.

In studies that involve resource estimation, the decoupling of cdf estimation
from cdf sampling has another benefit: it is easier to ensure that simulated out-
comes do not imply outlandish or aberrant resource estimates. Though the concept
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that simulations fluctuate around the expected value is well understood theoret-
ically, in practice it can be hard to ensure that the average of many realizations
is suitably close to an already-calculated resource estimate. There are many situ-
ations, especially in mining applications, where conditional simulations are being
considered (for grade control, for example, or for blending studies) and where a
well accepted and carefully developed resource block model already exists. The
use of a P-field approach that incorporates previously accepted and trusted local
cdfs avoids the embarassment and confusion that results when simulated outcomes
depart, significantly on average, from the “best estimate” of the global resource.

4.2 HONORING THE VARIOGRAMS

As noted above, the definition and inference of the P variogram is theoretically
troublesome if the Z values are assumed to be second-order stationary. The prac-
tical impact of this issue is, however, usually minor. With the real goal being
reproduction of the Z variogram; the P variogram is an intermediate stepping-
stone. Even if the P variogram is theoretically ill-defined, the user can still adopt
a variogram model based on analysis of the uniform transform of Z and can adjust
this model if the resulting variogram of the zgy, values is unacceptable.

Luster (1985) discussed departures between target variogram models and ex-
perimental variograms of realizations. He noted that, by virtue of being conditioned
by hard data, realizations have a pattern of spatial continuity whose mid- and long-
range structure is controlled not by the variogram model but rather by available
data. In practice, the critical aspect of the P variogram model is, therefore, its
behavior at short distances (up to the nominal spacing of data). With the short-
scale characteristics of the P variogram model well chosen, especially directional
anisotropy and relative nugget effect, the results of P-field simulation are usually
well within the fluctuations normally tolerated in conditional simulation studies.

Compared to sequential methods, P-field simulation is more successful at creat-
ing realizations with very low nugget effects and strong short-scale continuity (such
as those typical of thickness or top of structure in petroleum applications). The
realizations from sequential methods often have too much short-scale variability?
and need to be post-processed to remove such artifacts (e.g. Tran, 1994).

4.3 LOCAL EXTREMES AT DATA LOCATIONS

To solve the problem of local extremes at data locations, Goovaerts (2002) pro-
posed the use of a conditional probability field with fixed probability values of
0.5 at data locations. This entails a preferential sampling of the central part of
the cdfs in the immediate vicinity of conditioning data. Although this method
removes the artifacts, it does so at the expense of execution speed, which is one of
the most attractive features of P-field simulation. Moreover, the justification and
the consequences of forcing an arbitrary fixed p value still remain to be explored.

2 A consequence of unstable kriging weights caused by strong screen effects in the end-stages
of sequential simulation on a dense regular grid.
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A practical application for which local extremes at data locations are clearly
undesirable is flow and transport modelling. If wells or bore holes coincide with
local minima and maxima in the permeability field, attempts to predict flow and
transport may be seriously biased. In this sense, the P-field artifact of local ex-
tremes is similar to the “striping” or “banding” artifact often seen in realizations
from the turning bands method and in realizations from sequential methods that
do not randomize the sequential path. While such artifacts may not have any
practical impact in certain types of studies, they may be serious flaws in others.

5 Case study: uncertainty on a mineralized envelope

Studies of mineral resource estimates typically incorporate a “mineralized enve-
lope”, an outer bounding limit beyond which grades are not estimated. Many
case studies have demonstrated that the failure to adequately constrain the do-
main within which grades are estimated can lead to very unrealistic block models
that overstate the tonnage of mineralized material, with peripheral grades being
overestimated and grades in the heart of the deposit being underestimated.
Though some kind of mineralized envelope is necessary, the traditional ap-
proach, unfortunately, is to treat this boundary as deterministic. The limits of
mineralization identified in drill holes typically serve as control points for a 3D
solid or “wireframe”. With the mineralized envelope thus frozen, the impact of
the uncertainty of this envelope on resource estimates is very difficult to quantify.
Even when simulation is used to study grade fluctuations within the envelope, the
additional uncertainty due to the wireframe definition itself is rarely addressed.

Figure 1 shows an example of a
simple wireframe constructed from ex-
ploration holes drilled on a 100m grid.
These holes identify a deposit that lies
in a shear zone between two faults, with
a sharp hangingwall contact that can
usually easily be correlated from hole
to hole across the deposit. The footwall
contact, which is more diffuse, does not
appear to be a structural contact and is
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total precious metals (TPM) in excess of 0.5 g/t. Small changes in the grade thresh-
old or the length of interval have little impact on the definition of the hangingwall
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The wireframe developed from initial drilling is necessarily simplistic, little
more than a schematic cartoon that approximates the deposit’s heart. In a second
drilling campaign, in-fill holes were drilled from a development drift to penetrate
the deposit from the west. Figure 2 shows the new holes with their mineralized
intercepts, along with the old drill hole data and the mineralized envelope from
Figure 1. The original wireframe provided good predictions of down-hole depth to
the hangingwall, but its predictions of depth to the footwall are less precise.

Figure 3 shows the interpreted mineralized envelope, updated to honor all data
currently available. With more closely spaced data, the shape of the wireframe has
become slightly more complex. Though this new interpretation is an improvement,
it is still far from perfect. If even more closely spaced holes were available, new
short-scale complexities would be discovered in the shape of the mineralized zone.
Rather than using the outline in Figure 3 as a single deterministic boundary for
purposes of resource estimation, we would like to run several resource estimates,
each one with a different but plausible version of the mineralized envelope, to study
the impact on resources of uncertainty on the shape of the deposit. In conjunction
with conditional simulations of TPM grades within the mineralized envelope, this
will help determine whether or not additional definition drilling is required.
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Figure 2. Drill holes after under-  Figure 3.  Drill holes after under-
ground development drilling, with old  ground development drilling, with new
interpretation of mineralized envelope. interpretation of mineralized envelope.

P-field simulation has been used to produce alternate versions of the mineral-
ized envelope, each one of which honors the drill hole data from the first two years.
The attribute being simulated is AD(u), the deviation® of the true (but largely
unknown) mineralized envelope from the current working interpretation shown
in Figure 3. Close to existing drill holes, the current working interpretation is
reliable and AD(u) is close to 0. As we move farther away from existing holes, the
deviations between the actual and predicted surfaces will tend to become larger.

3 Measured orthogonal to the wireframed surface, with the sign determining whether the
deviation is outward (4) or inward (—).
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For the 62 holes drilled in the second year, and which intersected the mineral-
ized zone, Figure 4a shows the differences between actual depth to the hangingwall
and predicted depths as a function of distance from a hole drilled in the first
year. This plot, which shows us actual historical values of AD(u), can be used to
calibrate possible future fluctuations. The dashed line in Figure 4a shows a model
of £ one standard deviation of AD(u) as a function of distance from an existing
drill hole; the dotted line shows + two standard deviations.

Figure 4b shows the corresponding data and models for depth to the footwall.
As noted earlier, the lack of a clear geological distinction at the footwall makes the
wireframe a less reliable predictor of the footwall location than of the hangingwall
location — AD(u) values are generally larger in magnitude on the footwall side.
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Figure 4a. AD(u) versus distance  Figure 4b. AD(u) versus distance
from nearest drill hole for hangingwall. ~ from nearest drill hole for footwall.

Using the dashed lines in Fig-
ure 4a and 4b, local cdfs of AD(u) can
be constructed at every point on the
mineralized surface. The distance from
each point on the surface to the nearest
drill hole intercept is calculated. Read-
ing up from the x-axis on Figure 4 to
the dashed line and across to the y-axis
gives the standard deviation of AD(u)
at that location; the mean is assumed
to be zero and the shape of the cdf is as-
sumed to be Gaussian. Figure 5 shows
the median and +20 bands of the local
cdfs for the section shown in Figure 3.

With the local cdfs now established,
all that remains is to sample them using ~ Figure 5. Local cdfs shown as a
a P-field with an appropriate range of = 420 band around the median.
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spatial autocorrelation. Figure 6 shows variograms of the uniform transform of the
62 AD(u) values from the second drilling campaign, along with their variogram
models. Using these variograms, two 2D fields of spatially correlated probability
values were created, one for use on the hangingwall and one for use on the footwall;
these autocorrelated p values were then used to sample the local cdfs. Two of the
resulting 100 realizations are shown in Figure 7.
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Figure 6a. Variogram for AD(u) on Figure 6b. Variogram for AD(u) on
the hangingwall contact. the footwall contact.

This example highlights the fact that local cdfs need not be estimated by
kriging. In this case, they are established instead by a straightforward calibration
based on historical data. This example also illustrates that the theoretical complex-
ities of the P-field’s statistical properties need not be an impediment to practical
application. The uniform scores provide an experimental variogram that is easily
modelled and that, when used to create unconditional P-fields, leads to geologically
plausible results that greatly assist the assessment of project uncertainty and risk.

6 Conclusions

Even with exponential advances in computational speed, and the availability of
many newer simulation algorithms, P-field simulation will likely remain one of
the most often used geostatistical simulation procedures. Whenever local cdfs
are already available and do not need to be generated using kriging, the P-field
approach will be attractive since it decouples the issue of estimating cdfs from
the task of sampling them. This not only reduces computational overhead, it also
allows the user to generate realizations that fluctuate around a predetermined
“base case”, an advantage in many resource-based studies where a best estimate
of global resources has already been established.

For studies that call for rapid generation of large numbers of conditional real-
izations, P-field will be attractive for its computational speed. Even as computer
power has made it possible to run simulations hundreds of times faster than ten

years ago, the appetite for larger simulations and for more realizations has kept
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REALIZATION NO. 2 REALIZATION NO. 49

Figure 7. Two realization of the mineralized wireframe

pace. When a few realizations containing millions of grid nodes were once satis-
factory, it is now not uncommon to generate hundreds of realizations containing
tens of millions of grid nodes.

At the same time that P-field simulation will continue to be a good choice for
many common applications, it is clear that there are many other common appli-
cations for which it is not a good choice. In particular, its tendency to create local
extremes at conditioning locations makes it undesirable whenever downstream use
of the realizations involves post-processing that is influenced by such artifacts.
Fluid flow and contaminant transport studies are two examples of applications in
which permeability extremes at wells or boreholes are clearly undesirable.
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SEQUENTIAL SPATTIAL SIMULATION USING LATIN HYPERCUBE
SAMPLING

PHAEDON C. KYRIAKIDIS
Department of Geography, University of California Santa Barbara, Ellison
Hall 5710, Santa Barbara, CA, 93106-4060, U.S.A.

Abstract. An efficient method is proposed for generating realizations from an
arbitrary multivariate distribution using sequential simulation and Latin hyper-
cube sampling. In a spatial context, this efficiency entails a reduction of sampling
variability in statistics of spatially distributed model outputs when the inputs
are realizations of random field models. The proposed method yields an unbiased
reproduction of a target semivariogram, even for a small number of realizations,
and consequently can be used for enhanced uncertainty and sensitivity analysis in
complex spatially distributed models. In addition, the method is simple enough to
be incorporated in virtually any geostatistical software for sequential simulation.

1 Introduction

Monte Carlo simulation is routinely used for uncertainty and sensitivity analysis of
model outputs in a wide spectrum of scientific disciplines (Morgan and Henrion,
1990). Any realistic uncertainty analysis, however, calls for the availability of a
representative distribution of such outputs, and can become extremely expensive
in terms of both time and computer resources in the case of complex models and
simple random (SR) sampling. This problem is far more pronounced for spatially
distributed models, due to the large number of correlated (regionalized) variables
comprising each input parameter map to such models, e.g., 3D rasters of hydraulic
conductivity used for simulation of flow and transport in porous media.

An intelligent alternative to SR sampling is Latin hypercube (LH) sampling,
a special case of stratified random sampling, which yields a more representative
distribution of model outputs (in terms of smaller sampling variability of their
statistics) for the same number of input simulated realizations. Analytical results
demonstrating the efficiency of LH over SR sampling from univariate distributions
are given in the (now classic) paper of McKay et al. (1979). A more recent compre-
hensive review of LH sampling for uncertainty and sensitivity analysis in complex
systems can be found in Helton and Davis (2003).

LH sampling from a multivariate distribution, i.e., the task of inducing correla-
tion in LH samples, is an important research theme in risk analysis and reliability
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engineering (Haas, 1999), which becomes critical in a spatial context for ensuring
unbiased outputs of complex spatially distributed models. This paper makes a
novel contribution to the literature of spatial uncertainty analysis, by proposing a
simple and efficient method for sequential LH sampling from random field models.

2 Latin hypercube sampling

Consider a set of K independent continuous RVs {Yy, k = 1,..., K}, with Fy, (yx) =
Prob{Y;, < yi) denoting the cumulative distribution function (CDF) of the k-th
RV Y}. Simple random (SR) sampling of N realizations from RV Y}, proceeds by
first generating a (N x 1) vector u, = [u,(cn),n =1,...,N] of uniform random
numbers in [0, 1], which are treated as simulated probability values, and then
transforming uy into a (N x 1) vector y, = [y,(gn),n = 1,..., N] of simulated
realizations as: yp = F;}ﬂl(uk), using the inverse CDF F;; of RV Y.

Latin hypercube (LH) sampling of N realizations from the k-th RV Y} calls for
(n)

generating, independent of vector ug, a (N x 1) vector py, = [p, /,n =1,...,N] of
random permutations of N integers {1,2,...,N}. A (N x 1) vector z; = [zlin), n=
1,..., N of stratified realizations is then obtained as (McKay et al., 1979):
—1 [ Pk — Ui
zp = Iy, (N) (1)

where the argument (py — ug)/N of the inverse CDF Fy. ! ensures that the sim-
ulated probability values for the k-th RV Y} are stratified, i.e., fall in N different
probability strata. The monotonic transformation of the simulated probabilities
incurred by the inverse CDF Fy. ! does not ruin stratification, which entails that
each entry of vector zj (each simulated value) falls within a different stratum
in the original variable space, no matter the distributional form of Fy, (yx). The
independence of vectors px and uy ensures that there is a uniform probability
1/N for a simulated value within a particular stratum, i.e., there is no systematic
placement of simulated values at the edges of strata. Variations of the above basic
LH sampling procedure to further control sampling variability include variance
reduction techniques, such as antithetic and control variates, as well as correlated
sampling (Ang and Tang, 1984; Switzer, 2000).

A naive application of the above LH sampling procedure to correlated RVs
fails to induce any correlation in the simulated values, simply because vectors py
and uy, for the k-th RV Y} are generated independent of other such vectors for
other RVs. From these two sources that contribute to lack of correlation, the most
important one is the vector p, of random permutations because it dictates the
strata within which the entries of uy are distributed. To date, the most widely
used method for generating LH samples from correlated RVs with a given rank
correlation coefficient is the distribution-free method of Iman and Conover (1982).
This method, however, is prohibitive for a large number K > 10,000 of RVs (typ-
ically the case in a spatial setting) because it calls for the Cholesky decomposition
of an extremely large (K x K) variance-covariance matrix.
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Stein (1987) proposed a (now also widely used) post-processing method for
transforming a SR sample from K correlated RVs into a LH sample. Stein’s
method is independent of the simulation algorithm used to generate the original
SR sample, and can be applied in principle to a large number K of RVs. Let
Y = [yx,k = 1,..., K] denote a (N x K) matrix containing a SR sample of
size N from the K-variate CDF of the above K RVs; the k-th column yj of this
matrix corresponds to outcomes of the k-th RV Yj. Matrix Y can be generated, for
example, by simulation via the Cholesky decomposition of the covariance matrix,
or via sequential simulation (Johnson, 1987). The SR sample y;, for the k-th RV
Y}, is then transformed into a LH sample z; for that RV, as:

(rr—u
w=r () @)
where rj, = [r,(cn), n=1,...,N] denotes a (N x 1) vector containing the ranks of
(n)

the entries of yy: the lowest y, ’ simulated value for the k-th RV Y}, is assigned a
rank of one, the second lowest a rank of two, and the highest a rank of N.

Stein’s method is similar to the LH sampling method of Equation (1), with the
sole, but extremely important, difference that the array px of random permutations
in that equation is now replaced by the array rj of ranks of y;. This substitution
entails that the LH sample comprising the (N x K) matrix Z = [z, k=1,..., K]
is (column-wise) correlated, since it inherits correlation that is present in the SR
sample Y via the corresponding (N x K) matrix R = [rg, k = 1,..., K] of its
ranks. In addition, the entries of any column of matrix Z are stratified, as opposed
to the entries of any column of matrix Y.

Figure 1 gives an example of a SR sample (A) and a LH sample generated
using Stein’s method (B), both of size N = 10, from two standard Gaussian RVs
Y1 and Y5 with correlation coefficient p1o = 0.7. It can be easily appreciated that,
for the LH sampling case, realizations for both RVs are marginally stratified, i.e.,
when viewed from either the abscissa or the ordinate, each stratum (delineated by
vertical or horizontal solid lines, respectively) contains a single simulated value.

A: SR sample B: LH sample
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Figure 1. Examples of a SR sample (A), and a LH sample generated using Stein’s
method (B), both of size N = 10, from two correlated standard Gaussian RVs Y7 and Y5
with p12 = 0.7; solid lines delineate strata of equal probability.
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Stein’s method, however, underestimates the target correlation between any
two RVs, because it does not fully account for the correlation in the original SR
sample. More precisely, the sole vehicle for inducing correlation in the LH sample
zy, for RV Y} is the rank vector rp of the original SR sample y; for that RV;
see Equation (2). The vector uj of uniform random numbers in that equation is
generated independent from any other such vector uy for any other RV Y. For
small sample sizes (small N) the displacement in the probability axis of the original
uniform random vector that generated yj (brought by the new vector uy) can be
large; this affects the reproduction of a target correlation by the LH sample.

The above underestimation of a target correlation was also corroborated em-
pirically in a spatial setting by Pebesma and Heuvelink (1999), who applied Stein’s
post-processing method to transform a SR sample generated via sequential Gaussian
simulation to a LH sample. Their results showed that simulated realizations ex-
hibited small-scale variability larger than that dictated by the target semivari-
ogram model. This bias was also shown to be higher for small sample sizes, which
unfortunately is precisely the reason for employing LH sampling in the first place.

In what follows, Stein’s method is adopted not as a post-processing step, but
as an integral part of sequential simulation for generating a LH sample from a
multivariate distribution. To the author’s knowledge, the proposed LH sampling
method constitutes a novel contribution to the literature of importance sampling.

3 Sequential Latin hypercube sampling

Let Fy, . vi(W1,...,yx|d) = Prob{Y1 < yi1,...,Yx < yg|d} denote the K-
variate conditional CDF (CCDF) of K RVs {Y;,k =1,...,K}, given a (O x 1)

vector d = [d,,0 = 1,...,0] with known realizations (sample observations) of O
RVs {Y,,0 = 1,...,0}. Conditional stochastic simulation amounts to generating
N alternative realizations from the multivariate CCDF Fy, v, (y1,...,yx]|d),

whereas unconditional simulation corresponds to absence of sample observations,
in which case the data vector d is simply dropped from the notation.

The multiplication rule of probability allows one to decompose the above K-
variate CCDF into a sequence of K univariate CCDFs as:

Fyi..viyr, .. nild) = Fy (yrlyx—1, .-, y2,91,d) - - Fy, (y2|y1, d) Fy, (y1|d)
(3)
which entails that the n-th SR sample from the above multivariate CCDF can be
generated sequentially by first simulating a value ygn) from CCDF Fy, (y1|d), then
a simulated value yén) from CCDF Fy, (yg|y§n)7 d), and so forth.

It is important to note that all the above univariate CCDFs, apart from the
first one Fy, (y1|d), change from one realization to another, because the previously
simulated values used as conditioning data are different for each realization. The
CCDF of the k-th RV Y;E for the mn-th realization should thus be denoted as:
Fi(/:)(yﬂy,(c@l,d), where yk@l = [yl("),l =1,...,k—1] is the (1 x k — 1) vector of

simulated values generated prior to ylin). In expected value (over a large number

N of realizations), however, the CCDF for any RV Y} tends towards its CCDF
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given only the data vector d, i.e., E{Fy, (yx|Yr-1,d)} ~ Fy, (yx|d), where Y, =
[yi,l =1,...,k— 1] is the (N x k — 1) matrix of all simulated values for all RVs
considered before Y}, in all N realizations.

The proposed LH sampling method from an arbitrary multivariate distribution
capitalizes on the above decomposition, and amounts to embedding Stein’s method
into sequential simulation, which now proceeds in the following steps:

1. Establish a sequence for considering all K RVs. As long as all simulated values
generated from any RV in this sequence are used as conditioning information
(in addition to the data vector d) for simulation from subsequent RVs, the or-
der of the sequence is irrelevant: the resulting realizations constitute a genuine
sample from the multivariate CCDF of Equation (3).

2. For the k-th RV Y} in the above sequence:

a) establish all N CCDF's {F}(,:) (yk|Zp—1,d),n =1,..., N}, each correspond-
ing to a particular realization n; Zg_;1 is a (N X k — 1) matrix with the
entire LH sample generated in all N realizations before considering RV Y.

b) generate a (N X 1) vector y; with a SR sample from RV Y}; the n-th entry
y,(cn) of vector yj is drawn from the n-th CCDF Fi(/:)(yk|z,(;i)1,d), where

Z,(;i)l is a (1 x k — 1) vector with the n-th LH sample generated from all

RVs considered before Yy, i.e., zl,(cn_)1 is the n-th row of matrix Zj_.
c¢) transform the SR sample yy into a LH sample z, as:

_ 'y — Ug
= e (25 @)

where F;k 1| 4 denotes the inverse CCDF of RV Y}, given only the data vector
d, rj is the rank transform of y;, and uy is a vector of uniform random
numbers in [0,1] (independent of yy).

d) augment the LH sample matrix Zj_1 of step 2a to obtain the current LH

sample matrix Zy = [Zg_1 zx] of size (N X k).

3. Consider the next RV Y41 in the sequence established in step 1, and repeat
step 2 for generating LH samples from all remaining RVs {Y;,l = k+1,..., K}.

In the proposed approach, the LH sampling method of Stein is used as a post-
processing tool (step 2c) after drawing a SR sample yj from the N univariate
CCDFs of RV Y} (step 2b). But, unlike Stein’s method, the LH sample z; for
RV Y} is generated before proceeding to the simulation of the next SR sample
Vk+1 from the subsequent RV Y11 (step 3). Most importantly, that LH sample zj,
is also considered as conditioning information for simulation from all subsequent
RVs {Y;,l =k+1,...,K} (step 2d), which leads to the reproduction of a target
(conditional) correlation per the theory of sequential simulation (Journel, 1994).

In principle, any linear or non-linear regression scheme can be used to determine
the CCDF of any RV Y}, (step 2a); the proposed LH sampling method, however, is
independent of the particular scheme adopted for this CCDF determination. When
the multivariate CCDF of Equation (3) is Gaussian, the CCDF of any RV Y}, (step
2a) is univariate Gaussian, and thus fully characterized by its conditional mean
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and variance which can be derived via generalized linear regression (Kriging); this
is also the building block of sequential Gaussian simulation in a spatial context
(Deutsch and Journel, 1998). LH samples from non-Gaussian RVs with specified
pairwise rank correlations can also be generated by first simulating correlated
deviates from K Gaussian RVs, and then transforming these deviates to correlated
realizations of the original RVs using the inverse marginal or conditional CDF of
each RV (Iman and Conover, 1982).

Since an unbiased (in expected value) reproduction of a target correlation
is only ensured in sequential simulation under SR sampling, a hybrid approach
between LH and SR sampling (still in a sequential mode) is also investigated in
this paper. More precisely, this second proposal amounts to transforming the LH
sample z, for RV Y} (step 2¢ above) to a new LH sample x; that is as close
as possible to the corresponding SR sample y; for that RV, under the constrain
that the elements of this new sample x; remain in the strata used in the LH
sampling procedure. In other words, the elements of the original LH sample z
are “displaced” within their strata towards the corresponding elements of the SR
sample y with the same rank. In the remainder of this paper, SRS denotes simple
random sampling, LHSS denotes the LH sampling method of Stein, LHSP1 denotes
the first proposal for LH sampling outlined in the flowchart given above, and
LHSP2 denotes this second proposal for hybrid LH sampling.

Figure 2 gives the sampling distributions of correlation coefficients calculated
from 10000 sets of LH samples, each of size N = 10, generated from two standard
Gaussian RVs Y7 and Y, with correlation p12 = 0.8 using the four sampling
methods considered in this work. In this case, no data vector d is considered
(unconditional simulation), and the CCDFs of RV Y3 given realizations of RV
Y1 (step 2a) are determined via simple Kriging. The unbiased reproduction of the
target correlation from SRS and LHSP2 (Figures 2A and D) is evident. Both LHSS
and LHSP1 exhibit a bias in the reproduction of the target correlation. For LHSS
(Figure 2B) that bias is —6%, whereas for LHSP1 (Figure 2C) it is reduced to
—2%. Note that any bias decreases for larger sample sizes (larger N values).

A: SRS B: LHSS C: LHSP1 D: LHSP2
0.2 0.2 0.2
# 10000 # 10000 # 10000 # 10000
m 0.80 015 m 0.74 015} m 0.78 0.15} m 0.80
é‘ s 0.14 s 018 s 013 s 0.13
) 0.1 0.1 0.1
=
o
0.05 0.05 0.05
0 0 ol= ==
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
simulated correlation simulated correlation simulated correlation simulated correlation

Figure 2. Sampling distributions of correlation coefficients calculated from 10000
sets of simulated pairs (each set of size N = 10) generated from two correlated standard
Gaussian RVs Y; and Ys via: SRS (A), LHSS (B), LHSP1 (C), and LHSP2 (D); solid
lines indicate the target correlation coefficient pi12 = 0.8.
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4 Spatial Latin hypercube sampling

In a spatial setting, when all K RVs pertain to a single spatial attribute Y (univari-
ate case), the k-th RV Yy, = Y (sy) is defined at a location with coordinate vector sy,.
The o-th entry d(s,) of the data vector d denotes the sample attribute value at the
o-th observation site with coordinate vector s,. The objective is then to generate
simulated realizations (typically up to 3D) from the multivariate distribution of
Equation (3), conditional or not on the data vector d. Different sequential spatial
simulation methods can be distinguished according to how each univariate CCDF
is determined at each location (step 2a). Variants of Kriging are typically used
for building such local CCDFs (Deutsch and Journel, 1998; Chilés and Delfiner,
1999), or more recently multi-point statistics when training images are available
(Strebelle, 2000).

Sequential spatial simulation typically proceeds on a random path (different
from one realization to another) for visiting each simulation location. This avoids
the creation of artifact patterns in the realizations, when not all previously simu-
lated values are used as conditioning information at any location along this path
(Deutsch and Journel, 1998). In the proposed approach, that path can also be
random, but it must be the same for all realizations (step 1); in any other case,
a LH sample can only be obtained after sequential simulation, using the original
method of Stein (1987) with its shortcomings for small N. In the examples of
SR and LH sampling of this paper, a single random path is considered, and all
previously simulated values are used as conditioning data at any simulation grid
node to eliminate the impact of different search strategies on sampling variability.

The reproduction of target statistics from the four sampling methods con-
sidered was initially investigated using a single sample of N = 10 realizations
generated via unconditional sequential Gaussian simulation at K = 300 nodes of a
regular unit-spaced 1D grid. The stationary statistics included a zero mean, a unit
variance, and a spherical semivariogram model of range 30 distance units. Figure 3
gives the reproduction of the marginal mean and variance at each grid node.
Evidently, all LH sampling methods lead to a significant reduction in sampling
variability with respect to SR sampling (compare Figure 3A with Figures 3B-D).
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Figure 3. Mean and standard deviation of N = 10 simulated values at K = 300
unit-spaced nodes of a regular 1D grid, generated using unconditional sequential Gaussian
simulation with: SRS (A), LHSS (B), LHSP1 (C), and LHSP2 (D). Horizontal solid and
dashed-dotted lines indicate the target mean (0) and standard deviation (1), respectively.
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Figure 4 gives the semivariogram reproduction of the N = 10 realizations,
i.e., of the single sample whose marginal statistics are shown in Figure 3. Stein’s
LH sampling method (Figure 4B) leads to a higher mean simulated semivariogram
than the target model at small lag distances; this critical underestimation of spatial
correlation is significantly reduced by the original proposal LHSP1 (Figure 4C),
and virtually eliminated by the hybrid proposal LHSP2 (Figure 4D). As expected,
SR sampling leads to an unbiased mean simulated semivariogram, especially at the
critical small lag distances (Figure 4A). Note also the somewhat smaller variance
of the simulated semivariogram for LHSS and LHSP1 than for SR sampling (for
this particular sample).
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Figure 4. Semivariogram reproduction from a single sample of N = 10 simulated

realizations at K = 300 unit-spaced nodes of a regular 1D grid, generated using uncondi-
tional sequential Gaussian simulation with: SRS (A), LHSS (B), LHSP1 (C), and LHSP2
(D). Solid lines indicate the target, unit-sill, spherical semivariogram model with range 30
distance units; crosses indicate the mean simulated semivariance at each lag; dotted lines
delineate intervals of one standard deviation from either side of the mean semivariance;
dashed horizontal lines indicate the average semivariogram value 5(V, V) = 0.972, where
V' denotes the line segment support of 300 units.

To further assess the efficiency of spatial LH sampling, 1000 independent sets
of N = 10 realizations were generated at K = 100 unit-spaced nodes of a regular
1D grid, using unconditional sequential Gaussian simulation and the four sampling
methods considered in this work. The semivariogram model adopted was a unit-
sill spherical semivariogram of 30 distance units; a stationary zero mean was also
assumed. The statistic under consideration is the proportion of simulated values
above threshold G=1(0.75) = 0.6745, when these values are arranged in groups
of three or more contiguous (“connected”) nodes; here G~! denotes the inverse
Gaussian CDF. This latter connectivity consideration allows evaluating any bias
incurred by a poor semivariogram reproduction: a larger than expected nugget
effect, for example, will lead to a smaller than expected number of connected
groups containing at least three nodes. The reference proportion 0.2219 of such
connected nodes was established from a large SR sample of size N = 1000.

Figure 5 gives the sampling distribution of the simulated mean proportions for
the four sampling methods considered in this experiment. The significant reduction
in sampling variability incurred by the LH sampling methods with respect to
SR sampling is evident (compare Figure 5A to Figures 5B-D). Such a reduction,
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however, comes at the expense of a bias in the case of Stein’s method (Figure 5B);
that bias is almost absent from the results of the proposed methods (Figures 5C-D).
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Figure 5. Sampling distributions of the mean proportion of “connected” simulated
values above threshold 0.6745, for SRS (A), LHSS (B), LHSP1 (C), and LHSP2 (D); see
text for details. Solid lines indicate the target proportion of 0.2219, calculated from a
large SR sample of size N = 1000.

5 Discussion and conclusions

A novel method for LH sampling from random field models in a sequential mode
has been presented in this paper. The original proposal consists of transforming
a SR sample to a LH sample at each step of sequential simulation using Stein’s
method. A further improvement consists of additional “displacements” of the el-
ements of the LH sample for a particular variable, within their respective strata,
towards the corresponding elements of the SR sample with the same rank. It has
been demonstrated that both proposals significantly reduce sampling variability
in resulting marginal statistics, and thus make better use of the same number
of realizations than SR sampling. The main advantage of these proposals over
the comparable method of Stein is their better (less biased) reproduction of a
target semivariogram at small lag distances, even from few realizations, a critical
requirement in a spatial context to ensure unbiasedness of model outputs.

It should be noted that LH sampling leads to a smaller sampling variability
in statistics of model outputs, when these models are monotonic in their inputs;
such a reduction is also larger for linear models (McKay et al., 1979; Stein, 1987).
It is therefore important that target marginal statistics be correctly estimated.
If deemed necessary, uncertainty in these statistics should be incorporated in a
formal Bayesian framework, rather than via ergodic fluctuations of SR sampling.

The proposed LH sampling method is not limited to Gaussian random field
models, continuous variables, point support values, or two-point statistics, because
it is independent of the algorithm used to determine the local CCDFs in sequential
simulation. Any practical approximation in the implementation of sequential simu-
lation, such as the consideration of a limited number of previously simulated values
at each location, is nevertheless shared by the proposed LH sampling method. The
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impact of this latter approximation is typically alleviated via cascaded simulation
on nested grids of increasing resolution (Deutsch and Journel, 1998). Moreover,
in many cases, e.g., for simulation from auto-regressive processes, sequential sim-
ulation is the natural way to generate realizations from such processes. When the
number of simulation locations is very large, and such locations do not lie on a
regular grid, sequential simulation is perhaps the only feasible algorithm, due to
precisely its practical implementation approximations.

Concluding, the proposed sequential method for spatial LH sampling can be
readily used for enhanced uncertainty and sensitivity analysis, as well as subse-
quent risk assessment, in situations where complex spatially distributed models are
involved. In addition, the method is simple enough to be incorporated in virtually
any geostatistical software for sequential simulation, and can handle a very large
number of simulation locations.
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FIELD SCALE STOCHASTIC MODELING OF FRACTURE NETWORKS -
Combining pattern statistics with geomechanical criteria for fracture growth
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Abstract: According to recent estimates, the U.S. domestic potential for fractured oil
reservoirs is on the order of tens of billion of barrels. Better technology for
characterizing fracture flow paths, especially in deep, non-conventional plays and in
carbonate rocks is a key to producing hydrocarbons economically from these reservoirs.
The paper presents an approach for stochastic, field-scale modelling of fracture
networks consistent with patterns observed on logs, the physical basis for fracture
propagation and field-specific observations.

1. Introduction

Two aspects of research are presented. A stochastic simulation approach that utilizes
fracture pattern information retrieved from analog models is presented first. Pattern
characteristics are inferred from outcrop images using multipoint statistics and
subsequently applied, after affine transformations to simulate fracture patterns in the
target reservoir. A unique, stochastic fracture growth-based simulation algorithm is
presented for imposing the multipoint fracture pattern characteristics on the simulation
models.

Fracture patterns observed in outcrops or in subsurface reservoirs can be explained in
terms of the structural geology of the reservoir and spatial variations in mechanical
properties of rocks. Fracture growth model based on geomechanics can be used to
perform physics-based numerical simulation of fracture patterns. However,
geomechanical models can only generate fracture patterns up to a length scale of 1
kilometer and the uncertainty in fracture characteristics due to uncertainty in the stress
field cannot be quantified. The paper presents a multipoint-based approach to
characterize fracture patterns inferred from geomechanical models and these statistics
are merged with the pattern statistics inferred from analogs such as outcrop or logs
information in order to generate field-scale reservoir models. A Bayesian approach for
incorporating uncertainty in reservoir stress field is also presented. The probability of
the stress field conditional on the observed pattern in well logs is calibrated using the
geomechanical model and later inverted to yield the probability of a fracture pattern
given the uncertainty in the reservoir stress levels. Finally fractures are propagated in
the reservoir by applying the multiple-point simulation approach constrained to the
previously derived probabilities.
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2. Geomechanical fracture classification and stochastic simulation

A natural fracture is a planar discontinuity in reservoir rock due to deformation or
physical diagenesis'. Natural fracture patterns are frequently interpreted on the basis of
laboratory-derived fracture patterns corresponding to models of paleo-stress fields and
strain distribution in the reservoir at the time of fracture’. Sterns and Friedman®
proposed a genetic classification of fracture systems based on stress/strain conditions in
laboratory samples and features observed in outcrops and sub-surface settings. Based on
their work, it can be concluded that complex stress and strain distributions in reservoir
rocks can result in complex fracture patterns. Fracture patterns corresponding to
different geological systems have key characteristics that can be used to classify and
index fracture networks observed in outcrops and subsurface samples. Multiple point
statistical measures can be used for identifying and classifying fracture patterns
corresponding to different fracture systems".

Since stress boundary conditions strongly control the fracture pattern development
subsurface at the time of fracturing, a geomechanics-based approach, where a physical
understanding of the fracturing process is combined with measurements of mechanical
properties of rock, is physically realistic to predict fracture network characteristics. This
process-oriented approach can also provide a theoretical basis for deciding what types
of fracture attribute distributions are physically reasonable, and how attributes such as
length, spacing and aperture are inter-related. Additional geological information, such
as the strain, pore pressure and diagenetic® history of the reservoir can provide further
constraint on fracture network predictions.

In most cases, data available to model the fractured reservoir are sparse and information
such as seismic maps and production response are related imprecisely to the fracture
pattern characteristics, a probabilistic approach to fracture characterization is necessary.
In the object-based modeling approaches, fractures are represented as objects defined by
their centroid, shape, size and orientation. In “Random Disk” models®, fractures are
represented as two-dimensional convex circular disks located randomly in space.
Although object-based models are easy to implement, their application is limited due to
the assumed independence of the model parameters such as radii, orientation etc. A
viable alternative is to employ pixel-based algorithms. Well established geostatistical
algorithms such as sequential indicator simulation (sisim)’ ensure reproduction of the
two-point indicator variogram and can be used to classify nodes within the reservoir
into fractures or matrix. However, models constrained only to two-point statistics are
generally noisy and consequently inadequate for capturing clean-cut shapes such as
fractures.

Although stochastic fracture models can be constructed that might be representative of
analog fracture reservoir to some degree, it is still difficult to integrate geomechanical
information such as stress boundary conditions in those models. A promising
conditional multiple point simulation approach with integration of geomechanical data
is developed as part of this research.
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3. Multiple point approach to fracture growth simulation
3.1 Simulation algorithm

In the case of traditional two-point statistics based algorithms the cumulative
conditional distribution function (CCDF) depicting the local uncertainty in attribute
value is calculated on the basis of two-point correlation between pairs of data and
between each data and simulation node. In multiple point statistics based algorithms™?,
this required conditional probability distribution is derived based on the entire data
configuration on a spatial template, including the multiple-point interactions among the
data and between the data and the unknown. Supposing there are # neighboring data
events A, ,a =1,....,n. An additional variable #(n)=1 is assigned if all the elementary

data events occur simultaneously. The conditional probability is’:

Prob{dg = 1(n) = 1{= E{dg = 11(n) =1} (1)
Ag is the unknown data at the unsampled location. Using Bayes’ Theorem, the
conditional probability in expression (1) can be written as:
Prob {AO _ 1|t(n)= | }: Prob {Ao = l,t(n): 1}
Prob {t(n)z 1 }
This implies that in order to derive the multiple-point conditional probability expression
(1), we need to know the joint probability of observing the spatial pattern 4, =1 and

@

t(n)=1 as well as the prior probability of the occurrence of the template pattern
t(n) =1. Given an analog fracture model e.g. based on outcrop exposures, the required
probabilities can be retrieved from that model. Defining a spatial template and
translating that template over the analog model, the joint frequency of events such that
Ap =1 and 7(n)=1 as well as the prior probability of events ¢(n)=1 can be
retrieved.

The fracture simulation approach adopted in this research exhibits a distinct departure
from the current state-of-the-art multiple-point statistics based approaches in that the
simulation event Ag is itself considered to be a multiple-point event, obtained

constrained to #(n)= U 4, , a multiple-point event of arbitrary complexity. In

contrast, in the traditional multiple-point simulation approaches, the simulation event
Ao is generally treated as single point event. As a consequence of this subtle and yet

significant departure from other traditional methods, fractures are grown from each seed
location based on the probability of the multiple point simulation events A4 inferred

from analog fracture models. The seed fracture locations are selected based on areal
proportion maps that may be derived from seismic maps or other physical criteria such
as surface curvature maps. Such a growth algorithm has the advantage that it is
computationally efficient and permits integration of other physical criteria for fracture
growth that might be controlled by variations in mechanical properties of the rock.

The simulation commences from an empty grid. The well locations with recorded
fracture data are visited sequentially. The data configuration on a 27-point template
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(Figure 1) surrounding the fracture location is examined. The conditioning data includes
original well data as well as well nodes that have already simulated to be fractures. The
analog fracture model is then scanned for the occurrence of that data configuration.
Thus, if for example as in Figure 1, at the current stage of simulation, there are 23
points surrounding the central node that have been previously simulated to be fractures,
then the analog model is scanned for the occurrence of that 24-point (23+1 central node)
data configuration. This yields the probability Prob{t (n): 1} corresponding to that data

configuration. The simulation event 4 can then be one of the following:

e None of the remaining three points on the template is a fracture

e One of the remaining three locations is a fracture. That location could be any
one of the remaining nodes

e Two of the remaining three locations are fractures. There are three possible
combinations.

e All three of the remaining three locations are also fractures.

The probability associated with all such multiple-point data events A are retrieved by
scanning the analog model. This is the joint probability Prob{Ao = l,l(n): l}
corresponding to each data event Aq . The conditional probability: Prob{A() = 1,| t(n)= 1}

is then derived as the ratio of the joint probability and the prior probability. A random
value is drawn from the conditional probability distribution and this yields the set of

%
nodes corresponding to the outcome A that are marked as fractures for the next step of
the simulation algorithm.

3.2 Results discussion

As an example implementation of the simulation algorithm, Figure 2 is the training
image of fracture distribution obtained as an unconditional realization of an object-
based model. Since in most cases fracture patterns observed on a outcrop are on a 2-D
plane, the analog model in Figure 2 as well as the subsequent multiple point simulation
algorithm was implemented in 2-D. The spatial template used for retrieving the
conditional probability distributions is shown in Figure 3. Figure 4 is the result of the
simulation approach described above. It is easily to observe that the simulated model is
consistent with the training image. For instance, there are three different fracture
orientations (N-S, NE-SW, NW-SE) in training image (Figure 2) that can also be
observed in simulation image; and both images exclude horizontal orientation fracture.
It can be thus concluded that this multiple point statistical simulation approach can
reproduce fracture patterns observed in training model/analog models.

4. Geomechanical Basis for Fracture growth
4.1 Principle of fracture growth
It is known that the observed strength of rocks in laboratory experiments is significantly

lower than calculated theoretically values. This discrepancy is due to the remarkable
strength reduction in rocks caused by stress concentrations at crack tips and subsequent
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propagation of pre-existing small flaws within rocks as well as other solid materials.
The geomechanical modeling approaches discussed in research are based on the
presence of pre-existing cracks known as Griffith cracks’ within rocks. Stress
concentrations and propagation will occur along cracks at an orientation consistent with
the applied load. All modes (tensile, in-plane shear, anti-plane shear) of crack
propagation with respect to different sizes, shapes and orientation of rocks and under
various boundary conditions can be predicted by geomechanical analysis. Just as rocks
have a critical tensile stress capacity”, they also have a critical stress intensity factor K. .

The crucial criterion to propagate a crack through the rock is that the stress intensity at
the crack tips be at least equal to the critical stress intensity. In long-term loading
systems such as in petroleum reservoirs, classic fracture mechanics may fail to
accurately predict the crack growth especially in the presence of high temperature and
chemical reactivity. Crack propagation can thus occur at a stress intensity value K less
than the critical intensity. This has been observed in experiments using many materials
including rocks and minerals and is referred to as subcritical crack growth.

4.2 Description of Geomechanical models

In order to model simultaneous propagation of fractures, a computer program
developed by Olson'® that is based on the conceptual formulation of joint growth'' was
utilized. This methodology utilizes a failure criterion and a propagation velocity model'?

given by:
n
K
v=4A (—’J 3)
Kic
where K jc is the critical fracture toughness and 7 is subcritical index. The fractures in

this methodology are represented by series of equal-length boundary elements. Fracture
pattern development is strongly influenced by the mechanical interactions of fractures
through the fracture growth history. Based on the mechanical interaction behavior of
nearby cracks and effects of other geological information, a fracture length model for
larger opening mode fractures propagating through a material with randomly
distributed, parallel flaws can be developed. The model requires input geological
information such as reservoir thickness, subcritical index, size of stress field, stress
boundary conditions and rock properties etc. The boundary element code assumes
vertical fractures that are layer bound.

The fracture patterns shown in Figure 5 are generated using the geomechanical model
and correspond to variations in the strain value {1073 m,10 ™% m,10 > m) The sub-critical

index value is held constant at (60Mpa.\/; ) and so is the bed thickness (10m). It is

evident that the fracture patterns can be quite different corresponding to different
geological conditions. With an increase in stress displacement, the number of fractures
in the system increases and the pattern complexity also increases. Similar numerical
experiments can be performed by varying the sub-critical index and bed thickness
values. While physically realistic fracture patterns can be generated using the
geomechanical model, currently the volume of investigation using such models is
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restricted to small areas of the stress field adjacent to flaws. The cost of simulation will
increase significantly if the model is extended to a reservoir scale.

5. Incorporating information from geomechanical model
5.1 Simulation Approach

A key issue that remains to be addressed is the integration of pattern information from
analog models together with information from geomechanical models so as to develop a
stochastic model for the spatial distribution of subsurface fractures that is physically
realistic as well as permits assessment of uncertainty. Fracture pattern information can
normally be obtained from well logs or outcrop. However, since only indirect inference
of the stress field is possible using borehole image and well core data, there is
uncertainty in the predicted stress conditions and that has to be quantified. This
uncertainty in reservoir stress values adds to the uncertainty in pattern information
inferred on the basis of geomechanical simulations and has to be rigorously accounted
for in the multiple-point geostatistical simulation technique.

The uncertainty in reservoir stress condition corresponding to an observed fracture
pattern in well logs can be calibrated by applying Bayes’ Theorem. Supposing T, is
the fracture pattern observed in a borehole image. Using the geomechanical model and
assuming a range of boundary stress values, fracture patterns corresponding to each
boundary stress value can be simulated. Corresponding to each stress value B;, a suite
of fracture models can be generated by randomly locating the initial flaw locations.
Other geomechanical parameters such as sub-critical index and layer thickness are
measured independently and are assumed to be reliably known. These parameters are
held constant during the geomechanical simulations. The probability of the fracture
pattern 7, in the K models corresponding to a particular boundary stress value B;

can be retrieved. The procedure is repeated for the N boundary stress values
B;,i=1.,N . At the end of this step, the conditional probability

Prob{TObS | B;,i=1,.,N} is obtained.

The likelihood of boundary stress value given an observed fracture pattern -
Prob {B; | T, } can be calculated using Bayes” Theorem:

Prob T B; {- Prob \B;
Prob {Bi | Tobs }: { E’]i‘:)b‘ {TI};’ } { 1} )
obs

The Prob{TObS | Bj,i=1,..,.N } have been calibrated using the procedure outlined earlier.

Prob { B;} is the prior probability corresponding to the stress value B;. In the absence
of any expert information, we can assume each stress value to have the same prior

probability i.e. Prob{Bi}:%. The probability Prob{ Tobs} is obtained concurrently
with Prob{TObS | Bj,i= 1,..,N} and is equal to:
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N
Prob {Typs j= 3 Prob {Tgps | B; }-Prob {B;} ®)
i=1

i.e. it is the probability of observing the pattern 7, over the entire suite of N-K
geomechanical fracture models.

The application of Expression (4) yields the updated distribution for the boundary stress
values. This updated probability distribution is denoted as Prob*{B;}. In the stochastic

simulation phase, at any step corresponding to a template partially filled with
conditioning data (original data plus previously simulated values), the K images
corresponding to a particular boundary stress value B; are scanned for obtaining the

probability of fracture patterns in the remaining empty nodes of the spatial template.
This yields the probability Prob{A0 |t(n),B,-} where A( implies the simulation data

event, #(n) is the partially filled fracture pattern. This probability is multiplied by the
updated probability Prob*{B;} to obtain the posterior probability corresponding to the
simulation data event Prob* {AO |t(n),B,~}. By repeating this for all boundary stress

values, the complete posterior CCDF characterizing the remainder uncertainty in
fracture pattern can be constructed. The fracture pattern is propagated by sampling
randomly from this posterior CCDF.

Fracture patterns simulated in this fashion rigorously incorporate the uncertainty in
fracture pattern characteristics due to the lack of complete knowledge about the
underlying physical process for fracture propagation. In addition, the models also
incorporate the uncertainty in boundary stress values. Since the calibration process
commences from the fracture patterns observed in image logs, the outlined approach is
a viable technique for incorporating well log information into stochastic models for the
fractured reservoir.

5.2 Discussion

Figure 6 is a fracture pattern observed on a log image. Figure 7 shows the fracture
pattern corresponding to a stress displacement value of 810 ~* » and corresponding

to two different initial distributions of Griffith cracks. Seven different stress
displacement values were assumed and six different fracture patterns corresponding to
each stress value were generated by varying the initial flaw locations randomly. As
discussed earlier, the prior distribution of the stress values is assumed to be uniform
(maximum uncertainty). Figure 8 shows the updated probability distribution of stress
values based on the observed fracture pattern depicted in Figure 7. The posterior
distribution indicates that the likelihood of the reservoir stress value being of the order

11074 m is higher. Better discrimination of the stress displacement value is possible if
the pattern T, retrieved from well logs is more specific. In this case a generic pattern
was retained for demonstration purposes.

Figure 9 is the final fracture pattern incorporating the uncertainty in reservoir stress
conditions and variations in fracture pattern characteristics observed in the
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geomechanical models. We can observe that the simulation model has combined the
fracture characteristics observed in the suite of geomechanical models such as the NW-
SE orientation fractures, the occasional horizontal fractures observed in the some
geomechanics models that have no obvious vertical fractures. Some other
geomechanical models exhibit short vertical fractures that are also represented in the
final simulation model. Another important characteristic of the geomechanics model is
that some fractures propagate and terminate against previously existing fractures. This
is physically plausible since pre-exiting fractures may reduce the stress at the tip of the
daughter fractures, thereby causing the fracture propagation to stall. These
characteristics can also be observed with some short fractures terminating against other
fractures in simulation model.

The accuracy and robustness of the simulated fracture model is dependent upon the
characteristics of the fracture pattern interpreted from image logs. If that pattern is
highly specific, the resolution of the stress conditions will be more specific and
consequently, only the dominant fracture patterns corresponding to that stress value will
be manifested in the final simulation image. Nevertheless, it is possible to generate
realistic fracture patterns using the proposed methodology to synthesize information
from geomechanical model and well logs.

6. Conclusions

The research focused on developing a methodology for generating physically realistic
models of fracture systems in reservoirs. The methodology hinges on the availability of
training models of analogous fracture systems. When modeling a target reservoir, the
multiple point statistical measures characterizing the patterns observed in the analog can
be imposed on the model using a growth-based stochastic simulation technique
proposed in this research.

Fracture initiation and growth are affected by a variety of physical geomechanical
factors such as the regional stress field, spatial variations of rock properties, or bed
thickness. The final model of the reservoir has to integrate the information obtained
from geomechanical models and from analog outcrops; in order to yield more
physically realistic representation of fracture systems. Furthermore, since important
parameters such as the reservoir stress conditions can be only indirectly inferred, the
uncertainty in stress field should be quantified and incorporated into stochastic models
of the reservoir. That uncertainty can be rigorously quantified using the Bayesian
procedure outlined in this paper. The Bayesian procedure is used to update a prior
model for uncertainty in reservoir stress field into a posterior model based on the
observed image log pattern. This updated probability of reservoir stress values is used to
guide the selection of fracture growth patterns during the stochastic simulation phase of
the model. Preliminary results obtained using the proposed procedures appear
promising.
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Abstract. Unstructured grids are commonly used in reservoir modeling and are being
increasingly considered in complex mining engineering applications. Block kriging of
the attributes can be easily implemented; however, this implicitly assumes linear
averaging, which is not the case after Gaussian transformation or with variables such as
permeability. Direct simulation has been proposed as a solution; however, there are a
number of important implementation considerations. This paper addresses the following
considerations: (1) search for nearby relevant block and point data, (2) stabilization of
the kriging equations and weights in presence of complex screening, (3) correction of
the homoscedastic kriging variance to account for realistic proportional effect, (4)
determination of valid conditional distribution shapes, (5) accounting for geological
controls including stratigraphic surfaces and mixture of multiple facies within an
unstructured grid block, and (6) accounting for directional permeability that does not
average linearly. Direct simulation on unstructured grids is made practical by
addressing these six considerations.

1 Introduction

Unstructured grids are used to model the complex geology and geometry of reservoirs
and to provide better accuracy to important development areas. For example, tartan
grids are used to provide a high cell density near wells and low cell density in less
influential areas (Tran, 1995).

Sequential Gaussian simulation (SGS) (Isaaks, 1990) has become the most extensively
used algorithm for continuous variable simulation; however, it is impractical when
considering multiscale data, particularly when the data do not average linearly. Direct
sequential simulation (DSS) (Xu and Journel, 1994) is an attractive alternative due to the
increasing popularity of unstructured grids and the need to integrate multiscale data.

One advantage of DSS is that a wide variety of volume supports can be integrated. This
requires that kriging is based on mean covariance/variogram values. There are various
ways in which mean covariance calculations can be made more efficient (Pyrcz and
Deutsch, 2002). While computational efficiency in this regard is important, an efficient
search for nearby relevant data is just as important for practical implementation. The
popular method when dealing with regular grids is the super block search strategy, a
variation of which could be applied to unstructured grids; however, it may be
advantageous to consider different search tree algorithms that may be more efficient.
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The effects of screening remain an issue in the case of multiscale data. Proper filtering
of data prior to kriging may be required to avoid anomalously high weights that may
lead to extreme estimates. Some filtering techniques such as the octant search, iterative
kriging, and the template technique have been used to mitigate screening.

The use of simple kriging (SK) results in an estimation variance that is independent of
the data values; this independence is referred to as homoscedasticity. Unfortunately,
real data may exhibit a heteroscedastic feature known as the proportional effect, wherein
the local mean and variance are often quadratically related (Journel and Huijbreghts,
1978). This heteroscedasticity must be accounted for. An advantage of SK is that
covariance reproduction only requires that the mean and variance of this distribution be
defined by the SK mean and variance (Journel, 1994). A method of determining the
local distribution shapes has been developed and will be revisited (Pyrcz and Deutsch,
2002; Deutsch et al, 2001; Oz et al, 2001).

The advantage of unstructured grids in capturing more complex geology also entails
further complications related to geological controls such as stratigraphic surfaces and a
mixture of multiple facies that may be represented within any particular block. An
unstructured grid may not conform to the stratigraphic setting, which introduces
problems relating to selecting relevant data for kriging and estimating grid blocks that
contain multiple subsequence layers.

Further, the use of average variogram/covariance values in SK (inside DSS) for
multiscale data has an implicit assumption of linear averaging of the model variables.
This poses a problem when the variable of interest does not average linearly.
Permeability is a classic example of such a variable. Accounting for the appropriate
type of averaging is integral to the correct implementation of DSS.

This paper addresses these six important issues and proposes some novel approaches for
resolution.

2 Search for Nearby Relevant Block and Point Data

When considering unstructured grids, data may consist of original data at a small scale,
regularly gridded soft data, and grid blocks of varying sizes. There are several methods
that can be used to deal with this array of data: A brute force method involving a matrix
of distances ngg by ngp in size, where ngp is the number of grid blocks; A super block
search strategy (Deutsch and Journel, 1998); or the use of search trees. The brute force
method is only applicable to small problems as larger data sets would be impractical for
conventional computer memory availability. A super block strategy could be used;
however, implementing certain types of search trees will be more efficient.

One type of search trees common in the computer graphics and computer gaming
industry are quadtrees and octrees, (Figure 1) (Frisken and Perry, 2002). When
considering graphics visualization, these search trees are used to quickly determine
which polygons are in view such that only those polygons are drawn (this reduces
memory requirements). Searching for nearest neighboring data is a similar task.
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Quadtrees and octrees organize data in such a way that point location, region location,
and nearest neighbor operations can be done easily. Frisken and Perry (2002) introduce
a binary indexing system for quadtrees that allows for efficient execution of the above
operations. This system can easily be applied to octrees for three dimensional data as
well.

Figure 1: Example of a quadtree structure (left) and tree-representation (right). The
quadtree is more refined in areas with higher data densities.

Implementing quadtrees or octrees to organize spatial data for simulation purposes
allows for efficient acquisition of nearby data for each node to be simulated. The search
for nearest neighboring leaf nodes is not dependant on the type of grid and tree traversal
for finding and inserting points is a simple process. Having these characteristics along
with low memory requirements makes search trees excellent for unstructured grid
problems.

3 Stabilization of the Kriging Equations and Weights in the Presence of Complex
Screening

Screening can cause extreme positive and negative weights that lead to erroneous
estimates and estimation variances. One method of reducing the occurrence of extreme
weights is to remove data from the kriging matrix: this iterative kriging technique will
remove data until the absolute value of all the weights are below a specified maximum.
Iterative kriging works; however, data that may be highly influential in estimating a
location could be removed from the kriging matrix resulting in a less accurate result.
Another method of reducing screening is the template technique which involves
rejecting any data that are shadowed by a closer data (Figure 2). A downfall to the
template technique is its high demand on computation time.

A new method of filtering data used in estimating a location is the sector search method,
which is somewhat similar to the template technique. The sector search method uses
input dip and azimuth tolerances to create sectors in which only the nearest data is
selected for kriging (Figure 2).
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The sector search subroutine works fast in two dimensions as the sectors are all pre-
constructed and then translated to locations of interest; however, in three dimensions,
the sectors are built as points are encountered making the process more time consuming.

Even though the sector search method removes many screened data, there may be
unreasonable screening still present. For example, consider two points in adjacent
sectors, the point closer to the location being estimated will screen the effect of the
second point. Using larger sectors will keep screening to a minimum.

Points rejected

* Points rejected * Points taken

® Points taken

Figure 2: The template technique (left) and the sector search method (right) to reduce
screening.

4 Correction of the homoscedastic kriging variance to account for realistic
proportional effect

Data in original units are often heteroscedastic. High valued areas are more variable.
This heteroscedastic behavior is commonly referred to as the proportional effect
(Journel and Huijbregts, 1978). DSS relies on covariance reproduction through local
distributions whose mean and variance are defined by SK (Xu and Journel, 1994). For
data following the congenial Gaussian distribution this assumption is correct; however
for data exhibiting heteroscedastic features, it is an unsuitable assumption due to the
homoscedasticity of the kriging variance. The kriging variance must be adjusted such
that the proportional effect is reproduced.

4.1 DSS USING LOGNORMAL DATA

To see the effects of directly simulating data that exhibit the proportional effect, a study
was performed using a lognormal distribution. This distribution was chosen for a
number of reasons: (1) although real data are not necessarily lognormal, most data
exhibit a strong asymmetry similar to that characterized by the lognormal distribution,
and (2) there is a clear mathematical link between the lognormal and the more common
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Gaussian distribution that permits tractability of the results. Further, an equation
describing the proportional effect of lognormal data exists (Journel and Huijbregts,
1978). Knowing these relations, the kriging variance can be calibrated to honor the
heteroscedasticity inherent in lognormal data.

An exhaustive lognormal data set was generated by transforming an unconditional
Gaussian model (Figure 3). The mean and variance of the lognormal data were
arbitrarily chosen to be 100 and 10000, respectively. A set of 625 samples was drawn
from the model and used for numerical experimentation.

4.1.1 Options of Simulation Explored

Three options were identified for evaluation:

Option 1 Perform SGS
Option 2 Perform DSS without correcting the kriging variance
Option 3 Perform DSS and correct the kriging variance to honor the

proportional effect

With lognormal data, an equation exists for correcting the variance using the mean or
estimate:

e =l @l -1
Where a;c is the corrected variance, 0'3 is the local variance in normal space, and ﬂ;
is the global variance of /n(Z). By determining a relation between the estimation
variance in Gaussian space and that in lognormal space, the value of o-f could be

determined without having to perform kriging twice.

For each option, 100 realizations were generated and the E-type mean and variance was
calculated (Figure 4). Reproduction of the global statistics and the variogram were
verified. Figure 4 also shows similar results between DSS with a correction and SGS;
however, with DSS and no correction as in Option 2, the variance is clearly
homoscedastic. A more visual comparison of the three options is available in Figure 5
where the spatial distribution of the mean and standard deviation show reproduction of
the proportional effect in a single realization.
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Figure 3: The lognormal model used for direct simulation experimentation.
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Figure 4: The mean and variance taken over 100 realizations for all three simulation
approaches: Option 1 is the straightforward SGS, Option 2 refers to DSS, and Option 3
refers to DSS with variance correction to account for heteroscedasticity.
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Figure 5: Local mean versus standard deviation at every estimated location for options
1 (left), 2 (middle), and 3 (right). Options 1 and 3 show the proportional effect and
compare nicely. Option 2 shows a homoscedastic variance.
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By performing simulation using lognormal data, it is possible to introduce a solution for
dealing with the proportional effect. The lognormal distribution is particularly useful
because the proportional effect is one of its prominent features and is analytically
accessible.

We expect that the proportional effect could be fit from real data instead of using either
the Gaussian model of no proportional effect of the lognormal model of a quadratic
proportional effect.

5 Determination of valid conditional distribution shapes

A method to determine the shape of the local distributions in original units from the SK
mean and variance is needed such that the global distribution is reproduced.

Figure 6 shows a numerical integration approach proposed by Oz et. al. (2001). If a
specific probability p of a non-standard normal distribution with mean m and standard
deviation o is known, the corresponding direct space quantile can be calculated as:

Z(u)=F ' [Guu[G imai(p)]]

where Gy is the cumulative distribution function (cdf) of a standard Gaussian
distribution, Gy, ; is the cdf of a non-standard Gaussian distribution with mean m and
standard deviation o, and F is the cdf of the representative data distribution. Z(u) is the
p quantile of the local distribution of uncertainty (Pyrcz and Deutsch, 2002).

By creating a series of Y-space distributions from a list of means and variances and
repeating the above procedure for a range of quantiles, a set of Z-space distributions can
be generated. The mean and variance of each Z-space distribution can be calculated and
used as reference values. Upon kriging at a particular location, the resulting mean and
variance can be used to look up the corresponding local distribution in original units,
from which a simulated value can be drawn.

6 Accounting for geological controls including stratigraphic surfaces and mixture
of multiple facies within an unstructured grid block

Some geological settings are characterized by a series of genetically related strata. The
geology may consist of a sequence stratigraphic framework; the bounding surfaces
between the layers correspond to a specific geologic time that separates two different
periods of deposition or a period of erosion followed by deposition (Deutsch, 2002).
This presents some potential issues related to the structure such as: the grid does not line
up with the stratigraphic surfaces, grid blocks may contain multiple facies and
subsequences (Figure 7), and searching for relevant data to estimate unknown locations.
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Figure 6: The graphical representation of the transformations applied to calculate the
local distributions of uncertainty with a shape such that the global distribution is
reproduced. The illustrated transformation is repeated for a sufficient number of
quantiles to describe the local distribution.

A possible method of dealing with data within various subsequences is to flag the data
by subsequence and only use data within genetically related strata. When simulating
blocks that cross multiple subsequences, flagging and simulating its value poses a
problem. One idea is to discretize the block into smaller “blocks”, flag the smaller
components and estimate them to obtain a value or multiple values and structure within
a grid block. Since blocks may cross into multiple subsequences as well as contain
multiple facies, a method to determine that portion of a grid block relevant to estimation
is required. An idea of the subsequence structure within grid blocks being estimated as
well as those being used for conditioning data is critical (Figure 8).

Upon estimating grid blocks, the proportion of facies within each block can be
determined overall, but it may be better to retain the facies proportions within each
subsequence in a block.

7 Accounting for directional permeability that does not average linearly
Because data exist in vastly different scales such as small core-based permeability and

large scale production data, problems arise due to the scale difference and non linear
averaging of permeability. By implementing a power law transform, permeability
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values will approximately average linearly, and can then be used in a direct simulation
approach (Zanon et al, 2002).

The general formulae for power law averaging is

1
1 » @
K, = L jk(u) du}

where v is the volume over which the average is calculated, k(u) is the permeability at
location u in v, and © is an averaging exponent.

Since DSS utilizes kriging as an estimator, the model variables must average linearly
with scale. By using a power law transformation prior to kriging, the problems
generated by multiscale data can be avoided and transformed variables will average
linearly with scale. A Gaussian transform would undo the benefit of the power-law
transform; it is important to perform kriging and simulation in the correct units.
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Figure 7 : Stratigraphic surfaces and superimposed unstructured grid. Three
hypothetical drill holes/wells are also shown.
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Figure 8: Unstructured grid block crossing multiple subsequence layers. If block 1 is
being estimated using block 2, only data within block 2 and subsequence 1 should be
used to estimate data within block 1 subsequence 1.
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A concern of implementing power law transformation, especially when dealing with
unstructured grids, is that ©® may not be constant over every volume support. An
unstructured grid may involve many different volume support sizes to be estimated and
when the scale difference is large, ® may change. Other concerns that affect the value
of w are arbitrarily chosen boundary conditions and if the formation approaches the
percolation threshold (Kirkpatrick, 1973).

8 Conclusions

Unstructured grids are practically relevant for realistic reservoir modeling. The
distinction of simulating in the units of the original data provides significant benefits
such accounting for multiscale data and permitting different local distributional shapes.
In practice, implementation of DSS has been limited. Even something as seemingly
straightforward as searching for data is complicated by the multiscale nature of the
problem. In these instances, quadtrees or octrees may be particularly efficient.
Screening may also lead to destabilization of the kriging matrix, thus a preferential
filtering of the data through a sector search may be appropriate. Multiscale issues are
further complicated by the very nature of the model variable, whether these variables
average linearly or whether pre-processing transform such as the power law transform is
required.

Unstructured grids allow for increasingly complex geology to be integrated; however,
this presents issues in grid block definition and facies identification if the blocks are too
large and/or if they cross multiple sequence or sub-sequence stratigraphic layers.
Despite all these issues, perhaps the most important advance presented in this paper is
the correction applied to the SK variance to account for the heteroscedastic nature that is
often inherent to real data. The lognormal case was used to illustrate a corrective
approach to effectively reproduce heteroscedasticity.
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Abstract. In this paper we consider spatial problems modeled by a Gaussian
random field prior and a nonlinear likelihood linking the hidden variables to the
data. We define a directional block Metropolis—Hastings algorithm to explore the
posterior. The method is applied to seismic data from the North Sea. Based on
our results we believe it is important to assess the actual posterior in order to
understand possible shortcomings of linear approximations.

1 Introduction

Several applications in the earth sciences are preferably formulated by an underly-
ing hidden variable which is indirectly observed via noisy measurements. Examples
include seismic data, production data and well data in petroleum exploration: In
seismic data the amplitudes are nonlinearly connected to the elastic parameters
of the subsurface, see e.g. Sheriff and Geldart (1995). Production data contain the
history of produced oil and gas, which is a complex functional of the permeability
properties in the reservoir, see e.g. Hegstad and Omre (2001). Well data of ra-
dioactivity counts need to be transformed into more useful information, such as
clay content in the rocks, see e.g. Bassiouni (1994). The Bayesian framework is a
natural approach to infer the hidden variable; this entails a prior model for the
variables of interest and a likelihood function tying these variables to observations.

In this paper we consider Gaussian priors for the underlying spatial variable,
and nonlinear likelihood models. When using a nonlinear likelihood, the posterior is
not analytically available. However, the posterior can be explored by Markov chain
Monte Carlo sampling (see e.g. Robert and Casella (1999)), with the Metropolis—
Hastings (MH) algorithm as a special case. We describe a directional MH algorithm
in this paper, see Eidsvik and Tjelmeland (2003). We use this algorithm to update
blocks of the spatial variable at each MH iteration. We show results of our modeling
procedures for seismic data from a North Sea petroleum reservoir.
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2 Methods

2.1 PRIOR AND LIKELIHOOD ASSUMPTIONS

The variable of interest is denoted « = {z;; € R;i = 1,...,n;j = 1,...,m},
a spatial random field in two dimensions represented on a grid of size n x m.
We denote its probability density by m(x) = m(x|) = N(z;u(8),3(0)), where
N(x;u, Y) denotes a Gaussian density evaluated in z, with fixed mean p and
covariance matrix Y. For generality we condition on hyperparameters 6, but in
this study we treat 0 as fixed parameters. The generalization to a vector variable,
Zij € R%, is straightforward. For the application in Section 3 we have T ER3A
three dimensional grid, x;;, is of course also possible.

We assume the spatial variable = to be stationary and let the field be defined
on a torus, see e.g. Cressie (1991). As explained below, this has important com-
putational advantages, but the torus assumption also implies that one should not
trust the results close to the boundary of the grid. Thus, one should let the grid
cover a somewhat larger area than what is of interest.

The likelihood model for the data z = {z;; € R;i =1,...,n;j = 1,...,m},
given the underlying variable x, is represented by the conditional density 7 (z|x) =
N(z;g(z),S), where g(x) is a nonlinear function. Hence, the conditional expecta-
tion of the data has a nonlinear conditioning to the underlying field. We assume
that the likelihood noise is stationary with covariance matrix S. It is again straight-
forward to extend this model to vector variables at each location, z;; € R4, or
three dimensional grids. For the application in Section 3 we have z;; € R%. We
assume that a linearized version of the likelihood is available, and denote this by
the conditional density mi"(z|x) = N(z; G4, S), where xg is the value of 2 used
in the linearization.

The posterior of the hidden variable x conditional on the data is given by

m(x|2) o w(a)m(z|z), (1)

an analytically intractable posterior. The linearized alternative;

wi?(x|z) x W(I)?T?(?(Z‘x), (2)
for fixed xg, can be written in a closed form, and is possible to evaluate and
sample from directly. But note that in general this becomes computationally
expensive in high dimensions. With our torus assumption discussed above, the
covariance matrices involved become circular and the linearized posterior can then
be evaluated and sampled from effectively in the Fourier domain (Cressie (1991),
Buland, Kolbjgrnsen, and Omre (2003)). The actual nonlinear posterior can also
be evaluated, up to a normalizing constant, in the Fourier domain, by treating the
prior and likelihood terms in equation (1) separately.
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2.2 METROPOLIS-HASTINGS BLOCK UPDATING

A MH algorithm is an iterative sampling method for simulating a Markov chain
that converges to a desired posterior distribution, see e.g. Robert and Casella
(1999). Each iteration of the standard MH algorithm consists of two steps: (i)
Propose a new value for the underlying variable, (ii) Accept the new value with a
certain probability, else keep the value from the previous iteration.

We describe a MH algorithm which updates blocks of the random field at
each iteration. Let X’ = 2 denote the variable after the i-th iteration of the MH
algorithm. For the (i41)-th iteration we draw a block of fixed size k x [ at random,
where k < n, [ < m. Since the grid is on a torus, there are no edge problems when
generating this block. We denote the block by A, a defined boundary zone of the
block by B, and the set of nodes outside the block and boundary by C, see Figure
1. Further, we split the variable into these blocks; © = (x4, x5, z¢) as the parts in

Figure 1. Block updating. The full size of the grid is n x m. We illustrate the
block A of gridsize k x [, a boundary zone B, and the other parts of the field C.

the block, the boundary, and outside the block and boundary zone, respectively.
Correspondingly, we denote the data vector by z = (za,zp,2¢). To propose a
new value in the block we define a proposal density for the part in A, and denote
the proposal on this block by ya. The rest of x remains unchanged, and hence
the proposed value is y = (ya,xp,xc). One proposal density in the block is the
linearized posterior for y4, conditional only on values in the boundary zone and
data in A and B. We denote this by 74" (ya|z 5, 24, 28) = N(ya;m,T), where the
mean m and covariance T' can be calculated directly (Cressie, 1991). Note that
the linearization is done at the current value X* = z. The final step in the MH
iteration is to accept or reject the proposed value y, and we thus obtain the next
state X**1. Note that the results of the MH algorithm are the same no matter
which block size we choose. The CPU time, on the other hand, will vary with the
block size. In the application below we have chosen a block size similar to the
range of the spatial correlation.
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2.3 DIRECTIONAL METROPOLIS-HASTINGS

Directional MH algorithms are a special class of MH algorithms. Each iteration
consists of the following steps; (i1) Generate an auxiliary random variable which
defines a direction, (i2) Draw a proposed value on the line specified by the current
state and the auxiliary direction, (ii) Accept the proposed value with a certain
probability, else keep the variable from the previous iteration.

We present a directional updating scheme where the proposal step is done
effectively in one dimension, see Eidsvik and Tjelmeland (2003). We outline our
method following the block sampling setting in Section 2.2. Denote again the
variable at the i-th iteration by X = x = (x4,7p,7¢), and the data by z =
(z4,2B,2c). We generate an auxiliary direction (step il) as follows; First, draw
wa from 747 (\|zp, 24, 25). Next, define the auxiliary direction as u = i%,
where we use + or — so that the first component of u is positive, see the discussion
in Eidsvik and Tjelmeland (2003). Since this density for w4 is Gaussian, it is
possible to calculate the density for the auxiliary unit direction vector u (Pukkila
and Rao, 1988). We denote this density by g(u|za, x5, 24, 2B).

At the last part of the proposal step (i2) we draw a one dimensional value ¢
from some density g(t|u,x, z), and set ya = x4 + tu as the proposed value for the
block, and y = (ya,xp,zc) as the proposal for the entire field. This proposal is
accepted, i.e. X't =y, with probability

’I"(y‘fﬂ) _ min{l, W(y) . ﬂ—(’z‘y) . g(u|yA,l'B,ZA,ZB) q(7t|u,y,z) }’ (3)

m(x) w(zly) g(ulza,zp,24,28) q(tlu,,2)

else we have X! = .
In particular, if we choose the one dimensional density as

¢ (tlu,x, 2) x w(z|lwa+tu, o, x0)m(TA +tu, 25, 20)g(ulx A +tu, 25,24, 28), (4)

the acceptance probability in equation (3) is equal to unity (Eidsvik and Tjelme-
land, 2003), and hence the proposed variable is always accepted. Two elements are
important when considering the unit acceptance rate proposal in equation (4); (i)
An acceptance rate of one is not necessarily advantageous in MH algorithms. It is
advantageous to obtain fast mixing, i.e. to have a small autocorrelation between
successive variables. This is best achieved with large moves at each iteration of
the MH algorithm. (ii) It is not possible to sample directly from the ¢* density.
To obtain a sample we have to fit an approximation to ¢* in some way, either by
a parametric curve fit, or by numerical smoothing of a coarse grid approximation.

In this paper we use an alternative density which does not give unit acceptance
rate. The adjusted density is

q(tlu, 2, 2) o< (L4 [t) " (tlu, z,2), A >0, (5)

where the (1+]t])* term encorages t values away from ¢ = 0. This makes it possible
to have larger moves in the MH algorithm since ¢ = 0 corresponds to y4 = x4.
We fit an approximation by first calculating ¢ on a coarse grid and then use linear
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interpolation in the log scale between the evaluated grid points. The approximation
that we obtain with this approach is our proposal denoted gq.

In Figure 2 we show the proposal with acceptance one, ¢*, the adjusted proposal

One dimensional densities along the direction.
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Figure 2. Sketch of the density ¢*(solid), the adjusted density g (dash-dots),
and the fitted density ¢ (dashed). This is a typical proposal density for ¢ in our
application in Section 3. The approximation ¢ has an exponential form in each
interval of length 0.1 on a grid (for example between —0.8 and —0.7).

q and its fitted proposal ¢q. This particular plot is obtained in our application in
Section 3. We tuned A in equation (5) so that the acceptance rate was about 0.5
in our application. This seems to be a reasonable acceptance rate considering the
asymptotically optimal acceptance rates for random walk MH and Langevin MH
algorithms at 0.25 and 0.5, respectively, see e.g. Robert and Casella (1999). We
obtain this by setting A = 10. Note that the proposal density for ¢ has a bimodal
shape. One mode is usually close to t = 0, while the other mode is quite far from
0. The mixing of the MH algorithm improves if we reach the mode away from 0
more often. This can be established by ¢ or ¢ as shown in Figure 2. In the case of a
linear likelihood the two modes illustrated in Figure 2 are always of equal size. A
nonlinear likelihood causes them to have unequal mass, and most commonly the
mode near t = 0 contains most of the probability mass.

3 Example

3.1 SEISMIC AMPLITUDE VERSUS OFFSET DATA

Seismic amplitude versus offset (AVO) analysis is commonly used to assess the
underlying lithologies (rocks and saturations) in a petroleum reservoir, see e.g.
Sheriff and Geldart (1995), and Mavko, Mukerji, and Dvorkin (1998). The reflec-
tion amplitude of seismic data changes as a function of incidence angle and as a
function of the elastic properties which are indicative of lithologies.

We analyze reflection data at two incidence angles in the Glitne field, North Sea.
The Glitne field is an oil-producing turbidite reservoir with heterogeneous sand
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and shale facies, see Avseth et al (2001) and Eidsvik et al (2004). The domain
of our interest is 2.5 x 2.5 km?2, and it is split into a grid of size 100 x 100, with
each grid cell covering 25 x 25 m?2. The area covers what was interpreted as the
lobe of the turbidite structure in Avseth et al (2001). Figure 3 shows the reflection
amplitude along the grid at reflection angles zero (left) and thirty (right).

Reflection data (angle=0) Reflection data (angle=30)
100 o —

&0

6O

40

20

20 40 BO BO 100 20 40 &0 B0 100

-0.05 0 005 0.1 0.05 a 0.os

Figure 3. Reflection data at the 2D interface. Incidence angle 0 degrees (left)
and 30 degrees (right).

The reflection amplitudes are hard to analyze directly because they are a result
of the contrast in elastic properties in the cap rock covering the reservoir and the
properties in the reservoir zone. We next use a statistical model for automatic
analysis of the elastic reservoir properties.

3.2 STATISTICAL MODEL FOR SEISMIC DATA

The seismic data for the two reflection angles are denoted z = (2, 21), where 2°

refers to the zero offset reflection and 2! to 30 degrees incidence angle (both are
plotted in Figure 3). The statistical model that we use is closely connected to the
one in Buland, Kolbjgrnsen and Omre (2003).

The variables of interest are the pressure and shear wave velocities, and the den-
sity in the reservoir zone. We denote these by z = (v, 3, p) = {zi; = (aj, Bij, pij); i =
1,...,n;5=1,...,m}, where « is the logarithm of the pressure wave velocity, [ is
the logarithm of the shear wave velocity, and p is the logarithm of the density. The
velocities and density are the elastic properties of the rocks which in some sense
capture the rock mineral and saturation (Mavko, Mukerji, and Dvorkin, 1998).
The units for the exponential equivalents of «, 5 and p are m/s for velocities and
kg/m? for density. Let (aq, B0, p0) be the logarithm of pressure and shear wave
velocities, and the logarithm of density for the cap rock. These cap rock properties
are treated as fixed values in this study, and are equal for all locations in the grid.
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We assign a Gaussian prior density to the reservoir variables of interest, i.e.
m(x) = N(z; p, ), where ;1 now becomes a 3mn vector with the mean of the three
log elastic properties. These prior mean values are fixed, and set to 1o = E(a;;) =
7.86, pg = E(Bij) = 7.09, n, = E(p;j) = 7.67, for all (i, j). These mean values are
assessed from well logs in Glitne, see Avseth et al (2001). The prior covariance ma-
trix, X, is a 3mn x 3mn matrix defined by a Kronecker product, giving a 3 x 3 block
covariance matrix at the diagonal, and 3 x 3 matrices with this covariance function
and a spatial correlation function on the off-diagonal, see Buland, Kolbjgrnsen, and
Omre (2003). The diagonal covariance matrix describing the marginal variability
at each location is defined by Std(w;;) = 0.06, Std(5;;) = 0.11, Std(p;;) = 0.02,
and correlations Corr(wj, 8i;) = 0.6, Corr(wj, pij) = 0.1, Corr(Bi;, pij) = —0.1.
These parameters capture the variability expected from previous studies, see Bu-
land, Kolbjgrnsen, and Omre (2003). The spatial correlation function is the same
for all three reservoir variables and is an isotropic exponential correlation function
with range 250m (10 grid nodes).

The likelihood function is nonlinear, and is defined by approximations to the
Zoeppritz equations, see e.g. Sheriff and Geldart (1995). The density for the seismic
AVO data, given the underlying reservoir properties, is 7(z|z) = N(z;g(z),95),
where the nonlinear function goes only locationwise, i.e. at grid node (i, ) the
expectation term in the likelihood is a function of the variables at this gridnode
only. For each location (i, j) and angle v = 0, 30 we have

Gijy (T) = gij~(ij, Bij, pij) = ao(ij — o) + a1,45(Bij — Bo) + az,45(pi; — po), (6)
where

1 . ;
ayg = 5[1 + sin®(v)], a1,ij = *452‘3‘51”2(7)7 (7

exp(203;;) + exp(20o)
exp(2a;;) + exp(2a0)

1 .
as; = 5[1—4&'3‘3@”2(7)}, &ij =

The noise covariance matrix of the likelihood, S, is a 2mn x 2mn matrix defined
from a Kronecker product. This covariance matrix has a block diagonal 2 x 2 matrix
on the diagonal, and off-diagonal elements defined from an exponential correlation
structure with range 250m. The diagonal noise covariance matrix is defined by
Std(y = 0) = 0.015, Std(y = 30) = 0.012, Corr(y = 0,7 = 30) = 0.7. This
likelihood noise model is specified using the parameters in Buland, Kolbjgrnsen,
and Omre (2003).

A linear likelihood model can be defined by fixing the ratio &;; in equation (7).
For a constant linearization point we have Wff"(z|x) = N(z;G,x,S). A similar
linearization is used in Buland, Kolbjgrnsen, and Omre (2003), and with this lin-
earization they assess the analytically available posterior directly on a 3D dataset.
For a linearized proposal density on the block A we have 7X™(-|z 5, 24, 2B), where
we use a block size of 9 x 9, and a boundary zone of width one grid node. The
quality of the linearization varies across the lateral domain - it is better with dense
sampling in time. It is important to remember that the choice of linearization is
irrelevant for the results, it only influences the CPU time of the sampling algorithm.
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3.3 RESULTS

The posterior is sampled using the block directional MH algorithm discussed
above. We denote 144 updates as one iteration, i.e. on average each grid node
is (proposed) updated about once in each iteration. Figure 4 shows trace plots for
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Figure 4. Trace plots of the three variables at one location in the grid. Log of
pressure wave velocity « (left), log of shear wave velocity 8 (middle), and log of
density (right).

the log elastic properties at one location in the grid. The traceplots are explained
to some extent by the bimodal proposal density ¢ (see Figure 2). In Figure 4 the
variables move short distances at some iterations, while moves are large at other
iterations, reflecting the bimodal density for the proposal.

In Figure 5 we show the estimates of the marginal mean and standard deviation
for all three variables as images. Near grid coordinate (North,East) = (60, 80) (see
Figure 5, top left image) both pressure and shear wave velocities are large. In the
same area the reflection data (Figure 2) are large at both angles. Going south
from gridnode (60,80) (see Figure 5, top left image) the pressure wave velocity
decreases, and so does the shear wave velocity, but to a smaller degree. In Figure
2 the reflection data become smaller in this area. These two regions comprise the
lobe of the turbidite structure, see Avseth et al (2001). In Eidsvik et al (2004)
these two regions were estimated to be water and oil saturated sands, respectively.
Without moving on to classifying the velocity and density values, we merely note
that pressure wave velocity is larger in water than oil saturated sands (Mavko,
Mukerji, and Dvorkin, 1998). Our estimated velocities are hence in accordance
with the results in Eidsvik et al (2004). The western part of the domain were
predicted to contain mostly shales (a low velocity rock) in Eidsvik et al (2004).

The prior standard deviations for the three variables are (0.06,0.11,0.02). In
Figure 5 (right) the mean standard deviations in the posterior are (0.033, 0.065, 0.02).
This indicates that there is information about o and 3 in the AVO data (standard
deviation decreases by a factor two), but not much about p.

Note that the standard deviations in Figure 5 (right) varies quite a lot across
the field (a factor of two). The standard deviation for § is smaller where the
velocities large. For a linear model [Buland, Kolbjgrnsen, and Omre (2003)] the
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Figure 5. Mean and standard deviation of the three variables at each location
in the grid. Logarithm of pressure wave velocity « (top). Logarithm of shear wave
velocity 4 (middle), and logarithm of density (bottom).

standard deviations are constant across the field. The expected values also differ
somewhat between a linear model and our nonlinear model; for example E(g)
is shifted significant between the two approaches. These differences suggest that
the linearized Gaussian posterior in Buland, Kolbjgrnsen, and Omre (2003) might
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introduce a bias in the estimation of the elastic parameters. One might want to
correct for the possible bias or variance effects of a linear model, now that this
effect is quantified by nonlinear sampling.

4 Closing Remarks

In this paper we consider Bayesian models with a Gaussian random field prior
and nonlinear likelihood functions. Such models are common in the earth sciences,
but are usually simplified (linearized) to make the posterior analytically available.
We propose a directional block Metropolis—Hastings sampler for exploring the
original nonlinear posterior. When we apply our methods to a seismic dataset
from the North Sea, we recognize some differences between our results and the
ones obtained by a linearized model. These differences indicate that it is useful to
check the validity of a simplified likelihood model by sampling the full nonlinear
models.

One of the current challenges with the Glitne field is uncertainty in the thick-
ness of the turbidite structure, associated with the noise in seismic data due to
overburden effects. A natural extension is hence to study the full 3D seismic data.
An extension of our statistical methods is to assign priors to the hyperparameters
in the statistical model, and hence include the variability of these parameters into
the final results.
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DETECTION OF LOCAL ANOMALIES IN HIGH RESOLUTION
HYPERSPECTRAL IMAGERY USING GEOSTATISTICAL FILTERING
AND LOCAL SPATIAL STATISTICS

PIERRE GOOVAERTS
BioMedware, Inc. 516 North State Street, Ann Arbor, MI 48104

Abstract. This paper describes a methodology to detect patches of disturbed soils in
high resolution hyperspectral imagery, which involves successively a multivariate
statistical analysis (principal component analysis, PCA) of all spectral bands, a
geostatistical filtering of regional background in the first principal components using
factorial kriging, and finally the computation of a local indicator of spatial
autocorrelation to detect local clusters of high or low reflectance values as well as
anomalies. The approach is illustrated using one meter resolution data collected in
Yellowstone National Park. Ground validation data demonstrate the ability of the
filtering procedure to reduce the proportion of false alarms, and its robustness under low
signal to noise ratios. By leveraging both spectral and spatial information, the technique
requires little or no input from the user, and hence can be readily automated.

1 Introduction

Spatial data are periodically collected and processed to monitor, analyze and interpret
developments in our changing environment. Remote sensing is a modern way of data
collecting and has seen an enormous growth since launching of modern satellites and
development of airborne sensors. In particular, the recent availability of high spatial
resolution hyperspectral (HSRH) imagery offers a great potential to significantly
enhance environmental mapping and our ability to model spatial systems (Aspinall et
al., 2002; Marcus, 2002). Following Jacquez et al. (2002), HSRH images refer to
images with resolutions of less than 5 meters and including data collected over 64 or
more bands of electromagnetic radiation for each pixel.

High spatial resolution imagery contains a remarkable quantity of information that
could be used to analyze spatial breaks (boundaries), areas of similarity (clusters), and
spatial autocorrelation (associations) across the landscape. This paper addresses the
specific issue of soil disturbance detection, which could indicate the presence of land
mines or recent movements of troop and heavy equipment. A challenge presented by
soil detection is to retain the measurement of fine-scale features (i.e. mineral soil
changes, organic content changes, vegetation disturbance related changes, aspect
changes) while still covering proportionally large spatial areas. An additional difficulty
is that no ground data might be available for the calibration of spectral signatures, and
little might be known about the size of patches of disturbed soils to be detected. Precise
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and accurate soil disturbance identification typically requires: (1) identification of a
potential target (soil disturbance) of interest, (2) removal of confusion (the
environmental setting), and (3) target (soil disturbance) confirmation. These different
steps should be automated as much as possible to allow for the fast processing of
multiple images, while false positives should be reduced to a manageable level.

A major challenge facing the use of HSRH data is the development of new, spatially
explicit tools that exploit both the spectral and spatial dimensions of the data.
Semivariograms allow one to detect multiple scales of spatial variability, and the
spectral values can then be decomposed into the corresponding spatial components
using factorial kriging (Goovaerts, 1997; Wackernagel, 1998). This technique has first
been used in geochemical exploration to distinguish large isolated values (pointwise
anomalies) from groupwise anomalies that consist of two or more neighboring values
just above the chemical detection limit (Sandjivy, 1984). Ma and Royer (1988) have
applied the same technique to image restoration, filtering and lineament enhancement,
while Wen and Sinding-Larsen (1997) have analyzed sonar images. More recently, Van
Meirvenne and Goovaerts (2002) applied factorial kriging to the filtering of multiple
SAR images, strengthening relationships with land characteristics, such as topography
and land use. None of these studies has however tackled the issue of automatic analysis
and processing of large series of correlated spectral bands.

This paper describes a new approach that combines geostatistical filtering with local
cluster analysis used in health sciences for the detection of clusters and outliers in cancer
mortality rates (Jacquez and Greiling, 2003). The methodology is applied to HSRH
imagery collected in Yellowstone National Park, and performances are assessed using
ground data. Sensitivity analysis is conducted to investigate the impact of spectral
resolution, signal to noise ratio, and kernel detection size on classification accuracy.

2 Geostatistical Methodology

Consider the problem of detecting, across an image, single or aggregated pixels that are
significantly different from the surrounding ones. The information available consists of
K variables (i.e. original spectral values or combinations of those) recorded at each of
the N nodes of the image, {z\(u;), i=1,...,N; k=1, ...,K}. The proposed approach proceeds
in two steps:

1. The regional variability (i.e. spatial background) of the image is filtered in
order to highlight local anomalies, which are values that depart from the
surrounding mean.

2. At each location across the filtered image the value of a detection kernel,
whose size corresponds to the expected size of a patch of disturbed soil, is
compared to neighborhood values and flagged as anomaly if its value is
significantly higher or lower than surrounding pixel values.

2.1 GEOSTATISTICAL FILTERING

The first step involves removing from each image (i.e. original spectral bands or
principal components) the low-frequency component or regional variability. For the k-th
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image, the low-frequency component, denoted mz, is estimated at each location u as a
linear combination of the » surrounding pixel values:

& n
meu) =Y Az, () with ¥ Ay =1 (1)

i=1 i=1
where 4 is the weight assigned to the i-th observation in the filtering window of size n.
The main feature of this filtering technique is that the weights A are tailored to the
spatial pattern of correlation displayed by each image and assessed using the

semivariogram. These weights are computed as solution of the following system of
linear equations (kriging of the local mean):

n
Y AprkUu) +pu)=0  i=l,...n
S @
n
j=1

where yi(u;-u;) is the semivariogram of the k-th image for the separation vector between
u; and u;, and y(u) is a Lagrange multiplier that results from minimizing the estimation
variance subject to the unbiasedness constraint on the estimator.

2.2 DETECTION OF ANOMALIES USING THE LISA STATISTIC

The second step amounts at scanning each filtered image, looking for local values that
are significantly lower or higher than the surrounding values and might indicate the
presence of disturbed soils. This procedure requires the definition of:

1. Detection kernel, whose size corresponds to the expected size of a patch of
disturbed soil,

2. LISA neighborhood including the pixels surrounding the detection kernel,
3. Target area which is the area to be analyzed.
An example of these three parameters is provided in Figure 1.

LISA
Neighborhood

Detection Kernel

Figure 1. Tllustration of key parameters used in the detection procedure.
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The detection of local anomalies is based on the local Moran’s I, which is the most
commonly used LISA (Local Indicator of Spatial Autocorrelation) statistic (Anselin,
1995). It is computed for each pixel of coordinates  as:

LISA,(u) =7, (u){%i 7. (u, )} (3)

where 7, (u) is the average value of the residuals, ri(u)=zy(u)-my(u), over the detection
kernel centered on pixel of coordinates u, and J is the number of pixels in the LISA
neighborhood (e.g. /=12 and kernel comprises 4 pixels for the example of Figure 1).
Since the residuals have zero mean, the LISA statistic takes negative values if the kernel
average is much lower (or higher) than the surrounding values. In other words the kernel
average is below the global zero mean while the neighborhood average is above the
global zero mean, or conversely, which indicates the presence of anomalies. Clusters of
low or high values will lead to positive values of the LISA statistic (e.g. both kernel and
neighborhood averages are jointly above zero or below zero).

In addition to the sign of the LISA statistic, its magnitude informs on the extent to which
kernel and neighborhood values differ. To test whether this difference is significant or
not, a Monte Carlo simulation is conducted, which consists in sampling randomly the
target area and computing the corresponding simulated neighborhood averages. This
operation is repeated many times (e.g. 1,000 draws) and these simulated values are
multiplied by the detection kernel average 7, (u) to produce a set of 1,000 simulated
values of the LISA statistic at #. This set represents a numerical approximation of the
probability distribution of the LISA statistic at u, under the assumption of spatial
independence. The observed LISA statistic, LISAy(u), can then be compared to the
probability distribution, allowing the computation of the probability that this observed
value could be exceeded (so-called p-value):

Py (u) = Prob{L > LISA, (u) | randomization 4)

Large p-values thus indicate large negative LISA statistic, corresponding to small values
surrounded by high values or the reverse (anomalies or presence of negative local
autocorrelation). Conversely, small p-values correspond to large positive LISA statistic
which indicates clusters of high or low values (positive autocorrelation).

The last step is to combine the K p-values computed for the set of K images. Two novel
statistics were developed to summarize for each node u the information provided by the
K bands and to detect target pixels:

1. Average p-value over the subset of K’ bands that display negative LISA
statistic:

1 K. , K.
Si(w)=— Yi(u;k)py(u)  and K'= Y i(u;k) ()
K' k=1 k=1
with i(u;k) = 1 if LISAi(u) < 0, and zero otherwise. Large S; values indicate
local anomalies (i.e. sample LISA statistic in the left tail of the distribution).
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2. Average absolute deviation of p-values from 0.5 through the K bands:
1 K
Sy(w)=—2| py(w)-0.5| (6)
K =

Large S, values indicate either clusters or anomalies (i.e. sample LISA in either
tails of the distribution).

The detection procedure requires applying a threshold to the maps of statistics S; or S,
and classifying as disturbed soils all pixels exceeding this probability threshold. Instead
of selecting a single threshold arbitrarily, it is better to select a series of thresholds and
see how the proportion of pixels correctly or incorrectly classified as disturbed soils
evolves. This information can then be summarized in the so-called Receiver Operating
Characteristics (ROC) curve that plots the probability of false alarm versus the
probability of detection.

3 Case study

The new methodology was tested on a vegetation plot located in the northern boundary
area of Yellowstone National Park. The objective is to detect 4 blue tarps of 4m” area in
the image (131x69 pixels). These four targets mainly correspond to the white pixels in
the image of Figure 2 (left), and are denoted by the black squares in the right image.
These data were collected using the Probe-1 sensor, a 128-band hyperspectral system
operated by Earth Search Systems, Inc. To obtain 1 m resolution data, this sensor was
mounted on a helicopter flying approximately 600 m above the ground. Following
atmospheric correction, the images were degraded in order to investigate the robustness
of the approach with respect to spatial resolution and signal to noise ratio. The data were
first spectrally resampled to 2-5 times lower resolutions, by simply selecting one out of
every 2 to 5 bands. Noise was added to simulate 50:1 signal-to-noise ratio (SNR) and
100:1 SNR, according to: Ry, (A)=Ry(A)[1+{N(0,1)/SNR(A)}], where Ry (A) is the
simulated, noisy spectrum, R (A) is the spectrum that has been spectrally resampled,
N(0,1) is a Gaussian random number with a zero mean and unit variance, and SNR(1) is
the simulated signal-to-noise ratio.

Blue tarps

Location of tarp pixels

Figure 2. Probe 1, color-infrared image of the experimental site, and location of 16 tarp
pixels (black) that are interpreted as disturbed soils to be detected.



110 P. GOOVAERTS

Figure 3. Maps of the first two principal components for the HSRH image, and the
results of the geostatistical filtering of the regional background.

The analysis was first performed on the first 84 principal components (PC) of the data.
Each image of principal components was decomposed into maps of local means and
residuals or filtered values, using a 5x5 window centered on the pixel being filtered (i.e.
n=25 in equation (1)). Figure 3 shows an example for the first 2 PCs. The original PC
values are decomposed into the background values m(u) and the residuals or filtered
values r(u)=z(u)-m(u). These images illustrate how the removal of regional variability,
which might represent different soil or vegetation types, highlights the location of target
pixels which appear as white in the filtered images. The information provided by either
filtered or non filtered sets of 84 PCs was summarized using the statistic S; or S, see
Figure 4. Dark pixels, corresponding to high values, indicate the presence of local
anomalies for S; and clusters or anomalies for S,. This figure clearly illustrates the
benefit of the geostatistical filtering and use of statistic S,, which reduces greatly the
number of background pixels being wrongly detected as clusters or local anomalies and
increases the similarity with the actual map of tarp pixels displayed in Figure 2.

The final step is to compute the ROC curves from the maps of statistic S; or S,. A series
of thresholds (probability of detection) are selected, and for each of them the pixels
classified as disturbed soils are compared to ground data in order to compute the
proportion of misclassified pixels (probability of false alarms). These two sets of
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probabilities are then plotted to generate the ROC curve. Figure 5 shows an example of
such curves for detection using either statistic S; or S, computed from filtered or non-
filtered images. The main conclusions are:

1. The filtering and use of statistic S, (black solid curve) allows the detection of
all tarp pixels for a probability of false alarms not exceeding 0.20.

2. Detection of 60% of tarp pixels can be done with small probability of false
alarm (vertical part of the ROC curve) and these pixels correspond to high
purity in term of tarp content. Pixels that contain a mixture of tarp and other
materials (i.e. bare soil, grass) are much more difficult to detect and generate an
increase in the proportion of false alarms which can be fairly dramatic if no
filtering is performed and only anomalies are searched (i.e. use of statistic S;).

40
.38
.36

.34

32

.30

Statistics S2 (filtered)

- o sl "

Figure 4. Maps of statistics S; and S, computed from the first 84 principal components
before and after (bottom maps) filtering of the regional background.
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Figure 5. Receiver Operating Characteristics (ROC) curves obtained for the statistics S,
(thin dotted line) and S, (solid line). Black curves are obtained from the filtered values,
while the gray curves refer to original values (without geostatistical filtering).
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Extensive sensitivity analysis has been conducted to assess the performance of the
methodology under several conditions, such as:

1. Selection of subsets of PCs based on the strength of spatial correlation.
2. Choice of detection kernels of various sizes.
3. Decrease in signal to noise ratio and spectral resolution.

Instead of summarizing the information provided by the first 84 PCs, statistics S; and S,
were computed for each PC separately and their average for both tarp and background
pixels are plotted versus the rank/order of the PC in Figure 6 (top graph). Differences
between tarp (black) and background (gray) pixels tend to attenuate as the order of the
component increases and the spatial correlation of the image decreases (thick black
curve). Subsets of PCs were thus retained based on a spatial correlation threshold of 0.5
or 0.25, plus the set of the first 25 PCs. The ROC curves indicate an increase in the
proportion of false alarms when using fewer PCs. All ROC curves computed hereafter
will be based on the first 25 PCs, thereby providing a balance between shorter CPU time
(16.0 seconds versus 54.5 for 84 PCs on a Pentium 3.20 GHz) and slightly more false
alarms.
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Figure 6. Plot of spatial correlation (lag=1 pixel) and value of statistics S; (thin dotted
line) and S, (solid line) for either tarp pixels (black) or background pixels (gray), versus
the order of the principal component (top graph). Bottom graphs show the ROC curves
obtained for the first 25 PCs and two subsets based on the level of spatial correlation.
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All results presented so far were obtained using a detection kernel of one pixel, which
does not require any prior information regarding the size of the object to be detected.
The benefit of tailoring the detection kernel to the size of the object was investigated by
performing the classification and computing the ROC curves for three types of kernel:
1x1, 2x1 and 2x2. Figure 7 (top row) shows that that the use of kernels 2x1 and 2x2
improves detection performances of statistic S;, while more false alarms occur when
using statistic S. Indeed, statistic .S; searches for local anomalies of size equal to the
kernel, while S, detects both clusters and anomalies. The impact of the signal to noise
(SN) ratio was investigated by adding a given proportion of noise to reflectance values
before performing PCA. Figure 7 (middle row) shows the ROC curves obtained for
increasing levels of noise (SN=100:1 to SN=50:1). As intuitively expected, noisy signals
tend to blur the detection of anomalies, leading to a larger proportion of false alarms,
although statistic S, on filtered signal is very robust.

The last test consisted in investigating how a decrease in spectral resolution would affect
the quality of the detection. Figure 7 (bottom row) shows the ROC curves obtained for
the original signal with 84 PCs, and then for one half (WV2, 42 PCs) and one third
(WV3, 28 PCs) of the number of principal components. As for the signal to noise ratio,
ROC curves indicate poorer performances when using the degraded image.

Kernel 1x1 {original SN) Kernel 2x1
/.(' 1.0]
= c =
] e
7 08 g % 0.8 '-% .
£ £ o)
1 7]
§ 08 § 0.6 =
© S =]
z z =
= 04 = 04} =
2 2 2
S, [ =]
£ oz & 0.2 & o
B e R L T R R
00 02 04 06 08 oo 02 04 06 08 0o 02 04 06 08
Probability of false alarm Probability of false alarm Probability of false alarm
Kernel 1x1 (160:1 SN) Kernel 1x1 (50:1 SN)
1.0, 1.0
Gray = non-filtered £ § 5]
bl o]
T k]
Black = filtered o5 % oo
Solid = Statistic 2 3" 3"
c =]
‘ * a 0 5y 0.2
Dotted = Statistic 1 e e
0.0, : 00]
o0 0.2 04 06 08 0o 02 04 D6 08
Probability of false alarm Probability of false alarm
Kernel 1x1 (original WV, SN) Kernel 1x1 (WV2,5SN) Kernel 1x1 (WV3,5N)
1.0, 1. 1.0.
| " . a P
£ ko s it 5
=08 =08 = 08
F e F E
] T o]
T o8 Daos 2 0s]
B G 5]
£ & =
= 04 =04 = 04]
= T T
s s s
£ 08 i F 0,211
084 T r T o T T r 0.0 -
00 02 04 06 08 00 02 04 05 0B D0 02 04 06 D8
Probability of false alarm Probability of false alarm Probability of false alarm

Figure 7. Receiver Operating Characteristics (ROC) curves obtained for three types of
detection kernel, two signal to noise (SN) ratios, and three spectral resolutions (WV).
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4 Conclusions

This paper presented and demonstrated the efficacy of a geostatistical approach to
detecting disturbed soils in high spatial resolution hyperspectral imagery. The technique
uses PCA to reduce dimensionality of the imagery, employs geostatistical filtering to
remove regional background and enhance local signal, and applies a Local Indicator of
Spatial Autocorrelation to identify patches of disturbed soils. In all scenarios, fewer
false alarms were obtained when using the filtered signal and statistic S, to summarize
information across bands. Image degradation through addition of noise or reduction of
spectral resolution tends to blur the detection of anomalies, leading to more false alarms,
in particular for the identification of the few mixed pixels.

In this paper the methodology was used to detect regular patches on a simple landscape.
Similar results were obtained when applying the approach to more complex landscapes
with multiple targets of various sizes and shapes (results not shown). Because it employs
geostatistical filtering, the method is robust under low signal to noise ratios. By
leveraging both spectral and spatial information, the technique requires little or no input
from the user, and hence can be readily automated. Following our results a Pentium 3.20
GHz would allow the processing of a 10001000 scene including 25 bands within 18
minutes. Future research will investigate the benefit of processing directly the spectral
bands instead of their principal components.
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COVARIANCE MODELS WITH SPECTRAL ADDITIVE COMPONENTS
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Abstract. We present a new model defining a whole class of variogram models: the
spectral additive model (SAM). The model is obtained by linear combination of simple
spectral components. The SAM parameters can be estimated linearly and without bias.
The handling of mean drift is straightforward. In the spatial domain, the SAM possesses
an analytic expression, a clear advantage over similar approaches based on covariance
spectra obtained by FFT. The SAM is flexible as it can approximate any classical model,
isotropic or anisotropic, to the desired degree of precision. A forward inclusion selection
procedure enables avoiding over-parameterization of the model. This is especially useful
in the general anisotropic case. Simulations illustrate the performance of the SAM for
covariance function fitting.

1 Introduction

The choice of a suitable variogram or covariance model is an important step in any
geostatistical study. This step remains largely handcrafted and resists automation.
Current practice normally involves computing experimental variogram(s); a step
involving its legion of more or less arbitrary decisions like the choice of directions, the
angular tolerance, and the distance bins to adopt. Decisions on the characteristics of the
model follow: stationary or non-stationary, isotropic or anisotropic, type of anisotropy,
type of model or of combination of models to use. Finally the model parameters are
adjusted, either manually or sometimes with the help of automatic fitting programs and
cross-validation procedures (Marcotte, 1995). Most of the classical models being non-
linear functions of distance, automatic fitting itself can be difficult to realize as many
local optimums could exist. This partly explains why the parameters are still often
obtained by visual fit.

Although a host of models are available (Chilés and Delfiner, 1999), one may question
why data should necessarily comply with any of these models. There is a definite need
to introduce greater flexibility and ease of estimation, especially if one considers
implementation of geostatistical algorithms in wide general use software packages like
GIS and statistical packages. The need for automation and flexibility is certainly present
in the univariate stationary or non-stationary cases but it is even more compelling in the
muzltivariate case.

We present a new class of models that are flexible and suitable for automatic estimation.
This class of models is obtained by linear combinations of spectral components,
thus the name spectral additive model (SAM). Because the model is linear, its
parameters can be estimated by standard regression (or robust or weighted
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regression if preferred). There is no need to compute a variogram for the estimation
because the fitting can be done easily considering each data pair available. The focus of
this study is on the univariate case, stationary or non-stationary, isotropic or anisotropic.

The proposed approach bears resemblance to the approach suggested by Yao and
Journel (1998). However, it is fundamentally different in many aspects. Here, the model
defined is continuous and an analytical expression for the covariance function exists. In
Tiao and Journel (1998) the model is discrete and numerically defined only at the lags
used in the variogram computation.

2 Theory

2.1 A CLASS OF FLEXIBLE ISOTROPIC MODELS

Stationary (or homogeneous) random functions with absolutely integrable covariance
function C(h) possesses the spectral density c¢(w). Together, they form a Fourier

transform pair (Christakos, 1992, Yaglom, 1987). That is,

Clh)—>c(w)
Ch)e——c(o)

(1

with ¢(®) >0 for all frequencies ® and ¢(®) symmetric.

The basic idea in our approach is to replace the continuous function c(®)by a

summation of piecewise continuous functions c¢;(®), that we call spectral components:
d
ci(o)=filo) 1, que, @R 2)

with 0=ry<r;<...r,< 4oo0 being an increasing finite sequence of positive numbers,
and1

provide good coverage of the positive frequencies. Although there is freedom in the
choice of f;(®), a simple and convenient choice is f;(®)=1 for all intervals except

r_ <0<, Deing an indicator function. The bins 7,,7,...r;, are selected so as to
possibly for the last semi-infinite interval.

Now consider a linear combination of the spectral components:

c(co)=Zn‘,a,-c,-(w) (3)

i=1
Its Fourier transform is:

C(h):Zn:aij"l(ci((o))zzn:aiCi(h) 4)

i=1 i=1

The following results hold true:
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R1. Any linear combination with coefficients a; > 0is the spectral density of an

admissible covariance;

R2. Any admissible isotropic covariance having a spectral density can be approximated
to an arbitrary degree of accuracy by model (4) (Powojowski, 2000). The accuracy of
the approximation increases with the number of spectral components used to discretize
the spectral density.

The isotropic covariance corresponding to the choice f;(®)=1 in Equation 2 is given
by:
Ci(h)= h (rid/z‘]d/z (r;h)- riiil/z‘]d/Z (r.;h) ®)

where J, is the order d/2 Bessel function of the first kind, where d is the dimension of
the space. Note that for the limit where h->0:

C(07 )= (" - )/ (1 + dr2) ©)

Figure 1 shows the isotropic covariance for a few selected spectral components after
normalisation by C;(0" ) (Equation (6)) to ensure a unit sill.

Covariance of spectral components
1 o

—— 0 e[02]

0.8F &

0.6

0.41

c(h)

0.2

0

0.2t

Figure 1. Equation 5 and normalized to a unit sill.

2.2 CONTROLLING MODEL BEHAVIOUR AT THE ORIGIN

In some cases, it is convenient to choose the last interval semi-open to infinity. This
interval controls the behaviour of the covariance function at the origin. For example, the
following choice ensures linear behavior at the origin:

ci(w)=glo)l, 4, ©eR (7)

where g(w) is the spectral density of the isotropic exponential covariance. When

-3/2
1 . . .
d=2,g(|o)|):—((n|2 +—2] , with a the range. Setting f,(0)=0 gives a
a a

differentiable covariance model.
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2.3 APPROXIMATION OF CLASSICAL PARAMETRIC COVARIANCE
MODELS BY SPECTRAL COMPONENTS : THE ISOTROPIC CASE

Figure 2 shows some 2D-isotropic parametric covariance models and their close
approximation by a model with 4 (a and d) or 5 (b and c) spectral components. All
spectral components are piecewise constants. However, in cases b) and ¢) an exponential
spectral component is added to reproduce the model linear behavior. Clearly, the
spectral additive model can match any isotropic classical model with few spectral
components, thus demonstrating its great flexibility.

a) Gaussian b) Exponential

T I : :
! — Classical
== | !_ | = Spectral

Figure 2. Examples of close approximation of various isotropic covariances by additive
spectral models.

2.4 ESTIMATION OF PARAMETERS

A definite advantage of the spectral additive model is the possibility of estimating its
parameters linearly. We assume, for generality, a model with an unknown mean that can
include a trend.

The drift model is:
Z(x)=XB+n(x) (3

where M(X ) is second order stationary with zero mean and real covariance K, and X is
the nxp regression matrix used to model the drift.

The residuals Y;, i=1...n, are obtained by ordinary least-squares estimation of [ using
the » available data:

Y = (1 -X(X'X )’IX’)Z =PZ €)

where Y and Z are vectors of size nx1, / is the identitiy matrix of order » and P is the nxn
projection matrix.
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The product of residuals is YY" . Its expectation is:
E[YY'] =PK,P (10)

The covariances for the # data points computed from SAM are:

q

K,= Za iK; (11)

j=1
Each matrix K; is nxn. It represents the covariances associated with the “™ spectral
component. There are ¢ such spectral components.
The covariances for the residuals obtained with SAM are:
q q
PK,P=Ya,PK;P=Ya,U, (12)

J=1 J=1

Estimators of a j minimize the norm between the product of residuals YY'and the

covariances computed with Equation 12:

q
min|YY'=»"a,U (13)
Jj=1 2
The least squares estimator is:
A —1 [y o h .
i=lracelv,U, )" [y'U,¥] with ¢, 20,i=1..4 (14)

where a is the gx/ vector of coefficients for the g spectral components. The notation
[tmce(U U )J denotes a gxq matrix whose (i,j)- th entry is frace(U,U ; ).

Note that a nugget effect can be included as an additional component in Equations 11 to
14.

2.5 CONSTRAINTS ON THE a; COEFFICIENTS

For the SAM to be admissible, the coefficients a; must be non-negative. Enforcing these
constraints directly in the estimation procedure complicates the computation. One way
to circumvent this problem is to forward select the spectral components one at a time. At
each step, the spectral component providing the best-fit improvement to the product of
residuals and, at the same time, providing a set of positive coefficients, is selected. The
procedure is stopped when no further significant improvement is possible or when all
the candidate spectral components provide inadmissible models (i.e. at least one
coefficient becomes negative).
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2.6 A DIFFERENT NORM

The norm used in Equation 13 gives the same weight to all products of residuals. It is
well known that the experimental variogram or covariance function is more reliable at
short distances than at large distances due to smaller fluctuations. Also, the covariance
at short distances has more influence on geostatistical operators like kriging or
simulations. Thus, it could be interesting to favour the covariance fit at short distances
by considering instead the modified norm:

q
VY=Y a,U; # V]

J=1

min

(15)

2

where U *V is the Hadamard matrix product (i.e. element by element multiplication)
and V is a nxn weighting matrix with elements defined by a positive non-increasing
function of the distance separating the data.

With this weighting, the parameter estimates are now given by:
a=racelv, +v U, 'y (v, « v )¥] with 6,20, i=1.g (16)

2.7 SELECTION OF SPECTRAL BINS

Shannon’s (1949) sampling theorem for data on a regular grid indicates the highest
frequency component that can be estimated reliably from the data. This frequency, the
Nyquist frequency, is given by:

1

2Ah
where A#h is the grid step.

(17

fNyq =

For irregularly spaced data, the Nyquist frequency is not defined. We compute a pseudo-
Nyquist frequency using Equation 17 by substituting the grid spacing A/ by the average
distance for the 30 nearest data pairs.

At frequencies higher than the Nyquist frequency, an exponential spectral component
can be added to the set of piecewise constant spectral components to impose linear
behaviour of the covariance function at the origin. Shannon’s sampling theorem
indicates this decision is essentially model-based and cannot be derived from the data.
This may sound paradoxical as the first points of the experimental variogram show less
fluctuation and are often well estimated. Nevertheless, the (non) differentiability of the
process, that is the linear or parabolic behavior at the origin remains a modelling
decision. In practical terms, the fact that the first variogram points define a straight line
does not guarantee it extrapolates linearly to the intercept.

Having defined the highest frequency available, equal bins are used to define the various
spectral components. A more elaborate spectral binning strategy is described in
Powojowski (2000).
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2.8 PROPERTIES OF THE ESTIMATOR

Powojowski (2000) studied in detail the properties of the estimator. He showed that
when the true covariance function has the form of Equation 11, the estimator a is
unbiased. Otherwise a is still a meaningful estimator in the sense that it is the closest to
YY’ for the chosen norm. It was shown that, with a known mean, the estimator is
convergent under in-fill sampling - expanding domain conditions. However, for a
compact domain the estimator has a residual variance even in the case of in-fill
sampling. With an estimated mean, convergence is not ensured except if the weights in
V (Equation 16) decay exponentially with distance.

2.9 A SPECTRAL ANISOTROPIC MODEL

The general methodology described above for isotropic models extends readily to
general anisotropic models. The idea is to bin the 2D or 3D frequency domain. To
illustrate, we consider only the 2D case. The covariance is an even function:
c(®;,0, )=c(—o0;,—0, ). Thus only half the frequency plane need be considered.

In 2D, to the spectral component:

O, <O, <O —Oy i >0, >0,
CU( . y) 1 X,1 X X,1 I X,1 X X,1
(18)

Oy <O, <Oy ; TOy > TO, >0,

0 elsewhere

corresponds the anisotropic covariance:
cos(oh+ o, h,)tcos(o,; h,+o,h,)

Ci(h. h,)= ==
i) (nheh,)
1
- cos(wx,ihx + ('Oy,jhy)' Cos(mx,i-lhx + wy,j-]hy) ( 9)
(mhh,)
The following limits for Equation 19 exist:
O, 0, . )sin(o,h, )-sin(o,, h,
000" = (Paa =@ SO, )= sin( ., )
nh,
®, —0, . )Ein(o,h, )-sin(o,,h
b > 0:COh, 0 )= (Pt = Ossn SO ) sin( ) 0
) nh,
(0,0, )0, -0, )

h.,h, —0;C(0°0° )=

T

Figure 3 shows the good fit obtained for a few classical models presenting geometric
anisotropy. Note that the SAM can accommodate also any kind of zonal anisotropy.
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a) Gaussian b) Exponential
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Figure 3. Examples of close approximation of various anisotropic covariances by
additive spectral models.

3 Simulated examples

Two hundred data are simulated in a 100m x 100m square. The simulated model is
spherical isotropic with a range of 30m, no nugget and a sill of 10. A global linear drift
is added with m(x,y)=0.2*x+0.1*y where x and y are the spatial coordinates. Figure 4
shows the experimental covariance, the model covariance and the expected covariance
of residuals obtained by fitting an isotropic SAM with drifts of order 0, 1 and 2. Note
how the SAM retrieves very well the main characteristics of the simulation for drift
orders 1 and 2. On the other hand, when adopting a zero order drift, the model is forced
to include strong small frequency components (large range) to account for the drift not
included in the model. Although the expected covariances match well the experimental
covariances, the theoretical covariances are well above the experimental ones, a clear
indication that the variance of the process can not be defined and therefore that the
process is non-stationary.

No drift Order 1 drift Order 2 drift
140 12 - 12
Theoretical
120 10}, | o Experimental 10 \
100 ~ Expected s
80 : ;
= 6oL 6 i . 1
6’ 40 e 4 s 4
20 2 o 2
Q%ﬂ T b
0 0 5‘;)4 % e — 0
2 o B %,
-40 i 4 ‘ .
0 50 100 0 50 100 )
h h h

Figure 4. Experimental covariances, expected values of product of residuals and
theoretical covariance for the simulated example. Isotropic case.
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A similar example is simulated with geometric anisotropy (a,=50, a,=25). Figure 5 shows the
results obtained with an anisotropic spectral model when specifying order 0 and order 1 drifts.
When the right drift order is selected (i.e. order 1), the model correctly identifies the anisotropy
present.

No drift - x direction Order 1 drift - x direction
100
g \ o
50 ® 4

-50

—— Theoretical
o Experimental
+ Expected

100 =

o
350
o
gz ¥ ;909,09‘:,::09030050
o i O -
+ 4

-50 -

0] 20 40 60 80

Figure 5. Experimental covariances, expected values of product of residuals and
theoretical covariance for the simulated example. Anisotropic case.

5 Discussion and conclusion

The SAM approach reduces covariance model identification to a problem of linear
regression with a simple positivity constraint on the regression coefficients. The control
variable is the product of residuals. The regressors are the expectation of this product
computed from each spectral component (Equation 12). This approach has interesting
advantages. First, the class of models so defined is larger than for the usual parametric
models. Second, as the parameters can be estimated linearly, it lends itself to
automation. Third, all the tools of standard regression can be exploited: statistical tests,
identification of outliers, ridge or robust procedures, etc. Fourth, possibly most
importantly, it enables estimating the parameters of the model in the presence of mean
drift as the effect of the drift is accounted explicitly when computing expected values of
product of residuals. Finally, component selection procedures like forward inclusion or
backward elimination, or a combination of both, can be used to limit the number of
parameters and avoid possible difficulties due to colinearities between the regressors
when the number of spectral components is high. In the examples presented, an
underestimation of the drift order was easily detected by comparing the theoretical
model to the expected value for the product of residuals.

Generalization of the approach to the multivariate case is possible. With “p” variables,
“p” real coefficients (one for each spectral density) and p(p-1)/2 complex coefficients
(one for each cross-spectral density) will have to be estimated for each spectral bin. The
resulting complex coefficient matrix of size pxp must be Hermitian positive semi-

definite for the model to be admissible (Wackernagel, 1995).
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Abstract. A deficiency of kriging is the implicit assumption of second-order
stationarity. We present a generalisation to kriging by spatially evolving the spec-
tral density function of a stationary kriging model in the frequency domain. The
resulting non-stationary covariance functions are of the same form as the evoloved
stationary model, and provide an interpretable view of the local effects underlying
the process. The method employs a Bayesian formulation with Markov Chain
Monte Carlo(MCMC) sampling, and is demonstrated using a 1D Doppler function,
and 2D precipitation data from Scotland.

1 Introduction

The standard approach to spatial statistics assumes that the spatial dependence
between two points is a function only of separation vector. These procedures fall
under the generic label kriging, which are fully described in (Cressie, 1993). Such
stationary models however, are unable to take account of localised effects such
as geological (e.g. topography, river systems) or political (e.g. state governments
conformance to air pollution measures in the US) boundaries, or rapid spatial
variations. Although problematic, to date there are few generic non-stationary
procedures.

One is the deformation approach of (Sampson and Guttorp, 1992), extended
recently to a Bayesian framework in (Damian, Sampson, and Guttorp, 2001) and
(Schmidt and O’Hagan, 2003). The more recent kernel-based methods of (Higdon,
Swall, and Kern, 1999) and the spectral extension in (Fuentes, 2002) have been
shown to be powerful and can be applied when only one observation is available at
each site. Other approaches include orthogonal expansion (Nychka and Saltzman,
1998) and the localised moving window approach (Haas, 1990; Haas, 1995). Earlier
work is summarised in (Guttorp and Sampson, 1994).

In this paper, we describe and extend our recent generalisation of kriging,
involving the spatial evolution of the spectral density function of a stationary
process, by manipulation in the frequency domain (Pintore and Holmes, 2003).
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The new method we describe has a variety of attractive aspects, including an
interpretable view of the non-stationary process, the definition of a global and an-
alytical covariance structure (thereby making predictions at new locations trivial)
and the ability to use the powerful framework developed within kriging directly.

2 Framework for non-stationary covariance functions

Here we use the standard stationary model and evolve a new class of non-stationary
process. The emphasis lies in creating new covariance structures that are both non-
stationary and interpretable. The proofs for the validity of these theorems can be
found in (Pintore and Holmes, 2003).

2.1 STATIONARY GAUSSIAN PROCESSES

In the case of spatial interpolation, we use a stochastic model over the spatial
variable s, defined over the p dimensional region R?. We adopt the standard,
stationary approach to spatial statistics and consider our n irregularly sampled
data y to be realisations of a Gaussian process, Z(s) ~ N, (0,0%%), where N,, is
an n dimensional Gaussian distribution with covariance function 3, scaled by o2.
Subsequently we parameterise the covariance function as X(s,t) = C(s,t) + €l,,,
with C(s,t) representing the correlation between two spatial points s and ¢, € a
white noise effect (commonly known as the nugget), and I,, the n dimensional
identity matrix. Common forms of C(s,t) include the Gaussian, exponential and
Matern stationary correlation functions.

2.2 EVOLUTION IN THE FREQUENCY DOMAIN

The new covariance functions are evolved by modifying stationary covariance
functions in the frequency domain. For example, the Gaussian covariance func-
tion C(s,t) = exp(—alls — t[|?), has a spectral density function given by f(w) =
(4ma)P/?exp(w'w/4a), where a is a global smoothing parameter commonly called
the range and w’ represents the transpose. Non-stationarity is induced through a
localised latent power process 7(s) acting on the stationary spectrum at location
s, hence
fis(@) = h(s) [F@)]" (1)

with the subscript ys now referring to the non-stationary versions of our process,
and h(s) a bounded function chosen to ensure constant power in the process.
This is in effect saying that when 7(s) < 1, greater emphasis is placed on lower
frequencies, producing a smoother process and vice-versa. When n(s) = 1, we
return to the original stationary covariance function. These effects are illustrated
in figure 1(a).

We return to the spatial domain via the inverse Fourier transform, producing
the non-stationary covariance function Cyg. For our example Gaussian function,
the final non-stationary covariance function is given by

Cns(s,t) = Dy yexp [—Bsqlls — t]|7] (2)
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Figure 1. (a) Effect of latent process n(s) on the spectral density of a Gaussian
covariance function with & = 0.5. (b) log n(s) parameterised as a step function. (c)
A realisation from a Gaussian covariance function with the latent process defined
in (b). The step changeovers are indicated by a dashed line in figure (c).

With
Bs. = 2a/[n(s) + n(t)]; (3)

[n(s)n(t)P/*
[n(s) +n(t)]p/?

and is valid for 7(s) > 0. The proof for the validity of this method with respect to
Bochner’s theorem (see (Levy, 1965)), and the valid choices of n(s) are discussed
for the Gaussian and Matern covariance functions in (Pintore and Holmes, 2003).

To further illustrate the effect of 7(s), and possible realisations from such mod-
els, we simulate data taken from a Gaussian non-stationary covariance function
with « = 0.5, and with 7(s) modelled as a step function (see figures 1(b) and 1(c)).
Notice how the realisation y has high frequency content for logn(s) very negative,
and is smooth (low frequency) for logn(s) — 0.

A key point to note is the similarity in form between the stationary and non-
stationary covariance functions. This allows us to interpret the latent function 7(s)
directly in terms of the changes in the underlying process.

D, = 2v/? (4)

3 A Bayesian approach

We now present a Bayesian extension to the method, using proper priors. For
the moment, we assume a known constant mean of 0 across s to demonstrate the
effect of n(s) (N.B. The formulation presented is easily extendable to the general
case where Z(s) ~ N, (Bf3,0?Y), with B representing a matrix of basis functions,
and (3 a scaling vector included to account for deterministic trends in the data).
References concerning Bayesian kriging are (Handcock and Stein, 1993) (using
reference priors) and (Le and Zidek, 1992).
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3.1 LIKELIHOOD, PRIORS AND POSTERIOR DISTRIBUTIONS

For mean equal to 0, the likelihood of the data y is expressed as

. B ylzfly
e, 0?) = (2mo?) 25 exp (Y5 Y ) 6

where X is the covariance matrix, parameterised by the nugget effect ¢ and the
parameters that define the covariance matrix 6. § will contain the stationary («)
and the non-stationary (the parameterisation of n(s)) covariance parameters.

In order to facilitate calculation of the marginals later, we give 02 an inverse
gamma prior density,

plo®) x (22) " exp (77 ) 0
with the two hyperparameters a and b set to 0.1, providing a wide, non-informative
distribution.

For the covariance parameters p(6, €), we assume independent uniform priors,
expressing our lack of knowledge about the underlying system, and provide a fully
flexible process. As we have assumed independence from o2, any other choice of
informative prior is equally valid.

These definitions lead to the full posterior, given up to proportionality by Bayes
theorem as

Y'S~ly +2b

pl6.c00%ly) o (0 Vg (T2

)pw,e) (7)

3.2 POSTERIOR PREDICTIVE DENSITY

Our goal is to make a prediction of yo at a new position in R? by integrating the
posterior predictive density p(yoly). As the integral is intractable, we solve it by
sampling from the posterior distribution (equation 7) using MCMC, which for N
samples gives the summation,

N

1
pwoly) = 5 D _p(wolti i, 07) (®)
i=1
where the first term is the conditional predictive distribution. This density is a
shifted ¢ distribution ((Le and Zidek, 1992)) with an expectation (for our simplified
case) of E [p(yol0;,€;,07)] = ¢;S; "y, where c; is the vector of covariates between

our data y and the new data point yy. Then

1 N
Elp(yoly)] = 5 D5y 9)
=1

in effect generating our average by the summation of the simple kriging predictions
for each of the N drawn models i.
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3.3 MARKOV CHAIN MONTE CARLO

In order to sample from the posterior distribution, we sample from a Markov
chain. The most desirable method is to draw all of the parameters via Gibbs
sampling, requiring us to know the full conditional posterior distributions. This
however is only possible for the scaling parameter o2. After dropping constants in
the posterior (equation 7), we have an inverse gamma distribution so that

o*ly,0,e,0* ~ IG(n/2 + a, [y'S7"y +20]/2) (10)

which we can sample from directly. This is not true of the remaining parameters
which are tied up in 7!, so we use Metropolis-Hastings sampling. To ensure
better acceptance rates, we first marginalise o2, to give

/2—1 2 —(n/2+a)
yy+b> (11)

plb.cli) = [0(0.c.%io? o (0,2 (Y]

We use Gaussian proposal densities for ¢ and all members of #, with variances
chosen in each case to allow effective traversal of the model space.

4 Results

The two applications chosen to present the properties of our non-stationary method
in a Bayesian setting, are a 1D synthetic Doppler function, and a 2D precipitation
data set taken from UK Meteorological Office data over Scotland.

4.1 SYNTHETIC DOPPLER FUNCTION

We consider first the Doppler function examined in (Donoho and Johnstone, 1995)
and (Pintore and Holmes, 2003), given as

f(s) = [s(1 —8)]Y2sin[(2m) 1 +7)/(s +7)] s€0,1] (12)

with r = 0.05. The sample data y comprises 128 function evaluations positioned
randomly within s € [0, 1] (scaled to have a variance of 7), with added Gaussian
white noise (with variance of 1). The function was then predicted at a further
500 points, uniformly sampled in the range [0, 1], using the stationary and non-
stationary Gaussian covariance functions (equation 2). The accuracy as measured
against the true function was then compared. See figure 2(a).

4.1.1 Latent process formulation

To parameterise the latent process 7(s) in the non-stationary covariance function,
we follow the suggestion in (Pintore and Holmes, 2003) and use a regression spline
with 5 nodes added to a linear function such that

5
logn(s) =50+ 71 + > ills — ui| (13)

i=1
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Figure 2. (a) Noisy Doppler function data set, plotted with the dashed predic-
tive data set function. (b) Deterministic fit of the stationary Gaussian covariance
function using REML. (c) Posterior predictive fit of the non-stationary Gaussian
covariance function (from 4000 samples).

with u; representing spline knot points, s, and {vp,v1, ¢} a set of scaling coeffi-
cients. In this case, we choose to fix the knot set u, using the kmeans algorithm,
and vary the model using only the range, nugget and 7 scaling coefficients. The
covariance parameter vector, 6, now comprises {«, €, 70,71, ¢}, which are all sam-
pled using the Metropolis Hastings algorithm. From a run of 5000 iterations, the
first 1000 were discarded as ’burn-in’, and the remaining used to find the mean
posterior prediction.

The stationary model was fitted using the technique of restricted maximum
likelihood (REML) (Cressie, 1993), and optimised using a deterministic search
(Nelder Mead algorithm).

4.1.2 Prediction Comparison
A comparison of the predictive powers of both samples can be found in figures 2(b)
and 2(c). Tt is evident that the non-stationary method has performed far better
than in the stationary case, which has been forced to comprimise between the very
smooth data as s — 1, and the higher frequencies as s — 0.

In figure 3 we give the mean and 95% confidence intervals (an immediate
advantage of using MCMC sampling) over the posterior latent process 7(s) for
the 4000 samples. The figure is interpreted as placing higher emphasis on lower
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frequencies where s < 0.24 (where logn(s) < 0), whilst providing an increasingly
smooth covariance as s — 1. This is further explained via figure 1(a).

log n(s)
(=) n £ D

L

6p 01 02 03 04 05 06 07 08 09 1
-}

Figure 8. Log of the mean and 95% confidence intervals for the latent process
n(s). The stationary case corresponds to logn(s) = 0.

4.2 PRECIPITATION IN SCOTLAND

For a real data example, we consider the UK Met Office 'Land Surface Observation
Stations Data’ held at the British Atmospheric Data Centre (BADC, 2004). The
analysis of precipitation is important for agricultural as well as environmental
reasons (eg. pollutant dispersal following the Chernobyl disaster). The purpose of
this analysis was to demonstrate the interpretability of the latent process, rather
than a comparison of stationary to non-stationary covariance functions.

Specifically, we extracted daily rainfall measurements from 1997, for the months
of January, February and March, and analysed the measurements for 481 land
stations in Scotland. The daily measurements within these three months were then
averaged, to give three distinct data sets of average daily rainfall, (millimetres per
day). A scatter plot of the January data is shown in figure 4.

4.2.1 Latent process formulation

To parameterise 7(s) (where s is now a 2 dimensional vector [s1, s3] corresponding
to longitude and latitude respectively), we choose to use the thin-plate spline with
the form

k

logn(s) =70 + 7151 + 7282 + Y dills — wil} log|ls — ui? (14)
i=1

where u; is a set of k knot points, and { 7o,71,72} the scaling coefficients. In this
case, we take k = 20 and fix the positions of the knot points using the kmeans
clustering algorithm. Again choosing the Gaussian non-stationary covariance func-
tion, we perform MCMC over the spline scaling coefficients and the stationary
parameters € and «, again discarding the first 1000 iterations as 'burn-in’, and
averaging over the remaining 4000 samples.
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Figure 4. Positions and values of the average daily rainfall for Scotland during
January 1997

4.2.2 Interpretation of n(s) in January

We first look at the non-stationarity revealed in the January data set. A contour
plot of the mean of 7n(s), (see figure 5(a)) reveals a strong trend, moving from low
values of 7(s) in the west, to high values in the east. Thus on the west coast, where
rain is far more prevalent and protection from other landmasses is minimal, there
is much greater variation from station to station. This is demonstrated by the
greater emphasis placed on higher frequencies by 7(s), giving a local covariance
function with a small range of influence. This contrasts with the smoother region in
the east, where the level of rainfall is reduced, sheltered as it is by the topography
in the Highlands.

a) Latent process in January b) Latent process in February ¢) Latent process in March

25 2 25

5 35 8 )
Longitude Longitude

Figure 5. Contour plots of the latent process for (a) January, (b) February and
(¢) March during 1997.

To illustrate the significance of this west-east trend, we take a projection in
the longitudinal direction and plot the 95% credible intervals (figure 6(a)). This
demonstrates the small variation in the north-south direction, and the relatively
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tight credible intervals, reinforcing the notion of an west-east trend in stationarity.

— -January
February
— March

-55 -5 45 -4 -85 -3 -25 -B -6-—5.5 5 45 4 -35 -3 -25 -2 -15
Xa Longitude

Figure 6. (a) log of the mean of 7(s) projected onto the longitudinal direc-
tion, plotted with 95% credible intervals. (b) Comparison of scaled longitudinal
projections of 7(s) for the January, February and March data sets.

4.2.3 Comparison of n(s) for three different months

To further demonstrate the importance of this east west trend, we carried out the
same analysis on the two subsequent months and compared the posterior values
of n(s). These data sets are compared directly in figure 5, comprising a contour
plot for each of the three months and again show strong west-east trends.

As the absolute values of 7(s) in these figures are influenced by the effect of
the stationary covariance parameter «, we compare the longitudinal projections
of logn(s) by first fitting a polynomial and then scaling the values to the range |0,
1]. This is shown in figure 6(b), and demonstrates concisely the consistency of the
recognised trend.

The consistency of this result indicates that there is an underlying process
causing a consistent non-stationarity in the data. Suggestions as to the cause
of this observation are geographical effects such as coastal regions, shielding by
topography and the consistent direction of weather patterns. Significantly, this
demonstrates the ability of the method to reveal an accurate measure of the non-
stationarity from only one realisation.

5 Discussion

In summary, we have presented a method for inducing non-stationarity in standard
covariance functions, by use of latent power process 7)(s) in the frequency domain.
Such a treatment yields covariance functions that have the same analytical form of
the base stationary function, and offers a direct and interpretable view of any non-
stationary processes. A Bayesian methodology has been used and demonstrated
using MCMC providing access to the full uncertainties.
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The two applications have revealed an increased prediction accuracy when com-
pared to standard stationary techniques, and demonstrated the ability to extract
the underlying non-stationarity from a single realisation.

Now that the Bayesian context has been established, future work will involve
using reversible jump MCMC when inferring 7(s) (Green, 1995), (providing the
ability to change the position and number of knot points), as well as applying the
method to spatio-temporal processes by treating 7 as a function of space and time.
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CONDITIONING EVENT-BASED FLUVIAL MODELS
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Abstract. A fluvial depositional unit is characterized by a central axis, denoted as
a streamline. A set of streamlines can be used to describe a stratigraphic interval.
This event-based (denoted as event-based to avoid confusion with streamline-based
flow simulation) approach may be applied to construct stochastic fluvial models
for a variety of reservoir types, fluvial styles and systems tracts. Prior models are
calculated based on all available soft information and then updated efficiently to
honor hard well data.

1 Introduction

Interest in North Sea fluvial reservoirs led to the development of object-based
models for fluvial facies and geometries (see Deutsch and Wang, 1996 for a review
of development). For these models conditioning is often problematic. These dif-
ficulties in conditioning spurred research in direct object modeling. Visuer et al.
(1998) and Shmaryan and Deutsch (1999) published methods to simulate fluvial
object-based models that directly honor well data. These algorithms segment the
well data into unique channel and nonchannel facies and then fit channels through
the segments. The channel center line is parameterized as a random function of
departure along a vector and the geometry is based on a set of sections fit along
the center line.

Yet, these techniques are only well suited to paleo valley (PV) reservoir types.
The PV reservoir type geologic model is based on ribbon sandbodies from typically
low net-to-gross systems with primary reservoir quality encountered in sinuous to
straight channels and secondary reservoir rock based on levees and crevasse splays
embedded in overbank fines (Galloway and Hobday, 1996; Miall, 1996).

More complicated channel belt (CB) fluvial reservoir types are common. Im-
portant examples include the McMurray Formation (Mossop and Flach, 1983,
Thomas et al., 1987) and Daqing Oil Field, China (Jin et al., 1985, Thomas et al.,
1987). These reservoirs include complicated architectural element configurations
developed during meander migration punctuated by avulsion events. The applica-
tion of the bank retreat model for realistic channel meander migration has been
proposed by Howard (1992), applied by Sun et al. (1996) and Lopez et al. (2001)
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to construct realistic models of CB type fluvial reservoirs. These methods lack
flexibility in conditioning.

A event-based paradigm is introduced with (1) improved flexibility to re-
produce a variety of fluvial reservoir styles with realistic channel morphologies,
avulsion and meander migration and (2) a new efficient approach to condition
to well data and areal reservoir quality trends. Fortran algorithms are available
that apply this techniques, ALLUVSIM is an unconditional algorithm for the con-
struction of training images and the ALLUVSIMCOND algorithm includes streamline
updating for well conditioning. Greater detail on this work and the associated code
is available in Pyrcz (2004).

This work was inspired by the developments of Sun et al. (1996) and Lopez
et al. (2001), but it was conducted independent of Cojan and Lopez (2003) and
Cojan et al. (2004). The reader is referred to these recent papers for additional
insights into the construction of geostatistical fluvial models.

2 Event-based Stochastic Fluvial Model

The basic building block of this model is the streamline. A streamline represents
the central axis of a flow event and backbone for architectural elements (Wiet-
zerbin and Mallet, 1993). This concept is general and may represent confined or
unconfined, fluvial or debris flows.

Genetically related streamlines may be grouped into streamline associations.
Streamline associations are interrelated by process. For example, a streamline
association may represent a channel fill architectural elements within a braided
stream or lateral accretion architectural elements within point bar. Fluvial archi-
tectural elements are attached to streamlines and architectural element interrela-
tionships are characterized by streamline associations. This is a logical technique
for constructing fluvial models since all architectural elements are related to “flow
events”.

2.1 3-D STREAMLINES

The direct application of a cubic spline function to represent the plan view projec-
tion of a fluvial flow event is severely limited. As a function, a spline represented as
/#(x) may only have a single value for any value . In graphical terms, a function
may not curve back on itself. This precludes the direct use of a spline function to
characterize high sinuosity channel streamlines.

A streamline is modeled as a set of cubic splines. Each spline models the coordi-
nates (x, y and z) with respect to distance along the spline (s). The advantages of
this technique are: (1) continuous interpolation of streamline location in Cartesian
coordinates at any location along the streamline, (2) relatively few parameters
required to describe complicated curvilinear paths, (3) manipulation of splines
is much more computationally efficient than modifying geometries and (4) other
properties such as architectural element geometric parameters and longitudinal
trends may be stored as continuous functions along the streamline. These issues
are discussed in further detail below.
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The control nodes of a 3-D spline may be freely translated. The only require-
ment is that the second derivatives of the spline location parameters is recalculated
after modification. This operation is very fast. The calculation of complicated
geometries generally requires a high level of computational intensity or simplifi-
cation. In the event-based models the geometric construction is postponed to the
end of the algorithm. This results in very fast calculation and manipulation of
complicated geometric morphologies and associations represented as 3-D splines.

Any properties may be attached to the 3-D spline and interpolated along the
length of the spline. In the fluvial event-based model, the channel width, local cur-
vature, relative thalweg location and local azimuth are included in the 3-D spline.
Other information including architectural element type and additional property
trends may be included. These properties are calculated at the control nodes and
then splines are fit as with the location parameters.

2.2 STREAMLINE ASSOCIATIONS WITHIN EVENT-BASED MODELS

A streamline association is a grouping of interrelated 3-D splines. Streamline
associations are characterized by their internal structure and interrelationship
or stacking patterns. The internal structure is the relation of streamlines within
the streamline association. The external structure is the interrelationship between
streamline associations. Streamline associations may be tailored to reproduced
features observed in each fluvial reservoir style.

A variety of stacking patterns may exist in the fluvial depositional setting.
Compensation is common in dispersive sedimentary environments such as proximal
alluvial fans, vertical stacking with little migration is common in anastomosing
reaches and nested channel belts often form in incised valleys. These patterns
include important information with regard to the heterogeneity of a reservoir and
should be included in fluvial models.

2.3 STREAMLINE OPERATIONS

A suite of streamline operations is presented that allow for event-based models to
be constructed by the creation and modification of streamlines. These operations
include (1) initialization, (2) avulsion, (3) aggradation and (4) migration.

The streamline initialization operator is applied to generate an initial stream-
line or to represent channel avulsion proximal of the model area. The disturbed
dampened harmonic model developed by Ferguson (1976) is applied.

The avulsion operator creates a copy of a specific channel streamline, selects a
location along the streamline, generates a new downstream channel segment with
same streamline sinuosity and the same geometric parameter distributions. The
geometric parameters (e.g. channel width) of the new streamline are corrected so
that the properties are continuous at the avulsion location. The initial azimuth
is specified as the azimuth of the tangent at the avulsion location. There is no
constraint to prevent the avulsed streamline from crossing the original streamline
distal of the avulsion location.
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Figure 1. An illustration of the fluvial architectural elements applied in the
event-based model.

Aggradation is represented by a incremental increase in the elevation of a
streamline. The current implementation is to add a specified constant value to
the elevation, z, parameter for all control nodes.

The streamline migration operator is based on the bank retreat model. The
application of the bank retreat model for realistic channel meander migration has
been proposed by Howard (1992), applied to construct fluvial models by Sun et al.
(1996) and extended to construct meandering fluvial models that approximately
honor global proportions, vertical and horizontal trends by Lopez et al. (2001).

Key implementation differences from the original work from Sun et al. (1996)
include (1) standardization of migration steps, (2) integration of 3-D splines for
location and properties, (3) application of various architectural elements. The
meander migration along the streamline is standardized such that the maximum
migration matches a user specified value. This removes the significance of hydraulic
parameters such as friction coefficient, scour factor and average flow rate, since
only the relative near bank velocity along the streamline is significant. Hydraulic
parameters are replaced by the maximum spacing of accretion surfaces, which may
be more accessible in practice.

2.4 FLUVIAL ARCHITECTURAL ELEMENTS

The available architectural elements include (1) channel fill (CH), (2) lateral
accretion (LA), (3) levee (LV), (4) crevasse splay (CS), (5) abandoned channel
fill (FF(CH)) and (6) overbank fines (FF) (see illustration in Figure 1). The
geometries and associated parameters are discussed for each element in detail in
Pyrez (2004).

2.5 EVENT SCHEDULE

The event-based approach is able to reproduce a wide variety of reservoir styles
with limited parametrization. This algorithm may reproduce braided, avulsing,
meandering channels and may reproduce geometries and interrelationships of a
variety of fluvial reservoir types. The algorithm is supplied with areal and ver-
tical trends, distributions of geometric parameters, probabilities of events and
architectural elements.
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Figure 2. Example areal trends in channel density and the resulting streamlines.
A and B - no areal trend supplied and C and D - a linear trend increasing in the
y positive direction. Note areal trend is a relative measure without units.

2.6 AREAL CHANNEL DENSITY TRENDS

Analogue, well test and seismic information may indicate areal trends in reservoir
quality. Although seismic vertical resolution is often greater than the reservoir
thickness, seismic attributes calibrated to well data may indicate a relative mea-
sure of local reservoir quality. Well tests may provide areal information on the
distribution of reservoir quality and may significantly constrain model uncertainty.
Analogue information such as reservoir type may indicate a confined PV type or
a more extensive and uniform SH type reservoirs. If the net facies are associated
with CH, LV and CS elements then this areal trend information may be integrated
by preferentially placing streamlines in areal locations with high reservoir quality.

The technique for honoring areal trends is to (1) construct a suite of candidate
streamlines with the desired morphology, (2) superimpose each candidate stream-
line on the areal trend model and calculated average relative quality along the
streamline and (3) for each streamline initialization drawn from this distribution
of candidate streamlines (without replacement) weighted by the average quality
index. This technique is efficient since the construction of hundreds or thousands
of streamlines is computationally fast. This technique is demonstrated in Figure 2.

2.7 VERTICAL CHANNEL DENSITY TRENDS AND AGGRADATION SCHEDULE

Well data and analogue information may provide information on vertical trends in
reservoir quality. Well logs calibrated by core are valuable sources of vertical trend
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information. Often, identification of systems tract and fluvial style will provide
analogue information concerning potential vertical trends.

These trends may be honored by constraining the aggradation schedule. The
current implementation is to apply the trend within a user defined number of
constant elevation levels. Streamlines and associated architectural elements are
generated at the lowest level until the NTG indicated by the vertical trend is
reached for the model subset from the base of the model, to the elevation of the
first level. Then the aggradation operator is applied to aggrade to the next level
and the process is repeated through all user defined levels. For the highest level,
the model is complete when the global NTG ratio is reached.

3 Conditional Event-based Simulation

There are a variety of available methods that may be applied to condition compli-
cated geologic models; (1) dynamically constrain model parameters during model
construction to improve data match (Lopez et al., 2001), (2) posteriori correction
with kriging for conditioning (Ren et al.,2004), (3) pseudo-reverse modeling (Tet-
zlaff, 1990), (4) apply as a training image for multiple-point geostatistics (Strebelle,
2002) and (5) direct fitting of geometries to data (Shmaryan et. al., 1999 and
Visuer et. al., 1998). Each of these techniques has limitations either in efficiency,
robustness or the ability to retain complicated geometries and interrelationships.

An event-based model consists of associations of streamlines with associated
geometric parameters and identified architectural elements. A prior model of stream-
line associations may be updated to reproduce well observations. The proposed
procedure is: (1) construct the prior event-based model conditioned by all avail-
able soft information, (2) interpret well data and identify CH’ element intervals
(where CH’ elements are channel fill elements without differentiation of CH, LA
and FF(CH) elements), (3) update streamline associations to honor identified CH’
element intervals and (4) correct for unwarranted CH’ intercepts. This technique
entails the manipulation of large-scale elements to honor small scale data; there-
fore, it is only suitable for settings with sparse conditioning data. Settings with
dense data may be intractable.

3.1 INTERPRETED WELL DATA

The hard data from wells is applied to identified CH’ element intervals. CH’
elements are typically identified by erosional bases and normal grading. CH' ele-
ment fills often occur in multistory and multilateral configurations. CH’ elements
often erode into previously deposited CH’ elements to form amalgamated elements
(Collinson, 1996, Miall, 1996).

The geologic interpretation of well data is performed prior to the updating
step. The input data includes the areal location for each vertical well and a list
of CH’ element intervals with base and original top (prior to erosion). The geo-
logic interpretation is often uncertain, especially with amalgamated CH’ elements.
Alternate geologic interpretations may be applied to account for this uncertainty.
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3.2 UPDATING STREAMLINE ASSOCIATIONS TO HONOR WELL DATA

The model is updated by modifying the position of streamline associations to honor
CH’ element intercepts observed in well data. For each CH’ element interval the
following steps are performed. (1) The horizontal position is corrected such that
the CH’ element intercept thickness is within tolerance of the CH’ element interval
thickness. (2) Then the vertical location is corrected such that the CH’ element
intercept top matches the top of the CH’ element interval. Entire streamline as-
sociations are corrected to preserve the relationships between streamlines within
a streamline association. For example, if a streamline association includes a set of
streamlines related by meander migration, the entire set of streamlines representing
a point bar is shifted. If individual streamlines were modified independently this
may change the nature of the streamline association.

The CH’ element intervals are sequentially corrected. If there is no previous
conditioning then streamline associations are translated (see A in Figure 3). If there
is previous conditioning a smooth correction method is applied to the streamline
association (see B in Figure 3). A step vector is constructed oriented from the
nearest location on a streamline within the streamline association to the location
of the well interval. The scale of the step of the sense is determined by an iterative
procedure described below.
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Figure 3. An illustration of methods for updating streamline associations with
well data. For this example, there are two streamlines in the streamline association
representing an avulsion event that are corrected to honor conditioning data (c). A
- the case with no previous conditioning. B - the case with previous conditioning.
C and D - the transverse correction with respect to location along the streamline.

3.3 ITERATIVE PROCEDURE FOR UPDATING STREAMLINE ASSOCIATIONS

Modifications of streamline associations has an impact on CH’ element geometry.
It would be difficult to directly calculate the precise translation of a streamline to
result in the correct interval thickness at a well location. A simple iterative method
is applied to correct the well intercept thickness. The thickness of the CH’ element
from a streamline association is calculated at the vertical well location. The error
is calculated, if the thickness is less than indicated by the conditioning then the
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streamline association is shifted towards the well location. If the thickness is greater
than indicated by the conditioning then the streamline association is shifted away
from the well location. The procedure is repeated for all identified CH’ element
intercepts.

3.4 CORRECTION FOR UNWARRANTED WELL INTERCEPTS

The correction for unwarranted CH’ element intercepts applies a robust iterative
technique. For each unwarranted CH’ element intercept the associated streamline
association is checked for conditioning. If the streamline association is not anchored
to conditioning data then the streamline association may be translated in the
direction transverse to the primary flow direction. If the streamline association is
anchored to conditioning data then a smooth modifications is applied.

The streamline association is modified until the thickness of the unwarranted
CH’ element intercept reaches zero. For each iteration the step size of the modifica-
tion is increased and the direction is reversed. This method is robust since it does
not become trapped with complicated streamline associations. This methodology
is illustrated in Figure 4 with a complicated setting.

-

¥ Coondinaia )

i

Figure 4. An illustration of the method for correcting streamline associations to
remove unwarranted well intercepts. The two streamlines are related by avulsion
in the streamline association and there are two previously conditioned locations
(C1 and C3). A and D - the initial streamline association prior to correction. B and
E - the first smooth modification (Oliver, 2002). C and F - the second iteration.

3.5 EXAMPLE CONDITIONAL EVENT-BASED MODELS

The ALLUVSIMCOND algorithm was applied to construct a conditional model. The
streamlines include braided low to high sinuosity morphology. A single well is
included with two CH’ element intervals identified. Cross sections and stream-
line plan sections of the prior and updated models are shown in Figure 5. The
morphology of the streamlines is preserved while the well intercepts are honored.
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Figure 5. An example conditional event-based model from ALLUVSIMCOND. A

and B - cross section of prior and updated model and C - D plan section of prior

and updated model streamlines with cross section indicated.

4 Conclusions and Future Work

The event-based approach is a flexible and efficient tool for the construction of
stochastic fluvial models. The building block approach allows for the modeling
of a variety of fluvial reservoir styles, including the complicated architectures of
CB type fluvial reservoirs. Event-based models may be constructed based on all
available soft geologic information and then updated to honor hard well data.

Future implementation will address well observations of other architectural
elements and the applications of the the event-based approach to a variety of
depositional settings, such as deepwater (Pyrcz, 2004).
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Abstract. The potential-field method (Lajaunie ef al., 1997) is used to create geological
surfaces by interpolating from points on interfaces, orientation and fault data by
universal cokriging. Due to the difficulty of directly inferring the covariance of the
potential field, it is identified from the orientation data, which can be considered as
derivatives of the potential. This makes it possible to associate sensible cokriging
standard deviations to the potential-field estimates and to translate them into
uncertainties in the 3D model.

1 Introduction

During the last ten years, 3D geological modelling has become a priority in several
domains such as reservoir characterization or civil engineering. In geological mapping
too, 3D digital pictures are created to model and visualize the subsurface and the
relations between layers, faults, intrusive bodies, etc. While completing its 1:50 000
geological map programme for the entire French territory, B.R.G.M. (the French
geological survey) started a research project for defining three-dimensional maps which
could clearly represent the subsurface and underground geology. A new tool, the
“Editeur Géologique”, has been developed to face this particularly tough issue. It is
based on the construction of implicit surfaces using the potential-field method.

2 Reminders on the potential-field method
2.1 PRINCIPLES

The problem is to model the geometry of geological layers using drill-hole data, digital
geological maps, structural data, interpreted cross-sections, etc.

The method is based on the interpolation of a scalar field considered as a potential field.
In this approach, a surface is designed as a particular isovalue of the field in 3D space.
In all the following equations, X=(x,y,z) is a point in the three-dimensional space R’. The
potential is assumed to be a realization of a differentiable random function Z.
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We first consider one interface or several sub-parallel interfaces (iso-surfaces related to
the same potential field) and we will see later how to manage several fields.

2.2 DATA

The 3D model is obtained by integrating data originating from different sources.

The first kind of data is a set of points belonging to the interfaces to be modelled. They
come from digitized contours on the geological map and from intersections with
boreholes. The other type of data is structural data (orientation of surfaces).

For the interpolation of the potential field, these data are coded as follows:

- if we have a set J of n points on an interface, we use n-1 linearly independent
increments of potential, all equal to zero; these increments are of the form:

Z(x)~Z(x;)=0
e.ge Z(X)-Z(X;,)=0 j=2yun

If several interfaces are modelled with the same potential field, the data set J is the union
of the elementary data sets relative to the various interfaces.

- orientation data are considered as gradients of the potential, namely polarized unit
vectors, normal to the structural planes:

Zxy=6), Lxy=6
0z

2 x)=G,
Ox Oy

2.3 SOLUTION

Determining a geological interface is an interpolation problem which can be solved by
determining the potential at any point in the space and by drawing the iso-potential
surface corresponding to the interface. The potential field is defined up to an arbitrary
constant, because we only work with increments. Indeed we will interpolate the
potential at x in comparison with the potential at some reference point xy. These
increments of potential are estimated as:

[Z0-Z(x,)] =D (4G + 4G +v,G )+ 4, [Z(x,.) ~Z(x,, )] )]

! J

The last term is equal to zero, but we introduce it here, because the weights X\, p,, v, are

different from weights based on the gradient data alone.
The weights are the solution of a universal cokriging system of the form:

CG ICGI IUG ’FG A Cg
CGI C1 ’U1 IF} B _ CIO
u, u, o o|c| |U°
F, F 0 o0 )\p) (F°
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Cg and Cj are the covariance matrices for gradient and potential data respectively, and
Cgr s their cross-covariance matrix.

Ug and Uj contain drift functions and Fg and F; contain fault functions.

A, B, C, D are the solution of this linear system.

C’, is the covariance vector between the estimated increment and the gradient data and
C° is the covariance vector between the estimated increment and increment data.

U’ and F’ contain drift and fault functions at the estimated point.

Once the system has been solved, the iso-potential surface corresponding to the interface
can be drawn. We can then visualize the 3D cube or cross-sections through it (Figure 1).

Figure 1. Example of a 3D geological model with the “Editeur géologique”
3 Variograms of orientation data illustrated by the Limousin dataset

The Limousin dataset, approximately a 70x70 km square, located in Centre France, is
represented in Figure 2. Data sample a surface which is the top of a set of metamorphic
rocks called “lower gneiss unit” (LGU). These data were all taken on the topographic
surface.
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Figure 2. Base map of Limousin dataset. Black crosses: 1485 orientation data. Red

discs: 133 interface data (digitized from the geological map).
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3.1 ORIENTATION AND GRADIENT

Orientation data are vectors orthogonal to structural planes (e.g. foliation for
metamorphic rocks, or stratification for sedimentary rocks) which are assumed to be
parallel to the surfaces defined by the potential field. These data are sampled on the
interface and also within the geological formations. They are considered as representing
the gradient of the potential field. Since no intensity is usually attached to those gradient
data, then vectors are arbitrarily considered as unit vectors. In practice, we work only
with the three components of that vector. Let us mention that, in an orthonormal
coordinate system, the mean of the components of a random unit vector is null and its
variance is equal to one third.

3.2 COVARIANCE OF POTENTIAL AND GRADIENT

All the increments of potential are null, variograms of them are then useless. A first
implementation of the method used a covariance given a priori by the user. But gradient
data are algebraically linked with potential data. Therefore in this work, we use the only
non-null data, namely gradient data, to infer the covariance model. Let

= /hf +hj +hf be the distance between two points and ‘h :(hx’hy, h.) the vector

joining these two points. Now, let Kp denote the covariance of Z and Kg', Kg', Kg” the
covariances of the three components of the gradient of Z. In order for Z to be
differentiable, Kp must be twice differentiable (Chilés and Delfiner, 1999). Using the
definition of differentiation, we can write the covariance of G, for instance:

0°K ,(h)

KGX (h)=- ahxz

2

In the case of an isotropic covariance, K,(h)=C(r) with C twice differentiable for

7 >0 and we have:

K, (h)= —[@ h’+C'(r) {%— }:‘32 D A3)

More general formulas are available for anisotropic covariances.

The model parameters will be determined only with the sample variograms of the
gradient data.

The cubic model with range @ and sill Cy, chosen as basic model for K, is defined in the
isotropic case by:

}’2357”3 707\ 3(rY
Kp(r)=co[1—7[;j *T(Zj —5@ 7[5)} for 0<r<a (4)

K,(r)=0 for r=a
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It is well adapted for geological contouring, because at the scale considered, geological
surfaces are smooth and the cubic model has the necessary regularity at the origin.

Even if we assume the isotropy of K,, K, is necessarily anisotropic (Chauvet et al.,
1976). If we consider the partial derivative G* for example, the extreme cases are the
direction of the derivative, namely x, and the direction orthogonal to it, here y, and in
term of variogram we have:

14c, [15h, 5(h Y 3(h Y
h)= ol Y _“|_ ¥ 4+ 2 h < 5
7. (h) " [8 ; 4[aJ 8[a”for L <a  (5)

28C, [15h s5(nY 3(hY | 7C,| (hY .(hY
hy=2220| 20 21 A 2 ) S0 5l S| 3] B h < 6
7. (h) = [8 P 4(61) 8(01)] az{(aj ., for h.<a (6)

We recognize a pentaspheric model in the direction orthogonal to that of the partial
derivative and a model with a hole effect in the direction of derivation.

In the other directions, the graph of the variogram is comprised between these two
envelopes (Renard and Ruffo, 1993).

3.3 VARIOGRAM FITTING

For the Limousin case study, since the topography is rather smooth, the variograms have
been computed in the horizontal plane only. Figure 3 shows sample variograms for the
Limousin dataset.

The first remark is the difference of scale for the sill value between the vertical
component and the horizontal ones. The reason is that the mean of the vertical gradient
is significantly larger than zero due to the sub-horizontality of the layers, which results
in a smaller variance for the vertical gradient component than for the horizontal ones.
We also notice a large nugget effect for all components (nearly half of the total
variability).

This difference of sill is modelled with a zonal anisotropy. The final model for the
potential covariance is thus a nested cubic model:

KP(h):K3(1/hf+hy2+hf)+K2(1/hf+hy2)+K,(hy) 7

The ranges are 25000m, 17000m and 55000m, respectively, for K,, K,, and K.

The corresponding sills are 781000, 1700000, 10800000, respectively.

In comparison, the default values previously proposed by the software correspond to a
single isotropic component with a range of 98000m (the size of the domain) and a sill of
229x10°.

These two covariance models lead to rather different geometric models. For example,
the depth of the LGU interface is up to 450m deeper with the default covariance model
than with the fitted covariance. However, we must not forget, that we are extrapolating
from data sampled on the topographic surface only.
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Figure 3. Experimental and fitted variograms for the components of the gradient. G*
(top), G* and G™(bottom left) and G and G'* (bottom right). The symbol // (resp. L)
corresponds to the variogram in the direction of differentiation (resp. in a direction
orthogonal to that of the differentiation).

In order to make the software easy to use for non-geostatisticians, an automatic
procedure of variogram fitting based on the Levenberg-Marquardt method (Marquardt,
1963) has been implemented. The aim is the minimisation of the weighted metric
distance between the sample variograms and the variogram model in the vectorial space
of the fitted parameters (nugget effect, sill, range). It is a non linear regression method
optimally using two minimisation approaches: quadratic and linear. A factor allows the
use of one or another.

4 Determination of uncertainty
4.1 “REDUCED POTENTIAL” CARTOGRAPHY

When the covariance was chosen a priori, without consideration to a sample variogram,
the method could not claim for optimality and the cokriging variance had no precise
meaning. But now, since the model is well defined, determining the uncertainty on the
position of the interface in depth makes sense and to get a better idea of the degree of
uncertainty for the drawing we define a “reduced potential”.

Let Z, be the value of the potential for a point on the considered interface, Z*(x) the
value estimated at a point x and o,,(x) the cokriging standard deviation at the same
point.
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The reduced potential @(x) is given by:

Z’®)-Z,

PO ok (%)

®)

For a given point, this variable represents the reduced estimation of the potential
deviation from Z . It can be shown that the larger this value, the less chance the point
has to be on the interface. With a Gaussian assumption for the potential field, @ is a
standardized normal variable, so that for example, the area inside the curves @ =+ 2
includes the interface in about 95% of the cases. Figure 4 shows the interpolated LGU
interface (black line) and the value of @ in blue. In short, the yellow zone, which
corresponds to |@|<3, is like a forbidden area for the drawing of the interface.
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Figure 4. Limousin dataset. Map of the reduced potential.

Likewise, Figure 5 shows two cross-sections in the north (A) and the south (B) of the
field. Of course, when the number of data is large, the position of the interface is well
constrained, whereas in extrapolation there is a lot of uncertainty.

0 10 20 30 40 50 60 0 10 20 30 40 50 60
U (km) U (km)

Figure 5. Limousin dataset. Cross-section A (left) and B (right) of the reduced
potential.
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4.2 UNCERTAINTY ON MODEL PARAMETERS

The covariance fitting has some part of uncertainty too. Thanks to a Bayesian approach
it is possible to determine the uncertainty of the model parameters (Goria, 2004).

The aim is to simulate these parameters according to a posterior distribution, which is
proportional to an a priori distribution and a likelihood function:

7(01Z)cz(0)7(Z16) (9)

where w(0) is the a priori distribution of the parameters vector 0 and w(Z|0) is a

likelihood function. The vector 0 includes the coefficients of the drift basis function, and

the parameters of the covariance.

We assume a normal distribution for the coefficient of the drift and a gamma
distribution for the precision (inverse of the sill). For the range and the relative nugget
effect, a discrete uniform prior is used. The results show a large uncertainty on the
model parameters. If we use the maximum values of the estimated parameters for the
covariance model, we see some differences in the geometry of the interface. For
example, the depth of the LGU interface is around 200m deeper with this “Bayesian”
covariance model than with the classical fitted covariance.

The posterior distribution can also be incorporated in the cokriging or conditional
simulation process.

5 Other practical implementation issues
5.1 SEVERAL INTERFACES

When there are several geological layers, some rules must be respected to avoid crossing
the boundaries. If the interfaces are not sub-parallel, several potential fields are used.
Two rules, “erode” and “onlap”, as well as a stratigraphic column make it possible to
solve all the issues facing us. The column defines the chronological order of the
interfaces and the rules define the priority between the layers. The rule “erode” has
always the priority and is used to mask the eroded part of the previous formations or to
model an intrusive body. For example, on Figure 7 right, we can see the interface (1)
which is in onlap on the interface (2).

5.2 FAULTS

Discontinuities are taken into account too. Faults are defined as external discontinuous
drift functions in the cokriging system (Maréchal, 1984). The method requires the
knowledge of the fault planes and the zones of effect of the faults. The discontinuity can
be “infinite” and then crosses the whole field, dividing it in two subzones D and D’. The
fault induces a discontinuity in the potential field, taken into account by a drift function

such as:
J(x)=1,(x)
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This function complements the classical polynomial drift functions used for the non-
stationarity in the cokriging system.

With a finite fault (Figure 6), the throw is determined with an influence area. As with an
infinite fault, the discontinuity divides the delimited area in two sub-zones. In this case,
the drift function has a bounded support and the function reaches its maximum at the
centre of the fault. Outside the area the fault has no effect.

1

™| ;

Transversal profile

1 :f

//N .

0

0

Longitudinal profile

Figure 6. Finite fault. Left, transversal profile (top) and longitudinal profile (bottom) of
the drift function. Right, area of influence of the discontinuity in the horizontal plane.

5.3 BOREHOLE ENDS

The last term in equation (1) is normally equal to zero, but could be strictly positive or
negative if the points are not on the interface, which is the case when dealing with
borehole ends. For example, the increment of potential is positive when the borehole
end is above the considered interface with the following convention: the potential grows
from the oldest geological formation to the most recent one.

Incomplete drillings can lead to a bad interpolation if a pre-processing of these soft data
is not implemented. We use an iterative technique method based on the Gibbs sampler
(Geman and Geman, 1984; Gilks et al., 1996) to replace these soft data by hard data
honouring both the inequalities and the spatial structure. That method, developed for
stationary random functions (Freulon and de Fouquet, 1993) has been extended to the
nonstationary case.

Figure 7 shows a synthetic example with two drill-holes (A and B) and two interfaces to
be reconstructed (higher (1) with “onlap”: 2 points and 1 gradient; lower (2) with rule
“erode”: 3 points and 1 gradient).

Figure 7. Interpolation of two interfaces. Left, without pre-processing, right with pre-
processing.
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The borehole A is only filled up with the facies whose interface (1) is the top and
borehole B only with the facies whose interface (2) is the top.

On one hand, if borehole ends are not taken into account, the interpolation does not
respect them as shown on Figure 7 (left).

On the other hand, Figure 7 (right) displays the result after pre-processing, interface (1)
is in onlap as expected.

If P, and P, are respectively the iso-potential values for interface (1) and (2), and P (A)
and P (A) respectively the values of potential at the beginning and at the end of the
borehole, the result of the simulation gives values which respect P,(A)<P, and P,(A)>P,.

6 Conclusion and future works

The potential-field method used in 3D geological modelling makes it possible to create
models, even in complex situations, that combine different types of data, especially
structural data. Thanks to the variography of these data it is possible to specify a
sensible model of covariance and then to produce maps of uncertainty for the position of
geological interfaces.

In this method we consider orientation data as gradient data, namely unit vectors. Only
in specific cases, we know the structural intensity. The objective of ongoing work is to
show, with simulations of actual situations, the impact on the covariance when actual
gradient vectors are replaced by unit vectors.

Other improvements are planned like a better fault processing or the use of geophysical
data.
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ACCOUNTING FOR NON-STATIONARITY AND INTERACTIONS
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Abstract. This paper proposes an algorithm for simulating object models based
on an underlying Markov point process able to reproduce attraction or repulsion
between objects in a non stationary setting based on workable approximations for
computing the local intensity, taking into account: i) non stationary proportions
and non stationary object parameters; ii) erosion rules in the case of multi-type
objects; iii) attraction or repulsion between objects.

1 Introduction

Modeling heterogeneity is the first, and possibly the most important, step of
a reservoir characterization study. Depending on the geological context, several
simulation techniques can be envisioned to perform this first step: sequential
indicator simulation (Alabert, 1987; Goovaerts, 1997), transition probability sim-
ulation (Carle and Fogg, 1996), sequential simulation using multi-points statistics
(Strebelle, 2002), truncated Gaussian or plurigaussian simulation(Le Loc’h and
Galli, 1997), or Boolean simulation (Haldorsen and Macdonald, 1987; Lantuéjoul,
2002). An important feature of object simulation, which sets it apart from the
other techniques, is the fact that it is not pixel-based, i.e it does not generate
values at the nodes of a pre-defined grid. Rather, it generates geometric shapes in
space according to some probability laws.

Although Boolean model simulation has been widely used during the last two
decades to simulate sedimentary bodies (especially in fluvio-deltaic environments),
several non trivial issues have remained and require scrutiny. Any general purpose
object simulation program for reservoir characterization should (i) allow for the
simulation of multiple object types, (ii) respect user-defined erosion rules between
object of different types, (iii) reproduce specified a priori proportions, after ero-
sion, for each object type, (iv) account for non-stationary object dimensions and
orientations, (v) be conditional to existing hard-data, (vi) account for inter-actions
(attraction or repulsion) between objects.
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A key issue is that the single most important parameter for object models
simulation, namely the (non stationary) intensity of the underlying object process,
is not a parameter provided by the end user but must instead be inferred from
the other input parameters listed above. A second very important issue is the fact
that Boolean models traditionally used assume independence between objects. As
such they are inadequate for reproducing interactions between objects. Lantuéjoul
(1997, 2002) proposed a birth and death process for simulating conditional Boolean
models with non stationary intensity. This algorithm considers the intensity as
known and does not address the problem of making a bridge between intensity
and local proportion. Recently, Benito Garcia Morales (2003) proposed a method
based on Wiener filter to estimate a non stationary intensity from non stationary
proportions. This method assumes stationary distribution function of the object
parameters. None of the methods described above consider multi-type objects.

This paper proposes an algorithm for simulating multi-type object models
based on an underlying Markov point process able to reproduce attraction or
repulsion between objects in a non stationary setting.

2 Boolean Models

2.1 GENERAL OVERVIEW

A single object type Boolean model (Stoyan, Kendall and Mecke, 1995) is made
of two parts:

— A set of points (seeds), denoted X = {xy,...,%,}, which follow a Poisson
distribution characterized by its intensity 6 describing the expected number
of object centroids per unit volume. This intensity may be varying in space.
As a consequence of the Poisson assumption, object centroids are independent
to each other.

— Random variables, independent of the Poisson process, that attach to each of
these points random marks describing the shape, dimensions and orientation
of objects A. These random variables are described by their joint probability
density 1. The random marks are independent one from the other.

The key parameters for Boolean models simulation is the point intensity para-
meter € which describes how many object centroids are expected per volume unit.
This parameter, however, is not readily available: geologists have good ideas about
the proportion for each geological object they want to simulate, but they have no
feel for the number of such objects. Hence the need to estimate the intensity 6 from
the proportion p. In stationary conditions, it is well known that for Boolean models
the proportion is related to the intensity according to the following relationship
(Lantuéjoul, 2002; Stoyan et al., 1995):

p= 1—exp{—9/ E¢[10€A(v)]dv} =1—exp{-60V},
R?

where 1 is the indicator function, 0 is the origin, A(v) is a random object centered
in v and V is the expectation of the volume of a random object A whose mark
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density is 9. Inverting this relationship yields to

1

0= v In(1 — p). (1)
In practice, this congenial situation is the exception rather than the rule: a
priori proportions and mark densities are not stationary, objects of different types
do not overlap each other randomly but according to erosion rules, objects of a
given type may show a tendency to attract each other or, conversely, to repulse
each other. In all these situation equation (1) cannot be used directly but requires

adjustments.

2.2 ACCOUNTING FOR EROSION RULES

For each object type k = 1, ..., K, there is a corresponding proportion py, intensity
0 and mark density 1. Although equation (1) already accounts for the fact that
several objects of the same type may overlap, it requires adjustment to ensure
that, in case of multiple object type simulation, the target proportion of each type
is correctly reproduced. In practice, this is done by substituting in equation (1)
the proportion py by a corrected proportion pj,. This correction depends on the
“erosion rule” determining which type of object erodes the other. Among all the
possible rules, three are commonly used: random overlapping, the vertical erosion
rule (the object with the highest centroid erodes the others) and the hierarchical
erosion rule whereby the object type 1 always erodes the object type 2 which, in
turn, always erodes object type 3, etc.

— In the case of an hierarchical erosion rule, the proportion of the type 1 object
does not need to be corrected. Type 2 objects will be partly eroded by objects
of type 1. Hence, for a visible proportion ps, a corrected proportion p) =
p2/(1 — p1) needs to be simulated. Recursively, for the type k, the corrected
proportion is given by:

Pk
Py = =T (2)

— Derivation of a corrected proportion for a vertical erosion rule is somewhat
more complicated. A second order approximation of this corrected proportion
is given by:

(3)

A <1 n (1 + prot) (Prot pk)) ,

2

where pior = Y, pr is the total proportion of objects. This approximation
relies on the idea that in the case of a vertical erosion, it is equally likely that
an object of type k erodes an object of type [ than the opposite. It leads to a
corrected proportion pj, < 1.

— In the case of random overlapping between object types, it is also equally
likely that an object of type k overlaps an object of type [ than the opposite.
Hence, the same corrections as those used for vertical erosion are used.
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2.3 ACCOUNTING FOR NON STATIONARITY

If object proportions or object parameters are non stationary the relationship
between the non stationary proportions and non stationary parameters is more
complex. Dropping, for ease of notation, the subscript referring to the object type,
this relationship is expressed locally at a point u ¢ X as:

p(u) =1—exp {/m 0(V)Eyv)[lucaw)] dV}, (4)

where the expectation is computed with respect to the mark density with local
parameters ¢(v). This expression is extremely difficult (if not impossible) to in-
vert. If ¢)(u) and A(u) are smooth and slowly varying functions, then first order
expansion in equation (4) can be used locally to approximate the local intensity
01 (u) from the local corrected proportion pj (u):

1
0 =— In(1 — p) , 5
(1) = gy (1~ () o)
where Vi (u) is the local expectation computed using the local mark density ¢y (u)
and p},(u) is the proportion corrected to account for erosion as described above.

3 Markov object models

It is sometimes necessary to impose that objects of a given family are attracted to
each other or on the contrary that there is some sort of repulsion between objects.
The general idea is to consider that repulsion or attraction is a feature of the
underlying point processes, but that marks are still independent from each other.
The appropriate framework for such point processes is the Markov point processes
(MPP). Poisson point processes on which are built Boolean models is a particular
case of MPP, for which there is no repulsion and no attraction. A comprehensive
presentation of MPP can be found in Stoyan et al. (1995) or van Lieshout (2000).

3.1 GENERAL PRESENTATION OF MARKOV POINT PROCESSES

Markov point processes are point processes for which points are no longer indepen-
dent from each other but are dependent on the configuration of the other points.
According to the Hammersley-Clifford theorem, the probability density function
(pdf) of a MPP depends only on functions of cliques. Cliques are set of points
such that each point of this set is a neighbor of all other points of the set. The
neighborhood relationship, used to define cliques must be symmetrical. Usually,
the points x and y are neighbors (denoted x ~ y) if their distance d(x,y) is less
than R for some R > 0.

The simplest possible clique to consider is a clique consisting of a single point.
In this case there is no interaction and we are back to the classical Poisson process
framework. In order to account for interaction, cliques of more than one point need
to be considered. In practice, two point cliques will be considered and pairwise
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interaction functions, denoted [(x,y), will be used to define the density of a
configuration X:
X o [Tox I Bey),
xeX x,yeX : x~vy
where 0(x) is the intensity function. Among all pairwise interaction point processes,
the simplest one is the Strauss process (Strauss, 1975; Kelly and Ripley, 1976) for
which the interaction function is constant:

B(x,y) = if x ~y and f(x,y) = 1 otherwise, (6)
with 0 < 8 < 1. The pdf of a Strauss process is thus

F(X) =ap"® T 0(x),

xeX

where « is the normalizing constant and n(X) is the number of neighbor pairs
x,y € X with respect to the neighborhood relationship.

— If g = 1, there is no interaction whatsoever, and we are back to the non
stationary Poisson point process with intensity 6(u).

— If 0 < B < 1, there is some repulsion. Configurations with a high number
of neighbors have a smaller density than configurations with a low number
of neighbors. As a result the point process is more regular than a Poisson
point process. In particular, if 3 = 0, configurations with neighbors have a
null density and are thus impossible.

— The case of an attraction would correspond to > 1, but without additional
constraints it is mathematically not admissible because the associated density
does not integrate to a finite quantity (Kelly and Ripley, 1976). However, the
interaction function

Bx,y)=0ifr<d<R, B(x,y)=0if d <rand f(x,y)=1ifd> R, (7)

where 0 < 7 < R and d stands for d(x,y), is an admissible model. In practice,
the restriction introduced by 7 is not important because r can be chosen arbi-
trarily small. A typical choice is the mesh of the grid on which the simulation
is represented.

In the following we will consider Strauss models for both repulsion and attrac-
tion, with the additional condition on r for attraction. The conditional density of
adding to the configuration X a point in u is

FXU{u} | X) = f(XU{u})/f(X) = ()5, (®)

where n(du) is the number of neighbors of u. Hence, the parameter 5 can be
interpreted as a factor multiplying locally the intensity for each point in the
neighborhood of u.
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3.2 DERIVING THE INTENSITY FOR OBJECT MODELS BASED ON STRAUSS
PROCESSES

Objects are now attached to the Markov point process, and for sake of simplicity,
we first consider the stationary case. The proportion of objects attached to Markov
point processes is not easily related to the intensity: there is no relationship com-
parable to (4). In the case of a Strauss model, a workable approximation for the
intensity was found to be:

_ P P (u)
9(u)——v(u) (1+c 5 ) (9)

where p’(u) is the proportion corrected for the erosion (as described in Section 2.2)
and c is approximately the conditional probability that u is in an object A’ given
that it is already in an object A. In reservoir simulations, the objects have generally
random size to account for the natural variability of geological objects. For the
direction i, let us denote X; the dimensions of an object, R; the dimension of the
interaction box and r; the minimal distance in case of attraction. Conditional on
R;, i =1,2,3, it can be shown that

_ RiRyRs
X1X0X3

rirerTs3

= 1—7
=5 X, X, X5

)+ 1 =51 )1 —1p(X1, X2, X3),  (10)
where 15(X1, X5, X3) is the indicator function of the vector (X7, Xo, X3) being
in the box B defined by the dimensions (R1, Rz, R3).

Markov point processes are usually defined for fixed interaction distances, as in
Section 3.1 and objects are usually random with probability functions F;. Taking
the expectations of Equation (10) leads to

c=Bg(ri,ra,r3) + (1 — B)g(R1, R2, R3), (11)
with

g(R1,R2, R3) =1— Fi(Ry)F>(R2)F3(R3) — RiRaRshi(a1)ha(az)hs(as)
—[hi(a1) — hi(R1)] [ha(az) — ha(R2)] [hs(as) — ha(R3)]), (12)

where a; is the smallest dimension of the object in the direction i and h;(r;) =
fmax{ai,ri} f’(x)/x dz.

4 Simulation using birth and death processes

Non conditional Boolean models (i.e. corresponding to § = 1) can be simulated
directly: for each type of object k, first draw the number of objects from a Poisson
random variable with parameter ©; = [, 0ix(u)du, then locate randomly the
objects according to the intensity 6y (u).

In all other cases (presence of conditioning data and/or Markov object models)
simulation must be performed using a birth and death process. Birth and death
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processes are continuous time Markov Chains belonging to the family of Markov
Chain Monte Carlo (MCMC) methods (van Lieshout, 2002; Lantuéjoul, 2002).

Starting from an initial configuration, an object is either removed or added
according to some transition probability that depends on the current configuration
of the simulation at each time step. This transition probability is chosen in such a
way that the stationary distribution of the Markov chain is precisely the density
we wish to simulate from. According to standard results of Markov chain theory, if
the birth and death process is ergodic, there exists a stationary spatial distribution
and the convergence to the stationary distribution will always occur independently
on the initial configuration. Ergodicity holds if the detailed balance equation is
verified at each iteration (see e.g. van Lieshout, 2002 p. 79).

It can be shown that the detailed balance is verified for the following choices:
the probability of choosing a birth is ¢(X) = ©/(© + n(X)) where © is the sum
of f(u) on D. Then, 1 — ¢(X) is the probability of choosing a death. For a Strauss
point process with 8 # 1, it is convenient to introduce an auxiliary field o(u)
defined in the following way: for a repulsion (i.e., 3 < 1), o(u) = ™OW; for an
attraction (i.e., 3 > 1), o(u) = gmir{((0W)=nma).0} where nyq, is the maximum
number of neighbors of each object. Its main effect is to stabilize the algorithm
by avoiding a large quantity of objects piling on each other without increasing
the proportion of this object type. In case of birth, a new object is proposed in u
proportionally to an intensity b(X,u) = #(u)o(u). In case of death, the object to
be removed is chosen with a uniform probability among the list of objects.

For performing conditional multi type conditional simulations, the conditioning
taking into account the erosion rules must be checked each time a new object is
added or removed.

5 Implementation

The implementation of the algorithm described in the previous section raises some
critical issues.

— Border effects : It is important to ensure that objects intersecting the domain
D but whose centroids are outside this domain can be simulated. A practical
way consists in considering a bigger domain D*® whose dimension is the dimen-
sion of the domain under study, D, increased by the dimension of the largest
conceivable object. There is one such domain Dy for each type of object and
the expected number of objects of type k to be simulated must be computed
on Dj. Intensities yust be extrapolated on the domain Dj not in D.

For models with interaction, care must be taken to simulate correctly the
Markov point process near the borders. By construction there cannot be any
neighbors outside D?®. For a point u located near the border the number
of neighbors n(du) will therefore be underestimated as compared to points
located in the center of D*. As a consequence, the field o(u) accounting for the
interaction will be biased towards less interaction near the borders. In the case
of repulsion for example, this bias results in an accumulation of objects near
the border of D?. Because the border of the augmented domain D? is usually
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outside the true domain D, the ultimate bias is less object than expected in
D and a proportion under the target. To account for this bias, the number of
neighbors is corrected by n(du)* = n(du)/v(u) where v(u) is the proportion
of the volume of the interaction box contained in D. Note that in case of
mutiple object types, there is one such correction per object type.

— Initial configuration : In case of conditional simulation, an initial simulation
is performed which will honor all the hard data. This is achieved by defining
a new domain D’ which guarantees that any new simulated object, whatever
its location, dimensions or orientation, will intersect at least one conditioning
data. There is no birth and death process in this initial phase: new objects are
added until all hard data are intersected. To avoid possible endless iterations,
a maximum number of iterations is specified for this phase.

— Convergence : The question of finding a criterion for deciding if the algorithm
has reached convergence is a very difficult one. There is no general rule for
evaluating the number of iterations necessary to reach a pre-specified distance
between the theoretical stationary distribution, and the actual distribution
after n iterations. A considerable amount of literature has been devoted to
this subject, see e.g. Meyn and Tweedie (1993) for a survey on this subject.
Most of the proposed methods are either limited to some very simple cases or
difficult and time consuming to implement. As a result, for practical purpose,
the stopping rule will be a combination of a maximum number of iterations
and a monitoring of some important output parameters (number of simulated
objects, number of conditioning objects that have been replaced, average
number of neighbors).

6 Illustrative example

To illustrate the proposed algorithm, let us consider tow examples. In both cases
two types of objects are considered: dunes (fan shaped sedimentary bodies) and
sinusoidal channels. In the first example, vertical proportion curves are imposed.
For the dunes the proportion decreases steadily from a maximum of 30% at the
top of the reservoir to a minimum value of 1% at the bottom. For the sinusoidal
channels the trend is reversed: 30% at the bottom and 1% at the top. There are
no interaction between the objects, neither for the channels nor for the dunes, and
a vertical erosion rule is enforced. Figure 1 shows a typical cross-section of one
realization. As can be seen, the trends in proportions are correctly reproduced.
On average, the simulated proportion is 16% for the dunes and 14.9% for the
channels, almost identical to the target proportion which were 15.5% in both
cases. In the second example the target proportions are stationary, 10% for both
the channels and the dunes, but object interactions are imposed: the dunes will
repulse each other (the interaction box is 10% percent larger than the size of the
objects) whereas the channels will attract each other. The interaction box is twice
as large as the object width and height but has the same length, which means
that the attraction operate only laterally and vertically. In this case a hierarchical
erosion rule is applied. Figure 2 shows a horizontal and vertical cross-section. The
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simuated proportions are 10.5% for the fans and 10.0% for the channels. The
results conform to the constraints which have been imposed: dunes are all distinct
one from the other with no overlap and they systematically erode the channels,
which tend to cluster together. Again, the average simulated proportions match
almost exactly the target proportions.

Channel Fans
0.01 0.30
0.30 0.01

Vertical proportion curves
Vertical cross section

Figure 1. Vertical cross section of a simulation with vertical erosion rule

Horizontal section Verlical cross-section

Figure 2. Horizontal and Vertical cross section of a simulation with hierarchical
erosion rule
7 Discussion

The algorithm which has been presented offers a lot of flexibility and has proven ef-
fective for producing realistic simulations of reservoir heterogeneity in non-stationary
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situation. However, as is the case with all simulation algorithms, it is not universal
and its limits of application should be respected. A critical issue, when performing
conditional simulation, is the consistency between hard data, object parameters
(shape and dimensions) and target proportions. This consistency becomes even
more important if some or all parameters are non-stationary. The size of the object
to be simulated is a critical issue. The larger the object the more difficult it will
be to reproduce a target proportion and to honour conditioning data. Consistency
between the object size (in particular its thickness) and the resolution at which
facies are coded in well data must imperatively be verified. The approximations
presented above are valid for not too high proportions. It is recommended that each
proportion does note exceed 50% and that there is at least 20% of matrix, even
locally. Although this algorithm can accommodate non-stationarity care should
be taken that this non stationarity describes a smooth variation. Discontinuities
must be avoided. The concept of neighborhood is not an intuitive one. Selecting
too large a neighborhood may prove self-defeating: every point is the neighbour of
every other point (they all belong to the same clique!). In case of attraction the
points will not show any tendency to group in cluster, and in case of repulsion
the process may never converge since it will be impossible to reach the target
proportion and remain consistant with the repulsion constraint.
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Abstract. This paper deals with the estimation of the length distribution of the
set of traces induced by a fracture network along an outcrop. Because of field con-
straints (accessibility, visibility, censorship, etc...), all traces cannot be measured
the same way. A measurement protocol is therefore introduced to systematize the
sampling campaign. Of course, the estimation procedure must be based on this pro-
tocol so as to prevent any bias. Four parametric procedures are considered. Three
of them (maximum likelihood, stochastic estimation-maximization and Bayesian
estimation) are discussed and their performances are compared on 160 simulated
data sets. They are finally applied to an actual data set of subvertical joints in
limestone formations.

1 Introduction

Fractures such as faults and joints play a key role in the containment of nuclear
waste in geological formations, in the oil recovery of a number of petroleum reser-
voirs, in the heat recovery of hot dry rock geothermal reservoirs, in the stability
of rock excavations, etc. The fracture network is usually observable through its
intersection with boreholes or through its traces on outcrops (see Fig. 1). An im-
portant parameter of a fracture network is the fracturation intensity, i.e. the mean
area occupied by the fractures per unit volume, which is experimentally accessible
even from unidimensional observations such as boreholes. The same fracturation
intensity can however correspond to very different situations, whose extremes are
a network of few large well-connected fractures and a network with a large number
of small disconnected fractures. Getting geometrical and topological information
about the fractures - size, orientation, aperture, connectivity - is therefore very
important. Despite substantial work, this remains an arduous task, mainly because
of the geometrical or stereological biases resulting from this limited observability
(Chiles and de Marsily, 1993).

165

O. Leuangthong and C. V. Deutsch (eds.), Geostatistics Banff 2004, 165-174.
© 2005 Springer. Printed in the Netherlands.



166 C. LANTUEJOUL ET AL.

2
. e

Figure 1. Example of an outcrop and its traces (vertical outcrop in a quarry,
Oxfordian limestones, East of France)

This paper deals with the estimation of the length distribution of a set of traces
along an outcrop. (The link between trace length and fracture size is briefly dis-
cussed at the end of the paper.) The difficulty lies in that the traces are usually
not entirely visible. Their lower part is often buried. Their upper part may not be
available either if the region around the outcrop has been eroded or mined out. In
the practical case considered, the outcrop is a vertical face in a limestone quarry
and all traces are sub-vertical.

In order to reduce risks associated with the sampling of such traces, it is conve-
nient to resort to a sampling protocol that says what traces should be effectively
measured and how. In the practical case considered, all traces are sub-vertical,
which simplifies the protocol as well as its presentation (see Fig. 2):

1. All traces hitting a horizontal reference line - and only those traces - are
selected for measurement;

2. Only the part of a selected trace above the reference line is actually measured;

3. A measurement is achieved even if the upper part of the trace is incomplete.

In other words, not all traces are sampled. Moreover, sampling a trace consists
of measuring its residual - and sometimes censored - length above the reference
line. The approach presented here is applicable to more general situations (the
assumption that the traces are vertical or parallel is not really required), and can
be easily generalized to other sampling schemes, including areal sampling.

In this paper, four parametric procedures' are proposed to estimate the trace

length distribution starting from residual length data. These are the maximum
likelihood estimation (MLE), its estimation-maximization variation (EM), the

LA non-parametric procedure based on the Kaplan-Meier estimation can also be designed. It
is not described here to simplify the presentation.
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_» Outcrop top

Reference line

Figure 2. Protocol for sampling the outcrop

stochastic estimation-maximization algorithm (SEM) and the Bayesian estimation
(BE). The performances of three of them (MLE, SEM and BE) are compared on
data sets simulated from a Weibull distribution. Finally, the same three proce-
dures are applied to a fracturation data set coming from an underground research
laboratory of ANDRA (French national radioactive waste management agency).

2 Consequences derived from the protocol

At first, it should be pointed out that the selection of the traces is biased. The
longer a trace, the more chance it has to hit the reference line. Quantitatively
speaking, if ¢g(¢) denotes the probability density function (p.d.f.) of the traces
with length ¢, then that of the selected traces is g(¢)/m. In this formula, the
mean m of g acts as a normation factor.

Now a selected trace hits the reference line at an arbitrary location. In probabilistic
terms, this amounts to saying that a residual length can be written as a product
LU, where L is the length of a selected trace and U is a random variable uniformly
distributed on ]0, 1] and independent of L. Accordingly, the cumulative distribution
function (c.d.f.) R of the residual lengths satisfies

14

T

1— R(t) = P{LU > ¢} = /+OO xg(x)P{U >
¢ m

Lo[tee
de = — -0 dz.
bir =~ [ @ 0ga)da
By a first differentiation, the p.d.f. 7 of the residual lengths is obtained as a function
of the c.d.f. G of the actual traces

rgy = 1260, 1)

m

and by a second differentiation both p.d.f.’s turn out to be related by the formula

g(l) = ——=- (2)
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3 Four estimation procedures

We turn now to the problem of estimating the p.d.f. g of the actual traces starting
from the available residual traces, namely the complete ones ¢; = (Ei,i el ) and
the censored ones t; = (tj,j € J). Equation (2) suggests to concentrate at first
on the estimation of r, and then on that of g. The four procedures presented
hereunder have been designed along that line.

3.1 MAXIMUM LIKELIHOOD ESTIMATION (MLE)

In this procedure, the trace length p.d.f. g is supposed to belong to a parametrized
family (g(-6),6 € T). For each p.d.f. g(-|f)}, a residual p.d.f. 7(-|f) can be asso-
ciated. The MLE procedure consists of finding a parameter 6 that maximizes the
likelihood of the data

L(tr,t5,0) = [ [ r(:l0) [ (1 - R(t;10)]
i€l jeJ

L(lr,ty,0) =r(lr]0)[1 — R(t;|0)] (3)

for short (Laslett, 1982). It should be pointed out that this procedure is not
universal. For instance, the likelihood may have no maximum?. Moreover, even
if a maximum does exist, its determination by differentiation of the likekihood
may turn out to be ineffective.

3.2 EXPECTATION-MAXIMIZATION PROCEDURE (EM)

A possible approach for estimating the maximum likelihood is to resort to the EM
algorithm (Dempster et al., 1977). This is an iterative algorithm that produces
a sequence of parameter values in such a way that the likelihood of the data
increases at each iteration. To present this algorithm, it is convenient to introduce
the residual random lengths L; = (Lj,j € J) that have been censored to t; =
(tj,j IS J). Of course Lj > t;.

(i) let 6 be the current parameter value;

(i) calculate the conditional distribution rg of Ly given Ly > t;;

(i) find 0., that mazimizes ¢ — E,, In[r(¢;|0")r(L;|0")];

(iv) put 0 = 0,,,, and goto (ii).

It should be pointed out that step (iii) of this algorithm also includes a maximiza-
tion procedure. However the functions to be maximized do not depend on R and
are therefore simpler to maximize than the likelihood of the censored data.
Nonetheless, this algorithm has some drawbacks. Calculating the expectation of
step (iii) may be problematic. On the other hand, convergence may take place only
to a local maximum that depends on the initial parameter value. Finally, the rate
of convergence may be quite slow.

2 However, the family of p.d.f.’s is usually designed so as to warrant a maximum whatever the
data set considered.
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3.3 STOCHASTIC EXPECTATION-MAXIMIZATION PROCEDURE (EM)

All these difficulties prompted Celeux and Diebolt (1985) to introduce the SEM
algorithm that consists of replacing the calculation of the expectation by a simu-
lation:

(i) let O be the current parameter;

(ii) generate Ly ~ rg;

(iii) find 6,, that maximizes 8’ — r(L10")r(£;]0");

(iv) put @ = 0,,,, and goto (ii).

Once again, this algorithm requires a maximization procedure. But what has to
be maximized is the likelihood of pseudo-complete data instead of that of the
censored data. As mentioned by Diebolt and Ip (1996), the outcome of such an
algorithm, after a burn-in period, is a sequence of parameter values sampled from
the stationary distribution of the algorithm. Its mean is close to the MLE result.
Its dispersion reflects the information loss due to censoring.

3.4 BAYESIAN ESTIMATION (BE)

Now that the expectation step has been avoided, the tedious part of the SEM al-
gorithm is the maximization step. It can also be avoided by putting the estimation
problem into a Bayesian perpective. More precisely, assume that 6 is a realization
of a random parameter © with prior distribution p. Then the posterior distribution

of © is
q(01¢r,ts) o< p(0)r(€r]0)[1 — R(t;|0)]

The following algorithm has been designed so as to admit ¢ for stationary distri-
bution:

(i) generate 0 ~ p;

(ii) generate Ly ~ 1g;

(iii) generate 6 ~ p(-)r(€r]-)r(€s]-), and goto (ii).

This algorithm is nothing but a Gibbs sampler on (L, ©). Step (ii) updates L
while step (iii) updates ©.

4 Weibull distribution

In order to implement MLE, EM, SEM and BE, an assumption must be made on
an appropriate family of p.d.f. for g. Many choices are possible (Gamma, Pareto,
Weibull etc...These distributions are described in full detail in Johnson and Kotz
(1970)). In this paper, the actual trace lengths are supposed to follow a Weibull
distribution with (unknown) parameter « and index b («,b > 0)

Wa p(¢) = abexp {—(b0)*} (b0)* ! >0 (4)

If L ~ wqp, then bL ~ wq,1. In other words, b is nothing but a scale factor. In
contrast to this, the parameter « determines the shape of the distribution. If @ < 1,
then wq is monotonic decreasing and unbounded at the origin. If & > 1, then
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Wq,p is @ unimodal distribution that is similar in shape to a normal distribution at
large o values. In the intermediary case oo = 1, wy p is an exponential distribution.
The Weibull distribution has finite moments at all positive orders

E(L”) :I‘(n#nl—i—l) (5)

A Weibull distribution can be simulated either by inverting its distribution function
or by considering a standard exponential variable U and then delivering U/ /b.

The residual p.d.f. associated with the Weibull distribution is

Tap(l) = exp {—(b0)*} >0

b
Ia=t+1)
This p.d.f. is monotonic decreasing whatever the values of o and b. The moments
are equal to

n 1 I'((n+1at+1)
E(R") = — = (6)
br(n+1) T(a"t+1)

It can be noted that E(R) < E(L) when o > 1 as well as E(R) > E(L) when
a < 1. The equality E(R) = E(L) that takes place in the case o = 1 stems from
the lack of memory of the exponential distribution.
A simple way to generate a residual trace is to put R = U Vs where U an V are
two independent variables respectively uniformly distributed on ]0, 1[ and gamma
distributed with parameter a~! + 1 and index b.

5 A simulation test

In order to test the efficiency of three of the procedures presented (MLE, SEM
and BE), they have been applied to populations of residual traces sampled from
70.5.1 with mean3 6m and variance 84m?. Each population can have 4 possible sizes
(100, 200, 500 or 1000 traces), as well as 4 possible censoring levels (0.924m, 2.817m,
7.250m and oo, in accordance with the percentiles 75%, 50%, 25% and 0%). For
each of the 4 x 4 = 16 types considered, 10 populations have been simulated.

Figure 3 shows the influence of the size of the population, of the censorship pro-
portion and of the type of estimator on the estimation of both parameters v and
b. Several observations can be made:

The estimated points («, b) are organized as elongated clouds;

those clouds tend to shorten as the size of the population increases;

the target point (0.5, 1) is not offset;

the censorship proportion is mainly influential for large populations sizes;
the Bayesian clouds are shortest.

S b=

3 To give a comparison, the mean and the variance of the Weibull distribution wo.5,1 are
respectively 2m and 20m?2.
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Figure 3. This figure plots the estimation of b versus that of « as a function of the

estimator chosen, the number of traces in the population and the proportion of traces

censored
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The first observation suggests that both estimates & and b are functionally depen-
dent. To fix ideas, consider for instance the case of the MLE. By taking the partial
derivative of the log-likelihood of the simulated data w.r.t. b, one can end up with

an equation of the form
A Ziel é? N
b= f <#Ia#<]a Tataa

where f is a deterministic function, #I (resp. #J) denotes the number of elements
of I (resp. J) and t is the censoring level. In other words, the complete residual
traces act in the estimation process only via their number and their empirical
moments. In particular, if #I and #J have been fixed, all variability that can be
expected in the parameter estimation derives from the statistical fluctuations of
those empirical moments. When # is large, they are not significantly different
from the moment of order « of ro51 (see (6)) and the relationship between & and
b becomes deterministic.

The second observation is standard. The estimators have less and less variability
as the population increases. In the case of large populations, the third observation
indicates that the estimators tend to concentrate around the target point. In other
words, the estimators are asymptotically unbiased.

The fourth observation is not surprising either. For large population sizes, the only
factor that can affect the variability of the estimators is the censorship threshold.
The fifth observation suggests that the Bayesian procedure gives better results than
MLE or SEM. This observation should be mitigated by the fact that the results
obtained are highly dependent on the prior distribution chosen for (a,b). Here it
has been supposed to be uniform over ]0, 1[x]0, 2[. If the range of uniformity of only
one of the parameters had been extended, then the variability of both estimators
would have been substantially increased.

6 Case study

The same three estimation procedures have been applied to a population of 419
traces taken from different outcrops embedded in the same geological formation,
the Oxfordian limestones which overlie the Callovo-Oxfordian argilite formation of
the underground research laboratory of ANDRA in the East of France. Fractures
are subvertical and comprise faults and joints. A detailed structural and statistical
study of the various fracture sets has been carried out (Bergerat et al, 2004). Here a
directional set of subvertical joints is considered. The trace lengths range between
0.2m and 15m with a mean of 2.4m and a standard deviation of 2.5m. Only 62 of
the traces are censored (15%). Preliminary experiments suggested that one should
certainly have o < 2 as well as b < 1. This motivated us to apply the BE procedure
with («,b) a priori uniformly distributed on |0,2[x]0,1[. On the other hand, the
SEM and BE procedures have been resumed during 5000 iterations including a
burn-in period of 1000 iterations. The 4000 pairs of values (a;,b,) generated by
each procedure have been averaged to obtain the estimates of o and b of Table 1.
This table gives also estimates of the mean and of the standard deviation of the
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Weibull distribution. They have been obtained by calculating at first the mean
m,, and the standard deviation o,, associated to each (e, b,,), and then averaging
them.

I L N

MLE | 0.860 | 0.370 | 2.919 | 3.407
SEM | 0.837 | 0.464 | 2.366 | 2.841
BE 1.094 | 0.374 | 2.582 | 2.362

Table 1. Estimates obtained from the three procedures

The three estimated values for a and b cannot be considered as similar. Nonethe-
less, they give reasonably comparable estimations for the mean trace length. In
contrast to this, the differences between the estimated standard deviations are
more pronounced*

0.25 ]
0.20 A

0.154
0.10 4

0.05 !

OVOD o T T T T
0 50 100 150 200

Figure 4. Variogram of the estimates of the mean along iterations

A potent advantage of Bayesian estimation is that it delivers a posterior distrib-
ution for the parameters under study, from which variances, quantiles as well as
confidence limits can be deduced. For instance, it is possible to assign a variance
to the estimate of the mean. As the values generated are dependent a simple
approach is to consider the sill of the experimental variogram of the m,’s (see
Fig. 4). We arrive at a variance of 0.183m? (or a standard deviation of 0.43m).
Using similar approaches, it is also possible to attribute a variance to the standard
deviation estimate (0.050m?) or even a covariance between the mean and the
standard deviation estimates (0.048m?).

7 Discussion

In this paper, the traces have been considered as independent. This is of course a
simplifying but not always appropriate assumption. In the case where joints tend
to cluster or when they abut to the border of sedimentological layers, dependence
relationships must be introduced between traces.

4 It can also be mentioned that the trace length distribution was estimated in a previous
exercise (Bergerat et al, 2004) using a MLE based on the gamma family. The estimated mean
(2.67m) and the estimated standard deviation (2.84m) obtained are perfectly compatible with
the results of this paper.
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Another simplification has been made by assuming that the joints have their trace
length independent of their orientation. If this assumption is not valid, Terzhagi’s
correction must be applied to compensate for the fact that a joint has more chance
to be observable when its orientation is orthogonal to the outcrop (see Chiles and
de Marsily (1993) and references therein).

Outcrop
(seen from above)

Figure 5. The more elongated the joint in the direction orthogonal to the outcrop,
the more chance it has to be observed as a trace

One also may wonder what is the relationship between the trace length and the
joint height distributions? To fix ideas, suppose that the joints are rectangles. Then
a random joint has its statistical properties specified by the trivariate distribution
of its width W, its height H and its dihedral angle © with the outcrop. The p.d.f.
g of the trace lengths is related to that of the joint heights f by the formula

g(h) < f(h)E{W sin©|H = h}

Simplifications occur in the following cases:

1. If W and H are proportional, then g(h) o< hf(h)E{sin ©|H = h};
2. If W and H are independent, then g(h)  f(h)E{sin ®|H = h};
3. If © is uniform on |0, 7/2[, then g(h) « f(h)E{W|H = h}.
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ON SOME CONTROVERSIAL ISSUES OF GEOSTATISTICAL SIMULATION
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Abstract. In this paper, we intend to clarify some conceptual issues of geostatistical
simulation such as reproduction of the model covariance, equi-probability,
independence, etc. We also introduce discussions on the confusion between simulating
ergodic random functions and sampling random vectors. Our focus is on the
interpretation of these probabilistic concepts in terms of realizations rather than the
precision of simulation algorithms.

1 Introduction

Should conditional simulations reproduce the model covariance? This is one of the
many controversial issues in geostatistics. Some argue that conditional and
unconditional realizations are realizations of the same random function model and that
they must reproduce the model covariance due to the ergodicity of the random function
model. Of course, this reproduction is up to statistical fluctuations, i.e. fluctuations from
the model parameters because of the limited size of a realization. Others argue that
conditional realizations must respect the conditional (or posteriori) covariance but not
the model (prior) covariance, and that this conditional covariance is different from the
model prior covariance and even non-stationary whatever the model prior covariance.

Another famous controversial issue relates to the equi-probability of independently
generated realizations. For ones, as random seed numbers are equi-probable, the
resulting realizations are equi-probable too. For others, when in the Gaussian framework
for instance, realizations (discretized as vectors) in the neighborhood of the mean vector
are more likely to happen than the others. Therefore, realizations of a multi-Gaussian
vector are not equi-probable even when independently generated.

The analysis of these contradictory points of view leads to other issues like

e [s there any (numerical) criterion to say that two (or several) realizations of a
random function (in a large-enough domain) are independent?

e Can we generate an infinity of “independent” realizations of a random vector of
finite dimension?
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e Is geostatistical simulation of random functions consistent with the sampling of
multivariate distributions?

Understanding what is behind these issues is not only of philosophical interest, but also

of great importance in the application of geostatistical methods to model calibration,

model sampling and uncertainty estimation etc.

In this paper, we intend to clarify some of the above issues and to introduce discussions
about some others. Our discussions are limited to the stationary (multi-)Gaussian
random function. We focus on conceptual issues of numerical simulations rather than
numerical precision of simulation algorithms. We also explore the significance of some
well established concepts of probability (Feller, 1971) in terms of an individual
realization or a set of realizations. We always assume that the simulation domain is large
enough with respect to the covariance range.

2 Regional covariance and covariance matrix
2.1 REGIONAL COVARIANCE

We study physical properties that are unique and defined in a field. With the
geostatistical approach, a physical property is considered as a realization of an ergodic
random function. The ergodic property is necessary for the inference of the structural
parameters (regional mean, variance and covariance etc.) of the random function model
from a single realization. When a random function model is adopted to represent the
physical property, we use the measurements (data) at some locations of the field to infer
the structural parameters that specify the random function. Then we build realizations of
the random function and each of these realizations should honor, up to statistical
fluctuations, the inferred structural parameters due to ergodicity.

Assume that we have enough data to infer correctly the regional covariance. The
uncertainty in the inference of the regional covariance is an important, but different
issue. The reproduction of the regional covariance in geostatistical simulations is
essential because this covariance is inferred from physical data and not just only prior
idea. We believe that it is methodologically inconsistent to infer the covariance from a
data set and then to build a realization, conditioned to the same data set, that has a
covariance, i.e., the posterior covariance in the Bayesian terminology (Tarantola, 1987
de Marsily et al., 2001), conceptually different from the inferred one.

Let us examine how conditioning an unconditional realization by kriging preserves the
regional covariance. Consider a stationary standard Gaussian random function Y (x).
Let (Y(x,),Y(x,),...,Y(x,)) be a standard Gaussian vector and ¥ (x) the simple
kriging of Y(x) wusing the covariance function C(4) and the data set
(Y (x),Y(x,),....,Y(x,)). Let S(x) be a standard Gaussian random function with
C(h) as covariance function but independent of Y(x), and S”(x) the simple kriging
of S(x) using the data set (S(x,),S(x,),...,5(x,)) . Then, Y. (x) defined by
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Y(x) =Y (x) +S(x) = S"(x)
is a standard Gaussian random function with C(/) as covariance function, and Y (x)

is conditioned to the random vector (Y (x,),Y(x,),....,Y(x,)).

We note that the proof of the above result in Journel and Huijbregts (1978) or in Chilés
and Delfiner (1999) assumes that the conditioning data set is a random vector. When the

conditioning data set is fixed, YL(X) becomes actually non-stationary. In particular, the
mean values of Y (x) at the data locations X,,X,,...,X, equal respectively the data
values, and the variances of Y (x) at these locations are zero. In general, the covariance
of the random function Y,(x) with a fixed conditioning data set is non-stationary

(dependent on the location X ) and therefore different from C(4) .

However, the fact that the covariance of the random function Y (x) with a fixed
conditioning data set is non-stationary does not necessarily mean that the regional
covariance of an individual realization of Y (x) would not reproduce the model
covariance C(/). Indeed, because Y.(x), conditioned to the random vector
(Y (x,),Y(x,),....,Y(x,)), is a stationary ergodic random function, all realizations of
Y (x) should reproduce the covariance function C(/4) up to statistical fluctuations.
Consequently, for any fixed data set (y(X,), V(X,),...,¥(xX,)), ie. a realization of
(Y(x,),Y(x,),....,Y(x,)), and any realization s(x) of S(x), y,.(x) defined by

V()= ¥ () +5(x) = 5"(x)
is a Gaussian realization conditioned to ()(x,), ¥(X,),..., ¥(x,)) and provides C(h)

as its regional covariance up to statistical fluctuations.

The difference and the relation between the regional covariance and the covariance of a
random function should become clearer by examining the concept of covariance matrix.

2.2 COVARIANCE MATRIX

In practice, we often need to discretize a random function over a finite grid. So we deal
with random vectors and we can define their covariance matrixes. In the literature, the
covariance matrix in the Bayesian framework is related to a set of realizations, instead of
a single realization. For instance, the posterior covariance matrix of a random vector
(after being conditioned to a data set) is related to the set of conditional realizations (not
to a single conditional realization). Similarly, the prior covariance matrix of a random
vector (before being conditioned to a data set) is related to the set of unconditional
realizations (not to a single unconditional realization).
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It is important not to confound the regional covariance of an individual realization with
the covariance matrix of an ensemble of realizations. Any conditional simulation of an
ergodic random function (discretized over a grid) must preserve the regional covariance
but not the prior covariance matrix that will certainly change after conditioning.

The above discussion can be further clarified through the following example. Let
(¥(x,), ¥(x,),...,¥(x))) be an unconditional realization of the Gaussian random

vector (Y(x,),Y(x,),....,Y(xy)). We use, for instance, the sequential Gaussian
simulation method for generating realizations and we assume that all conditional
distributions are computed without any approximation. When N is large enough and
when the grid nodes (X,,X,,...,X,) covers a domain much larger than the area
delimited by the covariance range, the experimental (regional) covariance should
reproduce the theoretical covariance. Now, consider y(X;) as a conditioning datum,
and we generate realizations of (Y (x,),...,Y(x,)) conditioned to y(x,). By using
the same random numbers for sampling the conditional distributions at the nodes
(xzs---st) as in the case of the above unconditional simulation, we obtain the

realization  (y(x,), y(x,),...,(xy)) conditioned to »(x;). This conditional

realization is identical to the unconditional realization and therefore has the same
experimental (regional) covariance. However, if we generate a set of realizations

conditioned to y(xl) , their covariance matrix will be different from the model prior

covariance.

In general, an unconditional realization ()(x,), y(x,),..., (X, )) of a random vector
(Y (x,),Y(x,),...,Y(xy)) can always be seen as a realization conditioned to

(¥(x)), ¥(x,),..., ¥(x;)) for I <N . Evidently, this suggests that the conditioning
does not necessarily change the regional covariance.

2.3 SUMMARY

The regional covariance and the covariance matrix (in the Bayesian terminology) are
two different concepts in geostatistical simulation. A conditional simulation method
should guaranty that the regional covariance of each conditional realization reproduces,
up to statistical fluctuation, the model covariance function. However, the covariance
matrix of a set of conditional realizations is conceptually (not because of statistical
fluctuations) different from that of a set of unconditional realizations.

The covariance reproduction in geostatistical simulation means the reproduction of the
regional covariance, not the (prior) covariance matrix. The reproduction of a covariance
matrix is a much stronger requirement than that of a regional covariance. Reproduction
of a covariance matrix requires generating a large-enough number of realizations that
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represent correctly the multivariate probability distribution, while the regional
covariance is related to a single realization.

Because of the uniqueness of the physical property under study, the regional covariance
has a physical sense, while the covariance matrix is a model concept.

3 Equi-probability and likelihood

“Are realizations of a stochastic model equi-probable?” is another controversial issue
that still troubles practitioners of geostatistics. Considering a set of realizations as equi-
probable or not can change completely the way we evaluate uncertainties from these
realizations.

3.1 EQUI-PROBABILITY

Consider, for instance, the numerical simulation of a stationary Gaussian random
function of order 2 over a finite grid of the simulation field. Namely, we simulate a

Gaussian vector ¥ of N components (Y (x,),Y(x,),....,Y(xy)). Now if we

generate K realizations of Y': y,,V,,..., Yy , starting from K independent uniform

numbers (random seeds issued from a random number generator), these realizations are
equi-probable. This is because the uniform seeds can be considered as equi-probable,

and for a given seed, a simulation algorithm produces a unique realization of Y after a
series of deterministic operations.

3.2 LIKELIHOOD

However, the probability density values of the random vector Y at y,,,,..., V; are
different. Consider two realizations ), and ), and assume that g(y,)>g(»,),
where g stands for the probability density function of Y . Thus, we are more likely to
generate realizations in the neighborhood of y, than in that of ), . In other words, for a
given small-enough domain O&(y) located at ) and a large-enough number of
realizations of the vector Y, there are more realizations in ¢(y,) than in 0(y,) . But

this does not mean ), is more probable to happen than y,. Consequently, when

evaluating uncertainty using a set of independently generated realizations, they must be
equally considered with the same weight.

3.3 SUMMARY
Before generating realizations, there is a larger probability to generate a realization in

the neighborhood of the realization of higher probability density. But once a set of
realizations is generated independently between each other, they are all equi-probable.
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4 Independence, correlation and orthogonality
4.1 INDEPENDENCE

When performing numerical simulation of the random function model, one often needs
to generate more than one realization. These realizations are said independent because
they are built by using the same simulation procedure but with different random seeds.
These random seeds are said statistically independent. This is meaningful when a large
number of random seeds are generated. Now, if we generate only a few realizations, say
only two realizations, we need then only two random seeds. Because it does not make
sense to talk about statistical independence with only two fixed numbers, does it make
sense to talk about independence of two realizations of a random function model?

But geostatisticians are used to build models with only two "independent" realizations.
This is the case when building realizations of the intrinsic model of coregionalization
(Matheron, 1965; Chiles and Delfiner, 1999), when perturbing a realization by
substituting some of its values with some other “independent” values (Oliver et al.,
1997), when performing a combination of two independent realizations within the
gradual deformation method (Hu, 2000), when modifying a realization using the
probability perturbation method (Caers, 2002), etc.

If it does not make sense to check the independence between two realizations, it is
nevertheless meaningful, at least for large realizations, to evaluate the degree of their
correlation.

4.2 CORRELATION
Consider again the N -dimensional standard Gaussian vector
Y=(Y(xl),Y(xz),...,Y(xN)). Let Vi =(y,-(xl),yi(xz),---,yi(x;v))

(1=1,2,...,1) be I independent realizations of Y. For each realization y,, we

compute its mean and its variance:

1 N
m, =— (x
; N;:ly,( )

N
#=%;&m%mr

When N is large enough and when the grid (X;,X,,...,X, ) covers a domain whose
dimension in any direction is much larger than the covariance range, we have m, = 0,

0-1'2 ~ 1. For any two realizations ), and y ;» we usually compute their correlation

coefficient as follows:

i
NS o o,

_LZN: y,(x,)-m, | ¥,(x,)—m,
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We have 7, =1 for i = j, and because of the “independence” between ), and y; for
i# J, we have 7; 0. In practice, if the correlation coefficient 7; (i # j) is

significantly different from zero, then the two realizations ); and Y are considered as

correlated, and therefore dependent.

4.3 ORTHOGONALITY

Now for any two realizations y; and y;, we define the following inner product:

<yi’yj> =%ﬁ:yi(xn)yj(xn)

We have <yi,yj>zrij ~0 for i# jand <yi,yj>zrij =1 for i=j. Therefore,
when [ =N, the N vectors y, =(y,(x)),7,(x;),.., y,(xy)) (i=L2,..,N)

constitute an orthonormal basis (up to statistical fluctuations) of an /N -dimensional

vector space V), furnished with the above inner product. All other realizations of the

random vector Y can be written as linear combinations of these N independent

realizations )}, ),,...,Vy . In other words, we cannot generate more than N

realizations of an NV -dimensional random vector so that the above usual correlation
coefficient between any two of these realizations equals zero.

4.4 CONSEQUENCE

The above remark has an unfortunate consequence for many iterative methods that
involve the successive use of independent realizations. For instance, the gradual
deformation method requires generating, at each iteration, a realization independent
from all realizations generated at previous iterations. When the number of iterations of
the gradual deformation method becomes equal to or larger than the number of grid

nodes, the optimized realization at iteration / (/> N) and a new realization at

iteration /+1 are linearly dependent (not because of statistical fluctuations).
Consequently, the condition for applying the gradual deformation method with
combination of independent realizations is no longer satisfied when the number of
iterations is larger than the number of grid nodes. This explains why when applying the
gradual deformation method with a large number of iterations (much larger than the
number of grid nodes), it is possible to progressively force the optimized realization to
have a regional covariance different from the initial one (Le Ravalec-Dupin and
Noetinger, 2002).

Nevertheless, in practice, the number of iterations is hopefully much smaller than the
number of grid nodes. Otherwise, the method is not applicable when the calculation of
the objective function requires heavy computing resources.
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5 Random function or random vector?

Up to now, we have assumed that an ergodic random function can be represented by a
random vector. This seems questionable. Consider the following experimentation of

thought. Let )(x) be an ergodic realization of the standard Gaussian random function
Y (x). Assume now k(x) = exp[y(x)] represents a physical property distributed in a

field, say rock permeability in an oil field. The “real” permeability field is then
completely known. Starting from a large-enough data set of k(x), we can infer the

covariance of the random function model Y (x).

Now because we generate realizations over a finite grid (x;,X,,...,X, ), we deal with a
Gaussian vector ¥ = (Y (x,),Y(x,),....,Y(xy)). As discussed before, there is a non-

negative probability to generate realizations in a given domain O() located at . For
a domain of fixed size, this probability is maximal when ) equals the mean vector. If

we sample correctly the random vector Y, there is a non-negative probability to
generate realizations in the neighborhood of the mean vector. These realizations have
small regional variances (smaller than the model variance 1) and their regional
covariance will not respect the model covariance inferred from @ the

“reality”: y(x) = In[k(x)]!
The above reasoning (if it makes sense) leads to the following consequences:

e  Geostatistical simulations (over a finite grid) cannot honor both the regional
covariance and the multivariate probability density function.

e The sequential simulation algorithm (Johnson, 1987; Deutsch and Journel, 1992) is
related to random vectors, and therefore it cannot generate realizations of ergodic
random functions (Lantuéjoul, 2002), even in the Gaussian case where we can
compute the conditional distribution without approximation by using the global
neighborhood.

e The use of an exact sampling method based on the Markov iteration or the
acceptation/rejection (Omre, 2000) will make it possible to generate a set of
realizations representative of the multivariate probability density function. Due to
the maximum likelihood of the mean vector, we must expect some realizations
close to the smooth mean vector. This is not compatible with the foundation of
geostatistics whose aim is to model spatial variability inferred from real data.
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6 Conclusions and further discussions

If the theory of geostatistics based on simulating ergodic random functions is compatible
with that based on sampling random vectors, then we have the following conclusions:

e The regional covariance of each conditional or unconditional simulation should
reproduce, up to statistical fluctuations, the model covariance function inferred from
real data.

e A large-enough set of conditional (or unconditional) simulations should respect, up
to statistical fluctuations, the conditional (or unconditional) covariance matrix.

e A set of independently generated realizations are equi-probable but can have
different probability density values.

e We cannot generate more then /N orthogonal realizations of an NV -dimensional
random vector, if we use the usual correlation coefficient as the measure of
correlation between realizations.

However, it seems that the theory based on the exact sampling of random vectors is
contradictory with that based on the simulation of ergodic random functions. If this is
true, there are then two possible theories of geostatistics: one based on random functions
and the other based on random vectors. In the framework of the random function based
geostatistics, we can talk about ergodicity, regional covariance and its inference from a
single (fragmentary) realization (i.e., the real data set). In the framework of the random
vector based geostatistics, we can talk about covariance matrix, but not ergodicity (that
is not defined). The inference of the model parameters from a single realization is then
questionable. These two theories are self-consistent and but they seem not compatible
between each other. To avoid, at least, terminological confusion, it is necessary to
choose one of the two frameworks: random vectors or random functions. In practice, we
should expect that these two theories converge to each other with huge random vectors
and random functions in large field.

Note finally that, in most real situations, the primary concern in geostatistical modeling
remains the choice of a physically realistic random function (or set) model. For
instance, a multi-Gaussian model is in contradiction with many geological settings such
as fluvial channel or fractured system (Gomez-Hernandez, 1997). Then comes the
difficulty of building realizations that preserve the spatial statistics inferred from data
and that are calibrated to all quantitative (static and dynamic) data. The further
evaluation of uncertainty is meaningful only under the following conditions: first the
probability density function (pdf), conditioned to all quantitative data, covers correctly
the range of uncertainty and second enough samples (realizations) of this conditional pdf
can be obtained within an affordable time. The second condition depends on the
efficiency of the sampling algorithms and the computer resources. But the first
condition depends on the degree of objectivity of the pdf model. Because of the
uniqueness of the reservoir property of interest, a pdf model should largely be
subjective. We can evaluate uncertainty only within an subjective model (Matheron,
1978; Journel, 1994). The preservation of the model spatial statistics and the model
calibration to data are objective problems, while the uncertainty evaluation is a
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subjective one (although mathematically meaningful and challenging within a pdf
model).
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ON THE AUTOMATIC INFERENCE AND MODELLING OF A SET OF
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Abstract. The indicator approach to estimating spatial, local cumulative distributions is
a well-known, non-parametric alternative to classical linear (ordinary kriging) and non-
linear (disjunctive kriging) geostatistics approaches. The advantages of the method are
that it is distribution-free and non-parametric, is capable of dealing with data with very
skewed distributions, provides a complete solution to the estimation problem and
accounts for high connectivity of extreme values. The main drawback associated with
the procedure is the amount of inference required. For example, if the distribution
function is defined by 15 discrete thresholds, then 15 indicator covariances and 105
indicator cross-covariances must be estimated and models fitted. Simplifications, such
as median indicator kriging, have been introduced to address this problem rather than
using the theoretically preferable indicator cokriging. In this paper we propose a method
in which the inference and modelling of a complete set of indicator covariances and
cross-covariances is done automatically in an efficient and flexible manner. The
inference is simplified by using relationships derived for indicators in which the
indicator cross-covariances are written in terms of the direct indicator covariances. The
procedure has been implemented in a public domain computer program the use of which
is illustrated by a case study. This technique facilitates the use of the full indicator
approach instead of the various simplified alternatives.

1 Introduction

The general estimation problem can be stated as the estimation at unsampled locations
of the most probable value of a variable together with a measure of the uncertainty of
the estimation (e.g. estimation variance). A more complete and interesting solution to
the problem, however, is to estimate at each unsampled location the local cumulative
distribution function (cdf) conditioned to the neighbouring data. Point estimates,
interval estimates, measures of uncertainty and probabilities (e.g. probability of the
unknown value being greater than a specified threshold) can be easily obtained from the
estimated distribution function,. The indicator approach (Journel, 1983; Goovaerts,
1997) offers a non-parametric solution to the problem of estimating such local cdf. A
discrete representation of the cdf is defined by K thresholds from which K indicator
random functions can be derived by applying the thresholds to the continuous variable
Z(u):
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I(u;zk) _ {1 ifZ(u)Szk )

0 otherwise

Each indicator random function is assumed to be second-order stationary, i.e.
unbounded semi-variograms are not allowed and covariances and semi-variograms are
equivalent statistical tools. The expected values of the indicator variables are interpreted
as the distribution function of the continuous variable for the respective thresholds:

E{l(u;z,} = Fu;z;) = PrizZ(u)<z,} 2)

Estimating the different indicators provides estimates of the cdf, F'(u;z,), for the
different thresholds {z;;k =1,...,K} . The complete cdf is estimated by assuming a form

of the cdf between the thresholds and for the tails (Deustch and Journel, 1992;
Goovaerts, 1997).

Journel and Alabert (1989) argue that indicator cokriging is theoretically the best
estimator (in a least squares sense) of the cdf using indicators from the experimental
data for all the thresholds simultaneously. This is, however, an onerous procedure
requiring the inference of K* indicator covariances and cross-covariances. In practice,
the cross-covariances are assumed to be symmetric and the number of models is reduced
to K indicator covariances and K(K-1)/2 indicator cross-covariances. An asymmetrical
cross-covariance implies (from the non-centred cross-covariance) that:

PiZu) <z, Zu+h)<zp} #P{Z(u)<zp, Z(u+h) <z, } 3)
and:
P{Zw) <z} #P{Z(u+h)<z,} 4)

If the indicator random functions are second-order stationary, the random function Z(u)
is distribution-ergodic (Papoulis, 1984), the restriction in (4) no longer holds and thus
symmetrical cross-covariances are justified.

Even with the assumption of symmetric cross-covariances with, say, K = 10 there are 10
indicator covariances and 45 indicator cross-covariances to infer and model. The
inference of direct indicator covariances is not particularly difficult and can be done
more or less automatically by using maximum likelihood (Pardo-Igizquiza, 1998) to
infer the parameters (e.g., range, sill, nugget, anisotropy angle) without the need to
estimate the covariance for a number of lags and fit a model. Even using maximum
likelihood the inference and modelling of indicator cross-covariances is more difficult
because, inter alia, of the order relations (Journel and Posa, 1990) which impose
restrictions on the types of models that can be fitted to the indicator cross-covariances.
A much more efficient and routine procedure would be to express the cross-covariances
in terms of the direct indicator covariances.

2 Methodology

Given a continuous variable, Z(u), and its cdf, the range of values of the variable is
represented by K discrete thresholds. Given any pair of these thresholds, z, and zj,

(with the convention z, > z; ) a class, or categorical, variable, ¢ , can be defined with
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an associated indicator random function /(u;c; ) :

1 if Z(u)e Cp
I\u;c = 5
( k) {0 otherwise ®)
or, equivalently:
1 ifz < Z(u) <z,
Iu;c = k k 6
( k) {0 otherwise ©
with
I(usep) =1(uszp) —1(u, zy) (7

The covariance of the indicator random function for the class on the left hand side must
be equal to the covariance of the difference between the indicator random functions for
the thresholds on the right hand side:

Cov{l(u;c; )y = Covil(us zp) — 1(u,z;)} ®)
or Cov{l(u;cy )} =Covi{l(u;zp)}+Covi{l(u,z; )} —2Cov{l(u; 2y, ), L (u; 2 )} 9)
then C(hszz) =5 (01 sz) +Cy0z,) - €y ey (10)

which expresses the indicator cross-covariance of each pair of thresholds as a function
of the direct indicator covariances at the thresholds and for the class that they define.
There are K(K+1)/2 models, all defined by indicator covariances, which can be
efficiently modelled by maximum likelihood and where:

C,(hz,,2,) = Covil(u; ), I(u+ sy z,.)} = BU(us 2 ) [(u+ by z,.)} - F(z,)F(z,.)  (11)
C,(hz,)=Covil(u;z, ) [(u+h;z,)} = B{I ;2 ) [ (u+h;2,) )~ F*(2,) (12)
C,(hc,)=Covil(usc ) I(u+he,)y = B (u;e ) (u+hie,)} - (F(z,) - F(z,))  (13)

Note that, in general, Equation (10) defines
a composite model for the indicator cross- Zx)
covariance even if the direct indicator
covariances are simple models. There is no
need to fit a specific model to the indicator
cross-covariance as it is defined by the
indicator covariances and Equation (10).

Journel and Posa (1990) give the order
relations for indicator covariances and
indicator cross-covariances. The order

relations follow from the fact that the non- Z Zp
centred indicator covariances Fig. 1. General order
K;(h;z},z;)are  bivariate  cumulative relation

distribution functions, with
Ky(hzp,zp0) = Cr(hizp,2p0) + F (24 ) F (2p0) (14)

The general order relation can be written as (Journel and Posa, 1990):
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C,(hz)+C,(hz, )+ E=2C,(h;z,,z2,.) (15)
with E=F?(z,)+ F*(z,)—2F(z,)F(z,.) . This order relation is easily derived from
Figure 1 in which the shaded area represents a bivariate cumulative distribution

function, i.e. a probability which must be non-negative. Then B— 4—- D+ C >0, where
each of the corners is a non-centred indicator covariance and

K](h;ZkV)—K](h;Zk,ZkV)_K](h;ZkV,Zk)'i‘K[(h;Zk) >0
from which (15) can be easily derived taking account of (14) and the assumption of a

distribution-ergodic random function Z(u). Thus the non-centred indicator cross-
covariance is symmetric with respect to the thresholds.

Substituting (10) into (15) gives:

C(hicy) 2 2F () F(zp) = F*(z,) - F2 (zp) (16)
which can be written as:
C,(he,)2—~(F(z,)-F(z,)) (17)

As the term on the right hand side is always negative this inequality will be satisfied if
the covariance of the class indicator is positive. This inequality shows that (10)
conforms to the general order relation given by (15).

3 Case study

A realization of a non-Gaussian  |Threshold z; | F(z;)|Range of isotropic
random function was generated on | number spherical covariance
an 80 x 80 grid by sequential model (length units)
indicator simulation using the 1 0.1 0.1 6
program sisimm (Deutsch and 2 05| 03 8
Journel, 1992). The thresholds, 3 25| 05 10
quantiles and covariance models 4 50| 07 12

used for generating the realization 3 1001 09 24

are given in Table 1 and a plot of
the realization is shown in Figure
2. The range increases as the
quantile increases, implying that
there is greater connectivity of high values than low values - the semi-variogram range
for the 0.9 quantile is four times larger than that for the symmetrical quantile with
respect to the median (0.1).

Table 1. Thresholds and indicator models used in
generating the realization shown in Figure 2
using sisim (Deutsch and Journel, 1992).

A sample of 60 randomly located data was drawn from the realisation; the values of the
samples are represented in Figure 3. Maximum likelihood inference does not require
Z(u) to be Gaussian; in fact in this application it is applied to binary indicator data.
Nevertheless, using the likelihood of the multivariate normal distribution provides an
efficient estimator of the indicator covariance parameters (Pardo-Iguzquiza, 1998). The
procedure is also useful for model selection as shown hereafter.
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Fig. 2. Simulated random field using indicator sequential simulation with the parameters

given in Table 1.

For a specified type of model (spherical, exponential or Gaussian) the program infers the
model parameters of the indicator covariance for each threshold and all classes. Eight
models were assessed: (1) one isotropic model with no nugget; (2) one isotropic model
with nugget; (3) one anisotropic model with no nugget; (4) one anisotropic model with
nugget; (5) two nested isotropic models with no nugget; (6) two nested isotropic models

with nugget; (7) two nested models:
one isotropic, one anisotropic and no
nugget; (8) two nested models: one
isotropic, one anisotropic and a nugget.

The number of parameters ranges
from two for model (0) to seven for
model (7) - nugget, sill of isotropic
model, range of is otropic model, sill
of anisotropic model, long range,
short range and anisotropy angle. The
most appropriate model could simply
be chosen by inspection of the method
of moments estimate of the semi-
variogram (Figure 4) for the direct
indicator  semi-variograms at the
thresholds. Any of the models can be
tried and the quality of the fit can be
assessed by the value of the
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Fig. 3 Pictogram of 60 sample values with

locations selected at random from the 80 x 80
grid of the simulated field.
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negative log-likelihood function (NLLF). However, the model becomes more flexible as
more parameters are used, and a lower NLLF may be achieved by a meaningless over-
specification. A model selection criterion, such as the Akaike information criterion
(AIC) (Akaike, 1974), provides a trade-off between simple models and more exact fits:

AIC(0) =2L(0) +2k(0)
where: AIC(?) is the Akaike information criterion value for the /-th model,
L(?) is the value of the negative log-likelihood function for the ¢ -th model, and

k(¢) is the number of independent parameters fitted in the ¢ -th model.
The model with the lowest A/C(¢) value is chosen.
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Fig. 4 Experimental indicator semi-variograms for the five thresholds

For few observations simple models should be chosen as, in general, there is insufficient
evidence in the data for a model with a large number of parameters. In such cases using
a large number of parameters amounts to modelling the fluctuations generated by
sampling variability.

Table 2 shows the spherical model fitted by the program using the 60 observations
shown in Figure 3 for model 1. In terms of the AIC values the best model is one
isotropic structure with no nugget, which is the model used to generate the simulated
realization. When comparing estimated parameters with those used in the simulation it
should be remembered that only 60 randomly located data were used for the estimates
and, as a consequence, they are subject to a high degree of sampling variability.
Nevertheless, the ranges of the spherical models are quite well estimated.
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Indicator covariances

Threshold Covariance parameters Anisotropy| Model
I AIC Co C Range 1 | Range 2 angle type
1 57440 | 0.0 0.149 5.883 5.883 0.0 1
2 78.399 | 0.0 0.226 8.818 8.818 0.0 1
3 77.549 | 0.0 0.226 9.336 9.336 0.0 1
4 63.744 | 0.0 0.204 13.996 | 13.996 0.0 1
5 -27.800 | 0.0 0.058 22.627 | 22.627 0.0 1
Indicator covariances for the indicator classes
Threshold covariance parameters Anisotropy| Model
L | L AIC Co C Range 1 | Range 2 angle type
1 2 44.997 | 0.0 0.136 6.228 6.228 0.0 1
1 3 79.625 | 0.0 0.249 8.473 8.473 0.0 1
1 4 83.529 | 0.0 0.249 12.098 | 12.098 0.0 1
1 5 68.098 | 0.0 0.185 11.752 | 11.752 0.0 1
2 3 64.314 | 0.0 0.214 7.782 7.782 0.0 1
2 4 80.712 | 0.0 0.233 6.401 6.401 0.0 1
2 5 82.137 | 0.0 0.241 9.336 9.336 0.0 1
3 4 26942 | 0.0 0.056 10.371 | 10.371 0.0 1
3 5 74.151 | 0.0 0.202 9.336 9.336 0.0 1
4 5 55.506 | 0.0 0.173 13.996 | 13.996 0.0 1

Table 2. Results for one isotropic structure and no nugget, i.e. two parameters: variance
(sill) and range. I is indicator number, model type 1 is spherical.

From Table 2 and using (10) the models shown in Figure 5 are fitted to the indicator
cross-covariances. The example has been restricted to five thresholds to limit the size of
tables and number of figures, but even for large numbers of thresholds the procedure is
computationally efficient, e.g. the program generates the 120 models for 15 thresholds
in a few minutes.

4 Conclusions

The indicator cokriging of local cumulative distributions is often avoided because of the
burden of modelling a large number of indicator covariances and cross-covariances. The
authors have described a procedure that bases the modelling of the in