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FOREWORD 

The return of the congress to North America after 20 years of absence could not have 
been in a more ideal location.  The beauty of Banff and the many offerings of the Rocky 
Mountains was the perfect background for a week of interesting and innovative 
discussions on the past, present and future of geostatistics. 

The congress was well attended with approximately 200 delegates from 19 countries 
across six continents.  There was a broad spectrum of students and seasoned 
geostatisticians who shared their knowledge in many areas of study including mining, 
petroleum, and environmental applications.  You will find 119 papers in this two 
volume set.  All papers were presented at the congress and have been peer-reviewed.  
They are grouped by the different sessions that were held in Banff and are in the order 
of presentation. 

These papers provide a permanent record of different theoretical perspectives from the 
last four years.  Not all of these ideas will stand the test of time and practice; however, 
their originality will endure.  The practical applications in these proceedings provide 
nuggets of wisdom to those struggling to apply geostatistics in the best possible way.  
Students and practitioners will be digging through these papers for many years to come. 

Oy Leuangthong 
Clayton V. Deutsch 
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ACCOUNTING FOR GEOLOGICAL BOUNDARIES IN GEOSTATISTICAL 

MODELING OF MULTIPLE ROCK TYPES 

PAULA LARRONDO and CLAYTON V. DEUTSCH 
Department of Civil & Environmental Engineering, 220 CEB,
University of Alberta, Canada, T6G 2G7 

Abstract. Geostatistical simulation makes strong assumptions of stationarity in the 
mean and the variance over the domain of interest.  Unfortunately, geological nature 
usually does not reflect this assumption and we are forced to subdivide our model area 
into stationary regions that have some common geological controls and similar 
statistical properties.  This paper addresses the significant complexity introduced by 
boundaries.  Boundaries are often soft, that is, samples near boundaries influence 
multiple rock types.

We propose a new technique that accounts for stationary variables within rock types and 
additional non-stationary factors near boundaries.  The technique involves the following 
distinct phases: (i) identification of the rock types and boundary zones based on 
geological modeling and the timing of different geological events, (ii) optimization for 
the stationary statistical parameters of each rock type and the non-stationary mean, 
variance and covariance in the boundary zones, and (iii) estimation and simulation using 
non-stationary cokriging.  The resulting technique can be thought of as non-stationary 
cokriging in presence of geological boundaries. 

The theoretical framework and notation for this new technique is developed.  
Implementation details are discussed and resolved with a number of synthetic examples.  
A real case study demonstrates the utility of the technique for practical application. 

1 Introduction 

The most common geostatistical techniques, such as kriging and Gaussian/indicator 
simulation, are based on strong assumptions of stationarity of the estimation domains. In 
particular, they are based in a second order stationary hypothesis, that is, the mean, 
variance and covariance remain constant across the entire domain and they do not 
depend on the location of the support points but only in the distance between them. 

Once estimation domains have been selected, the nature of the boundaries between them 
must be established. Domain boundaries are often referred to as either ‘hard’ or ‘soft’. 
Hard boundaries are found when an abrupt change in the mean or variance occurs at the 
contact between two domains. Hard boundaries do not permit the interpolation or 
extrapolation across domains. Contacts where the variable changes transitionally across 
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the boundary are referred as soft boundaries. Soft domain boundaries allow selected data 
from either side of a boundary to be used in the estimation of each domain.

It is rather common that soft boundaries are characterized by a non-stationary behavior 
of the variable of interest in the proximities of the boundary, that is, the mean, variance 
or covariance are no longer constant within a zone of influence of one rock type into the 
other, and their values depends on the location relative to the boundary. An example is 
the increased frequency of fractures towards a boundary between geological domains of 
structural nature. Faults or brittle zones are examples of this transition. The fractures 
may cause the average to increase close to the boundary. The increase in the presence of 
fractures will often lead to an increase in the variance closer to the boundary. 

Although soft boundaries are found in several types of geological settings due to the 
transitional nature of the geological mechanisms, conventional estimation usually treats 
the boundaries between geological units as hard boundaries. This is primarily due to the 
limitations of current estimation and simulation procedures. We will show that non-
stationary features in the vicinity of a boundary can be parameterized into a local model 
of coregionalization. With a legitimate spatial model, estimation of grades can be 
performed using a form of non-stationary cokriging. This proposal provides an 
appealing alternative when complex contacts between different rock types exist. We 
develop the methodology in the context of mining geostatistics, but it is widely 
applicable in many different settings. 

2 Theoretical Background 

The technique involves the identification of stationary variables within each rock type 
and additional non-stationary components near boundaries for the mean, variance and 
covariance. For a geological model with K rock types or estimation domains, there are a 
maximum of ( 1) / 2K K  boundary zones to be defined. Then, the continuous random 

function Z(u) that represents the distribution of the property of interest can be 
decomposed into K stationary random variables Zk(u) k=1,…,K and a maximum of 

( 1) / 2K K  non-stationary boundary variables Zkp(u), with k,p=1,…K and 

Zkp(u)=Zpk(u) (Figure 1). By definition, the non-stationary variable will take values only 
for locations within the maximum distance of influence of rock type k into rock type p.

The maximum distance of influence orthogonal to the boundary of rock type k into rock 
type p is denoted dmaxkp. A boundary zone is defined by two distances: dmaxkp and 
dmaxpk, since there is no requirement that the regions on each side of the boundary are 
symmetric, that is, dmaxkp dmaxpk. The modeler using all geological information 
available and his expertise should establish these distances. 

When more than two rock types converge at a boundary, two or more rock types may 
influence the boundary zone in the adjacent domain. In this case, precedence or ordering 
rules should determine the dominant boundary zone. Although the behavior of a 
property near a boundary could be explained by the overlapping of different geological 
controls, the task of identifying the individuals effects of each rock type and their 
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interactions can be quite difficult. Geological properties are not usually additive and 
therefore the response of a combination of different rock types is complex. Only one 
non-stationary factor will be considered at each location. The modeler should put 
together the precedence rules based on the geology of the deposit. The relative timing of 
intrusion, deposition or mineralisation events, geochemistry response of the protolith to 
an alteration or mineralisation process could be used to resolve timing and important 
variables. If the geological data does not provide sufficient information to establish a 
geological order of events, a neutral arrangement can be chosen. In this case, the 
precedent rock type p at a location will be the one to which the distance to the boundary 
is the minimum over all surrounding rock types. 

Figure 1: Decomposition of a one-dimensional random function Z(u) in two stationary 
variables Zk(u) and Zp(u), with constant mean and variance, and a non-stationary 
boundary variable Zkp(u), with a mean and variance that are functions of the distance to 
the boundary.
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STATIONARY AND NON-STATIONARY STATISTICAL PARAMETERS 

The mean function of the continuous random function Z(u) for a specific rock type k
will be the mean of the stationary variable Zk(u) plus the mean of any corresponding 
non-stationary variable Zkp(u). The stationary component of the mean (mk) is
independent of location and is a constant value. The non-stationary component of the 
mean (mkp) is a function of the distance to the boundary, dpk(u) and takes values different 
than zero for locations within the boundary zone defined by rock types k and p. The
mean of rock type k is: 

, if ( )
( ) where 

( ( )) , otherwise

k pk i pk
i i

k pk i

m d dmax
E Z

m f d k

u
u u RT

u

where p is the adjacent rock type that shares a boundary with rock type k and ( )f  is an 

arbitrary function that describes the mean as a function of distance to the boundary. 

Similarly, the variance of Z(u) for rock type k will be the sum of a constant stationary 
variance ( k

2) due to Zk(u) and the independent non-stationary variance ( kp
2) due to 

Zkp(u). The variance of a random function Z(u) in a rock type k is: 
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( ( )) ,  otherwise
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where p is the adjacent rock type that shares a boundary with rock type k and ( )g  is an 

arbitrary function that describes the variance as a function of distance to the boundary. 

As with the mean and variance, the covariance structure between two rock types that 
share a local non-stationary boundary consists of a stationary and a non-stationary 
component.

( , ) ( ) ( ) ( ) ( ) ( ) ( , )Z i i i i i i Z Z i iCov E Z m Z m Cov CovS NS
u v u u v v h u v

where h=ui – vi. Since Zk(u) and Zkp(u) are independent random variables, the cross 
terms are zero, therefore the covariance of Z(u) is the sum of the stationary and non-
stationary components. The combination of these components corresponds to a local 
linear model of coregionalization. 

The stationary component of the covariance can be calculated and modeled from data 
pairs within the internal stationary portion of a rock type, that is ui and vi belong to rock 
type k, and do not belong to any boundary zone.

To obtain the non-stationary component of the covariance model we will assume that 
the shape of the spatial correlation of the non-stationary variable Zkp(u) k,p=1,…,K is 
stationary and that it can be specified by the modeler. Due to the non-stationary nature 
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of variable Z(u) at the boundary zone, this relative stationary spatial model has to by 
scaled at each point by a non-stationary mean and variance. The relative standardized 
variogram model for the boundary zone is: 

2
( ) ( ) ( ) ( )1ˆ ( , )

2 ( ) ( )
i i i i

kp i i
i i

Z m Z m
E

u u v v
u v -

u v

where ( ) ( )kp km m mu u  and ( ) ( )kp ku u . Expanding and reordering the 

terms of the squared difference, and since 2 2( ) ( ) ( )i i iE Z mu u u  and 

( ) ( )i iE Z mu u , the previous expression becomes: 

( , )ˆ ( , ) 1
( ) ( )

z i i
kp i i

i i

CovNS
u v

u v
u v

Reordering the terms and replacing the mean and variance by the sum of their stationary 
and non-stationary components, we obtain an expression for the non-stationary 
covariance model: 

( , ) ( ) ( ) ( ( ) ) ( ( ) )

ˆ(1 ( , )) ( ( ) ) ( ( ) )

Z i i i i kp i k kp i k

kp i i kp i k kp i k

Cov E Z Z m m m mNS
u v u v v u

u v u v

Currently we assume that the shape, anisotropies and nugget effect of the relative 
standardized variogram are inputs from the modeler; only the range must be established 
through an optimization algorithm. 

3 Optimization of the Statistical Parameters 

We need to find the optimum ( ( ))pk if d u , ( ( ))pk ig d u  and ( , )Z i iCovNS
u v  that fit the 

distribution of the random variable Z(u) at the boundary zone given the stationary 
components of mean, variance and covariance, a set of precedence rules and the 
maximum distances of influence within the rock type model.

We will consider that the non-stationary components of the mean and variance follow a 
linear function of the distance to the boundary (dpk). In this scenario, the optimization of 
the parameter mkp and kp

2 will be equivalent to optimizing estimates of the intercepts at 
zero distance to boundary: akp and bkp, considering akp= apk and bkp= bpk.

The mean mkp is optimized given that mk is known from the experimental average of data 
within rock type k, outside any boundary zone. The objective function is: 
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2

1 1 1

ˆ( ) ( ( ))
kpNK P

m i k kp i
k p i

O z m mu u

where z(ui) is the outcome value at every data location in the boundary zone, Nkp is the 

total number of data in zone k-p, km̂ is the experimental average of all data in RTk and 

outside any boundary zone, and mkp(ui) is the non-stationary mean at location ui

calculated as: 

( )
for 0 ( )

( )
( ) for 0 ( )

                0 for ( )  and ( )

kp kp i
kp kp i kp

kp

pk pk i
kp i kp pk i pk

pk

kp i kp pk i pk

dmax d
a d dmax

dmax

dmax d
m a d dmax

dmax

d dmax d dmax

u
u

u
u u

u u

(1)

The optimization of the mean can be achieved by iteratively modified akp k,p, in a 
random fashion while accepting all changes in akp that reduce the objective function. 
This is a simplified version of the simulated annealing formalism.

The optimum kp
2, will be the one that minimizes the following objective function: 

2

22 2 2

1 1 1

ˆr( ) ( ( ))
kpNK P

i k kp i
k p i

O u u

where r(ui) is the residual value at every location in the boundary zone. 
2ˆ k is the 

experimental variance of all data within the stationary region of rock type k and kp
2(ui)

is the non-stationary variance at location ui calculated from a linear expression for the 
intercept bkp similar to Equation 1.

Figure 2 shows the stationary and non-stationary mean and variance for a 1D synthetic 
example. The optimum intercepts akp and bkp are in agreement with the reference.

To find the optimum covariance model we minimize the following objective function: 

2

1

ˆ ( ), ( ) ( ), ( )
N

Cov i i MOD i i
i

O C z z C z zu v u v
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where Ĉ denote the experimental covariance of the pair located at ui and vi, which is 
just the multiplication of the two residual values: ( ) ( )i ir ru v , and CMOD the modeled 

boundary covariance, corresponding to the sum of the stationary and non-stationary 
component.

Finding the optimum covariance model of a boundary zone is equivalent to optimizing 
the range of the relative standardized variogram scaled by the non-stationary standard 
deviation. The range is iteratively modified by a random amount until the difference 
between the experimental and modeled covariance is minimized. For this 1D example, 
the optimum range of the non-stationary covariance structure (Figure 3) is 6.4 meters, 
acceptably similar to the 10 meters range of the variogram used to obtain the reference. 

Figure 2: 1D example stationary and optimized non-stationary mean and variance. 

Figure 3: Optimum non-stationary covariance of 1D example (solid line), experimental 
covariance from pairs within the boundary zone (dots) and original covariance of the 
non-stationary component used to build the synthetic dataset (line/dots). 
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4 Estimation in presence of local non-stationary boundaries 

The basic linear regression equation for non-stationary simple cokriging is: 

1

* ( ) ( ) ( ) ( ) ( )
n

z m z mu u u u u

where z*(u) is the estimate at unsampled location u, m(u) is the stationary plus the non-
stationary mean value at location u, (u) is the weight assigned to datum z(u ), n is the 
number of close data to the location u being estimated, and m(u ) are the n stationary 
plus the non-stationary mean values at the data locations.

To find the optimal weights (u), =1,…,n the kriging system must be solved: 

1

( ) ( , ) ( , ) with , 1,...,
n

Cov Cov nu u u u u

where (u),  =1,.., n are the simple kriging weights, Cov(u , u ), , =1,.., n
correspond to the data-to-data covariances, and Cov(u, u ), =1,.., n are the data-to-
unknown location covariances. In the presence of local non-stationary boundaries, the 
terms of the data covariance matrix and the vector of data-to-estimate covariances are 
obtained combining the stationary and non-stationary covariance model components. If 
both locations are in the same rock type and both are in the same boundary zone, the 
covariance is the stationary plus the non-stationary covariances; otherwise, it is only the 
stationary component. If they are in different rock types and both samples are in the 
same boundary zone the covariance is the non-stationary component only. The 
covariance is zero in all other cases.

For the 1D example, the kriging estimates reproduce well the reference, using as 
conditioning data one of four grid nodes of the reference (Figure 4).

G
r
a

d
e

Figure 4: Reference versus kriging estimates, 1D example.
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5 Application 

The rock type model of a porphyry copper deposit in Northern Chile was used to create 
a reference image with simulated grades (Figure 5). This reference image was sampled 
in a 100x100 meters grid. The geological model has five rock types and six non-
stationary soft boundaries.

Figure 5: Section and level maps of the reference used for the 3D application. 

The reference intercepts for the non-stationary mean and variance are well reproduced 
by the optimization subroutines for all boundary zones, as well as the optimum ranges 
compared to the range used in the transformed unconditional simulation. 

The correlation between the estimates and the reference value is around 0.8 for each 
boundary zone. The reference stationary means of each rock type is reproduced almost 
exactly by the kriging estimation. The variance of the estimates is lower than the 
reference, which is expected since kriging has a smoothing effect. The non-stationary 
behavior of the mean is also very well reproduced by the proposed non-stationary 
kriging as shown in Figure 6. Although the variance of the estimates in the boundary 
zone is lower than the reference, as expected, the increasing trend toward the boundary 
is well reproduced. 

Figure 6: Mean and variance of the kriging estimates versus the reference image at the 
one of non-stationary boundary zone. Each point corresponds to the average/variance of 
all grid nodes within a 5 meters interval of the distance to the boundary.
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Cross validation results show that the data are reliably estimated both in the stationary 
and the non-stationary regions.  In particular, for all data within the non-stationary 
regions, if compared with ordinary kriging using a typical soft boundary approach, the 
proposed methodology shows a higher coefficient of correlation (Figure 7). 

Figure 7: Cross validation comparison between the proposed methodology, non-
stationary cokriging, and ordinary kriging with soft boundaries. 

6 Conclusions 

This new technique provides a theoretically robust methodology to handle non-
stationary soft boundaries. The non-stationary features of the mean, variance and 
covariance are parameterized into a legitimate local model of coregionalization. 
Through this spatial model a non-stationary form of cokriging accounts for the changes 
in mean and variance at the vicinity of boundaries. The kriging estimates reproduce the 
non-stationary behavior of the conditioning data at the geological contacts, and it also 
reproduces the stationary means of each rock type in the model. A decrease in the global 
variance is due to the smoothing effect of kriging. 

By construction, the kriging variance also has a non-stationary component. Since the 
kriging variance is the missing variability that is reintroduced in simulation, its 
implementation in the presence of local non-stationary boundaries will be delicate and is 
part of the future work. 
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DATA INTEGRATION USING THE PROBABILITY PERTURBATION 
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Abstract. A new method, termed probability perturbation, is developed for solving non-
linear inverse problem under a prior model constraint. The method proposed takes a 
different route from the traditional Bayesian inverse models that rely on prior and 
likelihood distribution for stating, then sampling, from a posterior distribution. Instead, 
the probability perturbation method relies on so-called pre-posterior distributions, which 
state the distribution of the unknown parameter set given each individual data type 
(linear or non-linear). Sampling consists of perturbing the probability models used to 
generate the model realization, by which a chain of realizations is created that converge 
to match any type of data. The probability perturbations are such that the underlying 
spatial structure (prior model) of the stochastic algorithm is maintained through all 
perturbations. A simple example illustrates the approach. 

1 Introduction 

Conditioning stochastic simulations is of the utmost importance in many applications of 
geostatistics. Most of the current algorithms can condition to data that are linear or 
pseudo-linear (i.e. linearized using transformations) and of a single-point nature, by 
which it is understood that there is a linear relationship between data and the unknown 
taken one at the time. For example, the technique of sequential simulation, either under 
Gaussian or non-Gaussian assumptions, can be conditioned to hard data, (pseudo-linear) 
block average data or soft data, the latter through some form of (linear) co-kriging.

Many applications of geostatistics call for the inclusion of non-linear and multiple-point 
data. The relationship between data and unknown is provided through a complex multi-
dimensional transfer function, also termed a forward model. This function often is 
modelled numerically through a partial differential equation (or its numerical 
implementation) such as in aquifer models, pollution models, ecological models and for 
models of flow in oil & gas reservoirs. Integrating this type of data into stochastic 
simulation calls for an iterative solution (trial-and-error) of an often ill-posed inverse 
problem. Sampling solutions such a Markov chain Monte Carlo within a Bayesian 
framework have been proposed (Mosegaard and Tarantola, 1995; Omre and Tjelmeland, 
1997) but are often prohibitive in terms of CPU when the forward model is expensive to 
compute.
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In this paper a new and practical approach within the context of Bayesian inverse 
modelling is presented. The method allows to condition stochastic simulations to 
virtually any type of non-linear data. The principle of this method is simple: by 
perturbing the probabilities models used to generate the model realization, a chain of 
realizations is created that converge to match any type of data. It is shown that the 
probability perturbations are such that the underlying spatial structure of the stochastic 
algorithm is maintained through all perturbations. The probability perturbations can be 
parameterized by a single parameter or by multiple parameters in order to provide 
enough flexibility to match large models with a possible large set of non-linear data.

2 Bayesian inverse modelling 

Inverse modeling consists of finding a set of model parameters m given some data d. In 
the Earth Sciences the model parameters are often unknown material or rock properties 
located on a 3D grid, e.g. unknown soil type or unknown petrophysical properties in the 
subsurface. Most inverse problems are underdetermined, meaning that a joint 
distribution of model parameters is possible given the data. In this paper, we will divide 
the data into two sets: (1) d1, or “easy data” which have a simple linear or pseudo-linear 
relationship with the model parameters, and (2) d2 or “difficult data” which exhibit a 
multi-point, non-linear relationship with m. For the data d1, many fast and robust direct 
sampling methods exist for sampling the distribution of possible model realizations m.
To condition to data d2, iterative sampling is required. The posterior distribution from 
which these samples are drawn is, in a Bayesian context, decomposed into a likelihood 
and prior distribution 

1 2 1 2
1 2

1 2 1 2

( , | ) ( ) ( | ) ( | ) ( )
( | , )

( , ) ( , )

f f f f f
f

f f

d d m m d m d m m
m d d

d d d d
              (1)

where the likelihood f(d1, d2| m) is further decomposed into f(d1 | m) and f(d2| m) under 
the assumption of conditional independence. This assumption makes inference of the 
likelihood feasible. The assumption of conditional independence is difficult to verify yet 
may have considerable consequence to the model definition (model for the posterior 
distribution).

The prior density f(m) describes the dependency between the model parameters. In a 
spatial context such dependency refers to the spatial structure of m. The likelihood 
density f(d|m) models the stochastic relationship between the observed data and each 
particular model m retained. This likelihood would account for model and measurement 
errors. In the absence of any such errors, the data d and model m are related through a 
forward model g

( )gd m

Markov chain Monte Carlo methods encompass a set of iterative sampling techniques 
for drawing samples from this posterior distribution. Popular sampling methods are 
rejection sampling and the Metropolis sampler (Metropolis et al., 1953; Besag and 
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Green, 1993; Mosegaard and Tarantola, 1995; Omre and Tjelmeland, 1997). These 
samplers avoid specification of f(d) and are iterative in nature in order to obtain a single 
sample m

( ) of f(m|d). Generating multiple (conditioned to d) samples m( ), =1,…,L in 
this manner quantifies the uncertainty modeled in f(m|d).

While theoretically sounds, there are some important practical limitations to this 
approach. First, obtaining iterative samples are CPU demanding and may take many 
thousand of evaluations to converge. This is impractical when the forward model g takes 
a few hours to compute (e.g. flow simulations, solving elastic wave equations). 
Secondly, for reason of analytical convenience a Gaussian model is often adopted for 
either likelihood and/or prior distribution. A Gaussian model limits modelling realistic 
spatial structures on m. Moreover, the assumption of conditional independence in Eq. 
(1) limits the proper modelling of the full dependence between data d1 and the data d2.
In this paper we propose a method for dealing with both issues: (1) realistic non-
Gaussian prior and (2) alternatives to the conditional independence hypothesis. 

3 Methodology 

3.1 SAMPLING THE PRIOR

To emphasize non-Gaussianity, the methodology will be developed for binary model 
parameters, although the method works equally well for multi-category and continuous 
variables. At each location of a 3D grid an unknown model parameter mi is modelled 
through a binary indicator variable 

1 the "event" occurs at 
( )

0
i

i

if
I

else

u
u

where “event” could represent any spatially distributed phenomenon. The model 
parameters are then given by the set of binary indicators 

1 2{ ( ), ( ), , ( )}NI I Im u u u

with joint (prior) distribution 

1 1 2 2( ) Prob{ ( ) ( ), ( ) ( ), , ( ) ( )}N Nf I i I i I im u u u u u u

In this paper we will use sequential simulation methods to sample from either prior or 
posterior distribution, by relying on the following decomposition of the joint distribution 

1 2 1 1 1( ) Prob{ ( ) 1} Prob{ ( ) 1 | ( )} Prob{ ( ) 1 | ( ), , ( )}N Nf I I i I i im u u u u u u

Sequential sampling from each of these conditional distribution amounts to sampling 
from a joint prior distribution. In actual field cases, prior information on m comes in the 
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form of limited statistics (e.g. a spatial covariance). The type of multi-variate density f
always needs to be assumed. In all sequential simulation approaches, except Gaussian 
simulation, the decision of distribution type is not made on the joint distribution, but on 
the conditional distributions. An example of such approach is direct sequential 
simulation (dssim, Journel, 1993), where the conditional distribution can be of any type, 
as long as they have mean and variance provided by a simple kriging system. Another 
example is snesim where the conditional distributions are derived from training images 
(Strebelle, 2002). 

3.2 SAMPLING THE POSTERIOR

To sample from the posterior, a similar sequential decomposition approach is 
considered. For simplicity, the data d1 constitute direct observations (hard data) of the 
model parameters at a set of n spatial locations, but in general could constitute any linear 
data,

1 { ( ), 1, , }i nd u

The relationship between the non-linear data and model parameters is modelled through 
a forward model g

2 1 2( ) ( ( ), ( ), , ( ))Ng g I I Id m u u u

The goal is to draw samples from the joint (posterior) distribution of the model 
parameters given the two data sets 

1 2 1 1 2 2 2( | , ) Prob{ ( ) ( ), ( ) ( ), , ( ) ( ) |{ ( ), 1, , }, }N Nf I i I i I i i nm d d u u u u u u u d

To make this practically feasible, the following decomposition is used: 

1 2 1 2

2 1 2

1 1 2

( | , ) Prob{ ( ) 1 |{ ( ), 1, , }, }

                          Prob{ ( ) 1 | ( ),{ ( ), 1, , }, }

          Prob{ ( ) 1 | ( ), , ( ),{ ( ), 1, , }, }N N

f I i n

I i i n

I i i i n

m d d u u d

u u u d

u u u u d

   (2) 

Generating a sample of a (not explicitly stated) posterior distribution is equivalent to 
generating sequential samples from conditional distributions of the type 

1 1 2

1 1 2

Prob{ ( ) 1 | ( ), , ( ),{ ( ), 1, , }, } Prob( | , )

     with  { ( ) 1};  { ( ), , ( ),{ ( ), 1, , }};  
j j j j

j j j j

I i i i n A

A I i i i n

u u u u d B C

u B u u u C d
    (3) 

A simpler notation in terms of  ‘A’ (unknown), ‘B’ (easy data) and ‘C’ (difficult data) 
has been used to make further development clear. To further specify the conditionals in 
Eq. (3), we propose a decomposition of Prob(Aj|Bj,C) into two pre-posteriors Prob(Aj|Bj)
and Prob(Aj|C) using Journel’s decomposition (or tau-model, Journel, 2002) of the type 
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1
Prob( | )  with  where:

1

1- Prob( | ) 1- Prob( | ) 1- Prob( )
,  ,  

Prob( | ) Prob( | ) Prob( )

j j

j j j j

j j j j

c
A x b

x a

A A A
b c a

A A A

B ,C

B C

B C

         (4) 

Working with pre-posteriors will lead to an approach that is different from a classical 
Bayesian inversion which would involve the likelihoods Prob(Bj|Aj) and Prob(C|Aj).
This difference will lead to a fundamentally different sampling method as well. Stating 
“pre-posteriors”, instead of likelihoods, allows using (non-iterative) sequential 
simulation, instead of (iterative) McMC.

The -value in Eq. (4) allows modeling explicitly the full dependency between the B-
data and C-data. The case when =1 is equivalent to an assumption of standardized 
conditional independence. In the context of sequential simulation, the pre-posterior 
Prob(Aj|Bj) is simply the conditional distribution of the unknown Aj given any 
previously simulated nodes. The remaining pre-posterior Prob(Aj|C) cannot be directly 
estimated, instead, a new sampling technique termed probability perturbation is 
introduced.

3.3 PROBABILITY PERTURBATION

Using sequential simulation, a sample realization can be drawn from the prior model, 
conditioned to the data d1. If the pre-posterior Prob(Aj|C) were known, then including 
the data d2 could be achieved through Eq. (4) and a sequential simulation from the 
conditionals through Eq (2). Since this is not the case, the initial sample conditioned to 
d1, will be used as an initial guess for further matching the data d2 iteratively. To 
achieve this, the unknown pre-posterior Prob(Aj|C) is modelled using a single parameter 
model in the following equation: 

( )Prob( | ) Prob( ( ) 1 | ) (1 ) ( ) ( ), 1, ,o
j j C B j C jA I r i r P A j NC u C u        (5) 

where rC is a parameter between [0,1], not dependent on uj. {iB
(0)(uj), j=1,…,N}  is an 

initial realization conditioned to the d1 data (B-data) only. Given Eq. (5), Prob(Aj|C) can 
be calculated for a given value of rC and for a given initial realization constrained to the 
B-data. Next, the probability Prob(Aj|C) is combined with Prob(Aj|Bj) to form the 
conditionals Prob(Aj|Bj,C) by which sequential simulation is possible, Eq. (2), and a new 
realization {i(1)(uj), j=1,…,N} is generated. The new realization is dependent on the 
initial realization and the value of rC. To get some more insight into the role of the value 
rC, consider the examples in Figure 1. Each row shows in its first column an initial 
realization {iB

(0)(uj),  j=1,…,N}  generated with different sequential simulation methods. 
The next columns contain realizations {i(1)(uj),  j=1,…,N} for various values of rC and 
using a random seed s’ different from the random seed used to generate the initial 
realization. The important message of Figure 1 is that regardless of the value of rC  the 
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each realization honors the same spatial statistics as the initial model, i.e. the prior 
distribution is maintained.

In case rC=0, then Prob(Aj|C)= iB
(0)(uj), hence per Eq (4)  Prob(Aj|Bj,C)= iB

(0)(uj). In 
other words, the initial realization is re-created. In case rC=1, then Prob(Aj|C)=P(Aj), a 
simple calculation using Eq. (4) shows that in that case Prob(Aj|Bj,C)= Prob(Aj|Bj). Since 
the seed s’ is different from the seed s, the realization {i(1)(uj), j=1,…,N}  is 
equiprobable with the initial realization {iB

(0)(uj), j=1,…,N}. In other words, rC=1 entails 
a “maximum perturbation” within the prior model constraints. 

A value rC between (0,1) will therefore generate a perturbation {i(1)(uj,rC), j=1,…,N}
between the initial realization and another equiprobable realization both conditioned to 
the data d1 and each honoring the prior model statistics. An optimal value for rC can be 
picked by selecting the perturbation for which the mismatch between the forward model 
simulation and actual data d2, namely 

(1)
2( ) ( ( , ))C j CO r g i ru d              (6) 

is minimal. 

3.4 PROBABILITY PERTURBATION ALGORITHM

The probability perturbation of the initial realization is likely to reduce the objective 
function in Eq. (6), however, minimizing O(rC) would only achieve a local minimum 
since the perturbation takes place between just two equiprobable realizations. To further 
reduce the objective function, the perturbations are iterated in the following algorithm: 

choose random seed 

generate an initial realization (0) ( ),ji ju

change random seed 

 Until the data d2 are matched to some desired level 

Minimize to get opt
Cr

(1)
2( ) ( ( , ))C j CO r g i ru d

Change random seed 

Assign   

(0) (1)( ) ( , ),opt
j j Ci i r ju u
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Figure 1: Left picture of each row is an initial guess realization, then followed by 
perturbation of this initial realization parameterized by a parameter r

3.5 REGIONAL PROBABILITY PERTURBATION

The probability perturbation method generates a perturbation between an initial guess 
realization and another equiprobable realization that is parameterized using a single 
parameter. In a spatial context this induces a perturbation of each individual model 
parameter i(uj) that is, in probability, the same for all uj. Parameterizing a perturbation 
using a single parameter may not effectively solve complex spatial inverse problem. 

The above presented method does not restrict a higher order parameterization: the value 
of rC can be made dependent on location

( )Prob( | ) Prob( ( ) 1 | ) (1 ( )) ( ) ( ) ( )s
j j C j B j C j jA I r i r P AC u C u u u  (7) 

C.
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The use of (7) in the probability perturbation method now requires a multi-dimensional 
optimization on all rC(uj), j=1,…,N. To avoid a potentially difficult full multi-
dimensional search for the best rC(uj), j=1,…,N, a region-wise parameterization of these 
parameters is proposed. Consider M regions in the domain of study, each region Rm,
m=1,…, M consists of a set of grid node locations, 

( ) ( ){ , , }m m
m i jR u u

Which nodes belong to which region is a problem specific question. The number of 
regions M however is likely to be considerably less than the number of grid nodes N.
The pre-posterior of Eq. (7) is rewritten using a region-wise parameterization as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )Prob( | ) Prob( ( ) 1 | ) (1 ) ( ) ( ), 1, ,m m m s m m m
j j C B j C jA I r i r P A j NC u C u

where the parameter rC
(m) is the same for all grid nodes uj

(m) of  region Rm,. An efficient 
strategy for jointly optimizing on all M rC

(m) parameters is discussed in Hoffman and 
Caers (2003). 

4 Example 

The aim of this paper is to present the inverse theory behind the probability perturbation 
method which has been extensively researched and applied to real cases in the context of 
inversion of flow data in oil reservoirs (Caers, 2003; Hoffman and Caers, 2004). We 
refer the reader to these paper for practical examples. 

In this paper, a simple but rather revealing example is presented and illustrated in Figure 
2. The model consists of a grid with three nodes, u1, u2 and u3. Each node can be either 
black, I(u)=1 or white, I(u)=0. The model m is therefore simply 

1 2 3{ ( ), ( ), ( )}I I Im u u u

The spatial dependency of this simple 1D model is described by a 1D training image 
shown in Figure 2. One can extract, by scanning the training image with a 3 x 1 
template, the prior distribution, f(m), of the model parameters, as shown in Figure 2. To 
test the probability perturbation method we consider two data: the first datum is a point 
measurement (B-data, or “easy data”) namely, i(u2)=1 (a black pixel in the middle), the 
second one is I(u1)+I(u2)+I(u3)=2 (C-data or “difficult data”). The problem posed is:

1 2 1 2 3What is P rob( ( ) 1 | ( ) 1, ( ) ( ) ( ) 2)?I i I I Iu u u u u

or in simple notation P(A|B,C) ? 
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Figure 2: illustrative example: (top) 1D training image (bottom) derived from the 
training image are the prior probabilities of the model m 

To get the answer we use four alternative techniques: 

1. Get the true answer by elimination from the prior:

1
116Prob( | , )

1 1 3
8 16

A B C

2. Using conditional independence (standardized) 
1 1

4 1 5 5 3 5 64 16Prob( ) ;   Prob( | )
1 1 1 116 16 16 8 5 11 5
4 16 8 4

5 1
3 116 16Prob( | )

5 1 1 4 3
16 16 8

2 3
Applying Eq. (4) with =1: Prob( | , )

3 5

A a A B b

A C c

x A B C

3. Using Monte Carlo simulation on the probability perturbation algorithm (with 
=1 in Eq. (4), Prob( | , ) 0.35A B C

4. Using Monte Carlo simulation on the “gradual deformation of sequential 
simulation” (Hu et al., 2001) Prob( | , ) 0.27A B C

It is clear from comparing [1.] and [2.] that the conditional independence hypothesis is 
not valid for this case. 

While the PPM relies on the same assumption of conditional independence the result is 
much closer to the true posterior probability. The reason for the latter observation can be 
explained by means of Eq (5). In this equation, the pre-posterior Prob(I(uj)=1|C) is a 
function of the data C through the parameter rC, and, a function of an initial realization 
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{i(u1),i(u2)=1,i(u3)}. This initial realization depends itself on the pre-posterior 
Prob(I(uj)=1| Bj)  with Bj depending on the random path taken. Hence, Eq. (5) forces an 
explicit dependency between the Prob(I(uj)=1|Bj) and Prob(I(uj)=1|C) prior to 
combining both into Prob(I(uj)=1| Bj ,C)  using a conditional independence hypothesis 
(Eq. (4) with =1).  At least from this simple example, one can conclude that the 
sequential decomposition of the posterior into pre-posteriors has robustified the estimate 
of the true posterior under the conditional independence hypothesis. 

The same conclusion can be reached for the gradual deformation of sequential 
simulation. In gradual deformation of sequential simulation one perturbs gradually the 
random numbers used to draw from the various conditional distributions in Eq.(2), not 
the conditional distributions themselves as in the probability perturbation method. It 
appears that the gradual deformation of sequential simulation has an implicit model of 
dependency between the B and C data different from the probability perturbation, and 
more importantly different from the actual dependence. 

The differences between the various methods are considerable. One can therefore 
conclude that future research should focus on understanding better the basic model 
assumptions, such as conditional independence, rather than focussing on developing 
precise samplers of models that are based on poorly understood assumptions. Such 
assumptions will have a first order effect on the ultimate space of uncertainty created. 
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SPECTRAL COMPONENT GEOLOGIC MODELING: A NEW TECHNOLOGY 
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Abstract. Spectral component geologic modelling (SCGM) is a new technology 
developed to properly account for both the scale and accuracy of any and all 
interpretations derived from seismic data in building geologic models. Seismic data can 
be integrated as spectral components which are volume- or map-based property 
interpretations representing a specific and measurable scale. The SCGM method starts 
with combining different spectral components together to build what is referred to as a 
"tentative geologic model", accounting for different scales and measurement accuracy of 
information in each component. The tentative geologic model will then be further 
constrained to honor the spatial continuity by substituting the amplitude spectrum of 
current tentative model with the desired amplitude spectrum from the target variogram 
model through spectral simulation. After that, the model will then be post processed to 
first honor the target histogram and then well data. In addition to honoring one single 
global variogram model, as do traditional geostatistical algorithms, SCGM has the 
capability to model local variations or trends in the continuity range and dominant 
azimuth direction of spatial continuity, by modifying the amplitude spectrum using 
spectral simulation.

1 Introduction 

Geologic modeling has been widely used in reservoir management to characterize the 
rock-property heterogeneity that control pore-fluid storage and flow in a reservoir. For 
many reservoirs, particularly those in discovery through early production stages, well 
data may be sparse, and the well data alone are often insufficient to adequately constrain 
the assignment of reservoir properties between the wells in the geologic model.  For 
such reservoirs, 3D seismic data have been increasingly used as an aid to assign these 
properties in the geologic model. 

However, the utilization of seismic data for modeling reservoir properties faces some 
severe problems, possibly the most important being that of the difference in scale and 
accuracy between the seismic and the well data. The traditionally used geostatistical 
modeling methods integrate seismic data through kriging with local varying mean 
(Goovaerts, 1997), block cokriging (Behrens, Macleod, and Tran, 1996; Yao, 2000), or 
simulated annealing (Deutsch, Srinivasan, and Mo, 1996). These methods either 
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wrongly treat the seismic data at the same scale as the geologic model, or make some 
strong assumption about the relationship between the coarse-scale seismic data and fine-
scale well data (linear average as in block co-kriging). As a result, the geologic model 
may not fully exploit information contained in the seismic data and may not honor the 
input information. 

The primary incentive for developing the SCGM method was to properly account for 
both the limitation of scale and accuracy of any and all interpretations derived from 
seismic data. Secondary incentives were to obtain a method that provides advanced 
capabilities for controlling rock-property continuity in the geologic model, and that can 
build or truly update a geologic model with new information quickly, based on spectral 
simulation (Calvert et. al., 2000, 2001, 2002). 

2 Review of spectral simulation 

Spectral simulation is gaining wider application in building geologic models due to the 
advantage of better honoring the spatial continuity of petrophysical properties, such as 
reservoir property and shale volume. The spatial continuity structure is characterized by 
a covariance/variogram model in the space domain and is represented by a density 
spectrum in the frequency domain. Distinct from sequential simulation methods, spectral 
simulation is a global method in the sense that a global density spectrum is calculated 
once from variogram model and the inverse Fourier transform is performed on the 
Fourier coefficient only once to generate a realization.

A spectral-simulation method, called Fourier Integral Method (FIM), has been proposed 
to generate geologic-model realizations that honor the spatial structure of a random field 

)(uz in one-, two-, or three dimensions (Borgman, Taheri, and Hagan, 1984; Gutjahr, 

Kallay, and Wilson, 1987; Mckay, 1988; Pardo-Iguzquiza and Chica-Olmo, 1993). This 
method is performed in the frequency domain, as opposed to the usual sequential-
Gaussian-simulation method performed in the space domain.

The spatial structure of a random field )(uz  is characterized by the covariance )(hCz
 or 

variogram )(hz in the space domain. In 1D, the covariance of )(uz is defined as the 

convolution product (Bracewell, 1986): 

zzduhuzuzhCz )()()( , where )()( uzuz                        (1) 

The Fourier transform (FT) of the covariance into the density spectrum of )(uz in the 

frequency domain exchanges convolution and multiplicative products:

2|)(|)()()()()()( ZZZzFTzFTCFTs z                          (2) 
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where dueuzzFTZ ui)()()( , and )(*Z is the complex conjugate. The term 

)(s is referred to as the density spectrum, |)(| Z  as the amplitude spectrum, 
)(|)(|)( ieZZ  as the Fourier coefficient, and )( as the phase. The spectral-

simulation method is based on the correspondence between the space property, )(uz ,

and the frequency counterparts, )(s and )( , as illustrated in Figure 1. The 

implementation details can be referred to Yao (1998, 2002) 

Figure 1. The correspondence between the space domain variable, z , and the frequency 
counterparts, )(s and )( .

There are several advantages of spectral simulation over traditional geostatistical 
simulation. The spectral-simulation method is fast, particularly when based on the Fast 
Fourier Transform (Kar, 1994; Lam, 1995; Bruguera, 1996; Mckay, 1998). It is a global 
method in the sense that all of the amplitude-spectrum values over the whole field are 
used simultaneously to generate the simulated property. Therefore, the amplitude 
spectrum, or variogram model in the space domain, can be honored globally over the 
whole field instead of only within search neighborhoods as with the traditional 
sequential-Gaussian simulation method. Actually, the variogram model is honored over 
half field size, see Yao, 2002. A related advantage is that the separation of amplitude 
(spatial continuity) and phase (spatial location) allows updating of models if new 
information about either spatial continuity or location is obtained, or allows the 
conditioning of models to local information; see Calvert et al  (2001, 2002). In addition, 
the advantage of spectral simulation in separating amplitude and phase information 
allows the spatial continuity to be modified to account for this traditionally 
unaccountable local information (Calvert  et al., 2001, 2002). 

3 Scale and accuracy of interpreted rock-property information: spectral 

component

All data that we use for geologic interpretation are limited in the scale of rock-property 
information that they contain, although we do not always appreciate the fact. For 
example, seismic data cannot directly be used to predict high-frequency variability in 
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rock properties because the seismic data contain no information at high frequencies. If 
we attempt to use seismic data to estimate rock properties at scales that are outside of 
the data frequency band, interpretation errors can result. A spectral component is a 
volume- or map-based property interpretation representing only a specific and 
measurable scale of the property to be modeled, such as porosity. It could be derived 
from any data source or even from analogue information, representing all or a portion of 
the reservoir volume being modeled.  The following data represent some of the spectral 
components (Figure 2): 

3D volume from seismic amplitude calibration, which contains information only 
within the seismic frequency band, typically about 15-75 Hz. 
2D map from seismic facies or geologic interpretation, such as average porosity 
map. This provides no information about the vertical variability in porosity values, 
hence contains no information at any frequency above zero Hz in vertical direction. 
1D trend from well data, such as compaction trend of porosity observed, i.e., 
pososity generally decreasing with burial depth according to a fairly predictable 
function. This contains only low frequency information, e.g., 0-5 Hz, because slow 
vertical changes represent low-frequency vertical variability. 

Figure 2. Examples of spectral components at different scales.

These spectral components are generated from different sources - some may be 
generated from data interpretation, whereas others may be generated from a concept or 
an analogue. Different frequency components might have different accuracy - those 
directly measured from well logs will be more accurate than others from qualitative 
interpretation. In addition, a spectral component often contains information that spans a 
bandwidth of frequencies. The measurement/interpretation accuracy could also change 
with different frequency component. The new SCGM method will account for the 
uncertainty or accuracy about each spectral component.

4 Overview of SCGM method 

SCGM method involves constructing a geologic model by first mathematically 
combining different spectral components together. The combined volume is referred to 
as the "tentative geologic model", which might not represent all desired reservoir 
characteristics and needs to be further constrained to honor the target statistics such as 
variogram, histogram and well data. The constrained model can be further post 
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processed to represent local variations in continuity trend and continuity azimuth, based 
on spectral simulation. The generalized SCGM process is given in Figure 3. 

Figure 3. General process of SCGM method. 

4.1 BUILDING THE TENTATIVE GEOLOGIC MODEL 

The SCGM method starts with combining different spectral components together to 
build what is referred to as a "tentative geologic model", accounting for different scales 
of information in each component and the different measurement accuracy. The 
tentative geologic model represents the integration of all relevant data types to produce 
an a priori geologic model. The least-complex tentative geologic model that can be built 
is one in which all spectral components represent distinct or complementary frequency 
bands. Such a tentative geologic model can be constructed by simply summing the 
independent components.  However, in reality, there will always be missing scales of 
information.  For any tentative geologic model that is built, if a frequency-band of 
information is missing (e.g., high-frequency information), then this missing band of 
information must be simulated within SCGM and added to the tentative geologic model.  
It is also possible that information may be missing over a specific region within the 
model area; in this case the data are simulated and added to the model, but only in that 
specific region.

The process of building the tentative geologic model gets somewhat more complicated 
when the individual spectral components overlap in their frequency content.  The 
spectral components may completely overlap in frequency content or they may partially 
overlap.  To properly integrate spectral components that have overlapping spectra, the 
measurement or interpretation accuracy of each overlapping component must be known. 
The accuracy can be quantified by a value between 0.0 and 1.0.  Those components 
having higher accuracy values will have relatively greater influence on the resulting 
tentative geologic model, but only over those frequencies that overlap. Measurement or 
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interpretation accuracy can also vary spatially.  For example, the spectral component in 
one location within the modeling area may be more accurate than in another due to the 
interpreter's diligence. In this case, the tentative geologic model is constructed through 
weighted averaging of the spectral components by location (i.e., different average 
weight at different locations). Figure 3.2 shows a simple tentative model generated by 
simply adding up different frequency components in Figure 3.1. 

4.2 CONSTRAINING THE TENTATIVE GEOLOGIC MODELS 

The tentative geologic model will not have all of the desired properties of geologic 
model, e.g., it likely will not honor the well data or the target variogram and histogram. 
The tentative geologic model is further constrained to honor these targets. The 
constraining process is sequential, in that the model is modified first to honor the 
variogram, second to honor the histogram, and finally to honor the well data. 

Honoring the desired spatial continuity. Spectral simulation is a perfect application 
to update the tentative geologic model in an attempt to honor the spatial continuity 
represented by the target variogram model. From the tentative geologic model, we 
calculate its amplitude and phase spectrum. We only keep part of the amplitude 
spectrum which we believe are reliable and substitute the other part with the target 
one (representing the target variogram model), and keep the phase spectrum to 
generate new Fourier coefficients. The inverse Fourier transform provides a model 
that honors the spatial continuity represented by the target amplitude spectrum, as 
well as the spatial distribution of high and low values observed in the tentative 
geologic model, see Figure 4.

Figure 4. Schematic illustration of the process of spectral simulation, as implemented in 
SCGM.

Honoring the desired histogram. Quartile transform is used to force the distribution 
of geologic model matches the target histogram. Each rock-property value in each 
cumulative distribution function (CDF) corresponds to a probability quintile. The p 
quintile of the cumulative distribution function (CDF) is transformed to the same p 
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quintile of the CDF for the target histogram so that the CDF of the tentative 
geologic model matches the target CDF. The quintile transform does not change the 
relative rank of the data, hence also referred to as "rank-preserved transform". 

Honoring the well data. Following the steps of honoring the variogram model and 
the histogram, the rock-property values at the well locations are reset to match the 
actual well-data values.  Resetting these values results in changes in the properties 
assigned to these cells.  These changes [(actual well value) - (current model value)] 
are propagated to all tentative geologic model cells in the neighborhood of each 
well; the magnitudes of the changes are weighted as a function of inverse distance 
from the well.

Figure 3.3 shows a constraint model which honors the target variogram, histogram, and 
well data. Note that the sequential implementation of first honoring variogram, then 
honoring histogram, finally honoring well data might distort the target parameters 
honored first such as varigoram and histogram by later honoring other target parameters 
such as well data. Therefore, the ideal implementation would be iteratively repeat the 
sequential honoring process to ensure all the target parameters are honored in the same 
degree. However, many tests show that so long as the target parameters are consistent 
with each other, the first iteration does 90% of the job of constraining the model to the 
target. For speed purpose, we used only one iteration, but strongly suggest checking the 
model to make sure all the targets are met without much distortion.

The SCGM process described above does properly account for the scale of the input 
data, both in terms of the spectral component information (as represented in the phase 
spectrum) and the target variogram model (as represented in the target amplitude 
spectrum).  As a result, SCGM can honor both the compositional information contained 
in the tentative geologic model and the target variogram model, without compromising 
either. Given the same input of variogram, histogram and well data, SCGM is proved to 
honor the input information better than the traditional geostatistical methods such as 
kriging with locally varying mean or collocated cokriging (Calvert et al., 2002). 

In addition to honoring one single global variogram model, as do traditional 
geostatistical algorithms, SCGM has the capability to model local variations or trends in 
the range and dominant azimuth direction of spatial continuity, using spectral 
simulation.

4.3 CONDITIONING TO THE LOCAL SPATIAL CONTINUITY TREND

In a geologic model, the three-dimensional spatial continuity of a rock property is 
commonly controlled with geostatistical algorithms and a variogram that quantifies the 
spatial variability of the rock property as a function of both separation distance and 
direction. Geostatistical algorithms used in constructing geologic models assume 
stationarity in the geologic characteristics of the modeled region, i.e., they assume that a 
modeled rock property can be represented by a single set of statistical measures, which 
are often referred to as "global" measures.  For example, a single, global variogram 
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model would be used to represent the spatial continuity of the rock property over the 
entire modeled region.

However, we know that the geologic characteristics of the subsurface are non-stationary. 
For example, the global spatial continuity of bed thickness in a reservoir can be 
characterized by a global spherical variogram model with a range of 10 feet. However, 
we can also observe a trend of thicker beds at the bottom and thinner beds on the top: 
the thicker beds at the bottom might have a range of 20 feet and the thinner beds on the 
top might have a range of 5 feet. To account for the local continuity trend beyond the 
global variogram model, we use the local (variogram models with longest and shortest 
ranges) and global variogram models to calculate the spectral amplitude ratios of the 
local spectral amplitudes vs. the global one at different frequency bins. We interpolate 
the local amplitude ratios in between according to the trend. This will provide one local 
amplitude ratio for each frequency bin at each cell. Then, we decompose the model that 
honors the global spectrum into different frequency components (represent each 
frequency bin), and multiply each component by the corresponding local amplitude 
ratio. The summed result of all the multiplied spectral components displays the local 
continuity trend. The implementation details can be referred to Yao (2003).

Figure 3.4 gives examples of applying this method to impose a trend in vertical 
continuity on a geologic model of shale volume. This example applied only one 
continuity trend on the geologic model. If additional trends in spatial continuity are 
desired, then treat the geologic model created before as a new starting geologic model 
and apply the local trend using different global and local amplitude spectra that 
represent the new trends. This will generate a geologic model that honors multi-
dimensional trends in spatial continuity.

Other algorithms available to account for non-stationary spatial continuity usually 
separate the whole modeling area into different sub-areas and use a different variogram 
model for each sub-area. Such a method addresses the non-stationarity of the large area, 
but at the cost of artifact boundaries between sub-areas. Using spectral simulation and 
manipulating the amplitude spectrum allows us to address explicitly the gradually 
changing continuity trend.

4.4 CONDITIONING TO THE LOCAL SPATIAL CONTINUITY AZIMUTHS 

Rock property continuity within a reservoir often shows anisotropy, i.e., continuity is 
greater in one direction than in another.  In addition, the local direction of greatest 
continuity might change from one location to another within the reservoir.  Consider 
sediments deposited in a river channel. Paleo-hydrodynamics often control the 
distribution of the lithological and petrophysical properties within the channel.  We 
know that the continuity of these properties is anisotropic, typically greatest along 
channel and less continuous across channel.  We also know that sinuosity may cause the 
channel to locally vary in direction; therefore, the rock-property continuity will also 
locally vary in direction, as with a meandering pattern.
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Methods used to introduce variable directions in rock-property continuity into the 
geologic model are generally based on methods published by Xu (1996).  Continuity 
direction is varied according to an input grid of azimuths, which represent local 
variations in continuity direction.  Often, this grid is based on interpreted seismic facies, 
i.e., the shape of the interpreted facies (e.g., sinuosity of a channel) is represented in the 
azimuth data. To conditioning to the locally varying continuity azimuth, we first identify 
the strings of connected nodes from the azimuth grids (Jones, et al., 2001). Then, we 
simulate each string to have maximum continuity along that string, using 1D spectral 
simulation. Finally, we put the simulated values back to the original nodes along the 
string. Therefore, the continuity along a path that bends according to the azimuth data as 
desired is reproduced (Craig, et al., 2002). The traditional pixel-based geostatistical 
methods require that this path be represented locally by a straight line. If those segments 
are small (i.e., the range of continuity is short), the curved line can be approximated well 
with straight-line segments.  However, if the segments are long (i.e., the range of 
continuity is long), the curved line can not be approximated with straight-line segments. 
This limitation practically manifests itself as a trade-off between honoring the azimuth 
data and the target variogram range.  The new SCGM method can simulate continuous 
rock properties along a bent path, therefore, it should produce better results in situations 
when long-range continuity is to be represented along a curved geologic feature, see 
Figure 3.5.

4.5 UPDATING AN EXISTING GEOLOGIC MODEL

The process of updating of any existing geologic model with any new information is 
very straightforward. For example, a new or alternative spectral component (e.g., from 
seismic-volume interpretation) became available after the original model was built. To 
incorporate this new information, we could update the original model by the following 
process:

From the existing model, filter out and discard the information that is of the same 
scale (frequency band) as the new spectral component,
Combine this filtered model with the new spectral component to create a tentative 
geologic model 
Constrain the new tentative geologic model to satisfy other targets.

A new variogram or histogram target model can also be incorporated efficiently to 
update the existing model.

5 Conclusions 

SCGM is a new technology for integrating all the relevant data at their correct scale. It 
starts with combining different spectral components together to build what is referred to 
as a "tentative geologic model", accounting for different scales of information in each 
component and the different measurement accuracy. Then, the tentative geologic model 
is constrained to honor all the desired properties of geologic model such as honoring the 
spatial continuity, histogram and well data. Spectral simulation is applied to honor the 
spatial continuity globally as well as to gain speed advantage. In addition to honoring 
one single global variogram model, as do traditional geostatistical algorithms, SCGM 
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has the capability to model local variations or trends in the range and dominant azimuth 
direction of spatial continuity, by modifying the amplitude spectrum using spectral 
simulation.
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JOINT SIMULATIONS, OPTIMAL DRILLHOLE SPACING AND THE ROLE 
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Abstract. Infill and grade control drilling are a major cost in any mining operation. 
Reduction of drilling density can considerably enhance the profitability of an operation 
provided the cost from block misclassification is less than the savings in drilling. This 
paper presents a general simulation based approach to assess the performance of 
potential drilling schemes from the available deposit information. The approach 
integrates joint simulation of correlated variables with the computationally efficient 
minimum/maximum autocorrelation factors, multi-elements ore classification, and mine 
planning considerations. The latter employs key indicators such as profit per tonne 
mined and profit per tonne milled, as well as the potential use of a stockpile and its 
discounting. A case study at the Murrin Murrin nickel-cobalt deposit, Western Australia, 
is used to elucidate the proposed approach and to show the critical effect of planning 
decisions on drilling.

1 Introduction 

Infill drilling is a critical information collection process in mining operations leading to 
substantial investment that can be in the order of millions of dollars. As a result, the 
ability to assess the performance of potential drilling schemes, prior to drilling is 
important. A reduction in drilling density could enhance the profitability of an operation, 
if misclassification cost does not exceed the saving in drilling. At the same time, 
additional information becomes counterproductive after the point of diminishing returns, 
i.e. the cost of additional information exceeds its benefit. Past work in geostatistically 
assessing additional drilling was based on estimation variances which largely reflect the 
geometry of drilling configurations (Goovaerts, 1997) without any consideration of the 
local grade variability and uncertainty (Ravenscroft, 1992), economic cost/benefit 
analysis, or a link to mine planning decisions. 

A stochastic simulation framework can be used to realistically address the assessment of 
infill drilling patterns (e.g., Dimitrakopoulos, 2003). In the general case of multi-
element deposits, joint simulation of pertinent correlated variables is used to produce 
realisations of an exhaustively known deposit.  Such a realisation is treated as an 
“actual” deposit and is subsequently virtually drilled. This new drilling information can  
then be used to re-simulate the deposit leading to comparisons of block classifications 
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and other indicators to the actual exhaustively known deposit. This way different 
drilling schemes can be compared to make informed selection of a drilling strategy.

Computationally efficient joint simulation methods are essential for generating realistic 
representation of “actual” deposit. Conventional co-simulation methods (e.g., Verly, 
1993; Chiles and Delfiner, 2000) become inefficient when more than two variables are 
considered.  Collocated cosimulation with a Markov-type coregionalisation (Almeida 
and Journel 1993) assumes a very specific coregionalisation and does not extend well 
beyond two attributes.  Therefore, conditional simulation with the so-called 
minimum/maximum autocorrelation factors or MAF (Switzer and Green 1984; 
Desbarats and Dimitrakopoulos 2000) is advocated herein. MAF transforms attributes of 
interest to uncorrelated factors that are independently simulated by any simulation 
method and then reconstructed to realisations of the original variables reproducing their 
cross and auto-correlation. 

In addition to the orebody geology, mine planning aspects, such as stockpiling, also 
affect the performance of the infill drilling patterns,. When low-grade ore blocks are 
stockpiled, the performance of an infill drilling scheme is a function of how, when, and 
if the stockpile would be processed in the future. The uncertainty linked to the 
stockpiling strategy can be factored into the selection of a drilling scheme by 
depreciating the stockpile value with a discount rate. If an ore block sent to the stockpile 
is considered lost, the stockpile can be regarded as waste. Alternatively, if the stockpile 
will be processed in coming years, a misclassified ore block in the stockpile makes no 
difference and no penalty is necessary.  Discount rates enable the comparison of the 
different schemes by linking the two extreme scenarios. 

In the next sections, the drilling optimisation method is outlined and is followed by a 
brief discussion of simulation with MAF and the definition of economic indicators for 
comparing drilling efficiency. Finally, the intricacies of the method are detailed in a case 
study at the Murrin Murrin nickel-cobalt deposit, Western Australia.

2 A method for infill drilling assessment and optimisation

The following method, also schematized in Figure 1, is suggested to assess and compare 
the performance of drilling patterns for a multi-element deposit: 

Step 1: From the exploration drilling data available within the pit, jointly simulate a 
representation of the deposit using min/max autocorrelation factors for the attributes 
under study. This first realization is called the “actual” deposit. 

Step 2: Sample the above actual deposit with the different infill drilling schemes of 
interest.

Step 3: For each drilling scheme, jointly simulate with MAF the elements of interest 
conditional to the data from the “actual” deposit in Step 2 above, to obtain several joint 
realisations. Re-block the realizations for the attributes simulated to produce models of 
mining blocks to be assessed. 
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Step 4: Do grade control and classify the blocks (e.g. from their average grades) for each 
sampling scheme (e.g., milling ore, stockpile and waste). Compare the classification to 
the “actual” classification using, as economic indicators, the profit per tonne mined and 
profit per tonne milled; calculated as discussed in a subsequent paragraph. 

Step 5: Graph and assess the results with respect to the point of diminishing returns.  
Repeat to assess sensitivity of the results. 

Figure 1 Schematic workflow for the proposed methodology 

3 Multivariate simulation with minimum/maximum autocorrelation factors 

The multivariate deposit is cosimulated by orthonalising the grade attributes into three 
factors deemed uncorrelated from each other.  Each of these factor is then simulated 
independently, and the simulated grade is obtained by back-rotating the factors into the 
attribute space. 

The minimum/maximum autocorrelation factors (MAF) is an orthogonalisation similar 
to the well-known principal components analysis (PCA).  The advantage of the MAFs 
over the PCs is the extension of orthogonalisation to the non-zero lags. Principal 
components (David, 1988) are uncorrelated at all lags only if they are derived from a 
random field with an intrinsic coregionalisation.  The MAFs uncorrelate a RF for all 
lags with a linear model of coregionalisation containing at most two structures (Switzer 
and Green 1984; Desbarats and Dimitrakopoulos 2000). Boucher (2003) and 
Dimitrakopoulos and Fonseca (2003) have successfully used the MAF method to jointly 
simulate grades in a mining environment. 



A. BOUCHER, R. DIMITRAKOPOULOS AND J.A. VARGAS-GUZMAN 38

Switzer and Green (1984), later reviewed in Desbarats and Dimitrakopoulos (2000), 

show how to obtain the factors through the eigenvectors of the matrix 1)(2 BhZ ,

where

])()(),()([cov)(2

])(,)([cov

huuhuuh

uu

Z ZZZZ

ZZB

where B is the variance/covariance matrix of )(uZ , a multiGaussian RF, and )(hZ is

the variogram matrix at lag h.

The matrix A  of orthogonalisation coefficients is such that

AAB
T

Z h 1)(2 (1)

Refer to Desbarats and Dimitrakopoulos (2000) for an equivalent but computationally 
more efficient method to derive the coefficients A  by performing two successive 
principal component decompositions. 

Each orthogonal factor piui ...,,1),(Y  is obtained with the coefficients ia constituting

the ith row of A .
piuu ii ,...,1,)()( ZaY (2)

The new vector RF )(uY , is then, by construction orthogonalised at lag 0 and at lag h. 

)(uZ  is simulated by independently simulating each factor piuyi ...,,1),(* and back-

rotating them with the coefficient matrix: 

)()( ** uu T
yAz (3)

In practice, the attributes are first normal score transformed and then rotated into 
orthogonal factors.   This prior transformation reduces the effect of skewed distributions 
but potential problems may occur if the rank and the Pearson coefficient of correlation 
of the original attribute differ too much. 

4 Economic indicators 

The key indicators suggested here are the profit per tonnes mined and profit per tonnes 
milled. These are defined here, without loss of generality, using the case of a deposit 
with two revenue generating elements and a third one that adversely affects production. 
Consider an example of a Ni laterite deposit producing nickel and cobalt where 
magnesium is a “penalty” element increasing processing costs.
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Taking into account the quantity of the penalty element (MMg) and a penalty factor 

( Mg
kf ) the cost of classifying a block at location u  in category k, )(Total

ukC  is 

expressed as 

MgMgProcessingMiningDrillingTotal )()( kkkk fMCCCC uu

The revenue from a block is expressed as 
n

i

ii
k

i
kk prMR

1

)()( uu

where iM  is the quantity of revenue generated by metal i, (e.g., NiM  is the quantity of 

Nickel),  i
kr  is the recovery of metal i when classified in category k and  ip  is the price 

for attribute i.
The gross profit )(ukF  generated by classifying a block at location u  in group k  is 

)()()( Total
uuu kkk CRF (4)

The final classification of a block at location u  is such that it maximizes the gross 
profit.  A block will be classified in group k  such that 

)(maxarg uj
j

Fk

The optimal drilling pattern is the one that would maximize the gross profit, such that 
the sum of all NjF jk ,...,1),(u  is maximal.  Excessive infill drilling would increase 

the cost and insufficient drilling would decrease the revenue. 

Two indicators are used to assess the performance of the sampling scheme. The primary 
one is the profit per tonne mined, which is the sum of the profit generated by the N 
blocks inside the domain

N

F
P

N
j jk1

mined

)(u
(5)

which is an indication of the efficiency of the selection.  The second indicator  is the 
profit per tonne milled

N
j j
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where )(milled jI u  takes the value one if the block located at ju  is sent to the mill, and 

takes zero otherwise.  The profit per tonne milled indicates the quality of the ore being 
selected.  The difference between the two can be seen with a simple example.  Consider 
a case where some economics material has to be stockpiled to allow only very high 
grade to the mill.  Being profitable, the misclassification of this stockpile material in the 
mill material will increase the revenue and, the tones mined being constant, the ratio 
profit per tones mined will also increase. In contrast, the profit per tone milled will 
decrease as the misclassified material generates less revenue than the high grade 
material.

The conditional distribution of profit per tonne mined minedP  (5) and per tonne milled 

milledP  (6) are computed for each of the DN  sampling scheme j from their respective 

conditional joint simulations, obtained from Eq. (1) to (3). 

Dji NjniuXP ,...,1),...,1,),(|(Pr mined z

Dji NjniuXP ,...,1),...,1,),(|(Pr milled z

5 Application at the Murrin Murrin deposit 

The Murrin-Murrin nickel-cobalt deposit is located in the Eastern Goldfields Province, 
Western Australia. It is hosted in weathered peridotites comprising of a ferrugious zone, 
which is predominantly waste, and two ore bearing horizons, a smectite unit with a 
transitional boundary to a magnesium enriched saprolite horizon (Jaine, 2003) The 
Murin Murin operation provides a 4 Mtpa supply to the processing plant that recovers 
nickel and cobalt. Given the magnesium content of the ore, the response of the mill feed 
to pressure-acid leaching and the cost of acid consumption is a metallurgical issue. 

In the case study that follows, exploration drillholes within the saprolite zone are 
available from one of the open pits at Murrin Murin.  Those holes, approximately 
gridded on a 50x50 metre spacing, give 263 one metre composites. Grade control infill 
drilling is typically performed on a 12.5 by 12.5 metre grid, with block size of 15x15 
metre.  A reduction in drilling would lead to direct saving in pre-mining costs whilst 
additional information could improve the quality of mill feed, thus reducing contaminant 
penalties and improving ore selection in addition to improving short term scheduling 
performance of the mine.  The choice of a bench height is also looked at, two and three 
metre bench thicknesses are considered. 

5.1 SIMULATING Ni, Co AND Mg WITH MAF

From the exploration drillholes, 4 actual deposits are simulated on point support: 2 with 
two metre bench and 2 with three metre bench.  After normal score-transform, the 
nickel, cobalt and magnesium attributes are rotated into MAF space with expression (2).  
Each of the factors is then simulated independently one from the other. Then rotated 
back together into the Gaussian space and finally back-transformed into the original 
space. Figure 2 shows some joint realisations of nickel, cobalt and magnesium of one 
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actual deposit. The cross-variograms, shown in Figure 3, are well-reproduced thus 
preserving the important spatial relationships between the attributes.

Figure 2 Joint realisations of nickel, cobalt and magnesium.  Light is low, dark is high. 

Figure 3 Reproduction of cross-correlation at all lags.  The black crosses are the 
experimental variogram values. 

5.2 SIMULATING THE DRILLING AND CLASSIFICATION PROCESS 

The infill drilling information })(),(),({)( uuuuz MgCoNi zzz , where u  are 

the sampling locations, is obtained by virtually drilling the actual deposits with a 
specific drilling scheme.  Four ( 4DN ) regular sampling schemes, 4,...,1,ii , are 

considered:

1 : 12m x 12m (512 holes) 

2 : 18m x 12m (320 holes) 

3 : 18m x 18m (210 holes) 

4 : 25m x 25m (210 holes) 

For each of these sampling, 30 cosimulations )(uz  are performed conditional to the 

prior )( iuz  (exploration holes) and posterior )(uz  (the virtual infill-sampling).  There 

are 480 ( 4 actual deposits x 4 sampling schemes x 30 cosimulations ) simulated 
deposits to which the economics indicators would be applied. All those point-support 
cosimulations are then upscaled into 338 (26x13) blocks of dimension 15x15 metre.  
The block selection for each sampling scheme is based on the E-type mimicking the 
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actual selection process for a mine operation. Finally, the profit per tonne mined and 
profit per tonne milled are calculated with expressions (5) and (6).

Considering the material stockpiled as waste, Figure 4 shows the histograms of minedP for

all sampling configurations for the first actual on two and three metre bench heights. 
First, all the schemes are profitable, i.e. no loss occurred, but some are more profitable 
than the others.  It is also noticeable that the mean decreases with a sparser drilling 
pattern while the variance (and the coefficient of variation) increases.  The 12x12 
scheme is the most advantageous when considering both the efficiency and the 
uncertainty.

Figure 4 Histogram of profit per tones mined. 

5.3 DISCOUNTING THE STOCKPILE AND EFFECTS ON DRILLING

In reality, the stockpile has a value that is neither ore nor waste. Stockpiling an 
economic block may be seen as ‘money in the bank’ without interest, thus inducing an 
opportunity cost. The cost of misclassifying an ore block as stockpile increases 
according to the stockpile strategy, i.e. when that block will be mined.  From the 
banking analogy, the increase in cost depends on a discount rate and the number of years 
the material is to be stockpiled. The revenue generated from the stockpile, say to be 
mined in t  years,  is expressed in today’s dollar ( t =0 ) 

tt
t

t FiF )1(0 (7)

where i is the discount rate.  A higher discount rate, i.e. a higher uncertainty about the 
stockpile strategy,  will increase the misclassification cost.

The performance of the four infill drilling schemes is revisited by considering 
uncertainty in the stockpiled strategy modelled by discount rates. The cost of stockpiling 
marginal ore is investigated with six different discount rates on a period of 10 years. The 
profit generated by the stockpile is transformed into dollars in ten years time with a 
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specific discount rate. With a discount rate of zero, suggesting no cost of opportunity, 
the stockpile is considered as ore. A high discount rate indicates that the stockpile lost 
all its value, thus it is considered as waste. All other discount rates are intermediate 
scenarios between these two “end-point” cases. 

The profit per tonne mined is expressed in Australian dollar increment based on the 
currently used 12m x 12m sampling grid. The median profit per tonne mined for the four 
sampling scheme applied on actual #1 is shown in Figure 5.  The upper left graph 
considers the stockpile as waste and the lower right graph as ore. The profit per tonne 
milled is shown in the same format in Figure 6. 

For an increase of 8 cents per tonne in drilling cost between 12x12m and 25x25m, the  
profit  per tonne mined improves up to $2 (35%) at a high cut-off (stockpile as waste) 
and of $0.50 at a lower cut-off (stockpile as waste).   The 12x12m scheme is more 
profitable, even at a low cut-off (stockpile as ore).  The 12x18m scheme does not 
decrease the profit too much and could also be appropriate for the deposit.  The results 
seem insensitive to the bench height. For actual #1 the 2m is better than the 3m, the 
inverse is observed for the actual #2 therefore mining with 3m benches is appropriate. 

Figure 5 Median increment of profit per tonne mined.  The median of the 12x12 metre 
scheme is set to zero.  The black lines are for the actual deposits on two metre bench, the 
gray lines are for those on three metre bench.

Figure 6  Median increment of profit per tonne milled.  The median of the 12x12 metre 
scheme is set to zero.  The black lines are for the actual deposit on two metre bench, the 
grey lines are for those on three metre bench.
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6 Comments and Conclusions

This study shows that multivariate deposits can be efficiently simulated by first 
orthogonalising the attributes with the minimum/maximum autocorrelation factorisation.  
Once the simulated values are back-rotated, the cross-correlation at all lags between 
attributes is restored.  The resulting realizations are then a better representation of the 
deposit and are therefore more appropriate for further processing. 

The economic consequences of the drilling patterns on a multivariate deposit is then 
regarded on a large scale that takes into account some aspect of long-term planning, 
specifically with regards to the strategy and uncertainty related to the stockpiled 
material. The uncertainty of this material is translated into a discount rate, which 
indicates the risk of losing a profitable block when stockpiled. The performance of the 
drilling scheme can be assessed in a larger perspective than by the traditional 
misclassification parameters.  This study demonstrates how the main mine planning 
decisions impact the lower level activities such as the spacing of the infill drilling.
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THEORY OF THE CLOUD TRANSFORM FOR APPLICATIONS

ODD KOLBJØRNSEN and PETTER ABRAHAMSEN
Norwegian Computing Center, Oslo, Norway

Abstract. We present the multidimensional cloud transform and propose an
estimator for the transform. The estimation procedure is based on scatter plot
smoothing. The resulting transform does not introduce artificial discontinuities in
the transformed data, which is a common problem for the traditional estimates.
The method is compared to a traditional estimate in a synthetic example.

Key words: Non-Gaussian distribution, stochastic simulation, seismic conditioning

1 Introduction

Seismic data provide valuable information with high lateral resolution that im-
proves reservoir models. Geophysical variables such as acoustic impedance, shear
impedance and Poisson ratio are often available through out the reservoir as
results of seismic inversions. The cloud transform, see Bashore et al. (1994), is
a frequently used tool when incorporating one explanatory variable such as the
acoustic impedance into the reservoir model. The multi dimensional cloud trans-
form incorporates multiple explanatory variables in the transform. This is useful
as elastic inversions that provide multiple geophysical variables now are quite
common.

Traditional estimates of cloud transforms are constructed by introducing non-
geological facies, e.g. impedance classes. This method introduces artificial discon-
tinuities in the petrophysical simulations, and requires a large amount of well data
in order to obtain a reliable result. When the explanatory data have multiple
dimensions the traditional binning estimates will suffer due to lack of accuracy
and precision of the estimates because the number of bins increases dramatically
with the dimension.

In the current work we present the cloud transform using a probabilistic termi-
nology and propose estimators for the cloud transform that is based on scatter plot
smoothing. The major difference between the current approach and other scatter
plot smoothing approaches, e.g. Xu and Journel (1995) and Deutsch (1996), is that
we work with the cloud transform directly and do not consider the joint density.
The resulting estimates yield continuous transforms. Asymptotic expressions for
accuracy and precision are presented and discussed. Asymptotic convergence rates
are obtained such that for a given target distribution the asymptotically ideal
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smoothing factor can be computed. The convergence rate of the estimator is the
same as the convergence rate for the estimator of the density of the explanatory
variables in the transform. Thus it converges faster than the kernel estimator of
the joint density of response variable and explanatory variables.

A presentation of the cloud transform is given in section 2, the estimator and
asymptotic properties are given in section 3, synthetic example with comparison
of proposed estimators to the traditional estimate is given in section 4. At the end
there is a discussion and concluding remarks in section 5 and 6 respectively.

In what follows the function f denotes a generic density, where the random
variable(s) in question is implied by the argument(s) of f , e.g. f(x) and f(y)
denotes the density of X and Y respectively. Bold letters are used to denote
vectors, e.g. x ∈ Rd. The function F denotes a cumulative distribution function
the random variable in question is again implied by the argument, e.g. F (y) =
Prob(Y < y). Consequently f(y|x) and F (y|x) denotes the conditional pdf and
cdf for Y given X = x respectively. The quantile function that corresponds to the
cdf F is denoted F−1 such that by definition x = F−1(F (x)).

2 The cloud transform

The cloud transform is a conditional inverse probability transform. Let X and
Y denote the explanatory and response variable respectively. Typically X is the
acoustic impedance and Y is the porosity. A stochastic simulation from f(x, y)
can be obtained by the following algorithm:

Algorithm 1:

i) Compute F (x)
ii) Sample u∗

1 ∼ Uniform [ 0, 1]
iii) Let x∗ = F−1(u∗

1)
iv) Compute F (y|x∗)
v) Sample u∗

2 ∼ Uniform [ 0, 1] independent of u∗
1

vi) Let y∗ = F−1(u∗
2|x∗)

vii) Return (x∗, y∗).

The transform in step iii) is an inverse probability transform. The transform
in step vi) is the cloud transform. The multi dimensional cloud transform denotes
the case when the explanatory variable is multi dimensional, i.e. y = F−1(u|x).
For example can the components of x be the acoustic and the Poisson ratio.

In a spatial setting the cloud transform is applied pointwise, i.e.

Y (s) = F−1(U(s)|x(s)), (1)

with s being the spatial reference, Y (s) being the response field, U(s) being a
p-field and x(s) being the given explanatory field. A p-field has the property that
the stationary distribution of a realisation of U(s) is uniform on [ 0, 1 ]. A spatially
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correlated p-field can for example be obtained as U(s) = Φ(Z(s)), with Φ being
the standard normal cdf; and Z(s) being a standard normal random field.

On a bounded domain the response field Y (s) defined in expression (1) is
almost surely continuous if f(x, y) is a density, U∗(s) is almost surely continuous
and x(s) is continuous almost everywhere.

The following algorithm use the cloud transform to reproduce the conditional
distributions of Y (s) given x(s): Algorithm 2:

i) For all s in grid: compute F (y|x(s))
ii) Sample a p-field u∗(s) independent of x(s)
iii) For all s in grid: let y∗(s) = F−1(u∗(s)|x(s))
iv) Return y∗(s).

In step ii) the term independent is used in terms of independent stationary dis-
tribution; i.e. all information regarding Y (s) given by x(s) is given through the
transform.

The cloud transform can also be used to reproduce joint multivariate distribu-
tions, by sampling in a sequential manner. The first variable is sampled according
to an inverse probability transform; the next variables are sampled using the cloud
transform given the previously sampled variables.

One can also imagine combinations of these two uses, by first simulating poros-
ity given geophysical variables and next simulate permeability given geophysical
variables and porosity.

The cloud transform become storage intensive as the dimension of the ex-
planatory variable increase. Its hard store a cloud transform with a reasonable
resolution if the dimension of the explanatory variable exceed four. In place of
storing the transform one may consider to estimate it each time it is needed. The
time requirement in this approach is prohibitive. In addition the number of data
needed for a reliable estimate increase rapidly with the dimension.

3 Estimation of multi dimensional cloud transform

In an applied setting the cloud transform is unknown, and must be estimated
from data. The estimator proposed here is based on the theory of kernel density
estimation as presented in Silverman (1986), main results are summarised below.
Other methods of density estimation see e.g. Donoho et al. (1996) and more re-
fined approaches to kernel smoothing see e.g. Sain and Scott (1996), can also be
developed into the setting of the cloud transform.

3.1 DENSITY ESTIMATION

Let X1,X2, ...,Xn be a given multivariate data set whose underlying density is
to be estimated. The kernel density estimator of the joint density is then

f̂(x) =
1

nhd

n∑

i=1

kd

(
x − Xi

h

)
, (2)
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with h being the bandwidth; and the kernel kd : Rd → R being a radially
symmetric unimodal probability density function such that

∫

Rd

xixjkd(x)dx = δij ,

where δij is one if i = j; zero otherwise. Define further the constant

βd =
∫

Rd

|kd(x)|2dx,

that is specific for the kernel kd.
A standard argument using Taylor expansions yields the asymptotic expression

for bias,

E
{

f̂(x)
}
− f(x) =̇

h2

2
∇2f(x) , (3)

with ∇2 being the Laplace operator in Rd. The asymptotic variance is

Var
{

f̂(x)
}

=̇
βd

nhd
f(x) . (4)

Combining the two yields the mean squared error

MSE
{

f̂(x)
}

=
[
E

{
f̂(x)

}
− f(x)

]2

+ Var
{

f̂(x)
}

h4

4
|∇2f(x)|2 +

βd

nhd
f(x). (5)

From this expression one obtain the optimal rate of convergence for the bandwidth
being,

hopt ∼ n−1/(d+4) (6)

yielding the convergence rate of the mean squared error,

MSE
{

f̂(x)
}
∼ n−4/(d+4). (7)

The integrated mean square error (IMSE) is a common measure of error in density
estimation and is used to identify a common bandwidth for all x ∈ Rd. It is however
not possible to find a universal bandwidth that is applicable of all densities since
the MSE and IMSE depend on the target density, see expression (5).

Consider also estimation of the cumulative distribution in one dimension, F (x),
using the ordinary count estimator,

F̂ (x) =
∑n

i=1 I(Xi ≤ x)
n

, (8)

with I(Xi ≤ x) being one if its argument is true zero otherwise. This estimator
is unbiased and has variance according to the estimator of the probability in a
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binomial distribution. The mean squared error is thus identical to the variance
which is

Var
{

F̂ (x)
}

=
F (x) [1 − F (x)]

n
. (9)

The convergence rate for the MSE of the count estimator is hence of order n−1.
This should be compared with the convergence rate of the density estimator, see
expression (7). In one dimension the convergence rate for the density is n−1+1/5.
The convergence rate of the cdf corresponds to d = 0 in expression (7).

3.2 CLOUD TRANSFORM ESTIMATION

Let (Y1,X1), (Y2,X2), ..., (Yn,Xn) be a multivariate dataset for which the cloud
transform is estimated with Y and X being the response and explanatory variable
respectively. The kernel estimator of the joint density is then,

f̂(x, y) =
1

nhdhy

n∑

i=1

kd

(
x − Xi

h

)
· k1

(
y − Yi

hy

)
, (10)

where the kernel is separated for x and y; and hy is the bandwidth used for
the response variable. The target for the estimation is the conditional cumulative
distribution F (y|x). When using the density estimate in expression (10) one can
obtain the estimator of F (y|x) as,

F̂ (y|x) =

∑n
i=1 kd

(
x−Xi

h

)
· K1

(
y−Yi

hy

)

∑n
i=1 kd

(
x−Xi

h

) , (11)

with K1(y) =
∫ y

−∞ k1(t) dt. The bias in the estimator in expression (11) has the
complexity

E{F̂ (y|x)} − F (y|x) ∼ o(h2 + h2
y) .

The asymptotic variance has the complexity

Var
{

F̂ (y|x)
}

∼ o

(
1

nhd

)
.

The bound for the asymptotic variance is independent of hy. This is intuitively ex-
plained by the fact that K1(y/hy) in expression (11) is bounded whereas k1(y/hy)/hy

in expression (10) is unbounded when hy approaches zero. The usual trade off
between bias and variance is not needed in the direction of the response variable.
Thus let hy = 0 an introduce the unnormalised conditional cdf of Y given X,

G(y;x) =
∫ y

−∞
f(t,x)dt = F (y|x)f(x).

The asymptotic bias for the case of hy = 0 is

E{F̂ (y|x)} − F (y|x) =̇
h2

2f(x)
[
∇2

xG(y;x) − F (y|x)∇2
xf(x)

]
, (12)
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and the asymptotic expression for the variance is

Var
{

F̂ (y|x)
}

=̇
βd

nhd f(x)
[F (y|x) (1 − F (y|x))] . (13)

It is interesting to compare this variance with the one obtained for estimating em-
pirical cumulative distributions in 1D. The factor [F (y|x) (1 − F (y|x))] /[nhdf(x)]
can be interpreted as the binomial uncertainty given [nhdf(x)] data, see expres-
sion (9). The factor βd is related to the kernel smoothing, see expression (4).

By combining the bias in expression (12) and the variance in expression (13)
to the mean squared error one see that the optimal rate of convergence for the
bandwidth is obtained by

hopt ∼ n−1/(d+4),

yielding the convergence rate for the mean squared error to be

MSE{F̂ (y|x)} ∼ n−4/(d+4). (14)

This is the same rate of convergence as obtained for density estimation, see ex-
pression (7), but in expression (14) the dimension d refers to the dimension of the
explanatory variables.

Note in particular that an estimator of the cloud transform that is based on the
optimal kernel density estimator will have the convergence rate n1/(d+5), which is
suboptimal.

The factor 1/f(x) which occur both in expression (12) and (13) is large in
the flanks of f(x). This factor may be reduced by transforming the explanatory
variable to be approximately uniform on [0, 1]d. In the case of a one dimensional
explanatory variable, the rank transform is uniform. In higher dimensions it is
possible to obtain approximate uniform distributions by sequentially estimating
the conditional transforms in the same manner as for the cloud transform, but
applying them to the explanatory variables. This transform reduce the variance in
the estimate but unfortunately the bias is increased trough the factor ∇2

xG(y;x).
The advantage is that the transform remains stable at the flanks. When the cloud
transform is used to model spatial phenomena the histogram based on well logs
have a smaller support than the histogram of the full field, due to the number
of samples. It is therefore importance to have a reliable estimate of the cloud
transform also towards the flanks of the distribution of the explanatory variable.

Note that the kernel estimator of the cloud transform corresponds to a den-
sity estimator for the explanatory variables. If the stationary distribution of the
explanatory variable is an exhaustive sampling of this distribution, the marginal
histogram of the dependent variables is exactly reproduced in the full field.

3.3 SPECIAL CASES

It is interesting to investigate the proposed estimator for cases in which one can
see the effect directly.

In the trivial case where there is no explanatory variable, the estimator is
identical to the empirical cdf of the response variable, see expression (8).
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If the response variable is independent of the explanatory variable, the es-
timator introduces local bias for the simulated response variable. However the
stationary distribution of the response variable will still be reproduced. In this case
it is obvious that an infinite bandwidth is optimal for the explanatory variable.

When the response variable is discrete, the estimator is identical to estimates
obtained by kernel density estimation for each level of the response variable. The
kernel density estimates for all classes have a common bandwidth. The probability
of a class at a given value of the explanatory variable is proportional to the density
estimate weighted with the number of data in this class.

If there is a functional relationship between the explanatory and the response
variables, the estimator blurs this relation. This introduces artificial uncertainty
in the predictions. The obvious choice in this case is to estimate this deterministic
relation instead of introducing the cloud transform which is a stochastic transform.

4 Example

The properties of the estimators are investigated in a synthetic example where
a relation between acoustic impedance and porosity is considered. In Figure 1
the scatter plot of the data that are used to estimate the transform is displayed
together with the cloud transform. A vertical line in the cloud transform yields a
cumulative distribution for the porosity increasing monotonically from zero at low
porosity values to one for high porosity values. In the figure both extreme ends
are coloured white in order to highlight the active region.

Figure 1. Data and original transform. On the left is the scatter plot of the
1200 well observations that are used to estimate the transform. On the right is
the original cloud transform of the joint distribution of acoustic impedance and
porosity. All cumulative distributions are zero for low porosity values and one for
high values.

The binned estimator is compared with two estimators based on scatter plot
smoothing. The first use the basic variable, i.e. acoustic impedance, the second
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use the rank transform of the basic variable as explanatory variable in the cloud
transform. In Figure 2 the three estimated cloud transforms are displayed together
with the original transform. Both estimates based on scatter plot smoothing are
continuous whereas the binned estimate has clear discontinuities as the acoustic
impedance crosses the boarder between bins. The binned estimate and the un-
transformed scatter plot smoother become unstable at the ends. This is a result
of the high variance in the estimate in the extreme ends. The transformed scatter
plot smoother is stable at the ends, but the bias is evident in the figure.

Figure 2. Original and estimated transforms. On the top left is the original
cloud transform i.e. the target of estimation, top right is the binned transform, on
bottom left is the estimate based on scatter plot smoothing, bottom right is the
estimate based on a rank transform of the acoustic impedance. All three estimates
are based on the 1200 well observations displayed in the scatter plot in Figure 1.

In order to compare statistical properties of the estimators of the cloud trans-
form the root integrated mean square error,

RIMSE
{

F̂ (y|x)
}

=
(∫

R
MSE{F (y|x)} dy

)1/2

,
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is computed for each value of the acoustic impedance. The mean squared error is
approximated by Monte Carlo integration using the following procedure. Generate
1000 independent data sets all consisting of 1200 data pairs. For each data set
estimate the transform and compute the squared deviation between this and the
true transform. The average of the 1000 squared deviations is the approximation
to the mean squared error. The results for the three estimators are displayed in
Figure 3, the density of the acoustic impedance, i.e. f(x), is overlaid in the figure.

Figure 3. Pointwise root integrated mean square error. The root integrated
mean square error for three estimators considered. Overlaid is the density of
acoustic impedance. The range in the figure is about six times the standard
deviation for acoustic impedance.

In terms of root integrated mean square error both estimates based on scatter
plot smoothing outperform the binned estimate. The scatter plot smoother that
use the basic variable is better than the one based on the rank transform.

5 Discussion

The cloud transform can be used to reproduce any multivariate distribution; how-
ever the spatial dependence is hidden in the p-field. A scatter plot such as the one
in Figure 1 may indicate an underlying dichotomous random field. It is not obvious
how to create a p-field with desired spatial properties, e.g. channels. However if the
wells are dense compared with the correlation length of the random fields a p-field
originating from a transformed Gaussian field may be satisfactory. An alternative
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approach is to build a facies model with the desired spatial properties and build
separate cloud transforms for petrophysical modelling within each facies.

Scatter plots that are used for estimation of the cloud transform usually come
from well observations. This will result in data that are correlated and not inde-
pendent which is assumed in the calculations above. This will most likely have
the effect that the variance of the estimator is larger than given in expression (13)
above. The scatter plot may also come from rock physics simulations. In which
case it is likely that the data are independent and the results are strictly valid.

6 Concluding remarks

We have proposed two estimators for the cloud transform. Both estimators are
based on scatter plot smoothing and result in continuous estimates. The optimal
bandwidth of the estimator has the same convergence rate as for the density
estimation in the space of explanatory variables. There is however no need to
smooth in the direction of the response variable as this introduces additional bias.

In a test example both proposed estimators are found to perform better than
the traditional binning estimate in terms of root integrated mean squared error,
also the estimators are more appealing visually as they preserve continuity in the
estimate. The estimator based on the basic explanatory variable is the best of the
two estimators in terms of root integrated mean squared error. This estimator does
however have large variance at the ends of the interval resulting in an unstable
estimate. This can be unfortunate, see discussion in end of section 3.2.

When choosing estimator for the cloud transform one should not only consider
its theoretical properties, but also how the resulting estimate will be applied.
The authors prefer a slightly higher bias in order to preserve good properties, i.e.
smoothness, of the estimated transform at the flanks of the distribution of the
explanatory variable.
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Abstract.
The practical advantages and theoretical disadvantages of P-field simulation

are reviewed in the light of more than a decade of application and research since
it was first introduced. A case study example highlights the enduring attractions
of the algorithm: its flexibility and speed.

1 Introduction

When first introduced, probability field simulation was well-suited to certain types
of problems that were not well handled by other simulation algorithms available.
In particular, it adapted well to the situation where a priori local distributions
were available. As it rapidly gained practical acceptance, largely because of its
speed, “P-field” simulation was also dismissed by some as a procedure lacking a
proper theoretical foundation — more of a clever algorithmic trick than a properly
conceived approach to stochastic spatial simulation.

In the past decade, the advantages and shortcomings of the procedure have
been illuminated through continued widespread application and theoretical re-
search. This paper begins with an overview of the theoretical background and the
usual practical implementation of P-field simulation. It then discusses theoretical
concerns and assesses their practical implications. A mining case study example
illustrates two enduring strengths of P-field simulation: flexibility and speed.

2 Overview and implementation

Let F [u; z] denote the cumulative distribution function (cdf) at location u of an
attribute Z. Any simulated value, zsim, represents a specific quantile of this local
cdf: the z-value at which F [u; z] reaches a probability p(u):

zsim = F−1[u; p(u)] (1)

The p values are not spatially independent; this would preclude reproduction
of almost any desired spatial autocorrelation in Z. Instead, the p values must
be regarded as a realization of a random function P (u), and simulated with an
appropriate pattern of spatial continuity.
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P-field simulation therefore proceeds as follows:
1. Generate a non-conditional realization of P (u), i.e. a grid of spatially autocor-

related values that are uniformly distributed between 0 and 1.1

2. Use P (u) to sample the local cdf F [u; z].

This procedure ensures that two of the common goals of conditional simulation
are met: conditioning data are honored, as is the target global distribution. The
global distribution of Z(u) is honored because the local cdfs are sampled using
U [0, 1] values. As long as local cdfs correctly model local distributions of uncer-
tainty, sampling these with U [0, 1] values will preserve the global distribution.
Conditioning data are honored because local cdfs collapse to a spike at data
locations. Regardless of the probability value used to sample these zero-width
distributions, the simulated value will match the conditioning data value.

The third common goal of conditional simulation, the reproduction of the
variogram of Z(u), is not exactly guaranteed. Since the p(u) values are spatially
autocorrelated, the zsim(u) will also be spatially autocorrelated, but the precise
nature of the autocorrelation of the zsim values is not directly controlled. The
resulting variogram of the zsim values will not necessarily reflect the intended target
Z variogram model. As discussed later, it will often be very close to the desired
target but there are situations in which, despite having some spatial continuity,
the zsim values do not have exactly the desired pattern of spatial continuity.

3 Theoretical considerations

The first P-field papers (Srivastava, 1992; Froidevaux 1993) focused on algorithmic
details; little theoretical justification was provided and the acceptance of the pro-
cedure was due to its practical success. Theoretical investigations soon followed,
however, and links between the P-field approach and other conditional simulation
methods were eventually elucidated (e.g. Journel and Ying, 2001).

Although Journel (1995) proved that, in the absence of conditioning data,
P-field simulation correctly reproduces univariate and bivariate properties of Z,
Pyrcz and Deutsch (2001) pointed out that: i) if a stationary covariance model is
used for P , the covariance of Z is not stationary and is biased in the vicinity of
conditioning data and, ii) conditioning data usually appear as local extremes in
the realizations.

3.1 INFERRING THE LOCAL CDFS

P-field simulation does not concern itself with the determination of the local cdfs;
it considers them to have already been established. The origin of the local cdfs

1 This is usually done by generating non-conditional Gaussian values, Y (u), and then using
the inverse of the cumulative Gaussian distribution to transform the Y values to P values:
P (u) = G−1[Y (u)]. The generation of spatially autocorrelated Gaussian values can be done
extremely rapidly using fast Fourier transform (FFT) algorithms or by efficient moving averages.
In applications where the local cdfs are Gaussian, the transformation from Y values to P values
can be skipped and the Y values are simply linearly transformed to a Gaussian distribution with
the proper mean and variance.
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does play a role in the theoretical analysis of the spatial structure of P . It is useful,
therefore, to elucidate some common cases for the determination of local cdfs and
to discuss how these impinge on the variogram model for P :

Case 1: Local cdfs not locally data-conditioned but are identified instead with the
prior marginal distribution of Z: Prob{Z(u) < z} = F (z).

Case 2: Local cdfs are not locally data-conditioned but are identified instead with
non-stationary prior distributions of Z: Prob{Z(u) < z} = F (u; z).

Case 3: Local cdfs are estimated from existing sample data using an appropriate
geostatistical technique: Prob{Z(u) < z} = F [u; z|(n)].

The single most important issue here is conditioning to sample data. This will
have a direct impact on the inference of the variogram model.

3.2 P-FIELD VARIOGRAM MODEL: STATIONARY OR NOT?

P-field simulation usually uses a stationary variogram model for P . This normal
practice follows from the original suggestion of Froidevaux (1993): that the P
variogram be modelled from the experimental variogram of the uniform transform
of the available data. As Pyrcz and Deutsch (2001) pointed out, howeer, if the
Z values are assumed to be second-order stationary, then the use of a stationary
variogram model for P is inconsistent. If P is defined as

P (u) = F [u;Z(u)] (2)

using data-conditioned local cdfs, then second-order stationarity of Z entails lack
of second-order stationarity for P . Cassiraga (1999) has shown that the range of
autocorrelation of P is linked to the spatial density of the conditioning data.

To date, theoretical analysis of P-field simulation has proceeded from the as-
sumption that the Z values have second-order stationarity, and that the P values
are defined using Equation 2 above. One could, however, take a different approach:
assume that the P values have second-order stationarity and that the Z values are
defined using Equation 1. P and Z play complementary roles in Equations 1 and
2, and the results of Cassiraga (1999) can be extended to demonstrate that if we
choose a random function model in which the P values are second-order stationary,
then the consequence is that the Z values cannot be; or, as also pointed out by
Pyrcz and Deutsch (2001), the stationarity of the P-field covariance makes the
covariance structure of Z dependent on the nearby conditioning data.

So with two alternate random function models — one that is better researched
and that chooses second-order stationarity for Z; the other that chooses second-
order stationarity for P and whose theory has barely been explored — the question
arises: which one is more appropriate? Though the tradition of geostatistics has
been to choose second-order stationarity as a Z property, it is worth considering
the pro’s and con’s of bestowing this property on P instead.

It is clear from the construction of the P-field that the P values are, globally,
first-order stationary; if they are not, then the local cdfs do not properly quantify
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the local probability distribution of Z. It is equally clear, from practice, that
in most interesting earth science applications, first-order stationarity of Z is a
questionable choice. Geostatistics has adopted the good practice of using local
search neighborhoods so that the dependence on stationarity becomes local; but
the practical success of local customization of estimation and simulation parame-
ters is consistent with the view that an assumption of global first-order stationarity
is rarely appropriate for Z.

Moving from the consideration of first-order stationarity to second-order sta-
tionarity, if the Z values are not first-order stationary, why does it make sense to
assume that they are, globally, second-order stationary? Might it not be better to
assign the property of second-order stationarity to a random variable, P , that is
known, by construction, to be globally first-order stationary?

The technical literature on P-field simulation has elucidated the fact that P
and Z cannot both be second-order stationary. Research remains to be done on the
theoretical consequences of the user’s choice on which of the two complementary
random variables this property will be assigned to.

3.3 LOCAL EXTREMES AT DATA LOCATIONS

When hard data are used to locally condition cdfs, a sample at u will typically
have a very strong influence on the cdf at an adjacent location, u′. If the local cdf
F [u′; z|(n)] has been estimated geostatistically, then its mean will tend to be very
close to the adjacent data value, z(u), and its variance will be small. Given this
situation, if the p values in the vicinity of u are significantly less than 0.5, then
z(u) will be a local maximum in the realization. Conversely, if the nearby p values
are larger than 0.5, then z(u) will be a local minimum. The conditioning data,
z(u), will not be noticeable as a locally extreme artifact in the realization only if
the nearby probability field values are around 0.5.

4 Discussion

4.1 DECOUPLING CDF ESTIMATION FROM SAMPLING

The practical advantage of P-field simulation stems from the decoupling of the
sampling of cdfs from their estimation. As with other geostatistical simulation
procedures, the local cdfs in a P-field approach can be established through some
form of kriging; they can also be derived directly from secondary information. In
many petroleum applications, for example, geophysics or petrophysics can provide
constraints on rock properties such as porosity and permeability, and on structural
properties such as thickness and depth to top of reservoir. In such situations, local
cdfs can be built directly from geophysical data and no kriging is required; all that
remains is the appropriate sampling of the geophysically-derived local cdfs.

In studies that involve resource estimation, the decoupling of cdf estimation
from cdf sampling has another benefit: it is easier to ensure that simulated out-
comes do not imply outlandish or aberrant resource estimates. Though the concept
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that simulations fluctuate around the expected value is well understood theoret-
ically, in practice it can be hard to ensure that the average of many realizations
is suitably close to an already-calculated resource estimate. There are many situ-
ations, especially in mining applications, where conditional simulations are being
considered (for grade control, for example, or for blending studies) and where a
well accepted and carefully developed resource block model already exists. The
use of a P-field approach that incorporates previously accepted and trusted local
cdfs avoids the embarassment and confusion that results when simulated outcomes
depart, significantly on average, from the “best estimate” of the global resource.

4.2 HONORING THE VARIOGRAMS

As noted above, the definition and inference of the P variogram is theoretically
troublesome if the Z values are assumed to be second-order stationary. The prac-
tical impact of this issue is, however, usually minor. With the real goal being
reproduction of the Z variogram; the P variogram is an intermediate stepping-
stone. Even if the P variogram is theoretically ill-defined, the user can still adopt
a variogram model based on analysis of the uniform transform of Z and can adjust
this model if the resulting variogram of the zsim values is unacceptable.

Luster (1985) discussed departures between target variogram models and ex-
perimental variograms of realizations. He noted that, by virtue of being conditioned
by hard data, realizations have a pattern of spatial continuity whose mid- and long-
range structure is controlled not by the variogram model but rather by available
data. In practice, the critical aspect of the P variogram model is, therefore, its
behavior at short distances (up to the nominal spacing of data). With the short-
scale characteristics of the P variogram model well chosen, especially directional
anisotropy and relative nugget effect, the results of P-field simulation are usually
well within the fluctuations normally tolerated in conditional simulation studies.

Compared to sequential methods, P-field simulation is more successful at creat-
ing realizations with very low nugget effects and strong short-scale continuity (such
as those typical of thickness or top of structure in petroleum applications). The
realizations from sequential methods often have too much short-scale variability2

and need to be post-processed to remove such artifacts (e.g. Tran, 1994).

4.3 LOCAL EXTREMES AT DATA LOCATIONS

To solve the problem of local extremes at data locations, Goovaerts (2002) pro-
posed the use of a conditional probability field with fixed probability values of
0.5 at data locations. This entails a preferential sampling of the central part of
the cdfs in the immediate vicinity of conditioning data. Although this method
removes the artifacts, it does so at the expense of execution speed, which is one of
the most attractive features of P-field simulation. Moreover, the justification and
the consequences of forcing an arbitrary fixed p value still remain to be explored.

2 A consequence of unstable kriging weights caused by strong screen effects in the end-stages
of sequential simulation on a dense regular grid.
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A practical application for which local extremes at data locations are clearly
undesirable is flow and transport modelling. If wells or bore holes coincide with
local minima and maxima in the permeability field, attempts to predict flow and
transport may be seriously biased. In this sense, the P-field artifact of local ex-
tremes is similar to the “striping” or “banding” artifact often seen in realizations
from the turning bands method and in realizations from sequential methods that
do not randomize the sequential path. While such artifacts may not have any
practical impact in certain types of studies, they may be serious flaws in others.

5 Case study: uncertainty on a mineralized envelope

Studies of mineral resource estimates typically incorporate a “mineralized enve-
lope”, an outer bounding limit beyond which grades are not estimated. Many
case studies have demonstrated that the failure to adequately constrain the do-
main within which grades are estimated can lead to very unrealistic block models
that overstate the tonnage of mineralized material, with peripheral grades being
overestimated and grades in the heart of the deposit being underestimated.

Though some kind of mineralized envelope is necessary, the traditional ap-
proach, unfortunately, is to treat this boundary as deterministic. The limits of
mineralization identified in drill holes typically serve as control points for a 3D

solid or “wireframe”. With the mineralized envelope thus frozen, the impact of
the uncertainty of this envelope on resource estimates is very difficult to quantify.
Even when simulation is used to study grade fluctuations within the envelope, the
additional uncertainty due to the wireframe definition itself is rarely addressed.

Figure 1 shows an example of a
simple wireframe constructed from ex-
ploration holes drilled on a 100m grid.
These holes identify a deposit that lies
in a shear zone between two faults, with
a sharp hangingwall contact that can
usually easily be correlated from hole
to hole across the deposit. The footwall
contact, which is more diffuse, does not
appear to be a structural contact and is
not clearly associated with any partic-
ular geological characteristic. In places,
the footwall coincides with feldspathic
alteration; in other places, it occurs
where the intensity of shearing drops.

All three holes on the north-facing
section shown in Figure 1 intersect
anomalous mineralization which, for

Figure 1. Drill holes and interpre-
tation of mineralized envelope from
initial drilling.

this project, was defined as more than five consecutive meters of drill core with
total precious metals (TPM) in excess of 0.5 g/t. Small changes in the grade thresh-
old or the length of interval have little impact on the definition of the hangingwall
contact but have a more appreciable impact on the footwall.
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The wireframe developed from initial drilling is necessarily simplistic, little
more than a schematic cartoon that approximates the deposit’s heart. In a second
drilling campaign, in-fill holes were drilled from a development drift to penetrate
the deposit from the west. Figure 2 shows the new holes with their mineralized
intercepts, along with the old drill hole data and the mineralized envelope from
Figure 1. The original wireframe provided good predictions of down-hole depth to
the hangingwall, but its predictions of depth to the footwall are less precise.

Figure 3 shows the interpreted mineralized envelope, updated to honor all data
currently available. With more closely spaced data, the shape of the wireframe has
become slightly more complex. Though this new interpretation is an improvement,
it is still far from perfect. If even more closely spaced holes were available, new
short-scale complexities would be discovered in the shape of the mineralized zone.
Rather than using the outline in Figure 3 as a single deterministic boundary for
purposes of resource estimation, we would like to run several resource estimates,
each one with a different but plausible version of the mineralized envelope, to study
the impact on resources of uncertainty on the shape of the deposit. In conjunction
with conditional simulations of TPM grades within the mineralized envelope, this
will help determine whether or not additional definition drilling is required.

Figure 2. Drill holes after under-
ground development drilling, with old
interpretation of mineralized envelope.

Figure 3. Drill holes after under-
ground development drilling, with new
interpretation of mineralized envelope.

P-field simulation has been used to produce alternate versions of the mineral-
ized envelope, each one of which honors the drill hole data from the first two years.
The attribute being simulated is ∆D(u), the deviation3 of the true (but largely
unknown) mineralized envelope from the current working interpretation shown
in Figure 3. Close to existing drill holes, the current working interpretation is
reliable and ∆D(u) is close to 0. As we move farther away from existing holes, the
deviations between the actual and predicted surfaces will tend to become larger.

3 Measured orthogonal to the wireframed surface, with the sign determining whether the
deviation is outward (+) or inward (–).
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and predicted depths as a function of distance from a hole drilled in the first
year. This plot, which shows us actual historical values of ∆D(u), can be used to
calibrate possible future fluctuations. The dashed line in Figure 4a shows a model
of ± one standard deviation of ∆D(u) as a function of distance from an existing
drill hole; the dotted line shows ± two standard deviations.

Figure 4b shows the corresponding data and models for depth to the footwall.
As noted earlier, the lack of a clear geological distinction at the footwall makes the
wireframe a less reliable predictor of the footwall location than of the hangingwall
location — ∆D(u) values are generally larger in magnitude on the footwall side.

Figure 4a. ∆D(u) versus distance
from nearest drill hole for hangingwall.

Figure 4b. ∆D(u) versus distance
from nearest drill hole for footwall.

Using the dashed lines in Fig-
ure 4a and 4b, local cdfs of ∆D(u) can
be constructed at every point on the
mineralized surface. The distance from
each point on the surface to the nearest
drill hole intercept is calculated. Read-
ing up from the x-axis on Figure 4 to
the dashed line and across to the y-axis
gives the standard deviation of ∆D(u)
at that location; the mean is assumed
to be zero and the shape of the cdf is as-
sumed to be Gaussian. Figure 5 shows
the median and ±2σ bands of the local
cdfs for the section shown in Figure 3.

With the local cdfs now established,
all that remains is to sample them using
a P-field with an appropriate range of

Figure 5. Local cdfs shown as a
±2σ band around the median.

For the 62 holes drilled in the second year, and which intersected the mineral-
ized zone, Figure 4a shows the differences between actual depth to the hangingwall
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spatial autocorrelation. Figure 6 shows variograms of the uniform transform of the
62 ∆D(u) values from the second drilling campaign, along with their variogram
models. Using these variograms, two 2D fields of spatially correlated probability
values were created, one for use on the hangingwall and one for use on the footwall;
these autocorrelated p values were then used to sample the local cdfs. Two of the
resulting 100 realizations are shown in Figure 7.

Figure 6a. Variogram for ∆D(u) on
the hangingwall contact.

Figure 6b. Variogram for ∆D(u) on
the footwall contact.

This example highlights the fact that local cdfs need not be estimated by
kriging. In this case, they are established instead by a straightforward calibration
based on historical data. This example also illustrates that the theoretical complex-
ities of the P-field’s statistical properties need not be an impediment to practical
application. The uniform scores provide an experimental variogram that is easily
modelled and that, when used to create unconditional P-fields, leads to geologically
plausible results that greatly assist the assessment of project uncertainty and risk.

6 Conclusions

Even with exponential advances in computational speed, and the availability of
many newer simulation algorithms, P-field simulation will likely remain one of
the most often used geostatistical simulation procedures. Whenever local cdfs
are already available and do not need to be generated using kriging, the P-field
approach will be attractive since it decouples the issue of estimating cdfs from
the task of sampling them. This not only reduces computational overhead, it also
allows the user to generate realizations that fluctuate around a predetermined
“base case”, an advantage in many resource-based studies where a best estimate
of global resources has already been established.

For studies that call for rapid generation of large numbers of conditional real-
izations, P-field will be attractive for its computational speed. Even as computer
power has made it possible to run simulations hundreds of times faster than ten
years ago, the appetite for larger simulations and for more realizations has kept
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pace. When a few realizations containing millions of grid nodes were once satis-
factory, it is now not uncommon to generate hundreds of realizations containing
tens of millions of grid nodes.

At the same time that P-field simulation will continue to be a good choice for
many common applications, it is clear that there are many other common appli-
cations for which it is not a good choice. In particular, its tendency to create local
extremes at conditioning locations makes it undesirable whenever downstream use
of the realizations involves post-processing that is influenced by such artifacts.
Fluid flow and contaminant transport studies are two examples of applications in
which permeability extremes at wells or boreholes are clearly undesirable.
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SEQUENTIALSPATIAL SIMULATION USING LATIN HYPERCUBE
SAMPLING

PHAEDON C. KYRIAKIDIS
Department of Geography, University of California Santa Barbara, Ellison
Hall 5710, Santa Barbara, CA, 93106-4060, U.S.A.

Abstract. An efficient method is proposed for generating realizations from an
arbitrary multivariate distribution using sequential simulation and Latin hyper-
cube sampling. In a spatial context, this efficiency entails a reduction of sampling
variability in statistics of spatially distributed model outputs when the inputs
are realizations of random field models. The proposed method yields an unbiased
reproduction of a target semivariogram, even for a small number of realizations,
and consequently can be used for enhanced uncertainty and sensitivity analysis in
complex spatially distributed models. In addition, the method is simple enough to
be incorporated in virtually any geostatistical software for sequential simulation.

1 Introduction

Monte Carlo simulation is routinely used for uncertainty and sensitivity analysis of
model outputs in a wide spectrum of scientific disciplines (Morgan and Henrion,
1990). Any realistic uncertainty analysis, however, calls for the availability of a
representative distribution of such outputs, and can become extremely expensive
in terms of both time and computer resources in the case of complex models and
simple random (SR) sampling. This problem is far more pronounced for spatially
distributed models, due to the large number of correlated (regionalized) variables
comprising each input parameter map to such models, e.g., 3D rasters of hydraulic
conductivity used for simulation of flow and transport in porous media.

An intelligent alternative to SR sampling is Latin hypercube (LH) sampling,
a special case of stratified random sampling, which yields a more representative
distribution of model outputs (in terms of smaller sampling variability of their
statistics) for the same number of input simulated realizations. Analytical results
demonstrating the efficiency of LH over SR sampling from univariate distributions
are given in the (now classic) paper of McKay et al. (1979). A more recent compre-
hensive review of LH sampling for uncertainty and sensitivity analysis in complex
systems can be found in Helton and Davis (2003).

LH sampling from a multivariate distribution, i.e., the task of inducing correla-
tion in LH samples, is an important research theme in risk analysis and reliability
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engineering (Haas, 1999), which becomes critical in a spatial context for ensuring
unbiased outputs of complex spatially distributed models. This paper makes a
novel contribution to the literature of spatial uncertainty analysis, by proposing a
simple and efficient method for sequential LH sampling from random field models.

2 Latin hypercube sampling

Consider a set of K independent continuous RVs {Yk, k = 1, . . . , K}, with FYk
(yk) =

Prob{Yk ≤ yk) denoting the cumulative distribution function (CDF) of the k-th
RV Yk. Simple random (SR) sampling of N realizations from RV Yk proceeds by
first generating a (N × 1) vector uk = [u(n)

k , n = 1, . . . , N ]′ of uniform random
numbers in [0, 1], which are treated as simulated probability values, and then
transforming uk into a (N × 1) vector yk = [y(n)

k , n = 1, . . . , N ] of simulated
realizations as: yk = F−1

Yk
(uk), using the inverse CDF F−1

Yk
of RV Yk.

Latin hypercube (LH) sampling of N realizations from the k-th RV Yk calls for
generating, independent of vector uk, a (N×1) vector pk = [p(n)

k , n = 1, . . . , N ]′ of
random permutations of N integers {1, 2, . . . , N}. A (N ×1) vector zk = [z(n)

k , n =
1, . . . , N ]′ of stratified realizations is then obtained as (McKay et al., 1979):

zk = F−1
Yk

(
pk − uk

N

)
(1)

where the argument (pk − uk)/N of the inverse CDF F−1
Yk

ensures that the sim-
ulated probability values for the k-th RV Yk are stratified, i.e., fall in N different
probability strata. The monotonic transformation of the simulated probabilities
incurred by the inverse CDF F−1

Yk
does not ruin stratification, which entails that

each entry of vector zk (each simulated value) falls within a different stratum
in the original variable space, no matter the distributional form of FYk

(yk). The
independence of vectors pk and uk ensures that there is a uniform probability
1/N for a simulated value within a particular stratum, i.e., there is no systematic
placement of simulated values at the edges of strata. Variations of the above basic
LH sampling procedure to further control sampling variability include variance
reduction techniques, such as antithetic and control variates, as well as correlated
sampling (Ang and Tang, 1984; Switzer, 2000).

A naive application of the above LH sampling procedure to correlated RVs
fails to induce any correlation in the simulated values, simply because vectors pk

and uk for the k-th RV Yk are generated independent of other such vectors for
other RVs. From these two sources that contribute to lack of correlation, the most
important one is the vector pk of random permutations because it dictates the
strata within which the entries of uk are distributed. To date, the most widely
used method for generating LH samples from correlated RVs with a given rank
correlation coefficient is the distribution-free method of Iman and Conover (1982).
This method, however, is prohibitive for a large number K > 10, 000 of RVs (typ-
ically the case in a spatial setting) because it calls for the Cholesky decomposition
of an extremely large (K × K) variance-covariance matrix.

P.C. KYRIAKIDIS
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Stein (1987) proposed a (now also widely used) post-processing method for
transforming a SR sample from K correlated RVs into a LH sample. Stein’s
method is independent of the simulation algorithm used to generate the original
SR sample, and can be applied in principle to a large number K of RVs. Let
Y = [yk, k = 1, . . . , K] denote a (N × K) matrix containing a SR sample of
size N from the K-variate CDF of the above K RVs; the k-th column yk of this
matrix corresponds to outcomes of the k-th RV Yk. Matrix Y can be generated, for
example, by simulation via the Cholesky decomposition of the covariance matrix,
or via sequential simulation (Johnson, 1987). The SR sample yk for the k-th RV
Yk is then transformed into a LH sample zk for that RV, as:

zk = F−1
Yk

(
rk − uk

N

)
(2)

where rk = [r(n)
k , n = 1, . . . , N ]′ denotes a (N × 1) vector containing the ranks of

the entries of yk: the lowest y
(n)
k simulated value for the k-th RV Yk is assigned a

rank of one, the second lowest a rank of two, and the highest a rank of N .
Stein’s method is similar to the LH sampling method of Equation (1), with the

sole, but extremely important, difference that the array pk of random permutations
in that equation is now replaced by the array rk of ranks of yk. This substitution
entails that the LH sample comprising the (N ×K) matrix Z = [zk, k = 1, . . . , K]
is (column-wise) correlated, since it inherits correlation that is present in the SR
sample Y via the corresponding (N × K) matrix R = [rk, k = 1, . . . , K] of its
ranks. In addition, the entries of any column of matrix Z are stratified, as opposed
to the entries of any column of matrix Y.

Figure 1 gives an example of a SR sample (A) and a LH sample generated
using Stein’s method (B), both of size N = 10, from two standard Gaussian RVs
Y1 and Y2 with correlation coefficient ρ12 = 0.7. It can be easily appreciated that,
for the LH sampling case, realizations for both RVs are marginally stratified, i.e.,
when viewed from either the abscissa or the ordinate, each stratum (delineated by
vertical or horizontal solid lines, respectively) contains a single simulated value.

Figure 1. Examples of a SR sample (A), and a LH sample generated using Stein’s

method (B), both of size N = 10, from two correlated standard Gaussian RVs Y1 and Y2

with ρ12 = 0.7; solid lines delineate strata of equal probability.
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Stein’s method, however, underestimates the target correlation between any
two RVs, because it does not fully account for the correlation in the original SR
sample. More precisely, the sole vehicle for inducing correlation in the LH sample
zk for RV Yk is the rank vector rk of the original SR sample yk for that RV;
see Equation (2). The vector uk of uniform random numbers in that equation is
generated independent from any other such vector uk′ for any other RV Yk′ . For
small sample sizes (small N) the displacement in the probability axis of the original
uniform random vector that generated yk (brought by the new vector uk) can be
large; this affects the reproduction of a target correlation by the LH sample.

The above underestimation of a target correlation was also corroborated em-
pirically in a spatial setting by Pebesma and Heuvelink (1999), who applied Stein’s
post-processing method to transform a SR sample generated via sequential Gaussian
simulation to a LH sample. Their results showed that simulated realizations ex-
hibited small-scale variability larger than that dictated by the target semivari-
ogram model. This bias was also shown to be higher for small sample sizes, which
unfortunately is precisely the reason for employing LH sampling in the first place.

In what follows, Stein’s method is adopted not as a post-processing step, but
as an integral part of sequential simulation for generating a LH sample from a
multivariate distribution. To the author’s knowledge, the proposed LH sampling
method constitutes a novel contribution to the literature of importance sampling.

3 Sequential Latin hypercube sampling

Let FY1,...,YK
(y1, . . . , yK |d) = Prob{Y1 ≤ y1, . . . , YK ≤ yK |d} denote the K-

variate conditional CDF (CCDF) of K RVs {Yk, k = 1, . . . , K}, given a (O × 1)
vector d = [do, o = 1, . . . , O]′ with known realizations (sample observations) of O
RVs {Yo, o = 1, . . . , O}. Conditional stochastic simulation amounts to generating
N alternative realizations from the multivariate CCDF FY1,...,YK

(y1, . . . , yK |d),
whereas unconditional simulation corresponds to absence of sample observations,
in which case the data vector d is simply dropped from the notation.

The multiplication rule of probability allows one to decompose the above K-
variate CCDF into a sequence of K univariate CCDFs as:

FYK ,...,Y1(yK , . . . , y1|d) = FYK
(yK |yK−1, . . . , y2, y1,d) · · ·FY2(y2|y1,d)FY1(y1|d)

(3)
which entails that the n-th SR sample from the above multivariate CCDF can be
generated sequentially by first simulating a value y

(n)
1 from CCDF FY1(y1|d), then

a simulated value y
(n)
2 from CCDF FY2(y2|y(n)

1 ,d), and so forth.
It is important to note that all the above univariate CCDFs, apart from the

first one FY1(y1|d), change from one realization to another, because the previously
simulated values used as conditioning data are different for each realization. The
CCDF of the k-th RV Yk for the n-th realization should thus be denoted as:
F

(n)
Yk

(yk|y(n)
k−1,d), where y(n)

k−1 = [y(n)
l , l = 1, . . . , k − 1] is the (1 × k − 1) vector of

simulated values generated prior to y
(n)
k . In expected value (over a large number

N of realizations), however, the CCDF for any RV Yk tends towards its CCDF
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given only the data vector d, i.e., E{FYk
(yk|Yk−1,d)} � FYk

(yk|d), where Yk−1 =
[yl, l = 1, . . . , k − 1] is the (N × k − 1) matrix of all simulated values for all RVs
considered before Yk in all N realizations.

The proposed LH sampling method from an arbitrary multivariate distribution
capitalizes on the above decomposition, and amounts to embedding Stein’s method
into sequential simulation, which now proceeds in the following steps:

1. Establish a sequence for considering all K RVs. As long as all simulated values
generated from any RV in this sequence are used as conditioning information
(in addition to the data vector d) for simulation from subsequent RVs, the or-
der of the sequence is irrelevant: the resulting realizations constitute a genuine
sample from the multivariate CCDF of Equation (3).

2. For the k-th RV Yk in the above sequence:

a) establish all N CCDFs {F (n)
Yk

(yk|Zk−1,d), n = 1, . . . , N}, each correspond-
ing to a particular realization n; Zk−1 is a (N × k − 1) matrix with the
entire LH sample generated in all N realizations before considering RV Yk.

b) generate a (N ×1) vector yk with a SR sample from RV Yk; the n-th entry
y
(n)
k of vector yk is drawn from the n-th CCDF F

(n)
Yk

(yk|z(n)
k−1,d), where

z(n)
k−1 is a (1 × k − 1) vector with the n-th LH sample generated from all

RVs considered before Yk, i.e., z(n)
k−1 is the n-th row of matrix Zk−1.

c) transform the SR sample yk into a LH sample zk, as:

zk = F−1
Yk|d

(
rk − uk

N

)
(4)

where F−1
Yk|d denotes the inverse CCDF of RV Yk given only the data vector

d, rk is the rank transform of yk, and uk is a vector of uniform random
numbers in [0, 1] (independent of yk).

d) augment the LH sample matrix Zk−1 of step 2a to obtain the current LH
sample matrix Zk = [Zk−1 zk] of size (N × k).

3. Consider the next RV Yk+1 in the sequence established in step 1, and repeat
step 2 for generating LH samples from all remaining RVs {Yl, l = k+1, . . . , K}.
In the proposed approach, the LH sampling method of Stein is used as a post-

processing tool (step 2c) after drawing a SR sample yk from the N univariate
CCDFs of RV Yk (step 2b). But, unlike Stein’s method, the LH sample zk for
RV Yk is generated before proceeding to the simulation of the next SR sample
yk+1 from the subsequent RV Yk+1 (step 3). Most importantly, that LH sample zk

is also considered as conditioning information for simulation from all subsequent
RVs {Yl, l = k + 1, . . . , K} (step 2d), which leads to the reproduction of a target
(conditional) correlation per the theory of sequential simulation (Journel, 1994).

In principle, any linear or non-linear regression scheme can be used to determine
the CCDF of any RV Yk (step 2a); the proposed LH sampling method, however, is
independent of the particular scheme adopted for this CCDF determination. When
the multivariate CCDF of Equation (3) is Gaussian, the CCDF of any RV Yk (step
2a) is univariate Gaussian, and thus fully characterized by its conditional mean
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and variance which can be derived via generalized linear regression (Kriging); this
is also the building block of sequential Gaussian simulation in a spatial context
(Deutsch and Journel, 1998). LH samples from non-Gaussian RVs with specified
pairwise rank correlations can also be generated by first simulating correlated
deviates from K Gaussian RVs, and then transforming these deviates to correlated
realizations of the original RVs using the inverse marginal or conditional CDF of
each RV (Iman and Conover, 1982).

Since an unbiased (in expected value) reproduction of a target correlation
is only ensured in sequential simulation under SR sampling, a hybrid approach
between LH and SR sampling (still in a sequential mode) is also investigated in
this paper. More precisely, this second proposal amounts to transforming the LH
sample zk for RV Yk (step 2c above) to a new LH sample xk that is as close
as possible to the corresponding SR sample yk for that RV, under the constrain
that the elements of this new sample xk remain in the strata used in the LH
sampling procedure. In other words, the elements of the original LH sample zk

are “displaced” within their strata towards the corresponding elements of the SR
sample yk with the same rank. In the remainder of this paper, SRS denotes simple
random sampling, LHSS denotes the LH sampling method of Stein, LHSP1 denotes
the first proposal for LH sampling outlined in the flowchart given above, and
LHSP2 denotes this second proposal for hybrid LH sampling.

Figure 2 gives the sampling distributions of correlation coefficients calculated
from 10000 sets of LH samples, each of size N = 10, generated from two standard
Gaussian RVs Y1 and Y2 with correlation ρ12 = 0.8 using the four sampling
methods considered in this work. In this case, no data vector d is considered
(unconditional simulation), and the CCDFs of RV Y2 given realizations of RV
Y1 (step 2a) are determined via simple Kriging. The unbiased reproduction of the
target correlation from SRS and LHSP2 (Figures 2A and D) is evident. Both LHSS
and LHSP1 exhibit a bias in the reproduction of the target correlation. For LHSS
(Figure 2B) that bias is −6%, whereas for LHSP1 (Figure 2C) it is reduced to
−2%. Note that any bias decreases for larger sample sizes (larger N values).

Figure 2. Sampling distributions of correlation coefficients calculated from 10000

sets of simulated pairs (each set of size N = 10) generated from two correlated standard

Gaussian RVs Y1 and Y2 via: SRS (A), LHSS (B), LHSP1 (C), and LHSP2 (D); solid

lines indicate the target correlation coefficient ρ12 = 0.8.
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4 Spatial Latin hypercube sampling

In a spatial setting, when all K RVs pertain to a single spatial attribute Y (univari-
ate case), the k-th RV Yk = Y (sk) is defined at a location with coordinate vector sk.
The o-th entry d(so) of the data vector d denotes the sample attribute value at the
o-th observation site with coordinate vector so. The objective is then to generate
simulated realizations (typically up to 3D) from the multivariate distribution of
Equation (3), conditional or not on the data vector d. Different sequential spatial
simulation methods can be distinguished according to how each univariate CCDF
is determined at each location (step 2a). Variants of Kriging are typically used
for building such local CCDFs (Deutsch and Journel, 1998; Chilès and Delfiner,
1999), or more recently multi-point statistics when training images are available
(Strebelle, 2000).

Sequential spatial simulation typically proceeds on a random path (different
from one realization to another) for visiting each simulation location. This avoids
the creation of artifact patterns in the realizations, when not all previously simu-
lated values are used as conditioning information at any location along this path
(Deutsch and Journel, 1998). In the proposed approach, that path can also be
random, but it must be the same for all realizations (step 1); in any other case,
a LH sample can only be obtained after sequential simulation, using the original
method of Stein (1987) with its shortcomings for small N . In the examples of
SR and LH sampling of this paper, a single random path is considered, and all
previously simulated values are used as conditioning data at any simulation grid
node to eliminate the impact of different search strategies on sampling variability.

The reproduction of target statistics from the four sampling methods con-
sidered was initially investigated using a single sample of N = 10 realizations
generated via unconditional sequential Gaussian simulation at K = 300 nodes of a
regular unit-spaced 1D grid. The stationary statistics included a zero mean, a unit
variance, and a spherical semivariogram model of range 30 distance units. Figure 3
gives the reproduction of the marginal mean and variance at each grid node.
Evidently, all LH sampling methods lead to a significant reduction in sampling
variability with respect to SR sampling (compare Figure 3A with Figures 3B-D).

Figure 3. Mean and standard deviation of N = 10 simulated values at K = 300

unit-spaced nodes of a regular 1D grid, generated using unconditional sequential Gaussian

simulation with: SRS (A), LHSS (B), LHSP1 (C), and LHSP2 (D). Horizontal solid and

dashed-dotted lines indicate the target mean (0) and standard deviation (1), respectively.
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Figure 4 gives the semivariogram reproduction of the N = 10 realizations,
i.e., of the single sample whose marginal statistics are shown in Figure 3. Stein’s
LH sampling method (Figure 4B) leads to a higher mean simulated semivariogram
than the target model at small lag distances; this critical underestimation of spatial
correlation is significantly reduced by the original proposal LHSP1 (Figure 4C),
and virtually eliminated by the hybrid proposal LHSP2 (Figure 4D). As expected,
SR sampling leads to an unbiased mean simulated semivariogram, especially at the
critical small lag distances (Figure 4A). Note also the somewhat smaller variance
of the simulated semivariogram for LHSS and LHSP1 than for SR sampling (for
this particular sample).

Figure 4. Semivariogram reproduction from a single sample of N = 10 simulated

realizations at K = 300 unit-spaced nodes of a regular 1D grid, generated using uncondi-

tional sequential Gaussian simulation with: SRS (A), LHSS (B), LHSP1 (C), and LHSP2

(D). Solid lines indicate the target, unit-sill, spherical semivariogram model with range 30

distance units; crosses indicate the mean simulated semivariance at each lag; dotted lines

delineate intervals of one standard deviation from either side of the mean semivariance;

dashed horizontal lines indicate the average semivariogram value γ̄(V, V ) = 0.972, where

V denotes the line segment support of 300 units.

To further assess the efficiency of spatial LH sampling, 1000 independent sets
of N = 10 realizations were generated at K = 100 unit-spaced nodes of a regular
1D grid, using unconditional sequential Gaussian simulation and the four sampling
methods considered in this work. The semivariogram model adopted was a unit-
sill spherical semivariogram of 30 distance units; a stationary zero mean was also
assumed. The statistic under consideration is the proportion of simulated values
above threshold G−1(0.75) = 0.6745, when these values are arranged in groups
of three or more contiguous (“connected”) nodes; here G−1 denotes the inverse
Gaussian CDF. This latter connectivity consideration allows evaluating any bias
incurred by a poor semivariogram reproduction: a larger than expected nugget
effect, for example, will lead to a smaller than expected number of connected
groups containing at least three nodes. The reference proportion 0.2219 of such
connected nodes was established from a large SR sample of size N = 1000.

Figure 5 gives the sampling distribution of the simulated mean proportions for
the four sampling methods considered in this experiment. The significant reduction
in sampling variability incurred by the LH sampling methods with respect to
SR sampling is evident (compare Figure 5A to Figures 5B-D). Such a reduction,
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however, comes at the expense of a bias in the case of Stein’s method (Figure 5B);
that bias is almost absent from the results of the proposed methods (Figures 5C-D).

Figure 5. Sampling distributions of the mean proportion of “connected” simulated

values above threshold 0.6745, for SRS (A), LHSS (B), LHSP1 (C), and LHSP2 (D); see

text for details. Solid lines indicate the target proportion of 0.2219, calculated from a

large SR sample of size N = 1000.

5 Discussion and conclusions

A novel method for LH sampling from random field models in a sequential mode
has been presented in this paper. The original proposal consists of transforming
a SR sample to a LH sample at each step of sequential simulation using Stein’s
method. A further improvement consists of additional “displacements” of the el-
ements of the LH sample for a particular variable, within their respective strata,
towards the corresponding elements of the SR sample with the same rank. It has
been demonstrated that both proposals significantly reduce sampling variability
in resulting marginal statistics, and thus make better use of the same number
of realizations than SR sampling. The main advantage of these proposals over
the comparable method of Stein is their better (less biased) reproduction of a
target semivariogram at small lag distances, even from few realizations, a critical
requirement in a spatial context to ensure unbiasedness of model outputs.

It should be noted that LH sampling leads to a smaller sampling variability
in statistics of model outputs, when these models are monotonic in their inputs;
such a reduction is also larger for linear models (McKay et al., 1979; Stein, 1987).
It is therefore important that target marginal statistics be correctly estimated.
If deemed necessary, uncertainty in these statistics should be incorporated in a
formal Bayesian framework, rather than via ergodic fluctuations of SR sampling.

The proposed LH sampling method is not limited to Gaussian random field
models, continuous variables, point support values, or two-point statistics, because
it is independent of the algorithm used to determine the local CCDFs in sequential
simulation. Any practical approximation in the implementation of sequential simu-
lation, such as the consideration of a limited number of previously simulated values
at each location, is nevertheless shared by the proposed LH sampling method. The
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impact of this latter approximation is typically alleviated via cascaded simulation
on nested grids of increasing resolution (Deutsch and Journel, 1998). Moreover,
in many cases, e.g., for simulation from auto-regressive processes, sequential sim-
ulation is the natural way to generate realizations from such processes. When the
number of simulation locations is very large, and such locations do not lie on a
regular grid, sequential simulation is perhaps the only feasible algorithm, due to
precisely its practical implementation approximations.

Concluding, the proposed sequential method for spatial LH sampling can be
readily used for enhanced uncertainty and sensitivity analysis, as well as subse-
quent risk assessment, in situations where complex spatially distributed models are
involved. In addition, the method is simple enough to be incorporated in virtually
any geostatistical software for sequential simulation, and can handle a very large
number of simulation locations.
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FIELD SCALE STOCHASTIC MODELING OF FRACTURE NETWORKS - 

Combining pattern statistics with geomechanical criteria for fracture growth 
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Abstract: According to recent estimates, the U.S. domestic potential for fractured oil 
reservoirs is on the order of tens of billion of barrels. Better technology for 
characterizing fracture flow paths, especially in deep, non-conventional plays and in 
carbonate rocks is a key to producing hydrocarbons economically from these reservoirs. 
The paper presents an approach for stochastic, field-scale modelling of fracture 
networks consistent with patterns observed on logs, the physical basis for fracture 
propagation and field-specific observations. 

1. Introduction 

Two aspects of research are presented. A stochastic simulation approach that utilizes 
fracture pattern information retrieved from analog models is presented first. Pattern 
characteristics are inferred from outcrop images using multipoint statistics and 
subsequently applied, after affine transformations to simulate fracture patterns in the 
target reservoir. A unique, stochastic fracture growth-based simulation algorithm is 
presented for imposing the multipoint fracture pattern characteristics on the simulation 
models.

Fracture patterns observed in outcrops or in subsurface reservoirs can be explained in 
terms of the structural geology of the reservoir and spatial variations in mechanical 
properties of rocks. Fracture growth model based on geomechanics can be used to 
perform physics-based numerical simulation of fracture patterns. However, 
geomechanical models can only generate fracture patterns up to a length scale of 1 
kilometer and the uncertainty in fracture characteristics due to uncertainty in the stress 
field cannot be quantified. The paper presents a multipoint-based approach to 
characterize fracture patterns inferred from geomechanical models and these statistics 
are merged with the pattern statistics inferred from analogs such as outcrop or logs 
information in order to generate field-scale reservoir models. A Bayesian approach for 
incorporating uncertainty in reservoir stress field is also presented. The probability of 
the stress field conditional on the observed pattern in well logs is calibrated using the 
geomechanical model and later inverted to yield the probability of a fracture pattern 
given the uncertainty in the reservoir stress levels. Finally fractures are propagated in 
the reservoir by applying the multiple-point simulation approach constrained to the 
previously derived probabilities.

75

2004, 75-84. 
© 2005 Springer. Printed in the Netherlands. 

ticsO. Leuangthong and C. V. Deutsch (eds.), Geostatis        Banff



76  X. LIU AND S. SRINIVASAN 

2. Geomechanical fracture classification and stochastic simulation 

A natural fracture is a planar discontinuity in reservoir rock due to deformation or 
physical diagenesis1. Natural fracture patterns are frequently interpreted on the basis of 
laboratory-derived fracture patterns corresponding to models of paleo-stress fields and 
strain distribution in the reservoir at the time of fracture2. Sterns and Friedman3

proposed a genetic classification of fracture systems based on stress/strain conditions in 
laboratory samples and features observed in outcrops and sub-surface settings. Based on 
their work, it can be concluded that complex stress and strain distributions in reservoir 
rocks can result in complex fracture patterns. Fracture patterns corresponding to 
different geological systems have key characteristics that can be used to classify and 
index fracture networks observed in outcrops and subsurface samples. Multiple point 
statistical measures can be used for identifying and classifying fracture patterns 
corresponding to different fracture systems4.

Since stress boundary conditions strongly control the fracture pattern development 
subsurface at the time of fracturing, a geomechanics-based approach, where a physical 
understanding of the fracturing process is combined with measurements of mechanical 
properties of rock, is physically realistic to predict fracture network characteristics. This 
process-oriented approach can also provide a theoretical basis for deciding what types 
of fracture attribute distributions are physically reasonable, and how attributes such as 
length, spacing and aperture are inter-related. Additional geological information, such 
as the strain, pore pressure and diagenetic5 history of the reservoir can provide further 
constraint on fracture network predictions.

In most cases, data available to model the fractured reservoir are sparse and information 
such as seismic maps and production response are related imprecisely to the fracture 
pattern characteristics, a probabilistic approach to fracture characterization is necessary. 
In the object-based modeling approaches, fractures are represented as objects defined by 
their centroid, shape, size and orientation. In “Random Disk” models6, fractures are 
represented as two-dimensional convex circular disks located randomly in space. 
Although object-based models are easy to implement, their application is limited due to 
the assumed independence of the model parameters such as radii, orientation etc. A 
viable alternative is to employ pixel-based algorithms. Well established geostatistical 
algorithms such as sequential indicator simulation (sisim)7 ensure reproduction of the 
two-point indicator variogram and can be used to classify nodes within the reservoir 
into fractures or matrix. However, models constrained only to two-point statistics are 
generally noisy and consequently inadequate for capturing clean-cut shapes such as 
fractures.

Although stochastic fracture models can be constructed that might be representative of 
analog fracture reservoir to some degree, it is still difficult to integrate geomechanical 
information such as stress boundary conditions in those models. A promising 
conditional multiple point simulation approach with integration of geomechanical data 
is developed as part of this research.
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3. Multiple point approach to fracture growth simulation 

3.1 Simulation algorithm 

In the case of traditional two-point statistics based algorithms the cumulative 
conditional distribution function (CCDF) depicting the local uncertainty in attribute 
value is calculated on the basis of two-point correlation between pairs of data and 
between each data and simulation node. In multiple point statistics based algorithms8, 9,
this required conditional probability distribution is derived based on the entire data 
configuration on a spatial template, including the multiple-point interactions among the 
data and between the data and the unknown. Supposing there are n neighboring data 
events nA ,.....,1, . An additional variable 1nt  is assigned if all the elementary 

data events occur simultaneously. The conditional probability is9:

1111Prob 00 ntAEntA        (1) 

0A  is the unknown data at the unsampled location. Using Bayes’ Theorem, the 

conditional probability in expression (1) can be written as: 

1Prob

1,1Prob
11Prob 0

0 nt

ntA
ntA   (2) 

This implies that in order to derive the multiple-point conditional probability expression 
(1), we need to know the joint probability of observing the spatial pattern 10A  and 

1nt  as well as the prior probability of the occurrence of the template pattern 

1nt . Given an analog fracture model e.g. based on outcrop exposures, the required 

probabilities can be retrieved from that model. Defining a spatial template and 
translating that template over the analog model, the joint frequency of events such that 

10A  and 1nt  as well as the prior probability of events 1nt  can be 

retrieved.

The fracture simulation approach adopted in this research exhibits a distinct departure 
from the current state-of-the-art multiple-point statistics based approaches in that the 
simulation event 0A  is itself considered to be a multiple-point event, obtained 

constrained to Ant , a multiple-point event of arbitrary complexity. In 

contrast, in the traditional multiple-point simulation approaches, the simulation event 

0A  is generally treated as single point event. As a consequence of this subtle and yet 

significant departure from other traditional methods, fractures are grown from each seed 
location based on the probability of the multiple point simulation events 0A  inferred 

from analog fracture models. The seed fracture locations are selected based on areal 
proportion maps that may be derived from seismic maps or other physical criteria such 
as surface curvature maps. Such a growth algorithm has the advantage that it is 
computationally efficient and permits integration of other physical criteria for fracture 
growth that might be controlled by variations in mechanical properties of the rock. 

The simulation commences from an empty grid. The well locations with recorded 
fracture data are visited sequentially. The data configuration on a 27-point template 
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(Figure 1) surrounding the fracture location is examined. The conditioning data includes 
original well data as well as well nodes that have already simulated to be fractures. The 
analog fracture model is then scanned for the occurrence of that data configuration. 
Thus, if for example as in Figure 1, at the current stage of simulation, there are 23 
points surrounding the central node that have been previously simulated to be fractures, 
then the analog model is scanned for the occurrence of that 24-point (23+1 central node) 
data configuration. This yields the probability 1Prob nt corresponding to that data 

configuration. The simulation event 0A  can then be one of the following: 

None of the remaining three points on the template is a fracture 
One of the remaining three locations is a fracture. That location could be any 
one of the remaining nodes 
Two of the remaining three locations are fractures. There are three possible 
combinations.
All three of the remaining three locations are also fractures. 

The probability associated with all such multiple-point data events 0A  are retrieved by 

scanning the analog model. This is the joint probability 1,1Prob 0 ntA

corresponding to each data event 0A . The conditional probability: 1,1Prob 0 ntA

is then derived as the ratio of the joint probability and the prior probability. A random 
value is drawn from the conditional probability distribution and this yields the set of 

nodes corresponding to the outcome *
0A  that are marked as fractures for the next step of 

the simulation algorithm. 

3.2 Results discussion 

As an example implementation of the simulation algorithm, Figure 2 is the training 
image of fracture distribution obtained as an unconditional realization of an object-
based model. Since in most cases fracture patterns observed on a outcrop are on a 2-D 
plane, the analog model in Figure 2 as well as the subsequent multiple point simulation 
algorithm was implemented in 2-D. The spatial template used for retrieving the 
conditional probability distributions is shown in Figure 3. Figure 4 is the result of the 
simulation approach described above. It is easily to observe that the simulated model is 
consistent with the training image. For instance, there are three different fracture 
orientations (N-S, NE-SW, NW-SE) in training image (Figure 2) that can also be 
observed in simulation image; and both images exclude horizontal orientation fracture. 
It can be thus concluded that this multiple point statistical simulation approach can 
reproduce fracture patterns observed in training model/analog models. 

4. Geomechanical Basis for Fracture growth 

4.1 Principle of fracture growth 

It is known that the observed strength of rocks in laboratory experiments is significantly 
lower than calculated theoretically values. This discrepancy is due to the remarkable 
strength reduction in rocks caused by stress concentrations at crack tips and subsequent 
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propagation of pre-existing small flaws within rocks as well as other solid materials. 
The geomechanical modeling approaches discussed in research are based on the 
presence of pre-existing cracks known as Griffith cracks5 within rocks. Stress 
concentrations and propagation will occur along cracks at an orientation consistent with 
the applied load. All modes (tensile, in-plane shear, anti-plane shear) of crack 
propagation with respect to different sizes, shapes and orientation of rocks and under 
various boundary conditions can be predicted by geomechanical analysis. Just as rocks 
have a critical tensile stress capacity5, they also have a critical stress intensity factor cK .

The crucial criterion to propagate a crack through the rock is that the stress intensity at 
the crack tips be at least equal to the critical stress intensity. In long-term loading 
systems such as in petroleum reservoirs, classic fracture mechanics may fail to 
accurately predict the crack growth especially in the presence of high temperature and 
chemical reactivity. Crack propagation can thus occur at a stress intensity value K  less 
than the critical intensity. This has been observed in experiments using many materials 
including rocks and minerals and is referred to as subcritical crack growth.

4.2 Description of Geomechanical models 

 In order to model simultaneous propagation of fractures, a computer program 
developed by Olson10 that is based on the conceptual formulation of joint growth11 was 
utilized. This methodology utilizes a failure criterion and a propagation velocity model12

given by: 
n

IC

I
K

K
Av     (3) 

 where ICK  is the critical fracture toughness and n is subcritical index. The fractures in 

this methodology are represented by series of equal-length boundary elements. Fracture 
pattern development is strongly influenced by the mechanical interactions of fractures 
through the fracture growth history. Based on the mechanical interaction behavior of 
nearby cracks and effects of other geological information, a fracture length model for 
larger opening mode fractures propagating through a material with randomly 
distributed, parallel flaws can be developed. The model requires input geological 
information such as reservoir thickness, subcritical index, size of stress field, stress 
boundary conditions and rock properties etc. The boundary element code assumes 
vertical fractures that are layer bound. 

The fracture patterns shown in Figure 5 are generated using the geomechanical model 
and correspond to variations in the strain value mmm 543 10,10,10 . The sub-critical 

index value is held constant at mMpa .60  and so is the bed thickness (10m). It is 

evident that the fracture patterns can be quite different corresponding to different 
geological conditions. With an increase in stress displacement, the number of fractures 
in the system increases and the pattern complexity also increases. Similar numerical 
experiments can be performed by varying the sub-critical index and bed thickness 
values. While physically realistic fracture patterns can be generated using the 
geomechanical model, currently the volume of investigation using such models is 
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restricted to small areas of the stress field adjacent to flaws. The cost of simulation will 
increase significantly if the model is extended to a reservoir scale. 

5. Incorporating information from geomechanical model

5.1 Simulation Approach 

A key issue that remains to be addressed is the integration of pattern information from 
analog models together with information from geomechanical models so as to develop a 
stochastic model for the spatial distribution of subsurface fractures that is physically 
realistic as well as permits assessment of uncertainty. Fracture pattern information can 
normally be obtained from well logs or outcrop. However, since only indirect inference 
of the stress field is possible using borehole image and well core data, there is 
uncertainty in the predicted stress conditions and that has to be quantified. This 
uncertainty in reservoir stress values adds to the uncertainty in pattern information 
inferred on the basis of geomechanical simulations and has to be rigorously accounted 
for in the multiple-point geostatistical simulation technique. 

The uncertainty in reservoir stress condition corresponding to an observed fracture 
pattern in well logs can be calibrated by applying Bayes’ Theorem. Supposing obsT  is 

the fracture pattern observed in a borehole image. Using the geomechanical model and 
assuming a range of boundary stress values, fracture patterns corresponding to each 
boundary stress value can be simulated. Corresponding to each stress value iB , a suite 

of fracture models can be generated by randomly locating the initial flaw locations. 
Other geomechanical parameters such as sub-critical index and layer thickness are 
measured independently and are assumed to be reliably known. These parameters are 
held constant during the geomechanical simulations. The probability of the fracture 
pattern obsT  in the K models corresponding to a particular boundary stress value iB

can be retrieved. The procedure is repeated for the N boundary stress values 
NiBi ,..,1, . At the end of this step, the conditional probability 

NiBi ,..,1,|TProb obs  is obtained. 

The likelihood of boundary stress value given an observed fracture pattern - 

obsT|Prob iB  can be calculated using Bayes’ Theorem: 

obs

iobs
obs TProb

BProb|TProb
T|Prob i

i
B

B   (4) 

The NiBi ,..,1,|TProb obs  have been calibrated using the procedure outlined earlier. 

iBProb  is the prior probability corresponding to the stress value iB . In the absence 

of any expert information, we can assume each stress value to have the same prior 

probability i.e.
N

Bi
1

Prob . The probability obsTProb  is obtained concurrently 

with NiBi ,..,1,|TProb obs  and is equal to: 
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N

i
iB

1
iobsobs BProb|TProbTProb   (5) 

i.e. it is the probability of observing the pattern obsT  over the entire suite of KN

geomechanical fracture models. 

The application of Expression (4) yields the updated distribution for the boundary stress 
values. This updated probability distribution is denoted as iB*Prob . In the stochastic 

simulation phase, at any step corresponding to a template partially filled with 
conditioning data (original data plus previously simulated values), the K images 
corresponding to a particular boundary stress value iB  are scanned for obtaining the 

probability of fracture patterns in the remaining empty nodes of the spatial template. 
This yields the probability iBnt ),(|AProb o  where 0A implies the simulation data 

event, )(nt  is the partially filled fracture pattern. This probability is multiplied by the 

updated probability iB*Prob  to obtain the posterior probability corresponding to the 

simulation data event iBnt ),(|A*Prob o . By repeating this for all boundary stress 

values, the complete posterior CCDF characterizing the remainder uncertainty in 
fracture pattern can be constructed. The fracture pattern is propagated by sampling 
randomly from this posterior CCDF. 

Fracture patterns simulated in this fashion rigorously incorporate the uncertainty in 
fracture pattern characteristics due to the lack of complete knowledge about the 
underlying physical process for fracture propagation. In addition, the models also 
incorporate the uncertainty in boundary stress values. Since the calibration process 
commences from the fracture patterns observed in image logs, the outlined approach is 
a viable technique for incorporating well log information into stochastic models for the 
fractured reservoir.

5.2 Discussion 

Figure 6 is a fracture pattern observed on a log image. Figure 7 shows the fracture 

pattern corresponding to a stress displacement value of m4108  and corresponding 

to two different initial distributions of Griffith cracks. Seven different stress 
displacement values were assumed and six different fracture patterns corresponding to 
each stress value were generated by varying the initial flaw locations randomly. As 
discussed earlier, the prior distribution of the stress values is assumed to be uniform 
(maximum uncertainty).  Figure 8 shows the updated probability distribution of stress 
values based on the observed fracture pattern depicted in Figure 7. The posterior 
distribution indicates that the likelihood of the reservoir stress value being of the order 

m4101  is higher. Better discrimination of the stress displacement value is possible if 

the pattern obsT  retrieved from well logs is more specific. In this case a generic pattern 

was retained for demonstration purposes.

Figure 9 is the final fracture pattern incorporating the uncertainty in reservoir stress 
conditions and variations in fracture pattern characteristics observed in the 
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geomechanical models. We can observe that the simulation model has combined the 
fracture characteristics observed in the suite of geomechanical models such as the  NW-
SE orientation fractures, the occasional horizontal fractures observed in the some 
geomechanics models that have no obvious vertical fractures. Some other 
geomechanical models exhibit short vertical fractures that are also represented in the 
final simulation model. Another important characteristic of the geomechanics model is 
that some fractures propagate and terminate against previously existing fractures. This 
is physically plausible since pre-exiting fractures may reduce the stress at the tip of the 
daughter fractures, thereby causing the fracture propagation to stall. These 
characteristics can also be observed with some short fractures terminating against other 
fractures in simulation model. 

The accuracy and robustness of the simulated fracture model is dependent upon the 
characteristics of the fracture pattern interpreted from image logs. If that pattern is 
highly specific, the resolution of the stress conditions will be more specific and 
consequently, only the dominant fracture patterns corresponding to that stress value will 
be manifested in the final simulation image. Nevertheless, it is possible to generate 
realistic fracture patterns using the proposed methodology to synthesize information 
from geomechanical model and well logs. 

6. Conclusions 

The research focused on developing a methodology for generating physically realistic 
models of fracture systems in reservoirs. The methodology hinges on the availability of 
training models of analogous fracture systems. When modeling a target reservoir, the 
multiple point statistical measures characterizing the patterns observed in the analog can 
be imposed on the model using a growth-based stochastic simulation technique 
proposed in this research.

Fracture initiation and growth are affected by a variety of physical geomechanical 
factors such as the regional stress field, spatial variations of rock properties, or bed 
thickness. The final model of the reservoir has to integrate the information obtained 
from geomechanical models and from analog outcrops; in order to yield more 
physically realistic representation of fracture systems. Furthermore, since important 
parameters such as the reservoir stress conditions can be only indirectly inferred, the 
uncertainty in stress field should be quantified and incorporated into stochastic models 
of the reservoir. That uncertainty can be rigorously quantified using the Bayesian 
procedure outlined in this paper. The Bayesian procedure is used to update a prior 
model for uncertainty in reservoir stress field into a posterior model based on the 
observed image log pattern. This updated probability of reservoir stress values is used to 
guide the selection of fracture growth patterns during the stochastic simulation phase of 
the model. Preliminary results obtained using the proposed procedures appear 
promising.
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Figure 3. Figure 4.

             conditional probability distribution           fracture growth based on 
             from analog model                    training model 

Figure 1: A 27-point 3D spatial 
template with 24 nodes identified.

Figure 2: Training image generated 
object-based simulation. 
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Figure 5. Fracture patterns corresponding to different strain value given constant
                 subcritical index and bed thickness 

Figure 8. Probability of stress field 
conditional on observed pattern

Figure 9. Final simulation image with 
uncertainty integration in stress field

Figure 6. Analog image
corresponding to displacement
10-4m.

Figure 7. Patterns generated by 
geomechanics model with the displacement 
8x10-4m
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Abstract. Unstructured grids are commonly used in reservoir modeling and are being 
increasingly considered in complex mining engineering applications.  Block kriging of 
the attributes can be easily implemented; however, this implicitly assumes linear 
averaging, which is not the case after Gaussian transformation or with variables such as 
permeability.  Direct simulation has been proposed as a solution; however, there are a 
number of important implementation considerations.  This paper addresses the following 
considerations: (1) search for nearby relevant block and point data, (2) stabilization of 
the kriging equations and weights in presence of complex screening, (3) correction of 
the homoscedastic kriging variance to account for realistic proportional effect, (4) 
determination of valid conditional distribution shapes, (5) accounting for geological 
controls including stratigraphic surfaces and mixture of multiple facies within an 
unstructured grid block, and (6) accounting for directional permeability that does not 
average linearly. Direct simulation on unstructured grids is made practical by 
addressing these six considerations.

1 Introduction 

Unstructured grids are used to model the complex geology and geometry of reservoirs 
and to provide better accuracy to important development areas.  For example, tartan 
grids are used to provide a high cell density near wells and low cell density in less 
influential areas (Tran, 1995). 

Sequential Gaussian simulation (SGS) (Isaaks, 1990) has become the most extensively 
used algorithm for continuous variable simulation; however, it is impractical when 
considering multiscale data, particularly when the data do not average linearly.  Direct 
sequential simulation (DSS) (Xu and Journel, 1994) is an attractive alternative due to the 
increasing popularity of unstructured grids and the need to integrate multiscale data. 

One advantage of DSS is that a wide variety of volume supports can be integrated.  This 
requires that kriging is based on mean covariance/variogram values.  There are various 
ways in which mean covariance calculations can be made more efficient (Pyrcz and 
Deutsch, 2002).  While computational efficiency in this regard is important, an efficient 
search for nearby relevant data is just as important for practical implementation.  The 
popular method when dealing with regular grids is the super block search strategy, a 
variation of which could be applied to unstructured grids; however, it may be 
advantageous to consider different search tree algorithms that may be more efficient. 

85

2004, 85-94. 
© 2005 Springer. Printed in the Netherlands. 

ticsO. Leuangthong and C. V. Deutsch (eds.), Geostatis        Banff



86 J. MANCHUK, O. LEUANGTHONG, AND C.V. DEUTSCH 

The effects of screening remain an issue in the case of multiscale data.  Proper filtering 
of data prior to kriging may be required to avoid anomalously high weights that may 
lead to extreme estimates.  Some filtering techniques such as the octant search, iterative 
kriging, and the template technique have been used to mitigate screening. 

The use of simple kriging (SK) results in an estimation variance that is independent of 
the data values; this independence is referred to as homoscedasticity.  Unfortunately, 
real data may exhibit a heteroscedastic feature known as the proportional effect, wherein 
the local mean and variance are often quadratically related (Journel and Huijbreghts, 
1978).  This heteroscedasticity must be accounted for.  An advantage of SK is that 
covariance reproduction only requires that the mean and variance of this distribution be 
defined by the SK mean and variance (Journel, 1994).  A method of determining the 
local distribution shapes has been developed and will be revisited (Pyrcz and Deutsch, 
2002; Deutsch et al, 2001; Oz et al, 2001). 

The advantage of unstructured grids in capturing more complex geology also entails 
further complications related to geological controls such as stratigraphic surfaces and a 
mixture of multiple facies that may be represented within any particular block.  An 
unstructured grid may not conform to the stratigraphic setting, which introduces 
problems relating to selecting relevant data for kriging and estimating grid blocks that 
contain multiple subsequence layers. 

Further, the use of average variogram/covariance values in SK (inside DSS) for 
multiscale data has an implicit assumption of linear averaging of the model variables.  
This poses a problem when the variable of interest does not average linearly.  
Permeability is a classic example of such a variable.  Accounting for the appropriate 
type of averaging is integral to the correct implementation of DSS. 

This paper addresses these six important issues and proposes some novel approaches for 
resolution.

2 Search for Nearby Relevant Block and Point Data 

When considering unstructured grids, data may consist of original data at a small scale, 
regularly gridded soft data, and grid blocks of varying sizes.  There are several methods 
that can be used to deal with this array of data: A brute force method involving a matrix 
of distances nGB by nGB in size, where nGB is the number of grid blocks; A super block 
search strategy (Deutsch and Journel, 1998); or the use of search trees.  The brute force 
method is only applicable to small problems as larger data sets would be impractical for 
conventional computer memory availability.  A super block strategy could be used; 
however, implementing certain types of search trees will be more efficient. 

One type of search trees common in the computer graphics and computer gaming 
industry are quadtrees and octrees, (Figure 1) (Frisken and Perry, 2002).  When 
considering graphics visualization, these search trees are used to quickly determine 
which polygons are in view such that only those polygons are drawn (this reduces 
memory requirements).  Searching for nearest neighboring data is a similar task. 



DIRECT GEOSTATISTICAL SIMULATION ON UNSTRUCTURED GRIDS 87

Quadtrees and octrees organize data in such a way that point location, region location, 
and nearest neighbor operations can be done easily.  Frisken and Perry (2002) introduce 
a binary indexing system for quadtrees that allows for efficient execution of the above 
operations.  This system can easily be applied to octrees for three dimensional data as 
well.

Figure 1: Example of a quadtree structure (left) and tree-representation (right).  The 
quadtree is more refined in areas with higher data densities. 

Implementing quadtrees or octrees to organize spatial data for simulation purposes 
allows for efficient acquisition of nearby data for each node to be simulated.  The search 
for nearest neighboring leaf nodes is not dependant on the type of grid and tree traversal 
for finding and inserting points is a simple process.  Having these characteristics along 
with low memory requirements makes search trees excellent for unstructured grid 
problems.

3 Stabilization of the Kriging Equations and Weights in the Presence of Complex 

Screening

Screening can cause extreme positive and negative weights that lead to erroneous 
estimates and estimation variances.  One method of reducing the occurrence of extreme 
weights is to remove data from the kriging matrix: this iterative kriging technique will 
remove data until the absolute value of all the weights are below a specified maximum.  
Iterative kriging works; however, data that may be highly influential in estimating a 
location could be removed from the kriging matrix resulting in a less accurate result.  
Another method of reducing screening is the template technique which involves 
rejecting any data that are shadowed by a closer data (Figure 2).  A downfall to the 
template technique is its high demand on computation time. 

A new method of filtering data used in estimating a location is the sector search method, 
which is somewhat similar to the template technique.  The sector search method uses 
input dip and azimuth tolerances to create sectors in which only the nearest data is 
selected for kriging (Figure 2). 
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The sector search subroutine works fast in two dimensions as the sectors are all pre-
constructed and then translated to locations of interest; however, in three dimensions, 
the sectors are built as points are encountered making the process more time consuming. 

Even though the sector search method removes many screened data, there may be 
unreasonable screening still present.  For example, consider two points in adjacent 
sectors, the point closer to the location being estimated will screen the effect of the 
second point.  Using larger sectors will keep screening to a minimum. 

Figure 2: The template technique (left) and the sector search method (right) to reduce 
screening.

4 Correction of the homoscedastic kriging variance to account for realistic 

proportional effect 

Data in original units are often heteroscedastic.  High valued areas are more variable.  
This heteroscedastic behavior is commonly referred to as the proportional effect 
(Journel and Huijbregts, 1978).  DSS relies on covariance reproduction through local 
distributions whose mean and variance are defined by SK (Xu and Journel, 1994).  For 
data following the congenial Gaussian distribution this assumption is correct; however 
for data exhibiting heteroscedastic features, it is an unsuitable assumption due to the 
homoscedasticity of the kriging variance.  The kriging variance must be adjusted such 
that the proportional effect is reproduced. 

4.1 DSS USING LOGNORMAL DATA 

To see the effects of directly simulating data that exhibit the proportional effect, a study 
was performed using a lognormal distribution.  This distribution was chosen for a 
number of reasons: (1) although real data are not necessarily lognormal, most data 
exhibit a strong asymmetry similar to that characterized by the lognormal distribution, 
and (2) there is a clear mathematical link between the lognormal and the more common 
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Gaussian distribution that permits tractability of the results.  Further, an equation 
describing the proportional effect of lognormal data exists (Journel and Huijbregts, 
1978).  Knowing these relations, the kriging variance can be calibrated to honor the 
heteroscedasticity inherent in lognormal data. 

An exhaustive lognormal data set was generated by transforming an unconditional 
Gaussian model (Figure 3).  The mean and variance of the lognormal data were 
arbitrarily chosen to be 100 and 10000, respectively.  A set of 625 samples was drawn 
from the model and used for numerical experimentation. 

4.1.1 Options of Simulation Explored 

Three options were identified for evaluation: 
Option 1  Perform SGS 
Option 2 Perform DSS without correcting the kriging variance 
Option 3 Perform DSS and correct the kriging variance to honor the 

proportional effect 

With lognormal data, an equation exists for correcting the variance using the mean or 
estimate:

)1()(
222*2
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Where 2

,Z C  is the corrected variance, 2

Y  is the local variance in normal space, and 2

G

is the global variance of ln(Z).  By determining a relation between the estimation 

variance in Gaussian space and that in lognormal space, the value of 2

Y  could be 

determined without having to perform kriging twice. 

For each option, 100 realizations were generated and the E-type mean and variance was 
calculated (Figure 4).  Reproduction of the global statistics and the variogram were 
verified.  Figure 4 also shows similar results between DSS with a correction and SGS; 
however, with DSS and no correction as in Option 2, the variance is clearly 
homoscedastic.  A more visual comparison of the three options is available in Figure 5 
where the spatial distribution of the mean and standard deviation show reproduction of 
the proportional effect in a single realization. 

Figure 3: The lognormal model used for direct simulation experimentation. 
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Figure 4: The mean and variance taken over 100 realizations for all three simulation 
approaches: Option 1 is the straightforward SGS, Option 2 refers to DSS, and Option 3 
refers to DSS with variance correction to account for heteroscedasticity. 

Figure 5: Local mean versus standard deviation at every estimated location for options 
1 (left), 2 (middle), and 3 (right).  Options 1 and 3 show the proportional effect and 
compare nicely.  Option 2 shows a homoscedastic variance. 
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By performing simulation using lognormal data, it is possible to introduce a solution for 
dealing with the proportional effect.  The lognormal distribution is particularly useful 
because the proportional effect is one of its prominent features and is analytically 
accessible.

We expect that the proportional effect could be fit from real data instead of using either 
the Gaussian model of no proportional effect of the lognormal model of a quadratic 
proportional effect. 

5 Determination of valid conditional distribution shapes 

A method to determine the shape of the local distributions in original units from the SK 
mean and variance is needed such that the global distribution is reproduced.

Figure 6 shows a numerical integration approach proposed by Oz et. al. (2001).  If a 
specific probability p of a non-standard normal distribution with mean m and standard 
deviation  is known, the corresponding direct space quantile can be calculated as: 

1 1
{0, 1} { , }( ) [ [ ( )]]mZ F G G pu

where G{0,1} is the cumulative distribution function (cdf) of a standard Gaussian 
distribution, G{m, } is the cdf of a non-standard Gaussian distribution with mean m and 
standard deviation , and F is the cdf of the representative data distribution.  Z(u) is the 
p quantile of the local distribution of uncertainty (Pyrcz and Deutsch, 2002). 

By creating a series of Y-space distributions from a list of means and variances and 
repeating the above procedure for a range of quantiles, a set of Z-space distributions can 
be generated.  The mean and variance of each Z-space distribution can be calculated and 
used as reference values.  Upon kriging at a particular location, the resulting mean and 
variance can be used to look up the corresponding local distribution in original units, 
from which a simulated value can be drawn. 

6 Accounting for geological controls including stratigraphic surfaces and mixture 

of multiple facies within an unstructured grid block 

Some geological settings are characterized by a series of genetically related strata.  The 
geology may consist of a sequence stratigraphic framework; the bounding surfaces 
between the layers correspond to a specific geologic time that separates two different 
periods of deposition or a period of erosion followed by deposition (Deutsch, 2002).  
This presents some potential issues related to the structure such as: the grid does not line 
up with the stratigraphic surfaces, grid blocks may contain multiple facies and 
subsequences (Figure 7), and searching for relevant data to estimate unknown locations. 
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Figure 6: The graphical representation of the transformations applied to calculate the 
local distributions of uncertainty with a shape such that the global distribution is 
reproduced.  The illustrated transformation is repeated for a sufficient number of 
quantiles to describe the local distribution. 

A possible method of dealing with data within various subsequences is to flag the data 
by subsequence and only use data within genetically related strata.  When simulating 
blocks that cross multiple subsequences, flagging and simulating its value poses a 
problem.  One idea is to discretize the block into smaller “blocks”, flag the smaller 
components and estimate them to obtain a value or multiple values and structure within 
a grid block.  Since blocks may cross into multiple subsequences as well as contain 
multiple facies, a method to determine that portion of a grid block relevant to estimation 
is required.  An idea of the subsequence structure within grid blocks being estimated as 
well as those being used for conditioning data is critical (Figure 8). 

Upon estimating grid blocks, the proportion of facies within each block can be 
determined overall, but it may be better to retain the facies proportions within each 
subsequence in a block. 

7 Accounting for directional permeability that does not average linearly 

Because data exist in vastly different scales such as small core-based permeability and 
large scale production data, problems arise due to the scale difference and non linear 
averaging of permeability.  By implementing a power law transform, permeability 
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values will approximately average linearly, and can then be used in a direct simulation 
approach (Zanon et al, 2002). 

The general formulae for power law averaging is 
1

)(
1

v

eff dk
v

K uu

where v is the volume over which the average is calculated, k(u) is the permeability at 
location u in v, and  is an averaging exponent. 

Since DSS utilizes kriging as an estimator, the model variables must average linearly 
with scale.  By using a power law transformation prior to kriging, the problems 
generated by multiscale data can be avoided and transformed variables will average 
linearly with scale.  A Gaussian transform would undo the benefit of the power-law 
transform; it is important to perform kriging and simulation in the correct units. 

hypothetical drill holes/wells are also shown. 

Figure 8: Unstructured grid block crossing multiple subsequence layers.  If block 1 is 
being estimated using block 2, only data within block 2 and subsequence 1 should be 
used to estimate data within block 1 subsequence 1. 

Figure 7 :  Stratigraphic surfaces and superimposed unstructured grid. Three 
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A concern of implementing power law transformation, especially when dealing with 
unstructured grids, is that  may not be constant over every volume support.  An 
unstructured grid may involve many different volume support sizes to be estimated and 
when the scale difference is large,  may change.  Other concerns that affect the value 
of  are arbitrarily chosen boundary conditions and if the formation approaches the 
percolation threshold (Kirkpatrick, 1973). 

8 Conclusions 

Unstructured grids are practically relevant for realistic reservoir modeling.  The 
distinction of simulating in the units of the original data provides significant benefits 
such accounting for multiscale data and permitting different local distributional shapes.  
In practice, implementation of DSS has been limited.  Even something as seemingly 
straightforward as searching for data is complicated by the multiscale nature of the 
problem.  In these instances, quadtrees or octrees may be particularly efficient.  
Screening may also lead to destabilization of the kriging matrix, thus a preferential 
filtering of the data through a sector search may be appropriate.  Multiscale issues are 
further complicated by the very nature of the model variable, whether these variables 
average linearly or whether pre-processing transform such as the power law transform is 
required.

Unstructured grids allow for increasingly complex geology to be integrated; however, 
this presents issues in grid block definition and facies identification if the blocks are too 
large and/or if they cross multiple sequence or sub-sequence stratigraphic layers. 
Despite all these issues, perhaps the most important advance presented in this paper is 
the correction applied to the SK variance to account for the heteroscedastic nature that is 
often inherent to real data.  The lognormal case was used to illustrate a corrective 
approach to effectively reproduce heteroscedasticity. 
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Abstract. In this paper we consider spatial problems modeled by a Gaussian
random field prior and a nonlinear likelihood linking the hidden variables to the
data. We define a directional block Metropolis–Hastings algorithm to explore the
posterior. The method is applied to seismic data from the North Sea. Based on
our results we believe it is important to assess the actual posterior in order to
understand possible shortcomings of linear approximations.

1 Introduction

Several applications in the earth sciences are preferably formulated by an underly-
ing hidden variable which is indirectly observed via noisy measurements. Examples
include seismic data, production data and well data in petroleum exploration: In
seismic data the amplitudes are nonlinearly connected to the elastic parameters
of the subsurface, see e.g. Sheriff and Geldart (1995). Production data contain the
history of produced oil and gas, which is a complex functional of the permeability
properties in the reservoir, see e.g. Hegstad and Omre (2001). Well data of ra-
dioactivity counts need to be transformed into more useful information, such as
clay content in the rocks, see e.g. Bassiouni (1994). The Bayesian framework is a
natural approach to infer the hidden variable; this entails a prior model for the
variables of interest and a likelihood function tying these variables to observations.

In this paper we consider Gaussian priors for the underlying spatial variable,
and nonlinear likelihood models. When using a nonlinear likelihood, the posterior is
not analytically available. However, the posterior can be explored by Markov chain
Monte Carlo sampling (see e.g. Robert and Casella (1999)), with the Metropolis–
Hastings (MH) algorithm as a special case. We describe a directional MH algorithm
in this paper, see Eidsvik and Tjelmeland (2003). We use this algorithm to update
blocks of the spatial variable at each MH iteration. We show results of our modeling
procedures for seismic data from a North Sea petroleum reservoir.
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2 Methods

2.1 PRIOR AND LIKELIHOOD ASSUMPTIONS

The variable of interest is denoted x = {xij ∈ R; i = 1, . . . , n; j = 1, . . . , m},
a spatial random field in two dimensions represented on a grid of size n × m.
We denote its probability density by π(x) = π(x|θ) = N(x;µ(θ),Σ(θ)), where
N(x;µ,Σ) denotes a Gaussian density evaluated in x, with fixed mean µ and
covariance matrix Σ. For generality we condition on hyperparameters θ, but in
this study we treat θ as fixed parameters. The generalization to a vector variable,
xij ∈ Rd, is straightforward. For the application in Section 3 we have xij ∈ R3. A
three dimensional grid, xijk, is of course also possible.

We assume the spatial variable x to be stationary and let the field be defined
on a torus, see e.g. Cressie (1991). As explained below, this has important com-
putational advantages, but the torus assumption also implies that one should not
trust the results close to the boundary of the grid. Thus, one should let the grid
cover a somewhat larger area than what is of interest.

The likelihood model for the data z = {zij ∈ R; i = 1, . . . , n; j = 1, . . . , m},
given the underlying variable x, is represented by the conditional density π(z|x) =
N(z; g(x), S), where g(x) is a nonlinear function. Hence, the conditional expecta-
tion of the data has a nonlinear conditioning to the underlying field. We assume
that the likelihood noise is stationary with covariance matrix S. It is again straight-
forward to extend this model to vector variables at each location, zij ∈ Rd, or
three dimensional grids. For the application in Section 3 we have zij ∈ R2. We
assume that a linearized version of the likelihood is available, and denote this by
the conditional density πlin

x0
(z|x) = N(z;Gx0x, S), where x0 is the value of x used

in the linearization.
The posterior of the hidden variable x conditional on the data is given by

π(x|z) ∝ π(x)π(z|x), (1)

an analytically intractable posterior. The linearized alternative;

πlin
x0

(x|z) ∝ π(x)πlin
x0

(z|x), (2)

for fixed x0, can be written in a closed form, and is possible to evaluate and
sample from directly. But note that in general this becomes computationally
expensive in high dimensions. With our torus assumption discussed above, the
covariance matrices involved become circular and the linearized posterior can then
be evaluated and sampled from effectively in the Fourier domain (Cressie (1991),
Buland, Kolbjørnsen, and Omre (2003)). The actual nonlinear posterior can also
be evaluated, up to a normalizing constant, in the Fourier domain, by treating the
prior and likelihood terms in equation (1) separately.

H. TJELMELAND AND J. EIDSVIK
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2.2 METROPOLIS–HASTINGS BLOCK UPDATING

A MH algorithm is an iterative sampling method for simulating a Markov chain
that converges to a desired posterior distribution, see e.g. Robert and Casella
(1999). Each iteration of the standard MH algorithm consists of two steps: (i)
Propose a new value for the underlying variable, (ii) Accept the new value with a
certain probability, else keep the value from the previous iteration.

We describe a MH algorithm which updates blocks of the random field at
each iteration. Let Xi = x denote the variable after the i-th iteration of the MH
algorithm. For the (i+1)-th iteration we draw a block of fixed size k× l at random,
where k < n, l < m. Since the grid is on a torus, there are no edge problems when
generating this block. We denote the block by A, a defined boundary zone of the
block by B, and the set of nodes outside the block and boundary by C, see Figure
1. Further, we split the variable into these blocks; x = (xA, xB , xC) as the parts in

Figure 1. Block updating. The full size of the grid is n × m. We illustrate the
block A of gridsize k × l, a boundary zone B, and the other parts of the field C.

the block, the boundary, and outside the block and boundary zone, respectively.
Correspondingly, we denote the data vector by z = (zA, zB , zC). To propose a
new value in the block we define a proposal density for the part in A, and denote
the proposal on this block by yA. The rest of x remains unchanged, and hence
the proposed value is y = (yA, xB , xC). One proposal density in the block is the
linearized posterior for yA, conditional only on values in the boundary zone and
data in A and B. We denote this by πlin

x (yA|xB , zA, zB) = N(yA;m,T ), where the
mean m and covariance T can be calculated directly (Cressie, 1991). Note that
the linearization is done at the current value Xi = x. The final step in the MH
iteration is to accept or reject the proposed value y, and we thus obtain the next
state Xi+1. Note that the results of the MH algorithm are the same no matter
which block size we choose. The CPU time, on the other hand, will vary with the
block size. In the application below we have chosen a block size similar to the
range of the spatial correlation.
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2.3 DIRECTIONAL METROPOLIS–HASTINGS

Directional MH algorithms are a special class of MH algorithms. Each iteration
consists of the following steps; (i1) Generate an auxiliary random variable which
defines a direction, (i2) Draw a proposed value on the line specified by the current
state and the auxiliary direction, (ii) Accept the proposed value with a certain
probability, else keep the variable from the previous iteration.

We present a directional updating scheme where the proposal step is done
effectively in one dimension, see Eidsvik and Tjelmeland (2003). We outline our
method following the block sampling setting in Section 2.2. Denote again the
variable at the i-th iteration by Xi = x = (xA, xB , xC), and the data by z =
(zA, zB , zC). We generate an auxiliary direction (step i1) as follows; First, draw
wA from πlin

x (·|xB , zA, zB). Next, define the auxiliary direction as u = ± wA−xA

|wA−xA| ,
where we use + or − so that the first component of u is positive, see the discussion
in Eidsvik and Tjelmeland (2003). Since this density for wA is Gaussian, it is
possible to calculate the density for the auxiliary unit direction vector u (Pukkila
and Rao, 1988). We denote this density by g(u|xA, xB , zA, zB).

At the last part of the proposal step (i2) we draw a one dimensional value t
from some density q(t|u, x, z), and set yA = xA + tu as the proposed value for the
block, and y = (yA, xB , xC) as the proposal for the entire field. This proposal is
accepted, i.e. Xi+1 = y, with probability

r(y|x) = min
{

1,
π(y)
π(x)

· π(z|y)
π(x|y)

· g(u|yA, xB , zA, zB)
g(u|xA, xB , zA, zB)

· q(−t|u, y, z)
q(t|u, x, z)

}
, (3)

else we have Xi+1 = x.
In particular, if we choose the one dimensional density as

q�(t|u, x, z) ∝ π(z|xA +tu, xB , xC)π(xA +tu, xB , xC)g(u|xA +tu, xB , zA, zB), (4)

the acceptance probability in equation (3) is equal to unity (Eidsvik and Tjelme-
land, 2003), and hence the proposed variable is always accepted. Two elements are
important when considering the unit acceptance rate proposal in equation (4); (i)
An acceptance rate of one is not necessarily advantageous in MH algorithms. It is
advantageous to obtain fast mixing, i.e. to have a small autocorrelation between
successive variables. This is best achieved with large moves at each iteration of
the MH algorithm. (ii) It is not possible to sample directly from the q� density.
To obtain a sample we have to fit an approximation to q� in some way, either by
a parametric curve fit, or by numerical smoothing of a coarse grid approximation.

In this paper we use an alternative density which does not give unit acceptance
rate. The adjusted density is

q̃(t|u, x, z) ∝ (1 + |t|)λq�(t|u, x, z), λ > 0, (5)

where the (1+|t|)λ term encorages t values away from t = 0. This makes it possible
to have larger moves in the MH algorithm since t = 0 corresponds to yA = xA.
We fit an approximation by first calculating q̃ on a coarse grid and then use linear

H. TJELMELAND AND J. EIDSVIK
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interpolation in the log scale between the evaluated grid points. The approximation
that we obtain with this approach is our proposal denoted q.

In Figure 2 we show the proposal with acceptance one, q�, the adjusted proposal

Figure 2. Sketch of the density q�(solid), the adjusted density q̃ (dash-dots),
and the fitted density q (dashed). This is a typical proposal density for t in our
application in Section 3. The approximation q has an exponential form in each
interval of length 0.1 on a grid (for example between −0.8 and −0.7).

q̃ and its fitted proposal q. This particular plot is obtained in our application in
Section 3. We tuned λ in equation (5) so that the acceptance rate was about 0.5
in our application. This seems to be a reasonable acceptance rate considering the
asymptotically optimal acceptance rates for random walk MH and Langevin MH
algorithms at 0.25 and 0.5, respectively, see e.g. Robert and Casella (1999). We
obtain this by setting λ = 10. Note that the proposal density for t has a bimodal
shape. One mode is usually close to t = 0, while the other mode is quite far from
0. The mixing of the MH algorithm improves if we reach the mode away from 0
more often. This can be established by q̃ or q as shown in Figure 2. In the case of a
linear likelihood the two modes illustrated in Figure 2 are always of equal size. A
nonlinear likelihood causes them to have unequal mass, and most commonly the
mode near t = 0 contains most of the probability mass.

3 Example

3.1 SEISMIC AMPLITUDE VERSUS OFFSET DATA

Seismic amplitude versus offset (AVO) analysis is commonly used to assess the
underlying lithologies (rocks and saturations) in a petroleum reservoir, see e.g.
Sheriff and Geldart (1995), and Mavko, Mukerji, and Dvorkin (1998). The reflec-
tion amplitude of seismic data changes as a function of incidence angle and as a
function of the elastic properties which are indicative of lithologies.

We analyze reflection data at two incidence angles in the Glitne field, North Sea.
The Glitne field is an oil-producing turbidite reservoir with heterogeneous sand
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and shale facies, see Avseth et al (2001) and Eidsvik et al (2004). The domain
of our interest is 2.5 × 2.5 km2, and it is split into a grid of size 100 × 100, with
each grid cell covering 25 × 25 m2. The area covers what was interpreted as the
lobe of the turbidite structure in Avseth et al (2001). Figure 3 shows the reflection
amplitude along the grid at reflection angles zero (left) and thirty (right).

Figure 3. Reflection data at the 2D interface. Incidence angle 0 degrees (left)
and 30 degrees (right).

The reflection amplitudes are hard to analyze directly because they are a result
of the contrast in elastic properties in the cap rock covering the reservoir and the
properties in the reservoir zone. We next use a statistical model for automatic
analysis of the elastic reservoir properties.

3.2 STATISTICAL MODEL FOR SEISMIC DATA

The seismic data for the two reflection angles are denoted z = (z0, z1), where z0

refers to the zero offset reflection and z1 to 30 degrees incidence angle (both are
plotted in Figure 3). The statistical model that we use is closely connected to the
one in Buland, Kolbjørnsen and Omre (2003).

The variables of interest are the pressure and shear wave velocities, and the den-
sity in the reservoir zone. We denote these by x = (α, β, ρ) = {xij = (αij , βij , ρij); i =
1, . . . , n; j = 1, . . . , m}, where α is the logarithm of the pressure wave velocity, β is
the logarithm of the shear wave velocity, and ρ is the logarithm of the density. The
velocities and density are the elastic properties of the rocks which in some sense
capture the rock mineral and saturation (Mavko, Mukerji, and Dvorkin, 1998).
The units for the exponential equivalents of α, β and ρ are m/s for velocities and
kg/m3 for density. Let (α0, β0, ρ0) be the logarithm of pressure and shear wave
velocities, and the logarithm of density for the cap rock. These cap rock properties
are treated as fixed values in this study, and are equal for all locations in the grid.

H. TJELMELAND AND J. EIDSVIK



NONLINEAR LIKELIHOOD MODELS 101

We assign a Gaussian prior density to the reservoir variables of interest, i.e.
π(x) = N(x;µ,Σ), where µ now becomes a 3mn vector with the mean of the three
log elastic properties. These prior mean values are fixed, and set to µα = E(αij) =
7.86, µβ = E(βij) = 7.09, µρ = E(ρij) = 7.67, for all (i, j). These mean values are
assessed from well logs in Glitne, see Avseth et al (2001). The prior covariance ma-
trix, Σ, is a 3mn×3mn matrix defined by a Kronecker product, giving a 3×3 block
covariance matrix at the diagonal, and 3×3 matrices with this covariance function
and a spatial correlation function on the off-diagonal, see Buland, Kolbjørnsen, and
Omre (2003). The diagonal covariance matrix describing the marginal variability
at each location is defined by Std(αij) = 0.06, Std(βij) = 0.11, Std(ρij) = 0.02,
and correlations Corr(αij , βij) = 0.6, Corr(αij , ρij) = 0.1, Corr(βij , ρij) = −0.1.
These parameters capture the variability expected from previous studies, see Bu-
land, Kolbjørnsen, and Omre (2003). The spatial correlation function is the same
for all three reservoir variables and is an isotropic exponential correlation function
with range 250m (10 grid nodes).

The likelihood function is nonlinear, and is defined by approximations to the
Zoeppritz equations, see e.g. Sheriff and Geldart (1995). The density for the seismic
AVO data, given the underlying reservoir properties, is π(z|x) = N(z; g(x), S),
where the nonlinear function goes only locationwise, i.e. at grid node (i, j) the
expectation term in the likelihood is a function of the variables at this gridnode
only. For each location (i, j) and angle γ = 0, 30 we have

gij,γ(x) = gij,γ(αij , βij , ρij) = a0(αij − α0) + a1,ij(βij − β0) + a2,ij(ρij − ρ0), (6)

where

a0 =
1
2
[1 + sin2(γ)], a1,ij = −4ξijsin

2(γ), (7)

a2,ij =
1
2
[1 − 4ξijsin

2(γ)], ξij =
exp(2βij) + exp(2β0)
exp(2αij) + exp(2α0)

.

The noise covariance matrix of the likelihood, S, is a 2mn × 2mn matrix defined
from a Kronecker product. This covariance matrix has a block diagonal 2×2 matrix
on the diagonal, and off-diagonal elements defined from an exponential correlation
structure with range 250m. The diagonal noise covariance matrix is defined by
Std(γ = 0) = 0.015, Std(γ = 30) = 0.012, Corr(γ = 0, γ = 30) = 0.7. This
likelihood noise model is specified using the parameters in Buland, Kolbjørnsen,
and Omre (2003).

A linear likelihood model can be defined by fixing the ratio ξij in equation (7).
For a constant linearization point we have πlin

µ (z|x) = N(z;Gµx, S). A similar
linearization is used in Buland, Kolbjørnsen, and Omre (2003), and with this lin-
earization they assess the analytically available posterior directly on a 3D dataset.
For a linearized proposal density on the block A we have πlin

x (·|xB , zA, zB), where
we use a block size of 9 × 9, and a boundary zone of width one grid node. The
quality of the linearization varies across the lateral domain - it is better with dense
sampling in time. It is important to remember that the choice of linearization is
irrelevant for the results, it only influences the CPU time of the sampling algorithm.
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3.3 RESULTS

The posterior is sampled using the block directional MH algorithm discussed
above. We denote 144 updates as one iteration, i.e. on average each grid node
is (proposed) updated about once in each iteration. Figure 4 shows trace plots for

Figure 4. Trace plots of the three variables at one location in the grid. Log of
pressure wave velocity α (left), log of shear wave velocity β (middle), and log of
density (right).

the log elastic properties at one location in the grid. The traceplots are explained
to some extent by the bimodal proposal density q (see Figure 2). In Figure 4 the
variables move short distances at some iterations, while moves are large at other
iterations, reflecting the bimodal density for the proposal.

In Figure 5 we show the estimates of the marginal mean and standard deviation
for all three variables as images. Near grid coordinate (North,East) = (60, 80) (see
Figure 5, top left image) both pressure and shear wave velocities are large. In the
same area the reflection data (Figure 2) are large at both angles. Going south
from gridnode (60, 80) (see Figure 5, top left image) the pressure wave velocity
decreases, and so does the shear wave velocity, but to a smaller degree. In Figure
2 the reflection data become smaller in this area. These two regions comprise the
lobe of the turbidite structure, see Avseth et al (2001). In Eidsvik et al (2004)
these two regions were estimated to be water and oil saturated sands, respectively.
Without moving on to classifying the velocity and density values, we merely note
that pressure wave velocity is larger in water than oil saturated sands (Mavko,
Mukerji, and Dvorkin, 1998). Our estimated velocities are hence in accordance
with the results in Eidsvik et al (2004). The western part of the domain were
predicted to contain mostly shales (a low velocity rock) in Eidsvik et al (2004).

The prior standard deviations for the three variables are (0.06, 0.11, 0.02). In
Figure 5 (right) the mean standard deviations in the posterior are (0.033, 0.065, 0.02).
This indicates that there is information about α and β in the AVO data (standard
deviation decreases by a factor two), but not much about ρ.

Note that the standard deviations in Figure 5 (right) varies quite a lot across
the field (a factor of two). The standard deviation for β is smaller where the
velocities large. For a linear model [Buland, Kolbjørnsen, and Omre (2003)] the
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Figure 5. Mean and standard deviation of the three variables at each location
in the grid. Logarithm of pressure wave velocity α (top). Logarithm of shear wave
velocity β (middle), and logarithm of density (bottom).

standard deviations are constant across the field. The expected values also differ
somewhat between a linear model and our nonlinear model; for example E(β

α )
is shifted significant between the two approaches. These differences suggest that
the linearized Gaussian posterior in Buland, Kolbjørnsen, and Omre (2003) might
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introduce a bias in the estimation of the elastic parameters. One might want to
correct for the possible bias or variance effects of a linear model, now that this
effect is quantified by nonlinear sampling.

4 Closing Remarks

In this paper we consider Bayesian models with a Gaussian random field prior
and nonlinear likelihood functions. Such models are common in the earth sciences,
but are usually simplified (linearized) to make the posterior analytically available.
We propose a directional block Metropolis–Hastings sampler for exploring the
original nonlinear posterior. When we apply our methods to a seismic dataset
from the North Sea, we recognize some differences between our results and the
ones obtained by a linearized model. These differences indicate that it is useful to
check the validity of a simplified likelihood model by sampling the full nonlinear
models.

One of the current challenges with the Glitne field is uncertainty in the thick-
ness of the turbidite structure, associated with the noise in seismic data due to
overburden effects. A natural extension is hence to study the full 3D seismic data.
An extension of our statistical methods is to assign priors to the hyperparameters
in the statistical model, and hence include the variability of these parameters into
the final results.
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DETECTION OF LOCAL ANOMALIES IN HIGH RESOLUTION 

HYPERSPECTRAL IMAGERY USING GEOSTATISTICAL FILTERING 

AND LOCAL SPATIAL STATISTICS 
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Abstract. This paper describes a methodology to detect patches of disturbed soils in 
high resolution hyperspectral imagery, which involves successively a multivariate 
statistical analysis (principal component analysis, PCA) of all spectral bands, a 
geostatistical filtering of regional background in the first principal components using 
factorial kriging, and finally the computation of a local indicator of spatial 
autocorrelation to detect local clusters of high or low reflectance values as well as 
anomalies. The approach is illustrated using one meter resolution data collected in 
Yellowstone National Park. Ground validation data demonstrate the ability of the 
filtering procedure to reduce the proportion of false alarms, and its robustness under low 
signal to noise ratios.  By leveraging both spectral and spatial information, the technique 
requires little or no input from the user, and hence can be readily automated. 

1 Introduction 

Spatial data are periodically collected and processed to monitor, analyze and interpret 
developments in our changing environment. Remote sensing is a modern way of data 
collecting and has seen an enormous growth since launching of modern satellites and 
development of airborne sensors. In particular, the recent availability of high spatial 
resolution hyperspectral (HSRH) imagery offers a great potential to significantly 
enhance environmental mapping and our ability to model spatial systems (Aspinall et
al., 2002; Marcus, 2002). Following Jacquez et al. (2002), HSRH images refer to 
images with resolutions of less than 5 meters and including data collected over 64 or 
more bands of electromagnetic radiation for each pixel.

High spatial resolution imagery contains a remarkable quantity of information that 
could be used to analyze spatial breaks (boundaries), areas of similarity (clusters), and 
spatial autocorrelation (associations) across the landscape. This paper addresses the 
specific issue of soil disturbance detection, which could indicate the presence of land 
mines or recent movements of troop and heavy equipment.  A challenge presented by 
soil detection is to retain the measurement of fine-scale features (i.e. mineral soil 
changes, organic content changes, vegetation disturbance related changes, aspect 
changes) while still covering proportionally large spatial areas. An additional difficulty 
is that no ground data might be available for the calibration of spectral signatures, and 
little might be known about the size of patches of disturbed soils to be detected. Precise 

105

2004, 105-114. 
© 2005 Springer. Printed in the Netherlands. 

ticsO. Leuangthong and C. V. Deutsch (eds.), Geostatis  Banff



106 P. GOOVAERTS 

and accurate soil disturbance identification typically requires: (1) identification of a 
potential target (soil disturbance) of interest, (2) removal of confusion (the 
environmental setting), and (3) target (soil disturbance) confirmation. These different 
steps should be automated as much as possible to allow for the fast processing of 
multiple images, while false positives should be reduced to a manageable level.

A major challenge facing the use of HSRH data is the development of new, spatially 
explicit tools that exploit both the spectral and spatial dimensions of the data.
Semivariograms allow one to detect multiple scales of spatial variability, and the 
spectral values can then be decomposed into the corresponding spatial components 
using factorial kriging (Goovaerts, 1997; Wackernagel, 1998). This technique has first 
been used in geochemical exploration to distinguish large isolated values (pointwise 
anomalies) from groupwise anomalies that consist of two or more neighboring values 
just above the chemical detection limit (Sandjivy, 1984). Ma and Royer (1988) have 
applied the same technique to image restoration, filtering and lineament enhancement, 
while Wen and Sinding-Larsen (1997) have analyzed sonar images. More recently, Van 
Meirvenne and Goovaerts (2002) applied factorial kriging to the filtering of multiple 
SAR images, strengthening relationships with land characteristics, such as topography 
and land use. None of these studies has however tackled the issue of automatic analysis 
and processing of large series of correlated spectral bands. 

This paper describes a new approach that combines geostatistical filtering with local 
cluster analysis used in health sciences for the detection of clusters and outliers in cancer 
mortality rates (Jacquez and Greiling, 2003). The methodology is applied to HSRH 
imagery collected in Yellowstone National Park, and performances are assessed using 
ground data. Sensitivity analysis is conducted to investigate the impact of spectral 
resolution, signal to noise ratio, and kernel detection size on classification accuracy. 

2 Geostatistical Methodology 

Consider the problem of detecting, across an image, single or aggregated pixels that are 
significantly different from the surrounding ones. The information available consists of 
K variables (i.e. original spectral values or combinations of those) recorded at each of 
the N nodes of the image, {zk(ui), i=1,…,N; k=1,…,K}. The proposed approach proceeds 
in two steps: 

1. The regional variability (i.e. spatial background) of the image is filtered in 
order to highlight local anomalies, which are values that depart from the 
surrounding mean. 

2. At each location across the filtered image the value of a detection kernel, 
whose size corresponds to the expected size of a patch of disturbed soil, is 
compared to neighborhood values and flagged as anomaly if its value is 
significantly higher or lower than surrounding pixel values. 

2.1 GEOSTATISTICAL FILTERING 

The first step involves removing from each image (i.e. original spectral bands or 
principal components) the low-frequency component or regional variability. For the k-th



DETECTION OF LOCAL ANOMALIES IN HYPERSPECTRAL IMAGERY 107 

image, the low-frequency component, denoted mk, is estimated at each location u as a 
linear combination of the n surrounding pixel values: 

n
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1                      (1) 

where ik is the weight assigned to the i-th observation in the filtering window of size n.
The main feature of this filtering technique is that the weights ik are tailored to the 
spatial pattern of correlation displayed by each image and assessed using the 
semivariogram. These weights are computed as solution of the following system of 
linear equations (kriging of the local mean): 
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where k(ui-uj) is the semivariogram of the k-th image for the separation vector between 
ui and uj, and (u) is a Lagrange multiplier that results from minimizing the estimation 
variance subject to the unbiasedness constraint on the estimator. 

2.2 DETECTION OF ANOMALIES USING THE LISA STATISTIC 

The second step amounts at scanning each filtered image, looking for local values that 
are significantly lower or higher than the surrounding values and might indicate the 
presence of disturbed soils.  This procedure requires the definition of: 

1. Detection kernel, whose size corresponds to the expected size of a patch of 
disturbed soil, 

2. LISA neighborhood including the pixels surrounding the detection kernel, 
3. Target area which is the area to be analyzed. 

An example of these three parameters is provided in Figure 1. 

Figure 1. Illustration of key parameters used in the detection procedure. 
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The detection of local anomalies is based on the local Moran’s I, which is the most 
commonly used LISA (Local Indicator of Spatial Autocorrelation) statistic (Anselin, 
1995). It is computed for each pixel of coordinates u as: 

J
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)()(LISA uuu                      (3) 

where )(ukr  is the average value of the residuals, rk(u)=zk(u)-mk(u), over the detection 
kernel centered on pixel of coordinates u, and J is the number of pixels in the LISA 
neighborhood (e.g. J=12 and kernel comprises 4 pixels for the example of Figure 1). 
Since the residuals have zero mean, the LISA statistic takes negative values if the kernel 
average is much lower (or higher) than the surrounding values. In other words the kernel 
average is below the global zero mean while the neighborhood average is above the 
global zero mean, or conversely, which indicates the presence of anomalies. Clusters of 
low or high values will lead to positive values of the LISA statistic (e.g. both kernel and 
neighborhood averages are jointly above zero or below zero). 

In addition to the sign of the LISA statistic, its magnitude informs on the extent to which 
kernel and neighborhood values differ. To test whether this difference is significant or 
not, a Monte Carlo simulation is conducted, which consists in sampling randomly the 
target area and computing the corresponding simulated neighborhood averages. This 
operation is repeated many times (e.g. 1,000 draws) and these simulated values are 
multiplied by the detection kernel average )(ukr  to produce a set of 1,000 simulated 
values of the LISA statistic at u. This set represents a numerical approximation of the 
probability distribution of the LISA statistic at u, under the assumption of spatial 
independence. The observed LISA statistic, LISAk(u), can then be compared to the 
probability distribution, allowing the computation of the  probability that this observed 
value could be exceeded (so-called p-value):

}ionrandomizat|)({Prob)( uu kk LISALp
         

(4)

Large p-values thus indicate large negative LISA statistic, corresponding to small values 
surrounded by high values or the reverse (anomalies or presence of negative local 
autocorrelation). Conversely, small p-values correspond to large positive LISA statistic 
which indicates clusters of high or low values (positive autocorrelation).

The last step is to combine the K p-values computed for the set of K images. Two novel 
statistics were developed to summarize for each node u the information provided by the 
K bands and to detect target pixels: 

1. Average p-value over the subset of K’ bands that display negative LISA 
statistic:
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 with i(u;k) = 1 if LISAk(u) < 0, and zero otherwise. Large S1 values indicate 
local anomalies (i.e. sample LISA statistic in the left tail of the distribution). 
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2. Average absolute deviation of p-values from 0.5 through the K bands: 
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Large S2 values indicate either clusters or anomalies (i.e. sample LISA in either 
tails of the distribution). 

The detection procedure requires applying a threshold to the maps of statistics S1 or S2

and classifying as disturbed soils all pixels exceeding this probability threshold. Instead 
of selecting a single threshold arbitrarily, it is better to select a series of thresholds and 
see how the proportion of pixels correctly or incorrectly classified as disturbed soils 
evolves. This information can then be summarized in the so-called Receiver Operating 
Characteristics (ROC) curve that plots the probability of false alarm versus the 
probability of detection. 

3 Case study 

The new methodology was tested on a vegetation plot located in the northern boundary 
area of Yellowstone National Park. The objective is to detect 4 blue tarps of 4m2 area in 
the image (131 69 pixels). These four targets mainly correspond to the white pixels in 
the image of Figure 2 (left), and are denoted by the black squares in the right image.  
These data were collected using the Probe-1 sensor, a 128-band hyperspectral system 
operated by Earth Search Systems, Inc. To obtain 1 m resolution data, this sensor was 
mounted on a helicopter flying approximately 600 m above the ground. Following 
atmospheric correction, the images were degraded in order to investigate the robustness 
of the approach with respect to spatial resolution and signal to noise ratio. The data were 
first spectrally resampled to 2-5 times lower resolutions, by simply selecting one out of 
every 2 to 5 bands.  Noise was added to simulate 50:1 signal-to-noise ratio (SNR) and 
100:1 SNR, according to: Rsn( )=Rs( )[1+{N(0,1)/SNR( )}], where Rsn( ) is the 
simulated, noisy spectrum,  Rs( ) is the spectrum that has been spectrally resampled, 
N(0,1) is a Gaussian random number with a zero mean and unit variance, and SNR( ) is 
the simulated signal-to-noise ratio. 

Figure 2. Probe 1, color-infrared image of the experimental site, and location of 16 tarp 
pixels (black) that are interpreted as disturbed soils to be detected.
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Figure 3. Maps of the first two principal components for the HSRH image, and the 
results of the geostatistical filtering of the regional background.

The analysis was first performed on the first 84 principal components (PC) of the data. 
Each image of principal components was decomposed into maps of local means and 
residuals or filtered values, using a 5 5 window centered on the pixel being filtered (i.e. 
n=25 in equation (1)). Figure 3 shows an example for the first 2 PCs. The original PC 
values are decomposed into the background values m(u) and the residuals or filtered 
values r(u)=z(u)-m(u). These images illustrate how the removal of regional variability, 
which might represent different soil or vegetation types, highlights the location of target 
pixels which appear as white in the filtered images. The information provided by either 
filtered or non filtered sets of 84 PCs was summarized using the statistic S1 or S2, see 
Figure 4. Dark pixels, corresponding to high values, indicate the presence of local 
anomalies for S1 and clusters or anomalies for S2. This figure clearly illustrates the 
benefit of the geostatistical filtering and use of statistic S2, which reduces greatly the 
number of background pixels being wrongly detected as clusters or local anomalies and 
increases the similarity with the actual map of tarp pixels displayed in Figure 2. 

The final step is to compute the ROC curves from the maps of statistic S1 or S2. A series 
of thresholds (probability of detection) are selected, and for each of them the pixels 
classified as disturbed soils are compared to ground data in order to compute the 
proportion of misclassified pixels (probability of false alarms). These two sets of 
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probabilities are then plotted to generate the ROC curve. Figure 5 shows an example of 
such curves for detection using either statistic S1 or S2 computed from filtered or non-
filtered images. The main conclusions are: 

1. The filtering and use of statistic S2 (black solid curve) allows the detection of 
all tarp pixels for a probability of false alarms not exceeding 0.20.

2. Detection of 60% of tarp pixels can be done with small probability of false 
alarm (vertical part of the ROC curve) and these pixels correspond to high 
purity in term of tarp content. Pixels that contain a mixture of tarp and other 
materials (i.e. bare soil, grass) are much more difficult to detect and generate an 
increase in the proportion of false alarms which can be fairly dramatic if no 
filtering is performed and only anomalies are searched (i.e. use of statistic S1).

.30

.32

.34

.36

.38

.40

Figure 4. Maps of statistics S1 and S2 computed from the first 84 principal components 
before and after (bottom maps) filtering of the regional background.

Figure 5. Receiver Operating Characteristics (ROC) curves obtained for the statistics S1

(thin dotted line) and S2 (solid line). Black curves are obtained from the filtered values, 
while the gray curves refer to original values (without geostatistical filtering).
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Extensive sensitivity analysis has been conducted to assess the performance of the 
methodology under several conditions, such as: 

1. Selection of subsets of PCs based on the strength of spatial correlation. 

2. Choice of detection kernels of various sizes. 

3. Decrease in signal to noise ratio and spectral resolution. 

Instead of summarizing the information provided by the first 84 PCs, statistics S1 and S2

were computed for each PC separately and their average for both tarp and background 
pixels are plotted versus the rank/order of the PC in Figure 6 (top graph). Differences 
between tarp (black) and background (gray) pixels tend to attenuate as the order of the 
component increases and the spatial correlation of the image decreases (thick black 
curve). Subsets of PCs were thus retained based on a spatial correlation threshold of 0.5 
or 0.25, plus the set of the first 25 PCs. The ROC curves indicate an increase in the 
proportion of false alarms when using fewer PCs. All ROC curves computed hereafter 
will be based on the first 25 PCs, thereby providing a balance between shorter CPU time 
(16.0 seconds versus 54.5 for 84 PCs on a Pentium 3.20 GHz) and slightly more false 
alarms.

Figure 6. Plot of spatial correlation (lag=1 pixel) and value of statistics S1 (thin dotted 
line) and S2 (solid line) for either tarp pixels (black) or background pixels (gray), versus 
the order of the principal component (top graph). Bottom graphs show the ROC curves 
obtained for the first 25 PCs and two subsets based on the level of spatial correlation. 
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All results presented so far were obtained using a detection kernel of one pixel, which 
does not require any prior information regarding the size of the object to be detected. 
The benefit of tailoring the detection kernel to the size of the object was investigated by 
performing the classification and computing the ROC curves for three types of kernel: 
1 1, 2 1 and 2 2. Figure 7 (top row) shows that that the use of kernels 2 1 and 2 2
improves detection performances of statistic S1, while more false alarms occur when 
using statistic S2. Indeed, statistic S1 searches for local anomalies of size equal to the 
kernel, while S2 detects both clusters and anomalies. The impact of the signal to noise 
(SN) ratio was investigated by adding a given proportion of noise to reflectance values 
before performing PCA. Figure 7 (middle row) shows the ROC curves obtained for 
increasing levels of noise (SN=100:1 to SN=50:1). As intuitively expected, noisy signals 
tend to blur the detection of anomalies, leading to a larger proportion of false alarms, 
although statistic S2 on filtered signal is very robust.

The last test consisted in investigating how a decrease in spectral resolution would affect 
the quality of the detection. Figure 7 (bottom row) shows the ROC curves obtained for 
the original signal with 84 PCs, and then for one half (WV2, 42 PCs) and one third 
(WV3, 28 PCs) of the number of principal components.  As for the signal to noise ratio, 
ROC curves indicate poorer performances when using the degraded image.

Figure 7. Receiver Operating Characteristics (ROC) curves obtained for three types of 
detection kernel, two signal to noise (SN) ratios, and three spectral resolutions (WV). 
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4 Conclusions 

This paper presented and demonstrated the efficacy of a geostatistical approach to 
detecting disturbed soils in high spatial resolution hyperspectral imagery. The technique 
uses PCA to reduce dimensionality of the imagery, employs geostatistical filtering to 
remove regional background and enhance local signal, and applies a Local Indicator of 
Spatial Autocorrelation to identify patches of disturbed soils. In all scenarios, fewer 
false alarms were obtained when using the filtered signal and statistic S2 to summarize 
information across bands. Image degradation through addition of noise or reduction of 
spectral resolution tends to blur the detection of anomalies, leading to more false alarms, 
in particular for the identification of the few mixed pixels.

In this paper the methodology was used to detect regular patches on a simple landscape.  
Similar results were obtained when applying the approach to more complex landscapes 
with multiple targets of various sizes and shapes (results not shown). Because it employs 
geostatistical filtering, the method is robust under low signal to noise ratios.  By 
leveraging both spectral and spatial information, the technique requires little or no input 
from the user, and hence can be readily automated. Following our results a Pentium 3.20 
GHz would allow the processing of a 1000×1000 scene including 25 bands within 18 
minutes. Future research will investigate the benefit of processing directly the spectral 
bands instead of their principal components.
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COVARIANCE MODELS WITH SPECTRAL ADDITIVE COMPONENTS
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Abstract. We present a new model defining a whole class of variogram models: the 
spectral additive model (SAM). The model is obtained by linear combination of simple 
spectral components. The SAM parameters can be estimated linearly and without bias. 
The handling of mean drift is straightforward. In the spatial domain, the SAM possesses 
an analytic expression, a clear advantage over similar approaches based on covariance 
spectra obtained by FFT. The SAM is flexible as it can approximate any classical model, 
isotropic or anisotropic, to the desired degree of precision. A forward inclusion selection 
procedure enables avoiding over-parameterization of the model. This is especially useful 
in the general anisotropic case. Simulations illustrate the performance of the SAM for 
covariance function fitting.

1 Introduction 

The choice of a suitable variogram or covariance model is an important step in any 
geostatistical study. This step remains largely handcrafted and resists automation. 
Current practice normally involves computing experimental variogram(s); a step 
involving its legion of more or less arbitrary decisions like the choice of directions, the 
angular tolerance, and the distance bins to adopt. Decisions on the characteristics of the 
model follow: stationary or non-stationary, isotropic or anisotropic, type of anisotropy, 
type of model or of combination of models to use. Finally the model parameters are 
adjusted, either manually or sometimes with the help of automatic fitting programs and 
cross-validation procedures (Marcotte, 1995). Most of the classical models being non-
linear functions of distance, automatic fitting itself can be difficult to realize as many 
local optimums could exist. This partly explains why the parameters are still often 
obtained by visual fit. 

Although a host of models are available (Chilès and Delfiner, 1999), one may question 
why data should necessarily comply with any of these models. There is a definite need 
to introduce greater flexibility and ease of estimation, especially if one considers 
implementation of geostatistical algorithms in wide general use software packages like 
GIS and statistical packages. The need for automation and flexibility is certainly present 
in the univariate stationary or non-stationary cases but it is even more compelling in the 
muzltivariate case.

We present a new class of models that are flexible and suitable for automatic estimation. 
This class of models is obtained by linear combinations of spectral components,  
thus the name spectral additive model (SAM). Because the model is linear, its 
parameters can be estimated by standard regression (or robust or weighted  
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regression if preferred). There is no need to compute a variogram for the estimation 
because the fitting can be done easily considering each data pair available. The focus of 
this study is on the univariate case, stationary or non-stationary, isotropic or anisotropic. 

The proposed approach bears resemblance to the approach suggested by Yao and 
Journel (1998). However, it is fundamentally different in many aspects. Here, the model 
defined is continuous and an analytical expression for the covariance function exists. In 
Tiao and Journel (1998) the model is discrete and numerically defined only at the lags 
used in the variogram computation.

2 Theory 

2.1 A CLASS OF FLEXIBLE ISOTROPIC MODELS 

Stationary (or homogeneous) random functions with absolutely integrable covariance 
function C(h) possesses the spectral density )(c . Together, they form a Fourier 

transform pair (Christakos, 1992, Yaglom, 1987). That is, 

)(c)h(C

)(c)h(C

1

(1)

with )(c >0 for all frequencies  and )(c symmetric.

The basic idea in our approach is to replace the continuous function )(c by a 

summation of piecewise continuous functions )(ci , that we call spectral components: 

d
r||rii ii

|)(|f)(c
1

1 (2)

with 0=r0<r1<…rn being an increasing finite sequence of positive numbers, 

and
ii r||r 1

1 being an indicator function. The bins nrrr ,..., 10 are selected so as to 

provide good coverage of the positive frequencies. Although there is freedom in the 
choice of )(f i , a simple and convenient choice is )(f i =1 for all intervals except 

possibly for the last semi-infinite interval.

Now consider a linear combination of the spectral components: 

)(ca)(c i

n

i
i

1
(3)

Its Fourier transform is: 

)h(Ca))(c(a)h(C i

n

i
ii

n

i
i

1

1

1
(4)

The following results hold true: 
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R1. Any linear combination with coefficients 0ia is the spectral density of an 

admissible covariance; 
R2. Any admissible isotropic covariance having a spectral density can be approximated 
to an arbitrary degree of accuracy by model (4) (Powojowski, 2000). The accuracy of 
the approximation increases with the number of spectral components used to discretize 
the spectral density. 

The isotropic covariance corresponding to the choice )(f i =1 in Equation 2 is given 

by:
h))(rJr-h)(rJ(rh)h(C 1-id/2

d/2
1-iid/2

d/2
i

-d/2
i

(5)

where d/2J  is the order d/2 Bessel function of the first kind, where d is the dimension of 

the space. Note that for the limit where h->0:

d/2)(1)/r-(r)(C d/2
1-i

d/2
ii 0 (6)

Figure 1 shows the isotropic covariance for a few selected spectral components after 

normalisation by )(Ci 0  (Equation (6)) to ensure a unit sill. 

Equation 5 and normalized to a unit sill. 

2.2 CONTROLLING MODEL BEHAVIOUR AT THE ORIGIN 

In some cases, it is convenient to choose the last interval semi-open to infinity. This 
interval controls the behaviour of the covariance function at the origin. For example, the 
following choice ensures linear behavior at the origin:

d
||rn n

|)(|g)(c 1 (7)

where )(g  is the spectral density of the isotropic exponential covariance. When 

d=2,
23

2
2 11

/

a
||

a
|)(|g , with a the range. Setting 0)(fn  gives a 

differentiable covariance model. 

Figure 1.
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2.3 APPROXIMATION OF CLASSICAL PARAMETRIC COVARIANCE 
BY SPECTRAL COMPONENTS : THE ISOTROPIC CASE 

Figure 2 shows some 2D-isotropic parametric covariance models and their close 
approximation by a model with 4 (a and d) or 5 (b and c) spectral components. All 
spectral components are piecewise constants. However, in cases b) and c) an exponential 
spectral component is added to reproduce the model linear behavior. Clearly, the 
spectral additive model can match any isotropic classical model with few spectral 
components, thus demonstrating its great flexibility. 

Figure 2. Examples of close approximation of various isotropic covariances by additive 
spectral models. 

2.4 ESTIMATION OF PARAMETERS 

A definite advantage of the spectral additive model is the possibility of estimating its 
parameters linearly. We assume, for generality, a model with an unknown mean that can 
include a trend.

The drift model is: 

)x(X)x(Z (8)

where )x(  is second order stationary with zero mean and real covariance KZ and X is 

the nxp regression matrix used to model the drift.

The residuals iY , i=1...n, are obtained by ordinary least-squares estimation of using

the n available data: 

PZZ'X)X'X(XIY 1 (9)

where Y and Z are vectors of size nx1, I is the identitiy matrix of order n and P is the nxn
projection matrix. 

MODELS 



SPECTRAL ADDITIVE MODELS 119 

The product of residuals is 'YY . Its expectation is: 

PPK]'YY[E Z (10)

The covariances for the n data points computed from SAM are: 

q

j
jja KaK

1
(11)

Each matrix Kj is nxn. It represents the covariances associated with the “jth” spectral 
component. There are q such spectral components. 

The covariances for the residuals obtained with SAM are: 

j

q

j
j

q

j
jja UaPPKaPPK

11
(12)

Estimators of ja minimize the norm between the product of residuals 'YY and the 

covariances computed with Equation 12: 

21

q

j
jjUâ'YYmin (13)

The least squares estimator is: 

YU'YUUtraceâ iji
1  with q...i,âi 10 (14)

where â is the qx1 vector of coefficients for the q spectral components. The notation 

jiUUtrace  denotes a qxq matrix whose (i,j)- th entry is )UU(trace ji .

Note that a nugget effect can be included as an additional component in Equations 11 to 
14.

2.5 CONSTRAINTS ON THE ai COEFFICIENTS

For the SAM to be admissible, the coefficients ai must be non-negative. Enforcing these 
constraints directly in the estimation procedure complicates the computation. One way 
to circumvent this problem is to forward select the spectral components one at a time. At 
each step, the spectral component providing the best-fit improvement to the product of 
residuals and, at the same time, providing a set of positive coefficients, is selected. The 
procedure is stopped when no further significant improvement is possible or when all 
the candidate spectral components provide inadmissible models (i.e. at least one 
coefficient becomes negative).
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2.6 A DIFFERENT NORM 

The norm used in Equation 13 gives the same weight to all products of residuals. It is 
well known that the experimental variogram or covariance function is more reliable at 
short distances than at large distances due to smaller fluctuations. Also, the covariance 
at short distances has more influence on geostatistical operators like kriging or 
simulations. Thus, it could be interesting to favour the covariance fit at short distances 
by considering instead the modified norm: 

21

VUâV'YYmin
q

j
jj (15)

where VU is the Hadamard matrix product (i.e. element by element multiplication) 
and V is a nxn weighting matrix with elements defined by a positive non-increasing 
function of the distance separating the data.

With this weighting, the parameter estimates are now given by: 

Y)VU('YU)VU(traceâ iji
1  with q...i,âi 10 (16)

2.7 SELECTION OF SPECTRAL BINS 

Shannon’s (1949) sampling theorem for data on a regular grid indicates the highest 
frequency component that can be estimated reliably from the data. This frequency, the 
Nyquist frequency, is given by: 

h
f Nyq 2

1
(17)

where h is the grid step. 

For irregularly spaced data, the Nyquist frequency is not defined. We compute a pseudo-
Nyquist frequency using Equation 17 by substituting the grid spacing h by the average 
distance for the 30 nearest data pairs. 

At frequencies higher than the Nyquist frequency, an exponential spectral component 
can be added to the set of piecewise constant spectral components to impose linear 
behaviour of the covariance function at the origin. Shannon’s sampling theorem 
indicates this decision is essentially model-based and cannot be derived from the data. 
This may sound paradoxical as the first points of the experimental variogram show less 
fluctuation and are often well estimated. Nevertheless, the (non) differentiability of the 
process, that is the linear or parabolic behavior at the origin remains a modelling 
decision. In practical terms, the fact that the first variogram points define a straight line 
does not guarantee it extrapolates linearly to the intercept. 

Having defined the highest frequency available, equal bins are used to define the various 
spectral components. A more elaborate spectral binning strategy is described in 
Powojowski (2000).
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2.8 PROPERTIES OF THE ESTIMATOR

Powojowski (2000) studied in detail the properties of the estimator. He showed that 
when the true covariance function has the form of Equation 11, the estimator â  is 
unbiased. Otherwise â  is still a meaningful estimator in the sense that it is the closest to 
YY’ for the chosen norm. It was shown that, with a known mean, the estimator is 
convergent under in-fill sampling - expanding domain conditions. However, for a 
compact domain the estimator has a residual variance even in the case of in-fill 
sampling. With an estimated mean, convergence is not ensured except if the weights in 
V (Equation 16) decay exponentially with distance.

2.9 A SPECTRAL ANISOTROPIC MODEL

The general methodology described above for isotropic models extends readily to 
general anisotropic models. The idea is to bin the 2D or 3D frequency domain. To 
illustrate, we consider only the 2D case. The covariance is an even function: 

),(c),(c 2121 . Thus only half the frequency plane need be considered. 

In 2D, to the spectral component: 

elsewhere0

1
1-jy,
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(18)

corresponds the anisotropic covariance:
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The following limits for Equation 19 exist: 
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Figure 3 shows the good fit obtained for a few classical models presenting geometric 
anisotropy. Note that the SAM can accommodate also any kind of zonal anisotropy.
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Figure 3. Examples of close approximation of various anisotropic covariances by 
additive spectral models. 

3 Simulated examples 

Two hundred data are simulated in a 100m x 100m square. The simulated model is 
spherical isotropic with a range of 30m, no nugget and a sill of 10. A global linear drift 
is added with m(x,y)=0.2*x+0.1*y where x and y are the spatial coordinates. Figure 4 
shows the experimental covariance, the model covariance and the expected covariance 
of residuals obtained by fitting an isotropic SAM with drifts of order 0, 1 and 2. Note 
how the SAM retrieves very well the main characteristics of the simulation for drift 
orders 1 and 2. On the other hand, when adopting a zero order drift, the model is forced 
to include strong small frequency components (large range) to account for the drift not 
included in the model. Although the expected covariances match well the experimental 
covariances, the theoretical covariances are well above the experimental ones, a clear 
indication that the variance of the process can not be defined and therefore that the 
process is non-stationary.

Figure 4. Experimental covariances, expected values of product of residuals and 
theoretical covariance for the simulated example. Isotropic case. 
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A similar example is simulated with geometric anisotropy (ax=50, ay=25). Figure 5 shows the 
results obtained with an anisotropic spectral model when specifying order 0 and order 1 drifts. 
When the right drift order is selected (i.e. order 1), the model correctly identifies the anisotropy 
present.

Figure 5. Experimental covariances, expected values of product of residuals and 
theoretical covariance for the simulated example. Anisotropic case. 

5 Discussion and conclusion 

The SAM approach reduces covariance model identification to a problem of linear 
regression with a simple positivity constraint on the regression coefficients. The control 
variable is the product of residuals. The regressors are the expectation of this product 
computed from each spectral component (Equation 12). This approach has interesting 
advantages. First, the class of models so defined is larger than for the usual parametric 
models. Second, as the parameters can be estimated linearly, it lends itself to 
automation. Third, all the tools of standard regression can be exploited: statistical tests, 
identification of outliers, ridge or robust procedures, etc. Fourth, possibly most 
importantly, it enables estimating the parameters of the model in the presence of mean 
drift as the effect of the drift is accounted explicitly when computing expected values of 
product of residuals. Finally, component selection procedures like forward inclusion or 
backward elimination, or a combination of both, can be used to limit the number of 
parameters and avoid possible difficulties due to colinearities between the regressors 
when the number of spectral components is high. In the examples presented, an 
underestimation of the drift order was easily detected by comparing the theoretical 
model to the expected value for the product of residuals. 

Generalization of the approach to the multivariate case is possible. With “p” variables, 
“p” real coefficients (one for each spectral density) and p(p-1)/2 complex coefficients 
(one for each cross-spectral density) will have to be estimated for each spectral bin. The 
resulting complex coefficient matrix of size pxp must be Hermitian positive semi-
definite for the model to be admissible (Wackernagel, 1995).
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SPATIAL PROCESSES
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Abstract. A deficiency of kriging is the implicit assumption of second-order
stationarity. We present a generalisation to kriging by spatially evolving the spec-
tral density function of a stationary kriging model in the frequency domain. The
resulting non-stationary covariance functions are of the same form as the evoloved
stationary model, and provide an interpretable view of the local effects underlying
the process. The method employs a Bayesian formulation with Markov Chain
Monte Carlo(MCMC) sampling, and is demonstrated using a 1D Doppler function,
and 2D precipitation data from Scotland.

1 Introduction

The standard approach to spatial statistics assumes that the spatial dependence
between two points is a function only of separation vector. These procedures fall
under the generic label kriging, which are fully described in (Cressie, 1993). Such
stationary models however, are unable to take account of localised effects such
as geological (e.g. topography, river systems) or political (e.g. state governments
conformance to air pollution measures in the US) boundaries, or rapid spatial
variations. Although problematic, to date there are few generic non-stationary
procedures.

One is the deformation approach of (Sampson and Guttorp, 1992), extended
recently to a Bayesian framework in (Damian, Sampson, and Guttorp, 2001) and
(Schmidt and O’Hagan, 2003). The more recent kernel-based methods of (Higdon,
Swall, and Kern, 1999) and the spectral extension in (Fuentes, 2002) have been
shown to be powerful and can be applied when only one observation is available at
each site. Other approaches include orthogonal expansion (Nychka and Saltzman,
1998) and the localised moving window approach (Haas, 1990; Haas, 1995). Earlier
work is summarised in (Guttorp and Sampson, 1994).

In this paper, we describe and extend our recent generalisation of kriging,
involving the spatial evolution of the spectral density function of a stationary
process, by manipulation in the frequency domain (Pintore and Holmes, 2003).

A STATISTICAL TECHNIQUE FOR MODELLING NON-
STATIONARY

125

2004, 125-134. 
© 2005 Springer. Printed in the Netherlands. 

ticsO. Leuangthong and C. V. Deutsch (eds.), Geostatis        Banff  

JOHN STEPHENSON , CHRIS HOLMES , KERRY GALLAGHER



126 J. STEPHENSON, C. HOLMES, K. GALLAGHER AND A. PINTORE

The new method we describe has a variety of attractive aspects, including an
interpretable view of the non-stationary process, the definition of a global and an-
alytical covariance structure (thereby making predictions at new locations trivial)
and the ability to use the powerful framework developed within kriging directly.

2 Framework for non-stationary covariance functions

Here we use the standard stationary model and evolve a new class of non-stationary
process. The emphasis lies in creating new covariance structures that are both non-
stationary and interpretable. The proofs for the validity of these theorems can be
found in (Pintore and Holmes, 2003).

2.1 STATIONARY GAUSSIAN PROCESSES

In the case of spatial interpolation, we use a stochastic model over the spatial
variable s, defined over the p dimensional region R

p. We adopt the standard,
stationary approach to spatial statistics and consider our n irregularly sampled
data y to be realisations of a Gaussian process, Z(s) ∼ Nn(0, σ2Σ), where Nn is
an n dimensional Gaussian distribution with covariance function Σ, scaled by σ2.
Subsequently we parameterise the covariance function as Σ(s, t) = C(s, t) + εIn,
with C(s, t) representing the correlation between two spatial points s and t, ε a
white noise effect (commonly known as the nugget), and In the n dimensional
identity matrix. Common forms of C(s, t) include the Gaussian, exponential and
Matern stationary correlation functions.

2.2 EVOLUTION IN THE FREQUENCY DOMAIN

The new covariance functions are evolved by modifying stationary covariance
functions in the frequency domain. For example, the Gaussian covariance func-
tion C(s, t) = exp(−α‖s − t‖2

p), has a spectral density function given by f(ω) =
(4πα)p/2exp(ω′ω/4α), where α is a global smoothing parameter commonly called
the range and ω′ represents the transpose. Non-stationarity is induced through a
localised latent power process η(s) acting on the stationary spectrum at location
s, hence

fs
NS(ω) = h(s) [f(ω)]η(s) (1)

with the subscript NS now referring to the non-stationary versions of our process,
and h(s) a bounded function chosen to ensure constant power in the process.
This is in effect saying that when η(s) < 1, greater emphasis is placed on lower
frequencies, producing a smoother process and vice-versa. When η(s) = 1, we
return to the original stationary covariance function. These effects are illustrated
in figure 1(a).

We return to the spatial domain via the inverse Fourier transform, producing
the non-stationary covariance function CNS . For our example Gaussian function,
the final non-stationary covariance function is given by

CNS(s, t) = Ds,t exp
[
−βs,t‖s − t‖2

p

]
(2)
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Figure 1. (a) Effect of latent process η(s) on the spectral density of a Gaussian
covariance function with α = 0.5. (b) log η(s) parameterised as a step function. (c)
A realisation from a Gaussian covariance function with the latent process defined
in (b). The step changeovers are indicated by a dashed line in figure (c).

With
βs,t = 2α/[η(s) + η(t)], (3)

Ds,t = 2p/2 [η(s)η(t)]p/4

[η(s) + η(t)]p/2
(4)

and is valid for η(s) > 0. The proof for the validity of this method with respect to
Bochner’s theorem (see (Levy, 1965)), and the valid choices of η(s) are discussed
for the Gaussian and Matern covariance functions in (Pintore and Holmes, 2003).

To further illustrate the effect of η(s), and possible realisations from such mod-
els, we simulate data taken from a Gaussian non-stationary covariance function
with α = 0.5, and with η(s) modelled as a step function (see figures 1(b) and 1(c)).
Notice how the realisation y has high frequency content for log η(s) very negative,
and is smooth (low frequency) for log η(s) → 0.

A key point to note is the similarity in form between the stationary and non-
stationary covariance functions. This allows us to interpret the latent function η(s)
directly in terms of the changes in the underlying process.

3 A Bayesian approach

We now present a Bayesian extension to the method, using proper priors. For
the moment, we assume a known constant mean of 0 across s to demonstrate the
effect of η(s) (N.B. The formulation presented is easily extendable to the general
case where Z(s) ∼ Nn(Bβ, σ2Σ), with B representing a matrix of basis functions,
and β a scaling vector included to account for deterministic trends in the data).
References concerning Bayesian kriging are (Handcock and Stein, 1993) (using
reference priors) and (Le and Zidek, 1992).
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3.1 LIKELIHOOD, PRIORS AND POSTERIOR DISTRIBUTIONS

For mean equal to 0, the likelihood of the data y is expressed as

p(y|θ, ε, σ2) = (2πσ2)−n/2|Σ|−1/2 exp
(
−y′Σ−1y

2σ2

)
(5)

where Σ is the covariance matrix, parameterised by the nugget effect ε and the
parameters that define the covariance matrix θ. θ will contain the stationary (α)
and the non-stationary (the parameterisation of η(s)) covariance parameters.

In order to facilitate calculation of the marginals later, we give σ2 an inverse
gamma prior density,

p(σ2) ∝ (σ2)−(a+1) exp
(
−b

σ2

)
(6)

with the two hyperparameters a and b set to 0.1, providing a wide, non-informative
distribution.

For the covariance parameters p(θ, ε), we assume independent uniform priors,
expressing our lack of knowledge about the underlying system, and provide a fully
flexible process. As we have assumed independence from σ2, any other choice of
informative prior is equally valid.

These definitions lead to the full posterior, given up to proportionality by Bayes
theorem as

p(θ, ε, σ2|y) ∝ (σ2)−(n/2+a+1)|Σ|−1/2 exp
(
−y′Σ−1y + 2b

2σ2

)
p(θ, ε) (7)

3.2 POSTERIOR PREDICTIVE DENSITY

Our goal is to make a prediction of y0 at a new position in R
p by integrating the

posterior predictive density p(y0|y). As the integral is intractable, we solve it by
sampling from the posterior distribution (equation 7) using MCMC, which for N
samples gives the summation,

p(y0|y) ≈ 1
N

N∑

i=1

p(y0|θi, εi, σ
2
i ) (8)

where the first term is the conditional predictive distribution. This density is a
shifted t distribution ((Le and Zidek, 1992)) with an expectation (for our simplified
case) of E

[
p(y0|θi, εi, σ

2
i )

]
= c′iΣ

−1
i y, where ci is the vector of covariates between

our data y and the new data point y0. Then

E [p(y0|y)] ≈ 1
N

N∑

i=1

c′iΣ
−1
i y (9)

in effect generating our average by the summation of the simple kriging predictions
for each of the N drawn models i.
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3.3 MARKOV CHAIN MONTE CARLO

In order to sample from the posterior distribution, we sample from a Markov
chain. The most desirable method is to draw all of the parameters via Gibbs
sampling, requiring us to know the full conditional posterior distributions. This
however is only possible for the scaling parameter σ2. After dropping constants in
the posterior (equation 7), we have an inverse gamma distribution so that

σ2|y, θ, ε, σ2 ∼ IG(n/2 + a, [y′Σ−1y + 2b]/2) (10)

which we can sample from directly. This is not true of the remaining parameters
which are tied up in Σ−1, so we use Metropolis-Hastings sampling. To ensure
better acceptance rates, we first marginalise σ2, to give

p(θ, ε|y) =
∫

(p(θ, ε, σ2|y)dσ2 ∝ p(θ, ε)|Σ|−1/2

(
y′Σ−1y + 2b

2

)−(n/2+a)

(11)

We use Gaussian proposal densities for ε and all members of θ, with variances
chosen in each case to allow effective traversal of the model space.

4 Results

The two applications chosen to present the properties of our non-stationary method
in a Bayesian setting, are a 1D synthetic Doppler function, and a 2D precipitation
data set taken from UK Meteorological Office data over Scotland.

4.1 SYNTHETIC DOPPLER FUNCTION

We consider first the Doppler function examined in (Donoho and Johnstone, 1995)
and (Pintore and Holmes, 2003), given as

f(s) = [s(1 − s)]1/2 sin[(2π)(1 + r)/(s + r)] s ∈ [0, 1] (12)

with r = 0.05. The sample data y comprises 128 function evaluations positioned
randomly within s ∈ [0, 1] (scaled to have a variance of 7), with added Gaussian
white noise (with variance of 1). The function was then predicted at a further
500 points, uniformly sampled in the range [0, 1], using the stationary and non-
stationary Gaussian covariance functions (equation 2). The accuracy as measured
against the true function was then compared. See figure 2(a).

4.1.1 Latent process formulation
To parameterise the latent process η(s) in the non-stationary covariance function,
we follow the suggestion in (Pintore and Holmes, 2003) and use a regression spline
with 5 nodes added to a linear function such that

log η(s) = γ0 + sγ1 +
5∑

i=1

φi‖s − ui‖ (13)
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Figure 2. (a) Noisy Doppler function data set, plotted with the dashed predic-
tive data set function. (b) Deterministic fit of the stationary Gaussian covariance
function using REML. (c) Posterior predictive fit of the non-stationary Gaussian
covariance function (from 4000 samples).

with ui representing spline knot points, s, and {γ0, γ1, φ} a set of scaling coeffi-
cients. In this case, we choose to fix the knot set u, using the kmeans algorithm,
and vary the model using only the range, nugget and η scaling coefficients. The
covariance parameter vector, θ, now comprises {α, ε, γ0, γ1, φ}, which are all sam-
pled using the Metropolis Hastings algorithm. From a run of 5000 iterations, the
first 1000 were discarded as ’burn-in’, and the remaining used to find the mean
posterior prediction.

The stationary model was fitted using the technique of restricted maximum
likelihood (REML) (Cressie, 1993), and optimised using a deterministic search
(Nelder Mead algorithm).

4.1.2 Prediction Comparison
A comparison of the predictive powers of both samples can be found in figures 2(b)
and 2(c). It is evident that the non-stationary method has performed far better
than in the stationary case, which has been forced to comprimise between the very
smooth data as s → 1, and the higher frequencies as s → 0.

In figure 3 we give the mean and 95% confidence intervals (an immediate
advantage of using MCMC sampling) over the posterior latent process η(s) for
the 4000 samples. The figure is interpreted as placing higher emphasis on lower
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frequencies where s < 0.24 (where log η(s) < 0), whilst providing an increasingly
smooth covariance as s → 1. This is further explained via figure 1(a).

Figure 3. Log of the mean and 95% confidence intervals for the latent process
η(s). The stationary case corresponds to log η(s) = 0.

4.2 PRECIPITATION IN SCOTLAND

For a real data example, we consider the UK Met Office ’Land Surface Observation
Stations Data’ held at the British Atmospheric Data Centre (BADC, 2004). The
analysis of precipitation is important for agricultural as well as environmental
reasons (eg. pollutant dispersal following the Chernobyl disaster). The purpose of
this analysis was to demonstrate the interpretability of the latent process, rather
than a comparison of stationary to non-stationary covariance functions.

Specifically, we extracted daily rainfall measurements from 1997, for the months
of January, February and March, and analysed the measurements for 481 land
stations in Scotland. The daily measurements within these three months were then
averaged, to give three distinct data sets of average daily rainfall, (millimetres per
day). A scatter plot of the January data is shown in figure 4.

4.2.1 Latent process formulation
To parameterise η(s) (where s is now a 2 dimensional vector [s1, s2] corresponding
to longitude and latitude respectively), we choose to use the thin-plate spline with
the form

log η(s) = γ0 + γ1s1 + γ2s2 +
k∑

i=1

φi‖s − ui‖2
p log ‖s − ui‖2

p (14)

where ui is a set of k knot points, and { γ0, γ1, γ2} the scaling coefficients. In this
case, we take k = 20 and fix the positions of the knot points using the kmeans
clustering algorithm. Again choosing the Gaussian non-stationary covariance func-
tion, we perform MCMC over the spline scaling coefficients and the stationary
parameters ε and α, again discarding the first 1000 iterations as ’burn-in’, and
averaging over the remaining 4000 samples.
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Figure 4. Positions and values of the average daily rainfall for Scotland during
January 1997

4.2.2 Interpretation of η(s) in January
We first look at the non-stationarity revealed in the January data set. A contour
plot of the mean of η(s), (see figure 5(a)) reveals a strong trend, moving from low
values of η(s) in the west, to high values in the east. Thus on the west coast, where
rain is far more prevalent and protection from other landmasses is minimal, there
is much greater variation from station to station. This is demonstrated by the
greater emphasis placed on higher frequencies by η(s), giving a local covariance
function with a small range of influence. This contrasts with the smoother region in
the east, where the level of rainfall is reduced, sheltered as it is by the topography
in the Highlands.

Figure 5. Contour plots of the latent process for (a) January, (b) February and
(c) March during 1997.

To illustrate the significance of this west-east trend, we take a projection in
the longitudinal direction and plot the 95% credible intervals (figure 6(a)). This
demonstrates the small variation in the north-south direction, and the relatively
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tight credible intervals, reinforcing the notion of an west-east trend in stationarity.

Figure 6. (a) log of the mean of η(s) projected onto the longitudinal direc-
tion, plotted with 95% credible intervals. (b) Comparison of scaled longitudinal
projections of η(s) for the January, February and March data sets.

4.2.3 Comparison of η(s) for three different months
To further demonstrate the importance of this east west trend, we carried out the
same analysis on the two subsequent months and compared the posterior values
of η(s). These data sets are compared directly in figure 5, comprising a contour
plot for each of the three months and again show strong west-east trends.

As the absolute values of η(s) in these figures are influenced by the effect of
the stationary covariance parameter α, we compare the longitudinal projections
of log η(s) by first fitting a polynomial and then scaling the values to the range [0,
1]. This is shown in figure 6(b), and demonstrates concisely the consistency of the
recognised trend.

The consistency of this result indicates that there is an underlying process
causing a consistent non-stationarity in the data. Suggestions as to the cause
of this observation are geographical effects such as coastal regions, shielding by
topography and the consistent direction of weather patterns. Significantly, this
demonstrates the ability of the method to reveal an accurate measure of the non-
stationarity from only one realisation.

5 Discussion

In summary, we have presented a method for inducing non-stationarity in standard
covariance functions, by use of latent power process η(s) in the frequency domain.
Such a treatment yields covariance functions that have the same analytical form of
the base stationary function, and offers a direct and interpretable view of any non-
stationary processes. A Bayesian methodology has been used and demonstrated
using MCMC providing access to the full uncertainties.
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The two applications have revealed an increased prediction accuracy when com-
pared to standard stationary techniques, and demonstrated the ability to extract
the underlying non-stationarity from a single realisation.

Now that the Bayesian context has been established, future work will involve
using reversible jump MCMC when inferring η(s) (Green, 1995), (providing the
ability to change the position and number of knot points), as well as applying the
method to spatio-temporal processes by treating η as a function of space and time.
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CONDITIONING EVENT-BASED FLUVIAL MODELS
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Abstract. A fluvial depositional unit is characterized by a central axis, denoted as
a streamline. A set of streamlines can be used to describe a stratigraphic interval.
This event-based (denoted as event-based to avoid confusion with streamline-based
flow simulation) approach may be applied to construct stochastic fluvial models
for a variety of reservoir types, fluvial styles and systems tracts. Prior models are
calculated based on all available soft information and then updated efficiently to
honor hard well data.

1 Introduction

Interest in North Sea fluvial reservoirs led to the development of object-based
models for fluvial facies and geometries (see Deutsch and Wang, 1996 for a review
of development). For these models conditioning is often problematic. These dif-
ficulties in conditioning spurred research in direct object modeling. Visuer et al.
(1998) and Shmaryan and Deutsch (1999) published methods to simulate fluvial
object-based models that directly honor well data. These algorithms segment the
well data into unique channel and nonchannel facies and then fit channels through
the segments. The channel center line is parameterized as a random function of
departure along a vector and the geometry is based on a set of sections fit along
the center line.

Yet, these techniques are only well suited to paleo valley (PV) reservoir types.
The PV reservoir type geologic model is based on ribbon sandbodies from typically
low net-to-gross systems with primary reservoir quality encountered in sinuous to
straight channels and secondary reservoir rock based on levees and crevasse splays
embedded in overbank fines (Galloway and Hobday, 1996; Miall, 1996).

More complicated channel belt (CB) fluvial reservoir types are common. Im-
portant examples include the McMurray Formation (Mossop and Flach, 1983,
Thomas et al., 1987) and Daqing Oil Field, China (Jin et al., 1985, Thomas et al.,
1987). These reservoirs include complicated architectural element configurations
developed during meander migration punctuated by avulsion events. The applica-
tion of the bank retreat model for realistic channel meander migration has been
proposed by Howard (1992), applied by Sun et al. (1996) and Lopez et al. (2001)
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to construct realistic models of CB type fluvial reservoirs. These methods lack
flexibility in conditioning.

A event-based paradigm is introduced with (1) improved flexibility to re-
produce a variety of fluvial reservoir styles with realistic channel morphologies,
avulsion and meander migration and (2) a new efficient approach to condition
to well data and areal reservoir quality trends. Fortran algorithms are available
that apply this techniques, ALLUVSIM is an unconditional algorithm for the con-
struction of training images and the ALLUVSIMCOND algorithm includes streamline
updating for well conditioning. Greater detail on this work and the associated code
is available in Pyrcz (2004).

This work was inspired by the developments of Sun et al. (1996) and Lopez
et al. (2001), but it was conducted independent of Cojan and Lopez (2003) and
Cojan et al. (2004). The reader is referred to these recent papers for additional
insights into the construction of geostatistical fluvial models.

2 Event-based Stochastic Fluvial Model

The basic building block of this model is the streamline. A streamline represents
the central axis of a flow event and backbone for architectural elements (Wiet-
zerbin and Mallet, 1993). This concept is general and may represent confined or
unconfined, fluvial or debris flows.

Genetically related streamlines may be grouped into streamline associations.
Streamline associations are interrelated by process. For example, a streamline
association may represent a channel fill architectural elements within a braided
stream or lateral accretion architectural elements within point bar. Fluvial archi-
tectural elements are attached to streamlines and architectural element interrela-
tionships are characterized by streamline associations. This is a logical technique
for constructing fluvial models since all architectural elements are related to “flow
events”.

2.1 3-D STREAMLINES

The direct application of a cubic spline function to represent the plan view projec-
tion of a fluvial flow event is severely limited. As a function, a spline represented as
fs(x) may only have a single value for any value x. In graphical terms, a function
may not curve back on itself. This precludes the direct use of a spline function to
characterize high sinuosity channel streamlines.

A streamline is modeled as a set of cubic splines. Each spline models the coordi-
nates (x, y and z) with respect to distance along the spline (s). The advantages of
this technique are: (1) continuous interpolation of streamline location in Cartesian
coordinates at any location along the streamline, (2) relatively few parameters
required to describe complicated curvilinear paths, (3) manipulation of splines
is much more computationally efficient than modifying geometries and (4) other
properties such as architectural element geometric parameters and longitudinal
trends may be stored as continuous functions along the streamline. These issues
are discussed in further detail below.
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The control nodes of a 3-D spline may be freely translated. The only require-
ment is that the second derivatives of the spline location parameters is recalculated
after modification. This operation is very fast. The calculation of complicated
geometries generally requires a high level of computational intensity or simplifi-
cation. In the event-based models the geometric construction is postponed to the
end of the algorithm. This results in very fast calculation and manipulation of
complicated geometric morphologies and associations represented as 3-D splines.

Any properties may be attached to the 3-D spline and interpolated along the
length of the spline. In the fluvial event-based model, the channel width, local cur-
vature, relative thalweg location and local azimuth are included in the 3-D spline.
Other information including architectural element type and additional property
trends may be included. These properties are calculated at the control nodes and
then splines are fit as with the location parameters.

2.2 STREAMLINE ASSOCIATIONS WITHIN EVENT-BASED MODELS

A streamline association is a grouping of interrelated 3-D splines. Streamline
associations are characterized by their internal structure and interrelationship
or stacking patterns. The internal structure is the relation of streamlines within
the streamline association. The external structure is the interrelationship between
streamline associations. Streamline associations may be tailored to reproduced
features observed in each fluvial reservoir style.

A variety of stacking patterns may exist in the fluvial depositional setting.
Compensation is common in dispersive sedimentary environments such as proximal
alluvial fans, vertical stacking with little migration is common in anastomosing
reaches and nested channel belts often form in incised valleys. These patterns
include important information with regard to the heterogeneity of a reservoir and
should be included in fluvial models.

2.3 STREAMLINE OPERATIONS

A suite of streamline operations is presented that allow for event-based models to
be constructed by the creation and modification of streamlines. These operations
include (1) initialization, (2) avulsion, (3) aggradation and (4) migration.

The streamline initialization operator is applied to generate an initial stream-
line or to represent channel avulsion proximal of the model area. The disturbed
dampened harmonic model developed by Ferguson (1976) is applied.

The avulsion operator creates a copy of a specific channel streamline, selects a
location along the streamline, generates a new downstream channel segment with
same streamline sinuosity and the same geometric parameter distributions. The
geometric parameters (e.g. channel width) of the new streamline are corrected so
that the properties are continuous at the avulsion location. The initial azimuth
is specified as the azimuth of the tangent at the avulsion location. There is no
constraint to prevent the avulsed streamline from crossing the original streamline
distal of the avulsion location.
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Figure 1. An illustration of the fluvial architectural elements applied in the
event-based model.

Aggradation is represented by a incremental increase in the elevation of a
streamline. The current implementation is to add a specified constant value to
the elevation, z, parameter for all control nodes.

The streamline migration operator is based on the bank retreat model. The
application of the bank retreat model for realistic channel meander migration has
been proposed by Howard (1992), applied to construct fluvial models by Sun et al.
(1996) and extended to construct meandering fluvial models that approximately
honor global proportions, vertical and horizontal trends by Lopez et al. (2001).

Key implementation differences from the original work from Sun et al. (1996)
include (1) standardization of migration steps, (2) integration of 3-D splines for
location and properties, (3) application of various architectural elements. The
meander migration along the streamline is standardized such that the maximum
migration matches a user specified value. This removes the significance of hydraulic
parameters such as friction coefficient, scour factor and average flow rate, since
only the relative near bank velocity along the streamline is significant. Hydraulic
parameters are replaced by the maximum spacing of accretion surfaces, which may
be more accessible in practice.

2.4 FLUVIAL ARCHITECTURAL ELEMENTS

The available architectural elements include (1) channel fill (CH), (2) lateral
accretion (LA), (3) levee (LV), (4) crevasse splay (CS), (5) abandoned channel
fill (FF(CH)) and (6) overbank fines (FF) (see illustration in Figure 1). The
geometries and associated parameters are discussed for each element in detail in
Pyrcz (2004).

2.5 EVENT SCHEDULE

The event-based approach is able to reproduce a wide variety of reservoir styles
with limited parametrization. This algorithm may reproduce braided, avulsing,
meandering channels and may reproduce geometries and interrelationships of a
variety of fluvial reservoir types. The algorithm is supplied with areal and ver-
tical trends, distributions of geometric parameters, probabilities of events and
architectural elements.
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Figure 2. Example areal trends in channel density and the resulting streamlines.
A and B - no areal trend supplied and C and D - a linear trend increasing in the
y positive direction. Note areal trend is a relative measure without units.

2.6 AREAL CHANNEL DENSITY TRENDS

Analogue, well test and seismic information may indicate areal trends in reservoir
quality. Although seismic vertical resolution is often greater than the reservoir
thickness, seismic attributes calibrated to well data may indicate a relative mea-
sure of local reservoir quality. Well tests may provide areal information on the
distribution of reservoir quality and may significantly constrain model uncertainty.
Analogue information such as reservoir type may indicate a confined PV type or
a more extensive and uniform SH type reservoirs. If the net facies are associated
with CH, LV and CS elements then this areal trend information may be integrated
by preferentially placing streamlines in areal locations with high reservoir quality.

The technique for honoring areal trends is to (1) construct a suite of candidate
streamlines with the desired morphology, (2) superimpose each candidate stream-
line on the areal trend model and calculated average relative quality along the
streamline and (3) for each streamline initialization drawn from this distribution
of candidate streamlines (without replacement) weighted by the average quality
index. This technique is efficient since the construction of hundreds or thousands
of streamlines is computationally fast. This technique is demonstrated in Figure 2.

2.7 VERTICAL CHANNEL DENSITY TRENDS AND AGGRADATION SCHEDULE

Well data and analogue information may provide information on vertical trends in
reservoir quality. Well logs calibrated by core are valuable sources of vertical trend
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information. Often, identification of systems tract and fluvial style will provide
analogue information concerning potential vertical trends.

These trends may be honored by constraining the aggradation schedule. The
current implementation is to apply the trend within a user defined number of
constant elevation levels. Streamlines and associated architectural elements are
generated at the lowest level until the NTG indicated by the vertical trend is
reached for the model subset from the base of the model, to the elevation of the
first level. Then the aggradation operator is applied to aggrade to the next level
and the process is repeated through all user defined levels. For the highest level,
the model is complete when the global NTG ratio is reached.

3 Conditional Event-based Simulation

There are a variety of available methods that may be applied to condition compli-
cated geologic models; (1) dynamically constrain model parameters during model
construction to improve data match (Lopez et al., 2001), (2) posteriori correction
with kriging for conditioning (Ren et al.,2004), (3) pseudo-reverse modeling (Tet-
zlaff, 1990), (4) apply as a training image for multiple-point geostatistics (Strebelle,
2002) and (5) direct fitting of geometries to data (Shmaryan et. al., 1999 and
Visuer et. al., 1998). Each of these techniques has limitations either in efficiency,
robustness or the ability to retain complicated geometries and interrelationships.

An event-based model consists of associations of streamlines with associated
geometric parameters and identified architectural elements. A prior model of stream-
line associations may be updated to reproduce well observations. The proposed
procedure is: (1) construct the prior event-based model conditioned by all avail-
able soft information, (2) interpret well data and identify CH′ element intervals
(where CH′ elements are channel fill elements without differentiation of CH, LA
and FF(CH) elements), (3) update streamline associations to honor identified CH′

element intervals and (4) correct for unwarranted CH′ intercepts. This technique
entails the manipulation of large-scale elements to honor small scale data; there-
fore, it is only suitable for settings with sparse conditioning data. Settings with
dense data may be intractable.

3.1 INTERPRETED WELL DATA

The hard data from wells is applied to identified CH′ element intervals. CH′

elements are typically identified by erosional bases and normal grading. CH′ ele-
ment fills often occur in multistory and multilateral configurations. CH′ elements
often erode into previously deposited CH′ elements to form amalgamated elements
(Collinson, 1996, Miall, 1996).

The geologic interpretation of well data is performed prior to the updating
step. The input data includes the areal location for each vertical well and a list
of CH′ element intervals with base and original top (prior to erosion). The geo-
logic interpretation is often uncertain, especially with amalgamated CH′ elements.
Alternate geologic interpretations may be applied to account for this uncertainty.
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3.2 UPDATING STREAMLINE ASSOCIATIONS TO HONOR WELL DATA

The model is updated by modifying the position of streamline associations to honor
CH′ element intercepts observed in well data. For each CH′ element interval the
following steps are performed. (1) The horizontal position is corrected such that
the CH′ element intercept thickness is within tolerance of the CH′ element interval
thickness. (2) Then the vertical location is corrected such that the CH′ element
intercept top matches the top of the CH′ element interval. Entire streamline as-
sociations are corrected to preserve the relationships between streamlines within
a streamline association. For example, if a streamline association includes a set of
streamlines related by meander migration, the entire set of streamlines representing
a point bar is shifted. If individual streamlines were modified independently this
may change the nature of the streamline association.

The CH′ element intervals are sequentially corrected. If there is no previous
conditioning then streamline associations are translated (see A in Figure 3). If there
is previous conditioning a smooth correction method is applied to the streamline
association (see B in Figure 3). A step vector is constructed oriented from the
nearest location on a streamline within the streamline association to the location
of the well interval. The scale of the step of the sense is determined by an iterative
procedure described below.

Figure 3. An illustration of methods for updating streamline associations with
well data. For this example, there are two streamlines in the streamline association
representing an avulsion event that are corrected to honor conditioning data (c). A
- the case with no previous conditioning. B - the case with previous conditioning.
C and D - the transverse correction with respect to location along the streamline.

3.3 ITERATIVE PROCEDURE FOR UPDATING STREAMLINE ASSOCIATIONS

Modifications of streamline associations has an impact on CH′ element geometry.
It would be difficult to directly calculate the precise translation of a streamline to
result in the correct interval thickness at a well location. A simple iterative method
is applied to correct the well intercept thickness. The thickness of the CH′ element
from a streamline association is calculated at the vertical well location. The error
is calculated, if the thickness is less than indicated by the conditioning then the
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streamline association is shifted towards the well location. If the thickness is greater
than indicated by the conditioning then the streamline association is shifted away
from the well location. The procedure is repeated for all identified CH′ element
intercepts.

3.4 CORRECTION FOR UNWARRANTED WELL INTERCEPTS

The correction for unwarranted CH′ element intercepts applies a robust iterative
technique. For each unwarranted CH′ element intercept the associated streamline
association is checked for conditioning. If the streamline association is not anchored
to conditioning data then the streamline association may be translated in the
direction transverse to the primary flow direction. If the streamline association is
anchored to conditioning data then a smooth modifications is applied.

The streamline association is modified until the thickness of the unwarranted
CH′ element intercept reaches zero. For each iteration the step size of the modifica-
tion is increased and the direction is reversed. This method is robust since it does
not become trapped with complicated streamline associations. This methodology
is illustrated in Figure 4 with a complicated setting.

Figure 4. An illustration of the method for correcting streamline associations to
remove unwarranted well intercepts. The two streamlines are related by avulsion
in the streamline association and there are two previously conditioned locations
(C1 and C2). A and D - the initial streamline association prior to correction. B and
E - the first smooth modification (Oliver, 2002). C and F - the second iteration.

3.5 EXAMPLE CONDITIONAL EVENT-BASED MODELS

The ALLUVSIMCOND algorithm was applied to construct a conditional model. The
streamlines include braided low to high sinuosity morphology. A single well is
included with two CH′ element intervals identified. Cross sections and stream-
line plan sections of the prior and updated models are shown in Figure 5. The
morphology of the streamlines is preserved while the well intercepts are honored.
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Figure 5. An example conditional event-based model from ALLUVSIMCOND. A
and B - cross section of prior and updated model and C - D plan section of prior
and updated model streamlines with cross section indicated.

4 Conclusions and Future Work

The event-based approach is a flexible and efficient tool for the construction of
stochastic fluvial models. The building block approach allows for the modeling
of a variety of fluvial reservoir styles, including the complicated architectures of
CB type fluvial reservoirs. Event-based models may be constructed based on all
available soft geologic information and then updated to honor hard well data.

Future implementation will address well observations of other architectural
elements and the applications of the the event-based approach to a variety of
depositional settings, such as deepwater (Pyrcz, 2004).
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Abstract.  The potential-field method (Lajaunie et al., 1997) is used to create geological 
surfaces by interpolating from points on interfaces, orientation and fault data by 
universal cokriging. Due to the difficulty of directly inferring the covariance of the 
potential field, it is identified from the orientation data, which can be considered as 
derivatives of the potential. This makes it possible to associate sensible cokriging 
standard deviations to the potential-field estimates and to translate them into 
uncertainties in the 3D model. 

1 Introduction 

During the last ten years, 3D geological modelling has become a priority in several 
domains such as reservoir characterization or civil engineering. In geological mapping 
too, 3D digital pictures are created to model and visualize the subsurface and the 
relations between layers, faults, intrusive bodies, etc. While completing its 1:50 000 
geological map programme for the entire French territory, B.R.G.M. (the French 
geological survey) started a research project for defining three-dimensional maps which 
could clearly represent the subsurface and underground geology. A new tool, the 
“Editeur Géologique”, has been developed to face this particularly tough issue. It is 
based on the construction of implicit surfaces using the potential-field method. 

2 Reminders on the potential-field method 

2.1 PRINCIPLES 

The problem is to model the geometry of geological layers using drill-hole data, digital 
geological maps, structural data, interpreted cross-sections, etc. 
The method is based on the interpolation of a scalar field considered as a potential field. 
In this approach, a surface is designed as a particular isovalue of the field in 3D space.
In all the following equations, x=(x,y,z) is a point in the three-dimensional space R3. The 
potential is assumed to be a realization of a differentiable random function Z. 
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We first consider one interface or several sub-parallel interfaces (iso-surfaces related to 
the same potential field) and we will see later how to manage several fields.

2.2 DATA 

The 3D model is obtained by integrating data originating from different sources.
The first kind of data is a set of points belonging to the interfaces to be modelled. They 
come from digitized contours on the geological map and from intersections with 
boreholes.  The other type of data is structural data (orientation of surfaces). 
For the interpolation of the potential field, these data are coded as follows: 
- if we have a set J of n points on an interface, we use n-1 linearly independent 
increments of potential, all equal to zero; these increments are of the form: 

0

0 2

Z Z

e g Z Z j n

j j

j j-1

(x ) (x )

. ., (x ) (x ) , ...,

If several interfaces are modelled with the same potential field, the data set J is the union 
of the elementary data sets relative to the various interfaces. 
- orientation data are considered as gradients of the potential, namely polarized unit 
vectors, normal to the structural planes: 

x y z
i i i

Z Z Z
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2.3 SOLUTION 

Determining a geological interface is an interpolation problem which can be solved by 
determining the potential at any point in the space and by drawing the iso-potential 
surface corresponding to the interface. The potential field is defined up to an arbitrary 
constant, because we only work with increments. Indeed we will interpolate the 
potential at x in comparison with the potential at some reference point x0. These 
increments of potential are estimated as: 

1 1x y z
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The last term is equal to zero, but we introduce it here, because the weights i, µi, i are 

different from weights based on the gradient data alone. 
The weights are the solution of a universal cokriging system of the form: 
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CG and CI are the covariance matrices for gradient and potential data respectively, and 
CGI is their cross-covariance matrix.
UG and UI contain drift functions and FG and FI contain fault functions. 
A, B, C, D are the solution of this linear system.
C0

G is the covariance vector between the estimated increment and the gradient data and 
C0

I is the covariance vector between the estimated increment and increment data.
U0 and F0 contain drift and fault functions at the estimated point. 

Once the system has been solved, the iso-potential surface corresponding to the interface 
can be drawn. We can then visualize the 3D cube or cross-sections through it (Figure 1). 

Figure 1. Example of a 3D geological model with the “Editeur géologique” 

3 Variograms of orientation data illustrated by the Limousin dataset 

The Limousin dataset, approximately a 70x70 km square, located in Centre France, is 
represented in Figure 2. Data sample a surface which is the top of a set of metamorphic 
rocks called “lower gneiss unit” (LGU). These data were all taken on the topographic 
surface.

Figure 2. Base map of Limousin dataset. Black crosses: 1485 orientation data. Red 
discs: 133 interface data (digitized from the geological map). 

UNCERTAINTY IN THE POTENTIAL-FIELD METHOD 
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3.1 ORIENTATION AND GRADIENT 

Orientation data are vectors orthogonal to structural planes (e.g. foliation for 
metamorphic rocks, or stratification for sedimentary rocks) which are assumed to be 
parallel to the surfaces defined by the potential field. These data are sampled on the 
interface and also within the geological formations. They are considered as representing 
the gradient of the potential field. Since no intensity is usually attached to those gradient 
data, then vectors are arbitrarily considered as unit vectors. In practice, we work only 
with the three components of that vector. Let us mention that, in an orthonormal 
coordinate system, the mean of the components of a random unit vector is null and its 
variance is equal to one third. 

3.2 COVARIANCE OF POTENTIAL AND GRADIENT 

All the increments of potential are null, variograms of them are then useless. A first 
implementation of the method used a covariance given a priori by the user. But gradient 
data are algebraically linked with potential data. Therefore in this work, we use the only 
non-null data, namely gradient data, to infer the covariance model. Let 

2 2 2
x y zr h h h  be the distance between two points and t

x y zh h hh ( , , )  the vector 

joining these two points. Now, let KP denote the covariance of Z and KG
x, KG

y, KG
z the 

covariances of the three components of the gradient of Z. In order for Z to be 
differentiable, KP must be twice differentiable (Chilès and Delfiner, 1999). Using the 
definition of differentiation, we can write the covariance of Gx, for instance: 
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In the case of an isotropic covariance, 
PK C r(h) ( )  with C twice differentiable for 
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2
2

2 3

1
3x x

G x

hC r
K h C r

r r r

( )
(h) ( ) ( )

More general formulas are available for anisotropic covariances. 
The model parameters will be determined only with the sample variograms of the 
gradient data. 
The cubic model with range a and sill C0, chosen as basic model for KP, is defined in the 
isotropic case by: 
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It is well adapted for geological contouring, because at the scale considered, geological 
surfaces are smooth and the cubic model has the necessary regularity at the origin.
Even if we assume the isotropy of KP, KG is necessarily anisotropic (Chauvet et al.,
1976). If we consider the partial derivative Gx for example, the extreme cases are the 
direction of the derivative, namely x, and the direction orthogonal to it, here y, and in 
term of variogram we have: 
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We recognize a pentaspheric model in the direction orthogonal to that of the partial 
derivative and a model with a hole effect in the direction of derivation. 
In the other directions, the graph of the variogram is comprised between these two 
envelopes (Renard and Ruffo, 1993).

3.3 VARIOGRAM FITTING 

For the Limousin case study, since the topography is rather smooth, the variograms have 
been computed in the horizontal plane only. Figure 3 shows sample variograms for the 
Limousin dataset. 
The first remark is the difference of scale for the sill value between the vertical 
component and the horizontal ones. The reason is that the mean of the vertical gradient 
is significantly larger than zero due to the sub-horizontality of the layers, which results 
in a smaller variance for the vertical gradient component than for the horizontal ones. 
We also notice a large nugget effect for all components (nearly half of the total 
variability).
This difference of sill is modelled with a zonal anisotropy. The final model for the 
potential covariance is thus a nested cubic model:

2 2 2 2 2
3 2 1 (7)P x y z x y yK K h h h K h h K hh

The ranges are 25000m, 17000m and 55000m, respectively, for K3, K2, and K1.
The corresponding sills are 781000, 1700000, 10800000, respectively. 
In comparison, the default values previously proposed by the software correspond to a 
single isotropic component with a range of 98000m (the size of the domain) and a sill of 
229x106.
These two covariance models lead to rather different geometric models. For example, 
the depth of the LGU interface is up to 450m deeper with the default covariance model 
than with the fitted covariance. However, we must not forget, that we are extrapolating 
from data sampled on the topographic surface only. 

UNCERTAINTY IN THE POTENTIAL-FIELD METHOD 
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Figure 3. Experimental and fitted variograms for the components of the gradient. Gz

(top), Gx// and Gx (bottom left) and Gy// and Gy  (bottom right). The symbol // (resp. )
corresponds to the variogram in the direction of differentiation (resp. in a direction 
orthogonal to that of the differentiation). 

In order to make the software easy to use for non-geostatisticians, an automatic 
procedure of variogram fitting based on the Levenberg-Marquardt method (Marquardt, 
1963) has been implemented. The aim is the minimisation of the weighted metric 
distance between the sample variograms and the variogram model in the vectorial space 
of the fitted parameters (nugget effect, sill, range). It is a non linear regression method 
optimally using two minimisation approaches: quadratic and linear. A factor allows the 
use of one or another. 

4 Determination of uncertainty 

4.1 “REDUCED POTENTIAL” CARTOGRAPHY 

When the covariance was chosen a priori, without consideration to a sample variogram, 
the method could not claim for optimality and the cokriging variance had no precise 
meaning. But now, since the model is well defined, determining the uncertainty on the 
position of the interface in depth makes sense and to get a better idea of the degree of 
uncertainty for the drawing we define a “reduced potential”. 
Let Z0 be the value of the potential for a point on the considered interface, Z*(x) the 
value estimated at a point x and CK(x) the cokriging standard deviation at the same 
point.
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The reduced potential (x) is given by: 

0 8
CK

Z Z* (x)
(x) ( )

(x)

For a given point, this variable represents the reduced estimation of the potential 
deviation from Z0. It can be shown that the larger this value, the less chance the point 
has to be on the interface. With a Gaussian assumption for the potential field, is a 
standardized normal variable, so that for example, the area inside the curves  =  2 
includes the interface in about 95% of the cases. Figure 4 shows the interpolated LGU 
interface (black line) and the value of in blue. In short, the yellow zone, which 
corresponds to | |<3, is like a forbidden area for the drawing of the interface. 

Figure 4. Limousin dataset. Map of the reduced potential. 

Likewise, Figure 5 shows two cross-sections in the north (A) and the south (B) of the 
field. Of course, when the number of data is large, the position of the interface is well 
constrained, whereas in extrapolation there is a lot of uncertainty. 

Figure 5. Limousin dataset. Cross-section A (left) and B (right) of  the reduced 
potential.

UNCERTAINTY IN THE POTENTIAL-FIELD METHOD 
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4.2 UNCERTAINTY ON MODEL PARAMETERS 

The covariance fitting has some part of uncertainty too. Thanks to a Bayesian approach 
it is possible to determine the uncertainty of the model parameters (Goria, 2004). 
The aim is to simulate these parameters according to a posterior distribution, which is 
proportional to an a priori distribution and a likelihood function: 

| | (9)Z Z

where ( ) is the a priori distribution of the parameters vector  and (Z| ) is a 

likelihood function. The vector  includes the coefficients of the drift basis function, and 

the parameters of the covariance. 
We assume a normal distribution for the coefficient of the drift and a gamma 
distribution for the precision (inverse of the sill). For the range and the relative nugget 
effect, a discrete uniform prior is used. The results show a large uncertainty on the 
model parameters. If we use the maximum values of the estimated parameters for the 
covariance model, we see some differences in the geometry of the interface. For 
example, the depth of the LGU interface is around 200m deeper with this “Bayesian” 
covariance model than with the classical fitted covariance. 
The posterior distribution can also be incorporated in the cokriging or conditional 
simulation process. 

5 Other practical implementation issues 

5.1 SEVERAL INTERFACES 

When there are several geological layers, some rules must be respected to avoid crossing 
the boundaries. If the interfaces are not sub-parallel, several potential fields are used. 
Two rules, “erode” and “onlap”, as well as a stratigraphic column make it possible to 
solve all the issues facing us. The column defines the chronological order of the 
interfaces and the rules define the priority between the layers. The rule “erode” has 
always the priority and is used to mask the eroded part of the previous formations or to 
model an intrusive body. For example, on Figure 7 right, we can see the interface (1) 
which is in onlap on the interface (2). 

5.2 FAULTS 

Discontinuities are taken into account too. Faults are defined as external discontinuous 
drift functions in the cokriging system (Maréchal, 1984). The method requires the 
knowledge of the fault planes and the zones of effect of the faults. The discontinuity can 
be “infinite” and then crosses the whole field, dividing it in two subzones D and D’. The 
fault induces a discontinuity in the potential field, taken into account by a drift function 
such as: 

( ) 1 ( )Df x x
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This function complements the classical polynomial drift functions used for the non-
stationarity in the cokriging system.
With a finite fault (Figure 6), the throw is determined with an influence area. As with an 
infinite fault, the discontinuity divides the delimited area in two sub-zones. In this case, 
the drift function has a bounded support and the function reaches its maximum at the 
centre of the fault. Outside the area the fault has no effect. 

Figure 6. Finite fault. Left, transversal profile (top) and longitudinal profile (bottom) of 
the drift function. Right, area of influence of the discontinuity in the horizontal plane. 

5.3 BOREHOLE ENDS 

The last term in equation (1) is normally equal to zero, but could be strictly positive or 
negative if the points are not on the interface, which is the case when dealing with 
borehole ends. For example, the increment of potential is positive when the borehole 
end is above the considered interface with the following convention: the potential grows 
from the oldest geological formation to the most recent one. 
Incomplete drillings can lead to a bad interpolation if a pre-processing of these soft data 
is not implemented. We use an iterative technique method based on the Gibbs sampler 
(Geman and Geman, 1984; Gilks et al., 1996) to replace these soft data by hard data 
honouring both the inequalities and the spatial structure. That method, developed for 
stationary random functions (Freulon and de Fouquet, 1993) has been extended to the 
nonstationary case. 
Figure 7 shows a synthetic example with two drill-holes (A and B) and two interfaces to 
be reconstructed (higher (1) with “onlap”: 2 points and 1 gradient; lower (2) with rule 
“erode”: 3 points and 1 gradient).

Figure 7. Interpolation of two interfaces. Left, without pre-processing, right with pre-
processing.

UNCERTAINTY IN THE POTENTIAL-FIELD METHOD 



154 C. AUG, J.-P. CHILÈS, G. COURRIOUX AND C. LAJAUNIE

The borehole A is only filled up with the facies whose interface (1) is the top and 
borehole B only with the facies whose interface (2) is the top.
On one hand, if borehole ends are not taken into account, the interpolation does not 
respect them as shown on Figure 7 (left).
On the other hand, Figure 7 (right) displays the result after pre-processing, interface (1) 
is in onlap as expected.
If P1 and P2 are respectively the iso-potential values for interface (1) and (2), and Pb(A)
and Pe(A) respectively the values of potential at the beginning and at the end of the 
borehole, the result of the simulation gives values which respect Pb(A)<P1 and Pe(A)>P2.

6 Conclusion and future works 

The potential-field method used in 3D geological modelling makes it possible to create 
models, even in complex situations, that combine different types of data, especially 
structural data. Thanks to the variography of these data it is possible to specify a 
sensible model of covariance and then to produce maps of uncertainty for the position of 
geological interfaces. 
In this method we consider orientation data as gradient data, namely unit vectors. Only 
in specific cases, we know the structural intensity. The objective of ongoing work is to 
show, with simulations of actual situations, the impact on the covariance when actual 
gradient vectors are replaced by unit vectors. 
Other improvements are planned like a better fault processing or the use of geophysical 
data.
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ACCOUNTING FOR NON-STATIONARITY AND INTERACTIONS
IN OBJECT SIMULATION FOR RESERVOIR HETEROGENEITY
CHARACTERIZATION
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Abstract. This paper proposes an algorithm for simulating object models based
on an underlying Markov point process able to reproduce attraction or repulsion
between objects in a non stationary setting based on workable approximations for
computing the local intensity, taking into account: i) non stationary proportions
and non stationary object parameters; ii) erosion rules in the case of multi-type
objects; iii) attraction or repulsion between objects.

1 Introduction

Modeling heterogeneity is the first, and possibly the most important, step of
a reservoir characterization study. Depending on the geological context, several
simulation techniques can be envisioned to perform this first step: sequential
indicator simulation (Alabert, 1987; Goovaerts, 1997), transition probability sim-
ulation (Carle and Fogg, 1996), sequential simulation using multi-points statistics
(Strebelle, 2002), truncated Gaussian or plurigaussian simulation(Le Loc’h and
Galli, 1997), or Boolean simulation (Haldorsen and Macdonald, 1987; Lantuéjoul,
2002). An important feature of object simulation, which sets it apart from the
other techniques, is the fact that it is not pixel-based, i.e it does not generate
values at the nodes of a pre-defined grid. Rather, it generates geometric shapes in
space according to some probability laws.

Although Boolean model simulation has been widely used during the last two
decades to simulate sedimentary bodies (especially in fluvio-deltaic environments),
several non trivial issues have remained and require scrutiny. Any general purpose
object simulation program for reservoir characterization should (i) allow for the
simulation of multiple object types, (ii) respect user-defined erosion rules between
object of different types, (iii) reproduce specified a priori proportions, after ero-
sion, for each object type, (iv) account for non-stationary object dimensions and
orientations, (v) be conditional to existing hard-data, (vi) account for inter-actions
(attraction or repulsion) between objects.
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A key issue is that the single most important parameter for object models
simulation, namely the (non stationary) intensity of the underlying object process,
is not a parameter provided by the end user but must instead be inferred from
the other input parameters listed above. A second very important issue is the fact
that Boolean models traditionally used assume independence between objects. As
such they are inadequate for reproducing interactions between objects. Lantuéjoul
(1997, 2002) proposed a birth and death process for simulating conditional Boolean
models with non stationary intensity. This algorithm considers the intensity as
known and does not address the problem of making a bridge between intensity
and local proportion. Recently, Benito Garćıa Morales (2003) proposed a method
based on Wiener filter to estimate a non stationary intensity from non stationary
proportions. This method assumes stationary distribution function of the object
parameters. None of the methods described above consider multi-type objects.

This paper proposes an algorithm for simulating multi-type object models
based on an underlying Markov point process able to reproduce attraction or
repulsion between objects in a non stationary setting.

2 Boolean Models

2.1 GENERAL OVERVIEW

A single object type Boolean model (Stoyan, Kendall and Mecke, 1995) is made
of two parts:

− A set of points (seeds), denoted X = {x1, . . . ,xn}, which follow a Poisson
distribution characterized by its intensity θ describing the expected number
of object centröıds per unit volume. This intensity may be varying in space.
As a consequence of the Poisson assumption, object centröıds are independent
to each other.

− Random variables, independent of the Poisson process, that attach to each of
these points random marks describing the shape, dimensions and orientation
of objects A. These random variables are described by their joint probability
density ψ. The random marks are independent one from the other.

The key parameters for Boolean models simulation is the point intensity para-
meter θ which describes how many object centröıds are expected per volume unit.
This parameter, however, is not readily available: geologists have good ideas about
the proportion for each geological object they want to simulate, but they have no
feel for the number of such objects. Hence the need to estimate the intensity θ from
the proportion p. In stationary conditions, it is well known that for Boolean models
the proportion is related to the intensity according to the following relationship
(Lantuéjoul, 2002; Stoyan et al., 1995):

p = 1 − exp
{
−θ

∫

R3
Eψ[10∈A(v)] dv

}
= 1 − exp {−θV } ,

where 1 is the indicator function, 0 is the origin, A(v) is a random object centered
in v and V is the expectation of the volume of a random object A whose mark
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density is ψ. Inverting this relationship yields to

θ = − 1
V

ln(1 − p). (1)

In practice, this congenial situation is the exception rather than the rule: a
priori proportions and mark densities are not stationary, objects of different types
do not overlap each other randomly but according to erosion rules, objects of a
given type may show a tendency to attract each other or, conversely, to repulse
each other. In all these situation equation (1) cannot be used directly but requires
adjustments.

2.2 ACCOUNTING FOR EROSION RULES

For each object type k = 1, . . . , K, there is a corresponding proportion pk, intensity
θk and mark density ψk. Although equation (1) already accounts for the fact that
several objects of the same type may overlap, it requires adjustment to ensure
that, in case of multiple object type simulation, the target proportion of each type
is correctly reproduced. In practice, this is done by substituting in equation (1)
the proportion pk by a corrected proportion p′k. This correction depends on the
“erosion rule” determining which type of object erodes the other. Among all the
possible rules, three are commonly used: random overlapping, the vertical erosion
rule (the object with the highest centröıd erodes the others) and the hierarchical
erosion rule whereby the object type 1 always erodes the object type 2 which, in
turn, always erodes object type 3, etc.

− In the case of an hierarchical erosion rule, the proportion of the type 1 object
does not need to be corrected. Type 2 objects will be partly eroded by objects
of type 1. Hence, for a visible proportion p2, a corrected proportion p′2 =
p2/(1 − p1) needs to be simulated. Recursively, for the type k, the corrected
proportion is given by:

p′k =
pk

1 −
∑k−1

i=1 pi

. (2)

− Derivation of a corrected proportion for a vertical erosion rule is somewhat
more complicated. A second order approximation of this corrected proportion
is given by:

p′k = pk

(
1 +

(1 + ptot)(ptot − pk)
2

)
, (3)

where ptot =
∑

k pk is the total proportion of objects. This approximation
relies on the idea that in the case of a vertical erosion, it is equally likely that
an object of type k erodes an object of type l than the opposite. It leads to a
corrected proportion p′k < 1.

− In the case of random overlapping between object types, it is also equally
likely that an object of type k overlaps an object of type l than the opposite.
Hence, the same corrections as those used for vertical erosion are used.
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2.3 ACCOUNTING FOR NON STATIONARITY

If object proportions or object parameters are non stationary the relationship
between the non stationary proportions and non stationary parameters is more
complex. Dropping, for ease of notation, the subscript referring to the object type,
this relationship is expressed locally at a point u 
∈ X as:

p(u) = 1 − exp
{
−

∫

R3
θ(v)Eψ(v)[1u∈A(v)] dv

}
, (4)

where the expectation is computed with respect to the mark density with local
parameters ψ(v). This expression is extremely difficult (if not impossible) to in-
vert. If ψ(u) and θ(u) are smooth and slowly varying functions, then first order
expansion in equation (4) can be used locally to approximate the local intensity
θk(u) from the local corrected proportion p′k(u):

θk(u) = − 1
Vk(u)

ln(1 − p′k(u)), (5)

where Vk(u) is the local expectation computed using the local mark density ψk(u)
and p′k(u) is the proportion corrected to account for erosion as described above.

3 Markov object models

It is sometimes necessary to impose that objects of a given family are attracted to
each other or on the contrary that there is some sort of repulsion between objects.
The general idea is to consider that repulsion or attraction is a feature of the
underlying point processes, but that marks are still independent from each other.
The appropriate framework for such point processes is the Markov point processes
(MPP). Poisson point processes on which are built Boolean models is a particular
case of MPP, for which there is no repulsion and no attraction. A comprehensive
presentation of MPP can be found in Stoyan et al. (1995) or van Lieshout (2000).

3.1 GENERAL PRESENTATION OF MARKOV POINT PROCESSES

Markov point processes are point processes for which points are no longer indepen-
dent from each other but are dependent on the configuration of the other points.
According to the Hammersley-Clifford theorem, the probability density function
(pdf) of a MPP depends only on functions of cliques. Cliques are set of points
such that each point of this set is a neighbor of all other points of the set. The
neighborhood relationship, used to define cliques must be symmetrical. Usually,
the points x and y are neighbors (denoted x ∼ y) if their distance d(x,y) is less
than R for some R > 0.

The simplest possible clique to consider is a clique consisting of a single point.
In this case there is no interaction and we are back to the classical Poisson process
framework. In order to account for interaction, cliques of more than one point need
to be considered. In practice, two point cliques will be considered and pairwise
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interaction functions, denoted β(x,y), will be used to define the density of a
configuration X:

f(X) ∝
∏

x∈X

θ(x)
∏

x,y∈X : x∼y

β(x,y),

where θ(x) is the intensity function. Among all pairwise interaction point processes,
the simplest one is the Strauss process (Strauss, 1975; Kelly and Ripley, 1976) for
which the interaction function is constant:

β(x,y) = β if x ∼ y and β(x,y) = 1 otherwise, (6)

with 0 ≤ β ≤ 1. The pdf of a Strauss process is thus

f(X) = αβn(X)
∏

x∈X

θ(x),

where α is the normalizing constant and n(X) is the number of neighbor pairs
x,y ∈ X with respect to the neighborhood relationship.

− If β = 1, there is no interaction whatsoever, and we are back to the non
stationary Poisson point process with intensity θ(u).

− If 0 ≤ β < 1, there is some repulsion. Configurations with a high number
of neighbors have a smaller density than configurations with a low number
of neighbors. As a result the point process is more regular than a Poisson
point process. In particular, if β = 0, configurations with neighbors have a
null density and are thus impossible.

− The case of an attraction would correspond to β > 1, but without additional
constraints it is mathematically not admissible because the associated density
does not integrate to a finite quantity (Kelly and Ripley, 1976). However, the
interaction function

β(x,y) = β if r ≤ d ≤ R, β(x,y) = 0 if d < r and β(x,y) = 1 if d > R, (7)

where 0 < r < R and d stands for d(x,y), is an admissible model. In practice,
the restriction introduced by r is not important because r can be chosen arbi-
trarily small. A typical choice is the mesh of the grid on which the simulation
is represented.

In the following we will consider Strauss models for both repulsion and attrac-
tion, with the additional condition on r for attraction. The conditional density of
adding to the configuration X a point in u is

f(X ∪ {u} | X) = f(X ∪ {u})/f(X) = θ(u)βn(∂u), (8)

where n(∂u) is the number of neighbors of u. Hence, the parameter β can be
interpreted as a factor multiplying locally the intensity for each point in the
neighborhood of u.
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3.2 DERIVING THE INTENSITY FOR OBJECT MODELS BASED ON STRAUSS
PROCESSES

Objects are now attached to the Markov point process, and for sake of simplicity,
we first consider the stationary case. The proportion of objects attached to Markov
point processes is not easily related to the intensity: there is no relationship com-
parable to (4). In the case of a Strauss model, a workable approximation for the
intensity was found to be:

θ(u) = −p′(u)
V (u)

(
1 + c

p′(u)
2

)
, (9)

where p′(u) is the proportion corrected for the erosion (as described in Section 2.2)
and c is approximately the conditional probability that u is in an object A′ given
that it is already in an object A. In reservoir simulations, the objects have generally
random size to account for the natural variability of geological objects. For the
direction i, let us denote Xi the dimensions of an object, Ri the dimension of the
interaction box and ri the minimal distance in case of attraction. Conditional on
Ri, i = 1, 2, 3, it can be shown that

c = β(1 − r1r2r3

X1X2X3
) + (1 − β)(1 − R1R2R3

X1X2X3
)[1 − 1B(X1, X2, X3)], (10)

where 1B(X1, X2, X3) is the indicator function of the vector (X1, X2, X3) being
in the box B defined by the dimensions (R1, R2, R3).

Markov point processes are usually defined for fixed interaction distances, as in
Section 3.1 and objects are usually random with probability functions Fi. Taking
the expectations of Equation (10) leads to

c = βg(r1, r2, r3) + (1 − β)g(R1, R2, R3), (11)

with

g(R1, R2, R3) = 1 − F1(R1)F2(R2)F3(R3) − R1R2R3h1(a1)h2(a2)h3(a3)
− [h1(a1) − h1(R1)] [h2(a2) − h2(R2)] [h3(a3) − h3(R3)]), (12)

where ai is the smallest dimension of the object in the direction i and hi(ri) =∫ ∞
max{ai,ri} fi(x)/x dx.

4 Simulation using birth and death processes

Non conditional Boolean models (i.e. corresponding to β = 1) can be simulated
directly: for each type of object k, first draw the number of objects from a Poisson
random variable with parameter Θk =

∫
D

θk(u) du, then locate randomly the
objects according to the intensity θk(u).

In all other cases (presence of conditioning data and/or Markov object models)
simulation must be performed using a birth and death process. Birth and death
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processes are continuous time Markov Chains belonging to the family of Markov
Chain Monte Carlo (MCMC) methods (van Lieshout, 2002; Lantuéjoul, 2002).

Starting from an initial configuration, an object is either removed or added
according to some transition probability that depends on the current configuration
of the simulation at each time step. This transition probability is chosen in such a
way that the stationary distribution of the Markov chain is precisely the density
we wish to simulate from. According to standard results of Markov chain theory, if
the birth and death process is ergodic, there exists a stationary spatial distribution
and the convergence to the stationary distribution will always occur independently
on the initial configuration. Ergodicity holds if the detailed balance equation is
verified at each iteration (see e.g. van Lieshout, 2002 p. 79).

It can be shown that the detailed balance is verified for the following choices:
the probability of choosing a birth is q(X) = Θ/(Θ + n(X)) where Θ is the sum
of θ(u) on D. Then, 1− q(X) is the probability of choosing a death. For a Strauss
point process with β 
= 1, it is convenient to introduce an auxiliary field σ(u)
defined in the following way: for a repulsion (i.e., β < 1), σ(u) = βn(∂u); for an
attraction (i.e., β > 1), σ(u) = βmin{(n(∂u)−nmax),0}, where nmax is the maximum
number of neighbors of each object. Its main effect is to stabilize the algorithm
by avoiding a large quantity of objects piling on each other without increasing
the proportion of this object type. In case of birth, a new object is proposed in u
proportionally to an intensity b(X,u) = θ(u)σ(u). In case of death, the object to
be removed is chosen with a uniform probability among the list of objects.

For performing conditional multi type conditional simulations, the conditioning
taking into account the erosion rules must be checked each time a new object is
added or removed.

5 Implementation

The implementation of the algorithm described in the previous section raises some
critical issues.

− Border effects : It is important to ensure that objects intersecting the domain
D but whose centröıds are outside this domain can be simulated. A practical
way consists in considering a bigger domain Ds whose dimension is the dimen-
sion of the domain under study, D, increased by the dimension of the largest
conceivable object. There is one such domain Ds

k for each type of object and
the expected number of objects of type k to be simulated must be computed
on Ds

k. Intensities yust be extrapolated on the domain Ds
k not in D.

For models with interaction, care must be taken to simulate correctly the
Markov point process near the borders. By construction there cannot be any
neighbors outside Ds. For a point u located near the border the number
of neighbors n(∂u) will therefore be underestimated as compared to points
located in the center of Ds. As a consequence, the field σ(u) accounting for the
interaction will be biased towards less interaction near the borders. In the case
of repulsion for example, this bias results in an accumulation of objects near
the border of Ds. Because the border of the augmented domain Ds is usually
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outside the true domain D, the ultimate bias is less object than expected in
D and a proportion under the target. To account for this bias, the number of
neighbors is corrected by n(∂u)∗ = n(∂u)/v(u) where v(u) is the proportion
of the volume of the interaction box contained in D. Note that in case of
mutiple object types, there is one such correction per object type.

− Initial configuration : In case of conditional simulation, an initial simulation
is performed which will honor all the hard data. This is achieved by defining
a new domain Di which guarantees that any new simulated object, whatever
its location, dimensions or orientation, will intersect at least one conditioning
data. There is no birth and death process in this initial phase: new objects are
added until all hard data are intersected. To avoid possible endless iterations,
a maximum number of iterations is specified for this phase.

− Convergence : The question of finding a criterion for deciding if the algorithm
has reached convergence is a very difficult one. There is no general rule for
evaluating the number of iterations necessary to reach a pre-specified distance
between the theoretical stationary distribution, and the actual distribution
after n iterations. A considerable amount of literature has been devoted to
this subject, see e.g. Meyn and Tweedie (1993) for a survey on this subject.
Most of the proposed methods are either limited to some very simple cases or
difficult and time consuming to implement. As a result, for practical purpose,
the stopping rule will be a combination of a maximum number of iterations
and a monitoring of some important output parameters (number of simulated
objects, number of conditioning objects that have been replaced, average
number of neighbors).

6 Illustrative example

To illustrate the proposed algorithm, let us consider tow examples. In both cases
two types of objects are considered: dunes (fan shaped sedimentary bodies) and
sinusoidal channels. In the first example, vertical proportion curves are imposed.
For the dunes the proportion decreases steadily from a maximum of 30% at the
top of the reservoir to a minimum value of 1% at the bottom. For the sinusoidal
channels the trend is reversed: 30% at the bottom and 1% at the top. There are
no interaction between the objects, neither for the channels nor for the dunes, and
a vertical erosion rule is enforced. Figure 1 shows a typical cross-section of one
realization. As can be seen, the trends in proportions are correctly reproduced.
On average, the simulated proportion is 16% for the dunes and 14.9% for the
channels, almost identical to the target proportion which were 15.5% in both
cases. In the second example the target proportions are stationary, 10% for both
the channels and the dunes, but object interactions are imposed: the dunes will
repulse each other (the interaction box is 10% percent larger than the size of the
objects) whereas the channels will attract each other. The interaction box is twice
as large as the object width and height but has the same length, which means
that the attraction operate only laterally and vertically. In this case a hierarchical
erosion rule is applied. Figure 2 shows a horizontal and vertical cross-section. The
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simuated proportions are 10.5% for the fans and 10.0% for the channels. The
results conform to the constraints which have been imposed: dunes are all distinct
one from the other with no overlap and they systematically erode the channels,
which tend to cluster together. Again, the average simulated proportions match
almost exactly the target proportions.

7 Discussion

The algorithm which has been presented offers a lot of flexibility and has proven ef-
fective for producing realistic simulations of reservoir heterogeneity in non-stationary

Figure 1. Vertical cross section of a simulation with vertical erosion rule

Figure 2. Horizontal and Vertical cross section of a simulation with hierarchical
erosion rule
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situation. However, as is the case with all simulation algorithms, it is not universal
and its limits of application should be respected. A critical issue, when performing
conditional simulation, is the consistency between hard data, object parameters
(shape and dimensions) and target proportions. This consistency becomes even
more important if some or all parameters are non-stationary. The size of the object
to be simulated is a critical issue. The larger the object the more difficult it will
be to reproduce a target proportion and to honour conditioning data. Consistency
between the object size (in particular its thickness) and the resolution at which
facies are coded in well data must imperatively be verified. The approximations
presented above are valid for not too high proportions. It is recommended that each
proportion does note exceed 50% and that there is at least 20% of matrix, even
locally. Although this algorithm can accommodate non-stationarity care should
be taken that this non stationarity describes a smooth variation. Discontinuities
must be avoided. The concept of neighborhood is not an intuitive one. Selecting
too large a neighborhood may prove self-defeating: every point is the neighbour of
every other point (they all belong to the same clique!). In case of attraction the
points will not show any tendency to group in cluster, and in case of repulsion
the process may never converge since it will be impossible to reach the target
proportion and remain consistant with the repulsion constraint.
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Abstract. This paper deals with the estimation of the length distribution of the
set of traces induced by a fracture network along an outcrop. Because of field con-
straints (accessibility, visibility, censorship, etc...), all traces cannot be measured
the same way. A measurement protocol is therefore introduced to systematize the
sampling campaign. Of course, the estimation procedure must be based on this pro-
tocol so as to prevent any bias. Four parametric procedures are considered. Three
of them (maximum likelihood, stochastic estimation-maximization and Bayesian
estimation) are discussed and their performances are compared on 160 simulated
data sets. They are finally applied to an actual data set of subvertical joints in
limestone formations.

1 Introduction

Fractures such as faults and joints play a key role in the containment of nuclear
waste in geological formations, in the oil recovery of a number of petroleum reser-
voirs, in the heat recovery of hot dry rock geothermal reservoirs, in the stability
of rock excavations, etc. The fracture network is usually observable through its
intersection with boreholes or through its traces on outcrops (see Fig. 1). An im-
portant parameter of a fracture network is the fracturation intensity, i.e. the mean
area occupied by the fractures per unit volume, which is experimentally accessible
even from unidimensional observations such as boreholes. The same fracturation
intensity can however correspond to very different situations, whose extremes are
a network of few large well-connected fractures and a network with a large number
of small disconnected fractures. Getting geometrical and topological information
about the fractures - size, orientation, aperture, connectivity - is therefore very
important. Despite substantial work, this remains an arduous task, mainly because
of the geometrical or stereological biases resulting from this limited observability
(Chilès and de Marsily, 1993).
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Figure 1. Example of an outcrop and its traces (vertical outcrop in a quarry,

Oxfordian limestones, East of France)

This paper deals with the estimation of the length distribution of a set of traces
along an outcrop. (The link between trace length and fracture size is briefly dis-
cussed at the end of the paper.) The difficulty lies in that the traces are usually
not entirely visible. Their lower part is often buried. Their upper part may not be
available either if the region around the outcrop has been eroded or mined out. In
the practical case considered, the outcrop is a vertical face in a limestone quarry
and all traces are sub-vertical.
In order to reduce risks associated with the sampling of such traces, it is conve-
nient to resort to a sampling protocol that says what traces should be effectively
measured and how. In the practical case considered, all traces are sub-vertical,
which simplifies the protocol as well as its presentation (see Fig. 2):

1. All traces hitting a horizontal reference line - and only those traces - are
selected for measurement;

2. Only the part of a selected trace above the reference line is actually measured;
3. A measurement is achieved even if the upper part of the trace is incomplete.

In other words, not all traces are sampled. Moreover, sampling a trace consists
of measuring its residual - and sometimes censored - length above the reference
line. The approach presented here is applicable to more general situations (the
assumption that the traces are vertical or parallel is not really required), and can
be easily generalized to other sampling schemes, including areal sampling.

In this paper, four parametric procedures1 are proposed to estimate the trace
length distribution starting from residual length data. These are the maximum
likelihood estimation (MLE), its estimation-maximization variation (EM), the

1 A non-parametric procedure based on the Kaplan-Meier estimation can also be designed. It
is not described here to simplify the presentation.
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Figure 2. Protocol for sampling the outcrop

stochastic estimation-maximization algorithm (SEM) and the Bayesian estimation
(BE). The performances of three of them (MLE, SEM and BE) are compared on
data sets simulated from a Weibull distribution. Finally, the same three proce-
dures are applied to a fracturation data set coming from an underground research
laboratory of ANDRA (French national radioactive waste management agency).

2 Consequences derived from the protocol

At first, it should be pointed out that the selection of the traces is biased. The
longer a trace, the more chance it has to hit the reference line. Quantitatively
speaking, if g(�) denotes the probability density function (p.d.f.) of the traces
with length �, then that of the selected traces is �g(�)/m. In this formula, the
mean m of g acts as a normation factor.
Now a selected trace hits the reference line at an arbitrary location. In probabilistic
terms, this amounts to saying that a residual length can be written as a product
LU , where L is the length of a selected trace and U is a random variable uniformly
distributed on ]0, 1[ and independent of L. Accordingly, the cumulative distribution
function (c.d.f.) R of the residual lengths satisfies

1 − R(�) = P{LU ≥ �} =
∫ +∞




xg(x)
m

P
{
U ≥ �

x

}
dx =

1
m

∫ +∞




(x − �) g(x) dx.

By a first differentiation, the p.d.f. r of the residual lengths is obtained as a function
of the c.d.f. G of the actual traces

r(�) =
1 − G(�)

m
, (1)

and by a second differentiation both p.d.f.’s turn out to be related by the formula

g(�) = −r′(�)
r(0)

· (2)
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3 Four estimation procedures

We turn now to the problem of estimating the p.d.f. g of the actual traces starting
from the available residual traces, namely the complete ones �I =

(
�i, i ∈ I

)
and

the censored ones tJ =
(
tj , j ∈ J

)
. Equation (2) suggests to concentrate at first

on the estimation of r, and then on that of g. The four procedures presented
hereunder have been designed along that line.

3.1 MAXIMUM LIKELIHOOD ESTIMATION (MLE)

In this procedure, the trace length p.d.f. g is supposed to belong to a parametrized
family

(
g(·|θ), θ ∈ T

)
. For each p.d.f. g(·|θ)}, a residual p.d.f. r(·|θ) can be asso-

ciated. The MLE procedure consists of finding a parameter θ that maximizes the
likelihood of the data

L(�I , tJ , θ) =
∏

i∈I

r(�i|θ)
∏

j∈J

[1 − R(tj |θ)]

or
L(�I , tJ , θ) = r(�I |θ)[1 − R(tJ |θ)] (3)

for short (Laslett, 1982). It should be pointed out that this procedure is not
universal. For instance, the likelihood may have no maximum2. Moreover, even
if a maximum does exist, its determination by differentiation of the likekihood
may turn out to be ineffective.

3.2 EXPECTATION-MAXIMIZATION PROCEDURE (EM)

A possible approach for estimating the maximum likelihood is to resort to the EM
algorithm (Dempster et al., 1977). This is an iterative algorithm that produces
a sequence of parameter values in such a way that the likelihood of the data
increases at each iteration. To present this algorithm, it is convenient to introduce
the residual random lengths LJ =

(
Lj , j ∈ J

)
that have been censored to tJ =(

tj , j ∈ J
)
. Of course LJ ≥ tJ .

(i) let θ be the current parameter value;
(ii) calculate the conditional distribution rθ of LJ given LJ ≥ tJ ;
(iii) find θm that maximizes θ′ −→ Erθ

ln[r(�I |θ′)r(LJ |θ′)];
(iv) put θ = θm, and goto (ii).
It should be pointed out that step (iii) of this algorithm also includes a maximiza-
tion procedure. However the functions to be maximized do not depend on R and
are therefore simpler to maximize than the likelihood of the censored data.
Nonetheless, this algorithm has some drawbacks. Calculating the expectation of
step (iii) may be problematic. On the other hand, convergence may take place only
to a local maximum that depends on the initial parameter value. Finally, the rate
of convergence may be quite slow.

2 However, the family of p.d.f.’s is usually designed so as to warrant a maximum whatever the
data set considered.



ESTIMATION OF A TRACE LENGTH DISTRIBUTION 169

3.3 STOCHASTIC EXPECTATION-MAXIMIZATION PROCEDURE (EM)

All these difficulties prompted Celeux and Diebolt (1985) to introduce the SEM
algorithm that consists of replacing the calculation of the expectation by a simu-
lation:
(i) let θ be the current parameter;
(ii) generate �J ∼ rθ;
(iii) find θm that maximizes θ′ −→ r(�I |θ′)r(�J |θ′);
(iv) put θ = θm, and goto (ii).
Once again, this algorithm requires a maximization procedure. But what has to
be maximized is the likelihood of pseudo-complete data instead of that of the
censored data. As mentioned by Diebolt and Ip (1996), the outcome of such an
algorithm, after a burn-in period, is a sequence of parameter values sampled from
the stationary distribution of the algorithm. Its mean is close to the MLE result.
Its dispersion reflects the information loss due to censoring.

3.4 BAYESIAN ESTIMATION (BE)

Now that the expectation step has been avoided, the tedious part of the SEM al-
gorithm is the maximization step. It can also be avoided by putting the estimation
problem into a Bayesian perpective. More precisely, assume that θ is a realization
of a random parameter Θ with prior distribution p. Then the posterior distribution
of Θ is

q(θ|�I , tJ) ∝ p(θ)r(�I |θ)[1 − R(tJ |θ)]

The following algorithm has been designed so as to admit q for stationary distri-
bution:
(i) generate θ ∼ p;
(ii) generate �J ∼ rθ;
(iii) generate θ ∼ p(·)r(�I |·)r(�J |·), and goto (ii).
This algorithm is nothing but a Gibbs sampler on (LJ ,Θ). Step (ii) updates LJ

while step (iii) updates Θ.

4 Weibull distribution

In order to implement MLE, EM, SEM and BE, an assumption must be made on
an appropriate family of p.d.f. for g. Many choices are possible (Gamma, Pareto,
Weibull etc...These distributions are described in full detail in Johnson and Kotz
(1970)). In this paper, the actual trace lengths are supposed to follow a Weibull
distribution with (unknown) parameter α and index b (α, b > 0)

wα,b(�) = αb exp {−(b�)α} (b�)α−1 � > 0 (4)

If L ∼ wα,b, then bL ∼ wα,1. In other words, b is nothing but a scale factor. In
contrast to this, the parameter α determines the shape of the distribution. If α < 1,
then wα,b is monotonic decreasing and unbounded at the origin. If α > 1, then
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wα,b is a unimodal distribution that is similar in shape to a normal distribution at
large α values. In the intermediary case α = 1, w1,b is an exponential distribution.
The Weibull distribution has finite moments at all positive orders

E
(
Ln

)
=

Γ
(
nα−1 + 1

)

bn
(5)

A Weibull distribution can be simulated either by inverting its distribution function
or by considering a standard exponential variable U and then delivering U1/α/b.

The residual p.d.f. associated with the Weibull distribution is

rα,b(�) =
b

Γ(α−1 + 1)
exp {−(b�)α} � > 0

This p.d.f. is monotonic decreasing whatever the values of α and b. The moments
are equal to

E
(
Rn

)
=

1
bn(n + 1)

Γ
(
(n + 1)α−1 + 1

)

Γ (α−1 + 1)
(6)

It can be noted that E(R) < E(L) when α > 1 as well as E(R) > E(L) when
α < 1. The equality E(R) = E(L) that takes place in the case α = 1 stems from
the lack of memory of the exponential distribution.
A simple way to generate a residual trace is to put R = UV

1
α where U an V are

two independent variables respectively uniformly distributed on ]0, 1[ and gamma
distributed with parameter α−1 + 1 and index b.

5 A simulation test

In order to test the efficiency of three of the procedures presented (MLE, SEM
and BE), they have been applied to populations of residual traces sampled from
r0.5,1 with mean3 6m and variance 84m2. Each population can have 4 possible sizes
(100, 200, 500 or 1000 traces), as well as 4 possible censoring levels (0.924m, 2.817m,
7.250m and ∞, in accordance with the percentiles 75%, 50%, 25% and 0%). For
each of the 4 × 4 = 16 types considered, 10 populations have been simulated.

Figure 3 shows the influence of the size of the population, of the censorship pro-
portion and of the type of estimator on the estimation of both parameters α and
b. Several observations can be made:

1. The estimated points (α, b) are organized as elongated clouds;
2. those clouds tend to shorten as the size of the population increases;
3. the target point (0.5, 1) is not offset;
4. the censorship proportion is mainly influential for large populations sizes;
5. the Bayesian clouds are shortest.

3 To give a comparison, the mean and the variance of the Weibull distribution w0.5,1 are
respectively 2m and 20m2.



ESTIMATION OF A TRACE LENGTH DISTRIBUTION 171

Figure 3. This figure plots the estimation of b versus that of α as a function of the

estimator chosen, the number of traces in the population and the proportion of traces

censored
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The first observation suggests that both estimates α̂ and b̂ are functionally depen-
dent. To fix ideas, consider for instance the case of the MLE. By taking the partial
derivative of the log-likelihood of the simulated data w.r.t. b, one can end up with
an equation of the form

b̂ = f

(
#I, #J,

∑
i∈I �α̂

i

#I
, t, α̂

)

where f is a deterministic function, #I (resp. #J) denotes the number of elements
of I (resp. J) and t is the censoring level. In other words, the complete residual
traces act in the estimation process only via their number and their empirical
moments. In particular, if #I and #J have been fixed, all variability that can be
expected in the parameter estimation derives from the statistical fluctuations of
those empirical moments. When #I is large, they are not significantly different
from the moment of order α of r0.5,1 (see (6)) and the relationship between α̂ and
b̂ becomes deterministic.
The second observation is standard. The estimators have less and less variability
as the population increases. In the case of large populations, the third observation
indicates that the estimators tend to concentrate around the target point. In other
words, the estimators are asymptotically unbiased.
The fourth observation is not surprising either. For large population sizes, the only
factor that can affect the variability of the estimators is the censorship threshold.
The fifth observation suggests that the Bayesian procedure gives better results than
MLE or SEM. This observation should be mitigated by the fact that the results
obtained are highly dependent on the prior distribution chosen for (α, b). Here it
has been supposed to be uniform over ]0, 1[×]0, 2[. If the range of uniformity of only
one of the parameters had been extended, then the variability of both estimators
would have been substantially increased.

6 Case study

The same three estimation procedures have been applied to a population of 419
traces taken from different outcrops embedded in the same geological formation,
the Oxfordian limestones which overlie the Callovo-Oxfordian argilite formation of
the underground research laboratory of ANDRA in the East of France. Fractures
are subvertical and comprise faults and joints. A detailed structural and statistical
study of the various fracture sets has been carried out (Bergerat et al, 2004). Here a
directional set of subvertical joints is considered. The trace lengths range between
0.2m and 15m with a mean of 2.4m and a standard deviation of 2.5m. Only 62 of
the traces are censored (15%). Preliminary experiments suggested that one should
certainly have α < 2 as well as b < 1. This motivated us to apply the BE procedure
with (α, b) a priori uniformly distributed on ]0, 2[×]0, 1[. On the other hand, the
SEM and BE procedures have been resumed during 5000 iterations including a
burn-in period of 1000 iterations. The 4000 pairs of values (αn, bn) generated by
each procedure have been averaged to obtain the estimates of α and b of Table 1.
This table gives also estimates of the mean and of the standard deviation of the
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Weibull distribution. They have been obtained by calculating at first the mean
mn and the standard deviation σn associated to each (αn, bn), and then averaging
them.

α̂ b̂ m̂ σ̂

MLE 0.860 0.370 2.919 3.407
SEM 0.837 0.464 2.366 2.841
BE 1.094 0.374 2.582 2.362

The three estimated values for α and b cannot be considered as similar. Nonethe-
less, they give reasonably comparable estimations for the mean trace length. In
contrast to this, the differences between the estimated standard deviations are
more pronounced4

Figure 4. Variogram of the estimates of the mean along iterations

A potent advantage of Bayesian estimation is that it delivers a posterior distrib-
ution for the parameters under study, from which variances, quantiles as well as
confidence limits can be deduced. For instance, it is possible to assign a variance
to the estimate of the mean. As the values generated are dependent a simple
approach is to consider the sill of the experimental variogram of the mn’s (see
Fig. 4). We arrive at a variance of 0.183m2 (or a standard deviation of 0.43m).
Using similar approaches, it is also possible to attribute a variance to the standard
deviation estimate (0.050m2) or even a covariance between the mean and the
standard deviation estimates (0.048m2).

7 Discussion

In this paper, the traces have been considered as independent. This is of course a
simplifying but not always appropriate assumption. In the case where joints tend
to cluster or when they abut to the border of sedimentological layers, dependence
relationships must be introduced between traces.

4 It can also be mentioned that the trace length distribution was estimated in a previous
exercise (Bergerat et al, 2004) using a MLE based on the gamma family. The estimated mean
(2.67m) and the estimated standard deviation (2.84m) obtained are perfectly compatible with
the results of this paper.

Table1. Estimates obtained from the three procedures
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Another simplification has been made by assuming that the joints have their trace
length independent of their orientation. If this assumption is not valid, Terzhagi’s
correction must be applied to compensate for the fact that a joint has more chance
to be observable when its orientation is orthogonal to the outcrop (see Chilès and
de Marsily (1993) and references therein).

Figure 5. The more elongated the joint in the direction orthogonal to the outcrop,

the more chance it has to be observed as a trace

One also may wonder what is the relationship between the trace length and the
joint height distributions? To fix ideas, suppose that the joints are rectangles. Then
a random joint has its statistical properties specified by the trivariate distribution
of its width W , its height H and its dihedral angle Θ with the outcrop. The p.d.f.
g of the trace lengths is related to that of the joint heights f by the formula

g(h) ∝ f(h)E{W sin Θ|H = h}

Simplifications occur in the following cases:

1. If W and H are proportional, then g(h) ∝ hf(h)E{sin Θ|H = h};
2. If W and H are independent, then g(h) ∝ f(h)E{sin Θ|H = h};
3. If Θ is uniform on ]0, π/2[, then g(h) ∝ f(h)E{W |H = h}.
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Abstract. In this paper, we intend to clarify some conceptual issues of geostatistical 
simulation such as reproduction of the model covariance, equi-probability, 
independence, etc. We also introduce discussions on the confusion between simulating 
ergodic random functions and sampling random vectors. Our focus is on the 
interpretation of these probabilistic concepts in terms of realizations rather than the 
precision of simulation algorithms.

1 Introduction 

Should conditional simulations reproduce the model covariance? This is one of the 
many controversial issues in geostatistics. Some argue that conditional and 
unconditional realizations are realizations of the same random function model and that 
they must reproduce the model covariance due to the ergodicity of the random function 
model. Of course, this reproduction is up to statistical fluctuations, i.e. fluctuations from 
the model parameters because of the limited size of a realization. Others argue that 
conditional realizations must respect the conditional (or posteriori) covariance but not 
the model (prior) covariance, and that this conditional covariance is different from the 
model prior covariance and even non-stationary whatever the model prior covariance. 

Another famous controversial issue relates to the equi-probability of independently 
generated realizations. For ones, as random seed numbers are equi-probable, the 
resulting realizations are equi-probable too. For others, when in the Gaussian framework 
for instance, realizations (discretized as vectors) in the neighborhood of the mean vector 
are more likely to happen than the others. Therefore, realizations of a multi-Gaussian 
vector are not equi-probable even when independently generated. 

The analysis of these contradictory points of view leads to other issues like 
Is there any (numerical) criterion to say that two (or several) realizations of a 
random function (in a large-enough domain) are independent? 
Can we generate an infinity of “independent” realizations of a random vector of 
finite dimension? 
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Is geostatistical simulation of random functions consistent with the sampling of 
multivariate distributions? 

Understanding what is behind these issues is not only of philosophical interest, but also 
of great importance in the application of geostatistical methods to model calibration, 
model sampling and uncertainty estimation etc. 

In this paper, we intend to clarify some of the above issues and to introduce discussions 
about some others. Our discussions are limited to the stationary (multi-)Gaussian 
random function. We focus on conceptual issues of numerical simulations rather than 
numerical precision of simulation algorithms. We also explore the significance of some 
well established concepts of probability (Feller, 1971) in terms of an individual 
realization or a set of realizations. We always assume that the simulation domain is large 
enough with respect to the covariance range. 

2 Regional covariance and covariance matrix 

2.1 REGIONAL COVARIANCE 

We study physical properties that are unique and defined in a field. With the 
geostatistical approach, a physical property is considered as a realization of an ergodic 
random function. The ergodic property is necessary for the inference of the structural 
parameters (regional mean, variance and covariance etc.) of the random function model 
from a single realization. When a random function model is adopted to represent the 
physical property, we use the measurements (data) at some locations of the field to infer 
the structural parameters that specify the random function. Then we build realizations of 
the random function and each of these realizations should honor, up to statistical 
fluctuations, the inferred structural parameters due to ergodicity. 

Assume that we have enough data to infer correctly the regional covariance. The 
uncertainty in the inference of the regional covariance is an important, but different 
issue. The reproduction of the regional covariance in geostatistical simulations is 
essential because this covariance is inferred from physical data and not just only prior 
idea. We believe that it is methodologically inconsistent to infer the covariance from a 
data set and then to build a realization, conditioned to the same data set, that has a 
covariance, i.e., the posterior covariance in the Bayesian terminology (Tarantola, 1987; 
de Marsily et al., 2001), conceptually different from the inferred one. 

Let us examine how conditioning an unconditional realization by kriging preserves the 
regional covariance. Consider a stationary standard Gaussian random function )(xY .

Let ))(),...,(),(( 21 nxYxYxY  be a standard Gaussian vector and )(* xY  the simple 

kriging of )(xY  using the covariance function )(hC  and the data set 

))(),...,(),(( 21 nxYxYxY . Let )(xS  be a standard Gaussian random function with 

)(hC  as covariance function but independent of )(xY , and )(* xS  the simple kriging 

of )(xS  using the data set ))(),...,(),(( 21 nxSxSxS . Then, )(xYc  defined by 
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)()()()( ** xSxSxYxYc

is a standard Gaussian random function with )(hC  as covariance function, and )(xYc

is conditioned to the random vector ))(),...,(),(( 21 nxYxYxY .

We note that the proof of the above result in Journel and Huijbregts (1978) or in Chilès 
and Delfiner (1999) assumes that the conditioning data set is a random vector. When the 

conditioning data set is fixed, )(xYc  becomes actually non-stationary. In particular, the 

mean values of )(xYc  at the data locations nxxx ,...,, 21  equal respectively the data 

values, and the variances of )(xYc  at these locations are zero. In general, the covariance 

of the random function )(xYc  with a fixed conditioning data set is non-stationary 

(dependent on the location x ) and therefore different from )(hC .

However, the fact that the covariance of the random function )(xYc  with a fixed 

conditioning data set is non-stationary does not necessarily mean that the regional 

covariance of an individual realization of )(xYc  would not reproduce the model 

covariance )(hC . Indeed, because )(xYc , conditioned to the random vector 

))(),...,(),(( 21 nxYxYxY , is a stationary ergodic random function, all realizations of 

)(xYc  should reproduce the covariance function )(hC  up to statistical fluctuations. 

Consequently, for any fixed data set ))(),...,(),(( 21 nxyxyxy , i.e. a realization of 

))(),...,(),(( 21 nxYxYxY , and any realization )(xs  of )(xS , )(xyc  defined by 

)()()()( ** xsxsxyxyc

is a Gaussian realization conditioned to ))(),...,(),(( 21 nxyxyxy  and provides )(hC
as its regional covariance up to statistical fluctuations. 

The difference and the relation between the regional covariance and the covariance of a 
random function should become clearer by examining the concept of covariance matrix. 

2.2 COVARIANCE MATRIX 

In practice, we often need to discretize a random function over a finite grid. So we deal 
with random vectors and we can define their covariance matrixes. In the literature, the 
covariance matrix in the Bayesian framework is related to a set of realizations, instead of 
a single realization. For instance, the posterior covariance matrix of a random vector 
(after being conditioned to a data set) is related to the set of conditional realizations (not 
to a single conditional realization). Similarly, the prior covariance matrix of a random 
vector (before being conditioned to a data set) is related to the set of unconditional 
realizations (not to a single unconditional realization). 
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It is important not to confound the regional covariance of an individual realization with 
the covariance matrix of an ensemble of realizations. Any conditional simulation of an 
ergodic random function (discretized over a grid) must preserve the regional covariance 
but not the prior covariance matrix that will certainly change after conditioning. 

The above discussion can be further clarified through the following example. Let 

))(),...,(),(( 21 Nxyxyxy  be an unconditional realization of the Gaussian random 

vector ))(),...,(),(( 21 NxYxYxY . We use, for instance, the sequential Gaussian 

simulation method for generating realizations and we assume that all conditional 
distributions are computed without any approximation. When N  is large enough and 

when the grid nodes ),...,,( 21 Nxxx  covers a domain much larger than the area 

delimited by the covariance range, the experimental (regional) covariance should 

reproduce the theoretical covariance. Now, consider )( 1xy  as a conditioning datum, 

and we generate realizations of ))(),...,(( 2 NxYxY  conditioned to )( 1xy . By using 

the same random numbers for sampling the conditional distributions at the nodes 

),...,( 2 Nxx  as in the case of the above unconditional simulation, we obtain the 

realization ))(),...,(),(( 21 Nxyxyxy  conditioned to )( 1xy . This conditional 

realization is identical to the unconditional realization and therefore has the same 
experimental (regional) covariance. However, if we generate a set of realizations 

conditioned to )( 1xy , their covariance matrix will be different from the model prior 

covariance.

In general, an unconditional realization ))(),...,(),(( 21 Nxyxyxy  of a random vector 

))(),...,(),(( 21 NxYxYxY can always be seen as a realization conditioned to 

))(),...,(),(( 21 Ixyxyxy  for NI . Evidently, this suggests that the conditioning 

does not necessarily change the regional covariance. 

2.3 SUMMARY 

The regional covariance and the covariance matrix (in the Bayesian terminology) are 
two different concepts in geostatistical simulation. A conditional simulation method 
should guaranty that the regional covariance of each conditional realization reproduces, 
up to statistical fluctuation, the model covariance function. However, the covariance 
matrix of a set of conditional realizations is conceptually (not because of statistical 
fluctuations) different from that of a set of unconditional realizations. 

The covariance reproduction in geostatistical simulation means the reproduction of the 
regional covariance, not the (prior) covariance matrix. The reproduction of a covariance 
matrix is a much stronger requirement than that of a regional covariance. Reproduction 
of a covariance matrix requires generating a large-enough number of realizations that 
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represent correctly the multivariate probability distribution, while the regional 
covariance is related to a single realization. 

Because of the uniqueness of the physical property under study, the regional covariance 
has a physical sense, while the covariance matrix is a model concept. 

3 Equi-probability and likelihood 

“Are realizations of a stochastic model equi-probable?” is another controversial issue 
that still troubles practitioners of geostatistics. Considering a set of realizations as equi-
probable or not can change completely the way we evaluate uncertainties from these 
realizations.

3.1 EQUI-PROBABILITY 

Consider, for instance, the numerical simulation of a stationary Gaussian random 
function of order 2 over a finite grid of the simulation field. Namely, we simulate a 

Gaussian vector Y  of N  components ))(),...,(),(( 21 NxYxYxY . Now if we 

generate K  realizations of Y : Kyyy ,...,, 21 , starting from K  independent uniform 

numbers (random seeds issued from a random number generator), these realizations are 
equi-probable. This is because the uniform seeds can be considered as equi-probable, 
and for a given seed, a simulation algorithm produces a unique realization of Y  after a 
series of deterministic operations. 

3.2 LIKELIHOOD 

However, the probability density values of the random vector Y  at Kyyy ,...,, 21  are 

different. Consider two realizations 1y  and 2y  and assume that )()( 21 ygyg ,

where g  stands for the probability density function of Y . Thus, we are more likely to 

generate realizations in the neighborhood of 1y  than in that of 2y . In other words, for a 

given small-enough domain )(y  located at y  and a large-enough number of 

realizations of the vector Y , there are more realizations in )( 1y  than in )( 2y . But 

this does not mean 1y  is more probable to happen than 2y . Consequently, when 

evaluating uncertainty using a set of independently generated realizations, they must be 
equally considered with the same weight. 

3.3 SUMMARY 

Before generating realizations, there is a larger probability to generate a realization in 
the neighborhood of the realization of higher probability density. But once a set of 
realizations is generated independently between each other, they are all equi-probable. 
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4 Independence, correlation and orthogonality 

4.1 INDEPENDENCE 

When performing numerical simulation of the random function model, one often needs 
to generate more than one realization. These realizations are said independent because 
they are built by using the same simulation procedure but with different random seeds. 
These random seeds are said statistically independent. This is meaningful when a large 
number of random seeds are generated. Now, if we generate only a few realizations, say 
only two realizations, we need then only two random seeds. Because it does not make 
sense to talk about statistical independence with only two fixed numbers, does it make 
sense to talk about independence of two realizations of a random function model? 

But geostatisticians are used to build models with only two "independent" realizations. 
This is the case when building realizations of the intrinsic model of coregionalization 
(Matheron, 1965; Chilès and Delfiner, 1999), when perturbing a realization by 
substituting some of its values with some other “independent” values (Oliver et al., 
1997), when performing a combination of two independent realizations within the 
gradual deformation method (Hu, 2000), when modifying a realization using the 
probability perturbation method (Caers, 2002), etc. 

If it does not make sense to check the independence between two realizations, it is 
nevertheless meaningful, at least for large realizations, to evaluate the degree of their 
correlation.

4.2 CORRELATION 

Consider again the N -dimensional standard Gaussian vector 

))(),...,(),(( 21 NxYxYxYY . Let ))(),...,(),(( 21 Niiii xyxyxyy

),...,2,1( Ii  be I  independent realizations of Y . For each realization iy , we 

compute its mean and its variance: 
N

n
nii xy

N
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inii mxy
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When N  is large enough and when the grid ),...,,( 21 Nxxx  covers a domain whose 

dimension in any direction is much larger than the covariance range, we have 0im ,

12
i . For any two realizations iy  and jy , we usually compute their correlation 

coefficient as follows: 
N

n j

jnj

i

ini
ij

mxymxy

N
r

1

)()(1



ON SOME CONTROVERSIAL ISSUES OF GEOSTATISTICAL SIMULATION 181 

We have 1ijr  for ji , and because of the “independence” between iy  and jy  for 

ji , we have 0ijr . In practice, if the correlation coefficient ijr  ( ji ) is 

significantly different from zero, then the two realizations iy  and jy  are considered as 

correlated, and therefore dependent. 

4.3 ORTHOGONALITY 

Now for any two realizations iy  and jy , we define the following inner product: 

)()(
1

,
1

njn

N

n
iji xyxy

N
yy

We have 0, ijji ryy  for ji and 1, ijji ryy  for ji . Therefore, 

when NI , the N  vectors ))(),...,(),(( 21 Niiii xyxyxyy ),...,2,1( Ni

constitute an orthonormal basis (up to statistical fluctuations) of an N -dimensional

vector space NV  furnished with the above inner product. All other realizations of the 

random vector Y  can be written as linear combinations of these N  independent 

realizations Nyyy ,...,, 21 . In other words, we cannot generate more than N

realizations of an N -dimensional random vector so that the above usual correlation 
coefficient between any two of these realizations equals zero. 

4.4 CONSEQUENCE 

The above remark has an unfortunate consequence for many iterative methods that 
involve the successive use of independent realizations. For instance, the gradual 
deformation method requires generating, at each iteration, a realization independent 
from all realizations generated at previous iterations. When the number of iterations of 
the gradual deformation method becomes equal to or larger than the number of grid 
nodes, the optimized realization at iteration l  ( )Nl  and a new realization at 

iteration 1l  are linearly dependent (not because of statistical fluctuations). 
Consequently, the condition for applying the gradual deformation method with 
combination of independent realizations is no longer satisfied when the number of 
iterations is larger than the number of grid nodes. This explains why when applying the 
gradual deformation method with a large number of iterations (much larger than the 
number of grid nodes), it is possible to progressively force the optimized realization to 
have a regional covariance different from the initial one (Le Ravalec-Dupin and 
Noetinger, 2002). 

Nevertheless, in practice, the number of iterations is hopefully much smaller than the 
number of grid nodes. Otherwise, the method is not applicable when the calculation of 
the objective function requires heavy computing resources. 



182 L.Y. HU AND M. LE RAVALEC-DUPIN 

5 Random function or random vector? 

Up to now, we have assumed that an ergodic random function can be represented by a 
random vector. This seems questionable. Consider the following experimentation of 
thought. Let )(xy  be an ergodic realization of the standard Gaussian random function 

)(xY . Assume now )](exp[)( xyxk  represents a physical property distributed in a 

field, say rock permeability in an oil field. The “real” permeability field is then 
completely known. Starting from a large-enough data set of )(xk , we can infer the 

covariance of the random function model )(xY .

Now because we generate realizations over a finite grid ),...,,( 21 Nxxx , we deal with a 

Gaussian vector ))(),...,(),(( 21 NxYxYxYY . As discussed before, there is a non-

negative probability to generate realizations in a given domain )(y  located at y . For 

a domain of fixed size, this probability is maximal when y  equals the mean vector. If 

we sample correctly the random vector Y , there is a non-negative probability to 
generate realizations in the neighborhood of the mean vector. These realizations have 
small regional variances (smaller than the model variance 1) and their regional 
covariance will not respect the model covariance inferred from the 
“reality”: )](ln[)( xkxy !

The above reasoning (if it makes sense) leads to the following consequences: 

Geostatistical simulations (over a finite grid) cannot honor both the regional 
covariance and the multivariate probability density function. 

The sequential simulation algorithm (Johnson, 1987; Deutsch and Journel, 1992) is 
related to random vectors, and therefore it cannot generate realizations of ergodic 
random functions (Lantuéjoul, 2002), even in the Gaussian case where we can 
compute the conditional distribution without approximation by using the global 
neighborhood.

The use of an exact sampling method based on the Markov iteration or the 
acceptation/rejection (Omre, 2000) will make it possible to generate a set of 
realizations representative of the multivariate probability density function. Due to 
the maximum likelihood of the mean vector, we must expect some realizations 
close to the smooth mean vector. This is not compatible with the foundation of 
geostatistics whose aim is to model spatial variability inferred from real data. 
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6 Conclusions and further discussions 

If the theory of geostatistics based on simulating ergodic random functions is compatible 
with that based on sampling random vectors, then we have the following conclusions: 

The regional covariance of each conditional or unconditional simulation should 
reproduce, up to statistical fluctuations, the model covariance function inferred from 
real data. 
A large-enough set of conditional (or unconditional) simulations should respect, up 
to statistical fluctuations, the conditional (or unconditional) covariance matrix. 
A set of independently generated realizations are equi-probable but can have 
different probability density values. 
We cannot generate more then N  orthogonal realizations of an N -dimensional
random vector, if we use the usual correlation coefficient as the measure of 
correlation between realizations. 

However, it seems that the theory based on the exact sampling of random vectors is 
contradictory with that based on the simulation of ergodic random functions. If this is 
true, there are then two possible theories of geostatistics: one based on random functions 
and the other based on random vectors. In the framework of the random function based 
geostatistics, we can talk about ergodicity, regional covariance and its inference from a 
single (fragmentary) realization (i.e., the real data set). In the framework of the random 
vector based geostatistics, we can talk about covariance matrix, but not ergodicity (that 
is not defined). The inference of the model parameters from a single realization is then 
questionable. These two theories are self-consistent and but they seem not compatible 
between each other. To avoid, at least, terminological confusion, it is necessary to 
choose one of the two frameworks: random vectors or random functions. In practice, we 
should expect that these two theories converge to each other with huge random vectors 
and random functions in large field. 

Note finally that, in most real situations, the primary concern in geostatistical modeling 
remains the choice of a physically realistic random function (or set) model. For 
instance, a multi-Gaussian model is in contradiction with many geological settings such 
as fluvial channel or fractured system (Gomez-Hernandez, 1997). Then comes the 
difficulty of building realizations that preserve the spatial statistics inferred from data 
and that are calibrated to all quantitative (static and dynamic) data. The further 
evaluation of uncertainty is meaningful only under the following conditions: first the 
probability density function (pdf), conditioned to all quantitative data, covers correctly 
the range of uncertainty and second enough samples (realizations) of this conditional pdf 
can be obtained within an affordable time. The second condition depends on the 
efficiency of the sampling algorithms and the computer resources. But the first 
condition depends on the degree of objectivity of the pdf model. Because of the 
uniqueness of the reservoir property of interest, a pdf model should largely be 
subjective. We can evaluate uncertainty only within an subjective model (Matheron, 
1978; Journel, 1994). The preservation of the model spatial statistics and the model 
calibration to data are objective problems, while the uncertainty evaluation is a 
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subjective one (although mathematically meaningful and challenging within a pdf 
model).
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Abstract. The indicator approach to estimating spatial, local cumulative distributions is 
a well-known, non-parametric alternative to classical linear (ordinary kriging) and non-
linear (disjunctive kriging) geostatistics approaches. The advantages of the method are 
that it is distribution-free and non-parametric, is capable of dealing with data with very 
skewed distributions, provides a complete solution to the estimation problem and 
accounts for high connectivity of extreme values. The main drawback associated with 
the procedure is the amount of inference required. For example, if the distribution 
function is defined by 15 discrete thresholds, then 15 indicator covariances and 105 
indicator cross-covariances must be estimated and models fitted.  Simplifications, such 
as median indicator kriging, have been introduced to address this problem rather than 
using the theoretically preferable indicator cokriging. In this paper we propose a method 
in which the inference and modelling of a complete set of indicator covariances and 
cross-covariances is done automatically in an efficient and flexible manner.  The 
inference is simplified by using relationships derived for indicators in which the 
indicator cross-covariances are written in terms of the direct indicator covariances. The 
procedure has been implemented in a public domain computer program the use of which 
is illustrated by a case study. This technique facilitates the use of the full indicator 
approach instead of the various simplified alternatives. 

1 Introduction

The general estimation problem can be stated as the estimation at unsampled locations 
of the most probable value of a variable together with a measure of the uncertainty of 
the estimation (e.g. estimation variance). A more complete and interesting solution to 
the problem, however, is to estimate at each unsampled location the local cumulative 
distribution function (cdf) conditioned to the neighbouring data. Point estimates, 
interval estimates, measures of uncertainty and probabilities (e.g. probability of the 
unknown value being greater than a specified threshold) can be easily obtained from the 
estimated distribution function,. The indicator approach (Journel, 1983; Goovaerts, 
1997) offers a non-parametric solution to the problem of estimating such local cdf.  A 
discrete representation of the cdf is defined by K thresholds from which K indicator 
random functions can be derived by applying the thresholds to the continuous variable 
Z(u):
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otherwise0

if1
; k

k

zuZ
zuI     (1) 

Each indicator random function is assumed to be second-order stationary, i.e. 
unbounded semi-variograms are not allowed and covariances and semi-variograms are 
equivalent statistical tools. The expected values of the indicator variables are interpreted 
as the distribution function of the continuous variable for the respective thresholds: 

kkk zuZzuFzuI Pr);(};({E  (2) 

Estimating the different indicators provides estimates of the cdf, );( kzuF , for the 

different thresholds },...,1;{ Kkzk . The complete cdf is estimated by assuming a form 

of the cdf between the thresholds and for the tails (Deustch and Journel, 1992; 
Goovaerts, 1997). 

Journel and Alabert (1989) argue that indicator cokriging is theoretically the best 
estimator (in a least squares sense) of the cdf using indicators from the experimental 
data for all the thresholds simultaneously. This is, however, an onerous procedure 
requiring the inference of K2 indicator covariances and cross-covariances. In practice, 
the cross-covariances are assumed to be symmetric and the number of models is reduced 
to K indicator covariances and K(K-1)/2 indicator cross-covariances. An asymmetrical 
cross-covariance implies (from the non-centred cross-covariance) that: 

 })(,)({P})(,)({P '' kkkk zhuZzuZzhuZzuZ  (3) 

and:
 })({P})({P kk zhuZzuZ  (4) 

If the indicator random functions are second-order stationary, the random function Z(u)
is distribution-ergodic (Papoulis, 1984), the restriction in (4) no longer holds and thus 
symmetrical cross-covariances are justified. 

Even with the assumption of symmetric cross-covariances with, say, K = 10 there are 10 
indicator covariances and 45 indicator cross-covariances to infer and model. The 
inference of direct indicator covariances is not particularly difficult and can be done 
more or less automatically by using maximum likelihood (Pardo-Igúzquiza, 1998) to 
infer the parameters (e.g., range, sill, nugget, anisotropy angle) without the need to 
estimate the covariance for a number of lags and fit a model. Even using maximum 
likelihood the inference and modelling of indicator cross-covariances is more difficult 
because, inter alia, of the order relations (Journel and Posa, 1990) which impose 
restrictions on the types of models that can be fitted to the indicator cross-covariances. 
A much more efficient and routine procedure would be to express the cross-covariances 
in terms of the direct indicator covariances.

2 Methodology

Given a continuous variable, Z(u), and its cdf, the range of values of the variable is 
represented by K discrete thresholds. Given any pair of these thresholds, kz  and 'kz ,

(with the convention kk zz ' ) a class, or categorical, variable, kc , can be defined with 
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an associated indicator random function );( kcuI :

otherwise0

if1
; k

k

cuZ
cuI  (5) 

or, equivalently: 

otherwise0

if1
; kk

k

zuZz
cuI  (6) 

with
 ),();();( ' kkk zuIzuIcuI  (7) 

The covariance of the indicator random function for the class on the left hand side must 
be equal to the covariance of the difference between the indicator random functions for 
the thresholds on the right hand side: 

 )},();({Cov)};({Cov ' kkk zuIzuIcuI  (8) 

or   )};(),;({Cov2)},({Cov)};({Cov)};({Cov '' kkkkk zuIzuIzuIzuIcuI  (9) 

then );();();(
2

1
),;( ' kIkIkIkkI chCzhCzhCzzhC  (10) 

which expresses the indicator cross-covariance of each pair of thresholds as a function 
of the direct indicator covariances at the thresholds and for the class that they define.  
There are K(K+1)/2 models, all defined by indicator covariances, which can be 
efficiently modelled by maximum likelihood and where: 

)()();();(E);(),;(Cov),;( '''' kkkkkkkkI zFzFzhuIzuIzhuIzuIzzhC  (11) 

)();();(E);();(Cov);( 2
kkkkkkI zFzhuIzuIzhuIzuIzhC  (12) 

2
' )()()};();({E);();(Cov);( kkkkkkkI zFzFchuIcuIchuIcuIchC  (13) 

Note that, in general, Equation (10) defines 
a composite model for the indicator cross-
covariance even if the direct indicator 
covariances are simple models. There is no 
need to fit a specific model to the indicator 
cross-covariance as it is defined by the 
indicator covariances and Equation (10). 

Journel and Posa (1990) give the order 
relations for indicator covariances and 
indicator cross-covariances. The order 
relations follow from the fact that the non-
centred indicator covariances 

),;( 'kkI zzhK are bivariate cumulative 

distribution functions, with 
 )()(),;(),;( ''' kkkkIkkI zFzFzzhCzzhK  (14) 

The general order relation can be written as (Journel and Posa, 1990): 

zk

zk

zk'

zk' 

Z(x + h)

Z(x)

BA

DC

Fig. 1. General order 
relation
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),;(2);();( '' kkIkIkI zzhCEzhCzhC   (15) 

with )()(2)()( ''
22

kkkk zFzFzFzFE . This order relation is easily derived from 

Figure 1 in which the shaded area represents a bivariate cumulative distribution 
function, i.e. a probability which must be non-negative. Then 0CDAB , where 
each of the corners is a non-centred indicator covariance and 

0);(),;(),;();( ''' kIkkIkkIkI zhKzzhKzzhKzhK

from which (15) can be easily derived taking account of (14) and the assumption of a 
distribution-ergodic random function Z(u). Thus the non-centred indicator cross-
covariance is symmetric with respect to the thresholds. 

Substituting (10) into (15) gives: 

 )()()()(2);( '
22

' kkkkkI zFzFzFzFchC  (16) 

which can be written as: 
2

' )()();( kkkI zFzFchC  (17) 

As the term on the right hand side is always negative this inequality will be satisfied if 
the covariance of the class indicator is positive. This inequality shows that (10) 
conforms to the general order relation given by (15). 

3 Case study 

A realization of a non-Gaussian 
random function was generated on 
an 80 × 80 grid by sequential 
indicator simulation using the 
program sisimm (Deutsch and 
Journel, 1992). The thresholds, 
quantiles and covariance models 
used for generating the realization 
are given in Table 1 and a plot of 
the realization is shown in Figure 
2. The range increases as the 
quantile increases, implying that 
there is greater connectivity of high values than low values - the semi-variogram  range 
for the 0.9 quantile is four times larger than that for the symmetrical quantile with 
respect to the median (0.1). 

A sample of 60 randomly located data was drawn from the realisation; the values of the 
samples are represented in Figure 3. Maximum likelihood inference does not require 
Z(u) to be Gaussian; in fact in this application it is applied to binary indicator data. 
Nevertheless, using the likelihood of the multivariate normal distribution provides an 
efficient estimator of the indicator covariance parameters (Pardo-Igúzquiza, 1998). The 
procedure is also useful for model selection as shown hereafter. 

Threshold
 number 

kz )( kzF Range of isotropic
spherical covariance 
 model (length units) 

1 0.1 0.1 6 
2 0.5 0.3 8 
3 2.5 0.5 10 
4 5.0 0.7 12 
5 10.0 0.9 24 

Table1. Thresholds and indicator models used in 
generating the realization  shown in Figure 2 
using sisim (Deutsch and Journel, 1992). 
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Fig. 2. Simulated random field using indicator sequential simulation with the parameters 
given in Table 1. 

For a specified type of model (spherical, exponential or Gaussian) the program infers the 
model parameters of the indicator covariance for each threshold and all classes.  Eight 
models were assessed: (1) one isotropic model with no nugget; (2) one isotropic model 
with nugget; (3) one anisotropic model with no nugget; (4) one anisotropic model with 
nugget; (5) two nested isotropic models with no nugget; (6) two nested isotropic models 
with nugget; (7) two nested models: 
one isotropic, one anisotropic and no 
nugget; (8) two nested models: one 
isotropic, one anisotropic and a nugget. 

The number of parameters ranges 
from two for model (0) to seven for 
model (7) - nugget, sill of isotropic 
model, range of is otropic model, sill 
of anisotropic model, long range,
short range and anisotropy angle. The
most appropriate model could simply 
be chosen by inspection of the method 
of moments estimate of the semi-
variogram (Figure 4) for the direct 
indicator semi-variograms at the 
thresholds. Any of the models can be 
tried and the quality of the fit can be 
assessed by the value of the

Fig. 3 Pictogram of 60 sample values with 
locations selected at random from the 80 × 80 

grid of the simulated field.
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negative log-likelihood function (NLLF). However, the model becomes more flexible as 
more parameters are used, and a lower NLLF may be achieved by a meaningless over-
specification. A model selection criterion, such as the Akaike information criterion 
(AIC) (Akaike, 1974), provides a trade-off between simple models and more exact fits:

)(2)(2)( kLAIC

where: )(AIC  is the Akaike information criterion value for the -th model, 

 )(L  is the value of the negative log-likelihood function for the -th model, and 

 )(k  is the number of independent parameters fitted in the -th model. 

The model with the lowest )(AIC  value is chosen. 

Fig. 4 Experimental indicator semi-variograms for the five thresholds 

For few observations simple models should be chosen as, in general, there is insufficient 
evidence in the data for a model with a large number of parameters. In such cases using 
a large number of parameters amounts to modelling the fluctuations generated by 
sampling variability.

Table 2 shows the spherical model fitted by the program using the 60 observations 
shown in Figure 3 for model 1. In terms of the AIC values the best model is one 
isotropic structure with no nugget, which is the model used to generate the simulated 
realization. When comparing estimated parameters with those used in the simulation it 
should be remembered that only 60 randomly located data were used for the estimates 
and, as a consequence, they are subject to a high degree of sampling variability. 
Nevertheless, the ranges of the spherical models are quite well estimated. 
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Indicator covariances 

Threshold  Covariance parameters Anisotropy Model 
I AIC C0 C Range 1 Range 2 angle type 
1 57.440 0.0 0.149 5.883 5.883 0.0 1 
2 78.399 0.0 0.226 8.818 8.818 0.0 1 
3 77.549 0.0 0.226 9.336 9.336 0.0 1 
4 63.744 0.0 0.204 13.996 13.996 0.0 1 
5 -27.800 0.0 0.058 22.627 22.627 0.0 1 

Indicator  covariances for the indicator classes 

Threshold  covariance parameters Anisotropy Model 
I1 I2 AIC C0 C Range 1 Range 2 angle type 
1 2 44.997 0.0 0.136 6.228 6.228 0.0 1 
1 3 79.625 0.0 0.249 8.473 8.473 0.0 1 
1 4 83.529 0.0 0.249 12.098 12.098 0.0 1 
1 5 68.098 0.0 0.185 11.752 11.752 0.0 1 
2 3 64.314 0.0 0.214 7.782 7.782 0.0 1 
2 4 80.712 0.0 0.233 6.401 6.401 0.0 1 
2 5 82.137 0.0 0.241 9.336 9.336 0.0 1 
3 4 26.942 0.0 0.056 10.371 10.371 0.0 1 
3 5 74.151 0.0 0.202 9.336 9.336 0.0 1 
4 5 55.506 0.0 0.173 13.996 13.996 0.0 1 

Table 2. Results for one isotropic structure and no nugget, i.e. two parameters: variance 
(sill) and range. I is indicator number, model type 1 is spherical. 

From Table 2 and using (10) the models shown in Figure 5 are fitted to the indicator 
cross-covariances.  The example has been restricted to five thresholds to limit the size of 
tables and number of figures, but even for large numbers of thresholds the procedure is 
computationally efficient, e.g. the program generates the 120 models for 15 thresholds 
in a few minutes. 

4 Conclusions 

The indicator cokriging of local cumulative distributions is often avoided because of the 
burden of modelling a large number of indicator covariances and cross-covariances. The 
authors have described a procedure that bases the modelling of the indicator cross-
covariances on direct models of indicator covariances for the thresholds and for the 
classes defined by pairs of thresholds. The direct indicator covariances can be efficiently 
inferred and modelled by maximum likelihood which can be applied without assuming 
that the continuous random variable is multivariate Gaussian. 

A public domain program, available on request from the authors, allows the modelling 
of a wide range of structures, with or without nugget, isotropic or anisotropic, and with 
up to two nested models. Each structure may be spherical, exponential or Gaussian.
The AIC, provided by the program for each indicator covariance, can be used for model
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Fig. 5 Indicator cross-semivariograms and models fitted by (10) and the maximum 
likelihood estimates given in Table 2. Left to right and top to bottom: (a) thresholds 1 
and 2; (b) thresholds 1 and 3; (c) thresholds 1 and 4; (d) thresholds 1 and 5; (e) 
thresholds 2 and 3; (f) thresholds 2 and 4; (g) thresholds 2 and 5; (h) thresholds 3 and 4; 
(i) thresholds 3 and 5; (j) thresholds 4 and 5. 
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selection. A case study illustrated the methodology on a simulated realization of a 
random field. 
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Abstract. Due to the number of variables or of data, cokriging can be a heavy 
operation, requiring simplifications. Two basic types of simplications, with no loss of 
information, are considered in this comprehensive paper. The first type of 
simplifications consists, in the isotopic case, in reducing cokriging to kriging, either of 
one or several target variables, or of spatially uncorrelated factors. The example of 
variables linked by a closure relation (e.g. constant sum, such as the indicators of 
disjoint sets) is in particular considered. The other type of simplifications is related to 
some particular models that, in given configurations, screen out a possibly large part of 
data. This results in simplified and various types of heterotopic neighborhoods, such as 
collocated, dislocated, or transferred. 

1 Introduction 

Given a set of multivariate data, cokriging theoretically improves the linear estimation 
of one variable by taking into account the other variables. In particular, it ensures 
consistency between the estimates of different variables: the cokriging of a linear 
combination of variables equals the linear combination of their cokriging, which is in 
general not the case for kriging. For instance, the cokriged estimate of the difference 
between the top and the bottom elevations of a geological layer is the same as the 
difference of their cokriged estimates. Similarly, if we consider sets that correspond for 
instance to classes of values of a random function, cokriging ensures the relation: 

2 1 1 2( ) ( ) ( )[1 ] [1 ] [1 ]CK CK CK
Z x z Z x z z Z x z

which is clearly desirable. In addition cokriging is central in multivariable simulation in 
a Gaussian framework, where regressions are linear and where the absence of 
correlation is equivalent to independence. 

However, due to the ever increasing number of data (in term of data points or of 
measured variables), cokriging can become rapidly a heavy operation, hence the interest 
in looking for simplifications, either in the isotopic cases (when all variables are known 
at each data point), or in the heterotopic cases. In this comprehensive paper, two types of 
simplifications without loss of information (i.e. the estimation coinciding with full 
cokriging) are considered: isotopic cases where cokriging of some variable reduces to 
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its kriging (other variables being screened out), and cokriging neighbourhood being 
simplified by screening out some types of data. 

In the following, we will consider p variables Z1(x), …, Zi(x), …, Zp(x). For simplicity 
the variables are supposed second order stationary with simple and cross-covariances: 

( ) ( ) ( ), ( )
i ii i i

C h C h Cov Z x Z x h

( ) ( ), ( )
ij i j

C h Cov Z x Z x h

or (in particular when cross-covariances are even functions) intrinsic with simple and 
cross-variograms:

21
( ) ( ) ( ) ( )

2
i ii i i

h h E Z x h Z x

1
( ) ( ) ( ) ( ) ( )

2
ij i i j j

h E Z x h Z x Z x h Z x

The difficult problem of estimating consistently multivariate structures when all 
variables are not known at all data points is not addressed in this paper. Note that 
different choices may be possible for the variables (e.g. the indicators of disjoint classes 
of values of a random function, or the indicators of accumulated classes), that are 
theoretically equivalent. However one choice may be found to be easier to detect 
possible simplifications of cokriging.

2 Reduction of cokriging to kriging in isotopic cases 

2.1 SELF-KRIGEABILITY 

Given a set of p variables ( 2p ), one of the variables, for instance Z1, is said to be 

self-krigeable, if its cokriging coincides with its own kriging in any isotopic 
configuration (Matheron 1979, Wackernagel 2003). The necessary and sufficient 
condition for this is its cross-structure with the other variables being identical (more 
exactly, proportional) to its own structure, which is denoted (a little abusively when the 
proportionality factor is zero) as: 

1 1
( ) ( )

j
C h C h

or

1 1
( ) ( )

j
h h

for all j, and can possibly be checked using sample simple and cross-structures. (Note 
that the concept of self-krigeability is relative to a given set of variables: for instance a 
self-krigeable variable may not remain self-krigeable if new variables are added.) 
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Suppose now that, among a set of p variables ( 2p ), two of them are self-krigeable, 

say Z1 and Z2: 12 1
( ) ( )h h  and 

12 2
( ) ( )h h . Then two cases can be distinguished. 

Either they have the same structure (the cross-structure being proportional to these, not 
excluding it being zero): 

12 1 2
( ) ( ) ( )h h h

in which case they are intrinsically correlated, in the sense that the correlation 
coefficient between Z1(v) and Z2(v)  within a domain V is “intrinsic”, not depending on 
the support v nor on the domain V (Matheron, 1965; this should not to be confused with 
the intrinsic model based on increments). Or they have different structures, in which 
case the variables (or their increments in the intrinsic model) are necessarily spatially 
uncorrelated:

12
( ) 0    h h

Suppose now that all p variables are self-krigeable. We can group the variables that have 
the same simple structure (up to a proportionality  factor). Then all variables within a 
given group are intrinsically correlated. Moreover two variables from different groups 
are spatially uncorrelated. So a set of self-krigeable variables can be partitioned into 
groups of intrinsically correlated variables, each group having a different structure, and 
with no correlation between groups (Rivoirard, 2003; another proof is given in 
Subramanyam and Pandalai, 2004). In particular we have the two typical cases of 
reduction of cokriging to kriging: 
- when all variables are intrinsically correlated, all simple and cross-structures being 
proportional to a common structure, and kriging weights being the same for all 
variables;
- when they have no cross correlation. 

In the particular case of p self-krigeable variables being linked by a closure relation 
(such as concentrations, or such as the indicators of disjoint sets): 

1 2
( ) ( ) ... ( ) 1

p
Z x Z x Z x

or more generally being linearly dependent, separating the different groups yields: 

var[ ( )] var[ ( )] var[ ( )] 0
i i i

group i group group i group

Z x Z x Z x var[ ( )] 0
i

i group

Z x  for 

each group. 

Hence each group of intrinsically correlated variables is closed. Note that, in the case of 
the indicators of disjoint sets partitioning the space, there can be only one group, since 
these indicators are necessarily correlated. So if the indicators of disjoint sets are self-
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krigeable, their cross and simple structures are proportional to a unique structure (which 
corresponds to the mosaic model with independent valuations, Matheron (1982)). 

Linear dependency between variables is not a problem for defining cokriging (e.g. as a 
projection). The cokriged value is perfectly determined, but in the isotopic case, the 
cokriging system is singular and weights are not all uniquely defined. So it is interesting 
to remove (at least) one of the variables. Providing that linear dependency vanishes, 
cokriging does not depend on the choice of which variables are removed. However some 
choices may be better than others, in term of simplification of cokriging. Suppose that p-
1 out of a set of p variables are self-krigeable, say Z1, …, Zi, …, Zp-1.  If these p-1
variables are intrinsically correlated, then all p variables are intrinsically correlated and 
for each variable, cokriging reduces to kriging of that variable. But suppose now that 
there is more than one group of intrinsically correlated variables in the p-1 variables 
(which cannot be the case for the indicators of disjoint sets). Then the last variable: 

1 2 1
1 ...

p p
Z Z Z Z

which is necessarily correlated to at least some of the p-1 variables since: 

var cov( , ) 0
p p i

i p

Z Z Z

cannot be self-krigeable: as groups are uncorrelated, the cross-structure with each group 
is proportional to the structure of the group, and so these cross-structures cannot all be 
identical (they are either different, or possibly equal to zero but only for some of them). 
Then cokriging is simplified by kriging the p-1 self-krigeable variables, and deducing 
the estimation of the last one. 

2.2 FACTORIZATION 

Up to now, we have considered simplification of isotopic cokriging resulting from initial 
variables being self-krigeable, which can be detected directly from the observation of 
simple and cross-structures. We will consider now an extension through the use of 
factors.

2.2.1 Model with residual 

If we consider a set of p = 2 variables Z1 and Z2, with Z1 being self-krigeable: 

12 1
( )  ( )h a h

the residual of the linear regression of Z2(x) on Z1(x) at same point x:

2 1
( ) ( )  ( )R x Z x a Z x b
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(by construction with mean zero and uncorrelated to Z1(x) at same point x) has no spatial 
correlation with Z1. In this model of residual, or “Markov” type model (Journel, 1999; 
Chilès and Delfiner 1999; Rivoirard, 2001), the variable Z2 is subordinated to the master 
variable Z1:

 Z2(x) = a Z1(x) + b + R(x) 

The model is factorized into Z1 and R, which (being spatially uncorrelated) are self-
krigeable. So we have: 

1 1

2 1

CK K

CK K

CK K K

Z Z

R R

Z a Z b R

for any isotopic configuration. This model was illustrated in a mining case study by 
Bordessoule et al. (1989): this included the deduction of the self-krigeability of a 
variable from the observed simple and cross-variograms, the analysis of the residual, 
and the cokriging, showing in particular that cokriging can be significantly different 
from kriging in practice, if there was any doubt. 

Note that if the structure of the residual is identical to this of Z1, all simple and cross-
structures are identical, so that Z1 and Z2 are intrinsically correlated. Then any variable 
can be taken as master. 

2.2.2 Intrinsically correlated variables 

If variables have simple and cross-structures proportional to a common structure (say a 
correlogram ( )h ), so do their linear combinations. So intrinsic correlation between a 

set of variables extends to their linear combinations. It follows that if two variables, or 

two linear combinations of variables, are uncorrelated at same point ( (0) 0
ij

C ), their 

cross-covariance is identically zero: 

 ( ) (0) ( ) 0
ij ij

C h C h

So, for intrinsically correlated variables, the absence of statistical correlation implies the 
absence of geostatistical, or spatial, correlation. As a consequence, any statistical 
factorization (eigen vectors, successive residuals, etc) of intrinsically correlated 
variables gives spatially uncorrelated factors (Rivoirard, 2003). Note that, while 
arbitrary or conventional in the sense they depend on the choice of the factorization 
method, these factors are objective, in the sense their values at a point where the 
variables are known, are determined. While factorisation is always possible when the 
model is admissible (exhibiting factors ensures the variances-covariances matrix to be 
valid), it does not provide simplification in isotopic cokriging, as all variables and linear 
combinations are self-krigeable anyway. 
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2.2.3 Linear model of coregionalization 

The linear model of coregionalization corresponds to a decomposition of structures into 
a set of basic structural components (e.g. describing different scales). The corresponding 
components of the variables for a given scale are intrinsically correlated (Journel and 
Huijbregts, 1978), and a factorisation of these ensures the validity of the model. 
However there is usually more factors than variables, and these factors have not an 
objective meaning. Factorial (co-)kriging, or kriging analysis, allows estimating 
consistently these, but does not simplify cokriging. 

2.2.4 Objective factors 

Cokriging can be greatly simplified when the variables are factorized into objective 
factors, for the knowledge of the variables at a data point is equivalent to the knowledge 
of factors. And since the factors are spatially uncorrelated, they are self-krigeable, 
yielding cokriging of all linear combinations, and in particular of the initial variables. 
Note that some factors can share the same structure (in which case these factors are 
intrinsically correlated and their choice is conventional). 

Of course a question is how to determine, if possible, such factors in practice. In general 
a statistical factorization (non-correlation at same point) does not yield zero cross-
correlation. The technique of min-max autocorrelation factors (Desbarats and 
Dimitrakopoulos, 2000; Switzer and Green, 1984) allows building factors that are not 
only uncorrelated at distance 0, but also at a distance chosen from sampling: then the 
lack of correlation must be assumed or checked for other distances. This reduces 
cokriging to kriging of factors, and in the gaussian case, multivariate simulation to 
separate simulations of factors. Another approach, seeking the absence of correlation 
simultaneously for all lags of variograms, is proposed by Xie and Myers (1995) and Xie 
et al. (1995). 

The absence of cross-correlation between factors for all distances also corresponds to 
the isofactorial models of non-linear geostatistics (disjunctive kriging, i.e. cokriging of 
indicators, being obtained by kriging the factors). 

3 Simplifications of cokriging neighbourhood in heterotopic cases 

3.1 DATA EXPRESSED AS INDIVIDUAL VALUES OF VARIABLES OR 
FACTORS

Simplifications coming from non spatially correlated variables are still valid in 
heterotopic cases, when data consist of individual values of these variables. For 
instance, if Z1 and Z2 are spatially uncorrelated, Z2 is screened out when cokriging Z1,
whatever the configuration. An exception must be noted, when uncorrelated variables 
have means, or drifts, that are unknown but related (Helterbrand and Cressie, 1994). The 
screen is deleted by the estimation of means which is implicitly performed within 
cokriging. We do not consider this case in this paper. Screen can also be deleted by data 
that do not consist of individual values of variables. If Z1 and Z2 are spatially 
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uncorrelated for instance, the knowledge of e.g. the sole sum Z1 + Z2 at a data point can 
delete the screen.

Similarly, the simplifications due to factorized models hold in heterotopic cases where 
data consist in values of individual factors. In the model of residual, with Z2

subordinated to master variable Z1, factors are Z1 and the residual, and simplifications 
hold providing that data can be equivalently expressed in term of Z1 and Z2, or of Z1 and 
R. This occurs when Z1 is known at each data point, for the possibly additional 
knowledge of Z2 at this point is equivalent to that of the residual. 

More generally the cokriging of a self-krigeable variable reduces to kriging of that 
variable, in heterotopic cases where it is known at every data point (Helterbrand and 
Cressie, 1994), for the possibly available other variables at these points are screened out. 
Of course it is not necessarily so in other heterotopic cases (this is why the definition of 
a self-krigeable variable assumes isotopy).

If the target variable is Z2, subordinated to one (or possibly several) master variable Z1

informed at all data points, its cokriging at any target point is simplified: 

2 1

CK K KZ a Z b R

where Z1 is kriged from all data points and R from only the data points where Z2, or
equivalently R, is known. If Z1 is known at any desired point, so in particular at target 
point, we have: 

2 1

CK KZ a Z b R

and cokriging reduces to kriging of the residual (Rivoirard, 2001). Then cokriging is 
collocated, making use of the auxiliary variable only at target point and at points where 
the target variable is known, not at other data points. In other models, the residual R is 
spatially correlated to the auxiliary variable Z1. Then, the auxiliary variable Z1 still being 
supposed known at all desired points, the advantage of collocated cokriging is to be 
more precise (in term of estimation variance) than kriging the residual, for it 
corresponds to cokrige this residual from the same data. However, by using a collocated 
neighbourhood, both collocated cokriging and kriging of the residual result in a loss of 
information compared to full cokriging, when the residual is spatially correlated to the 
auxiliary variable, i.e. when the cross-structure is not proportional to this of the auxiliary 
variable.

3.2 OTHER SIMPLIFICATIONS OF NEIGHBOURHOOD 

Consider for instance the case where the cross-structure is proportional to that of the 
target variable, not of the auxiliary variable, i.e. the target variable is the master variable 
Z1. In the case the residual is pure nugget, knowing additionally Z2 at a Z1 data point 
corresponds to knowing the residual. Being uncorrelated to all data and to the target, this 
is screened out in any Simple Cokriging configuration, and the neighbourhood is 
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dislocated, making use of the auxiliary variable only at target point (if available) and 
where Z1 is unknown. In Ordinary Cokriging, the Z2 values where Z1 is known are not 
screened out for they participate to the estimation of the Z2 mean, but all receive the 
same weight, which also simplifies cokriging. 

Such simplifications of the cokriging neighbourhood are studied in detail by Rivoirard 
(2004), where a number of other simplifications are listed (with possible extensions to 
more than two variables). In particular (assuming target is unknown): 
- If the target variable is master and has a pure nugget structure, it is screened out 

from Simple Cokriging where known alone, in the case the auxiliary variable is 
available at target point; else all data are screened out. 

- If the target variable is subordinated to an auxiliary nugget and master variable, this 
last is screened out where known alone, except at target point if available, in any 
Simple Cokriging configuration. 

- If the target variable is subordinated to an auxiliary master variable with a nugget 
residual, it is screened out from Simple Cokriging where the auxiliary variable is 
known (neighbourhood being transferred to the auxiliary variable for common data 
points); if additionally the auxiliary variable is available at target point, all data 
except this are screened out from Simple Cokriging. 

4 Conclusions 

In this paper, different simplifications of cokriging have been finally considered: 
- cokriging reduced to kriging for a self-krigeable variable, in isotopic cases or when 

it is known at all data points; 
- cokriging obtained from the kriging of spatially uncorrelated variables or factors 

(e.g. residuals), in isotopic cases or when data consist of individual values for these 
factors;

- screening out of some type of data in the neighbourhood, in some particular models 
with residual where master variable or residual are pure nugget. 

Some of these simplifications, in given configurations, can be directly deduced from the 
observation of the simple and cross-structures of the variables (self-krigeability, intrinsic 
correlation, model with residual). Other simplifications depend on the possibility of 
building objective factors that are not cross-correlated. An open question is how to 
measure the efficiency of the simplifications for a possible departure from the 
assumptions.
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EFFICIENT SIMULATION TECHNIQUES FOR UNCERTAINTY

QUANTIFICATION ON CONTINUOUS VARIABLES: 

A process preserving the bounds, including uncertainty on data, uncertainty on 

average, and local uncertainty 

BIVER P.
TOTAL SA 
Centre Scientifique et Technique Jean Feger 
Avenue Larribau 
64000 Pau, France 

Abstract. In the petroleum industry, the standard Monte Carlo technique applied on 
global parameters (rock volume, average petrophysics) is often used to evaluate 
hydrocarbon in place uncertainty. With the increasing power of computers, these 
methodologies have become old fashioned compared to geostatistics. However care 
must be taken in using the latter blindly; multiple geostatistical realisations do not cover 
a reasonable uncertainty domain because of undesirable effects. For instance: a net to 
gross map with a small variogram range tends to reproduce the prior mean over the 
domain of interest even if this prior mean is established on a small data set; uncertainty 
on the data themselves may produce values outside the prior distribution range; more 
over the alternative data set may be biased comparing to initial prior distribution.
In this paper, we present a fully automatic process based on the classical normal score 
transformation which is able to handle, in a non-stationary model, the following 
characteristics:

- uncertainty on the data set (with systematic biases) 
- uncertainty on the prior mean 
- local uncertainty 
- preservation of bounds defined on the prior model 

An example is given on a real field case in the framework of net to gross modelling. The 
beta law is used in order to provide high frequencies observed at the bounds (0,1); the 
robustness of an automatic fit for this distribution type is highlighted in order to adjust a 
non-stationary model on the data set. All aspects described above have been handled 
successfully in this non-stationary context; and the ensemble of realisations reproduces 
rigorously the prior distribution. The balance between local uncertainty and global 
uncertainty is provided by the user; consequently the volumetrics distribution are easily 
controlled. A final comparison with the classical geostatistical workflow is provided. 
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1 Introduction 

A continuous variable has to be depicted with a complete probability density function; it 
could be a non parametric density function issued from smoothed histogram (when a 
large number of data are available) or a parametric model fitted to the noisy 
experimental histogram; for instance: a porosity histogram is often calibrated with a 
Gaussian model, but for a net to gross histogram the beta distribution can be more 
appropriate.

Except for the Gaussian model, the assumption of kriging requires a normal score 
transform to process the data and build a random field; the back-transform is 
subsequently applied to come back to the real variable. 

The motivation in the framework of multiple realisations is to incorporate the 
uncertainty on data and the uncertainty on the mean; and at the same time to retrieve the 
probability density function over all the possible realisations especially in the case of 
bounded models (uniform, triangular and beta distribution). This goal is achieved with 
the use of the normal score transformation, in a generalized context, coupled with a 
kriging of the mean. 

The uncertainty evaluation exercise may be performed in the appraisal phase of a 
reservoir; at this stage sparse data are available and it is not obvious that the prior mean 
(derived from data analysis) is perfectly well known. More frequently, this mean is 
uncertain and this uncertainty has a direct impact on hydrocarbon in place distribution. 
The quantification of the relative uncertainty on the mean can be assessed with a          
declustering formula.

Let us define, for the variable to simulate Z(x),

a relative dispersion of the mean in the real space nr tm /1/
with  - m the uncertainty on the mean in the real space 

- t the global uncertainty on Z(x)

 - n the number of independent data 

Let us assume a covariance model C(h) for Z(x); n can be derived from the ordinary 
kriging system if the covariance vector is set to zero (ordinary kriging of the mean m);

we have :
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2 Uncertainty on the mean 
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with i the kriging weights and  the Lagrange parameter 

It can be shown that: ).0(22 CmOK hence  = 1/n as 2)0( tC

If we draw a new mean value in the real space and if we want to preserve the 
distribution shape of the residuals, it is necessary to shift the distribution; as a 
consequence, the bounding values are not preserved from one realisation to another. An 
alternative procedure is to work in the normal score space and to consider that the 
standard normal distribution is in fact a sum of two random variables:

- the first random variable  characterises the uncertainty of the mean; it has an 
infinite spatial correlation, it is centred on zero and has a standard deviation of 

tmnr //1  (relative dispersion of the mean in the real space); 

- the second random variable characterises the uncertainty of the residuals; it has a 
limited spatial correlation, it is centred on  and has a standard deviation of 

nr

1
1

Each realisation (characterised by its ) is then back transformed with the global 
cumulative distribution of the variable. As a consequence, each realisation has a specific 
distribution according to the value of ; it is different from the initial global distribution. 
However, if we consider the ensemble of all these different realisations, the global 
distribution is retrieved. Despite of this property, we have to check that the uncertainty 
on the mean in the real space (induced by the variation of ) is consistent with the 
relative dispersion we want to impose. 

The procedure is illustrated on Figure 1. Two initial global distributions are considered; 
a beta distribution between 0 and 1 with shape parameters p = 0.7 and q = 0.4 (this 
model could be appropriate to represent the distribution of a net to gross) and a Gaussian 
distribution with mean m = 0.2 and standard deviation  = 0.06 (this model could 
represent a porosity uncertainty). The number n of equivalent independent data is set to 
4 (r = 0.5).   The updating of the distribution for each value of is represented on 
Figure 1; for the beta distribution, the asymmetry is gradually modified with  ; for the 
Gaussian case, the shape is preserved and the influence of  is only a resizing of the 
Gaussian curve. 

By construction, the global distribution is perfectly reproduced. The histograms of the 
mean values in real space are depicted on Figure 2. Concerning the mean, the 
distribution in the Gaussian case is of course an exact reproduction of the reference; the 
distribution in the beta case is slightly skewed comparing to the reference. Even with 
this high value of r = 0.5, the approximation of the mean dispersion is excellent.

If more asymmetric distributions are envisioned, the uncertainty on the mean could be 
asymmetric for high values of r but when r is decreased, it converges rapidly to the 
reference Gaussian distribution; this property is a consequence of the central limit 
theorem. Concerning the variance, the drawback of considering the variation of the 
mean in the normal score domain is that the variance is not constant for all realisations 
but perfectly correlated to the mean value. 

(2)

(3)
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The methodology can be extended in non-stationary cases. In these situations, the global 
cumulative distribution is substituted by a local cumulative distribution and, as a 
consequence, the normal score transform is locally adapted; however, in the Gaussian 
space, the simulation strategy with  is unchanged and still stationary. Its effect in real 
space is different, the uncertainty on the mean will be higher in the location where local 
cumulative distribution corresponds to a larger dispersion. In this case, the influence of 
the variable mean and variable trend dip (that can be major sources of uncertainty, see 
Massonnat, Biver, Poujol) are considered in one single step.

3 Uncertainty on the data 

The data used in practical applications are not always considered as “hard” data. Today, 
log analysts are able to quantify uncertainties on their data; two kinds of uncertainties 
can be considered: 

- measurements uncertainties linked to the resolution of logging tools, 
- interpretation uncertainties linked to the parameters of the interpretation law 

chosen to derive interpreted logs from raw logs (for instance the exponents of 
the Archie’s laws or the resistivity of connate water used to derive water 
saturation).

The first is mainly a noise on the data set, the second introduces a systematic bias from 
one data set to another; they are treated differently in the data set simulation procedure 
handled by the log analysts.

However, if systematic biases are suspected, an up date of the distribution is needed for 
each data set. Let’s assume that we have multiple realizations of the data set of interest, 
and that a histogram and a prior distribution model are derived from the ensemble of 
data set realizations. The suggested procedure of updating can be described as 
following:

- compute normal score transform G(xi) of the current data set realization xi i=1,n 
- compute the potential bias distribution in the normal score space with ordinary 

kriging of the mean for G(x), using previously mentioned declustering formula 
with the normal score transform variogram model ; 

- draw a value of  the bias ’ in its distribution with mean m ’ and standard 
deviation ’  ; 

- add this bias ’ to corresponding to the uncertainty on the mean with a fixed 
data set ; 

- compute a random field for residuals using the mean (  + ’) and the variance 
(1- 2  - 2

’)

With this procedure, the global unit variance of the normal score is split in the different 
categories of uncertainties that could affect the final map (residual uncertainty, 
uncertainty on the mean, uncertainty on data with bias).

The graphical illustration of the corresponding multiple realizations loop is depicted on 
Figure 3. 

(4)
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4 Specific aspects of beta distributions 

The beta model distribution (second type) is often used to describe volume ratios as net 
to gross, but also potentially effective porosities and effective irreducible water 
saturations. This model is interesting for the following reasons: 

- It has bounding values (min, max) ;
- the Gaussian model can be seen as a particular case of the beta model 
- depending of the shape parameters (p, q), a large variety of behaviour can be 

described (see Figure 4) 

The corresponding distribution law is given by: 
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In this model,  is the gamma function; p and q the shape parameters; they can be 
derived from the mean m and variance 2, assuming that bounding values (min, max) are 
fixed and known: 
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This relationship allows us to estimate a first guess for fitting the beta law with 
experimental value of mean and variance. Moreover, in a non-stationary case, a local 
updating of the shape parameters can be performed from the local mean and variance. 

5 Practical case study 

All the previous concepts have been used to simulate petrophysical attributes (net to 
gross, porosity, irreducible water saturation, log Kh, and Kv/Kh ratio) in a carbonate 
platform reservoir sampled in the hydrocarbon pool with 19 wells.

In this reservoir, five environments of deposition have been distinguished; moreover, the 
statistics of the net to gross values are different in each of the 15 layers of the model. 
The corresponding number of fit to achieve is large (450) and cannot be done manually.

The fit of a non-stationary beta law model is performed in two steps: 
- computing a vertical trend of mean and standard deviation for each facies, 
- derive the shape parameters p and q from local mean and standard deviation using 

formula (6). 

(5)

(6)
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An example of a geostatistical simulation based on this non-stationary model is depicted 
on Figure 5 (net to gross visualization regarding facies map) and Figure 6 (comparison 
of statistics between simulation and data) 

Hence, the relative uncertainty on the mean values are estimated from the declustering 
formula (2) using a variogram of 500 meters. This relative uncertainty depends on the 
facies (some facies are more frequently observed than other) and varies from one 
variable to another (some variables are less sampled that other, for instance effective 
water saturation is less sampled than net to gross); for net to gross r = m/ t is between 
0.07 and 0.17 (from offshore to upper shoreface facies), for water saturation r = m/ t is 
between 0.08 and 0.22 (from offshore to upper shoreface facies). 

Alternative data set have been produced from a log data uncertainty study. 
Unfortunately, the systematic bias which exists from possible alternative interpretations 
have not been correctly represented; to illustrate however the procedure, another 
example with alternative data set have been generated.

The complete simulation loop process (remember Figure 3) has been used to define 
uncertainty on volumetrics; it has been compared to the standard case (multiple 
realizations without uncertainty on data and without uncertainty on means) and to an 
intermediate case (multiple realizations without uncertainty on data and with uncertainty 
on the mean). 

The volumetrics results are provided on Figure 7. It tends to illustrate that the 
uncertainty on data are the key uncertainty for this practicle case. This is a consequence 
of the systematic bias affecting the data; on this mature field, the hydrocarbon pool is 
controlled by wells and, as a consequence, the uncertainty on mean and the uncertainty 
on residuals have a small impact on volumetrics. This conclusion is not obvious for 
reserves and production profiles which are more dependent of local heterogeneities.

6 Conclusions 

Uncertainty quantification for hydrocarbon in place evaluation is a frequent exercise in 
oil industry, this paper has illustrated the possibility of using a geostatistical workflow to 
achieve this goal. This is not the standard multiple realisation loop frequently observed 
in commercial software; the suggested procedure involves uncertainty on the 
distribution model itself, coupled with an uncertainty on conditioning data. Through the 
case study, it has been shown that this data and mean uncertainties aspect can be a key 
issue.

It may be argued that the well known technique of experimental design can be used as 
an alternative approach to treat uncertainty on data and mean. However, multiple 
realizations are needed to assess local uncertainties on hydrocarbon location; more over, 
hydrocarbon in place evaluation is not a CPU intensive computation; for all these 
reasons, it seems more appropriate to use Monte Carlo simulation to explore 
exhaustively the uncertainty domain instead of focusing on a limited number of cases 
with experimental design. 
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Figure 1: histogram of local values for extreme realisations according to the mean. 

 

Figure 2: histograms of the means for the ensemble of realizations. 
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Figure 6: realization statistics versus data statistics, case study, quality control of the 
model.

Figure 7: hydrocarbon in place distributions, comparison of runs with different 
uncertainty sources. 
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Abstract. Approaches to modelling using higher order statistics from statistical 
mechanics and image analysis are considered. The mathematics behind a very general 
model is briefly reviewed including a short look at entropy. Simulated annealing is 
viewed as an approximation to this model. Sequential simulation is briefly introduced as 
a second class of methods. The unilateral model is considered as being a member of 
both classes. It is applied to simulations using learnt conditional distributions. 

1 Introduction 

For certain problems the entity to be predicted is a non linear function of some poorly 
known control variable. An example is prediction of flow behaviour in an oil reservoir 
which involves solving differential equations which are highly non-linear with respect to 
the spatial distribution of permeability. When the control variable may be modelled 
stochastically then the accepted practice is to generate several realizations and make 
predictions by using the distribution of results found by applying the function to each. 
Assuming that the nonlinear function adequately captures the physics, then our attention 
turns to seeing if the stochastic modelling adequately captures the geology and to 
inquire which parts of the geology are relevant for the entity to be predicted.

Two principle methods have been used for simulation, methods based on variograms 
and object models (although see Tjelmeland and Besag, 1998, for a Markov Random 
Field approach). The former has tended to focus on simplicity and ease of well 
conditioning, the latter on geological realism and connectivity. Recently there has been 
an increase in interest in methods using higher order statistics. There has been some 
controversy about whether a random function necessarily exists which satisfies these 
higher order statistics. This paper briefly reviews relevant results from statistical 
mechanics and image analysis, stating existence results and considering a rigorous 
general model capable of handling complex higher order statistics. A popular method 
for using higher order statistics is based on a sequential simulation algorithm (e.g. 
Strebelle, 2002). This is briefly considered in section 3, which, it should be noted is 
largely independent of section 2 apart from questions of existence. A unilateral model is 
a simple special case which is both a Markov random field and yet may be simulated 
sequentially. For a seemingly non symmetric model it gives surprisingly good results.
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2 Review of results from Statistical Mechanics 

2.1 THREE VIEWPOINTS 

Suppose we are interested in building stochastic models of a discrete variable (e.g. 
facies for a petroleum reservoir model) satisfying some vector of statistics  (with given 
explicit values of - possibly calculated from a training image). Therefore the result of 
a calculation on a realisation of the model should match these statistics in some sense. 
The types of calculations (called the interactions) that may be used are now defined. 
They are very wide in scope. Let the grid on which we want to simulate.  First we 
allow potentials acting on finite subsets of by

 Rdiam(X)X(X)

(

aXX
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The third point says that there is a range R such that the potential acting on a subset 
bigger than R takes the value zero. The sets for which takes non-zero values are called 
cliques. This restriction can be weakened and is weakened in many of the references 
given in this section. Then an interaction for is defined as

X

X )1()(

The statistics that we calculate and compare to the given statistics are just a normalised 
version of this calculated on a realisation I(x)

X
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1

A couple of examples of interactions are 

a) Consider to be the set of pairs of points x1 and x2 separated by a vector h. In a 
two facies case, let I(x) be the indicator function for one of the facies. Define a 
potential by 0)(h),I(x)(andif)( 0i2

1
0 XxIXX i

 for any 

other type of set X. The associated statistic is then just the variogram at lag h. 
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b) Suppose I(x) is a facies model and a permeability value is assigned for each 
facies. Let X be a set of radius R and let k be the effective permeability 
calculated in X. Let the histogram of effective permeability for sets of size X be 
split into n bins. Define potential X)=1 if k falls in bin i, and X)=0
otherwise. The set of interactions { } simply records the observed histogram 
of effective permeability for the realisation I.

Our objective will be to be able to do simulations using interactions like n by
trying to condition to prescribed values of the statistics (where possible). As we can see, 
the types of interaction and hence statistics that we can work with are very general. 
From now on we will assume that we are working with vectors of interactions and when 
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we refer to an interaction we will generally mean a vector n). We now look 
at three formulations of this problem which will turn out to be equivalent. 

Microcanonical ensemble: Assume that an interaction is given. This gives rise to 
statistics when calculated on a realisation. Let us think of as being the set of all 
possible realisations on the grid So if there are n possible facies, then n

(Actually, we think of the grid as infinite in size in the microcanonical perspective). Let 
be the subset of taking the statistics . So this subset contains all the possible 

realisations with calculated statistics equal to . Some values of  give large 
subsets, while others might give small or even empty subsets. The latter correspond to 
cases where the interaction is not capable of producing the desired statistics. As a simple 
example, suppose we tried to match h)=-1 in the first example above. Since the 
variogram can only be positive, the set must be empty. More generally, use of 
many components in an interaction could lead to contradictions between the components 
and so to empty subsets.  The ideal simulation method for a given set of statistics 
would be to sample uniformly from the set Each realisation from takes the 
same probability but the probability may change for different outcomes n. As such 

splits into equivalence classes based on the statistics .

The Gibbs Distribution: In most cases we need to work on a finite grid. The statistics 
that we calculate on a finite realisation I) will therefore have some statistical 
fluctuations. We should not expect to match our input statistics exactly. The next best 
thing would be to match them in expectation. The probability distribution that we will 
choose to work with, call it p, should satisfy

)3()]([E Ip

Defining dIIqIqqs )(log)()( to be the entropy of a distribution q, we will choose

the distribution p with maximum entropy, that is, )(argmax
q

qsp  subject to the 

constraint (3). Then p follows a Gibbs distribution (see Jaynes 1957, Zhu et al. 1997) 
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where  are the Lagrange multipliers and Z (  is a normalisation to ensure the 
probabilities add to 1. The angle brackets signify scalar product. The  are found by 
satisfying equation (3). This is usually a complicated and iterative process. 

Markov Random Field: Suppose that we have a neighbourhood system
iiN , then 

I(x) is a Markov Random Field (MRF) for the neighbourhood system if

)5(]|[]|[ iiii NIPIIP

where iI means all points on the grid except point i. That is to say, the conditional 
distribution at point i given all other points only actually depends on the values in the 
neighbourhood of i.
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2.2 EQUIVALENCE OF THE VIEWPOINTS 

These three viewpoints give an equivalent mathematical formulation for the problem of 
trying to produce realisations matching statistics . We don’t attempt to demonstrate the 
results here as the proofs are long and fairly technical. However we will try to convey 
the flavour of some of the concepts involved. The question of existence of a random 
function for an interaction  is treated rigorously in several texts by showing the 
existence of a Gibbs measure (e.g. Ruelle 1968, Georgii 1988). This Gibbs measure has 
the property that on any finite subgrid, given the values on the exterior of the subgrid, it 
reduces to the Gibbs distribution on the subgrid. The equivalence of the first and second 
perspective is called the equivalence of ensembles. The equivalence of the second and 
third is the Hammersley-Clifford theorem (see e.g. Moussouris 1974). One statement of 
existence of the random function is given in terms of a new definition of entropy. This 
definition appears different to the one previously given which was defined as an integral 
over all realisations using the probability measure of the random function. It is defined 
below in terms of the size of the set honouring the statistics. Again we take a lax 
approach to rigor in the following discussion. If is the set of realisations on the 
finite grid  taking the statistics we define 

)6(
)(log

lim);(s

to be the entropy function for the interaction The dependence on both and  might 
appear confusing, but by the latter we mean the type of calculation that is performed to 
the realisation while the former are the resulting statistics. We will usually drop the 
explicit reference to the interaction and just refer to s( . The existence theorem states 
that for the interactions that we have defined, this limit exists and takes values greater 
than -  for at least some values of (Ellis 1985). Moreover s is a concave function of 

. The definition of s shows us that the number of possible realisations taking statistic 

acts like )(~)( se for large grids.  The two definitions of entropy turn out to be 

equivalent (e.g. Ellis 1985). In fact the entropy s( is the maximum value that s(p)
attains when comparing over all distributions p that satisfy equation 3 (as )

It is important to note how the numbers of realisations depend on the entropy. Suppose 
we have two possible statistics  and  for the same interaction (concretely, if we 
think of our calculation of the variogram at lag h giving us two different numbers on 
different realisations). Suppose that s( >s( . Then the proportion of realisations that 

take value  is 1
1

1
))()(()()(
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eee

e . So the number of possible 

realisations taking higher entropy values grows exponentially higher than those taking 
lower entropy values.

However this does not yet account for the role of the interaction which supplies a 
probability distribution on . To see this we use another result (Ruelle, 1968). Starting 
from the Gibbs distribution perspective (equation 4), it can be shown that a convex 
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function defined below exists. It is called the density function in statistical 
mechanics

)7(
)(log

lim)(
Z

We can now calculate the probability of a statistic set Notice that the Gibbs 
distribution assigns the same probability to all realisations taking the same statistics

 Thus we have ,exp
)(

)]([
Z

P By taking logs and passing to the limit and 

using the density definition we get the probability rate function, r  (Wu et al. 1999) 
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We can see that the probability of taking statistic is asymptotically )(~)]([ reP
so that for large grids the Gibbs distribution samples uniformly from the set 

max where max= ))(,)((max s . We know that the entropy function is 

concave. If, furthermore, it is strictly concave then this implies that only one set of 
statistics attains the maximum of the probability rate function (Lanford, 1973 gives a 
sufficient criteria due to Dobrushin based on having sufficiently low values of ). In 
other words, the probability concentrates on one particular set of statistics (there is no 
phase transition in the language of statistical mechanics). It turns out that s and are
convex conjugate pairs (Lanford, 1973) and using this it is easy to show that for low 
values of  (high ‘temperature’) the probability concentrates on the class which has the 
highest entropy consistent with the interaction as measured by the entropy function s.

2.3 TWO CONSEQUENCES AND A SIMPLE EXAMPLE 

Example: This is a simple example due to Lanford, 1973 in the context of a digression 
on sums of independent variables. It was instrumental in the reinvigoration of work on 
the theory of large deviations. Consider a random function that assigns 0 or 1 with equal 
probability to each point on the grid independently of the value at other points and a 
potential function that assigns a value 1 to single points, 0 to anything else. Then the 
statistic of interest is )(1 xI , the mean value of the realisation. By applying the 

binomial theorem and Stirling’s formula and taking limits, it can be shown that the 
entropy is 

otherwise

102log)1log()1(log
)(s

This takes its maximum value, 0, at = 0.5 as expected. So ‘virtually all’ realisations 
(elements of ) have a mean value of 0.5. Other mean values are possible (between 0 
and 1), but in the case of iid random variables they will almost never occur. Since s
takes the value -  outside [0,1] we get the (obvious) result that the mean cannot take 
values outside this interval.

Next we look at two consequences:
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1) Calculations made on realisations from the same equivalence class give
the same results 

2)  A quick look at ‘Simulated Annealing’.  

In the petroleum industry it is quite common to build a reservoir model based on some 
input parameters and test the results or make predictions based on calculations that were 
not explicitly controlled by the input set. For example we might build a model based on 
variogram information and validate the model by comparing upscaled permeability 
values with the observed histogram of upscaled permeability (found by interpreting well 
test for example). For our purposes we will call such a calculation an observable o and 
demand that the observable satisfies the same constraints as an interaction (e.g. effective 
permeability calculation over finite regions is an observable as in the earlier example). 
We know that the realisations of our model will generally sample from max where
the statistics maximise the probability rate function. We ask how this set decomposes 
according to the possible values that the observable o might take. Well, for each value of 
o there is a subset of max call it max,o Consider the entropy function for the 
extended interaction max,o It must attain it’s maximum for some value of omax. With 
no phase transition this value is unique. By the exponential growth argument used 
earlier, the volume max,omax  is far larger than that for other values of o, so 

max is dominated by max,omax  and s( max s( max, omax In other words for 
any interaction and an arbitrary observable the realisations will produce the same 
statistics for the observable with very high probability.  These typical realisations have 
maximum entropy with respect to the extended interaction. Other atypical elements of 

max have lower values of the entropy of the extended interaction (‘by chance’ they 
have some extra information about o) and are comparatively rare so are unlikely to be 
sampled. So, if two realisations do not have the same statistics on some o then it is 
unlikely that they are from the same equivalence class.

As mentioned before, the Gibbs distribution, given by (4), offers a rigorous method of 
sampling from a distribution taking a set of statistics. It does so by first finding a set of 
weights  for the interaction satisfying the constraints (3). Hence the statistics are 
satisfied on average. This can be an involved and computer intensive calculation. We 
now compare this to an application of simulated annealing that has been made regularly 
in the geostatistics literature, e.g. Deutsch and Journel, 1998. In this method a new 
Gibbs distribution is proposed (for each value of T).
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Here ||.|| is some distance measurement from to For a fixed value of T, an MCMC 
technique like the Metropolis algorithm can sample from this distribution. As T 0 the 
distribution becomes concentrated on those realisations taking the value , in other 
words on the set Simulated annealing reduces T slowly to ensure that the 
sampling is uniform on For large grids, where the statistical fluctuations on the 
statistics are small, we can see that this can be viewed as a direct attempt to sample 
from the microcanonical ensemble. (Technically, we would have to prove that a limit 
exists as .This is not done here, but it appears to resemble typical statistical 
mechanical proofs.) A few comments can be made. 
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1) This will give essentially the same result as sampling from the Gibbs 
distribution for large grids 

2) It can be viewed as an approximate sampling for large grids from the Gibbs 
measure whose local conditional distributions are the Gibbs distributions (4). In 
other words, it makes an approximate sample from a regular, well defined 
random function. 

3) For a particular set of data which we consider to be associated to an 
interaction , there is no guarantee that is nonempty (we have a 
theorem which says that for any linearly independent set , there are some
statistics  for which is nonempty). If empty, s( will take the value -
in equation (6) and we say that the statistics are incompatible with . In this 
case faster than exponentially. This will manifest itself as an 
inability to match the input statistics to a reasonable degree of accuracy, even 
for relatively small images. So if the method is producing realisations matching 
the statistics, the grid is large enough and the annealing schedule is slow, then 

is non empty and this method should give reasonable results.

3 Sequential Simulation 

3.1 GENERAL METHOD 

A more detailed analysis of the algorithms in this section is currently in preprint form. 
The sequential simulation algorithm as proposed in the geostatistics literature, e.g. 
Deutsch and Journel, 1998, works by assuming known the conditional distribution of a 
point, x, given any number of neighbours that have been observed within a fixed search
neighbourhood xn of the point. The available neighbours have either been previously 

simulated or are initial conditioning data. We will call these available neighbours the 
parents of x and label the parents as x  and refer to the conditional distribution 

as )|( xd xf . The subscript d alludes to the fact that we are driving the simulation by 

claiming knowledge of some conditional distributions. These distributions may come 
from an analytic model such as the Gaussian, or they may be empirical distributions 
coming from some training data. We do not assume, and it is not generally the case, that 
the simulated model will reproduce all of these statistics. The sequential method then 
does a simulation on a finite grid by following a path p through the points on the grid. 
The result follows the distribution (the resultant model does not have the subscript d
however it is labelled by p to indicate dependence on the path) 
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Of course, a restriction on this model is that each parent set x  must be known before 

simulation of x. It is straightforward to show that the conditional distribution is of the 
form in equation (11) and so depends on the parents of xi, pa(xi), the children of xi,
ch(xi), and the other parents of the children of xi. pa(ch(xi))
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This set of dependency points is always contained within the dependency
neighbourhood of xi, defined as )()()()( iiii xchpaxchxpaxd . Thus it is always 

possible to write

)12())(|()|( ii
p

ii
p xdxfxxf

So that we have a Markov Random Field. The dependency neighbourhood changes for 
each xi, so the result is not a stationary MRF. There are two straightforward ways to 
reintroduce stationarity; using a raster scan path which is the topic of the next section or 
using a random path as follows. Let P be a random path, that is, a random variable 
which ‘picks’ from the set of permutations of {1,…,N} uniformly. We now consider 

the simulation strategy of first picking a path at random and then doing sequential 
simulation. The distribution f P is a randomisation of that given in (10) 
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The distribution is now the same for all internal points on the grid. The model still does 
not reproduce all the input statistics of the driving distribution.

3.2 THE UNILATERAL MODEL 

This is a simple model (Picard, 1980) which has the advantage of being both a 
sequential algorithm and a readily parametrizable MRF at the same time. It reproduces 
its input statistics and can be simulated in one pass. This gives the advantage of good 
results (less ‘speckle’) and a fast algorithm. However, it does depend on initial 
conditions as we shall see. Let us consider a 2d example to simplify notation. For this 
model the parent set of any point x=(x1,x2) is chosen to be some subset 
of )and(or);,( 122 xaxbxbba . We assume that the same subset is always 

chosen so that the parent set x  = hx  for any h, a translation on the grid. A sequential 

simulation is made with these parent sets by starting at the top left and finishing in the 
bottom right. Equation (10) still holds to define the decomposition of the probability 
distribution. As before, the conditional distribution depends on the parents of xi, the 
children of xi and the other parents of the children of xi. This time however the 
dependency is the same for all points and the model may be represented as a stationary 
MRF (see the example below). Simulation of a unilateral model may be made by 
choosing some initial values along ‘the top’ of the grid and then simulating in a raster 
scan order. The fact that we have had to choose some initial values means that the 
method should be run for a while before it starts sampling correctly from the conditional 
distribution. An exact sampling, such as that proposed by Propp and Wilson, 1996, 
appears to be possible but in practice the ‘run in’ seems to be very short.

An example shows how we get from a representation of the type given by (10) to the 
Gibbs equivalent.

Example: Consider a 2 facies model where each point x has three parents whose co-
ordinates relative to the point are (-1,-1), (-1,0) and (0,-1). Figure 2 labels these points as 
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Figure2. Labels for neighbours of x; red
= parents; blue = children; yellow =
other parents of children 

well as the children and parents of children of x. Applying (11) we get (drop the d)

)14()9,6,|8()7,,4|9(),3,2|6()4,2,1|()|( xfxfxfxfxxf

Consider one of the 4 terms on the right, call it f(y|a,b,c), the 
distribution of y given 3 conditioning points. Apart from 
being a conditional distribution this is arbitrary. We now 
write a formula for its most general form. Since there are 2 
facies, the number of configurations of the conditioning 
points is 23=8. For each configuration we have to specify the 
probability that y takes the value 1 (p(0) = 1-p(1) gives the 
other value). Let us assume that f(y|a,b,c)>0 for all combinations of variables (this is not 
strictly necessary for unilateral process but is for general MRF). Then we can write f in 
the form )),,(exp(),,|( cbaycbayf where is an arbitrary function (because y can 

only take the values 0 or 1 and we only have to concern ourselves with 1 – note this 
number is not between 0 and 1, but that will be fixed by the normalisation). The most 
general function of 3 binary variables can be rewritten as

)15(),,( abcbcacabcbacba
by identification of terms, for example )0,0,0()0,0,(aa . Substituting these into 

(14) and throwing out terms that do not contain an x gives the final MRF result. 

)16()|( )}689478236124()783624()892614()694812()64()82()91({xexxf

This example shows that the unilateral model retains some anisotropy, for example there 
is no term with (3+7). However, by using larger neighbourhoods any desired terms can 
be included into the model and we can adequately model complex behaviour. Figure 3 
shows a training image and two unilateral simulations of a channel system. The image 
on the right used a neighbourhood consisting of 60 points. This would appear to 
necessitate learning 260 configurations for the conditional distribution. While this is true 
in principle, entropic reasoning tends to suggest that the number of configurations that 
actually occur is a very small fraction of this. This is not to say that the inference issue is 
easy. In fact it is the major problem facing techniques trying to use higher order 
statistics, but in this case we do get a reasonable result (the speckle on the right image is 
the onset of problems owing to neighbourhood size). Wei and Levoy, 1999 use a 
unilateral approach with image pyramids to reduce dimensionality.

Conditioning to data introduces some nonstationarity for all sequential simulation 
methods (conditioning data have no parents – and so have a different conditional 
distribution to other points). The unilateral method can be made to condition rigorously 
by using a MCMC on its equivalent MRF formulation. This reduces the efficiency of the 
unilateral method to that of a typical MRF. The unilateral method offers the possibility 
of starting with an approximate technique (for example, the algorithm looks to see if any 
conditioning data are children of the current point being simulated. If so, they are 
switched and used as parents of the current point). This approximate simulation may be 
improved by using several iterations of an MCMC algorithm if needs be. Figure 4 shows 
a conditional simulation using only the approximation technique and no MCMC. 
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Figure 3. On the left a slice through a boolean channel model. The center and right 
images are unilateral models with statistics learnt from the left image. The centre model 
uses a small neighborhood (24 points) while the right one uses 60 points. 

Figure 4. On the left, a slice through a Boolean model and 400 ‘observed wells’ (black 
and white dots) sampled from the model. The right hand model is a conditional 
unilateral simulation using the approximation method.
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BEYOND COVARIANCE: 

THE ADVENT OF MULTIPLE-POINT GEOSTATISTICS 

ANDRE G. JOURNEL 
Department of Geological and Environmental Sciences, Stanford CA 94305. 

Abstract. In any estimation or simulation endeavor there are two types of information, 
the conditioning data typically numerical, most often location-specific, and the structural 
model which relates deterministically or stochastically the conditioning data to the 
unknown(s). Adding conditioning data is valuable only inasmuch as the structural model 
that links them to the unknowns is accurate and reflects data redundancy. 
 Traditional (cross) covariances/variograms, being only 2-point statistics, are limited in 
the amount of prior structural information they can carry, in addition in 3D they are 
notoriously difficult to infer and model. In many applications, particularly those related 
to mapping of categorical variables, facies or rock types distributions, critical structural 
information can be obtained from training images drawn from prior expertise, outcrops 
or similar deposits. From such training images complex statistics involving jointly 
values at multiple locations can be extracted. Using these statistics may be preferable to 
letting the estimation algorithm impose its arbitrary and likely inappropriate version of 
the same statistics.

The recently introduced concept of multiple-point (mp) geostatistics allows a fresh 
methodological look at the general problem of numerical modeling under data 
conditioning, where the concept of “data” is now open to include structural information 
much beyond variogram models. Such structural data are often soft and represent a 
major source of uncertainty, which must and can be appraised through the consideration 
of alternative training images all consistent with the numerical data available. Training 
images return more of the modeling responsibility to the geologist, more generally to the 
physicist who can add interpretation and valuable expertise to the numerical data.

1 From kriging to simulation 

 Conditional simulation was introduced in the 1970’s, interestingly enough not to 
address uncertainty but as a remedy for the smoothing effect of kriging. It was 
understood that for many applications reproduction of the patterns of spatial variability, 
as reflected by the data then modeled through a variogram, was more important than 
local accuracy. Most of the ensuing developments in the next three decades related to 
faster and more flexible simulation algorithms, most notably sequential simulation 
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algorithms and object-based (Boolean) algorithms and their conditioning to diverse data, 
both hard and soft. 

The practice of simulations quickly revealed the practical limitations of the otherwise 
extraordinarily congenial Gaussian random function (RF) underlying most simulation 
algorithms. A single covariance model or matrix was not enough to characterize even 
the simplest curvilinear structure, any structure that did not display the maximum 
entropy characteristic of the Gaussian model, a property extraneous to the very concept 
of a geological structure. Any geostatistician could spot visually and immediately 
a map generated from Gaussian-related model, any geologist would judge it as relevant  
only for homogeneously  heterogeneous spatial distributions within well-defined homo- 
geneous zones. The concept of indicator RFs extended a little the practicality range of 
simulation: different categories or classes of a continuous variable could have different 
variograms. However, in addition to the burden of multiple variograms inference, 
indicator geostatistics suffered from embarrassing order relation problems, yet did not 
deliver the flexibility required.

Then came object-based simulations algorithms whereby parametric objects mimicking 
geological structures were dropped onto the simulation field then moved and morphed 
iteratively to honor the data. But parametric objects do not offer full flexibility: not all 
natural shapes can be approximated by simple parametric shapes, and strict conditioning 
to dense and diverse data was difficult. A new simulation paradigm was needed. 

2 From variogram to multiple-point statistics 

One reason for the staying power of variogram/covariance-based random function 
models could be the sense of objectivity one felt at estimating the structural model from 
actual data. Unfortunately, that sense is more illusion than reality. First, except for data-
rich fields, variograms are notoriously difficult to infer then model, to a point that, in 
petroleum applications for example where hard data are scarce, that task is often not 
even attempted: variograms are synthesized from expertise, distant outcrops or loosely 
related ancillary data such as provided by seismic surveys. Second, what really matters 
for simulation is the random function model adopted, more precisely its multivariate or 
multiple-point (mp) distribution, not its variogram which is but a two-point statistics; 
one notable exception is (precisely!) the Gaussian model. Different RF models sharing 
the same variogram model and honoring the same data values at the same locations 
could yield drastically different simulated realizations, see Figure 1. The variogram has 
little structural resolution, cannot distinguish vastly different patterns of heterogeneity. 
Consequently the variogram is also an incomplete measure of uncertainty; the major 
source of uncertainty does not lie in fluctuations of various conditional realizations 
sharing the same variogram model but in the choice of the generating RF model much 
beyond its variogram, see Caumon and Journel (2004). 

But the consideration of mp statistics raises the issue of inference. If variograms are 
already difficult to infer from actual data, there is no hope to infer even an elementary 3-
point statistics, let alone multiple-point statistics. Under stationarity, that inference 
would require availability of multiple replicates of triplets of data sharing the same 
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geometric configuration, that is the same pair of separation vectors (h1, h2), as opposed 
to a variogram requiring replicates of only doublets of data  sharing the same single 
separation vector h. One had to overcome the illusion of objectivity provided by direct 
inference of statistics and accept that multiple statistics could be inferred from training 
images (TIs), which in many practices was already done for the variogram. Inferring a 
variogram from a noisy experimental variogram cloud then accepting blindly the higher 
order statistics implicit to, say, a Gaussian RF model is no more objective than  inferring 
the same high order statistics from a visually explicit training image. A training image 
can be refuted by an expert geologist; the same cannot be said about a geologically non-
significant variogram model.

3 From mp statistics to direct probability inference 

Introduction of the concept of mp statistics and accepting that they could be inferred 
from training images led to the very demise of these statistics. In the first instance, why 
do we need a variogram? The variogram model is used to build the various conditional 
probability distributions from which simulated values are drawn. If 3-point, 4-point, mp 
statistics were available, one could derive from them better conditional probabilities, 
better in the sense that the resulting simulated values would reflect these higher order 
statistics in addition to the variogram. But as to infer these high order statistics from a 
training image why not infer from the same training image and directly the required 
conditional probabilities? Identifying conditional probabilities to conditional proportions 
read directly from the training image would shortcut completely the step of moments 
inference and modelling and that awkward step of kriging which relates the variogram 
model to the conditional probability. In practice, one would scan the training image for 
replicates of the multiple-point conditioning data event; these replicates would provide a 
distribution of the corresponding central training values; that distribution is then taken as 
the conditional probability. It can be shown that if a training image is considered a 
representation of an ergodic random function, its training proportions identify exactly 
the conditional probabilities that would be calculated from the experimental moments 
lifted from the same training image. If the conditional probabilities are available 
directly, why take the indirect and painful route of inferring all the relevant high order 
moments to reconstitute exactly the same probabilities through some kriging? 

This remarkable leap of thought was due to Srivastava (Guardiano and Srivastava, 
1992). Srivastava’s original implementation required, however, to scan the training 
image repetitively for each new unsampled location, an overwhelming cpu task if large 
fields with 106 to 108 nodes are to be simulated. Then came faster desktop computers 
with larger RAM and the contribution of Strebelle (2000, 2002). Strebelle suggested to 
scan the training image only once with a specific data template (size and geometry), 
record in RAM all training data events together with their central training values. The 
search tree data structure used for that record allows a fast retrieval of all required 
conditional probabilities. Strebelle and large RAM availability made the new paradigm 
of Srivastava practical.
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 Figure 1 gives three very different spatial distributions, yet sharing the same histogram 
(here a proportion) and, most significantly, approximately the same variogram. Thus any 
solely variogram-based simulation algorithm would fail to resolve the structural 
difference between these training images.  Figure 2 gives three conditional simulations 
using Strebelle’s snesim code, each drawn from a different training image (as given in 
Figure 1), but conditioned  to the same 30 data values and the same global proportion. 
Each mp-based conditional simulation reproduces fairly well its training image and, 
most significantly, the common variogram model even though no such model was ever 
input into the mp simulation code. The mp simulation algorithm also never used any 
kriging, although one could argue that the identification of the conditional probability to 
the training proportion amounts to solve a kriging system with a single (normal) 
equation, hence the name snesim (single normal equation-based simulation) given by 
Strebelle to his algorithm. 

Figure 1.  The need to go beyond the variogram.  The variogram model cannot resolve 
the 3 possible "truths" 

Figure 2.  mp simulations using the training images of figure 1.  They are conditioned to 
the same 30 samples and global proportion p=.28 

γ
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Figure 3 gives a mp simulation generated from a training image which is a realization of 
a variogram-based sequential Gaussian algorithm. Again no variogram model was ever 
considered, yet the mp realization generated succeeded to reproduce the training image 
variogram, thus proving that mp simulation could replace traditional variogram-based 
algorithms as long as the relevant training image is available. Because no kriging system 
had to be built and solved, the mp generation of that Gaussian realization was faster cpu-
wise than the generation of the training image using the traditional Gaussian sequential 
simulation algorithm. This remark points to the idea of a “universal” catalog of training 
images that would include all typical geological structures, a class of which being that of 
maximum entropy Gaussian-type structures. Once an appropriate training image is 
retrieved from that catalog, mp simulation with data conditioning could be lightning fast 
without the encumbrance of variogram modelling and kriging. 

Figure 3.  Pattern-based simulation of a continuous variable 

4 From point simulation to pattern simulation

Change of paradigm breeds accelerated advances. Since the introduction of the snesim 
algorithm by Strebelle, within a period of a few years, many other mp simulation 
algorithms have been developed, some already in a state of beta testing, Arpat and Caers 
(2004), Zhang et al. (2004). As for lifting from a training image probability distributions 
of central point values conditioned by a mp data event, why not lift probabilities of 
whole multiple-point patterns conditioned to the same mp data event? A pattern, that is a 
mp event, would be drawn from a certain class of training patterns and patched onto the 
simulated field with due consideration to conditioning data. 
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Pattern simulation is based on the same concept: infer distributions directly from 
training images shortcutting all steps of elementary statistics inference and 
reconstruction of conditional probabilities. Stochastic simulation becomes an exercise of 
image construction drawing from a set of training puzzle pieces:

1) training patterns are first classified in bins according to some 
similarity/distance criterion. Each bin is characterized by an average pattern 
called prototype. 

2) define a path (typically random) visiting all unsampled nodes of the field to be 
simulated.

3) at any location along that path, collect its mp conditioning data event, find the 
training prototype most similar to that mp data event, and draw a training 
pattern from that prototype bin. 

4) patch that pattern onto the simulation field overriding any non hard data, a hard 
data being either original data or previously simulated values marked as hard. 
All values of that pattern becomes conditioning data for calculating distances 
but only the central part of that pattern is marked as hard data never to be 
changed.

5) move to the next non hard data location along the simulation path and repeat 
the pattern simulation procedure until the path is completed. A simulated 
conditional realization has been generated. 

Figure 4 gives an example of such mp pattern simulation. At the top of the Figure is the 
training image, a binary image of dry soil cracks; 50 hard data are taken from that 
image. At the bottom of the figure are given 3 conditional simulations using the recently 
developed mp code filtersim (Zhang et al., 2004). These simulations honor exactly the 
50 data at their locations, and reproduce reasonably the training image patterns although 
with shorter less connected cracks, a generic problem associated with the Nyquist 
frequency limitation.

Figure 4. Three pattern-based conditional simulations 
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5 Issues and challenges 

mp geostatistics started by recognizing the limitation of the variogram/covariance tool 
which are mere two-point statistics. Next the value of prior structural information lifted 
from training images was recognized. mp higher order statistics much beyond the 
variogram could now be inferred, but then also and directly the conditional probabilities 
needed for simulation. Direct lifting of these conditional probabilities voids the need for 
inference of any other statistics, whether a variogram or else, and also voids the need of 
reconstructing the same probabilities by indicator kriging or any other algorithm. 

One could see a training image as the representation of an ergodic RF, or be bold 
enough to shed all probabilistic reference and take the training image for what it is truly, 
a repository of training patterns from which similar looking images anchored to prior 
data can be built. The puzzle reconstruction draws from a box with many bins, each bin 
filled with “similar-looking” patterns, the rule being that any pattern used is 
immediately replaced by a twin in its bin. From a given training image, for a given set of 
conditioning data, there are many alternative reconstructions possible: this is the within-
model uncertainty. Many alternative training images could be considered, which 
amounts to retaining different puzzle boxes and results in different sets of simulated 
images: this is the model uncertainty, typically much larger than any within-model 
uncertainty, Caumon and Journel (2004).

There are definite issues in how to select a training image type then building that 
training image if it is not already available in a catalog, but this is no different from 
choosing a variogram model and the RF spatial law implicit to any specific simulation 
algorithm. There is no escaping from adopting a RF model the very moment one draws a 
map or contour a line, even if this is done by hand. A training image allows utilizing 
much richer prior structural information, as could be obtained from experience, outcrops 
or analog fields. It would be foolish to ignore such valuable information, information 
that a mere variogram cannot carry.

Then there is the issue of model and data consistency. If the training image is 
inconsistent with the local conditioning data, and if the mp simulation algorithm freezes 
the latter, discontinuities will be simulated next to these data. Such discontinuities may 
not be spotted if there are few conditioning data. Indeed just about any structural model 
could be anchored to sparse data, the model uncertainty is then overwhelming, as should 
be expected. Figure 5 gives a large (5×105 nodes) 3D pattern-based simulation of a 
channel reservoir conditioned to a large number of well data: the result is impressive 
because the training image reflects accurately the heterogeneity patterns of the actual 
reservoir, in particular the vertical stacking of the channels. Figure 6 repeats that 
exercise but now using a poorer training image which fails to display the channel 
vertical stacking: that inconsistency with the well data leads to a much poorer simulated 
realization: the realization honors the well data but with discontinuities.
A maximum entropy structural model a la Gaussian or a la high nugget effect would be 
much more permissive as for data inconsistency thanks, precisely, to its high 
entropy/disorder which crowds data discontinuities. Such tolerance is, however, 
dangerous because it masks problems. 
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Figure 5.  3D pattern-based simulation with consistent data 

Figure 6.  Data inconsistent with the training image 

6 Conclusions

The inception of the multiple point concept has brought major changes into the way one 
sees spatial modelling. With the remarkable processing power now available on desktop 
computers, there is no more reason to ignore critical prior structural information brought 
by human expertise under the argument that it is subjective or “messy”, not delivered 
concisely through a few statistics. Just like the original development of geostatistics in 
the 1960’s was made possible by the availability of digital computing (variogram 
calculation and solving kriging systems), now is the time to graduate into massive 
processing of expert structural information which will tie the discipline of geostatistics 
increasingly more to image and computer sciences. 
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 A model should never take precedence on data, or analytical convenience on 
completeness of the model. Real phenomena can rarely be summarised into a few simple 
statistics (e.g., a histogram and a variogram), any complexity that matters must be faced 
outright calling on all sources of information available to model it. It is 
counterproductive to ignore expert interpretative data because they are soft. A variogram 
model delivers little, yet its inference from typically too few data makes it as soft as a 
well documented training image that carries much more valuable information. As any 
other data, training images are uncertain and can be considered as random variables; a 
distribution of alternative training images might be considered, thus adding an essential 
component of uncertainty to the final prediction. The implicit high entropy training 
image built in the traditional mapping algorithms is no less uncertain than the visually 
explicit training image provided by an expert geologist.

References

Arpat, B. and Caers, J., A multiple-scale pattern-based approach to sequential simulation, In Proc. of the 2004 
Banff Geostatistics Congress, Kluwer publ., (this volume), 2004 

Caumon. G. and Journel, A.G., Early uncertainty assessment: Application to a hydrocarbon reservoir 
development, in ibid, 2004 

Zhang, T., Switzer, P. and A. G. Journel, Sequential conditional simulation by identification of training 
patterns, in ibid, 2004 

Guardiano, F. and Srivastava R. M., Multivariate geostatistics: Beyond bivariate moments. In Geostat Troia 
1992, ed. Soares, Kluwer publisher, 1992 

Strebelle, S., Sequential simulation drawing structures from training images, unpublished PhD Thesis, 
Stanford University, 2000 

Strebelle, S., Conditional simulation of complex geological structures using multiple-point statistics,
Mathematical Geology, Vol. 34, no. 1, 2002, p. 1-22.,



 

 

 

 

 



NON-STATIONARY MULTIPLE-POINT GEOSTATISTICAL MODELS 

SEBASTIEN STREBELLE(1) and TUANFENG ZHANG(2)

(1) ChevronTexaco Energy Technology Company,
6001 Bollinger Canyon Road, San Ramon, CA 94583, USA 
(2) Department of Geological and Environmental Sciences 
Stanford University, Stanford, CA 94305, USA 

Abstract. During the last few years, the use of multiple-point statistics simulation to 
model depositional facies has become increasingly popular in the oil industry. In 
contrast to conventional variogram-based techniques such as sequential indicator 
simulation, multiple-point geostatistics enables the generation of facies models that 
capture key depositional elements (e.g. curvilinear channels) characterized by unique 
and predictable shapes. In addition, multiple-point geostatistics is more intuitive because 
the complex mathematical expression of the variogram is replaced with an explicit 
three-dimensional training image that depicts the geometrical characteristics of the 
expected facies.
In multiple-point geostatistics, the stationarity assumption that underlies the inference of 
a variogram model from sparse sample data is extended to infer facies joint-correlation 
statistics from the training image. A consequence of this assumption is that patterns 
extracted from the training image can be reproduced in any region of the reservoir 
model where the training image is thought to be representative of the geological 
heterogeneity. Yet actual reservoirs are generally non-stationary: topographic 
constraints, sea-level cycles, or changes of sedimentation sources lead to spatial 
variations of facies deposition directions and facies geobody dimensions. Three-
dimensional fields of location-dependent facies azimuth/dimensions representing those 
spatial variations are commonly estimated from well log and seismic data, or from 
geological interpretations based on analogs. This paper proposes a modification of the 
multiple-point statistics simulation program snesim to account for such non-stationary 
information.
In the original snesim, prior to the simulation, the multiple-point-point statistics inferred 
from the training image are stored in a dynamic data structure called a search tree.  In 
the presence of a locally-varying azimuth field, the range of possible azimuths over the 
study field is first discretized into a small number of classes. Then, the training image is 
successively rotated by the average value of each azimuth class and a search tree is built 
for each resulting rotated training image. During the simulation, at each unsampled 
node, multiple-point statistics are retrieved from the search tree built for the class in 
which the local azimuth falls, enabling the local reproduction of patterns similar to those 
of the corresponding rotated training image.  A similar process is proposed to account 
for a field of location-dependent facies geobody dimensions. The new modified snesim

program is applied to the simulation of a fluvial reservoir with locally-variable channel 
orientations and widths.
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1 Introduction 

Multiple-point geostatistics has emerged recently as a practical approach to characterize 
and model facies at reservoir scale (Strebelle et al, 2002). The first step of this approach 
is the construction of a three-dimensional training image describing the facies thought to 
be present in the study area. The training image captures the geometrical characteristics 
of each facies, as well as the complex spatial relationships among multiple facies. The 
training image is a purely-conceptual geological model; it contains no absolute location 
information and in particular, is not conditioned to any actual field data. In reservoir 
modeling applications, non-conditional object-based modeling techniques appear to be 
well-suited to create such three-dimensional conceptual models. The second step of this 
approach consists of inferring from the training image statistics on the joint-correlation 
of facies at multiple locations, and using these statistics to reproduce patterns similar to 
those of the training image while honoring hard and soft conditioning data.

The theoretical framework of multiple-point geostatistics was developed as early as 
1989 by Journel and Alabert and was revisited by Guardiano and Srivastava in 1993. 
The first practical implementation was proposed by Strebelle (2000), who introduced a 
dynamic data structure called a search tree, to efficiently store and retrieve all multiple-
point statistics inferred from the training image. During the last few years, multiple-
point geostatistics has been shown to overcome the major limitations of traditional 
facies modeling technologies: 

Multiple-point statistics (MPS) simulation enables improved modeling of 
curvilinear and large-scale continuous facies patterns, such as sinuous channels, 
relative to variogram-based techniques (Strebelle et al, 2002). In addition, the 
training image is much easier to analyze/discuss than a variogram model.
In contrast to object-based modeling techniques (Holden et al, 1996; Viseur, 
1997; Lia et al, 1998), MPS simulation is a very flexible data integration tool. 
In particular, MPS models honor all conditioning well data, i.e. reproduce at all 
well data locations the facies connectivity/geometry observed in the training 
image, with no limitation on the number of wells (Strebelle and Journel, 2001). 

One important assumption underlying the inference of multiple-point statistics from the 
training image and their reproduction in the MPS model is the stationarity of the field 
under study: facies relative proportions, geometries, and associations are expected to be 
reasonably homogeneous over the field. Yet, most actual reservoirs are not stationary. 
Local topographic constraints such as the presence of a salt dome, seal level cycles, or 
changes of sedimentation sources, lead to significant spatial variations of facies 
deposition directions and facies geobody dimensions.

In this paper, we first review the implications of the stationarity assumption in multiple-
point geostatistics. Then we propose modifying the MPS simulation program snesim

(Strebelle, 2000) to reproduce pre-defined non-stationary information such as locally-
varying facies azimuth and/or facies geobody dimension data. 
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2 Stationarity 

Geostatistics relies on the concept of Random Function. The Random Function 
represents the statistical model of spatial variability of some property over some study 
field. In traditional geostatistics, the Random Function model is generally limited to 
some one-point and two-point statistics moments, namely a cumulative distribution 
function and a variogram model. In multiple-point geostatistics, the Random Function 
model consists of the multiple-point facies joint-correlation moments that can be 
inferred from the training image. The inference of statistics representing the Random 
Function model requires some repetitive sampling. For example, a porosity cumulative 
probability distribution is typically inferred from the histogram of porosity data 
collected from all well logs available over the study field. However, when pooling 
sample data together into a single histogram, the modeler makes an assumption of 
stationarity: all porosity sample values are assumed to originate from the same unique 
population, regardless of their location in the reservoir. Another stationarity decision is 
commonly taken whenever a variogram is computed by pooling information at similar 
lag distances together into a single scatter plot.

In multiple-point geostatistics, the stationarity assumption carries over to higher order 
statistics: multiple-point statistics moments are inferred from training patterns present in 
the training patterns regardless of the location of these patterns in the training image. As 
a consequence, non-stationary features of the training image cannot be preserved in 
MPS models. Figure 1 shows a clearly non-stationary training image wherein ellipses 
are South West-North East-oriented in the left half of the image, and North West-South 
East-oriented in the right half. The resulting model generated by the MPS simulation 
program snesim displays a mix of ellipses oriented in both directions over the whole 
field.

Figure 1. Non-stationary training image (left), and resulting MPS model (right). The 
specific locations of the South West-North East and North West-South East-oriented 
ellipses in the training image are not preserved in the MPS model.

The non-stationary features of the training image are not captured in MPS models. 
Therefore, we propose using a stationary training image and applying rotation and 
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affinity transforms to the training image to reproduce non-stationary features to MPS 
models. Prior to that, the implementation of the original MPS simulation program 
snesim is briefly recalled. 

3 Multiple-point statistics simulation implementation 

The MPS simulation program snesim proposed by Strebelle (2000) is a pixel-based 
direct sequential simulation algorithm: all simulation grid nodes are visited only once 
along a random path and simulated node values become conditioning data for cells 
visited later in the sequence. Let S be the categorical variable (depositional facies) to be 
simulated, and sk, k=1…K, the K different states (facies types) that the variable S can 
take.  At each unsampled node u, dn denotes the data event consisting of the n
conditioning data S(u1)=s(u1)… S(un)=s(un), closest to u. The conditional probability 
distribution function (cpdf) at u is inferred by scanning the training image to find all 
training replicates of dn (same geometric configuration and same data values as dn), and 
identifying the conditional facies probabilities as the facies proportions obtained from 
the central values of the training dn –replicates. 

Instead of repeatedly scanning the whole training image at each unsampled node to 
search for training replicates of the local conditioning data event, Strebelle (2000) 
proposed storing ahead of time all conditional facies probabilities that can be inferred 
from the training image in a dynamic data structure called a search tree. More precisely, 
given a conditioning data search window W, which may be a search ellipsoid defined 
using GSLIB conventions (Deutsch and Journel, 1998), N denotes the data template 
(geometric configuration) constituted by the N vectors {h , =1…N} corresponding to 
the N relative grid node locations included within W. Prior to the simulation, the training 
image is scanned with N, and the numbers of occurrences of all training data events 
associated with N are stored in the search tree. During the simulation, at each 
unsampled node u, N is used to identify the conditioning data located in the search 
neighborhood W centered on u. dn denoting the data event consisting of the n
conditioning data found in W (original sample data or previously simulated values, 
n N), the local probability distribution conditioned to dn is retrieved directly from the 
above search tree; the training image need not be scanned anew.

Theoretically, a large data template N should be used to capture the large-scale features 
of the training image. However, such large template would increase dramatically the 
memory used to build the search tree and the cpu-time needed to retrieve conditional 
probabilities from it. One practical solution to capture large-scale structures while 
keeping the size of the data template N reasonably small (N 100) is to use a multiple 
grid simulation approach (Strebelle, 2000). In snesim, this approach consists of 
simulating a series of G increasingly-finer grids, the g-th (1 g G) grid comprising each 
2G-g-th node of the final (finest) simulation grid. After the data template 

N={h , =1…N} has been defined on the finest grid, its components h  are rescaled 
proportionally to the node spacing within the grid being simulated. Thus the rescaled 
data template N

g={h
g=2G-g

.h  , =1…N} is used to build the search tree and search for 
conditioning data when simulating the g-th grid. 
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In the next two sections, we show how rotation and affinity transformations can be 
applied to the data template N prior to building the search tree, to integrate location-
dependent azimuth and geobody size information into MPS models. 

4 Integration of azimuth data 

In this section, we first study the simple case in which the main direction of continuity 
of the facies geobodies is assumed to be constant over the field under study, but possibly 
different from the main direction of continuity of the training facies. Then we extend 
this technique to handle 2D or 3D fields of location-dependent azimuths.  Only azimuths 
defined in the xy-plane are considered in this section because, in practice, dip is typically 
taken into account by the layering of the stratigraphic grid in which the facies model is 
built.

4.1 CONSTANT AZIMUTH 

Consider the case in which the facies geobodies in the MPS model should have a 
constant principal direction of continuity, yet possibly different from that of the training 
image. Let  be the difference in degrees counter-clockwise between those two 
directions.

Given a training image and a data template N={h , =1…N}, Zhang (2002) proposed 
modifying the snesim algorithm as follows. First the search tree is built from the 
training image using N. Then, a new data template N( ) is created from N  by the 
following method: 

1. Rotate by  each single component h  of N.
In 2D, the coordinates (x ( ), y ( )) of the rotated component h ( ) are 
computed from the coordinates (x , y ) of the original component h as:
x ( )= x cos + y sin

 y ( )= - x sin + y cos
2. Relocate the rotated components h ( ) to the nearest nodes of the simulation 

grid currently simulated.
During the simulation, at each unsampled node, the rotated data template N( ) is used to 
search for nearby conditioning data, and the corresponding conditional probability 
distribution function (cpdf) is retrieved from the search tree, which was built using the 
original data template N.

However, as described in the previous section, snesim uses a multiple-grid simulation 
approach that consists of simulating a series of increasingly-finer grids. Thus, at the 
early stage of the simulation, the rotated components h ( ) are relocated to the closest 
nodes of some coarse grids, entailing drastic approximations regarding the actual 
locations of the conditioning data. Such approximations lead to the inaccurate estimation 
of facies probability distributions and the poor reproduction of training patterns. 
However, because the simulation grids used in snesim are regular Cartesian grids and 
the distance between nodes is the same along both x and y-directions, the components 
h ( ) of the rotated data template match exactly existing grid nodes for =0, 90, 180, or 
270 degrees. This is a property that we will use in the next sub-section. 
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An alternative approach consists of keeping the original data template N to search for 
conditioning data, but rotating that data template to build the search tree prior to the 
simulation. In this case, the rotated data template is built in a slightly different way than 
in Zhang’s method: 

1. Rotate by –  each single component h  of the original data template N.
In 2D, the coordinates (x (- ), y (- )) of the rotated component h (- ) are 
computed from the coordinates (x , y ) of the original component h as:
x (- )= x cos - y sin and :   y (- )=  x sin + y cos    

2. Relocate the rotated components h (- ) to the nearest nodes of the training 
image grid. When using snesim, the training image is assumed to have the 
same node spacing as the (finest) simulation grid. 

The resulting rotated data template N(- ) is used to build the search tree from the 
training image. The exact same result can be obtained by rotating the training image by 
, then building the search tree from that rotated training image using the original data 

template N. During the simulation, at each unsampled node, N is used to search for 
nearby conditioning data, and the corresponding cpdf is retrieved from the above search 
tree.

The most critical advantage of that new technique over Zhang’s original method is that 
the relocation of the rotated components h (- ) to the training image grid entails only 
minor approximations of the actual locations of the conditioning data, thus resulting in a 
reasonably good reproduction of the training patterns. As an application, this modified 
snesim program was used to model a horizontal 2D section of a fluvial reservoir. The 
training image depicts the prior conceptual geometry of the sinuous sand channels 
expected to be present in the subsurface (Figure 2). The size of that image is 
250*250=62,500 pixels, and the channel proportion is 27.7%. A non-conditional 
simulated realization was generated using the same direction of continuity as that of the 
training image (Figure 2), then two additional models were created using different 
arbitrary main directions of continuity: 20 and 50 degrees (Figure 3). All models 
reproduce equally well the patterns displayed in the training image.

Figure 2. Training image used for the simulation of a 2D horizontal section of a fluvial 
reservoir (left), and reference MPS model (right).
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Figure 3. Fluvial reservoir MPS models obtained with a 20 degree counter-clockwise 
azimuth difference with the training image (left), and a 50 degree difference (right).

4.2 LOCATION-DEPENDENT AZIMUTHS 

In reservoir facies modeling applications, it commonly is observed that the principal 
direction of continuity of the facies varies from one region of the reservoir to another. 
For example, topographic constraints, such as changes in the slope gradient, may lead to 
the formation of several sand fairways with different depositional directions. Data 
regarding such variations can be derived from different sources. In particular, local 
depositional directions can be obtained from geological interpretation (Harding et al,
this meeting), or can be computed from seismic data (Strebelle et al, 2002).

Suppose that local azimuths can be estimated at each location u of the reservoir, and that 
(u) denotes the difference in degrees counter-clockwise between the azimuth value 

estimated at node u and the azimuth of the (stationary) training image. Given a data 
template N, the method previously presented for a constant azimuth field can be 
extended to the location-dependent azimuth field (u) as follows:

1. Consider the range [ min, max] of all azimuth values estimated over the entire 
study field. Discretize that range into a small number L of classes, using 
regularly-spaced threshold values: i = min+i*( max- min)/L, i=0… L.

2. Using the method described in the previous sub-section, compute for each class 
[ i; i+1] the search tree corresponding to the rotated data template N(- ) where 
 is the central value of the class: = ( i + i+1)/2

3. During the simulation, at each node u to be simulated, use the original data 
template N to search for nearby conditioning data, and retrieve the local cpdf 
from the search tree corresponding to the class of azimuth angles to which (u)
belongs.

If the range [ min, max] of azimuth angles is greater than 90 degrees, Zhang’s original 
technique can be used to decrease the range of the individual discretized classes 
[ i, i+1]. For example, consider the simulation of node u where (u)= min+100°. The 
rotated data template N(90°) can be used to search for conditioning data (recall that 0, 
90, 180, and 270 degrees are the only rotation angles for which Zhang’s method 
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requires no data relocation). Then the resulting cpdf can be retrieved from the search 
tree corresponding to the class of azimuth angles to which ( min+100°)-90°= min+10°
belongs. Therefore, in any case, the maximum range of azimuth values to discretize is 
90 degrees. The number L of azimuth classes should depend then on the uncertainty 
about the local azimuth values. With L=5 classes, the range of each class is 18 degrees. 
This is equivalent to estimating local azimuth values with an error of ± 9 degrees. 

One limitation of the above technique may be the memory demand because one search 
tree per azimuth class needs to be built. However, one can consider one azimuth class 
after the other, i.e. build the search tree corresponding to a given azimuth class, simulate 
all grid nodes corresponding to that class, then delete that search tree prior to 
considering the next azimuth class. Building, then deleting search trees is a relatively 
fast process compared to the actual grid simulation process. 

Figure 4 shows a 2D azimuth field and a resulting simulated realization using the fluvial 
reservoir training image of Figure 2. The reproduction of the training patterns is similar 
to that in the reference simulated realization of Figure 2. Note also that, although only 
five azimuth classes were used, the discretization of the range of possible azimuths did 
not create any artifact in the simulated realization.

Figure 4.  2D location-dependent azimuth field (left), and resulting MPS model 
obtained using the fluvial reservoir training image of Figure 2 (right).

5 Integration of geobody dimensions data 

Facies geobody dimensions that may depend, for example, on the distance to the 
sedimentation source, represent another traditional non-stationary feature of 
hydrocarbon reservoirs. A technique similar to that presented in the previous section to 
impose locally-varying azimuths is proposed to integrate geobody dimensions data, 
using some affinity transform of the data template used to build the search tree. For the 
sake of simplicity, we assume in this section that an isotropic rescaling factor (same 
affinity ratio in x, y, and z-directions) is sufficient to describe the variations of geobody 
dimensions in the volume under study.
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Consider first the case in which the facies geobodies should have constant dimensions 
over the study field, yet possibly different from the dimensions of the training 
geobodies. Let  be the ratio between target and training facies dimensions. Given a 
training image, and a data template N={h , =1…N}, a new data template N(1/ ) is 
obtained from N  by the following method:

1. Rescale by 1/  each component h  of N. In 2D, the coordinates (x (1/ ),
y (1/ )) of the rescaled component h (1/ ) are computed from the coordinates 
(x , y ) of the original component h as: x (1/ )=x /     and: y (1/ )=y /

2. Relocate these rescaled components to the nearest nodes of the training image 
grid.

The resulting rescaled data template N(1/ ) is used to build the search tree from the 
training image. The exact same result can be obtained by rescaling the training image by 
, then building the search tree from that rescaled training image using the original data 

template N. During the simulation, at each unsampled node, the original data template 
N is used to search for nearby conditioning data, and the corresponding cpdf is retrieved 

from the above search tree. 

The extension of that technique to integrate location-dependent geobody dimensions 
data is straightforward and similar to the integration of location-dependent azimuth data. 
If (u) denotes the ratio between target and training facies dimensions at the grid node 
location u, then MPS simulation using locally-varying geobody rescaling factors 
consists of dicretizing the range of (u) values into a smaller number of classes, and 
building a search tree for the average rescaling factor value of each class.

Figure 5 shows a 2D rescaling factor field and a resulting simulated realization using the 
fluvial reservoir training image of Figure 2. The reproduction of the training patterns is 
similar to that in the reference simulated realization of Figure 2.

Figure 5. 2D field of location-dependent geobody dimension rescaling factors (left), and 
resulting MPS model obtained using the training image of Figure 2 (right).



244 S. STREBELLE AND T. ZHANG 

6 Conclusion 

In multiple-point geostatistics, statistics on facies joint-correlation at multiple locations 
are inferred from patterns displayed by a training image regardless of the location of 
these patterns in the training image. As a consequence, non-stationary features, such as 
spatial variations of facies azimuths or geobody dimensions that the training image may 
contain are not preserved in the multiple-point statistics simulated realizations.
To integrate variable azimuth/dimensions data, we propose applying a series of 
rotation/affinity transforms to a stationary training image, and building a search tree to 
store the multiple-point statistics inferred from each rotated/rescaled training image. 
During the simulation, multiple-point statistics are retrieved from the search tree 
corresponding to the class where the local azimuth/rescaling factor occurs. The 
application of that process to a 2D horizontal section of a fluvial reservoir indicates that 
the reproduction of the training patterns in non-stationary MPS models is similar to that 
observed in stationary models.
This technique can be easily generalized to create non-stationary models using several 
different training images thought to be representative of the geological heterogeneity in 
different areas of the reservoir provided that there is a smooth transition between the 
different training images. 
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Abstract. There are presently two main avenues in the stochastic modeling of 
depositional facies: pixel-based and object-based geostatistics. They both have strengths 
and weaknesses: traditional pixel-based geostatistics is good at data conditioning, but it 
depends on variograms to capture spatial structures and hence fails to reproduce definite 
patterns common to most geological facies; while object-based geostatistics is good at 
reproducing crisp facies shapes but is difficult to condition to dense well data or 
exhaustive 3D seismic data. Multiple-point simulation, a newly developed pixel-based 
technique, integrates the strengths of both: it keeps the flexibility of pixel-based 
techniques for data conditioning, while allowing pattern reproduction through 
consideration of multiple-point statistics. In this paper, a workflow for multiple-point 
stochastic simulation is discussed in details. This workflow is applied to an industry 
project. The results show reproduction of the prior geological knowledge and honoring 
of both well and seismic data. 

1 Introduction 

Integrating all available information when building a geological model is a recurrent and 
difficult problem.  One challenge lies in how to condition the model to different types of 
measured reservoir data, such as wells and 3D seismic data. Another challenge lies in 
how to account for prior geological knowledge, a fuzzy yet important conceptual 
information. Geostatistics provides an ensemble of tools for data integration and 
uncertainty evaluation (Deutsch and Journel, 1992; Goovaerts, 1997). Through 
computer-based data integration algorithms, multiple equi-probable numerical models of 
the reservoir properties are built, whose difference reflects uncertainty.

There are two main avenues in geostatistical modeling: pixel-based and object-based. 
Object-based geostatistics performs simulation by "dropping'' different geological 
bodies one after another onto the simulation field (Deutsch and Wang, 1996). Any 
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added geological body is accepted, rejected, or modified through evaluating some 
objective function measuring the match to local data. Hence by its nature, it is good at 
reproducing the crisp shapes of geological bodies. But often it is CPU demanding, 
particularly when extensive hard data must be honored; also their capability in 
integrating 3D seismic data is limited: typically only 2D aerial proportion maps derived 
from seismic can be accounted for. By contrast, pixel-based algorithms simulate each 
grid node of the reservoir model one pixel at a time (Deutsch and Journel, 1992; 
Goovaerts, 1997).  All the unsampled nodes are sequentially visited along a random 
path. The probability distribution function (cpdf) at any given node is estimated 
conditional to all data (both hard and soft) found in its neighborhood. A value is drawn 
from that cpdf using Monte Carlo simulation. This simulated value is frozen as hard data 
for simulation of the subsequent unknown nodes. Because pixel-based geostatistics 
performs simulation one pixel at a time, it is very flexible and easy to condition to most 
conditional data. However, the traditional pixel-based geostatistics uses the variogram, a 
two-point statistic, to capture the spatial structures of facies. It has been found that it is 
difficult for a simple variogram model to capture the curvilinear structures of geological 
bodies. Higher order statistics are required. For example, Figure 1 shows three distinct 
images with similar variograms (Strebelle, 2000).

Figure 1. Three distinct images with similar variograms. (Source: Strebelle, 2000, 
slightly modified.) 

Hence none of the traditional geostatistical simulation techniques are ideal for 
depositional facies modeling integrating both geology and 3D seismic data. Multiple-
point geostatistics (Journel, 1992; Guardiano and Srivastava, 1993; Strebelle, 2000; 
Strebelle and Journel, 2000; Strebelle, et al, 2002; Liu, 2003; Liu, et al, 2004) is called 
upon to address this problem. In the following sections two case studies are presented to 
illustrate the application of multiple-point geostatistics. Next, a workflow of multiple-
point simulation is proposed. 
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2 Why multiple-point geostatistics? 

Multiple-point geostatistics aims at reproducing complex statistics involving two and 
more points at a time. This allows capturing information much beyond the reach of a 
mere variogram model. Being an advanced pixel-based technique, multiple-point 
geostatistics inherits the advantage of building the numerical model one pixel at a time, 
allowing easy data conditioning. Yet compared with the traditional variogram-based 
algorithms, it has the enhanced capability of reproducing curvilinear shapes of 
geological bodies, a feature traditionally reserved to object-based algorithms. Two 
examples are presented in this section to respectively illustrate these two strengths.

2.1 BETTER INTEGRATION OF GEOLOGY 

This first example is a synthetic case study of building a numerical reservoir property 
model from limited well data. Figure 2a shows a photo of the Wagon Caves Rock 
outcrop (Anderson et al, 1998). From this outcrop, rock properties such as sand/shale 
indicators, grain size, porosity and permeability, are measured along the two marked 
vertical columns. They are taken as known well data, while rock properties at all other 
grid nodes are assumed unknown and are simulated using different geostatistical 
algorithms.

Figure 2. Integration of geology using a multiple-point simulation algorithm. (a) the 
Wagon Rock Caves outcrop, from which, two vertical columns are taken as well data; 
(b) one realization of permeability by the two-point model; (c) training image of mud 
layers, used for multiple-point simulation; (d) one multiple-point realization of mud 
layers; (e) one permeability realization including simulated mud layers. 
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First a variogram-based two-point geostatistical simulation is performed. Figure 2b 
shows one realization of permeability using sequential Gaussian simulation (Deutsch 
and Journel, 1998): it displays high-entropy spatial patterns typical of Gaussian 
simulations. One major problem with any two-point model is that it can not reproduce 
the elongated thin mud layers, which can act as flow barriers due to their very low 
permeabilities.

From the outcrop, two types of mud layers are observed: continuous mud layers 
spanning across the two wells and discontinuous mud layers that pinch out before 
reaching either one of the two wells. Multiple-point simulation is performed to 
reproduce these different types of mud layers. Figure 2c depicts the shapes of the mud 
layers over a vertical section, which can serve as a training image for multiple-point 
simulation of these mud layers. For sensitivity analysis purpose, we build three models: 
one without mud layers, one with discontinuous (pinched-out) mud layers, and one with 
continuous mud layers crossing all the way between the two wells. Figure 2d shows one 
realization of the simulated mud layers using the multiple-point simulation snesim
algorithm (Strebelle, 2000). Figure 2e shows one realization of permeability including 
the simulated mud layers.

To analyze the flow response of these different models, we perform a single-phase 
steady-state upscaling over the whole model to get a single upscaled permeability tensor 
for the whole simulation field. A high effective permeability along a certain direction 
means easy flow along that direction. Figure 3a shows the effective permeability along 
the vertical direction (denoted as Kz) for three different variogram-based models, each 
model with a different range and represented by 10 equi-probable realizations. When the 
range is decreased from 1200 to only 150, Kz changes within a small range of 140-220 
md. In contrast, when a multiple-point algorithm is used to incorporate different types of 
mud layers, Kz changes dramatically within a range of 220-30-1 md (Figure 3b).

Figure 3. Vertical effective permeability (Kz) of different models. (a) Kz of three 
different variogram-based models; (b) Kz of three different multiple-point models. 

This example illustrates the importance of simulating correctly the crisp shapes and 
continuity of geological bodies: they can have significant impact on flow response, a 
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major concern of petroleum engineers. Traditional variogram-based geostatistics fails in 
this aspect, while multiple-point geostatistics achieves it at little additional CPU cost, 
provided a conceptual training image of the type of Figure 2c is available. 

2.2  EASY DATA CONDITIONING 

Another advantage of multiple-point simulation is easier data conditioning. Object-
based algorithms can reproduce crisp shapes and continuity of geological bodies. A 
major problem with object-based algorithms, however, is difficult data conditioning, 
especially in presence of dense well data and diverse types of soft data, such as 3D 
seismic data or production data. Figure 4 illustrates such a real reservoir study (Liu, 
2003; Liu, et al, 2004).

Figure 4. Multiple-point simulation integrating diverse types of information (Note all 
the following data/information/realizations are in 3D, although only horizontal slices are 
shown here). (a) seismic data; (b) a training image depicting the prior geological 
concepts; (c) hard data (well data + seismic imaged channel pieces); (d) seismic-derived 
soft probability for sand; (e) one multiple-point realization honoring the information 
shown in (b), (c), (d). 
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In this reservoir characterization study, there are four different sources of information: 
Geological knowledge: the depositional environment of this reservoir is 
interpreted as a fluvial channel system, which can be summarized by a training 
image (see Figure 4b). 
Well data: they are considered as hard data and must be reproduced exactly by 
all simulated realizations (see the vertical columns in Figure 4c). 
Geobodies extracted from seismic data: good quality 3D seismic data can 
clearly image some characteristic geobodies (channel segments in this case 
study). These geobodies (see the two types of clusters in Figure 4c) are deemed 
certain and need to be reproduced exactly by all realizations. A PCA clustering 
technique (Scheevel and Payrazyan, 1999), capable of recognizing such 
characteristic facies pieces, is used to extract these geobodies from the 3D 
seismic data. 
Soft information from seismic data: in areas not clearly imaged by seismic data, 
a soft probability data cube for presence of sand can be derived from the 
seismic data (see Figure 4d). All alternative simulated models for sand/shale 
should be all consistent with the seismic data in that probabilistic sense. 

While it would be extremely difficult to constrain object-based simulation to all these 
different sources of information, multiple-point simulation can easily achieve this, 
because it operates one pixel at a time. Figure 4e presents one such a multiple-point 
realization.

3 A workflow for multiple-point simulation

In multiple-point geostatistics, a training image is used to deliver prior geological 
concepts about the geometry of reservoir heterogeneities. This training image should be 
reasonably stationary, and deliver the shapes, patterns and distributions of geological 
objects deemed present in the actual reservoir. It essentially plays the same role as a 
variogram model in traditional two-point geostatistics: it provides statistics relating the 
unsampled value to conditioning data involving jointly multiple locations. The 
simulation process amounts to take the training image patterns, "morphing'' and 
anchoring them to location-specific reservoir data. 

Strebelle (2000) developed a snesim algorithm, which significantly speeds up the 
original multiple-point simulation algorithm proposed by Guardiano and Srivastava 
(1993). In this program, the training image is scanned only once to retrieve the 
frequency of occurrences of observed outcomes for the central nodal value given a 
template of neighboring conditioning data. These probabilities are then stored into a 
search tree data structure, which allows fast storage and retrieval of probabilities 
corresponding to the actual hard conditioning data events encountered during sequential 
simulation. Conditioning to hard sample data (e.g. well data) in multiple-point 
simulation is done the same way as in two-point algorithms. The hard data values are 
frozen at their nodal locations and never changed; each unknown node is sequentially 
visited and simulated conditional to the original hard data and previously simulated 
values. As for soft data conditioning (e.g. seismic data or production data), a Bayesian- 
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type paradigm is applied in the multiple-point simulation workflow. Instead of using 
some cokriging algorithms as in two-point geostatistics (Goovaerts, 1997), soft data 
conditioning is performed in two steps. The first step is to extract the useful information 
from the soft data. For example, a prior facies conditional probability is derived from the 
seismic data. The second step is to perform simulation integrating hard and soft data, 
which can be further decomposed into three sub-steps. At each unknown node, first the 
probability conditioned to the current multiple-point hard data event is read from the 
search tree. Then it is combined with the previously derived soft conditional probability 
to get the final or posterior probability conditioned to both hard and soft data. Finally, a 
facies indicator value is drawn from that posterior probability.

This multiple-point simulation workflow can be subdivided into three parts, each of 
which has a different conditional probability involved (Figure 5). All three parts are later 
explained in more detail.

Figure 5. A multiple-point simulation workflow, decomposed into three parts. 
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3.1 P(A|B): MODELING WITH HARD DATA AND CONCEPTUAL GEOLOGY

P(A|B) denotes the conditional probability of the value to be simulated given a multiple-
point hard conditioning data event B, with A representing, e.g., a facies indicator value. 
This part aims at capturing and reproducing the geological information provided by the 
training image, conditional to the hard data event B.

First a data template, composed of multiple nodes with any user-specified configuration, 
is used to scan the training image, and the number of replicates of each different 
multiple-point data event is retrieved. These numbers are stored in a search tree data 
structure (Strebelle, 2000), which allows an easy retrieval of information. 

Next, in a pixel-based simulation mode, each uninformed node u is sequentially visited. 
Its neighboring conditioning data event B (including both the original hard sample data 
and previously simulated values) is collected. Two numbers are then retrieved from the 
search tree: number of replicates of the joint data event (A,B) and the number of 
replicates of the conditioning data event B. The multiple-point conditional probability 
P(A|B) is then easily calculated as: 
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 (A,B)
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BAP
BAP

forreplicatesofnumber

forreplicatesofnumber

)(

),(
)|(                          (1) 

This conditional probability P(A|B) is used to either directly draw a value for the node 
u, if no soft information is available, or is combined with any co-located soft data 
conditional probability P(A|C) to get a joint conditional probability P(A|B,C). The value 
at location u is then drawn using the updated probability P(A|B,C), see hereafter. 

3.2 P(A|C): SEISMIC DATA ANALYSIS 

As discussed above, when there is soft information, such as seismic data, it is necessary 
to determine the conditional probability P(A|C), denoting the facies probability given 
the soft data C (say, seismic) alone. This part tries to establish the relationship between 
seismic patterns, and geological patterns, enabling prediction of rock properties from the 
measured seismic data. Many different techniques can be used to retrieve this 
probabilistic information from the seismic data. They can be divided into two 
categories: supervised vs. unsupervised techniques. Supervised techniques are used 
when there exist calibration geological data associated with the seismic data, for 
example, well data versus corresponding seismic data, or interpreted geological facies 
versus corresponding seismic data. The pattern recognition from seismic data is then 
"supervised'' by the known geological data. In contrast, unsupervised techniques try to 
directly identify patterns from seismic data without any prior geological constraints. 
Techniques in both categories have been used by geostatisticians: supervised or 
unsupervised neural network (Caers, 1999), principal components clustering (Scheevel 
and Payrazyan, 1999; Strebelle et al., 2002; Liu, 2003), maximum message length 
technique (Arroyo, 2000), the latter uses entropy to measure the dispersion of different 
seismic patterns.
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3.3 P(A|B,C): DATA INTEGRATION 

After retrieving useful information separately from the geology + hard data, and from 
seismic, that is, obtaining the two individual conditional probabilities P(A|B) and 
P(A|C), the next step is to combine them into one single posterior probability, P(A|B,C), 
conditioned to all available information. This is the data integration part. 

Journel (2002) proposed a "Permanence of Updating Ratios'' paradigm to integrate 
P(A|B) and P(A|C) into P(A|B,C). The basic assumption of this algorithm is that the 
relative contribution of data event C is the same before and after knowing B: 

a

c

b

x
                                                            (2) 

where, a, b, c and x represent distances to the event A occurring defined as: 
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All these distances are bounded within [0, ). They reach 0 if the probability of A 
occurring is 1, infinity if that probability is 0. 

From the permanence relation (Eq.2), P(A|B,C) is calculated as: 

x
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1
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Zhang and Journel (2003) later showed that the previous permanence assumption is 
equivalent to a Bayesian updating under conditional independence of B and C given A. 
To account for dependence between B and C data, Journel proposed the following 
generalization using a power parameter  > 0: 

a

c

b

x
                                                        (3) 

Setting  > 1 increases the impact of seismic data, conversely, setting  < 1 decreases the 
impact of seismic data.

These three parts establish a general workflow for multiple-point geostatistical 
simulation.

4 Conclusions 

In this paper, a multiple-point simulation workflow is proposed and discussed. 
Anchored in the pixel-based category, which allows an easier conditioning to a variety 
of data, the multiple-point approach aims at identifying and reproducing the spatial 
patterns typically displayed by geological bodies. Hence it incorporates the advantages 
of both pixel-based techniques and object-based techniques. The proposed multiple-
point simulation workflow is composed of three parts: 

Modeling with hard data and conceptual geology, i.e., obtaining P(A|B): The 
prior geological knowledge is represented by a training image, which is 
scanned to obtain the probability P(A|B), namely, the probability of 
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presence/absence of a facies A given its multiple-point hard conditioning data 
event B.
Seismic data analysis, i.e., obtaining P(A|C): This part establishes the 
relationship between seismic patterns (C) and facies patterns (A). The result is 
a probability P(A|C) field, denoting the facies probability given the neighboring 
multiple-point seismic data C. 
Integration of different sources of information, i.e., obtaining P(A|B,C): This 
part integrates the two previous individual conditional probabilities, P(A|B) and 
P(A|C), into one single posterior probability P(A|B,C), conditioned to both 
geology and seismic data. The facies indicator (A) at each unsampled node is 
drawn from this updated posterior probability. 
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A MULTIPLE-SCALE, PATTERN-BASED APPROACH TO SEQUENTIAL 

SIMULATION

G. BURC ARPAT and JEF CAERS 
Department of Petroleum Engineering, Stanford University 
367 Panama St., Stanford, CA 94305-2220, USA 

Abstract. In the context of multiple-point geostatistics, a new algorithm (SIMPAT) is 
presented. This algorithm relies on several image processing concepts, such as image 
similarity, to borrow and reproduce patterns from training images constrained to hard 
and soft data. The method makes use of a new multiple-grid approach by which the 
scale relations between the training image patterns are better captured and reproduced. 

1 Introduction 

Sequential simulation is one of the most widely used stochastic imaging techniques 
within the Earth Sciences. The theory is well understood (Daly, 2004; Goovaerts, 1997) 
and many practical, fast and robust algorithms have been developed (Deutsch and 
Journel, 1998) such as sequential Gaussian simulation (SGSIM) and sequential indicator 
simulation (SISIM). 

However, realizations generated by SGSIM (and also SISIM) are often deemed too 
‘synthetic’ looking, not reflecting the actual variability of Earth Science phenomena 
such as facies distributions in oil reservoirs or sedimentary deposits in aquifer systems. 
The limitations of SGSIM lie in the assumption of a multi-Gaussian distribution that 
requires knowledge of a histogram and a variogram. The variogram, as a two-point 
statistics, is not capable of modeling complex, connected and curvilinear spatial 
variation. To overcome these limitations, multiple-point geostatistics (MPS) was 
introduced together with the concept of “training image” (Guardiano and Srivastava, 
1993). A training image is an exhaustive 3D picture containing patterns believed to be 
similar to the actual field under investigation. The training image serves as a concept, a 
vision of what spatial variability of the study area should look like. As a mere concept, 
the training image need not be constrained to any hard or soft data. 

Based on the original MPS idea, Strebelle (2000) proposed a practical algorithm 
(SNESIM) that generates realizations mimicking the 3D patterns of the training image 
while constraining to hard and soft data. The algorithm works in the same way as many 
other sequential algorithms do: (1) visit each node of the simulation grid randomly; (2) 
at each node, estimate the conditional probability given the neighboring data and 
previously simulated nodes (called a “data event”), and (3) draw from that probability 

255

 2004, 255-264. 
© 2005 Springer. Printed in the Netherlands. 

tics  O. Leuangthong and C. V. Deutsch (eds.), Geostatis        Banff



256 G. B. ARPAT AND J. CAERS 

distribution and assign the value to the node. In SNESIM, the conditional probability is 
sampled from the training image by looking for replicates of the data event. 
In this paper, an alternative pattern-based algorithm is proposed by redefining the 
problem of pattern reproduction as an image processing problem. In image processing, 
one generally tackles complex images by finding common patterns in the image and 
working on these patterns (Palmer, 1999). A similar approach can be devised for 
geostatistical modeling where one finds all the patterns of a training image. These 
patterns correspond to multiple-pixel configurations within a user-defined template and 
capture meaningful pieces of geological shapes known to exist in field of study. Such 
patterns exist at different geological scales and patterns at various scales interact with 
each other. The idea is to generate realizations that reproduce these multiple-scale 
patterns on the simulation grid. A new practical algorithm SIMPAT (SIMulation with 
PATterns) is implemented to achieve this goal. The paper shortly describes the inner 
workings of this algorithm, presents some 3D examples and discusses how SIMPAT 
complements the already existing sampling-based algorithms such as SNESIM. 

2 A New, Pattern-based Sequential Simulation Method 

2.1 NOTATION 

Define z(u) as the realization of a random variable Z(u) modeling the variable of study 
where u = (x,y,z) G and G is the regular Cartesian grid discretizing the field of study. 
Z(u) can be a model of either a continuous or a categorical variable. The random 
function itself is denoted as Z ={Z(u), u  study area} and a realization as z.

zT(u) indicates a location-specific vector of z(u) within a template T centered at u, i.e.: 

110 ,,,,,
T

huhuhuhuuzT nzzzz  ( 1 ) 

where h  vectors are the vectors defining the geometry of the nT nodes of the template T
and  = 0, …, nT - 1 with the special vector h0 = 0 identifying the node u. A flag 
notation z(u) =  is used for ‘unknown’ nodes, i.e. nodes still to be informed by the 
sequential simulation and hence that do not have an assigned value yet. 

To distinguish the training image, the hard and the soft data from the simulated 
realization z, the notations ti, hd and sd are used. For example, a multiple-point event 
scanned from the training image ti at location u  is denoted by tiT(u ), i.e.: 

110 ,,,,,
T

huhuhuhuutiT ntitititi  ( 2 ) 

where location u G  and G  is the regular Cartesian grid discretizing the training 
image. The training image grid G  need not be the same as the realization grid G.

A pattern patT
k is the particular k-th configuration of the above vector of values tiT(u )

defined by the template T where k = 0, …, npat - 1 and npat is the number of total 
available patterns. Each k-th configuration is assumed to be location-independent and, 
thus, the vector patT

k is written as: 
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T
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where all patterns are defined on the same template T.
In sequential simulation, a data event devT(u) is defined as the set of hard data and 
previously simulated values neighboring the visited location u within the template T, i.e. 
devT(u) = zT(u).

The dissimilarity (distance) between a data event and a pattern is calculated using a 
node-based distance function: 

1

0

,
T

hhupatudev TTTT

n
kk patdevd  ( 4 ) 

where d<> denotes the distance function (Manhattan distance; Duda et al., 2001). When 
for a certain node u + h , devT(u + h ,) =  (unknown), the value is ignored in the 
distance calculation. For other distance functions that can be used with the SIMPAT 
algorithm, the reader is referred to Arpat (2004). 

2.2 THE SINGLE-GRID, UNCONDITIONAL SIMPAT ALGORITHM 

The algorithm starts by scanning the training image using a template T to acquire all 
patterns of ti. A filter can be applied to discard undesirable patterns. Remaining patterns 
are stored in a pattern database and such patterns are denoted by patT

k where the size of 
the pattern database is npat as defined in the previous section. 

The simulation part of the algorithm follows the sequential simulation framework. 
During simulation, nodes are randomly visited and the data event devT(u) is extracted. 
Then, devT(u) is compared to all available patterns in the pattern database using a 
predefined similarity criterion. The aim is to find the ‘most similar’ pattern to the data 
event, denoted by patT*. In other words, the algorithm minimizes d<> of Equation 4 for 
all patterns patT

k and labels the minimum as patT*. Once this most similar pattern is 
found, the data event devT(u) is replaced by patT*, i.e. the values of patT* are pasted on 
to the simulation grid at the current node u.

The above outlined algorithm can be divided into two main parts: 

(1) Pre-processing of the training image: 

P-1. Scan the training image using the template T to obtain all existing patterns patT
k

that occur over the training image. 

P-2. Reduce the number of patterns to npat by applying filters to construct the pattern 
database. Typically, only unique patterns are taken, i.e. repetitions (frequency) of 
patterns are ignored.

(2) Simulation on the simulation grid: 

S-1. Define a random path on the simulation grid to visit each node u only once. 

S-2. At each node u, retain the data event devT(u) and find the patT* that minimizes 
d< devT(u), patT

k > for k = 0, …, npat -1, i.e. patT* is the ‘most similar’ pattern. 
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S-3. Once the most similar pattern patT* is found, assign patT* to devT(u), i.e. for all 
the nT nodes u + h  within the template T, devT(u + h ) = patT*( h ).

S-4. Move to the next node of the random path and repeat the above steps until all the 
grid nodes along the random path are exhausted. 

On large simulation grids, a practical problem occurs due to the finite size of the 
template T. To capture the large scale correlations of the training image, a large 
template would need to be used. Figure 5b of Section 4 (Examples) demonstrates this 
problem. Yet, using a large template would make the minimization step (Step S-2) of the 
SIMPAT algorithm too CPU demanding. To overcome this problem, SIMPAT employs 
a modified version of the multiple-grid approach as proposed by Tran (1994). The idea 
is to use a set of cascading multiple-grids and sparse templates instead of a single grid 
and one large dense template. The simulation is first performed on the coarse grid and 
then these coarse values are passed to the subsequent finer grids as conditioning 
information. This idea is elaborated below. 

2.3 THE MULTIPLE-GRID, UNCONDITIONAL SIMPAT ALGORITHM 

On a Cartesian grid, the multiple-grid view of a grid G is defined by a set of cascading 
coarse grids G

g and templates T
g instead of a single fine grid and one large dense 

template where g = 0, …, ng - 1 and ng is the total number of multiple-grids. The g-th
coarse grid (0  g  ng - 1) is constituted by each 2g-th node of the final grid (g = 0) in 
each direction. If T is a template defined by vectors h , then the template used for a 
coarser grid Tg is defined by h g = 2g× h  and has the same configuration of nT nodes as 
T but with spacing 2g times larger. Figure 1 illustrates this concept. 

Figure 1. A 3x3 fine template (b) and its corresponding coarse template (a) obtained by 
expanding the fine template with 2g spacing where g = 1 (the first coarse grid). 

The multiple-grid simulation of a realization is achieved by successively applying the 
single-grid algorithm explained above to the multiple-grids starting from the coarsest 
grid. After each multiple-grid simulation, the values calculated on the current grid are 
transferred to the one finer grid and g is set to g - 1. This succession of multiple-grid 
simulations continues until g = 0. On a multiple-grid, the previously calculated coarser 
grid values contribute to the distance calculation of Step S-2, i.e. if on node u a previous 
coarse grid value exists, this value is taken into account when minimizing the distance. 

Different from the classical multiple-grid approach (Tran, 1994), SIMPAT does not 
‘freeze’ the coarse grid values when they are transferred to a finer grid, i.e. such values 
are still allowed to be updated and visited by the algorithm in the subsequent multiple-
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grid simulations. In other words, the coarse grid nodes are always included in the finer 
grid simulations. 

The above multiple-grid approach allows the values determined on the coarser grids to 
be modified by the finer grids, i.e. coarse to fine scale interaction. For complex training 
images, fine to coarse interaction might also be desired to fully capture the scale 
relations of training image patterns. SIMPAT utilizes a feedback mechanism, termed 
“dual template simulation”, that allows such fine to coarse scale interaction. 

Consider the pattern patT
k scanned from the training image at location u using the 

template T for a coarse grid simulation. Another, fine template T  can be used at the 
same location to obtain the corresponding fine pattern such that template T  covers the 
same area (volume in 3D) as template T but with all the nodes of the finest grid. T  is 
called the “dual template” of T. The relation between T and T  is shown in Figure 2. 

Figure 2. Illustration of the primal (a) and the dual (b) template concepts. 

The two patterns scanned using T and T  (called the “primal pattern” and the “dual 
pattern”) are linked to each other in the pattern database. Then, during the simulation, 
whenever a coarse patT* is found using the distance calculations and pasted on to the 
coarse simulation grid, the corresponding fine pattern (scanned from the same location u
but with template T ) retrieved from the pattern database is simultaneously pasted on to 
the fine grid. In essence, the multiple-grid simulation of the realization is performed in 
parallel on all grids but using only the similarity criterion of the current coarse grid. 
Figure 3 illustrates the steps of this approach for a single node u on the coarse grid of a 
2 multiple-grid simulation. 

The values simulated using the dual templates will affect the results of the subsequent 
distance calculations on the finer grids, thus allowing the desired feedback from the 
finer grids to the coarse grids. Consider the case of 3 multiple grids. When the coarsest 
grid (g = 2) simulation is completed, due to the use of the dual templates, the simulation 
grid will be completely full. Then, during the middle grid simulation, the values 
previously pasted by the dual template on to the finest grid will affect the distance 
calculations of the middle grid, hence providing the fine to coarse feedback. In essence, 
the algorithm places the large scale patterns on the coarsest grid and ‘roughly’ decides 
on small scale patterns and then ‘corrects’ for finer details on the subsequent grids. 
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Figure 5d of Section 4 (Examples) demonstrates the effect of the modified multiple-grid 
approach as used in SIMPAT. 

Figure 3. Illustration of using dual templates with a binary (sand/shale) variable. First, 
the data event devT(u) on the coarse grid is captured. The most similar pattern patT* to 
this data event is found by minimizing the distance between devT(u) and patT

k. Then, 
the corresponding dual pattern of patT* is retrieved from the pattern database and pasted 
on to the finest grid. 

3 Data Conditioning 

3.1 HARD DATA CONDITIONING 

In SIMPAT, conditioning to hard data is performed in Step S-2 of the algorithm, during 
the search for the most similar pattern. If conditioning data exists on any devT(u + h ),
the algorithm first checks whether patT

k(h ) is equal to this data. If the pattern patT
k

does not fulfill this condition (i.e. there is a mismatch), it is skipped and the algorithm 
searches for the next most similar pattern until a match is found. If none of the available 
patterns fulfill the condition, the algorithm selects a pattern such that only the nodes of 
the data event that has conditioning information are considered during the distance 
calculations and other nodes are ignored. If several patterns fulfill this condition, then a 
second minimization is performed on the non-conditioning nodes of the data event using 
only these patterns. In essence, a two-stage similarity check is performed: first, only for 
the conditioning data; then, for the previously simulated nodes. 

3.2 SOFT DATA CONDITIONING 

In Earth Sciences, soft data typically refers to data obtained from indirect measurements 
acquired using some form of remote sensing (e.g. geophysical methods). Thus, soft data 
is nothing but a ‘filtered’ view of the original field of study, where the filtering is 
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performed by some forward model F. In general, the forward model F is not known 
exactly and is approximated by a known model F*.

In SIMPAT, conditioning to soft data calls for a soft training image. This soft training 
image can be obtained by applying the approximate forward model F* to the (hard) 
training image (See Figure 7c and 7d of Section 4 for an example). The patterns of the 
soft data (for example, a response from a seismic survey) are related to the geological 
(hard) patterns of the realization through the above mentioned filter model. The pair of 
hard and soft training images provides a basis for modeling the multiple-point 
relationship between hard and soft patterns. In fact, any joint statistics or pattern pairs 
extracted from the two training images can be considered as the multiple-point 
alternative of a cross-variogram in variogram-based geostatistics. 

Once the soft training image is obtained, SIMPAT explicitly relates the patterns in the 
hard training image and the soft training image by creating a joint pattern database. In 
other words, Step P-1 of the pre-processing part of the algorithm is modified such that, 
for every patT

k of the hard training image, a corresponding soft pattern is extracted from 
the soft training image from the same location u. Another modification is done to the 
Step S-2 of the simulation part of the algorithm, i.e. the search for the most similar 
pattern. Instead of minimizing the distance between devT(u) and patT

k, the algorithm 
now minimizes, 

kk ddd ,22212,1 ,1,, TTTT patudevpatudev  ( 5 ) 

i.e., the summation of two distances where devT
2(u) denotes the soft data event obtained 

from the soft data grid sd, patT
2,k is a soft pattern and  is a weight that is attached to 

the combined summation to let the user of the algorithm give more weight to either the 
hard or the soft values, reflecting the ‘trust’ of the user to the soft data. The flowchart of 
these modifications when conditioning only to soft data is given in Figure 4. 

Figure 4. The flowchart for the conditional search for the most similar pattern patT*
when the hard data event is not informed.  When there is conditioning data or previously 
simulated nodes within the hard data event, a joint search is performed instead.

The net result of the above modifications is that, for every node u, the algorithm now 
finds the most similar pattern not only based on the previously calculated nodes but also 
based on the soft data. When there is also hard data available, this minimization is 
performed only after the patterns that condition to the hard data are found as explained 
in the previous section, i.e. hard data has priority over soft data. 
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4 Examples 

Figure 5a is a 7 facies training image depicting a tidal channel system in an oil reservoir. 
A notable property of Figure 5a is that, the image is highly non-stationary, especially the 
large scale variation: note how one facies appears only on the front part of the cube. 
Figure 5b is an unconditional SIMPAT realization obtained using a single-grid 
simulation. Figure 5c shows the application of the traditional multiple-grid approach 
(Tran, 1994). Section 2.3 explains two modifications done to this traditional approach 
where (1) the coarse grid values are not ‘frozen’ on the finer grids and (2) the dual 
template simulation technique is employed. Figure 5d is an unconditional SIMPAT 
realization obtained using these modifications. As these final figure illustrate, the 
algorithm successfully captures the non-stationary behavior of the training image, while 
adequately reproducing the facies relations of the training image. 

Figure 6a shows a synthetic reference case with 6 facies in an oil reservoir. A dense data 
set is sampled from this reference to test conditioning to hard data (Figure 6b). The 
training image used is shown in Figure 6c.  The final conditional SIMPAT realization is 
in Figure 6d. The training image used in this example is highly representative of the 
reference case; both the reference and the training image contain stacked channels. This 
agreement keeps the number of conflicting patterns to a minimum during the simulation.  
For a more realistic case, the reader is referred to Arpat (2004). 

Figure 7 demonstrates the application of soft data conditioning using SIMPAT. In this 
case, soft data is obtained by applying a seismic forward model F* to the binary 
reference case (Wu, Mukerji and Journel, 2004). The same model is applied to the 
training image to obtain the soft training image. The final SIMPAT realization (Figure 
7f) conditions to soft data relatively well but pattern reproduction is somewhat degraded 
as made evident by the disconnected channel pieces. This issue, along with possible 
solutions, is further discussed in Arpat (2004). 

5 Conclusion 

The sequential simulation method of SIMPAT replaces the traditional probability 
framework of drawing from conditional probability distributions (for example, as used 
in the SNESIM algorithm of Strebelle, 2000) with calculations of similarity between 
patterns. This entirely new approach to stochastic simulation has the advantage that it 
focuses directly on one of the core purposes of stochastic simulation: reproduction of 
patterns (Be it two-point or multiple-point, stationary or non-stationary). The similarity 
approach does not share many of the restrictions of a probabilistic approach, which often 
calls for a rather strong assumption of stationarity in the inference or modeling of 
patterns via probabilities. While the initial results are promising, the downside of this 
approach is that the purely algorithmic formulation of the method to stochastic pattern 
reproduction and data conditioning is not yet well understood. Future research will 
therefore focus on understanding better the advantages and limitations of the various 
new concepts (similarity, dual templates, similarity-based data conditioning, etc.) 
presented in this paper. 
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Figure 5. Unconditional SIMPAT. (b) - (d) all use 11×11×5 templates. In (b), only a 
single grid is used. (c) utilizes the traditional multiple-grid method with 3 multiple-grids 
(where simulated nodes are frozen and stay constant for the rest of the simulation) and 
(d) is obtained using the new multiple-grid approach that employs the dual template 
simulation technique. 

Figure 6. Hard data conditioning using SIMPAT. (b) is sampled from the reference (a) 
and constitutes 2% of all nodes. (c) is the training image and (d) is the final conditional 
SIMPAT realization obtained using a 11×11×5 template and 3 multiple-grids. 
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Figure 7. Soft data conditioning using SIMPAT. The soft training image (d) is obtained 
by applying an approximate model F* to (c). The final conditional SIMPAT realization 
(e) is obtained using a 11×11×3 template and 3 multiple-grids. 
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SEQUENTIAL CONDITIONAL SIMULATION USING CLASSIFICATION OF 

LOCAL TRAINING PATTERNS 

T. Zhang, P. Switzer, A. Journel 
Department of Geological and Environmental Sciences 

Stanford University, CA, 94305, U.S.A 

Abstract Local spatial structures, as depicted by a training image, can be summarized 
by a few general linear filter scores. Local training patterns are then classified according 
to these scores. Sequential simulation proceeds by associating each conditioning 
multiple-point data event with a score class and then patching a pattern from this class 
onto the simulation grid. This procedure can handle both binary and continuous variable 
training images as illustrated by several diverse training images.

1 Introduction 

Multiple point (mp) simulation aims to capture local patterns from a training image (TI) 
and anchor them to actual data. A training image reflects only general aspects of spatial 
structure or texture. It should display stationary patterns, which can be transported to the 
actual simulation space, see Figure 1a for an horizontal 2D fault training image 
example.

The original mp simulation concept was introduced by Srivastava, in Guardiano and 
Srivastava (1993). The original algorithm was very CPU-demanding in that the training 
image had to be rescanned for each node being simulated. Strebelle (2002) traded the 
CPU problem for a greater RAM demand by scanning the TI only once and storing all 
required information in a search tree data structure. Strebelle’s program snesim made 
mp simulation feasible for 3D applications but limited to the joint simulation of no more 
than 4 or 5 categories. 

In this paper, we propose a new mp simulation approach that can deal with both 
categorical and continuous variable training images with reasonable CPU and memory 
demand. Dimension reduction, hence RAM saving, is obtained by classifying the 
training patterns according to a few linear filters. A neighborhood template is passed 
over the training image. At each pixel location of the training image the template 
records the local pattern as an array of values. The array is reduced to a low-dimensional 
set of scores by applying a few general linear filters, see Figure 2. Patterns with similar 
scores are then grouped together into pattern classes. 

To capture patterns at different scales, the template can be rescaled to scan the same 
training image. For example, if the finest template comprises N pixels at horizontal 
spacing 1x1, a coarser template with the same topology would comprise again N pixels 
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but with spacing 2x2, or 4x4. This corresponds to the concept of multiple grids 
commonly used in sequential simulation (Tran, 1994). 

Figure 1. (a) training image with p=32% of faults,   (b) 50 data locations sampled from 
(a) (star-faults; circle-background)

2 Pattern scoring

Let ),( jiX  denote the value at location ),( ji  in the training image. A score ),( jiS f
 for 

the pattern in the neighborhood of ),( ji is defined for a filter ),( vuf  as follows: 
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where the dimension of the local neighborhood or template  is (2n+1)x(2n+1). 
We define six different filters 

61 ...,, ff  as follows. 

(1) 1f : N-S average
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    see Figure 2a. 

(2) 2f : E-W average
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u
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    see Figure 2b. 
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(3) 3f : N-S gradient
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v
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    see Figure 2c. 

(4) 4f : E-W gradient
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u
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    see Figure 2d. 

(5) 5f : N-S curvature

1
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v
vuf

    see Figure 2e. 

(6) 6f : E-W curvature

1
||2

),(6 n

u
vuf

    see Figure 2f. 

Each of these six filters is used to scan the TI. At each pixel location, the template of 
neighborhood data is weighted by the filters to produce a series of 6 scores. If the six 
scores are assigned to the pixel at the center of the template, we thus obtain score maps 
of the training image itself. In Figure 3, we see the score maps for the training image in 
Figure 1a. The size of the template used is 27x27 pixels (n=13), while the training image 
is 200x200. 

The first two score maps 1S and 2S are weighted moving averages of the 27x27=729 

template values. They highlight the object center locations. The next two scores 
3S

and 4S  come from gradient filters; they provide edge detection, and highlight the object 

boundary contrast. The last two scores 
5S and

6S  are derived by curvature filters, they 

provide gradient changes.  Note that these 6 filters privilege the NS and EW directions; 
appropriate rotations should be applied to either the training image or the filter weight 
maps if one wishes to emphasize different directions yet with the same total number of 
filters.
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Figure 2. Six general filters (27x27) 

Figure 3. Six score maps at the finest grid
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3 Pattern classification 

Scanning the TI with each of the six filters produces a frequency distribution for each of 
the scores

61 ...,, ff . Each of these marginal frequency distributions is discretized into 5 

equal frequency bins according to their respective quintiles. This results in a partition of 
the 6-dimensional score space into 156255 6 cells. [For binary data on a fine grid it 
may happen that many templates consist of all zeros or all ones. Therefore it is possible 
for some quintiles to be the same, resulting in fewer effective bins]. 

Even though each of the six scores has been divided into equal frequency bins, the 6-
component joint cell frequencies are not equal. Many cells are empty because there are 
no local training patterns having such filter score combinations. Training patterns whose 
filter scores fall into the same cell are thus grouped into pattern classes. For each non-
empty score cell, a “prototype” is obtained by averaging all patterns falling into that 
class, which can be seen as the aggregate of similar training patterns. Figure 4 shows the 
first 8 prototypes with the most training pattern replicates taken from Figure 1a on the 
finest scale with a template size 27x27. 

Figure 4. 8 prototypes with the most replicates from the training image of Fig. 1a
   at the finest grid (27x27) 

4 Pattern simulation 

Based on the previous classification of local training patterns, sequential simulation with 
multiple-grids can be utilized to generate pattern simulations that together mimic 
structural features of the training image.

At each node to be simulated, conditioning data are searched within a data template 
centered at this node. This data template has the same dimensions as that used to scan 
the training image at the current grid level. 

If there are no conditioning data within the data template, we choose the template 
prototype closest to the target global mean value and pick a training pattern from this 
prototype class, the pattern whose mean is closest to the target mean. A target mean 
value is specified before the simulation and it is expected that the averaged value of 
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each realization should be close to this value. If there are conditioning data in the data 
template, calculate the distance between this data event (DEV) and each training 
prototype (PROT) template recorded at the current grid level. 

There are three types of conditioning data, :1,2,3k
(1) hard original data 
(2) previously frozen simulated nodes 
(3) non-frozen previously simulated nodes from pattern patches, see below. 
The distance expression is written as 

3
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where ki  are the pixel locations of information of type  k and )(k are weights for the 

three respective information types with )3()2()1( .

Once we identify the local template prototype closest to the conditioning template 
information, we sample a specific pattern from the prototype pattern class. We patch the 
sampled pattern at the current simulation node but retaining hard data and previously 
frozen simulated locations. The "inner" part of the patch is frozen and is not revisited in 
the sequential simulation. A larger inner patch area makes simulation faster, but may 
cause discontinuity. The outer part of the patch will be revisited, hence re-simulated. 
The concept of using a patch instead of a single node can be found in texture synthesis 
(Liang et al., 2001). 

We use multi-grids to capture pattern structure and texture at different scales. The 
training image is scanned using local templates at several grid scales. Separately, at each 
grid scale, local patterns are converted to 6-dimensional scores using the filters 
described earlier. Thus, at each grid scale we get a classification of local patterns at that 
scale. In our examples, we used two coarser scales that are 2 times and 4 times the 
dimension of the finest grid scale. 

Simulation proceeds from the coarsest grid to the finest grid. Simulated values from the 
preceding coarser grid are used as conditioning information at the finer grid simulation. 
However, all coarser grid simulated values are revisited and re-simulated at the finer 
grid.

5 Illustrations 

The illustrations shown here exhibit the ability of local filter scores to capture spatial 
patterns when used to simulate categorical and continuous patterns from training 
images. First, we investigate fault structural simulation using the 200x200 binary 
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categorical training image of Figure 1a. The area proportion covered by faults in the 
training image is p=0.32. 

Three grid scales are used; the local template size is 27x27 pixels; the patch size is 
19x19 pixels. 50 hard data, as shown in Figure 1b, are sampled from the training image. 
After training image classification, sequential simulation proceeds by randomly visiting 
grid nodes (pixels) and identifying local pattern prototypes that match the currently 
available information in the neighborhood of the simulation node. The target proportion 
of fault area was set to 0.30. Figures 5a-5c display the same conditional simulated 
realization at the different grid scales, the final simulated image being at the right of the 
figure. Figure 6 displays three additional conditional simulations at the final grid. It can 
be seen that the fault structures, including small fractures, are reasonably reproduced, 
although with less large scale continuity than displayed on the training image of Figure 
1a. The 50 hard conditioning data are honored exactly by all simulated realizations. 

Figure 6. (a)-(c) Three additional conditional simulations at the final grid 



272 T. ZHANG, P. SWITZER, A. JOURNEL 

Figure 7. (a) Texture training image, (b) 50 data location map 
                                          The same grey scale is used for all maps of Fig.7-8 

Figure 8.  (a)-(c) 3 conditional simulations at the final grid 

A continuous variable training image is displayed in Figure 7a, it is a picture of sea 
anemones. It contains visible gray scale textures with curvatures. Figure 7b shows 50 
hard data locations. These samples were generated by sampling a non-conditional 
simulation from this training image; we used 27x27 pixel templates to classify local 
training patterns over 3 grid scales. The patch size is 19x19; Figures 8a-8c show three 
conditional simulations based on the training image of Figure 7a. The simulated 
anemones can be recognized as such, however with square discontinuities corresponding 
to the template size. This is the price to pay for working with patches instead of points. 
This problem calls for future tuning of the algorithm. 

It is important to specify correctly both the template size and the patch size. The 
template size depends on the complexity and the scale of training patterns. The guiding 
rule is that the template should be large enough that on the coarsest grid it can capture 
the pattern objects and their interaction. For example, for the sea anemones training 
image, the size of the largest template should be at least equal to the size of the average 
anemone object. The patch size can be up to 2/3 of the template size in each direction. A 
larger patch speeds up the simulation and improves the pattern reproduction, but at the 
cost of generating discontinuities.
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It is suggested to test different template and patch sizes using the full training image but 
simulating only part of the required field. 

6 Conclusions 

In this paper, we apply a set of filters to scan training images. Local patterns and 
textures in training images are classified by a set of filter scores. This leads to a 
significant dimension reduction of the space of training patterns. Drawing from classes 
of training patterns allows us to simulate whole patterns as opposed to point values. The 
simulation proceeds by sequentially visiting each simulation node and identifying the 
closest training pattern class to the local template data centered at the simulation node. 
We sample a specific pattern from the identified pattern class, and patch the sampled 
pattern at the simulation node. Freezing the inner part of patched pattern not only makes 
the simulation faster but also ensures better pattern reproduction. Multi-grid simulation 
is implemented, allowing for pattern reproduction at different scales. Although all 
illustrations are given in 2D with six filters, the algorithm can be extended to 3D using 
correspondingly 9 filters.
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A PARALLEL SCHEME FOR MULTI-SCALE DATA INTEGRATION

OMER INANC TUREYEN and JEF CAERS
Stanford University, Department of Petroleum Engineering, Stanford, CA
94305-2220, USA

Abstract. In this paper, we propose a parallel modeling approach for solving large
and complex inverse problems involving multiple data sources each with different
scale of observation. This parallel approach relies on building property models on
multiple grids with different resolution at the same time, rather than selecting
a single modeling grid. By keeping a high resolution model and its upscaled,
coarsened model in constant consistency with each other during the inversion
process, a fully consistent integration of all data sources is achieved.

1 Introduction

With the advance of CPU power, numerical models have become an essential
part of most engineering applications, be it a finite difference code of flow in the
subsurface or a boundary element code modeling the geo-mechanical behavior of
faulting and folding structures. Any model, analytical or simulated using a finite
element/difference code, is as good as the input material properties on which
the physical model is applied. In an Earth Science context, the modeling of such
properties is subject to a large degree of uncertainty due to lack of exhaustive
access and due to often strong heterogeneity of the medium under study. Instead,
a wide variety of indirect data is available to construct various realizations of the
media in question. Moreover the various data sources have a different ”area of
coverage” and ”scale of observation”. Fine-scale data, for example obtained by
drilling a well or by taking a sample at the surface provide direct measurements
but are typically sparse in coverage. Remote sensing methods cover a large area
but provide only indirect evidence of the properties to be modeled. For the purpose
of this paper, the data is subdivided into two parts:

− Static data: refers to direct or indirect observations of the material or rock
properties being modeled as input to the physical model. For example a
rock/soil type observed in a well, a 3D seismic survey.

− Dynamic data: refers to all data that are direct observations of the physical
phenomenon being studied. For example a measurement of pressure/head in
a well, a stress or strain measurement.
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The goal pursued in this paper is a method for building property models that
honor these two types of data. To address this problem, some difficult challenges
will need to be addressed

− The relationship between the dynamic data and the modeled property is
in general non-linear, often provided through partial differential equations
simulated using a finite element/difference code.

− Static data is often of smaller scale than dynamic data, which provides inte-
grated or convoluted information about the modeled property.

2 Solution using a parallel modeling approach

The purpose of numerical modeling is to predict a response based on a numerical
model, e.g. the degree of fracturing in a structure, the production of water or oil
in a well. Physical laws on which such prediction rely are generally of the form:

f(q, z) = 0 (1)

where q are the physical quantities (e.g. pressure, stress), as function of space and
time and z are the material properties, which, in this paper is only a function of
space (e.g. porosity, Poisson’s ratio). In most cases a 2D or 3D regular or irregular
grid of properties z is generated. The physical law Eq.(1) defines a forward model
between the material properties and physical quantities

qres = g(z,qin)

for some initial state and boundary conditions, qin. Static data consist of direct
or indirect information related to z, while dynamic data consists of information
qres (e.g. pressure in a well). The non-linear nature of g forces the modeler to use
iterative methods for solving the inverse problem (finding z, for given qres), hence
requires multiple evaluations of g. When g is a numerical simulation model this
may be CPU demanding (Caers, 2004). In that regard the problem of modeling
z calls for a decision on the resolution (dimension) of the modeling grid that is a
trade-off between two constraints:

− The grid size should be small enough to include the static fine-scale informa-
tion, particularly any direct property data.

− The grid size should be coarse enough for finite element/difference simulation
of the forward model g to be feasible within reasonable CPU-time. This is
important for including the dynamic data on q

In this paper, we propose a parallel modeling approach for z that avoids this
trade-off by working on two grids at the same time: a high resolution grid that
allows including any fine-scale static information on z and a coarsened grid that
allows running multiple evaluations of g and thereby including the dynamic data
on q. The key idea presented in this paper is to keep the two grids in constant
consistency with each other both in terms of the property z and the responses on
q.
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The proposed parallel modeling approach follows the following basic steps.

Step 1: High resolution model generation

A high resolution geostatistical realization (z) that honors the static data is
generated. This initial high resolution model does not yet match the dynamic
data, hence will need to be perturbed. Any perturbation method can be used
(gradient-based, Metropolis samplers, rejection methods etc,. . . ) In this paper,
such perturbations are represented by a set of parameters r that change a realiza-
tion z into a perturbed realization z(r), the magnitude of perturbation given by
r. When r=0, no perturbation is performed hence z=z(0).

Step 2: Optimized gridding and upscaling

The next step consists of upgridding and upscaling the high resolution realiza-
tion z(r) to a coarsened realization zup(r): relationship:

zup(r) = Sθ(z(r)) (2)

Here S θ represents the upscaling/upgridding technique applied on z(r) and θ the
set of upgridding parameters (grid dimensions, averaging type, etc..) Upgridding
refers to the construction of the coarse grid, which could be Cartesian or irregularly
gridded. The dimension of the coarse grid is defined by the number of grid vertices
in each x, y and z-direction. Upscaling refers to methods for assigning coarse grid
properties given the high resolution property realization. Due to the presence of
upscaling/upgridding errors, the high resolution and coarsened realization may
conflict in terms of the responses when the forward model is applied on each
of them. This possible inconsistency between the two grids needs to be reduced
by minimizing the upscaling/upgridding errors introduced. Define as ”true” but
unknown upscaling error, the difference between responses of the high resolution
and coarsened model:

ε = ‖g(zup(r)) − g(z(r))‖ (3)

This error cannot be calculated since the forward model g is too CPU-demanding
to be evaluated on the high resolution realization. Hence the challenge is to reduce
the upscaling error ε without knowing g(z(r)). To achieve this, we introduce a
function g∗ as an approximation to g that is less CPU demanding to evaluate. The
shape of g∗ is problem specific and could be a model with simplified physics or
could be an analytical model (see example section for specifics). The approximate
forward model allows to approximate the true upscaling error

ε∗(Sθ) = ‖g∗(Sθ(z(r))) − g∗(z(r))‖ (4)

The key idea is to reduce ε by reducing ε∗. ε∗ can be reduced by adjusting the
parameters θ of the upscaling/upgridding method until Eq.(4) is minimized. At
the same time Eq.(3) will be minimized if the ranking of models z provided by the
forward model g∗ is the same as the ranking provided by g. In other words, ε and



278 O.I. TUREYEN AND J. CAERS

ε∗ need not be the same in absolute magnitude, ε∗ must decrease when ε decreases
and vice versa.

Step 3: Mismatch calculation and perturbation

Once an optimized coarsening of the high resolution model is determined, a
model response is obtained by evaluating the forward model (g) on the coarsened
realization

RPzup(r) = g(zup(r))

the r parameters can be optimized by minimizing the difference between the
coarsened model response RPzup(r) and the dynamic data D:

min
r

O(r) = min ‖ RPzup(r) − D ‖

Some important properties of this approach are

− All data, fine-scale static and coarse-scale dynamic are integrated simultane-
ously.

− The upscaling/upgridding optimization forces the high resolution and coars-
ened model to be consistent with each other during the complete inversion
process.

− The properties are modified on the high resolution grid, hence any model per-
turbation z(r) can be kept consistent with the static data and prior geological
information.

3 Parallel modeling in reservoir characterization

3.1 RESERVOIR MODELING

In this section we present in greater detail how the parallel modelling methodology
is applied to the problem of reservoir characterization for hydrocarbon reservoirs
along with example applications.

Reservoir modelling calls for the integration of various data into a single reser-
voir model. Such data sources can be classified as follows:

1. Geological interpretation of reservoir architecture at all scales ranging from
major faults to facies and bedding configurations. In geostatistics, such in-
formation can be quantified through the variogram or through 3D training
images.

2. Well-log and core measurement information is often the most direct type of in-
formation, however is only telling of the near well-bore reservoir heterogeneity
and provides information at a small (cm) scale.

3. 3D seismic information is probably most exhaustive, yet often at a scale larger
than the reservoir modelling scale. In geostatistics this type of data is treated
as soft, static data.
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4. Reservoir dynamic data, most particularly from pressure and flow measure-
ments, or increasingly common, 4D seismic. The scale of information pro-
vided by this kind of data set is largely unknown. It is spatially varying and
dependent on boundary conditions and configurations of wells.

The current practice of reservoir modelling consists of modelling the reservoir
first using the static data (sources one to three) on the high resolution grid,
then upscaling the high resolution model into a coarsened model on which flow
simulation (function g) is feasible. Next, the coarsened model is further adjusted
to match the dynamic information (source four). In reservoir engineering this is
commonly known as ”history matching”.

Such an approach has the following drawbacks:

− Any high resolution reservoir information (core or well-log) may be lost when
the coarsened model is changed.

− Important fine and coarse scale geological information may be destroyed while
history matching. Particularly when the history matching method does not
take into account statistics such as variogram or multiple-point statistics that
are characteristics particular to the high resolution geological model.

3.2 METHODOLOGY OVERVIEW

We provide first a broad overview of a parallel modelling scheme specific to reser-
voir characterization see (Figure 1).

Figure 1. Parallel approach for reservoir characterization

The work-flow starts by constructing a high resolution realization (z(r)) which can
be perturbed using a set of perturbation parameters r. A gridding optimization
is performed in order to obtain the ”non-uniformly gridded” coarse model which
minimizes the mismatch between the flow responses of the high resolution model
and the coarsened model. The optimization is performed on the θ vector (shown in
Figure 1), which represent the various gridding parameters specific to the gridding
algorithm (see next section). Once the optimally gridded coarse model is obtained,
flow simulation (denoted by FSM in Figure 1) is performed on the coarsened
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model. Then the mismatch between the observed field data and the simulation
results are compared. The r parameters are adjusted to reduce the mismatch. The
entire loop is repeated until this mismatch is minimized.

3.3 PERTURBATION PARAMETERIZATION

Various perturbation methods can be used to perturb the high resolution ge-
ological model. However, perturbations should be parameterized such that any
perturbation z(r) honors the same geological continuity model (variogram, object
model, training image model) and the same static data as the initial high resolution
model z. The gradual deformation (Hu and Roggero, 1997) and the probability
perturbation method (Caers, 2003) methods are two examples of perturbation that
honor this information.

3.4 GRIDDING - 3DDEGA

Although the above outlined parallel modeling approach is general in the type of
gridding method, in this section we review an existing gridding algorithm, 3D-
DEGA (3D Discrete Elastic Grid Adjustment, (Garcia, Journel and Aziz, 1992)).
The algorithm is devoted to the generation of quadrilateral or hexahedric grids
suitable for grid adaptation based on reservoir properties (φ, k), pressure fields,
saturation fields or any other variable. The resulting grids are in a corner point
geometry fashion and can be used with most commercial flow simulators. The
main idea behind the 3D-DEGA algorithm is to generate coarse grid blocks that
are as homogeneous in terms of a given input variable or variables (permeability,
porosity, facies map, etc.).

3.5 GRIDDING OPTIMIZATION, APPROXIMATE FORWARD MODEL

The forward model g is a flow simulation that includes all physics necessary
(gravity, capilary pressure, compressibility, multiple phases etc..) for simulating
the actual reservoir flow. In real cases it may take several hours to run a full flow
simulation on a grid of the order of 105 cells depending on the complexity of the
physical model. To incorporate static information from well-logs and seismic, a
typical high resolution geostatistical realization generated using stochastic simu-
lation can be of the order of 106 − 107 cells, a resolution on which flow simulation
is not feasible. Approximate flow simulations are therefore required to minimize
any upscaling errors as outlined above.

As an approximate physical model we use an incompressible single phase flow
simulation (denoted by g∗). A single phase flow model can be calculated on the
high resolution grid in a matter of minutes. To further aid the upgridding method
we trace streamlines using the pressure (and velocity) solution of the single phase
flow model. Using the streamlines simulation, approximate flow responses can be
obtained, denoted by RP∗.

The high resolution geostatistical model is then upscaled/upgridded to a coarser
model with 3D-DEGA given some gridding parameters θ. The incompressible sin-
gle phase flow solution and streamline simulations are repeated on the coarsened
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model, from which the same type of responses as for the high resolution model are
calculated. The responses from the high resolution and the coarsened model are
then compared. The gridding parameters θ are adjusted in an iterative manner
until the mismatch (Eq.(4)) between the two responses is minimized.

3.6 2D EXAMPLE

3.6.1 Definition of the problem
A 2D, high resolution reference permeability realization is generated through a
training image based technique using multiple point geostatistics. This was per-
formed using the SNESIM (Strebelle, 2002) algorithm with the training image
given in Figure 2a. The realization is representative of a channel system with
a quarter five spot pattern production strategy where injector producer wells
are placed on opposite corners. Water flooding for 500 days is simulated on this
realization using a finite difference reservoir simulator (ECLISPE). A water cut
curve is obtained (see reference permeability map and its corresponding water cut
curve in Figure 2b and 2c). This curve is treated as dynamic data. A constant
permeability value of 10000 md is assigned to the sand (channel) facies and 100
md is assigned to the mud (non-channel) facies. The permeability values at the
well locations are assumed ”known” and are treated as ”hard data”. This high
resolution realization is composed of 100 × 100 × 1 grid blocks in the x, y and the
z directions, where each block is of size 20ft × 20ft × 200ft.

Figure 2. (a) The training image used for creating the reference permeability
field, (b) The reference permeability field, (c) The flow response of the reference
permeability field.

In order to demonstrate the effectiveness of the parallel modeling approach,
30 high resolution realizations were generated (using SNESIM), conditioned only
to hard data (no history matching was performed). Full flow simulation was per-
formed on these 30 realizations and Figure 3 illustrates the flow responses. As
expected the flow responses of the high resolution models conditioned only to
hard data provide a wide scatter of production responses.
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Figure 3. Flow responses of 30 realizations not matched to reference water cut
data.

3.6.2 Applying the parallel modelling approach
Figure 4 illustrates the work-flow of the parallel modeling methodology specific
for this example. In the first step the SNESIM algorithm is used for generating a
high resolution realization (with the same dimensions of the reference realization).
In generating this initial realization, the same training image given in Figure 2a is
used. Streamline simulation (which acts as the approximate flow model, denoted
by g∗ in the previous section) is performed on this high resolution realization and
a pseudo (approximate) water cut curve (RP∗, the approximate flow response) is
obtained.

Using the 3D-DEGA algorithm (with an initial guess of upgridding parameters
θ), the high resolution model is upgridded and upscaling is performed by taking
arithmetic averages of the permeability values from the high resolution realization.
Streamline simulation is performed on the coarsened model and a pseudo water
cut curve (RPup∗) is calculated. An optimization step minimizing the mismatch
between RP and RPup∗ is applied, during which the upgridding parameters θ are
optimized. In addition to the upgridding parameters, the number of coarse grid
blocks are also optimized while keeping the total number of grid blocks constant
(nx × ny = 625).

Full flow simulation (the full flow model, denoted by g in the previous section)
is performed on the optimally gridded coarsened model and the simulated water
cut curve is obtained. The mismatch between the water cut curve and the refer-
ence water cut curve (given in Figure 2c) is computed. The perturbation method
(probability perturbation, (Caers, 2003)) repeats the entire procedure until this
mismatch is minimized by optimizing the r parameters.

3.6.3 Results for the 2D synthetic example
The proposed parallel modeling approach has been performed initially without the
gridding optimization for 30 different random seeds in order to make a comparison
with Figure 3. At the end of the inversion process, for each random seed, a coars-
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Figure 4. Schematics of the parallel approach specific to the 2D example.

ened and a high resolution flow response results as output. The coarsened models
match the history well, and provide accurate future predictions for the same well
configuration (see Figure 5a). Figure 5b illustrates the flow responses of the high
resolution models corresponding to the history matched, coarsened models. As it is
clear from the Figure 5b, the high resolution models in this case provide a match
to some degree when compared with Figure 3, but not as well as the match of
the coarsened models. This can be attributed to upscaling errors that introduce
inconsistency between the two modeling solutions.

Figure 5. Flow results of the parallel modelling approach without the gridding
optimization. (a) Flow responses of the non-optimally gridded coarse models, (b)
Flow responses of the corresponding high resolution models.

Therefore, gridding optimization needs to be introduced each time a high
resolution model coarsened. Results obtained by incorporating the gridding op-
timization shown in Figure 6a for the coarsened model match the history well.
Figure 6b illustrates the flow responses of the corresponding high resolution mod-
els. Improvements on these responses are clear when compared with Figure 5b.
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The scatter on the high resolution model response is reduced considerably through
gridding optimization.

Figure 6. Flow results of the parallel modelling approach. (a) Flow responses
of the optimally gridded coarse models, (b) Flow responses of the corresponding
high resolution models.

4 Conclusions

In most earth sciences applications ”modeling” in general is a difficult task due
to lack of exhaustive data and heterogeneity of the medium under study. Fully
integrating all data into a single grid is usually not plausible.

The parallel modeling approach uses multiple modeling resolutions at the same
time. A (uniformly gridded) high resolution model is used for integrating static
data and applying geostatistics effectively. The coarsened model may be gridded in
any fashion and is used for integrating dynamic data. Consistency between these
two resolutions of models is ensured through a gridding/upscaling optimization
step, which forces the responses of each model resolution to be consistent.
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Abstract.  The connectivity and the flow or mechanical properties of networks of faults 
and joints are key factors in a number of applications. Only a minute fraction of the 
fractures in the domain of interest are usually observed, so that a deterministic modeling 
of the fracture network is not possible. Stochastic models have been developed for a 
variety of fracture patterns. They can be classified in objects models, which are purely 
stochastic, and process-based models, which take account of the mechanical processes 
that rule fracturing. This presentation is focused on the geometrical and topological 
aspects of fracture networks. 

1 Introduction 

Structural discontinuities such as faults and joints occur at various scales and are now 
widely recognized as a key factor in a number of situations. They can act as conduits or 
flow barriers depending on whether they are open or sealed, and thus impact the safety 
of nuclear waste storage in geological formations, the oil recovery in fractured 
hydrocarbon reservoirs, and the heat recovery in geothermal hot dry rock reservoirs. 
Open fractures delimit blocks of ornamental stones or impact the stability of stopes or 
the safety of underground exploitations, caverns and tunnels. Veins are associated with 
mineralization.

Fracturing results from a number of processes and depends on the rock fabric, rock 
properties, geological setting, past and present mechanical constraints. Many different 
fracture patterns can therefore be observed and there is no general fracture network 
model. While large faults are usually known from geological mapping and seismic 
surveys, medium and small scale structures are very sparsely observed and are therefore 
represented by means of stochastic models. Many purely stochastic models, where the 
fractures are represented by objects, have been developed. The mechanical processes 
leading to the initiation and growth of faults and joints are better and better understood, 
which has lead to the development of algorithms modeling the fracturing process or at 
least parameters that control it. These algorithms are exploited by process-based models. 
We will first review the main types of object models and then examine approaches 
based on a modeling of geological and mechanical processes. This paper will be focused 
on the geometrical and topological aspects of fracture networks, but in applications this 
shall not be disconnected from the hydrological or mechanical aspects. 
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2 Object Models 

2.1 BASIC RANDOM SET MODELS AND GENERALIZATIONS 

The first fracture network models were deterministic, such as the model defined by three 
orthogonal series of parallel and regularly spaced planes. Such a network is too regular, 
subdividing the space like sugar cubes, so that stochastic models were soon proposed. 
The first stochastic models were simple prototypes corresponding to the usual models of 
random set theory. Priest and Hudson (1976) used random planes to represent fractures 
that can be considered as infinite at the scale of the domain under study. To represent 
finite-size fractures, Baecher et al. (1977) developed the random disk model, namely a 
standard Boolean model where the objects are disks with random diameters and 
orientations. Another way to obtain finite fractures is to start from a random plane 
model and define a stochastic tessellation in each plane, for example a Voronoi or 
Poisson polygons tessellation; each polygon is then randomly considered as a fracture or 
as intact rock. Depending on the method chosen for defining the tessellation, the 
fractures can intersect with others (Veneziano, 1978) or abut against others (Dershowitz, 
1984).

These basic models represent networks with a uniform fracture intensity. In 
applications, however, fracture intensity is usually not uniform. This is accounted for by 
generalizing the Boolean model, based on Poisson points, to marked point processes 
based on more general point processes. The main point process models used are (e.g., 
Stoyan and Stoyan, 1994): (i) Poisson point process with spatial variations of intensity, 
these variations being either deterministic (inhomogeneous Poisson point process) or 
modeled as a positive stationary random function (Cox process); (ii) cluster process 
(also called shooting process, or parent-daughter model): primary points (targets, or 
parents) constitute a Poisson point process; each primary point is the center of a cluster 
of secondary points (shot impacts, or daughters) randomly and independently located 
around the primary point according to some dispersion distribution; (iii) hard-core 
model, to forbid the presence of too close points, for example because the relaxation of 
constraints in the vicinity of a fracture inhibits the creation of a new fracture. Chilès 
(1989) modeled fractures in a granitic site as clusters at a local scale with a regionalized 
intensity at a wide scale. 

In practice, the orientation of the fractures is not purely random, and several fracture sets 
are superimposed, each one with a direction that is well defined or varies around a mean 
direction. Each set is linked to an event of the structural history of the site and has its 
own characteristics as regards to the size of the fractures, their aperture, etc. 

2.2 HIERARCHICAL MODELS 

Most of the models presented above were developed in view of mining engineering 
applications or for the study of potential nuclear-waste underground storage sites in 
granitic formations, namely for situations where there is no well-expressed hierarchy 
among the various fracture sets, despite of their chronology. The situation is very 
different for sedimentary rocks, so that other models were developed for them. 
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Hierarchical models are more complex than basic models because they must include the 
relationships between the various fracture sets. Conversely, fractures in sedimentary 
rocks are often either horizontal (bedding planes) or subvertical and confined to one or 
several layer (joints), so that their 3D modeling amounts to a series of 2D models. The 
first stochastic hierarchical model we know is a 2D model in a petroleum reservoir 
(Conrad and Jacquin, 1973): (i) large faults are represented by a primary network of 
random lines; (ii) in each Poisson polygon defined by the primary network, an 
independent Boolean model of segments represent finite fractures; the model is 
truncated by the boundaries of the polygon, so that fractures can abut against faults of 
the primary network but cannot intersect them. 

Bourgine et al. (1995) propose another model, developed to model vertical joints at a 
pluridecametric scale in the Saq sandstones, which are considered as an analog to some 
petroleum reservoirs. That model is based on renewal processes, which offers much 
flexibility: (i) a primary set is composed of subparallel finite fractures; (ii) secondary 
sets connect fractures of the primary set, with a given proportion of terminations 
abutting against fractures of the primary set. A 3D model is obtained by superimposing 
several such models with parameters depending on the bed height. Other models can be 
found in the literature. 

2.3 MULTISCALE BEHAVIOR AND FRACTAL MODELS 

The organization of fractures, more precisely of faults, is often considered as self-similar 
(e.g., Turcotte, 1992) because faults can occur at all scales from cartographic faults to 
microfaults. This is often sustained by the fact that some variable (e.g., fracture size, 
fracture spacing, size of rock fragments, box counting, i.e., number of cells intersected 
by fractures as a function of cell size) follows a power law distribution with a noninteger 
parameter. In conclusion of a study of several sites in sandstones, Gillespie et al. (1993) 
observe that the spacings between tectonic faults follow a power law distribution 
because of a clustering of smaller faults in the vicinity of larger faults, whereas the 
spatial distribution of major joints is very regular because it is controlled by the bed 
thickness of the jointed unit, by the differences in mechanical properties between the 
jointed unit and adjacent layers and by the extensional strain. The situation is different 
in granitic rocks where the spacing between joints can follow a power law distribution 
(Barton and Zoback, 1990), whereas joint corridors and faults can be regularly spaced 
(Genter and Castaing, 1997). So the invariance laws (self-similarity or self-affinity ruled 
by a power law) which are often advocated have no universal character and shall be used 
only between well identified bounds, as noticed by Hatton et al. (1994) and Peacock 
(1996). Moreover, the observation of a power law distribution for some parameter of the 
fractures does not imply the fractal character of the fracture network, as shown for 
example by Walmann (1998) in a laboratory experiment where clayey material was 
submitted to mechanical tests generating cracks. 

In comparison with the abundant literature about fractals, few fractal models have been 
proposed to represent fracture networks, probably because one or several fractal 
exponents are far from characterizing a fractal model. Let us mention models defined by 
fragmentation (Turcotte, 1986; Acuna and Yortsos, 1995): the domain of interest is 
subdivided in two parts by a fracture of the first generation; each part in then subdivided 
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in two parts by a fracture of the second generation, and so on. To obtain a fractal model, 
the fractures are not created systematically but with a given probability; when a fracture 
is not created the subblock is no more subdivided. Bour and Davy (1999) developed 
another model, which is the transposition of the random disk model to fractals, by 
locating disks with a power law diameter distribution at the points of a fractal point 
process.

These synthetic models are often used to study the connectivity or flow behavior of the 
network—percolation, emergence of a continuous-medium behavior—as a function of 
the fractal dimension and other fractal exponents, either analytically or by simulation. 
The validity of the results for other models with the same fractal exponents, often 
assumed, is questionable. 

The detailed fracture data sets studied by this author did not show evidence of a fractal 
behavior, either locally (Chilès, 1988, for granite) or over a wide range of scales 
(Castaing et al., 1996, for sandstones). In the latter case, the analysis showed a very 
different behavior for faults and joints, as well as characteristic scales for the joints, 
which could be related to the various mechanical units formed by the sedimentary beds, 
the sandstone formation, the sedimentary basin, and the upper crust. In such a case, 
stochastic models are built at a given scale, with the fractures of the finer scale 
incorporated with the rock matrix and the fractures at the coarser scale—usually few in 
number—modeled deterministically. Other models are needed for networks that are not 
controlled by mechanical units, for example in the sandstones studied by Odling (1997). 

2.4 STATISTICAL INFERENCE 

The key problem, from a geostatistical perspective, is the inference of the parameters of 
the stochastic models. Even for a simple model like the random disk model, this is not 
trivial, because fractures are 3D objects that cannot be observed directly but only 
through their intersections with boreholes (cores, electric logs) or outcrops (field 
exposures, drift walls, vertical stopes, aerial photographs). Part of the problem is also 
that the fractures of our models are an idealization of reality: true fractures are not planar 
circular disks for example. So if the choice of the model is not sound, it may be difficult 
for it to honor a variety of statistics about fracture density, fracture orientation, trace 
length, abutting fractures, connectivity, etc. 

The most significant parameter is the fracture density , defined as the average fracture 
surface per volume unit. If we consider a set of fractures which are normal to a sampling 
line, this is simply the number of fractures per length unit; this is also the inverse of the 
average fracture spacing. Fractures that are oblique to a surveyed line or outcrop are 
underrepresented in comparison with fractures orthogonal to it (fractures parallel to the 
line or outcrop cannot be observed). It is therefore recommended to have several 
sampling lines or outcrops with different orientations, and data must be weighted 
according to the orientation of the fracture with respect to the line or outcrop: this is the 
aim of the well-known correction proposed by Terzaghi (1965) for line sampling, which 
can be improved in several ways (Yow, 1987) and has a variant for areal sampling 
(Chilès and de Marsily, 1993). 
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The fracture density  is usually not the basic parameter of a fracture network model. 
For a random disk model for example, with disks of a fixed orientation, the parameters 
are the Poisson process intensity , namely the number of disks per volume unit, and the 
distribution of disk diameters FD. It could be tempting to separately infer both 
parameters, as Zhang and Einstein (2000), for example, do it. These parameters, 
however, are not robust: it is not obvious to decide on the field that two aligned traces 
separated by a short intact interval are two distinct fractures or the en-échelons part of a 
single fracture, and structural geologists can adopt either view. The choice, however, 
will not affect the calculation of the total fracture length and thus the estimation of the 
fracture density , which is therefore a robust parameter. Consequently, it is preferable 
to infer separately the fracture density  and the disk diameter distribution FD, and then 
derive the corresponding Poisson process intensity  by applying the relation 

 = M2 / 4, where M2 is the quadratic mean of the disk diameter. 

Now the diameters of the fractures cannot be measured because fractures are at best 
observed as fracture traces. The length of a fracture trace is shorter than the diameter of 
the fracture but the disk diameter distribution can be derived from the trace length 
distribution using the stereological formula which is appropriate for the kind of 
sampling used (e.g., Lyman, 2003). The determination of the trace length distribution, 
however, requires special care to take the various sources of bias into account: 
overrepresentation of long traces, truncation of the short traces, censoring when the 
terminations cannot be seen, etc. (see Lantuéjoul et al., 2004, and references therein). 

Things are not simpler for the inference of the parameters of more complex models. For 
those deriving from the Boolean model, tools specific to point processes, such as 
Ripley's K-function and its variants for isotropic point processes and the pair correlation 
function can be applied to fracture centers (Stoyan and Stoyan, 1994; Wen and Sinding-
Larsen, 1997). In many cases, however, the fracture trace centers are not precisely 
known due to censoring (at least one termination of the trace cannot be observed), which 
limits the use of these tools. With outcrop data for example, it could be more appropriate 
to use tools specifically designed for random fiber processes (Schwandtke, 1988). The 
spatial variability can also be studied with the variogram of the observed fracture 
density, defined as the cumulated fracture length in equal squares partitioning an 
outcrop, or as the number of fracture intersections in equal segments partitioning a 
borehole.

All these tools as well as simple statistical tools can be used qualitatively to assess the 
choice of a relevant model. For example, the distribution of the spacing between 
successive fractures of a given set is exponential if the fractures are randomly located, 
less dispersed in the case of a regular pattern, or more dispersed, with many short 
spacings and a long tail, if the fractures are clustered. To transform them into 
quantitative tools, it is necessary to know their theoretical expression as a function of the 
parameters of the model; these expressions must incorporate the bias sources and 
stereological relationships. General results are given by Pohlmann et al. (1981). A 
suitable approach has been developed for as complex models as the disk cluster model 
with regionalized intensity (Chilès, 1989) and the hierarchical model proposed by 
Bourgine et al. (1995). 
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3 Process-Based Models 

3.1 IDENTIFICATION AND MODELING OF MECHANICAL PROCESSES 

The models presented above place fractures in their final state. Another approach 
consists in modeling the fracturing process itself. That approach is theoretically more 
satisfactory and also allows the prediction of the future evolution of the system in 
response to a new tectonic event or underground works. The identification of fracturing 
processes motivated a detailed observation of natural fracture systems: fault zones in 
sandstones (Antonellini and Aydin, 1994, 1995) and granitic rock (Christiansen and 
Pollard, 1997), joint formation in granitic rock (Segall and Pollard, 1983), relation 
between faults, joints and stress (Finkbeiner et al., 1997). Laboratory experiments were 
also carried out on scale models to observe the nucleation and development of 
discontinuities: brittle varnishes for understanding the mechanical origin of joints in 
layered media (Rives and Petit, 1990), sand and silicones (Sornette et al., 1990) or clay 
and fault gouge (An, 1998; Walmann, 1998) for studying the origin of faults in the 
Earth's crust. Finally, numerical codes have been developed to model these mechanical 
processes, usually under the simplifying assumption of an elastic stress field (e.g., 
Thomas, 1993). Such codes have been applied to model fault growth, linkage and 
interaction (Aydin and Schultz, 1990; Bürgmann et al., 1994; Willemse et al., 1997; 
Crider and Pollard, 1998; Weinberger et al., 1999) and fault-related fracturing (Martel 
and Boger, 1998). Caputo and Santaroto (1998) developed a mechanical model for 
quantifying the ratio between extensional joints and faults. 

3.2 STOCHASTIC AND PROCESS-BASED APPROACH 

The numerical modeling of fracture initiation and growth is not a simple task and is 
carried out for rather small networks in comparison with the capabilities of flow 
simulators, which can handle one million fractures when the rock matrix is impervious. 
This has led to the development of iterative techniques that simulate the initiation of 
new fractures and their growth. The growth is stochastic rather than the result of a 
mechanical calculation but the rules that govern the direction and intensity of growth are 
based on mechanical principles (Takayasu, 1985; Renshaw and Pollard, 1994). 

Bourne et al. (2000) are a typical example of that kind of approach. They integrate 
growth processes in a geomechanical model of rock deformation which is the basis for a 
simulation of the fracture network. Large discontinuities such as seismically visible 
faults are supposed to be known. The first step is to determine the stress field within the 
faulted reservoir; this is done by assuming that the rocks behave as a homogeneous, 
isotropic, and linear-elastic material, and the faults as surfaces free of shear stress. The 
distribution of elastic stress related to faulting is governed by the distribution of slip 
over the fault network. Since fault displacement observations are scarce and poorly 
reliable, the distribution of slip is calculated over the fault network by loading it 
according to the remote stress that caused the faults to slip (Jeyakumaran et al., 1992). 
The orientation of this remote stress is estimated from the regional tectonic history, and 
its magnitude according to the mean rock strength prior to faulting. The comparison of 
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the elastic stress field with the brittle failure strength of the reservoir rock determines the 
areas where secondary tensile and shear fractures have occurred. The initiation, growth, 
and termination of these fractures are then simulated in these areas. During growth, 
fracture spacing and interaction are controlled: a forbidden zone is defined around each 
fracture, which represents an overall reduction in local stress due to the presence of the 
fracture; conversely, the mechanical interaction leading to the connection of fractures 
with neighboring tips is taken into account, leading to en-echelon structures and 
enhancing the connectivity of the fractures 

All the elements needed by the approach above are not always available. It is however 
useful to account for geomechanical information. Srivastava (2002) defines a simplified 
approach to generate 3D simulations of a fracture network observed as lineaments at a 
regional scale (40 × 50 km) on well-exposed areas of the topographic surface. The 
fracture traces which have not been observed or whose terminations could not be seen 
are obtained by simulating their growth. That growth is guided by a statistical model 
rather than determined by a mechanical process. The statistical model rests on a detailed 
analysis of the distribution of the characteristics of the fractures (length distribution, dip 
distribution, etc.) and of their correlation (variograms). The vertical growth is simulated 
similarly for all fractures according to geomechanical assumptions about their shape. 

3.3 INTEGRATION OF AUXILIARY INFORMATION 

An intermediate solution between object models and process-based models is to model 
the fracture network by placement of objects but to determine the local parameters of the 
object model by using geomechanical rules. That approach is used for example by Cacas 
et al. (1997) to simulate large joints in stratified sedimentary reservoirs: the local 
direction of the systematic joints is deduced from a mechanical simulation of the local 
stress and strain tensors at the time of fracturing; the direction of fold-related joints, 
which is parallel to the hinge of the fold, is defined locally by a surface curvature 
analysis; etc. 

Similarly, the fracture density is larger in the vicinity of an anticlinal axis, where the 
layers were submitted to an extensional regime, than on its flanks. Like in fault zones, it 
is then necessary to build a model of the spatial variations of fracture density. In more 
complex situations, the strain field can be reconstructed by finite element methods from 
outcrop measurements (Schultz-Ela, 1988) and its impact on the fracture network can be 
modeled.

The situation is more complex if the evolution of the structural setting concerns not only 
the fracture density but also the fracture type. For example, in the sandstones of Arches 
Park (Utah), joint corridors with a large permeability can be observed in the vicinity of 
anticlinal axes, whereas deformation bands are found in neighboring synclines, namely 
structures resulting from a strong compression of grains and thus with a very low 
permeability (Antonelli and Aydin, 1994, 1995).
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4 Conclusion 

With the increasing power of computers, stochastic and process-based methods shall be 
able to simulate realistic fracture networks. However, it will remain difficult to 
reproduce the exact characteristics of a given site: they depend on several factors, 
including the spatial variability of rock properties, which is poorly known. Intermediate 
approaches are therefore useful. They can integrate geomechanical rules, field data, and 
complementary data such as new seismic attributes brought by high resolution 3D 
seismic surveys (Gauthier et al., 2003). 

Simulated fracture networks are usually the input of flow models. Conversely, the flow 
behavior of the true network can help in choosing the relevant fracture network pattern 
and its parameters. Inverse methods should be developed to that effect. 
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Abstract. A geostatistical method has been developed by Ontario Power Genera-
tion to enable creation of 3D fracture network models (FNMs) that explicitly honor
detailed information on surface lineaments. This approach provides a systematic
and traceable method that is flexible and that accommodates data from many
different sources. The detailed, complex and realistic models of 3D fracture geom-
etry produced by this method serve as an ideal basis for developing rock property
models to be used in flow and transport studies. These models are probabilistic
in the sense that they consist of a family of equally likely renditions of fracture
geometry. Such probabilistic models are well suited to studying issues that involve
risk assessment and quantification of uncertainty.

The geostatistical procedure for simulating FNMs is described, and tested using
field data collected from the Lägerdorf chalk quarry in northern Germany.

1 Introduction

Fractures play a dominant role in fluid flow and transport; 3D models of fracture
networks can therefore be very useful as inputs to flow simulators. Existing proce-
dures for simulating fracture network geometry typically simplify the undulating
and curvilinear nature of fracture surfaces,approximating them as planar facets.
Though this approximation is suitable for many flow and transport studies, it is
unacceptable in situations where models of fracture geometry need to exactly honor
known locations of a large, detailed and geometrically complex set of fractures.

Ontario Power Generation (OPG) is developing tools to assist the Deep Geo-
logic Repository Technology Program (DGRTP) with integrating diverse types of
data into geosphere models that are consistent with increasingly detailed surface
and subsurface knowledge. One specific data integration task involves construction
of 3D fracture network models that honor information available at the time of
preliminary site characterization: surface lineaments, general structural geology
principles, regional tectonic considerations and site-specific information on geome-
chanical characteristics. These various pieces of information provide constraints
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on fracture location: very strong constraints at surface in regions of good bedrock
exposure; weaker constraints at depth and in regions of poor bedrock exposure.

A geostatistical simulation method has been developed for creating complex,
detailed and realistic 3D fracture network models that honor the various pieces
of information available for preliminary site characterization. It can also accom-
modate data that become available in later years, such as borehole data and
information from other subsurface investigations. This method produces a family
of equally probable renditions of 3D fracture geometry, each one different in detail,
but all consistent with the same constraints.

2 Overview and implementation

Sequential gaussian simulation (SGS) is a procedure that is widely used for creating
data-conditioned stochastic models of spatial phenomena. In a typical SGS study,
the procedure is applied to volume-averaged rock properties (such as grades or
permeabilities), and is performed at the nodes of a regular grid. In the procedure
discussed here, SGS is applied to geometric attributes (strike of a fracture trace,
or dip of a fracture surface). Furthermore, the locations at which SGS is applied
are not nodes of a regular grid; instead, the procedure is applied at the tips of
iteratively propagating fractures, which entails that the locations of the simulations
nodes depend on the details of what has been simulated in previous iterations.

The original motivation for using an iterative procedure like SGS was to mimic
the procedure proposed by Renshaw and Pollard (1994). Their approach to 2D

fracture simulation was based on geomechanical principles, propagating fracture
tips when stress at fracture tips exceeds a critical threshold. Their approach created
very realistic synthetic images of fractures in a variety of stress environments,
including many subtle features commonly observed in the field, such as zones of
small en echelon features that bridge gaps between larger separate fractures.

Though undeniably successful, fracture simulation based on geomechanical
principles proved to be prohibitively computationally intensive and has never been
extended satisfactorily to 3D. By using the same broad approach — an iterative
procedure for propagating fracture tips — but replacing geomechanical principles
for fracture propagation with geostatistical rules, one is able to mimic much of the
realism with less computational effort.

2.1 2D PROPAGATION OF SURFACE FEATURES

Figures 1 through 6 show the major steps in the first phase of the fracture
simulation: 2D propagation of surface traces.

The procedure begins with the seeding of the initial fracture segments, each
one of which is assigned an initial direction of propagation and an intended final
length. For deterministic fractures that can be identified from aerial photography
or surface reconaissance (the grey lines in Figure 1), the initial fracture segment is
seeded at the midpoint, the initial direction of propagation is determined from the
lineaments orientation at its midpoint and the intended final length is the length of
the known fracture. In areas of poor bedrock exposure (the darker region on the left
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of Figure 1), additional fractures are seeded to bring the number of fractures up to
the number predicted by the user-specified model of fracture density. These hidden
fractures are assigned their locations according to a clustered Poisson process; their
initial orientations are drawn from the model of azimuth distribution and their
intended final lengths from the model of fracture length distribution. The filled
dots in Figure 1 mark “constrained” endpoints, those whose propagation will be
governed by the trace of known fractures. The open dots mark the “free” endpoints,
those whose propagation will be determined by sequential gaussian simulation.

Figure 2 shows how free endpoints are propagated. These are visited in a
random order and each one is propagated a fixed step length. The direction of
propagation is determined by simple kriging using the closest segment of each
nearby fracture as conditioning data. In the example shown in Figure 2, the
azimuth data used in the kriging for the free endpoint marked by the question mark
are shown in black. One additional piece of data (shown in grey) is included in the
kriging: a point halfway to the nearest neighbor, with an orientation parallel to the
line segment that connects the endpoint being propagated to its nearest neighbor.
For the example in Figure 2, the distribution of possible azimuth directions has a
mean of 70◦ and a standard deviation of 12◦; this is shown by the pie-shaped slice
centered on the mean and with an angular width of two standard deviations. A
specific direction (the dashed line) is randomly drawn from the distribution and
the endpoint is propagated in that direction.

With simple kriging being performed on the strike of the fracture traces, a
variogram model is required for this strike attribute. For long features that are
very nearly linear, the variogram of strike will show strong spatial continuity,
typically modelled with quadratic behavior at short distances and with little or no
nugget effect. For features that undulate, are kinked or meander, the variogram of
strike will show less spatial continuity and may be modelled with a small nugget
effect. The use of variogram information on the strike ensures realistic portrayal
of the fractures’ undulations.

Figure 3 shows how constrained endpoints are handled differently. For simu-
lated fractures that track deterministic features, their propagation simply follows
the trace of the identified fracture. In the example in Figure 3, the constrained
endpoint marked with the question mark is propagated along the trace of the
deterministic trace shown in gray. As each endpoint is propagated, a new line
segment is created. As in a conventional sequential simulation procedure, each
newly simulated segment is available for use in all subsequent simple krigings.

When the propagation of a free endpoint collides with a previously simulated
endpoint, that endpoint is terminated with a user-specified probability. Setting
this truncation probability to 1 guarantees that when fractures meet, one of them
will terminate, a pattern common with faults. Using lower probabilities allows
fractures to cross each other, a pattern common with joints.

If both the free endpoints of a hidden fracture are terminated before the fracture
reaches its intended length, then the remaining unused length is assigned to a
fracture still being propagated. This preserves total fracture length in the study
area, at the expense of increasing the variance of the fracture length distribution,
a result of allowing more shorter fractures, as well as more longer ones.
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Figure 1. Initial seeding of the mid-
points of the fracture traces.

Figure 2. An example of the propa-
gation of a free endpoint.

Figure 3. An example of the propa-
gation of a constrained endpoint.

Figure 4. After one complete itera-
tion through the endpoints.

Figure 5. After five complete itera-
tions through the endpoints.

Figure 6. Final outcome of simu-
lated fracture traces at surface.
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Figure 4 shows the example after one complete iteration through all endpoints.
As can be seen near the bottom of this figure, hidden fractures seeded in areas of
poor exposure are allowed to propagate some user-specified distance into areas of
good exposure.

Figure 5 shows the result after five complete iterations through all endpoints.
Some of the fractures, such as the one whose initial propagation was shown in
Figure 2, have reached their intended length and do not propagate any further.
Others, such as the “hidden” one that first crossed into the area of good exposure in
Figure 4, have terminated against other lineaments and do not propagate further.
Some constrained endpoints, such as the eastern tip of the deterministic fracture
noted in Figure 3, have been terminated because the lineament ends in an area
of good bedrock exposure. Other constrained endpoints, such as the other end of
the same feature, have passed into areas of poor bedrock exposure. When this
happens, the endpoint becomes free and its propagation is governed by the SGS

procedure since there is no longer a deterministic trace that can be followed.
Figure 6 shows the final result after several more iterations. The fractures

originally identified in regions of good bedrock exposure have been honored; addi-
tional fractures have been added in regions of poor exposure; certain features have
grown together into larger connected fracture systems; fractures truncate against
each other in a plausible manner.

2.2 PROPAGATION TO DEPTH

Once the surface traces of the fractures have been simulated, the next step is the
down-dip propagation of these traces to depth. This is accomplished using the same
SGS procedure that was used to govern the 2D propagation of free endpoints. For
the 2D propagation of surface traces, the geometric attribute being simulated was
the strike direction of the fracture. For the down-dip propagation, the simulated
attribute now becomes the dip of the fracture surface.

In the same way that each endpoint was propagated using SGS in 2D by simulat-
ing an appropriate strike direction, each line segment is now propagated down-dip,
with SGS being used to simulate an appropriate dip. If the dip of a particular
fracture is known (from surface reconnaisance measurements, for example), then
this known dip can be used. The more common situation is that the dip is not
known precisely, but only approximately. For example, regional tectonic consider-
ations often imply that a certain set of fractures are likely the type of low-angle
features commonly found in compressional environments; similarly, high-angle and
sub-vertical features are usually more common in tensional environments.

When the dip of a particular fracture is not known precisely, SGS can still be
guided to plausible values for the simulated dip by appropriate choices of the local
mean used in the simple kriging, and by the sill of the variogram, which governs the
kriging variance and the spread of the local conditional probability distributions
of dip. Adjustments to the local mean can also be used to cause low-angle features
to flatten with depth, a characteristic common of compressional “thrust” faults.

When there is no site-specific information on the fracture location at depth,
as is typically the case for preliminary site characterization, all line segments are
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treated as “free” segments: they are not constrained to follow a specific down-
dip trajectory. In applications where subsurface investigations do provide specific
information on fracture location at depth, this type of data is easily accommodated
in the same way that it was for the 2D propagation. The line segments correspond-
ing to certain fractures can be treated as “constrained” and can be required to
follow a specific trajectory.

2.3 PROPERTIES OF SIMULATED FRACTURE NETWORKS

Once the down-dip propagation of the fracture surfaces is complete, we have a
complete 3D model of the geometry of the fracture network that:

− honors the surface traces of all identified fractures and, if available, subsurface
information on the location of specific features;

− includes additional stochastic fractures in areas where poor exposure causes
deterministic fractures to be under-represented;

− honors the fracture length distribution;
− honors the fracture orientation distribution; and,
− honors the user’s assumptions about how fractures truncate against one an-

other.

Several applications of this method to different case study examples confirm
that the resulting geometry is plausible both from a geomechanical point of view,
as well as from a structural geology point of view (Srivastava, 2002; Sikorsky et
al., 2002); one such recent case study is discussed below.

3 Lägerdorf case study

From December 1990 to May 1992, GEO-RECON, a Norwegian consulting com-
pany, undertook a fracture mapping program at the Lägerdorf quarry in northern
Germany on behalf of the Joint Chalk Research Program, a multi-company re-
search program that focused on subjects related to North Sea chalk reservoirs.
Data collection procedures are described in detail by Koestler and Reksten (1992).

The data set consists of highly detailed maps of fracture traces for 12 parallel
faces of one wall of the quarry as it was advanced in small increments (roughly 1 to
1.5 metres). Each face map spans a region approximately 230 metres long by 40 me-
tres high. All sections are inclined at approximately 50◦. The faces were available
for mapping during production, where the excavation process continuously scrapes
a layer of 1.5 m thickness off the quarry wall by an abrading conveyor belt. During
the period when the 12 faces were mapped and described structurally, the quarry
wall was advanced 25 metres. The set of 12 face maps therefore represents a high
resolution 21

2D fracture data set of a 230×40×25m volume.
Figure 7 shows the face maps of the fractures on walls 7 through 11. There are

three major directional sets:

1. A set with steep westerly dips; these are particularly dense near two major
shear zones identified as S1 and S2 on the map for Wall 10 on Figure 7.
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Figure 7. Fracture maps on walls 7 through 11.

2. A set with steep easterly dips; these are less common than the first set, but
have similar lengths.

3. A set with shallow easterly dips; these are particularly dense along two marl
layers identified as M1 and M2 on Figure 7. They tend to be shorter than the
steeply dipping fractures. As shown on Figure 7, the major shear zones offset
the marl layers.

To test the SGS-based geostatistical procedure for fracture simulation, the stack
of parallel face maps was rotated so that the walls are essentially horizontal, with
Wall 1 being at the top and Wall 12 being at the bottom. Following this rotation,
we are able to treat the data from Wall 1 as a set of deterministic “surface”
fractures that will be used as conditioning data for a simulation of 3D fracture
geometry. In order to make the test as illuminating as possible, all data from Walls
2 through 12 were ignored. Once a set of simulations of 3D fracture geometry has
been developed, each realization can be sliced along planes corresponding to the
walls not used as conditioning data and the resulting simulated face map can be
compared to the actual face map for each wall.

Figure 8 shows the conditioning data from Wall 1, the “surface” data for the
test of the simulation procedure. In order to check the 2D propagation at surface,
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Figure 9. Realization No. 1 of simulated surface fractures.

the area covered by the mapped fractures on Wall 1 was extended to create a
border, construed as a region of poor bedrock exposure where no deterministic
fractures have been identified and where the simulation procedure will need to
create a plausible rendition of hidden fractures.

Figure 9 shows one realization of the simulated traces at surface. The determin-
istic features identified by GEO-RECON are all honored, and pass quite seamlessly
into the border region where the fracture traces are all simulated.

Figure 10 shows two realizations of simulated traces along the surface corre-
sponding to Wall 11, along with the actual data from Wall 11. While the simulated
fractures do have a plausible overall appearance, some of the details have been
shifted slightly. The marl layers, for example, do not appear on the simulations
at the same location as they do on the actual face map. The reasons for this
discrepancy are well understood.

By strictly limiting the data available to the simulation to the measurements
gathered from Wall 1, our model of the orientation of the marl layers (and of the
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Figure 10. Simulated and actual fractures on Wall 11.
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shear zones) is dependent entirely on the extrapolation of the planar orientation
deduced from measurements available on Wall 1. The orientation of the marl layers
deduced from Wall 1 data alone is slightly different than the orientation one can
calculate from the full data set. So although the simulated fractures are definitely
off in their depiction of the exact location of the densely fractured zones, this
error would easily be corrected once subsurface investigations such as boreholes
provided accurate 3D information on the location and orientation of the major
geological features.

Future studies will compare the actual field data to the statistical and geometric
characteristics of the clusters of simulated fractures. Flow simulation will also be
used to compare actual and simulated flow-related characteristics, such as peak
arrival times of injected tracer. For the moment, the preliminary results from the
Lägerdorf case study are encouraging. The SGS-based procedure does create 3D

fracture network models that are visually plausible and that honor complex and
highly detailed surface information.

4 Conclusions

The proposed procedure for simulating fracture networks has now been tested
on a variety of different problems at various scales. The Lägerdorf case study
offers confirmation that the procedure does generate highly detailed and complex
fracture patterns that mimic actual field observations.
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Desbarats and Jaime Gomez-Hernàndez. The authors are also grateful to Andreas
Koestler for his invaluable assistance with the data he collected and assiduously
compiled from the Lägerdorf quarry.
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Abstract. The idea of direct simulation is to simulate in the space of the original data 
units, with minimal assumptions or transformations about the data distribution.  A 
common approach to direct simulation is to proceed in a sequential fashion: direct 
sequential simulation (DSS).  While the idea is not new, full development of the 
framework remains to be seen. The benefits of multiscale data integration, avoidance of 
the “Gaussian disease”, and flexible distribution considerations are offset by problems 
with histogram reproduction, the pervasive influence of Gaussianity, and proportional 
effect reproduction. 

This paper examines the promises and pitfalls of direct simulation with some illustrative 
examples, and also discusses the future of DSS as a practical alternative for natural 
resource characterization. The future of DSS calls for an engine other than kriging that 
accounts for possible dependency between the local variance and mean. 

1 Introduction 

Over the last decade, direct simulation has been proposed as a viable alternative to the 
venerable Gaussian simulation approaches.  The idea of direct simulation is to simulate 
in the space of the original data units, with minimal assumptions or transformations 
about the data distribution.  Behind this key idea is the principle of simple kriging. 

Journel (1994) first showed that the covariance of simulated values reproduces the target 
covariance model if the simulated values are drawn from a distribution centred about the 
simple kriging (SK) mean and a variance given by the SK variance.  Indeed, Bourgault 
(1997) showed this to be true for different distributional shapes including the uniform, 
dipole and of course, the Gaussian distribution. Caers (2000) also shows this for a 
uniform, double exponential, double exponential with a spike, and a “bootstrapped” 
distribution.

Covariance reproduction without relying on the Gaussian framework seeded the idea for 
direct simulation.  The key premise for why direct simulation works lies in the 
orthogonality between the SK estimate, Z*(u), and the squared error which forms the 

basis for the SK error variance, 2
( )SK u .  This can be thought of in terms of projections
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Figure 1 Kriging in terms of projection theory (redrawn from Journel and Huijbregts, 
1978; Anton and Rorres, 1991). 

where the squared error, [Z(u)-Z*(u)]2, is orthogonal to the space of all finite linear 
combinations of the random variables (RV), Z(u ), = 1,..., n (Journel and Huijbregts, 
1978) (see Figure 1).  The kriging estimate, Z*(u), lies in this space as it is a linear 
combination of the RVs, Z(u ), =1,..., n:

*

1

( ) ( )
n

Z Zu u  (1) 

The squared error term, [Z(u)-Z*(u)]2, represents the distance to the unknown true value, 
Z(u).  Based on Projection Theory, there is a unique and exact solution that yields the 
linear coefficients, , =1, ..., n, such that this distance is minimized (Journel and 
Huijbregts, 1978).  This solution is referred to as the projection of Z(u) onto this space.  
The corollary to kriging lies in the fact that the weights, , =1, ..., n, are determined 
such that the expected squared error, E{[Z(u)-Z*(u)]2}, is minimum.  This visual 
interpretation of simple kriging can also be thought of as satisfying the Generalized 
Theorem of Pythagoras (Anton and Rorres, 1991). 

Orthogonality of the kriged estimate and the squared error leads to an error variance that 
is independent of the data values, commonly referred to as the homoscedascity of 
kriging.  Under a Gaussian paradigm, this poses no problems; in fact, it would be 
exactly right.  In reality, natural phenomena rarely possess characteristics similar to the 
Gaussian distribution.  This is particularly evident upon examining the relationship 
between the local average and the local variability, which, contrary to the 
homoscedasticity inherent in kriging, often reveals the presence of a strong relationship 
between the two statistics.  This heteroscedastic relationship is more specifically known 
as the proportional effect (Journel and Huijbregts, 1978), and poses the most significant 
problem for direct simulation. 

This paper presents the promises and pitfalls of direct simulation with some illustrative 
examples.  Five main areas of discussion are highlighted: (1) principle of simple kriging, 
(2) implementation of direct simulation, (3) multiscale data integration, (4) histogram 
reproduction, and (5) accounting for the proportional effect.  Finally, the future of DSS 
is discussed. 
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2 The Simple Kriging Principal 

Reproduction of the covariance only requires that the conditional probability 
distributions have a mean and variance given by simple kriging (Journel, 1994).  Journel 
proved this by showing firstly, the detailed simulation of a variable at location u, then 
adding this simulated value to simulate the next location, u', and finally checking the 
covariance between these two simulated variables. 

Consider a stationary random variable, Z(u), with zero mean and unit variance.  Firstly, 
construct a simulated value such that it can be decomposed as 

( ) ( ) ( )s sZ m Ru u u

where m(u) is the expected value at location u  domain, A, and R(u) is a random 
variable drawn from a distribution with zero mean and variance, 2(u).  The local mean 
is given by the kriging mean (Equation 1), and the variance is given by the SK variance: 

2

1

( ) 1 ( )
N

SK Cu u u  (2) 

where C(u - u ) is the covariance between the location u and the data located at u ,

=1,…, n, 2 ( )SK u is the simple kriging variance, and the weights, , =1,…,n are 

obtained by solving the normal equations: 

1

( ) ( ), 1,...,
n

C C nu u u u  (3) 

This simulated value is added to the conditioning data set, and simulation is performed 
at the next location u =un+1 with the following kriged mean and variance:
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Note that the weights , =1,…,n+1 are not the same as the weights , =1,…,n
obtained from solving the system in Equation 3.  The simulated value is given as

*( ) ( ) ( )s sZ Z Ru u u

The covariance between the two simulated variables is then examined: 
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where *{ ( ) ( ')}SE Z Ru u  and { ( ) ( ')}S SE R Ru u  are zero since *( )Z u and ( ')SR u  are 

independent of each other and ( )SR u and ( ')SR u are also independent.  The remaining 

portions of the right hand side are non zero since the kriged mean at the second location 
depends on the mean and randomly drawn value at the first location. 

Expanding and simplifying the remaining two terms yields 

* * 2
1

1

{ ( ') ( )} ( ) 1 ( )
n

n SKE Z Z Cu u u u u  (7) 

* 2
1{ ( ') ( )} ( )S n SKE Z Ru u u  (8) 

Equations 7 and 8 are substituted into Equation 6: 
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It is by this logic that Journel (1994) proved that so long as the conditional mean and 
variance are provided by simple kriging, covariance reproduction could be achieved 
without making any assumptions about the distributional shape.  This is an exciting 
result as it opened the way for geostatisticians to consider simulation outside of the 
Gaussian framework and without the inference effort required under the indicator 
paradigm.

3 DSS Methodology 

A common approach to simulation is to proceed in a sequential fashion; thus, Direct 
Sequential Simulation (DSS) was coined (Xu and Journel, 1994).  The sequential 
simulation framework is straightforward: 

1. Select a random path visiting all locations. 
2. At each location: 

a. Search for all nearby data of different types and/or scale and previously 
simulated nodes (e.g. P data types with np samples). 

b. Perform simple kriging to determine the parameters corresponding to the 

conditional distribution, ( ) ( ), , ( ))1(F Z Z Zp p np
u u u , p=1, ..., P.

c. Draw a simulated value from this conditional distribution using Monte 
Carlo simulation.  This simulated value is added to the conditioning data 
set.

3. Proceed to next node and repeat Step 2, until all locations are simulated. 
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The virtues of simplicity cannot be understated.  The sequential algorithm was proposed 
by Johnson (1987), and is common in most geostatistical literature (Isaaks, 1990; 
Goovaerts, 1997; Deutsch and Journel, 1998; Chilès and Delfiner, 1999; Sinclair and 
Blackwell, 2000).  There are other approaches for simulation, including the matrix 
approach (Davis, 1987) and turning bands (Journel and Huijbregts, 1978); however, the 
simplicity and efficiency of sequential simulation has made it the most popular approach 
in practice. 

Indicator and Gaussian simulation have long been the “standard” geostatistical methods 
of choice in modern practice.  Unlike sequential Gaussian simulation and sequential 
indicator simulation, the promise of DSS is that neither pre- nor post-processing steps 
are required.  There is no need for data transformation, whether it is to a Gaussian or an 
indicator formalism.  This sequential approach is common in mainstream numerical 
modelling, regardless of whether that modelling is performed under a parametric or non-
parametric model. 

4 Multi-Scale Data Integration 

The current motivation for development of the direct simulation framework is the 
promise of integrating multiple data types from different sources and of different scales.
Integrating data of different volume supports is neither new nor difficult in theory.  
Cokriging using average covariance/variograms permits consideration of multiscale data 
that average linearly.  In fact, the generalized cokriging equations are straightforward to 
obtain.

Consider P stationary random variables, Zp, p=1,…,P with mean p defined on support 
Vp centred at location u p, where = 1,…, np and np is the number of available data of 
type p. It is not necessary that the volume supports Vp, p=1,…,P be constant. 

1
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p p p
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Z Z du
V

u u

Without loss of generality, consider the residual of Zp, Yp = Zp - p.  Simple cokriging of 
the residual yields the following simple cokriging (SCK) variance: 
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and the weights are determined by simultaneously solving the 
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n  equations that 

constitute the simple co-kriging system of equations: 
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The resulting cokriging estimate and estimation variance correspond to the conditional 
expectation and variance of the RV Yp(u).

Greater efficiency can be achieved by simultaneously cokriging M multiple data types, 
where M  P.  This is simply achieved by changing the column vector of weights and 
right hand side covariance into an M x P matrix. An additional index is required to 
indicate the variable to be estimated.  For this purpose, the m, m=1, …, M, index is 
introduced.
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Y Y
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Solving for the weights of the resulting co-kriging system requires little additional effort 
since the large left hand side data to data covariance matrix (in Equation 9) only has to 
be inverted once.  Matrix multiplication of the inverted covariance matrix with the 
additional M-1 columns of the right hand side covariance will give the weights to 
estimate the other M-1 additional variables.  In fact, most solvers can be modified to 
solve systems of simultaneous equations with multiple right hand sides without 
explicitly solving for an inverse.  The only additional computation required in order to 
simultaneously estimate the collocated data types is the determination of the right hand 
side volume to volume covariance between the location to be estimated and the nearby 
data of P types. 

While cokriging of one variable gives the conditional expectation and variance of the 
RV, simultaneous cokriging of multiple RVs gives the conditional mean vector and 
covariance matrix of the M RVs.  Simulation using these distributional parameters must 
still be performed. 

All this is fine in the context of estimation where cokriging can be performed in the 
space of the data; however, in the context of Gaussian simulation, which is the most 
common practical simulation method, using average statistics after a non-linear 
transformation and back transforming to original units, does not work.  Consider three 
numbers: 1, 2 and 10.  The average of these three numbers is 4.33.  Now consider an 
exponential transform, ex where x is the data.  This transform gives: 2.718, 7.389 and 
22026.470, respectively.  The average of the transformed values is 7345.524, which 
after back transformation yields 8.902.  This is clearly not the same as the average in 
original space.  Thus averaging in a non-linear space, such as Gaussian space, does not 
provide an appropriate method of accounting for multiscale data.  This provides, yet, 
another impetus for pursuing DSS. 
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5 Histogram Reproduction 

The topic of histogram reproduction is quite broad.  It not only encompasses the obvious 
global distribution reproduction, but it also addresses the challenge of inferring the local 
distribution based on only two parameters.  While this is sufficient information for a 
parametric model like the Gaussian model, it is often inadequate for more realistic non-
parametric distributions. 

The lack of a distributional assumption requirement is an obvious benefit for DSS.  
Natural phenomena rarely follow a parametric form such as the Gaussian distribution, 
and while quantile transformation permits a change from one distribution to any another, 
there is nothing that says we should transform the data to a parametric form.  That data 
transformation is a widely accepted part of the modelling work flow speaks volumes 
about our strong and continued reliance on simple, yet restrictive mathematical models. 

In fact, one could argue that the effect of data transformation on the true spatial 
distribution of the data may be undesired.  Transformation to and back-transformation 
from Gaussian space yields some disturbing results when applied to skewed 
distributions.  While statistical fluctuations are an inherent property of stochastic 
simulation, it is expected that these deviations should be reasonable and unbiased.  For 
any one realization, minor fluctuations from a zero mean and unit variance are expected; 
however, when these values are back transformed to original units a slight shift in the 
mean in normal space may translate to a more significant shift of the mean in original 
units.  Similarly, the combined fluctuation of the mean and variance in normal space 
may translate to more noticeable shifts in original space. This is particularly true for 
skewed distributions, which is the case for some real phenomena.  Fixes to this 
particular problem have been proposed (Journel and Xu, 1994); yet this can be avoided 
altogether if we do not perform any data transformation prior to modelling – hence 
direct simulation. 

Although Journel (1994) showed that covariance reproduction was achievable without 
any distributional assumptions, histogram reproduction remained a challenge.  Most of 
the last decade has seen the majority of research focussed on this specific issue in DSS. 
Soares (2001) proposed to determine the local cumulative distribution function (cdf) by 
sampling from part of the global cdf.  Caers (2000) suggested the use of a posterior 
correction of the histogram originally proposed by Journel and Xu (1994), in 
combination with an acceptance/rejection approach to determining the local cdf.  Oz et. 
al. (2003) proposed the prior use of a Gaussian transform to determine a table of local 
distributions that could be accessed during DSS. 

Despite the fact that DSS permits different shapes of the local distributions, the global 
distribution of simulated values tend to a symmetric, bell-shaped distribution 
characteristic of the Gaussian distribution (see Bourgault (1997) and Caers (2000)).  
This is a reflection of the pervasive influence of the Central Limit Theorem, sometimes 
referred to as the “Gaussian disease”.  Of the different approaches to infer the local 
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 distribution, only the approaches proposed by Soares (2001) and Oz et.al. (2003) are 
successful at reproducing the global distribution without need for a post-simulation 
histogram correction. 

While histogram reproduction is key to the success of any simulation approach, this is 
not a significant obstacle in the widespread consumption of DSS.  Actually, the work 
conducted in the past decade shows that there are any number of tricks and tools that can 
be employed to reproduce the histogram with varying degrees of desire.  Although we 
intuitively understand that different distributions should exist to reflect different local 
regions, there is nothing in the prevailing DSS algorithms that will account for the 
proportional effect.  The practicality and hence, viability, of DSS depends heavily on the 
promise of honouring the proportional effect.

6 Proportional Effect 

By virtue of DSS’ dependence on kriging, the resulting local variance is independent of 
the data values and the estimate, hence it is homoscedastic.  In contrast, the variance of 
mineral grades or petrophysical properties found in a real deposit or reservoir often 
changes depending on the local mean – a property called heteroscedasticity.  For 
example, it is common to find a low variance in a low valued area, and a 
correspondingly high variance in a high valued area.  This heteroscedastic behavior is 
commonly referred to as the proportional effect (Journel and Huijbregts, 1978). 

Consider the well-known Walker Lake data set and the lead pollution data from Dallas.  
A moving average approach was used with non-overlapping windows to determine the 
relationship between the local mean and variance.  Figure 2 shows a very strong positive 
correlation for both data sets, in fact its relation appears quadratic, i.e.

2 2( ) ( )f mu u

Note that this relationship is characteristic of real data (alternatively, it is sometimes 
shown as a linear relation between the standard deviation and the mean value), and it is 
more pronounced for a lognormal distribution (Armstrong (1998), Chilès and Delfiner 
(1999)).  This relationship is neither new nor surprising.  Journel and Huijbregts (1978), 
Isaaks and Srivastava (1991), Goovaerts (1997), and Chilès and Delfiner (1999), have 
all discussed the importance of the proportional effect in natural resource 
characterization.  It is precisely in this aspect that direct simulation presents its biggest 
promise.

Yet there is a major flaw in the foundation of direct simulation.  Its basis is founded in 
kriging, which yields a local variance that is data-value independent.  As a result, it 
cannot produce models that will reproduce the heteroscedastic behaviour that would 
otherwise be found in real mineral deposits or reservoirs.  Clearly, the flaw lies in the 
very fact that least squares estimation is the engine behind the simulation.  For it to fulfil 
its promise, direct simulation must be built on a method that yields dependent mean and 
variance.
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Figure 2 Illustration of proportional effect for Walker Lake data (top), and the lead 
pollution data from Dall (bottom).  Plan view of the data is shown on the left, and 
crossplots of local variance vs. local mean are shown on the right.

7 Future of DSS 

DSS presents one of the future avenues for geostatistics.  It is among the latest in a 
series of simulation approaches that have been introduced in the last two decades.  
Whether it will rank among the “standard” approaches remains to be seen, advances in 
particular areas will certainly be key to its popularity.  DSS promises (1) the ability to 
integrate multiple scale data since no transformation of the data is required, (2) reduced 
reliance on the multiGaussian paradigm, (3) simplicity in methodology, and (4) 
flexibility to consider different local distribution shapes to account for multivariate non-
stationarity.

These promises, however, are balanced by the pitfalls of DSS which include (1) the 
unavoidable influence of multiGaussianity due to the Central Limit Theorem, (2) 
problems in histogram reproduction which have led to ad hoc post-processing 
techniques, (3) the inability to account for spatial heteroscedasticity, specifically the 
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proportional effect, and (4) flexibility in using different distribution shapes locally has 
not been shown to be practically advantageous or straightforward to implement. 

A number of issues must still be resolved to show a real advantage to DSS.  The 
practical significance of accounting for the proportional effect is enormous.  Resolution 
of this issue will lend serious credibility to DSS in construction of realistic numerical 
models, for application in all natural resource sectors.  A second area of research lies in 
inference of the multivariate distribution.  Many authors have expended tremendous 
research energies into univariate distribution inference, yet the true multiscale data 
integration benefits of direct simulation will never be realized if the multivariate 
distribution cannot be properly inferred. 

Although DSS was built on the principles of simple kriging, its future cannot remain 
anchored to simple kriging.  It does not lie in the homoscedastic kriging variance, as real 
data show a very strong relationship exists between the variance and the data values.  
For it to be of practical significance and in fact, to prevent it from simply becoming an 
academic exercise, the underlying principle of DSS must permit a heteroscedastic 
variance that is data-value dependent.  This is contrary to its simple kriging foundations. 
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Abstract. Conditional simulations are used to develop realistic and quantitative
images of spatial variability for analysis. In particular, they are often used to
evaluate the impact of uncertainty in applying economic optimization to a natural
resource. Algorithms for conditional simulation of geological data and ore grades
are well established. However, the majority are not applicable to placer diamond
deposits which exhibit a discrete and patchy textural nature. This prompted
the development of a new, enhanced suite of algorithms specifically designed for
conditional simulations of diamond deposits. The Cox simulation algorithm is fast,
incorporates complex mineralization structures, handles large sets of conditioning
data and covers several different discrete distributions including those that are
highly skewed. In addition, tests are available for model validation of both the
distributional and spatial integrity. This enhanced conditional simulation tool is
used, firstly, to determine the confidence limits of block estimates and secondly, to
quantify and manage the risk of selective mining above an economic cut-off grade.

1 Introduction

Marine diamond evaluation is a very challenging process, balancing the sampling
strategy, the estimation technique and the exploitation scenario. These challenges
can be investigated by simulating a flexible model that can accommodate many
specific features often observed in diamond samples, such as a long distributional
tail and high occurrence of zero values.
This model is the so-called Cox process. Since its inception for modeling diamond
deposits (Kleingeld, 1987), considerably more data has been collected in different
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marine environments, describing a large variety of distributional features for sim-
ulations to be generated. This prompted the requirement for enhancement of the
Cox process. With the ability to perform conditional Cox simulations, the efficiency
of sampling campaigns in different geological environments can be investigated.
Furthermore, their impact on the assessment of spatial risk can be tested. This
will be illustrated in two documented examples.

2 The Cox model

2.1 DEFINITION

Assume that the deposit is partitioned into a family of small congruent domains
(vi, i ∈ I). For each index i ∈ I, let Ni denote the random number of particles
falling within the domain vi. In this paper, a model for the deposit is specified by
the multivariate distribution of the random vector (Ni, i ∈ I). The specification
implies that any mineralization structure that is present at a smaller scale than
the domains, is not accounted for by the model. This is compatible with the
data collected, as the sample information does not comprise of the coordinates
of its particles, but only the number of particles within each sample. In practical
applications, the size and shape of the domains equate to those of the samples.
The number of particles in a domain vi is affected by several factors, including the
particle source, the local terrane and footwall lithology. As it is generally impossible
to separately assess the contribution of each factor, it is convenient to summarize
them as a single factor, say Zi, that represents the propensity of the domain vi to
be rich. The larger the factor Zi, the greater the chance that vi will contain many
particles. For this reason, Zi is named the potential of the domain vi.
For the Cox model, the number of particles within each domain is independently
Poisson distributed, with the mean of each domain equal to its potential. However,
as the potentials of the domains are unknown, they are considered random. Thus
the numbers of particles within the domains are not independent - neighboring
domains have correlated potentials - but are only conditionally independent. In
this paper, we let Zi = ϕ(Yi) for each i ∈ I, where (Yi, i ∈ I) is a standardized
Gaussian vector.

2.2 STATISTICAL INFERENCE

The spatial distribution of the Cox model is characterized by two parameters,
namely the anamorphosis ϕ of the potential of the domains and the covariance C
of the underlying Gaussian vector Y . The inference of each parameter is considered
in turn.
By definition, ϕ is determined by the distribution of Zi and as there is a one-to-
one correspondence between the distributions of Zi and Ni (Feller, 1971), ϕ is also
determined by the distribution of Ni. The statistical inference of ϕ can therefore
be reduced to that of Ni.
In practice, the distribution of Ni is often chosen within a family of pre-specified
models (negative binomial, Sichel, Cox-lognormal...), and its statistical inference
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consists of estimating the parameters of the selected model from experimental sta-
tistics provided by the data. Such parameters include the mean number of particles
per sample, the variance and the proportion of barren samples. For example two
models are presented with their corresponding potential models:
– if Ni follows a negative binomial distribution with index α > 0 and parameter
p = 1 − q, then Zi is gamma distributed with the same index α and scale factor
b = q/p:

pn =
Γ(α + n)
Γ(α)n!

qαpn n ∈ N f(z) =
bα

Γ(α)
e−bzzα−1 z ∈ R

+

– if Ni follows a Sichel distribution1 with index α > 0 and tail parameter 0 < θ < 1
(Sichel, 1973), then Zi follows an inverse Gaussian distribution with parameters
a = (1 − θ)/θ and b = α2θ/4:

pn ∝ (αθ/2)n

n!
Kn−1/2(α) n ∈ N f(z) ∝ 1

z3/2
exp

(
−az − b

z

)
z ∈ R

+

Once ϕ has been estimated, several procedures can be performed to estimate the
covariance C of Y . The simplest one rests on the fact that the covariances of N
and Z differ only by their nugget effect:

Cov{Ni, Nj} = Cov{Zi, Zj} + E{Ni}1i=j

The covariance of Z can easily be derived from that of Y when ϕ has been expanded
into Hermite polynomials:

Cov{Zi, Zj} =
∞∑

n=1

ϕ2
n

n!
Cn

ij

Combining both equations and assuming that Cov{Ni, Nj} is experimentally ac-
cessible, we can obtain Cij from the equation

Cov{Ni, Nj} =
∞∑

n=1

ϕ2
n

n!
Cn

ij + E{Ni}1i=j

This equation returns a single solution, due to the fact that its right-hand side
member is a monotonic increasing function.
When all values for Cij have been estimated, the subsequent modeling of C is
necessary to ensure it is positive definite.

2.3 SIMULATION

The simulation using the Cox process with anamorphosis ϕ, covariance C and
incorporating the available data comprising of a family of samples or blocks,

1 In this formula, Kµ stands for the modified Bessel function of order µ.
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is presented. Each sample and block is represented by a subset of indices of I
(consisting of only one index in the case of a sample). The conditioning data can
be written as

(
NA = nA, A ∈ A

)
for any family A of subsets of I. There is no

inconvenience in assuming that the supports of the conditioning data are pairwise
disjoint2. In the following algorithm, Ic denotes the subset of indices affected by
conditioning (e.g. Ic = ∪A∈AA):
(i) simulate (Yi, i ∈ Ic) given

(
NA = nA, A ∈ A

)
;

(ii) simulate (Yi, i ∈ I) given (Yi = yi, i ∈ Ic);
(iii) simulate

(
Ni, i ∈ I

)
given (Yi, i ∈ I) and

(
NA = nA, A ∈ A

)
.

The first step consists of simulating the distribution

gc(yi, i ∈ Ic) ∝ g(yi, i ∈ Ic)
∏

A∈A
e−zAznA

A

where zA =
∑

i∈A ϕ(yi) is the potential of block A. This can usually be achieved
using an acceptance-rejection method unless the number of elements #Ic of Ic is
large, in which case the Gibbs sampler is required (Geman and Geman, 1984;
Kleingeld et al., 1997). The second step is simply a conditional simulation of a
Gaussian vector. Regarding the third step, three different cases have to be consid-
ered. Each component Ni of (Ni, i 
∈ Ic) is independently Poisson distributed with
mean zi = ϕ(yi). If #A = 1, say A = {i}, then we put Ni = ni. Finally, if #A > 1,
then the vector (Ni, i ∈ A) is simulated according to a multinomial distribution
with index nA and parameters (zi/zA, i ∈ A).

3 Application of the Cox model by examples

The south-western African coast hosts significant diamond deposits within gravels
associated with paleo-shorelines, channels and transgressive lags (Kuhns, 1995).
The development of the marine diamond deposits was complex and involved the
interaction of fluvial, shoreline and aeolian sedimentary environments on a stable
continental shelf under conditions of changing sea levels. The deep water (> 70m
water depth), offshore deposits comprise low-grade, aerially extensive, but thin,
composite marine lag gravels (Corbett, 1996). The current mining technology re-
quires a highly selective mine plan to facilitate profitable exploitation. Sampling
costs for these offshore deposits are high and consequently, optimization of these
programmes and an understanding of the confidence of the estimates are essential
to ensure successful exploitation.

3.1 SAMPLE OPTIMIZATION

The objective of this study was to devise the optimum sample support size and
pattern to evaluate and ultimately selectively mine a particular marine diamond
deposit. At first, a stochastic model of the diamond content was created using

2 Define new blocks by removing the indices of the samples within them, and update their
numbers of particles.
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geological information and reconnaissance sampling of the actual target area, as
well as a regional understanding of the environment. Then, different sampling
campaigns of varying sample sizes and patterns were simulated, from which block
estimates and mine plan selections were calculated. Finally, a financial analysis of
the various sampling campaigns and their expected mining revenues was carried
out to determine the most optimum sampling strategy.
The topography of the deposit has favored the long-term preservation of gravel
accumulations, which constitute semi-permanent trapsites that concentrate dia-
monds and other heavy minerals. The reconnaissance sampling data comprised
only 63 widely spaced samples, and experience has shown that a limited dataset
of this size creates a constrained tail to the overall stone density of the deposit.
However, the stone distribution tail can be better modeled using information from
analogous deposits which showed an overall Sichel distribution (Sichel, 1973) and
a significantly higher variance (10.85) than the sample data (see Figure 1).

Figure 1. Modeled histogram of the stone distribution compared to the
experimental stone distribution.

The variogram of the deposit was also derived from similar deposits (33% nugget
effect; anisotropic spherical structure with ranges 345m (305◦) and 145m (215◦)).
The model assumptions were validated by analyzing the statistics produced by a
set of non-conditional simulations performed at the conditioning data points (see
Figure 2).
Twenty conditional simulations of the diamond stone density were created over the
entire target area using the Cox process. Geologists also visually reviewed the real-
izations and confirmed their validity against conceptual geological models. A series
of sampling campaigns were then designed according to financial considerations
and available sampling tools. Various sample sizes (from 12.2m2 to 700m2), sample
shapes (trench, block and drill) and sample spacings (50m× 50m to 250m× 50m)
were considered.
Ordinary kriged estimates of the stone density for 50m × 50m blocks were per-
formed on each sampling campaign and each realization. The block estimates could
then be compared to their respective ”actual” values in the simulated deposits
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Figure 2. Histograms of the unconditional simulations at data points to validate
the simulation model.

(regularized into 50m×50m blocks). Regressions comprising of the ”actual” grades
to the estimates for each sampling campaign per realization are summarized in
Table 1.
The results of the comparison between estimated and ”actual” block grades could
be related to the characteristics of the source sample data. Sampling campaigns
with few large samples (trench or bulk) returned accurate but highly smoothed
mean estimates (a function of poorly defined spatial structure). Sampling cam-
paigns with numerous small samples (drills) returned less accurate mean estimates,
but defined the grade variability more accurately (a function of better defined
spatial structure). The accuracy of the estimates relative to the ”actual” grades
can be shown graphically (see Figure 3).
Selective mine plans based upon the estimated grades were then set up with a
realistic cut-off grade that resulted in a high degree of selectivity (only 25% of
the target area is above cut-off). The actual contribution (revenue - mining cost)
for each block was then calculated using the simulation as the ”actual” resource
grade. Thereby, the mining profits of the selective mine plans for each sampling
campaign/estimation combination were established. The cost of sampling was
then deducted from the mining profit and the revenue that was generated from
the sampling recovery added. Finally, an overall profit was established for each
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Table 1. Statistical results of the block estimates for each sampling campaign.

Type Size Area Spacing Mean Standard Coefficient Regression

(m×m) (m2) (m×m) deviation of variation

trench 14×50 700 250×50 0.768 0.366 0.476 0.694

trench 14×50 700 150×100 0.792 0.304 0.384 0.816

trench 14×25 350 100×100 0.775 0.464 0.599 0.894

bulk 25×25 625 150×100 0.796 0.321 0.404 0.828

bulk 14×14 196 100×100 0.776 0.426 0.548 0.872

drill 3.5×3.5 12.25 100×100 0.757 0.458 0.604 0.837

drill 3.5×3.5 12.25 100×50 0.755 0.508 0.674 0.902

drill 3.5×3.5 12.25 50×50 0.768 0.616 0.802 0.945

Figure 3. Scatterplots of block estimates versus ”actual” block grades for two
different sampling campaign realizations.

sampling campaign. Table 2 presents the financial results obtained. It shows the
percentage mining and overall (assuming perfect knowledge) profits obtained by
the selective mining for each of the different sampling campaigns. It appears that
the trench sampling campaigns produce less optimal returns for both mining and
overall profits. The high degree of selectivity penalizes these estimates despite
lower net sampling costs. The bulk samples realize slightly better returns for
mining profit and a reasonable overall profit because of the associated low sampling
costs. The drill sampling produces good returns from mining and overall profits, a
consequence of more accurate estimation, however the high cost of drill sampling
penalizes the overall profit, with the 100m × 50m drill sample pattern producing
the optimal result.
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Table 2. Summary of the selective mining of the simulated deposit based upon
various sampling campaigns.

Type Size Area Spacing Number Mean percentage Mean percentage

(m×m) (m2) (m×m) of samples of mining profit of overall profit

trench 14×50 700 250×50 231 59% 52%

trench 14×50 700 150×100 180 72% 66%

trench 14×25 350 100×100 270 82% 77%

bulk 25×25 625 150×100 180 73% 68%

bulk 14×14 196 100×100 270 76% 73%

drill 3.5×3.5 12.25 100×100 270 81% 76%

drill 3.5×3.5 12.25 100×50 567 90% 82%

drill 3.5×3.5 12.25 50×50 1080 93% 81%

3.2 CONFIDENCE LEVELS OF BLOCK ESTIMATES

The objective of this second study was to determine the relative confidence of
block estimates of stone density (expressed as stones per square meter) for an-
other marine diamond deposit. The approach adopted here consisted of creating
conditional simulations of the deposit, deriving the stone density distribution of
each block, and deducing confidence limits for each block estimate.
The sampling data comprised 544 large diameter drill samples (7m diameter),
predominantly arranged on a 50m square grid. A section of the deposit was less
densely sampled (70m), whereas another portion was unsampled (see Figure 4).

Figure 4. Locality plot showing the large diameter samples.

The stone distribution was modeled as a Sichel distribution using the experimental
mean and the proportion of barren samples. The sample variogram of the deposit
was determined from the sample data and inferences from regional geological
structures (34% nugget effect; two isotropic nested spherical structures, 50% of
the sill at 76m and 16% at 300m), from which a variogram in Gaussian space was
derived. The Cox model was validated by analyzing the statistics produced by a
set of unconditional simulations at the locations of the conditioning data points.
One hundred and twenty-five conditional Cox simulations were then created at
the sample support size and averaged into 50m × 50m blocks. An example of a
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realization at the sample support size, together with the conditioning sample data
is presented in Figure 5.

Figure 5. Conditional simulation of a marine diamond deposit.

From the simulations, statistics for each block were calculated and compared with
ordinary kriged estimates, using the same dataset and the same variogram model
(see Figure 6).

Figure 6. Comparison between kriged and simulated results.

The kriged estimate (top left) and the mean of the simulations (bottom left) of the
stone density show good similarity with compatible low and high grade areas. The
estimation variance (top right) provides an indication of the data density for these
estimates as this parameter highlights areas of similar sample spacings. The coeffi-
cient of variation, measuring the relative variability of the distribution of possible
grades, provides further information by incorporating the relevant sample grade
information. The simulated distribution of each block is also used to guide mining
selections when a cut-off grade is considered. Figure 7 shows a comparison between
the blocks whose kriging estimate lies above a given cut-off grade, and those whose
simulated grade has more than 65% chance of lying above the same cut-off grade.
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In this case study, the simulation based selection, using the probability above cut-
off selection criteria, selected 56% of those blocks selected above cut-off of the
kriged estimates. However, the reduced ”probability” selection contains 89% of
the total diamonds. More generally, this approach allows the relative risk of the
mining selection to be incorporated into mine-planning decisions and has proved
to return better results than a single grade cut-off method.

Figure 7. Mining selections above a cut-off grade based on kriged estimates (left)
and 65% or higher probability of above a cut-off grade based on Cox simulations
(right).

4 Conclusion

The development of the Cox process to model the spatial distribution of diamonds
within marine deposits has enabled the successful optimization of sampling cam-
paigns in terms of both sample size and pattern. The quantification of block grade
uncertainty from conditional simulations has also proven to significantly assist
mine planning decisions.
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Abstract. The spatial variability of relative permeability curves has not attracted
much attention yet. This paper addresses this issue, and extends the self-calibration
technique for the generation of absolute and relative permeabilities conditioned not
only to permeability data but also to saturation and pressure data.

The paper starts with a sensitivity analysis presenting a synthetic example
where the spatial variability of relative permeability is relevant, then proceeds
with a derivation of the algorithm used to condition a realization of relative per-
meabilities to pressure and saturation data (both steady state and transient) and
concludes with the demonstration of the technique with one synthetic example.

The paper shows that the spatial variability of relative permeabilities is im-
portant in reservoir characterization. It also demonstrates how the self-calibrating
simulation method can be used to generate realizations of spatially variable relative
permeability curve parameters which are consistent with measured values of the
state of the reservoir.

1 Introduction

Stochastic modeling of multi-phase flow in heterogeneous porous media is becom-
ing common practice in petroleum engineering and subsurface hydrology. Inverse
modeling theory provides a methodology to integrate both static and dynamic
data in reservoir characterization. Absolute permeability is one of the parameters
that are typically estimated with inverse conditional or unconditional simulations,
whereas relative permeabilities are assumed to be known homogeneous functions
within the reservoir. However, when studying multiphase flow, relative perme-
ability is the parameter that controls the rate of displacement of the different
phases present in the reservoir. This paper discusses the characterization of the
spatial variability of relative permeabilities by inverse conditional simulation. A
new inverse technique to estimate spatial distributions of both absolute and rel-
ative permeability parameters has been developed based on the self-calibrating
method. Since relative permeabilities are dependent on one of the state variables
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(saturation), the optimization problem is highly non linear, increasing the difficulty
of the inverse problem that has to be solved.

2 Sensitivity Analysis

The governing equations for immiscible two-phase flow are formulated in terms of
water saturation and fluid pressure. Substituting a generalized form of Darcy’s law
into the mass conservation equation, and neglecting gravity effects, the diffusivity
equation for the horizontal flow of each fluid is obtained:

∂ (φρlSl)
∂t

−∇ ·
[
ρl

kkrl

µl
∇pl

]
= −ql for l = w, o (1)

where subscripts w and o refer, respectively, to water (wetting phase) and oil (non-
wetting phase), k is the absolute permeability tensor [L2], krl the dimensionless
relative permeability for phase l, Sl is the saturation, φ is the porosity (dimension-
less parameter), ρl is the fluid density [M/L3], µl is the viscosity [ML/T ], pl is
the fluid pressure [M/LT 2], ql is the injection or production rate per unit volume
[T−1] and t is time [T ].

The above equations are solved by finite differences after neglecting gravity and
capillary pressure terms and assuming the following constitutive equation relating
relative permeability and saturation (Brooks and Corey, 1966):

krl = k0
rl

(
Sl − Srl

1 − Srl − Srl′

)nl

for l = w, l′ = o or l = o, l′ = w (2)

in which nw, no, Srw, Sro, k0
rw and k0

ro are parameters defining the relationship.
For the purpose of characterizing the heterogeneity of relative permeability, we
will assume that exponents nw and no are homogeneous, but that the remaining
coefficients, i.e., the residual saturations for oil and water (Srw, Sro), and the
end-points of the relative permeability functions may vary within the reservoir.

To demonstrate the importance of accounting for the spatial variability of rel-
ative permeabilities, two different runs are performed, both of them with the same
heterogeneous absolute permeability field, but with different relative permeability
fields. The first run is done assuming homogeneous relative permeabilities, the
second run is done with heterogeneous values. Conditional simulations are used to
construct absolute and relative permeability fields. The absolute permeability fields
were generated by GCOSIM3D (Gómez-Hernández and Journel, 1993), following a
lognormal distribution with known mean and variance, and a spherical variogram.
The relative permeability fields are constructed by generating each of the four
parameters defining relation (2) as a Gaussian field with known mean and variance
and a Gaussian variogram (it is assumed that these parameters vary smoothly in
space).

The 2D spatial domain mimics a quarter of a five-spot, discretized in 15 × 15
grid blocks of size 10 m ×10 m. The injector well is located at the left lower corner,
and the production well at the right upper corner. The initial conditions for the
2D run are Sw = 0.1 and p = 6.895 · 106 Pa. Water is injected at a constant rate
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of 2.5 kg/s. Constant 4.8-hour time steps are prescribed, and the simulations are
run for 120 days.

For the first run, a single relative permeability curve for each fluid is used,
with parameter values equal to the mean values used for the generation of the
heterogeneous field: k0

rw = 0.7, Srw = 0.1, k0
ro = 0.85 and Sro = 0.2. The second

run uses heterogeneous values for all four parameters, maintaining the same mean
values as the previous run. The saturation and pressure fields at the end of the
120 days are shown in Figures 1 and 2.

Figure 1. Saturation and pressure front at t = 120 days. Absolute permeability
is heterogeneous, but relative permeability curves are homogeneous. The water
injection well is located at the lower left grid block and the production well at the
upper right grid block.

Figure 2. Saturation and pressure front at t = 120 days. Absolute and
relative permeability are heterogeneous. Same absolute permeabilities and well
configuration as in previous figure.

From these figures it can be observed that pressures are not very much af-
fected by the heterogeneity of the relative permeability curves, but that satu-
rations are. Similar conclusions were obtained in 1D by Guardiola-Albert and
Gómez-Hernández (2002).
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3 Inverse conditional simulation algorithm

The optimization algorithm is based on gradient methods, and the concept of
master points is borrowed from the Sequential Self-Calibrated method (Gómez-
Hernández et al., 1997; Hendricks-Franssen, 2001). Calibration of the flow model
to non linearly related data is formulated as an optimization problem, which tries
to minimize an objective function. A computer code was written to couple the
forward two-phase flow simulator TOUGH (Pruess and Oldenburg, 1999) with an
iterative inverse method. After calibration, the result is a plausible representation
of the reservoir honoring historical pressure and saturation data. Calibration pa-
rameters are: absolute permeabilities, the two end-points of oil and water relative
permeability functions, and the two residual saturations. For the sake of simplicity,
the shape parameters (noandnw) are constant and equal to 1. The main steps in the
iterative process, followed by the inversion technique developed, are summarized
here. The loop from step 2 to step 7 is repeated until convergence is reached.

For each iteration IT :

1. Generate a conditional or an unconditional simulation of the four parameters
k0

rw, k0
ro, Srw and Sro and of the absolute permeability, k. The generated fields

constitute the seed or initial input fields.
2. The two-phase flow numerical solver is run. Saturation and pressure fields are

obtained for all the time steps at every grid block.
3. Evaluate the following objective function:

JIT =
Ts∑

t=1

Ns∑

i=1

ws,i

(
SSIM,IT

i,t − SMEAS
i,t

)2

+
Tp∑

t=1

Np∑

i=1

wp,i

(
pSIM,IT

i,t − pMEAS
i,t

)2

(3)
where Ns and Np are the number of saturation and pressure data points,
respectively, Ts and Tp are the number of times at which saturation and
pressure have been measured. Indices SIM and MEAS indicate simulated and
measured values, and, ws and wp are weighting factors.

4. If J is smaller than a pre-determined value, the simulated permeability values
are said to be conditioned to the measured saturation and pressure values, and
the iterative loop stops. On the contrary, the optimization continues and the
k, krw, kro, Srw, and Sro fields are perturbed.

5. The optimization procedure determines the value of the perturbation that is
applied to the initial field so that the objective function is reduced.

6. Go to step 2. The modified reservoir model is input again into the reservoir
simulator.

4 Synthetic example

To check the feasibility of the inverse technique a simple synthetic example is pre-
sented. Absolute permeability is heterogeneous all over the reservoir, and relative
permeability is piecewise heterogeneous as shown in Figure 3.
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Figure 3. The reservoir is divided into 3 different zones, within each of them
the relative permeability parameters are assumed to be constant. The reference
values for the relative permeability parameters are given in the figure.

No statistical correlation was considered between the five parameters (k, k0
rw,

Srw, k0
ro and Sro). However, there is an implicit correlation because all the pa-

rameters are calibrated to the same set of production data. A reference run as
performed with the values shown in Figure 3, which was sampled at five locations
and at ten time steps to be used as the conditioning information for the inverse
conditional simulation.

Scatterplots for saturation and pressure at well locations for all sampling times
are shown in Figure 4. They compare the degree of mismatch between the seed
fields and the calibrated fields to the data (on the left, the seed fields, on the
right the calibrated fields). The calibration reduces considerably the spread of
the scatterplots, reflecting the effect of jointly conditioning absolute and relative
permeabilities to the available saturation and pressure data. We could consider the
calibrated field as a plausible representation of a reservoir for which only partial
historical evolution is known.

5 Conclusions

A code has been developed and implemented for the simultaneous generation of
absolute and relative permeability fields conditioned to historical production data.
The heterogeneity of relative permeability is described by the heterogeneity of the
parameters that describe a specific relationship between saturation and relative
permeability.

Four parameters in this relationship (two end-points of the curves and the
residual saturations) were chosen to characterize the relative permeability curves.
Joint conditioning of absolute and relative permeabilities to pressure and satu-
ration data considerably improved the history match in the synthetic example
presented.
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Figure 4. Simulated versus “observed” reference values are plotted before (left)
and after (right) the inversion is performed. Upper scatterplots represent water
saturations and lower scatter plots pressures.
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QUANTIFIABLE MINERAL RESOURCE CLASSIFICATION:  A LOGICAL 
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Abstract.  In terms of the reporting codes Mineral Resource classification is a function 
of increasing confidence in the geoscientific information and the associated resource 
estimate.  An overview of Mineral Resource classification approaches is given; the 
tendency in resource classification is to concentrate on the confidence associated with 
the grade estimate.  Uncertainties linked to tonnage and metal estimates are rarely 
explicitly mentioned.  As for the risk associated with the underlying geological model it 
is often, if at all, only considered on a global rather than a local basis.  The objective is 
to present a quantifiable Mineral Resource classification guideline that recognises 
uncertainty in both geological and resource models, considers confidence in estimation 
of metal content for specified production periods and also takes into account both the 
correlation of blocks in the block model as well the change of support between an 
estimated block and the production period.  This classification method builds on a 
previous publication (Dohm, 2003), where a technique for assessing the combined risk 
associated with both the geological and grade models was demonstrated.  The final 
result is a succinctly classified mineral resource model, which is based on objective 
quantifiable classification rules that recognises the uncertainty related to subjective 
interpretations of the available information. 

1 Introduction 

The classification of Mineral Resources and Ore Reserves forms an integral part of 
Mineral Resource evaluation and reporting.  Mineral Resource classification categories 
correspond to an increasing function of geoscientific knowledge and confidence.  A 
Mineral Resource is classified as Inferred if the tonnage, grade and mineral content can 
be estimated with low confidence. Indicated Mineral Resources represent that part of the 
Mineral Resource for which tonnage, densities, shape, physical characteristics, grade 
and mineral content can be estimated with a reasonable level of confidence.  For 
Measured Mineral Resources these attributes can be estimated with a high level of 
confidence.  Only Measured and Indicated Mineral Resources can be converted to Ore 
Reserves.  In terms of the guidelines of the reporting codes the Competent Person 
(JORC, SAMREC) or Qualified Person (NI 43-101) is to provide a view of the relative 
confidence the investment community should place on the published Mineral Resources 
and Ore Reserves of mining and exploration companies. 
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The main elements that affect the confidence in the resource estimate are the reliability 
of the geological model, the continuity of the mineralisation, the sampling grid 
configuration, the quality of the sampling data, and the reliability of the evaluation 
method.  The most important element is the interpretation of the geology and the 
delineation of the resource (Stephenson, 2001).  In practice the level of uncertainty in 
the geological model is often not easily incorporated in the Mineral Resource 
classification.  In many cases global discount factors are applied to take account of the 
unpredictability of the geological features.

A number of approaches that the author encountered during project reviews presented 
here illustrate the evolution of Mineral Resource classification methodologies, 
concluding with a holistic Mineral Resource classification guideline. This guideline 
recognises uncertainty in both geological and resource models, considers confidence in 
estimation of tonnage, grade and metal content for specified production periods and also 
takes into account both the correlation of blocks in the block model as well the change 
of support between an estimated block and the production period. 

2 Questionable Mineral Resource classification strategies 

Since the Bre-X scandal the spotlight has been focussed on Mineral Resource 
classification methodologies.  Two interesting but not recommended classification 
strategies observed during project appraisals in recent years are discussed. 

2.1 NUMBER OF SAMPLES PER BLOCK OR PER UNIT AREA 

The crudest set of classification rules the author has come across is: One drillhole per 
hectare identifies an Indicated Mineral Resource, more drillholes per hectare allow for 
the resource to be classified as Measured and when there are no drillholes but the area is 
within the mining lease it can be considered as an Inferred Mineral Resource. 

This method does not take cognisance of the spatial continuity of the mineralisation, and 
anisotropy, if it should exist, is also ignored.  Change of support is also not considered 
as 10000 square metres (1ha) can be achieved in a number of ways for example a 
rectangle (40m x 250m) or square (100m x 100m) are equivalent in this scheme. 

The relative locations of the drillholes are not recognised; for example four 2x2, 1ha 
squares with a set of clustered drillholes close to the four touching corners will be 
considered Indicated as will four 1ha squares, with evenly spaced drillholes at their 
centroids, be classified as Indicated. 

2.2 RESOURCES WITHIN A PRODUCTION PLANNING PERIOD OF RESERVES 

In this two-dimensional example ordinary kriged estimates were produced for the entire 
mine lease area.  Blocks were assigned the average grade of the deposit when their 
estimation became “unreliable”, e.g. the criterion for the minimum number of samples 
in the search volume is not met.  The classification rule applied here was established 
from time-based production planning considerations.  Resources were classified as a 
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consequence of the reserve classification and not the other way round.  The argument 
put forward was that grade control information acquired during mining activities would 
be adequate to support the classification. 

Planned 5-year and 20-year production period mining outlines were used to differentiate 
between Proved and Probable Ore Reserves.  The Proved Ore Reserves incorporated the 
Measured Mineral Resources and the Probable Ore Reserves partially incorporated the 
Indicated Mineral Resources.  Resources lying beyond the 20 year planning limit were 
also defined as Indicated if sufficient drilling information was available.  The area 
between the 20-year plan and the lease boundary were to be considered as Probable Ore 
Reserves.  Inferred Mineral Resources were non-existent.  It is obvious that this set of 
classification rules was unacceptable and required revision.  On recommendation the 
company adopted a quantifiable risk based classification strategy, still related to 
production periods but independent of mining lease boundaries and also including the 
confidence of the resource estimates. 

3 Range of influence of the variogram model and Resource Classification 

Methods in place for classifying resources are often based on the kriging variances of 
grade estimates or functions of the variogram parameters and kriging parameters.  The 
semi-variogram of a mineral deposit reflects the spatial variability of the sample grades 
at fixed distances and along a given direction.  Snowden (1996) suggests interpreting 
this spatial continuity to determine appropriate drillhole patterns to achieve various 
levels of confidence in resource classification. 

Resources are classified as Inferred when drillholes are further apart than the range of 
influence of the variogram.  The drill spacing at which a distinction between Measured 
and Indicated is made is based on a rule of thumb and is taken as the distance equivalent 
to two thirds of the total variability i.e. two thirds of the sill of the variogram model. 

The ranges of the variogram are not sufficient for resource classification; the nugget 
effect will for instance have a significant influence in this classification.  If the nugget 
effect is high and the structured component is relatively short, as is common for 
Witwatersrand gold deposits, this classification method will be of little use; the majority 
of the mineral resources will be classified as being Inferred resources. 

4 Kriging variance and variations thereof in the classification scheme 

One of the advantages of kriging estimation techniques is that when correctly applied 
these techniques produce unbiased block estimates and ensure minimum estimation 
variance known as the kriging variance.  The kriging variance is dependent on the 
variogram model, and the sampling grid configuration in relation to the block that is 
being estimated.  It is possible to calculate the kriging variance without producing the 
estimate.  It is thus not surprising that a number of classification schemes in the past 
were based on the kriging variance: a few applications are given below: 
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4.1 INTERPOLATION, EXTRAPOLATION AND RESOURCE CONFIDENCE 

This classification rule was based on the following reasoning related to the type of 
estimation.  Measured Mineral Resources arise from interpolated blocks, which have 
lower kriging variances and therefore higher confidence associated with them.  Indicated 
Mineral Resources occur when blocks are extrapolated, this means that these blocks 
have higher kriging variances and thus a reduced confidence is associated with them.  
Any blocks extrapolated beyond the range of influence of the variogram are classified as 
Inferred blocks.

4.2 SAMPLE VARIANCE, KRIGING VARIANCE AND NUMBER OF SAMPLES 

The Mineral Resources are classified as Measured if the kriging variance of the block is 
less than the sample variance. If not Measured and at least 4 samples were within the 
maximum range of influence of the block the resource is classified as Indicated.  
Inferred Mineral Resources are those blocks that did not fall into the previous two 
categories but with a kriging variance equivalent to that of blocks in the Indicated 
category.

4.3 SAMPLE VARIANCE, BLOCK VARIANCE AND KRIGING VARIANCE 

Blocks are classified as Measured if their kriging variance was less than the block 
variance.  Blocks classified as Indicated have a kriging variance less than the sample 
variance but greater than the block variance.  Blocks with an estimated mineralised 
proportion less than 20 % were considered to be in the Inferred category. 

5 Resource classification and relative variances 

Using the kriging variance, as the only measure to quantify uncertainty in block grade 
estimate, is questionable as the only relationship the kriging variance has to the local 
sample grade values is through the variogram model, which is on a global average basis 
rather than a local basis.  This means that the kriging variance for a specific sample to 
block configuration is a fixed value irrespective of whether the grade values are highly 
variable or more uniform.  It is clear that there is greater confidence in the estimate of 
the latter block than that of the former block.  This anomaly led to the introduction of 
classification techniques that concentrated on relative variances that recognise the local 
data configuration and variability. 

5.1 RELATIVE KRIGING ERRORS AND THE NUMBER OF SAMPLES 

Blackwell (1998) presented an argument for introducing the Relative Kriging Variance 
(RKV); the ratio of the kriging variance and the kriged estimate squared.  From this the 
Relative Kriging Standard Deviation (RKSD) is defined as the square root of the RKV.  
The RKSD is plotted against the number of samples used in the kriging of the block.  
Two threshold values for the RKSD are selected arbitrarily, but based on experience, to 
separate the Measured, Indicated and Inferred categories. 
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5.2 RELATIVE VARIABILITY INDEX 

The implementation of the Relative Variability Index (RVI) as a measure of confidence 
in the estimate was proposed (Arik, 1999).  The RVI is the ratio of the square root of the 
combined kriging variance and the kriged estimate of the block.  The combined kriging 
variance is the square root of the product of the kriging variance and the local weighted 
average variance.  The histogram of the RVI is analysed to determine thresholds for 
distinguishing between categories, and the proposal is to use the 50th and 90th percentile
RVI values to identify the three different resource categories. 

5.3 INTERPOLATION VARIANCE 

Yamamoto (2000) introduced the Interpolation Variance (IV) as an alternative measure 
of the reliability of ordinary kriging estimates.  The IV reflects the local variability as 
expressed by the data.  It is the weighted average of squared differences between the 
data values and the block estimate.  An advantage is that this variance recognises the 
proportional effect when present.  This interpretation of the variance is however, only 
valid if and only if all the ordinary kriging weights are positive.

6 Mineral Resource classification linked to a production period 

The philosophy of applying a classification rule that considers “the % error in the 
estimate of the block being classified is within 15% with 90% confidence for a specific 
production period” has been around for a number of years, at least since the early 
1990’s.  This is an empirical rule that has been accepted in the mining industry.  The 
specific production period should define the resource category: the shorter the 
production period, the higher the confidence category, for a longer production period the 
resource category is lower.  Many variants of this rule are applied in practice. 

The percentage error in the estimate of the mean is given by 
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CoV is the coefficient of variation; s is the standard deviation and z  is the average of 
the samples. 

Relative 90% confidence limits can be established from the product of the CoV/ n and 
1.645, the standard normal deviate. 

If the resource blocks can be considered independent the relative variability of a block 
can be converted to the equivalent of the variability in a production period by dividing 
the coefficient of variation of the block in the resource model by n.  Where n would be 
the number of independent blocks that would be required to represent the production 
period as shown below. 
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n
BlockCOV

 PeriodProductionCoV

The estimated resource blocks are correlated and the support of the blocks are relatively 
small compared to the support of for instance the annual production.  In general, if the 
histogram of the sample support is skew and if the block support is small the histogram 
of estimates will be skew and as the support increases the histogram of the estimated 
blocks in the resource model will approach normality as per the central limit theorem.  
This means that the histograms of estimates of production periods, which consist of 
many resource blocks, are expected to approach normality and independence. 

Mining, though, does not take place in independent blocks thus the effect of correlation 
must be brought into account when an individual estimated resource block is being 
classified in terms of production periods. 

6.1 THE “INDEPENDENT” n

It is necessary to modify the 90% limits of the estimated blocks in the block model to 
represent the equivalent variability of a production period.  Therefore, a factor that takes 
this correlation and the production period into account has to be determined to replace 
the “independent“ square root of “n”. 

PeriodProductionCoV
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The problem is to find estimates for a representative CoV of blocks in the block model 
and for the CoV of the production periods.  As the resource has not yet been classified 
the CoV of the production periods cannot be established.  It is nonetheless possible to 
determine estimates for these values from many realisations of a conditional simulation 
exercise.

6.2 CONDITIONAL SIMULATION AND UNCERTAINTY ASSESSMENT 

In an endeavour to attain quantifiable Mineral Resource classifications, the trend in the 
mining industry has been towards the application of conditional simulation techniques.  
A specific set of drilling or sampling results provides one view of the resource, a 
different set will provide a different view, the luxury of a second campaign is however 
not always available.  A fairly quick and inexpensive method for obtaining a spectrum 
of possible views of the global statistical and spatial characteristics of the orebody can 
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be obtained through conditional simulation.  The variability in realisations of the 
simulations can be interpreted to assess the uncertainty in the resource estimates. 

It is assumed that conditional simulations are carried out to reflect both the uncertainty 
in the geological model as well as the uncertainty associated with the grade model.  
Dohm (2003) introduced a technique to combine conditional indicator simulations for 
geology and conditional sequential Gaussian simulations for grade to assess the 
combined uncertainty of the geological interpretation and the grade estimation. 

It is, however, vital to realise that if this tool is applied to assess the risk associated with 
the Mineral Resource then it is important to establish the integrity of the simulation 
results.  For example the number of simulations to be considered for assessment and 
validations of the reproducibility of both variogram model and histogram of the 
conditioning data are crucial.  When these validations are not carried out, the results can 
lead to incorrect Mineral Resource classifications that could have disastrous effects on 
Ore Reserve classifications and investment decisions. 

The task at hand is to establish from the conditional simulations, what the expected 
coefficient of variation for the estimated grade, tonnage and metal content of a real 
month’s or year’s mining would be. 

6.3 THE 15% RULE – A LOGICAL APPROACH 

The purpose is to produce a measure of confidence in the resource estimate.  The 
specific classification rule considered here is based on two production periods, namely a 
monthly production period for Measured Mineral Resources and an annual production 
period for Indicated Mineral Resources.

Critical to this resource classification guideline are the following three CoV values: 

CoVLocal:   a typical CoV for blocks of the same size as used in the estimation model. 

CoVMonthly:  CoV signifying the relative variability of a monthly production period. 

CoVAnnual: CoV signifying the relative variability of an annual production period. 

To establish the monthly and annual CoV values the moving block technique is applied.  
Every realisation of the conditional simulation is “cookie cut” by units representing 
likely ‘production periods’ at various positions within the orebody.  This process is 
repeated for a sufficiently large number of times, e.g. at least 120 months (10years) per 
realisation of the simulation exercise.

Representative CoV values for monthly and annual production periods can be calculated 
from the statistical analysis of these two supports. 

The proposed method has been applied to a Zn deposit.  The orebody comprises two 
superimposed mineralised horizons, which are structurally controlled and are part of an 
overturned fold limb.  Both orebodies comprise a well mineralised massive sulphide 
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horizon close to the footwall and an overlying iron formation containing banded and 
disseminated sulphides.  Fan drilling is performed from hanging- or footwall drives, on 
20 m spaced north–south sections.  Intersection spacing on section varies between 10 m 
and 40 m depending on the complexity of the orebody.   Deeper exploration drilling is 
on a 100m x 50m grid, sampled every 2m.

The three critical CoV values for classification obtained from 40 conditional simulations 
of the %ZN values, carried out in unfolded space were: 

CoVLocal = 0.754  the relatively large CoV for a block in the resource model confirms 
the earlier remark that blocks are correlated. 

CoVMonthly = 0.1564 The CoV of monthly periods is less than that of the block. 

CoVAnnual = 0.0667 The CoV of the annual production is as expected significantly less 

The monthly adjustment factor is then calculated from 

821.4
1564.0

754.0

MonthlyCOV
BlockCOV

 Periodctionthly ProduFactor Mon

The annual adjustment factor is then calculated from 

304.11
0667.0

754.0
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BlockCOV
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For a Measured Mineral Resource where the error in the monthly production estimate 
has to be within 15% with 90% confidence the threshold value is: 

440.0
645.1

821.415.0
MeasuredCoV

For an Indicated Mineral Resource where the error in the annual production estimate has 
to be within 15% with 90% confidence the threshold value is: 

030.1
645.1

304.1115.0
IndicatedCoV
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Each block in the estimation model is considered in turn and its coefficient of variance, 
CoV block estimate is calculated

K

K
estimateblock Z

CoV

Where ZK is the kriged estimate and K is the kriging standard deviation of the block. 

The CoV block estimate value of each block in the estimation model is then compared to 
the above threshold values and the decision rules are:

If the CoV block estimate   CoV Measured then the block is classified as Measured. 

If CoV Measured < CoV block estimate  CoV Indicated then the block is classified as 
Indicated.

If the CoV block estimate > CoV Indicated then the block is classified as Inferred. 

Once all the blocks in the estimation model have been classified the Measured and 
Indicated Mineral Resources can be considered for conversion to Proved and Probable 
Ore Reserves.  It is recommended, that as with any automated mathematical process, the 
classified Mineral Resource model be validated; at least visually. 

The final result is a succinctly classified Mineral Resource model, which is based on 
objective quantifiable classification measures that recognise the uncertainty related to 
subjective interpretations of the available information. 

7 Comments and discussion 

It is essential to ensure the integrity of the simulations by validating the inherent and 
spatial; variability of each realisation in terms of the histogram and variogram of the 
conditioning data. 

An advantage of applying the conditional simulation techniques is that once the 
resources have been converted to reserves it is possible to compare the variability of the 
actual mine plan with that expected from the simulations. 

The author has come across two other approaches for determining “n”, the number of 
independent blocks to use in the above classification.  The first method determines “n” 
as the number of independent production blocks required to reach the range of the 
variogram.  In the second method “n” is calculated as the ratio of the production period 
tonnage divided by the block tonnage.  In both cases the square root of “n” is used as the 
divisor for the CoV to determine the 90% confidence limits.
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The classification guideline proposed does not assume that the variance reduction factor 
should be in terms of a square root and uses CoV measures to address the change of 
support effect.

8 Conclusion 

A number of Mineral Resource classification methodologies were discussed showing the 
development of understanding and incorporating uncertainty associated with the grade 
estimates.  The final classification guideline presented is based on the assessment of 
conditional simulations that have incorporated the uncertainty in the interpretation of 
geological boundaries, tonnage, grade and consequently metal content estimates and 
likely production periods 

The proposed classification technique does not replace the resource estimation; rather it 
serves as an additional tool to quantify confidence in the resource evaluation model.

It is further appreciated that particular Mineral Resource classification techniques are 
appropriate for specific situations.

A fundamental concept in Mineral Resource classification is the need for common sense 
and experience to prevail and it is therefore recommended that any automated 
mathematical technique applied be scrutinised.
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1 Introduction 

Since Feb. 1st, 2001, mining and exploration companies listed on Canadian stock 
exchanges (Toronto, Vancouver, Calgary and Montreal) must follow the so-called 
National Instrument (NI) 43-101 standard whenever they disclose technical and 
scientific information about their properties (CSA, 2000a and 2000b). Such information 
includes exploration results and of course resource and reserve estimates. Like similar 
standards in other countries(e.g., JORC,1999), NI43-101 does not specify how the actual 
exploration or estimation work should be done but concentrate on the profile of the 
individuals who do the work (the “qualified persons”) and the format of the disclosure 
(the “technical reports”- CSA, 2000c). On the content itself, NI-43-101 endorses the 
revised resource/reserve definitions of the Canadian Institute of Mining and Metallurgy 
(CIM, 2000).

In the last 3.5 years of application of this new regulation, several hundreds “technical 
reports” of NI43-101 style have been filed. They are public documents available on the 
web in digital form and they constitute a privileged reference to determine how mineral 
resources and ore reserve are currently estimated in the Canadian mining industry and, 
in particular, to what extent geostatistics is used in this estimation 
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Abstract. With the new NI 43-101 rules of public disclosure for exploration and 
mining companies listed on the Canadian exchanges, it is now possible to have access to 
technical reports describing in details the procedures used by those companies to 
estimate resources and reserves for their properties in Canada and elsewhere in the 
world. This paper summarises the results of a survey of such technical reports issued in 
the last two years. It evaluates the role of geostatistics in various aspects of the 
resource/reserve estimation work namely the capping of outliers sample value, the 
domaining according to geology, the continuity analysis, the interpolation of block 
grades, the evaluation of dilution factors and the categorisation of resource/reserves.
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2 Survey of technical reports 

Technical reports are retrieved from the www.sedar.com site which concentrates all 
documents (annual reports, notices to shareholders, press releases...) in digital (PDF) 
form from public companies listed on Canadian stock exchanges. They are generally 
found in the “Other” category and are easily detected by their size of commonly several 
Mb since they correspond to documents of generally several hundred pages.

Exploration and mining companies are found in 3 industry groups:  Gold and precious 
metals, Junior natural resource/Mining and Metals and Minerals. We have retrieved 
most of the technical reports issued since October 1, 2002 i.e. the last 2 years and all 
together they represent about 1200 documents.

About three quarter of those documents are uniquely concerned with so-called 
“exploration results” with limited drill hole information and no estimate of resource or 
reserve. That leaves about 300 reports dealing with properties with sufficient 
drilling/sampling data to warrant resource or reserve estimation (R&R reports). 

The majority of the properties studied in those R&R reports is actually outside of 
Canada, mostly in United States, South America, Africa and Russia (with others in 
South Africa, China etc..). Gold is the most frequent commodity of interest (under the 
form of vein or disseminated type) followed by base metals (porphyry type and massive 
sulphide), uranium and industrial minerals. A surprisingly large fraction of properties in 
those R&R reports are producing mines (or have produced in the past), which can lead 
to some instructive reconciliation work. 

Some of the issuers are well known Canadian mining houses like Barrick Gold Corp., 
Placer Dome Inc., Kinross Gold Corp. and Aur Resources Inc. Some of the properties 
described in those reports have made the headlines of mining publications in the recent 
years :  Lac des Iles of North American Palladium Ltd., Kemess North of  Northgate 
Minerals Corporation, Las Christinas of Crystallex International Corp. 

As indicated in the introduction, the new NI 43-101 regulation puts a lot of emphasis on 
the “qualified person(s)” who authors the technical reports. They can be employees of 
the issuer but in most cases, they are outside consultants, independent of the issuer. 
Some of them are affiliated with large and well known consultancies from all over the 
world, particularly from Australia. It can be noted that there is a definite “correlation” 
between the approach taken in an R&R study and the background of the qualified 
person(s) responsible for that study and this is particularly true when it comes to the use 
of geostatistics.

The qualified person who authors a technical report is not necessarily the individual who 
has conducted the R&R work presented in the report. In many cases, the work has been 
done internally and the external consultant, who acts as the qualified person, after 
auditing and verification, simply endorses the results of that company work.
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3  Use of geostatistics in resource and reserve estimation 

In this age of widespread computer usage, a surprisingly high proportion (about 1/3) of 
the resource and reserve estimation work presented in the surveyed reports is still 
carried in the “manual” way with the interpretation of the limits of mineralised lenses 
from plans and sections and the calculation of an average grade of those lenses (or parts 
of them) from samples within those interpreted limits. This type of calculation seems 
restricted to vein type deposits to be mined by underground methods. Often there is a 
distinction between “geological” and “mining” resources, the later being after 
application of a minimum mining width to available vein intercepts and the 
corresponding grade dilution. Reserves are made of mining resources within limits of 
designed stopes and after application of dilution and recovery factors. Examples of such 
calculations can be found in Curtis, 2003 (for UG gold mines in Russia) and Roscoe et 
al, 2002 (for a UG gold mine in Canada). Needless to say, those R&R estimations do not 
use geostatistics. 

The 2/3 balance of the R&R studies use the concept of computerized resource block 
model implemented in a mining package (Vulcan, Datamine, Gemcom, Mintec, 
Surpac…). Steps followed in such studies are invariably: geological solid modelling or 
“domaining”, selection of block size, original sample compositing (with possibly some 
capping of high assays), eventually some variography of composite data in the various 
“domains”, interpolation of block grade from surrounding composites (with search 
strategy and weighting scheme), categorization of estimated resources in blocks and 
finally conversion of resources to reserves. 

Geological modelling consists of  building 3D solids around material of the same 
“geological” nature based on lithology, alteration, degree of oxidation (the traditional 
leach/oxide/supergene/primary sequence of tropical or paleotropical terranes), geometry 
(blocks of similar general orientation in a folded structure) or simply grade. In the latter 
case, a low cut-off is used to delineate “potentially mineralised material” in 
disseminated mineralization, typically somewhere between 0.3 and 0.8 g/t in gold 
deposits. The resulting geological model can be fairly complex and detailed, for 
example 63 different solids for the Jinlonggou gold deposit in China (Fillis and Arnold, 
2004). In the majority of cases surveyed, limits of those solids are “hard” limits i.e. 
blocks within limits are interpolated from just samples within the same limits. As a 
general rule, geostatistics is not used as an aid to geological modelling or to test the hard 
nature of the defined limits.

Resource model block size is quite variable and is linked to both the size of mineralised 
solids (small blocks in narrow zones) and the average spacing between samples (the old 
rule of the half distance between samples). It ranges from a high of 20x20x15m at 
Kemess North (Gray et al, 2004) to a low of 2x5x1m at the Barbrook mine (Applied 
Geology Service, 2004). Trend seems to have fairly small blocks especially with the 
sub-celling technique of mining packages (although generally all sub-cells in the same 
cell are given the interpolated value of that parent cell). In deposits to be mined by open-
pit methods, the prevailing rule is to adjust the vertical dimension of blocks to the 
planned bench height of the future mine.
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High grade capping of original assay data (whatever size of the corresponding interval) 
is the rule in gold deposits. The most popular approach to determine the cap limit is to 
look at changes in the slope of the cumulative frequency curve on log probability paper. 
In case of multiple domains, there is generally a specific cap for each domain which 
varies with the average grade of all samples in the domain. Unfortunately the proportion 
of capped samples as well as the percent gold metal lost is not always mentioned.

Composite size is generally dictated by the average size of the original assay intervals, 
irrespective of the dimension of blocks to be interpolated. As a result, composite size 
tends to be rather low, like 1m or 2m. In only a few instances, blocks for a deposit to be 
mined by open-pit are interpolated by bench composites (e.g. 5m composites for 
10x10x5m blocks in 5m benches) thus minimizing risks of under-dilution of block 
grades.

Variography of composite grades in each domain is performed in only half the studies 
using resource block model. Description varies from an almost casual mention in the 
text to 120 pages of variogram plots (Belanger, 2003). Correlograms seem to prevail 
over regular variograms. We have not seen many indicator variograms or variograms of 
transformed data. The “pair wise relative variogram” is still very much popular with 
some consultants.

Inverse squared distance (ID2) is the most popular block grade interpolation method. 
We can even find cases where variograms are computed but blocks are interpolated by 
ID2 (Hill and Davidson, 2003). Arguments to prefer ID2 to kriging indicate that the later 
is not that well understood. For example : “Inverse distance was used to interpolate gold 
grades into the block model for Bouroum instead of ordinary kriging due to the more 
significant presence of isolated high grade gold values that impacted adjacent low 
grade areas and the generally, more in-equidistant drill hole spacing at Bouroum”
(Vanin et al, 2003). When kriging is used, it is mostly under the form of ordinary 
kriging (OK) with very little indicator kriging (IK) applications.

Typical of this hesitation toward kriging is the report by Gosselin (2003) on Laronde 
gold deposit resources and reserves for 2003 : variograms are computed and fitted with 
anisotropic models in all 6 gold + base metals bearing sulphide zones but they are just 
used to defined search ellipsoids for the ID2 (or ID3) of blocks in the same zones. 

Preference of ID2 over OK reflects some fear of diluting high-grade composites (or 
“smearing” high grades into adjacent low grade areas). This concern also transpires from 
the selection of search parameters and the fairly low maximum number of composites 
allowed in the interpolation (from 3 to 8 from the few studies where this information is 
given). Standard approach is to consider ellipsoids of increasing sizes to progressively 
fill the block matrix. The restricted search for high-grade composites option of some 
packages is sometimes used as an alternative (or in combination with) high grade 
capping prior to compositing.

In all the studies that we have surveyed, categorization of block model resources is 
strictly based on the geometry of composites with respect to blocks with no use of 
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predicted uncertainty from variograms (the old kriging variances or the new conditional 
simulation). A common approach is to use the steps in the progressive search for 
composites around blocks to set the block category e.g. measured resources for blocks 
which can be interpolated with the most restrictive search (smallest ellipsoid, highest 
minimum number of composites..) up to inferred resources for the last blocks to be 
interpolated. In other cases, a specific template ellipsoid is used to test the density of 
composites around each block with cut-offs on number of composites within this 
ellipsoid corresponding to given drilling grid: for example, at Quebrada Blanca (Barr 
and Reyes, 2004), they use the number of 7.5m bench composites within a 
75x75x18.75m ellipsoid to classify blocks with measured blocks if more than 20 
composites (50x50m grid) and indicated blocks if more than 9 composites (100x50m 
grid).

Post-processing of block estimates is rather limited. In many cases, for deposits to be 
mined by open-pit methods, block values are used as-is in open-pit optimization and the 
calculation of reserves from resources (i.e. reserves are resources within final pit). In 
some instances, fixed recovery and dilution factors are applied to block estimates before 
pit optimization e.g. a 95%recovery in all blocks and a 10% dilution in contact blocks at 
Kemess North (Gray et all, 2004). In other cases, global change of support methods are 
used to check that block estimates have the grade variability corresponding to their size 
(Belanger, 2003). We have not found any study where conditional simulation is used to 
adjust block estimates to expected selectivity and grade control conditions of the future 
mining operation.

4 Conclusions 

Roughly speaking, about one third of the resource and reserve studies issued by 
exploration and mining companies listed in Canada over the last two years use 
geostatistical methods in their resource estimation. Another third is also based on 
computerized block models but with inverse square distance. The last third is the manual 
approach with sectional blocks and sample averages within blocks.

Geostatistics used in those studies is fairly “classical” with composite grade variography 
and block estimation by ordinary kriging. Indicator kriging is not much used, even if the 
majority of studies deal with gold deposits. There is virtually no use of conditional 
simulation as an aid to resource categorization or block grade adjustment for recovery 
and dilution.

The general feeling that one gets when browsing those thousand pages of technical 
reports is that, at the moment, resource estimation is still more an art than a science with 
lots of subjective decisions and fudge factors (specially in high capping and 
categorization) which can be related to the background and past experience of the 
“qualified persons” who sign those reports. 
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INTEGRATION OF CONVENTIONAL AND DOWNHOLE GEOPHYSICAL 

DATA IN METALLIFEROUS MINES 

M. KAY, R. DIMITRAKOPOULOS and P. FULLAGAR 
WH Bryan Mining Geology Research Centre 
The University of Queensland, Brisbane Qld 4072, Australia

Geophysical logs provide valuable data that can be linked to orebody modelling and 
mine planning in metalliferous mines; however, geophysical measurements provide 
indirect data for ore grades and require further integration with conventional assay data. 
Integration can be based on the generation of suitable geophysical data compositing and 
the use of the sequential co-indicator simulation with the Markov-Bayes approximation. 
A detailed study at the Kidd Creek base metal mine, Canada, shows the practical aspects 
of the suggested approach and the value of integrating geophysical data.

1. Introduction 

Geophysical logs provide valuable, relatively inexpensive information that can be 
further linked to various aspects of a mining operation, including orebody modelling, 
mine planning, grade control and production. Although financially attractive, downhole 
geophysical measurements usually only provide indirect indicators of ore grades 
(Fullagar and Fallon, 2001) and require further analysis in order to achieve integration 
with conventional assay data.

Until recently few studies have examined the issue of technical integration of 
geophysical data in the metalliferous environment. Early attempts include grade 
estimation based on natural gamma logs in uranium mines, after calibration of 
geophysically derived grades with geochemical assays (e.g. Bryan and Roghani, 1985; 
David, 1988).  More recently, Miller and Luark (1993) use simulation techniques to 
construct models of rock strength in an underground coal mines; Dimitrakopoulos and 
Kaklis (2001) demonstrate the use of sequential co-indicator simulation to integrate data 
from a radio frequency electromagnetic tomography survey and scattered geochemical 
assays; and Basford et al. (2001) describe refinement of blasting based on automated 
interpretation of natural gamma and magnetic susceptibility logs. Kay (2001) provides a 
detailed study on integrating and valuing downhole geophysical measurements in base 
metal mines.

Given the potential economic benefits (e.g. Fallon et al., 1997) that could be obtained 
from using downhole geophysical logs, there is a clear incentive to determine how 
geophysical logging data can be integrated with orebody modelling and subsequently 
used throughout the mining process. To do this, it is necessary to use a simulation 
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technique that is capable of integrating geophysical logs.  This is a challenge since in the 
mine environment there is typically insufficient geophysical logging data to allow for 
calibration and variogram analysis. In addition, the handling of the variable support 
effects associated with geophysical signals in geologically complex environments has 
received little attention.

This paper demonstrates the effectiveness of technically integrating downhole 
geophysical logging in the metalliferous environment for orebody modelling.  First, the 
sequential co-indicator simulation method with the Markov-Bayes approximation used 
herein is outlined. This is followed by a brief description of the approach employed to 
composite downhole geophysical logs. Subsequently, a case study with copper assays 
and conductivity log data from Kidd Creek Copper Mine, Canada, is used to illustrate 
the practical aspects of the technique.

2. Sequential co-indicator simulation in brief 

Sequential co-indicator simulation (ScoIS) is a suitable method for integrating ‘soft’ 
data (such as geophysical logging measurements) with ‘hard’ data (such as conventional 
assay data) in simulating orebody models. ScoIS employs indicator co-kriging 
(Goovaerts, 1997) to derive the cumulative distribution function of the attribute being 
modelled and accounts for the geospatial correlation of ‘hard’ and ‘soft’ data, as well as 
their spatial cross-correlation. To alleviate the tedious inference and joint modelling of 
indicator covariance and cross-covariance functions, a variant of ScoIS employing the 
so-called Markov-Bayes approximation of Zhu and Journel (1992) is convenient, 
particularly when ‘hard’ and ‘soft’ data measure the same attribute. The Markov-Bayes 
hypothesis requires (i) that for a cut-off zk a hard indicator datum (binary transform of 
the original measurement) i(u, zk) at location u in a deposit prevails over the influence of 
any co-located soft indicator data y(u, zk); and (ii) that the indicator covariance 
function ( ; )YYC h z of the ‘soft’ data and cross covariance function ( ; )YIC h z  between hard 

and soft data can be expressed as a function of the covariance of the hard data );( zhC II
.

Specifically,
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where m1(z) and m0(z) are two conditional expectations that are obtained from 
calibration scatterplots of the hard versus the soft data, as shown in a subsequent section. 
It can be seen that B(z) is equal to one when the soft data are fully equivalent to the hard 
data.

3. Compositing downhole geophysical data 

Geophysical logging data are usually collected every few centimetres downhole with the 
geophysical probe’s sampling volume being quite variable. This variability of support is 
especially pronounced for conductivity measurements in base metal sulphide deposits 
due to the  high conductivity of the ore. As a result, it is unclear how exactly 
geophysical logs should be composited.  Kay (2001) uses an experimental approach 
which consists of compositing the conductivity logs with power averaging or lr norm 
(e.g. Dimitrakopoulos and Desbarats, 1993;  Claerbout and Muir, 1972). The power 
averaging exponent  is derived experimentally. By varying the value of , one can 
generate a continuum of ‘average’ values that include common averages such as the 
arithmetic, geometric and harmonic means, when  is equal to 1, 0 and –1 respectively.  
In determining a suitable  value, it is rational to maximise the information content of 
the composited downhole geophysical measurements. The procedure for maximization 
has the following steps:

1. Composite, for a selected length, the geophysical log data at drillhole X with a 
particular power averaging value ;

2. Estimate the metal grades in drillhole X using the composited conductivity log from 
Step 1 and the geochemical assays available from adjacent drillholes using 
standardised ordinary co-kriging (e.g. Deutsch and Journel, 1992); 

3. Compare the resulting grade estimates to the actual geochemical composites in 
drillhole X using the mean squared error 2e

, the Spearman rank correlation 

coefficient r’ (e.g. Swan and Sandilands, 1995) and the relative differences in these 
measures;

4. Repeat Steps 1 to 3 for all drillholes and different values of ; and
5. Summarize all the results from Step 3 and choose a value for  to use. 

An example of this procedure is shown in a subsequent section.

4. Case Study:  Integrating downhole conductivity logs and copper assays   

Data collected from the Kidd Creek base metal deposit, Canada, illustrate the use of the 
above methods in integrating copper assay data and downhole inductive conductivity 
logs. Copper assays relate to 1.5m composites. Conductivity measurements were 
collected every five centimetres downhole and are composited to the same length of 
1.5m using power averaging.
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4.1.  POWER AVERAGING OF GEOPHYSICAL LOGS

The procedure for deriving the power averaging constant  described above is applied 
here to a set of drillholes. Kay (2001) showed that the accuracy of the copper estimates 
depends on the value of  because 2e

 has a minimum and r’ a maximum in [-2.0, -0.5].

This suggests that  should be drawn from [-2.0, -0.5].  But it is less clear which value 
of  in [-2.0, -0.5] should be used since both the 2e

and r’ maxima are quite broad in 

this interval (Kay 2001). However, if 2e
and 'r  are examined instead (Figure 1), it is 

evident that  be set at –1.0 (harmonic mean) since this value results in the minimum 
mean squared error and the maximum rank correlation coefficient. A series of such 
analyses for sets of drillholes with different dips suggested that an appropriate value of 

 would be –1.0 (Kay, 2001).  As a result all of the conductivity logs acquired in the 
study area were power average-composited using this value of  and a sample interval 
of 1.5m.  These composited logs are used for the simulation of the deposit.

4.2. SIMULATION PARAMETERS 

Having generated conductivity composites, copper grades are simulated with ScoIS and 
the Markov-Bayes approximation, which are conditional to the copper assays and 
conductivity logs. In this section, the practical aspects of the simulation method used 
and its assumptions are examined. ScoIS requires the selection of a set of cutoffs for the 
hard data (copper). The cutoffs were chosen to adequately characterise the overall 
copper data histogram as well as the metal content (Dimitrakopoulos, 2004). The latter 
is important in representing the copper metal quantity in the deposit, where 10% of the 
higher-grade samples may represent 50% of the metal in the deposit. Details of the 
application at Kidd Creek are included in Kay (2001).

The inference and modelling of indicator variograms for each copper cutoff involved 
two steps, namely identification of the three principal axes of the variogram ellipsoid, 
and modelling of experimental variograms along these three directions. For cutoffs 

Figure 1.  Relative difference in
mean square error and rank
correlation coefficient as a function
of  for composites generated from a
cross-validation analysis of a set of
representative drillholes (1.5m
composite length). 
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above the 85th percentile, a different approach was followed (e.g., Dimitrakopoulos, 
2004) where variogram parameters were experimentally adjusted to minimise order-
relation problems. All indicator variograms were modelled using different linear 
combinations of the same set of basic structures (in this instance a nugget effect and an 
exponential model).  Also, variogram parameters were varied smoothly from one cutoff 
to the next ( Dimitrakopoulos, 2004; Goovaerts, 1997).

As previously described, the Markov-Bayes assumption allows the conductivity and 
copper-conductivity covariance models to be deduced from the copper covariance model 
and the calibration parameter B(zk) for each of the copper cutoffs zk. However, this 
requires a set of cutoffs for the conductivity data to be specified.  Eleven conductivity 
cutoffs were selected to ensure adequate characterisation of the declustered conductivity 
cumulative distribution function.  This was achieved by selecting cutoffs that divided 
the conductivity values into classes of approximately equal frequency. 

The resulting calibration parameters are presented in Figure 2.  It can be seen that the 
calibration parameters are low for copper grades less than about 3.0%.  However, for 
higher copper cutoffs, the calibration parameter stayed reasonably constant or increased 
slightly. These results are consistent with the general observations from the copper-
conductivity scatter-plots, which suggest that the conductivity logs were a poor predictor 
of the copper grade in low-grade areas due to low signal level. 

Also as previously discussed, conductivity and the copper-conductivity spatial models 
for each copper cutoff can be derived from the modelled copper-copper spatial model 
using a Markov-type hypothesis.  Although there are no rigorous tests to verify the 
validity of this hypothesis, a useful check is to compare these derived variogram models 
with the corresponding experimental variograms.  This check was performed on data 
from the test area for a range of copper cutoffs and is presented in Kay (2001).  The 
results suggest that the derived models matched the spatial (auto) correlation associated 
with conductivity logs for low, median and high copper cutoffs. 

In contrast, the cross correlation between the copper and conductivity was less well 
modelled using the Markov-Bayes assumption. Kay (2001) demonstrated that 
employing the Markov-Bayes assumption results in a variogram with a nugget to sill 

Figure 2.  Markov-Bayes calibration
parameter versus copper grade for the
conductivity logs. 
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ratio of 0.80, whereas as the experimental data suggested that a value of 1.00 would be 
more appropriate.  This effect was less marked for higher copper cutoffs, as the spatial 
correlation between copper and conductivity was quite well modelled for higher cutoffs 
(Kay, 2001).  These results were further confirmation that conductivity logs were poor 
predictors of copper grade in areas with low copper concentrations.  However, in spite 
of this shortcoming, it appeared that the Markov-Bayes hypothesis was valid. 

The copper simulations generated in this study were produced using Zhu (1991)’s 
implementation of the Markov-Bayes simulation algorithm. In this paper the selection of 
the variogram parameters for cutoffs below the 20th and above the 85th percentile are 
explored. The reader is referred to Kay (2001) for an explanation of the other 
parameters. As discussed previously the variogram parameters for cutoffs between the 
20th and 85th percentile can be inferred from manually fitting variograms.  However, for 
cutoffs outside this interval, manually fitting variograms is unreliable since the 
associated experimental indicator variograms are very erratic.  In the present study 
another approach was used to infer the variogram models for the extreme copper cutoffs. 
This approach consisted of the following steps: 

1. Construct the experimental histogram (He) and indicator variograms (Ve) for all 
copper cutoffs using the declustered copper samples; 

2. Infer variograms models (Vl) for the copper cutoffs above the 15th and below the 
85th percentiles by manually fitting variogram models to Ve;

3. Assign starting values to the variogram models (Vh) for copper cutoffs below the 
15th and above the 85th percentiles;

4. Generate copper simulations using the copper samples and the variogram models Vl

and Vh;
5. Calculate the indicator variograms (Vml) for cutoffs above the 15th and below the 

85th percentile using the simulated copper values and compare these with the 
corresponding experimental indicator variograms Ve. If a visual inspection indicates 
that they are similar then proceed to Step 6. Otherwise adjust the manually fitted 
variograms Vl and return to Step 2;

6. Compare the histogram of simulated copper values (Hm) with that of the declustered 
copper assays for cutoffs that occur between the 15th and 85th percentiles. If they 
agree then proceed to Step 7, otherwise return to Step 2; 

7. Compare the histogram of simulated copper values (Hm) with that of the declustered 
copper assays for the cutoffs below the 15th and those above the 85th percentiles. If 
they agree then proceed to Step 8, otherwise return to Step 3; 

8. Examine the order relation corrections required during the generation of the 
simulations for cutoffs that occur between the 15th and 85th percentiles. If these are 
excessive, then return to Step 2, otherwise proceed to Step 9; 

9. Examine the order relation correction required during the generation of the 
simulations for the cutoffs below the 15th and those above the 85th percentiles. If 
these are excessive, then return to Step 3, otherwise proceed to Step 10;

10. Stop - an acceptable set of copper indicator variograms has been generated.  

The above procedure relies on determining how well the histogram of simulated copper 
values mimics the declustered histogram of copper assays.  In the present study two 
measures were used.  These were the average difference between the histogram of 
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simulated values and the true experimental histogram, and the average relative 
difference between the two histograms. This latter quantity is important because, even 
though the high cutoffs only represent a very small proportion of the sample and 
simulated data, a small difference between the true and simulated histograms can be 
very economically significant.  For example, an absolute difference of 1% between the 
two histograms may not be significant for the median class where 16% of the samples 
lie (i.e. 16 1%).  However, the same absolute difference is highly significant for a high-
grade class, where only 1% of the assay samples lie (i.e. 1 1%).  The average relative 
difference reflects the relative importance of such differences.  The procedure also 
requires that the number and magnitude of order relation corrections be examined in 
Steps 8 and 9 to determine whether an acceptable number of corrections were required, 
and this was selected to be an average magnitude of the probability corrections in the 
order of 0.01.

The iterative procedure described above was used to infer the variogram parameters for 
the high copper cutoffs in the study and resulted in a more finely tuned set of 
simulations (Kay 2001). This is shown in Figure 3 which presents the average difference
and average relative difference for the set of simulations based on the final set of 
variogram parameters. The final set of variogram parameters resulted in realisations 
matching the experimental variograms very well for the high grade copper classes 
(Figure 4). With respect to the order relation corrections, the ‘final’ set of variogram 
parameters perform well (Kay, 2001). 

Figure 3.  Difference (left) and relative difference (right) between histograms of the
copper composites and the ensemble of copper simulations.  Also shown is the
average copper simulation. 
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To show the effect of the contribution of conductivity data to the generation of copper 
simulations, three different groups of simulations are examined. Group A is the set of 
simulations generated using copper assays only. Group B was identical to A except that 
the copper assays associated with one drillhole fan are removed.  The third set, Group C, 
has the same set of copper assays as Group B, but also includes the conductivity logs 
collected in the drillhole fan whose copper assay data had been excised from Group B.

Figure 5(a) presents a vertical section through a Group B simulation.  The vertical 
section is in the plane where the excised drillhole fan was contained. With respect to the 
overall distribution of simulated copper grades, the Group A and B simulations appear 
to be similar (Kay, 2001). However, differences can be observed. Figure 5(b) displays 
some of the differences between a Group A and a Group B simulation that both use the 
same random seed. By removing the copper assays in the drill fan the resulting Group B 
simulation has considerably higher grades than the Group A simulation in the 
mineralised zone centred at X=275 (ie the zone outlined in red). However, as Figure 
5(b) indicates, the opposite is true in the second mineralised zone (i.e. the zone outlined 
in black).  The figure suggests that removing the copper assays in this zone results in 
much lower simulated copper grades. 
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Figure 6 illustrates the effect of using conductivity logs in the simulation process.  It is 
evident that the Group C simulations, using the conductivity logs collected in the 
drillfan, are qualitatively similar to the A and B simulations.  For example, the Group C 
simulation contains the two mineralised zones discussed earlier.  However, Figure 6(b) 
shows that using the conductivity logs results in simulations that are very similar to the 
Group A simulations.  For instance in the plane of the vertical section, the difference 
between the equivalent Group A and C simulations is less than 0.5% Cu for more than 
90% of the vertical section.  Moreover, in the remaining 10% of the section, the 
difference is less than 1.0% Cu with only a few simulated points differing by more 
than 5.0% Cu.  This suggests that, in the plane of the vertical section using 
conductivity logs results in simulations that are very similar to those based purely on 
copper assays. 

Figure 5. Vertical section through a representative Group B simulation
(a) simulated Group B copper values; and (b) difference between the
Group C and corresponding Group A simulated copper values. Also
shown are the sample locations associated with the excised drillhole
fan.
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5. Conclusions 

The ability to technically integrate geophysical data with conventional assays in 
metalliferous mines is important during the developmental and mining stages where 
orebody models are constructed. The present study described the conditional simulation 
of ore grades in an application that integrates drill core assay data and downhole 
geophysical logs. This application was used to assess the variability of copper grades at 
the Kidd Creek base metal mine, Canada. Composites were generated using generalised 
power averaging which aims to maximise extraction of information from the 
conductivity logs. Sequential co-indicator simulation was applied to ‘hard’ (copper 
assay) and ‘soft’ (conductivity logging) data using the Markov-Bayes approximation. 
The selection of the cutoff grade was based on the quantity of metal, and the iterative 
calibration of indicator variograms at very high cutoffs was performed to ensure 
convergence with declustered copper assay statistics. Validation of the simulations 
suggests the Markov-Bayes approximation works reasonably well.  It was shown that 
simulated realisations of copper grades are of comparable quality, when some of the 
assay composites in selected drillholes are replaced by conductivity data. This suggests 
that replacing some assaying with logging can generate savings with little loss of 
information.

Figure 6. Vertical section through a representative Group C simulation (a)
simulated Group C copper values; and (b) difference between the Group C and
corresponding Group A simulated copper values. Also shown are the sample
locations associated with the excised drillhole fan.
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Abstract.  An analysis of conditional bias and its impact on mineral resource estimation 
is presented.  A simple method is proposed for building a long-term mineral resource 
block model that accounts for conditional bias, change-of-support, and the information 
effect at the time of mining. 

1. Introduction 

Accounting for change-of-support, the information effect, and conditional bias are 
problems well known to mineral resource modelers. Although the methods proposed for 
dealing with change-of-support and the information effect are little more than 
approximations, case studies suggest these methods are useful (David, 1977; Journel and 
Huijbregts, 1978; Matheron, 1984; Parker, 1980; Isaaks and Srivastava, 1991; Deraisme, 
2000). However, the same cannot be said for conditional bias. A literature review 
reveals that conditional bias is poorly understood and that many of the claims are 
misleading.

Krige (1994; 1996; 1999) claims the preliminary prerequisite of all resource estimators 
is the elimination of conditional bias. Sinclair and Blackwell (2002) claim that 
conditional bias contributes to the discrepancies noted between the prediction of 
recoverable resources and production. David, Marcotte, and Soulie (1984) propose a 
correction for conditional bias and claim that this correction will reduce the discrepancy 
between predicted resources and production. Pan (1998) proposes a correction for 
conditional bias followed by a correction for the smoothing induced by the first 
correction. However, it can be shown that these two corrections are circular in the sense 
that the final smoothing correction re-introduces conditional bias. Guertin (1984) 
proposes a solution that she claims can be easily implemented as a correction factor for 
any mineral resource estimation or grade control system. Deutsch and McLennan 
(2003) argue that conditionally simulated block model values are both conditionally 
unbiased and accurate predictors of the tons and grade that will be recovered at the time 
of mining. However, as will be shown these claims are not correct despite their wide 
acceptance.

A conditionally unbiased and accurate predictor1 is an oxymoron. The estimator for a 
long-term mine planning block model may be conditionally unbiased but then the 

                                                          
1 Accuracy is defined as the ability of the long-term block model to predict the actual tonnage and average ore 
grade that will be recovered at the time of mining.

363

2004, 363-374. 
© 2005 Springer. Printed in the Netherlands. 

ticsO. Leuangthong and C. V. Deutsch (eds.), Geostatis        Banff



364 E. ISAAKS 

histogram of block estimates will be smoothed yielding inaccurate predictions of the 
recoverable tons and grade above cutoff grade. Conversely, if the histogram of block 
estimates provides accurate predictions, then the block estimator is necessarily 
conditionally biased. The estimator for a long-term mine planning block model cannot 
be conditionally unbiased and simultaneously accurate as claimed by Deutsch and 
McLennan (2003). David (1977) recognized the oxymoron by pointing out that one can 
accurately estimate the histogram of block grades but then one cannot localize the 
blocks. Alternatively, one can estimate as accurately as possible the grades of precisely 
located blocks (thereby minimizing conditional bias) but then the block histogram will 
be smoothed. The only exception to this apparent contradiction occurs when the block 
estimates are perfectly correlated with the true block grades. In this unlikely scenario the 
block model is both a conditionally unbiased and accurate predictor.

This paper provides an analysis of conditional bias and its impact on mineral resource 
estimation. Although it may not be possible to eliminate conditional bias from the grade 
control estimator it can be evaluated through conditional simulation. Block models for 
long-term mine planning can be built using simulation methods that not only 
quantitatively account for the conditional bias of future grade control estimators, but 
also for future change-of-support and information effects.

Section 2 defines two types of mineral resource block models on the basis of how the 
block estimates are used by the mine. These definitions provide the key to understanding 
the role of conditional bias in mineral resource modeling. Section 3 provides a formal 
definition of conditional bias and describes a simple check. Section 4 examines the 
impact of conditional bias on prediction when the block estimates are used for selection 
at the time of mining e.g., grade control. Section 5 examines the problem of predicting 
the tons and grade that will be recovered at the time of mining given that selection will 
be made using grade control estimates based on future blast hole data. Section 6 
describes how to build a long-term mine planning block model by conditional 
simulation that accounts for a future conditionally biased grade control estimator, the 
information effect, and a change of support. 

2. Two Types of Block Models 

Mineral resource models can be classified into one of two types depending on how the 
block estimates are used by the mine operation.

Type 1: Models whose block grade estimates are used to predict the tons and average 
grade of ore material that will be recovered each annual, semi-annual, or quarterly 
period over the life-of-mine are classified as Type 1. Individual block estimates are 
typically derived from relatively sparse diamond drill hole (DDH) data. Predicted 
recoveries made from Type 1 estimates are useful for feasibility studies, long and short 
term mine planning, and the estimation of production schedules etc. Individual block 
estimates are not used for selection at the time of mining. Thus, it is not necessary to 
know the precise location or recoverable grade of each ore block. Knowledge of the 
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distribution of recoverable2 block grades to be mined in the future for each period is 
sufficient. Type 1 models are often referred to as long-term (mine planning) models. 

Type 2: Models whose block grade estimates are used for selection at the time of 
mining are classified as Type 2. Individual block volumes are equivalent to a selective 
mining unit (SMU) with the grade of each block typically estimated from neighboring 
blast hole (BH) grades. The use of these estimates to distinguish between ore and waste 
is commonly known as grade control.

3. Definition of Conditional Bias 

3.1 NOTATION 

D : The deposit or domain of interest.
[ ( ),   ]Z Du u  : A stationary random function consisting of a set of point support 

random variables. 

( )

1
( ) Z( )v v

Z d
v u

u u u  : A random variable of support v  centered at location u .

[ ( ), ]vZ Du u  : A stationary random function consisting of a set of random variables of 

support v. The random function [ ( ), ]vZ Du u  is written as vZ  to simplify notation. 

( ; | ( )) prob{ ( ) | ( )}v vF z n Z z nu u : Non stationary cumulative conditional distribution 

function (ccdf) of the random variable ( )vZ u  at the location u  conditioned by n data.

1
( ; | ( )) ( ; | ( ))D vDD

F z v n F z n du u  : The probability that the grade of a randomly 

selected SMU within the domain D  will be no greater than the cutoff z.

*[ ( | ( )), ]vZ n Du u  : A non stationary random function consisting of a set of random 

variables where each RV *( | ( ))vZ nu  is of the form 
1

( )
n

i ii
w Z u with 1w . The 

random function *( | ( )),  vZ n Du  u  is written as *vZ  to simplify notation.

* *( ; | ( )) prob{ ( | ( ) ) }v vF z n Z n zu u : The non-stationary ccdf of the random 

variable *( )vZ u  at the location u  conditioned by the (n) data. 

*
*

1
( ; | ( )) ( ; | ( ))D vDD

F z v n F z n du u : The probability that the estimated grade 

*( )vZ u of a SMU randomly selected within D will be no greater than z.

3.2 DEFINITION

The conditional expectation is given by: 

*{ | } ( )            v vE Z Z z h z z                                               (1) 

                                                          
2

The recoverable grade is the actual grade recovered given that selection is based on estimates typically made 
from blast hole data at the time of mining. 
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where the function ( )h z  may be linear or non linear. However, if we impose the 
condition:

( )             h z z z                                                             (2)

the function ( )h z  will be linear through the origin with a slope of 1.0 and the estimator 

*vZ is conditionally unbiased by definition (Journel  and Huijbregts, 1978).

The conditionally unbiased relation (2) can be re-written as:

* *{ | } 0         v v vE Z Z Z z z                                           (3) 

Equations (2) and (3) imply that the average of the estimator *vZ  above cutoff is an 

unbiased estimate of the average of the corresponding true values vZ :

* * *{ | } { | }             v v v vE Z Z z E Z Z z z                           (4) 

Equation  (4) can also be written as: 

* *{ | } 0        v v vE Z Z Z z z                                   (5) 

3.3 A CHECK FOR CONDITIONAL BIAS 

The linear regression of vZ on *vZ  is given by *{ | } *v vE Z Z z a z b  where a is the 

slope and b the intercept. Thus, if the slope of the linear regression of vZ on *vZ  is not 

equal to 1 or the intercept is not equal to 0, then the estimator *vZ is conditionally 

biased, e.g.,

*{ | } ( )

,        iff 1 and 0*

v vE Z Z z h z

a z b z z a b
                                      (6) 

The linear regression model also provides some insight on the relationship between the 

two random functions 
vZ  and 

*vZ  e.g., the slope 

a is given by: 

*

*
*

*

cov( )

var( )
v v

v

v
v v

v

Z Z
a

Z
             (7) 

where 2 2
* and v v  are the variances of 

vZ and

*vZ . Thus, for a conditionally unbiased estimator: 

*
*

1.0v
vv

v

a                        (8) 

Two important observations can be made from 
Equation (8). 

1. Since in practice, the correlation between the true and estimated values 

is:  * 1v v , then for a conditionally unbiased estimator, necessarily: 2 2
*v v . In 

other words, the estimates of a conditionally unbiased estimator are smoothed 

.



THE KRIGING OXYMORON 367 

2. Conversely, if the two distributions ( ; | ( ))DF z v n and ( ; * | ( ))DF z v n defined in 

section 3.1 have equal variances: 2 2
*v v , then necessarily 1a . That is, the 

estimator
*vZ is conditionally biased. 

4. Type 2 Estimates and their Recovery Functions

Recall that the estimates of a Type 2 estimator are used by the mine operation for the 
selection of ore at the time of mining.

4.1 NOTATION 

The type 2 estimator is denoted by a double asterisk, e.g., ** ( )vZ u . 

**( ; | ( ))vF z nu : The non stationary ccdf of the RV **( )vZ u at location u conditioned by 

the (n) data. 

**
**

1
( ; | ( )) ( ; | ( ))D vDD

F z v n F z n du u : The non stationary conditional probability that 

the estimated grade **( )vZ u of a randomly selected SMU within the domain D will be 

no greater than z. Note that this distribution is commonly estimated in practise. 

( ; | **, ( ))vF z v nu : The non stationary ccdf of the RV ( )vZ u  at location u given that 

** ( )vZ zu and the (n) conditioning data.

1
( ; | **, ( )) ( ; | **,( ))D vDD

F z v v n F z v n du u : The non stationary conditional 

probability that the true grade ( )vZ u of a randomly selected SMU within the domain D 

will be no greater than z given that its estimated grade **( )vZ u is no greater than z. Note 

that this distribution is not known nor is it commonly estimated in practice. 

4.2 ACTUAL RECOVERIES GIVEN THAT SELECTION IS MADE USING 
ESTIMATED GRADES. 

The following recovery functions describe the actual but unknown quantities that will be 

recovered given that selection is made using the estimates **( )vz u . The recovered tonnage 

is given by: 
( ) [1 ( ; ** | ( ))]             zD o DT z T F z v n                                          (9) 

The actual but unknown quantity of recovered metal is given by: 

( )  z  ( ; | **, ( ))         D o Dz
Q z T dF z v v n z                                        (10) 

The actual but unknown recovered grade is given by: 

( )
( )

( )
D

D
D

Q z
m z

T z
                                                       (11) 
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4.3 ESTIMATED RECOVERIES GIVEN THAT SELECTION IS MADE USING 
ESTIMATED GRADES 

The recovery equations provided by (10) and (11) are not useful since the 
distribution ( ; | **, ( ))DF z v v n is not known or commonly estimated in practice. However, 

by replacing the unknown distribution with the commonly estimated distribution 
( ; ** | ( ))DF z v n , one can estimate the recoveries as follows: 

( ) [1 ( ; ** | ( ))]             zD o DT z T F z v n                                 (12) 

The estimated recovered quantity of metal is given by: 

( )  z  ( ; ** | ( ))         oD z DQ z T dF z v n z                                (13) 

and the estimated recovered grade is given by: 

( )
( )

( )
D

D

D

Q z
m z

T z
                                                      (14) 

If the estimator ** ( )vZ u is conditionally unbiased, then the estimated recoveries (13) (14) 

will be equal to the actual recoveries (10) (11) since conditional unbias implies the 
following:

** ** **              { | } { | }

( ; | **;( )) ( ; ** | ( ))

1 ( ; ** | ( )) 1 ( ; ** | ( ))

  ( ; | **;( )) ( ; ** | ( ))

            ( ; | **;( )) ( ;

v v v v

D Dz z

D D

D Dz z

D D

E Z Z z E Z Z z

z dF z v v n z dF z v n

F z v n F z v n

z dF z v v n z dF z v n

F z v v n F z v** | ( ))

z

n

                  (15) 

Thus, it appears3 that the estimator **( )vZ u must be conditionally unbiased in order to 

provide accurate predictions of the tons and grade that will be delivered to the mill. 
Ideally, the estimator **( )vZ u will also minimize the conditional variance 

2{[ ( )] }vE Z h z  (Journel and Huijbregts, 1978) so as to minimize ore loss and dilution 

or misclassification at the time of mining.

5. Type 1 Estimates and their Recovery Functions 

Recall, that Type 1 estimates are used to predict the tons and grade of ore that will be 
recovered in the future at the time of mining. They are not used for selection at the time 
of mining. 

                                                          
3 Section 6 describes how conditional simulation can be used to accurately predict the tons and grade that will 

be delivered to the mill in spite of a conditionally biased grade control estimator. 
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5.1 NOTATION 

Type 1 estimates are denoted by a single asterisk, e.g., * ( )vz u .

*( ; | ( ))vF z nu : The non stationary ccdf of the RV *( )vZ u at location u conditioned by the 

(n) data.

*
*

1
( ; | ( )) ( ; | ( ))D vDD

F z v n F z n du u : The non stationary conditional probability that 

the estimated grade *( )vZ u of a randomly selected SMU within the domain D will be no 

greater than z. Note that this distribution is commonly estimated  in practice. 

5.2 THE  RECOVERY EQUATIONS 

Recoverable tonnage: 

( ) [1 ( ; * | ( ))]            zD o DT z T F z v n                                   (16) 

Recoverable quantity of metal: 

( )  z  ( ; * | ( ))        oD z DQ z T dF z v n z                                  (17) 

Recoverable grade: 

( )
( )

( )
D

D

D

Q z
m z

T z
                                                       (18) 

Recall, that (9), (10), and (11) provide the actual recoveries given that selection will be 
made using the estimates **vZ in the future. Thus, to be useful the recoveries predicted 

by (16), (17), and (18) must be equal to those given by (9), (10), and (11). However, this 
is a problem since there is nothing in (16), (17), and (18) that guarantees equivalence to 
(9), (10), and (11).  This problem is recognized within the mining industry where a 
common solution is to impose additional constraints on the estimators 

* **( ) and  ( )v vz zu u , e.g., 

Condition 1. ( ; * | ( )) ( ; ** | ( ))D DF z v n F z v n  -  This condition requires the histogram 

of the type 1 estimates to be equal to the histogram of the type 2 estimates within D. For 
example;

In practice, the future distribution ( ; ** | ( ))DF z v n  is estimated using 

smoothing relations and the change of support hypothesis (Journel and 
Huijbregts, 1978; Isaaks and Srivastava, 1989;  Sinclair  and Blackwell, 2002). 
The distribution ( ; * | ( ))DF z v n is then made to match as close as possible to the 

estimated distribution ( ; ** | ( ))DF z v n by controlling the number of samples 

used to estimate *vz  locally (Deutsch and McLennon, 2003). 

Condition 2. ** **{ | } 0  v v vE Z Z Z z z - This condition requires the type 2 estimator 

to be conditionally unbiased.
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The equivalence between the predicted recoveries (16), (17), and (18) given conditions 
(1) and (2) and the actual recoveries (9), (10), and (11) is easily confirmed.

However, condition (1) may not be that easy to impose on the estimator *vZ . The change 

of support and information effect may render the distributions ( ; * | ( ))DF z v n and

( ; ** | ( ))DF z v n  incomparable. Thus, at best this practice amounts to nothing more than 

an approximation.

Condition (2) may also be difficult if not impossible to impose on the future estimator 

**vZ . Although kriging is said to be a conditionally unbiased estimator, in reality it is 

conditionally unbiased if and only if the distribution of ( )Z u  is normal and its mean 

{ ( )}E Z u  is known (David, 1977). The problem is that almost all distributions of ( )Z u

in mining applications are non-normal with relatively large coefficients of variation and 
large coefficients of skew. Because of this, it is very difficult if not impossible for the 
mine operator to insure that the grade control estimator is conditionally unbiased.

5.3 THE OXYMORON 

Note, that although the estimator *vZ  is an accurate predictor of recoveries (9), (10), and 

(11) given conditions (1) and (2), *vZ is almost certain to be conditionally biased. For 

example, from condition (2), 

**
**

1.0v
vv

v

                                                    (19) 

and from condition (1), 

* **v v                                                          (20) 

and since * **vv vv  with near certainty then, 

*
*

1.0v
vv

v

a                                                   (21) 

that is, *vZ  is almost certain to be conditionally biased. Thus, in spite of conditional 

bias, *vZ  may be an accurate predictor of recoverable resources given conditions (1) and 

(2).

6 Conditional Simulation and Prediction 

This section proposes a method for building the long-term block model using 
conditional simulation via the LU decomposition of the covariance matrix, (Davis, 
1987).

6.1 NOTATION 

( )vZ u - the tilde above a variable denotes a conditionally simulated value. Otherwise the 

notation for the simulated variables and their distributions is identical to the definitions 
provided in section 4.1 
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6.2 CONDITIONAL SIMULATION 

Consider the following vectors of point support Gaussian random variables:

1 [ ( ), 1, ]iY i nY u - a vector of ( )  (0,1)n N random variables located at DDH sample 

locations   1,i i nu ,

2 [ ( ), 1, ]jY j sY u - a vector of ( )  (0,1)s N random variables located at blast hole 

(BH) locations   1,j j su , and 

3 [ ( ), 1, ]kY k tY u - a vector of ( )  (0,1)t N random variables located at the 

discretization point locations  1,k k tu  of the SMU. 

Note that some of the locations may be co-located, e.g., i ju u , i ku u , j ku u for

some , ,i j k (see Figure 2). 

The corresponding covariance matrices are given by: 

11 1 1cov( )C Y Y  with dimension n x n

21 2 3 1cov([ , ] )C Y Y Y  with dimension m x n  where s t m .

22 2 3 2 3cov([ , ] [ , ])C Y Y Y Y  with dimension m x m .

The covariance matrix between the random vectors 1 2 3, ,  and Y Y Y can be decomposed 

into the product of a lower and upper triangular matrix, e.g., 

11 12 11 11 21

21 22 21 22 22
*

C C L 0 U U

C C L L 0 U
                                         (22) 

Figure2: Example locations of the random 

variables Y relative to a SMU. The stars 

represent 1Y  at DDH locations, while the 

circles represent 2Y at BH locations and the 

plus signs symbolize 3Y  at the discretization 

points of the SMU. Note the co-location of 
some of the variable locations. 
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Next, we interpret the relatively sparse DDH data ( ),  1,iz i nu  as a realization of the 

random vector 1Y , e.g.,

1( ) ( ( )),  1,i iy z i nu u                                                    (23) 

where ( ) is the normal score transform. Realizations of the random vectors 2Y (at BH 

locations) and 3Y (at SMU discretization point locations) can be simulated conditional 

to the transformed DDH data 1Y as follows: 

1
11 11 1

2

21 22
3

1

1
21 11 1 22

*

1Y L 0 L Y

Y
L L W

Y

Y

L L Y L W
                                            (24) 

where W is a random vector of ( )m  (0,1)iid N  random variables. Multiple realizations 

of the vectors 2 3 and Y Y  each conditional to 1Y (and to each other) are obtained by 

generating realizations of the iid random vector W and evaluating, 

2 1
21 11 1 22

3

Y
L L Y L W

Y
                                               (25) 

for each realization of W . A single conditional simulation of the SMU grade at location 

0u  is given by: 

1
0 3

1

1
( ) ( ( ))

t

k
k

vz y
t

u u                                               (26) 

The corresponding estimated SMU grade made from conditionally simulated blast hole 
grades is given by: 

1
** 0 2( ) [ ( ( )) ]

s

j j
j

vz B yu u                                       (27) 

where are ordinary kriging weights for example and 1
2[ ]Y  are simulated DDH 

values at the blast hole locations. [ ]B  is a user defined function for transforming 

simulated DDH grades to simulated BH grades. For example, the function [ ]B  could be 

used to add noise or deviations to the vector of simulated DDH grades 1
2[ ]Y (Parker

and Isaaks, 1992; Journel and Kyriakidis, 2004).
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The distributions 0( ; | ( ))vF z nu  and **
0( ; | , ( ))vF z v nu of the conditionally simulated 

values 0 ** 0( ) and (  )v vz zu u are generated by repeated applications of (25), (26), and (27). 

For example by using an efficient LU algorithm it may be practical to simulate as many 
as 500 equi-probable pairs of 0 ** 0( ) and (  )v vz zu u for each SMU.

Thus, the simulated tonnage recovered over the domain D is given by: 

( ) [1 ( ; ** | ( ))]             zD o DT z T F z v n                                          (28) 

The simulated actual quantity of recovered metal is given by: 

( )  z  ( ; | **, ( ))         o DD z
Q z T dF z v v n z                                        (29) 

The simulated actual recovered grade is given by: 

( )
( )

( )
D

D
D

Q z
m z

T z
                                                       (30) 

Equation (26) solves the change of support problem by computing a simple spatial 
average from a number of jointly simulated point values within the SMU. Note that each 
simulated point value is back-transformed before averaging.

Equation (27) provides a simulation of the grade control estimator using simulated blast 
hole grades. Note, that (27) includes a user-definable function enabling the user to 
simulate the relationship between the DDH and BH grades if known (Parker and Isaaks, 
1992; Journel and Kyriakidis, 2004). Thus, the impact of poorer quality blast hole assays 
on the predicted recoveries can be put into the estimation of recoverable resources here.
Equations (29) and (30) simulate the actual recovered quantity of metal and recovered 
grade given that the SMU are selected by their grade control estimate. The key is the 
simulated conditional distribution of the true SMU grades given their grade control 
estimates. This distribution quantitatively accounts for any conditional bias inherent in 
the grade control estimator as well as for any associated misclassification.

7 Conclusions 

If the block estimates are to be used for selection (grade control), then it is 
desirable to minimize conditional bias. Although conditional bias may be 
minimized, it likely cannot be eliminated.
If the grade control estimator is conditionally biased, the predictions of the 
long-term mine planning model should quantitatively account for the bias. Such 
an accounting can be evaluated through conditional simulation.
If the block estimates are not used for selection at the time of mining, but rather 
for the prediction of the tons and grade that will be recovered in the future, then 
whether or not the block estimator is conditionally biased is irrelevant to the 
accuracy of predicting the future recoveries. 
The predictions of the long-term model should quantitatively account for the 
ore loss and dilution (misclassification) that will occur at the time of mining. 
Again, such an accounting can be evaluated through conditional simulation.
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 And finally, conditional simulation provides an easy solution to change of 
support. Long-term mine planning models with block sizes equivalent to the 
SMU are easily simulated. With good software, conditional simulation via the 
LU decomposition of the covariance matrix is as practical as ordinary kriging.
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POST PROCESSING OF SK ESTIMATORS AND SIMULATIONS FOR 

ASSESSMENT OF RECOVERABLE RESOURCES AND RESERVES FOR 

SOUTH AFRICAN GOLD MINES. 

1 2 2

1 Private Consultant, South Africa 
2 Gold Fields Limited, South Africa 

ABSTRACT. This study is based on a comprehensive data base from a section of a 
large deep South African gold mine. The upper section of the area covered was accepted 
as providing the known data for purposes of estimating in a deeper extension of this 
section. Ore blocks in this extension were valued using the data from the upper ‘known’ 
area together with data in development raises typically 150m apart in the deeper 
extension area.  Estimation techniques used were Simple Kriging (SK) with post-
processing, and Simulations and the recoverable block estimates were compared with 
the known follow-up ‘actual’ values of these blocks. The study shows that the direct SK 
post-processing and repeated simulation approaches, if applied efficiently, can provide 
equally useful tools for computing global recoverable resources.  However, the direct 
SK post-processed technique provided the only advanced practical estimates of 
individual ore blocks for short-term mine planning, grade control and ore 
resource/reserve classification.

1 Brief Historical Background to Ore Block Valuations 

The main objectives of block valuations in South African gold mines have always been, 
and still are: 

To provide management and shareholders with a reliable inventory of the 
mine’s basic asset, i.e. its ore resources and reserves classified into categories 
as required by the relevant codes. 
The estimation of tonnages and grades expected to be obtained from mining in 
short and medium term time categories e.g. monthly, quarterly and annually, 
and from individual stopes and mine sections. 
Where the average ore grade is not sufficiently high to warrant 100% mining of 
the ore body, proper advanced indications for the selection of blocks above the 
break even or cut off. 
The planning of grade control so as to produce a profile of acceptable 
production and financial targets. 

The birth of Geostatistics and kriging in South Africa more than 50 years ago resulted 
from the statistical explanation of the presence of conditional biases in the orthodox 
valuation techniques (Krige 1951). Kriging, properly applied, eliminated these biases 
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but provided smoothed estimates. To overcome the smoothing effect, some 
geostatisticians introduced the practice of Ordinary Kriging (OK), but with a limited 
data search, and without using the global mean or applying simple kriging (SK). This 
could rectify the problem of smoothing but had the effect of re-introducing the 
conditional biases, which in fact had led to the birth of geostatistics. The practice of 
using a limited search cannot be condoned (Krige, 1996, 1997, 2001; McLennan and 
Deutsch, 2004). It is also theoretically impossible to meet both objectives of conditional 
unbiasedness and the absence of smoothing on the basis of specific fixed grade estimates 
for individual blocks. 

A logical advance towards a solution of the problem of smoothing was the substitution 
of probability estimates for fixed individual kriged estimates.  This was effected by 
using uniform conditioning, direct or indirect conditioning (Assibey-Bonsu and Krige 
1999b) and various other post processing procedures, e.g. spectral postprocessor 
(Journel, Kyriakidis and Mao 2000).  Simulation techniques have also been proposed for 
producing unsmoothed and unbiased block recoverable estimates. However, single 
simulations could be unsmoothed but will be conditionally biased (Krige and Assibey-
Bonsu, 1999a), and repeated simulations, when averaged, will produce smoothed values. 
Lately, McLennan and Deutsch (2004) have suggested “conditional non-biased 
simulation” based effectively on the introduction of the concept of probability estimates 
via repeated simulations, in substitution for specific block estimates.  This is a form of 
post processing, or conditioning, as practiced in the direct processing of kriged 
estimates.

The authors (McLennan and Deutsch (2004)) compared such estimates with straight 
kriged estimates, but not with kriged estimates after post-processing. Their analyses 
covered only estimates on a global basis.  The comparison of these techniques for 
estimates for individual blocks and local small production areas, and the overall effect 
on grade profiles over time, were not considered. 

The above background calls for block estimates to be globally unbiased as well as for 
individual blocks and mine sections, and also properly processed to eliminate any 
‘smoothing’ effects.  The argument that final selection of ore blocks as ore or waste is 
done at the stage when the more intensive sampling data are available on a proper SMU 
(Selective Mining Unit) basis and that ‘unbiasedness’ and ‘unsmoothing’ are only 
necessary on a global basis, does not hold except possibly, but still to a more limited 
extent only, for open cast mines. A detailed examination and comparison of kriged 
estimates before and after post processing with the recent simulation approaches on both 
a global and more local short-term basis, including individual blocks, is therefore 
justified.  This is the objective of this paper based on a massive set of ‘actual’ data from 
a large deep level South African gold mine. 

2 Basic Principles of the Two Main Techniques 

Conditioning of unbiased estimates is based on the principle of replacing these 
smoothed estimates with probability distributions representing the expected follow-up 
‘actual’ grades with each kriged estimate as the mean of the distribution at a variance 
level equal to that expected for the ‘actual’ grades.  For direct conditioning this is 
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effected by super imposing on the kriged estimate for each block, a ‘simulated’ 
distribution of expected ‘actual’ values with a variance equal to the difference in 
variability between the smoothed and ‘actual’ grades (Assibey-Bonsu and Krige, 
1999b).  The end result is an estimated unsmoothed tonnage-grade curve to replace the 
smoothed kriged estimate. For uniform conditioning this is done, not for individual 
SMU blocks, but for groups of local SMU blocks within larger panels or blocks.   In this 
study all references to SMU’s and ‘blocks’ refer to 2D ore units of 20x20m in the plane 
of the ore body. 

The Sequential Gaussian Simulation (SGS) technique was used for generating the 
simulation realizations. Simple Kriging was used to determine the parameters of the 
Gaussian conditional cumulative distribution function at respective locations. The SGS 
was generated using the GSLIB software (See Clayton and Journel, 1992). Post-
processing of the simulation results adopted in this paper is similar to that proposed by 
McLennan and Deutsch (2004). It involves the distribution of the repeated simulated 
values, say 50, for each block as an estimate of the unsmoothed tonnage-grade curve for 
the block, and thus that it reflects the uncertainty of the mean of the relevant 50 
realisations as an estimate of the ‘actual’ grade. The assumption is, thus, that the 
variance of the 50 simulated values straddling the mean of the 50 simulated grades for 
each block reflects the probability distribution of the ‘actual’ grades. 

The objective of this analysis is to apply these two main techniques using a set of 
‘actual’ data to provide estimates for comparison with ‘actual’ follow-up information on 
a practical basis, so as to determine the validities of the alternative techniques and their 
relative efficiencies. 

3 The Data Base 

The ‘actual’ data used should ideally represent the grades of SMU blocks as estimated 
on the basis of the more extensive data, which will be available at the time of the actual 
selection during production. Such data for a block can never be complete and thus the 
presence of the inevitable information effect in the setting of the target of the SMU 
‘actuals’ for the dispersion variance of block estimates and of the tonnage-grade curves 
is an essential requirement for both the SK post-processing and the repeated simulation 
techniques.

The data used in this study comprised an area of 2Km x 2Km on the Ventersdorp 
Contact Reef (VCR) on a large deep mine with a total number of nearly 43000 
underground sample values recorded as cm.g/t grades and reflecting a direct measure of 
the gold concentration per unit area of the ore body. The ore body strikes approximately 
in a north south direction at an average dip westwards of 280, and with an average 
mining width of 139 cm.

Fig. 1 shows the total area covered.  The VCR in this area forms a geologically 
homogenous population with no significant grade trend with depth.   The area was split 
into an upper section of 2Km x 1Km with about half of the samples from stope (or 
panel) faces and from development exposures, including a set of 8 raises 150m apart and 
extending into strips 1and 2 in the lower follow-up area. These values are accepted as 
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‘point’ values from the ‘known’ database to be used to estimate ore resource blocks of 
20m x 20m in the deeper ‘follow-up’ section.  The valuation is largely an extrapolation 
exercise since no regular underground drilling is practiced (Assibey-Bonsu and Krige, 
2003).

The ‘known’ point values in the deeper section were also regularized into 363 data 
blocks and used as the follow-up ‘real’ block values for judging the comparative 
efficiencies of the estimates for these blocks.  Follow-up blocks with less than 5 samples 
per block were discarded because the information effect for such blocks will be 
abnormally high.  The ‘known’ block values for both the upper and lower areas are 
shown on Fig. 1 in 4 shades of grey/black and the patterns for both areas confirm the 
absence of any significant trend. 

The geostatistical details of the ‘actual’ data for points and blocks are recorded in Table 
1, and the 3-parameter lognormal distribution model and variogram in Figs 2 and 2B 
respectively. The third parameter of 255 cm g/t provides acceptable fits for the 
lognormal distributions of points and of block grades. Table 1B shows the variogram 
parameters for normal score and relative models.   Fig. 4 also shows the target tonnage 
grade curves for the 363 ‘actual’ 20 x 20m blocks for the follow-up area. 

Figure  1: Showing study area and strips representing different production periods.

Table 1: Showing details of the database of point and 20x20m block grades

3 Par Log n b=255

Mean Variance

Upper Area

Points 18684 3061 4660 7.541 1.15

Blocks 20 by 20m 1335 2918 2317 7.907 0.403

Follow up area

Total Points 23372 3281 4210 7.667 1.064

Strips 1 to 3:

Blocks 20 by 20m 363 3311 2420 7.961 0.466

No Units Mean cm.g/t Std Dev
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Table 1B: Showing relative and normal score semi variogram parameters. 

Figure 2: Showing 3-parameter lognormal distribution models with additive constants 
of zero and 255 for Data Base (Points).

DIRECTION NUGGET C1 R 1 C2 R 2 C3 R 3

POINTS 120 DEGREES 0.414 0.372 30 0.116 70 0.098 500

30 DEGREES 25 70 180

BLOCKS 120 DEGREES 0.26 0.4 65 0.3 85 0.03 702

20 BY 20 30 DEGREES 32 85 204

Relative 30 DEGREES 0.126 0.153 33 0.14 85 0.068 204

20 BY 20 120 DEGREES 43 63 700

Figure 2B: Showing Normal Score variogram in 30 degrees direction for points.
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4 Estimation Techniques – Global Results

For all comparisons of dispersion variances, tonnage-grade curves, and correlations with 
slopes of regression, etc., the estimates and ‘actuals’ were normalized by transforming 
the grades to Logarithm (grade + 255) (see Fig. 2).  This caters for the proportional 
effect, and ensures the approximation to Normal distributions, and thus provides for 
linear regression trends with slopes for measuring the presence and extent of conditional 
biases.

The following techniques have been used for the global follow-up area 

Ordinary Kriging with a limited search.

This technique is aimed at overcoming the ‘smoothing’ effect of an extensive search 
routine or of Simple Kriging (SK).   The search parameters used were as follows: 
                                Minimum number of point data…………………...2 
                                Maximum number of point data…………………..8 
The results and comparisons with the follow-up ‘actual’ data are summarized in Table 2 
and shown in Fig.3. The estimates show some elimination of the smoothing effect but 
serious conditional biases and cannot be recommended for detailed mine planning 
purposes.

Table 2: Showing dispersion variances and correlation details for ‘actuals’ and OK 
estimates on Ln(x+b) basis. 

Simple Kriging with no post processing.
With no post-processing or conditioning, this technique largely overcomes the problem 
of conditional biases (slope of regression = 0.96) but the results are ‘smoothed’ with a 
Ln Variance of 0.087 compared to that for the ‘actuals’ of 0.47 (see Fig 3, Table 3 and 

    

    Dispersion Variances OK vs Act 

 STRIP No.Blks   Actuals       OK  Corr.Coef. Regr.Slope 

1/3 total 363 0.466 0.204 0.401 0.606 
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4). The results provide some provisional indications for the selection of blocks above 
cut-off but will be conservative for recoverable grades and optimistic for the 
corresponding tonnages. Nevertheless, this technique provides a base for performing 
post-processing for which the effective absence of conditional biases is essential and it 
provides some advanced indication of which blocks are likely to be mined above cut-off.

Simple Kriging with post-processing 
The above results were post-processed with direct conditioning (Assibey-Bonsu and 
Krige, 1999b) to provide the comparison with ‘actuals’ on a tonnage grade basis as 
shown in Fig. 4 and Table 3.   For this purpose ten cut-off grades were used as shown in 
the figure. The dispersion variance of the estimates and the grade-tonnage curve are not 
ideal but approach those of the ‘actuals’. 

Table 3: Showing dispersion variances for ‘actual’, and SK and Sims. Pre- and post-
processed estimates on Ln(x+b) basis. 
* Graphical 

The differences between these estimates and the ‘actuals’ result from dispersion 
variances for the SK estimates of 0.31 to 0.36 compared to the follow-up variance of 
0.35 (strip 1, i.e. 1A+1B) to about 0.5 (strips 2 and 3), i.e. an apparent remaining 
smoothing effect. However, the ‘actual’ dispersion variance is too high due to the 
presence of a low information effect resulting from an average of some 12 values inside 
each follow-up block.  The SK estimates cover a higher information effect and a 
correspondingly lower dispersion variance effectively in line with the actual position 
during production when selections are restricted to values external to the blocks.  This 
stresses the importance of all post-processing procedures to take proper account of a 
realistic information effect. 

Table 4: Showing correlations and regression slopes for SK and Sims vs. ‘actuals’ on 
Ln(x+b) basis. 

Ln Variances

Variances of Probability 

distributions 

 STRIP No. Blks   Actuals SK Pre. Sim Avgs  SK proc.*  Sims.direct Equiv. sims

1A total 59 0.318 0.111 0.041 0.310 0.597 0.441

1Btotal 58 0.379 0.099 0.022 0.556 0.435

1A+1B 117 0.348 0.105 0.032 0.577 0.438

  2 96 0.479 0.115 0.021 0.360 0.563 0.422

  3 150 0.536 0.054 0.012 0.556 0.433

1+2 total 213 0.414 0.110 0.027 0.431

1/3 total 363 0.466 0.087 0.021 0.432

Correlation Coef . with ‘actuals’ Regr. Slope

 STRIP     S K pre Sim Avgs first simn SK pre Sim Avgs first simn

1A total 0.645 -0.113 - -0.147 1.108 -0.315 -0.100

1Btotal 0.436 -0.111 0.282 0.854 -0.458 0.242

1A+1B 0.548 -0.110  0.061 1.034 -0.364 0.046

  2 0.309 -0.046 -0.048 0.644 -0.223 -0.039

  3 0.380 -0.022 0.050 1.380 -0.143 0.046

1+2 total 0.431 -0.077 0.010 0.860 -0.302 0.008

1/3 total 0.392 -0.057 0.028 0.956 -0.269 0.023
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Repeated simulations – block averages for 50 iterations 

The simulation approach recently proposed by McLennan and Deutsch (2004) was 
applied to the point data from the database and using the corresponding semi-variogram.  
The results from 50 iterations were first averaged for each block to provide the 
‘smoothed’ block tonnage grade curve shown on Fig. 3 and the correlation results in 
Tables 3 and 4.  Unlike the original SK un-processed block estimates, these simulation 
averages do not meet the requirement for the effective absence of conditional biases. 

Repeated simulations on a probability basis.

In this approach the 50 simulated grades for each set of iterations are accepted as a 
probability model for each block.  The resultant global tonnage grade curve and results, 
shown in Fig 4 and in Table 3, serve the purpose of comparison with the ‘actuals’ and 
SK with post-processing above. In this case the dispersion variance for the estimates of 
0.43 compares well with that of 0.47 for the ‘actuals’.  However, a study of the sets of 
simulation distributions show a departure from the 3-parameter model used for the other 
block estimates and ‘actuals’. To overcome this problem, the untransformed mean and 
variance for each block were used to calculate the theoretical equivalent 3-parameter 
variances for the simulation distributions with the same untransformed means and 
variances. These averaged 0.432 for strips 1 to 3 which agrees reasonably well with the 
‘actuals’. Note that the information effect did not feature in the simulation process, and 
effectively produces results with a variance close to that for perfect block valuations, 
i.e., the grades indicated can be too optimistic 

5. Main Conclusions For Global Estimates 

The techniques covered in paragraph 4 above, other than SK processed and Simulations 
on a probability basis, cannot be recommended and leave only the latter two for further 
consideration.

Note that the repeated simulations do little to distinguish between individual blocks for 
the guiding of the selection process in mine planning in advance of actual selection 
during production. At the other extreme end the position for a single simulation for 
individual blocks shows virtually no correlation with the ‘actuals’ and serious 
conditional biases (coefficient = 0.028, and regression slope = 0.023, see Table 4, first 
simulation). The latter highlights the danger of selection of any single simulation 
realization, e.g., median realization, for mine planning.

The two techniques have also been compared with the actuals on the basis of an 
elementary financial analysis of ‘relative profits’ defined as: 

(tons above cut-off) x (grade above cut-off – cut-off) 

D.G. KRIGE, W. ASSIBEY-BONSU AND L .TOLMAY 
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and the results are shown in Fig 5 for the global position for the follow-up area. There is 
a reasonable agreement of both approaches with the ‘actual’. The critical conclusion is 
that globally the two approaches can produce results very close to those for the follow-
ups. The situation for individual blocks and local small areas will be discussed in the 
following paragraph. 

Paragraphs 3 and 4 cover the global position for the whole follow-up area.  In order to 
focus on the estimates and grade control problems specifically for short-term 
production, the follow-up area was split into 3 main strips as shown in Fig. 1.  Strips 1A 
and 1B cover the first and second 20m extensions into the estimation area, with 
measured resources and mining periods of approximately 4 months each.  Strips 2 and 3 
cover further extensions of 40m and 80m respectively, both with indicated resources and 
with mining periods of 8 months to 16months and 16 to 32 months respectively. 

The results for the ‘actuals’ and the 2 techniques remaining for further consideration 
have been further examined for the sub-divisions represented by the individual strips 1 
to 3 (See Tables 3 and 4 and Fig. 4). The individual strips shows fairly stable dispersion 
variances for ‘actuals’, simulation averages and SK pre processed, but a decline for the 
latter two in their correlation levels with the ‘actuals’ (see Tables 3 and 4). This is to be 
expected as the distance of known data accessed for block valuations increases steadily 
from strip 1 to strip 3. The regression slopes are heavily in favour of the SK pre-
processed estimates against negative slopes for Simulation averages (-0.3 to -0.46, i.e. 
serious conditional biases).

The post-processed versions of these two sets of estimates cannot be directly correlated 
with the ‘actuals’ in the light of their probability nature as distinct from the specific SK 
pre-processed and the simulation average figures for individual blocks and sections.  
However, the general tenor of the latter figures should carry through to the ‘post-
processed’ versions.

6. Results for Subdivisons of the Global Area 
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For this reason the position for strip 1A was analysed in some detail and is summarized 
in Figs. 6A and 6B.  The note under par. 5 above applies particularly to this strip when 
the two figures are compared for simulation averages and SK pre-processed estimates 
vs. ‘actuals’. Fig 6A demonstrates clearly that the simulation averages per block 
provide effectively no correlation with the ‘actuals’ and show maximum conditional 
biases; i.e. no contribution to the problem of doing selective planning on a block basis 
in advance of the final selection when more data will be available. In contrast to 
simulations the SK pre-processed results in Fig. 6B show a reasonable correlation level 
of 0.65 and virtually no conditional biases.   The general tenor of these figures in fact 
does carry through to the ‘post-processed’ versions, and is confirmed by the relative 
profits for these 2 techniques vs. ‘actuals’ as demonstrated in the correlation graphs in 
Fig 7A and 7B. 

The results for the simulation averages and the corresponding probability estimates are 
evidently due to the fact that on the South African gold mines virtually no conditioning 
data are available for block estimates as these estimates are done essentially on an 
extrapolation basis. The simulations are thus not fully conditional and should only be 
used for global patterns and tonnage/grade curves.

7. Overall Conclusions 

This paper stresses the main principles in geostatistical applications to mine resource 
valuation, which should be accepted and practiced by all concerned: 

i) Where at all practical, alternative techniques and their detailed procedures followed, 
such as various kriging approaches with a choice of search routines, simulations etc., 
should be compared using an actual data base.  This will provide actual follow-up 
data for correlations with the estimates, including measures of comparable 
efficiencies.   Where such actual data are not available, a suitable simulation base 
could be used.   It is disturbing that the geostatistical literature over many years of 
outstanding achievements, have provided very few such studies.   They could have 
eliminated many misunderstanding between some practitioners. 
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Figure 7B: Relative Profit at a 1,000cmg/t cut-off (SK post-processing)

ii) The principle of conditional unbiasedness, which gave rise to the birth of geostatistics 
more than fifty years ago, is still valid today.  This principle cannot be reconciled 
with any unsmoothed estimates such as OK with limited search routine. Any new 
technique, however sophisticated, must be tested on a practical follow-up study, as 
mentioned above.   The only solution at this stage is via some form of probability 
estimates, as used in this study. 

This paper shows that, for global estimates, there is little to choose between SK post-
processed and simulation probability estimates, particularly for deep level mining where 
blocks are valued largely on an extrapolation basis.   For short-term individual block 
estimates, however, kriging with post-processing shows a distinctive advantage over 
repeated simulations.  For any mine, where some advanced drilling is available at the 
resource valuation stage, a detailed practical study, similar to this, seems necessary to 
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compare the alternative techniques at various levels of data densities, particularly for 
individual short term block estimates.  However, an earlier pilot study (Assibey-Bonsu 
and Krige, 1999a), but not on the same scale and basis, indicated similar results as 
shown in this paper. 

8. Acknowledgements 

Acknowledgement is made to Gold Fields Limited, for permission to publish this paper. 

9. References 

Assibey-Bonsu, W. and Krige, D.G. (1999a) Practical Problems in the estimation of recoverable reserves 
when using Kriging or Simulation Techniques.  International   Symposium   on   Geostatistical   
Simulation in Mining, Perth Australia, October 1999 

Assibey-Bonsu, W. and Krige, D.G. (1999b) Use of Direct and Indirect Distributions of Selective Mining 
Units for Estimation of Recoverable Resource/Reserves for New Mining Projects, APCOM’99 
International Symposium, Colorado School of Mines, Golden, October 1999.

Assibey-Bonsu, W. and Krige, D.G.(2003). An analysis of the practical and economic implications of 
systematic underground drilling in deep South African gold mines. APCOM 2003 International 
Symposium, Cape Town, May 2003 (SAIMM). 

Journel A.G., Kyriadkidis P.C., and Mao S. (2000). Correcting the smoothing effect of estimators: a spectral 
postprocessor. Mathematical geology, Vol. 32, No7, October 2000. 

Deutsch C. V. and Journel A.G. (1992). Geostatistical Software Library and User Guide. Oxford University 
Press, 1992., pp340 

Krige, D.G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand :  J. 
of the Chem. Metall. and Min. Soc. of S.A. December, 1951 - discussions and replies March, May, July 
and August 1952.

Krige, D.G. (1960). On the departure of ore value distributions from the log-normal model in South African 
gold mines.  J.S.A.I.M.M., November 1960, January and August 1961.

Krige, D.G. (1962). The application of correlation and regression techniques in the selective mining of gold 
ores. 2nd APCOM Symposium, University of Arizona, April, 1962.

Krige, D.G. (1996). A practical analysis of the effects of spatial structure and data available and used, on 
conditional biases in ordinary kriging - 5th International Geostatistics Congress, Wollongong, Australia, 
1996.

Krige, D.G. (1997). Block Kriging and the fallacy of endeavouring to reduce or eliminate smoothing. Keynote 
address, 2nd Regional APCOM Symposium, Moscow State Mining University, August 1997

Krige, D.G. (2001). Comment on paper by Journel and others on a Spectral Postprocessor.  Mathematical 
Geology,Vol 33, No.6, 2001. 

McLennan, J.A. and Deutsch, C.V. (2004) Conditional Non-Bias of Geostatistical Simulation For Estimation 
of Recoverable Reserves. Canadian Inst. of Min. and Met. (CIM) Bulletin, May 2004. 

D.G. KRIGE, W. ASSIBEY-BONSU AND L .TOLMAY 



THE PRACTICE OF SEQUENTIAL GAUSSIAN SIMULATION 

MAREK NOWAK1 and GEORGES VERLY2

1 Nowak Consultants Inc. 1307 Brunette Ave, Coquitlam BC V3K 1G6 
2 Placer Dome Inc. 1055 Dunsmuir St, Vancouver BC V7X 1P1 

Abstract. The theory of simulation is relatively well documented but not its practice, 
which is a problem since simulation is not as robust as linear estimation. As a result, 
many costly mistakes probably go undetected. In this paper, a process for simulation is 
introduced with the objective of reducing the likelihood of such mistakes. The context is 
sequential Gaussian simulation within the mining industry. However, a significant part 
of the process can be applied in other simulation framework. 

Four of the most important aspects of the process are discussed in detail. A gradual trend 
adjustment is suggested as a post-simulation step. A modified bootstrap approach is 
presented to deal with the grade uncertainty that accounts for spatial dependence 
between the samples. A number of pre- and post-simulation checks are also discussed. 
Some post-simulation adjustments of the simulated values are suggested to improve on 
the quality of the simulation. 

All of the approaches, solutions and checks presented in this paper are simple, flexible, 
and can be easily implemented by a practitioner. 

1 Introduction 

Sequential Gaussian simulation starts by defining the univariate distribution of values, 
e.g., assay grade values, performing a normal score transform of the original values to a 
standard normal distribution, and assuming multi-normality of the normal scores. The 
multi-normal assumption ensures that the conditional distribution at a given location is 
normal with mean and variance provided by simple kriging (SK). Simulation of normal 
scores at grid node locations is done sequentially most often with SK using the normal 
score variogram and a zero mean (Isaaks, 1991, Deutsch and Journel, 1998, Goovaerts, 
1997). Once all normal scores are simulated, they are back-transformed to original grade 
values.

Although the simulation methodology is well documented, a practical process leading to 
valid and representative realizations of in-situ grades is rarely a focus of attention within 
the geostatistical community. To a practitioner, this can lead to frustration in applying a 
methodology that may produce poor results. There is a need for a simulation procedure 
that is systematic, robust and easy to follow. This need led Placer Dome to design a 
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process for sequential Gaussian simulation. Note that a significant portion of the process 
can be applied to other simulation algorithms (see Figure 1).

Figure 1 shows that the process is more complex than just normal score transformation, 
variogram modeling, simulation and back-transformation. A number of steps have been 
added to improve on the span of uncertainties, trend reproduction, reproduction of data 
distribution, reproduction of a variogram model, reproduction of correlated variables, 
and choice of optimistic and pessimistic scenarios. Although some of these steps have 
yet to be implemented, generally the process is closely followed by Placer and is 
described in Nowak and Verly (2004). 

This process is based on specific difficulties encountered during real case studies, in 
particular:

Simulated values may not adequately follow general trends, especially away from 
data locations. 

Bootstrapped distributions may be almost identical when created from large data 
sets.

Average and/or variability of simulated data may be substantially different from 
average and/or variability of the conditioning data.

Variograms of simulated values may be different from the variogram models. 

This paper is a detailed discussion of the following portion of the process: 

Trend analysis. 

Bootstrap grades. 

Check/Adjust simulated normal scores (histograms and variograms). 

Check/Adjust distribution of simulated grades. 

2 Trend analysis 

Trends are not always well reproduced in sequential Gaussian simulation (Steps I.1.2 
and I.1.8 in Figure 1a). This is because of the stationarity assumption necessary for the 
normal score transform and the assumption of a constant zero mean in the SK algorithm. 
One simple way to deal with this problem is to filter the trend and simulate the residuals 
of the original values (Deutsch, 2002). Unfortunately, this solution may produce 
simulated grade values that are negative. An obvious way out is to reset the negative 
values to zero, but this may result in a significant bias and poor reproduction of the 
trend.

A second solution consists in defining the local prior means to be used by SK with a 
correction factor for all kriging variances (Goovaerts, 1997; Deutsch, 1998). This 
solution was not tried by the authors but it is suspected that it may lead to difficulties in 
the reproduction of the original values distribution and it does not address the fact that 
the normal score transform is global within a geological domain.
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Figure 1. Process for simulating (a) original data and (b) bootstrapped data. The topics 
discussed in this paper are highlighted.  The other process steps are discussed in Nowak 
and Verly (2004). 

A third solution is given by Leuangthong and Deutsch (2004) who suggest a step-wise 
normal score transform. The method consists in defining the trend and residuals 
followed by a normal score transform of the residuals conditional to the trend. In 
practice, the residuals are classified according to a series of trend value intervals and 
there is one standard normal score transform of the residual per interval. This method is 
very promising because the normal score transform is conditional to the trend. The 
method ensures that there is no trend in the normal score space and that a proper normal 
score variogram is used. Finally, the method greatly reduces the number of negative 
grade values after the step-wise back-transform.
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This method can be modified to a transformation of the original values conditional to the 
trend instead of residuals conditional to the trend, which would ensure that there are no 
negative grades after back-transformation. 
Although the step-wise normal score transform is very promising, other solutions for 
trend reproduction have been tried by the authors. These solutions rely on a definition of 
a trend at all grid locations and on the average simulated model. It is assumed that the 
trend represents a relatively smooth surface and can be assessed by OK with a high 
nugget effect. An example of the trend values compared with the original data is 
presented in Figure 2a. The first attempt consisted of filtering the trend and simulating 
residuals. This approach, however, was abandoned because of a significant amount of 
simulated negative grades. Other attempts were made to correct for the trend of the 
simulated normal score values or the back-transformed simulated values. The best 
results have been obtained by adjusting back-transformed values according to: 

)()()( xwxSimxtrSim     (1) 

where Sim(x) is the simulated value at location x before the trend adjustment, Simtr(x) is 
the simulated value after trend adjustment, and w(x) is a correction factor calculated as 
follows:
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where Tr(x) is the trend value at location x, Avsim(x) is the average simulated value, 
kr(x) is the kriging standard deviation and k rmax is the maximum kriging standard 

deviation at any given node. 

The kriging standard deviation kr(x) affects the amount of the adjustment. If a simulated 
node is very close to conditioning data then 0)(xv  and no adjustment is made. On the 

other hand, a maximum adjustment is made far from data locations. Note that a similar 
progressive correction, i.e., a correction dependent on the distance from the data, has 
been discussed by Xu (1997). The advantages of the approach are: 

The average of simulated values is similar to the trend, in particular away from data 
locations.

The coefficients of variation of the simulated values before and after the correction 
have been observed to be quite similar in practice. 

The correction is simple and can be done on already simulated values. 

The correction is flexible in the sense that k rmax can be replaced by an arbitrary 
value.

The disadvantage of the approach is the difficulty to infer the trend everywhere, in 
particular far from data locations.
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Figure 2b shows a comparison of the trend with the average simulation before the trend 
adjustment, and Figure 2c presents the comparison after the adjustment for the trend. 
Clearly, there is a substantial improvement in the reproduction of the trend when the 
adjustment is made. 

Figure 2. Comparison of the trend (solid line) along elevation with (a) conditioning 
data, (b) average simulation before trend adjustment, (c) average simulation after trend 
adjustment

3 Check/Adjust simulated normal scores 

Post-simulation checks are necessary to ensure a reasonable reproduction of the 
distribution and spatial correlation (Step I.1.6 in Figure 1a). In a first step both the 
histogram and the variogram of the simulated normal scores are checked against the 
original normal score histogram and variogram. All the realizations should be 
considered at the same time for the checks to avoid natural fluctuations between the 
realizations. The verification of the results should take place within the same zone that 
has been used to get the simulation parameters, i.e., the declustered grade distribution, 
the normal score transform, and the normal score variograms (Figure 1a, Steps I.1.1, 
I.1.3, and I.1.4). 

3.1 HISTOGRAMS 

The simulated normal score histogram check may reveal that the simulated distribution 
is not standard normal. This section discusses (1) the case of the average of the 
simulated values different from 0.0, (2) the case of the variance of simulated values 
different from 1.0, and (3) a gradual adjustment of the simulated value to a standard 
normal distribution.

3.1.1 Simulated normal score average different from 0.0.

The difference may result from an improperly defined validation zone, i.e., the zone 
within which the simulation results are validated. Usually, this zone should be similar to 
the zone within which the simulation parameters (histogram, normal score transform, 
variogram) are calibrated. The difference may also result from an improper declustering 
of the original distribution. Two possible solutions are: 
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Modification of the validation zone. If for example the non-zero average is due to a 
significant amount of simulated values at some distance from the conditioning data, and 
at the same time conditioned to low assays on the edges of the drilled out area, a 
modification of the validation zone that excludes areas far from conditioning data may 
reduce significantly the difference observed. Figure 3 illustrates the impact of such a 
modification of the validation zone. Here, in the original validation zone the average of 
simulated values is -0.11 but in the modified validation zone the average is -0.02 which 
is close to the 0.0 data average. The modified validation zone is limited to the area close 
to the conditioning data, extending not further than a search radius used for polygonal 
declustering.

Adjustment to declustering weights. If a polygonal declustering is used, the search 
radius may be inappropriate. In other words, the original data distribution has not been 
properly defined. 

If the source of the difference is unknown and there is reason to believe that the original 
distribution mean (= 0.0) is correct, the simulated values may have to be adjusted as per 
sub-section 3.1.3. 

3.1.2 Variance of simulated values is different from 1.0 

As for the average, the difference in variance may result from an improper validation 
zone or improper declustering and the solutions proposed earlier for correcting the 
average may be applied. 

Another reason for a difference in variance is a possible inconsistency between the 
normal score transform and the normal score variogram. By construction, the normal 
score conditioning values are standard normal within the zone of interest Z (e.g. one 
geology domain within the validation zone), which means that the dispersion variance of 
the normal scores within Z is 1.0, i.e.: 

0.1),()|0(2 ZZZD  (2) 

where ),( ZZ is the average normal score variogram value within Z. The normal score 

variogram fit should be consistent with the above equality, which means that the 
variogram sill should be larger than one if the zone Z is not very large with respect to 
the variogram range, as it can be in the case of local grade control.

In practice, the variogram is often fitted first with a sill of one (Figure 1a, Step I.1.4). 

The value of ),( ZZ  should then be computed. If the ),( ZZ  value is within 5% of 

one, a simple rescaling of the variogram values is reasonable, otherwise a variogram 
model adjustment (sill and range) is suggested (Figure 4). 

3.1.3 Gradual adjustment of simulated normal score average and variance.

If the source of the difference in mean (  0.0) and/or variance (  1.0) is unknown and 
there is reason to believe that the original N(0,1) distribution is correct, the simulated 
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values may have to be adjusted. The following approach is a progressive correction that 
depends on the distance of the simulated node from the conditioning data. 

First, a maximum possible adjustment at a given node Simtr max(x) is defined by a simple 
standardization (mean = 0 and variance = 1): 

GsimGsimtr AvxSimxSim /))(()(max

where Sim(x) is the original simulated value at location x, AvGsim is the global average of 
all simulated values and Gsim is the global standard deviation of all simulated values. 

The actual adjustment Simtr(x) is defined as follows: 

simsim
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where sim(x) is the standard deviation of the simulated values at the selected node, and 
maxsim is the maximum standard deviation of the simulated values from all nodes.

Note that for a node located on a conditioning data, ratio(x)=0 and Simtr(x)=Sim(x), i.e., 
there is no correction. As the node gets further from the conditioning data, the value of 
ratio(x) gradually increases from zero up to one, and the value of Simtr(x) gradually 
varies from Sim(x) to Simtr max(x).

As shown in Figure 5, this adjustment results in a modification of both the average and 
the variance of the simulated values. Note that the adjustment does not result in an 
average and variance equal to 0 and 1 respectively, but there is a substantial 
improvement. Note also that the adjustment described in this section is a gradual affine 
correction that will not correct the shape of the distribution. If it is necessary to also 
correct the shape of the distribution (i.e., adjusting to a N(0,1) distribution), then a more 
sophisticated approach can be used (Xu, 1994). 

3.2 VARIOGRAMS 

The variograms of the simulated values can deviate from the modeled variograms. A 
deviation from the original model may adversely impact the simulation results, 
especially when the focus of the study is on variability of the mined blocks. The 
difference between the simulated and modeled continuities (variograms) may be caused 
by (1) poorly fitted variograms, (2) a modeler’s decision to fit according to geological 
interpretation, and (3) unknown reason.

The first two sources of differences are counter-acted by data conditioning. Regardless 
of the original variogram model, continuities of the experimental data are to some extent 
imprinted on the simulated continuities, especially when there are lots of data as in 
mining. The impact of the data can be checked by comparing conditional and 
unconditional simulations. If deemed necessary, both variogram model range and sill 
may be adjusted to achieve the desired results. As shown in Figure 6 the adjustment to 
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the variogram model results in improved, albeit not perfect, continuities of the simulated 
values.

Figure 3. Comparison of simulated values with the data: (a) validation domain identical 
to simulation zone, (b) validation domain extending not further from the data than a 
search radius used for polygonal declustering

Figure 4. Example of variogram models before and after normal score variability check. 
a) Variogram model with total sill of 1.0 results in a dispersion variance within the 
validation zone of 0.96. b) Modified model with total sill of 1.10 results in a dispersion 
variance of 0.99. 

Figure 5. Comparison of simulated values with the original normal score data: (a) 
before the correction (b) after the correction of both average and variance
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Figure 6. Variograms of simulated values (dashed curves) compared to the variogram 
models (solid curves) and to the experimental variograms (bulleted line) along different 
directions. Before correction for the sill and ranges (a), the simulated value variogram 
show more continuity than the experimental variograms. After correction (b), there is a 
better match between the two. 

4 Check/Adjust simulated grades 

All checks and sometimes the adjustments made in normal score space are necessary but 
not sufficient to ignore the checks on the simulated values after back-transformation 
(Step I.1.8 in Figure 1a). This is especially true because of a potential compounding 
effect of the corrections made. Although the writers are not aware of significant 
problems related to the series of corrections, their effect on the final simulated grades 
should be studied. Comparisons should be made with the original data within the 
validation envelope. Histograms, probability plots, scatterplots and visual checks of 
maps of simulated values are useful tools. Care should be given to ensure that the 
simulated mean grade in a geological domain is similar to the average estimated grade in 
that domain. If they are different, the simulated grades may have to be adjusted either by 
modifying some pre-simulation parameters, such as a trimming value, and re-simulating, 
or by a simple adjustment of the simulated values to the required average. 

5 Bootstrap grades 

Two main levels of uncertainty can be identified: geological (rock types) and grade 
uncertainty. Only the grade uncertainty is discussed in this section, but the same 
discussion applies to the geological uncertainty. 

Current simulation practice often relies on the assumption that the distribution of in-situ 
grade values is known from the declustered grade histogram. The additional risk 
associated with an imperfect knowledge of the actual grade distribution should be 
addressed, resulting in better reproduction of the space of uncertainty.

Using a bootstrapping methodology, statistical fluctuations can be investigated by 
sampling from the original distribution (Steps I.2.1, I.2.2, and I.2.3 in Figure 1b). A 
typical procedure consists in creating a series of possible datasets by drawing randomly 
with replacement as many values, with the attached declustering weights, as there are in 
the original distribution. The fluctuations between the various datasets are then 
investigated.
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When there are many sample values, such as in mining, the classical bootstrap approach 
results in datasets that are very similar to each other. This similarity would be perfectly 
correct if the sample values were uncorrelated, but this is not the case in a typical 
mining situation.

Spatial correlation can be addressed by drawing fewer values from the original 
distribution (Srivastava, pers. comm.). Indeed, the variance of the mean grade is: 

ijC
N
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2

1
)Mean(1

where Cij is the covariance for the distance between sample i and j, and can be deduced 
from the variogram.

If P values are drawn randomly from the original dataset, the variance of the mean is: 
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where Var(Data) is the variance of the original data set.

The required fluctuation for the mean is achieved if P is chosen such that
Var2(Mean)=Var1(Mean), then: 
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Note that this formula could be refined to account for declustering weights.

Figure 7 illustrates the impact of bootstrap on the possible means of the original 
distribution.  If no bootstrap is applied, the standard deviation of the mean is zero, i.e., 
the mean is fixed (Figure 7a).  If the classical bootstrap is applied, the standard deviation 
of the means is 0.09 (Figure 7b).  If the spatial bootstrap is applied, the standard 
deviation of the means increases to 0.036 (Figure 7c). 

Figure 7. (a) Data mean - no bootstrap. (b) Typical bootstrap - mean distribution.
(c) Spatial dependence bootstrap - mean distribution. 
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The bootstrapping may be done on data from all geological domains or on data from one 
domain at a time. If the former is used, the choice of optimistic (high average) and 
pessimistic (low average) distributions is more difficult, because the distributions from 
one or two domains may influence the results. The authors feel that bootstrapping per 
domain is a better solution. Under those circumstances, a pessimistic/optimistic 
distribution is truly pessimistic/optimistic in all domains. Of course, care should be 
given when choosing the bootstrapped distributions for simulating the grades. The 
distributions should not be overly pessimistic or optimistic. The choice of 
pessimistic/optimistic distributions can be limited to a specific area, or can be based on 
low/high metal content or NPV. 

Prior to the final choice of the optimistic and pessimistic scenarios, it may be useful to 
have some insight on the potential impact of that choice on simulated values. Applying a 
cut-off grade on the bootstrapped distribution corrected for change of support may 
provide such insight. 

Once a bootstrapped distribution is chosen, it is used first to generate a standard normal 
score transform (Figure 8a). The bootstrapped distribution and its transform are then 
used to convert the original grade values to normal score values (Figure 8b). The 
cumulative frequencies of the original sample grades are deduced from the bootstrapped 
distribution, then used to get the corresponding normal score values. Note that the 
resulting normal score values are not standard normal. For example, in the case of an 
optimistic bootstrapped distribution, the average of the normal score values of the 
original grade values is less than zero. 

Figure 8. (a) Standard normal score transform based on a bootstrapped distribution. (b) 
Original grade distribution converted to normal scores using the standard normal score 
transform of the bootstrapped distribution. 
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6 Conclusions 

A process for sequential Gaussian simulation is presented, which contains more steps 
than the usual normal score transformation, variogram modeling, simulation and back-
transformation. A significant portion of the process may be used for other simulation 
methods, such as sequential indicator simulation. The authors believe that using similar 
processes in the mineral industry would avoid many costly mistakes. 

Four of the most important aspects of the process are discussed in detail: trends, 
bootstrapping, checks, and adjustment of the simulated values.

Sequential Gaussian simulation often fails to correctly reproduce trends because of its 
strong stationarity requirement. A simple, albeit approximate, solution consists of 
adjusting for the trend after the simulation, via a gradual correction that depends on the 
distance to the conditioning data.

It is important that the simulation correctly reproduces the space of uncertainty. A 
modified bootstrap approach is presented to deal with the grade uncertainty. The 
modification is made to account for the spatial dependence between the samples. A 
similar approach can also be used to deal with the geological uncertainty. 

To ensure high quality of the simulated values, a number of validation checks at 
different stages of the simulation are necessary. The checks start at the pre-simulation 
stage when experimental dispersion variances are compared against their theoretical 
values. Next, a series of checks followed by possible adjustments are done in the normal 
score space, and later similar checks and the adjustments are completed after back-
transformation and trend addition. Most of the checks simply consist of comparing 
simulation and conditioning data statistics within a validation envelope. The potential 
adjustments are progressive, depending on the distance to the conditioning data.
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Abstract. The aim of this study is to characterize the quality of the limestone and marl 
raw material exploited in a quarry for cement manufacturing by the SECIL Company 
(southern Portugal) based on the spatial distribution and variability of the chemical 
components (SiO2, Al2O3, Fe2O3, CaO and MgO).
The first step of this study consists of the construction of sets of simulated images of 
these chemical components, using the Direct Sequential Simulation and Co-simulation 
algorithms. In the second step, the simulated images are combined on the quality indices 
LSF (lime saturation factor), SIM (silica modulus), ALM (alumina modulus) and CS 
(lime and silica ratio) in order to estimate local distribution laws of these indices. The 
local uncertainty and the probability of occurrence of extreme values are a tool of prime 
importance for the planning of temporal exploitation, regarding the proportioning 
optimisation mixture of raw materials coming from different quarry stopes. 

1 Introduction 

A set of parameters is currently used in cement manufacturing to characterize the quality 
of the raw material and to ensure the attendance of the quality of the produced cement. 
In Portugal, the SECIL Company uses four quality parameters (LSF – lime saturation 
factor; SIM - silica modulus; ALM – alumina modulus and CS – lime and silica ratio) 
and the magnesium grade (IPQ, 2001).
The LSF represents the relationship between the amount of calcium in the cement and 
the maximum amount theoretically possible for combining with other elements. It has a 
major influence in the manufacturing process and on the quality of the final product. An 
optimal LSF ranges between 1 and 1,02. It is calculated through the following 
relationship of grades, when expressed in weight percentage: 

32322 65,018,18,1 OFeOAlSiO

CaO
LSF   (1) 

The SIM is the second most important parameter to control the final product and it is 
calculated through the relationship between the grade of silica and the sum of the 
alumina and iron grades: 
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3232

2

OFeOAl

SiO
SIM   (2) 

A high SIM has the advantage of producing cement with high content of silicates, 
consequently with high mechanical resistance. Optimal values range between 2,4 and 
2,6.
The ALM represents the relationship between the alumina and iron in the raw material; 
values should range between 1,5 and 1,7. 

32

32

OFe

OAl
ALM   (3) 

Also the relationship between the calcium and the silica (CS) should be higher than 2:

2SiO

CaO
CS   (4) 

Finally, the magnesium grade (MgO) should be below than 5% in weight.
Raw materials exploited in marl and limestone quarries are combined amongst 
themselves to obtain optimal mixtures and if necessary with additives so that the final 
product presents quality parameters within adequate ranges.
Control of quality is done as soon as possible, starting from the quarry stopes. Samples 
collected from regular meshes of holes are chemically analysed by fluorescence of X 
rays on five chemical components: SiO2, Al2O3, Fe2O3, CaO and MgO. Based on this 
regular but scarce information the main objective of this study is to provide images of 
the most probable values of these indices on each stope as well as the global and local 
uncertainty.

2 Methodology 

In this work a stochastic simulation methodology is presented to characterize the quality 
of raw material within each stope according to the described quality parameters. The 
characterization of each chemical component and calculation of indices a posteriori
instead of a direct characterization of the indices is preferable once the spatial variability 
in the quarry is mainly related to the deposition of each component and not on the 
quality indices themselves.
The main goal of the proposed methodology is to produce sets of images of five medium 
to highly correlated components, following the steps:
1. Exploratory data analysis of the chemical components in study: SiO2, Al2O3, Fe2O3,

CaO and MgO; 
2. Application of Principal Component Analysis (PCA) and selection of the Principal 

Components (PC) that explain most of the initial variance; 
3. Calculation of experimental variograms for the chemical components and PC 

selected and fitting of theoretical models; 
4. Correlation analysis between chemical components and PC selected (calculation of 

correlation indexes); 
5. Stochastic simulation of Ns images of the PC, using the Direct Sequential Simulation 

(DSS). These simulated images are used as secondary variables in the following 
steps of the proposed methodology.
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6. Stochastic simulation of Ns images for each of the chemical components using the 
Direct Sequential Co-simulation. These images are conditioned to the experimental 
measurements (primary variable) and to the simulated images of PC (secondary 
variables).

7. Making use of the Ns simulated images of the chemical components, calculation of 
Ns correspondent images for each quality index (SIM, ALM, LSF and CS), following 
formulas (1) through (4) node by node. At each node location, the set of Ns values 
constitutes an estimation of the local histogram of each quality index giving the most 
probable value and the uncertainty. 

8. Construction of probability maps showing areas where the quality indices (SIM, 
ALM, LSF, CS and the MgO grade) exhibit values in the optimal intervals; 

9. Upscaling of the values defined at a small-scale block (step 8) to the stope boundary 
block size. 

10. Construction of final indicator maps delimiting areas where the quality indices 
exhibit values in the optimal intervals. 

2.1 BACKGROUND OF DIRECT SEQUENTIAL CO-SIMULATION WITH A SET 
OF SECONDARY VARIABLES 

The DSS algorithm (Soares, 2001) was applied to produce simulated images of the k
selected PC, respectively ZPC1(x), ZPC2(x),… ZPCk(x). Next step consists of the co-
simulation of the chemical components conditioned to the previous simulated images of 
PC1, PC2, … PCk as secondary images. 
Direct Sequential Co-simulation with a set of secondary variables constitutes an 
extension of the initial algorithm proposed by Soares, 2001, and can be summarized as 
follows (Almeida et al, 2002): 
1. Define a random path visiting each node of a regular grid of nodes. 
2. At each node xu, simulate the value zs(xu) using the DSS algorithm: 

a) Identify the local mean and variance of z(x) in xu location, z(xu)* and 2
sk(xu),

using the simple co-located kriging estimator with a multiple set of secondary 
variables:
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Using the matrix formalism, the simple co-located kriging system with two 
secondary variables collocated in xu and n neighbourhood samples is defined as 
follows (for sake of simplicity using two PC, PC1 and PC2):
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Where:
C  - Covariance of the primary variable between samples at locations x  and x

1PC
uC  - Cross-covariance between primary variable at location x  and PC1 at 

location to estimate xu
2PC

uC  - Cross-covariance between primary variable at location x  and PC2 at 

location to estimate xu
21PCPC

uC  - Cross-covariance between secondary variables PC1 and PC2 at location 

to estimate xu; equals zero. 
- Weights of primary information 

1PC  and 2PC - Weights of secondary variables 

uC - Covariance of the primary variable between samples at locations x  and 

location to estimate xu
1PC

uC - Cross-covariance between primary variable and secondary variable PC1 at 

location to estimate xu

and =1…n; =1…n (number of neighbouring samples of xu).

b) Locally resample the histogram of z(xu), for instance using a normal score 
transform ( ) of the primary variable z(x), and calculate y(xu)*= (z(xu)*);
c) Draw a value p from a uniform distribution U(0,1);
d) Generate a value ys from G(y(xu)*, 2

sk(xu)): ys= G-1(y(xu)*, 2
sk(xu),p);

e) Return the simulated value zs(xu)=
-1(ys) of the primary variable. 

3. Loop until all nodes are simulated. 

Assuming Markov-type approximation, the cross-covariance function can be calculated 
using the following relation in terms of covariance or correlograms (Almeida and 
Journel, 1994, Goovaerts, 1997): 
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This approximation enables the inference of the primary variable is performed taking 
into account the spatial covariance of the primary variable and the correlation index 
between each secondary variable PC1, PC2, … and the primary variable ( PC1 and PC2):
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u

2.2 ZONATION OF RAW MATERIAL IN THE QUARRY STOPES 

Direct Sequential Co-simulation produces simulated images of the five chemical 
components on a small-scale block. The set of Ns simulated values constitutes an 
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estimation of the local cumulative distribution function for each variable within each 
node.
For each small block centred on location xu quality parameters values were computed 
using formulas (1) through (4) obtaining Ns local values. For each parameter p, the Ns

locally calculated values could be classified according to an indicator variable 
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where p(xu, Ns) is the value of parameter p in xu calculated taking the Ns realization.

The average of the indicator values represent the proportion that small blocks belonging 
to the optimal range: 
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Two situations remain to solve: a) upscaling the small-scale block calculations to large-
scale blocks at the same size of the stope (50m x 4m x 20m height) and; b) transform the 
probability values prob p(xu, Ns) into indicator values delimiting good and poor quality 
zones.
For a large block (u) constituted by Nv small blocks, it is estimated the following 
distribution law, which represents the proportion in volume of the large block (u)
belonging to the optimal range for parameter p:
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The final step consists on the calculation of probability thresholds pc to transform the 
proportion maps F*(v(u), p) into binary maps: 
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The calculation of the threshold for parameter p, was based on the local and global 
probabilities of each large block to belong to each one of the categories (Soares, 1992, 
Almeida et al, 1993, Pereira et al, 1997). 

3 Case study 

The target area for exploitation is mainly constituted of grey and yellow limestone to 
marl (Kullberg et al, 2000). Orientation of the layers changes among N(80º to 90º)W in 
the most west area, N(65º to 70º)W in the central area and, approximately, N70ºW in the 
east area. Dip varies with more sloping at west (50º to 60º) than at east (  45º).
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A set of samples was extracted from a regular mesh of 131 vertical holes (Figure 1) for 
an area of 8 hectares. The total length of each hole is 20 meters (height of the steps of 
the exploitation), with a spacing of 10 meters in the N-S direction and 50 meters in the 
E-W direction. Each sample is a mixture of powder rock representing an average of 
grades for about 20 meters height, that validates the sample values in the 
characterization of three-dimensional blocks with the same vertical height.

Figure 1. Spatial location of the samples in the studied area, orientation of the layers 
and design of stopes of 50 x 4 x 20 m3 height. 

Univariate statistics and correlation indexes were calculated for all initial data 
considered. The results are summarised in Tables 1 and 2. 
It is observed a high positive correlation among SiO2, Al2O3 and Fe2O3. The correlation 
between CaO/SiO2, CaO/Al2O3 and CaO/Fe2O3 is also high, although negative. The 
MgO is not correlated with the remaining chemical components, meaning that its 
deposition is independent from the remaining components. This evidence is premonitory 
that two main PC will be necessary to synthesize all the initial information. 

 Nº samples Mean Median Variance Skewness index 
SiO2 10,44 9,65 13,67 1,08 
Al2O3 4,29 3,70 3,78 1,57 
Fe2O3 2,11 1,90 0,49 1,48 
CaO 41,60 41,47 13,11 -0,60 
MgO

131

3,85 3,83 2,91 0,14 
Table 1. Basic statistics of the initial dataset. 

 SiO2 Al2O3 Fe2O3 CaO MgO 
SiO2 1,0000 0,9781 0,9468 -0,8631 -0,2403 
Al2O3  1,0000 0,9586 -0,8161 -0,3103 
Fe2O3   1,0000 -0,7653 -0,3566 
CaO    1,0000 -0,2781 
MgO     1,0000 

Table 2. Correlation indexes between chemical components. 
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PCA algorithm was applied to synthesize the initial dataset to a reduced number of PC. 
Eigenvalues of the five axes and their explanation percentages are presented in Table 3. 
Figure 2 shows the graphical representation of the correlation indices between each 
initial variable and the PC and the projection of the 131 samples. According to Table 3 it 
is verified that first two PC transport more than 98% of the initial variance and that is 
enough to be used as secondary variables in the simulation of the images synthesizing 
the initial dataset. 

Axis Eigenvalues Proportion of population 
variance (%) 

Accumulated
proportion (%) 

1 3,711034 74,221 74,221 
2 1,216618 24,332 98,553 
3 0,052199 1,044 99,597 
4 0,019663 0,393 99,990 
5 0,000486 0,010 100,000 

Table 3. Eigenvalues of each axis and proportion of population variance. 

Figure 2. Graphical representation of the correlation indexes between initial variables 
and PC and sample projections on the two first PC. 

 Model C1 a (N80˚W) a (N10˚E) Anisotropy 
PC1 0,74 200 30 6,67 
PC2

Sph
0,24 230 40 5,75 

SiO2 13,67 175 30 5,83 
Al2O3 3,78 175 30 5,83 
Fe2O3 0,49 250 35 3,33 
CaO 13,11 125 20 6,25 
MgO

Sph

2,91 200 60 5,83 

Table 4. Models of variograms fitted to PC1, PC2 and chemical components. 
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Experimental variograms and fitting of theoretical models of spherical type (Sph) were 
made for the two selected PC and the five initial variables (see examples in Figure 3 and 
the parameters list in Table 4). Both PC1 and PC2 and all variables exhibit strongly 
anisotropic variograms (relationships between 3,33 and 6,67) where the main direction 
is related with the geological orientation of the layers. 

Figure 3. Experimental variograms and theoretical models fitted: a) PC1; b) MgO. 

The area in study was subdivided in a regular grid of 320 x 250 = 80000 small blocks 
with 1m by 1m length by 20 m height. Fifty images of PC1 and PC2 (to use as secondary 
variables) were simulated using DSS algorithm and fifty correspondent images of the 
initial variables were simulated using the proposed Direct Sequential Co-simulation 
algorithm conditioned to the PC1 and PC2 images.
The Figure 4 illustrates and example of a set of simulated images of PC1, PC2 and co-
simulated images for each one of the initial variables. Each set of simulated images of 
the initial variables allows the calculation of a simulated image of the quality parameters 
as described in formulas (1) through (4). In order to validate the proposed method Table 
5 shows the basic statistics for a set of simulated images. 

 Number of 
blocks

Mean Median Variance Skewness index 

SiO2 10,45 9,59 14.20 1,29 
Al2O3 4,29 3,81 4,22 1,30 
Fe2O3 2,11 1,93 0,61 1,29 
CaO 41,60 41,76 7,37 -0,71 
MgO

80000

3,86 3,82 3,30 0,90 
Table 5. Basic statistics of one simulated set of images. 
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In order to upscaling all small blocks to a set of stope boundary blocks, 310 large blocks 
with 50 x 4 x 20 m3 each were digitalized in the studied level of the quary (Figure 1). In 
the sequence of the proposed methodology local probabilities of each block to present 
parameters in the class of adequate quality were calculated and final probability maps 
were classified as indicator maps. For illustrative purposes, local probabilities and the 
limits of best areas are presented for the LSF and SIM parameters in Figure 5. 
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Figure 5. a) Probability of LSF [0,66 ; 1,02] and identified areas; b) probability of 
SIM [1,8 ; 3,0] and identified areas. 

4 Conclusions 

The presented case study shows a successful application of a multiple corregionalization 
simulation methodology, through the use of the main components of PCA as secondary 
variables and co-simulation of the main variables using these components as secondary 
variables. This methodology has the advantage of avoiding the problem of modelling 
multiple corregionalizations when a set of dependent variables is taken into account. 
The final maps constitute an essential tool in the short-medium term planning of the 
exploration, allowing with a certain spatial resolution of the quality of the raw material 
exploited in each stope. The knowledge a priori of the most probable values and 
correspondent uncertainty of these chemical components and quality indexes in each 
exploitation step (local cumulative distribution functions), allow the optimal 
proportioning of raw materials, giving rise to a minimization of the costs namely 
addition of additives and stabilization of grades. 
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A NON-LINEAR GPR TOMOGRAPHIC INVERSION ALGORITHM
BASED ON ITERATED COKRIGING AND CONDITIONAL

E. GLOAGUEN, D. MARCOTTE and M. CHOUTEAU
Department C.G.M., C.P. 6070 succursale centre-ville, Montréal, Québec,
Canada

Abstract. A new constrained velocity tomography algorithm based on ray ap-
proximation is presented. This algorithm is based on slowness covariance modeling
using experimental travel time covariance. The computed covariances, the mea-
sured travel times and additional slowness values allow cokriging and conditional
simulation. Among several realizations, the one that minimized the L1 norm is
chosen as the best velocity field. In the proposed method the raypaths must be
known. Starting with a homogeneous velocity field, an iterated solution is com-
puted updating the raypaths applying Snell-Descartes’ law on the best velocity
field after each iteration. First, the advantage of an iterated solution is presented.
Then, the proposed approach is compared to a classical LSQR algorithm using a
synthetic model and real data collected for geotechnical evaluation in a karstic area.
The tomographies on synthetic models show that geostatistical methods provide
comparable to or better results than LSQR. For both methods, additional velocity
constraints reduce uncertainty and improve spatial resolution of the inverted veloc-
ity field. Also, the simulation on synthetic models increases the spatial resolution
compared to LSQR. The real data analysis shows that the proposed method gives
very consistent results with respect to the drilling log information.

1 Introduction

Ground Penetrating Radar (GPR) is a non-destructive geophysical technique which
uses radio waves (10 to 2000 MHz) to investigate electrical properties of the
ground. A popular method of GPR data acquisition is cross-hole tomography. The
transmitter, located in one hole, emits an electromagnetic wave impulse. The travel
time to a receiver located in a coplanar hole is recorded. The goal is to determine
the spatial distribution of slowness from the different travel times, a fundamentally
non-linear problem. Common approaches discretize the plane between the holes in
a series of cells in each of which the slowness is considered constant (Holliger et
al., 2001). Commonly used tomographic algorithms (LSQR (Paige and Saunders,
1982)) use the ray approximation for wave propagation. These algorithms require
the user to specify critical parameters often obtained only by trial and error. We

SIMULATIONS
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propose an iterative method based on a stochastic model for the cell slowness. The
first step consists of identifying the slowness stationary covariance structure from
the non-stationary travel times. This is accomplished by using the ray approxi-
mation for wave propagation. The covariances and cross-covariances are linearly
related through a geometric matrix describing the paths. The second step consists
of simple cokriging and conditional simulation of the slowness field from the arrival
times and the ray approximation. Travel times modeling is performed using all the
simulated velocity field. The simulation that produces the travel time vector that
minimizes the L1 norm compared to the measured travel times is used to compute
new propagation paths applying Snell-Descartes’ law. The system is updated and
a new solution is obtained. Usually, after a few iterations the solution obtained
is stable. Moreover, a substantial reduction in travel time Mean Square Error is
observed with these final simulations compared to the classical cokriging solution
or to alternative inversion algorithms.

It is possible to have velocity information along the holes, for example, using
borehole reflection surveys. LSQR and geostatistical methods allow including these
additional data. This allows a dramatic increase in the spatial resolution and
also decreases the uncertainty on velocity estimates. First, the GPR technique
is presented and a classical tomography method is briefly described. Then, the
theory of the proposed method is presented. The proposed method and classical
tomography are compared using a synthetic stochastic model. Finally, LSQR and
the geostatistical method are used to image a karstic zone in a geotechnical study.

2 Ray based tomography

An easy way to approximate a wave path in propagation mode is to use the ray.
A ray is defined as the curve that connects a transmitter to a receiver, and lies
perpendicular to the wave front (Berryman, 2000). For ElectroMagnetic propaga-
tion, the ray geometry depends on the electric property contrasts, and, thus, on
the velocity contrasts as described by Snell-Descarte’s law.
In ray-based tomography, the field is discretized as a series of cells. For each
transmitter-receiver pair, the length of each segment of ray path that crosses a cell
is computed. All the segment lengths are organized in a (sparse) matrix L, called
the parameter matrix, which describes the geometry of the rays. L is of size nt
observed times by np cells (of constant slowness). Equation 1 represents the linear
relation between travel time vector t and the slowness vector s.

Ls = t (1)

This equation represents the forward modeling of the travel time. The slowness
field ”the unknown” must be estimated by inversion of Equation 1.
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2.1 REGULARIZATION AND EQUALITY CONSTRAINTS IN CLASSICAL
INVERSION

Generally, in Equation 1, L cannot be inverted directly. In most cases, the problem
is ill-posed. The linear system is modified to include a regularization term (Menke,
1989). [

L
kD

] [
s

]
=

[
t
0

]
(2)

where k is a scalar and D is typically the discrete first derivative (flatness) of
the slowness field. D can also be taken as the identity matrix (smoothness). The
solution can be both smoothed and flattened by taking a weighted sum of the
identity matrix and the derivative matrix.

When slowness values are known within the field that is to be inverted, it is
suitable to force solution to fit the known values. The implementation of such
equality constraints is easy in linear systems (Menke, 1989). Equation 1 is modified
to take into account the velocity constraints:

[
L
M

] [
s

]
=

[
t
sc

]
(3)

where M is a matrix of size sc x np, sc is the vector of known cell values. In each
row, M is equal to one in the column corresponding to a known value and zero
elsewhere.

In this study, the LSQR algorithm (Paige and Saunders, 1982), a classical tomog-
raphy algorithm is used. This is a conjugate gradient type algorithm with Golub-
Kahan bidiagonalisation (Berryman, 2000). The algorithm converges quickly and
is particularly effective for sparse matrices. However, the convergence criteria must
be carefully chosen to avoid the algorithm iterating on noise. Here, the correlation
from one iteration to the next, and the derivative of the sum of the residuals
were used as convergence criteria. Flatness and smoothness regularizations were
combined.

2.2 PROPOSED METHOD

The stochastic approach for linear system inversion was first presented in Franklin
(1970). Being linearly related, slowness and travel time covariance matrices are also
linearly related. The linear relation between slowness and travel time covariances
is:

cov(t, t) = Lcov(s, s)LT + C0 (4)

where cov(t, t) is the nt x nt travel time covariance matrix, cov(s, s) is the np x
np slowness parameter covariance matrix and C0 is the travel time nugget effect.

The covariance matrix for the slowness is specified by choosing the model function
and its parameters (nugget, sill, and range). Once the model function is selected,
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the slowness covariance parameters are estimated by an iterative search in the
low-dimension covariance parameter space.

2.3 COKRIGING

Cokriging (Chilès and Delfiner, 1999) is a mathematical interpolation and extrap-
olation tool that uses the spatial correlation between a secondary variable (here,
the measured travel times) and a primary variable (here, the slowness) to improve
estimation of the primary variable at unsampled locations. When an acceptable
slowness covariance model is obtained, the slowness field is cokriged using the
arrival times and any available slowness data. It is also easy to go further and to
impose slowness gradients or even any kind of linear constraint to the solution.
The simple dual cokriging weights Γ are given by:

Γ =
[

cov(t, t) cov(t, sc)
cov(sc, t) cov(sc, sc)

]−1 [
t
sc

]
(5)

where cov signifies covariance, sc are the known slowness cells and s are the
slowness cells that are to be inverted.

The cokriging estimator Z∗
g for the slowness is given by:

Z∗
g = ΓT

[
cov(t, s)
cov(sc, s)

]
(6)

2.4 SIMULATION

By construction, cokriging gives a smooth estimate of the slowness field. It may be
desirable and informative to obtain various reasonable solutions showing the kind
of variability that can be expected from the slowness covariance model adopted.
This is obtained by using geostatistical simulation algorithms rather than cokrig-
ing. There exist many efficient simulation algorithms (Chilès and Delfiner, 1999).
The Fast Fourier Transform Moving Average simulation (FFT-MA) is a fast sim-
ulation algorithm for generating regular grid non conditional Gaussian station-
ary processes (Le Ravalec et al., 2000). Conditioning of FFT-MA simulation is
performed by cokriging, using the same weights as in Equation 5. For each to-
mography, several simulations are computed. For each simulation, travel times are
computed using Equation 1. The best simulation is defined as the one that mini-
mizes the sum of the absolute difference between the computed and the measured
times (L1 norm). Contrary to LSQR, both cokriging and conditional simulation
retrieve exactly the slowness data.
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3 Results

3.1 ADVANTAGES OF CURVED RAYS

Because the true velocity field is not known, the first iteration is performed using
straight ray approximation. Of course, the straigth ray is not a satisfying ap-
proximation. Figure 1 and Figure 2 show the influence of low and high velocity
anomalies along the raypath, respectively. Intuitively, a low velocity anomaly ap-
pears smaller in the straight ray reconstructed images because the ray convergence
toward the high velocity zone. Conversely, a high velocity anomaly appears larger
in the reconstructed images than in reality. A well known technique is to update

Figure 1. Left: raypaths. Right: Low velocity anomaly.

the raypath after each iteration taking into account the velocity cell constrasts
(Berryman, 2000).

Figure 3 shows 6 iterations of the proposed method on a synthetic model. The
model consists of a rectangular anomaly (represented by white dashed line) of 0.125
m/ns in a medium of 0.1 m/ns. The optimized covariance model is an isotropic
spherical model. The range is 6 m, the slowness sill is 3 (ns/m) 2 and the travel time
nugget effect is 1 ns2. The covariance model stays the same for all the iterations.
For each iteration the best of 100 simulations is chosen. Figure 3 shows that curved
ray tomography allows an increase in the spatial resolution and reduces numerical
artifacts. After only one curved ray iteration, the reconstructed anomaly is well
recovered. At the fourth iteration, there remains only few artifacts. Figure 4 shows
the L1 norm of 20 iterations. This figure illustrates that after the fourth iteration
there is no improvement in the reconstructed image.
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Figure 2. Left: raypaths. Right: High velocity anomaly.

3.2 TOMOGRAPHY ON SYNTHETIC DATA

In this section, the results of constrained LSQR and simulation tomographies on a
synthetic velocity model are presented. The synthetic velocity model is presented
in Figure 5a. Transmitter and receiver positions are also plotted in Figure 5a. A
curved ray tracing algorithm based on graph theory was used to compute synthetic
travel times (Berrymann, 1991; Moser, 1991). The modeled slowness covariance
function is Gaussian with ranges 6 m along the horizontal axis and 3 m along
the depth axis. The travel time nugget effect is 1 ns2 and the slowness sill is 0.2
(ns/m)2. The velocity in every cell intersected by the two boreholes is fixed as a
constraint. Velocity constraints are implemented as presented in Equations 3, 5
and 6.

Figures 5b and 5c present the LSQR and the best simulation tomographies. For
both methods, the main features of the velocity field are recovered. But, itera-
tive simulation allows an improvement in the spatial resolution. The correlations
between the velocity model and tomography images are 0.73 and 0.89 for the
constrained LSQR and the iterated simulation, respectively.

4 Geotechnical evaluation in a karstic area

Borehole GPR measurements were performed to complement the site characteriza-
tion of a planned expansion of a cement plant, including a mill and a reclaim facility
adjacent to existing buildings. The whole site is located in a karstic environment.
The overburden is an irregular residual clay layer overlying a limestone bedrock.
Sixteen holes were visited during the survey (Figure 6). A RAMAC system with
100 MHz borehole antennas was used for the survey. Single-hole reflection mea-
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Figure 3. Curved ray iteration for the proposed method on block synthetic
model

surements were performed in each hole and nineteen tomographic panels were
acquired. In this article, four holes have been used to perform velocity tomography
(AR13, AR08, AR12 and AR18 in Figure 6). Because they are nearly coplanar,
they were included in the same 2D tomography. Slowness constraints were obtained
by inversion of single-hole radar profiles (Giroux et al., 2004). Figure 7a shows
the result of constrained LSQR tomography and the stratigraphy obtained from
drilling logs. Figure 7b shows the constrained simulation that minimizes the L1
norm. The modeled slowness covariance function is Gaussian. The ranges are 15
m along the horizontal axis and 6 m along the depth axis. The travel time nugget
effect is 10−6 ns2 and the slowness sill is 1.5 x 10−6 (ns/m)2. The stratigraphy
is also shown. It is clear, that the proposed method offers a better match with
drilling log information. Also, the conditional simulation provides an image easier



416 E. GLOAGUEN, D. MARCOTTE, M. CHOUTEAU

Figure 5. a- velocity model (o: transmitter, �: receiver). b- constrained LSQR.
c- constrained simulation

to interpret geologically. As expected, the velocity of the clay is lower (about 0.07
m/ns) than the velocity of the limestone (about 0.12 m/ns). These values compare
well with the theoretical ones (Dubois, 1995; Feschner et al., 1998). Moreover,
strong artifacts are generated by LSQR that render the interpretation difficult.
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Figure 7. a-Constrained LSQR b-Conditional simulation

5 Conclusions

It has been demonstrated that the geostatistical tomography gives similar to or
better results than LSQR. Moreover, the proposed method allows to take into ac-
count the non linearity of raypaths. During the real data analysis, simulation allows
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finding a velocity field in excellent agreement with the drilling log information.
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APPLICATION OF CONDITIONAL SIMULATION TO QUANTIFY 
UNCERTAINTY AND TO CLASSIFY A DIAMOND DEFLATION DEPOSIT 
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Abstract. Since the early 1900’s diamonds have been known to occur in aeolian placers 
in south western Namibia. At Namdeb’s Elizabeth Bay Mine diamonds are extracted 
from the fine to coarse grit layers in a sequence of stratigraphic horizons formed during 
periods of vigorous wind action. Significant capital expenditure is required to extend the 
life of mine at Elizabeth Bay and, as this is an inherently high-risk deposit, a sound 
understanding of the risks associated with the resource estimates is required. Various 
methods were evaluated to quantify the uncertainty of the thickness estimates and to 
facilitate classification according to the SAMREC guidelines. The thickness of the 
resource has a significant impact on the mining method as well as volume calculations. 
This investigation involves the use of conditional simulation of thickness to derive a 
method for classifying the resource. The simulations were used to construct block 
conditional distribution functions and evaluate a number of uncertainty measures, 
including conditional variance, conditional coefficient of variation, interquartile range 
and probability interval. A method employing conditional simulation to assess the 
efficiency of sample spacing is briefly presented. The approaches using coefficient of 
variation calculations provide promising results that enable classification of uncertainty 
related to the thickness of the Elizabeth Bay resource.

1. Introduction 
Diamonds were discovered in a contemporary aeolian placer in the vicinity of Lüderitz 
in 1908. Recent mining, from 1990 to the present, has focussed on the Quaternary to 
Recent aeolian placers at Elizabeth Bay, c. 40km south of Lüderitz where the economic 
horizons comprise siliceous grits to small pebble size beds (mostly 2 - 8mm clast size). 
In order to continue mining into the future an additional capital expenditure is required 
to extend the life of mine and in addition to mining and treatment difficulties there is a 
risk associated with the uncertainty of the estimate of grade, average diamond size and 
resource thickness. This study addresses uncertainty related to the thickness of the 
economic part of the deposit.

Good spatial characteristics make the use of geostatistical estimation methods possible 
for most variables including resource thickness. The diamonds are found in a sequence 
of fine to coarse grit horizons formed during periods of vigorous wind action and, in 
parts, fluvial reworking. The mineralised component of the deposit comprises a thin 
upper deflation grit known locally as Grey Beds, overlying a thicker sequence called 
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Brown Beds. In the north-east of the deposit the Brown Beds are underlain by the Red 
Beds (or Fiskus Sandstone), but because of limited representative sampling Red Bed 
data was excluded from this study.

Although Namibia does not have a specific code 
for classification of resources the guidelines 
outlined in the South African Code for Reporting 
of Mineral Resources and Mineral Reserves 
(SAMREC) are accepted by most mining 
companies. However, this code, like other 
international codes, provides only broad 
guidelines and is in no way quantitative.

2. Resource Thickness
The thickness of the ore body determines the 
mining method used (and therefore the carats 
recovered) and is used to obtain a local estimate of 
volume. Ordinary kriging was used to estimate 

grade, average diamond size and 
resource thickness in the three main 
stratigraphic horizons into 100m x 100m 
blocks.

The average thickness of the Grey Beds 
at Elizabeth Bay is 0.60m and the 
underlying Brown Beds are, on average, 
1.67m thick. The histogram derived from 
sample data for the Brown Bed horizon 
is shown in Figure 1. 
The Brown Bed thickness semi-
variogram (Figure 2) shows an isotropic, 
Spherical model with a range of 410m 
and a nugget effect of about 50%. A 
similar model was obtained for the Grey 
Beds with a double structure with ranges 
of 125m and 500m. Ordinary kriging was 
used to estimate the average thickness of 
both horizons using 100m x 100m 
blocks.

Figure 3 illustrates the estimated resource thickness for the Grey Beds and the 
estimation standard deviation (Figure 3, right). The latter reflects the sample density 
(black dots), as expected.

3. Method 
A summary of the method used to find a measure of uncertainty is outlined in Figure 4. 
The technique requires successful conditional simulation realizations of the variable 
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under study on a dense grid of nodes (data support). Reproduction of the data histogram 
and variogram model are validated for each realization. The change of support of the 
realizations into the required block size is performed or alternatively, simulated directly 
on blocks (e.g., Godoy, 2003). The second part of the method is to derive the conditional 
distribution functions (cdf’s) from the set of simulated resource models, describing the 
uncertainty about the unknown thickness values for each block. The third step involves 
computing the uncertainty measure(s) from the cdf of each block and finally classifying 
the blocks into a specific category of resource by selecting thresholds using the set of 
available, simulated ore body models.
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4. Conditional Simulation 
The conditional simulation of resource thickness for the Grey Beds and Brown Beds at 
Elizabeth Bay was carried out using a Turning Bands simulation algorithm (Lantuéjoul, 
2002). One hundred realisations were generated with a regular discretisation of 10 x 10 
x 1. A total of 920 samples were used for simulating the Grey Beds and 727 for the 
Brown Beds. The simulation domain was defined by a polygon delineating the edge of 
the resource and includes 2882 blocks for the Grey Beds and 2910 blocks for the Brown 
Beds. Statistics of the back transformed data compared favourably with the raw data and 
variograms obtained from point conditional simulation confirmed the accuracy of the 
simulations. The simulation mean (e-type) is plotted on the upper left of Figure 5 and is 
compared to five realizations. The e-type estimate shows a greater amount of smoothing 
than OK (Figure 3) and the individual realizations show high variability.

5. Measures of Uncertainty 
The steps of conditional simulation and change of support are followed by the derivation 
of a set of conditional distribution functions (cdf) related to the simulated variable 
denoted by Z. Each of these functions provides a measure of local uncertainty in that it 

relates to a block attribute Z(u) at a 
specific location u within the 
deposit. From the distribution it is 
possible to read the probability that 
Z(u) is valued above any given cut-
off  zk :

u; u ,kF z P Z z z

Figure 6: Example of a local
conditional distribution function
(cdf) for thickness at a given
block
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Figure 6 shows a cumulative conditional distribution function modelling the possible 
uncertainty about the thickness for a given block at location u. Each discrete point in the 
cdf corresponds to a simulated value zl(u). The graph is a cumulative histogram 
containing all simulated values assigned to the block by each one of the realisations. A 
continuous function is interpolated between the discrete points to enable the assessment 
of probabilities for any cdf value.

A variate of summary statistics and uncertainty measures can be derived from the cdf 
and used to support decision making. In this study a number of basic measures are 
investigated and these include a conditional variance, a conditional coefficient of 
variation (relative standard deviation), the interquartile range, and a probability interval. 

5.1 CONDITIONAL VARIANCE 
The conditional variance measures the spread of the cdf around its mean value       : 
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where:
  zk, k=1,…K, are K threshold values discretising the range of variation of z

values

     is the mean of the class zk-1, (zk-1,zk) which in case of a within class linear 

interpolation model corresponds to 
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5.2 CONDITIONAL COEFFICIENT OF VARIATION  
The conditional coefficient of variation (CCV) or relative conditional standard deviation 
corresponds to the conditional standard deviation divided by the mean. The CCV 
expresses variability as a percentage of the mean, and is calculated as follows:

)(

);();()(

)(
*

1
2

1

1

uz

zuFzuFuzz

uCCV
E

kkEk

k

k

5.3 CONDITIONAL INTERQUARTILE RANGE 
The conditional interquartile range (IQR) is defined as the difference between the upper 
and the lower quartiles of the distribution: 
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5.4 PROBABILITY INTERVAL 
The probability that the unknown is valued within 
an interval (a, b), termed probability interval, is 
calculated as the difference between cdf values for 
thresholds b and a: 
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6. Results
The conditional variance (Figure 7) shows a poor correlation with sample density 
because there are high and low values related to both high and low sample density. 
However, the thicker part of the Grey Beds corresponds to a higher conditional variance 
value. Visual examination suggests there is a proportional effect between the 
conditional variance and thickness. The implication is that the conditional variance may 
not be an appropriate measure of local uncertainty if the objective includes the 
comparison between zones with different magnitudes of thickness. 

Figure 8 (left and middle) illustrates CCV values calculated for each block for the Grey 
and Brown Beds. There is a good correlation between CCV and conditioned sample 
points (points in Figure 8) and the identification of similar zones is better than with the 
conditional variance. Comparison with the estimation standard deviation (Figure 3) 
shows a difference. A further advantage of the CCV is that it is expressed as a 
percentage of the mean. The CCV values for the two horizons differ and that will make 
the selection of common threshold values for resource categories difficult.

The interquartile range (IQR) is a relative measure that does not use the mean as the 
centre of the distribution. This measure ignores the internal distribution of probability 
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densities, leading to over representing uncertainty. Visual examination of IQR values 
for both horizons suggests higher uncertainty about the higher thickness values. The 
effectiveness of the IQR as an aid in classification may be improved by dividing by a 
median or mean to make the measure dimensionless (Lantuéjoul, 2003). The IQR 
divided by the mean for each block (Figure 8, right) shows an irregular change from 
low to high values making identification and selection of thresholds difficult. The major 

drawback of using IQR is that it ignores the distribution of probability densities, leading 
to an over representation of uncertainty. 

Probability intervals for a range of thicknesses at Elizabeth Bay could be selected 
between, for example, 0.5m and 0.75m. Like some of the previous measures, there is a 
good correlation between regions of dense sampling and high probability values. Where 
the resource thickness is less than 0.5m a less costly mining method can be used and 
this measure is ideal for establishing probability of finding a thickness of 0.5m or less in 
100m x 100m blocks. However the measure is less useful for determining thresholds 
related to uncertainty. 

7. Resource Classification 
The resource classification 
criterion is based on the 
uncertainty measures derived 
from the cdf of each block in 
the resource model. Each 
criterion requires the 
selection of a threshold value 
that reflects the error 
tolerance that is acceptable 
for the block estimate.

Consider the CCV as a 
classification criterion.
Given a threshold, , the 
100m block will be classified 
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at an Indicated or Inferred level 
of confidence depending on 
whether the CCV is less than or 
greater than the threshold; If 
CCV<  then Indicated and if 

CCV then the block is 
Inferred. Figure 9 shows 
threshold values of =40% and 
50% for the Grey Bed horizon 
where the central darker 
coloured blocks will be at an 
Indicated resource category.

8. Assessment of Sample 
Spacing Efficiency 

The method, outlined in Figure 
10 uses conditional simulation to 
quantify the expected error (% 
average difference between 
estimated and “actual”). The 
steps include initial analysis of 
the data, generation of a suitable 
conditional simulation, sampling 
each realisation using a given 
spacing, estimation of the 
attribute, calculating the expected difference error (%), repeat the process to generate 
expected errors and finally calculate the mean coefficient of variation of expected 
differences per block. The method was applied using data from a part of the Grey Beds 
at Elizabeth Bay. The deposit was simulated on a 10m x10m grid and node values, 

selected at a specific 
spacing were used to 
estimate thickness in 100m 
x 100m blocks. Fifty 
realisations using the 
sequential Gaussian 
simulation method (e.g., 
Dimitrakopoulos and Luo, 
2004) were used to assess 
sample spacing at 50m, 
100m, 150m, 200m and 
250m intervals. 

The results of sampling the 
Grey Bed simulations are 
shown in Figure 11. The 
spread of differences found 
with 50 realisations for 



SIMULATION FOR CLASSIFICATION OF DIAMOND DEFLATION DEPOSIT 427

50m x 50m sampling is very small increasing marginally to 100m x 100m sampling. 
The percentage absolute difference is sensitive to low “actual” thickness values. The 
expected difference for 50m x 50m sampling is about 18%, increasing to 55% for 250m 
x 250m sampling.

9. Discussion of Results and Conclusions 
The methods using conditional coefficient of variation calculations provide promising 
results for quantifying uncertainty related to resource thickness estimates at Elizabeth 
Bay. The application of specific threshold values requires further work but these 
methods provide a useful tool for resource classification. Although not strictly 
quantitative when the results are combined with similar values calculated for grade, 
stone size and revenue they will enable a good overall classification of the resource to 
be made.

Of the measures evaluated the CCV provides the most reliable measure to use for 
resource classification and although the method remains semi-quantitative it is possible 
to use a CCV value to assign a resource category for the Elizabeth Bay Beds. Table 1 
shows resource categories assigned by using CCV values where the Inferred category is 
assumed to be larger than Indicated or Measured and has been subdivided into “upper” 
and “lower” units. The classes have been determined predominantly by visual means 
but taking cognizance of the method referred to above and knowledge of the deposit. 
Figure 12 illustrates the application of CCV categories (similar to Table 1) on the Grey 
Beds (left) and the Brown Beds (right).

Table 1: Proposed Resource Classification categories derived 
from CCV values of thickness at Elizabeth Bay 

CCV Classification

0 0.2 Measured

0.2 0.4 Indicated

0.4 0.6 High level Inferred 

0.6 0.8 Low level Inferred 

0.8 2 Not in resource (Deposit) 

The decision to allocate blocks to either an Inferred or Indicated resource category at 
Elizabeth Bay remains the responsibility of the “competent person” but using the CCV 
as a measure provides a good, quantitative method to use as an aid, which with similar 
measures on other variables, will make quantitative classification possible. 

The method of assessing sample spacing efficiency can be used to determine the 
distribution of % errors for each of the 100m x 100m estimation block, and the mean 
errors mapped for each of the nominated sample spacings. The absolute average of 
expected % error in estimated thickness ranged from 18% at a spacing of 50 x 50m up 
to 55% for samples spaced at 250 x 250m. 
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Abstract. Typically a kimberlite diatreme has several different geological zones. The 
upper portion is generally filled with the sedimentary crater facies, the central zone is 
more typically an in situ massive series of volcanic breccias and the lower regions 
comprise a complex root zone. Depending on the local degree of erosion, not all zones 
remain at any particular kimberlite occurrence.

A method of simulating the simpler internal geologies seen in the central region had 
previously been developed using a geometrical technique. In the upper reaches of the 
diatreme zone, the geologies have more complicated geometries and the approach 
adopted for the central regions needs to incorporate a more sophisticated method of 
simulating the internal geologies.

The similarity between the sedimentary facies that comprise the crater zone infill and the 
sequences that the oil industry targets as oil reservoirs suggest a similar technique could 
be applied to the simulation of internal geology of crater zone of kimberlite pipes.

Previous work has shown that a truncated gaussian approach can be useful, but the 
restrictions on facies relationships have limited its implementation. Plurigaussian 
simulation allows more complex interrelationships to exist between the simulated zones. 

In conjunction with other geometric simulations, plurigaussian simulation can be used to 
guide sampling programs to optimise sampling layouts and sample size and ensure that 
the goals of the sampling programs are attainable. This paper focuses on the application 
of the combination of these simulation techniques and will be illustrated by a case study. 

1 Introduction 

The Orapa Kimberlite Mine forms the basis for this study. The mine, located 240 km 
west of Francistown in the western portion of the Botswana Central district, produces 
approximately 6 Million Carats per year with a value of almost US$ 500 million.

© 2005 Springer. Printed in the Netherlands. 
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Typically kimberlite pipes have a number of differing zones or facies. Three facies, 
namely “crater”, “diatreme” and “hypabyssal” have been recognised in the Orapa 
orebody. The Orapa orebody comprises two volcanic pipes, which coalesce to form a 
single crater. The focus of this study is the crater facies rocks of the upper portion of the 
southern pipe. 

The crater facies comprise a predominantly sedimentary type sequence of volcanic 
materials that have been re-deposited into the volcanic crater. Application of the 
Plurigaussian Simulation technique to the crater facies has been investigated for 
assisting with the creation of geological block models and determining an optimal 
sampling configuration.

Numerous boreholes and pit exposures have been combined into a digital geological 
model using GEMCOM™ software for analysis and visualization, that is typically a 
time consuming process. During mining, and as additional drilling is undertaken, more 
data becomes available. Incorporating additional data into the digital model requires that 
the models be regenerated, to ensure that the spatial distributions are maintained, once 
again a time consuming process. As a consequence, the digital models are not updated 
with any regularity and  the mining models and the geological models are frequently out 
of phase.  This results in sub-optimal Resource Management.  An algorithmic method of 
more rapidly generating an overall geological model which can be updated on a regular 
basis is a significant advantage.

The initial search for a suitable algorithm explored the truncated gaussian approach. 
Despite showing promise, it did not prove very effective. The plurigaussian simulation 
methodology implemented in the latest release of the geostatistical software, ISATIS™, 
was another option which offers enhanced capabilities for geological modelling and has 
been successfully applied to the geological simulation of oil reservoirs. The application 
of this method is the subject of this paper. 

2 The Geology of Orapa 

A review of the Orapa geology is given in Field et al. (1997) and readers are referred to 
this paper for a more detailed introduction. For the purposes of this study only the major 
rock types of the crater facies are summarised.

The Orapa pipes intrude into the Archean basement granite-gneiss and tonalities and the 
sedimentary rocks and lavas of the Karoo Supergroup. They were covered by extensive 
thicknesses of Cenozoic and Mesozoic deposits. The deposit comprises two pipes, 
named the southern and the northern lobes. Rocks belonging to the crater, diatreme and 
hypabyssal facies, as described by Hawthorne (1975), have been recognised.

The Crater Facies deposits are well preserved and divisible into epiclastic, volcaniclastic 
and pyroclastic varieties.  The epiclastic deposits are those in which sedimentary 
processes can be identified and comprise a wide variety of types including talus 
deposits, debris flow material, boulder beds, grits and lacustrine shales. Those deposits 
with no obvious mechanism of deposition are termed volcaniclastic. They are highly 
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variable in character, with well sorted bedded horizons but dominated by coarse 
massive, matrix supported types. No convincing directional sedimentary structures have 
been found within the deposit. Basal Hetrolithic Breccias which apparently mark the 
base of the crater zone deposits occur intermixed with the volcaniclastic deposits. 
Pyroclastic deposits show evidence of direct deposition by volcanic mechanisms. The 
Pyroclastic deposits are present only in the northern pipe and comprise materials that 
exhibit evidence of pyroclastic fall, flow or surge.

3 The Plurigaussian Simulation Methodology 

Plurigaussian simulation (PGS) aims to simulate categorical variables, such as  
geological facies, by the intermediate simulation of two continuous Gaussian variables. 
Facies are obtained by applying thresholds to the Gaussian simulated values. A detailed 
review of the PGS method is given in Armstrong et al. (2003).
The basic idea is to start out by simulating at grid locations one (Truncated Gaussian 
Simulation or TGS) or two (PGS) gaussian variables with a variogram characterizing the 
spatial continuity of the lithotypes indicators. Then a “rock type rule” is used to convert 
these values into lithotypes. The conversion is using the bijection between the gaussian 
values and the cumulated distribution function (cdf.). Therefore the application of that 
method requires to inform each grid node by the an estimate of the cdf. This step is 
carried out by calculating the so-called vertical proportion curves. By interpolating these 
proportions on the 3D grid, we get a 3D matrix of proportions. 
PGS is an extension of TGS, the latter implying a rather strict stratigraphic sequence: 
because the simulated Gaussian values are continuous, the application of a threshold 
practically means, in the simple case of 3 facies, that for going from facies 1 to facies 3, 
it is likely to have a transition through facies 2. By using 2 gaussian functions, all 
transitions facies 1 to 2 or 1 to 3 or 2 to 3 are authorized. 
The concept of non stationary proportion curves is central in PGS/TGS, where the so-
called rock type rule plays an essential role in producing realistic models that represent 
the transitions between the different facies. The key point is that the Gaussian variables 
and the indicators are linked by means of thresholds but, even if the indicators are not 
stationary, they can be obtained by truncation of stationary Gaussian variables, which 
can be easily simulated. Initial applications were made in the petroleum industry where 
this approach seems natural due to the sedimentary origin of the reservoirs. The 
analogies with orebodies where mineralization occurs in layers forming a consistent 
stratigraphy justifies the application of the same conceptual model in this case study. 

The process of PGS has three steps: 
determination of the vertical proportion curves from statistics on the 
drill-hole data. A vertical proportion curve represents the profile 
along the vertical of the proportions of each facies level by level. 
These statistics are highly dependent on the choice of a particular 
surface, the reference surface, which can be interpreted as a guide to 
the system of deposition of the different lithological facies. The 
drillhole data will then be transformed into a “flattened” space where 
the reference surface represents the horizontal surface at zero 
elevation. The simulations of the Gaussian variables will be 



432 J. DERAISME AND D. FARROW 

processed in the flat space before being transferred to the real 
stratigraphic space. 
choice of a model describing the relationships between the different 
facies. This includes the definition of the lithotype rule, the 
correlation between the two Gaussian variables and their variogram 
models.
generation of gaussian values at data locations. This is the most 
difficult and original part of the method, because at the data locations 
only facies are known  but this does not tell the corresponding 
gaussian values. A special statistical method called a Gibbs sampler is 
used to generate these values. 
simulation of the two Gaussian variables followed by  truncation to 
obtain the facies indicators. Finally the simulated facies are 
transferred to the structural grid.

4 Data Sources 

Figure 1: Vertical boreholes spaced on a 100m square grid, sub-sampled 200m grid 
boreholes in red. 

The most recent geological model was transferred to a 5m * 5m * 5m block model. This 
was taken as the starting point of the work. Simulated boreholes were generated from 
the geological block model on 100 m, 150m and 200 m square grids (Figure 1). The 
facies observed on the simulated boreholes from the geological model are considered to 
be “reality” and are used to condition the facies simulations. The aim is to determine 
how much drilling is required to produce an accurate model of the pipe geology and 
associated volumes. 

o
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5 The Simulation 

5.1 CHOICE OF A REFERENCE SURFACE 

This is a crucial decision that has consequences on all stages of the process, data 
analysis and simulated images. In a sedimentary context the reference surface is meant 
to represent the direction perpendicular to the deposition of the different facies. When 
comparing facies parallel to that surface, more similarity is expected and consequently 
more correlation between boreholes than along parallel plane surfaces will be observed. 
The consequence on the simulated images will be to force the facies to be stacked in 
parallel to the reference surface. In the present case, a bowl shaped surface showing the 
angle of dip of the bedded horizons in accordance with the proximity to the pipe 
boundaries was used.

5.2 VERTICAL PROPORTION CURVES 

The boreholes were discretized by cores of 5m in length and repositioned relative to the 
reference surface. For each case corresponding to the different horizontal spacing the 
vertical proportion curves have been calculated and averaged within polygons designed 
in order to take account of the lateral facies change (Figure 2). 

Figure 2: Vertical proportion curves calculated from boreholes within 2D polygons. 



434 J. DERAISME AND D. FARROW 

5.3 3D PROPORTIONS 

The vertical proportion curves have then been interpolated on each grid cell by a kriging 
procedure with a rather long range (2 km) variogram, expressing the very gradual  
change of the lithotype proportions. This gives a 3D matrix of proportions that will be 
used to calculate local thresholds on the Gaussian random functions (Figure 3). 

Figure 3: 2D representation of the 3D proportions interpolated on the grid in the flat 
space.

5.4 LITHOTYPE RULE 

The knowledge of the lithotype proportions is not sufficient to derive the values of the 
thresholds to be applied on the simulated Gaussian values. Additional information on a 
partition of the 2D gaussian space is required. Depending on the number of facies, there 
is a finite number of rectangular partitions that may represent the possible relationships 
between the Gaussian random functions and the lithotypes. From these we chose the 
most sensible from a geological point of view, considering the probable transitions 
between the facies. For instance, since the shale occurs on the top of the diatreme 
adjacent to the epiclastic deposit, while the basalt breccia mark the base of the crater, it 
is appropriate to differentiate the corresponding lithotypes on the first Gaussian 
function. The representation (Figure 5) is schematic: the thresholds will be calculated at 
the simulation stage. In this example the lithotype rule implies that Basalt, Epiclastic 
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and Shale are dependent only on thresholds applied on the first Gaussian function, while 
the Talus and Volcaniclastic also depend on the second Gaussian function. 

Figure 4: Rectangle lithotype rule. 

Once the lithotype rule is defined, the variograms of the two Gaussian functions can be 
modelled. The prevailing role played by the proportion curves does not mean that the 
choice of the variogram has no consequence. This is illustrated in the Figure 5, where 
two ranges of the variogram of the first Gaussian function were tried as an example. In 
the lower picture the 3 lithotypes (orange,blue and purple), that are only discriminated 
by the first Gaussian function look much less continuous than on the upper picture. The 
second Gaussian function was simulated in correlation with the first (coefficient of 
correlation of 0.7) in order to make the Talus facies (green) preferentially conformable 
to the Breccia facies (orange). 

Figure 5: Cross section (in the flat space system) of two simulations changing the
horizontal range of the  variogram associated to the first Gaussian function. 

5.5  CONDITIONAL SIMULATIONS 

The simulations, achieved by means of the turning bands method, are performed in flat 
space, then transferred to the real “stratigraphic” space. Figure 6 compares the original 
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geological model to 3 different realizations obtained from plurigaussian simulations 
using either no boreholes (just the average proportions) and called “non conditional” or 
boreholes (BH) spaced every 200m or every 100m. It is observed that with an increasing 
availability of data, the simulations  converge towards the supposed reality. 

Figure 6: Cross section of three plurigaussian simulations with increasing information 
rates compared to the original block model. 

6 Results 

In the scope of evaluating the level of uncertainty in the volume of each lithotype, 
statistics have been calculated on the difference between the original block model and 
the simulations based on different levels of information. By comparing different 
borehole spacings (100m, 150m and 200m) it appears that 150m provides a satisfactory 
global estimation of the different facies (Figure 7 where the density of boreholes has 
been transformed into metres drilled). 

The detailed analysis of the volumes of the different lithotypes has been  made by levels 
25m high (Figures 8 and 9). Compared to the geological model, it appears that the 
sampling using boreholes on 100m spacing guarantees maximum reduction in 
uncertainty. Use of boreholes on 200m spacing boreholes leads to an average 
uncertainty of about 10%, rising to 20% for some levels. 
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Figure 7: Relative errors on the global volumes from simulations preformed with 
increasing sampling by boreholes. 

1 2 3 4 5 6 7 8 9 10

Level number

Figure 8: Volumes of Breccia on 25m high levels, of the geological model and the 
simulations with different sampling 
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Figure 9: Volumes of  Volcaniclastic, on 25m high levels, of the geological model and 
the simulations with different sampling. 

7 Conclusions 

The plurigaussian simulation process has proved to be very efficient in providing images 
reproducing the main features of the geology encountered in kimberlite crater deposits. 
It appears this may be a useful addition to the process of geological modelling. This will 
be explored in an operational context. Besides, the quantification of the confidence as a 
function of the number of holes will aid in economic decision making.
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Abstract.  In the Precambrian Tarkwaian Group of Ghana, gold is preferentially located 
as paleoplacers within quartz-pebble conglomerates.  Gold distributions are intimately 
associated with sedimentologic and stratigraphic features of the host rocks.  In this 
situation, traditional geostatistical methods have not provided accurate predictions of ore 
grades and reserves, due to difficulties in properly incorporating geologic information in 
the geostatistical estimation. 

Application of Transition Probability/Markov geostatistical techniques allowed us to 
combine geologic concepts and domain knowledge with indicator and Gaussian-based 
estimation techniques.  Vertical variability relationships within stratigraphic sequences, 
as measured by borehole data, were used to predict lateral distributions of lithologic 
facies. The result was a set of 3-D spatial relationships that reflect an integration of 
geologic concepts and readily observable geologic attributes.

This approach provides an alternative to more traditional geostatistical ore deposit 
modelling.  It provides a statistically sound, lithofaces-based prediction of gold grades 
and uncertainty of the predictions, constrained by geology and the 3D geological 
framework.

1 Introduction

Mine profits are largely determined by accurate estimation of ore reserves and correct 
classification of material as either ore or waste during mining operations. Accurate 
prediction of ore grades and reserves requires incorporation of geological data, 
knowledge, expertise, and concepts.  In the Paleoproterozoic Tarkwaian Banket 
Formation of Ghana, West Africa, gold is preferentially located in a succession of 
paleoplacer within quartz-pebble conglomerates. Thus, gold distributions are associated 
with sedimentologic and stratigraphic features of the host rocks. 

At the Tarkwa mine, simple kriging based on 100m x 100m diamond drill (DD) 
boreholes underestimates gold values by as much as 20 percent below reported mill 
head grades (Gold Fields Ghana, Ltd, 2003).  It is believed that this inaccurate 
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prediction of ore grades may result from lack of characterization of depositional 
environments of the host rocks in estimation of ore reserves.  Underestimation may not 
cause great difficulties during current opencast mining operations, but the success of 
projected future underground operations with less densely spaced borehole control will 
depend on much more precise predictions of both ore grades and reserves based on 
appropriate geologic models. 

2 Regional Geologic Setting

The Tarkwa region (Figure 1) is contained within the Man-Leo Shield in southwestern 
Ghana. The geology is dominated by the Paleoproterozoic Birimian Supergroup, a series 
of meta-volcanic belts and intervening meta-sedimentary basins that formed as primitive 
island arcs accreted to the Archean craton (Sylvester and Attoh, 1992).  The Birimian 
terrane consists of five NE-SW trending volcanic belts, named from east to west (and 
youngest to oldest): the Kibi-Winneba Belt, the Ashanti Belt, the Sefwi Belt, the Bui 
Belt, and the Bole-Navrongo Belt.

Figure 1.  Index map and simplified geology of the Tarkwa Region (after Fisher and 
Turner, 2002). 

The Tarkwa mine is located at the southwest end of the Ashanti Belt or “Tarkwa 
Syncline” (Figure 1). At least five episodes of deformation have affected the syncline.  
The Tarkwa depositional basin was formed during the first episode of deformation and 
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is filled by a fining-upward sequence of Proterozoic clastic sedimentary rocks, known as 
the Tarkwaian Group, that is indicative of an extensional half-graben geometry as 
described by Frostick and Reid (1987).  The Tarkwa Syncline contains the largest 
accumulation of Tarkwaian-type sediments and the highest paleoplacer gold 
concentrations of the Ashanti Belt.  The underlying Birimian is considered a possible 
source of the gold in the Tarkwaian placers (Boadi, et al, 1991), although there is much 
disagreement amongst researchers regarding this theory. 

The Tarkwaian Group consists of four formations, the Kawere, the Banket, the Tarkwa 
Phyllite, and Huni Quartzite.  The Banket, main gold-bearing unit of the Tarkwaian, 
consists of up to 160m of relatively mature quartzites and conglomerates.  Gold is found 
in paleoplacers within a succession of stacked, tabular units of alluvial fan, braided-
stream, and valley-fill deposits derived from a southeastern source.  At the Tarkwa 
Mine, the primary Banket gold concentrations are located in the A1, A3, and C zones.  
Gold is extracted from five areas of the mine; Pepe Anticline, Mantraim, Akontansi 
East, Akontansi Ridge, and Kottraverchy. 

3 Modelling Procedure 

An overview of the adopted modelling procedure (Fisher, 2004) is given in Figure 2.  
Geostatistical methods used incorporated site-specific geological information, 
knowledge, and experience to translate raw observations into a 3-D probabilistic model 
of gold distribution in the Pepe Anticline area of the mine.  The top of Figure 2 shows 
the three major types of information incorporated within the process – exploration 
drilling data, field observations, and geologic maps and cross-sections.  Gold Fields 
Ghana Ltd. provided much of these data in digital formats, but these historical data 
sources were supplemented by personal observations and discussions with mine 
personnel during an extensive site visit in early 2002.  These data consisted of two major 
types – data associated with exploratory drilling that were used to create a borehole 
database (upper left of Figure 2), and stratigraphic and structural information (Box 4, 
Figure 2) that formed the basis of a 3-D geologic framework model of the Pepe area of 
the mine. 

The modelling procedure has two major components.  The first component, shown on 
the left side of Figure 2 (Boxes 1-3), involved statistical assessment of the observations 
contained in the borehole database to define statistically and geologically meaningful 
sedimentological units, herein called “statistical facies”, and subsequently the 
development of probabilistic distributions of gold-assay values for each “statistical 
facies”.  The second component, shown on the right side of Figure 2 (Boxes 4-7), 
involved several steps to develop a 3-D probabilistic model of the spatial distribution of 
the “statistical facies”.  The final step in the modelling process (shown as Box 8, Figure 
2) produces a 3-D probabilistic model of the gold distribution by combining the 3-D 
probabilistic distribution of the “statistical facies” (produced from the second 
component and shown as Box 7, Figure 2) with the probabilistic distributions of gold-
assay values for the “statistical facies” (produced from the first component and shown as 
Box 3, Figure 2). The production of a 3-D probabilistic model of the gold distribution 
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permits several useful applications to mine planning and operation (Box 9, Figure 2).  
Details of this modelling procedure are provided in the following sections. 

Figure 2.  Flowchart of the Analysis Process (from Fisher, 2004).

3.1 AVAILABLE DATA 

Data from 53 DD, continuously-cored exploration boreholes located on a nominal 100m 
by 100m grid within the Tarkwa mine were extracted from the main Gold Fields Ghana, 
Ltd. Mine databases.  The critical observations were contained in several data sources.  
These had to be merged to form a single consistent borehole database for this study.  
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When completed, this database contained for each borehole:  3-D coordinates, 
stratigraphic and lithologic observations (including 19 categorical and continuous 
geologic variables) developed by geologists logging the cores, plus gold assay values 
obtained from core samples.  An extensive QA/QC data-screening process was 
undertaken to ensure this master database was error-free and appropriately formatted for 
use in the study (Box 1, Figure 2). 

Figure 3.  Relationships between gold values and selected sedimentological parameters 
for “sorting-packing” (pebble and larger-size material) pair groups.  Values for each 
parameter are averaged from 528 core samples.  Roundness refers to pebble or cobble 
roundness, mineral grain-size pertains to heavy mineral assemblage (primarily magnetite 
and hematite).  Maturity and matrix refer to coarse sand-sized and smaller material. 

3.2 IDENTIFICATION AND CREATION OF STATISTICAL FACIES 

Studies of the Tarkwaian Banket by Sestini (1976) and Hirdes and Nunoo (1994) 
demonstrate that gold distributions reflect stratigraphic features, such as channel 
geometry and lithofacies, and are related to sedimentological parameters.  Such 
relationships are geologically reasonable in placer deposits (Burton and Fralick, 2003).  
The master borehole database contained significantly greater numbers of observations 
than had been available in the earlier studies, so a series of correlations was computed 
between gold assay values and stratigraphic and sedimentological parameters.  Although 
the data proved to be somewhat noisy, the conclusions reached by the earlier studies 
remained valid.  Figure 3 shows gold values increasing as grain/pebble packing and 
sorting improves, and varying systematically with other selected sedimentological 
parameters.  A k-means clustering method (Wishart, 2001) from ClustanGraphics® using
a modified version of the Gower general similarity coefficient (Gower, 1971), 
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permitting simultaneous handling of both categorical and continuous variables, was used 
to identify geologically meaningful groups from the parameters (Fisher, 2004).  Six 
clusters were selected and designated as “statistical facies” (Box 2, Figure 2).  The 
“statistical facies” can be related to real world conditions in a manner similar to the 
“electro-facies” concept of Doveton (1994a).

3.3 ESTABLISHMENT OF GOLD DISTRIBUTIONS FOR STATISTICAL FACIES 

By coding the membership of each sample in the borehole database according to its 
“statistical facies,” and associating the samples with their proper assay values, it was 
possible to compute distinct gold distributions for each “statistical facies” (Box 3, 
Figure 2).  These distributions form the basis of gold assay cdf’s for each “statistical 
facies”.

3.4 DEVELOPMENT OF 3D GEOLOGICAL FRAMEWORK 

A 3D geologic framework was constructed to constrain the geostatistical simulations 
(Fisher, 2004).  A series of correlated and tied cross-section panels was developed from 
the available 100m x 100m spaced DD borehole data.  Tops and bases of principal gold-
bearing Banket members A1, A3, and C were “picked” along with positions of the main 
thrust fault planes (Fisher, 2004).  This interpretation provided opportunity to properly 
locate and correlate the main thrust faults and distinguish relationships within the three 
main fault blocks identified within the study area. 

Stratigraphic horizons and fault planes were individually hand contoured. These maps 
were then digitized and cartographically registered in ESRI’s ArcMap® GIS software. 
The results were then exported to Golden Software’s SURFER® 8.0 contour and volume 
modeling software, where the digitized contours of each horizon were gridded to 
produce a series of individual 3D surfaces. Within SURFER® it was possible then to 
stack the constructed surfaces, including interpreted fault planes, into a 3D framework 
volume model (Box 5a, Figure 2 and Figure 4).  This resultant model was then 
discretized into 5m by 5m (in the X-Y plane) by 0.5m (in the Z-direction or vertical 
direction) 3D cells (Box 5b, Figure 2) that were used by the T-PROGS transition 
probability software.

3.5 TRANSITION PROBABILITY MODELLING 

Markov chain analysis forms the basis of the transition probability approach (Box 6, 
Figure 2).  It has been successfully used in stratigraphy and sedimentology to discover 
statistically significant and fundamental patterns of lithological repetition (e.g., 
Doveton, 1994b).  An initial 1D Markov model can be extended to a 3D Markov model 
to predict lateral distributions of sedimentary facies, where lateral variation has been 
under- sampled, by using Walther’s Law (Middleton, 1973) and changing the associated 
mean lengths in accordance with geological expectations and observed field data 
(Weissmann, et al, 1999).  The T-PROGS software (Carle, 1999) was selected for this 
phase of the modeling because it permits incorporation of categorical variables and 
subjective observations into the model.  The reader is referred to Carle (1996), Carle  
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and Fogg (1996) and Weissmann, et al, (1999) for more in-depth explanation and 
details.

Figure 4.  Display of initial 3D geologic framework model (Fisher, 2004). 

3.6  SEQUENTIAL INDICATOR SIMULATION AND SIMULATED ANNEALING 

Sequential Indicator Simulation, or “SIS”, (Journel and Kyriakidis, 2004) was 
iteratively applied to the 3D Markov model transition probabilities defined in the 
previous section and substituted for the indicator cross-variogram in a co-kriging step 
(where the 3D Markov model conditioned the simulation) to produce 3D realizations of 
the modeled facies (Weissmann, et al, 1999).  The SIS method was used because no 
assumptions are necessary about the shape of the gold distributions.  The Markov chain 
model controlled factors such as global lithofacies proportions calculated from the 
conditioning borehole data and juxtapositional patterns.  The co-kriging equations are 
solved using a basis function approach (Carle, 1996) - a more computationally efficient 
method.  Subsequently, Sequential Quenching, the “zero-temperature” case of
Simulated Annealing (van Laarhoven and Aarts, 1987), was applied to improve the 
geological reality of the SIS realization and reflect additional constraints (Fisher, 2004).  
The Sequential Annealing step improves the match of the final realization with the 
originally computed transition probabilities.  The SIS realization was gradually 
perturbed so as to match defined characteristic lengths and facies continuities. No 
changes of facies were allowed at the boreholes, because these locations were “known”, 
but at other locations a series of stochastic variations in facies assignment was possible.  

12
40

0
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Repetition of this process provided for the production of an uncertainty-based 3D 
distribution of “statistical facies” (Box 7, Figure 2).

3.7 DEVELOPING A 3D PROBABILISTIC MODEL OF GOLD DISTRIBUTION 

Our ultimate goal was to produce a lithofacies-based gold grade uncertainty distribution 
(Box 8, Figure 2).  This was accomplished, on a cell-by-cell basis, combining the 
uncertainty-based distribution of statistical facies (Box 7, Figure 2) with the previously 
computed cdf for the gold distribution of each “statistical facies” (Box 3, Figure 2).  The 
computational process involves several steps. Because the probabilities of facies 
occurrences were altered during the quenching phase, the probabilities from the 
quenching step were used to compute a “global” cdf for all facies.  Each model cell was 
examined in turn, and the most probable facies for each cell selected from this cdf.  A 
facies having been selected, the appropriate cdf of gold distribution was selected and 
used to assign a gold grade to the cell. This process was repeated multiple times, 
producing several different gold grade estimates for each cell (Fisher, 2004).

All of the assigned grades were then used to compute a cumulative grade distribution, 
and uncertainties in grade, for the entire realization.  This information was accumulated 
and presented as pdf plots.  Values were assigned to appropriate selective mining units 
(SMUs).  Mean grades were computed for the SMUs and the material in the SMU 
classified as either ore or waste according to pre-selected cutoff values.  Thus, the 
process provides a statistically sound, lithofaces-based gold grade uncertainty prediction 
constrained by geology and the 3D geological framework. 

4 Conclusions and Applications to Mine Planning and Operations 

Construction of a statistically sound, lithofacies-based 3D gold-grade distribution 
model, which incorporates uncertainty in the predictions, supports several important 
mine planning and optimization applications.  Efficiency of mine planning can be 
improved by using 3D geological models during exploration, using new borehole data 
“on-the-fly” as it becomes available. 

By substituting differing geological concepts prior to the Sequential Indicator/Simulated 
Quenching steps, we can apply the process and methodology defined herein to orebodies 
other than sedimentologically controlled paleoplacers.  For instance, Carlin-type 
deposits, layered mafic/ultramafic intrusions, massive sulfide, or other ore deposits may 
also be evaluated by applying appropriate 3D geological model(s). 

Lastly, traditional ore control techniques classify material into ore or waste categories 
based on estimated average grade assuming no uncertainty exists on the estimated 
grades (Co kun, 1997).  Adding uncertainty to the estimates of grade, based on 
knowledge of geologic conditions, allows methodologies such as the loss function 
concept (Co kun, 1997; Dagdelen and Co kun, 1998) to be applied with greater 
confidence and accuracy. 
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CONDITIONAL SIMULATION OF GRADE IN A MULTI-ELEMENT 

MASSIVE SULPHIDE DEPOSIT 

N.A. SCHOFIELD
Hellman and Schofield, P.O. Box 599, Beecroft, NSW 2119, Australia 

Abstract. In the past decade, conditional simulation methods have been used widely to 
model the distribution of grades in precious and base metal deposits. Often a number of 
simulations are used as a basis for evaluating the risk of ore and waste misclassification 
and improving ore selection practices. The complexity of the application of simulation 
methods can depend on the nature of the mineralization being modelled. A single 
element deposit such as gold in a disseminated style of mineralization typical of 
epithermal gold deposits may be an example of a less complex application. Multi-
element deposits with multiple geostatistical sample populations in complex structural 
settings such as the Cannington silver-lead-zinc deposit represent more challenging 
applications. This paper discusses a method to generate relatively large scale conditional 
simulations of mineralization geometry and multiple elements in such deposits. 

1 The Mineral Deposit 

The Cannington base metal deposit was discovered in 1990 by BHP Minerals (Bailey, 
1998). The silver-lead-zinc mineralization is associated with a diverse package of 
siliceous and mafic rocks with extensive retrogression and alteration. A zoning of base 
metals is evident within the Southern Zone which is consistent with the interpreted 
isoclinal fold structure. The lode horizons are defined by the spatial distribution of the 
base metals. The mineralization types totalling 10 to date, describe the geometry, 
economic, geochemical and textural relationships within the deposit. Locally, the 
mineralised sequence around the fold shown in Figure 1 is commonly referred to as the 
Footwall (CW, NS and CK mineralization types), Hanging-wall (BM, BL and KH) and 
Hinge (GH, GHB) areas. Mining began in the rich silver-lead-zinc concentrations hosted 
mainly within the Glenholme mineralization (GH, GHB) within the Hinge area. 

2 Modelling using Conditional Simulation 

Since early 2000, the Cannington mine geologists have been experimenting with 
modelling of the distribution of mineralisation types and mineralisation grade using a 
combination of Probability Field conditional simulation (PF) (Froidevaux, 1992, 
Srivastava, 1990) and Sequential Gaussian Simulation (SGS) (Gomez-Hernandez and 
Journel, 1992). The process is ongoing. The focus of this paper is the distribution of 
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Figure 2: Typical drill-hole cross 

lead, zinc and silver within a suite of mineralised units in the Hinge area marked GHB 
in Figure 1. 

Figure 1: Geologic section through the Cannington Deposit (after Bailey, 1998) 

3 The Drill-Hole Data and Statistics 

Figure 2 presents a typical drill-hole cross-
section through the mineralization in the 
Hinge area. The spatial distribution of the 
logged mineralisation types is shown by 
different symbols while the contours map the 
lead grade concentration in the drill holes. 
The higher grades of lead and silver occur in 
the Glenholme (GH) mineralization which 
forms the central body in the Hinge area. The 
geometry of the mineralization types varies 
along the northerly extension of the fold 
nose, pinching and swelling in response to 
structural influences. The overall trend of the 
mineralised structure is around N12E and 
inclined at around 10 degrees. The lower 

grade KH mineralization occurs to the west of the GH while the lower grade BL 
mineralization occurs to the east of and above the GH. The hanging wall lead 
mineralization (BM) occurs in the upper left quadrant of the section. 

Easting (m)Easting (m)
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Figure 3: Typical drill-hole profile of lead-zinc and mineralization type.

 Lead %                  Silver ppm                      Zinc % 

 KH GH BL BM KH GH BL BM KH GH BL BM 

Mean 2.07 14.28 2.15 8.38 64 573 92 283 4.48 8.58 1.70 5.88 
Std. Dev. 4.99 11.83 4.40 10.56 129 563 496 370 6.33 6.08 2.83 5.78 

Minimum 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Median 0.13 11.70 0.28 2.43 22 410 15 96 1.15 7.89 1.15 4.72 

Maximum 40.80 60.00 44.25 43.10 1550 10700 21900 2600 33.40 38.50 33.40 35.50 
Number 2779 7120 2779 1234 2779 7120 2779 1234 2779 7120 2779 1234 

Table 1: Summary statistics of lead, silver and zinc in the mineralization types. 

Figure 4: Cumulative histograms of lead and zinc in the mineralization types.

Figure 3 shows a typical drill-hole profile across the mineralization emphasising the 
sharp changes in lead grade that occur at the transition of one mineralization type to 
another. Silver tends to follow lead closely but not so zinc as the figure shows.

Summary statistics of lead, silver and zinc in all mineralization types are shown in Table 
1. Figure 4 presents cumulative histograms of lead and zinc in all mineralization types. 
The economic dominance of the GH mineralization is obvious from average 
concentrations of lead, silver and zinc in this mineralization. Bivariate correlation 
matrices shown in Figure 5 indicate lead and silver are strongly correlated in all 
mineralization types. Linear correlations are shown in the upper triangle and the rank 
order correlations are shown in the lower triangle.
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GH Mineralization 

Elements Lead Silver Zinc 
Lead 1.000 0.820 0.515 
Silver 0.910 1.000 0.296 
Zinc 0.662 0.532 1.000 

KH Mineralization 

    
Lead 1.000 0.904 0.516 
Silver 0.827 1.000 0.434 
Zinc 0.720 0.681 1.000 

BM Mineralization 

    
Lead 1.000 0.901 0.456 
Silver 0.942 1.000 0.365 
Zinc 0.701 0.672 1.000 

Figure 5: Element correlations and silver-lead scatter-plot in GH. 

4 Spatial Continuity of Mineralization Geometry 

A numerical sequence is used to describe the mineralization types. Where possible, the 
sequence should correspond to the physical geological sequence such as the 
stratigraphic sequence or a nested pattern of alteration. The numerical sequence used in 
the present case is shown in Table 2 below.

Mineralization Waste KH GH BL BM 
Sequence no. 0 1 2 3 4 

Table 2: Numerical coding of the sequence of mineralization types 

The numerical sequence allows continuity of the mineralization types to be described in 
terms of indicator continuity functions. These functions describe the transition from one 
set of mineralization types to another e.g. the indicator continuity function for the 
threshold 0.5 describes the transition from the Waste type to all other mineralization 
types. Figure 6 shows the geometry indicator continuity maps for the four transition 
thresholds in the horizontal plane.

5 Spatial Continuity of Lead, Silver and Zinc Grades 

The normal scores transforms (Deutsch and Journel, 1992) of these elements are used to 
describe their spatial continuity within each mineralization type. Inadequate data or the 
complexity of the mineralization geometry can cause difficulties in the description of 
these continuities for some mineralization types. In such cases, the element continuity 
properties of the dominant mineralization type may be adopted or the data from two or 
more mineralization types may be combined to provide a more appropriate description 
of the element continuities for those types.
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6 Conditional Simulation of Mineralization Types and Grades 

The spatial distribution of the mineralization types can be simulated using the method of 
Probability Field (PF) simulation proposed by Srivastava 1990. In the present case, the 
non-conditional field of probabilities is generated with the Sequential Gaussian 
Simulation method (SGS). The conditioning of the probability field to the local 
mineralization type data is based on the estimate of cumulative probability for each 
threshold in the numerical sequence of mineralization types shown above. The approach 
is a very fast way to generate large scale conditional simulations of categorical variables 
which are both geologically and statistically acceptable. Table 3 below compares the 
proportions of simulated mineralization types in two conditional simulations compared 
to the data coding. The differences between the simulations and the data are mainly due 
to data clustering. 

Volume Proportion of Mineralization Types 

Waste KH GH BL BM 

Samples 0.321 0.140 0.358 0.119 0.062 

Simulation 1 0.387 0.099 0.306 0.140 0.068 

Simulation 2 0.376 0.099 0.305 0.145 0.074 

Table 3: Volume proportions of mineralization types in samples and two simulations. 

Figure 6: Maps of the sample indicator continuity of mineralization geometry 
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Figure 7: Maps of simulation indicator continuity of mineralization geometry 

The continuity maps of the simulated mineralization types shown in Figure 7 show 
greater continuity at short scale than that of the data shown in Figure 6. This is a 
deliberate choice to make the maps of mineralization types more realistic, generating 
relatively smooth contacts between the mineralization types. Simulations of the metal 
grade distributions for each mineralization type using SGS are found to honour 
reasonably the univariate, bivariate and spatial properties of the metals (not shown).

Within each mineralization type, the metal distributions are simulated to be independent 
of the mineralization type boundary as suggested in Figure 3. Figure 8 presents section 
maps showing the spatial distribution of simulated mineralization types and simulated 
lead grades. 

Figure 8: Simulations of the mineralization geometry and lead 
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7 Conclusions 

The Cannington lead-zinc-silver mineralization presents a significant challenge to 
resource modelling using conditional simulation. The spatial distribution of the 
mineralization types is complex and dominates the problem of ore definition.

The approach described in this paper generates spatial conditional simulations which 
reasonably reproduce the statistical and spatial properties of the input data and provide 
plausible models of the distribution of mineralization types and metal grades.

Results of using the simulations for stope planning and grade prediction indicate the 
simulations provide an improved basis for locating stopes and reliable predictions of 
overall stope grades compared to the manual modelling of mineralization type 
distributions and ordinary kriging estimation of grades. Simulations also provide a better 
appreciation of the variability in the ore grade that will be realized over time in the 
mining of stopes.
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THE ULTIMATE TEST – USING PRODUCTION REALITY. 

A GOLD CASE STUDY 

PAUL BLACKNEY, CHRISTINE STANDING and VIVIENNE SNOWDEN 
Snowden Mining Industry Consultants 
PO Box 77, West Perth, Western Australia, AUSTRALIA, 6872 

Abstract. The McKinnons gold mine is owned by Burdekin Resources NL (‘Burdekin’) 
and is located within the Cobar Basin in New South Wales, Australia.  Open pit mining 
began in February 1995 and was completed in December 1996.  High grade, low grade 
and mineralised waste stockpiles were processed in separate campaigns up to April 2000 
and this production data provides a unique opportunity to test the accuracy of industry 
standard estimation techniques. 

A multi-support data set is available from the mine, comprising exploration reverse 
circulation (RC) and diamond core (DD) drillholes (25 m sections), RC grade control 
drilling (12 mE by 12 mN and 6 mE by 6 mN patterns) and some blasthole data.  This 
information was used to create comparative feasibility-stage and grade control resource 
estimates which were compared with each other and with the actual tonnes and grades 
processed.

Using the wide-spaced data, feasibility-stage resources were estimated using ordinary 
kriging, multiple indicator kriging, uniform conditioning, conditional simulation and a 
global change of support method.  Kriging neighbourhood analysis and conditional bias 
tests were used to determine appropriate panel sizes for estimation.  Some models were 
deliberately constructed using panel sizes that led to conditional bias to test the effect of 
bias in mine reconciliation.  Comparative grade control estimates were then created from 
the close-spaced data to demonstrate the effects of this additional information. 

Estimations were found to be relatively insensitive to estimation method and the band of 
uncertainty for models based on exploration data was within ± 10% in terms of tonnes 
and grade.  Although confidence limits improved significantly to within ± 3% in tonnes 
and grade for grade control estimates, it was found that estimates were sensitive to 
whether hard or soft boundaries were used to control the estimation. 

The study illustrates that the bounds of uncertainty reflected by conditional simulations 
are indicative of the confidence limits for a given choice of geological model and the 
associated geostatistical parameters and estimation technique.  Any changes in these 
inputs will all have some affect on the accuracy of the estimate.  Even production 
estimates may be affected by perception, particularly related to the effective cut-off 
applied.
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Practitioners should be aware that resource risk will include cumulative errors arising 
from a complex process.  Once projects are in production it is important to check and 
validate the key assumptions made during the project evaluation.  The only way to 
achieve this satisfactorily is through the process of reconciliation, that is the comparison 
of actual production (tonnes, grade and metal) with predictions (resources, reserves and 
mine plans).  This is an often-ignored but vital aspect of the mine value chain, and 
allows a reality check on the feasibility process which can trigger remedial action if 
necessary.

1 Introduction 

During closure of the McKinnons gold mine, Burdekin compiled a comprehensive data 
package containing feasibility-stage data, mining grade control data and gold production 
results for high and low grade ore types.  Elliot et al (2001) described the reconciliation 
of production data compared with the feasibility study estimates prepared before mining 
began in 1995.  The input data has now been used in a study to quantify the accuracy of 
current day industry standard estimation techniques used to estimate resources in the 
Australian gold mining sector.

2 Outline of study 

There are a number of nodes of uncertainty which can impact on resource estimation, 
including data integrity, geological interpretation, grade estimation error and ore mining 
control. The uncertainty may be demonstrated by comparing the tonnes, grade and metal 
estimates of planning models with production reality.  This is currently topical in 
Australia because of the proposed revision to the JORC Code (JORC 1999) which 
encourages the Competent Person to quantify risk/uncertainty associated with 
resource/reserve estimates.

In this study, resource models were created using the wide-spaced drillhole and 
mineralisation domains as interpreted during the McKinnons feasibility study. 
Comparative grade control models were created from the close-spaced mining data, 
more detailed mineralisation domains and, for some estimates, the production grade 
control polygons as mined.  Estimation methods included ordinary kriging (OK), 
multiple indicator kriging (MIK), sequential indicator simulation (SISIM), uniform 
conditioning (UC) and global change of support (GCOS) methods.  Model block sizes 
were determined from kriging neighbourhood analysis and conditional bias tests.  The 
actual tonnages and grades processed during the life of the mine were used to test the 
accuracy of the exploration and grade control models using the various estimation 
methods.

3 Background 

Between 1990 and 1994, RC and diamond drilling on 25 m sections was used to define 
the resource for feasibility studies. Following the decision to mine in 1994, the entire 
deposit was drilled on a 12 mE by 12 mN pattern with some infill on a 6 mE by 6 mN 
pattern (Figure 1) to provide pre-production grade control modelling.
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All high grade ore (>1.3 g/t Au) was processed by November 1997 and low grade 
stockpiles (0.7 to 1.3 g/t Au) were processed by October 1998. Processing of 
mineralised waste (0.3 to 0.7 g/t Au) was completed in April 2000.  The actual 
production for each ore type is listed in Table 1

Figure 1 McKinnons drillhole location trace plans.

Ore K tonnes Grade 

High Grade (>1.3 g/t) 1,204 2.64 g/t 
Low Grade (0.7 to 1.3 g/t) 399 1.08 g/t 
Mineralised Waste (0.3 to 0.7 g/t) 1,067 0.65 g/t 

Total 2,670 1.61 g/t 

Table 1 McKinnons production data (Elliot et al 2001).

4 Estimation methods 

Kriging neighbourhood analysis and conditional bias tests were employed prior to 
estimation to determine a suitable block size for unbiased estimation (Krige, 1996).  OK 
is optimal for near normal distributions (Goovaerts, 1997) but is often used in estimation 
of skewed data, together with capping or top cutting of sample grades. MIK and UC are 
non-linear techniques which accommodate highly-skewed or mixed data distributions 
(Glacken and Snowden, 2001) and deliver recoverable resources which represent the 
appropriate selective mining unit (SMU).

SISIM (Deutsch and Journel, 1998) can be used to produce a number of equally-
probable realisations which can be re-blocked to represent the dimensions of a target 
SMU and reported to determine the probability and grade above cut-off for each SMU.  
The tonnage and grade spread of the simulation results reflect the confidence limits in 
tonnage and grade and can be used to derive the confidence limits associated with a 
given mining area or period.

5 Feasibility data analysis and modelling 

For this study, the available datasets and subsequent models were clipped to the limits of 
the end-of-mine open pit survey to define a consistent space for comparison.  The 
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statistical and spatial character of the feasibility data was investigated within sub-
domains of a global envelope defined at a grade threshold of ~0.1 g/t Au.  Within this 
envelope three main statistical domains were defined, comprising a central high grade 
domain separating two lower grade domains.  The geology is complex and 
mineralisation is believed to be structurally controlled and so domains were essentially 
defined by grade.  The gold grade distributions within all domains displayed a high 
positive skewness, with coefficients of variation of approximately 2.5. 

Gold grade continuity was primarily investigated using standardised indicator 
variograms. The indicator analysis revealed nugget effects representing 10% to 43% of 
the total sill, with most thresholds displaying a nugget effect of 20% to 35% of the total 
sill.  All three domains displayed patterns of rotating anisotropy associated with 
increasing grade.  The variogram model parameters from these analyses were used to 
control MIK estimation and SISIM computations.  OK estimation was based on back-
transformed variogram model parameters. 

A kriging neighbourhood analysis, using the median indicator variogram, was employed 
to determine the optimal kriging block size for the high grade central domain (Krige, 
1996).  From a range of block sizes and locations tested, a 12.5 mE by 12.5 mN block 
on a 2.5 m bench was identified as optimal, with this block size returning regression 
slopes of up to 0.92 and kriging efficiencies of up to 68%. OK and MIK models were 
estimated using this block size and conditional bias sensitivity models were created 
using block sizes of 5 mE by 5 mN on 2.5 m benches and 25 mE by 25 mN on 5 m 
benches.

Simulation models were based on 100 realisations generated on a node spacing of 
2.5 mE by 2.5 mN by 1.25 mRL.  The realisations were re-blocked to supports of 5 mE 
by 5 mN and 12.5 mE by 12.5 mN blocks on 2.5 m benches, and 25 mE by 25 mN 
blocks on 5 m benches, and presented in terms of the median and 90% confidence 
limits.

6 Grade control data analysis and modelling 

The grade control (GC) data comprised all the original wide-spaced exploration 
drillholes plus the additional close-spaced RC drilling completed for grade control 
(Figure 1).  Categorical indicator kriging using a 0.1 g/t Au indicator grade was applied 
within three large scale domains to define the grade control mineralised envelope.  The 
categorical model was visually compared to the input drillhole data to determine a 
probability threshold that closely reproduced the spatial patterns evident in the drillholes 
(Figure 2, left). The mineralised envelope was then further domained into seven regions 
that reflected a weakly developed depletion zone overprinting primary grade continuity 
trends (Figure 2, right). 

The domaining was successful in producing singular distributions for the lower grade 
domains but mixed distributions were still evident in the higher grade domains.  An 
indicator method was therefore selected for grade estimation.  The indicator variography 
analysis revealed nugget effects ranging from 40% to 75% of the total sill and ranges of 
a few metres to 30 m vertically and from 15 m to 190 m in the horizontal plane 
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depending on domain and indicator grade.  Two of the seven domains exhibited rotating 
anisotropy associated with increasing indicator grade.

Figure 2 GC sections, 0.1 g/t Au indicator section (left) and structural domains (right).

Block grades were estimated using both MIK and OK.  The grade control estimation 
block size was set to 5 mE by 5 mN on 2.5 mRL benches to reflect the expected mining 
selectivity.  Two MIK estimates were computed, one with a hard boundary (HB) 
between structural domains and a second using a soft boundary (SB) condition. The OK 
estimate was computed using the hard boundary and grade top-cuts, which varied by 
domain. Figure 3 illustrates the presentation of these three models on a typical bench.

A kriging neighbourhood analysis using the OK variogram later revealed significant 
variation in regression slope and kriging efficiency by domain.  For example, in a well 
drilled domain, 96% of the model blocks have regression slopes better than 0.9 and 83% 
of the blocks have kriging efficiencies better than 70%.  In contrast, in a more poorly 
drilled domain, only 66% of the blocks have regression slopes that are better than 0.9 
and only 21% of the blocks have kriging efficiencies better than 70%.

One hundred realisations of the grade control data were generated using SISIM.  The 
domain controls and parameters for the simulation were the same as those applied to the 
HB MIK.  A node spacing of 2.5 mE by 2.5 mN by 1.25 mRL was employed 
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Simulations were re-blocked to represent the behaviour of 5 mE by 5 mN by 2.5 mRL 
and 10 mE by 10 mN by 2.5 mRL SMU’s for comparison with the kriged models 
(Figure 4).

Polygons representing the production grade control interpretation were available for the 
upper part of the pit.  This interpretation was used to create a traditional polygonal 
model by calculating the top-cut average grade of the grade control samples located 
within each polygon. 

7 Comparative Results 

7.1 EXPLORATION MODELS 

7.1.1 OK versus MIK 
The OK and MIK exploration models demonstrated very little global sensitivity to 
estimation method.  Estimation selectivity showed only marginal changes as the block 
size was increased from 5 mE by 5 mN by 2.5 mRL to 25 mE by 25 mN by 5 mRL due 
to the diffuse nature of the mineralisation and the relatively high nugget effect. 

7.1.2 Kriging versus UC versus GCOS 
The closest comparison between the theoretical GCOS and UC estimates of the 6.25 mE 
by 6.25 mN by 2.5 mRL SMU grade-tonnage relationship occurred for the 25 mE by 
25 mN by 5 mRL OK model.  This is despite the kriging neighbourhood analysis 
supporting the smaller 12.5 mE by 12.5 mN by 2.5 mRL panel size for kriging.  This 
result probably reflects the limitations of the simple kriging neighbourhood analysis 
completed for this study and demonstrates that overall, estimation into the larger panel 
size suffers less conditional bias.

7.1.3 Kriging versus simulation 
The comparisons between the exploration OK, MIK and SISIM models are illustrated in 
Figure 5.  The models are based on a block size of 12.5 mE by 12.5 mN by 2.5 mRL.  
There is a bias noted whereby the average grades of the OK and MIK models are located 
towards the upper confidence limits defined by the SISIM models which is believed to 
be due to differences in treatment of the high grade tail of the grade distribution. 
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Figure 5 Grade-tonnage curves of the exploration OK, MIK and SISIM models.

The simulations validate the optimal model block size determined by kriging 
neighbourhood analysis as the kriged block models reflect a similar grade/tonnage 
profile to the simulations.  The OK model appears to be slightly oversmoothed 
compared with the MIK model. 

Using SISIM to quantify confidence limits, and making the assumption that the range of 
simulations between the 5th and 95th percentiles give a reasonable representation of the 
space of uncertainty, the 90% confidence limit at a cut-off of 0.3 g/t is +1% on tonnage 
and +7% on grade.  At a 0.7 g/t cut-off, the confidence limit is +2% on tonnage and 
+10% on grade.  The tonnage uncertainty again increases at a 1.3 g/t cut-off, where the 
confidence limit is +4% on tonnage but the confidence limit remains at +10% in grade. 

7.2 GRADE CONTROL MODELS 

7.2.1 OK versus HB MIK versus SB MIK 
Grade-tonnage reporting from the HB MIK, SB MIK and HB OK models within pit is 
presented in Figure 6.  The highest metal profile is presented by the HB OK model, 
followed by the HB MIK and then the SB MIK models.  Tonnage and grade reporting is 
similar between all estimates at the 0.7 g/t and 1.3 g/t cut-offs, however the influence of 
the soft boundary assumption is readily apparent at the 0.3 g/t cut-off.  Tonnage and 
grade predictions at the 0.7 g/t and 1.3 g/t cut-offs are within 0% to 8% of each other for 
all models.  At the 0.3 g/t cut-off, the SB MIK model predicts 20% more tonnage at 16% 
less grade. 
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Figure 6 Grade-tonnage comparisons between HB MIK, SB MIK and HB OK 
grade control estimates.

7.2.2 HB MIK versus SISIM 
The comparison of the HB MIK estimate to the SMU predictions provided by SISIM 
indicated that the grade-tonnage profile of the kriged estimate was closer to that 
predicted for a 10 mE by 10 mN by 2.5 mRL SMU rather than the 5 mE by 5 mN by 
2.5 mRL block size used during estimation (Figure 7).

This outcome is somewhat at odds with the results of the kriging neighbourhood 
analysis which suggested there was minimal conditional bias at a 5 mE by 5 mN by 
2.5 mRL block size within the majority of the pit.  Some of the mineralisation domains 
located deeper within the pit may be oversmoothed but it is surprising that the 
simulations show that the effective resolution of the kriging overall is 10 mE by 10 mN 
by 2.5 mRL.  This outcome may be a function of the relatively high nugget effect shown 
by the variograms. 

Using the 10 mE by 10 mN by 2.5 mRL re-blocked simulations to define the limits of 
uncertainty for grade control, the 90% confidence limit is +0% for tonnage and +3% for 
grade at a cut-off of 0.3 g/t.  At a 0.7 g/t cut-off, the confidence limits are +1% for 
tonnage and +2% for grade.  The tonnage uncertainty increases slightly to +3% at a 1.3 
g/t cut-off, but remains at +2% for grade.

8 Reconciliation of models with production 

Actual production is shown, together with the comparable exploration UC and grade 
control MIK estimates in Figure 8.  There is minimal uncertainty due to estimation 
block size, with the UC change of support from the 12 mE by 12 mN by 2.5 mRL model 
being marginally lower grade than from the 25 mE by 25 mN by 5 mRL model.
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The HB MIK grade control model is at the upper limit of the estimates while the SB 
MIK grade control model presents a grade-tonnage profile closer to that of the 
production reporting, except that this model suggests the presence of considerably more 
tonnage than realised at a cut-off of 0.3 g/t. If the HB MIK model is considered to be 
appropriate, there may have been potential to improve the metal recovery (Figure 9).

Figure 7 Grade-tonnage of HB MIK (5 mE by 5 mN by 2.5 mRL) with 90% 
confidence limits of SISIM at 5 mE by 5 mN by 2.5 mRL support (top) and 10 mE 
by 10 mN by 2.5 mRL support (bottom).

At the high grade cut-off of 1.3 g/t, the HB MIK model suggests slightly more tonnes at 
a higher grade might have been achieved. At the cut-off of 0.7 g/t, the model suggests 
considerably more tonnage could have been recovered at a similar head grade and at the 
0.3 g/t cut-off more tonnage could have been recovered.

The 0.7 g/t production estimate represents less tonnes at higher grade than any of the 
models, perhaps suggesting the actual SMU cut-off applied during mining was higher 
than 0.7 g/t.  This could well be due to the polygonal grade control approach applied to 
unsmoothed sample grades and would be in line with the volume-variance relationship.
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Figure 8 Grade-tonnage curves for the exploration and grade control models 
compared with production results.

The average grades of the HB MIK and SB MIK models within the production outlines 
as dug agree with those determined by the polygonal modelling (Figure 10).  However, 
it is possible some metal was misclassified and the effective lower cut-off of the 
production model is about 0.5 g/t (as per the block cut-off for both the hard and soft 
boundary models) rather than 0.3 g/t as reported by production records. 

Figure 9 Actual production results and grade-tonnage curves for HB MIK (5 mE by 5 
mN by 2.5 mRL) with 90% confidence limits of SISIM at 10 mE by 10 mN by 2.5 
mRL support.
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Figure 10 Grade-tonnage reporting above 175 mRL within production interpretation 
compared to HB MIK and SB MIK.

9 Conclusions 

Exploration models show very little sensitivity to estimation method and change of 
support models using UC are comparable with theoretical GCOS results.  The quality of 
the estimate using 25 mE by 25 mN by 5 mRL blocks with change of support to 
6.25 mE by 6.25 mN by 2.5 mRL SMUs is marginally improved compared with 
estimating into the optimal smaller blocks identified by kriging neighbourhood analysis. 

Global 90% confidence limits for 12.5 mE by 12.5 mN by 2.5 mRL blocks based on 
SISIM of exploration data show tonnage can be estimated within +1% and grade within 
+7% at a 0.3 g/t cut-off.  At 0.7 g/t the tonnage uncertainty increases to +2% and grade 
to +10%.  At 1.3 g/t, the tonnage uncertainty increases to +4% and grade uncertainty 
does not change. 

A surprising degree of sensitivity is evident depending on whether grade control models 
are based on hard or soft domain boundaries and, indeed, whether based on a polygonal 
estimation method. 

Global 90% confidence limits for 10 mE by 10 mN by 2.5 mRL blocks based on SISIM 
of grade control data show tonnage can theoretically be estimated within +1% and grade 
within +3% at cut-offs of 0.3 g/t and 0.7 g/t cut-off.  At 1.3 g/t, the tonnage uncertainty 
increases to +3%.

Optimal block sizes defined for exploration models by kriging neighbourhood analysis 
are confirmed by re-blocking of conditional simulations.  However, the effective 
resolution of the grade control kriging is 10 mE by 10 mN by 2.5 mRL, which is 
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somewhat at odds with the results of the kriging neighbourhood analysis which supports 
blocks of 5 mE by 5 mN by 2.5 mRL. 

The authors have observed complementary behaviours, for example the close alignment 
of the volume-variance relationship using different techniques, but have also noted 
unexpected biases, for example at the  grade control stage, where the uncertainty should 
be minimised, yet there remains a sensitivity related to the treatment of domain 
boundaries.

The learning from this study is that no one approach can be guaranteed fool-proof and, 
although theoretical tests are partially successful, there will always remain a degree of 
uncertainty due to inherent variability, geological interpretation and boundary control, 
estimation technique, scale of mining and human perception. The use of contingencies 
during feasibility assessments is recommended to determine the impact of both high and 
low scenarios on the value of the project under consideration. 
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ORE-THICKNESS AND NICKEL GRADE RESOURCE CONFIDENCE
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Abstract. Tropical weathering on the ridges of the Koniambo massif in New Caledonia 
has produced nickel mineralisation of variable thickness.  Conditional simulation studies 
of nickel grade and ore-thickness (a proxy for ore tonnage) were used to quantify the 
resource risk and to generate constraining envelopes for resource classification.

Ore-thickness intercepts were created from vertical drilling and converted to 2D point 
data.  Many drillholes that did not meet the selection criteria were included as barren, 
and these holes imposed a strong positive skewness on the data histograms.  Indicator 
variography revealed that both grade and ore-thickness continuity is quasi-isotropic.  
One-hundred 2D sequential indicator conditional simulations were generated for each 
attribute on a 10 m by 10 m grid for the three deposit areas.  This paper focuses on 
results from one area, the Centre sector. 

The 2D simulation realisations were reblocked to generate a panel mean for each 
simulation, and the distribution of the 100 panel means were found to be near normal.  
Tonnages were computed for each panel from the mean simulation thickness and 
deposit-average bulk density.  Relative 90% confidence limits were then computed for 
each panel using normal distribution assumptions, the panel distribution standard 
deviations, and the panel means.  However, because confidence limits also depend on 
production rate, the panel relative 90% confidence limits were scaled to the production 
increment (quarterly, annual) of interest by incorporating assumptions from the standard 
error of the mean.  The rescaled values revealed the risk on an annual production basis 
was low for both attributes.  On a quarterly production basis, the nickel grade risk was 
low in all areas, but only areas of close-spaced drilling achieved target levels of tonnage 
risk.  The relative 90% confidence risk maps were then used as a guide for resource 
classification of the deposit and also to focus an infill drilling programme to support a 
feasibility study to be used by the sponsors to finance the project. 

The simulation method takes the local variability of the data into account, a clear 
advance over traditional estimation variance techniques.  The requisite drillhole spacing 
required to achieve a desired level of confidence varies within the Koniambo deposit, 
being tighter in high-variability areas (mixture of ore and pinnacles of waste rock) and 
broader in low variability (more homogenous) areas. 
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1 Introduction 

Falconbridge Nouvelle Caledonie SAS (Falconbridge) required a risk assessment of the 
resources at the Koniambo nickel laterite project in New Caledonia.  The main aim of 
the assessment was to determine if additional drilling was required to achieve acceptable 
levels of confidence in ore grade and tonnage for the project feasibility study.  The 
levels of confidence were to be established through 2D conditional simulations of ore-
thickness (a proxy for tonnage) and nickel grade. 

Arik (1999) and Yamamoto (2001) have considered that confidence measures should 
reflect the local data configuration and the local variability of data.  Their approach is to 
calculate these components separately.  Conditional simulation avoids this, and allows 
tractable assessment of risk at any anticipated production scale from a single set of data. 

2 Geology and mineralisation 

The nickel deposits on the ridges and elevated plateaus of the Koniambo massif are 
typical of the laterites that have developed under tropical weathering conditions on 
ultramafic bodies throughout New Caledonia (Figure 1, left).  Figure 1 (right) is a 
generalised Koniambo weathering profile that consists of variable thicknesses of 
limonite and saprolite that reach a combined maximum thickness of approximately 40 
m.  High-grade ores are characterised by boxworks of garnierite in the saprolite-limonite 
transition and the upper levels of the saprolite. 

Figure 1 New Caledonia geology (left) and generalised laterite profile (right) 

The structural controls and continuity of high-grade nickel mineralisation are not  
readily identified  from vertical drilling.  Close-spaced drilling is required to  
determine the variability of the bedrock topography and the distribution of low- 
 grade boulders and waste pinnacles. Drilling on a 56 m pattern (80 m ‘ quincunx’ 
pattern) is considered adequate for global resource estimates in the limonitic 
 horizon.  However a 28 m pattern (40 m ‘ quincunx’ pattern) is considered necessary 
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 to provide confidence in geological interpretations in the more complex saprolite 
horizons.

3 Input data 

The levels of confidence in ore-thickness and nickel grade at Koniambo were evaluated 
from 2D data because the mineralisation has a very large lateral extent (10 km x 4 km) 
relative to the depth of the deposit profile. 

The study was conducted in two phases.  Preliminary runs were made in 2002, and 
confidence limits obtained indicated the need for 30,000 m of further drilling.  The work 
was updated after the drilling was completed in 2003, and that work is described herein. 

Falconbridge divided the deposit into three sectors.  This paper focuses on results from 
the largest area, the Centre sector.  The 2D data for both attributes were created from 
drilling intercepts that met minimum grade and ore-thickness criteria determined by 
Falconbridge.  Figure 2 below shows example locations of the ore thickness data used in 
the risk assessment study at the Centre sector.  The study was constrained to a boundary 
interpreted to be the limit of mineralisation in the sector. 

Figure 2 Centre sector 2D data, ore-thickness (left) and nickel grade (right)

Statistics for each attribute were computed using an 80 mE by 80 mN declustering 
window to account for the variable spacing of drilling (Figure 3).  The summary 
statistics reveal that both attributes have skewed distributions, with over 35% of the data 
being less than Falconbridge’s minimum grade criterion of 2% Ni. 
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Figure 3 Ore intercept declustered histograms, ore-thickness (left) and nickel grade 
(right)

4 Variography 

Indicator semivariograms were computed for multiple indicator thresholds of the two 
attributes.  The ore-thickness indicator semivariograms are well structured up to the 10 
m ore-thickness threshold, although the experimental structure is poor above this 
threshold.  The nickel grade indicator semivariograms reveal a very short-range 
structure, with the longer range structure declining for the higher thresholds.

Figure 4 and Figure 5 summarise the sill and range values interpreted to fit the 
experimental indicator semivariograms of ore-thickness and nickel grade of the Centre 
data.  Both attributes show a pattern of decreasing range with increasing indicator 
threshold.  Indicator nugget effects of nickel grade increase with threshold.  However 
the indicator nugget effects of ore thickness are consistent.  There is also a pattern of 
moderate anisotropy for the lower thresholds, but higher thresholds are isotropic. 

Figure 4 Ore-thickness standardised indicator variography sills (left) and ranges (right)
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Figure 5 Nickel grade standardised indicator variography sills (left) and ranges (right) 

The complex changes in variography with changes in threshold also support the choice 
of multiple indicator simulation instead of sequential gaussian simulation, which would 
have been an easier method to implement.

5 Simulation 

Due to the low-grade spike of zero values associated with each attribute, sequential 
indicator simulation was selected to provide point-support realisations of ore-thickness 
and nickel grade.  Independent simulation of each attribute was justified because nickel 
grade is independent of ore-thickness where ore-thickness is greater than zero.  Twelve 
indicator thresholds (as listed on the x-axes Figure 4 and Figure 5) were selected for 
sequential indicator simulation of the ore-thickness and nickel grade.  The first threshold 
for each attribute was set to partition the barren data, and higher thresholds were set at 
key attribute values of interest. 

Using the input data and indicator variography models, 100 conditional simulations 
were computed for ore-thickness and nickel grade using the GSLIB, SISIM program for 
sequential indicator simulation (Deutsch and J ournel, 1998).  The simulations were 
validated by comparing the input statistics and variography with the simulation outputs. 

The simulations reproduced the input means of each attribute (Figure 6 and Figure 7), 
although with marginally lower E-type averages for ore-thickness.

Figure 6 Ore-thickness simulation means (left) and Q-Q plot (right) 
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Figure 7 Nickel grade simulation means (left) and Q-Q plot (right) 

The data histogram and variogram reproduction was also acceptable for both attributes.  
However, the E-type estimate of ore-thickness was marginally lower than that of the 
input data, but the two means were coincident for nickel grade. Images of one 
realistisation and the E-type averages for ore-thickness and nickel grade are shown in 
Figure 8 and Figure 9. 

The simulation and E-type images show some spatial correspondence of zones of thicker 
ore and higher nickel grade.  The ore-thickness simulation shows higher relative 
variability than the nickel grade results. 
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6 Reblocking and confidence limits 

The simulation results of each attribute were averaged or reblocked into 100 m square 
panels (nominally 100, 10 m by 10 m spaced nodes) to derive a mean value for each 
panel of each simulation (Figure 10).  For ore thickness, zero values were retained to 
reflect the estimated ore tonnage.  However, for nodes having simulated thickness of 
zero, nickel grade values were set to null prior to reblocking so that the reblocked 
average would reflect the grade of the panel ore tonnage.  Note that this is required 
because the input data only has an associated grade when the thickness is greater than 
zero.

The resulting distributions of the panel means were then interrogated to derive key 
statistics of the distributions.  Due to the boundary constraint imposed on the study area, 
the peripheral 100 m square panels contained less than 100 simulation nodes.  For these 
edge panels, the number of contained nodes captured was used to compute the panel 
proportion.  Resource tonnages for each panel were calculated as the product of panel 
area, proportion, average reblocked thickness, and a density value of 1.5 t/m3.

Figure 10 Panel averages for ore-thickness (left) and nickel grade (right) 

The shape of the reblocked mean distributions for each panel is near normal, which is a 
feature consistent with the Central Limit Theorem of statistics.  This theorem states that 
a distribution of means tends towards a normal distribution, as the number of samples 
used to compute the mean becomes large.

Confidence limits for the mean can be calculated using normal distribution theory.  For 
example, the mean ±  1.645 standard deviations, contains 90% of the area under the 
standard normal distribution curve.  The 90% confidence limits can be expressed 
relative to the mean of each panel distribution to give the relative 90% confidence limits 
(1.645 x panel standard deviation / panel mean).  Specifically, for the reblock means of 
ore-thickness or nickel grade, the relative 90% confidence limits quantify the variability 
that can be expected (9 times out of 10) during production.  For this study, the target 
acceptance threshold for Measured and Indicated resource classification was set to 90% 
confidence limits within  15% of the mean for a given production period, as discussed 
further below. 

The relative 90% confidence limits were computed for each panel within the study  
area as shown in Figure 11.  These plots confirm the intuitive conclusion that the 
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 lowest risk for both attributes occurs where the data spacing is closest (see Figure 2 for 
data locations).  Additionally, the risk for ore-thickness (tonnage) is significantly higher 
than the risk for nickel grade, with the nickel grade meeting the benchmark of 90% 
confidence limits within 15% of the mean for most of the Centre area on a panel-by-
panel basis. 

Figure 11 Panel relative 90% confidence limits for ore-thickness (left) and nickel grade 
(right)

One of the objectives of the simulation approach is to take into account the local 
variability of the data in assessing risk.  Figure 12 shows two panels, A and B, with near 
identical data configurations in the centre of the study area, along with the ore thickness 
input data and the relative 90% confidence limits of panels within this area.  The 
histograms of the simulation panel means for panels A and B are shown to the right of 
the data map.  A kriging estimation variance approach to risk assessment would have 
given the same kriging variance and confidence limits for both panels.  However, the 
relative 90% confidence limits using simulation are ±  30% for panel A and ±  20% for 
panel B. 

Figure 12 High (A) and low (B) risk panels and distributions of panels means for each 
panels; 5th and 95th percentiles are compared to interval ±  15% of the panel mean. 
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7 Production scaling of confidence limits 

The relative errors computed on a panel-by-panel basis do not accommodate the fact 
that multiple panels will be mined during any mine production period.  Because a 
production schedule is not yet available to allow reblocking or aggregation of panels to 
reflect actual production periods, it was assumed that a number of panels, n, of similar 
character (grade and/or depth and/or thickness) would be mined in a given production 
period.  Further, the panels were assumed to be large enough to assume independence 
between panels.  This assumption permits adoption of an approximation of the standard 
error formula ( / n) to compute the standard deviation for panels that are aggregated to 
represent a larger volume of mine production.  For samples of size n from a large 
population, relative 90% confidence limits can be estimated by the product of the 
standard error of the mean and the standard normal deviate or z-value (1.645) of the 
confidence limit of interest.

For the purposes of this study, the size of the sample n is derived from the ratio of the 
production period tonnage to the tonnage within each reblocked panel.  This formula 
assumes independence of realisations for each of the panels constituting a production 
period.  The semivariograms show first ranges of less than a panel width (100 m) and 
secondary ranges of 200 m or less.  Given these features and the fact that the majority of 
the study area is defined by 80 m spaced sampling or less, the assumption of 
independence was taken to be reasonable. 1  The example below shows this calculation 
for one panel in the study area using the assumption of a production rate of 2.5 Mt per 
annum and shows the relative 90% confidence limits are ±  11.8% per annum when 
multiple panels of the same risk character are scheduled to the meet the production 
requirement.

Using this method the relative 90% confidence limits were computed for annual 
(2.5 Mt) and quarterly (0.625 Mt) production periods for ore-thickness.

The quarterly production (0.625 Mt) map of ore-thickness shows that most of the 
deposit area has relative 90% confidence limits exceeding ±  15% of the panel mean.  
Only areas of dense drilling and panels with low ore tonnage (generally thin or partially 
filled panels) are below this threshold.  The thin ore areas have smaller 
 confidence intervals, as a large number of “equivalent” panels are mined in the 

1
A data check of the semivariogram of residuals: [simulated reblocked values –  the mean 

reblocked value for panels], showed slight dependencies at 100 m, and were the study to be 
repeated, a larger panel size would be chosen to reduce/remove these dependencies.
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 production period.  This result is an undesirable artefact of the method; however the 
tonnage involved is small.  On an annual basis (2.5 Mt), most of the study area has 
relative 90% confidence limits below the ±  15% ore-thickness target value. However, on 
a quarterly basis most of the study area has relative 90% confidence limits above the ±  
15% ore-thickness target value. 

Figure 13 Ore-thickness relative 90% confidence limits, scaled to production rates of 
0.625 Mt (left) and 2.5 Mt (right); point markers are drillhole collar locations

8 Discussion 

From this study, Falconbridge concluded that the variability of nickel grade presented a 
low-risk.  Wide spaced drilling (80 m spacing) adequately defined the nickel grade with 
relative 90% confidence limits within ±  15% of the mean for 100 m square panels. 
However, tonnage risk was considered to be high on a panel-by-panel basis.  Rescaling 
the risk to quarterly and annual production periods revealed that the annual risk was 
acceptable, but that close-spaced drilling would be required to increase the confidence in 
tonnage to the target of relative 90% confidence limits within 15% of the mean on a 
quarterly basis. 

The 20% relative accuracy confidence limits are shown in Figure 13 (left panel) and 
enclose an area of dense drilling.  The required 90% confidence limits for Measured 
Resources were eased to ±  20%, provided steps were taken to ameliorate the additional 
risk.  The risk is ameliorated by implementing detailed drilling on a 10 m spacing a year 
in advance of production and increasing the number of mining faces (exposed ore) 
available for production. 

This was a pioneering study for the authors and organisations involved.  It was 
successful in that the initial study was completed rapidly, focused infill drilling 
requirements to reduce risk and assisted Falconbridge in managing the risk profile for a 
billion-dollar project.
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MINERAL RESOURCE CLASSIFICATION THROUGH CONDITIONAL 

SIMULATION

Vice-Presidency Mineral Resources,
Anglo American Chile, Santiago 

Abstract. Through the Mineral Resource Classification the quantification of 
uncertainty/confidence on modelled geometry/estimates is to be addressed and 
established. Estimates represent different levels of reliability. The classification role is 
to ensure that the characteristics, quantity and quality of mineralised material is 
adequate for the proposed project or mining program, assuring the use of full plant 
capacity and optimisation of the mining and metallurgical performance down stream to 
the final products. 

1 Introduction 

The purpose of the paper is to discuss a method of Mineral Resource classification based 
on conditional simulation applicable at production scale.

Evaluation, classification and reconciliation are integral parts of the Mineral Resource 
management process. Drilling and sample collection together with QA/QC validation 
periodically update this process. The aforementioned system is “factor-dependent”. Any 
sophisticated method applied to the modelling and evaluation is worthless if sample 
collection, preparation and chemical assays amongst other “factors” are not properly 
controlled.

Evaluation on its own tries to predict short, medium and long term scheduled mining 
output. It is worthwhile to look for the right methods to provide good tonnage and grade 
predictions to benefit the mineral resource management and mining program. As a result 
of the imprecision of evaluation, Mineral Resource modelling undergoes different 
magnitudes of discrepancies in comparing to the actual results. This is one reason for 
which Mineral Resource classification is required. It gives to competent persons, who 
are aware of the risks and consequences involved in inadequate mineral resource 
prediction, the opportunity to express a confidence concerning the estimates assigned to 
rocks to be mined. Monitoring the production results through the reconciliation process 
gives an important feedback in order to measure discrepancies, quantify errors and tune 
back the system if performance is unsatisfactory.
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Some characteristics the mineral resource classification should fulfil are as follows:
Classification must be transparent and objective to what is to be achieved 
through the set of parameters defined integrally and accordingly to the 
geometry/grade modelling and interpolation strategy.
The classification method must be reproducible and auditable based on 
quantifiable principles, applicable at the production scale.
Mineral Resource classification should consider the production scale over a 
given period of time to be reconciled. This refers to the support size/estimation 
error relationship. 
Acceptability concerning the discrepancy between prediction and actual results 
should be explicitly established according to the nature of mineralization and 
the operational requirements. 
Through the Mineral Resource classification output, it should be possible to 
define areas where the confidence concerning geometry/estimates requires 
improvement. The increased confidence should be quantified as a function of 
money spent on drilling and sampling collection campaigns. 

2 Classification methodology 

The proposed Mineral Resource classification approach quantifies the confidence in the 
evaluation result. The reliability of the estimated tonnage/grade at location “x” is 
established and measured as a function of variance calculated through a given number of 
conditional simulations.

This Mineral Resource classification methodology is based on: 

1. Multiple realisations of the sequential Gaussian conditional simulation. Other 
simulation routines and multi-realisation engines can also be considered (Deutsch, 
2002; Goovaerts, 1997).

2. Calculation of the coefficient of variability for local mining unit 
3. Change of support related to 1 to 3-monthly and yearly production panels 
4. Estimation error according to established requirements in terms of % of error and % 

of confidence limit. 

As an example for the Base Metals industry, widely accepted rules of Mineral Resources 
classification are as follows: 

Mineral resources are classified as Measured when the local estimate, whose 
variability is corrected to monthly to quarterly production units, is estimated 
within 15% error at a 90% confidence limit. 

Mineral resources are classified as Indicated when the local estimate, whose 
variability is corrected to yearly production units, is estimated within 15% error 
at a 90% confidence limit. 
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The mineral resources that do not fulfil the aforementioned criteria are 
classified as Inferred.

2.1 MULTIPLE REALISATION OF SEQUENTIAL GAUSSIAN SIMULATION 

The objective of conditional simulation is to generate an equally probable set of 
realizations that account for proportion/distribution and spatial geometry/grade 
variability inferred from conditioning data at global/local scale. During the simulation, 
simulated nodes are visited in a random fashion.  The conditioning is extended to all of 
the data available within a neighbourhood of the location being simulated, including the 
original data and all previously simulated values.  Given that the estimated model is 
inferred from sample statistics that are uncertain because of limited number of samples, 
the purpose is to provide the measure of uncertainty given by the differences between N
alternative simulated values at location x. Different simulations impart different global 
statistics and spatial features on each realisation. In this way, it is possible to establish 
the spectrum of possible values at any location. (Deutsch, Journel-1998) 

The number of realisations needed depends on how many are judged sufficient to model 
the uncertainty being addressed. A cumulative coefficient of variability (COV) from a 
low number of simulations has a variable behaviour, which stabilises as the number of 
simulations from which it is calculated, increases. After certain number of simulations, 
the oscillation of COV between succeeding simulated realisations stabilises. Taking this 
fact into account the number of simulations to define the uncertainty model is 
established.

The reliability of the simulations is checked by comparative analysis done in three ways:
Reproduction of global statistical distribution
Spatial grade variability/continuity model reproduction 
Local grade reproduction between conditioning values and sets of “N” 
simulations

To ensure that simulated realizations correctly reproduced the spatial theoretical grade 
variability/continuity model, simulated realizations are submitted to the spatial 
variability analysis of each given realization. Every single simulated realization is then 
checked using the same spatial variability formula and the same parameters as those 
used to get the variogram/correlogram experimental points of the raw variable.

The spectrum of spatial geometry/grade variability models along selected directions 
covers the interval of possible solutions. Considering the uncertainty of the conditioning 
database and spatial grade variability model, the family of “N” simulations is accepted 
as fairly representing the imposed spatial variability/continuity model. 

2.2 CALCULATION OF COEFFICIENT OF VARIABILITY FOR LOCAL BLOCK 

The coefficient of variability - COV, a dimensionless measure, defines the magnitude of 
deviation relative to the average. The whole mineralised domain is analysed. The 
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measure of relative dispersion for each local block, based on “N” simulated values is 
calculated. The distribution of COV varies over the orebody as a function of the amount 
of conditioning data, local grade variability and the spatial grade variability/continuity 
model. In a densely sampled area, the expected variability among the multiple 
simulations of the variable is expected to be lower than in a poorly sampled part of the 
orebody. Nonetheless, even over the densely sampled areas, where the local grade 
variability is high, high values of the coefficient of variability can be expected.

2.3 CHANGE OF SUPPORT TO PANEL PRODUCTION

A meaningful way to classify Mineral Resources is to take account of the variability of 
local blocks within a bigger production volume. The change from local volume/grade 
variability to the variability of the production panel tends to ensure that the expected 
metal contained within monthly and annual production units is estimated with an error 
not greater than the established tolerance at given confidence limit.

The way to express local geometry/grade variability as a variability of bigger mining 
units is through the variability reduction factor (Isaaks, Srivastava-1989). The 
calculation takes into account averages of COV computed for local mining blocks and 
production panels. 

A series of author’s exercises with different kinds of deposits have shown that global 
monthly or annual variability reduction factors are not the best values to apply for 
Mineral Resource Classification purposes. Spatial COV maps usually show different 
local configurations for different geological situations. Using one global correction 
value increases the uncertainty for low variability areas and gives more confidence to 
high variability areas. It is considered that a more objective way to do this is by 
introducing local variance reduction factors. 

It is proposed to divide the block population into classes of COV. The number of classes 
depends on what even-frequency per class is targeted. The classification is based on 
calculations computed within each group. Assuming that “n” local COV classes are 
analysed, “n” variability reduction factors are computed. 

A randomly positioned production scale panel allows to accumulate a number of 
observations considered sufficient to calculate the COV for a given production scale. 
Following this, the variance reduction factor for monthly and annual production units is 
computed and applied to the local COV. In this way the local variability is corrected to 
production scale variability as if it was a fraction of bigger support. 

fR = COV panel production / COV Local

fR   - variability reduction factor 
COV Local  - local coefficient of variability 
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Confidence limits are addressed by the mean of formula where the local coefficient of 
variability COV is corrected by variance reduction factor. 

fR * COV Local * ZC  15% 

Where,
ZC -confidence limit coefficient; accepted Normal distribution (0,1) if   

local COV is reasonably Gaussian

2.4 CLASSIFICATION CURVES 

Having obtained the following:

Percentile proportion of each class
Local average of COV for each class
Two COV for monthly and annual production panels corrected by variability 
reduction factor, 

it is possible to visualise three curves called, for Mineral Resource Classification 
purposes, Classification Curves.

Pairs obtained from the class central point and average local COV are used to construct 
the local COV curve that increases as a function of increasing percentile population.

The measured and indicated classification curves are based on calculations computed 
within each group. The common feature of them is their decreasing nature, throughout 
the increasing percentile population. 

The three curves create two intersections if Measured, Indicated and Inferred Mineral 
Resources are present. The curve at lower local relative variability represents the 
partition between Measured and Indicated Mineral Resources. The second decreasing 
curve at higher local variability establishes the limit between Indicated and Inferred 
Mineral Resources. At each intersection the proportion of Mineral Resources belonging 
to one of three Mineral Resources confidence classes can be read. Their Y-axis 
equivalents establish the separation thresholds between Measured, Indicated and 
Inferred Mineral Resources in terms of local COV.
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Figure 1. Graphic representation of Mineral Resource classification results 

Based on the local COV at production support (monthly and annual) it is possible that 
one or both intersection points are not present. If the spatial continuity, sampling density 
and local variability are unfavourable, the proportion of Measured or Indicated Mineral 
Resources will not be present or will show a low proportion of the total. 

3 Sensitivity of the proposed methodology 

3.1 HISTOGRAM GRADE REPRODUCTION 

Global/local grade distribution – since the coefficient of variability is used as a measure 
of local grade dispersion, any oversight of global or local grade distribution distorts the 
local relative variability distribution. As a consequence might be, underestimated local 
grades at assumed correctly reproduced spatial variability/continuity model increase 
values of coefficient of variability. This increases the amount of Mineral Resources at 
lower confidence class, which correctly classified would have been assigned a better 
category.

3.2 SPATIAL GRADE VARIABILITY REPRODUCTION

Spatial grade variability/continuity model – if incorrectly reproduced and accepted, it 
could significantly change the classified Mineral Resource proportions. If the spatial 
variability range of simulated realizations is too long, it produces a false effect of better 
continuity. The improved spatial grade continuity implies relatively higher dispersion 
variance distribution for the given production reference unit. As a result, more Mineral 
Resources can be classified with higher tonnage/grade uncertainty. The effect is 
predominantly pronounced over areas with scarce conditioning data (Figure 2, Table 1). 

Short continuity ranges promote a faster decrease in variability whilst changing support 
from local increments to panel production units. Small values of the variability 
reduction factor increase the proportions of Indicated Mineral Resources.
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Figure 2. Distributions of Classified Mineral Resources as a function of spatial 
variability range reproduction: A: short-range, B: long-range, C: spatial data location 

 Classified Mineral Resources – Proportions [%] 
Case Measured Indicated Inferred 

A: Short range 29.4 65.8 4.8 
B: Long-range 29.7 28.6 41.7 

Table 1. Proportions of Classified Mineral Resources as a function of spatial variability 
range reproduction. Stable % proportion of Measured Resources shows the data-driven 
effect and variable % proportion between Indicated/Inferred Resources reveals the 
model-driven results.

3.3 SIZE OF PRODUCTION PANEL 

The concept of production panels may have a real or theoretical aspect. In the case of 
having a mining program for a given period of time, programmed areas/volumes can be 
used to calculate the COV of panel production as increments of local COV. This is a 
case to verify and quantify the uncertainty on tonnage/grade for the existing extraction 
program.

Without a mining program (project, pre-feasibility study) a theoretical approach to 
calculate variability for a production period can be used. Vertical dimensions can be 
taken from a possible number of benches envisaged in the production program. This can 
be estimated by comparing to other mines/projects of a similar nature. To scale up the 
horizontal dimensions, the character of spatial variability/continuity model (isotropy, 
anisotropy) and distribution of existing or assumed opened mineralised faces/stopes are 
decisive factors. Once established, the size of production panel can be an object for 
sensitivity study. 
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3.4 NUMBER OF LOCAL BLOCKS WITHIN PRODUCTION PANEL 

Different orebodies present their proper geometric particularity. Whilst computing the 
statistics on local COV within monthly or annual production panels, some of the panels 
over the borders of the domain gather only a small number of local COV´s. To ensure 
the robustness of statistics, panels with small numbers of local blocks should be 
discarded.

3.5 FREQUENCY OF LOCAL BLOCKS PER CLASS 

The suggested number of classes for the local COV should be between 4 and 10. This 
means that a small orebody could not be divided into an elevated number of classes 
having too few local blocks per class.

Sensitivity analysis on the aforementioned issues should be carried out. The output for 
the exercise is a family of classification curves for Measured/Indicated and 
Indicated/Inferred Mineral Resources. Through them the uncertainty of the Category 
proportions for the Mineral Resource is assessed. The average of computed answers is 
accepted to break-up the classified Mineral Resource proportions. 

4 Quantified confidence improvement - example  

This section shows the application of the discussed methodology. Together with the 
classification method, the reconciliation between predicted and actual proportions of 
classified Mineral Resources is presented. 

The classification method applied Sequential Gaussian Conditional Simulation as engine 
to create conditioned, equally probable grade distributions. The local variability was 
expressed through the change of support for monthly and annual production panels. The 
criterion of an error within 15% at 90% confidence limit was used. 

The orebody had been intercepted by 98 boreholes. The average distance between them 
was greater than 50m. Ranges of the spatial grade variability model were less than 50m 
and represented only subtle geometrical anisotropy. Following the procedure discussed 
in this paper, an initial classification of Mineral Resources has shown no Mineral 
Resources classified as Measured and only 12% of Indicated Mineral Resources (Figure 
2). The quantity of Measured/Indicated resources indicated a need for new information 
to improve the confidence in geological resources. 
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Figure 2. Graphic assessment of Mineral Resource classification 

An exercise was carried out to quantify “a priori” a possible amount of Mineral 
Resources to be upgraded as a function of new drilling information. This was done by 
simulating virtual drilling campaigns. To optimise the drilling program, different sets of 
drilling grids were analysed.

It was assumed that in spite of only 346 samples from 98 boreholes regularly distributed 
over the orebody, the average grade and variance would not change drastically as a 
result of new data collection. This assumption has been assessed using the set of 51 
simulations generated for the purpose of classification. At a 90% confidence limit the 
expected discrepancy concerning average grade was defined as 5.4% and variance as 
6.8%.

Following this, the discussed classification methodology was applied. It was concluded 
that among multiple exploration strategies, a sampling grid of approximately 30m x 20m
would allow to have 13% of Measured and 52% of Indicated Mineral Resources            
( Figure 3).

Figure 3. Prediction of Mineral Resource classification proportions based on virtual 
exercise

The actual exploration drilling program contains 72 new boreholes. In total 729 samples 
were conditioning the geometry and the grade distribution within the orebody. The 
uncertainty on geometry was assessed through probabilistic models and grade estimates 
within the orebody were reproduced using sequential conditional Gaussian simulation. 
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The classification methodology applied to Mineral Resources assigned the confidence 
level in the following (Figure 4) proportions: Measured Resources 8%, Indicated 
Resources 60% and Inferred Resources 32%. 

Figure 4. Mineral Resource classification based on the updated database 

The targeted proportion of classified Mineral Resources had been reached. The use of a 
family of classification curves allowed to assess the uncertainty concerning the 
confidence on Mineral Resource classified proportions.

5 Conclusions 

Mineral Resource classification is an integral part of Mineral Resource evaluation and 
reconciliation. It constitutes an important strategic tool allowing to assess tonnage/grade 
uncertainty for the mining program.

A golden formula to classify mineral deposits does not exist. Different methods to 
express confidence in Mineral Resource evaluation are employed. Although the 
common practices have been developed, the robust approach toward the Mineral 
Resource classification method through the uncertainty quantification is not always 
exercised.

The method presented in this paper proposes to quantify confidence through equally 
probable, spatially conditioned multi-realizations. As an engine to create the conditional 
spatial grade distribution the sequential conditional Gaussian simulation was used. The 
classification approach integrates transparency, objectivity and geostatistical tools 
commonly used in modelling and evaluation.  The relevant issue is to express the 
uncertainty of Mineral Resources as a function of production panels that is to be 
reconciled for a determined production period. The reproducibility of the classification 
method is achieved through parameters defined numerically. This makes the 
classification method easily auditable. Classification curves allow visualising the 
classification output.
This classification approach includes quantification of confidence in estimated Mineral 
Resources. It can be applied to geological projects and mining operations. The results 
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are submitted to a continuous monitoring and validation process through reconciliation 
figures on a monthly basis.
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Abstract. Hydrothermal hypogene processes enrich or deplete rocks in specific suites of 
elements to form mineral deposits. Subsequent geochemical processes, such as near 
surface oxidation, commonly remobilize previously developed element associations. 
Late stage oxidizing fluids and elemental enrichment/depletion are commonly guided by 
permeable geologic structures in the deposit. An investigation of element redistribution 
is possible using a cross-covariance analysis between pairs of elements. The maximum 
positive cross-covariance of a pair of variables yields a vector, known as the lag vector. 
This lag vector may indicate the direction and distance of element displacement from 
their original loci.

This paper discusses the application of cross-covariance in modeling the anisotropy of 
metal redistribution as a function of late oxidation in the Pierina hydrothermal Au-Ag 
deposit. Cross-covariance analyses of assay values from drill-hole samples in both the 
oxidized and unoxidized zones are calculated and lag vectors [lxy(O), where x and y are 
elements in a zone O] are derived to infer a preferred path of metal remobilization. The 
azimuths of lag vectors for the element pairs Ag-Au, Cu-Au and Cu-Ag in the oxidized 
zone correspond to the orientations of recognized faults and fractures in the deposit. 
This implies that the remobilization of Au, Ag and Cu by oxidizing fluids was strongly 
controlled by specific fault or joint sets.  The data for all three element pairs from the 
unoxidized zone suggested structural controls different from those of the oxidized zone. 

These results imply that a cross-covariance analysis for pairs of elements may be used to 
infer structural controls on fluid flow which might be responsible for element 

exploration for predicting metal enrichment and the location of exotic (transported) 
deposits.

1. INTRODUCTION AND BACKGROUND INFORMATION: 

The spatial pattern of element distribution in hydrothermal deposits results from the 
overprinting of multiple alteration events. The late stage, near-surface oxidation of 
deposits is related to vertical movements of the groundwater table, and typically results 
in the downward transportation of elements, possibly with some lateral component of 
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remobilization and possible enrichment. Such an analysis may be useful in mineral 
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movement. Fluid flow and element mobilization are guided by major structural features 
of high permeability (faults, joints, etc.). Oxidation is important to the economics of 
mining large, low-grade, disseminated metal deposits in that it releases metals 
encapsulated in sulfides, thereby making the ore amenable to low-cost extraction 
technologies, and in the enrichment of metal grades. 

Element distributions in mineral deposits can be modeled numerically through the 
application of geostatistics. A multivariate geostatistical analysis using maximum cross-
covariance values can be applied to model the spatial dependency of two metals and to 
relate the results to orientations of mineralized faults and joints (Samal and Fifarek, 
2003).  In this study, we explore the application of cross-covariance analysis to assay 
data from the Pierina (Peru) Au-Ag deposit where late stage oxidation has clearly 
remobilized metals. 

1.1 Cross-covariance and lag effect: 

With the assumption of second-order stationarity and ergodicity, the covariance (Ci(h)) of 
any variable i measures spatial dependency of the same variable (or values of the same 
property of material) at two locations, where h is the distance of separation (a vector) 
between the two locations. Similarly, under assumption of joint second-order 
stationarity, the cross-covariance function Cij(h) measures the spatial dependency 
between two variables i and j, here concentrations of two elements, separated by vector 
h. The cross-covariance between two elemental concentrations i and j is expressed as 
(Equation 1): 

)()(
1

jhihij (h)
mjmi

n
C                                                                          (1) 

where mi is the mean of the variable i and mj is the mean of the variable j

The cross-covariance analysis is not an even function (Wackernagel 1998). The 
asymmetric behavior of the cross-covariance function between two variables in isotopic, 
heterotopic or partially heterotopic datasets is seen in the assay values of gold deposits. 
The dataset used in our cross-covariance analysis is partially heterotopic, i.e. data for all 
variables are not available for all sample locations. The asymmetry can be defined as 
Cij(h)   Cij(-h), where Cij(-h) is the cross-covariance of i and j separated by a distance h but 
in the opposite direction. But if both the sequence of variables and the sign of the lag (h)
are changed, the value of the cross-covariance function Cij(h) = Cji(-h) (Wackernagel, 
1998; Isaaks and Srivastava, 1989). Cross-covariance values can be positive when the 
variables at the end points of the h vector are on the same side of their means, i.e, ih >  mi

and j-h >  mj or, ih < mj and j-h < mj; where ih is the value of i at the head of the vector h,
and j-h is the value of j at the tail of the vector h. Depending on how far they are from 
their respective means, the value of a positive cross-covariance will be high or low. So, 
if i and j are extremely high values (enrichment of both elements) or extremely low 
values (depletion of both elements), both cross-covariance values will be positive and 
high (not low). But if one element is enriched and the other element is depleted, then the 
cross-covariance is negative.
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The lag effect is the vector (lij) separating the locations of extreme values of two 
variables, which in some geological environments may be due to the delay in 
enrichment of one element with respect to the other at two different locations (Isaaks 
and Srivastava, 1989, Goovaerts, 1997). This offset distance is also termed the delay 
effect when time-series data is considered, such as in most environmental applications 
(Wackernagel, 1998). In the oxidized zone of a hydrothermal mineral deposit, the offset 
between the concentrations of two elements is due to differences in their mobility 
resulting in the enrichment and depletion of different elements at different locations. In a 
preliminary exploratory study of the Pierina deposit (Samal and Fifarek, 2003, Samal, 
Fifarek, Sengupta 2003 and Samal, Fifarek, Mohanty 2004), lag vectors were derived 
that generally corresponded to the orientation of specific major fault and joint systems. 
Deriving the lag-vectors from maximum positive cross-covariance values (maximum 
values in any direction) ignores other higher cross-covariance values. In this paper other 
high cross-covariance values are taken into consideration for three pairs of elements 
(Ag-Au, Cu-Au, and Cu-Ag) in the Pierina deposit.

1.2 Deposit geology:  

The Pierina deposit is located in the Ancash Province of Peru. It is a world class, high 
sulfidation, epithermal Au-Ag deposit with anomalous but uneconomic concentrations 
of Cu, Zn, As and Hg.  The geology and genesis of the deposit are presented by Fifarek 
and Rye (in press), from which the following summary is taken.

The Au-Ag ore-body is sub horizontal, elongates N-S, and almost entirely hosted by 
rhyolite ash flow tuffs that overlie porphyritic andesite and dacite lavas and are adjacent 
to a crosscutting and interfingering dacite flow dome complex. Alteration and 
mineralization occurred 14.5 Ma ago as a result of the expulsion of fluids, gasses and 
metals from an underlying magma. Highly acidic fluids formed at the level of the 
deposit where slowly rising magmatic vapors condensed and mixed with cool meteoric 
groundwater. The progressive neutralization of these migrating acid-sulfate fluids led to 
zoned alteration assemblages from proximal vuggy quartz through quartz-alunite ±  clay 
and intermediate argillic to distal propylitic. Copper-gold-silver mineralization largely 
followed alteration and is marked by the deposition of enargite (Cu3AsS4), electrum 
(Au-Ag), acanthite (Ag2S) and related minerals. The primary elemental associations and 
concentrations in the sulfide deposit were established at this time.

A late oxidizing event related to a near-surface, steam-heated process was superimposed 
on the deposit during the waning stage of hydrothermal activity that was accompanied 
by a drop in the water table. These oxidizing fluids led to the destruction of sulfides and 
the formation of barite, hematite, goethite and minor jarosite. Consequently, the 
previously established elemental concentrations and associations were substantially 
modified due to the remobilization of most elements. Late oxidizing fluids pervaded 
rocks of the upper 200 to 300 m of the deposit and particularly followed open faults and 
joint sets. 

Exploration drilling on mostly 50 m centers and assays of 1 m intervals of drill core or 
cuttings provided an extensive database of Cu, Au and Ag values. Additional datasets 
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were generated from information on the distribution of alteration and fracture-filling 
minerals in the exploration drill holes.  Together, the datasets constitute the basis for 
evaluating the remobilization of metals (Au, Ag and Cu) by oxidizing fluids. 
Approximately 24,500 data points were selected from the oxidized zone and 
approximately 14400 samples were selected from the unoxidized zone, by excluding 
widely spaced data points. 

2. DATA ANALYSIS: 

2.1 Data Preparation:  

The drill-hole data were visually examined in a 3D environment using GEMCOM and 
Arc-GIS software-systems. For analytical purposes, a single table with records of Au, 
Ag and Cu and alteration details was created within GEMCOM.  The oxidized zone is 
characterized by the presence of iron-oxides (FeOx) whereas the unoxidized part of the 
deposit is marked by the absence of FeOx. A solid model was then created for the 
alteration.

Using GEMCOM, two tables of data formatted for the geostatistical software ISATIS 
geostatistical software were created: one for the oxidized zone and the other for the 
unoxidized zone. A selected portion of the data was chosen from the area of regularly 
spaced drill-holes for analysis. 

2.2 Geostatistical Analysis:

A univariate variography (covariance) analysis was used to model the anisotropy of 
individual elements in this mineral deposit. For pairs of elements, a cross-covariance 
analysis was used to derive lag vectors. The cross-variogram is an even function 
(Wackernagel, 1998, p 147) that fails to detect anisotropy and therefore is not relevant to 
this study. 

ISATIS was utilized to analyze for the cross-covariance of the three variables, Au, Ag 
and Cu. Each set of data, oxidized or unoxidized, was analysed in 62 directions to cover 
all possible directions in 3D space with a 30º angular tolerance for each direction. Out of 
these 62 directions, 12 directions were on the horizontal plane (reference plane) and two 
in the vertical plane (up and down). The remaining 48 directions are defined in 3D space 
as 4 directions in 12 vertical planes whereby each plane includes one horizontal 
direction. On each plane, these 4 directions are separated by 30º between the horizontal 
and vertical directions. A 50m lag was chosen for all directions except the vertical 
directions where the lag distance was set as 10m.

The cross-covariance for Ag-Au, Cu-Au, and Cu-Ag pairs was calculated using the 
exploratory data analysis tool of ISATIS. It is noteworthy that ISATIS calculates the 
cross-covariance in each specified direction and its reverse direction, in other words, the 
ISATIS software calculates Cij(h) and Cij(-h). A cross-correlation analysis of the same 
pair of variables taken in the same sequence was performed in order to cross-check the 
results of the cross-covariance analysis. The cross-correlation (CCij) function (Equation 
2) is:
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Experimental cross-covariograms for each direction were plotted for a comparative 
analysis made in two ways: 1) for each pair of variables, high positive cross-covariance 
values were ranked and the corresponding directions were compared with the results 
from the previous study (Samal & Fifarek, 2003), and 2) the directions were compared 
with recognized structural trends. For reasons of clarity only those directions with the 
top three cross-covariogram values are shown in the following figures. 

3. RESULTS AND DISCUSSIONS OXIDIZED ZONE:

Among the three variables, Cu in the oxidized zone has the highest variance followed by 
Ag and Au (Table 1). This reflects the relatively wide range of Cu values and suggests 
that the leaching of Cu was more extensive and the element more mobile than Au and 
Ag.

Table 1: General statistics of variables: oxidized zone 
 Mean Variance Covariance 
Au 1.4 ppm 14.3 ppm2 Ag & Au 61.4 ppm2

Ag 12.7 ppm 1493.3 ppm2 Cu & Au 128.7 ppm2

Cu 128.7 ppm 139047.4 ppm2 Cu & Ag 980.7 ppm2

From a comparison of covariogram plots (not shown) of the three variables it is clear 
that the spatial dependency of Au and Ag is very similar. The covariance of Au and that 
of Ag at shorter distances of separation exhibit very high values along ENE to ESE 
directions (azimuths of 60° , 90° , 120° ) at a lag-interval of less than 50m. The ranges of 
150m (approximate) are higher along these directions than in other directions (e.g., 
azimuths of 0° ). Additionally, the covariance values fall rapidly to low values along 
generally North-South directions. 

The cross-covariograms of Ag and Au (Fig. 1) indicate the lag vector (lAgAu(O)) is 
oriented along an East-West  to ENE-SSE (Azimuth 90º & 60º ) directions with a 
shallow dip of 30°  (+15° ) toward East. Experimental cross-correlogram plots of Ag-Au 
produce a similar pattern as that of the cross-covariograms (Fig. 2). The sequence of 
maximum to lower cross-correlogram values is along the same directions (Azimuth 90º

& 60º and dip of 30°  (+15° ) toward East) as seen in the cross-covariograms. 
The cross-covariograms of Ag and Cu yield a preferred lag vector (lAgCu(O)) of azimuth 
60º, dip 30º, followed by vectors with azimuth 270º, dip 60º and azimuth 240º, dip 60º

(Figure 3). It can be inferred that, with respect to Cu enrichment (or depletion), a 
significant lateral movement of Ag has occurred in ENE-WSW to E-W directions. With 
the angular tolerance (30º) used in the analysis, it is likely that elemental remobilization 
is controlled by joints and faults aligned approximately ENE-WSW to E-W directions. 
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The cross-covariance plots of Cu and Au indicate a lCuAu(O) of azimuth 150º, dip 60º.
Other prominent cross-covariance values imply vectors with azimuths of 270º dip 60º

and 240º, dip 60º (Figure 4). From these observations, it is evident that, with respect to 
copper, the fluid transport and enrichment/depletion of gold and silver was in a general 
ENE-WSW to East-West direction. 

Figure 3. Cross-covariance of Cu – Ag in Oxidized zone (azimuths and 
 dips shown for three highest values). 
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In summation, Ag and Au have a similar spatial dependency pattern (as documented by 
their covariance values). The cross-covariance patterns of pairs of metallic elements 
(Ag-Au, Cu-Ag and Cu-Au) are useful in deriving vectors, which implies the shallow 
dipping transport of Au with respect to Ag along East, SSE and SSW directions. The 
cross-covariogram plots of Au-Cu and Ag-Cu pairs also suggest general West, East to 
ENE directions of fluid flow. Orientations of the major structural trends (joints and 
faults) that guided oxidizing fluids, as identified in this study, are summarized in Table 
2. These are ENE to ESE and WSW to WNW directions, which are common in the 
cross-covariance analysis of all three pairs. 

Table 2. Summary of prominent cross-covariance values 
ANALYSIS Rank Representative directions Comments 

1 Azimuth 90º  and Dip 30º  
2 Azimuth 240º   

Cross-Covariance
(Au & Ag) 

3 Azimuth 120º  and Dip 30º  (-h)
1 Azimuth 60º  and Dip 30º  
2 Azimuth 60º  and Dip 60º  

Cross-Covariance
(Ag & Cu) 

3 Azimuth 240º  and Dip 60º   
1 Azimuth 150º  and Dip 60º  
2 Azimuth 270º  and Dip 60º  

Cross-Covariance
(Au & Cu) 

3 Azimuth 150º  

Mostly ENE- 
ESE to WSW- 
WNW directions  
and shallow dips 
of 30°  to 60°  
(+30º )

3.1 Unoxidized Zone:  

Data for the unoxidized zone were treated in the same manner as data for the oxidized 
zone. The unoxidized zone lies below the oxidized zone and is represented by fewer 
assays relative to the oxidized zone. For Ag - Au pairs, the lag vector (lAgAu(U)) has an 
azimuth of 120°  and dip of 30°  (Fig 5). Other prominent directions of possible Au and
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Ag movement during hydrothermal activity are along azimuth 300º , dip 30º  and 150° , 
dip 30° . For Cu and Au pairs, the lag vector (l AuCu(U)) has an azimuth of 90° , dip 60° , and 
a lag distance of separation of less than 50m followed by azimuths of 120° , dip 60° , and 
270° , dip 60°  (Fig 6). The analysis for Ag an d Cu pairs suggests no preferred orientation 
of metal separation and fluid flow.

The azimuth 120°  is common to Ag-Au and Au-Cu pairs and along which cross-
covariance values are sufficiently high to suggest a prominent geologic trend. With an 
angular tolerance of 30° , the major directions of elemental remobilization are along ESE 
to east. This direction may represent a set of vectors along a set of fault or joint planes 
that are of pre-oxidation age. A structural study of mine exposures revealed a prominent 
set of faults and joints along this trend, as well as the other directions inferred (azimuths 
120° , 90° , 240° , 270°  & 300° ) from this cross-covariance study.

4. CONCLUSIONS:

Based on the above observations, the following conclusions are possible. 

i. A covariogram analysis suggests that Ag and Au have similar spatial patterns of 
distribution that differ from that of Cu in the oxidized zone of the Pierina deposit. 
Both elements show high covariance (a measure of spatial dependency) values at 
distances of separation less than 50m, whereas Cu shows no preferred lateral 
orientation of spatial dependency. Cross-covariance analysis of Ag & Au, and 
these two elements paired with Cu suggest downward and lateral mobilization of 
elements.

Figure 6. Cross-covariance of Cu and Au in Unoxidized zone (azimuths 
and dips shown for three highest values).
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ii. In both oxidized and unoxidized zones, the general orientation of elemental 
mobilization is inferred to be along ENE, East, ESE, WSW and West directions 
with an angular tolerance of 30° . The major mineralized joints and faults in the 
Pierina gold deposit are oriented along these directions.

iii. Overall, the multivariate cross-covariogram analysis derived vectors of metal 
separation that coincide with recognized trends of major faults and joint sets in 
the Pierina deposit.  Consequently, this type of analysis may be generally applied 
to hydrothermal mineral deposits as a means of identifying the structural features 
that guided hydrothermal and particularly oxidizing fluids resulting in the 
deposition and subsequent mobilization of metals. 

Further research directions are suggested to refine and verify the validity of these 
results. These directions include the following:

The odd parts of the cross-covariance (Goovaerts, 1997, p 73; 
Wackernagel, 1998, p 147; Webster and Oliver, 2000, p196) add to the 
anisotropic behavior of the results, whereas even parts of the cross-
covariance are isotropic. It may be useful to model the odd parts of the 
cross-covariance and derive the lag-vectors for different pairs of the 
variables from the maximum and other high values. 
Using a geochemically identified immobile element in the pairs to better 
quantify distances of element separation and the location of enrichment 
zones.
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Abstract. Mine valuation under market and geological uncertainty is an active research 
area. Twenty years ago, a seminal paper by Brennan and Schwartz described the 
application of Real Option Theory to the valuation of mines where metal prices are 
volatile. The study focused mainly on the impact of metal price uncertainty on the value 
of a mine. Geological uncertainty was not considered. For a simple mine model, this 
paper describes the close analogy between the decision to process a mining block at a 
given date and the European call financial option. The value of the European call 
depends primarily on the share price model, the present share price, the price volatility 
and the time to expiry. A mining block is either processed when the metal price covers 
the processing costs or otherwise stockpiled as waste. Metal prices and technical 
variables like grades, recovery, and costs are uncertain. Using geostatistical simulations, 
the study shows that grade uncertainty may introduce asymmetries in the block value 
greater than metal price uncertainty. The asymmetries are more pronounced for blocks 
with larger uncertainty. Greater value is given presently to these blocks assuming the 
block grades are perfectly known at the time of mining. The extension of this concept 
from individual blocks to the mine scale is done by considering a mine panel as 
equivalent to a portfolio of European call options. Implications for strategic planning are 
illustrated with a gold mine panel-scheduling example. Gold price was modelled with a 
Geometric Brownian Motion process. The case study shows that the value of the panel 
and its development strategy depend on the level of geological uncertainty and price 
volatility.  However, the example shows that the benefits of optimising the panel under 
geological uncertainty is an order of magnitude below the benefits of resolving the 
geological uncertainty. 

1 Introduction 

Mine valuation under market and geological uncertainty is an active research area. 
Twenty years ago, a seminal paper by Brennan and Schwartz (1985) described the 
application of Real Option Theory to the valuation of mines where metal prices are 
volatile. This theory relies on former developments in Finance Theory on the evaluation 
of financial derivatives (financial options). 
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In the financial markets, an option is a contract giving the right, without the obligation, 
to buy or sell a share, or any financial instrument, at an agreed price and either at or 
before an agreed time in the future. An option that gives the right to buy a share at an 
agreed price (E) and a specific time in the future (T) is commonly called a European call 
option. E and T are called the exercise price and the time to expiry of the option, 
respectively. The share price (S) is usually volatile and at a time T, the option value 
(vopt) will be: 

,0)max( ESv
Topt

      [1] 

If at time T, the share price is higher than the exercise price, then the owner of the 
option will be able to buy a share at price E and sell it immediately at price ST, thus 
realizing a gain of ST-E. If at time T, the share price is lower than the exercise price, the 
owner of the option will simply not exercise her option. 

The value of an option, i.e. the price someone is ready to pay now to acquire the option 
(contract), depends on the price model and volatility, the current price, the exercise 
price, and the time to expiry. It is directly linked to the probability of the price being 
higher than the exercise price at expiry. Intuitively, the larger the time to expiry, the 
larger the price volatility, or the higher the current price, the higher the option value. 
Black and Scholes (1973), and Merton (1973), developed the first quantitative model for 
valuing European-like options with a share price following a Geometric Brownian 
Motion (Random Walk). Fig. 1 illustrates the value of a European call option as a 
function of the present price, a Geometric Brownian Motion price model, a time to 
expiry T of 1 year, and four annual volatilities ( ): 0%, 10%, 20%, and 30%. The 
exercise price E is $1. Fig. 1 shows that the value of the option increases with price 
volatility, and that the option can have a positive value even if the present price is below 
the exercise price. Practical valuation methods and algorithms for financial derivatives 
(a broader name for options) are found in Wilmott et al. (1995). 

The Real Option Theory is the use of the Financial Option Theory to value real 
investments (see for details: Dixit and Pindyck, 1994, Amram and Kulatilaka, 1999, or 
Trigeorgis, 2000). Until recently, real option applications to mineral investments have 
considered mineral price volatility as the main source of uncertainty, and attempts to 
integrate geological uncertainty (as early as in Brennan and Schwartz, 1985, but see also 
Cortazar et al., 2001, e.g.) were far from realistic. Carvalho et al. (2000) introduced a 
geostatistical simulation- and option pricing-based methodology to integrate geological 
models in the mine evaluation process. This paper focuses on the application of the 
Option Theory at the smallest scale in mines: the mining blocks. It illustrates the strong 
analogy between a mining block and a European call option, and shows how to use this 
analogy to value geological uncertainty and how geological and mineral price 
uncertainty interact. Implications for strategic planning are illustrated on a gold mine 
panel.
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Figure 1. Value of a European Call Option as a Function of Current Price, S0, and Price 
Volatility, ; T = 1 year, E = $1, and  = 0 % (continuous line), 10% (dotted line), 20% 
(dashed line), and 30% (dash-dotted line). 

2 Analogy between a Mining Block and a European Call Option 

A mining block contains ton tonnes of material at grade g of a mineral commodity sold 
at a price per unit S. The block may be developed or not. If the block is developed, it 
will be mined at a cost per tonne m, and then, either stockpiled as waste at a cost per 
tonne stkp, or processed at a cost per tonne h and marketed at a cost per unit k,
depending on the benefit made by processing the block. Developing the block requires 
making the investment dev now, in order to be able to mine the block at time T from
now. Recovery is denoted by . Time discounting is ignored in this simple analogy, and 
the block is studied in isolation of the other blocks. 

Traditionally, mine planners will make the decision to develop this block based on the 
block value vbl:

)()( hmtonkSgtonv
bl

    [2] 

and assuming grade and price are perfectly certain. If vbl  > dev, the investment is worth 
making and the block will be mined, otherwise, the block will be left un-mined. 

However, if g and/or S = ST are uncertain at the time of decision, but if the true grade is 
known with certainty at the time of mining (for example, assuming that selection made 
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on blast-hole sampling is exact, which is only a gross approximation), payoff from the 
block is similar to that of a European call option, with value: 

))(),()(max( stkpmtonhmtonkSgtonv
bl

  [3] 

Equation 3 has the same form as Equation 1, and vbl should therefore exhibit the same 
characteristics as vopt:

Grade uncertainty, like the mineral price, tends to increase the block value. 
Mineral price volatility tends to increase the block value. 
Grade uncertainty amplifies the effect of price volatility. 
The value of a block under price (and grade) uncertainty may increase with 
time T, if the volatility is large enough to compensate for the time 
discounting.

Table 1 summarizes the analogy between the mining block and a European call option. 

Parameter European Call Option Mining Block 
Time to Expiry T T 

Exercise Price E ton (m + h)
Price S ton g  (S – k)
Cost of Not Exercising the 
Option

0 ton (m + stkp)

Table 1. Comparison between European Call Option and Mining Block. 

3 Effect of Grade Uncertainty on the Value of a Mining Block 

The European call option analogy of a mining block was investigated on a large panel in 
a gold mine, which is comparable to a portfolio of European call options.

The panel is made of 75 x 75 blocks, each of size 10 m x 10 m x 10 m. Geological 
information is provided by 50 m-spaced exploration drill holes. The gold distribution is 
lognormal with an average of 0.018 ounces per tonne (opt) and a coefficient of variation 
(CV) of 4. Gold grades are spatially variable with a strong nugget effect (40 % of the 
grade normal score variance, and ranges of 100 m north-south and 60 m east-west). 

The mine planner is asked to determine which blocks should be developed now for 
production in two-years. Production and economic parameters are shown in Table 2.

The gold price is modelled with a Geometric Brownian Motion process following the 
equation:

zTµ
S

S
dd

d
      [4] 
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where  is a trend, and dz is an increment to a standard Gauss-Wiener process. This 
model assumes no reversion to a long-term average, which is reasonable for gold, but 
not for most mineral commodities (see for example Schwartz, 1997, for more 
sophisticated commodity price models).

The focus of the first step is grade uncertainty while the price volatility and the effect of 
time are ignored. The panel is simulated 100 times on a fine grid and re-blocked to the 
nominal block size of 10 m x 10 m x 10 m. The simulations are then averaged to provide 
a map, illustrated in Fig. 2-a, similar to a kriged map. Mine planners are usually well 
aware that estimated (kriged) grade maps are uncertain, but for practical reasons, handle 
them as if they were certain, i.e. assuming they are an exact representation of the true 
grades, and overlooking local uncertainty associated with each block. Estimated grade 
maps are also generally smoother than in reality. Fig. 2-b shows a simulation outcome 
more representative of the true grade continuity.

Equation 3 is applied directly to the “certain” averaged model at time T = 0, assuming 
price is also certain and constant at S0 = $350 per ounce. The blocks with value greater 
than the development cost dev should be developed and mined. Fig. 3-a shows the 
development outlines. 

Recognizing that block grade-estimates are uncertain, and applying Equation 4 directly 
to each grade simulation outcome before averaging, gives the outlines in Fig. 3-b. The 
candidate area for development in Fig. 3-b is significantly larger than in Fig. 3-a, 
indicating the uncertain model generates more marginal blocks, i.e. blocks slightly 
higher than the economic break-even. 

Parameter Value Variable Name in 
Text

Mining Production 
Block Tonnage 3,000 t ton
Recovery 100% 
Development Cost $1 /t dev
Mining Cost $1 /t m
Stockpiling Cost $0 /t stkp
Processing Cost $3 /t h
Marketing Cost $0 /oz k

Price Model
Model Geometric Brownian Motion 
Present Price $350 /oz S0

Trend 0% 
Annual Volatility 12% 
Risk-Free Discount Rate 5% 

Planning Periods
Time to Mining 2 years T
Table 2. Production and Economic Parameters. 
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Figure 2. a) Average Grade of 100 Simulations; Reference Grade Model. b) Simulation 
Outcome Showing True Grade Variability. 

Figure 3. a) Value of the Blocks under Grade Certainty. b) Value of the Blocks under 
Grade Uncertainty. Only Positive Value Blocks are Shown. 

Block values are plotted versus grades in Fig. 4. The black points correspond to the 
certain model, following the two linear equations: 

stk)mtonv (       [5] 

when g < (m + h) /  (S – k), and otherwise: 

)()( hmtonkSgtonv      [6] 

Light- and dark-grey points correspond to the uncertain model; light-grey points are for 
blocks with a CV greater than the average CV, 0.74, and dark-grey points, for blocks 
with a CV lower than 0.74. The figure shows that: 
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Lower-grade blocks have more relative uncertainty (higher CVs) than 
higher-grade blocks. This is particular to this example and cannot be 
generalized.
The higher grade-uncertainty, the higher the option value, as demonstrated 
by the light-grey points being above the dark-grey points. 
Grade uncertainty decreases the effective break-even cut-off grade (by 
approximately 20%, from the theoretical 0.011 opt down to 0.009 opt). 

This result is in complete agreement with the findings made on financial options. 

The impact of grade uncertainty is relatively large on the cut-off grade. However, this 
impact may be dampened, by the stockpiling cost for example. If stkp = $0.5 per tonne 
instead of $0 per tonne, grade uncertainty decreases the break-even cut-off grade by 
10% only. 

4 Cumulated Effect of Grade and Price Uncertainty on the Value of a Mining 

Block

Mineral price is usually considered as being volatile, i.e. uncertain, rather than certain. 
Both grade and price are then random variables that multiply each other in Equation 3. 
Price variance only is a function of time, with S(0)2 = 0, and S(T)2 increasing infinitely 
with time T for a Geometric Brownian Motion process. 

In order to evaluate the impact of combining grade and price uncertainties, prices were 
simulated 1,000 times. No attempt was made to best fit the parameters to historic gold 
prices. However, the set of parameters in Table 2 is considered fair for the sake of the 
demonstration. Block values were calculated using Equation 3 and then averaged for 
each grade simulation and price simulation. 

Fig. 5 shows block values as function of grade at T = 2 years ( S = 17%). In this 
example, grade uncertainty is far more important than price uncertainty. 

5 Optimisation under Uncertainty 

Optimisation of development outlines was performed on the maps shown in Fig. 3-a and 
3-b using the assumption of uncertain grades. As commented earlier, uncertainty 
broadens somewhat the optimal design suggested by the certain value model. The 
broadened design increases the chances of capturing high-grade. The different designs 
suggested by the certain and uncertain models were applied successively to each of the 
100 grade simulation scenarios. The average net value realized was then calculated. The 
procedure was also applied for the 100 optimal designs based on simulations, one for 
each simulation outcome. Each design was applied to all realizations and the average 
taken over the 100 x 100 possible combinations.

The results reported in Table 3 suggest that the most valuable mine design is the one 
which recognises the grade uncertainty (The comparison alone does not constitute a 
proof but provides useful indications).
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Figure 4. Block Value as a Function of Grades; Mining and Stockpiling Cost: $1 /t; 
Aligned Black Points: Grade Certainty; Dark-Grey Points: Grade Uncertainty with 
Block CV < 0.74; Light-Grey Points: Grade Uncertainty with Block CV > 0.74. 

Base Scenario Halved Variogram Range 
Scenario

Design Based 
on

Average Value Relative 
Difference*

Average Value Relative 
Difference*

Certain Grades $4.5 M 0% $2.4 M 0% 
Uncertain
Grades

$4.8 M +6% $2.7 M +14% 

Individual
Simulations
(Average)

$1.7 M -61% -$0.1 M -103% 

* To Certain Grade Model 
Table 3. Value of Design Alternatives if Panel Mined at T = 2 years. 

The design obtained by recognising grade uncertainty improves the certainty-based 
design value by 6% only. This is a small improvement and other biases in the mine 
optimisation parameters, such as assay results or cost estimates, would likely affect the 
design in the same order of magnitude as grade uncertainty. Table 3 also highlights that 
simulations are not useful in isolation: The best result achieved on a single simulation is 
about one-third of the result achieved using the option-based approach. 
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Figure 5. Block Value as a Function of Grade at T = 2 years; Mining and Stockpiling 
Cost: $1 /t; Aligned Black Points: Value with Grade and Price Certainty; Dark-Grey 
Points: Value with Grade Certainty and Price Uncertainty ( S = 17%); Light-Grey 
Points: Value with Grade and Price Uncertainty.

The study was repeated assuming a nugget effect of the normal scores of the grades 
equal to 10% of the sill, and halved ranges (50 m north-south and 30 m east-west). 
Lower panel values were obtained, as shown in Table 3, but the uncertainty-based 
optimisation is now 14% higher than the certainty-based optimisation. 

6 Discussion and Conclusion 

The methodology described in this paper provides a framework for integrating all 
sources of uncertainty, technical and/or financial. The complexity of Equation 3 can 
(and will most probably) be increased to include other important aspects of project 
evaluation, such as multiple minerals or foreign exchange uncertainty. 

Grade uncertainty, as any other technical uncertainty, is project-specific and may or 
may not be discounted for risk, depending on the project analyst’s application of 
Finance Theory. This is not the same as ignoring project uncertainty. Some analysts 
may view geological uncertainty as project specific and diversifiable, so that a risk 
adjustment is not necessary. Others may be of the opinion that geological uncertainty 



510 E. HENRY, D. MARCOTTE, AND M. SAMIS 

cannot be mitigated through diversification and would consider applying an appropriate 
risk adjustment. Systemic uncertainty in mineral prices, however, is not diversifiable, so 
prices are risk-adjusted. This was realised practically by performing risk-neutral price 
simulations instead of “real” price simulations.

The methodology is especially interesting for economically marginal projects (or 
project areas) only. It may be useful for evaluating near end-of-life investments, or 
capital-intensive push-backs in large open-pits. Uncertainty, technical or financial, is 
not that relevant for clearly uneconomic or clearly economic projects. 

The impact of recovery was not studied in this paper. Recovery less than 1 will decrease 
the value of the block in Equation 3. It will also decrease the option value generated by 
grade uncertainty, by dampening the grade standard deviation. 

The interest of the mining industry for uncertainty-based optimisation is encouraging. 
However, it is important to stress that the value added by an uncertainty-based 
optimisation may be an order of magnitude less than the value lost by not resolving the 
uncertainty. In the panel example illustrated here, optimisation under grade uncertainty 
improves the project value by 6%, for a value of $4.8 M. In comparison, the panel value 
if the true grade was known with certainty would be $15.6 M in average. In other 
words, geological uncertainty adds value to individual blocks, but destroys two-third of 
the true potential project value. 
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Abstract

In mining operations, ore types are usually defined on the basis of technological criteria 
such as mining costs, processing plant performance and commercial costs, among 
others. Ore-type classification based on cut-off grades of estimated feed grades, tend to 
be biased when metal values or costs of ore type treatment are not linearly dependent on 
the feed grades. This paper presents an ore-type classification methodology based on 
jointly simulated grades. Direct sequential simulation (dss) and co-simulations (dscs) are 
the simulation techniques proposed to generate equiprobable images of different metal 
grades. Metal values and operating costs are then computed with several simulated 
grades of a block, in order to a priori classify the block, assigning it to the ore type 
which maximizes the profit or minimizes the costs of misclassification.

A case study on the Neves Corvo mine illustrates the proposed methodology. 

1 Introduction 

In most mining operations, ore types are defined on the basis of technological criteria 
such as mining costs, processing plant performance and commercial costs, among 
others. Cut-off values of feed grades, together with geological criteria, are normally 
used for a priori classification of mining reserves into different ore types. However this 
classification can be severely biased when metal values or costs of ore type treatment 
are not linearly dependent on the feed grades and the a priori classification of mining 
reserves is performed on the estimated grades of blocks and stopes.
Suppose the value of a given stope is not a linear function of its grades, for example if 
metal recovery is highly non-linearly related with the feed grade, or the commercial 
costs have a non-linear dependence on penalty grades. Then, the decision of sending that 
stope to a given ore type stockpile based on the estimated feed grades cannot be the one 
that maximizes the profit of the stope.
If one knows not only the mean grade of a stope or block but also the local cumulative 
distribution function (cdf), the idea of the proposed methodology is to apply known non-
linear functions of metal recovery, values, costs etc., to the cdf of a given stope, rather 
than to its estimated mean grade, in order to choose the best ore type stockpile. 
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Direct sequential simulation (dss) and co-simulations (dscs) are the simulation 
techniques proposed to generate equiprobable images of different metal grades. Metal 
values and operating costs are then computed with several simulated grades of a block in 
order to a priori classify the block in the ore type, which maximizes the profit or 
minimizes the costs of misclassification.
A case study on the Neves Corvo mine will illustrate the proposed methodology. 

2 Case study: Neves Corvo mine 

Neves Corvo is an underground tin-copper mine, which has been producing since the 
end of 1988. Considering the existing three orebodies, this study focuses on the Graça 
orebody that has been mined by a highly selective mining method (drift & fill) to 
maximize ore-type classification.
The main economic metal present in the ore is copper and the mineralisation can be 
described as being of the fissural or stockwork type.  It is composed of veinlets and 
strings of sulphides and quartz, which cut mainly acid volcanic rocks, concordantly or 
not with the schistosity.  The sulphides are mainly pyrite and chalcopyrite and the 
thickness of the veinlets may vary from a few millimetres to a few decimetres.  The 
spatial distribution of the veinlets is highly irregular – as well as that of the grades – and 
does not show, in most situations, to be controlled by any particular geological feature. 
Cassiterite and stannite (tin and copper sulphide) are the main tin ores. 
Two main ore types are defined in the Graça orebody: cupriferous ore (MC) and tin ore 
(MS), which are treated in different plants. The MS plant recovers copper and tin while 
the MC plant recovers only copper.
Data of Cu and Sn coming from drill-hole samples are available for this study.

3 Direct Sequential Simulation and Co-simulation 

The principle of direct sequential simulation (dss) can be summarized as follows:
If the local cdfs are centred at the simple kriging estimate 

)(*)( mxzxmxz uu

with a conditional variance identified by the simple kriging variance 2
sk(xu), the spatial 

covariance model or semivariogram is reproduced in the final simulated maps (Journel, 
1994). The problem is that this simulation approach does not reproduce the histograms 
of the original variables (the local cdf cannot be fully characterized by only the local 
mean and variance).
The idea of direct sequential simulation (Soares, 2001) is to use the estimated local 
mean and variance, not to define the local cdf but to sample the constant global cdf 
FZ(z). Intervals of z are chosen from FZ(z), and simulated values zs(xu) are subsequently 
sampled from them. These intervals are “centred” at the simple kriging estimate z(xu)*,
being the interval range dependent on the simple kriging estimation variance 2

sk(xu)
(Soares, 2001). 
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One of the main advantages of the proposed dss algorithm over traditional sequential 
indicator simulation (sis) and sequential Gaussian simulation (sGs) to simulate 
continuous variables is that it accommodates joint simulation of original variables 
without any prior indicator or Gaussian transformation.
In this case, the joint simulation of both metals Cu and Zn follows the Bayes rule. That 
means, that the simulation of a pair of values from a bi-variate distribution, say F(Z1,Z2),
is equivalent to generating the first value z1 from the marginal distributions F(Z1) and 
the second from the conditional distribution, F(Z2|Z1=z1). In a spatial process with two 
correlated variables, Z1(x) and Z2(x), the first value z1 is simulated from FZ1(xu;
z) = prob(Z1(xu)<z) at the location xu and,  afterwards, z2 is generated from the 
conditional distribution prob(Z2(xu)<z | Z1(xu) = z1) (Almeida and Journel, 1994). The 
first variable is simulated with direct sequential simulation and the second variable using 
direct sequential co-simulation (Soares, 2001).
The same algorithm is then applied to simulate Z2(x) assuming the previously simulated 
Z1(x) as the abundant (known at every node) secondary variable. Co-located simple co-
kriging is used to calculate z2(xu)* and to estimate 2

sk(xu) conditioned to neighbourhood 
data z2(x ) and the co-located datum z1(xu) (Goovaerts, 1997). 
One crucial issue of this sequential approach regards the choice of the variable to be 
simulated first. In sequential simulation algorithms local conditional distributions are 
estimated with some approximations, for example, the conditioning data is limited to a 
subset of samples (Gomez-Hernandez and Journel, 1993); hence, for variables with 
different spatial continuity patterns, the result is not independent of the order of the 
chosen sequence of variables to be simulated. Hence, practical criteria regarding the 
spatial pattern of the variables and its relative importance in the physical phenomenon 
are normally applied. In this case, Cu grades are simulated first – through direct 
sequential simulation – since Cu is the main metal, the most valuable one and, on top of 
that, reveals a more continuous spatial pattern. 

4 Classification of mining reserves in ore types. 

The usual procedure of classification of mining reserves in ore types consists in using 
the estimated average grades of each block as a threshold criterion to classify it. If a 
block value is a non-linear function of its grades, classification can be severely biased 
when performed with estimated average grades.
The idea of the proposed classification can be summarized in two basic points: 
The classification is based on simulated grades, rather than estimated ones, which allow 
preserving the histograms of different metals, spatial pattern continuity and the spatial 
relationship between them.
The criteria to classify one given block in ore types will be based on the maximization 
of a profit function, or minimization of a cost function, applied to the joint simulated 
values of the block. 
In the case study of the Neves Corvo mine, the processing plants have different metal 
recoveries and costs. The commercial costs, which include transport, shipping, 
insurance, treatment and refinement charges are also different for both metals, copper 
and tin. 
Hence, the value of a given stope can be viewed as the difference between the metal 
value minus the treatment and the commercial costs. Suppose a block is located at xu
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with the feed grades of Cu and Sn: z(xu) and y(xu). The value of one tonnage of a block 
of MS ore type can be summarized as:

vMS (xu)= [sCu -cCu./zc].z (xu). Cu + [sSn -cSn/yc].y (xu). Sn –mc-plcMS [1]
that is, the sum of the copper value (net value minus costs) plus the tin value minus the 
mining costs and the MS plant costs. The tonnage of a block value of MC: 

 vMC(xu)= [sSn. -cSn/yc].y(xu). ’Cu –mc-plcMC [2]
which is the sum of the copper value minus the mining costs and the MC plant costs. 
with: s – metals price of Sn and Cu ; Cu, Sn – Cu and Sn recovery at MC plant; ’Cu

– Cu recovery at MS plant; zc , yc – concentration grades; cCu , cSn – commercial costs; mc
– mining costs; plc –plant costs

Figure 1. Metal recovery of Cu vs Cu (%) at MC plant and metal recovery of Sn vs Sn  
at MS plant. 

Metal recovery of Cu and Sn are non-linear functions of the feed grades. Figure 1 shows 
the metal recovery of Cu vs Cu (%) at the MC plant and metal recovery of Sn vs Sn (%) 
at the MS plant. 
The criterion to classify xu as MC or MS is the maximization of the profit, vMS

l (xu) or 
vMC

l (xu),  for the entire set of realizations l = 1, Ns, or, in other words, the minimization 
of the costs of misclassification. That is, xu will be classified as the ore type that 
maximizes the value for the entire set of realizations. xu is classified as cupriferous ore 
if:

Ns

l
u

l
MS

s

Ns

l
u

l
MC

s

xv
N

xv
N 11

11
                             [ 3 ] 

xu is considered as tin ore otherwise.

Note that as the value v is a non-linear function  of the feeding grades z,
vl(xu) = zl(xu) , a different result is achieved when this criterion is applied to an 
average grade of Cu or Sn at xu:

Ns

l
u

l
Ns

l
u

l xzxz
11

An alternative criterion to [3] could be chosen in terms of costs rather than profits: the 
minimization of the costs of misclassification (Goovaerts, 1997). Suppose the following 
loss functions: the loss associated with classifying xu as MC 
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otherwise

if0
)(1
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MCu
l

MS

u
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MSu
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and the equivalent loss associated with classifying xu as MS: 

otherwise
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The N simulated images allow calculating the average loss attached to the two types of 
classification:

)(1
1

1 u
l

Ns

l
u xLx  and )(2

1
2 u

l
Ns

l
u xLx                     [ 4 ] 

the location xu is declared to belong to MC or MS if it minimizes the corresponding 
average losses:

1(xu) > 2(xu)
meaning that the costs of classifying xu as MC are greater than the costs of classifying xu

as MS, hence xu is classified as MS;
2(xu) > 1(xu)

meaning that the costs of classifying xu as MS are greater than the costs of classifying xu

as MC, hence xu is classified as MC.
Both approaches [3] and [4] are equivalent and give the same results which are 
presented and compared with results following the more traditional routine of ore-type 
classification based on estimated grades.

5 Results 

5.1 DATA ANALYSIS 

Histograms of Cu and Sn were calculated from 524 samples from boreholes of the Graça 
orebody (Figures 2a and b). The Cu/Sn bi-plot shows the relationship between both 
elements (Figure 3). Spatial continuity main patterns of Cu and Sn can be summarized 
in the following: both Cu and Sn present a similar isotropic behaviour, modelled by an 
exponential model. Sn variogram presents a clear “nugget effect”, representing 20% of 
the total variance, which is probably linked to the spatial dispersion of main tin 
mineralisations: cassiterite and stanite.
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Figure 2.  Histograms of Cu (a) and Sn (b).

Figure 3. Bi-plot of Cu/Sn 

From the bi-plot of Figure 3 one can visualize two populations with different behaviours 
regarding the correlation between Cu and Sn. If the total set of samples is split by a Cu 
threshold of 10%, the values with a Cu content lower than 10% show a higher 
correlation coefficient (r = .71) (Figure 4a) than the values with a Cu content higher than 
10%, which do not present a significant correlation with Sn (r = .37) (Figure 4b). Cu/Sn 
cross variograms computed for those populations confirm the distinct spatial co-
regionalisation behaviours.

5.2 JOINT SIMULATION OF CU AND SN 

Cu and Sn grades were simulated in a regular grid of points (200x 110 x 20 nodes of 
1x1x1m.). Sn values were simulated using direct sequential co-simulation assuming 
previously simulated maps of Cu as a secondary variable.
Simple collocated co-kriging was used for the estimation of Sn at each node of the 
regular grid visited during the sequential procedure:

12211
1

1 ))()(())(()()*( mmxzxmxzxxz uuu

N

uu      [ 5 ] 
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Figure 4. Bi-plot of Cu/Sn for the population with low grades of Cu a); and for the 
population with high Cu grades.

Collocated co-kriging is implemented with the Markov-type approximation of co-
regionalization models: cross correlograms between z1 and z2, z1,z2(h) are determined 
by the correlation coefficient z1,z2(0) and the correlogram of z1 z1(h): z1,z2(h)=

z1,z2(0). z1 (h) (Goovaerts, 1997). Two local co-regionalisation models between Cu and 
Sn (described in 5.1) were adopted with the Markov-type approximation: “low” grades 
of Cu (<10%) with a correlation coefficient r = .71 and “high” grades of Cu ( 10%)
with r = .37. An example of level 1, with “low” and “high” grades of Cu is shown in 
Figure 5. Note that in this case, under the Markov-type approximation, to estimate a 
local Sn value at the location xu, the co-regionalisation model is dictated by the 
correlation coefficient of xu.

Figure 5. Estimated maps of “low” (red) and “high” grades (blue) of Cu 



518 A. SOARES 



CLASSIFICATION OF MINING RESERVES USING DIRECT SEQUENTIAL SIMULATION 519 

Figure 7. Average of 20 simulated maps of Cu (left) and Sn (right).

At the Cu “high” grades population (blue area of Figure 5), with a correlation coefficient 
r = .37, there is practically no influence of the secondary variable (simulated Cu grades).
A set of 20 realizations of Cu and Sn were simulated for the entire area. Examples of 
four pairs of Cu and Sn images are presented in Figure 6. One example (level 1) of the 
average of 20 simulated maps of Cu and Sn are presented in Figures 7a and 7b, 
respectively. Notice that the influence of Cu at the Sn simulations is significant only at 
the “low” Cu grades area, where the correlation coefficient is high. 
Marginal histograms and correlation coefficients of simulated Cu and Sn show a quite 
good match with the equivalent sample statistics.
 Fig. 8 shows the variograms of the same two realizations of first level for Cu 
(left column) and Sn (right column). There is a very satisfactory match between the 
theoretical model (imposed to the simulations and co-simulations) and the experimental 
variograms of simulated values.

Figure 8. Variograms (experimental and model)of simulated values of  Cu (left column) 
and Sn (right column) for two realizations.
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5.3 CLASSIFICATION OF THE ORE TYPES

Each pair of simulated Cu and Sn values, at a given spatial location xu, will feed the two 
profit functions [1] and [2] corresponding to the two different plant treatments and 
transport. Averaging out the profit of the 20 realizations for the two plant treatments will 
determine which ore type should be allocated to the spatial location xu [3]. 
Sensitivity analysis has shown a high dependency of the profit of [1] on the tin metal 
prices. Four different tin metal prices were used, corresponding to those occurring 
during the period from the beginning of the mine’s exploration until now. Figure 9 
shows, in the right column, the two ore types classified on the basis of the simulated 
images for the four metal prices, from 4 US$/Lb (top) practiced in the end of the 
eighties, up to 2003 price of 2.4 US$/Lb (bottom). In the left column of Figure 9 the 
equivalent classification based on the average maps of Figures 7a and 7b is presented for 
comparison.
It is obvious that in both classifications the MS ore type decreases with the tin metal 
price. However, the classification of the average grade gives systematically higher 
proportions of MS than the simulations. This is quite expectable since the non-linear 
functions of Figures 1a and b, applied to a mean of a positively skewed histogram of Sn 
values (Figure 1b), tend to be greater than the mean of the non-linear transformation of 
each one of Sn grades.  These highest proportions of MS reflect biased average-grades 
based classification: a systematic overestimation of MS proportion.
As a matter of fact, the continuous decreasing of tin metal price determined the very 
recent decision (taken in 2002) of the mine board to discommission the tin plant.

6. Final remarks 

i)  This paper presents the use of stochastic simulation images of different metal 
grades to classify mining reserves in ore types. When costs and values can be allocated 
to the main mining operations, classification of ore types based on joint simulated 
metals are a much more accurate and unbiased alternative than the classical procedure of 
classification based on estimated grades.
ii)  This paper also shows that ore-type classification is a dynamic exercise of 
optimisation of future strategies, balancing historical decisions, the knowledge of 
reserves, and the near future of metal market prices, contracts, etc.. 
Considering the presented test case, when the decision of building a tin plant was taken, 
it was fully justified by the tin prices of that time. Once the tin plant was working, any 
classification should have been conditioned to its fixed and operational costs. According 
to the criteria followed in 5, most of the blocks are classified as MC. But that implies 
that a significant number of those blocks should remain unmined, given that the 
production capacity of the copper plant is limited. In this case, although we know that 
those blocks give, theoretically, more profit in the Cu plant, they should be sent to the 
tin plant as that will optimise the production capacity of both plants. 
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iii)  Finally, it is demonstrated that the combination of direct simulation 
and co-simulation is a very appropriate technique for the joint simulation of continuous 
variables. Recent applications of the dss can be found in environmental field , in soil 
pollution characterization (Franco C. et al, 2002),  satellite image classification (Bio et 
al, 2002), ecological resources (Almeida et al, 2002) and in petroleum applications 
(Soares et al, 2001).
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Abstract. Nickel and cobalt are key additives to modern alloys. The largest worldwide 
nickel-cobalt resources occur in surface laterite deposits that have formed during 
chemical weathering of ultramafic rocks at the Earth’s surface. Geologically young 
deposits have formed by rapid weathering processes in tropical environments while 
older deposits that have formed in drier climates. At the Murrin Murrin mine in Western 
Australia the dry climate laterite deposits occur as laterally extensive, undulating 
blankets of mineralisation with strong vertical anisotropy and near normal nickel 
distributions. This deposit structure presents an estimation challenge for both classical 
and geostatistical resource estimation methods. In this paper, ordinary kriging and 
multiple indicator kriging estimation methods are applied to both the in situ and 
unfolded structural cases to obtain estimates for nickel and cobalt. Improvement in point 
grade estimation following the unfolding of the laterite blanket by vertical data 
translation prior to grade estimation is assessed in the light of close spaced grade control 
data. The results indicate that unfolding, particularly when combined with indicator 
kriging, improves both the nickel and cobalt estimates albeit only slightly in the case of 
cobalt.

1 Introduction 

Nickel and cobalt are key metal additives in modern industry.  Nickel and cobalt are 
primarily sourced from deep underground mines but the largest worldwide deposits 
where both metals occur are the near surface laterite deposits that have formed by 
weathering of ultramafic rocks in tropical or semiarid environments (Golightly 1981; 
Brand et al 1998).  At Murrin Murrin in central Western Australia, surface weathering of 
ultramafic rocks in a semiarid environment has enriched nickel and cobalt to 
economically attractive concentrations approaching 2%Ni and 0.5%Co within smectite 
clay horizons.  The nickel cobalt deposits at Murrin Murrin are flat lying, undulating 
blankets of 10 to 50 m thickness and  lateral extents ranging from a few to tens of 
kilometres (Fazakerley and Monti, 1998).

2 The MM2 Dataset 

One deposit area at Murrin Murrin, known as MM2 is the focus of this study. The data 
comprises samples collected from vertical drillholes during exploration and subsequent 
mining of the deposit.  Exploration drilling was completed on a nominal 50 m square 
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pattern and contains a local cluster of 12.5 m spaced holes (Figure 1, left).  Grade 
control sampling was carried out on a 12.5 m square pattern to approximately 30 m 
below surface (Figure 1, right).  For this study the drilling samples were accumulated 
into a composite length that matches the mining bench height of two metres.  The 
exploration sampling was flagged as a subset of the grade control data and, both data 
sets were clipped to a boundary 30 m below surface and to a marginal ore processing 
threshold of combined nickel cobalt grade.

Figure 1. Exploration (left) and grade control (right) collar locations in the MM2 pit 

For the purposes of this study the sampling from the grade control pattern is considered 
reality. Figure 3 shows cross sections through 250N (2:1 vertical exaggeration) with the 
12.5 m spaced, bench height composites from grade control coded by nickel and cobalt 
grades within the ore envelope.  These sections reveal that nickel forms a relatively 
continuous blanket of mineralisation with higher grades (>1.0 Ni%) defining an 
undulation in the nickel mineralisation across the area.  In contrast, the high grade cobalt 
mineralisation (>0.06 Co%) is more pod-like but generally follows the blanket of nickel 
mineralisation.

Figure 2. Cross section 250 N showing ore envelope and bench height composites 

In Table 1 the summary statistics of both nickel and cobalt composites within the ore are 
compared for both the grade control and exploration sampling patterns.  Declustered 
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statistics were calculated using cell declustering to account for the clustered sampling in 
the exploration pattern. 

Nickel grade (%) Cobalt grade (%) 
Exploration Exploration Statistic Grade

control Clustered Declustered
Grade
control Clustered Declustered 

Composites 13,414 1,046 1,046 13,411 1,046 1,046 
Minimum 0.07 0.13 0.13 0.001 0.001 0.001 
Maximum 2.67 2.23 2.23 0.887 0.887 0.887 
Mean 0.85 0.84 0.80 0.058 0.054 0.053 
Median 0.81 0.80 0.75 0.040 0.038 0.036 
Standard deviation 0.38 0.39 0.38 0.054 0.054 0.056 
CV 0.44 0.46 0.47 0.944 0.993 1.053 

Table 1. MM2 grade summary statistics for grade control and exploration composites

The summary statistics show that the exploration sampling contains 1,046 samples 
compared to the 13,414 available from the final grade control pattern and that the nickel 
distribution is near normal while the cobalt distribution is highly skewed.  Declustering 
produces in a minor reduction in the distribution means and a minor increase in data 
skewness.  Accepting the grade control results as reality for this study, the exploration 
sampling statistics show that the exploration sampling pattern has been successful in 
determining the underlying mean and variability of both nickel and cobalt. 

3 Unfolding 

The large lateral extent and blanket geometry of nickel laterite deposits, combined with 
a strong vertical anisotropy, presents several problems for grade estimation from the 
exploration data. Of particular interest to mine planning is the correct reproduction of 
the lateral connectivity of higher grade zones as depicted in Figure 3. In Figure 3, a 
schematic cross section of a nickel laterite resource envelope and vertical drill holes is 
depicted against a backdrop of an estimation grid. The search neighbourhood used for 
estimation of the model nodes is shown as a flat lying ellipsoid with a shape dictated by 
the strong vertical anisotropy the deposit. A dashed line represents a surface of expected 
grade connectivity for this idealised deposit. It is assumed waste samples have been 
excluded from the estimation method.

In Figure 3, where drill holes are close together (near block A) or where the lies ore 
horizontally (near block B), the grade zones in the drill holes are reflected in the 
estimation model. However, where drilling is widely spaced and/or there is undulation 
of the surface of grade connectivity counter intuitive estimation results may occur (such 
as block C and block D). Problems of geometric controls arrecting grade estimation in 
situations of folded or undulated geometry have been recognised by prior authors 
(Wellmer & Giroux 1980, Dowd et al 1988, Lambert 2000, Sahin et al 1998, Sides and 
da Silva 1996).  These authors have proposed several methods to remove estimation 
artefacts including domaining areas of similar geometry, data translation and application 
of local coordinate systems. 
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In this study, the vertical translation method was used to improve the grade connectivity 
of nickel grades within the study area (Murphy et.al. 2002). 

Figure 3. Schematic estimation model from vertical drilling in a finite domain

4 Variography 

Traditional and indicator semivariograms were computed for the exploration data in 
both the in situ and unfolded data configurations. Twelve indicator thresholds were 
applied to both elements in 0.1%Ni increments ranging from 0.5 to 1.6%Ni, and 
0.01%Co increments from 0.03 to 0.14%Co. The blanket geometry of the nickel 
mineralisation dictates that the minor axis of continuity is the downhole direction. 
Therefore, horizontal-plane semivariogram maps were used to test for the direction of 
maximum continuity in the horizontal plane and direction variograms were then 
computed for the axes of anisotropy.

For nickel, the traditional variography exhibits geometric anisotropy in the study area 
with a major axis of continuity as azimuth 70 . The variogram has a low nugget effect 
(0.02 of a sill of 1.00) and three nested spherical structures were fitted to the 
experimental data (0.45 sill, 7m x 30 m x 30m; 0.30 sill, 12 m x 50 m x 50 m; 0.23 sill, 
15 m x 75 m x 100m).  The variography of unfolded data has slightly longer ranges 
(0.45 sill, 7m x 30 m x 30m; 0.30 sill, 12 m x 60 m x 70 m; 0.23 sill, 15 m x 75 m x 
200m). The nickel indicator semivariogram surfaces revealed patterns of rotational 
anisotropy with where the lower nickel thresholds having greater continuity east-west 
and higher thresholds having longer NE-SW continuity. There is a pattern of decreasing 
ranges and increasing nugget effect with increasing indicator nickel threshold and 
slightly longer ranges interpreted for the unfolded case. 

For cobalt, the traditional semivariogram has a major axis azimuth of 100  and a nugget 
effect of 0.25.  Again three nested structures were modelled for the in situ data (0.40 sill, 
6 m x 20 m x 60m; 0.25 sill, 8 m x 50 m x 70 m; 0.23 sill, 10 m x 150 m x 200 m) and 
unfolded cases (0.40 sill, 8 m x 20 m x 20 m; 0.25 sill, 9 m x 30 m x 30 m; 0.23 sill, 10 
m x 40 m x 40 m) with unfolding the data resulting in interpretation of much shorter 
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ranges.  Similar to nickel, the cobalt indicator semivariograms display a pattern of 
rotation anisotropy, increasing nugget effect, and decreasing indicator ranges with 
increasing indicator threshold.  However, as a general comment the horizontal plane 
experimental variograms were poorly structured and the interpretations were based 
largely on the behaviour of the vertical, downhole results. 

5 Estimation 

The grade control sample locations were estimated from the exploration data with means 
of ordinary point kriging (OK) and multiple indicator kriging (IK) E-type estimates 
using the indicator thresholds discussed above (Journel, A.G., Huijbregts, C.J. 1978).  
Table 2 compares the grade control data statistics to the estimate made at each grade 
control location using the combinations of estimation method, data configuration and 
metal.

Nickel grade (%) Cobalt grade (%) 

OK IK OK IK Stat Grade
control In situ Unfold In situ Unfold

Grade
control In situ Unfold In situ Unfold 

Min. 0.07 0.16 0.15 0.32 0.32 0.001 0.001 0.001 0.001 0.001 
Max. 2.67 2.06 2.00 2.07 2.12 0.887 0.887 0.887 0.887 0.887 
Mean 0.85 0.85 0.85 0.87 0.87 0.058 0.055 0.060 0.056 0.061 
Med. 0.81 0.83 0.83 0.84 0.85 0.040 0.052 0.055 0.052 0.056 
S.D. 0.38 0.23 0.26 0.23 0.28 0.054 0.025 0.027 0.026 0.031 
C.V. 0.44 0.26 0.31 0.26 0.32 0.944 0.452 0.459 0.464 0.503 

Table 2. Summary statistics of exploration grade estimates compared to grade control

In terms of mine planning and the need to repay start-up capital expenditure in the early 
years of mining and processing, the corrected estimation of the amount of high-grade 
material at the exploration stage is critical to project feasibility. Despite the fact that the 
estimation results and input data are point values, pseudo grade volume curves have 
been generated for each estimate by assuming that each node represents an ore parcel of 
dimension 12.5 m E by 12.5 m N by 2 m RL. These curves give an insight into accuracy 
of high-grade volume estimates that can be expected from each estimation method and 
are shown in Figure 4. 
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Figure 4. Pseudo grade tonnage curves for nickel (left) and cobalt (right) 

6 Conclusions 

The statistics in Table 2 reveal that for nickel, OK gives the most accurate estimate of 
the mean but the results plotted in Figure 4 show that the unfolded IK method is more 
accurate in estimation of the high grade ore.  For cobalt, the best accuracy of both mean 
and high grade is also achieved for the combination of unfolding and IK estimation 
method albeit all methods poorly predict the amount of high grade cobalt. 
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Abstract.  For many decades the mining industry regarded resource estimation and 
classification as a mere calculation requiring basic mathematical and geological 
knowledge. Often uncertainty associated with tonnages and grades were either ignored 
or mishandled. With initiatives to establish international standards for classifying 
mineral resources and reserves, it is important to establish the level of confidence in the 
results and correctly assess the error. Among geostatistical methods, Ordinary Kriging 
(OK) is probably the one most used for mineral resource estimation. It is known that OK 
variance is unable to recognize local data variability, which is an important issue when 
heterogeneous mineral deposits with higher and poorer grade zones are being evaluated. 
This study investigates alternatives for computing estimation variance from ordinary 
kriging weights that account for both the data configuration and the data values. These 
estimation variances are then used to classify resources based on confidence levels and 
their results are compared with those obtained by OK variance. The methods are 
illustrated using an exploration drill hole data set from a large Brazilian coal deposit. 
The results show the differences in tonnages within each class of resources when 
different measures of uncertainty are used. 

1 Introduction 

The mining industry has already recognized and established standards for resource 
evaluation and classification but now, with the increasing internationalization of mining 
companies, the development of internationally acceptable standards for this 
classification has become relevant. 

Since 1994 the Council of Institutions of Mining and Metallurgy (CMMI), an 
international entity that congregates institutions from the United States (SME), Australia 
(AusIMM), Canada (CIM), United Kingdom (IMM) and South Africa (SAIMM), has 
proposed a set of definitions for the reporting and classification of mineral resources and 
reserves. These definitions were adopted later by a committee established in 1998 by the 
United Nations thus granting it truly international recognition. 

The main mineral resource classification systems adopted worldwide are essentially 
based on sampling spacing, geological confidence and economical viability. These 
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systems define classes of resources based on a degree of certainty associated with 
estimated tonnages and grades. Classes of in situ coal (measured, indicated and inferred) 
are defined based on the spatial distribution of the samples and the uncertainty 
associated with tonnages calculated for a given deposit or part of it. Thus, classifying in 
situ coal or coal resources requires the definition of the uncertainty associated with the 
estimate. However, what is not stated in the classification systems is how uncertainty 
should be measured, and even the JORC rules, such as in Table 1, provides a minimum 
necessary data density, but it does not specify or advise any estimation algorithm or how 
uncertainty should be assessed. 

Classes of 
resources

Maximum
extrapolation distance 

Maximum spacing between 
points of observation1

Degree of 
uncertainty

Measured 500 m + 1 km; < 500 m 0 - 10% 
Indicated 1,000 m + 2 km; < 1 km 10 - 20% 
Inferred 2,000 m + 4 km > 20% 

Table 1. Classes of resources based on sampling spacing defined by the JORC system. 
1 The first distance is the acceptable limit and the second is the normally used distance. 

Since classification codes are not prescriptive regarding the estimation method used, 
several geostatistical approaches have been suggested, mainly because these techniques 
provide a short, unambiguous identification of resources/reserves categories. 
Geostatistical estimate methods are suggested in most codes and these methods have 
become the accepted standard models for mineral resource estimates. Several 
geostatistical methods can be used to estimate and assess uncertainty. Among them 
ordinary kriging is probably the most widely used mainly due its specific features 
related simplicity and reliable estimates (Matheron, 1963; David, 1977; Journel, 1983; 
Isaaks and Srivastava, 1989). However, the geostatistical literature has discussed the 
misuse of ordinary kriging variance as an accurate measure of uncertainty, mainly 
because it is only variogram dependent and not data-value dependent, taking into 
account only the spatial arrangement of the samples, and consequently ignoring the local 
variability (Journel, 1986). 

This study investigates some of the proposed alternatives that have been proposed to the 
kriging variance. Two distinct approaches to calculate estimate variance via ordinary 
kriging weights were used: (i) the interpolation variance (Froidevaux, 1993; Yamamoto, 
1999) and (ii) the combined variance (Arik, 1999). The obtained results are compared 
with those derived from OK variance. All the methodologies were repeated to four 
different block sizes, trying to identify its influence on the estimates, as it is known the 
larger the block size the smaller the associated variance (Krige, 1996).

The estimate and the subsequent classification of resources into different classes or 
categories, according to the possible variations of these resources must provide a model 
that quantifies the risk on each category. A comparative study was carried on using an 
exploration data set from a large Brazilian coal deposit and the results show the impact 
in both tonnages and error in each resource category when the alternatives to uncertainty 
assessment are used. 
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2 Case study 

The deposit object of this study is located in the southern Santa Catarina coal basin and 
it has been exploited since the early 1900´s. The depositional environment imposed a 
particular geometry to this deposit with a longer continuity for coal thickness along the 
major axis of deposition and a short range along the orthogonal direction. 

Since the samples used for resource assessment should be representative and present a 
high degree of confidence, all drill holes with poor reliability in terms of core yield or 
logging criteria were omitted from the deposit modeling. Thus, from the original 471 
ddh, 340 were kept for thickness estimate purpose and 236 for the specific gravity. As 
the collars were not regularly spaced, a declustering procedure (Deutsch and Journel, 
1998) was used to obtain a representative statistic for the entire area. In the sequence, 
spatial continuity analysis was carried out modeling the major and minor directions of 
anisotropy. A two-structure spherical variogram (Sph) model [ (h)] was estimated from 
the experimental variogram points for the two variables as: 
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Coal thickness anisotropy coincides with the main axis of the coal basin. Specific 
gravity anisotropy directions are oriented according to the shoreline which used to 
divide the lacustrine/marine environment where this coal deposit was formed. Pyrite 
concretions presence and consequently the increase in the specific gravity is controlled 
by this shoreline orientation. Therefore, these two geological attributes not necessarily 
should have their major axis of anisotropy coincident. 

The main parameters used for modelling the deposit into mineable blocks using ordinary 
kriging were: (i) minimum of 4 and maximum of 24 data located in the local 
neighbourhood of a given block being interpolated, (ii) 64 points used to discretise the 
block and obtain an average estimate of it, (iii) searching for samples around the block 
within the variogram ranges defining an ellipsoidal search, (iv) four different block sizes 
(175 x 175 m, 350 x 350 m, 525 x 525 m, and 700 x 700 m), (v) searching for samples 
in the local neighbourhood of a block dividing the search ellipsoid into octants. The 
variograms and the parameters used for kriging were cross validated (Isaaks and 
Srivastava, 1989). 

Based on the available data and the JORC code standards for extrapolation distance and 
distance between samples (Table 1), the boundaries defined by geometric definitions 
were established. Adopting the usually recommended values, the areas covered by a 



532

single sample were disregarded for framing in measured or indicated coal in situ 
categories.

3 Assessing uncertainty 

3.1 KRIGING VARIANCE 

Ordinary kriging produces a set of estimates for which the variance of the errors is 
minimized through the use of the Lagrange multipliers and is usually referred to as the 
ordinary kriging variance: 
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where C(0) is the a priori variance of the data, OK  is the weight calculated for each 

datum in the neighbourhood of u, C(u  - u) is the covariance from each datum and the 
location u and OK is the Lagrange multiplier (Matheron, 1963). The kriging variance 
computed for a given point or block being estimated is essentially independent of the 
data values used in the estimation and it does not measure uncertainty, but just the 
spatial configuration of local data used to make the estimate. The link between kriging 
variance and data values is just through the variogram, which is global rather than local 
in its definition (Arik, 1999; Journel, 1986; Isaaks and Srivastava, 1989; Yamamoto, 
1999).

3.2 INTERPOLATION VARIANCE 

Yamamoto (1999) proposes the interpolation variance as the weighted average of the 
squared differences between data values and the OK estimate according the following 
expression:
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where i  are the ordinary kriging weights, z(xi) are the n neighbor data close to the 

unsampled location (x0), and )( 0xz  is the block estimate. This expression is exactly the 

same that proposed by Froidevaux (1993). It is data-value dependent and this definition 
requires all weights be positive since any negative weight could lead to a negative 
interpolation variance. There are several available solutions for avoiding negative 
weights and they can be basically divided into two types: (i) ordinary kriging weights 
can be constrained to be positive before solution of the ordinary kriging system (Barnes 
and Johnson, 1984; Herzfeld, 1989), or (ii) correct the negatives after kriging 
(Froidevaux, 1993; Journel and Rao, 1996; Deutsch, 1996). This study adopted the 
procedure proposed by Deutsch (1996), and his solution was implemented in the kriging 
routine kt3d of GSLIB (Deutsch and Journel, 1992). 
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3.3 COMBINED VARIANCE 

Arik (1999) suggests an alternative measure to assess the uncertainty that is basically a 
combination of the kriging variance and the variance of the weighted average block 
value based on the data values used. The second is defined as: 
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where n is the number of data used, wi are the ordinary kriging weights corresponding to 
each datum, Z0 is the block estimate, and zi are the data values. If there is only one 

datum, 2
w  is set to 2

OK . This component, called by Arik (1999) the local variance of 

the weighted average, is then used to calculate the combined variance ( 2
CV ) as follows: 
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Suppose the example in Figure 1. For sake of simplicity, there are only seven data points 
surrounding the point 0 to be interpolated. Using an exponential variogram model with 
an isotropic range of 10, sill of 10, and nugget of 0, ordinary kriging was used to 
calculate the value at location 0, resulting in 592.7 with a kriging variance of 8.96. 

If one changes the data set according to Figure 1b, keeping everything else the same, the 
new estimate would be 550.0. The kriging variance remains the same at 8.96, since the 
variogram parameters and data configuration were the same as the first run. Table 2 
summarizes the results. One can observe the alternative variances reflect local 
variability.

Figure 1. Sample data and location 0 (a) extracted from Isaaks and Srivastava (1989). 
The same data configuration with a different set of values (b). 

Samples
Kriging
Variance

Weighted
Average

Combined
Variance

Interpolation
Variance

(a) 8.96 4114.6729 191.9667 28551.7148 
(b) 8.96 11769.0791 324.6606 56772.0156 

Table 2. Variances for the two data sets presented in Figure 1. 
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3.4 ERROR DEFINITION 

Block models of four different sizes were defined for both variables using ordinary 
kriging. These models were validated and the results, including the estimated variance, 
used to define confidence intervals. For each block, the coal accumulation (t/m2),
expressed as a product of the thickness by density has its variance evaluated and 
expressed using (David, 1977): 
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where 2
xy  is the variance of the product, xy  is the coefficient of correlation, x and

y  are the standard deviations, x and y are the estimated block values to thickness and 

specific gravity. The third term in Equation (7) is null since the correlation between 
density and thickness is insignificant (Figure 2). 

Figure 2. Scatterplot for specific gravity (t/m3) versus thickness (m). Note the absence 
of correlation. 

Assuming a Gaussian distribution to the error, the confidence interval with 95% 
probability of containing the mean can be approximated using (David, 1977): 
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where 2/ mt  is the inferred mean to n data, 
21,1n

t  is the 
21  superior critical point 

for the t distribution with n - 1 degrees of freedom. 

Thus, the global error for each coal in situ category was obtained using each 
accumulation block value as a weight to the block error, according to the theory of 
errors presented by Caputo (1969). 
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4 Discussion and conclusions 

The approach presented was repeated for each one of the alternative variance discussed 
and for each block size tested. The results on either tonnages or error for each category 
are showed in Tables 3 and 4. 

Block Tonnages of coal in situ (t x 106)
size Measured Indicated Inferred 

175 x 175 m 237.62 126.62 188.11 
350 x 350 m 239.54 124.70 189.86 
525 x 525 m 241.51 132.54 187.47 
700 x 700 m 234.74 116.07 197.08 

Table 3. Calculated tonnages of coal in situ for different block sizes.

Block Error (%) 
size

Variance
Measured Indicated Inferred 

2
OK 4.43 7.61 11.33 

175 x 175 m 2
0s 7.54 13.37 17.77 
2
CV 3.12 5.61 8.34 
2
OK 3.64 6.92 10.53 

350 x 350 m 2
0s 7.58 13.48 17.61 
2
CV 2.81 5.38 8.01 
2
OK 3.19 6.33 10.46 

525 x 525 m 2
0s 8.01 13.49 17.79 
2
CV 2.68 5.14 7.96 
2
OK 2.76 5.84 9.47 

700 x 700 m 2
0s 7.98 12.30 17.28 
2
CV 2.44 4.58 7.49 

Table 4. Confidence limits for the coal in situ calculated tonnages obtained via kriging 

variance ( 2
OK ), interpolation variance ( 2

0s ), and combined variance ( 2
CV ).

In Table 3, it is observed that the estimated tonnages have changed for the different 
block sizes tested, these variations were generally small, and only in the category of 
indicated in situ coal was the variation about 12%, with the increase of the block size. 
This seems to be related with a more complex geometry for this class as well as a 
different adherence that each size has regarding the geometric boundaries that define the 
resources categories. Table 4 shows that the calculated values of error using the 
methodology proposed by Yamamoto (1999) are substantially higher than the calculated 
ones with kriging variance as well as combined variance. Several blocks were classified 
as measured resources according to the geometric criteria, but could not be classified as 
indicated or even inferred due to uncertainty criteria. In this study, these blocks were not 
removed from the resources inventory or re-arranged into different categories, 
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however if this variance was used for classifying a reduction on the resources would 
occur.

The fact that the case study consists of a tabular orebody, extremely continuous spatially 
and with abundance of information may have contributed to attenuate the differences 
between the results obtained via kriging variance and combined variance, and these 
factors may explain the small differences in terms of tonnages and error with the 
increment of the block size. Even so, there are significant differences in the calculated 
error using each one of the alternative variances. 

Ordinary kriging (OK) variance (or its square root, the standard error) has been largely 
used as a measure for spread of the estimates, but since this parameter depends only on 
(i) the spatial continuity of the data and (ii) the spatial configuration of the observations, 
the error calculated using OK variance will be independent from the data values 
imposing severe limitation on its use. Therefore, the use of alternative measures of 
uncertainty allow a more accurate and coherent response. These measures for the 
uncertainty eliminate the subjectivity of using a fixed or empirical range of influence as 
discriminating factor among the categories of resources that do not respect the 
singularity of each mineral deposit. 
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INCORPORATING UNCERTAINTY IN COAL SEAM DEPTH 

DETERMINATION VIA SEISMIC REFLECTION AND GEOSTATISTICS
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Abstract. Modelling mineral deposits requires the use of all possible source of 
information. Traditionally, core samples from borehole are the most used way to access 
the ore body, however this method is expensive and provides information restricted to a 
close neighbourhood within the sample location. Continuity between sampled points 
needs to be inferred in order to infill values among bore hole locations using 
interpolation techniques. In contrast, geophysical methods including seismic reflection 
provide data at much closer intervals, thus approximating continuous sampling along a 
seismic section. These data are then used to infer spatial continuity, for example the 
fault of a coal seam in between bore holes. Wave travel time along the seams is recorded 
by seismic survey at a dense grid. Additionally, sonic wave velocity logged along 
boreholes can be interpolated at a dense grid. Sonic Logging provides direct and 
continuous measurements of the sonic wave velocity at all seams down the holes logged. 
Therefore, this logged sonic velocity can be simulated within a dense grid compatible to 
the time grid. Multiple velocity grids (equally probable models) are generated within the 
simulation framework. In combining both grids, i.e. velocity and time, seam depth can 
be obtained. Consequently risk in depth determination for each seam due to velocity 
uncertainty can be assessed. Both data types (time and sonic) are subject to various 
sources of error. Currently, velocity is indirectly determined using processed seismic 
data, which may breed errors in geologic sections interpretation. The present paper will 
show results from a Sonic Logging velocity simulation and its uncertainty 
determination, in order to use the results in calculating seam depth via seismic reflection 
and additionally provided a measure for error in this parameter. A case study in a major 
coal deposit illustrates the procedure. 

1 Introduction 

Modelling mineral deposits is based on a conceptual geological model and on readings 
derived from samples sparsely taken within this deposit. Usually, the samples are 
collected by diamond drill holes (core sampling). However, this sampling technique is 
very expensive (~ US$ 100/m) and provides restricted amount of information, imposing 
all sort of difficulties in reducing the uncertainties associated with the estimation of 
geological attributes within the mineral deposit. 
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Geophysical methods like seismic are a direct method of more coarsely, but cheaply 
sampling, which can be very accurate in favourable conditions. Seismic methods 
measure the mechanical wave propagation time from a source to a receiver within rocks. 
This time can be related to the geometry of seam layers or bed rocks. The depth of the 
beds is obtained multiplying the time the wave took to travel by the wave’s velocity 
along that rock. Accurate velocities can be obtained from sonic logging sampling. This 
method can collect velocities at various points along borehole walls. 
This study aims to estimate seismic wave velocity in a 3D grid, based on sonic logging 
data (note that seismic waves velocities can be correlated to sonic logging data). Sonic 
logging measures slowness, which is an attribute that is defined as the inverse of 
compressional velocity. For sake of this study slowness will be called and treated as 
velocity samples. The estimates will be generated using geostatistical methods. The 
development of an appropriate modelling methodology could facilitate a better depth 
conversion from seismic data. If the sonic velocity data were converted to a rock mass 
parameter then a more accurate geotechnical model will also be constructed. 
Geostatistics comprises a collection of tools used to estimate values of any attribute of a 
mineral deposit at unknown locations, supported by its spatial continuity model. The 
geostatistical tools used on this study include ordinary kriging (Matheron, 1963) and 
sequential Gaussian simulation (Isaaks, 1990). Sequential Gaussian simulation provides 
a method of assessing the uncertainty associated with the estimated velocity, which can 
also be approximate via ordinary kriging variance. However the later must be used with 
caution given certain limitations (Goovaerts, 1997). 
The methodology presented is illustrated by a case study where the uncertainty related 
to the velocity is determined as well as the corresponding uncertainty of the coal seam 
depth. Sampling errors generated in seismic and sonic logging also contribute to depth 
uncertainty, however these errors were not considered in this study. The target coal 
seam is approximately 210m below the surface. The seam has an average thickness 
obtained from the 60 core samples) of 2.1m and is extracted by longwall retreat. The 
overlying stratigraphy is a siliclastic sequence containing at least 9 thinner but of 
variable thickness coal seams.

2 Case Study 

2.1 DATA SET 

A coal deposit was used and velocity samples were collected from 60 logged boreholes. 
Each borehole logged was sampled at 5 cm intervals along 300 m (average hole length). 
The dataset comprises 228851 sonic wave velocity samples (unit s/ft). These samples 
were obtained by geophysical logging along 60 core and non-core drill holes (Figure 1). 
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Figure 1- Location map for 60 borehole collars and 3D seismic survey boundary (black 
line).

2.2 VARIOGRAPHY 

The vertical experimental variogram for sonic wave velocity samples showed a fast 
increase at the first meters due to short scale high variability of this attribute. The 
horizontal omnidirectional experimental variograms for sonic wave velocity samples 
showed a high degree of continuity as expected since all the readings tend to belong to 
the same strata along the horizontal plan. 

2.3 KRIGING 

The sonic wave velocity attribute was interpolated using ordinary kriging (Matheron, 
1963). Figure 2 shows vertical sections sliced from the kriged block model. The 
smoothing effect is evident in the kriged 3D block model. In a shallow dipping 
sedimentary environment one might expect near horizontal layering to be evident. While 
stratigraphic units are correlated with horizontal distance there are changes in their 
physical property distribution. 

Figure 2- Vertical sections (longitudinal views along XZ plan) at various North (Y) 
coordinates extracted from the kriged block model. Gray scale represents kriged sonic 
velocity ( s/ft).
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Figure 3 shows sections along XZ plan sliced from the 3D block model representing the 
kriging standard deviation of each block. Kriging standard deviation calculated at blocks 
near drill holes provide low values as is observed in Figure 3. Light grey vertical lines 
(lowest standard deviation values) identify borehole locations.

Figure 3- Vertical sections (longitudinal views along XZ plan) at various North (Y) 
coordinates plotting the standard deviation at every block resulting from kriging. Gray 
scale represents sonic velocity kriging standard deviation ( s/ft) at each block.

2.4 SIMULATION 

Sequential Gaussian simulation (SGS) (Isaaks, 1990) was selected to be used in this case 
study. SGS provides realizations (maps) (Deutsch and Journel, 1998) of sonic velocity, 
where each realization is a possible representation for the attribute being studied. 
Simulations were conditioned to the 222648 samples collected along the 60 logged 
boreholes. The number of realisations (20) was considered enough for uncertainty 
assessing as at this number the ergodic fluctuations on the global mean reached a steady 
state, i.e. the variance of the mean stabilized. Figure 4 illustrates the same sections as in 
Figure 2 and shows the vertical sections sliced along XZ plans extracted from a 3D 
block model obtained by simulation. A granular texture on the grey scale maps is clearly 
noticed.
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Figure 4- Vertical sections (longitudinal view XZ plan) at various North (Y) 
coordinates for the sonic velocity calculated at each block of one simulation. Gray scale 
represents simulated sonic velocity ( s/ft).

Conditional standard deviation was calculated at each simulated node using the values 
obtained at this node resulting from different realizations.

2.5 ERROR DETERMINATION 

The uncertainty about kriged and simulated values can be quantified as the error. 
Assuming the error follows a normal distribution, the error interval can be calculated 
using kriging standard deviation or conditional standard deviation for the simulated 
values as follows (Christman, 1978):

Error = 
n

t
n 1,

2

where  is the standard deviation of the values; n is the number of values; t /2, n-1 is
parameter obtained from t-student distribution which depends on the confidence interval 
(1- ) and on degrees of freedom (n-1). 
The error at each location derived from the kriged or simulated models were determined 
using confidence interval with 95% probability. It means there is 95% probability for the 
estimated value to be included in the confidence interval. Figure 5 shows the histograms 
for the error at all nodes generated by kriging and simulation. Visually the errors 
obtained via kriging have less variance (smoother) than the errors calculated via 
simulation. Statistically the error mean and median for the simulation method are lower. 
Practically, for a 2.1m thick seam at approximately 210m depth this difference is greater 
than the seam thickness. This difference is due to the smooth effect associated with 
interpolation methods. For this reason, simulation measure of uncertainty is larger than 
the one provided via kriging. The ability to improve the depth estimation by greater than 
a seam thickness is considerable for providing an accurate geological model to mine 
from.
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Figure 5- (a) Histogram of error measure at kriged nodes. (b) Histogram of error 
measure at all simulated nodes. 

3 Conclusions 

This study was aimed at estimating seismic wave velocity and its associated uncertainty 
at every node of a 3D grid, based on sonic logging data. The 3D model for velocity was 
estimated using ordinary kriging and sequential Gaussian simulation.
Ordinary kriging produced the best estimate at a price of smoothing the interpolated 
values and consequently the error forecasted. Sequential Gaussian simulation (20 
realizations) produced 20 estimates at each grid node (one estimate for each realization). 
These simulated models globally resemble the real mineral deposit as they reproduce 
ergodically its spatial continuity. 
Assuming a normal distribution for the error, a value at each grid node resulting from 
interpolating using ordinary kriging and sequential Gaussian simulation was calculated. 
Simulation produced a larger error interval (due to a larger space of uncertainty) but an 
overall lower mean of errors hence SGS is recommended as a process to derive a sonic 
velocity model. 
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IMPLEMENTATION ASPECTS OF SEQUENTIAL SIMULATION

STEFAN ZANON and OY LEUANGTHONG
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University of Alberta, Canada, T6G 2G7

Abstract. Sequential simulation is used throughout the natural resources indus-
try to construct multiple equiprobable numerical models. The sequential method-
ology is straightforward, but some implementation details require further explana-
tion. This paper explores some of the implementation issues associated with choice
of: simulation path, search strategies, number of conditioning data, and the affect
of ergodic fluctuations under the Gaussian assumption.

1 Introduction

Sequential simulation (SS) (Johnson, 1987; Journel, 1993) is a stochastic modelling
approach that yields multiple realizations based on the same input data. This data
could be either continuous or categorical. Depending on the data type, sequential
indicator simulation (SIS) (Gomez-Hernandez and Srivastava, 1993), sequential
Gaussian simulation (SGS) (Isaaks, 1990), or direct sequential simulation (DSS)
(Xu and Journel, 1994; Caers, 2000; Soares, 2001) will be used. This suite of
simulation techniques has greatly expanded the tools that are available for building
stochastic models, while injecting more variability than their kriging counterparts.
The SS work-flow can be described in four basic steps:

1. Choose the stationary domain.
2. Define a path to visit every location.
3. At each location:

a) search to find nearby data and previously simulated values,
b) calculate the conditional distribution, and
c) perform Monte Carlo simulation (MCS) to obtain a single value from the
distribution.

4. Repeat step 3 until every location has been visited.

For SIS and SGS, a pre- and post-processing data transformation step is required.
In the SIS case, data are transformed into indicator variables; in SGS, data are
transformed to be Gaussian via a quantile transform or a Gaussian anamorphosis
(Chilès and Delfiner, 1999). The above methodology produces one possible re-
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alization, and more realizations can be created by choosing a different random
path.

The theory behind each form of SS has been explained numerous times (Isaaks,
1990; Journel, 1993; Goovaerts, 1997; Chilès and Delfiner, 1999; Deutsch, 2002),
but it is the details of sequential simulation that warrant further explanation. In
the publicly available GSLIB (Deutsch and Journel, 1998) programs like SGSIM or
SISIM, for Gaussian and indicator simulation, respectively, the user must specify
how key aspects of the simulation will be performed. These decisions can greatly
affect the resulting model and the associated CPU requirements. A better un-
derstanding of these decisions will help the user to improve their models while
balancing efficiency with accuracy.

2 Data and Transformation

Before simulation can be performed the model area must be defined and the input
data identified. In general, the data must come from a single underlying distribu-
tion. The mean, variance, and higher order statistics are then assumed stationary
throughout the area, that is, E{Z(u)} = m and V ar{Z(u)} = E{[Z(u) − m]2}
(Journel and Huijbregts, 1978). If stationarity is violated, the mean and variance
will change with location. A trend model can be used to describe these regional
changes, and either the trend is removed to create stationary residuals or the trend
is used as secondary data in a specialized form of kriging (Deutsch, 2002).

The underlying distribution of the modelling area, as described by the cumu-
lative distribution function (cdf), should be reproduced in every simulation. This
cdf is typically determined from the input data, but the data collection process
is rarely performed to fairly sample the underlying distribution. To correct this,
declustering (Isaaks and Srivastava, 1989; Goovaerts, 1997) can help to remove the
affects of non-representative sampling or a reference distribution, based on some
secondary data or expert knowledge, can be used as a target distribution.

SGS requires the data to be standard Gaussian with zero mean and unit vari-
ance. To achieve this, the input data cdf is transformed through the quantiles to
any other cdf. This one-to-one quantile transformation is reversible and allows the
mean, variance and shape of the distribution to be changed while preserving the
rank of the data (Journel and Huijbregts, 1978). Spikes in the cdf prevent the
one-to-one quantile transform and despiking (Verly, 1984) will be required.

In SGS, the original distribution is reproduced by reversing the above trans-
formation. This back transformation requires the data to follow the standard
normal distribution; however, statistical fluctuations are inherent in simulation.
Fluctuations in the mean and variance should be reasonable and unbiased. Small
deviations in normal space can be magnified after back transformation, particularly
if the original data follow a skewed distribution.

For example, consider a lognormal distribution, with mean and standard devi-
ation of 8.0, and its corresponding normal score distribution after transformation,
N(0, 1). The effect of deviations from the standard normal distribution can be
assessed by generating near standard normal distributions and reversing the above
transformation. For this exercise four scenarios will be considered using standard
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deviations of 0.8 and 1.2, and means of -0.1 and 0.1. When both the mean and
standard deviation are low in normal space, N(−0.1, 0.8), the mean and standard
deviation in original units are 6.64 and 5.96, respectively. Using the same mean
with the higher standard deviation, N(−0.1, 1.2), the original space mean and
standard deviation are 8.48 and 9.37. The remaining two scenarios for the high
mean, N(0.1, 0.8), and N(0.1, 1.2), result in an original space mean of 7.92 and
9.76, and standard deviations of 6.64 and 10.06, respectively. This example shows
how sensitive the summary statistics in original space are to the ergodic fluctua-
tions inherent in stochastic simulation in normal space for a skewed distribution.
One proposed solution to mitigate these effects is to apply a standard transform
to the simulated values (Journel and Xu, 1994).

3 Simulation Path

At every unsampled location, SS should use all available input data and previously
simulated values as conditioning data. No assumption is made about the order in
which these locations are visited, but the order will influence the final model. To
minimize this influence, the starting location and path should be random (Isaaks,
1990; Tran, 1994). Over multiple realizations the structure in the model will be
based on the data and not an artifact of the path.

Alternatives such as the regular path and spiral path (McLennan, 2002) have
been considered, but any perceived benefits in CPU efficiency or input data prop-
agation come at the expense of variogram reproduction and accuracy of the local
distribution. These paths, along with the random path, can suffer from poor long
range variogram reproduction, since the nearby data will preferentially be used as
conditioning data. To avoid this problem, a multiple grid search (Tran, 1994) can
be incorporated into the random path to improve variogram reproduction.

4 Searching for Local data

Before kriging can be implemented, a search is performed to identify surrounding
conditioning data. The user limits this search by specifying a search radius in each
principle direction, where the radii should equal or exceed the variogram range
to ensure adequate variogram reproduction. Data beyond this range will provide
limited information to the kriging estimate.

It is common practice to assign the input data to the grid nodes. This will
exactly reproduce the input data in the final model and allow the covariance to be
quickly calculated using a covariance look-up table. The disadvantage is that only
a single data is retained in each grid cell and the remaining data are only used to
establish the reference distribution. Also, input data cannot be preferentially used
over previously simulated values. The spiral search (Deutsch and Journel, 1998)
uses the covariance look-up table to develop a search path based on the decreasing
correlation of the surrounding nodes.

When the input data are not assigned to the grid nodes, the spiral search
can only locate previously simulated values. The super block search (Journel and
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Huijbregts, 1978; Deutsch and Journel, 1998) must then be used to locate the
input data. This second search superimposes a coarse grid over the model area,
thus creating super blocks, and the data inside each block is identified and indexed
to that block. The specified search radii are used to construct a template that
is centred on the super block containing the point to be estimated. This makes
it quick to identify the data inside of the search area. The local data is then
exhaustively searched to identify the conditioning data.

The above search routines are only concerned with identifying the most corre-
lated data and ignores their direction. The direction of the data can be taken into
account by using the octant search. The octant search divides the surrounding 3D
area into eight equal regions. When searching for data, only a maximum number
are allowed from each octant. This forces the data to come from different directions
at the expense of ignoring closer, but more redundant, data.

5 Kriging

The theory behind SS is based on using every previously simulated value and
input data throughout the simulation process (Isaaks, 1990). In practice, only the
closest conditioning data are used, up to a maximum number, to keep CPU time
reasonable. This assumes the closest data screen the data further away and the
additional information from this screened data is deemed small enough to ignore
(Isaaks, 1990). The choice of the maximum number is linked to two issues: the
speed required to generate a realization, and the accuracy of the kriged estimate
and variance.

The impact of the number of data used in kriging on CPU time is controlled
by (1) locating the conditioning data, and (2) calculating the kriging weights. For
n data, the search is proportional to n, regardless of the search type, and the
kriging system calculations are proportional to n3. So as n increases, the kriging
calculations will dominate the CPU time. For example, a 100 x 100 grid was
simulated using 300 spatially random data to track the CPU time as n varied
from 5 to 300 (Figure 1a). Initially, the change in CPU time is small, but as n
increases, the change in the CPU requirement approaches a slope of 3 on a log-log
scale.

The uncertainty in kriging is expressed by the kriging variance that is a min-
imum by construction. Reduction of this variance is only achieved through the
addition of more data. Gandin (1963) showed that the change in variance can be
bounded when the least informative datum is removed; however, modern com-
puters make the direct calculation of the change quicker than Gandin’s method
(Zanon, 2004).

For example, 100 conditioning data were randomly chosen and kriging was
performed at three arbitrarily chosen test locations (Figure 1b). As n varied from
1 to 100, the kriging estimate and variance were tracked (Figure 2). The best
results are achieved when n = 100 as indicated by the dotted lines. It is seen that
a lower limit of 8 to 10 conditioning data will provide results close to the dotted
line, with diminishing returns for n > 10.
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Figure 1. (a) The change in CPU time versus the number of conditioning data.
(b)The location of the input data and three test locations (large dots).

Figure 2. The change in the kriging mean (top) and variance (bottom) for three
locations in the area of interest.

6 Final Remarks

Once the modelling process has been completed, the following checks should be per-
formed: reproduction of (1) data values at data locations, (2) the target histogram,
(3) the target summary statistics, and (4) the input covariance model. In the
multivariate context, this list should also include reproduction of the multivariate
distribution and the corresponding summary statistics (Leuangthong, McLennan,
and Deutsch, 2004). A visual inspection of the geology can help determine if the
model adheres to the expected underlying geological structure.

Failure to satisfy these tests requires some checks and/or changes to the input
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parameters, this depends on the options available on the software being used.
Variance inflation is one cause of poor histogram reproduction. Increasing the
number of conditioning data and the search radius, along with the octant search,
may help to correct the variance at the cost of increased CPU time. The most
common form of poor variogram reproduction is in the long range structure. Using
the multiple grid search, along with increasing the number of conditioning data and
search radius, can help improve the long range variogram. One general check is to
look at the histogram and variogram reproduction of an unconditional simulation.
This may help to identify problems caused by the input data and not the program.
The assumption of stationarity may be violated and, data permitting, the model
should be divided into smaller, more stationary areas.
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GUILLAUME CAUMON1,2 and ANDRÉ G. JOURNEL1
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Abstract.
Assessment of uncertainty of global resources from sparse appraisal data is a

difficult challenge. While many algorithms have been defined to compute one single
“best” estimate a� of the unknown global value a, assessing the uncertainty calls
for the definition, necessarily subjective, of a randomization process.

Most error assessment algorithms, including bootstrap resampling, consider a
randomization of the global estimate a�. We suggest a joint randomization of both
the unknown a and its estimate a� within a Bayesian framework, given alternative
plausible geological scenarios. This allows for:

− considering a prior probability distribution for the unknown target value a
based on analog studies,

− obtaining the data likelihood by spatial bootstrap instead of using some
arbitrary analytical distribution,

− assessing the value of data in reducing the prior uncertainty, a prerequisite to
decide on new data acquisition strategies.

The proposed procedure does not call for data independence nor Gaussian
assumptions which are seldom met in practice. It accounts explicitly for alternative
geological interpretations of the quantitative data available, a critical source of
uncertainty too often ignored. The method is applied to a complex synthetic fluvial
reservoir.

1 Introduction

Notwithstanding shortage of data, assessing the uncertainty about a global at-
tribute value is difficult: such a global attribute is inherently unique, as opposed a
local estimation error for which replicates over the same study field can be found
(Journel and Huijbregts, 1978). Each reservoir is unique, and it is no trivial task
to conceive a probability distribution for any of its global or average attributes.

The definition of a confidence or a probability interval for any unknown at-
tribute value a requires some kind of randomization of the estimated value a�, the
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unknown attribute a itself, or both a and a�; by “randomization”, we understand
a process by which replicates are defined and their probability distributions eval-
uated. Two classes of uncertainty assessments of global properties are prevalent,
see (Biver et al., 1996).

Distribution for the global estimate. The Bootstrap algorithm (Efron, 1979)
repeats the global estimation procedure on alternative data sets resampled
with replacement from the actually observed data. This approach considers
the well data values to be independent one from another, which is never true
in practice. Solow (1985) adds spatial dependency specified by a covariance
matrix to the bootstrap.

Haas and Formery (2002) use an analytical expression of Efron’s bootstrap
approach: the set of independent facies samples n given a particular facies
proportion x follows a multinomial distribution px(n); the authors show by
Bayesian inversion that the distribution pn(x) of proportions given the sam-
ples is Dirichlet, assuming a prior distribution p(x) of facies proportions either
uniform or Dirichlet. Haas and Formery (2002) further propose to modify
the parameters of the posterior Dirichlet distribution pn(x) to account for
data redundancy as evaluated by indicator kriging; this is questionable since
the multinomial distribution px(n) used in the analytical development is not
multinomial if the samples n display spatial dependence.

Moreover, the bootstrap and the Dirichlet distribution cannot easily account
for preferentially located data and incorporate local secondary information as
provided by seismic data.

In the spatial bootstrap method (Journel, 1993; Norris et al., 1993), alterna-
tive sets of data are resampled from whole simulated fields. This resampling
method accounts for any prior model of spatial dependency between the data,
and allows for integration of secondary information. Recently, Journel and
Bitanov (2004) have applied the spatial bootstrap for assessing the uncertainty
of net-to-gross estimates from early exploration data.

Distribution for the unknown true value. Bayesian approaches start with a
prior probability distribution for the unknown global value A, which is then
updated by a data likelihood typically assumed Gaussian. This allows incor-
porating one’s expertise into the uncertainty assessment through the prior
distribution. The main limitation of Bayesian methods lies in the specifica-
tion of a realistic data likelihood: traditionally used Gaussian models fail to
recognize the typical complexity of the relations between data and between
the data and the true value, e.g., non-linearity and heteroscedasticity.

2 Global uncertainty assessment

We now propose a workflow which reconciles the two previous approaches, over-
coming their respective drawbacks. This workflow considers three jointly related
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Figure 1. Flow chart of the proposed procedure, see text for details. Initial well
location is figured by a star. Circles represent alternative well locations.

sources of uncertainty and the corresponding random variables denoted with cap-
ital letters: S for the geological scenario, A for the true global value, A� for its
estimate.

Geological scenario S. The lack of subsurface data leaves room for various pos-
sible interpretations of the geological setting of the reservoir under study. We
believe the sedimentological and structural interpretations to be the major
sources of uncertainty and propose to account for it through a set of deemed
plausible geological scenarios {s1, . . . , sK}, considered as the possible out-
comes of a discrete random variable S. A scenario sk could reduce to a mere
variogram model, or, better, consist of a prior conceptual image of spatial
patterns as depicted by a training image (Fig. 1, 1st row). We suggest to use
training images and the corresponding multiple point geostatistical formalism,
since these can carry geological interpretation more comprehensively than
variograms (Guardiano and Srivastava, 1993; Strebelle, 2002).

The estimator A�. The observed data set d0 is processed into an estimated
value A� = a� of the unknown global value a. That estimation process can
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be represented by a function ϕ(d, sk) mapping any particular set of data d
into some “best” estimate A� = a� under a geological scenario sk. Typically
in hydrocarbon application, the function ϕ(d, sk) relies on a seismic-to-well
calibration, (Fournier and Derain, 1995; Caers and Ma, 2002; Journel and
Bitanov, 2004).

One way to randomize the estimate a� is to randomize the data d themselves.
Therefore, we will use a probabilistic notation (capital letter) for the data
event, with D = d0 denoting the actual data values observed. In our case,
these data comprise both seismic impedance and well observations. D = d
denotes any alternative data set, where some aspect of the data is changed.
In this paper, we use spatial bootstrap (Journel, 1993; Norris et al., 1993)
to obtain such alternative data events: for a stochastically simulated field of
known global value a, well locations hence well values can be randomized
under some drilling constraints (Fig. 1, 3rd row). For each new set of well
locations, the estimation procedure can be repeated, providing the likelihood
probability P (A� = a�|A = a, S = sk) for the estimate a� to occur, given the
true value a and the geological scenario sk.

Ideally, randomizing the estimate a� into the random variable A� would call
for randomizing both the data d0 into D but also the estimation algorithm
ϕ(·). In this paper, the estimation algorithm ϕ(·), the seismic data and the
well drilling strategy are frozen.

The unknown value A. Most error assessment algorithms, including bootstrap
resampling (Efron, 1979), consider only a randomization A� of the estimate
a�. We suggest that the unknown global value a should be simultaneously
randomized into a random variable A, conditionally to each geological scenario
S = sk, k = 1, . . . , K (Fig. 1, 2nd row).

Selecting a prior probability P (A = a) for the random variable A to take
any value a is a delicate task, since that prior probability should almost
never be a uniform distribution. Instead, we consider a different prior prob-
ability distribution P (A = a|S = sk) specific to each geological scenario
sk, k = 1, . . . , K. Such a distribution can be for instance obtained from
sedimentological analogs.

BAYESIAN INVERSION

For each geological scenario sk, the probability distribution P (A = a|S = sk)
for the unknown attribute A to take any value a can be updated by the “best”
estimate retained a� = ϕ(d0, sk) using a Bayesian inversion (Fig. 1, 4rd row):

P (A = a|S = sk, A� = a�) =
P (A� = a�|S = sk, A = a) · P (A = a|S = sk)

P (A� = a�|S = sk)
(1)
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3 Application: net-to-gross uncertainty in a channelized reservoir.

The proposed methodology is now applied to the exhaustively known Stanford V
fluvial reservoir (Mao and Journel, 1999). To mimic an actual appraisal situation,
two preferentially located wells and an impedance cube have been extracted from
the reference reservoir model. The NTG observed along the wells is .58, a value
higher than the true and unknown reservoir NTG 0.48, because the two appraisal
wells are located in a low impedance area. The goal of the study is to assess from
this data set d0 the uncertainty of the reservoir net-to-gross (NTG) defined as the
proportion of sand.

3.1 CHOICE OF GEOLOGICAL SCENARIOS

Two geological scenarios have been retained for this study, both corresponding
to a channelized reservoir. The first scenario s1 is represented by a conceptual
training image with a NTG value of 0.46, see Figure 2-B. The corresponding prior
probability distribution P (A = a|S = s1) was chosen to be triangular defined
between 0.24 and 0.68 with a mode of 0.46.

The second scenario, deemed “pessimistic”, assumes a lower channel density.
This scenario s2 is represented by a training image having a NTG of 0.35. The
corresponding prior distribution P (A = a|S = s2) is a triangular between 0.13 and
0.57, with a mode of 0.35.

3.2 SPATIAL BOOTSTRAP

For the geological scenario s1, 20 classes {a1, . . . , a20} of possible NTG values
were considered. Two conditional stochastic realizations were generated for each
of these NTG classes using the snesim algorithm (Strebelle, 2002). Within the
area of 20% lowest vertically averaged impedance values, 600 alternative sets of
two wells were resampled from each of these 2 × 20 = 40 simulated reservoirs. An
estimation based on a co-located Bayesian seismic-to-well calibration (Journel and
Bitanov, 2004) was applied to these 20 × 2 × 600 = 24, 000 alternative data sets
to obtain 20 likelihoods P (A� = a�|A = am, S = s1) used on the right-hand side
of Equation (1). This procedure was repeated for scenario s2.

3.3 PROBABILITY INTERVALS OBTAINED

The specific estimation method by Journel and Bitanov (2004) applied to the
appraisal data set d0 under scenarios s1 and s2 yields NTG estimates of 0.43
and 0.36, respectively. The Bayesian inversion (1) produces the final probability
distributions (bar charts) displayed in Figures 2-C,D.

Under the geological scenario s1, the procedure reduces the prior uncertainty,
but does not entail any shift of the distribution. Under scenario s2, the distribu-
tion is shifted towards the higher NTG values. This is explained by the relative
concordance between the scenario s1 (NTG � 0.46) and the actual Stanford V
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Figure 2. A- Appraisal data set used for the study. B- Training image
corresponding to scenario s1. C,D- Results obtained with scenarios s1 and s2.

reservoir 0.48 NTG, while the scenario s2 (NTG � 0.35) is clearly pessimistic yet
with a high appraisal wells’ NTG of 0.58.

4 Conclusion

As opposed to more traditional approaches, the proposed workflow (1) does not
call for independence nor Gaussian assumptions which are rarely met in practice,
and (2) considers an uncertainty model based on the joint randomization of both
the true global value and its estimate. This approach is not specific to a particular
multiple point or variogram-based simulation algorithm; this leaves room for the
practitioner to choose the simulation method best suited to the problem at hand.
Modeling of non stationary variables is achieved as far as permitted by the retained
simulation method (e.g., its ability to account for vertical proportion curves or 3D
proportion cubes).

The Bayesian updating suggested calls for a prior distribution for the global
unknown variable, one which can be obtained from analog studies. The data
likelihood is obtained by spatial bootstrap, which accounts for geological inter-
pretation and the consequent model of data dependence. Such spatial bootstrap
allows assessing the value of quantitative data in reducing prior uncertainty, a
prerequisite to decide about new data acquisition strategies.

As with any Bayesian approach, the proposed workflow depends heavily on the
prior probability distribution retained for the true target value, more so as the
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Abstract

Over the last several years, Multiple Point statistical Simulation (MPS) has emerged as a 
practical tool in the characterization and modeling of petroleum reservoirs. In this paper, 
we describe recent developments in facies modeling at ChevronTexaco and illustrate 
this with a case history of its use at a ChevronTexaco operated field. Our approach is 
based on our implementation and continuing development of MPS. Our MPS workflow 
models depositional facies in a four step process. 

The first step is the construction of the Training Image used by MPS algorithms. The 
second step is the compilation of a three-dimensional azimuth field. This information 
field imparts areal geological trends at the scale of the reservoir model and is derived 
from well and seismic information together with sub-regional geological trends. The 
third step is to calculate a facies probability cube. The cube defines the facies 
proportions in the model and is derived from well and seismic information. The final 
step is the application of the MPS. The result is a realization of the facies model with all 
the characteristics of the three components described.   The workflow facilitates 
construction of multiple realizations of the model. 

Uncertainty in facies occurrence is not, however, limited to multiple realizations.  
Provided that the training image is sufficiently rich with a sound knowledge of the 
geology, correctly represented, a single training image can be use and multiple azimuth 
fields and facies probability scenarios incorporated into the modeling.  This latter 
technique will be illustrated. 

Our approach results in models that represent geology very well. Obtaining this 
characteristic is not solely a function of the algorithms and workflows used. Sound and 
detailed sequence stratigraphic analysis is an absolute prerequisite, even where well data 
is sparse. 
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1 Introduction 

The construction of hydrocarbon-reservoir geocellular models for flow simulation 
requires the integration of diverse disciplines in geophysics, stratigraphic geology and 
geostatistics. Commercially available modeling programs, in general, perform an 
excellent job of modeling continuous properties, such as porosity and permeability, but 
modeling categorical properties such as geologic facies presents more challenging 
issues. Practitioners debate the most appropriate geologic facies to model, with 
depositional facies being favoured by the stratigraphers and lithofacies (or electrofacies 
or petrofacies, depending on terminological details) by petrophysicists. Further 
complications arise if seismic data are used to condition the model.

Multiple-Point geostatistical Simulation (MPS) offers both the facies geometry realism 
of object-based Boolean modeling methods and the seismic and well conditioning 
capability of indicator simulation methods.  ChevronTexaco has implemented the MPS 
modelling code developed by the Stanford Center for Reservoir Forecasting as a 
proprietary plug-in to the Gocad environment, together with numerous algorithmic 
improvements

The need for some sort of facies division in hydrocarbon reservoir geocellular modelling 
is generally accepted and has been discussed by many authors, particularly Deutsch and 
Journel (1993). In summary, different geological facies have different spatial statistics 
and petrophysical properties and these need to be honoured in the modelling process. 

2 Depositional Facies 

In this paper, we discuss the use of Multiple-Point geostatistical Simulation to model 
depositional geological facies. We define the latter following Walker (1992) as “a body 
of rock characterized by a particular combination of lithology, physical and biological 
structures that bestow an aspect different from the bodies of rock above, below and 
laterally adjacent.” The depositional facies in each well section is determined by expert 
geologic analysis of well data. Ideally, core data are required, but these are never 
comprehensive enough for complete characterization in oil-field cases. Practically, 
geologists use a combination of core and wireline data and supplement this with outcrop 
and other analogue information: we follow this methodology herein. Modern well-log 
suites that include micro-resistivity imaging tools can give us resolution approaching 
that of core data, when properly calibrated, but these were not available for this study.

The main advantage of using depositional facies for reservoir modeling over the other 
types of rock facies is that we often have a good knowledge of geometry and spatial 
relationships of the depositional facies interpreted in wells derived from outcrop and 
sub-surface analogues; with multiple-point geostatistical methods we can represent these 
in our models.

The main disadvantage in using depositional facies for modeling is that the reservoir 
properties inside a particular facies volume are not well defined; there is a significant 
uncertainty in porosity and permeability. Our workflow addresses this uncertainty 
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directly in the modelling of the continuous properties but that is beyond the scope of this 
paper.

Previous workers have used indicator simulation or Boolean simulation techniques to 
model depositional facies away from well control. The advantages and disadvantages of 
these techniques have been discussed elsewhere and do not require further debate here.

3 Multiple Point Geostatistical Modeling and Simulation (MPS) 

The theory and the mechanics of the MPS method have been described elsewhere 
(Guardiano and Srivastava, 1993; Strebelle and Journel, 2001; Strebelle, 2002). Other 
workers (Strebelle, Payrazyan and Caers, 2002; Liu et al, 2004) have described its 
application to binary and three-fold facies subdivisions.

The MPS method uses a three-dimensional training image to derive the probability of a 
particular facies occurrence in a modelling cell and this probability information is used 
in a statistical simulation of the facies occurrence in the modelling grid.

The training image is a three-dimensional conceptual model of the depositional facies 
with their correct shapes and areal associations; it captures complex spatial relationships 
between multiple facies, and non-linear shapes such as sinuous channels. It is analogous 
to the traditional geological block diagram often used to give a 3D rendering of the 
geology. The training image contains no absolute location information and it defines the 
appropriate relative scales present in the model (including areal extent, facies body 
thicknesses and approximate facies proportions). It is compiled by workers’ knowledge 
of the depositional environment and draws heavily on outcrop and subsurface analogues. 
It does not require a tie to well data. Object-based modeling techniques are well suited 
to construct the training image cube. When modelling within the same geological 
environment, only one training image is required, containing a multiplicity of facies and 
sufficiently rich in the variability of these facies; sufficient variation of facies 
dimensions and associations must be present in the training image to represent the 
possible ranges interpreted to be present in the geology. If our knowledge of the geology 
is limited such that a wider range of uncertainty in facies dimensions is present, then 
multiple training images may be required and would be treated as an uncertainty 
parameter. In this example we used a single training image. 

The facies and the facies associations defined by the training image can occur anywhere 
in the model. This is the condition that the multiple-point process simulation is 
stationary. To modify this condition of stationarity, further probability control is 
required in the multiple-point statistical simulation and we have developed a four-stage 
workflow to achieve this (Figure 1). The final probability field used for the facies 
simulation is generated by a combination of the training image, an azimuth field, which 
modifies the geometry of the training image to conform to local geology, and a facies 
probability cube, which provides soft control on the local facies proportions. The facies 
probability cube is derived from our geological interpretation of the available data 
including well logs, seismic and regional geological knowledge. 
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Figure 1: Workflow diagram 

We will describe the application of this workflow to a case history. 

4 Case History Geological Setting 

Our example is a reservoir model built by ChevronTexaco during 2003 for the purposes 
a field development planning. The field is located offshore West Africa. The 
Cretaceous-age reservoir was deposited in a transitional setting with terrestrial-to-
marine paleo-environments succeeding each other, controlled by sea-level changes. 
Sediment supply was highly variable, resulting in mixed clastic and carbonate lithology. 
The complexity of this reservoir has presented a major challenge to geological 
modelling: a clear understanding of the stratigraphy and depositional facies 
interpretation is required before any modelling can begin. 

Figure 2: a) Map view of Training Image; b) Section view of Training Image, flattened top and base; c) 
Legend for Depositional Facies 
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Figures 2 and 3 show the training image we have constructed, using simple three-
dimensional-object building blocks. The map view in Figure 2 shows the basic areal 
facies architecture with terrestrial environments (red-beds) on the right and marine 
environments (shoreface and shelf) on the left with a lagoonal environment transitional 
between the two. Seasonal channels cut through the red-bed sequence to deposit clastic 
sediments both in the channels themselves and in the lagoon as proximal and distal 
lobes. Each of these depositional facies can be broken down into separate sub-groups 
but that would result in complexity too great for practical modelling. The hinterland 
beyond the right-hand extreme of the model was mostly arid and periods of drought 
allowed the build-up of carbonates in the lagoon and the deposition of carbonate sands 
and muds in the offshore. The variability of reservoir properties was taken into account 
as an uncertainty in the continuous property modelling stage using discrete scenarios. 

Figure 3: Cut-away block diagram view of flattened training image showing the depositional facies 
distribution. See Figure 2 for facies legend. 

To construct the training image, we first populate a 3-dimensional grid with facies belts 
such as the red-beds, lagoon, shoreface and shelf. We then use an object simulation 
technique to add objects such as channels and attach lobes to the distal end of the 
channels; rules for facies associations are imposed to govern the superposition of facies 
and the co-existence of facies; for example, channels cut through red-beds and lagoon 
but do not reach the shoreface and shelf; distal lobes are present at the channel mouth 
and these lobes prograde into the lagoon but are not associated with red-beds or 
shoreface. Deposition facies dimensions (such as channel widths and thicknesses, 
channel amalgamation, width of the shoreface etc.) are contained in the training image, 
which must also have sufficient variability in facies dimensions to cover the range 
interpreted to be present in the sub-surface; but we are also constrained by the need to 
keep the training image from growing too large: this can increase simulation run-times, 
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which are dependent on building a search-tree to determine multiple-point facies 
probabilities.

The training image was built without any assumption about its orientation in space 
(except for the sense of the vertical direction). This allows us to use the same training 
image for all the reservoir zones, as we interpret all zones to have the same geological 
model, but as explained below, we will incorporate differing facies proportions. Our 
entire model consisted of 15 reservoir zones defined within sequence-stratigraphic 
flooding surfaces and sequence boundaries; a unique stratigraphic interpretation was 
made for each zone of the model.

5 Application of the Workflow 

The workflow is illustrated in Figure 1 and is implemented in ChevronTexaco’s version 
of the Earth Decision Science’s Gocad visualization and modelling software. We have 
described the construction of the training image above.  The model is constructed in a 
three-dimensional stratigraphic grid which conforms to the interpreted stratal surfaces 
defining the model. These stratal surfaces are generated from depth-converted seismic 
horizons with proportional layering between. 

The second stage is the construction of the azimuth field, which imparts the sense of the 
spatial orientation of the training image with respect to the model: the azimuth field 
effectively twists the training image to allow for local variations of depositional strike. 
The field can be fully 3D, but in our example we do not have that degree of resolution; 
rather, we made a facies map interpretation for each reservoir interval using well and 
seismic information together with sub-regional geological trends. We have constructed a 
two-dimensional azimuth field for each reservoir zone.

Figure 4 shows the process to construct the azimuth field for each zone. First, lines of 
constant azimuth are drawn using the geologist’s facies map as a guide. Standard Gocad 
functions are used to convert the information from a vector field to a property on the 
stratigraphic grid used for modelling.  The resulting azimuth field is not a unique 
interpretation and this uncertainty could be modelled by generating several versions of 
the azimuth map but for simplicity, we have only worked with a single scenario for each 
zone.

Figure 4: Azimuth Field for one grid layer (map view with same dimensions as figure 2). a) Vector field 
derived from lines of constant azimuth; b) Grey-scale representation of azimuth property on modeling grid; c) 

grey scale for b). Well locations at the top of the model are shown as circles. 



RESERVOIR FACIES MODELLING 565

The third stage is the construction of a facies probability cube based on a 
ChevronTexaco proprietary method.  The inputs to this process are as follows. For each 
stratigraphic interval studied, we construct a vertical facies proportion curve. This 
defines the facies proportion for each layer of grid cells and is based partly on well 
information and partly on geological interpretation.  We also provide a depocenter map 
to define where the facies are deposited in that interval. A proprietary algorithm 
combines this information to generate a cube of facies probabilities; in our example, we 
have seven facies and a probability value for each is required in every grid cell. Figure 5 
shows examples of a horizontal slice through the probability cube showing the values 
for the seven depositional facies. These probability values impose a strong constraint on 
the multi-point simulation in its early stages. For example, the shelf facies is constrained 
to exist only in a restricted region in the west of the model. The facies probability 
changes according to the different facies distribution interpretations for each reservoir 
zone. For example, the channel and lobe facies are not present in some reservoir 
intervals and the corresponding facies probabilities are set to zero to facilitate this. The 
facies probability cube has to be consistent with the azimuth information; they are not 
independent quantities: the azimuth provides the correct orientation of the facies 
depositional trends and the probability information determines the correct facies 
proportions in the model. 

Figure 5: Facies Probability Cube for single grid layer (map view with same dimensions as figure 2) and grey-
scale. Well locations at the top of the model are shown as circles. 
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Figure 6: Middle case facies (MPS) realizations (map view with same dimensions as figure 2) for three model 
layers. Centre panel grid layer corresponds to that shown in figures 4 and 5; see figure 2 for facies legend. 

Well locations at the top of the model shown as circles. 

The final stage of the workflow is the multiple-point geostatistical simulation. This 
process combines the probability information from the facies probability cube, the 
training image and facies interpreted in the wells to produce a simulation. Figure 6 
shows three layers in different reservoir zones of the final model. The impact of the 
facies probability cube is clearly demonstrated by the different facies proportions 
realized: the shelf and shoreface facies are absent in the third layer.  Multiple 
realizations with different seeds are possible; therefore, the results are reviewed 
carefully to ensure that our geological ideas are correctly represented in the resulting 
model. Recycling through the workflow may be required to adjust facies proportions. 
The idealized facies shapes of the training image are considerably modified in the 
simulation process but the overall facies geometry and associations are preserved. The 
same training image is used in all 15 reservoir zones.

The training image is a very powerful tool that, with the multiple-point geostatistical 
simulation, can allow the construction of realistic geological models. This process is 
highly dependent, however, on the use of a correct depositional model of the geology. 

6 Incorporation of Facies Proportion Uncertainty 

It is standard practise within ChevronTexaco to make multiple geocellular models for 
our reservoirs to capture uncertainty in the geology and reservoir properties. In this 
paper, we illustrate the process to capture the uncertainty in facies proportions.

The sparse well control (Figure 5) does not allow us to define the facies distribution at 
the level of detail required for flow simulation. We have therefore postulated three 
scenarios to represent low, middle and high cases of reservoir occurrence. The reservoir 
quality rocks are contained within the shoreface, channel and lobe facies. For each 
reservoir zone, three facies proportion scenarios were constructed using facies 
probability cubes. The criteria for differentiating these were based on our geological 
knowledge of similar fields nearby and analogous outcrops. This is a subjective process 
and the rigorous determination of the correct assignment of 10%, 50% and 90% 
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cumulative probability thresholds is beyond the scope of this study and may not be 
possible.

Examples of the three cases of reservoir occurrence for one reservoir layer are shown in 
Figure 7, all based on the same training image. All three realizations have the same 
results at the well locations as the facies data at the wells are honoured explicitly in the 
MPS process. In the northern well, for both low and middle cases, a distal lobe 
approaches the well location closely, whereas the high case shows the location to be 
clearly separated from a lobe. This can be explained by considering the three-
dimensional nature of the simulation. 

Figure 7: Reservoir Proportion Uncertainty: low, middle and high cases for reservoir facies uncertainty for 
one reservoir layer (middle example in Figure 6). Map view with same dimensions as figure 2; see figure 2 for 

facies legend; well locations at the top of the model shown as circles.

7 Conclusion 

This paper has illustrated a real case example of the use of Multiple Point geostatistical 
Simulation to model complex reservoir facies.  In summary: 1) The MPS algorithm has 
been improved to permit a single training image, which is constructed for a particular 
geological environment to be used to model multiple stratigraphic zones. 2) A relatively 
large number of facies have been employed, which has enabled the complexities of the 
reservoir to be well represented in the model. 3) A workflow has been used that allows 
the integration of geological facies’ geometry, associations and heterogeneity with 
varying azimuth and facies proportions and 4) the workflow allows distinctly different 
geological scenarios to be modelled, permitting an improved understanding of the 
impact of uncertainty in facies distribution on the reservoir continuity and pore volume. 
The MPS algorithm is implemented in ChevronTexaco’s version of the Earth Decision 
Science’s Gocad visualization and modelling software and is being use extensively 
throughout ChevronTexaco’s earth science community.

The MPS method results in models that represent geology very well. Obtaining this 
characteristic is not solely a function of the algorithms and workflows used. Sound and 
detailed sequence-stratigraphic analysis is an absolute prerequisite, especially where 
well data are sparse. 
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Abstract.

Classically, the non stationary lithofacies distribution inside reservoirs is described by 
the 3D distribution of their proportions. This approach is very attractive because 
proportions have a physical meaning. Moreover their 3D distribution reflects the 
qualitative information coming from geology or the quantitative constraints derived 
from seismic attributes. In models such as the truncated gaussian, the proportions are 
directly used in the simulation process. In object-based models, such as the Boolean 
model, the problem is more complex because the proportions are the results of two sets 
of parameters: the object description (shape and dimensions) and their 3D distribution.
The non stationarity in an object-based method can be reproduced either by using a non 
stationary object description or through a regionalized distribution of the objects. In this 
paper, we focus on the latter approach.
The main contribution of the proposed method is the fact that the fit of the intensity 
point distribution is obtained globally in one computation step for any non stationary 
facies distribution. The interest is to constrain, a priori, the lithofacies simulation by a 
given 3D proportion distribution and not by convergence during the simulation process. 

1 Introduction 

Object-based models are generally used to reproduce the sedimentary units composed of 
geological bodies showing characteristic shapes such as channels, and for which the 
connectivity has to be honored. These models come up against several working 
difficulties. First, the definition of the objects in terms of probabilities, done by 
mimicking the current fluvial deposits, is inferred only from incomplete observations: 
2D for horizontal plane or vertical sections from analogues, or 1D from well logs. 
Second, the distribution of these objects depends on the solution of the first. Indeed, the 
Boolean parameters are only accessible indirectly because the resulting image depends 
both on the objects characteristics and on their distribution: the same lithofacies 
proportion can be obtained using different objects with adapted distribution intensity. 
However these proportions are considered as classical information for sedimentary unit 
simulations.
As a general rule, the lithofacies proportions are variable in 3D. Their distributions have 
been displayed as a matrix of vertical proportion curves (VPC) (Beucher, 1992). These 
proportions contain the variability of the lithofacies distribution on a large scale. In the 
classical approach of the truncated gaussian these proportions represent the mean  
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quantities of the lithofacies in the studied area. They are obtained by computation from 
well data and, if available, additional information either qualitative (knowledge of 
geologically homogeneous zones) (Eschard, 2002) or quantitative (in case of correlation 
between some lithofacies proportions and seismic-derived attributes) (Moulière, 1996). 
Since these proportions integrate a large part of the information needed for the 
construction of a geological image, it is therefore logical to evaluate the boolean 
parameters from this 3D proportion matrix. 

2 Boolean Parameters 

The Boolean model is the random set obtained by the union of objects (or objects A)
with a given distribution, independent and located according to a Poisson point process 
P: 3( ) ;          X A x x

x
The model is entirely defined by the knowledge of two sets of parameters: the Poisson 
point process parameters and the object definition.
In this framework, local proportions can be accounted for by making object parameters 
variable in space, or by using a regionalized distribution of objects of the same family. 
In this paper, all the objects belong to the same family, their characteristics do not 
depend on their position; the non stationarity has been reproduced by a non stationary 
distribution which corresponds to a Poisson point process whose intensity f(x) depends 
on location x. This function is positive and the mean number of points belonging in a 

domain B is equal to ( )
B

f x dx .

Two examples of realizations of point processes are shown on figure 1, the first one with 
constant intensity, the second one with regionalized intensity.

Figure 1 - Realizations of Poisson point process – a) using constant intensity b) using 
decreasing intensity from top to bottom.

Under these conditions, the distribution of the objects is characterized by its Choquet 
capacity, which is the probability for any compact set K to intersect a set S:

( ) ( )ST K P S K

The set K can be chosen as complex as wanted, but for practical reasons, in particular as 
available data are reduced to lines, and for fitting purposes, we only work with a set K
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reduced to a point. For a set composed of a pair of points, the computed probability 
corresponds to the covariance of the boolean model. In that case the fit of the 
experimental indicator variograms gives another relationship between A and f(x). But 
this relationship is only useful in a stationary case (Benito, 2003). The computation of 
this probability on multipoint sets  can be performed when a complete image is available 
in Schmitt (1997).
When K is reduced to a point, the Choquet capacity gives particular probabilities. 
When S = A(x), we obtain p0(y), the probability at any point y, associated to an object 
located at x, named “object-probability”:

( ) 0({ }) ( ( ) { } ) ( ( )) ( )A xT y P A x y P y A x p y

When S = X, we obtain p(y), the probability associated to the boolean set, named 
“boolean set probability”:

({ }) ( { } ) ( )XT y P X y p y

3 Fitting the Poisson point intensity 

The fitting process consists in estimating the Boolean intensity f(x) knowing the “object 
probability” p0 and the “boolean set probability” p.

The “boolean set probability” can be considered as the convolution of the intensity f by 
the object-probability p0 (Schmitt, 1997 and Benito, 2002): 

3

3

3

( )

0

( ) ({ }) 1 exp( ( ) ({ }) )

1 exp( ( ) ( ( ) { } ) )

1 exp( ( ) (( ) ) )

1 exp[ ( )( )]

R

R

R

X A up y T y f u T y du

f u P A u y du

f u P u y A du

f p y

The regionalized intensity s(x) can then be directly obtained by taking the Fourier 
transform (FT) of the previous equation and inverting the resulting expression: 

0 0
ˆˆ ˆ( ) ( )( ) ln(1 ( )) ( ) ( ) ( )

FT
s x f p x p x s f p

The difficulty is that the FT of p0(y) may attain very small values at some frequencies, 
making the intensity diverge. A very simple way to stabilize this operation is by means 
of the Wiener filter, a classical method used in digital image processing (González, 1992 
and Pratt, 1978). Supposing the convolution affected by a white noise not correlated 
with the intensity, this filter gives the best estimator of the intensity function in the sense 
of the minimum mean square error. In this approach, the intensity and the noise are 
considered to be random functions of known means and spectral densities. For further 
computations it has been shown that the corresponding term can be taken as a constant 
R. Thus the estimation of the function f can be written as: 
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*
0

2
0

ˆ ( )ˆ ˆ( ) ( )
ˆ| ( ) |

p v
f v s v

p v R
         (1)

By this way, one intensity function is obtained for each couple (object-input 
proportions).

4 Input probabilities 

The two probabilities p and p0 involved in the fitting process are determined from the 
data set. In the computations, they are digitized on cells whose size is the same as that of 
the simulation grid. 

4.1 Object probability 

By definition it is the probability that a point near the germination point (or object 
origin) is covered by an object of the chosen family. This probability depends on the 
object shape and on the distribution laws of its parameters.
 - From a practical point of view, the object shape is chosen according to 
geological qualitative information. The choice of the object depends on the working 
scale and on the available information. As this type of model is used for simulating 
fields composed of a relatively large number of objects with similar characteristics, a 
mean shape should be defined. For fields where very few channels are available, and 
also depending on the working scale, other simulation models would be more 
appropriate (Lopez, 2001). Depending on the lithofacies to be simulated as objects, very 
simple objects can be sufficient, parallelograms or ellipsoids for instance. But any kind 
of shapes can be used, if their different description parameters can be fitted from the 
available dataset; however the more complex the shape, the longer the conditional 
simulation.
 - Knowing the different description parameters, the object probability can be 
evaluated. For an object of constant size, the object probability is equal to 1 near the 
germination point (or origin of the object) in the neighborhood corresponding to the 
object size, and 0 elsewhere. Figure 2 presents the 3D probability of an object of 
irregular shape on which the 3 main dimensions are chosen according to uniform laws. 

Figure 2 - Example of object probability (from 0 in white to 1 in black) - 3D view, 
vertical and horizontal sections. The object origin is located at the center of the top 

surface.
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4.2 Boolean set probability 

By definition it is the probability that a point in a domain belongs to the simulated 
lithofacies. This probability is indirectly known by its mean within a given volume. As 
stated previously, the lithofacies distribution is in fact given by the proportions that are 
the means of the lithofacies indicators computed on given volumes. We are not actually 
looking for a mean proportion on several realizations corresponding to the “point” 
indicator probability but for a spatial mean on each realization involving a support 
notion when computing the initial data and also when analyzing the results. In fact the 
proportions are obtained in a grid whose cell sizes are larger than those of the simulation 
grid. An example of the different terms is presented on figure 3. Given a very smooth 
3D proportion model (figure 3a) and ellipsoidal objects, several simulations can be 
generated. The resulting proportions (figures 3-b) are computed for each simulation on a 
large grid (one proportion cell for 100 simulation cells).They globally present the same 
behavior as the model with a lot of variations. The same observations can be made on 
the probability map computed for all the simulations on the simulation grid (figure 3-c).

Figure 3a - Input proportions in the model 

Figure 3b - Proportions obtained  from 3 different realizations 
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Figure 3c   - Probability estimated for 10 different realizations on the simulation grid 

As a first approximation and based on these previous experimental results, the 
probability in each cell of the simulation grid, has been taken equal to the mean known 
in the corresponding proportion cell. 

5 From 3D proportion to 3D intensity 

The 3D intensity computation is performed on the simulation grid. Knowing the object 
family and therefore its probability map (p0), the estimation of signal f using  formula 
(1) is performed and gives a 3D grid of values.
In the model, this parameter corresponds to the Poisson point process intensity which is 
a positive or zero number equivalent to the number of points falling into a given 
neighborhood. As the computation is performed without any constraint on the 
positiveness of the different terms, the resulting values can be negative in particular in 
areas where the simulated lithofacies is absent. The smoothing process chosen for 
correcting these values is simple to use and preserves the global proportion. However 
the levels where the lithofacies disappears are not clearly delimited; smoothing gives 
positive values on the borders and thus after the simulations are completed the resulting 
proportions can be positive. 
 Thus, before using the 3D proportion it is important to specify the meaning of the 
proportion data and their degree of confidence. Indeed if a null input proportion has to 
be strictly honored, this means indirectly that the data at these points are deterministic. 
Thus, before running a simulation, particular constraints such as knowledge of borders, 
have to be specified first. 

6 Some applications 

All the following simulations are conditioned by well data (Lantuéjoul, 2001) but we 
only focus on the non stationary distribution aspect.
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6.1 Simulations of shaly lenses 

In this example, the unit is composed of two main lithofacies: a reservoir lithofacies and 
a barrier lithofacies that modifies the fluid flow. The barrier lithofacies is composed of 
shaly lenses that can be simulated as ellipsoidal objects. The 3D distribution of this 
lithofacies is presented on figure 4, first using a 3D block image then through 4 vertical 
proportion curves. On this image we can see the non stationarity, in particular the depth 
variation of the shale levels. 
Assuming that the lenses are half ellipsoidal objects, the 3D intensities are computed 
and presented as VPC (figure 5). The intensity distribution is of course similar to the 
proportion distribution.

Figure 4 - 3D Shale proportions - a) in a 3D block - b) in 4 vertical proportion curves.

Figure 5 –3D intensity obtained with objects of ellipsoidal shape. 

Using the mean number of objects obtained from the previous computation, simulations 
can be performed.  One simulation is presented on figure 6.
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Figure 6 – Simulation of shaly lenses 

The proportions computed on different simulations (figure 7) present, as expected, 
fluctuations around the distribution of the input data. 

Figure 7 – Proportions computed on 2 different simulations. 

6.2 Simulations of channels 

In this second example, the problem is to simulate channels that are objects crossing the 
whole field at the studied scale. Thus it is impossible to give an object length. Using the 
previous approach, we only consider a 2D vertical section, more precisely a plane more 
or less perpendicular to the flow. On such a section the channels are limited bodies 
whose non stationary distribution can be evaluated as previously described. The 
proposed approach consists in fitting the Boolean parameters on a representative  
vertical section and then using the third dimension parameters (orientation, horizontal 
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shape) to propagate the channel from this section to the whole volume. This method can 
only be applied to deposits where channels run practically parallel to each other, that is 
when the number of channels is more or less constant in the whole working area.

For illustration purposes, a synthetic dataset has been created. In the 2D vertical section, 
the channel facies (in black) is located at two distinct levels (figure 8) and its proportion 
decreases from west to east.  A simulation has been performed after computing the 2D 
intensity (figure 9). The result is satisfactory even though there is room for improvement 
in fitting the horizontal parameters. 

Figure 8 - Vertical proportion curves along a cross section perpendicular to the flow

Figure 9 - Simulation of channels conditioned by the previous vertical 2D non 
stationarity proportion curves 
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7 Conclusions and perspectives 

Given the object distribution, the approach presented here to estimate the Poisson 
intensity from 3D proportions gives satisfactory results although several improvements 
and extensions can be considered.

- For the time being, the proportions are predicted by kriging. Their simulation 
would be more appropriate. 

- Knowledge of the object distribution being difficult to attain, a realistic 
alternative is to replace the object distribution by a family of distributions, 
which suggests a Bayesian framework. 
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Abstract.  Conventional logs and borehole images are common sources of short-scale 
property data for the characterization of petroleum reservoirs. Short-scale properties are 
consequential for production performance purposes but are also representative of too 
small rock volumes for direct full-field modeling. Average, possibly facies-based, 
properties are generally derived and stochastic simulation methods are used to simulate 
them throughout the whole reservoir. The regionalization of short-scale property 
distribution functions is considered here to take into account the short-scale variability 
of data. The novelty of the proposed approach is to regionalize mixtures of distributions 
and to correlate them to secondary information. Application to simulate distributions of 
fracture-frequencies in a naturally fractured reservoir illustrates the approach. 

1 Introduction 

Conventional logs and borehole images on vertical, deviated or horizontal wells are 
common sources of information in petroleum reservoir characterization. They provide a 
short-scale description of rock properties, content or discontinuities (e.g. fractures). The 
short-scale description resides in the small support of data (i.e. the representative rock 
volume) associated with a small sampling spacing along wells. Typically, support and 
sampling spacing do not exceed tens to hundreds of centimeters for data that are 
recorded over tens to thousands meters long well intervals. This results in numerous and 
valuable data about reservoir heterogeneities. The integration of such data into a full-
field reservoir model raises, however, a problem of support effect. High-resolution 
models, with grid-cell volumes as small as the representative volume of data, mean a 
dissuasive high number of cells, beyond the capacity of present-day computers. The 
usefulness of such very fine grids is also questionable. 

The problem of different scales of heterogeneity and data in reservoir characterization 
has already been the focus of attention of several authors (see for example Tran, 1995, 
for a literature review). It is unanimously recognized that the short-scale heterogeneity 
strongly affects the macro-scale flows and particularly multiphase flows. Nonetheless, 
short-scale properties are generally averaged on wells to be used as conditioning data to 
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model scalar variables. The latter can be interpreted either as a cell property or as a point 
property related to a larger support. For these scalar variables, spatial statistics are 
inferred and conventional geostatistical methods are used to estimate or simulate them 
within the reservoir. A local uncertainty can then be derived at any location as a local 
distribution of cell-related (average) values. This local distribution is of course different 
from the one of short-scale measurements that would have been obtained if a well had 
been drilled and logged at this location. It follows that beyond the averaging or 
calibration step, the short-scale variability of data is not exploited nor modeled. 

There are situations, however, that would justify considering as regionalized variable the 
whole distribution of short-scale values instead of a mere (average or calibrated) 
variable. Typically, when independent or poorly correlated phenomena (or genetic 
processes) can explain the short-scale variability of property values, the distribution of 
values can be seen as a mixture of distribution components (populations) each related to 
one phenomenon. The availability of structural, seismic, or other type of exhaustive 
information, which could be related to at least some of these phenomena, then makes it 
possible to use them as secondary information to model parameters or features of the 
corresponding distribution components. Possible situations are as follows. 

In naturally fractured reservoir, a same strike-direction of fractures may correspond 
to diffuse fracturing or fracturing swarms (corridors). The two types of fracturings 
are related, however, to different geological or tectonic episodes. 
Whether rock properties are facies-dependent but the facies-types are badly defined, 
the variability of within-facies properties is important, or simply as an alternative to 
prior modeling of facies-types or of proportions of facies, the distributions of short-
scale properties can be directly modeled as regionalized variables. 

Although the spatial modeling of distribution functions or more generally of non-scalar 
variables is poorly exploited in reservoir characterization, it has been tackled already in 
other (environmental) domains to model for instance soil properties or time-series in air 
pollution. This paper revisits this avenue in the context of reservoir characterization as a 
way to exploit better short-scale logs or borehole imaging data. Section 2 poses the 
problem and reviews the possible approaches to make a distribution function a random 
variable. Section 3 presents the proposed approach in which distributions of short-scale 
variables are identified to mixtures of distributions. Section 4 addresses aspects of 
model fitting for a mixture of distributions. A naturally fractured reservoir case study 
illustrates the approach in Section 5 and conclusions are drawn in Section 6. 

2 Spatial modeling of distribution functions 

A geostatistical approach is sought to model regionalized distribution functions of short-
scale rock properties. It must be adapted to the following conditions and objectives. 

Well logs or borehole images are sources of short-scale property data from which 
sample distribution (histograms) can be calculated over wells or portions of wells. 
The support of the distribution is given by the selected well-portion length used to 
calculate the distributions. It must be consistent with grid-cell dimensions. 
Spatial changes of the shape, spread or modes of the distributions can be explained 
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        by different phenomena related to available secondary information. 

The expected results are the estimation or simulation of distribution functions at 
non-sampled locations. Quantification of the uncertainty about these distributions is 
also desired. This calls for a notion of distribution of distributions. 

Point or block estimates are commonly used in geostatistics. They involve scalar 
variables which are associated with random functions (regionalized variables). Looking 
at probability distribution functions, “functional” or vectorial variables are to be 
spatially modeled. Though some avenues have been proposed in the literature to 
regionalize directly functional variables (see for example Goulard and Voltz, 1992), 
only vectorial variables are considered here. The vectorial variable may be a set of 
parameters (continuously defined distribution function) or a set of prescribed values for 
which the distribution function is calculated (discretely defined distribution function). In 
both cases, the components of the vectorial variable are to be coregionalized in space. 

The choice of an approach is closely related to the way the distribution function is 
defined. Parametric, semi-parametric, non-parametric or mixture-based approaches can 
be considered. They are briefly discussed hereafter. 

2.1 PARAMETRIC OR SEMI-PARAMETRIC APPROACH 

The basis for a parametric or semi-parametric approach is the choice of a general 
enough function that can span a variety of distribution shape, modes, spread and 
location with a minimum number of parameters. “Parametric” is generally used to refer 
to an existing model of distribution function (e.g. a beta law), “semi-parametric” 
applying to any other type of function with good properties (e.g. polynomial function). 
The function is randomized by making its parameters a vector of random functions. 
Parameters of the function are to be calculated first to fit the sample distributions at well 
locations. Maximum-likelihood (for parametric functions) or least-squares techniques 
are generally employed at this stage. Traditional geostatistical methods can then be used 
to estimate or simulate (jointly) the parameters elsewhere. This type of approach was 
already proposed by some other authors. We can mention Goulard and Voltz (1992), 
who use polynomial spline functions to model soil water retention curves, or Kyriakidis 
and Journel (1998) who apply deterministic temporal trend functions to sulfate 
deposition data from monitoring stations. If the simplicity of such an approach makes it 
attractive, parametric functions remain limited in shapes and semi-parametric functions 
raise a number of potential difficulties: (1) least-square fitting of a semi-parametric 
function requires that the sample distribution be entirely defined (no partial data), (2) 
interpretation of the parameters to relate them to distribution populations and secondary 
variables may not be straightforward, (3) complexity of the interpretation is even higher 
if the parameters are correlated or are to be transformed to make them uncorrelated. 

2.2 NON-PARAMETRIC APPROACH 

Non-parametric approaches call for a discrete form of the distributions. Based on a 
“curve sampling” framework, the distribution functions are calculated only for a given 
number of selected short-scale property values. The so defined discrete distribution 
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functions are then regionalized through the vector of distribution function values (i.e. 
probabilities) that are made random functions (RF). 

A few references can been found in the literature on non-parametric geostatistical 
approaches to modeling probability distributions or curves. Goulard and Voltz (1992) 
tried a non-parametric approach to model the soil water-retention curves previously 
mentioned. Cokriging is used to estimate fields of correlated discrete curve values (= RF 
vector) from which the entire curve can be rebuilt at each estimation point. Uncertainty 
about the so estimated curves is not addressed. In a different way, Desbarats (2000) 
proposes an approach to simulate 3D spatial fields of sediment grain-size distributions. 
The weight percentages of different grain-size classes comprise the vector of 
regionalized variables. The minimum/maximum autocorrelation factors (MAF) method 
is used to transform the initial RF vector into a vector of spatially uncorrelated (MAF) 
RFs. Sequential Gaussian simulation is used to simulate independently the MAF RFs. 

The main advantage of non-parametric approaches is their ability to reproduce any 
distribution shape. They can also integrate partial data, i.e. not fully defined sample 
distributions. The main difficulty is the existence of (possibly complex) spatial cross-
correlations between the RFs of the probability vector, i.e. between the discrete values 
of the regionalized function or curve. The integration of secondary information is also 
another concern. It introduces additional variables to be correlated to the already cross-
correlated (probability) RFs. Looking at “de-correlation” solutions like the MAF 
method, other problems do rise: (1) general efficiency of the method, (2) amount of data 
required to obtain reliable (multivariate-processing) results, (3) interpretation of the 
uncorrelated RF transforms against the available secondary variables. 

2.3 APPROACH BASED ON A MIXTURE OF DISTRIBUTIONS 

Mixture of distributions here refers to a distribution function written as the sum of two 
or more parametric distribution functions. Each (elementary) parametric distribution is 
also called a “distribution component” of the mixture and is associated with a “mixing 
proportion” which determines the contribution (or relative frequency) of this component 
in the overall distribution. With this definition, a mixture of distributions can be seen as 
a semi-parametric approach at the important difference that each distribution component 
is clearly identified and can be characterized, if necessarily, independently of others 
(accounting for incomplete data). In addition, all parameters may have a statistical 
meaning. It follows that estimation theory methods can be used to calculate the 
parameters of a distribution mixture from a sample distribution (e.g., maximum-
likelihood estimation). These parameters can be readily interpreted and related to 
explicative secondary variables. This is the type of approach that was finally retained to 
model distributions of short-scale properties. Details about the approach and application 
to simulate distributions of fracture frequencies are the purpose of the following 
sections.

3 Regionalization of a mixture of distributions to model short-scale properties 

A mixture-based approach is sought to model the spatial uncertainty about the 
distributionof a short-scale property Z. Properties and distributions are related to different 
measurement and observation scales, respectively. Let denote v the short measurement 
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scale along wells and V the coarser scale at which property distributions are evaluated. If 
wells are vertical, the volume V is representative of vertical property profiles. If wells 
are deviated or horizontal and the distributions are calculated over similar portions of 
wells, V is to be interpreted more as a neighborhood around each well portion location. 
Mathematically, the distribution function  of the short-scale property Z, measured on a 
support v within a neighborhood V centered at location u, can be written: 

uu Vzz vZ ;; .

where  denotes indifferently the probability density function (pdf) or the cumulative 
distribution function (cdf) of Z within the local neighborhood V(u). Its decomposition 
(or approximation) into a mixture of Nc distribution components can be expressed as: 

cN

k kkk zpz
1

;; uuu

where pk(u) is the mixing proportion at location u of the kth parametric distribution 
component k. The mixing proportions must range from 0 to 1 and sum to 1. The choice 
of a parametric distribution model for each component determines the parameter vector 

T
nkkk k

uuu ,1, ,, . For example, a Gaussian component k will be associated 

with a mean and a variance, i.e. 
T

kkkkk
2

2,1, , . Regionalization of the 

mixture of distributions comes to make the mixing proportions and the distribution-
component parameters a set (vector) of RFs, namely: 

regionalized cN

k kkk zPzz
1

;;; uuuu

where Pk(u) and T
nkkk k

uuu ,1, ,,  are all RFs. These RFs are to be 

estimated or simulated at the nodes of a (regular) grid to honor: 
data about the mixture parameters pk(ui) and k(ui) at well locations ui,
correlations between mixture parameters or with external secondary variables. 

For consistency purposes, the grid-node spacings are expected not to be smaller than the 
well portion lengths used to calculate the sample distributions. Regarding well data, not 
all mixture parameters pk(ui) and k(ui) are to be known at each location. For example, 
on a “short” well, relevant statistics could be available only for one or a few distribution 
components corresponding to the populations crossed by the well. 

Estimated or simulated fields of Pk( ) and k( ) are intended to rebuild fields (z; ) of 
the distribution function of the short-scale property Z. Quantifying the spatial 
uncertainty about (z; ) is also another issue. These objectives are more easily attained 
by using a stochastic simulation approach. Realizations of (z; ) are obtained by just 
combining jointly or independently simulated realizations of the mixture parameters. 
The steps of the approach can be summarized as follows. 
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1. Choice of a number and models of distribution components. 
2. Estimation of mixture parameters to fit sample distribution from well portions. 
3. Inference of statistical models for each mixture parameter (RF). 
4. Joint or independent stochastic simulation of the mixture parameters. 
5. Post-processing of the simulated fields of mixture parameters. 

In step 1, the distribution components are to be related to verified or guessed genetic 
processes or phenomena that explain short-scale property populations. In step 2, robust 
methods are required to estimate mixture parameters from sample distributions. A 
maximum-likelihood-based method is presented in section §4.1. Instead of processing 
sample distributions, an alternative consists in analyzing logs data to recognize 
significant modes, i.e. successive increases and decreases of Z(v) that can be related, 
with confidence, to different populations along wells. Such an approach was developed 
and successfully applied to identify fracture corridors from fracture-frequency logs. It is 
based on the SiZer (SIgnificant ZERo crossings of derivatives) approach introduced by 
Chaudhuri and Marron (1999) to test the presence of modes in a pdf. 

Steps 3 and 4 involve more traditional geostatistical tasks. Especially, any stochastic 
simulation method, whether based on two or multiple-point statistics but able to 
integrate secondary information, can be used to simulate any mixture parameter. The 
only particularity here is that the statistical models in step 3 are to be established from 
estimated instead of measured data. More precisely, the measured data are short-scale 
properties from which mixture parameters (i.e. statistics) are to be calculated over well 
portions. All well portions do not necessarily have the same orientation nor the same 
number of short-scale data, hence the estimates may be imprecise and the precision 
different. Estimation methods of sample histogram or variogram should ideally take into 
account the precision of the data. Preliminary results have been obtained for the 
estimation of the variogram of the mean of a distribution component. They are presented 
in §4.2. Regarding step 5, a realization of (z; ) is obtained from a realization of each of 
the mixture parameter. Cross-correlated parameters are, however, to be jointly simulated 
and realizations from the same simulation are to be taken together. For independent 
parameters or groups of parameters, any simulation of one group can be combined with 
a realization of another group. A multivariate Latin hyper-cube (Monte-Carlo) sampling 
technique can then be used to span more efficiently the space of variability of (z; ).

4 Aspects of statistical model fitting for a mixture of distributions 

4.1 EM ALGORITHM FOR ESTIMATING MIXTURE PARAMETERS 

The Expectation-Maximization (EM) algorithm is a general iterative algorithm that 
computes maximum likelihood estimates (MLEs) of the parameters of a mixture of 
distribution components when the group (distribution component) memberships of the 
data are unknown (missing information). A detailed presentation can be found in the 
seminal paper by Dempster et al. (1977). McLachlan and Krishnan (1997) provide a 
review with examples and extensions. 
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The general idea of the EM algorithm is to compute iteratively the augmented likelihood 
of the data, namely, that taking into account the missing information. Starting with some 
initial values, the expectation step (E-step) computes the conditional expectations of the 
augmented likelihood, i.e. the conditional probabilities for the data to belong to the 
different groups (distribution components) given the current values of the mixture 
parameters. The maximization step (M-step) computes the MLEs of the mixture 
parameters, given the measured data and the updated conditional probabilities from the 
E-step. Dempster et al. (1977) showed that each step increases the augmented 
likelihood. These two steps are iterated until convergence occurs at a local maximum of 
the likelihood surface. 

Clustering methods of independent data based on mixtures of normal (Gaussian) 
distributions coupled with an EM algorithm have been shown to be powerful, see for 
example McLachlan and Basford (1988) and Banfield and Raftery (1993). The data are 

supposed to originate from a pdf mixture cN

k kkk zfpzf
1

;)(  where k  is the 

parameter vector of the kth distribution component and pk the mixing proportion. 
Independent data being assumed, it can be shown that the E-step at iteration (q) is 
equivalent to estimating the conditional probabilities: 

         
cc N

l
q

lil
q

l

q
kik

q
k

Ni
q

ik
zfp

zfp
 kzPt

1
)()(

)()(
(q)(q)

1
)(

ˆ;ˆ

ˆ;ˆ
))ˆ,...,ˆ(group(ˆ         (1) 

where i = 1,…, n (number of data) and k = 1,…, Nc. After an E-step, the classification 
matrix is not a 0/1 matrix but each row of the matrix still adds up to one. For Gaussian 
variables, the maximum likelihood estimators are equivalent to the method of moment 
estimators. Hence, the M-step at iteration (q + 1) gives: 
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For fracture frequencies related to Gamma variables, the equivalence between maximum 
likelihood and method of moment is only valid for the first moment, i.e. the  parameter 
of the gamma distribution when  = 1. We can then use the first two equations of (2) for 
estimating . If  1, we made the approximation that the variance can be also 

estimated using (2). This leads to the estimators 22 ˆˆˆ  and ˆˆˆ 2 . In all 

tested situations, convergence holds and the parameters are correctly estimated. 

4.2 ESTIMATION OF THE VARIOGRAM OF THE RANDOM FIELD ( )

We consider the problem of estimating the variogram of the random field ( ) whose 
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variogram is (h) and mean is m. It is recalled that in each neighborhood (or block) V(u)
independent data Z(vi) are assumed (they correspond to data measured on a smaller scale 
v). The problem is that this field is never sampled directly; we only have estimations 

Vˆ  of this field in neighborhoods V(u) at different locations. These estimations are 

unbiased but they have different degrees of precision, depending on the number of 
available data in the neighborhood V(u) (or more precisely along a well portion) for 
estimating Vˆ . We consider the case where there are nk data in neighborhood Vk = 

V(uk) for estimating kVˆ . The sample variogram is 
hN

lk VV
Nh

h 2ˆˆ
2

1ˆ .

Proposition 1: For the model above, )(
2

ˆˆ
2

1 2 hm
nn

nn
VVE
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Proof: Available from the authors.

5 Application to a naturally fractured reservoir 

A mixture-based approach was applied to model distribution functions of fracture 
frequencies within a naturally fractured oil reservoir. The reservoir is a 10 km wide pop-
up shaped structure and internal faults occur with directions parallel and transverse to 
the fold axis. Its tectonic history explains several fracture orientations. Fractures exist 
throughout the whole 1000 m thick upper part of the reservoir, in all lithofacies but 
possibly with different occurrences. The analysis of interpreted fractures from core 
plugs, cores and borehole images reveals three main fracturing levels. 

Micro-fractures and fissures that connect matrix vugs and provide a background 
(matrix) permeability (k) of about 0.01 mD. 

Diffuse fractures that provide the main connectivity in the reservoir (k  10 mD). 

Fracture swarms, interpreted as parallel fractures vertically extended over tens of 
meters. They provide the most productive intervals (k > 100 mD). 

The two latter types of fractures are the ones observed from borehole images. 
Interpreted fractures from the borehole images acquired on four wells were first 
classified into directional fracture-sets using a cluster analysis method. Three such 
fracture-sets were retained for this reservoir. Fracture frequencies were then calculated 
for each directional fracture-set. The fracture frequency (FF) is defined as the number of 
fractures per unit length measured perpendicularly to the fracturing plane. It can be seen 
as a fracture density geometrically corrected to be independent of the well directions 
(e.g. see Gauthier et. al., 2002). FFs are calculated using a moving window along 
fracture logs. The moving-window length determines the measurement scale of FF: the 
longer the window length, the large the support of FF. 

Sets of diffuse fractures and of fracture swarms having the same orientations, a small (2 
m long) moving window was used to allow distinguishing between FFs related to one or 
the other type of fracturing. The optimal window size was derived from a SiZer-like 
analysis of the fracture logs. This analysis proved very efficient to identify and locate  
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FF modes corresponding to fracture swarms along the wells. Based on a small moving 
window length, so calculated FFs can be seen as short-scale properties. The four wells 
were divided into nine, about 50-m-long (horizontally), well portions and sample 
distributions of FF were calculated for each well portion and for each fracture-set. These 
distributions are likely to include two populations of FFs corresponding to different 
diffuse and in-swarm fracturing processes. Both fracturing processes can be considered 
as Poisson processes but with a different rate (or intensity), higher rates being expected 
for fractures in swarms. It follows that the FF associated with each fracturing process 
should be distributed according to a Gamma distribution with shape and scale 
parameters  = /L and  = L, where L = moving window length and  = (process-
specific) mean of FF. This leads to the following model of distribution mixture: 

LzGpLzpGz ssdd ,;1,;

where the unknown parameters to be regionalized are d for the Gamma distribution Gd

associated with the diffuse fracturing, s for the one associated with the fracturing in 
swarms, and p the (single) mixing parameter. This model was fitted to the sampled 
distributions using the EM algorithm to derive data about the mixture parameters. 

Figure 1. Quantile-surfaces with, from top to bottom, q.95, q.90, q.75, and q.50.
The elevation of the surfaces is given by the median of simulated distribution quantiles. 

The gray-scale shows the relative inter-quartile range qqq MIQRRIQR .

The reservoir being homogeneously fractured vertically, 2D sequential Gaussian sim-
ulation was carried out to simulate jointly the three distribution mixture parameters. For 
one of the fracture-set, parameter d was correlated with a structural curvature attribute, 
p with the distance to fault, and s with d. One hundred realizations were simulated for 
each parameter and combined to build fields of the overall distribution of FF. Quantile 
surfaces were derived as shown in Fig. 1. The elevation of the surfaces is given by the
(quantile) median Mq and the color scale of the surfaces shows the relative inter-quartile 
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range defined as qqq MIQRRIQR . Humps and hollows on the surfaces indicate more 

or less likely fracture-swarm locations. Zones of high RIQRq depict zones where the 
uncertainty is high about the overall distribution of FF for the quantile considered. So 
obtained realizations of FF distributions can be used to constrain discrete-fracture 
network models and to calculate equivalent flow properties of the fracture network. 

6 Conclusions 

The spatial modeling of short-scale property distribution functions may be justified to 
improve reservoir models or as an alternative to more traditional facies-based 
geostatistical approaches. The proposed approach is based on distribution mixtures that 
are regionalized by making their parameters a vector of random functions. These 
parameters have a statistical meaning and can be inferred from sample distributions by 
using estimation theory methods. Provided the components of a distribution mixture can 
be related to different populations (e.g. genetic processes), the parameters can be easily 
interpreted and correlated to secondary variables. Partial (incomplete) distribution data 
can be also integrated. The approach has been applied to simulate fracture-frequency 
distributions in a naturally fractured reservoir. The results are simulations of distribution 
functions from which the local uncertainty about the distributions can be evaluated. This 
calls for new analysis and visualization tools. 

Non fully resolved aspects of the approach concern the precision of the data that are not 
measured but estimated data about distribution mixture parameters. Spatial statistics are 
to be calculated from imprecise data and statistical models are to be inferred. 
Preliminary results have been established to estimate the variogram of the mean of a 
distribution component. Research work is still needed to investigate further the 
consequences of imprecise data on statistical model inference and the way models are to 
be corrected. 
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COMBINING METHODS FOR SUBSURFACE PREDICTION

PETTER ABRAHAMSEN
Norwegian Computing Center, PO Box 114 Blindern, NO-0314 Oslo, Norway

Abstract. The depth to subsurfaces in a multi-layer model is obtained by adding
the thickness of layers. However, the choice of layering is not unique so there will
often be alternative ways of obtaining the depth to a particular subsurface. Each
layer thickness can be described by a stochastic model accounting for uncertainties
in the thickness. Stochastic models for the depth to subsurfaces are obtained from
these. Alternative layer models will give alternative stochastic models and thus
alternative depth predictions for the same subsurface. Two approaches to resolve
this ambiguity is proposed. The first uses an established method of unbiased linear
combination of predictors. The second and new approach combines the alterna-
tive stochastic models into a single stochastic model giving a single predictor for
subsurface depth. This predictor performs similarly to the approach combining
several predictors while drastically reducing computational costs. The proposed
method applies to layered geological structures using a combination of universal
or Bayesian kriging and cokriging.

1 Introduction

Consider the problem of mapping the depth to subsurfaces separating geological
layers within a petroleum reservoir. The top and base of the reservoir are often
visible on seismic data so accurate depth maps are obtained from depth converted
travel time maps. The internal layering will rarely exhibit reliable seismic signals,
so the thickness trend of each layer is mapped using geological interpretation of
bore-hole data. The total thickness of the internal reservoir layers will seldom add
up to the thickness depicted from seismic data. This ambiguity must be resolved
to provide consistent depth maps describing the reservoir layers.

Two approaches for resolving this ambiguity is discussed. The first approach
is adapted from econometrics and forecasting (Bunn, 1989; Granger, 1989), and
consists of predicting the depth to the subsurfaces by combining alternative depth
predictions ‘in an optimal manner’. This approach works, but it is computationally
expensive. An alternative and new approach is therefore proposed. Instead of
combining the predictors, different stochastic models are combined. The result
is a single stochastic model with a single associated predictor. These approaches
perform very similar but computer expenses are dramatically reduced.
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Figure 1. Schematic illustration of a reservoir formation. The double arrows
indicate a stochastic model for the thickness of the corresponding layer, ∆Zi.

2 Position of the problem

The stochastic model for the thickness of layer i may include a deterministic
trend, mi(x), and a zero mean Gaussian random field, εi(x), for the residual error
(Abrahamsen, 1993):

∆Zi(x) = mi(x) + εi(x); x ∈ R
2.

The stochastic model for the depth to subsurface l becomes Zl(x) =
∑l

i=1 ∆Zi(x).
Figure 1 shows a schematic cross-section of a reservoir where subsurfaces Top

Reservoir and Base Reservoir are assumed to be seismic reflectors. For a layer
i bounded by two seismic reflectors, the trend is mi(x) = vi(x)∆ti(x), where
vi(x) is velocity and ∆ti(x) is the seismic travel time. Models for the depth to
Top Reservoir and Base Reservoir would be ZTR(x) = ∆ZTR(x) and ZBR(x) =
∆ZTR(x) + ∆ZR(x) respectively (see Figure 1 for notation). Thickness trends,
mi(x), for the internal reservoir layers are usually based on little data and many
assumptions so the variance of the corresponding residual error could be large.

As an alternative method for obtaining the depth to Base Reservoir the thick-
ness of all the internal layers could be added to Top Reservoir: ZBR(x) = ∆ZTR(x)+
∆ZL3(x) + ∆ZL2(x) + ∆ZL1(x). In practical applications the former model is
preferred because seismic data are assumed more accurate than geological inter-
pretation.

Lets look at a less obvious situation. The depth to Top Layer 1 can be obtained
by adding layer thicknesses to the depth of Top Reservoir or by subtracting layer
thicknesses from the depth to Base Reservoir:

ZTL1(x) = ∆ZTR(x) +

{
∆ZL2(x) + ∆ZL3(x) add to TR

∆ZR(x) − ∆ZL1(x) subtract from BR.

It is not obvious which alternative to choose. Since the seismic reflectors are
assumed accurately determined, Figure 1 suggests that subtracting from Base
Reservoir could be a better choice. Similar reasoning suggest that obtaining Top
Layer 2 by adding Layer 3 to Top Reservoir is a good choice. However, these choices
leaves a ‘gap’ between the two subsurfaces so the trend, mL2(x), for the thickness
of Layer 2 is never considered. Moreover, this choice has a serious implication on
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Figure 3. Alternative methods for constructing the depth to Top Reservoir
(TR), Top Layer 2 (TL2), Top Layer 1 (TL1), and Base Reservoir (BR). Labels
correspond to the graphs in Figure 2.

the uncertainty of the thickness of Layer 2: Assuming the residual errors, εi(x), to
be independent implies that the variance of the thickness of Layer 2 is

Var
{
ZTL2(x) − ZTL1(x)

}
= Var

{
∆ZL3(x)

}
+ Var

{
∆ZR(x)

}
+ Var

{
∆ZL1(x)

}
.

This variance is usually significantly larger than Var
{
∆ZL2(x)

}
and the possible

strong correlation between the depth to Top Layer 1 and Top Layer 2 is lost.
The discussion has motivated the need for an approach where several methods

can be used simultaneously, so the unpleasant need for choosing one particular
method becomes obsolete.

Figure 2 shows four graphs, each corresponding to a method for constructing
all subsurfaces in Figure 1. The depth to a particular subsurface is found by
following the arrows to the subsurface; an arrow pointing downwards means that
the corresponding thickness is added whereas an arrow pointing upwards means
that the corresponding thickness is subtracted. Although some graphs give the
same result for a particular subsurface, the dependencies between the subsurfaces
are different in all four graphs. This has an implication on the predictors for each
subsurface (Abrahamsen, 1993). Thus, each graph in Figure 2 corresponds to a
method for prediction of the set of subsurfaces so there are actually four different
predictors for each of the four subsurfaces.

Figure 3 illustrates the methods for constructing subsurfaces slightly differently.
Whereas, Figure 2 gives a method for all subsurfaces in each graph, Figure 3 shows
the different methods for each subsurface. Each graph in Figure 3 are labelled
using the labels in Figure 2. Note that although Figure 2 contains four graphs
(or methods), there is only one or two possible ways of adding layers to obtain a
particular subsurface.
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3 Stochastic models for subsurfaces

A stochastic model with a linear trend for the thickness of layer i reads

∆Zi(x) = g′
i(x)βi︸ ︷︷ ︸
mi(x)

+εi(x); x ∈ R
2, (1)

where gi(x) is a vector of Pi known (deterministic) functions, βi is a vector of
Pi unknown parameters, and the residual error, εi(x), is a zero mean Gaussian
random field specified by the standard error, σi(x), and the correlation function
ρi(x,y). The correlation function and standard error for the residual error can
occasionally be estimated from bore-hole data. (1) is a multiple linear regression
model with a correlated error term.

A typical model for the thickness of a layer i is ∆Zi(x) = βi1 + h(x)βi2 +
εi(x), where h(x) is a trend supplied by geologists, so that g′

i(x) = [1, h(x)].
A typical travel time based model for the thickness of a layer i is ∆Zi(x) =
[βi1 + βi2t̄i(x) ] ∆ti(x) + εi(x), where t̄i(x) is the seismic travel time to the mid-
point of layer i and ∆ti(x) is the seismic travel time in layer i. So g′

i(x) =[
∆ti(x), t̄i(x)∆ti(x)

]
. A positive value for βi2 gives the widely encountered veloc-

ity increase at larger depthes due to compaction (Faust, 1951; Acheson, 1963). A
similar velocity model was used by Hwang and McCorkindale (1994) for predicting
the velocity field and by Xu, Tran, Srivastava and Journel (1992) for predicting
depth. The residual error must account for the uncertainty in travel time (Walden
and White, 1984; White, 1984) and the uncertainty in the interval velocity field
(Al-Chalabi, 1974, 1979; Abrahamsen, 1993).

Consider now a multi-layer model including L layers and subsurfaces. The
depth to the lth subsurface is

Zl(x) =
l∑

i=1

∆Zi(x) = f l′(x)β + εl(x),

where f l′(x) =
[
g′

1(x) · · · g′
l(x) 0′ · · · 0′] and β′ =

[
β′

1 · · · β′
L

]
. Here, 0 are

zero vectors replacing gi(x) for i = l + 1, . . . , L, and εl(x) =
∑l

i=1 εi(x).

4 Choice of Predictor

The best linear unbiased predictor for a random field with an unknown linear
trend is the universal kriging predictor. All subsurfaces in a multilayer model are
statistically dependent (covariates) since they all depend on the thickness of at
least one common layer. So the kriging predictor for any subsurface should be
conditioned on available depth observations from all correlated subsurfaces using
universal cokriging (Abrahamsen, 1993).

The kriging predictors depend on the geometry of the observations, the choice
of linear trends for the layer thicknesses, and the statistical properties of the resid-
uals. So alternative methods, such as those illustrated in Figure 2, give different
predictions for the same set of observations.
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Universal kriging was used by Hwang and McCorkindale (1994) and cokriging
by Jeffery, Stewart and Alexander (1996) for predicting velocity fields for depth
conversion. Xu et al. (1992) finds that universal kriging and collocated cokriging
give similar results for depth conversion. Using universal kriging however, gives
the possibility of using non-linear relationships between depth and travel time.

5 Approaches to resolving the ambiguities

5.1 COMBINING PREDICTORS

This approach is an adaption of a method used in time series analysis and fore-
casting and is reviewed by Bunn (1989) and Granger (1989). The idea is to make
a linear combination of alternative predictors.

For a subsurface l in Figure 1 there are four possible predictors corresponding
to the four different graphs or methods in Figure 2: Z∗l

(a)(x), Z∗l
(b)(x), Z∗l

(c)(x), and
Z∗l

(d)(x). A linear combination of these is a possible combined predictor:

Z∗l(x) = w
∗l
(a)(x)Z∗l

(a)(x) + w
∗l
(b)(x)Z∗l

(b)(x) + w
∗l
(c)(x)Z∗l

(c)(x) + w
∗l
(d)(x)Z∗l

(d)(x) (2)

= w
∗l′(x)Z∗l(x).

Assume that each predictor is unbiased and that the covariance matrix, C∗l
ab(x) =

Cov
{
Z∗l

a (x)−Zl
a(x), Z∗l

b (x)−Zl
b(x)

}
, of the predictors is known. Then, an unbiased

predictor with the minimum prediction variance is obtained using weights

w∗l(x) = C∗l−1
(x) e/

(
e′C∗l−1

(x) e
)

, (3)

where e is a vector of unit entries. This result is analogous to the weights obtained
in ordinary kriging.

To form C∗(x) requires the kriging prediction variances and even the prediction
covariances between all predictors at any location x. Thus, the drawback of this
method is the necessity to evaluate several predictors, prediction variances, and
prediction covariances for every subsurface.

5.2 COMBINING STOCHASTIC MODELS

This new approach propose that the alternative stochastic models for the depth
to a particular subsurface should be combined according to the magnitude of the
residual error for each model. A linear combination of the alternative stochastic
models is considered.

There are two different methods and stochastic models for the depth to Top
Layer 1 in Figure 1 according to Figure 3. A linear combination reads

ZTL1(x) = wTL1
(a,b)(x)ZTL1

(a,b)(x) + wTL1
(c,d)(x)ZTL1

(c,d)(x). (4)

The weights wTL1
(a,b)(x) and wTL1

(c,d)(x) are chosen to minimise the residual error
variance of ZTL1(x) subject to the condition that the weights add to one:

wl(x) = Cl−1
(x) e/

(
e′Cl−1

(x) e
)

, (5)
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where the elements of the covariance matrix, Cl
ab(x) = Cov

{
Zl

a(x), Zl
b(x)

}
, are

calculated using

Cov
{
Zl

a(x), Zm
b (y)

}
= Cov

{
εl

a(x),εm
b (y)

}
=

∑

i∈ common
intervals

sab
i Cov

{
εi(x), εi(y)

}
, (6)

where sab
i = −1 when interval i is added in one model and subtracted in the

other. Otherwise, sab
i = 1. The combined residual error variance is Var

{
Zl(x)

}
=

[e′Cl−1(x) e]−1 which is less than or equal to Var
{
Zl

a(x)
}

for any method a.
Similar combinations must be constructed for all the subsurfaces. It is then

straightforward — but requires some bookkeeping — to calculate covariances
between depth observations from different subsurfaces. This leaves one stochastic
model and a single associated predictor for the depth to any of the subsurfaces.

Combining predictors is based on the principle of minimising the prediction
error. Combining stochastic models however, is a heuristic approach which must
be justified by comparing the results to the results obtained when combining
predictors. An example will illustrate that the two approaches give almost identical
results. The advantage of the latter approach is speed because only one predictor
for each subsurface is needed.

5.3 RELATED APPROACHES

(2) has the form of a multiple linear regression model for Z∗l(x) with Z∗l
a (x);

a = (a), (b), (c), (d) as regressors and the weights as unknown parameters. A
constant term accounting for possible bias can be added (Granger, 1989). This
approach, called ‘stacked regression’ by Wolpert (1992) and Breiman (1992), either
requires historical data or a large data set allowing cross validation. The review
by Clemen (1989) compares different methods for choosing the weights in (2).

6 A Synthetic Example

6.1 STOCHASTIC MODELS

Consider the schematic cross section of a reservoir formation illustrated in Figure 1
and assume constant thickness for each reservoir zone:

∆ZLi(x) = βLi + εLi(x); i = 1, 2, 3,

where x ∈ R since only a cross-section is considered. Moreover, ∆ZTR(x) and
∆ZR(x) are given as:

∆ZTR(x) =
[
βTR1 + βTR2

{
tTR(x) − mean

(
tTR(x)

)}]
tTR(x) + εTR(x)

∆ZR(x) =
[
βR1 + βR2

5 − x

10

]
∆tR(x) + εR(x).

The expressions in the square brackets are the seismic velocities. A cross-section
of the travel times is shown in Figure 4. A positive value for βTR2 gives the usual
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Figure 4. Travel times to Top Reservoir and Base Reservoir (left). Depth trends
obtained when choosing all β’s equal to one (right).

Table 1. Specified residual errors σl
a, calculated weights wl

a, and combined
residual errors σl. The methods correspond to labels in Figure 3. Note how the
weights favour the assumed most accurate models.

Subsurface Method Res. error Weight Comb. res. error

l a Var
{

Zl
a

}1/2
wl

a Var
{

Zl
}1/2

Top Reservoir: (a–d) 0.1 1 0.1

Top Layer 2: (a) 0.316 0.31 0.194
(b–d) 0.224 0.69

Top Layer 1: (a,b) 0.245 0.62 0.202
(c,d) 0.300 0.38

Base Reservoir: (a–c) 0.141 0.92 0.139
(d) 0.361 0.08

velocity increase with increasing depth causing the subsurfaces to be more curved
than the travel times. A positive value for βR2 leads to a reduced interval velocity
for higher x values causing Base Reservoir to tilt upwards towards the right.
The standard errors of the residual errors for the layer thicknesses are chosen
as σTR(x) = σR(x) = 0.1, σTL1(x) = σTL2(x) = σTL3(x) = 0.2, and they are
assumed to be independent for simplicity in the example.

When combining models, the possible methods for constructing each of the
subsurfaces are illustrated in Figure 3. The covariance matrix Cl has dimension
one for Top Reservoir and dimension two for the three other subsurfaces. Note
that Cl is independent of x because the standard errors of the residual errors
are assumed constant. The resulting weights from (5) and residual errors of the
combined models are given in Table 6.1.

Choosing all β-parameters equal to one and combining the trends according to
(4) using the weights in Table 6.1, gives the depth trends illustrated in Figure 4.
This set of trends are considered the ‘truth’ in the following.
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6.2 SIMULATION EXPERIMENTS

Universal kriging predictors split into two parts; the estimated trend and the local
fitting to observations (Cressie, 1993). The estimated trend depends heavily on
the trend model while the local fitting is mainly dependent on the shape of the
correlation function (variogram). The estimated trend will be used instead of the
full kriging predictor because using trends will exaggerate potential problems and
differences between approaches. Moreover, areas away from wells are the most
difficult to predict accurately and therefore the areas of the greatest concern. The
conclusions reached will carry over to the less sensitive kriging predictors in areas
outside well control. It is reasonable to assume that results are valid in the vicinity
of well observations. Three different approaches are tested:

1. Combining predictors (estimated trends) according to (2).
2. Estimating trends using stochastic models combined similar to (4).
3. Like 2. but using a Bayesian prior on the β’s.

Ten sets of depth observations have been drawn from a multinormal distribution
with the expectations given by the depth trends in Figure 4, and covariances
obtained from the weights and (6). The location of these observations are obtained
by dividing the x-axis into three segments and “drilling” one vertical well in each
segment at a random location.

Trends have been estimated for each set of observations using the three ap-
proaches. The resulting ten sets of trends are seen in Figure 5.

The first approach combines four trend estimates (see Figure 2) using weights
obtained from (3). Note that these weights depend on x.

The second approach, combining models, gives some trends that are far off the
‘true trends’ in Figure 4. This is caused by severe collinearity making it almost
impossible to estimate some of the β-parameters.

The third approach, imposing a prior distribution on the β-parameters with
expectations 0.5 and Cov

{
β
}

= diag(2), dramatically improves the estimates of
the β-parameters. The corresponding ten trends in Figure 5 show a behaviour
very similar to the one obtained by combining predictors. The prior distribution
effectively restricts the parameter space so that extreme β estimates are prohibited.
Choosing a prior with large standard error (200%) and an expectation far away
from the true value (0.5 compared to 1) still gives good results. So the approach
is appearently robust to poor and vague prior specifications.

6.2.1 Bias and Errors
To investigate bias and accuracy, one hundred sets of observations have been drawn
using the procedure described above. Figure 6 (left) displays the average empiri-
cal bias (difference between ‘true’ and estimated trend) of the resulting hundred
estimated trends for subsurface Top Layer 2. It is seen that all three approaches
have little bias (<3%). This is expected since model assumptions for the estimators
agree with the model that generated the data. However the average empirical trend
error, Var

{
‘true’ − estimated trend

}1/2, in Figure 6 (right) clearly show that the
model combination approach have difficulties. The two other approaches produce
acceptable empirical prediction errors.
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Figure 5. Ten sets of trends obtained by: 1. combining estimated trends (top
left), 2. combining stochastic models (bottom left), and 3. combining stochastic
models and using a Bayesian prior on the β’s (top right).

Figure 6. Average empirical bias (left) and error (right) from 100 simulations for
Top Layer 2. (· · · ) combined predictors, (- - -) combined model, and (—) combined
model with priors on β parameters.

7 Closing remarks

Two solutions to the problem of combining different methods for obtaining depthes
to subsurfaces have been discussed. The first approach combines alternative pre-
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dictors and the second approach merges alternative stochastic models. The latter
approach is approximately 10 times faster but suffers from collinearities that
are handled by imposing a prior distribution. The example showed that even a
misspecified prior gave good results so the approach appear to be robust.

When combining predictors, a rigorous minimisation criteria for the predic-
tion error is employed. The approach combining models however, uses a heuristic
minimisation criteria for the residual variance. The usefulness of this approach
is therefore justified by its performance. The two methods gave almost identical
results for the synthetic example so in this situation it is possible to conclude that
the model combination approach performs equally well.

The method has been implemented in commercial software and has been suc-
cesfully used in many field studies.
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PROCESS-BASED RESERVOIR MODELLING IN THE EXAMPLE OF 

MEANDERING CHANNEL

Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau - France 

Abstract. The need of models for heterogeneous reservoirs has stimulated, for the last 
15 years, the development of stochastic models, for instance pixel-based (indicator or 
truncated Gaussian simulations) or object-based (e.g. Boolean). Such models are 
flexible, some are easy to condition, however the geometry and arrangement of 
sedimentary bodies often lack realism when the geological context is better known. 
Multipoint statistics, for instance, are looking to improve the situation.

Yet another generation of models, both process-based and stochastic, is able to provide 
satisfactory modelling for heterogeneous reservoirs by reproducing the depositional 
processes. This is illustrated in the case of reservoirs associated to meandering fluvial 
systems. The model consists of: 1) a channel evolving through time either continuously 
(according to hydraulics equations) or discontinuously (by avulsion); 2) the consistent 
deposition of the different sedimentary bodies (point-bars, crevasse splays, overbank 
alluvium…). In order to be operational, the model depends on a limited number of 
parameters and is computationally quick, while being able to produce a variety of 
architectures. Multirealizations are available thanks to the stochastic nature of 
parameters. The parameters can be inferred from data (e.g. through spatial statistics such 
as vertical proportion curves of facies). The model can be regionally constrained (e.g. to 
seismic), and it allows for some conditioning to well data. 

1 Introduction 

The need of models for heterogeneous reservoirs has stimulated the development of 
stochastic models. For instance pixel-based models, such as truncated Gaussian 
simulations or sequential indicator simulation, are flexible and relatively easy to 
condition. They aim to indirectly reproduce lithofacies through their geostatistical 
correlations. Conversely object-based models (e.g. Boolean) directly locate geological 
bodies in space. However the complex geometry and arrangement of sedimentary bodies 
reproduced by all these models often lack realism when the geological context is better 
known. This explains the recent development of multipoint statistics to make use of 
training images, when available. 

Yet another solution to produce realistic models is to combine a stochastic and a 
process-based approach, providing that the geological processes are known well  
enough. This approach has been previously investigated from a mathematical point of 
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view in the case of sediments deposited under a water depth varying with subsidence: 
Jacod and Joathon (1971, 1972) have in particular made some simulations, including 
conditional simulations for such deposits, and Matheron (1969) has computed the 
stationary limit distribution of deposits in a number of typical cases. While such works 
have been largely ignored, the ever-increasing performance of computers now allows for 
generating and visualizing such process-based models relatively easily. This is what is 
being developed here for meandering channelized reservoirs (Lopez, 2003). A process-
based stochastic approach has also been used by Hu et al. (2002) to simulate the internal 
geometry of deltaic sandstone bodies. 

2 Description of the model 

2.1 CHANNEL EVOLUTION

The difficulty to realistically represent a meandering channel in object based models 
was at the origin of the present developments. However, meandering rivers have long 
been a subject of interest for scientists and hydraulic studies dating back to the eighties 
(Ikeda et al. 1981, Sun et al. 1996) have allowed the development of 2D equations that 
represent realistic geometries of an evolving meandering river migrating on a floodplain. 
More specifically these equations, which are obtained from linearization of St-Venant 
equations under the assumptions of constant channel width, large curvature, and steady 
state, describe the evolution process of the channel centreline. Starting from an initial 
centreline, which may be a broken line with insignificant variations, the process rapidly 
develops its own meandering period (Fig. 1). From time to time, the two sides of a 
meander connect, resulting in a cut-off and an abandoned meander. The consequent 
reduction of the channel length compensates for the increase of the meander lengths 
when the channel migrates. Because of cut-offs, the process is not reversible in time, 
which could have been useful for conditioning to datapoints. While the equations are 
deterministic, we are in the case of a pre-stochastic, or chaotic, situation. A small change 
in the initial state of the channel results in channels that look alike, but are located 
differently due to variations in the exact position of the cut-offs, just like different 
realizations of a stochastic process. The process has been used by Gross and Small 
(1998) to provide the first 3D block models. In our model the equations have been 
extended to 3D, to take into account the variations in local slope, notably at a cut-off 
location (Lopez, 2003). This process describes the continuous evolution of the channel 
when migrating on its floodplain, and is discretized at a time step of, say, 1 year.

However, occasionally, and preferentially where the velocity of flow in the channel is 
locally at a maximum, a levee breach may occur. This may then lead to a discontinuous 
evolution of the channel if the breach is used to change its path. This results either in a 
chute cut-off, when the new channel only crosscuts the outer part of a meander, or in an 
avulsion, when the channel takes a new path downstream. So-called “regional 
avulsions” take place upstream of the modeled domain. 
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2.2 DEPOSITS

When the channel migrates, it incises the outer side of the meanders, while depositing 
point bars in the inner side (Fig. 2). The succession of these sigmoid deposits form 
complex shapes, the connectivity of which is important, as they are usually populated 
with sand having good reservoir properties (Fig. 3). Where levee breaching occurs, 
crevasse splays are immediately deposited (Fig. 4), and possibly followed by an 
avulsion. From time to time, an overbank flood occurs, resulting in the deposition of 
sediments over the floodplain and causing the aggradation of the system (increase of its 
level). The granulometry and the thickness of the deposit are decreasing away from the 
channel (as a negative exponential, in the model). This tends to increase the difference 
of height between the levees (borders) of the channel and the surrounding plain, until the 
phenomenon is compensated by an avulsion lowering the elevation of the channel on the 
plain. Finally lowland deposits such as organic matter, which constitutes good 
geological markers, may cumulate in the lowest parts of the floodplain in the interval 
between two overbank floods.

2.3 EDGE EFFECTS

The model attempts to represent meandering channelized reservoirs at the scale of 
reservoirs, typically in a 2D rectangular area with sides of a few kilometres in length, 
with sloping to the East, and a single channel flowing from West to East. The output is a 
3D block model, consisting of the different deposits. While the 2D area represents the 
domain of interest, running the processes that rule the evolution of the channel and the 
depositions necessitates consideration of a domain extension.

Due to migration, a channel, located initially within the domain, may for instance 
happen to cross the longitudinal sides of the domain, requiring a lateral extension. 
Similarly, a downstream extension is required to allow the channel being intersected 
more than once by the downstream limit of the domain. The same problem also applies 
for the upstream limit, but being complicated by the necessary movement permitted at 
the upstream extremity of the channel.

Avulsions also require an extension, for the new channel may exceed the limits while 
still ruling the deposition over the domain. In the case of a regional avulsion, the new 
channel enters the domain preferentially where elevation is minimal. This would 
preferentially be located at the upstream corners of the domain if there is no lateral 
extension. On the contrary, a large lateral extension allows the possibility of having at a 
time a new channel entirely outside the domain, and the whole domain entirely covered 
by overbank sediment.

2.4 STOCHASTIC ASPECTS

The model makes use of different sources of scientific knowledge including: physical 
processes, sedimentological processes, as well as a number of results and observations 
reported in the literature that are desirable to provide a realistic model. Practical 
consideration of the occurrence of levee breaches, and the shape and dimensions of 
crevasse splays, gives some insight into the number of parameters, whose values can   
be chosen to be constant or variable. One very convenient way to introduce variability in 
the model is by randomizing parameters. For instance, the intensity of an  overbank 
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flood (i.e. the aggradation at levees) can be taken as fixed or be randomized with a given 
mean. Randomness is especially helpful to generate events whose occurrence is not 
exactly predictable: for example random selection of the location of a levee breach 
among a population of channel points with local maximum velocity, or the random 
generation of overbank floods with a given frequency. We have previously seen that in 
the deterministic process for meandering channel, randomness was at hand through very 
small variations in the intial state. In addition, explicit randomization of parameters 
allows multirealizations of the model. 

3 Control of the model 

3.1 PARAMETERS

While randomizing the occurrence of overbank deposits, for instance, allows for 
different simulations, the key parameter which characterizes the occurence of overbank 
floods is frequency. The number of such key parameters, which rule the essential 
aspects of the model, can fortunately be limited, which is a necessity for the model to be 
operational. They include for instance, the width and depth of the channel, the slope of 
the floodplain, the erodibility coefficient controling the velocity of migration, and the 
frequency and intensity of other elements such as overbank floods, avulsions, etc. 
Despite the limited number of key parameters, the model is rich enough to produce very 
different simulations, in terms of the amount or connectivity of sand for example, by 
changing one or a few parameters (Fig. 5). 

3.2 STATISTICS

In addition to visualization, statistics such as the mean proportions of facies or vertical 
proportion curves, can help the practitioner to choose or to modify parameters from 
data.

3.3 REGIONAL CONDITIONING

Migration is proportional to the erodibility coefficient. This can be taken as constant 
over the whole domain, or made to vary, either as a deterministic function or as a 
regionalized variable. Given such an erodibility map, the channel will confine its 
behaviour to areas that are more or less erodable (Fig. 6). This is thought to be very 
useful in order to take into account the information provided, for instance, by a seismic 
time slice. Moreover, if the map changes in a continuous manner, like different times of 
a seismic block, the channel will adapt. 
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3.4 CONDITIONING AT WELL DATAPOINTS

Conditioning at well data points is a very difficult and challenging issue. Oliver (2002) 
for instance, proposes to move and distort a non conditional channel to make it go 
through data points. Due to the number of elements of our model and to their evolution 
in time, we prefer conditioning from inside the model, acting on the evolution processes 
of the channel itself, namely migration and avulsion. Regional conditioning through an 
erodibility map was a first illustration. To favour the migration of the channel towards a 
datapoint where point bar must be deposited, we locally increase the erodibility map 
using a geostatistically simulated correction (Fig. 7). However if the distance is too 
large, we will first use an avulsion to approach the channel. In our model, the different 
types of sediments are deposited one upon the each other, with the exception of sand or 
mudplug that are deposited where the channel has previously eroded, and which are the 
only replacement facies available. It follows that the channel must keep away from data 
points where overbank shales, for instance, must be deposited before and after this 
deposition. Erodibility is then used to prevent the channel from going through such a 
point.

This engineering approach to conditioning does not yield to the theoretical conditional 
model. Such a theoretical model is not available and moreover, if it were, it would 
implicitely give a confidence to the assumed unconditional model itself that is not 
guaranteed in practice. The described conditioning through the evolution processes and 
the erodibility is still under devlopment, but seems to be a flexible approach and is able 
to honour several wells together. A 3D data management allows for the selection of 
active data to be used at a given time for conditioning. 

4 Conclusion 

When processes are known, process-based stochastic models allow for the 
representation of realistic geometries and arrangements of different geological sets, as 
illustrated in the case of meandering channelized reservoirs. The limited number of key 
parameters to be chosen or inferred, as well as the fast computation, allow the model to 
be operational. Yet, it can produce a variety of architectures by varying these 
parameters. Due to the stochastic aspect, multiple realizations can be provided for a 
given specified model. 

Soft regional conditioning with seismic, or hard conditioning at well data points is a 
chalenging problem. However practical solutions are being designed by controlling the 
process itself, and that may give acceptable approximations for conditional simulations.

Non conditional simulations can otherwise be used as training images (or blocks) for 
geologists or engineers. This is all the more interesting in that pictures of actual systems 
or outcrops may provide a biased view of what is to be obtained after further erosion and 
sedimentation.

Such a new generation of process-based stochastic models can be developed in other 
systems, e.g. fluvial (multi-channel, braided or anastomosing rivers), deep sea 
(turbidites, Das (2002)), or carbonates. 
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Fig. 1: Evolution of two channel centerlines after several thousands iterations, starting 
from quasi-straight lines from left to right which only differ by micro-perturbations. 
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Fig. 2: Channel migration and overbank deposition (red to yellow: sands from older to 
more recent; dark green to light green: shales from older to more recent). Flow from left 
to right. From Lopez (2003). 

Fig. 3: Scorched view of point-bars over 20 ka (see Fig. 2 for colors). From Lopez 
(2003).
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Fig. 4: Aerial view of the floodplain, including a regional avulsion followed by a levee 
breach with deposition of a crevasse splay (colors as in Fig. 2). From Lopez (2003). 

Fig. 5: Cross-sections showing different architectures produced by varying the 
frequency of avulsions. (see Fig. 2 for colors): (a) rare avulsions; (b) frequent avulsions. 
From Lopez (2003). 
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Fig. 6: A channel, initially a quasi-straight line from left to right, after 10000 migrating 
iterations on an erodibility map (in white: high erobility)

Fig. 7: Conditioning at a well datapoint: a) initial situation; the datapoint consists of 
point bar or mudplug; b) erodibility is used to attract the channel to the well ; c) when 
the channel reaches the well, deposition of point-bars is possible; d) however fixing the 
channel at the well location results in cut-off and mud-plug deposition, if desired. 
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Abstract.

Sequential Indictor Simulation is a classic stochastic simulation approach that is pixel-
based and utilizes kriging/cokriging to obtain estimates of the necessary conditional 
distributions and generate various analogous reservoir realizations of the target 
reservoir. However, reproduction of complex 3D patterns is not possible using 
traditional two-point statistics (variogram) based approaches. Therefore, new stochastic 
simulation approaches based on multiple point statistics have surfaced in the literature.
Since computational efficiency is a significant consideration in implementation of 
multiple point statistics based modeling approaches, parallel computational techniques 
and multithreading have to be implemented in order to render the process efficient for 
field scale reservoir characterization. The implementation of such a multi-threaded, 
multiple point simulation algorithm is discussed. The selection of an optimal spatial 
template is critical for capturing and reproducing complex spatial patterns observed in 
analogous systems. An efficient template optimization algorithm is also presented. 

1. Introduction 

Geostatistics has become a widespread tool for reservoir modeling and uncertainty 
assessment. Multiple equiprobable reservoir models constrained to data of different 
types and volume supports (geologic, geophysical and production data) can be generated 
while preserving the apparent geological structure. Traditional geostatistics is anchored 
on two basic concepts: the variogram model as representation of the spatial 
heterogeneity or continuity (more statistical than geologic), and kriging for spatial 
interpolation. Variogram-based geostatistics is mathematically consistent and 
convenient (mathematical representation of physical concepts), and its application is 
appropriate considering the lack of conditioning information in typical reservoir 
modeling scenarios and given the computational limitations facing the earlier generation 
of earth modelers.

Practitioners and particularly geologists have found the variogram suitable to describe 
geological heterogeneity within a single facies, but too limiting in describing and 
reproducing more organized and sharp geological features such as faults, fractures, and 
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facies distributions among others. These geological features usually have the largest 
impact on the flow response. The traditional variogram-based geostatistics fail to 
appropriately retain the required conditional information to reproduce these features; 
generating amorphous realizations that exhibit maximum entropy instead of 
systematically organized structures and patterns as expected from prior geological 
knowledge. These geological features call for a different approach utilizing multiple 
point statistics instead of variogram models (two point statistics) to capture the required 
conditional information to generate fields that exhibit lower entropy, more structural 
organization and preserve reservoir heterogeneity.

This approach requires a training image, a numerical representation of the spatial law 
and an explicit non-conditional conceptual description of the geological structures and 
patterns to be reproduced in the field. Training images can be obtained from outcrops 
and photographs. Although it seems easier to define a variogram model than develop 
training model depicting the critical reservoir heterogeneity, however, it is important to 
realize that variogram models are not any less subjective or constraining, and moreover,  
they are more limiting and less intuitive in describing geological heterogeneity. Patterns 
to be reproduced can be explicitly depicted in the training model as compared to the 
hidden higher-order statistics implicit within traditional variogram-based geostatistical 
models.

The general objective of this paper is to implement a new simulation approach that is 
based on geological feature identification and reproduction using a unique growth-based 
simulation algorithm. Features are grown starting from conditional data locations based 
on multiple point statistics inferred using optimized spatial templates. The simulation is 
implemented on a multi-threaded computational environment and consequently can be 
used to efficiently simulate 3D models comprising of over 10 million cells. The 
robustness of the simulation methodology and the reproduction of realistic geological 
features depend on the optimality of the selected spatial template used to capture the 
pattern characteristics. A unique approach for optimization of the spatial template is also 
presented.

2. Literature Survey 

Stochastic simulation was introduced by Matheron (1973) and Journel (1974) to correct 
for the smoothing effects and other artifacts of kriging, allowing the reproduction of the 
spatial variance predicted by the variogram model. Different algorithms were developed 
including sequential simulation (Journel, 1983, Isaaks, 1990; Srivastava, 1992; 
Goovaerts, 1997; Chiles and Delfiner, 1999), which has become the workhorse for many 
current geostatistical applications.  Stochastic simulation provides the capability to 
generate multiple equiprobable realizations, giving birth to the idea of assessing spatial 
uncertainty (Journel and Huijbregts, 1978).

Stochastic simulation stepped away from the variogram and kriging based core for the 
first time with the Boolean object-based algorithms, introduced by Stoyan, Kendal and 
Mecke (1987), and Haldorsen and Damsleth (1990), in an attempt to reproduce 
geological features, like channels and fractures, by fitting parametric shapes. Initially 
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Srivastava (1992), and later Caers (1998) and Strebelle (2000), proposed the idea of 
borrowing conditional probabilities directly from a training image, allowing the use of 
higher order or multiple point statistics to reproduce geological structures and patterns. 
Advantages of this approach over the Boolean object-based method include the pixel-
based non-iterative process and the ease of data integration of different types.

Training images and multiple point statistics methods remained largely untried until 
developments in computational capabilities and multiple point scanning techniques took 
place. The search tree, a training image scanning technique proposed by Strebelle 
(2000), has allowed for wider application of the multiple point statistics approach. In the 
search tree approach, the training proportions are recorded in a dynamic data structure 
that renders it convenient to store nested information such as number of outcomes of 
data events (joint probabilities). However, only “exact” data events directly found in the 
training image can be stored and later retrieved as the conditioning information in the 
estimation. A second approach allows the reproduction of “similar” data events by 
modeling and interpolating between found data events. This second approach was 
supported by the classification methods proposed by Arpat (2003) and Breiman et al. 
(1984); and neural net based models. 

Currently, the basic components that characterize the application of multiple point 
geostatistics remain the major focus of continuous research and development efforts, 
with the objective of defining a more consolidated and practical methodology. These 
components include, among others, the generation or acquisition of numerical spatial 
representations to be used as training images; the optimal definition of scanning 
templates to capture the proper conditional information from the training image; and 
development of computational schemes that render the application more practical and 
convenient.  The two last components are addressed in this paper. 

3. Proposed Methodology 

3.1 FEATURE IDENTIFICATION AND SIMULATION 

The purpose of the multiple point geostatistics approach is borrowing conditional 
proportions (joint probabilities) from a numerical representation of the spatial law 
(training image) describing the random function. Training images require some prior 
information. When this prior information is uncertain, alternative training images can be 
used to narrow the range of uncertainty and a Bayesian approach can be adopted to 
incorporate that uncertainty in resultant geological models (Liu et al., 2004). The 
training image requires the effort of geologists to generate one or more numerical 
representations of spatial heterogeneity, reflecting prior information about complex 
shapes and geometrical patterns.

In order to capture the relevant details of reservoir heterogeneity, the size of the training 
data as well as the size and complexity of the spatial template can be large. 
Consequently the process of scanning and storing multiple point conditional 
probabilities can have a rather high computational requirement. Taking advantage of 
recent advances in computational technology using multiple cpu processors, the task of 
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scanning training images is performed using multiple processing threads. The training 
image is segmented into multiple domains and the task of scanning each sub-domain 
using the specified spatial template(s) is assigned to a dedicated cpu thread. At the end 
of the scanning process, the statistics computed by each thread is compiled into a single 
statistical summary for the entire training image. 

The objective of the scanning process is to obtain the joint probabilities: 
},...,1;,..,1)({Prob KkNizZ kiu   (1) 

N  is the number of nodes in the template, iu is the position of the ith node, kz  is the kth
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In terms of the notation in Expression (1), the numerator in Expression (2) is simply the 
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Knowing the conditional probability given by expression (2), a simulation pattern can be 
obtained by drawing from the conditional probability distribution. 

Remark: The simulation event )( oA u  in traditional multiple point statistics 

implementations consists of a single point event i.e. the outcome at the central node of 
the template given the multiple point event in the surrounding nodes. In the 
implementation presented here, the simulation event is allowed to be a multiple point 
event. Thus both the conditioning and simulation events are multiple point events. This 
renders the simulation process to be fast and more important, the simulated patterns 
exhibit better continuity. 

Following scanning, the process of stochastic simulation is commenced where the 
inferred multiple point histogram is used in conjunction with reservoir specific data 
distributions to obtain realizations with realistic spatial heterogeneity. In the traditional 
implementations of multiple point geostatistics, the simulation nodes are visited along a 
random path and the probability of the central node given the configuration of pattern in 
the surrounding nodes is obtained from the search tree that contains a catalog of the 
scanned patterns. At the beginning of the simulation when only a few nodes have 
assigned values, considerable cpu time may be spent searching for unusual or infrequent 
patterns. In order to alleviate this problem, patterns or structures are grown from data 
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locations in the method implemented in this study. This approach improves the 
continuity of the simulated patterns while reducing the artifacts in the simulated image. 

Dividing the simulation domain into regions based on the density of conditional data, 
the conditioning data locations are visited along a random path. A node surrounding the 
data location is marked as “simulatable” based on whether the spatial template centered 
at that location contains at least a single conditional data. Corresponding to a randomly 
picked conditioning data location, a “simulatable” node in the vicinity of that data 
location is also randomly picked. The multiple point simulation event )( oA u is picked 

from the conditional probability distribution (Expression (2)) at that location. After all 
the conditioning data locations are visited, the list of “simulatable” nodes is updated and 
the next node is selected from this updated list. The simulation is continued until all the 
simulation nodes have been assigned a value. 

3.2 PROGRAM IMPLEMENTATION 

The program is implemented in Java to facilitate cross platform compatibility.  There are 
several inherent performance hindrances with the Java platform, however.  The biggest 
hindrance to achieve equal performance to C++ is that of memory allocation and 
garbage collection.  De-allocation of memory in Java is done automatically by an 
automated “garbage collector.”  Because almost everything in Java is an object, the 
creation of objects can be expensive, because creating an object requires calls not only 
to its own constructor, but also its parent class’s constructor.  For these two reasons, 
much of the reusable data types in this implementation are first created by Object 
Oriented design and then optimized using basic data types.  Much attention was paid to 
choosing thread-safe data types.  Other methods of optimization such as inline methods 
and reducing in-loop instructions and instantiations were used in conjunction with 
previously mentioned optimizations.  Currently, the second most costly operation is an 
object creation step that is looped through nearly every single simulated node.  This 
object creation overhead can be reduced by introducing a library system for objects with 
check-in, checkout feature.  The most costly operation is repeating a search operation on 
the Vector data type.  This problem can be alleviated by reducing the usage of such 
operations or by rewriting the library manually.  The more detailed implementation 
algorithm is described below. 

For the scanning process, the template generates a marginal offset at the edges of the 
training image in order to operate within the bounds.  This marginal offset is defined by 
the template configuration and has an important impact in the required size of the 
training image when large-scale templates are used.  The scanning process is described 
by the following steps: 

1. Select a cell location in the training image and superimpose the central node of the 
template at that location. 

2. Capture the cell values corresponding to the template nodes 
3. Identify the pattern and store it.  The pattern is stored in a long integer data type, I, 

by converting the N individual template node values, vi, to integers in the range [1-9] 
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and looping over all the template nodes with the formula: Ii = Ii-1 + vi * 10(i-1);
for i = 1,2,…,N; and I0 = 0.

4. Repeat steps 1 through 3 until the center of the template has been located in all 
training image cells excluding the marginal offset. 

As the training image is being scanned, each obtained pattern integer representing a data 
event is put into an array that is large enough to hold all possible occurrences for that 
training image.  The array is sorted and scanned for number of occurrences of each data 
event.  The occurrences are stored in an alternate array at the same index as the first 
occurrence of the data event.  Both arrays are then compressed by eliminating the 
repetitions and zeros.

In order to optimize the performance and utilization of computational resources, the 
scanning process is parallelized.  The first degree of parallelization is multithreading.  
Multithreading is much more preferable to forking a process due to much lower 
computing overhead in thread allocation.  By applying multithreading, the scanning 
process time was reduced significantly – to a few seconds, by only two threads.  This 
means that further degrees of parallelization are not required for this process including 
automated thread control to spawn more threads according to number of physical 
processors present.

The conventional stochastic simulation algorithms can be rather slow and cumbersome 
since they only simulate one point at a time.  The scanning process defined above allows 
the simulation algorithm employed here to simultaneously simulate all cells under the 
template.  All simulation nodes except the conditioning data locations are assigned a 
negative one (-1) value initially. Next, during the process of simulation: 
1. Select a cell as center cell of the spatial template 
2. Detect the pattern t(n) on the nodes of the spatial template by matching only non-

negative values against the ones previously recorded during the scanning phase.  
Only when all these positive values and their positions are completely matched, 
then the record is chosen. Retrieve the subset of scanned patterns that exhibit the 
pattern t(n). 

3. Take the probability of each pattern in the subset and construct a step CDF with 
probability on y-axis and pattern index number on x-axis. 

4. Randomly sample from that CDF. 
5. Get the corresponding pattern by its index and fills the cells under the template that 

are marked as empty. 

In order to speed up the simulation process, the simulation domain is divided into a 
number of regions, each corresponds to a thread task.  The conditioning data points are 
also divided into the simulation sub-domains, with each set containing a subset of 
simulated cells and a subset of candidate (“simulatable”) cells, which are defined as 
uninformed cells located near previously informed cells.  If any of the cells in a template 
during simulation is within the border of the image but beyond the quadrant border 
defined by the thread, the value is put down into that cell.  The procedure is safe and 
will not conflict with another thread’s execution since this portion of the code is 
synchronized between the threads.
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3.3. RESULTS 

The following are slice one through four of the simulation image, which is of size 
100x130x10. The training image consists of a 3-D volume made of fluvial channels 
trending in the North-South direction. Conditioning data along vertical wells are 
assumed.

Figure 1. Slices of a 3D simulation image obtained by application of the mp statistics 
based algorithm. The training image (Left) consists of channels trending in the North-
South direction.

The single thread operation took 2566881 milliseconds, where the multithreaded 
operation with four concurrent threads took on average 688000 milliseconds, which is 
nearly four times faster.  This means that our application scaled very well with the 
increased number of processors present.  It should be noted however, that the operating 
system in use is Redhat Linux 7.3 with kernel version 2.4.20 and that this kernel does 
not have a hyperthreading optimized scheduler, thus, the performance could be further 
enhanced by upgrading to a more modern kernel version. 

It is also to be noted that for this particular case, the best simulation images resulted 
with 2-D templates. This is because the channels change in orientation from one layer of 
the training image to the next. This causes the 3-D templates to introduce much noise 
into the simulation.  Despite the 2-D templates used, the slices exhibit correlation from 
one slice to the next due to the profusion of conditioning data in the vertical direction 
(due to the presence of vertical wells). Further optimization of 3-D templates to account 
for vertical variations will be attempted in the future. 
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3.4. TEMPLATE SELECTION 

A suitable scanning template is essential whose size and geometry define the search 
neighborhood and the detection of multiple point data events describing the spatial law. 
Consider a grid )(u where is the size of the grid and is the size of the 

simulation domain. A stationary attribute ( )Z u  is assumed over the grid. Suppose a 

spatial template of size N is desired. The objective is to identify a template 
Nit i ,..,1),(u within the grid such that the selected template optimally represents 

the dominant pattern of reservoir heterogeneity. The size and the scale of the template 
N  are user-specified and are dependent on the available cpu, complexity of the 
geological image etc. Designating the central node in the grid as ou , the covariance 

),( ojC uu between pairs of nodes ojj uuu : and ou is calculated on the basis of 

the particular training image. Under stationarity, the required covariance is calculated by 
translating a two-point template || ojjo uuh  over the training image. The 

1 covariance values 1,..,1),,( jC oj uu are ranked and the top N  values and 

the corresponding locations Nii ,..,1,u  define the optimal spatial template ).(ut

Spatial templates at multiple scales can be obtained by choosing the grid of different 
resolution (multiple grids), accounting for geological patterns at different scales. 

In order to test the efficacy of the template optimization algorithm, multiple training 
images were generated exhibiting similar features but with variations in spatial 
orientation and anisotropy. Some examples of optimal templates obtained for these 
training images comprised of modified geological feature (lens) rotated at different 
angles are shown in Figure 2. 

Figure 2. Template configurations obtained with the Template Selection Algorithm for 
similar geological features (lens) with different orientations and anisotropy.
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3.4.1 Impact of template geometry on mp statistics captured by the scanning process. 

In order to evaluate the results of the template selection algorithm and the importance of 
the template selection, a sensitivity study was performed. In this study, a training image 
exhibiting ellipsoidal lens with North-South orientation (Figure 3) was generated and 
scanned with six templates of the same size but different geometry. All the templates 
were produced by the template selection algorithm, considering different numerical 
representations of lens with the same size but different orientations.

Figure 3. Training image exhibiting North-South ellipsoidal lens. 

The study objective is to demonstrate the importance of an appropriate template for 
capturing more information about the multiple point statistics describing a particular 
geological feature. Hence, the multiple point statistics inference process was performed 
using a variety of spatial templates. It can be noticed in Figure 4, enhanced performance 
is obtained corresponding to Template 1, which has a North-South orientation. This 
template captured more relevant data events (with frequency higher than 10) from the 
training image (approximately 11% more than the second best Template) and 
consequently, the total number of occurrences retained as multiple point conditional 
information is increased. The difference in configuration between Templates 2 and 3 is 
the location of a single node; however this single node causes the number of relevant 
data events to drop in approximately 11%.

4 Conclusions 

A unique stochastic simulation approach based on growth of objects within the 
simulation domain is presented. The object growth is controlled by the multiple point 
statistics inferred on training images. In order to render the simulation computationally 
efficient, the process is implemented on a multi-threaded environment. The scanning as 
well as the simulation processes both take advantage of multiple cpus. The 
computational process is demonstrated to scale well when going from 1 to 4 processors.

The selection of an optimal spatial template for retrieving the multiple point statistics is 
an important aspect of the proposed simulation algorithm. A fast and robust approach to 
derive optimal spatial templates is presented. The results show that the number of 
template nodes and their geometry influence the robustness of the retrieved statistics. 
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Figure 4. Number of relevant data events (frequency greater than 10 in training image) 
plotted against the template configuration. 
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Abstract. The main objective of this paper is to develop a technique for direct 
assessment of reservoir flow performance uncertainties. This is achieved via a single 
stochastic flow simulation that combines a model for local geologic uncertainty with a 
simple analog for the flow transfer function to estimate the joint probability distribution 
that characterizes the global uncertainty in flow performance. Our method provides the 
framework to go directly from local uncertainty, derived using simple spatial 
interpolation techniques, to flow uncertainty, skipping the intermediate steps of 
stochastic sequential simulation and not requiring any fine-scale flow simulations. 

1 Introduction 

Uncertainties in prediction of reservoir flow performance result from insufficient 
information available to model the reservoir and incomplete understanding of the flow 
processes taking place in the reservoir. Geostatistics provides a framework for 
incorporating data from diverse sources into the reservoir-modelling process, while 
realistically representing the uncertainty stemming from incomplete information.

The reservoir property at each location is modelled as a random variable (RV); the 
probability distribution function characterizing this RV represents the uncertainty of the 
attribute value at that particular location. Furthermore, the spatial distribution of the 
property value at all locations within the reservoir is modelled as a spatial random 
function (RF) that is characterized by a multivariate, joint probability distribution (Bu 
and Damsleth, 1996; Lia et al., 1997). The spatial distribution of reservoir attributes 
depicted by the numerical, geological model is generally obtained conditioned to the 
available information and after implementing a suitable technique for constructing and 
sampling from the multivariate joint distribution. This reservoir model is subsequently 
subjected to a flow transfer function to evaluate the flow response and production 
potential. Therefore, the uncertainty in the spatial distribution of reservoir attributes 
propagates to uncertainty in estimates of flow response. As we treat some of the 
reservoir properties as RVs, the governing equations for fluid flow become stochastic 
partial differential equations (SDEs). There are generally two basic approaches to solve 
these SDEs: the statistical moment equation approach (Sabelfeld and Kolyukhin, 2003) 
and the Monte Carlo simulation (MCS) approach. The MCS methodology is most-
widely adopted for assessing uncertainties in reservoir flow performance. It involves 
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generating multiple fine-scale depictions of the reservoir heterogeneity, each honouring 
the data available from diverse sources, and these images are subjected to a typical flow 
transfer function (a reservoir flow simulator) in order to characterize the flow 
performance uncertainty (Journel, 1994).

As opposed to the MCS approach, our objective in this paper is to combine the tasks of 
geostatistical simulation and flow modelling into one single step. Recognizing that 
uncertainty in flow performance comprises essentially of geologic uncertainty that is 
subsequently updated to global uncertainty due to flow, this paper explores avenues to 
directly merge the local uncertainty distribution derived using a spatial interpolation 
method such as kriging with a simplified model for modelling the reservoir flow 
performance. First, we propose a new analog technique for numerical flow simulation. 
Then we develop a technique to directly assess uncertainty by utilizing a single 
stochastic flow simulation that integrates local geologic uncertainty with our simple 
flow transfer model to estimate a joint uncertainty distribution that characterizes flow 
uncertainty. The resultant algorithm is computationally inexpensive and easy to 
implement. Moreover, it permits analysis of important decisions such as optimal well 
placement and reservoir management strategy, without having to resort to tedious 
stochastic simulation and expensive flow modelling. Despite its simplicity, our 
algorithm provides important information such as water cut and breakthrough 
uncertainties that are crucial for reservoir management applications. Tasks associated 
with uncertainty assessment, such as (1) assessment of the worth of information, (2) 
delineation of reservoir zones for location of future wells, and (3) ranking of reservoir 
models, can be reliably accomplished using the proposed method. 

2 A New Analog for Numerical Flow Simulations 

2.1 Background 

The complete description of mass transfer in porous media requires evaluating the 
relative contributions of diffusion and convection. The usual way of assessing these 
contributions is to assume that these two effects can be decoupled and yet additive. 
Define the total mass flux ni as the mass of species i transported per area per unit time 
relative to some fixed coordinates, vi as the average velocity of species i, and ci is the 
local concentration of species i:

oiioioiii ccc vjvvvn  (1) 

where vo is the convective reference velocity, ji represents the diffusive flux, whereas 
civo represents the convective flux. Combining the above equation with mass balance 
and Fick’s law, we obtain the following equation, where D is the diffusivity: 

oii
i ccD
t

c
v  (2) 

Again, the two terms on the right-hand side refer to diffusion and convection, 
respectively. Solutions are usually in two standard forms: (1) comprised of a series of 
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error functions or related integrals, or (2) in the form of trigonometric series. These two 
types of solutions can be obtained by the method of reflection and superposition (Crank 
1975) or alternatively, using the traditional method of separation of variables. The 
important characteristics of the solution methods are: (1) the solution corresponding to 
any complex boundary conditions can be constructed via the principle of superposition 
or summations of other elementary solutions; (2) the form of solution is generally in 
terms of exponential functions; diffusion influence declines exponentially in both the 
spatial and temporal domain. The equation governing the pressure diffusion in reservoir 
is similar to the mass diffusion equation and is characterized by the same exponential 
decay characteristics. Based on these observations, we postulate that movement of 
particles can be modelled as summation of dipole influences between pairs of nodes 
within the domain. Sudaryanto and Yortsos (2000, 2001) have successfully implemented 
a similar idea to optimize fluid displacements in porous media. In their approach, fluid 
displacement is expressed as a superposition of the response of individual wells. They 
have shown that the algorithm works well for both homogeneous and heterogeneous 
media.

Our fast analog technique utilizes particle counts as a surrogate measure of flow 
performance. There are two basic underlying concepts: (1) Particle movement can be 
decoupled into a convective term, influenced strongly by the heterogeneity of the 
permeability field, and a diffusive term that is governed by the gradient of concentration 
or pressure. (2) The particle count at a location can be obtained as the superposition of 
the influence exerted by all locations in the vicinity of that location. As seen in Eq. 2, 
mass transfer depends on parameters such as diffusion coefficient, the physical distance 
between two locations, and concentration or pressure difference. The dipole interaction 
between pairs of locations is postulated as a function of the permeabilities, distance 
between the pair, and difference in particle counts at the two locations. Our formulation 
will also include a parameter representing the normalized covariance between the two 
nodes to incorporate both convective and diffusive influences in one simple model. 

Heterogeneity or geologic structure is described using the concept of geo-bodies in our 
approach. A geo-body is a group of connected blocks sharing a specified reservoir 
property or characteristics. Within a geo-body defined using a high permeability 
threshold, convection tends to dominate due to the similarity in underlying heterogeneity 
structure. In contrast, convection across geo-bodies is minimal due to discontinuity in 
the heterogeneity structure; nonetheless, fluid transport across such heterogeneities may 
occur due to pressure diffusion, resulting in movement of fluid particles outside and 
between geo-bodies. Since Fickian processes exhibit an exponential decay in space and 
time, our formulation will utilize an exponential covariance structure for modelling the 
diffusive component of fluid transport. 

The notion of sources and sinks is extended in the following manner. At the initial time 
step, the injection wells act as sole sources and the production wells as sinks. In the 
injection case, the well source exerts a dipole influence on the neighbouring nodes, and 
the range of the influence is governed by the covariance structure. At subsequent steps, 
all locations that have registered an increase in particle count act as secondary sources 
that begin to exert influence on all locations in their neighbourhood. In the case of 
depletion to a producing well, all locations that have registered a decrease in particle 
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count act as secondary sinks. The flow of fluids in the reservoir as a function of time is 
modelled by sequential updating of the particle count map, taking into consideration the 
influence of all new secondary sources or sinks. 

2.2 Model Framework 

Based on the preceding discussion, the following form of the dipole influence is 

postulated in our model: Let ijijij rkw , where ijk  is geometric average of 

permeability at nodes i and j, rij is the distance between nodes i and j.

For injection influences: 
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For withdrawal influences: 
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where 1n
ijI is the influence function between nodes i and j at time step n+1, C(hij) is the 

covariance weighting function, n
iP  and n

jP  are particle counts at node i and j at time 

step n, respectively, and N is total number of grid blocks. Since ijk  and rij are in 

different units, we need to normalize the wij by its sum in order to ensure dimensional 
consistency and conservation of particle count in the system. The expressions (3) and (4) 
can be observed to be analogous to the steady state solutions for fluid flow in porous 
media (Darcy’s Law). The particle count at node i at time step n+1 is computed as: 
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where 1n
iP is particle count at node i at time step n+1, injP  is the number of particles 

injected during t, prodP  represents particles produced during t. The subscripts inj

and with refer to the injection and withdrawal influences, respectively. The 
standardization term in the denominator results in particle conservation.
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If i and j belong to different geo-bodies, the covariance weighting function C(hij) would 
follow an isotropic, exponential covariance structure; this represents the diffusive 
component. If i and j belong to the same geo-body, the covariance weighting function 
would take the larger of either an exponential covariance value (representing diffusion) 
or a value based on the structure of the permeability field (representing convection).

2.3 Case Study 

Consider a 2-D 50x50 reservoir ( x = y = 100m, and z = 0.3m) with a permeability 
field (in mD) shown in Figure 1a. Variogram for the geologic model is as follows: 
spherical structure, azimuth angle = 45o, maximum and minimum ranges are 1800m and 
600m, respectively. A range of 115m is used for the diffusive exponential structure. The 
results at the end of 400 days obtained from our fast analog algorithm and those 
obtained from flow simulator (ECLIPSE) for a single producer or injector in the middle 
of the reservoir, with a flow rate of 250 rm3/d, are shown below.

Figure 1. (a) Permeability field (in md) for the example case. (b) Particle saturations for 
a single producer obtained using our analog model with t = 20 days. (c) Water-in-place 
map for a single producer obtained using ECLIPSE with t = 5 days; the scale goes 
from 182.12m3 to 184.04m3. (d-e) Particle saturations for a single injector obtained 
using our analog model (d: t = 20 days, e: t = 50 days). (f) Water saturation map for a 
single injector obtained using ECLIPSE with t = 5 days.

In our methodology, the source strength is directly proportional to the total volume of 
injection that in turn is influenced by the time step size t. The larger the time step size, 
the stronger the source strength, and consequently the particle counts over a larger 
region of the reservoir get updated. Evidently, the smaller the step size, the more 
accurate the results are. Nonetheless, it appears that even a step size of 20 days or 50 
days give reasonably good results. Moreover, it can be noticed that the results predicted 
by our model resembles those of a piston-type displacement, i.e. corresponding to 
favourable mobility ratios. A value of 115m was chosen as the isotropic diffusive range 
as it allows convective and diffusive influences to be manifested adequately. 
Heterogeneity influences increase in relative magnitude when the diffusive range is too 
small, or they become overly suppressed when the diffusive range is too large. 
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3 Application to Direct Uncertainty Assessment 

3.1 Model Framework 

We have presented in the previous section a fast analog technique that decouples the 
convective and diffusive components of the mass transfer process. The particle count at 
individual locations is obtained by superimposing the influence of neighbouring 
locations. The superposition process re-introduces the dependence between the two 
modes of mass transfer. In this section, the probabilistic analogy to the decomposition 
and superposition processes is discussed. In the probabilistic framework, decoupling 
amounts to independence and implies that the posterior distribution P(A|B,C) is 
proportional to the product of the elemental probabilities P(A|B) and P(A|C):

)|(*)|(),|( CAPBAPCBAP  (6) 

where A is flow response, such as particle counts, B is convective influence, and C is 
diffusive influence. The above formulation suggests that the probability of obtaining a 
certain flow response A given the convective and diffusive influences is a product of the 
two conditional probabilities. Convection is driven by heterogeneity; therefore, P(A|B)
can be derived using a spatial interpolation procedure such as indicator kriging that 
utilizes the covariance model describing the permeability heterogeneity, whereas P(A|C)
can be derived assuming an isotropic exponential covariance structure described in the 
previous section. The superposition step is an integral aspect of our fast transfer function 
formulation. Superposition in a probabilistic sense implies that the flow (particle count) 
uncertainty at each time step at a particular location is updated based on the uncertainty 
at surrounding nodes. The traditional, intermediate step of sequential simulation where 
the local uncertainty distribution derived by kriging is updated to a joint uncertainty is 
thus skipped. Therefore, if we consider P(A|B) to be local uncertainties and P(A|B,C) to 
be flow uncertainties, this technique provides the mechanism for updating local 
uncertainties into global flow-based uncertainties directly.

Prior to describing the model framework, Figure 4 (left) shows the entropy profile at a 
few well locations as a function of time obtained by performing a traditional Monte 
Carlo analysis. Entropy, a general uncertainty-measure on random variables introduced 
by Shannon (1948), is an excellent normalized measure of the spread of any given 
probability distribution p. It is defined as 

tn

i
ii zpzpentropy

1

)](log[*)(  (7) 

where i = nt (total number of thresholds), zi = attribute value at threshold i, p(zi) = the 
corresponding probability density value at threshold zi.. A high entropy value indicates a 
wide distribution and larger uncertainty, while low entropy value indicates a narrow 
distribution and lower uncertainty. Multiple realizations of the permeability field were 
generated and subsequently processed through a flow simulator. It is observed from 
flow simulation results that entropy remains zero before the injected waterfront has 
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reached a location; this observation suggests that the uncertainty component P(A|C) and 
hence the integrated uncertainty P(A|B,C) should remain zero until the locations are 
reached by the fluid front. Furthermore, the entropy at each location initially increases 
because of the influence of uncertainty at neighbouring locations. Evidently, the entropy 
in production response at the well locations declines as the flood sweeps through the 
bulk of the reservoir. These observations guided the development of the algorithm 
outlined below. All probabilities are assumed to be cumulative values:

1. Assume maximum prior uncertainty in particle count at all locations, i.e. P(A)
is a uniform distribution. 

2. Compute the heterogeneity/convection related component of uncertainty 
P(A|B) via indicator kriging. 

3. At well locations: P(A|C)0 is set to be a step function that increases its values 
from zero to one at the prescribed flow rate. An indicator flag is set to be one at 
the injector location. The indicator flags at the unswept locations are set to be 
zero. For all locations, P(A|B,C)0  is initialised to be the same as P(A|C)0.

4. For each time step, compute P(A|C)n+1 at location i (i = 1,…, N) via probability 
kriging, which is kriging of probability values at each threshold, using 
probabilities at locations that are within the range of influence as defined by the 
exponential covariance model representative of diffusion.

If the flag value of the conditioning location equals one (meaning the fluid 
front has reached the node), values of P(A|B,C)n from time step n are used 
for probability kriging; whereas if the flag value of the conditioning 
location equals zero (meaning it has not been reached by the fluid front), 
maximum uncertainty in particle count at the neighbouring locations 
should be used instead. This amounts to the uncertainty at i being
influenced by the maximum uncertainty at node j ( ij ) prior to the 

arrival of the front there. After the arrival of the front at j, the reduction in 
uncertainty at that location propagates to i. The indicator flag values at i
are updated to be one if P(A|C)n+1 P(A|C)0.
The local uncertainty P(A|B) at data location is zero. Moreover, if the 
flood front has not yet approached the conditioning data location, the 
diffusive component remains equal to the initial value P(A|C)0 and
P(A|B,C)n+1 = P(A|B,C)0. Skip Step 5. 

5. Update P(A|B,C)n+1 as in Eq. 6 and rescale P(A|B,C)n+1 by its sum. This 
rescaling causes the calculated values to be legitimate cumulative probability 
values.

6. At production or injection well locations: P(A|C)n+1 = P(A|C)0 and P(A|B,C)n+1

= P(A|B,C)0

3.2 Case Study 

Again, consider the same 2-D 50x50 reservoir. The hard data and variogram indicate the 
high probability of the presence of a high-permeability flow path located in the NE 
direction (azimuth angle = -45o). Here is a summary of the available information 

A total of 32 locations with hard data: 10 located inside a potential high-
permeability flow path area; another 10 located in a transition intermediate 
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permeability area; and 12 values are distributed in the low permeability areas. 
The locations of the hard data are shown in Figure 2 (left). 
Variogram for high permeability thresholds: same as the one described in the 
case study in section 2. Variogram for low permeability thresholds: Spherical 
model, azimuth angle = 0o, isotropic with range equals 900m. 
Range for the diffusive exponential variogram: 300m 
An injector is placed in the SE corner. A large injection rate is assumed. 

Figure 2 (right) shows the entropy map obtained from indicator kriging. This represents 
the prior local uncertainty. 

Figure 2. Left: location map of conditioning hard data. Right: entropy map from 
indicator kriging of the permeability field. 

Figure 3 shows the entropy maps as a function of time obtained using the algorithm 
outlined above. Entropies are initially zero everywhere signifying that the fluid 
displacement has not commenced. As the front progresses, entropy begins to increase 
initially as the uncertainties in the surrounding nodes exert a strong influence on the 
uncertainty at a particular location; however, that uncertainty decreases as the fluid 
sweeps through the reservoir. The farther away the location is from the injection point, 
the longer is the time lag for the initial increase in entropy. Entropy remains low inside 
the high-permeability zone at all times because of the variogram structure and the 
conditioning influence of the data; water tends to sweep through the high permeability 
area before diffusing into the nearby low permeability matrix. An interesting point to be 
noted is that entropy remains relatively higher at regions that are close to the low-
permeability hard data. This suggests that uncertainties are higher even at locations that 
are close to hard data, if the hard data is in a region of low permeability and is away 
from the main fluid flow paths. It can be seen that the entropy map in Figure 3 exhibits 
significantly more variability than the kriged entropy map (Figure 2). In a sense, the 
entropy updating process using the principle of superposition re-introduces covariance 
reproduction to the extent that is relevant from a flow perspective. Higher uncertainty is 
consistently indicated in the transition from the high to low permeability zone, and this 
would also be observed in the local and joint uncertainty distributions obtained using 
kriging and stochastic simulation. 
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Figure 3. Entropy maps at various snapshots of time. From top left to bottom right: t = 
0, t = 10, t = 20, t = 30, t = 50, t = 100. 

As a comparison, fifty realizations based on the given information were generated using 
sequential indicator simulation. Each of the realizations was then subjected to flow 
simulations. Each flow simulation case has an injector at node (50,50), injecting water at 
a rate of 250rm3/day; a producer flowing at 250rm3/day is located at one of 6 selected 
locations whose locations are marked in Figure 4. Figure 4 (left) shows the entropy of 
water cuts at various producer locations as a function of time. In general, entropy 
fluctuates slightly at the initial times due to connate water production. Once the injected 
waterfront has reached the producer location, entropy starts increasing as water cut 
increases. The entropy continues to increase to a maximum, and then a gradual 
reduction is observed as time progresses. As seen in Figure 4 (left), locations that are 
close to the injector, such as (48,48), experience the influences of the injected water 
much sooner than locations that are far away, such as (3,3). It is noted that the entropies 
are generally high for low-permeability locations, and it also takes longer for the entropy 
to decline at those locations. The rate of decline also depends on distance from injection 
point. The farther away from injection point, the more gradual is the decline in entropy. 
Nonetheless, the entropy peaks appear to be of similar magnitude for all locations 
considered. Other useful statistics to consider would be uncertainties in breakthrough 
times and the water cuts at some time after breakthrough.

Figure 4. Entropy profile at six selected locations (Left: flow simulations; right: our 
direct uncertainty assessment technique)

Figure 4 (right) shows the entropy profile as a function of time for the same six selected 
locations, obtained using our direct assessment technique. Similar to the results obtained 
from flow simulations over 50 realizations, entropy peaks at all locations are 
approximately the same. The entropy peaks inside the high-permeability zone are 
slightly lower; entropies in low-permeability regions reduce much more gradually than 
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those in the high-permeability regions. The order in which breakthroughs and entropy 
peaks at various locations occur is also the same as in flow simulation results. Entropy at 
location (5,45) remains high at all times, and a similar trend can be observed in results 
from flow simulations as well. The magnitude of the entropy value at a location 
immediately after the arrival of the flood front is equivalent to the entropy in 
breakthrough time. The uncertainty in breakthrough in the high permeability zone 
decreases slightly as the distance from the injection point increases. This might be due 
to the fact that for locations that are close to the injection point, any fluctuations in flow 
properties at the injection point would manifest itself immediately on the flow 
uncertainty at locations that are close to the injection point. It can be seen that a small 
amount of residual entropy or uncertainty exists for all locations even after a large 
number of time steps. Unlike results from flow simulations, the initial increase in 
entropy peak predicted by our method occurs abruptly. This is a consequence of the 
indicator flag being turned on abruptly when a front reaches a location. In the finite 
difference simulation, there is a smearing of the flood front as it approaches a location. 

One of the major application areas of uncertainty assessment procedures such as that 
described in this paper is well placement optimization. Important variables to consider 
include uncertainty in breakthrough times and uncertainty in water cut after 
breakthrough. Our stochastic flow simulation provides a proxy breakthrough time 
indicator, which is defined as the instant when the flag at a location changes from zero 
to one, i.e. the moment a location is reached by the fluid front. In order to gauge the 
uncertainty in breakthrough, we can look at the entropy value immediately following 
breakthrough at each location. As explained, the initial increase in entropy occurs 
because of the propagation of uncertainty from surrounding nodes. Based on these 
observations, if we are to decide the most optimal locations for a producer well, in order 
to achieve the maximum efficiency, we would like to place the well at a location where 
water breakthrough occurs late and the uncertainty associated with that breakthrough is 
low. As a result, a location with long breakthrough time, and yet low entropy peak is 
preferred. Details about the applications of the proposed approach to practical reservoir 
management can be found in Leung (2004). 

4 Conclusions & Recommendations 

We demonstrated a fast transfer function methodology where the convective and 
diffusive components of transport are decoupled. As an application of this simple flow 
model, we proposed a new technique for direct uncertainty assessment via a single 
stochastic flow simulation that combines local geologic uncertainty with a simple flow 
transfer model. Unlike the traditional Monte Carlo approach, where constructing the 
uncertainty distribution location by location can be tedious, the full uncertainty 
distribution is available at every location as a function of time.
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PRESERVATION OF MULTIPLE POINT STRUCTURE WHEN 

CONDITIONING BY KRIGING 
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Department of Civil & Environmental Engineering, 220 CEB,
University of Alberta, Canada, T6G 2G7 

Abstract.  The idea of conditioning by kriging is well known in theory and practice.  It 
has been used for conditioning the realizations from unconditional simulation techniques 
such as the moving average and the turning bands simulation approaches.  The basis of 
the conditioning by kriging approach is to use the same variogram for both the 
unconditional simulation and the kriging.  In this paper, the focus is on using kriging for 
conditioning of more complex unconditional simulations. Unconditional simulated 
realizations with multiple point structure are generated for posterior conditioning. Two 
sets of data are used for kriging. After conditioning, the simulated values at data 
locations are the real data values, so the local data is honored. Beyond the range of 
correlation, the simulated values are the unconditional simulated values, which mean 
that the multiple point structure can be preserved. 

The results obtained in this work show that conditioning by kriging is a simple, easy and 
reliable way to account for data with complex multiple point structures. Both continuous 
and categorical variables are used to show the performance of the conditioning by 
kriging approach. Moreover, kriging with different sets of data demonstrates that the 
multiple point structures are well preserved after conditioning. 

1 Introduction 

Conditioning by kriging is not a new concept in geostatistics. It has been used for 
conditioning the moving average and the turning bands simulations (Journel and 
Huijbregts, 1978). However, because the sequential simulation is quite feasible and 
widely accepted, the conditioning by kriging has been little used in practice. 

When working on reservoir characterizations, we often need to deal with complex 
features. Two-point statistical simulations are not good at preserving these complex 
features. So multiple-point statistic is usually needed. However, multiple-point statistic 
is very complicated and always takes a very long time. Object-base simulation can also 
be used to model the complex features. But conducting a conditional simulation with 
complex features takes much longer time than an unconditional simulation. If carrying 
out an unconditional simulation to capture these complex features, then apply the 
conditioning by kriging to obtain a conditional simulation, the conditional simulation 
with complex features can be performed in an easy and fast manner. In this paper, the 
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focus is on the conditioning by kriging. The unconditional simulation realizations are 
generated by using the fluvsim (Deutsch and Tran, 2001) and contain channels and 
overbank with non-linear features. The conditioning by kriging is conducted to show 
how these multiple point structures can be preserved. The performance of conditioning 
by kriging will be shown in both continuous and categorical variables cases. 

2 Theory of Conditioning by Kriging 

Suppose there are N real data, and M data need to be simulated. The conditioning by 
kriging consists of the following successive steps: 

1. Carry out an unconditional simulation to obtain the unconditional simulated 
values Zuc(x).

2. Carry out kriging using the N conditioning data to obtain Zkr(x).
3. Carry out kriging using the unconditional simulated values at these N data 

locations to obtain Zkr-u(x).
4. Calculate the conditional simulation values for each block:  

( ) ( ) [ ( ) ( )]cs uc kr u krZ x Z x Z x Z x

This equation implies that at each real data location, the unconditional simulated value is 
taken out, and the conditioning datum is put in. Near the location, the kriging linear 
estimators smooth the change between the real data and the unconditional simulated 
values outside the range of kriged values. Therefore, after the conditioning, the 
conditional simulated values at these N data locations will exactly be the real data 
values. Beyond the range of correction, the conditional simulated values will be the 
unconditional simulated values. These steps need to be carried out in the Gaussian 
environment.

The two kriging (steps 2 and 3) can be combined to perform only one kriging using N 
data differences between the real data and the unconditional simulated values. Then the 
conditioning can be simply expressed as: 

( ) ( ) ( )cs uc krZ x Z x D x

where Dkr(x) is the data of the kriging using the residual of the real data values 
subtracting the unconditional simulated values.

It can be interpreted as that the conditioning by kriging is adding correction areas to 
unconditional simulations based on the differences between real data and unconditional 
simulated values. This can be easily seen in an example (Figure 1). This example is 
constructed using categorical variables. The unconditional simulation realizations and 
the string of conditioning data are shown together in the left image. The result of 
conditioning by kriging is shown in the right image. The channel is in dark grey, and the 
overbank is in light grey. For the places in overbank where the conditioning data shows 
there should be a channel, a certain size of channel is added by conditioning. In the 
example, a channel is added beside the original channel so that the result looks like the 
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original channel is dilated. In the contrary, for the places where the conditioning data 
shows there should be no channel, erosion takes place. 

Figure 1. Example of conditioning by kriging.

Continuous and categorical variables are used to show the performance of the 
conditioning by kriging approach. The real data can be obtained from continued cores in 
a single well or from different wells. Therefore, for each variable, the conditioning data 
use a string of data and scattered data. They are extracted from an unconditional 
simulation.

3 Continuous Variable Cases 

3.1 CONDITIONING WITH A STRING OF DATA 

A string of data used for the conditioning is shown in Figure 2. The real data actually are 
only one pixel wide. In order to show them clearly in a plot, the string of data is 
extended to five pixels. The data domain is 100 by 100.

Figure 2. A 1-D string of conditioning data expanded to five pixels. The real data is one 
pixel wide at index 50 in a 100 x 100 pixel image. The normal scale is used throughout. 

The unconditional simulation was implemented using the fluvsim to generate 
realizations with channels and overbank deposits. Within the channels and overbank 
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deposits, a separated sgsim (Deutsch and Journel, 1998) was implemented to generate 
the realizations for each deposit. The four unconditional simulation realizations were 
transformed into Gaussian space and are shown in Figure 3. These curvilinear channels 
are laying out in the vertical direction. The normal scores of these unconditional 
simulation realizations were used to calculate variograms. The varfit (Larrondo et. al., 
2003) was used to model the variograms, and the variogram models were used in the 
kriging. The models of variograms in the vertical and horizontal directions of the first 
unconditional simulation realization (the top left image in Figure 3) are shown in Figure 
4. The residual data was calculated by subtracting the unconditional simulated values 
from the conditioning data values. Therefore, using these residual data, only one kriging 
was implemented. The kriged values were added to the unconditional simulated values 
to calculate the conditional simulation values. 

Figure 3. Four unconditional realizations generated by fluvsim and then separate sgsim
runs within the channel and overbank deposits. 

Figure 4. Variograms of the first unconditional realization in two main directions. 
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Figure 5. The left column is four unconditional simulation realizations, and the right 
column is these realizations conditioned by kriging. The central data location matches 
exactly the conditioning data shown on Figure 2. 
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The conditional simulation realizations are shown in the right column of Figure 5. For 
comparison, the four unconditional simulation realizations are plotted in the left column 
of Figure 5. It can be seen that near the center line of the realizations, there are some 
difference created by the conditioning. Beyond that, they are exactly same. Apparently, 
the multiple-point structures are well preserved. 

3.2 CONDITIONING WITH SCATTERED DATA 

The scattered data used for the conditioning by kriging are shown in Figure 6. The data 
are taken at ix/iy grid node indices of 10, 30, 50, 70 and 90.

Figure 6. Scattered conditioning data: the data are taken at ix/iy grid node indices of 10, 
30, 50, 70, and 90. 

The same approach has been applied for conditioning the four unconditional simulation 
realizations (Figure 3) with the 25 scattered data. Both the conditional simulation results 
and the unconditional simulation results are shown in Figure 7. The conditioning data 
are honored and the multiple-point structures are well preserved. 

4 Categorical Variable Cases 

4.1 CONDITIONING WITH A STRING OF DATA

Similarly to the continuous variable case, a string of data was used for conditioning 
(Figure 8). The data are categorical values of 1 and 0. The channel categorical value is 1 
and shown in dark grey. The overbank categorical value is 0 and shown in light grey. 
The real data is only one pixel wide at index 50 in a 100 by 100 pixel image, and it is 
also expanded to five pixels to show them better. Two unconditional simulation 
realizations (the left column in Figure 9 or 11) were generated with fluvsim. The data are 
also categorical values of 1 and 0. These curvilinear channels are laying out in the 
vertical direction. The despike was used to change the same categorical values into 
slightly different values so that the 1 : 1 normal score transformation could be achieved. 
The categorical values of the unconditional simulated data and the conditioning data 
were despiked, and transformed into normal scores. The variograms were calculated 
from the unconditional realizations and modeled by the varfit program. These models 
were used in the kriging.
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Figure 7. The left column is four unconditional simulation realizations, and the right 
column is these realizations conditioned by kriging to 25 scattered data. They match the 
conditioning data exactly and the non-linear structure is preserved quite closely. 
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Figure 8. A string of conditioning data for the categorical variable case. The data is 
expanded to five pixels. 

Figure 9. Two unconditional simulation realizations are on the left, and the realizations 
conditioned by kriging to the string of data are on the right. These conditioned models 
match the conditioning data. 

The residual data were calculated in Gaussian space. After kriging with the residual 
data, the kriged results were added to the unconditional simulated data to get the 
conditional simulated data. These values were normal scores but not categorical values. 
So they were truncated into categorical values of 1 and 0. 

The conditional simulation realizations are shown in the right column in Figure 9. The 
models on the right match the conditioning data. There are some artifacts when large 
changes occur, but apparently, the non-linear structures are well preserved. 



CONDITIONING MULTIPLE POINT STRUCTURE BY KRIGING 651

4.2 CONDITIONING WITH SCATTERED DATA 

The scattered data used for the conditioning by kriging are shown in Figure 10. The data 
are taken at ix/iy grid node indices of 10, 30, 50, 70 and 90. The same approach has 
been applied for conditioning the unconditional simulation realizations. Both the 
unconditional and the conditional simulation results are shown in Figure 11. Some 
artifacts appear when facies changes. But certainly the multiple-point structures are well 
preserved.

Figure 10. 25 scattered conditioning data for the categorical variable case. The data are 
taken at grid node indices of 10, 30, 50, 70 and 90. 

Figure 11. Two unconditional simulation realizations are on the left, and the realizations 
conditioned by kriging to the scattered data are on the right. These conditioned models 
match the conditioning data. 
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5 Conclusions 

Conditioning by kriging is correct when dealing with unconditional realizations based 
on the simple kriging principle. The conditional realizations respect the data and have no 
artifacts of the conditioning data. Using kriging to condition realizations that are 
generated by more complex simulation algorithms has been demonstrated with limited 
success. The shape/structure of the changes near the conditioning data respects mostly 
the variogram. The greater the change required, the greater the influence of the 
variogram and the poorer the complex structure is preserved. The algorithm would work 
well when the changes are minimal (such as a near solution with annealing) or when the 
features are reasonably captured by the variogram. 
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MULTIPLE-POINT GEOSTATISTICS

AMISHA MAHARAJA
Department of Petroleum Engineering, Stanford University, Stanford, CA
94305

Abstract. An extensive data set on the Rhine-Meuse delta in the Netherlands is
available. It consists of approximately 200,000 boreholes and fully reconstructed
channel systems for the past 10,000 years. In a study area the reconstructed channel
systems are treated as ground truth for checking the simulation results from the
multiple-point stochastic modeling algorithm snesim. Two generations of channel
systems with distinct morphological characteristics can be identified in the study
area. These are modeled jointly, then separately. Joint simulation gives poor results
because the individual characteristics of each channel system are lost when taken
together. When simulated separately, the attributes of the two different channels
systems are better reproduced, the simulations are then combined by cookie-cut.

Key words: Multiple-point statistics, Hierarchical simulation, Delta

1 Introduction

The subaerial part of the Rhine-Meuse delta during the Holocene has been exten-
sively studied by researchers of Utrecht University in the Netherlands (Berendsen
and Stouthamer, 2001). An area of 5700 sq. km. was extensively drilled and channel
belts of the ancient river systems have been reconstructed. Over the years some
200,000 lithologic boreholes have been sampled and described. What makes this
data set unique is that the paleogeographic reconstruction has been incorporated
into a GIS data base so that channel belts existing at any given time in the past
10,000 years can be easily retrieved (Cohen, 2003). Because of this feature, the
data set lends itself well to testing stochastic modeling algorithms.

We selected an area of 11.4 × 9.36 sq. km. (600 × 500 grid nodes) within the
delta area (Figure 1(a)) to test the multiple-point simulation algorithm snesim
(Strebelle, 2000, 2002). The maximum thickness of the Holocene deposit in the area
is approximately 13 meters, hence the vertical stacking patterns are uninteresting.
Instead, we focus on high resolution modeling of the 2D channel patterns which
have been worked out in detail by the Utrecht researchers. The channel belts in
this area can be separated into generation 1 (Figure 1(b)) and generation 2 (Figure
1(c)).
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Figure 1. Channel belts of the Rhine-Meuse delta in the selected study area

One reason for modeling these two generations separately is that they are
significantly different in their channel patterns, orientation, and channel widths.
The generation 1 channel system is an anastomosing channel system oriented
at roughly 45o from North in which the channel belts join and re-join forming
networks of interconnected channel belts. On the contrary, the channel belts of
generation 2 have an open pattern and they fan out. The width of generation 1
channel belts is in 100s of meters while that of generation 2 is in 10s of meters.
Moreover, the NTG of generation 1 is 20 percent, which is double the NTG of
generation 2. The following sections describe the conditional simulation of the two
generations jointly and separately.

2 Joint simulation

For the joint simulation of both generations of channel systems, the reference GIS
image with a net-to-gross (NTG) of 28 percent is used as a training image (Ti),
see Figure 1(a). Fifty well data with a NTG of 28 percent are used as hard data.
A high resolution stratigraphic modeling would generally not be possible without
seismic data in actual hydrocarbon reservoirs. Since no seismic data is available,
a local probability map for occurence of channel facies is generated by taking a
moving window average of the reference image with a 50 x 50 moving window
(Figure 2). A target NTG of 29 percent is enforced by the servo-system provided
in the program snesim. Simulations conditional to the hard well data and the soft
probability data are generated. For details about how the various data are honored
in the snesim algorithm refer to Zhang (2003).

Figure 2. Channel probability map for generation 1
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from North. This rotation information, typically obtained from seismic data in-
terpretation, is provided directly as an input to the simulation algorithm. Since
generation 1 channel belts do not occur outside a certain area (Figure 1(b)), a no-
simulation region is defined so that no channels are simulated there. Generation 1
well data with a NTG of 16 percent are provided and a target NTG of 20 percent
is enforced with the program servo-system. Simulations conditioned to the hard
well data, the region information and the global rotation information are then
generated.

Figure 3. Training image for Generation 1

Training images shown in Figure 4 are drawn for simulation of the generation
2 channel system. The Ti in Figure 4(a) has straight channels with short-scale
undulations without any loop. The Tis in Figure 4(b) and 4(c) have looping
channels with large-scale undulations. A local probability map for occurence of
channel facies is generated by running over the reference image a 50 x 50 moving
window average (Figure 5(a)). A locally varying angle map (Figure 5(b)), derived
from the soft data, is supplied to achieve the faning pattern. Generation 2 well
data with a NTG of 22 percent are used as hard data and a target NTG of 10
percent is enforced through the program servo-system. Simulations conditioned to
the hard well data, the soft probability map and the local rotation map are then
generated.

3 Separate simulation

For simulation of generation 1, a specific Ti (Figure 3) is drawn using Geobody-
Painter software (Frank, 2003). This Ti captures the anastomosing pattern of
generation 1 channel system, however, the channel belts are not oriented at 45o

(a) Training image 1 (b) Training image 2 (c) Training image 3

Figure 4. Training images for Generation 2

STOCHASTIC MODELING OF THE RHINE MEUSE DELTA-
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(a) Soft probability
map

(b) Angle map

Figure 5. Generation 2 data

or generation 2 (Figure 6). The NTG of the realization is 28.4 percent, which is
close to the target 29 percent.

Figure 6. Joint simulation of generation 1 and 2 channel belts

Figure 7(a) and 7(b) shows realizations of generation 1 and 2 individually and
Figure 7(c) shows the result after generation 2 is cookie-cut onto generation 1.
A different set of Tis, angle, and soft data were used for generation 1 and 2,
which made it possible to preserve their individual characteristics. The NTG of
generation 1 realization is 20.2 percent, while that of generation 2 is 10.5 percent.
The NTG after cookie-cut is 28 percent, which is close to the target 29 percent.

4 Discussion of simulation results

When taken together, generation 1 and generation 2 form a mesh of wide and
narrow channel belts which completely obscures their individual patterns (Figure
1(a)). The modeling algorithm cannot “see” the individual components and aver-
ages out the differences in channel widths. Consequently, the resulting simulation,
although exactly data-conditioned, bears little resemblance to either generation 1

(a) Generation 1
simulation

(b) Generation 2
simulation

(c) Generation 2
cookie-cut onto gen-
eration 1

Figure 7. Separate simulation of generation 1 and 2 channel belts
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and looping pattern and the global rotation information. Simulation of generation
2 channel belts required the additional constraint of local angle map (Figure 5(b)).
The soft probability cube guided the channel density to give a better match with
the reference image. Better result is obtained by using a stationary Ti (Figure 4(a))
supplemented with an angle map than using a non-stationary Ti that includes the
angle information (Figure 8).

(a) Fan Ti (600 x

600)

(b) Realization

Figure 8. Simulation of Generation 2 using fan Ti

The simulations of generation 2 corresponding to the three different Tis in
Figure 4 are shown in Figure 9. The simulation (Figure 9(a)) using the Ti of Figure
4(a) best resembles the reference generation 2 channel pattern. This is because
generation 2 channels are mostly free of loops and have short-scale undulations,
which is reflected in the Ti of Figure 4(a). However, connectivity is poor because
the NTG is low and the channels in the Ti are not connected. Better connec-
tivity is obtained using the Ti of Figure 4(b) because there the channels display
connections, see Figure 9(b). The channels in the Ti of Figure 4(c) have fewer
inter-channel connections, hence the connectivity in the corresponding simulation
is poorer, see Figure 9(c).

In general, it is important to specify the correct channel widths to get correct
channel density. If the channels in the Ti are wider than in reality, then the target

For the simulation of generation 1 channel belts, it was essential to define the
region of no-simulation in addition to providing a Ti with correct channel width

(a) Simulation us-
ing Ti 1

(b) Simulation us-
ing Ti 2

(c) Simulation using
Ti 3

Figure 9. Simulation of Generation 2 using different Tis

NTG can be attained with fewer channels resulting in a lower density of simulated
channels. Conversely, if the training channels are thinner than in reality, then a
greater number of channels will be simulated in order to match the target NTG.

-



658 A. MAHARAJA

In the case of generation 2, channel probability map alone is not sufficient to
impose the correct angle when simulating with a stationary Ti (Figure 4(a)). This
is because in the Ti, there is no data event in which the channels are oriented at an
angle other than 90 degrees. The textitsnesim program does not extract the angle
information from the soft probability map. The user has to generate the angle map
and provide it explicitly to snesim as an additional constraint, as shown in case
of generation 2 simulation.

Figure 10. Simulation of generation 2 channel belts without local angle data
(613 x 500)

5 Conclusions

This application of multiple-point stochastic simulation on the Rhine-Meuse delta
brings out several important point for modeling such deposits using the /textit-
snesim algorithm.

− Need to separate depositional sequences: If geological interpretation
indicates the presence of distinct channel systems, these systems should be
simulated separately to preserve their specific structures. A hierarchy of sim-
ulation may also be applied within the same system when multiple facies with
different shapes and sizes are present (Maharaja, 2003).

− Importance of accurate training images: It is important to provide Tis
with the correct channel characteristics such as (in this case study) width,
roundness and size of the channel loops, otherwise the Ti information may
conflict with the seismic and well data. Moreover, channel density will be
poorly reproduced if the Ti channels are too wide or too narrow.

− Importance of local angle data: Soft probability data alone cannot impose
the angle information because the textitsnesim program does not extract the
angle information from the channel probability map. Such locally varying
angle information needs to be provided explicitly by the user.

− Importance of stationary Ti: With snesim, it is better to use a stationary
Ti. Non-stationarity can be imparted by using additional local information
such as angle maps and local NTG proportion maps. An area that is deemed
non-stationary should be divided into regions which are then simulated sep-
arately with corresponding stationary Tis. To avoid discontinuity between
simulated regions, these could be simulated sequentially using overlapping
data templates. Pattern-based algorithms such as simpat and filtersim do



 

 

 

 

 



STOCHASTIC MODELING OF THE RHINE MEUSE DELTA 659

not average out features of the Ti unlike snesim, hence they do not require
stationary Tis.
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Abstract. Geographic characteristics of undiscovered petroleum accumulations are 
important both to better natural resource management and improved exploration 
efficiency. Stochastic simulation is a useful tool that reveals uncertainties in petroleum 
exploration and exploitation applications. The lack of information regarding the 
locations of undiscovered petroleum accumulations presents a major difficulty to the 
application of this technique to petroleum resource assessment. In order to facilitate the 
locations of undiscovered petroleum accumulations, we propose a model-enhanced 
simulation approach that uses a geological model, in either the form of geological 
favorability or probability of petroleum occurrence derived from available geological 
and geophysical observations. The proposed approach employs a Fourier transform 
algorithm in the conditional simulation because it permits the spatial correlation-specific 
and location-specific features from different data sources to be studied separately and 
integrated in the frequency domain subsequently. This approach is illustrated by the 
analysis of the Rainbow petroleum play in the Western Canada Sedimentary Basin. The 
proposed approach produces a resource map showing the possible size of undiscovered 
petroleum accumulations with geographic locations. A comparison with the results from 
a traditional conditional simulation indicates that the proposed approach produces maps 
with improved features and predictions validated by the test data set. 

1 Introduction  

During the past three decades, petroleum resource assessment method development has 
focused primarily on assessing the aggregated properties of oil and gas resources, such 
as the total potential and the number of accumulations (Lee and Wang, 1985; Kaufman 
et al. 1975, Scheunemeyer and Drew, 1983, Baker et al, 1985), or the distribution 
characteristics of accumulation sizes in a petroleum play (Drew, 1990; Houghton, 1988; 
Lee, 1993). Little effort has been made to predict undiscovered resource spatial 
(geographic) distributions. New demands for both better resource management and 
improved exploration efficiency require a quantitative description of undiscovered 
petroleum accumulation spatial distribution characteristics (Hood et al, 2000). This 
provoked a new trend of methodological development aimed at predicting undiscovered 
petroleum accumulation locations (Meneley et al. 2003). Quantification of the 
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undiscovered petroleum resource spatial distribution must simultaneously consider two 
key elements: the size of and the location of the undiscovered accumulations. Recent 
studies have attempted to map undiscovered accumulations spatial characteristics using 
different techniques  (e.g., Chen et al, 2000; 2001 and 2002, 2004; Hood et al., 2000, 
Gao et al. 2000). However, the methods currently available do not allow a full 
integration of data to account for both, the accumulation size and its location.

Stochastic simulation is a proven tool for revealing uncertainties in petroleum 
exploitation (e.g., Deutsch, and Tran, 2002; Georgsen et al., 1994; Holden et al., 1998) 
and could be an ideal tool for undiscovered petroleum accumulation prediction. Its 
application to petroleum resource assessment could generate equal-probable realizations 
of potential petroleum accumulation with geographic characteristics. The uncertainties 
associated with the modeled accumulations provide an important feature for visualizing 
exploration risk. Currently stochastic simulation considers the spatial correlation 
characteristics and observational conditions that are derived directly from the 
exploration drilling results. However, there is no information from drilling results 
regarding undiscovered petroleum accumulation locations, which presents a major 
obstacle to the application of stochastic simulation to petroleum resource assessment.

Different geoscience data types contain unique information regarding petroleum 
accumulation properties. In a mature play at least four data types carry information 
pertinent to petroleum occurrence spatial characteristics: 1) geological data; 2) 
exploration drilling results; 3) geophysical data; and 4) location and data quality 
information regarding geoscience surveys (Chen et al. 2000). Geological information is 
genetic in character. Available geological information indicates the necessary conditions 
for petroleum occurrence and it allows, in principle, the inference of petroleum 
occurrence spatial characteristics (Hood et al. 2000). The spatial variation of geological 
conditions necessary for petroleum accumulation characterizes the relative favorability 
for a petroleum accumulation. It is possible to integrate such information and infer the 
possible locations of undiscovered petroleum accumulations (Chen et al, 2000, 2002). 

We propose a model-enhanced stochastic simulation, using a Fourier transform 
algorithm to solve the problem of missing information related to undiscovered 
petroleum locations. In the simulation a geological model, in the form of geological 
favorability or probability of petroleum occurrence derived from the analysis of 
available geological and geophysical observations, is employed to infer the 
undiscovered petroleum accumulation locations. We illustrate this approach using an 
example of the Middle Devonian Rainbow petroleum play in the Western Canada 
Sedimentary Basin (WCSB). In the example, the pre-1994 exploration data set is used as 
input. The simulation results are compared against and validated by subsequent 
exploration (post-1993) drilling results, both successful and unsuccessful.
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2 Method Descriptions 

2.1 SIMULATION ALGORITHMS 

Among different stochastic simulation algorithms, Fourier transform approaches, such as 
the spectrum simulation algorithm (Pardo-Iguzquiza and Chica-Olmo, 1993) and the phase 
identification algorithm (Yao, 1999) appear to be ideal for simulating undiscovered 
petroleum accumulations with geographic references. There are two major advantages in 
using the Fourier transform method. In addition to the computational advantage, it is 
possible to study the spatial correlation-specific and location-specific characteristics of the 
petroleum accumulations separately. Models for spatial correlation and location 
characteristics can be conveniently extracted from different geoscience data sources and 
integrated into the simulation.

In a frequency domain, power spectrum, S( , is related to covariance function in 
geostatistics by the Wiener-Khintchine theorem (1993) which states that any stationary 
process has a covariance function C(h) of the form: 

where  is the angular frequency (S( is equal to square of the absolute value of 
amplitude, |A( )|2). This indicates that both functions (the power spectrum and the 
covariance) contain the same spatial correlation information, but are expressed in 
different forms. The spatial correlation is governed by the power spectrum and 
geographical references are specified by the phase spectrum ( . Inferred locations of 
undiscovered petroleum accumulation through geological analysis and information 
integration with geophysical data can be presented in a geological model, such as in the 
form of a conditional probability map of petroleum occurrence. Such a probability map 
serves as a spatial density function in the simulation that controls the geographical 
locations of inferred accumulations. For principles and mathematical formulations of the 
Fourier transform approach, the reader is referred to Yao (1999).

2.2 A FRACTAL MODEL OF PETROLEUM ACCUMULATION 

Barton and Scholz (1995) and La Pointe (1995) studied the data from well-explored 
petroleum basins and concluded that petroleum accumulation spatial distributions are 
fractal. La Pointe (1995) proposed using fractal geometry to estimate the total potential 
in a region. Barton and Scholz (1995) proposed using the fractal dimension as an 
indicator for exploration planning. Our studies in the Western Canada Sedimentary 
Basin indicate that petroleum resource spatial distribution exhibits a self-affine 
characteristic. This characteristic motivated us to examine a fractal model for the 
quantitative description of petroleum resource spatial distribution.

In the proposed approach, the petroleum resource is described by an image map, on 
which the value of each pixel represents the average petroleum accumulation 
magnitude, or yield, within that pixel. The value at each pixel represents the net effect of 
petroleum accumulation, since the location where petroleum is generated is not 

C h S e di h( ) ( ) ( )=
− ω ωω

π

π
1
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necessary the location where it is trapped. Negative values signify net migration away 
from the pixel, whereas positive values represent net accumulation. The primary 
objective of petroleum exploration is to find economically recoverable petroleum 
accumulations and only those accumulations exceeding an economically defined size 
are significant. We recognize that the economic size threshold can be a variable in time 
and space, which is primarily dependant on economic and infrastructure conditions. As 
a result petroleum accumulation spatial distribution patterns may vary with the changes 
in economics, while the spatial correlation structure remains unaffected. 

For a self-similar fractal time series, the power spectrum density has a power law 
dependency on frequency (Turcotte, 1997, p. 148): 

where f is frequency, and is an exponential coefficient. In the fractal model, the spatial 
correlation of objects is fully specified by Eq. (2).

2.3 SIMULATION PROCEDURE 

We proposed a simulation that has the following steps: 
1) Prepare a petroleum accumulation image map from exploration results; 
2) Estimate fractal parameters from the image map according to sampling 

characteristics;
3) FFT the image map to obtain both amplitude and phase maps; 
4) Calibrate the amplitude map using the estimated fractal parameters to obtain a 

Modified Fractal Amplitude Map (MFAM); 
5) Generate a phase map that incorporates information from either geological 

favorablity or petroleum occurrence probability map; 
6) Generate a fractal image (accumulation map) using the MFAM and the inferred 

phase in step 6 using inverse FFT; 
7) Check the fractal image against both exploration observations and geological 

constraints. Calculate the difference between the simulated values and those at 
conditioning pixels.

8) If the difference is below the pre-set tolerance, then accept the results; 
9) If the difference is greater than the tolerate threshold, modify the accumulation map 

by replacing the simulated values with the observed values at the conditioning 
pixels.

10) FFT the modified accumulation map, and get new amplitude and phase maps;  
11) Replace the new amplitude map with the MFAM and keep the new phase map in 

step 10, and inverse FFT the MFAM and new phase. Repeating steps 7) to 10) until 
a desired tolerance is reached.

3 Application Example 

The Rainbow petroleum play, located in northwestern Alberta, WCSB, is a mature 
exploration play with an areal extent of about 5000 km2. Major geological controls on 
this play and its petroleum system are well described (Barss, et. al., 1970, Podruski, et

S f( ) ( )ϖ β∝ − 2
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al, 1988, Reinson, et al., 1993, Li, et al., 1999, Folwer, et al. 2002). Exploration for oil 
and gas began in this play in the early 1950’s. By the end of 1993, 409 wild cats had 
been drilled, leading to the discoveries of 22 gas pools, 87 oil pools, and 77 oil and gas 
pools, with a total oil and gas reserve of 269.1x106 m3 (in place) oil equivalent (o.e.). In 
the subsequent period, from 1994 to 2000, 52 additional exploratory wells were drilled, 
among which 32 discovered either oil/gas pools or oil/gas flows on test. The pre-94 data 
set was used to estimate model parameters and to condition the simulation. The post-93 
data set served as a test data set to check the predictive value of the simulation output. A 
discovered petroleum pool map (Fig. 1) was prepared using the Alberta Energy and 
Utilities Board (EUB) annual reserve report (EUB, 2001). The pool locations are 
represented by the discovery well locations at the center. Pool size is indicated by the 
pixel value. A rectangular area of 0.36 km2 is assumed to be “exhausted” of petroleum 
potential by an exploratory well. In the simulation, dry wells were used as constraints 
that excluded petroleum accumulation at the same location.

An amplitude map and a phase map are derived by a Fourier transform of the discovered 
petroleum accumulations map. Fig. 2 shows the amplitude profiles in easting and 
northing directions. The deviations of the amplitude from the straight lines are 
interpreted as exploration bias. The MFAM, calibrated using the fractal parameters in
eq (2), represents the spatial correlation for all petroleum accumulations in the size 
range indicated by the data. The phase map derived from the discovered petroleum 
accumulations contains no information regarding the locations of the undiscovered 
petroleum accumulations. The use of the traditional conditional simulation with the 
amplitude map results in a random realization of a stochastic simulation conditioned on 
both the discovered petroleum accumulations and the dry well locations. In such a 
realization, the spatial correlation in the amplitude map is retained, but the locations of 
the undiscovered petroleum pools could be anywhere except at the conditioned pixels.

squares indicate the discovery well locations, and crosses indicate dry well locations. 
 Pre-1994 discoveries (crude oil and natural gas) in the Rainbow play, WCSB. Open Figure 1
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In the same area a previous study of petroleum accumulation spatial distribution 
characteristics resulted in a conditional probability map of petroleum occurrence (Chen 
et al. 2001). That map integrates information from geological factors describing 
petroleum occurrences. With this independently determined conditional probability 
map, the iteratively repeated simulation procedure produces equal-probable realizations, 
which are validated against not only, discovered petroleum accumulations, dry wells, 
and the exhaustion of potential by previous activity, but also the geological conditions 
controlling petroleum accumulations. Fig. 3 is a probability map of petroleum 
occurrence based on 3000 conditional realizations. It represents the uncertainty 
associated with the predicted undiscovered accumulation locations in the play. The 
likely sizes of both discovered and undiscovered petroleum accumulations, with 
geographic significance, as predicted by the model-enhanced simulation, are presented 
in Fig. 4.

2 Power spectrum profiles in x (above) and y (below) directions show the 
under-sampling of the smaller petroleum accumulations indicated by the deviation 
of the linear relationships in higher frequency regions (horizontal axis: frequency 
and vertical axis: amplitude).

Figure
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4 Discussion and conclusions 

The model-enhanced approach produces a petroleum accumulation map, on which both 
the size and location of the undiscovered petroleum accumulations are predicted. A 
probability map from multiple realizations of the simulation highlights the areas with 
low and high probability values, providing a general view of the exploration risk. 
Comparison of the post-1993 discovery wells locations with the resulting predicted 
petroleum occurrence probability validates this approach. Twenty-two of the thirty-two 
post-1993 discovery wells are located in areas with predicted probability values >0.5. 
Fifteen of these well locations occur where probability values are >0.7. The simulations 
have resulted in relatively high petroleum occurrence probabilities in a less explored 
area in the northeast part of the play, where only one unsuccessful well was drilled prior 
to 1994. Seven post-1993 exploratory wells were completed in this part of the play. Six 
were discoveries. The proposed method produces maps (probability and resource maps, 
Figs. 3 and 4) showing a profound influence of the geological characteristics of the play. 
In contrast, the traditional conditional simulation, without using the additional 
geological information, did not predict the six post-1993 discoveries in the northeastern 
part of the play and produces a more random pattern in areas without well control. This 
suggests that the proposed approach captures the essentials of the petroleum 
accumulation spatial features, as well as, the their geological characteristics. 

3  A probability map of petroleum occurrence for the Rainbow play based on 3000 
realizations from the model enhanced simulation. Solid circles locate successful 
exploratory wells and triangles locate unsuccessful exploratory wells locations drilled 
between 1994 and 2000.

Figure
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We have demonstrated using the Rainbow petroleum play example that the use of 
additional geological and geophysical prospecting data enhances the spatial modeling by 
contributing location-specific information to the phase map. If resource location is an 
important feature in the analysis, Fourier transform algorithm is an ideal approach for 
the conditional simulation, because it allows the spatial correlation structure and 
location-specific information from different sources to be analyzed separately in a 
frequency domain and integrated in a spatial domain. 
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Abstract. The advent of 4D time-lapse seismic surveys opens a new dimension to 
reservoir development: the possibility of monitoring from seismic data fluid flow hence 
production. Because of the low resolution of seismic data, one should not expect any 
useful point-to-point correlation between time-lapse saturation and seismic data; instead 
one might expect correlation of spatial patterns of these 2 variables. Spatial patterns 
involve multiple-locations within a fixed template window, and are summarized by the 
principal/canonical components of the within-template variability of each variable. 

1 Introduction 

4D seismic surveys, possibly with permanent downhole sensors, are being considered to 
monitor fluid production through observing changes in reservoir state. Time differences 
of seismic attributes are related to changes in pore fluids and pore pressure because bulk 
density and bulk moduli change during the drainage of the reservoir. Maps of seismic 
time difference can be used to detect fingering, monitor fluid movement, improve 
recovery and locate new wells (Nur, 1989; Anderson, 1998; Lumley, 1999). Clear 
success stories are presently limited to clastic reservoirs, shallow reservoirs and 
reservoirs where gas flow allows a greater density differentiation. There have also been 
some successful applications to carbonate reservoir (Hirsche, 1997; Talley, 1998). In the 
best case, correctly processed time-lapse seismic data can point out to fluid movement 
through mere visual inspection without any need for correlation statistics. These clear 
success stories may have led to dismissing the potential of 4D seismic surveys in less 
favorable cases. In such unfavorable cases, there may still be some influence of fluid 
saturation changes on the seismic data, but detection of such weak relation would need 
filtering and correlation tools beyond mere visual inspection (Sønneland, 1997). 

A wider utilization of 4D seismic surveys for monitoring production would have to 
settle with lesser expectation: water or gas fronts may not be seen deterministically, yet 
may have a detectable influence, if only tenuous and stochastic, on the seismic 
attributes. Time-lapse seismic data could then be systematically considered as a 
covariate data whose correlation would vary from quasi perfect (present best cases) to 
none. The intermediary cases are the object of this study. 
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A preliminary requisite to using any covariate data is to establish its correlation with the 
primary variable being estimated. There are, however, many ways one spatially 
distributed variable, say )(uy , may be dependent on another one, say )(uz , besides the 

trivial point-to-point correlation calling for the 2 variables to be co-located at the same 
location of coordinates vector u :

– first, the 2 variables may be defined on different volume supports and have 
different space and time resolution. Typically, the vertical resolution of seismic 
data is lesser than the vertical discretization of numerical reservoir models, those 
used to predict flow movement. 

– it may be that only specific spatial patterns of the covariate )(uy  carry a relation 

with either the primary variable )(uz  itself or some of its z-spatial patterns. 

The covariate )(uy  may be a time difference of seismic amplitudes measured at 

location u , )(uz could be the corresponding time difference in water saturation defined 

over a flow simulator block co-centred at u . The potentially valuable time-lapse seismic 
information )(uy  should not be dismissed just because, from a few calibration wells, 

the co-located correlation { )(uy , )(uz } was found to be poor or very poor. 

2 Setting the experiment: The Stanford V reservoir 

The Stanford V reservoir is a large 3D synthetic data set modeling a clastic reservoir 
made up of meandering fluvial channels with crevasse splays and levies in a mud 
background (Mao, 1999). The second layer of Stanford V is retained here as the 
reference reservoir, with a net to gross ratio of 0.53. This reference reservoir is 
discretized by a 3D grid with 100×130×10 nodes. Figure 1 shows a schematic vertical 
cross section of that layer (right figure), and its 3D facies distribution. 

2.1 FLOW SIMULATION 

To maximize sensitivity of the seismic time-lapse data, the reservoir is assumed shallow 
(top depth at 600m, see Figure 1), with light oil density at 45APIo. The initial water 
saturation is 0.15 in sandstone and crevasse, and 0.30 in mudstone, corresponding to a 
water-wet mudstone that, globally, contributes a substantial amount of oil. 

One injector is located in the SW corner at grid node (10,10), and one producer in the 
NE corner at grid node (90, 120). The water injection rate is 40,000 STB/day. During 
production no gas is emitted from the oil phase. The Eclipse simulator was run for water 
flooding over a total period of 20 years starting Jan.1, 2000. Breakthrough occurs at the 
end of 2013. Figure 2 gives the water saturation on layers 5-7 on Dec.29, 2013 just 
before breakthrough. 
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Figure 1. 3D Facies distribution (left) and a schematic vertical cross section of the 
reference reservoir. 

Figure 2. Water saturation on stratigraphic layers 5-7 on Dec. 29, 2013. 

2.2 SEISMIC SIMULATION 

After obtaining the saturation and pressure from flow simulation, the amplitude seismic 
traces were forward simulated using a normal incidence 1D convolution model with 
Fresnel zone lateral averaging, see Wu (2003) for greater details. 

This seismic data simulation was repeated at different times during the 20 years 
production period to mimic 4D surveys attempting to track the changes in water (brine) 
saturation.

Figure 3. Facies distribution (left) in NS vertical section at x=1, seismic amplitude 
(right) in the same section at the initial time 
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Figure 3 gives the 3 facies distribution (channel, crevasse, mud) over the first NS 
vertical section at x=1 (left figure), and the seismic amplitude in the same section at the 
initial time Jan.1, 2000. From Figure 3 it would be difficult to retrieve the facies 
distribution, the reason being that seismic amplitudes vary within the same facies 
because of the within-facies petrophysical variability. Figure 4 shows the initial seismic 
amplitude at layers 5-7. 

Figure 4. Initial seismic amplitude at stratigraphic layers 5-7 

3 Point-to-point correlation 

We attempted a direct point-to-point correlation between the two previously generated 
seismic amplitude and water saturation fields on Jan.1, 2000. Not surprisingly, that 
correlation came out very low at -0.06.

Indeed seismic amplitude and water saturation are defined on very different volume 
supports. Seismic amplitude is an average of reflectivity coefficients over a large 
horizontal Fresnel zone, here of dimension 9×9 grid nodes, i.e. of size 225m×225m in 
average. In addition, seismic amplitude records vertical impedance contrast. 
Consequently, we would expect better correlation between seismic amplitude and a 
vertical contrast of spatially averaged saturation values: 

– average first the water saturation data over a 3D moving window approximating 
the seismic Fresnel zone. That average is porosity-weighted:

L
l l

L
l ll Sw

Sw
1

1)(u       (1) 

where L=243 is the number of grid nodes of the 9×9×3 window centred at 
location ),,( kjiu  in stratigraphic coordinates; l and lSw  are the node l
porosity and saturation values. 

– next, define the vertical saturation contrast as: 

)1,,(),,(),,( kjiSwkjiSwkjiSwd    (2) 

where k  is the vertical stratigraphic coordinate, increasing with depth. 
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Figure 5 gives the water saturation vertical contrast on layers 5-7. The overall 3D 
collocated correlation between that Figure 5 and Figure 4 is now -0.20, slightly better 
than the previous -0.06.

However that -0.2 correlation still does not reflect the visual patterns correlation seen on 
the Figures 4 and 5. 

Figure 5. Initial water saturation vertical contrast at stratigraphic layers 5-7 

4 Spatial pattern correlation 

Because the point-to-point correlation (-0.20) does not render justice to the visual 
(pattern) correlation seen between Figures 4 and 5, we have to define a better correlation 
tool, yet one which is not too case-specific and could be applied to a whole range of 
reservoir heterogeneities and seismic surveys. 

The goal here is not so much to detect spatial patterns within a 3D seismic cube, but to 
define a measure able to correlate fuzzy spatial patterns between 2 cubes, the seismic 
cube and the water saturation one. There are many classification tools (Duda, 2001), but 
their primary goal is to detect patterns independently of correlation. As an initial choice 
we have focused on principal component analysis (PCA) and canonical analysis (CA) 
(Michael, 1984; Jolliffe, 1986). 

The general idea of CA is to define spatial templates, one for seismic data, one for 
saturation data, then to define within each template a linear combination of the data 
which would maximizes the cross-correlation seismic vs. saturation. PCA has the added 
advantage that each linear combination contributes maximally to the within-template 
variance.

4.1 TEMPLATE SIZE 

Because seismic data are already averaged over a horizontal Fresnel zone, here 9×9 grid 
nodes corresponding to 225m×225m in average, the seismic template needs only extend 
vertically. In depth coordinate we retain a vertical column template of size (1×1)×7 
centred on each grid node location u (Figure 6: left) 

To approximate the seismic Fresnel zone, we consider for saturation data a full 3D 
template of size (5×5)×3, see right of Figure6. To reduce the actual dimension of these 
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templates, the 25 saturation data of each of its horizon sections are averaged into 3 
values: the central value, the average of the 8 first aureola values (labelled by ‘×’), the 
average of 16 outer aureola values (labelled by ‘o’). Thus a saturation template 
comprises 3×3 = 9 values, as opposed to 7 values for the seismic template. 

Figure 6. Seismic template (left) and water saturation template (right) 

4.2 DATA TABLES 

The two 3D cubes of seismic and saturation data are scanned with the two previous 
templates generating two large data tables, 

– of size N rows × 7 columns for seismic data 
– of size N × 9 for saturation variable, where N is the number of template centres. 

Here N=477,310. 

The mean and variance of each column of these tables are calculated and the 
corresponding column values are standardized to mean zero and unit variance. The 
covariance matrix is calculated from each standardized data table; that matrix is of size 
(7×7) for seismic, (9×9) for saturation. Finally, PCA and CA is performed using these 
covariance matrices. 

4.3 APPLICATION TO 3D CORRELATION 

PCA was applied to the data recorded on Jan.1, 2000, more precisely the 3D cube of 
seismic amplitude ),,( kjiseis and the corresponding 3D cube of vertical saturation 

difference )1,,(),,(),,( kjiSwkjiSwkjidSw , see Figures 7 and 8. 

The 1st seismic PC explains 84% of the within-template variance, and the 1st saturation 
difference PC explains only 59% of its template variance. The overall 3D point-to-point 
correlation between these two first PC is 0.39, a value still low but more reflective of the 
patterns correlation seen between Figures 4 and 5.

The same PCA was repeated on the data recorded on Jan.1, 2004. The resulting 3D 
point-to-point correlation between the first PC’s of seismic amplitude and water 
saturation vertical difference was found to be 0.32, an equally not too high value. 

In preliminary conclusion, it appears that PCA succeeds, to a limited degree, to 
recognize some of the patterns correlation existing between seismic  attribute and 
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vertical difference of spatially averaged water saturation. That observation should be 
now checked on time difference of both seismic and saturation data. 

Figure 7. First PC values of seismic amplitude at stratigraphic layers 5-7 (Jan. 1 2000) 

Figure 8. First PC values of water saturation vertical contrast at stratigraphic layers 5-7 
(Jan. 1 2000) 

4.4 APPLICATION TO 4D CORRELATION 

The previous PCA and CA were repeated on now time-lapse data. More precisely: 
– the 3D seismic data used is now a time-lapse of seismic amplitude:

),,,(),,,(),,,,( 1212 tkjiseistkjiseisttkjiseis   (3) 

– the 3D saturation data is the corresponding time difference of water saturation 
vertical difference: 

),,,(),,,(),,,,( 1212 tkjidSwtkjidSwttkjisw   (4) 

with )1,,(),,(),,( kjiSwkjiSwkjidSw .

The time lapse here considered is: t2 =Jan.1, 2004, t1 =Jan.1, 2000. 

The 1st seismic PC explained 53% of the within-template variance, and the 1st saturation 
PC explains 48% of its template variance. The overall 4D (actually 3D for time 
difference) correlation between these two first PC’s is 0.78. This large correlation value 
is a good omen for using time lapse seismic to monitor water saturation changes. 
Figures 9 and 10 gives the maps of these two first PC’s values over the 9 stratigraphic 
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reservoir surfaces, these maps clearly show high visual correlations between the seismic 
time lapse and water saturation difference time lapse.

Figure 12. First CC values of water saturation vertical contrast time lapse at 
stratigraphic layers 5-7 (Jan. 1 2000 – Jan. 1 2004) 
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Next, canonical analysis (CA) was applied to the two previous sets of time-lapse data. 
The resulting first pair of canonical components, )(useisCC and )(uswCC , features a 

high cross correlation of 0.82. The corresponding two series of CC maps are shown on 
Figures 11 and 12. 

5 Conclusions 

Because of their different resolution (different support volumes) the point-to-point 
correlation between saturations and seismic time lapse might be low, although there may 
be significant correspondence between spatial patterns of the two time-lapse variables. 
A spatial pattern, although immediately visible to the eye, is a complex statistical 
concept involving multiple-points in space. Correlation between multiple-point data 
events is not yet well understood nor does it exist any established measure for it. 

The idea is to summarize a multiple-point data event, as defined within a fixed template 
of points, by a few linear combinations of these point values. Traditional correlation 
measures can then be applied to such linear combinations. The linear combinations 
should be indicative of the within-template spatial patterns, and should display 
significant cross-correlation between saturations and seismic time lapse variables. The 
linear combinations provided by principal component analysis (PCA) comes to mind: by 
definition, the first few principal components (PC’s) or linear combinations explain a 
large part of the within-template spatial variance. Because of that large variance 
contribution, it is conjectured that PC’s are good summaries of potential spatial patterns 
existing within the template area. Another, more direct, approach is canonical analysis 
(CA), which seeks at determining the two linear combinations (one for saturation, one 
for seismic time lapse) with maximum cross-correlation independently of their 
respective within-template variance contributions. 

Both PCA and CA were applied to the synthetic clastic Stanford V reservoir, where both 
seismic and reference water saturation time-lapse data are available and pattern 
correspondences are visually evident. The two sets of data (seismic and saturation) were 
analyzed through the filters of their respective templates, vertical for seismic, 3D 
mimicking the Fresnel zone for saturation. Although the original point-to-point 
correlation between the two time-lapse variables was insignificant around 0.1, 
correlation of the two first PC’s (one for seismic one for saturation) is high around 0.7, a 
value more reflective of the excellent visual patterns correspondence. Canonical analysis 
increases that correlation up to almost 0.8. 

In real practice, such proxies for spatial patterns correlation could be established from 
simulated reservoirs on which 4D seismic is forward simulated. Such correlation could 
be used to estimate or simulate time-lapse saturation values using observed PC’s or 
CC’s values of seismic time-lapse data. Geostatistics provides tools for estimating or 
simulating a variable such as water saturation, conditional to linear combinations of 
another variable (seismic time lapse data). This aspect of the study can now be 
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addressed, because we have shown that, indeed, principal and/or canonical components 
do carry multiple-point pattern information. 
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Abstract

Petrophysical measurements are used to construct reservoir models at a scale that are 
different from that at which they are measured.  This disparity necessitates an 
adjustment or scale-up of the measured values before they are used. Scale-up is 
complicated by the properties being heterogeneously distributed in space and self- or 
autocorrelated.  The autocorrelation means that the heterogeneity itself must be 
preserved during the scale up. 

We discuss scale up in the following two contexts.  The first is the scaling of 
permeability and ultimate recovery efficiency as the size of a flow field increases.  The 
second is the nature of adjustments to the model properties that are needed to better 
reconcile the observed behavior at different scales. We look at the effect of scale up 
procedures on the distribution and correlation structure of fluid velocities.  Despite the 
long history of scaling up reservoir simulation models, we find relatively little literature 
on this type of scaling up. 

Motivation

Figure 1 shows how lateral (horizontal or bed parallel) permeability increases with 
scale.  Among the most common changes made during a history matching procedure is 
that core or log-derived permeability must usually be increased to match field 
performance data.  This increase is expected because there are formations from which 
fluids are readily produced, but cores from which, being dominated by small scale 
heterogeneity, will pass little fluid. The same scale effect is also seen in vertical (bed 
normal) permeability except that it decreases with scale (Lake and Srinivasan, 2004).

Another scale effect is in the dependence of ultimate hydrocarbon recovery efficiency 
on size in enhanced oil recovery or remediation projects.  This is shown in Fig. 2.  
Despite the scatter of points (largely caused by differences in process type), the ultimate 
recovery efficiency decreases with increasing volume or scale.  The decrease shown in 
Fig. 2 is undoubtedly one of the reasons for the slow acceptance of advanced recovery 
processes. A similar (but opposite in trend) phenomenon occurs in the scale dependence 
of dispersivitiy, which has been shown in several works (Mahadavan et al., 2003, for 
example).
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Figure 1.  Effect of scale on lateral permeability and its distribution. Adapted from 
Kiraly (1975).

Figure 2: Plot of ultimate hydrocarbon recoveries versus scale. All points from Soga et 
al., 2004, except micellar-polymer (MP) points, which are from Lake and Pope, 1978. 

The observations in Figs.1 and 2 may be explained using geology, the vertical 
permeability effect, in particular, by the presence of partially permeable or impermeable 
discontinuous shales. While this is undoubtedly so, such behavior can also be explained 
statistically.  It is demonstrated in this paper that the increasing trend in horizontal 
permeability as well as the decreasing trend in kV/kH ratio with scale can be explained in 
terms of the dispersion variance or the variance of the mean. In other words, it is argued 
that the observed trends in permeability can be explained in terms of scaling of reservoir 
heterogeneity.

The scale behavior of ultimate recovery and dispersivity depend on the heterogeneity of 
the resulting velocity field. We discuss this in the last part of this paper. For the most 
part, a more heterogeneous velocity distribution will result in a smaller ultimate 
recovery and a larger dispersivity.
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Average Permeability 

The behavior of average lateral and vertical permeability is explained using one-
dimensional analytical statistics. Let Z be a scalar, spatially continuous, Gaussian, 
random variable distributed in one-dimensional field.  The average of Z over a distance 

L has a variance:
L

dd
L

ZVar
0 0

2

22
          (1)

where 2 is the population variance, and  its spatial autocorrelation function.
This variance of the mean decreases with increasing L but the variance of Z itself, at a 
point within L, increases (point properties within large volumes are more heterogeneous 
than the same property within a small volume).  The relationship among the variances is 
described by Krige's relationship (Journel and Hujbregts, 1978): 

2
L/D

2
o/L

2
o/D (2)

where σo/D
2  is the variance  of Z at a point (o) in a large volume D,

σo/L
2  is the variance of Z at a point in a small volume L (<D), and 

σL/D
2  is the variance of the average of Z over L within D.

In the notation of Equation (1) 2
L/DZVar  and 22

o/D .  The population is 

identified with the volume D. The variance of a point within L is then given by: 
L

dd
L

ZVarZVar
0 0

2

2
22 2

(3)

The integrals in the above expression can be evaluated, analytically for simple 
autocovariance functions, and numerically for nearly all others of interest.  In particular, 
for the K-scale exponential autocovariance:

Kk

1k

/
k kef ,

We have,
Kk

0k

/k
kk

2
k11

2 Le
L

f
L

ZVar (4)

Equation 4 allows specification of the scales of the variability of Z (through the k) and 
the fraction that each contributes to the total variance (through the fk).  These scales can 
in turn be related to other observations on the basis of laboratory, bed and interval 

scales, or even to such vagaries as micro, macro and mega.  Since 1= fk
k=1

k=K
  , 

Equation, (4) is a 2K- parameter model (K 1 fk,
2, and K k ) . 
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Expressions for the variance of averages can be further developed for combinations of 
the three-scale and the stable model.  Application of Equation (4) to explain the concept 
of Representative Elementary Volume and to understand the scaling characteristics of 
porosity is discussed in Lake and Srinivasan, 2004.  The behavior of permeability in Fig. 
1 can also be explained in this fashion as we show next. 

Recall that Z in Equation (1) is a Gaussian scalar random variable.  Hence Zek  is a 
log-normally distributed random variable. Furthermore, assuming a uniformly layered 
permeability medium, the arithmetic average (expectation) of k denoted by Hk , is a 

surrogate for horizontal permeability and the harmonic average of k, Vk  is a surrogate 

for vertical permeability.  The direction of the scale L in the above equations is 
perpendicular to these layers.

The non-centered moments of order j for a log-normal distribution are given as 

(Aitchison and Brown, 1976):
2
o/L

2j
2

1
j'

j e  (5) 

In Eq. 5 GkkEZE lnln  where Gk  is the geometric mean of the log-normally 

distributed k. 2
o/D

 is related to )(ZVar  from Equation (2).  Hence as the scale L

increases, the variance of the mean )(ZVar  decreases (Equation 4 ), and the variance of a 
point within that length scale increases, resulting in changes in the non-centered 
moments of a log-normal distribution.

Equation (5) for j = 1 yields the arithmetic average or horizontal permeability: 

2

)(

GH

2 ZVar

ekk  (6) 

This is shown graphically in the following figure where the increase in horizontal 
permeability is seen with increase in averaging distance. 

Figure 3. Calculated increase of horizontal permeability with scale calculated 
with Equation (6) and the one-scale stable autocorrelation model. kG =100,

σ 2 = 20, α = 0.2, λ =10000.
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Figure 3 also shows the ± 1 standard deviation of the estimate since this is available 
from the variance of the mean.  The parameters used to generate Figure 3 are 
reasonable.  The range parameter λ =10000 is greater than the maximum dimension 
shown with α = 0.2  being consistent with other literature (Jennings, 2000).   The 
decrease in vertical permeability with scale can be explained similarly. 

Velocity Field Scale Up 

The decrease in ultimate recovery efficiency behavior in Fig. 2 and the increase in 
dispersivities with scale largely depend on the spatial distribution of the fluid velocities. 
Attempts to quantify both the dispersivity and recovery dependence on scale have 
implicitly assumed that the autocorrelation structure of the local fluid velocity fields is 
the same as that of the transport coefficients (permeability or transmissibility). This 
section investigates the correspondence between the permeability field and the resulting 
velocity field using a simple numerical flow simulation.  We also evaluate the effect of 
vertical to horizontal permeability ratio on the spatial structure of the velocity field.  The 
porosity is spatially constant in all the results shown below.  All simulation runs were 
done using Eclipse(Eclipse, 2003); all semivariograms were calculated using the GSLIB 
(Deutsch and Journel, 1998) program gam.

We will simulate steady-state, single phase flow, along a reservoir cross section.   The 
base case is a two dimensional grid with 100 grid blocks in the x direction (the direction 
of main flow) and 50 blocks in the z direction. Constant rate injection occurs into a well 
at the left edge of the cross-section (Fig. 4) and production is at a constant pressure on 
the right edge. Flow at three different scales are modeled using rectangular grid block 
sizes of 5m (base case), 10m and 20m in the x direction and sizes of 1m (base case), 2 m 
and 4 m in the vertical direction.  These correspond to increases by factors of two and 
four from the base case.  The injection rates are respectively doubled and quadrupled to 
preserve the local (cell by cell) pressure gradient/velocity ratio.

The horizontal permeability field for the base case is generated by conditional Gaussian 
simulation.  The average (25 realizations) semivariogram is also shown in Figure 4.  The 
difference between the semivariogram model input to the stochastic simulation and the 
semivariogram reproduced over the suite of realizations is because of the influence of 
the conditioning data.  The conditioning data are along the two wells located at the 
edges of the cross-section.  The resultant simulations all exhibit distinct stratification; 
properties are fairly homogeneous within the strata.  This gives rise to the zonal 
anisotropy behaviour observed in the reproduced semivariograms. The vertical 

permeability kz  is assigned to be a constant fraction of the horizontal permeability kx.
This is fairly standard simulation practice the accuracy of which, however, is not known.  

For most generality, kz should be simulated stochastically as are the kx.
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Figure 4.  Fine scale x-direction permeability field and the corresponding 
semivariogram. The continuous lines are the semivariograms in the horizontal direction 
while the dotted lines are in the vertical direction. 

Realizations of the scaled up permeability field are obtained by conditional Gaussian 
simulation using scaled up semivariograms.  The simulation uses point-to-block 

semivariograms:
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where V represents the scaled up block, v  represents the point support assumed for the 
fine scale simulation (base case).  Two levels of scale up were performed: i) Scale up 
factor of two in the x and y directions, b) Scale up factor of 4 in x and y directions. In 
these scaled up simulations, the original conditioning data remain as point supports and 
hence are reproduced only to the extent determined by the point-to-block 
semivariograms Eq. 7.

Figure 5 shows cross-sections of the scaled up x direction permeability field. The 

reduction in autocorrelation lengths for kx in the horizontal direction can be observed; 
this is confirmed by semivariogram analysis. The scaled up models exhibit more 
variability in both the x and z directions. The sill of the horizontal semivariogram 
progressively increases to the normalized sill of 1.0 as the reservoir scale is increased.  
This is because the permeability becomes more disorganized in both the x- and z- 
directions as the scale is increased.

The simple scaling seems to work in that the place at which the x direction  
semivariance levels off is reduced by that same factor in which the grid block sizes  
are increased. Figure 5 suggests that the autocorrelation of the permeability is  
preserved on scale up Next we investigate how the velocity changes on scale up.
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First, we look at the characteristics of the x direction velocity maps as a function of the 
kz/kx ratio.  Flow was simulated on the fine scale model assuming a range of kz/kx
ratios.  Semivariograms of the resulting horizontal and vertical velocities are computed 
as shown in Figure 6.  As the kz/kx decreases, the variability of the vertical velocities is 
large while that of the horizontal velocity is small.  This would result in a decrease in the 
variance or sill of the semivariogram in the x-direction.  This expected characteristic is 
confirmed by the semivariograms plotted in Figure 6.

In the limiting case of zero kz/kx=0 (no crossflow), all flow is horizontal through each 
of the layers.  Though there is variation along the horizontal direction, at steady state, 

general trend inferred from the semivariograms, is that of both velocities becoming 
more heterogeneous (the semivariogram levels increase) with an increase in kz/kx.

The larger kz/kx tend to make the flow more in vertical equilibrium (VE).  VE, the state 
where the potential gradients in the vertical direction are zero, was shown by Arya et al. 
(1988) to apply to stochastically heterogeneous fields.   Using this reasoning (Lake, 
1989), the semivariograms for the x-direction velocity should stabilize as kz/kx
increases.  The x direction velocity semivariograms seem to be becoming closer together 
as kz/kx increases, but stabilization does not occur. 

the horizontal velocities are the same within a layer and vertical velocities are zero.  The 

Figure 5 : Fine scale permeability model in Figure 4 scaled up: a) by a factor of 2; b) by 
a factor of 4. The corresponding semivariograms are also shown.
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  Figure 6: Single realizations of horizontal and vertical velocity semivariograms 
(unnormalized) corresponding to different kz/kx. The vertical axis is in units of (m/s)2.

Next, the velocity maps corresponding to the base case and the two scaled up cases were 
analyzed. kz/kx =0.75 for all three cases of the flow simulation. These are shown in 
Figures 7. For brevity, only the velocity maps for the two extreme cases: fine scale and 
for a scaling factor of 4 are shown.  The velocities in the horizontal and vertical 
directions are shown for each case.

The distinct organization of the heterogeneity into strata observed in the fine scale 
realization results (Fig. 3) in a well organized velocity map with a distinct streak of high 
velocity connecting the injector to the producer (Figure 7 (a)).  At larger scales, the 
velocity map exhibits more variance in areas away from the producer.  The layered 
characteristic of the permeability field in the fine scale case also causes the vertical 
velocities to be small in regions outside the high permeability strata.  The small vertical 
velocities mean less sweep and consequently less recovery as in Fig. 1.

In contrast, the vertical velocities in the scaled up cases are significantly larger 
throughout the cross section.  This suggests that the linear scaling up procedure will not 
reproduce the decrease in sweep in the vertical direction. 

Figure 8 shows the semivariograms of the resultant x- direction velocities.  At long lags, 
a distinct non-stationarity occurs as evidenced by the upward turn of the plots.   We 
think this is because of the effect of the well placement and the flood direction.  This 
behavior serves to remind us that well conditions can affect the statistics of the velocity 
field.  We note that the x-direction permeabilities (Fig. 4) do not attain a constant 
plateau either.
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Figure 7: Spatial variations exhibited by the fluid velocity fields (m/day): a) Velocity in 
the x-direction for the base case, b) Velocity in the z-direction for the base case, c) 
Velocity in the x-direction for the reservoir model scaled up by a factor of 4, d) Velocity 
in the z-direction for the reservoir model scaled up by a factor of 4. 

The semivariogram characteristics at intermediate lag distances do reveal subtle 
differences.  The anisotropy ratio of the semivariograms in the x- and z-directions 
decreases as the reservoir scale is increased.  This again indicates increased variance of 
the velocity field as the reservoir scale is increased. Increased variability of the scaled 
up permeability field causes the velocity field to exhibit more variance.  The sills of the 
x-direction semivariograms gradually increase to the normalized value of 1.0 as the 
reservoir scale increases indicating departure from stratified flow conditions as the 
reservoir scale is increased.  The range of the semivariograms decrease as the scale is 
increased, indicative of the dissipation of a displacement front before it reaches the 
producer.
This simplified numerical experiment nevertheless suggests the need for an approach to 
scale up properties taking into account the physics of the flow and not be limited to the 
simplified measures of spatial continuity. 

Conclusions

The variance of the mean and how it depends on averaging scale can explain, at least 
qualitatively, the change in horizontal and vertical permeability with scale using 
reasonable autocorrelation functions and reasonable parameters for the autocorrelation 
functions.  This is a consequence of the various means depending on variability (for 
non-Gaussian distributions) and the variability in turn depending on scale. Since the 
averages now depend on scale, it is possible that the ideas could be used to generate 
scale-up factors if the parameters of the autocorrelation function can be inferred from 
data.  We briefly looked at linear scaling (multiplying permeabilities by constant factors 
and adjusting semivariograms) in this regard. 

(c) (d) 
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permeability field.  The vertical lines indicate the decrease in semivariogram ranges in 
the horizontal and vertical directions. 
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Abstract. The sequential-self calibration (SSC) method is a geostatistical-based inverse 
technique that allows fast integration of dynamic production data into geostatistical 
models. In this paper, we replace the gradient-based optimization in SSC by genetic 
algorithms (GA). GA, without requiring sensitivity, searches for global minimum. 
Although GA is computationally intensive, it provides significant flexibility to study 
parameters whose sensitivities are difficult to compute, e.g., master point locations. A 
steady-state GA is implemented under the SSC framework for searching the optimal 
master point locations, as well as the associated optimal perturbations that match the 
observed pressure, water cut and saturation data. We demonstrate that GA is easy to 
implement and results are robust. We examine different approaches of selecting master 
point locations including fixed, stratified random, and purely random methods. Results 
from this study demonstrate that there are not clear preferential master point locations 
that are best suited for matching production data for the given well pattern and for the 
given initial model. This is consistent with the early findings that master point locations 
can be randomly selected with the stratified random method yielding the best results due 
to its flexibility and good control for the overall model. 

1 Introduction 

Geostatistical reservoir models are widely used to model the heterogeneity of reservoir 
petrophysical properties, such as permeability and porosity. Geostatistical reservoir 
models must incorporate as much available, site-specific information as possible in 
order to reduce uncertainty in subsurface characterization, as well as in reservoir 
performance forecasting. Static data, such as core measurements, well logs, and seismic 
data, can relatively easily be integrated into geostatistical models using the traditional 
algorithms via conditional simulation (Deutsch and Journel, 1998). Integration of 
dynamic data, such as pressure, flow rate, fractional flow rate, and saturation data, is, 
however, a very difficult inverse problem and requires the solutions of the flow 
equations many times (Sun, 1994; Tarantola, 1987). 

Geostatistically-based dynamic data integration has been an active area of research and 
a number of techniques have been reported in the literature (see Yeh, 1986 or Wen et. 
al., 1997 for review). The main objective is to match production data by modifying the 
initial geostatistical model in such a way that it preserves the underlying geostatistical 
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features built into the initial model, such as histogram, variogram, and other soft 
constraints.

The Sequential Self-Calibration (SSC) method has been shown to be very efficient and 
robust previously for integrating dynamic production data (Gomez-Hernandez et. al., 
1997; Wen et. al., 1998, 2002). The SSC uses an optimization process to modify the 
original reservoir model. The efficiency of the SSC method comes from the master 
point concept and global updating. The master points are employed to reduce the 
number of parameters. Perturbations at the master points are then propagated into entire 
model to achieve the global updating.

Current implementation of SSC uses a gradient-based optimization to compute optimal 
perturbation values at the master points. This requires the calculation of sensitivity 
coefficients that measure the changes of reservoir flow responses with respect to the 
change of reservoir properties. In practice, the sensitivity calculations comprise the 
most CPU time in the inversion. A great deal of effort has been dedicated to speed up 
this calculation (e.g., Vasco et. al., 1998; Wen et. al., 1998, 2003). However, the 
sensitivities computed by these fast methods are often inaccurate which can cause 
difficulty in optimization. Also, gradient-based optimizations are often trapped by local 
minimums for highly nonlinear problems. Furthermore, there is a strong smoothing 
effect when successively adding perturbation field to the initial model at each iteration, 
resulting in a much smoother updated model than the initial one (Wen et. al., 2002). 

The main goal of this work is to implement genetic algorithms (GA) for the 
optimization under the SSC framework. One advantage of using GA is that both master 
point locations and values of reservoir properties at the master points can be considered 
as variables in optimization. This allows us to compare the efficiency of different 
selecting schemes for master point locations, as well as to investigate the possibility of 
any preferential master point locations for the given problem. 

2 Sequential Self-Calibration (SSC) Method 

The SSC method was originally developed by Gomez-Hernandez and coworkers 
(Gomez-Hernandez et. al., 1997). The unique features of the SSC algorithm include (1) 
the concept of master point that reduces the parameter space to be estimated in 
optimization, (2) the propagation procedure through kriging that accounts for spatial 
correlation of perturbations, and (3) the fast computation of sensitivity coefficients 
within a single flow simulation run that makes inversion feasible. The main steps of the 
SSC method can be summarized as follows (Wen et. al., 1998, 2002): 

a) Construct initial realizations: Multiple equal-probable initial property realizations 
are created by conventional geostatistical methods using specific histogram and 
variogram consistent with the data. If static (hard and soft) data are available, they 
should be honored with conditional simulation. Each realization is processed one at 
a time with the following steps. 

b) Solve the flow equations for the current model using specific boundary and well 
conditions to obtain flow responses. 
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c) Compute the objective function that measures the mismatch between the observed 
production data and the flow solutions. If the objective function is smaller than a 
preselected tolerance, this realization is considered to honor the dynamic data and 
we move to the next realization. Otherwise, proceed to the following steps. 
i) Select a few master locations (usually 1-3 per correlation range in each 

direction) and solve an optimization problem to find the optimal 
perturbations of reservoir property at these locations.

ii) Propagate the perturbations at master locations through the entire field by 
kriging the computed perturbations at master points. The model is then 
globally updated by adding the smooth kriged perturbation field to the 
previous model. 

iii) Loop back to step b) until convergence or enough iterations have tried. 

A gradient method was previously used in step i), which requires the sensitivity 
coefficients (derivatives) of flow responses with respect to reservoir property changes 
at the selected master locations. The method for computing sensitivity coefficients of 
pressure has been developed previously, i.e., they are computed as part of the flow 
simulation run (Gomez-Hernandez, et. al., 1997; Wen et. al., 1998). The sensitivity 
coefficients of water cut and saturation can be computed by a fast streamline-based 
approach, i.e., they can be obtained by simply book-keeping streamlines in the 
simulation field by using the 1D analytical solution along streamlines (Wen et. al., 
2003).

In this paper, we apply genetic algorithms (GA) for optimization. The advantages of 
using GA include (1) no need to compute sensitivities, (2) global minimum, (3) easy to 
implement for different type of parameters, (4) easy to honor different type of 
constraints built in the initial model, and (5) CPU time does not significantly increase 
with the number of production data. When the gradient-based optimization is used, the 
outer iteration, step iii), was needed to account for the non-linearity between flow and 
parameters since we assume linear relation during the optimization process. By using 
GA, we do not need the outer iteration since there is not linear assumption. Thus only 
one global updating is needed and the smoothing effect by adding a smooth 
perturbation field is reduced to minimum. 

3 Genetic Algorithms (GA) 

Genetic algorithms (GA) belong to the group of artificial intelligence methods. Holland 
first introduced and applied the principles of evolution, such as genetic inheritance and 
Darwinian struggle for survival, for computation (Holland, 1975). He also showed that 
GA is remarkable in balancing exploration and exploitation of information to perform 
search. Since then, GA has been applied to many optimization problems (Goldberg, 
1989).

To solve an optimization problem, GA manipulates a population of individuals that is 
randomly initialized. Each individual represents a potential solution to the problem. 
The quality of each individual is evaluated by a function or a process that assigns its 
“fitness” to the individual. Genetic operators are applied to a population to make it 
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evolved toward a new and “better” one. This evolutionary process is repeated as many 
times as desired (number of generations). From a practical standpoint, genetic 
algorithms are assumed to provide, in the last generation, an enhanced population 
where some individuals-solutions ensure the convergence of the optimization problem. 
Applications of GA in inverse problems have been reported by Karpouzos et. al. 
(2001), Romero and Carter (2001), and Yu and Lee (2002). 

We use a steady-state GA (DeJong, 1975) to search for the locations and the associated 
permeability values of a fixed number of master points that can minimize the mismatch 
between the flow simulation results and observed historical production data. Steady-
state GA has an overlapping population where only a portion the population is replaced 
at each generation. The percentage that is replaced is specified by the GA users. The 
selection method is the traditional roulette wheel (fitness proportionate) selection. In 
this method, the probability of an individual to be chosen equals to the fitness of the 
individual divided by the sum of the finesses of all individuals in the population. Two
genetic operators are used to generate offspring: uniform crossover and Gaussian 
mutation. Uniform crossover picks gene values from two parents randomly to compose 
the offspring. Figure 1 gives an example of two offspring that are created by uniform 
crossover. Gaussian mutation changes a gene value to a new value based on a Gaussian 
distribution around the original value. 

Figure 1.  An example of uniform crossover. 

4 Coupling SSC with GA 

In this study, we only work on the permeability model. The objective function to be 
minimized is: 
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where ( )p wp  and p wp( )  are the observed and simulated pressure at well wp .

( , )f w tf f  and f w tf f( , )  are the observed and simulated water cuts at well wf  at 

time t f . ( )s i  and s i( )  are the observed and simulated water saturation at cell i for the 

given time. Wwp
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 and Wws
 are the weights assigned to pressure, water cut, and 

water saturation to each well. nwp  and nwf  are the number of wells that have pressure 

and water cut data. ntf  is the number of time steps for water cut data. And ns  is the 

number of cells with water saturation data. 
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Following the SSC procedure as described above, for each initial reservoir model, we 
proceed the optimization process using GA. We first select a fixed number of master 
points and generate an initial population of initial master point locations and the 
associated permeability values. The master point locations are selected with three 
different methods: (1) fixed regular pattern, (2) stratified random (random within a 
regular coarse grid that covers the entire model), and (3) purely random (random within 
the entire model). 

The permeability values at the master points are initially generated from a Gaussian 
function with the mean and variance consistent with the model. The constraints of the 
ln(k) values are the minimum and maximum limits. Note that if the ln(k) is not 
Gaussian, we can use a different distribution function. Also if we know the conditional 
pdf of each location, we can use such pdf to generate initial ln(k) values. This allows to 
honor different kind of constraints for the geostatistical model. Based on the generated 
ln(k) values at master point locations, as well as those at the initial model, we can 
compute the perturbations at the master point. We then interpolate the perturbation 
values at non-master point locations using kriging. An updated model is obtained by 
adding the perturbation field to the initial model. New fitness can be evaluated by 
solving flow using the updated model. If there are conditioning data that are already 
honored in the initial models, we include all conditioning data locations as master 
locations with zero perturbations. These master points are included in the GA searching 
process. Instead, they are simply added at the interpolation step. 

With Nm master points (excluding the conditioning data points), the GA genome is an 
array of Nm integer and Nm real numbers. They are the locations and ln(k) values for 
the Nm master points. The steady-state GA searches for the new master point locations 
and the associated permeability values until the mismatch between the flow simulation 
results and observed historical production data is minimized. We retain the best 
individual (the optimal master point locations and the associated ln(k) values) at the end 
of the GA. 

5 An Example 

In this section, we demonstrate the applications of the coupled SSC/GA method for 
constructing reservoir permeability models from pressure, water cut and water 
saturation data using a synthetic data set. In the example, we assume porosity is known 
and constant as  =0.2.

Figure 2(a) shows a 2-D geostatistical reference field (50x50 grid with cell size 80 feet 
x 80 feet). The model is generated using the Sequential Gaussian Simulation method 
(Deutsch and Journel, 1998). The ln(k) has Gaussian histogram with mean and variance 
of 6.0 and 3.0, respectively. The unit of permeability (k) is milli Darcy. The variogram 
is spherical with range of 800 feet and 160 feet in the direction of 45 degree and 135 
degree, respectively. We assume an injection well (I) at the center of the model with 4 
production wells (P1 to P4) at the 4 corners. The injection rate at the injection well (I) 
is 1600 STB/day and the production rate for the 4 production wells is 400 



696 X.-H. WEN, T. YU AND S. LEE 

STB/day/well. The thickness of the reservoir is assumed constant of 100 feet. All four 
boundaries are no-flow boundaries. The initial pressure is constant at 3000 psi for the 
entire field.

Figure 2. (a) The 2-D reference log-permeability field, (b) water cuts from the 4 
production wells, and (c) water saturation distribution at 400 days. 

The main features of this reference field are: (1) a high permeability zone and a low 
permeability zone in the middle of the field, (2) high interconnectivity between well I 
and well P3, (3) low interconnectivity between well I and wells P2 and P4. This 
reference field is considered as the true model, and our goal is to reconstruct reservoir 
models based on some production data that are as close to this true field as possible. 

The reservoir is initially saturated with oil. Water injection and production are solved 
using a streamline simulator for 2000 days. Mobility ratio is 10 and standard quadratic 
relative permeability curves are used with zero residual saturation for oil and water. 
Compressibility and capillary pressure are ignored. Pressure field is updated every 400 
days to account for the change of mobility during the streamline simulation. We assume 
the observed production data are: (1) bottom hole pressure (BHP) of each well at the 
end of the simulation, (2) water cut history of each production well, and (3) water 
saturation distribution of entire model at 400 days. These production data are supposed 
to mimic the practical situation of a producing field with 4D seismic survey. The 
“observed” BHP for I and P1-P4 are given in Table 1, the water cuts of 4 production 
wells and water saturation distribution at 400 days are given in Figures 1(b) and 1(c), 
respectively. Note that the fast water breakthrough at well P3 and late breakthrough at 
wells P2 and P4. 

We generate multiple initial realizations using the same histogram and variogram as the 
reference field. These initial models are then modified to match the observed 
production data using the coupled SSC/GA method. We use 25 master points that are 
selected stratified randomly within each of the 5x5 coarse grid cells (each coarse cell 
represents a 10x10 fine cells).

The population size in GA is 50 and the maximum number of generations evolved is 
50. The crossover rate is 90% while the mutation rate is 1%. This means that the 
selected two parents have 90% to be cross-over with each other to produce 2 offspring. 
The produced offspring (regardless if crossover has been performed or not) have 1% to 
be mutated. In other words, two offspring can be the results of crossover and mutation, 
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crossover only, mutation only or identical copies. Among the population of 50 
individuals, the worst 60% will be replaced with the new offspring. This is the steady-
state GA explained in Section 3. 

All 50 models in the last generation closely match the production data (see Figure 5). 
The best individual at the last generation is chosen as the final updated model. Figure 3 
shows two initial permeability fields (top row) and the resulting master point locations 
(plus) and the perturbation fields (middle row). The final updated models are shown at 
the bottom of the figure. The BHPs at wells computed from the initial and updated 
models are given in Table 1. The water cut and water saturation matches from the 
initial and updated models are given in Figures 4 and 5. 

Figure 3. Two initial realizations of ln(k) model (top), the computed perturbation fields 
and master point locations (middle), and the resulting updated models (bottom). 

Compared to the reference field, we can see that the spatial variation patterns in the two 
initial models are quite different from the reference model, resulting in significant 
deviations of flow responses from the “observed” production data. After inversion, the 
updated models display spatial variation features very similar to the reference model 
with flow results matching the “observed” data closely (see Figures 4 and 5). 
Particularly, in both models, in order to match the production data, permeabilities in the 
region between wells I and P3 are increased, while in the region between wells I and 
P2, permeabilities are reduced (see Figure 3). Based on these, we can conclude that the 
GA is capable of finding the optimal master point locations, as well as the associated 
optimal permeability values that match the production data. 
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Well I P1 P2 P3 P4 
Reference 3043 2985 2468 3022 2917 
Initial, #1 3135 2489 2920 2995 2974 
Updated, #1 3071 2950 2422 3016 2918 
Initial, #2 3037 3007 3022 2925 2872 
Updated, #2 3055 2949 2505 3019 2929 

Table 1. Comparison of BHPs from the two initial and updated models with the 
reference field 

Figure 4. Scatter plots of water cuts from the two initial and updated models with 
respect to the observed data: (a) initial models; (b) updated models. Open circles: W1, 
filled circles: W2, open squares: W3, filled squares: W4. 

Figure 5. Water saturation distributions from the two initial and updated models: (a) 
initial model 1; (b) initial model 2; (c) updated model 1; (d) updated model 2. Note the 
reference water saturation distribution is in Figure 2(c). 

Figure 6 shows the changes of objective function at each generation during the GA 
operation for the first model indicating the rapid reduction of objective function. The 
total number of function evaluation (flow simulation run) for generating one realization 
is about 1450. 
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Figure 6. Variation of objective function with generation in GA. 

Similar results are obtained (not shown here) by using fixed or purely random master 
point locations. Using fixed or pure random master point locations, however, yields the 
updated models with slightly larger objective function than using the stratified random 
method. This can be explained by (a) fixed master point locations do not provide 
enough flexibility on selecting best locations, (b) purely random master point locations 
may not provide enough overall coverage of the entire model, and (c) the stratified 
random method provide best compromise between the overall coverage and flexibility. 

6 Discussion 

Traditional pilot point method seeks the “best” pilot point locations based on sensitivity 
coefficients and then computes the optimal perturbations at these locations (RamaRao 
et. al., 1995). New “best” pilot point locations are added after each iteration. A 
significantly amount of CPU time is required for searching the “best” pilot point 
locations. The SSC method, however, uses a fixed number of randomly selected master 
points and computes the optimal perturbations at those locations (Wen et. al., 1998, 
2002). Master point locations are updated after each several iterations during the 
inversion. This eliminates the time-consuming step of searching “best” locations as in 
the traditional pilot point method. Using the coupled SSC/GA method, one interesting 
issue is to investigate that, for a given well pattern or a given initial model, if there exist 
preferential master point locations that are superior to other locations for matching the 
given production data. 

Figure 7 presents the total number of times that a particular cell is selected as master 
point from the 100 realizations using the stratified or purely random method. Clearly, 
there is no spatial pattern that is noticeable from these maps. Instead, they look like 
more or less random noise in the entire model without any structure. This demonstrates 
that, from a statistical point of view, there is no preferential locations that are better 
suited for being master point locations for the given well configurations, as long as the 
master points are not overly clustered in the space.

To investigate the possibility of any preferential master point locations for a given 
initial model, we update the same initial model 100 times using different random 
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number seeds resulting in 100 updated models and 100 sets of master point locations. 
Using the two initial models as shown in Figure 3, Figure 8 shows the total number of 
times that a particular cell is selected as master point from the 100 runs using the 
stratified and purely random methods. In this case, we can see that there is slightly 
higher tendency that the master points are selected at areas where initial values are 
either too high or too low. This displays the efficiency of our method to pick up the 
right places to update the model. Nevertheless, this tendency is not significant 
indicating that there are no specific locations that are significantly better as master 
locations for a given initial model. Our results (not shown here) also indicate that the 
stratified random method provides best results in terms of the accuracy in data 
matching, resulting in updated reservoir models with less uncertainty compared to the 
fixed or purely random master point locations. From above investigation, we can 
conclude that master (pilot) point locations are not critical for the SSC inversion. There 
are no such locations that are “best” as master/pilot point locations for a given problem. 
Master points can be selected randomly provided that they can cover the overall model 
space for the given correlation structure. 

Figure 7. Total number of times that a cell is selected as master point for 100 
realizations:  (a) stratified random method, (b) purely random method. 

Figure 8. Total number of times that a cell is selected as master point from 100 runs 
using the two initial models: (a) initial model 1 and stratified random method; (b) initial 
model 1 and purely random method; (c) initial model 2 and stratified random method; 
(d) ) initial model 2 and purely random method 

7 Summary and Conclusions 

We implemented a steady state GA under the SSC framework as an optimization 
process replacing the original gradient based optimization procedure. The coupled 
SSC/GA method is used to invert geostatistical reservoir permeability model from 
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dynamic production data. The results show that the coupled SSC/GA is capable of 
finding optimal master point locations and the associated optimal perturbations within a 
reasonable number of generations. The results are accurate and robust. 

GA allows us to investigate whether or not the “best” master point locations exist for a 
particular well pattern and for a particular initial model. We showed that there is no 
clear tendency with respect to where the master points should be, i.e., there are not 
preferential locations where the “best” master locations can be chosen. In other words, 
inversion results are not sensitive to what locations are chosen as master points. Master 
point locations can be selected randomly as long as they cover the entire model. This 
provides explanation to the previous studies on why randomly selected master points 
yielded similar results to those using “carefully” selected master points.
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1ENS Géologie, INPL – CRPG, Nancy, France
2Petroleum Engineering Dept., Stanford University
3 Earth Decision Sciences, Nancy (France)

Abstract. Although closely related to each other, Geostatistics and simulation
of physical processes have different, often conflicting, requirements about their
discretization support. While geostatistical methods can be efficiently implemented
on high-resolution regular grids, process simulation calls for coarse flexible grids
to minimize computational cost without loss of accuracy. Adapting geostatistical
methods to such flexible grids is difficult, since unstructured neighborhood lookup
is time-consuming, and cell volumes may vary significantly throughout the grid.

Instead, we propose to disconnect the representation of properties from the
representation of geometry using the concept of geo-chronological space: the coarse
flexible grid in present geometrical space (x, y, z) is mapped onto a high-resolution
cartesian grid in geo-chronological space (u, v, t), where u and v are planar topo-
graphic coordinates at deposition time, and t is the geological time. The calculation
of this 3D mapping is probably the most challenging part of the method. Here,
we describe how to derive it by the extrusion of a reference stratigraphic surface,
possibly discontinuous across faults. This mapping can be used to infer spatial
covariance models and run geostatistical algorithms directly in geo-chronological
space. The practicality of the method is demonstrated on actual reservoir data.

1 Introduction

In the petroleum and geothermal industries, the joint use of geostatistics and flow
simulation has become essential to decision making. Geostatistical tools are used
to generate possible petrophysical models of the subsurface that are then input to
flow simulators. However complementary, geostatistics and flow simulation face a
number of conflicting requirements relative to the scale, to the structure and to
the geological conformity of their discretization grids.

1.1 FINE SCALE VS. COARSE SCALE

In reservoir studies, petrophysical description is typically done on fine scale grids
using geostatistical algorithms, whereas flow simulation generally performs on
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coarse grids. Modeling petrophysical properties at a high resolution is important
for representing the connectivity of high permeability values, which has a high
impact on flow behavior. On the other hand, the system of flow equations on high
resolution grids (with millions of cells) is too large to be solved within acceptable
RAM and CPU demand on current computers. Moreover, the need for uncertainty
assessment in flow response requires a large number of simulations. In practice, the
time available for a particular study and the computational capability determine
the resolution chosen for the flow grid.

Various methods have been defined to upscale geostatistical grids to the flow
simulation scale, see Renard and de Marsily (1997), Farmer (2002), Durlofsky
(2003). This paper does not explicitly address upscaling methods, although the
proposed technique facilitates the application of these.

1.2 STRUCTURED VS. UNSTRUCTURED GRIDS

While the majority of geostatistical algorithms (Deutsch and Journel, 1998; Stre-
belle, 2002) are implemented for Cartesian grids, unstructured grids have been
advocated for flow simulation (Heinemann et al., 1991; Palagi and Aziz, 1991) and
are becoming more and more accepted by the next generation of flow simulators.

As opposed to structured grids where connections between cells repeat period-
ically as in a crystal lattice, unstructured grids can define connectivity explicitly.
This flexibility is interesting for flow simulation because it allows the number of
cells (hence the number of flow equations) to be reduced without significant loss
of accuracy (Prevost, 2003): when geological structures and well geometries are
known, unstructured grids can be made to optimize the shape of grid cells and
their density according to the prior flow information (Lepage, 2003).

Although the theory of geostatistics (Journel and Huijbregts, 1978; Goovaerts,
1997; Chilès and Delfiner, 1999) does not call for Cartesian grids, the implemen-
tation of a geostatistical algorithm on an unstructured grid raises a number of
practical issues:

− the number of neighbors of a grid cell or node is not fixed, hence the neigh-
borhood search is more time consuming than on structured grids.

− The cells of an unstructured grid are not necessarily aligned on the main
directions of anisotropy as defined by the geological structures.

− The volume of cells varies significantly throughout the grid. This calls for
accurate volume-to-volume covariance computations and carefully considering
volume averaging (Deutsch et al., 2002).

1.3 STATIC VS. DYNAMIC GRIDS

The geostatistical petrophysical description depends mostly on the geological struc-
tures (stratigraphy, faults), hence can be performed on one single grid if these struc-
tures are known. However, for one petrophysical model, flow can vary significantly
according to the production parameters. Therefore, it several flow simulation grids
can be used for a single static petrophysical model (Mlacnik et al., 2004).
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Figure 1. Any location in the geological space can be mapped onto an abstract
geo-chronological space where geostatistical techniques can be applied optimally
(from Mallet, 2004).

1.4 FINDING A COMPROMISE

The considerations above show the challenge of defining a gridded representation of
the subsurface that can be used for both geostatistics and flow simulation. During
the last decade, a significant endeavor has been set on the stratigraphic grid, a
regular hexahedral grid made conform to the stratigraphy and the faults thanks
to a corner point geometry (Chambers et al., 1999; Mallet, 2002; Hoffman et al.,
2003). The stratigraphic grid is a significant improvement over the Cartesian grid,
but it does not eliminate the need for upscaling. Conforming such a stratigraphic
grid to complex structures (stratigraphic unconformities, complex fault networks)
is difficult and often produces ill-shaped cells that may be the source of numerical
instabilities when solving flow equations. Simplifications of the geological model
are then required to produce acceptable flow simulation grids.

Based on the concept of geo-chronological space (Mallet, 2004), we propose to
consider two distinct modeling spaces for the geostatistical and flow simulation
grids (Section 2, Fig. 1): the geometrical space (G-space) defined by the geolog-
ical structures and the wells is the realm of flow simulation, while geostatistical
methods are applied in the depositional space (Ḡ-space) where spatial correlation
can be described more easily. The upscaling or downscaling of properties from one
grid to another relies on a link mapping any location in the G-space to its image
in the Ḡ-space (Section 3).

2 Geo-Chronological space

2.1 GEOCHRONOLOGICAL SPACE AND GEOSTATISTICS

Consider a volume of the subsurface made of folded and faulted sedimentary rocks
defined in a 3D geological space (G-space), where any point can be identified by
a vector x = (x, y, z). Computing a petrophysical model for this volume using
any geostatistical technique calls for computing distances between sampled and
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Figure 2. The Geo-chronological space seen as a stack of pictures taken from a
geostationary camera (from Mallet, 2004).

unsampled locations in this volume. Using Euclidean distances in the G-space is
obviously not the best solution because the continuity of petrophysical properties
is better along the stratigraphy. It is more appropriate to define a curvilinear
coordinate system (u, v, t) aligned on the stratigraphy, then to compute distances
using these coordinates (Fig. 1).

The geo-chronological model proposed by Mallet (2004) aims at defining such
a coordinate system through a function that maps any location x = (x, y, z) of the
G-space to an image u(x) = (u, v, t) in geo-chronological space (geochron space,
or Ḡ-space) where spatial correlations can be described more easily.

Conceptually, the Ḡ-space can be seen as a stack of aerial snapshots of the
domain of study as would be taken from a geostationary camera over successive
geological times (Fig. 2). In this space, any location is described by a vector
u = (u, v, t). The horizontal (u, v) coordinates, denoted as paleo-geographic co-
ordinates, can be used to describe the petrophysics at any location on the surface
of the earth at a given geological time t. Within a horizontal plane, the sedi-
mentological continuity is better understood because no tectonic event has yet
deformed or faulted the sedimentary rocks; analogs required by multiple-point
geostatistics (Caers, 2001; Strebelle, 2002; Arpat and Caers, 2004) can be obtained
from present observations of the Earth surface. The geo-chronological space is thus
more adapted to perform geostatistics than the geological space.

The idea of transforming the geological units to a space where they can be
understood more easily was initially proposed by Wheeler (1958). The geochron
model is a mathematical formulation of this time-stratigraphy concept, and re-
lies on the interpretation of time-significant surfaces such as maximum flooding
surfaces and transgression surfaces from the seismic data (Vail et al., 1977).

2.2 MAPPING THE GEO-CHRONOLOGICAL SPACE TO THE PHYSICAL SPACE

The geo-chronological space may seem of little interest to the issue of flow predic-
tion: flow simulation makes full sense only in the physical space, where wells and
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Figure 3. The orthonormal coordinate system in the Ḡ-space maps onto a
curvilinear coordinate system in the G-space.

volumes can be modeled. We must therefore define how to transfer petrophysical
properties from the Ḡ-space to the G-space, where the flow simulation grid(s) is
(are) embedded.

However, defining a one-to-one mapping between the G-space and the Ḡ-space
is not always possible, due to erosion processes. Consider then the subset Ḡ0 of
the Ḡ-space which has never been eroded, defined by:

u = (u, v, t) ∈ Ḡ0 ⇔ ∃x = (x, y, z) ∈ G such as u(x, y, z) = (u, v, t)

Ḡ0 is referred to as the parametric domain of the geological space. For any
location (u, v, t) of Ḡ0, it is now possible to define the inverse function of u(x, y, z)
noted x(u, v, t). This function x(u, v, t) induces a curvilinear coordinate system
(u, v, t) in the G-space defined by u-lines, v-lines and t-lines depicted in Figure
3. Note that t-lines may differ from the surface normal if tectonic deformations
included a flexural slip component. Computing u-, v- and t-lines in the Ḡ-space
amounts to defining the functions u(x, y, z) and x(u, v, t), that is, mapping any
location in the G-space to its image in the Ḡ0 domain and conversely. Section 3
will present a practical way to approximate such lines.

2.3 GEO-CHRONOLOGICAL MODEL, GEOSTATISTICS AND FLOW
SIMULATION

How can the geo-chronological model help in addressing the conflicting require-
ments between geostatistical grids and flow simulation grids? Instead of striving
to obtain an ideal (and probably unattainable) grid that would suit the practical
needs of both geostatistics and flow simulation methods, we suggest to use two
distinct grids which can each be optimized for the algorithm retained.

The geostatistical grid Ḡ is defined as a high-resolution Cartesian grid in geo-
chronological space. Most existing algorithms can be applied on such a grid
(Deutsch and Journel, 1998; Strebelle, 2002); a conditioning datum at location
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Figure 4. Computing equivalent property on a coarse flow grid in G-space
by reading and upscaling the high-resolution geostatistical description in Ḡ-space
(from Mallet, 2004).

(x, y, z) just needs be transferred to the grid Ḡ using the mapping function
u(x, y, z).

The flow simulation grid G is defined in the present geological space. It is made
conform to the horizons and faults that represent significant petrophysical
discontinuities. For any cell c of the flow grid G, fine-scale petrophysical prop-
erties can be read in a subset Ḡc of the geostatistical grid Ḡ. The equivalent
coarse-scale properties can then be computed as suggested by Figure 4 by
the appropriate upscaling approach (Renard and de Marsily, 1997; Farmer,
2002; Durlofsky, 2003). Note that upscaling results will be consistent even
if the subset Ḡc is slightly larger than the image c̄ of the cell c, since the
geostatistical grid does not display petrophysical discontinuities induced by
faults and erosion.

3 Defining the geochronological transform on a flow simulation grid

In this section, we present a practical way to approximate the geo-chronological
parameterization while creating a polyhedral flow simulation grid conforming to
geological structures and to wells.

3.1 PALEO-GEOGRAPHIC COORDINATES (U, V )

Consider a horizon Ht deposited at a geological time t, possibly folded and faulted.
The image H̄t in the Ḡ-space of this horizon Ht is by definition a plane, corre-
sponding to a virtual aerial picture of the domain of study at time t (Fig. 2).
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There is an infinite number of ways to map the horizon Ht onto its planar and
continuous image H̄t. We suggest that deformations should be minimal between
the G-space and the Ḡ-space. For this, consider the partial derivatives of the
parametric function x(u, v, t) with respect to u, v and t (Figure 3):

xu(x) = ∂x(u,v(x),t(x))
∂u

∣∣∣
u=u(x)

xv(x) = ∂x(u(x),v,t(x))
∂v

∣∣∣
v=v(x)

xt(x) = ∂x(u(x),v(x),t)
∂t

∣∣∣
t=t(x)

It can be shown (Mallet, 2004) that minimizing deformations amounts to
honoring the three following constraints as much as possible:

‖xu(x)‖ = ‖xv(x)‖ = 1 (conservation of distances)
xu(x) · xv(x) = 0 (conservation of angles) (1)

3.2 ADDING THE TIME COORDINATE T

Computing the time coordinate t does not require knowledge of the actual geo-
logical age of the horizons, but only of their relative age: arbitrary times can be
used if they are sorted in increasing order from the oldest to the youngest terrains.
Between any two horizons Ht1 and Ht2 deposited respectively at times t1 and t2,
we propose to approximate the t-lines by a field of vectors made tangent to the
faults and the boundary of the domain of study. This field can be interpolated
away from faults using Discrete Smooth Interpolation (Mallet, 2002, p. 379). This
approximation of the Geochron model is valid only if we can assume that faults do
not cross t-lines; distortions of the paleo-geographic coordinates may be otherwise
generated by the method.

A reference horizon Hti
is then selected and provided with a paleo-geographic

coordinate system that honors the constraints (1). This can be done using a surface
parameterization algorithm (Lévy and Mallet, 1998; Mallet, 2002; Lévy et al.,
2002). By definition, the (u(x), v(x)) coordinates are constant along a given t-line,
and can thus be propagated between Ht1 and Ht2 along the t-vectors.

The geological time t(x) can be interpolated along this vector field, account-
ing for both high-resolution well data between horizons Ht1 and Ht2 and expert
information on the stratigraphic style (Caumon, 2003, chap. 1).

This approach provides a reasonable approximation of the t-lines for geolog-
ical models with subvertical or listric faults. At any location x = (x, y, z) in
the G-space, it is then possible to obtain by interpolation the (u(x), v(x), t(x))
coordinates in the Ḡ-space.

3.3 CREATION OF THE FLOW GRID

The geo-chronological parameterization above can also be used to create a polyhe-
dral flow grid conforming to the geological structures and to subvertical wells. The
mesh of the reference horizon Hti

can be modified in the (u, v) parametric space,
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to account for heterogeneities and well configuration; the grid is then created by
extrusion along the t-lines, (Fig. 5-C, D).

When some layers in the G-space pinch out due to unconformities, 0-volume
cells need not be created. This simply means that some petrophysical properties in
the Ḡ-space will not be used in the flow grid, at locations which have been eroded.

3.4 APPLICATION TO A PETROLEUM RESERVOIR

The proposed methodology was applied to a North Sea petroleum reservoir de-
picted in Figure 5. The hanging wall of the reservoir was parameterized, and a
field of t-vectors was computed and made tangent to the faults (Fig. 5-A). Using
these, nine wells could be transferred into the geo-chronological space. There,
two rock types were simulated with snesim (Strebelle, 2002) using a fluvial-type
reservoir training image. The property grid was then populated with porosity and
permeability using Sequential Gaussian Simulation within each rock type. The
results of one realization of porosity are shown in full resolution in the Geochron
space (Fig. 5-B) and in the geological space (Fig. 5-C). The upscaled porosity
model as obtained by simple arithmetic averaging is displayed in Figure 5-D.

4 Conclusion

The proposed method ties a high resolution geostatistical grid defined in geochrono-
logical space to one or several flow simulation grids defined in geological space. The
mapping proposed makes it possible to apply upscaling and downscaling from one
grid to another. The method is similar in spirit to the concept of stratigraphic
grids, but presents several improvements:

− the flow grid need not be made of hexahedral cells. This increased flexibility
make modeling of faults easier while reducing the number of cells. Radial grid
geometries can be defined around vertical wells and flow-based gridding is also
possible.

− Because the petrophysical model is computed before creating the flow grid, the
density of cells can be made dependent on the petrophysical heterogeneities.

− If needed, the flow grid can be rebuilt without having to maintain the defini-
tion of the petrophysical model.

− For a given amount of RAM, the property grid can have a higher resolution
than a faulted stratigraphic grid since its geometry and connectivities are not
stored explicitly.

− Existing geostatistical algorithms implemented for Cartesian grids can be used
directly to create the petrophysical model, without caring about the type of
flow grid retained.

Due to the extrusion process proposed to build the flow grid, complex fault net-
works cannot be handled in a satisfactory manner; an alternative approach based
on a 3D parameterization of a tetrahedralized mesh is currently being investigated
(Moyen et al., 2004).

Another possible improvement of the method would be to model petrophysical
changes after deposition, due for instance to compaction and fracturation. Such
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Figure 5. Paleo-geographic coordinates and approximation of t-lines by a vector
field (A) on a North Sea reservoir are used to transfer conditioning data to the
geochronological space, where simulations can be run (B). This high-resolution
petrophysical model can be displayed (C) and upscaled (D) to the resolution of
the polyhedral flow grid.

studies could benefit from the Geochron model, which can produce estimates of
the strain.
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Abstract. Production forecasts for a given reservoir, with associated uncertain-
ties, must be based on a stochastic model of the reservoir coupled with a fluid flow
simulator. These flow simulations may be computationally prohibitive if they are
performed on the fine scale geostatistical model. To accelerate these computations,
coarsened (or upscaled) reservoir models are generally simulated. The recovery
predictions generated using the upscaled models will inevitably differ from those
of the underlying fine scale models and may display severe biases and erroneous
uncertainties. In this paper, a model that accounts for these biases and changes in
uncertainties is described. Issues related to the selection of fine scale calibration
runs and the performance of the method using different upscaling procedures are
considered. Two test cases involving water injection are presented. These examples
demonstrate the large errors that can result from standard upscaling techniques,
the ability of the error modeling procedure to nonetheless provide accurate predic-
tions (following appropriate calibration), and the benefits of using a more accurate
upscaling procedure.

1 Introduction

Efficient reservoir management requires reliable forecasts of production for a given
recovery strategy. It is also important to quantify the uncertainty associated with
these forecasts, which can be accomplished through repeated sampling from a
stochastic model. In this case, this sampling requires performing a fluid flow
simulation. However, because geostatistical descriptions may contain 107-108 cells,
performing direct flow simulations on these models may be computationally pro-
hibitive in practical settings. These calculations must therefore be accelerated
significantly to allow for the repeated sampling. This can be accomplished through
upscaling of the geostatistical model or by simplifying the physics involved in
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the flow process. Either of these approximations will increase the computational
efficiency, but they are also known to change the error structures and introduce
biases in the production forecasts.

Several previous authors discussed the calibration of complex computer models
and variance correction when using approximate models (Kennedy and O’Hagan,
2001; Craig et al., 2001). None of these studies, however, formalized the modeling
of the bias introduced by the approximate simulations. Since bias in the forecasts of
cumulative oil production can potentially have a substantial impact on predictions
and thus development decisions, this should be included as part of the study. In
this work, we extend and illustrate a recently developed technique for modeling
the error introduced by upscaled reservoir descriptions (Omre and Lødøen, 2004).
We present a procedure for determining which fine scale models to simulate (as
required for the calibration of the error model) and assess the performance of the
overall procedure with various upscaling techniques. The approach is applied for
different flow scenarios in complex channelized systems. The benefits derived from
using more accurate upscaling techniques are demonstrated.

This paper proceeds as follows. First, a statistical error model that accounts
for the effects of using approximate flow simulators is presented. The methodology
is then demonstrated and verified on a highly heterogeneous, channelized 2D
reservoir using different upscaling algorithms and flow simulation scenarios. We
show that the use of accurate upscaling procedures reduces the number of fine
scale calibration runs required, resulting in potential computational savings.

2 Stochastic Model

The stochastic model is explained in detail in Omre and Lødøen (2004) and will
only be discussed briefly here. The stochastic reservoir variable is termed R, and
includes all the variables necessary for evaluation of fluid flow. Assume that a
prior probability density function (pdf) can be assigned to R, f(r), either through
conventional variogram based geostatistics (Hegstad and Omre, 2001) or through
multiple-point geostatistics (Strebelle, 2002). In either case the reservoir variable
can be conditioned to seismic data and well observations, meaning that samples
can be efficiently produced. To keep the notation simpler, data conditioning is not
included in the notation here. The stochastic production variable is termed P , and
contains all the information requested as output from a forward flow simulation.
Hence, R will be a spatial variable, covering all the grid blocks in the reservoir
domain, and P will be a time-series covering the time domain.

A fluid flow simulator links the reservoir variable R to the production variable
P through P = ω(R). The chosen flow scenario must also be specified as input to
the flow simulator, but this is not included in the notation here. Assuming that the
flow simulator is “perfect,” the conditional pdf for the production variable given
the reservoir variable is fully defined through the flow simulation by f(p|r) = ω(r).
Through the product rule for dependent variables, the joint pdf of interest becomes

f(p, r) = f(p|r)f(r). (1)
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This model is not analytically tractable, however, primarily due to the fact that
the relationship between static (e.g., porosity and permeability) and dynamic (flow
response) properties is nonlinear. Furthermore, the flow simulation may be compu-
tationally prohibitive if the fine scale model contains a high degree of detail (e.g.,
O(107 − 108) cells). This prohibits direct application of algorithms that perform
flow simulations on the fine scale.

To enable sampling (by reducing the computational cost), an approximate fluid
flow simulator ω∗ is introduced. This is most often accomplished through the use
of some type of upscaling; i.e., solution of the flow equations on a coarser mesh.
The approximate production variable P∗ is easily obtained through P∗ = ω∗(R)
due to the fact that the approximate flow simulator has a low computational cost.
There is no stochasticity associated with the flow simulation; i.e., the same input
will always give exactly the same output. The joint pdf of the production variable,
the approximate production variable, and the reservoir variable is given by

f(p, p∗, r) = f(p|p∗, r)f(p∗|r)f(r). (2)

The most computationally demanding aspect of Eq. 2 is the evaluation of the pdf
f(p|p∗, r), which involves a flow simulation on the fine scale. If the approximate
production variable captures the important features of the fine scale produc-
tion variable, f(p, p∗, r) can be approximated by f∗(p, p∗, r) simply by modeling
f(p|p∗, r) with f(p|p∗) as described below. By integrating over all possible realiza-
tions of the approximate production variable and all possible realizations of the
reservoir variable, the following approximation is found:

f∗(p) =
∫

ΩP∗

∫

ΩR

f(p|p∗)f(p∗|r)f(r)drdp∗, (3)

where ΩP∗ and ΩR refer to the spaces of all possible realizations of the approximate
production variable and the reservoir variable, respectively. This model is still not
analytically tractable due to the nonlinear relation between the reservoir proper-
ties and the coarse scale production variable. However, the pdf can be efficiently
sampled if appropriate representations of f(p|p∗) and f(r) can be found.

An estimate of f(r) can readily be found through Monte Carlo integration. The
estimation of f(p|p∗) is, however, not trivial. This can potentially be accomplished
in a variety of ways, but an empirical, statistical approach is chosen here. The
idea is to use a low number nfine of calibration runs, which are performed on
both the fine and coarse scales. These simulations are used to estimate a set of
parameters that defines the pdf f(p|p∗). This entails selecting one realization r′ of
the reservoir variable and performing two forward simulations to obtain p′∗ = ω∗(r′)
and p′ = ω(r′). By repeating this process for nfine different realizations of the
reservoir variable, nfine pairs of flow simulation results are obtained. This will be
the calibration set. The low number of observations in the calibration set suggests
a parametric estimation approach, but in principle any method that provides an
estimate of f(p|p∗) can be used. Performing the estimation in a multivariate linear
regression setting, the estimate of f(p|p∗) will become:

f̂(p|p∗) ∼ Gauss(Â∗p∗, Σ̂∗), (4)
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where Â∗ and Σ̂∗ are the estimates of the regression coefficient matrix and co-
variance matrix, respectively. For upscaling algorithms of reasonable accuracy, the
error will be relatively small and this linearity assumption should be valid. For less
accurate upscaling techniques, this assumption is more approximate. However, as
will be illustrated in the examples below, the leading error is still well represented
through a linear relationship of the form of Eq. 4.

The estimates of A∗ and Σ∗ may depend strongly on the choice of calibration
set. This is a significant issue as there is initially no information regarding the fine
scale forward simulations. Because the fine scale flow simulations are extremely
time consuming, there is a need to efficiently select the realizations for the cali-
bration set. It is also beneficial to accomplish this calibration using a minimum
number of fine scale simulations.

Our calibration procedure is as follows. By treating each production variable
at each point in time independently, the covariance matrix will become a diagonal
matrix. This means that linear regressions must be performed for each production
variable at selected points in time and that all the linear regressions will have
associated prediction intervals. This allows a minimum variance criterion to be
defined for the determination of the calibration runs. The idea is to minimize
the size of all the confidence intervals by minimizing the trace of the covariance
matrix. The choice of calibration set should not influence the estimation of the
variances in the residual terms significantly, provided that the “true” error model
is approximately linear (i.e., Eq. 4 holds). Hence, the selection of the calibration set
can be performed based solely on the coarse scale simulation runs. Note that this is
not in general a globally optimal choice of calibration set, since guaranteeing this
would require knowledge of all the fine scale simulations in advance. Note also that
decisions regarding the number of realizations to include in the minimum variance
calibration set is presently not an automated part of the selection procedure.

By performing the calibration runs to estimate f(p|p∗), and drawing a set
of samples (pi

∗, r
i); i ∈ {1, ..., n} from f(p∗, r), an approximate forecast of the

production from the reservoir can be found through:

f̂∗(p) =
∑

i

f̂(p|pi
∗)f̂(ri) =

1
n

∑

i

f̂(p|pi
∗). (5)

3 Applications

The setting for the case study is a 2D channelized, highly heterogeneous reservoir.
The geostatistical (fine grid) model is defined on a grid of size 120×120, covering
an area of 1200×1200 ft2. The permeability field is the only property that varies
between different realizations of the reservoir variable. Other properties such as
porosity, initial saturations and relative permeabilities are assumed known and are
assigned the same values in every realization of the reservoir. For these simulations,
the water-oil mobility ratio (based on endpoint mobilities) is 5. The use of a
water-oil mobility ratio that differs from unity introduces nonlinearity into the
flow equations.
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3.1 GEOSTATISTICAL MODEL

One hundred realizations of the permeability field are drawn from the prior distrib-
ution for the reservoir variable, f(r). Each realization is formed by first generating
the two facies present, sand and shale. This is accomplished through multiple-
point geostatistics by borrowing patterns from a training image using the SNESIM
software (Strebelle, 2002). Each facies is then populated with log-Gaussian perme-
ability fields with different means (µsand = 8 md, µshale = 2.5 md) and covariance
structures (σsand = 2.5 md, σshale = 1.25 md), as shown in Figure 1. The only
hard data used is information from the wells. Both the injection well and the
production well are located in sand, and the actual values of the permeability in
the well grid blocks are assumed known. The injection well is located in grid block
(18,23) and the production well is located in grid block (103,103).

Figure 1. Two realizations of the permeability field. High permeability channels
are displayed in black and low permeability shale in gray.

3.2 UPSCALING ALGORITHMS

The coarse scale simulations are performed on a coarsened mesh with properties
computed using two different single-phase upscaling algorithms, namely purely
local k∗ upscaling and adaptive local-global T ∗ upscaling, as discussed below.
Upscaling methods can be described in terms of the size of the region simulated
in the determination of the coarse scale parameters (Chen et al., 2003). At one
extreme are purely local methods, in which the fine scale region associated with a
single target coarse block is simulated subject to a particular set of assumed bound-
ary conditions. Extended local methods incorporate some amount of surrounding
fine scale information into the calculations, though they still require assumptions
regarding boundary conditions. Global techniques, by contrast, apply global simu-
lations for the determination of upscaled quantities. A quasi-global procedure that
uses specific coarse scale global simulations in conjunction with extended local
calculations to determine the upscaled properties was recently introduced (Chen
and Durlofsky, 2005) and will be applied here (this approach is referred to as
adaptive local-global upscaling).

Upscaling algorithms may provide upscaled permeability (designated k∗, where
the * indicates an upscaled quantity), which is then used to compute the interblock
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transmissibilities required by simulators, or they may provide upscaled transmis-
sibility (T ∗) directly. In recent work, Chen et al. (2003) showed that direct T ∗

upscaling generally provides better accuracy than k∗ upscaling for highly hetero-
geneous channelized systems. Upscaled near-well parameters (well index and well
block transmissibilities) can also be computed and these can provide significant
improvement in the accuracy of the coarse scale simulations in some cases (see
e.g., Durlofsky et al., 2000).

The algorithms applied here are (i) a purely local k∗ upscaling with standard
pressure-no flow boundary conditions and no near-well upscaling and (ii) adaptive
local-global T ∗ upscaling, which incorporates near-well upscaling directly in the
algorithm. In both cases upscaling calculations are performed based on the single-
phase (dimensionless) pressure equation:

∇ · (k(x) · ∇p) = q, (6)

where k(x) is a spatially variable permeability tensor, p is pressure, and q is a
source or sink term. From the discussion above, we expect better accuracy using
adaptive local-global upscaling than with purely local upscaling. It is important
to note, however, that purely local methods such as that applied here are widely
used in practice. No two-phase upscaling (e.g., pseudo relative permeabilities) is
applied in this work, so we anticipate some error in transport predictions when
the grid is coarsened significantly.

In this study, the fine scale models are 2D and are reasonably small (120 ×120),
so all of the fine scale simulations can be performed in a reasonable amount of time.
The fine scale simulations that are not included in the calibration set are used to
validate the procedure and results. This will not be possible in large 3D studies,
so it is important that guidelines and procedures be established through idealized
studies such as this.

3.3 CONSTANT TOTAL RATE CASE

In the first flow scenario, the injection well is kept at a constant injection rate,
while the production well is kept at a constant bottom hole pressure (BHP). This
results in a constant total rate (as the system is nearly incompressible). We present
results in terms of the injection well BHP, which varies in time due to the contrast
in mobility between oil and water. We first apply purely local k∗ upscaling and
coarsen the fine grid geostatistical model (120×120) to a grid of 24×24. One
hundred realizations are considered and flow simulations are performed on all
of the fine and coarse models.

Results for the 100 coarse simulations are shown in Figure 2 (left). The es-
timated mean and 90% confidence interval for the BHP in the injection well for
the 100 coarse scale models are compared to the same estimates based on the
100 fine scale simulation runs (Figure 2, right). The estimate based on the fine
scale runs can be considered as an estimate of the true distribution f(p). It is
immediately apparent that the upscaling has introduced a severe bias, in addition
to much wider confidence intervals. Note that the lower limit of the 90% confidence
interval estimated based on the coarse scale runs just includes the expected value
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estimated from the fine scale runs (it is worth noting that the 80% confidence
interval from the coarse runs does not include the fine scale expected value). The
increase in uncertainty may be due to the fact that purely local k∗ upscaling
captures (or fails to capture) the effects of large-scale permeability connectivity
to varying degrees (depending on the realization), which leads to a high degree of
variation in the accuracy of the coarse scale results.

We now apply the error modeling procedure described above to improve the
coarse scale predictions. The size of the calibration set (nfine) is chosen to be
5. This means that five fine scale fluid flow simulations are used in the error
modeling procedure. We emphasize that the choice of which fine scale runs to use
must be made in the absence of any fine scale simulation results. The choice of the
particular simulations to use for this calibration can have a large impact on the
results. To illustrate this, we first present results using a very ‘unlucky’ choice for
the calibration runs (this set was found by maximizing the size of the confidence
intervals). The ‘corrected’ results for mean and confidence intervals using this set
of calibration runs is shown in Figure 3 (left). This result is actually worse than
the initial (uncorrected) estimates.

We next apply the minimum variance criterion described above for the selection
of the (nfine) fine scale calibration runs. The corrected coarse scale results using
this approach are shown in Figure 3 (right). Here we see that the corrected mean
and upper confidence interval are very close to the fine scale results. There is still
some error in the lower confidence interval, but the overall predictions show a very
significant improvement relative to the uncorrected coarse scale results in Figure
2 (right).

The “unlucky” calibration set tends to include coarse scale values that are close
together, resulting in a regression that is quite unstable. By using the minimum
variance criterion, we select values that are spaced further apart, which provides
a more stable regression. Since we determine the calibration set using more than
one production variable (at many different time steps), we do not select only the
most extreme values (as would likely occur if we based the regression on a single
production variable).

We next demonstrate the potential impact of using a more accurate upscaling
procedure. Shown in Figure 4 (left) are results using the adaptive local-global
T ∗ upscaling approach. With this technique, the (uncorrected) estimates for the
mean and confidence interval are quite close to those from the fine scale models,
though a slight bias is evident. Using the minimum variance selection procedure
with nfine = 5 provides the corrected results shown in Figure 4 (center). Note the
improved accuracy in the lower confidence interval relative to that achieved with
purely local k∗ upscaling (Figure 3, right).

An advantage of using a more accurate upscaling is that fewer fine scale runs
can be used for the calibration. This represents significant potential computational
savings, as the fine scale simulations will likely represent the largest computational
component of our procedure in practical applications. Shown in Figure 4 (right) are
results using adaptive local-global T ∗ upscaling for the coarse runs but with only 3
fine scale calibration runs. These results are still quite accurate and in fact display
better accuracy than was achieved with purely local upscaling and nfine = 5.
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Figure 2. Left: BHP in the injection well for the 100 coarse scale models
generated using purely local k∗ upscaling. Right: Mean (thick dashed line) and
90% confidence interval (thin dashed lines) estimated based on these 100 coarse
models compared to the mean (thick solid line) and 90% confidence interval (thin
solid lines) estimated from the fine scale simulations.

Figure 3. Left: Corrected mean (thick dot-dash line) and 90% confidence interval
(thin dot-dash lines) for the 100 coarse models generated using purely local k∗

upscaling with a particularly ‘unlucky’ calibration set. Right: Corrected mean and
90% confidence interval using the minimum variance calibration (nfine = 5 in both
cases). The mean (thick solid line) and 90% confidence interval (thin solid lines)
estimated from the fine scale simulations are also shown in both figures.

Figure 4. Left: Mean (thick dashed line) and 90% confidence interval (thin
dashed lines) estimated based on the 100 coarse models generated using adaptive
local-global T ∗ upscaling. Center: Corrected mean (thick dot-dash line) and 90%
confidence interval (thin dot-dash lines) based on the minimum variance calibra-
tion set with nfine = 5. Right: Same as center, but with nfine = 3. The mean
(thick solid line) and 90% confidence interval (thin solid lines) estimated from the
fine scale runs are shown in all figures.
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These results are also more accurate than those achieved with nfine = 7 and
purely local upscaling (not shown). This demonstrates the potential advantages of
accurate upscaling within the context of our error modeling procedure. We note
that the least number of realizations that can be used for the calibration is 3, since
the linear regression in Eq. 4 requires 3 pairs of observations to determine a fit.

3.4 CASE WITH VARIABLE WELL CONTROL

In the second flow scenario, the injection well is kept at a constant BHP, while
the production well is initially specified to produce at a constant oil rate. When
the BHP in the production well drops to 1000 psi, the producer switches to BHP
control. This case is more complex because the total rate must increase once water
breaks through (to maintain the specified oil rate) and because the producer even-
tually switches to BHP control. It is often difficult to capture accurately discrete
events such as these in upscaled models, so we expect to see higher levels of error
in the uncorrected coarse scale simulations. In addition, the permeability fields are
upscaled to a greater degree, from the initial 120×120 grid to a 12×12 grid. The
fine scale realizations, well locations and system properties are the same as in the
previous example. In this case we only present results for adaptive local-global T ∗

upscaling.
Results for the mean and confidence interval for the fine and uncorrected coarse

models are shown in Figure 5 (left). The coarse scale predictions are accurate
at early time, but lose accuracy as time progresses, particularly around water
breakthrough (at approximately 300 days). The errors in this case are considerably
larger than in the previous example, due to the switches in well control and also
to the coarser grid. Using the minimum variance procedure to select fine scale
calibration runs, we achieve the corrected results shown in Figure 5 (center) for
nfine = 5 and in Figure 5 (right) for nfine = 3. The results are slightly more
accurate with nfine = 5 than with nfine = 3, though the results are acceptable
even with nfine = 3. As was the case for the previous example, results with purely
local k∗ upscaling (not shown here) are considerably less accurate than those with
adaptive local-global T ∗ upscaling. This example demonstrates the ability of the
overall procedure to provide reliable results in a complex case involving a high
degree of upscaling and variable well control.

4 Conclusions

This study demonstrated that upscaling procedures can introduce severe biases
and other error structures into coarse scale flow simulation results. These errors
can, however, be reliably modeled using procedures described here. This modeling
requires that a few flow simulations be performed both at the fine and coarse
scales. The realizations to be simulated at the fine scale must be selected carefully,
and we described and illustrated a minimum variance criterion that provides an
appropriate calibration set. By combining coarse scale simulations and the error
model, the accuracy in the forecasts for both mean and confidence interval is
greatly improved. It was also demonstrated that the use of a more advanced
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Figure 5. Case with variable well control. Left: Mean (thick dashed line) and
90% confidence interval (thin dashed lines) estimated based on the 100 coarse
models generated using adaptive local-global T ∗ upscaling. Center: Corrected
mean (thick dot-dash line) and 90% confidence interval (thin dot-dash lines) based
on the minimum variance calibration set with nfine = 5. Right: Same as center,
but with nfine = 3. The mean (thick solid line) and 90% confidence interval (thin
solid lines) estimated from the fine scale runs are shown in all figures.

upscaling algorithm (adaptive local-global T ∗ upscaling) allows for the use of
fewer fine scale simulations, which improves the computational efficiency of the
overall procedure.
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Abstract. The multi-partner Saigup project was established to systematically
investigate the relative importance of key geological heterogeneities on simulated
production. In order to investigate the impact of the geostatistical variability,
the petrophysical fields were drawn repeatably, and the variogram directions were
rotated. The heterogeneities caused by the geostatistical variability in the petro-
physical simulations and the variogram rotation were similar, and had a low impact
on all the production responses except total water injected. Here they contributed
about 20% of the total variability.

1 Introduction

Production from a reservoir is a complex function of many parameters. Reservoir
modelling enables the prediction of reservoir performance through mathematical
simulations of the flow. However, these deterministic flow simulations include
significant uncertainties, due mainly to uncertainty in the original geological in-
put in the reservoir models. Geostatistical models should aim to deal with this
uncertainty.

The objective of the European Union supported Saigup project was to quan-
tify the effects of geological variability and the associated uncertainty in faulted,
prograding shallow marine reservoirs. Related, smaller scale studies are e.g. Lia et
al. (1997) and Floris et al. (2001). Within Saigup, a series of geological parameters
were varied systematically in order to reveal their relative importance on reservoir
production. By comparing different realizations of the petrophysical fields, the
stochastic variability is also quantified, c.f. Manceau et al. (2001). For a subset
of the realizations the lateral petrophysical variogram anisotropy direction was
rotated. This set gave information on how significant variogram direction is for
the total variability in simulated production data.
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2 Saigup variables

The synthetic Saigup reservoirs are a 3 x 9 km prograding shallow marine tilted
fault block, comprised of four 20 m thick parasequences (Figure 1). Each parase-
quence contains up to six facies associations ranging from offshore through delta-
front to coastal plain with channels. The facies were populated with petrophysical
properties drawn from distributions taken from comparable North Sea (mainly
Brent Group) reservoirs.

Figure 1. Facies representation of a synthetic Saigup reservoir with eastward
progradation direction (left). The reservoir is then aligned under the top structure
map (example with strike perpendicular fault pattern to the right). North is to
the upper right edge.

Production heterogeneity was introduced by varying eight different parameters
at three different levels. Seven of these are related to geology and one to production
strategy. These variables included four sedimentological parameters: aggradation
angle (shoreface trajectory); progradation angle relative to waterflood; delta type
reflected in shoreline curvature and internal flow-barrier coverage. Structural para-
meters were fault permeability, fault pattern (unfaulted, compartmentalized, strike
parallel and perpendicular to main flow) and fault density.

The final parameter that was varied was the well pattern. Four different well
configurations (designed for each structural pattern) were run on all of the geolog-
ical models. The well configurations were a combination of vertical producers and
injectors. The producers were located at a high level near the crest, see Figure 2,
while injectors were located at a lower level, injecting water subject to a maximum
pressure of 50 bar above the initial reservoir pressure.

The first stage of the workflow was a geostatistical simulation of the sedi-
mentology based on the chosen control levels. This produced a facies model that
guided the subsequent geostatistical simulation of the petrophysical parameters.
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Figure 2. View of well locations designed for, from left to right, unfaulted, strike
parallel, strike perpendicular and compartmentalized fault patterns. Injectors are
shown as circles and producers as dots. North is to the upper edge. Only the largest
faults are shown, and the owc is indicated in the unfaulted case.

The fine scale petrophysical model was then upscaled from 1.5 million geogrid cells
to 96 000 flow-simulation cells. The upscaling method was a local flow preserving
method with open boundaries, commonly used by the petroleum companies (War-
ren & Price, 1961). Relative permeability upscaling sensitivity was investigated
by Stephen et al. (2003). The flow-barriers were simulated as transmissibility
multipliers within the simulation grid. Finally the fault related heterogeneities were
introduced and the realization was ready for flow-simulation. The flow-simulator
was run for 30 years (production time) producing the final production responses.

All combinations of the 8 input key controls were run with repeated simulations
on some of the combinations. In total, more than 12 000 flow simulations relevant
for this analysis were run.

3 Variance components

A production response variable is a function of its explanatory variables. In the
Saigup study there were originally eight key control parameters: four sedimen-
tological, three structural and one well related explanatory variable. Also two
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geostatistical variables were investigated: the variogram anisotropy direction re-
lated (V ) and the repeated petrophysical simulation effect (P ). For simplicity, all
the sedimentological, structural and well related variables are merged here into
one geoscience variable G. The production response y can then be written

y(G,P, V ) = K0 + K(G,P, V ), (1)

where the average level is K0 and the function K() describes the variation around
that average. In order to investigate the different explanatory effects by statistical
analysis, this is broken down to its orthogonal effects

K(G,P, V ) = KG(G) + KP (P ) + KV (V ) + KG,P (G,P ) +
KG,V (G,V ) + KP,V (P, V ) + KG,P,V (G,P, V ). (2)

Thereby it is possible to quantify the relationship between the variability of the
different explanatory variables and the response by separating the variance com-
ponents. Estimates are obtained by a standard moment method, cf. Box et al.
(1978).

4 Effect from repeated stochastic simulation of petrophysics

We are interested in the relative contribution of the geostatistical variability from
the petrophysics (P ) in equation (2). That is the variability obtained by chang-
ing the seed in the petrophysical simulation. The relative effect of the repeated
stochastic simulation depends on the main effect and all higher order combined
effects,

Er
P =

√
||KP ||2 + ||KG,P ||2 + ||KP,V ||2 + ||KG,P,V ||2

||K||2 . (3)

The results for the selected responses are given in Table 1. With the exception

Table 1. Relative effect Er
P of repeated petrophysical fields on variability in

production responses.

Production response Relative effect
Total oil production 1.1%
Discounted production 1.3%
Recovery factor 3.8%
Recovery at 20% pore volume injected 3.3%
Total water injected 15.8%

of the total water injected response, the effect is very low. This is because ||KG||
dominates equation (2). The reason why the water injection is more subjected to
changes in the petrophysical field than the oil production, is believed to originate
from the different flow characteristics of the two fluids.
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5 Variogram direction effect

Reservoir properties produced by the deposition of sediment within a prograding
shallow marine system will not be horizontally isotropic. Heterogeneity within
the distributary channel sediments will be aligned broadly normal to the channel
belt orientation. Within shallow marine deposits the greatest heterogeneity will
occur perpendicular to the shoreline orientation (Kjønsvik et al., 1994); (Miall
and Tyler, 1991). In the Saigup study, the variograms of the six different facies
were all spherical. For the two most permeable facies associations, the variogram
ranges were 800 and 250 meters for the channels, and 2000 and 1000 meters for
the upper shoreface facies.

Figure 3. Rotation of variogram direction of petrophysical parameter for a
southward prograding realization.

In order to investigate the importance of correct variogram anisotropy direc-
tion, a new series of repeated petrophysical simulations were made using identical
facies realizations, now with 90◦ rotated petrophysical variograms, see Figure 3.
The additional effect from rotating the variogram anisotropy direction is

∆Er
V =

√
||KV ||2 + ||KG,V ||2

||K||2 , (4)

where equations (2) and (3) give that (Er
P )2 + (∆Er

V )2 = 1 − ||KG||2/||K||2.
Consequently there were no difference with respect to the element KG, and any
differences in the variance components are therefore due to the other elements of
equation (2). These estimates are shown in Table 2. The values are low which
indicates that the variogram direction has little impact. Note also that the higher
order contributions from KP,V and KG,P,V are included in equation (3). A natural
conclusion is that both of the investigated geostatistical variabilities (Table 1 and
Table 2) are relatively small.
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Table 2. Relative effect ∆Er
V of petrophysical variogram direction rotation on

variability in production responses.

Production response Relative effect
Total oil production 0.2%
Discounted production 0.0%
Recovery factor 0.0%
Recovery at 20% pore volume injected 0.5%
Total water injected 5.3%

Unlike other applications (such as mining) where correct anisotropy direction
are important, the petroleum industry does not deal with single properties of the
rock itself, but on a complex fluid flow function which is controlled by a variety of
rock properties acting at different scales. Because of this, apparent errors in the
orientation of the variogram direction may not be as crucial. In fact by doing so,
the fingering is reduced in the model, the amount of produced water is reduced,
and the sweep efficiency is increased. So it may take longer time for the fluids to
get to the producer in the simulated model, but more valuable fluids will reach
the producer before the water-cut becomes too high. The results suggest however
that this effect is low compared to the effects of other uncertain input parameters.

6 Discussion

The effect of the stochastic variability on the computed oil production rate is
illustrated in Figure 4. The rates are in accordance with the low effect seen in
Table 1 and Table 2.The differences in the production curves within each reservoir
are much smaller than the main features of the productions. The means and
standard deviations of the cumulative production were 388 and 18 MSM3 (million
standard cubic meters) for the upper and 277 and 7.5 MSM3 for the lower reservoir
respectively.

The upper reservoir has an early high production rate which becomes much
lower after 15 years, while the lower reservoir remains on a lower plateau for
much longer. These differences are due to uncertainties in the geological model
which determines most of the variability in the production response of the Saigup
reservoirs. The variability from repeated geostatistical petrophysical simulations
is comparable to that for the rotated variograms. This was also observed in other
synthetic Saigup reservoirs. The importance of the stochastic variabilities will
however be more significant if the uncertainties in the key geological parameters
are reduced.

The observation that the effects of the two geostatistical variabilities considered
here are quite small compared to those produced by geological variability is im-
portant. It illustrates that efforts should be focused on dealing with uncertainties
in geological parameters that are key to describing the reservoirs.
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Figure 4. Four production rates observed from two reservoirs. Each line type
shows the effect of repeated petrophysical stochastic simulations. The dashed
curves have rotated variogram anisotropy directions compared to the solid curves.

The simulated production data indicates that if the ratio between the variogram
anisotropy ranges is below 3, the actual anisotropy directions are not crucial for the
cumulative response in prograding shallow marine reservoirs. Other uncertainties
are far more dominant, and this variability is comparable to that of the geosta-
tistical uncertainty originating from the repeated stochastic simulation (changing
the seed).
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The applicability of these results to real world reservoirs is dependent upon
how representative Saigup parameter space is of the real world. Significant care
was taken to ensure that the initial collection of data covered realistic geological
parameter ranges and consequently we believe this has been addressed.
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SCALING RELATIONS AND SAMPLING VOLUME FOR SEISMIC DATA 

PETER FRYKMAN, OLE V. VEJBÆK and RASMUS RASMUSSEN 
Geological Survey of Denmark and Greenland - GEUS
Øster Voldgade 10, DK-1350 Copenhagen K, Denmark 

Abstract. Seismic attributes are considered valuable auxiliary data for geostatistical 
reservoir modelling. The seismic resolution is often poorly defined and depends on 
acquisition, depth and processing scheme. In this study an approach to determine the 
practical sampling volume of the seismic data is described, exploiting the geostatistical 
scaling laws. 
The analysis sequence involves calculating the synthetic seismic response from a fine-
scale model originating from a chalk reservoir; inversion of the generated data into 
impedances, and finally a quantitative comparison of this derived synthetic seismic 
attribute with the original fine-scale data. 
The sampling volume represented by the inversion data is then estimated from the 
comparison of the volume-variance and the variogram structure. The derived sampling 
volume is expressing a generic resolution, since added noise and variance from real-life 
acquisition and processing is absent, and the result therefore only provides a bounding 
limit for the practical resolution. 

1 Introduction 

The recent advances in reservoir modelling have increased the demand for quantitative 
description and higher resolution in the geological model, and thereby highlight the 
scaling issues, although most papers ignore the question. The available data almost 
always measure a different volume scale than the volume of the grid cells used in the 
numerical model; therefore a strategy to reconcile these differences must be developed. 
For modelling of facies, porosity, or other reservoir properties, different data types are 
used for a variety of cosimulation schemes. Therefore core data, well log data, seismic 
data, and even well test data often contribute to the same reservoir model. It is 
increasingly recognised that the volume-variance relations as described in the scaling 
laws link these different data types, and must be considered prior to incorporation in the 
modelling procedure. 
It has become nearly standard in reservoir modelling to use data derived from seismic 
inversion results or seismic attribute analysis. As these measures are often combined 
with other data at either finer scale (core, well logs) or coarser scale (e.g. well tests), it is 
important to know more precisely what length/volume scale is represented. If the grid 
cell size of the reservoir model is different from the volume represented by the data, this 
must be accounted for. 
Reservoir modelling in a geostatistical scheme requires the input variogram and the 
target histogram to be representative for the scale of the modelling cells. Therefore one 
must be able to estimate these two properties for the different data types, that might be 
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derived at different scales. It has been shown that for simple measures such as porosity, 
the geostatistical scaling laws can be used to transcend different scales, and can 
calculate the variogram and histogram at any desired scale (Frykman & Deutsch 2002). 

2 RESOLUTION OF SEISMIC DATA 

An illustration of the different scales shows that the change of scale from core to log 
measurement volumes is as large as the jump from log volume to that of a geological 
modelling cell (Figure 1). The seismic detection volume is generally considered to lie 
within the range of the different modelling cell sizes, but it should be remembered that 
there is a large difference between the vertical and the horizontal resolution of the 
seismic data. 

Figure 1. Illustration of the vertical length resolution measures (in meters) for the 
different types of data and model types.

2.1 The traditional estimate of seismic resolution 
When a first rough estimate of the vertical seismic resolution is considered, it is 
necessary to assume an average sound velocity and a dominant frequency content in the 
particular section that is under investigation. For a specific case like a North Sea chalk 
reservoir at 2 km depth, the sound velocity of the chalk will be approximately 3000 
m/sec and the dominant frequency around 60 Hz. This results in a wavelength of 50 m, 
and the best possible vertical resolution of features is therefore normally assumed to be 
around ¼ to 1/8 of this, i.e. 12.5 to 6 meter at best. The 6 meter is therefore often chosen 
as the vertical sample size in studies of these reservoirs, and corresponds approximately 
to the 4 msec TWT sampling interval used in the traditional seismic analysis. 

3 THE GEOSTATISTICAL SCALING LAWS 

The scaling laws indicate how statistics such as the histogram and variogram change 
with the volumetric scale (Kupfersberger et al. 1998; Frykman & Deutsch 2002). As 
scale increases, the range of correlation increases, the variance and variogram sill 
decrease, and the nugget effect also decreases. The main principles and examples with 
application of the scaling laws to porosity data have been described (Frykman & 
Deutsch 2002). 

3.1 Brief recall of the volume-variance scaling laws 
Denoting a smaller volume by |v| and a larger volume by |V|, the two most important 
definitions are outlined: 
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A) The variogram range a increases as the size of the sampling volume increases, and a 
comparison of different scales is therefore dependent on the difference between the 
volumes, or |V| - |v|. Note that |V| and |v| relates to a size of the volume in a particular 
direction. Then, if av is the range for the small scale and aV is the range for the larger 
scale, we have: 

|||| vVaa vV    (1) 

B) The variance contribution, or sill, of each structure ,Ci
v  change by 

vv

VV
CC i

v
i
V ,1

,1
                      (2) 

),( vv , or the gamma-bar value, represents the average variogram for vectors where 

each end of the vector independently describes the volume v. In 3D the gamma-bar 
values may be expressed by the infamous sextuple integrals of early geostatistics 
(Journel and Huijbregts 1978, p. 99). The modern approach, however, is to calculate all 
gamma-bar values numerically.
The variogram used for the calculation of the average variogram values, , is the unit 
point scale variogram (i.e. variogram with sill of 1.0 and point range ap).

The scaling relations are established under the assumptions that: 1) the shape of the 
variogram (i.e., spherical, Gaussian, etc.) does not change; 2) the averaging is performed 
with non-overlapping volumes, and 3) the variable scales in a linear fashion (Journel & 
Huijbregts 1978). The last assumption has so far prevented the use of the conventional 
scaling laws on parameters that scale non-linearly, like e.g. permeability, and the two 
other assumptions are questionable for parameters like acoustic impedance. 

Obviously, these assumptions must be relaxed somewhat in order to be applied on our 
present case of seismic impedances, since a rigorous scaling should really be performed 
in the frequency/time domain. Our relaxation in this specific chalk case study is based 
on the fact that the contrasts in the chalk are limited, and therefore the effects of 
different averages are considered minor. The physical averaging by the seismic wave is 
performed in the continuos time domain, and cannot be claimed to reflect non-
overlapping volume averaging. The importance of this assumption is unknown, but 
could have the effect of changing the variogram shape from spherical to Gaussian as it 
was shown for a simple moving window averaging (Frykman & Deutsch 2002). 

4 CASE STUDY WITH SYNTHETIC SEISMIC DATA 

An interval of 250 meter (2150 - 2400 m TVD) was selected from a well in the Upper 
Cretaceous chalk section in the Danish North Sea. Figure 2 shows the log data for both 
the porosity and the impedance which seem to be fairly stable without any large overall 
trends. As we are interested in the correlation structure at meter and 10-meter scale, this 
section length is deemed sufficient for our analysis.
The impedance data at well log scale is used to generate a synthetic seismic trace by 
applying a standard Ricker wavelet. The synthetic seismic trace is then inverted with 
standard procedure, including the use of a low-frequency model to keep the major trends 
in the inverted impedance trace (Figure 2). All impedance data used in this example are 
treated in the units of 106*Kg*m-2*s-1.
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Figure 2. Impedance and porosity data from the well in a chalk reservoir. The fine-scale 
impedance is used to generate the synthetic seismic trace, which is inverted back to 
impedance including the use of a low-frequency model. 

4.1 Analysis of the inverted impedance data 
Obviously, the inverted impedance trace has a much lower variance than the original 
well log data. The difference in variance is the main entrance to derive the seismic 
resolution for the present case. The differences in correlation structure, i.e. the ranges 
and contributions from different structures, are adding to this analysis. 
The variance for the inverted impedance is reduced to 0.071 compared to the 0.300 of 
the original log data (Figure 3). 

Figure 3. Comparison of histograms for impedance data. 
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By calculating the variance change for different volume sizes with the scaling laws 
using the average variogram method, it can be deduced for which upscaling length scale 
the variance in the inverted impedance is matching the theoretical variance (Figure 4). 
The log scale variogram used has two nested spherical structures with 1.6 and 11.0 m 
ranges, and nearly equal variance contribution. 

Figure 4. Variance as a function of the upscaling length, using the variogram structure 
for the original well log derived impedance data as a basis. It is seen that the 
experimental variance of the inverted impedance data of 0.071 corresponds to a length 
scale of 17.0 m. 

For the present example, 17 m seems to describe the equivalent vertical upscaling 
volume for the seismic data with respect to the variance present in the inversion data. 
When this length is then used for scaling of the variogram structure from well log scale 
to 17 m seismic scale by using the scaling laws, the variogram model changes 
accordingly. The resulting upscaled variogram is not similar to the experimental 
variogram for the inverted impedance data (Figure 5A). When an additional cyclic 
component with a wavelength of 27 meter is included in the finer-scale model, the 
upscaled model is coming closer to the experimental variogram. Still, there is a 
mismatch between the ranges for the variograms.
If the starting point for the scaling investigation is taken from the inverted data, a single 
spherical variogram model with a range around 14 meter can be fitted to the inverted 
impedance variogram (Figure 5B). Using the scaling law for the range modification 
during downscaling, and assuming a log scale variogram with a single structure with 9.0 
m range, an upscaling length measure of 5.6 meter is then deduced from the two 
variogram correlation lengths. A significant mismatch occurs in the variance if the 5.6 m 
is used as the seismic volume measure (Figure 5B).

5 Discussion 

The discrepancy between the two values for the vertical seismic resolution derived from 
variance analysis and from variogram range analysis points to caution when using the 
scaling laws on inverted seismic data for downscaling to finer scales. The sequence of 
generated seismic (synthetic) and inversion illustrates in this case that the variance is 
reduced significantly more than predicted by the scaling laws, whereas the frequency 
content seems to match the predictions. 
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Figure 5. A: Variogram for the original impedance data at well log scale (red), with 2 
alternative variogram models (green&blue). The simplest model (green) is a nested 
model with 2 spherical structures, and another model has an additional cyclic 
component as a hole effect structure (blue). The experimental variogram for the inverted 
impedance data (orange) and the two upscaled models (a, b, lightgreen and lightblue) are 
shown in the lower part of A. 
B: Model variogram for seismic scale (blue) is downscaled (c) with scaling laws from 6 
m to 0.6 m scale, and (d) variance modified to log-scale variance retaining the range. 

6 Conclusions 

The study illustrates how the vertical sampling volume represented by the inversion data 
can be estimated from the comparison of the volume-variance and of the variogram 
structure. The sampling volume of 17 meter in the vertical direction derived from 
variance analysis highlights the inability of the scaling laws to account for volume-
variance relations in the frequency/time domain. The scaling of correlation range derives 
a value that matches traditional resolution estimates. The sampling interval of 4 msec 
TWT (approximately 7-8 m) normally used in the seismic analysis is therefore 
supported. The estimated resolution of 5.6 meter is a generic resolution, since added 
noise and variance from real-life acquisition and processing is absent. The result shown 
here provides a bounding limit for the practical resolution, which could be a larger 
length scale in other real cases. 
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Abstract. In this paper we propose a hierarchical model for accomodating
geologic prior knowledge together with velocity and density observations. The
goal is to characterize underlying geologic patterns in clastic depositional systems,
patterns such as blocky sand, shales, and fining or coarsening upward sequences.
We use Gibbs sampling to explore the statistical distributions. The method is
tested on synthetic data and well data from a fluvial environment.

1 Introduction

It is important that quantitative methods for lithology estimation from geophysical
data honor geologic knowledge. However, it has been difficult to reconcile the math-
ematically formulated geophysical relations with qualitative geologic descriptions
of lithologic sequences, such as blocky, fining or coarsening upwards, etc. One
possible approach, that we focus on here, is to assume that the geologic variables
of interest are governed by Markov transitions, see e.g. Weissman and Fogg (1999),
Fearnhead and Clifford (2003), and Eidsvik, Mukerji, and Switzer (2004).

We present a hierarchical model for estimating underlying geologic patterns
from P-wave velocity and density measurements in a well log. Since changes in
velocity and density control seismic reflections, this preliminary study is a step
towards assessing lithologic alternation styles from seismic data away from wells.

2 Methods

Our methods for inferring the underlying geologic environments and their alterna-
tion styles are illustrated in Figure 1. This hierarchical structure accommodates
the relationships between hidden variables and the well measurements of velocity
vP and density ρ. The goal is to estimate the underlying geologic formations along
the well path. The geologic classes are categorized as: 1=blocky sands, 2=fining
upwards, 3=coarsening upwards, and 4=blocky shales.

FEATURES
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Figure 1. Display of a hierarchical model for the geophysical data. The direction
of arrows indicates the conditional dependency. Variability is propagated from the
left parameters to the observations at the right.

2.1 NONLINEAR MODEL FOR DENSITY AND VELOCITY IN SHALY SANDS

The observed density and P-wave velocity are measured at a constant interval
for a total of T locations, and are denoted by yt = (vP,t, ρt), t = 1, . . . , T . We
assume that the lithology is a sand-shale mix described by the shaly-sand model of
Marion et al (1992), in which density and velocity are nonlinearly connected to the
underlying clay content fraction denoted by ct. In this model ρ and vP of the mixed
shaly-sand are given in terms of the properties of the end members: pure sand and
pure shale. The constants and parameters in the nonlinear calculations depend
on the mineral densities (quartz and clay) and the end member porosities. Water
saturation effect is taken into account using Gassmann’s relation, see e.g. Mavko,
Mukerji, and Dvorkin (1998). The relations are split into two domains: sand grain
supported when clay content is less than the pure sand porosity φ0, and clay matrix
supported when clay content is greater than φ0. The two domains correspond to
the two limbs of a V-shaped response for ρ and vP as a function of the clay content.
Marion et al (1992) justify this split using physical interpretations along with lab
measurements. The V-shaped trend has also been observed in log data. Other,
similar functional relationships are presented in Koltermann and Gorelick (1995).

In a statistical formulation we define the probability density function (pdf)
[conditional on logit clay content wt = log( ct

1−ct
) ] for the data as:

f(yt|wt) = N

[
yt; g

(
exp(wt)

1 + exp(wt)

)
, S

]
, t = 1, . . . , T, f(y|w) =

T∏
t=1

f(yt|wt), (1)

where N(y;µ, S) denotes the Gaussian pdf with mean µ and covariance S, evalu-
ated at y, and where the two dimensional expectation term g(ct) is the nonlinear
functional relationship in the shale-sand mix model of Marion et al (1992).
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2.2 CLAY CONTENT SEQUENCE

We choose to use the logit clay content defined by wt = log( ct

1−ct
) ∈ R, t = 1, . . . , T

in our modeling. The conditional pdf is denoted f(w|k), where we assign a Markov
property to wt, conditional on the underlying geologic variables kt;

f(wt|wt−1, kt) = N [wt; F (kt)wt−1 + u(kt), σ2], t = 2, . . . , T, (2)

where F (1) = 1, F (2) = 0.95, F (3) = 0.95, F (4) = 1, and u(1) = 0, u(2) =
0.15, u(3) = −0.15, u(4) = 0 for each of the four categorical classes of geologic
environment, and where f(w1|k1) = N(w1; 0, σ2

0). The expectation terms in the
Gaussian Markov model in equation (2) reflect the assumed changes in clay content
conditional on the geologic environment. For example, if we are in a fining upwards
state, kt = 2, we expect the logit clay content to increase, hence u(2) = 0.15, but
we include F (2) = 0.95 to prevent the logit clay content from exploding.

2.3 DISCRETE MARKOV CHAIN FOR GEOLOGIC ENVIRONMENT

The geologic variable kt ∈ {1, 2, 3, 4}, t = 1, . . . , T is modeled by Markov transi-
tions:

Pr(kt = j|kt−1 = i) = pij , t = 2, . . . , T, (3)

where k1 is fixed, and where pij ≥ 0,
∑4

j=1 pij = 1, for all i. We denote the prob-
ability distribution for the geologic sequence conditional on the Markov transition
probabilities by f(k|p).

The transition probabilities of the discrete Markov chain are assigned Dirichlet
pdfs for each row of the transition matrix p. This pdf is denoted f(p). In this pdf
we impose our prior belief about the geologic alternation styles which are; blocky
sands followed by a fining upward sequence which ends in blocky shales, thereafter
a coarsening upwards sequence which ends in a blocky sands, and so on.

2.4 SAMPLING FROM THE POSTERIOR DISTRIBUTION

The posterior for the hidden variables is defined by

f(p, k, w|y) ∝ f(y|w)f(w|k)f(k|p)f(p). (4)

The hierarchical model assumes conditional independence: For example f(w|k, p) =
f(w|k). This simplifies the modeling and simulation, but could of course lead to
undesired scenarios in some cases. It is not possible to assess the posterior in
equation (4) analytically. We choose to explore the distribution by a Gibbs sampler
similar to the one in Carter and Kohn (1996):

1. Intialize (p1, k1)
2. Iterate, for l = 1, . . . , L:

− Draw the rows of the transition matrix from conjugate Dirichlet pdfs. This
is a sample from f(pl+1|kl).
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− Draw geologic sequence using the forward and backward loop proposed in
Carter and Kohn (1996). This is a sample from f(kl+1|pl+1, kl, y).

As part of the sampling step for geologic sequence we use an extended Kalman
filter to marginalize over values of logit clay content.

3 Examples

We present two examples of the modeling procedures; one using synthetic data
generated from the the V-shaped model, and the other based on real well log data.

3.1 SYNTHETIC MODELING

In this synthetic case we generate velocity and density data according to the hierar-
chy in Figure 1. Figure 2 (left) shows the synthetic log of geologic variables, starting
in blocky shales at depth 100, and the corresponding (vP , ρ) logs. Figure 2 (right)
displays a crossplot of the observed noisy data together with the theoretical values
for the V-shaped trends. Figure 3 (left) shows the proportions of the four different

Figure 2. Synthetic logs of geologic sequence with corresponding density and
P-wave velocity (left). The observations (right, *) are plotted with the theoretical
trend for the V-shaped model (right, solid) as a function of the clay content.

geologic environments as a function of iteration number in the Gibbs sampler
described in Section 2.4. The fluctuations in Figure 3 (left) illustrate the mixing in
the Gibbs output and the variability we get in proportions for this synthetic case. In
Figure 3 (right) we show generated pseudologs of density and velocity obtained by
propagating 50 of the realizations for geologic sequence. These pseudologs (Figure
3, right, dots) are plotted on top of the originally simulated logs from Figure 2
(middle), but the original logs are hardly visible because the pseudologs match
the original data quite well. Note the bimodal shape in the pseudolog (Figure 3,
right) between 0 and 20 which is caused by a misclassification of sand into fining
and coaresening in some of the realizations. This is typical for the algorithm in
areas where it is hard to discriminate between the different geological classes.
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Figure 3. Synthetic case. Left: Proportions of the four geologic classes as a func-
tion of iteration number in the Gibbs sampler. Right: Pseudologs of density and
velocity (dots). The logs are created by running realizations of geologic sequence
through the hierachical model. Original logs of density and velocity (solid).

3.2 WELL LOG DATA FROM A FLUVIAL RESERVOIR

The fluvial well log consists of 600 data points sampled every half foot (15 cm). The
observations are plotted versus depth in Figure 4 (left). By using the theoretical
properties of quartz, clay and water (Mavko, Mukerji, and Dvorkin, 1998) we assess
the parameters required for the V-shaped model in Section 2.1. The results are
displayed in Figure 4 (right).

We run the Gibbs sampler described in Section 2.4 for 2000 iterations. Figure
5 (left) shows the gamma ray log as a basis of comparison, Figure 5 (middle) a
classified geologic sequence calculated from the Gibbs output. In Figure 5 (left) one
part of the gamma ray log is depicted: This zone is what appears to be a coarsening
upwards sequence in the gamma ray log near 770 m depth. Our method recognizes
the coarsening upwards to some extent since the classification is mostly class 3
near 770 m depth. Figure 5 (right) shows the density and velocity in this part of

Figure 4. Fluvial case: Density and velocity observations in the well log (left).
Fit to the V-shaped model (right), with theoretical fit (solid), well log observations
(*).
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Figure 5. Fluvial case: Gamma ray observations in the well log (left). Classified
log of geologic sequence (middle). The depicted area is a coarsening upwards
sequence in the gamma ray log which is recognized quite well in the classification.
The V-shape for vP and ρ is quite clear in this depicted zone (right).

the well log, plotted with the theoretically fitted V-shape. The density and velocity
observations follow the trend quite nicely in this part of the log. Other parts of
the log are harder to classify correctly because the V-shape is missing in the data.

4 Closing Remarks

We propose a hierarchichal model to estimate patterns of shaly-sand lithologic
sequences from velocity and density data. The method builds on the sand-shale
mix model of Marion et al (1992). When analyzing data from a fluvial well we see
that the fit to this model is reasonable in selected sub-sequences of shaly-sands
that span from sands to shales through shale-sand mix. The fit is not so good
when there are direct sand-shale jumps. Possible extensions include the model by
Koltemann and Gorelick (1995), and to use more discrete facies classes to account
for jumps. The parameters of the statistical model also have to be more carefully
specified.
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Abstract. Earth models generated for use in fluid flow simulation incorporate varying 
amounts of geological detail. The increased costs associated with a detailed earth model 
are worthwhile if the uncertainty of reservoir performance predictions is significantly 
reduced. Using data from the Eunice Monument South Unit (EMSU) reservoir and the 
LL-652 Central Fault Block (CFB) reservoir, workflows that incorporate varying 
amount of geological information were evaluated on the basis of fluid flow 
characteristics. Multiple realizations were up-scaled and flow characteristics evaluated 
using 3D streamlines. There is little difference between the modeling workflows in 
terms of overall fluid flow characteristics. While the similarity in ultimate recovery was 
expected the small difference in the oil production rates and water injection rates for the 
different workflows was not expected.  Based on data only from the EMSU models, 
vertical scale-up has little effect on fluid flow characteristics compared to areal up-
scaling. As areal scale-up increases reservoir flow become significantly more 
“optimistic” as predictions typically overestimate the recovery for a given amount of 
injection. These results suggest that the more critical “geological” issue in up-scaling 
may be the areal dimension rather than the vertical dimension.

1 Eunice Monument South Unit (EMSU) Reservoir – New Mexico 

The Eunice Monument South Unit Field (EMSU) is located in Lea County, New 
Mexico. It is largely a stratigraphic play and produces from the Permian (Guadalupian) 
Grayburg Fm. at an average depth of approximately 3900 feet. The productive interval 
averages about 250 feet thick and is largely dolomite. The field was discovered in 1929. 
The OOIP is about 1000 MMSTB of which about 135 MMSTB has been produced. The 
field currently is under waterflood and produces around 2800 BOPD from over 250 
wells. Within the study area the porosity by stratigraphic layer averages 7-9% and 
permeability averages 0.5-3 md. 

The reservoir consists of porous and permeable dolomitized grainstones and mud-poor 
packstones deposited in high-energy shelf-crest shoals. These shoals were deposited on 
a carbonate ramp as a series of shallowing-upward fifth order cycles consisting of 
dominantly carbonate and minor siliciclastic sediments. Updip are non-porous 
wackestones and mudstones of tidal flat origin that form the lateral updip seal. Downdip 
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of the shoal a deeper-water slope setting is inferred. The reservoir is divided into eight 
layers (only the upper four layers are included in this study) that are separated by thin, 
very fine-grained sandstone layers. These sandstone layers were initially deposited by 
aeolian processes during low-stands in sea level and were reworked during flooding at 
sea level rise. These sandstone layers are well developed over most of the field and are 
useful in dividing the reservoir into the eight stratigraphic layers (Lindsay, 2000, 
Meddaugh and Garber, 2000).

2 LL-652 Reservoir (Lagunillas Field) – Venezuela 

This reservoir is located in the east flank of the LL-652 anticline (Lagunillas Field) and 
covers an area of approximately 7,800 acres. In this reservoir oil and gas are produced 
from some of the most prolific successions in the Maracaibo basin, namely the Eocene 
C-3-X / C-4-X members of the Misoa Formation. Reservoir production began in 1954. 
Initial OOIP for the C4.X.01 reservoir is about 640 MMSTB. Cumulative oil production 
to date is about 84 MMSTB (13.4% OOIP). Current production is under 4000 BOPD. 
The average porosity ranges from 4% in non-reservoir layers to about 14% in the high 
quality reservoir layers. The average permeability ranges from less than 0.5 md in non-
reservoir layers to 40 md in the high quality reservoir layers. The overall reservoir net to 
gross ratio is about 0.3 (Moros-Leon and Meddaugh, 2004).

The studied intervals are part of the large scale transgressive-regressive stratigraphic 
cycle that characterizes the Misoa Formation. This large scale cycle is punctuated by 
smaller-scale sequences witch represent higher frequency regressive-transgressive 
cycles within the succession. Within these smaller sequences, successive lowstand 
(LST), transgressive (TST) and highstand (HST) systems track can be recognized and 
correlated throughout the entire LL-652 Area. This sequence hierarchy has formed the 
basis for a sequence stratigraphic subdivision of the C-4-X.01 reservoir. The resulting 
vertical succession consist of three low-order deltaic units formed by the regular 
alternation of sandy delta plain sediments with marine mud and sand-prone deposits that 
prograded northeast as the basin subsided (Moros-Leon and Meddaugh, 2004).

Petrophysical facies characterization indicates that depositional facies exert the primary 
control over reservoir properties. Reservoir flow units are associated with the 
amalgamated distributary channels and tidal sand bars that define the LST of each 
sequence. Permeability baffles and barriers occur within the tidally-influenced TST and 
HST deposits (Moros-Leon and Meddaugh, 2004).

3 EMSU Workflows

The EMSU reservoir models were generated using the following three workflows with 
increasing geological constraints: 

1. Simple – Starting with structural surface for the top of Grayburg Fm and the well 
picks for the upper four stratigraphic layers provided by the operating company 
(Opco), five tied surfaces were generated to provided the model framework. 
Following stratigraphic grid definition (25' areal cell size, 400 layers about 1' thick) 
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and geometry initialization, the stratigraphic grids were populated with porosity by 
SGS using the layer appropriate porosity data and semivariograms. Fifteen porosity 
realizations were generated. Permeability was added to each realization using a 
transform equation.

2. Facies – Using the framework of the simple workflow model the stochastic 
distribution of the shoal and lagoon facies was done using SIS with a layer-specific 
facies map as an additional soft constraint. Five facies realizations were generated. 
Porosity based only on the wells with core data (and hence accurate facies data) was 
next added using the SGS algorithm constrained by facies region and stratigraphic 
layer. Permeability was added using the facies-specific transforms. 

3. Lithology-based – Using the same framework of the simple workflow model the 
stochastic distribution of the lithology was done using the multi-binary SIS 
algorithm. Three lithology realizations were generated for each of the five facies 
realizations generated by the facies-based workflow. Porosity based only on the 
wells with core data (and hence accurate lithology data) was next added using the 
SGS algorithm constrained by lithology region and stratigraphic layer. Permeability 
was added using the lithology-specific transforms. 

Additional information on the stochastic modeling workflows for the EMSU models is 
given by Meddaugh and Garber (2000). 

The realizations were scaled-up via a flux-based algorithm to 18 layer models with 50' 
areal cell size (initial models use a 25’ areal cell size) and the flow characteristics 
evaluated using 3D streamline-based simulator. The stratigraphic framework is 
maintained during up-scaling.  The streamline model used to evaluate the fluid flow 
characteristics of the three earth model workflows is based on then current field practice 
(Villegas et al., 1999). The model used five-spot waterflood patterns with production 
and injection wells spaced approximately 1400' apart. Producers were assigned 
minimum flowing bottomhole pressures of 500 psia. Injectors were assigned maximum 
bottomhole injection pressures of 3500 psia. The wells were assigned pressure rather 
than rate constraints to allow the permeability distributions to drive the results.  Note 
that the choice to up-scale to 18 vertical layers was based on the fact that 18 layers were 
used for this interval in the full-field model used by Villegas et al. (1999).

4 LL-652 Workflows 

Reservoir models were generated using four different workflows with increasing 
geological constraints: 

1. Simple – framework from surfaces for the five major stratigraphic picks and maps 
provided by the Opco. SGS without any region-based constraint was used to 
distribute effective porosity. Finally, permeability was added via collocated 
cokriging using effective porosity as soft data. This is the fastest and least expensive 
method (time and data acquisition/analysis). 

2. RnR (Reservoir/non-Reservoir) – framework from Simple model. Reservoir and 
non-reservoir facies distributed using SIS. SGS by facies region was next used to 
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distribute effective porosity. Last, permeability was added by collocated cokriging 
with SGS (CCK-SGS) using effective porosity as soft data.

3. Facies – framework from Simple model. Seven lithofacies facies distributed using 
multi-binary SIS (MBSIS). The lithofacies data information was derived from well 
log signature analysis and three cored wells. Next, SGS by lithofacies region was 
used to distribute effective porosity. Last, permeability was added by CCK-SGS 
using effective porosity as soft data. 

4. Complex Facies – framework from surfaces for 16 “detailed” sequence 
stratigraphic picks (includes the five main horizons used for the models listed 
above). Next, seven lithofacies (cross bedded sandstone (SS), tidal delta SS, sheet 
SS, heterolithic fill, channel shale (Sh), tidal delta Sh, and Transgressive Sh) were 
distributed using MBSIS by stratigraphic layer. The lithofacies data information 
was derived from well log signature analysis and three cored wells. Next, SGS by 
lithofacies region was used to distribute effective porosity. Last, permeability was 
added by CCK-SGS using effective porosity as soft data. 

Additional information on the stochastic modeling workflows for the LL-652 models is 
given by Meddaugh et al. (2004). 

The realizations were scaled-up via a flux-based algorithm to 20 layer models with 50' 
areal cell size (initial models use a 25’ areal cell size) and flow characteristics evaluated 
using 3D streamline-based simulator.  The stratigraphic framework is maintained during 
up-scaling.   The streamline models used a 5-spot waterflood pattern, with production 
and injection wells spaced approximately 410m apart, respectively. Producers were 
assigned minimum flowing bottomhole pressures of 3200 psia, and injectors were 
assigned maximum bottomhole injection pressures of 3700 psia. The wells were 
assigned pressure rather than rate constraints to allow the permeability distributions to 
drive the results.  Note that the choice to up-scale to 20 vertical layers was based on the 
fact that 20 layers were used for this interval in the full-field model used by Todd et al. 
(2002).

5 EMSU and LL-652 Streamline Simulation Results and Conclusions 

5.1 FULL FIELD RESULTS 

The 3D streamline results (oil and water rate vs. time and HCPVI, oil and water 
cumulative vs. time and HCPVI, water injection rate vs. time and HCPVI, and 
cumulative water injection vs. time and HCPVI) obtained from the three EMSU and 
four LL-652 workflow models show little, if any, difference suggesting that the added 
geological data provides little, if any, value on a field-wide basis. The table below 
summarizes the recovery factor (RF) at the end of run (8 years) for the various models. 
Individual well pairs were not analyzed as that was not the focus of the study. It is likely 
that significant differences in fluid flow behavior between individual well pairs do exist.



WORKFLOWS EVALUATION 747

EMSU

Workflow

Case

Mean

RF

Std

Dev RF 

Min

RF

Max

RF

Range

RF Runs 

Base 0.311 0.006 0.303 0.324 0.021 15 
Facies 0.294 0.010 0.274 0.308 0.034 15 

Lithology 0.315 0.008 0.302 0.338 0.036 15 
LL-652        

Base 0.453 0.007 0.442 0.473 0.031 15 
RnR 0.456 0.002 0.452 0.461 0.009 15 

Facies 0.440 0.009 0.418 0.450 0.032 15 
Complex 0.454 0.007 0.436 0.464 0.028 15 

Table 1. Summary of 3D streamline recovery factor (RF) results from models derived 
from the various workflows.

The primary reasons that neither data set yielded models with different flow 
characteristics among the examined workflows are:  (1) the porosity vs. permeability 
relationship for the various facies and lithologies in both data sets are quite similar (e.g. 
for EMSU, there was little difference in porosity vs. permeability crossplots of the shoal 
or lagoon facies or in porosity vs. permeability crossplots of the grainstone or 
wackestone lithology-types) and (2) the abundance of well control.

Figure 1 summarizes the practical implications of the study results. Note that there is no 
recommendation made as to value of detailed stratigraphic studies in general as there are 
numerous opportunities in a field’s production history when such studies are critical. 
However, for the specific cases studied (e.g. abundant well data and little difference in 
the porosity vs. permeability trends of the various lithofacies) there is little real value 
added by doing detailed work if one is only interested in a field-level fluid flow 
understanding.

Figure 1. Qualitative comparison of “cost” and “value” of the various workflows 
examined in this study.
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5.2 VERTICAL AND AREAL SCALE-UP RESULTS USING EMSU MODELS 

Vertical scale-up has little or no effect on fluid flow characteristics (rates or cumulatives 
vs. time or HCPVI) over the range studied (400 > 9 layers, scale-up factor 25% > 0.5%). 
The RF for the various levels of vertical scale-up are summarized in Table 2. These 
results suggest that the critical “geological” issue in scale-up is not the vertical 
dimension although clearly there must be a point at which vertical scale-up does create a 
“tank-like” reservoir with average rock properties.

Upscale

Factor

Number

of Layers 

Mean

RF

Std Dev 

RF Min RF Max RF 

Range

RF Runs 

25% 400 0.320 na na na na 1 
10% 167 0.321 na na na na 1 
5% 83 0.320 0.006 0.311 0.332 0.020 15 
1% 18 0.311 0.006 0.303 0.324 0.021 15 

0.10% 9 0.328 0.006 0.320 0.339 0.018 15 

Table 2. Recovery Factors (RF) for Varying Levels of Vertical Up-scaling.

Areal scale-up has significant effects on fluid flow characteristics. As real scale-up 
increases reservoir flow characteristics become more optimistic (less water injected, 
lower rate for same oil recovery). This may have a significant impact on the number of 
cells needed between wells in finite difference fluid flow simulation. This study 
suggests that 3-5 cells between well is not sufficient. More study is needed to fully 
assess areal scale-up issues. The RF for the various levels of areal scale-up are 
summarized in Table 3. Note that RF decreases significantly as model cell size after up-
scaling is increased (model becomes more “tank-like”).

Areal Cell 

Size (feet) 

Simple

Mean RF 

Std Dev 

RF Min RF Max RF Range RF Runs 

25.00 0.339 0.005 0.331 0.348 0.017 15 
50.00 0.311 0.006 0.303 0.324 0.021 15 
100.00 0.307 0.005 0.299 0.318 0.018 15 
150.00 0.302 0.006 0.291 0.314 0.023 15 

Areal Cell 

Size (feet) 

Lithology

Mean RF 

Std Dev 

RF Min RF Max RF Range RF Runs

25.00 0.349 0.006 0.339 0.361 0.023 15
50.00 0.315 0.008 0.302 0.338 0.036 15
100.00 0.306 0.006 0.296 0.320 0.024 15
150.00 0.296 0.007 0.285 0.312 0.027 15

Table 3. Recovery Factors (RF) for Varying Levels of Areal Up-scaling.
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 Conclusions 

This study does not argue “against” doing detailed geological and stratigraphic analyses.  
This study does, however, argue the case that it is possible to put too much “geology” in 
earth models destined for fluid simulation.  Unfortunately, this study does not provide 
quantitative guidelines for what constitutes “too much” geology except that if the 
porosity vs. permeability relationship is essentially identical within the geological, 
stratigraphic, facies, or lithology “containers” that could be used as model constraints 
there is little to be added by using such containers  as additional model constraints.  This 
study also suggests that additional work is needed to define “optimum” areal cell sizes 
when fine-scaled geological models are up-scaled for fluid flow simulation.
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APPLICATION OF DESIGN OF EXPERIMENTS TO EXPEDITE 

PROBABILISTIC ASSESSMENT OF RESERVOIR HYDROCARBON 

VOLUMES (OOIP) 

W. SCOTT MEDDAUGH, STEWART D. GRIEST, STEPHEN J. GROSS 
ChevronTexaco Energy Technology Company, Bellaire, TX 

Abstract. Design of Experiment (DoE) methodology was used to minimize the number 
of stochastic earth models that were needed to appropriately evaluate original oil in 
place (OOIP) uncertainty for a Jurassic-age, Middle East carbonate reservoir.  The DoE 
methodology enables the maximum amount of information to be obtained from the 
minimum number of experiments (model OOIP) in which multiple parameters 
(structural uncertainty, facies distribution uncertainty, oil-water contact uncertainty, net-
to-gross uncertainty, etc.) contribute.  The DoE methodology also allows for rapid 
determination of the magnitude of model parameters to overall OOIP uncertainty.  Thus, 
attention can properly be focused on the few key model parameters that most affect 
OOIP uncertainty, perhaps to the point of obtaining additional data if cost-justified.

The DoE-based workflow used was as follows: (1) use Plackett-Burman design (one of 
several DoE methodologies tested) to determine which combinations of model 
parameters should be evaluated; (2) collect the experimental results (OOIP); (3) analyze 
the results statistically to determine significant contributors to OOIP uncertainty; (4) use 
the experimental results to obtain a response “surface” (equation) that describes the 
relationship between OOIP and the significant contributors to OOIP uncertainty; (5) use 
the response surface along with appropriate statistical distributions for the significant 
contributors to OOIP uncertainty in a Monte Carlo-process to obtain P10, P50, and P90

OOIP values.  Drained volume uncertainty was also evaluated using the above workflow 
so that stochastic reservoir models with P10, P50, and P90 drained volumes could be 
generated using appropriate combinations of geologically reasonable parameters for 
further sensitivity and optimization studies as well as input to probabilistic economic 
evaluation.

1 Introduction 

Design of experiments (DoE), also often referred to as experimental design (ED), is 
seeing increasing use within the oil and gas industry within both the reservoir geology 
and reservoir engineering communities (Friedmann et al, 2003; White and Royer, 2003; 
Peng and Gupta, 2003; Sanhi, 2003, White et al., 2001; Peng and Gupta, 2004). Within 
the reservoir engineering community, DoE techniques are now routinely used in 
reservoir fluid flow simulation studies to reduce the number of simulation sensitivity or 

© 2005 Springer. Printed in the Netherlands.

751

O. Leuangthong and C. V. Deutsch (eds.), Geostatistics Banff  2004, 751–756. 



752 MEDDAUGH ET. AL. 

optimization runs.  Within the reservoir geology community, DoE techniques are being 
used, though not yet routinely, to assess reservoir uncertainty – both volumetric (OOIP) 
and connectivity (drained volume) uncertainty.

The focus of this short communication is to examine the use of DoE to assess reservoir 
uncertainty – both volumetric and connectivity – using data from a Jurassic-age, Middle 
East carbonate reservoir.   A DoE-based methodology was employed for this study to 
allow efficient and quantitative examination of both OOIP and drained volume 
uncertainty so that P10, P50, and P90 reservoir models could be developed for use in 
additional reservoir sensitivity studies, field development optimization studies, and 
economic evaluation.

The methodology of this project was based on the Plackett-Burman (PB) experimental 
design, which although generally regarded as a screening design is the most efficient 
two level design (Plackett and Burman, 1946) and ideally suited to the short time frame 
for the evaluation of the Jurassic-age, Middle East carbonate reservoir.  Once the 
uncertainty factors and levels were determined, the DoE-based workflow followed for 
the Jurassic-age, Middle East carbonate reservoir study was as follows: (1) use the 
Plackett-Burman design to determine which combinations of model parameters should 
be evaluated; (2) collect the experimental results (OOIP); (3) analyze the results 
statistically to determine significant contributors to OOIP uncertainty; (4) use the 
experimental results to obtain a response “surface” (equation) that describes the 
relationship between OOIP and the significant contributors to OOIP uncertainty; (5) use 
the response surface along with appropriate statistical distributions for the significant 
contributors to OOIP uncertainty in a Monte Carlo-process to obtain P10, P50, and P90

OOIP values.  Drained volume uncertainty was also evaluated using the above workflow 
so that stochastic reservoir models with P10, P50, and P90 drained volumes could be 
generated using appropriate combinations of geologically reasonable parameters for 
further sensitivity and optimization studies as well as input to probabilistic economic 
evaluation.

2 Middle East Example 

The Jurassic-age, Middle East carbonate reservoir that is the primary focus of this note 
is located largely within the Partitioned Neutral Zone (PNZ) between Saudi Arabia and 
Kuwait.  The reservoir was discovered in 1998 and currently produces 25-33º API oil 
with 5% water cut from five wells.  The reservoir depth is about 9700'.  The reservoir, a 
relatively simple four-way closed anticline oriented NW-SE, produces largely from 
limestone within the Marrat interval.  The porosity in productive zones averages about 
12%.  Permeability is low (average for interval is on the order of 1-5 md) but extremely 
variable with measured core plug values up to 400 md.  Well test derived permeabilities 
range between 10 and 80 md.  Although a detailed sequence stratigraphy for the interval 
has not been finalized, there is good correlation between all five wells.  The available 
data suggests that porosity increases significantly updip and is almost certainly related to 
an up-dip facies change as is shown in table below (wells 4, 5, and 8 are structurally low 
compared to wells 6 and 7).
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Porosity

(%) All Wells W-4 W-5 W-8 W-6 W-7 

Zone A 6.6 5.3 5.0 5.2 8.8 8.6 
Zone C 7.6 5.9 8.6 7.2 9.9 8.1 
Zone E 9.8 8.1 8.3 7.4 11.6 12.8 

The average well log water saturation (Sw) for Zone A is 45%, for Zone C it is 51%, 
and for Zone E it is 31%.  OOIP and drained volume calculations detailed later in this 
note make use of a normalized J-function derived Sw rather than the well log calculated 
Sw.  The J-function derived Sw values are in very good agreement with the well log Sw 
values in the productive portions of the overall reservoir interval.  Thus, OOIP as 
calculated from well log Sw values and OOIP calculated from J-function derived Sw 
values are also in very good agreement.  Porosity (and Sw) histogram uncertainty was 
estimated based on well to well variability. 

The original oil water contact (OOWC) is unknown.  For the upper reservoir zones, the 
oil water contact is defined by a lowest known oil (LKO) at -9329' and a lowest closed 
contour (LCC) at -9909'.  The lower zone may have a separate OOWC with a LKO at -
9831' and a LCC at -9909'.

Production data and well tests strongly suggest that some intervals, notably in the upper 
portion of the reservoir, may be fractured although image log data show relatively few 
fractures.  3D seismic interpretation shows some faulting likely within the interval, 
although the resolution of the seismic volume does not permit easy identification and/or 
mapping of the faults.  One well (W-5) has significantly lower gravity oil that may 
reflect some reservoir compartmentalization. 

The table below summarizes the factors were considered to impact both OOIP and 
drained volume uncertainty.  The high and low values for each factor were chosen to 
represent likely P1 and P99 scenarios.

Uncertainty

Factor

Low Drained Volume 

(low OOIP) Case 

Mid Drained 

 Volume (mid OOIP) Case 

High Drained Volume 

(high OOIP) Case 

Structure Current structure map 
minus uncertainty map A 
(tied to all wells) 

Per current structure map 
(tied to all wells) 

Current structure map + 
uncertainty map B (tied to 
all wells) 

Facies No facies One facies with moderate 
porosity improvement 
defined by wells 
W-6 and W-7. 

Two facies with significant 
(well
W-7) and moderate 
porosity improvement 
(well W-6). 

Porosity
Histogram

Well data with -2 porosity 
unit (p.u.) shift 

Given by well data Well data with +2 p.u. shift 

Sw Histogram J-function with +10 
saturation unit (s.u.). shift 

Given by J-function J-function with -10 s.u. 
shift

OOWC -9329' for A, C zones; -
9831' for E zone 

-9500' for A, C zones; -
9850' for E zone 

-9909'
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Uncertainty

Factor

(continued)

Low Drained Volume 

(low OOIP) Case 

Mid Drained 

 Volume (mid OOIP) 

Case

High Drained Volume 

(high OOIP) Case 

Porosity vs. Sw 
Correlation

Not used as Sw derived 
via J-function 

Not used as Sw derived via 
J-function

Not used as Sw derived via 
J-function

Porosity
Semivariogram
R1

500 m 1500 m 6000 m 

Permeability
Multiplier

None.  Permeability 
distribution given by core 
data and porosity to 
permeability transform(s) 

Guided by global 
multiplier needed for prior 
fluid flow simulation study 
(e.g. 6.5x) 

Guided by well test 
derived permeability (e.g. 
x 10) 

Faults Two per current structure 
map

Four faults parallel to 
structure with three 
“perpendicular” faults 
defining a total of 6 
“compartments”

Four faults parallel to 
structure with eight 
“perpendicular” faults 
defining a total of 12 
“compartments”

Fault
Transmissibility

Sealing (transmissibility 
= 0.005) 

Moderate (transmissibility 
= 0.05) 

Essentially open 
(transmissibility = 0.5) 

The structural uncertainty incorporated in the analysis essentially has little uncertainty 
near the five wells (+20’, -10’) and increases to a maximum value (+250’, -125’) 2 km 
from the wells.  Porosity and Sw uncertainty ranges set based on the range of individual 
well average values (table given previously).  The porosity semivariogram range 
uncertainty is based on analog carbonate reservoirs.  Likewise, the facies distribution 
uncertainty is based on analog carbonate reservoirs.

The thirteen reservoir model scenarios given by the Plackett-Burman design (PB) design 
table were generated using the following workflow:

1. Build structural framework and stratigraphic model grids for minimum, mid, 
and maximum uncertainty cases.  All stratigraphic model grid top and bottom 
surfaces are tied to the appropriate well picks 

2. Distribute porosity using sequential Gaussian simulation by stratigraphic layer 
using layer appropriate histograms and semivariogram ranges per the 
experimental design table.  As appropriate, modify the porosity distribution 
(histogram) per the experimental design table. 

3. Distribute minimum case permeability using the porosity to permeability 
transforms given previously. As appropriate, modify the permeability 
distribution (histogram) per the experimental design table. 

4. Distribute Sw using J-function. As appropriate, modify the Sw distribution 
(histogram) per the experimental design table. 

The calculated OOIP for each model was then calculated and the results analyzed 
statistically to determine which factors significantly affect OOIP uncertainty.  The 
analysis showed that OOWC and the porosity histogram were clearly the most 
significant uncertainty sources (Figure 1).  The Sw histogram and structural uncertainty 
were next most important.  Other factors were not important based on a 95% confidence 
limit.  Clearly, if our OOIP assessment is to be improved, a better understanding of the 
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OOWC and porosity histogram is 
critical.  Such information can 
have a value assigned and be 
used as part of the decision 
process for the next appraisal 
well.

As noted above, another 
significant source of uncertainty 
in reservoir management is 
connectivity.   Connectivity 
uncertainty was evaluated for the 
Jurassic-age, Middle East 
carbonate reservoir by evaluating 
the drained volume by finite 
difference simulation on an up-
scaled static model from each of the 13 scenarios given in PB design table.  Finite 
difference simulation was selected because model run times were very short.  For larger 
models streamline-based simulation may be more appropriate.  The following producing 
rules were used to evaluate drained volume:

Well spacing = 160 acres 
Start date = 1 January 2006 
End date = 1 January 2036 
Maximum liquid rate = 3000 BOPD/well 
Minimum bottomhole pressure = 750 psia 
Economic limit oil rate = 100 BOPD 
Economic limit water cut = 80%

Statistical analysis of the drained volume results showed that the only significant 
sources of uncertainty at a 95% significance level were the porosity histogram and the 
permeability multiplier (Figure 2).  All other factors including structural, OOWC, and 
faulting uncertainty were not 
significant.  These results, 
together with the derived 
response surface equation were 
used to build the P10, P50, P90

drained volume earth models for 
subsequent sensitivity and 
optimization studies that will 
yield P10, P50, and P90 flow 
streams for use in probabilistic 
economic analysis. 

Figure 1.  Pareto chart showing relative 
contribution of each uncertainty source relative 
to OOIP uncertainty.  Significance limit shown 

corresponds to 95% confidence limit.

Figure 2. Pareto chart showing relative 
contribution of each uncertainty source relative 

to drained volume uncertainty.  Significance 
limit shown corresponds to 95% confidence 

limit.

It should be noted that the 
emergence of the porosity 
histogram and the permeability 
multiplier (which are somewhat 
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linked) as the only significant sources of uncertainty relative to drained volume was 
unexpected.  This “surprise” reinforced the need to use of a DoE-based workflow to 
assess uncertainty early in reservoir studies.  DoE-based workflows, which are scenario-
based rather than realization-based, are very efficient and therefore can be used to 
reduce project cycle time.  Such has also been the case for the Jurassic-age, Middle East 
carbonate project.  The scenario-based workflow may require less than 20-25% of the 
time needed for a “traditional” workflow to provide the same input to an economic 
analysis.  Assessment of uncertainty due to “dynamic” model input parameters (e.g. 
aquifer support, Kv/Kh, PI multiplier, etc) will be assessed in a second level DoE design 
that will be completed prior to development optimization and economic modelling.

3 Summary 

This study shows the value added of using a DoE-based scenario workflow to assess 
OOIP and drained volume uncertainty.  The value added is largely due to the relatively 
short cycle time of a DoE-based scenario workflow compared to the cycle time of a 
realization-based workflow.  Additional value of a DoE-based scenario workflow is that 
even a “cursory” assessment of uncertainty sources early in a project’s lifecycle may 
significantly impact which uncertainty elements are targeted for more extensive study 
and which uncertainty sources may be “neglected” which oftentimes reduces project 
cycle time.  Uncertainty assessment coupled with a value of information assessment 
may be sufficient to justify acquisition of additional data.
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Abstract. The Wafra field is located in the Partitioned Neutral Zone (PNZ) between 
Saudi Arabia and Kuwait. The field produces from five intervals of which the Tertiary 
First Eocene dolostone reservoir is the youngest. The reservoir consists of extensively 
dolomitized peloidal packstones and grainstones that were deposited on a very gently 
dipping, restricted ramp environment with interbedded evaporites. Discovered in 1954, 
the First Eocene reservoir has produced more than 280 MMbbls of 17-19° API, high 
sulfur oil. The stochastic reservoir model utilizes a new sequence stratigraphic 
framework and is based on data from over 285 wells. The geostatistical model covers a 
17.3 x 21.5 km area (372 km2). Porosity was distributed using sequential Gaussian 
simulation (SGS) constrained by stratigraphic layer. Porosity semivariogram range 
parameters average 1500 m (compared to an average well spacing of about 500 m) and 
show a moderate N120E trend.  Permeability was distributed using a cloud transform 
algorithm that was constrained by core data for specific stratigraphic layers. Water 
saturation (Sw) was distributed by collocated cokriging with SGS using Sw well log 

The First Eocene reservoir is located in 
Wafra field (Figure 1). The First Eocene 
is the shallowest of the reservoirs at 
Wafra field with an average depth of 1000 
feet. The First Eocene is about 750 feet 
thick with an average porosity of 35 
percent and an average permeability of 
250 md. Oil was first discovered in the 
First Eocene in 1954. Full scale 
development and production did not 
commence until March 1956. 

The First Eocene production occurs 
withindolomitizedpeloidal grainstones and 
packstones. These rocks were deposited   

Figure 1.  Map showing the location of
the Wafra field in the Partitioned 

Neutral Zone (PNZ) between Saudi 
Arabia and Kuwait. 
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1. Location and Geological Setting 
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on a gently dipping, shallow restricted ramp under arid to semi-arid conditions.  This 
interpretation is based on the presence of abundant interbedded evaporites and a paucity 
of normal marine fauna. The abundance of evaporites, primarily in the form of gypsum 
either present as isolated nodules, coalesced nodules, or bedded, suggests that 
environmental restriction was sufficient for the development of hyper-saline lagoons or 
salinas and sabkhas. The Paleocene through the Eocene at Wafra reflects an overall 
upward shallowing event that culminates in the deposition of the 1st Anhydrite (Rus 
Formation). The base of the First Eocene reservoir is a succession of anhydrite beds that 
is locally known as the Second Anhydrite.

A new sequence stratigraphic-based correlation scheme was developed for the First 
Eocene reservoir as part of this study. The sequence stratigraphic framework of the First 
Eocene was based on five recent cores described with sufficient detail to construct the 
depositional framework and provide the basis for correlation. The First Eocene 
framework is based on standard definitions of cycle, cycle set, and high frequency 
sequence (HFS).  A cycle is defined as the smallest set of genetically related lithofacies 
representing a single base level rise and fall. This is comparable to the parasequence of 
Van Wagoner et al (1988, 1990). The cycle set is a bundle of cycles that show a 
consistent trend of aggradation, or progradation (Kerans and Tinker, 1997). The cycle 
tops for the First Eocene were identified using the following criteria:  (1) hardgrounds or 
erosional surfaces; (2) tidal flat mudstones occasionally with algal laminations; (3) inner 
shelf peloidal or skeletal dolowackestones (4) bedded or nodular gypsum associated 
with tidal flat and sabkha deposition; and, (5) dolograinstones and grain-dominated 
dolopackstones.  The latter are mostly confined to the lower portion of the First Eocene 
in the transgressive systems tract. 

Hardgrounds are defined as cemented carbonate rocks that can be encrusted, discolored, 
bored, rooted, and solution-ridden and are commonly interpreted as representing a gap 
in sedimentation or an unconformity. In the case of the First Eocene reservoir, 
intraclastic rudstones occasionally overlay the hardgrounds and sub-aerial exposure 
surfaces. In some cases brecciation is observed beneath the hardground, indicating 
intermittent sub-aerial exposure and incipient soil formation in the original limestone.

Figure 2 shows a core description from a First Eocene section from one well in the 
Wafra field and illustrates the position of features used to identify the cycle caps. The 
cycles in the First Eocene are primarily defined by drops in base-level that resulted in 
the development of low-energy depositional conditions.  These conditions were 
conducive to the development of hardgrounds, mud-dominated lithofacies, and evaporite 
deposition. The exception to this is in the lower portion of the First Eocene where 
shallowing upward cycles are capped with grain dominated lithofacies reflective of mid-
ramp deposition within the transgressive systems tract. The cycle set is generally used 
for correlation as it represents a thicker stratigraphic interval. The cycle set can be more 
easily correlated since it will be less impacted by the local topography variations. The 
grouping of cycles into cycle sets that could be easily correlated was an iterative process 
using all cored wells and cycle stacking patterns. 

2. Sequence Stratigraphy 
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The high frequency sequence (HFS) as defined by Kerans and Tinker (1997), is 
comparable to the composite sequence proposed by Mitchum and Van Wagoner (1991), 
and is defined as being bounded by a base-level-fall to base-level-rise turnaround. The 
HFS is composed of genetically related cycles and cycle sets. The bounding surfaces of 
the HFS are identified by: (1) sub-aerial unconformity; (2)  turnaround from 
progradation to transgression; (3) lithofacies tract offset across a chronostratigraphic 
boundary (e.g. abrupt change from the deposition of high energy subtidal grainstones to 
tidal flat facies indicating a significant lowering of base-level); and (4) systematic 
changes in thickness and/or lithofacies proportion of cycles or cycle sets (e.g. a 
consistent pattern of upward thinning of cycles or cycle sets that can be correlated as 
sequence boundaries, reflecting a base-level fall). Based on the available core 
descriptions at the time of this study the First Eocene has been subdivided into ten 
interpreted HFS units from the core associated that are bounded by hardgrounds, 
subaerial exposure surfaces, or lithofacies tract offset. Additional subdivisions below the 
EOC900 surface are speculative and based on well log data only.  The HFS bounding 
surfaces of the First Eocene are chronostratigraphic.

Figure 2.  Detail from core description for a First Eocene well showing the criteria 
used to distinguish the stratigraphic cycles.

Correlation of HFS bounding surfaces within the First Eocene section is based on 
recognition of these surfaces within core as well as by distinctive gamma ray signatures. 
The shallowing upward cycles are capped by mud-dominated rocks, hardgrounds and 
exposure surfaces, which are correlative to a higher gamma ray response on the well 
logs. The gypsum and gypsum-rich tidal flat caps do not show the higher well log 
gamma ray values, but are most commonly capped with mud-dominated lithofacies. 
This mud-dominated lithofacies typically has a higher gamma ray signature and helps 
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define the cycle tops on the well logs. Many of the cycle tops and associated well log 
gamma signature can be correlated across the entire Wafra field. The ability to correlate 
the fine-scale well log gamma ray pattern and correlative cycles seems to indicate that 
the First Eocene was deposited as a tectonically stable and mainly aggradational portion 
of the shelf where subsidence was keeping pace with carbonate deposition. The core 
description and well log correlation are keys to visualizing the degree of 
compartmentalization of the First Eocene. The hardgrounds and mud-dominated 
lithofacies are correlative stratigraphically downdip to more grain-dominated lithofacies. 
The cycle tops are capped by dolomudstones and hardgrounds which may have low 
permeability and may be local barriers to flow.  The hardgrounds are not regionally 
correlative, but typically are associated over several kilometers with low porosity, mud-
dominated lithofacies. 

The average porosity and Sw variation by stratigraphic unit is given in Table 1. Note 
that below EOC800 there is a general decline in average porosity and a significant 
increase in average Sw. Note also the local porosity minimum for the EOC500 and 
EOC600 interval. These interval, which have average porosities near 0.30 have very 
different average Sw. The average Sw for EOC500 is about 0.70, considerably higher 
than intervals above or below. The EOC500 interval may act as a field-wide baffle to 
flow. Core data is available from a total of 10 wells, five of which have high quality 
core descriptions. Only post-1985 core plug analyses were used. Analyses done prior to 
1985 used a high temperature extraction technique during which a substantial portion of 
the gypsum may be dewatered.

Semivariogram models used for porosity for each stratigraphic layer are summarized in 
the table below. The models are all exponential form with nugget = 0 and sill = 1.

Well Semivariogram   

Stratigraphic

Interval

Average
Porosity

Average
Sw

XY Range 1 
(meters)

XY  Range 
(meters)

Azimuth Z  Range 
(meters)

EOC000 0.337 0.715 1600 760 102 1.80 
EOC100 0.362 0.541 2040 1260 118 2.04 
EOC200 0.359 0.534 1280 700 133 2.02 
EOC300 0.352 0.611 1200 650 120 1.89 
EOC400 0.357 0.571 1280 1060 113 1.63 
EOC500 0.309 0.715 1890 880 131 2.16 
EOC600 0.302 0.607 2150 1300 147 2.55 
EOC700 0.353 0.621 1280 870 118 1.67 
EOC800 0.358 0.732 1240 690 121 2.32 
EOC900 0.329 0.822 1520 800 130 3.17 
EOC1200 0.309 0.894 1540 1010 115 3.21 
EOC1400 0.274 0.965 1180 760 127 3.10 
EOC1800 0.261 0.979 1170 690 107 3.00 

Table 1. Summary of well log input data and semivariogram models by stratigraphic 
layer.

3. Model Input Data 
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As the First Eocene reservoir lacks an easily defined oil-water contact, the boundaries of 
the model are arbitrary.  The model boundaries were set to include all First Eocene 
producing wells (past and present) as well as the wells within the southeast “extension” 
of the field (Figure 3). The model areal grid is 182 x 227 cells (94.8315 m to allow easy 
calculation of 80 acre pattern results) in areal dimension and includes 535 vertical 
layers. The vertical layering is nominally one foot between the EOC000 and EOC900 
markers and 2-4 feet below EOC900.

The final workflow used to generate the First Eocene earth model was as follows: 

1. Build stratigraphic grid framework using relevant top and bottom surfaces for 
each stratigraphic interval 

2. Distribute porosity by sequential Gaussian simulation (SGS) by stratigraphic 
layer using the layer appropriate semivariogram model and the layer 
appropriate porosity data.  Efforts to incorporate a lithofacies or rock-type 
constraint were unsuccessful as neither could be reliably predicted using the 
available well log data. 

3. Distribute permeability by cloud transform (minimum of 10 points per bin; 
maximum of 30 bins) using layer appropriate core porosity-permeability 
calibration crossplot and prior porosity distribution. Alternative methods 
including layer specific transforms were evaluated but found to offer no 
significant advantage over the cloud transform approach. Minor modifications 
to an almost trivial number of cells were made to reduce the number of cells 
with anomalously high permeability at low porosity or anomalously low 
permeability at high porosity.

4. Distribute Sw to model using colocated cokriging with SGS using layer 
appropriate Sw data from all wells, semivariogram, and correlation coefficient 
with porosity. The prior porosity distribution was used as the secondary data. 
The effect of using only data from older, pre-1995 wells (mostly pre-1985) was 
evaluated and found to be essentially identical to the Sw distribution obtained 
using all wells. 

The stochastic model generated for the First Eocene reservoir has been used to generate 
maps to facilitate reservoir management decisions and to calculate probabilistic OOIP. 
For the Main Area as shown in Figure 3, the P50 OOIP of 11.9 x 1010 bbls. For the area 
within well control as shown in Figure 3 the P50 OOIP is 24.3 x 1010 bbls.  The model is 
also the basis of a full field fluid flow simulation model that is currently being used to 
evaluate a variety of reservoir management options including in-fill drilling, waterflood 
EOR, and steamflood EOR.  Current analysis shows that steamflood EOR may have the 
most attractive economics and a small 5-spot (central injector) scale test is planned for 
late 2005 or early 2006.

4. Stochastic Model 

5. Model Use and Conclusions 
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Figure 3. Average porosity, Sw, and hydrocarbon pore volume (HCPV) maps for 
the First Eocene reservoir. Polygon shows the well control area as referred to in 
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Abstract. Multiple-point statistics (MPS) on a two-dimensional (2D) thin section image 
are used to generate a three-dimensional (3D) pore space image with an assumption of 
isotropy for orthogonal planes. The method gives images that preserve typical patterns 
of the void space seen in thin section. Using only single and two-point statistics in the 
reconstruction often underestimates the void connectivity, especially for low porosity 
materials; however, multiple-point statistics method significantly improves the void 
connectivity. The method is tested on sandstone and carbonate samples. Permeability is 
predicted directly on the 3D images using the lattice Boltzmann method (LBM). The 
numerically estimated results are in good agreement with experimentally measured 
permeability. Furthermore, the method provides an important input for the creation of 
geologically realistic networks for pore-scale modeling to predict multiphase flow 
properties.

1 Introduction 

The reconstruction of 3D porous media is of great interest in a wide variety of fields, 
including earth science and engineering, biology, and medicine. Several methods have 
been proposed to generate 3D pore space images. A series of 2D sections can be 
combined to form a 3D image. However, this is limited by the impossibility of preparing 
cross sections with a spacing of less than about 10µm (Dullien, 1992). Recently, the use 
of a focused ion beam technique (Tomutsa and Radmilovic, 2003) overcomes the 
resolution problem and it allows sub-micron image to be constructed. Non-destructive 
X-ray computed microtomography (Spanne et al., 1994) is another approach to image a 
3D pore space directly at resolutions of around a micron. The resolution is, however, not 
sufficient to image the sub-micron size pores that are abundant in carbonates. The sub-
micron structures of real rocks have been studied using laser scanning confocal 
microscopy (Fredrich, 1999). It has also limited ability to penetrate solid materials. In 
the absence of higher resolution 3D images, reconstructions from readily available 2D 
microscopic images such as scanning electron microscopy (SEM) are the only viable 
alternative
.
2D high-resolution images provide important geometrical properties such as the  
porosity and typical patterns. Based on the information extracted from 2D images, one 
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promising way is to reconstruct the porous medium by modeling the geological process 
by which it was made (Bryant and Blunt, 1992, Bakke and Øren, 1997, Pilotti, 2000). 
Although this process-based reconstruction is general and possible to reproduce the 
long-range void connectivity, there are many systems for which the process-based 
reconstruction is very difficult to apply. For instance, for many carbonates it would be 
complex to use a process-based method that mimics the geological history involving the 
sedimentation of irregular shapes followed by significant compaction, dissolution and 
reaction (Lucia, 1999). In these cases it is necessary to find another approach to generate 
a pore space representation. We have reconstructed geologically realistic pore space 
structures using the multiple-point statistical technique (Okabe and Blunt, 2004a, 2004b), 
which uses higher order information (Caers, 2001, Strebelle et al., 2003). One key 
aspect of the work is the proper selection of the multiple-point statistics to reproduce 
satisfactory images. In previous work (Okabe and Blunt, 2004a, 2004b), we studied 
sandstones and showed that the long-range connectivity of the pore space was better 
reproduced. Since the method is suitable for any material, including those with sub-
micron structures, we apply the method to a carbonate rock in addition to sandstones. 
The reconstructed 3D pore structures are tested by calculating percolation probability 
and predicting permeability using the lattice-Boltzmann method. Further details of the 
methodology can be found in Okabe and Blunt (2004b). 

2 Multiple-point statistics reconstruction 

Multiple-point statistics cannot be inferred from sparse data; their inference requires a 
densely and regularly sampled training image describing the geometries expected to 
exist in the real structure. Microscope images at the pore scale can be used as training 
images. In our application only two phases are used – void and solid phase. The method 
to reconstruct a 3D image from 2D information is an extended version of the multiple-
point statistics approach that was developed by (Srivastava, 1992, Caers, 2001, Strebelle 
et al., 2003). We assume isotropy in orthogonal direction to generate a 3D image using 
multiple-point statistics measured on a 2D plane. Especially, we assume only a 2D plane 
is available to reconstruct 3D images in this study. In our rock sample, void-void 
autocorrelation functions (ACF) are identical for X, Y and Z directions (ACF of Z 
direction can be only measured for a sandstone sample using a micro-CT image); 
therefore, we can use this assumption. The training image and the template to capture 
patterns (multiple-point statistics) used is shown in Figure 1. The major extension of the 
method is the rotation of the measured statistics by 90 degrees, which allows us to 
generate a 3D structure. Since the multiple-point statistics method is well-established in 
geostatistics, we will not repeat the standard procedure to generate 2D images from 2D 
training images in detail. The procedure consists of three steps: (1) extracting multiple-
point statistics from the training image; (2) probability calculation on each orthogonal 
plane using conditioning data; and (3) pattern reproduction using the probability 
weighted by the number of conditioning data on each plane. 

Here we explain how to generate a 3D image using a 2D training image. This is 
different from the method proposed by Journel (2002).  After extracting every possible 
pattern in the training image, every unit voxel in a 3D domain is visited once randomly. 
At every voxel in order to assign pore or grain phase, three principal orthogonal planes, 
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XY, XZ and YZ intersecting the designated voxel are used to find conditioning data on 
these planes one by one. Consideration of the orthogonal planes is important to 
reproduce proper connectivity. The process, which is equivalent to the running of 2D 
MPS simulation for single plane, estimates each probability of the phase at the voxel on 
the different planes and three measured probabilities are linearly weighted by the 
number of conditioning data on each plane to obtain a single probability on the voxel. 
Finally, the phase at the voxel is assigned based on this weighted probability to generate 
a 3D image as assumed isotropy in orthogonal plains (Figure 2). If anisotropy is 
expected to exist in 3D, multi-orientation thin sections can be used as training images. 
There is less conditioning data during the initial stage of the reproduction. In this case, 
the porosity value can be used as the probability.

Figure 1. (a) An example of a training image taken from a micro-CT image of Berea 
sandstone with a porosity of 0.177 (1282 pixels). The pore space is shown white and the 
grain black. The resolution of the image is 10µm/pixel. (b) A 9 × 9 template used to 
capture multiple-point statistics. The training image is scanned and each occurrence of 
any possible patterns of void space and solid is recorded.  We also use a succession of 
larger templates using a form of multigrid simulation (Strebelle et al., 2003). 

Figure 2. A subgrid of 3D image of reconstructed Berea sandstone (left,  =0.1747) 
compared with that of the micro-CT image (right, =0.1781).
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3 Percolation probability 

A key aspect of our reconstruction method is the possibility to reproduce long-range 
connectivity. A quantitative characterization of the connectivity is provided by the local 
percolation probabilities or fraction of percolating cells (Hilfer, 2002) defined by 

r
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)( 33

where m is the number of measurement and Lr,3
 is an indicator of percolation. 
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A measurement cube M(r, L) of sidelength L centered at position r is used to calculate 
the condition of continuous connectedness from one face to opposite face by percolation 
theory (Stauffer and Aharony, 1994). In 3D discretized media, 26 nearest neighbors are 
used to measure the void connectedness. This property shows considerable difference 
between different reconstruction approaches. Figure 3 shows the reproduction of long-
range connectivity by our method. This figure also plots the fraction of percolating cells 
for Berea sandstone reconstruction using simulated annealing, which matched traditional 
low-order properties such as porosity and two-point correlation functions, and using 
process-based reconstruction (Øren and Bakke, 2003). In this figure the reference 
measured by micro-CT and the process-based method are similar but differ from that for 
the structure generated using simulated annealing. This figure shows that reconstruction 
methods based on the low-order correlation functions fail to reproduce the long-range 
connectivity of porous media, while the process-based method successfully reproduces 
the connectivity. Our multiple-point statistics method significantly improves the 
connectivity over the two-point statistics method, although the pore space is still less 
well connected than the reference image. 

Figure 3. Fraction of percolating cells for images using different reconstruction 
methods. Notice that incorporating higher-order information in the reconstruction 
significantly improves the long-range connectivity of the pore space, although it still 
performs less well than process-based reconstruction methods. The data except multiple-
point statistics and micro-CT are taken from (Øren and Bakke, 2003). 
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4 Flow properties 

The lattice-Boltzmann method (LBM) provides a good approximation to solutions of the 
Navier-Stokes equations using a parallel and efficient algorithm that readily 
accommodates complex boundaries, as encountered in porous media (Buckles et al., 
1994). Therefore, the LBM is used to calculate single-phase permeability to examine the 
reconstructed structure. This is a convenient way to assess the structures if no 
microtomographic image of the rock is available. The bounce-back scheme at walls is 
used to obtain no-slip velocity conditions and the flow field is computed using periodic 
boundary conditions. 

The computed permeabilities of the reconstructed microstructures are listed in Table 1. 
Although the value for the carbonates is overestimated from the experimental 
permeability, the estimation is good considering the significant size difference between 
reconstructed images and the experimental sample. Larger training images can capture 
more statistics and may produce more realistic images with similar permeability values 
to the experiment. In addition more information, such as several thin section images and 
multi-orientation thin section images may improve the results. 

Table 1. Computed permeabilities using the LBM. 
Rock Experiment Computed permeability by LBM, md 

Sample Porosity Permeability, md micro-CT reconstruction 
Berea 0.178 1100 1346 1274 

Carbonate 0.318 6.7 N/A 19.8 

5 Conclusions 

A multiple-point statistics method using 2D thin sections to generate 3D pore-space 
representations of the rocks has been tested. The microstructures of the rocks were 
reconstructed and their permeabilities simulated by the lattice-Boltzmann method were 
compared with the experimental values. The predicted permeabilities were in good 
agreement with experiment data. In this study, a combination of a small 2D image and a 
9×9 template with multigrid simulation was successful to capture typical patterns seen in 
2D images. The reconstruction can be improved using additional information, such as 
higher-order information with large templates and several thin-section images including 
multi-orientation images if the medium is anisotropic, at the expense of more computer 
power and memory.

Future work will be devoted to application of the method to more rocks including 
carbonates, as well as the generation of topologically equivalent networks from 3D 
images. From the networks, predictions of capillary pressure and relative permeabilities 
for samples of arbitrary wettability can be made using pore-scale modeling (Blunt et al., 
2002, Valvatne and Blunt, 2004). 
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LOCAL UPDATING OF RESERVOIR PROPERTIES FOR PRODUCTION 
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Abstract. A methodology is proposed that integrates historical production data into 
large reservoir models by the local updating of the permeability field.  The focus is on 
conditioning a proposed initial model to injection/production rate and pressure history in 
an iterative fashion.  Integrating flow simulation and kriging algorithms within an 
optimization process based on linearized formulas of reservoir behaviour with property 
and numerically calculated sensitivity coefficients constitutes the proposed 
methodology. This method makes it possible to condition the permeability distributions 
to injection/production rate and pressure history from large reservoirs with complex 
heterogeneities and changes of well system at the same time. Discussions show that 
sensitivity coefficients change with time/iterations and that using the linearized formula 
to get the optimal property changes at all master point locations is a valid strategy. 

1 Introduction 

There is a challenge to condition reservoir property models to production data for large 
scale fields with a long production/injection history accounting for realistic field 
conditions. Direct calculation schemes are avoided considering that they are often 
limited to 2-D single-phase flow. Stochastic approaches such as simulated annealing or 
genetic algorithms (Deutsch, 2002; Cunha, et. al., 1996) require a lot of simulation runs, 
making them practically unfeasible for large scale applications. Algorithms and software 
for production data integration based on hydrogeological developments such as 
sequential self-calibration (Wen, et. al., 1998; Wen, et. al., 2002) have not been proven 
applicable in complex reservoir settings with multiphase flow, 3-D structure and 
changing well conditions. Streamline-based methods have been used in large reservoirs 
to condition the property models to observed production rates or water cut at wells 
(Qassab, et. al., 2003; Agarwal and Martin, 2003; Tarun and Srinivasan, 2003), but in 
general, they need a finite deference method to create pressure fields so that it is difficult 
for these methods to condition the property models to observed well bottom-hole 
pressure for real large reservoirs with multiphase flow, 3-D structure and changing well 
conditions. The convergence of results for gradual deformation methods is slow so that 
lots of iterations are needed for large 3-D models (Hu, 2002; Feraille, et. al., 2003). 
Regularization methods like Bayesian based techniques need reliable prior information 
that is difficult to guarantee in many cases (Shah, et. al., 1978). 

769

© 2005 Springer. Printed in the Netherlands.
O. Leuangthong and C. V. Deutsch (eds.), Geostatistics Banff  2004, 769–774. 



770 L. ZHANG, L. B. CUNHA AND C. V. DEUTSCH 

There is a need for a novel computational efficient production data integration method 
that: (1) integrates well bottom pressure and production rate simultaneously by limited 
flow simulation runs, and (2) keeps a high accuracy as much as possible in large 
complex 3-D reservoir models with high heterogeneous property models, multiple 
phases, complex well system change and long history of production and injection.

2 Basic idea and general procedure of the proposed methodology 

Our basic idea consists on the numerical calculation of the sensitivity coefficients on the 
basis of two flow simulations – an initial base case and a single sensitivity case. With 
this, we substitute the difficult analytical calculation of the sensitivity coefficients by a 
simple algorithm. The approximate sensitivity coefficients, which are used to locally 
update the property models, are then used to obtain optimal changes at master point 
locations by optimization with the linearized formulas of reservoir response changes(p-
p0, q-q0) and reservoir property change( k), p-p0 ( p/ k) k and q-q0 ( q/ k) k.
Subscript “0” denotes the foundational model. The procedure is iterated until the results 
are satisfied or can not be improved much. The overall procedure of the proposed 
methodology can be summarized as follows: 

At first, select an initial conditional geostatistical realization as the base model that 
reproduces all of the static data possible, run a flow simulation with the base model and 
calculate the mismatch in pressure and fractional flow rates between simulation results 
and historical data. 

Then consider the following outer optimization loop: 
Choose one location or multiple locations to perturb based on the local mismatch at 
well locations – areas with greater mismatch are given a greater probability of being 
chosen for perturbation; 
Perturb the permeability – either by 0.5 or 1.5 perturbation factor since there is no 
use in making too small of a change; 
Propagate the change to all locations in the grid system, which really means the 
locations within the range of correlation of the changed value. The perturbation 
location and range may change with iteration; 
Create the perturbed model; 
Run a second flow simulation with the perturbed model and calculate the numerical 
sensitivity coefficients;
Calculate optimal changes to reservoir properties at master point locations and 
propagate to the entire grid system; 
Run another flow simulation to establish the updated model, which may be the new 
base model for next iteration. 
Calculate the mismatch.

Repeat the optimization loop until the results are satisfied or can not be improved 

The simulation runs involved in the methodology of production data integration 
proposed in this work are to be performed using the ECLIPSE flow simulator. This 
allows the consideration of complex geometry and heterogeneity of reservoir models as 

 –

 –

 –

 –
 –

 –

 –

 –
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well as realistic well scheduling. However, if the finite flow simulation runs turn to be 
excessively costly, it is always possible to use a streamline flow simulator instead.

The formula to calculate the sensitivity coefficients of reservoir responses with respect 
to the permeability change are as follows: 

,, , , , , ,
, , , ( ) ( ) ( )h

i i
w tw t m w t m w t mi

K m w t
h hh m m m

p pp p
SP

K K Ku u u

,, , , , , ,
, , , ( ) ( ) ( )h

i i
w tw t m w t m w t mi

K m w t
h hh m m m
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where , , ,h

i
K m w tSP  and , , ,h

i
K m w tSQ  are the sensitivity coefficients of pressure and rate at 

the well with index w and time t for iteration i with respect to horizontal permeability 

change hK  at the location mu , respectively; , ,w t mp  and , ,w t mq  are the flow 

simulation results of pressure and rate at the well with index w and time t with the 

perturbed model by perturbing permeability only at the location mu , respectively; ,
i
w tp

and ,
i
w tq   are the simulation results of pressure and rate at the well with index w and 

time t with the foundation model at iteration i, respectively; , ,
i
w t mp  and , ,

i
w t mq  refer 

to the changes of pressure and fractional flow rate introduced by the perturbation at the 

location mu  without considering the other perturbations. 

For one perturbation location at each iteration, the differences of well bottom hole 
pressure and fractional rate between the foundation model and the perturbed model at 
one iteration can be used to calculate the sensitivity coefficients directly. However, for 
multiple perturbation locations at each iteration, the changes of pressure and production 
rate at wells are the total effect caused by the joint permeability changes propagated 
from the multiple perturbation locations. There is a need to calculate the approximate 
changes of pressure and production rates caused by the permeability change propagated 
from one perturbation location based on the permeability values at perturbation 
locations and the distances between the objective well and perturbation locations. 

The expectation is that after 5-20 iterations by using the proposed methodology, the 
number of wells with high mismatch and the highest mismatch level at wells would be 
reduced.

Two main features of the methodology distinguish this method from others: 1. 
numerically calculated sensitivity coefficients of pressure and flow rate subject to 
changes in porosity and permeability are used in the optimization to get the optimal 
property changes; 2. integrates pressure data and oil rate data to reservoir models at 
same time for large reservoirs with multiple phase, 3-D structure and changing well 
conditions by limited simulation runs.
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3 Behaviour of  Sensitivity Coefficients

Sensitivity coefficients of well bottom pressure and production rate subject to the 
property change are very important parameters in the methodology. Here the behavior of 
the sensitivity coefficients was studied by comparing the calculated sensitivity 
coefficients at Well 1 between the first two iterations in an application. Well 1 was a 
producer at the beginning and was converted into injector later around time of 6100. The 
perturbation locations, perturbation ranges and perturbation factors are the same for the 
two iterations. The results are shown in Figure 1.  From Figure 1, we can see that the 
sensitivity coefficients at the well in the production period change with time and decline 
with iteration. For the injection period, the change of the sensitivity coefficients of well 
bottom pressure is more complicated. This means that we can not use one set of 
sensitivity coefficients for all time and all iterations. 

Figure 1. The behaviour of sensitivity coefficients of well bottom hole pressure and oil 
production rate subject to the permeability change at the grid block with Well 1 for the 
two iterations. 

Figure 2.  The behaviour of sensitivity coefficients of well bottom hole pressure and oil 
production rate subject to permeability change at the grid block with Well 1 for the 
different perturbation variogram types.
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From Figure 2, we can see that the perturbation variogram has a larger effect on the 
sensitivity coefficients of oil production rate but little effect on the sensitivity 
coefficients of the well bottom hole pressure.  The perturbation with a variogram of 
Gaussian type gets larger absolute values of sensitivity coefficients of oil production rate 
than that with a variogram of spherical type. Considering that there is no large 
difference between the sensitivity coefficients of well bottom hole pressure, the 
perturbation with a variogram of Gaussian type may provide better results. 

4. An Application of the Proposed Methodology 

The proposed methodology was applied to a synthetic reservoir with 9 wells and 
production/injection history of 6025 days. “True” permeability and porosity models 
were the post-processed realizations generated from sequential Gaussian simulation/co-
simulation by setting permeability and porosity as zero at the grid blocks with  
permeability values lower than 100md. The results from flow simulation with “true” 
permeability and porosity models were used as production historical data. Well liquid 
production rate and water injection rate were set as input parameters in flow simulation. 
The initial model of permeability for the methodology was generated by sequential 
Gaussian simulation with different random seeds from “true” models based on the well 
data. One perturbation location was selected at each iteration in the application. The 
porosity models used in flow simulation were generated by co-simulation with the 
correlation coefficient of 0.7 to permeability models. The results of mismatch change 
with iterations in the application of the methodology are shown in Figure 3(a). It can be 
seen that after 20 iterations, the mismatch in well bottom pressure of the updated model 
decreased by 69.31% from the initial model, the mismatch in oil production rate of 
decreased by 84.62%, the global mismatch decreased by 76.96%. Figure 3(b) shows that 
the updated model gets a better history match for field oil production rate. Therefore, the 
methodology can decrease the mismatch in well bottom hole pressure and oil production 
rate at the same time with a limited number of flow simulation runs.

                   (a) Mismatch change                                 (b) Field oil production rate

Figure 3. Mismatch evolution with iteration number and comparative field oil 
production rate for a synthetic case example. 
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5  Conclusions 

The proposed method combines flow simulation and kriging algorithms together with an 
optimal technology in order to use less number of flow simulations for conditioning a 
proposed initial property model to fractional flow rate and pressure history at same time 
by an iterative scheme with numerically calculated sensitivity coefficients. The 
perturbation locations are selected based on the local mismatch at each well and some 
master point locations are used as reference positions to calculate the pressure and 
fractional flow rate sensitivity coefficients subject to changes in porosity and 
permeability. The optimal changes of porosity and permeability at the master point 
locations are obtained by minimizing the global mismatch related to reservoir responses 
of pressure and fractional flow rates calculated by linearized formulas on property 
change, and then are propagated to the whole grid system by kriging.

The discussion shows that we can not use one set of sensitivity coefficients of well 
bottom hole pressure and oil production rate subject to property change for all iterations. 
The application demonstrates that the methodology can reduce pressure mismatch and 
rate mismatch with a limited number of flow simulation runs. Additional investigation is 
needed in order to increase the methodology efficiency. 
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COMPARISON OF MODEL BASED GEOSTATISTICAL METHODS
IN ECOLOGY : APPLICATION TO FIN WHALE SPATIAL
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PASCAL MONESTIEZ, LAURENT DUBROCA 2, EMILIE BONNIN 3,
JEAN-PIERRE DURBEC 3 and CHRISTOPHE GUINET 2
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Abstract. Characterizing spatial distribution of wild species as fin whales is a
major issue to protect these populations and study their interaction with their
environment. Accurate maps may be difficult to obtain with very heterogeneous
observation efforts and unfrequent sightings. This paper proposes to compare two
geostatistical methods associated with the Poisson distribution which models the
observation process. First, assuming few weak hypotheses on the distribution of
abundance, we improved the experimental variogram estimate using weights that
are derived from expected variances and proposed a bias correction that accounts
for the Poisson observation process. The kriging system was also modified to inter-
polate directly the underlying abundance better than data themselves. Second the
Bayesian approach proposed by Diggle in 1998 was run on the same dataset. In
both case results were substantially improved compared to classical geostatistics.
Advantages and drawbacks of each method are then compared and discussed.

1 Introduction

In the Mediterranean Sea, the fin whale (Balaenoptera physalus, Linné 1758) is the
largest marine predator commonly observed (Notarbartolo di Sciara et al., 2003).
Several hundred to several thousand individuals were estimated to be present in
the western Mediterranean Sea during summer (Forcada et al., 1996). However,
common does not mean frequent. A study by Gannier (2002) gave an indication of
their summer abundance in the Corso-Ligurian basin with sightings ranging from
0.6 to 9.0 whales per 100 km of transect over the period 1991-2000.

To regularize such rare sightings and pool data from different sources, counts
are usually summed over small spatial cells for which cumulated observation effort
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is also quantified. Geostatistical modelling and mapping of this type of data address
several methodological questions; how to deal with the variability from Poisson
type distribution and spatial heterogeneity of observation efforts, how to handle
a high proportion of zero values together with few rare high values which result
from very heavy tailed distributions ?

Some of these questions have been already discussed in literature. Christensen
et al. (2002) proposed to fit transformation from the Box-Cox family when data
are positive valued and distribution skewed. If it seems adapted to rainfall data
or to geochemical variables, it does not solve the problem of high proportion of
zeros. Diggle et al. (1999) introduced what he called “model based geostatistics”
which is a Generalized Linear Mixed Model (GLMM) where the random effect
is a spatial Gaussian process. This framework is well adapted to inhomogeneous
Poisson data distributions. However, the Bayesian framework and the computer
intensive MCMC do not facilitate its use by non statistician.

Oliver et al. (1993) proposed a specific kriging and a bias correction for the
experimental variogram when data follow a Binomial distribution. A case study
in epidemiology, mapping of childhood cancer risk, is presented. The Binomial
kriging takes into account the discrete nature of the data with a large proportion
of zeros and spatial heterogeneity of the n - number of trials - binomial parameter.

In this paper we present a method adapted to the Poisson case which followed
a similar strategy than the Oliver’s one for the Binomial. This led to a modified
kriging - called Poisson Ordinary Kriging in the following - and a bias corrected
experimental variogram. Moreover, we introduced a weight system to improve
experimental variogram estimate. Then our method is compared on the same data
set to the GLMM Bayesian approach as in Moyeed and Papritz (2002).

Figure 1. Map of observation data. Each cell of 0.1◦ × 0.1◦ where the sighting
time was strictly positive is marked by a symbol at its center. Symbol area is
proportional to the cumulated observation time.
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2 Data

The fin whale sightings database used in this study merges data from different
sources. Exhaustive list of contributors is given in the acknowledgement section.
Only surveys for which observation effort could be quantified were used. Available
sightings data covered the period 1993 to 2001. The prospected area extends from
3◦E to 11.5◦E and from 41◦N to 44.5◦N (Figure 1) including the International
Cetacean Sanctuary of the Mediterranean, established on November 25th, 1999.

These surveys were conducted either along random linear transects or onboard
ferries along their regular lines between France and Corsica. The number of whales
reported for a given sighting was often unreliable and only sightings number was
considered in this study. A GPS (Global Positioning System) recorded the vessels
tracks. The July and August data for all years were then aggregated on cells of
0.1◦ of longitude by 0.1◦ of latitude (∼ 90 km2) in a regular grid. We computed
in each cell the cumulated number of whale sightings, the observation effort which
was defined as the total time (in hours) spent observing and the averaged number
of sightings per hour of observation (Figures 1 and 2).

Figure 2. Maps of sightings data (left) and of averaged sightings per hour
(right). Symbol areas are proportional to variables.

Histograms in Figure 3 show the skewed distributions of the three previous
variables for the 1113 cells where observation times was strictly positive. The raw
number of sightings ranged from 0 (864 cells) to 11, and the average number of

Figure 3. Histograms of observation times for cells with ts > 0 (a), of raw
sightings data (b) and of number of sightings per hour averaged on cells (c).
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sightings per hour ranged from 0 to 4.22 with a mean estimated to 0.14 sighting/h.
The total number of sightings was 490 for a total time of 3484 hours of ob-

servation. The number of cells where fin whales were seen was 249, so effective
data made of unfrequent sightings were sparsely distributed in space and locally
mixed with zero values. Moreover because of great heterogeneity in observation
times, the map of raw sightings data reveals as well the fin whale presence as the
observation effort intensity.

3 Models and methods

For all site s belonging to domain D, we define the random field Z(s) by

Z(s)|Y (s) ∼ P(
t(s) Y (s)

)
(1)

where Z(s)|Y (s) is Poisson distributed with a parameter that is the product of t(s)
by Y (s), where t(s) is the observation time (in hours) at site s, Y (s) is proportional
to a relative animal abundance at site s and measures the expectation of sightings
for a unit observation time.

Y (s) is a positive random field honoring order two stationarity, with mean
m, variance σ2

Y and covariance function CY (s − s′) or variogram γY (s − s′).
Conditionally on Y , the random variables Z(s) are mutually independent.

To simplify notations, Z(s), Y (s) and t(s) will be noted in the following Zs,
Ys and ts respectively. In kriging systems, Css′ denotes the covariance CY (s− s′).

3.1 MODEL I : POISSON ORDINARY KRIGING

In this section Ys is distribution free with unknown mean and we have only to
assume that Ys ≥ 0.

3.1.1 Expectation and variance of Zs

As Z(s)|Ys ∼ P(
tsYs

)
it follows directly that :

E[Zs|Ys] = tsYs E[Zs] = mts

Var[Zs|Ys] = tsYs

E
[
(Zs)2

∣
∣Ys

]
= tsYs +

(
tsYs

)2
Var[Zs] = t2sσ

2
Y + mts

E
[
Zs Zs′

∣
∣Y

]
= δss′ tsYs + tsts′YsYs′ (2)

where δss′ is the Kronecker delta which is 1 if s = s′ and 0 otherwise.

3.1.2 Expectation and variance of
(

Zs

ts
− Zs′

ts′

)

In order to characterize the relationship between the variograms of Z and Y , we
develop the expressions of the two first moments of

(
Zs

ts
− Zs′

ts′

)
. After checking

that the expectation is null, it results :

1
2

E

[(
Zs

ts
− Zs′

ts′

)2
]

=
m

2

(
ts + ts′

ts ts′

)
− δss′

m

ts
+ γY (s − s′) (3)
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Let γZ(s − s′) denote the non-stationary theoretical variogram corresponding
to the random field

(
Zs/ts

)
, we get for s �= s′ the relationship :

γY (s − s′) = γZ(s − s′) − m

2

(
ts + ts′

ts ts′

)
(4)

We can check for s = s′ that equation (4) reduces to γY (0) = γZ(0) = 0
Furthermore the conditional variance is given by :

E

[

Var

[
Zs

ts
− Zs′

ts′

∣
∣
∣
∣Y

]]

= E
[
Ys

ts
+

Ys′

ts′

]
= m

(
ts + ts′

ts ts′

)
(5)

3.1.3 Estimation of γ
Y

(h)
Let Zα,α = 1, . . . , n be the n measurements of Z(sα) obtained during observation
times tα. The expression of a modified experimental variogram can be derived from
(4) and (5).

γ∗
Y (h) =

1
N(h)

n∑

α=1

n∑

β=1

tα tβ
tα + tβ

[
1
2

(
Zα

tα
− Zβ

tβ

)2

− m∗

2

(
tα + tβ
tα tβ

)]

1Idαβ∼h (6)

where 1Idαβ∼h is the indicator function of pairs (sα, sβ) whose distance is close to
h, where N(h) =

∑
α,β

tα tβ

tα+tβ
1Idαβ∼h is a normalizing constant and where m∗ is

an estimate of the mean of Y .
The bias correction term −m∗

2

( ts+ts′
ts ts′

)
derives directly from (4).

The weights ts ts′
ts+ts′

are introduced to homogenize the variance of differences

terms
(

Zs

ts
− Zs′

ts′

)
by dividing them by a weight proportional to their standard

deviation
√

m
ts+ts′
ts ts′

given by (5). When simplifying (6) we get for h �= 0 :

γ∗
Y (h) =

1
2 N(h)

∑

α,β

(
tα tβ

tα + tβ

(
Zα

tα
− Zβ

tβ

)2

− m∗
)

1Idαβ∼h (7)

3.1.4 Ordinary kriging of Yo

Poisson Ordinary Kriging at any site so is a linear predictor of Yo combining the
observed data Zα weighted by observation times tα. The mean of Yo is supposed
unknown.

Y ∗
o =

n∑

α=1

λα
Zα

tα
(8)

Unbiasedness constrain λα to sum up to one as for classical Ordinary Kriging
(OK). The variance of the error of prediction, i.e. the MSEP if unbiased, was
obtained by first expressing E[(Y ∗

o − Yo)2|Y ] and then deconditioning :

E
[
(Y ∗

o − Yo)2
]

= σ2
Y +

n∑

α=1

λ2
α

tα
m +

n∑

α=1

n∑

β=1

λαλβ Cαβ − 2
n∑

α=1

λαCαo (9)
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By minimizing this expression (9) on λi’s with the unbiasedness constraint, we
obtain the following kriging system of (n + 1) equations where µ is the Lagrange
multiplier.






n∑

β=1

λβCαβ + λα
m

tα
+ µ = Cαo pour α = 1, . . . , n

n∑

α=1

λα = 1
(10)

The expression of the kriging variance resulting from system (10) reduced after
calculation to the same expression than for classical OK. However the kriging
variance map may be very different due to changes in resulting λα. Calculations
and intermediate results of section 3.1 are detailed in Monestiez et al. (2004).

3.2 MODEL II : SPATIAL GLMM

We added an hypothesis on the random field Y (s) that becomes lognormal:

Z(s)|Y (s) ∼ P(
t(s) Y (s)

)

log
(
Y (s)

)
= β + S(s) (11)

where, following Diggle’s notations, S(s) is a zero-mean Gaussian random field with
variance σ2

ε , covariance function σ2
ε ρ(s − s′) and where ρ(s − s′) is a parametric

autocorrelation function with scale parameter ϕ.

3.2.1 Spatial GLMM and Bayesian framework
The model can be interpreted as a spatial generalized mixed model (GLMM),
where β is a fixed effect reduced to a simple mean effect, and S a random effect
whose parameters are θ = (σ2

ε , ϕ). The link function is here the log transform.
Let Sα denote S(sα) at a data site sα ( α ∈ 1, . . . , n), S−α the vector of S1 to

Sn with element Sα removed, Z the vector of observation data Zα and So the value
of S at any point so where a prediction is wanted. In such context, the kriging
predictor Y ∗

o may be replaced by Ŷo = exp(β̂ + Ŝo) where Ŝo would be ideally
E
[
So|Z

]
. Since the number of data is large and S spatially dependent, it is clear

that special methods will be needed to solve this problem.
Diggle et al. (1998) proposed a Bayesian framework coupled with MCMC

methods (Robert and Casella, 1999). MCMC is a natural tool since the conditional
distribution of Z given S and the marginal distribution of S derive directly from
the model (11) and the conditional independence of Z given Y .

3.2.2 Posterior simulations and predictions
To implement our MCMC scheme we need to generate random samples from the
posterior distributions π(θ|S,Z, β), π(β|S,Z, θ) and π(Ss|S−s, Z, β, θ) for infer-
ence, and from π(S(so)|S,Z, β, θ) for prediction in so. In this paper, we do not
have the possibility to expose the whole method, so we refer to the original paper
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of Diggle et al. (1998, pp 306–309) or to Christensen and Waagepetersen (2002,
pp 282–283) who detailed the expressions of conditional densities and the different
steps of the MCMC scheme using a Metropolis-Hastings algorithm. An application
on count data can be found in Wikle (2002) who addresses the problem of mapping
bird breeding over the continental United States.

The computation was performed with the software R (R Development Core
Team, 2004) and the package GeoRglm (Christensen and Ribeiro, 2002). After
some tests run on simulated examples, we finally ran one million of iterations,
storing parameters and simulated prediction grids only every 1000 iterations. The
priors for β and σ2

ε were non-informative uniforms while the scale parameter ϕ
was fixed using the same covariance model shape than for kriging (stable model
with power parameter set to 1.5). Cpu time reached several hours on recent office
PC running on Windows XP, a time which remains acceptable but was more than
500 times longer than the mapping by Poisson Ordinary Kriging on R.

4 Results

4.1 EXPERIMENTAL VARIOGRAMS AND VARIOGRAM FITTING

We computed the standard experimental variogram on Zs/ts and the one defined
by equation (7) on Ys. Figure 4 shows clearly the effect of both corrections, pair
weighting and bias. Weights on pairs led to a more regular experimental variogram
with a lower sill. After bias correction we can assume that γY has no more nugget
effect. A stable variogram model (equation 12) was thus fitted :

γY (h) = c
(
1 − exp

( − (h/a)d
) )

(12)

with parameters c=0.043, a=28.4 and d=1.51 ; intermediate model in smoothness
between an exponential variogram (d = 1) and a gaussian variogram (d = 2).

Figure 4. Experimental variograms on sightings per hour Zα/tα. (a) standard
one and fitted spherical model; (b) experimental variogram when introducing the
weights on pairs; (c) experimental variogram from Eqn. (7) and fitted stable model.
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Figure 5. Maps of predictions of Y ∗ (left) and of prediction variances (right) of
fin whale sightings per hour; by Ordinary Kriging of Zα/tα (top), Poisson Ordinary
Kriging (middle) and GLMM simulations (bottom).

4.2 KRIGING AND PREDICTIONS

We defined a grid for prediction of Y values that reproduced the sample grid.
The prediction grid with elementary cell of 0.1◦ by 0.1◦ extends also from 3◦E to
11.5◦E and from 41◦N to 44.5◦N. All points beyond the coastline were removed so
it remained 2020 points to predict. Among these points, 1113 were located in a cell
with observed Z and t. Kriging system was established using unique neighborhood.

Figure 5 displays maps of predictions, and of variances of predictions, for OK
on Zα/tα - with the variogram model of Figure 4a - for Poisson OK and for GLMM.

Global patterns of abundance are similar, however maps obtained by the two
model based methods show more local spatial patterns and differs only for higher
values with a smoothing for the kriging. Conversely, the three methods gave com-
pletely different variance maps. The first map from kriging is flat in the central
region where data and prediction grid overlap. The Poisson OK variances are sub-
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stantially smaller and modulated by the observation times. The GLMM variance
of prediction map differs because of the lognormal hypothesis. Variances varies
with the predicted values, with highest values that are ten times the kriging ones
for large Ŷ (ranging from 0.0001 to 0.47). In GLMM variance also accounted for
observation times but this effect is masked by the previous one.

Figure 6. Plots of predictions of whale sightings per hour by Ordinary Kriging
versus GLMM (left), and by Poisson Ordinary Kriging versus GLMM (right).

Cross validation is not available since true values of Y are unknown even in
presence of data, so we compared predictions in Figure 6. We can consider that
GLMM and Poisson OK gave equivalent results for values lower than 0.4, i.e. for
more than 90% of predictions. The curvature of the cloud in Figure 6b is probably
due to exponential transform of S used in the GLMM prediction of Y .

5 Discussion and conclusions

The mapping method we proposed which is a specific kriging written for Poisson
distribution case do not raise more difficulties than Ordinary Kriging. However,
modification of standard software is necessary, which is easy when using open
statistical software as R (R Development Core Team, 2004). Specific R functions
were written by the authors. But this can become a problem with some programs
plugged in GIS commercial software.

The Poisson Ordinary Kriging gave maps that were adapted to ecologists needs
and consistent with others studies. The fin whale data set was quite extreme
considering the heterogeneity of observation times and the very low values for the
sighting frequency so we believe that the proposed method will be able to give
satisfactory results in other ecological surveys. It is a real advantage to remain as
simple as OK and to not have to introduce distributional hypothesis on animal
abundance, sharing the robustness of OK.

A drawback of our model-free spatial abundance is the possibility of negative
mapped values. For fin whales it happened exceptionally in region of lowest density
with negative predictions whose absolute values were negligible. A simple way to
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solve the difficulty was to set at zero the rare negative predictions, so the MSEP
was globally reduced. However, if such negative predictions based on positive data
becomes more frequent, this could suggest that the chosen variogram model is
wrong, especially for short distances.

Differences between Poisson OK and Diggle or Wilke’s GLMM come from the
lognormal hypothesis which are probably not relevant here for higher levels of
concentration of fin whales. If it is probably correct to model a proportionality
between variance and mean for Z|Y because of the Poisson observation process,
there is no reason to expect such similar relation on Y as strictly modelled by
lognormal distribution.
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SIMULATION-BASED ASSESSMENT OF A GEOSTATISTICAL APPROACH 

FOR ESTIMATION AND MAPPING OF THE RISK OF CANCER 

PIERRE GOOVAERTS 
BioMedware, Inc. 516 North State Street, Ann Arbor, MI 48104

Abstract. This paper presents a geostatistical methodology that accounts for spatially 
varying population sizes and spatial patterns in the processing of cancer mortality data. 
The binomial cokriging approach is adapted to the situation where the variance of 
observed rates is smaller than expected under the binomial model, thereby avoiding 
negative estimates for the semivariogram of the risk. Simulation studies are conducted 
using lung cancer mortality rates measured over two different geographies: New 
England counties and US State Economic Areas. For both datasets and different spatial 
patterns for the risk (i.e. random, spatially structured with and without nugget effect) the 
proposed approach generally leads to more accurate risk estimates than traditional 
binomial cokriging, empirical Bayes smothers or local means.

1 Introduction 

Cancer mortality maps are important tools in health research, allowing the identification 
of spatial patterns and clusters that often stimulate research to elucidate causative 
relationships (Jacquez, 1998; Goovaerts, 2005). The analysis is however frequently 
hampered by the presence of noise in mortality data, which is often caused by unreliable 
extreme relative risks estimated over small areas, such as census tracts (Mungiole et al.,
1999). Statistical smoothing algorithms have been developed to filter local small-scale 
variations (i.e. changes occurring over short distances) from mortality maps, enhancing 
larger-scale regional trends (Talbot et al., 2000). A limitation of the smoothers reported 
in today’s health science literature is that they cannot be tailored easily to the pattern of 
variability displayed by the data. For example, inverse distance methods ignore 
important features such as anisotropy or range of spatial correlation.

Geostatistics (Goovaerts, 1997) provides a set of statistical tools for analyzing and 
mapping data distributed in space and time. There have however been relatively few 
applications of geostatistics to cancer data, with alternative solutions to the problem of 
non-stationarity of the variance caused by spatially varying population sizes. In his book 
(p.385-402), Cressie (1993) proposed a two-step transform of the data to remove first 
the mean-variance dependence of the data and next the heteroscedasticity. Traditional 
variography was then applied to the transformed residuals. In their study on the risk of 
childhood cancer in the West Midlands of England, Oliver et al. (1998) developed an 
approach that accounted for spatial heterogeneity in the population of children to 
estimate the semivariogram of the “risk of developing cancer” from the semivariogram 

787

© 2005 Springer. Printed in the Netherlands.
O. Leuangthong and C. V. Deutsch (eds.), Geostatistics Banff  2004, 787–796. 



788 P. GOOVAERTS 

of observed mortality rates. Binomial cokriging was then used to produce a map of 
cancer risk.  In their review paper Gotway and Young (2002) showed how block kriging 
can account for differing supports in spatial prediction (aggregation and disaggregation 
approach), allowing the analysis of relationships between disease and pollution data 
recorded over different geographies. More recently, Goovaerts et al. (2005) presented an 
adaptation of semivariogram and factorial kriging analysis that accounts for spatially 
varying population size in the processing of cancer mortality data.

Capitalizing on previous results on binomial cokriging and weighted semivariograms of 
cancer mortality data, this paper presents a geostatistical filtering approach for 
estimating cancer risk from observed rates.  The risk is here defined as the probability of 
a person contracting the disease within a specified period (Waller and Gotway, 2004). 
Unlike most of the earlier work published in the geostatistical literature, prediction 
performances of the proposed filtering technique is assessed using simulation studies. 
Lung cancer mortality data recorded over New England counties (1950-1994) are 
analyzed geostatistically, and simulated rates are generated under a Binomial 
distribution model. The study is then extended to the 506 US State Economic Areas. 

2 Geostatistical Analysis of Cancer Rates 

For a given number N of entities (e.g. counties, states, electoral ward), denote the 
number of recorded mortality cases by d(u ) and the size of the population at risk n(u ).
Following most authors (Cressie, 1993; Oliver et al., 1998; Christakos and Lai, 1997), 
entities are referenced geographically by their centroids (or seats) with the vector of 
spatial coordinates u =(x ,y ), which means that the actual spatial support (i.e. size and 
shape of the county or ward) is ignored in the analysis. The empirical or observed 
mortality rates are then denoted as z(u )=d(u )/n(u ). Figure 1 shows an example for 
295 counties of 12 New England States. The directly age-adjusted mortality rates for 
lung cancer, as provided by the new Atlas of United States mortality (Pickle et al.,
1999), are displayed for white males (1950-1994 period). The scattergram shows how 
the size of the population at risk varies among counties (from 2,185 to 716,000) and the 
greater variability of rates recorded for small population sizes.

The rates recorded at N=295 counties can be modeled as the sum of the risk of 
developing cancer and a random component (error term ) due to spatially varying 
population size, n(u ):

 Z(u )=R(u )+ (u ) =1,…,N     (1) 

Conditionally to a fixed risk function, the counts d(u ) follow then a binomial 
distribution with parameters R(u ) and n(u ). In other words, there are two possible 
outcomes: having cancer or not, with R(u ) being the probability of having the disease. 
The following relations are satisfied: 

 E[ (u )]=0   and   Var[ (u )]=R(u ) {1-R(u )}/n(u )   (2) 

 E[Z(u )]= E[R(u )]=    and   Var[Z(u )]=Var[R(u )]+Var[ (u )]    (3)  
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Figure 1. Map of lung cancer mortality rates recorded over the period 1950-1994, and 
their relationship to the size of the population at risk (white males). 

For estimation purpose and in agreement with Oliver et al. (1998), the variance of the 
error term can be approximated as Var[ (u )]= 2= (1- )/n(u ), where the mean 
parameter  is estimated by the population-weighted average of rates, z . The risk over 
a given entity with centroid u  is estimated from s(u ) neighboring observed rates as: 
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where C(ui-uj)={1-1/n(ui)}CR(0)+ z (1- z )/n(ui) if ui=uj and CR(ui-uj) otherwise. The 
addition of an “error variance” term for a zero distance accounts for variability arising 
from population size, leading to smaller weights for less reliable data (i.e. measured over 
smaller population). Note that kriging is here used to filter the noise from the observed 
rates aggregated to the county level, not to estimate the risk within the county itself 
(disaggregation procedure). There is thus no change of support and the underlying 
hypothesis is that all counties have the same spatial support.

System (5) requires knowledge of the covariance of the unknown risk, CR(h). Following 
the approach derived by Oliver et al. (1998), the unknown semivariogram of the risk and 
the experimental semivariogram of observed rates are related as: 
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Figure 2. Semivariograms of lung cancer mortality rates with the model fitted by 
weighted least-squares (gray curve = population weighted semivariogram). Right graph 
shows the semivariogram of risk estimated according to expression (6). 

An iterative procedure is used to estimate the variance of the risk 2ˆ R  which is a priori 
unknown, see Oliver et al. (1998) for a more detailed description. Application of 
formula (6) to New England data  leads to  negative values for the experimental 
semivariogram of the risk (see Figure 2, right graph), a disconcerting feature that has 
been observed on various datasets with different geographies and population sizes. 
According to simulation studies this problem is caused by the overestimation of the 
variance of the error term by the expression z (1- z )/n(u ). In other words, all 
developments (1) through (6) are based on the modeling of the error term as a Binomial 
random variable, an assumption which may not always be consistent with the observed 
variability. The following empirical modification of the binomial cokriging approach is 
proposed to allow the use of the filtering technique in all situations, hence its 
implementation in a user-friendly software. 

First, by analogy with Rivoirard et al. (2000) I propose to estimate the semivariogram of 
the risk by the following population-weighted semivariogram of observed rates:
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The weighting scheme attenuates the impact of data pairs that involve at least one rate 
computed from small population sizes, revealing structures that might be blurred by the 
random variability of extreme values. The weighting also tends to lower the sill of the 
semivariogram as well as the nugget variance, see Figure 2 (left graph). 

The second modification relates to the kriging system (5) itself. In particular the term 
z (1- z )/n(u ) can become disproportionately large relatively to the variance of the 

risk CR(0), leading to very large diagonal elements in the kriging matrix (and indirectly 
very large nugget effect). Such a severe understatement of the spatial correlation 
between rates typically results in over-smoothing since the risk becomes a simple 
population-weighted average of observed rates. The map of filtered rates in Figure 3 
(left top graph) indeed appears much more homogeneous or smoother than the map of 
raw rates in Figure 1. An easy way to check for any discrepancy is to compare the sill of
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Figure 3. Maps of filtered lung cancer rates obtained by binomial cokriging with and 
without rescaling of kriging diagonal terms. The rescaling reduces the over-smoothing 
of filtered rates while still attenuating the variability among rates for small populations.

the semivariogram of observed rates CZ(0) with the value of the error variance averaged 
over all locations: 

 RB= CZ(0) /G     with
N

n

zz

N
G

1 )(

)1(1

u
   (8) 

For New England data CZ(0)=7.937 10-9, while G is one order of magnitude larger 
G=3.282 10-8, yielding a ratio RB=0.242.

The proposed modification of the binomial cokriging system consists of rescaling the 
correction of the diagonal term to account for any discrepancy between estimates of the 
rate and error variances, that is C(ui-uj)={1-1/n(ui)}CR(0)+{ z (1- z )/n(ui)}RB. Figure 
3 (right top graph) shows that this rescaling reduces the smoothing of filtered rates: the 
standard deviation of the distribution of filtered rates is 6.115 10-5 when the rescaling is 
performed, compared to 4.954 10-5 in the traditional implementation of binomial 
cokriging. Comparison of scattergrams of Figures 1 and 3 also indicates that extreme 
rates disappear after the filtering by the modified binomial cokriging algorithm. 
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Figure 4. Smooth model for the spatial distribution of the risk of developing lung cancer 
obtained by a local average of the map of Figure 1, and the semivariograms of the three 
risk maps used in the simulation studies. 

3 Simulation Study 

A series of simulated maps of cancer mortality rates {z(l)(u ) =1,…,N} were generated 
in order to investigate the prediction performance of the use of population-weighted 
semivariogram and empirical rescaling of diagonal terms of the cokriging system. Three 
different underlying maps of risk {r(u ) =1,…,N} were considered:

1) map of observed rates displayed in Figure 1,  

2) smooth map of rates obtained by a moving population-weighted average of 6 
closest neighboring counties (see Figure 4),

3) non-structured map of rates created by random shuffling of the observed rates.  

The corresponding semivariograms are displayed in Figure 4. For each map of risk 100 
realizations of the number of cases were generated for each county with centroid u  by 
random drawing of a binomial distribution with parameters r(u ) and nS(u ). This 
approach is thus different from a traditional p-field simulation where the random 
numbers would be spatially correlated (Goovaerts, 1997). To cover a wide range of 
values for the rescaling factor RB three different scenarios were considered for the 
population sizes used in the simulation, nS(u ), and in the geostatistical analysis, nA(u ):
1) nS(u )=nA(u )=10 observed population sizes n(u ), 2) nS(u )=nA(u )=n(u ), and 3) 
nS(u )=10 (nA(u )=n(u )). Scenario I corresponds to the simplest task in that the 
variance of binomial distributions is small following the arbitrary multiplication of the 
population size by 10; leading to a semivariogram of simulated rates close to the 
underlying R(h); see Figure 5 (left graph). Random fluctuations are more important in 
scenario II, leading to higher sills and less spatial structure for the semivariogram of 
simulated rates (Figure 5, middle graph). Unlike in scenarios I and II, the assumption 
made in the analysis of the third set of simulated rates is inconsistent with the actual 
simulation procedure; that is the variability assumed under the binomial model using the 
population size n(u ) is larger than the underlying model (since the simulation used 10 
times  larger  population sizes).  This third scenario will lead to RB values smaller than 1 
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Figure 5. Semivariograms of the underlying risk (gray solid line) and rates simulated 
using the risk map of type 1 (i.e. observed rates) and three scenarios for the population 
sizes. The semivariograms are: unweighted ( ), population-weighted ( ), and risk 
semivariogram estimated according to expression (6) (…). 

and negative estimates of the semivariogram of the risk, mimicking the situation 
observed for New England data, see Figure 5 (right graph).

Figure 5 shows the results of the variography for realization #5 generated using the risk 
map of type 1 the semivariogram of which is depicted by the thick gray line. Regardless 
of the scenario used for the population sizes, the larger sill is observed for the 
unweighted semivariogram of simulated rates. Incorporation of population sizes through 
estimator (7) reduces the sill value which can be either smaller or larger than the target 
risk semivariogram. The performance of the risk semivariogram estimator (6) 
deteriorates as the rescaling factor RB becomes smaller, that is as the population size 
decreases and the Binomial model overestimates the variability that is actually observed. 
For scenario III, the correction applied to the semivariogram of rates is so exaggerated 
that the semivariogram of risk estimates are negative for all lags. 

For each of the nine combinations of 3 risk maps and 3 population size scenarios, the 
simulated rates were filtered using binomial cokriging with and without rescaling, and 
three types of semivariogram estimators: underlying R(h), Oliver et al.’s estimator (6), 
and population-weighted estimator (7). Whenever the estimator (6) yielded negative 
values, the filtered rates were identified to a local population-weighted average of the 32 
closest mortality rates, denoted m(u ). This latter estimator is considered as the 
reference filter (left column in Table 1), while binomial cokriging with the true 
underlying semivariogram of risk represents the best case scenario which is never 
encountered in practice. To include traditional non-geostatistical filters in our 
comparison study, empirical Bayes smoothing was also implemented. Following Waller 
and Gotway (2004), the global Bayes smoother of the rate at u is as follows: 
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The Bayes shrinkage factor (u ) is computed as: 

otherwise0

/if
)(//

/
)(

2
2

2

nzs
nznzs

nzs

uu    (10) 



794 P. GOOVAERTS 

where z and s2 are the population-weighted sample mean and variance of rates, and n is
the average population size across the study area. Whenever the rate z(u ) is based on 
small population sizes n(u ) relatively to the average n , the factor (u ) is small and 
the Bayes estimate (9) is close to the global mean z . In other words, the relative weight 
assigned to the observed rate is small since it is deemed less reliable. Local Bayes 
smoothers are computed similarly except that the global statistics z and s2 are replaced 
by local ones computed within local search windows (i.e. estimated from the closest 32 
rates in this paper).  Prediction performances were quantified by the average squared 
differences between the filtered rates and the map of risk values used in the simulation.  
Results in Table 1 indicate that: 

Binomial cokriging yields more accurate estimates than a simple population-
weighted local mean for all 9 scenarios, and it outperforms empirical Bayes 
smoothers in all cases. 

Rescaling yields less accurate risk estimates when the factor RB is much larger than 
1 (Population size I) since then the diagonal elements are inflated, leading to more 
smoothing effect. 

Except for the rarely encountered case of spatially random risk, the use of 
population-weighted semivariograms outperforms the risk semivariogram estimator 
of type (6). The latter yields systematically negative estimates for the Population 
size scenario III, which according to the value of the rescaling factor RB is the most 
consistent with the observed variability.

Table 1. Prediction errors obtained on average over 100 simulations generated under 
three different population size scenarios and 3 types of risk map (I=observed, 
II=smooth, III=random). Binomial cokriging has been conducted with (w) and without 
(w/o) rescaling of diagonal elements of the kriging matrix. Bold numbers refer to best 
performances outside the ideal case where the true semivariogram of risk is known. 

Binomial cokriging with R(h)Empirical
Bayes True stimator

(6)
stimator (7) 

Local
mean

Glob Loc w/o w w/o w w/o w 

RB

Risk I 

Size I 61.1 25.2 21.4 17.2 23.8 18.8 23.5 17.7 25.0 3.3 
Size II 64.9 63.7 54.4 46.7 46.7 52.0 51.2 48.4 47.9 1.1
Size III 61.1 82.4 55.7 34.0 23.8 61.1 61.1 35.7 25.0 0.3

Risk II

Size I 19.1 17.7 10.9 6.07 6.56 11.1 10.1 6.04 6.43 2.2 
Size II 23.0 34.6 22.9 17.0 17.0 24.4 23.9 22.3 22.4 1.0 
Size III 19.1 39.6 19.0 9.61 6.56 19.1 19.1 9.60 6.43 0.2

Risk III

Size I 72.9 19.6 19.4 18.6 25.6 18.7 24.4 19.2 26.5 3.4 
Size II 76.7 56.2 58.8 54.4 54.7 57.8 56.1 58.5 57.1 1.2 
Size III 72.9 82.0 64.1 39.7 25.6 72.9 72.9 39.9 26.5 0.3
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Figure 6. Map of lung cancer mortality rates recorded over the period 1990-1994 for 
SEA units, with the corresponding directional semivariograms. 

Table 2. Prediction errors obtained on average over 100 simulations generated under 
population size scenario II, nS(u )=nA(u )=n(u ), and for 3 types of risk map 
(I=observed, II=smooth, III=random); see Table 1 for further explanations. 

Binomial cokriging with R(h)Empirical
Bayes True stimator

(6)
stimator (7) 

Risk
type

Local
mean

Glob. Loc. w/o w w/o w w/o w 

RB

I 93.2 86.1 54.1 44.1 48.9 59.9 51.5 49.5 45.6 2.7

II 36.8 78.9 28.3 14.5 15.1 41.0 30.4 28.3 20.1 2.1

III 214 73.6 73.8 70.6 88.6 74.0 81.3 73.9 79.5 3.3 

A similar simulation study was conducted over all 506 US State Economic Areas (SEA), 
in order to investigate the performances of the proposed approach over an area of larger 
extent and using rates recorded over bigger and more populated geographical units. 
Lung cancer rates recorded for white males during the period 1990-1994 were analyzed 
and they are mapped in Figure 6. The variability is clearly anisotropic with more spatial 
continuity along the NE-SW direction. The observed rescaling ratio is now larger than 1, 
RB=1.95, which is caused by a combination of larger spatial variability (higher sill 
CZ(0)) when the entire US is studied and larger population sizes which reduces the value 
of parameter G in expression (8). Nevertheless, results in Table 2 clearly demonstrate 
the benefit of using population weighted semivariograms and rescaled cokriging system 
when the risk is spatially correlated (Risk scenarios I and II).

4 Conclusions 

Cancer mortality maps are used by public health officials to identify areas of excess and 
to guide surveillance and control activities. Quality of decision-making thus relies on an 
accurate quantification of risks from observed rates which can be very unreliable when 
computed from sparsely populated geographical units. This paper improves earlier 
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implementation of binomial cokriging to develop an approach that is more flexible and 
robust with respect to misspecification of the underlying hypothesis. Simulation studies 
conducted under different spatial patterns of risk and population size scenarios 
demonstrate that the combined use of population-weighted semivariogram and rescaled 
cokriging system leads to more accurate estimates of the underlying risk. The 
implementation of the developed methodology was facilitated by the initial assumption 
that all geographical units are the same size, which allowed the use of geographical 
centroids in semivariogram estimation and kriging. This assumption is unsatisfactory 
when working with vastly different entities, such as SEA units over the US. A proper 
account of the spatial support would also allow the mapping of the risk within each unit. 
In addition, counts are aggregated over a given temporal period: the longer this period, 
the larger the smoothing of the variability in space and the greater the discrepancy 
between the sizes of the current population and the population that was actually exposed 
over this period. Underestimation of the exposed population could be the culprit for 
negative semivariogram estimates and this critical issue needs to be further explored. 
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Abstract.

Since the 60’s, there has been a strong industrial development in the Sines area, on the 
southern Atlantic coast of Portugal, including the construction of petrochemical and 
energy-related industries. These industries are, nowadays, responsible for substantial 
emissions of SO2, NOx, particles, VOCs and part of the ozone polluting the atmosphere. 
The major industries are spatially concentrated in a restricted area, very close to 
populated areas and natural resources. Their emissions are very similar, making the 
identification of individual pollutant sources and of their contributions to air pollution 
difficult.
In this study, the regional spatial dispersion of sulphur dioxide (SO2) is characterized, 
through the combined use of diffusive tubes (Radiello Passive Samplers) and classical 
monitoring stations’ air quality data. The objective of this study is to create a regional 
predictive model of the contribution of different emission sources to the pollutant 
concentrations captured at each monitoring station. 
A two-step methodology was used in this study. First, the time series of each data pair – 
industrial emission and monitoring station records – was screened, in order to obtain 
contiguous time periods with a high contribution of that specific industrial emission to 
the equivalent monitoring-station measurements. For this purpose, an iterative 
optimisation process was developed, using a variogram between industrial emissions 
and monitoring-station time series as the objective function. Afterwards, probability 
neural networks (PNN) were applied to achieve an automatic classification of the time 
series into two classes: a class of (emission/monitoring station) pairs of highly correlated 
points and a class of pairs of points without correlation
In a second step, the relationship between time series of emissions and air quality (AQ) 
monitoring station records – time model – is validated for the entire area for a given 
period of time, using for that purpose the diffusive samplers measurements. A spatial 
stochastic simulation is applied to generate a set of equi-probable images of the 
pollutant, which relationship with the different emissions is calculated using the PNN 
predictive model.
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1 Introduction 

It is well known that air pollutants at ground level can be harmful to human health, if 
their concentrations exceed certain limits. As pollutants accumulate in, or near, large 
metropolitan areas, populations are typically more exposed to unhealthy pollutant 
concentrations (Russo et al., 2004; Cobourn et al., 2000; Kolehmainen et al., 2000). A 
study that allows the identification of regional pollutant emission-receptions patterns 
and the quantification of the contribution of local industrial units is of great interest for 
the health system and environmental policy making (Russo et al., 2004; Cobourn et al., 
2000; Kolehmainen et al., 2000). 
Predictive modelling of the different emissions’ contribution to the pollutant 
concentrations captured at a certain monitoring station, will allow an analysis of the 
impact caused in the monitoring station’s area and its translation into an air quality 
index (Russo et al., 2004). In order to develop robust predictive air quality (AQ) models, 
wide-range monitoring systems are necessary. Modelling therefore often needs to be 
used in conjunction with other objective assessment techniques, including monitoring, 
emission measurement and inventories, interpolation and mapping (WHO, 1999).
Air quality monitoring can essentially be accomplished by the use of continuous 
automatic sensors, passive samplers, active samplers and remote sensors. The use of 
passive samplers offers a simple and cost-effective method of screening air quality in an 
area (Cruz and Campos, 2002; Mukerjee et al., 2004). The low unit costs permit 
sampling at numerous points in the area of interest, what is useful in highlighting “hot-
spots” of high pollutant concentrations. Combined with automatic sensors, that can 
provide high-resolution measurements (typically hourly averages) at few points for most 
of the criteria pollutants (SO2, NO2, O3), a spatial-temporal monitoring net may be 
accomplished.

2 Objectives 

Briefly, the purpose of this study is to analyse possible relations between sulphur 
dioxide (SO2) emissions, generated by three industrial complexes (Borealis, Petrogal 
and CPPE) located in the Sines area (Portugal), and AQ data colleted by three air quality 
monitoring stations (Sonega, Monte Chãos, Monte Velho) and also by Radiello diffusive 
tubes covering the Sines area, with analysis done by means of linear and non-linear 
modelling, as described in section 4. A predictive model of the contribution of different 
emission sources to the pollutant concentrations captured at each monitoring station was 
created using spatial information (captured by passive monitors (diffusive tubes)) 
combined with temporal information (captured by monitoring stations) for the same 
pollutants.

A two-step methodology was used in this study: i) First, the time series of each data pair 
– industrial emission and monitoring station records – was screened, in order to obtain 
contiguous time periods with a high contribution of that specific industrial emission to 
the equivalent monitoring-station measurements. For this purpose, an iterative 
optimisation process was developed, using the variogram between industrial emissions 
and monitoring-station time series as the objective function. Afterwards, probability 
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neural networks (PNN’s) were applied to predict the probability of pollutant emissions 
causing the pollutant concentrations measured at the monitoring stations; ii) In a second 
step, the relationship between emissions and AQ monitoring station records – time 
model – is validated for the entire area for a given period of time, using the diffusive 
samplers measurements. A spatial stochastic simulation (direct sequential simulation) is 
applied to generate a set of equi-probable images of the pollutant and the relationship of 
different emissions with local simulated values is evaluated for the entire area. 

3 Study Area and Data 

The main objective of this study consists in developing and implementing a 
methodology that allows classifying the contribution of different emission sources to air 
quality (AQ) in the region of Sines, Portugal (Fig. 1). Automatic sensors and passive 
samplers (Radiello diffusive tubes) were used in order to collected AQ data in the Sines 
area.

Figure 1. An overview of the Sines Peninsula (Petrogal, Borealis and CPPE 
industrial complexes in light gray; AQ monitoring stations in Sonega, Monte Chãos, 
Monte Velho in dark gray).

The case study covers an area with very different land uses: industrial, urban, rural and 
leisure. Although the urban area is very small, compared with the rural area, the 
industrial sources are of great importance and make an important contribution to long-
term or peak concentrations of critical pollutants (SO2, NO2, O3, etc.). Mixed occupation 
areas with great industrial influence should be continuously monitored and controlled, in 
order to prevent air quality crises.
The sulphur dioxide (SO2) concentrations were measured in three industrial sites 
(Borealis, Petrogal and CPPE) and by three monitoring stations (Sonega, Monte Chãos 
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and Monte Velho). For the purpose of this study, those measures were converted into 
daily averages for a period of 12 months (from 1/1/2002 to 31/12/2002) (Figs. 2 and 3). 
Meteorological data – wind speed and direction on an hourly basis, for the same period 
– were also collected and analysed (Fig. 4).
Diffusive tubes measurements of SO2 were available for a period of 11 consecutive days 
(from 31/3 to 10/4/2003) (Fig. 5). The sampling period was characterized by dominant 
winds from north/northwest with average speeds of 10-17 km/h. The humidity levels 
varied between 80% and 100%. The air temperature had a typical spring variation, with 
an average temperature of about 15 ºC. 
The available data was standardized in order to minimize the effect of different local 
means and variances in the evaluation of the emissions/AQ measurements relationships. 
Afterwards, those days, which did not have any register of data in at least one of the 
emission-reception stations, were deleted from the file. 

Figure 4. Wind speed (m s-1) and modal wind direction registered. 
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Figure 5. Spatial SO2 (µg m-3)dispersion measured by diffusive tubes.

4 Methodology 

The two steps methodological approach proposed for this study can be summarized as 
follows: i) A predictive model of the different emission sources’ contributions to the 
pollutant concentrations, captured at each monitoring station, divides the time series into 
two classes: pairs of highly correlated points and pairs of points with poor correlation; 
ii) Validation of a time model for the entire area. 

4.1  CLASSIFICATION OF TIME PERIODS WITH HIGH CORRELATION 
BETWEEN EMISSION AND MONITORING STATION RECORDS 

After the first attempts of including meteorological variables into the prediction models, 
we concluded that the available data of wind speed and direction wasn’t responsible for 
the observed dynamics of the different pollutant plumes; the main reason being that the 
meteorological data was often collected at an altitude and locations inadequate to 
capture emissions from the industries’ chimneys. 
The data sets were grouped into data pairs in order to analyse possible relations between 
each emission and each reception. Each data pair is composed by one industrial 
emission and one monitoring station record. In a first step, the time series of each data 
pair was screened with the purpose of obtaining contiguous time periods with high 
correlation between a specific industrial emission and the equivalent monitoring station 
measurements. The selection process consists in the implementation of a simple iterative 
procedure. The variogram of each pair of emissions-monitoring station AQ 
measurements during a period T (365 days – N error values) is: 
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where z1(i) and 1(i) are the measurements of the emission source z1 and of the 
monitoring station 1 for the instant i after standardization. This variogram was assumed 
as an objective function that tends to decrease (increasing the correlation between z1 and

1) as pairs of points with less contribution are iteratively removed.

The selection process separates the data points into 2 classes: Class 1 – pairs of points 
with high correlation between a specific emission and one reception; Class 2 – pairs of 
points with low correlation between a specific emission and one reception. 

Afterwards, a probabilistic neural network (PNN) was used to automatically classify 
data into the two classes described above. PNNs can be useful for classification 
problems and have a straightforward design. A PNN is guaranteed to converge to a 
Bayesian classifier, providing it is given enough training data, and generalizes well 
(Haykin 1994, Beale and Demuth 1998). 

4.2 VALIDATION OF TIME MODEL FOR THE ENTIRE AREA 

The obtained PNN is a predictive (classification) model valid for a period with statistical 
characteristics identical to the past and for the emissions-AQ monitoring station records 
pairs. The objective of the proposed methodology’s second step is to validate and 
generalize this classification model for the entire area. In other words, to analyse the 
spatial extension of the classification model, calculated and tested for the AQ 
monitoring stations. 

Hence the following geostatistical methodology is applied:

i) First, diffusive tubes measurements are used to determine a local trend of 
the SO2 concentration corresponding to the 11 days period, through 
ordinary kriging;

ii) Based on the diffusive tubes variograms (spatial pattern) and the 
monitoring stations AQ values, a set of simulated images of SO2 is 
obtained for the 11 days period, using direct sequential simulation (Soares, 
2000) with local means, i.e., the local trend previously calculated;

iii) To validate the classification model for the entire area, the individual 
contributions of different emissions are mapped as follows: After 
averaging the simulated images for each day, the resulting most probable 
image was classified with a PNN (cf. Section 4.1), resulting in areas with 
high and low correlation with the different emissions.
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5 Results and Discussion 

5.1 CLASSIFICATION OF TIME PERIODS WITH HIGH CORRELATION 
BETWEEN EMISSION AND MONITORING STATION RECORDS 

With the purpose of obtaining contiguous time periods with high correlation between 
each pair of industrial emission and monitoring station measurements (class 1 data 
points), the time series of each data pair was previously partitioned using the 
methodology described in Section 4.1. An example scatter plot of the standardized 
values of the original data series, for the Petrogal (emission) and Sonega (monitoring 
station) pair, is shown in figure 6 (a). A scatter plot of Class 1 data points (high 
correlation between Petrogal and Sonega’s records) is shown in figure 6 (b). Figure 7 
represents the time series of these Class 1 values, showing a contiguous time period, i.e,
time period where, in principle, the meteorological conditions are in accordance with the 
direction emission/AQ monitoring station.

Figure 6. (a) Petrogal (x-axis) and Sonega’s (y-axis) SO2 concentrations before 
being selected; (b) Petrogal and Sonega’s Class 1 data points. 

Figure 7. Example of contiguous Petrogal and Sonega’s Class 1 data points. 
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The ability of the PNN to correctly classify time series into Class 1 and Class 2 
exceeded 90%, for the three monitoring stations. 

5.2 VALIDATION OF TIME MODEL FOR THE ENTIRE AREA 

Validation of the PNN predictive model is necessary to evaluate the probability of other 
areas around the monitoring stations to belong to either of the classes of correlation with 
the emissions or, in other words, to evaluate the probability that the pollutant 
concentration in non-sampled locations is caused by the industrial emissions.
First, the diffusive tubes measurements (Fig. 5) were used to calculate (trough ordinary 
kriging) a local trend for the pollutant concentration for the 11 days period (Fig. 8).

Figure 8. Spatial trend of the SO2 dispersion measured in the diffusive tubes. 

As the diffusive tubes are the only available spatial data, it is assumed that the 
variogram calculated with this data reflects the spatial pattern of the average behaviour 
for the 11 days period. Hence, the variogram model for the diffusive tubes 
measurements – following an isotropic spherical model with one structure of range a=20 
000 m – was considered for the subsequent steps. 
Direct sequential simulation was applied to generate a set of 30 images. The local trend 
of figure 8 was assumed as local mean. AQ monitoring stations values of those 11 days 
were taken as conditioning data.
In figure 9 examples of SO2 maps simulated for three consecutive days are shown. 
Average and variance maps for the first and last days of the 11 days period are shown in 
figures 10 a) and b), respectively. 
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Figure 10. Examples of SO2 average (a) and variance maps (b) for the first and 
last days of the 11 days period. 

We attempted to calculate the correlation coefficient between each set of simulated 
images and each emission for the 11 days using the simulated spatial images. But, given 
the very homogeneous time period in terms of emissions, the resulting correlation 
coefficients constituted, most of the times, rather spurious statistics.
Hence, after averaging the simulated images for each day, the resulting most probable 
image was classified with a PNN (Fig. 11). Figure 11 shows the areas with highly 
correlated points and areas without correlation, with the different emissions.



806 A. RUSSO ET. AL. 

Figure 11. Areas with high and low correlation between emissions and the 
different receptions. 

The PNN determines the probability of a given pair of points displaying a linear 
relationship between emissions and monitoring stations. All PNNs for the three 
industrial emissions and AQ monitoring stations are very similar, producing similar final 
maps for the entire region. 
As all of the emissions, coincidently, show intermediate values for the 11 days period, 
one can see that:

i) The areas, which have a high probability of being related with the 
emissions, are the ones with intermediate values of pollutant concentration. 

ii) The PNN determines the probability of a given pair of points belonging to 
the group of data displaying a linear relationship between emissions and 
monitoring station records. All PNN for the three industrial emissions and 
AQ monitoring stations are very similar. As the emissions are similar for 
the 11 days period of time, the final maps of each emission contribution to 
the pollution of entire region are also similar.

iii) The areas affected by high pollutant concentrations do not show any 
correlation with any of the industrial emissions. In fact, both hot-spots 
(high-value plumes) are located in the two main villages of the region, 
suggesting other pollutant source than the industrial emissions.

5.3 DISCUSSION

Combining two AQ sampling systems – classical monitoring stations and diffusive tubes 
– we succeeded in showing an approach that allows an impact evaluation of different 
emissions for the entire Sines area.
The predictive time model is strictly valid for the spatial location of the 
emissions/monitoring stations pairs. With a more spatially representative monitoring – 
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using diffusive tubes – and with a spatial geostatistical model – through stochastic 
simulation – the model is successfully generalized for the entire area.
Inferences for the entire area are obviously just valid for the period of the diffusive tubes 
exposure. The more yearly campaigns of diffusive tubes become available, the more 
representative (in terms of space and time) the conclusions become. 
In this case study, the conclusions drawn from the eleven days of the first campaign are 
just illustrative of the potential of the two steps approach. Although the results are 
coherent, the model is not validated for the entire space-time domain of the study.

6 Conclusions 

This study deals with a well-known characteristic common to most AQ monitoring 
networks: high density of sample values in time, collected at just few spatial locations. 
This can be a serious limitation if one wishes to evaluate impact costs or carry out an 
environmental risk analysis of the emissions for the different land uses, eco-systems and 
natural resources of a region.
The presented approach, based on the use of two different monitoring systems – AQ 
monitoring stations, with an high density sampling rate in time, and diffusive tubes, that 
cover the entire space for a limited period of time – shows to be a valid alternative for an 
air-quality impact study covering the entire region.
In spite of the illustrative purpose of this paper, it is worth mentioning that the model 
should be validated for the entire area with more diffusive tubes campaigns. It is 
important to acknowledge that the model’s performance could also be improved using 
longer AQ data series and another kind of meteorological data. 
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MAPPING LAND COVER CHANGES WITH LANDSAT IMAGERY
AND SPATIO-TEMPORAL GEOSTATISTICS
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Stanford, CA, 94305-2115

Abstract.
Satellite images are the principal medium to detect and map changes in the

landscape, both in space and time. Current image processing techniques do not
fully exploit the data in that they do not take simultaneously into account the
spatial and the temporal relations between the various land cover types. The
method proposed here aims to accomplish that.

At each pixel of the landscape, the time series of land cover type is modeled
as a Markov Chain. That time series at any specific location is estimated jointly
from the local satellite information, the neighboring ground truth land cover data,
and any neighboring previously estimated time series deemed well-informed by the
satellite measurements.

The method is applied to detect anthropogenic changes in the Pearl River
Delta, China. The prediction accuracy of the time series improves significantly,
the accuracy almost double, when both spatial and temporal information are con-
sidered in the estimation process. The introduction of spatial continuity through
indicator kriging also reduced unwanted speckles in the classified images, removing
the need for post-processing.

1 Introduction

Remote sensing data and applications are fundamentally spatial in nature, yet the
current image processing methods too often do not consider the spatial context
when estimating the label of any given pixel. A common method to incorporate
spatial information is to model the spatial distribution of labels as a Markov
random field (Tso and Mather, 2001). However, the estimation call for an iterative
algorithm which can be computationally demanding for large domains. Geostatis-
tics, especially indicator kriging, has also been used to incorporate spatial auto-
correlation in estimating or simulating labels (Atkinson and Lewis, 2000; Brown
et al., 2002; Wang et al, 2004).

When pursuing change detection, that is the mapping in both space and time of
land covers changes, a good cross-sectional accuracy is not enough, one must also
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ensure accuracy through time. The temporal component becomes as important as
the spatial component when one desires to know both when and where changes
have occurred.

The proposed methodology presents a way to integrate the spatial correlation
of the land covers labels with temporal information thus improving the mapping
of land cover changes.

The framework is applied to mapping anthropogenic changes in the Pearl River
Delta, China. This region is going through tremendous growth in population with
important environmental repercussion on the landscape, such as deforestation and
urban sprawl.

2 Notations

Consider a domain D ⊂ R2 measured at different times ti, i = 1, ..., Nt ⊂ T . The
Nt measurements of D constitute a set of images denoted I = {I(t1), ...,I(tNt )}.
Let (u, t) be a point in D × T informed by a vector of length nB of continuous
attributes, Z(u, t) = {Z1(u, t), ..., ZnB

(u, t)}. These attributes are the satellite
measurements known as digital numbers (DN).

Each pixel (u, t) must be classified into one of K labels L1, ...,LK , for example
K land cover types. Define Ik(u, t) an indicator variable indicating whether or not
the pixel at location (u, t) has label Lk

Ik(u, t) =

{
1 if (u, t) ∈ Lk

0 otherwise

And let

L(u, t) = k if Ik(u, t) = 1

Furthermore, let Ω be the set of location uα, α = 1, ..., n whose labels are known
at all times (ground truth). V (u, t) is the set of known labeled pixel data in an
isochronous neighborhood of u at time t.

3 Coding and combining information

The available information at each uninformed location u is first separated between
isochronous (cross-sectional) and time series information. The isochronous or cross-
sectional information includes the satellite response and the neighboring land
cover indicators at a specific time, the time series information consist of transition
probabilities linking the land cover indicators through time. The classification at
location u is then done by combining these two types of information in such a way
to minimize misclassification over a given training set.
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3.1 TIME SERIES TRANSITION PROBABILITIES

Denote by pT
k (u, t) the probability of having label Lk at location (u, t) given the

collocated land cover indicators in the immediate past (L(u, t − ∆1t)) or future
(L(u, t + ∆2t)), or in both past and future.

pT
k (u, t) = Prob{Ik(u, t) = 1 | L(u, t − ∆1t),L(u, t + ∆2t) } (1)

The probability pT
k (u, t) is calibrated directly from ground truth data or deter-

mined as function of the transition probabilities pkk′(ti, tj) relating the probability
of having class Lk′ at time tj given that Lk is observed at time ti.

pkk′(ti, tj) = Prob{Ik′(u, tj) = 1 | Ik(u, ti) = 1},∀ u, k, k′ (2)

The transition probabilities pkk′(ti, tj) are calibrated from ground truth data.

3.2 ISOCHRONOUS PROBABILITIES

The isochronous information at any specific time is obtained by combining the
satellite response and the spatial information available at that time. All infor-
mation is expressed in terms of probabilities. Denote by piso

k (u, t) the isochronous
probability obtained by combining the probabilities pDN(u, t) and pS(u, t) obtained
from the satellite and spatial information respectively.

piso
k (u, t) = Prob{Ik(u, t) = 1 | Z(u, t),L(u′, t),u′ ∈ V (u, t)}

= φ(pDN
k (u, t), pS

k(u, t))
(3)

The combination algorithm φ is presented later.

Satellite-derived probabilities
The conditional probability pDN

k (u, t) for the pixel at location (u, t) to be assigned
to label Lk given the satellite response is computed with a classifier F (·) calibrated
from the known data {Z(uα, t),L(uα, t)} (Richards and Jia , 1999). The function
F (·) approximates the conditional expectation of Ik(u, t) given the sole collocated
satellite response.

pDN
k (u, t) = Prob{Ik(u, t) = 1 | Z(u, t)}, ∀ k (4)

In this study, the conversion of Landsat TM measurements into land cover types
probabilities is done with the conventional maximum likelihood (ML) classifier
(Richards and Jia , 1999). The principle is simple, the probabilities Prob{Ik(u, t) =
1 | Z(u, t)}, k = 1, ..,K are calculated from the training set using a Bayes’ inversion

pDN
k (u, t) =Prob{Ik(u, t) = 1| Z(u, t) = z} =

Prob{Z(u, t) = z|Ik(u, t) = 1}Prob{Ik(u, t) = 1}
∑K

k′=1 Prob{Z(u, t) = z|Ik′(u, t) = 1} · Prob{Ik′(u, t) = 1}
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Assuming the random vector Z(u, t) to be multiGaussian, its conditional proba-
bility is written as

Prob{Z(u) = z|Ik(u, t) = 1} =
1

(2π)N/2|Σk|1/2
e−

1
2 (z−mk)T Σ−1

k
(z−mk) (5)

where mk and Σk are the mean vector and covariance matrix of the DN values
belonging to the training data with label Lk.

Spatially-derived probabilities
Denote by pS

k(u, t) the conditional probability of observing Lk at location (u, t)
given the isochronous label data found in the neighborhood V (u, t).

pS
k(u, t) = Prob{Ik(u, t) = 1 | L(u′, t),u′ ∈ V (u, t)}, ∀ k (6)

This spatial probability pS
k(u, t) may be estimated from simple indicator kriging

(Goovaerts, 1997). Simple indicator kriging is a linear interpolator that applied
kriging weights to indicator data yielding the probability of belonging to a class
given the neighborhood data, the marginal and the covariance model of that class.

In addition to the ground truth data, the neighboring data in V (u, t) also
include locations that are considered well informed by the sole satellite measure-
ments. Any measure of information content could be used to determine which
locations are well informed and which ones are not. Those well-informed nodes are
locations where the DN measurements Z alone are deemed sufficient to label them.
For example, a pixel where the classifier F (·), see expression (5), would indicate
a probability of 0.98 or more to belong to a certain label would qualified as a
well-informed node.

Those nodes, assumed to be fully informed by the sole satellite information,
are used as anchor for the less informed ones. This spreads information from high-
confidence pixels to their surrounding. For example, if in an area all the well-
informed locations are urban, the neighboring pixel are more likely to belong to
the urban label. The indicator kriging from the well-informed labels performed
just that.

There is however a risk to overextend the spatial relevance of the well-informed
locations. The problem lies in the discontinuity of the landscape. For example a
certain region may be predominantly urban, without forest or agriculture, but the
vegetated area could start abruptly a few pixels away. A well-informed water label
located in a lake close to the shore does not say whether that shore is urbanized
or vegetated, instead it tends to artificially increase the probability that the shore
would belong to a water label.

To offset this problem of borders and discontinuities, the images are first
segmented to find edges delineating those discontinuities. Then a data neighbor-
hood that does not cross the edges is retained for the indicator kriging process.
Interpolation (kriging) is thus limited to homogeneous neighborhoods.
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3.3 POSTERIOR PROBABILITY

The posterior probability pk(u, t) for class Lk to occur at location (u, t) is com-
puted by combining the isochronous probability piso

k (u, t) and the time series
probability pT

k (u, t)

pk(u, t) = Prob{Ik(u, t) = 1 | all data} = ψ( piso
k (u, t), pT

k (loc, t) ), ∀ k

The proposed combination algorithm ψ is developed in the next section.
Finally, the label L(u, t) is estimated by taking the most probable class from

the posterior distribution such that

L∗(u, t) = arg max
k

{pk(u, t), k = 1, ..,K} (7)

The time series, {L(u, t1), ...,L(u, tNt
)} at location u is generated by estimating

the labels starting from the most informed and then sequentially estimating the
time before and after that starting time. The idea is that the starting point is
very consequential for the estimation of the whole time series, that starting time
is thus chosen to reduce the prediction error. The less informed times at any given
location would benefit from being conditioned on the better informed collocated
times.

3.4 COMBINING PROBABILITIES

Consider the isochronous probability vector piso(u, t) defined in expression (3) and
the time series conditional probability pT

k (u, t) defined in expression (1) as two
sources of information. Each of the those two probabilities can be transformed
into a distance related to the likelihood of event L(u, t) = k occurring (Journel,
2002). Let that distance1 be

xiso
Lk

(u, t) =
1 − piso

k (u, t)
piso

k (u, t)
∈ [0,∞]

xT
Lk

(u, t) =
1 − pT

Lk
(u, t)

pT
Lk

(u, t)}

Consider also the distance related to the marginal probabilities

x
(0)
Lk

=
1 − Prob{(u, t) ∈ Lk}

Prob{(u, t) ∈ Lk}
∀u

The updated distance to the event L(u, t) = k occurring accounting for both
information (1) and (3) is given by the “tau model”:

xLk
(u, t) = x

(0)
Lk

·
(

xiso
Lk

(u, t)

x
(0)
Lk

)τiso

·
(

xT
Lk

(u, t)

x
(0)
Lk

)τT

(8)

1 Note that the distances are the inverse of odd-ratio used in logistic regression.
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where τiso and τT are parameters introducing redundancy between the two infor-
mation sources (Journel, 2002; Krishnan et al, 2004). This study assume all τs
equal to 1, corresponding to conditional independence between the two sources.
The posterior probability is then retrieved by

Prob{(u, t) ∈ Lk|Z(u, t)} =
1

1+xLk
(u,t)

1
1+xL1 (u,t) + 1

1+xL2 (u,t) + ... + 1
1+xLK

(u,t)

(9)

The integration of pDN(u, t) and pS(u, t) into piso(u, t) is also done with expression
(9) but using different tau parameters τS and τDN.

4 A case study, urbanization in the Pearl River Delta, China

The Pearl River Delta in China has seen its population soar with economic devel-
opment in the last three decades. The region under study is centered on the city
of Shenzhen, in the Guangdong province. Anthropogenic changes are important
and Landsat imagery has already been used to map the changes in the landscape
(Kaufmann and Seto, 1989; Seto et al., 2002).

This study focused on detecting and mapping changes that has happened
between between 1988 and 1996 using a time series of Landsat 7TM images. We
acquired 6 images dating from 1988,1989, 1992, 1994, 1995 and 1996 all taken
around December. The year 1990 and 1991 are not used because of significant
cloud cover, while 1993 was let aside because of poor georeferencing. The Band 7
for 1988 and 1996 is shown in Figure 1. There are 1917870 times series informed
by the satellites approximatively covering an area of size 45km by 45 km, with
each pixel of dimension 30x30 meters.

The landscape is divided into K=7 classes: water, forests, agriculture, urban,
fish pond, transition (land getting cleared for urban settlement) and shrub. The
ground truth measurements consists of 1917 locations identified by expert interpre-
tation or by field reconnaissance. At ground truth locations the labels are deemed
known at all times. The prediction errors are estimated by a 5-fold cross-validation
procedure (Hastie et al., 2001). The known labels are divided five times, each time
into a training set and a testing set such that all samples are used once both for
testing purposes. Each split is done such that 80% of the ground truth data belong
to the training set and the remainder 20% to the test set.

4.1 COMPUTING THE TRANSITION PROBABILITIES

The time series transition probabilities pkk′(ti, tj) defined in expression (2) are
assumed stationary in time, such that

pkk′(ti, tj) = pkk′(∆t)

where ∆t = tj − ti. The pkk′(∆t) are computed from the training set by evaluating
the proportions of transitions from class k to class k′. Notable characteristics of
this transition probability matrix is that the urban land cover type is an absorbing
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Figure 1. Band 7 over the study area for 1988 and 1996. The black pixels are
water, the gray areas are agriculture and forest land covers while the bright spots
are mostly urban and transition land covers. Note the larger urban area in 1996
than in 1988.

state while the transition land cover type only communicates with itself and with
the urban land cover state. This means that once a pixel is urban, it will remain
urban; and if a pixel has a transition label, it can remain in transition or become
urban.

4.2 COMPUTING ISOCHRONOUS PROBABILITIES

Satellite-derived probabilities
The probabilities pS

k(u, t), k = 1, ...,K is computed with a maximum likelihood
estimator, see expression (5).

Spatially-derived probabilities
The spatial context is accounted for through the probabilities pS(u, t) estimated
with simple indicator kriging using for conditioning data the time series at lo-
cations deemed well informed by the satellite measurements. The information
content of a time series at location (u) is measured as the sum of the maximum
satellite-derived probability at each times.

Inf(u) =
1
Nt

NT∑

i=1

max(pDN
k (u, ti), k = 1, ...,K) (10)

After some trials and errors, a time series is deemed well informed if Inf(u)
is greater than 0.87. Furthermore, those well informed time series will only be
included in the neighborhood if a straight line going from the center of the neigh-
borhood to any well informed datum does not cross an edge. The edges are found



816 A. BOUCHER, K. SETO AND A. JOURNEL

by performing a Canny segmentation method (Canny, 1986). Figure 2 shows two
examples of edge detection. The edges in Figure 2(a) represent the shore of a bay
with a dam at the western extremity. In Figure 2(b), the edges delineate a port
from the ocean and also segment homogeneous region inside the port complex.

Figure 2. Examples of edge detection. In Figure (a), the edges capture the border
of the bay and the dam at its extremity. In Figure (b), the edge define the contact
between a port and the bay plus some internal divisions inside the port complex.

4.3 RESULTS

The results of the proposed method are compared to the accuracy resulting from
the maximum likelihood (ML) classifier, see expression (5). The ML classification is
done by assigning to a time-space location (u, t), the class that has the maximum
probability pDN

k (u, t). This classification solely considers the satellite responses
thus ignoring the temporal and spatial correlation between labels.

The results are validated using (1) the overall accuracy ,the percent of correctly
classified pixels, and (2) the time series accuracy, the percent of locations which
have their vector of labels all correct. A time series at location u is well classified
only if its six labels have been correctly predicted. For change detection purpose,
the time series accuracy is important as it shows how well the changes are mapped
in time and space.

With the ML classifier, the accuracy from the five-fold cross validations yields
an overall accuracy of 78%, but the time series accuracy drops to 33%. The pro-
posed method only marginally improves the overall accuracy from 78% to 82%.
However, the accuracy of the time series goes up 61%, a considerable improvement.

The indicator kriging also decreases the level of speckling in the images, pro-
ducing smoother maps. For example, the ML tend to classify many shadow zones in
mountainous areas as water, the integration of spatial information corrects many
of those misclassified pixels. This no need to post-processed the classified images
to remove the speckles.

The maps in Figure 3 show, for each location, the year at which change first oc-
curred. A comparison between Figure 3(a) and (b) clearly shows that the proposed
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method preserves some spatial relationships for the land cover changes, exhibiting
a structured evolution of the landscape. On the contrary, the ML method pro-
duces a salt and pepper texture where the physical evolution of the landscape is
indiscernible.

The proposed method also provides a more stable and more realistic mapping
of the changes. With the ML prediction, 35% of locations had changed more than
once, a number that visual inspection of the images and knowledge about the area
do not validate. Only 9% of location are predicted to change more than once with
the proposed method. The ML also predicts that 22% of locations did not change
while that percent goes up to 64% when the spatial and temporal information are
combined in the prediction.

Figure 3. Map of predicted land cover changes representing the year at which
the first change occurred. Figure (a) maps the year of change as predicted by
the proposed method. Figure (b) does it for the ML method. Black indicates no
changes, lighter tones indicates later times. Note the greater spatial resulution for
the proposed method.

5 Conclusion

This paper proposed a framework that allows the integration of the spatial and
temporal autocorrelation of labels in remote sensing applications. That integration
produces a more accurate change detection map that better defines when and
where the landscape had changed. This study uses 6 images, the extension to
longer time series would be straightforward as the complexity of the algorithm
only increases linearly with additional images.

Prior identification of well-informed locations from the sole satellites informa-
tion is shown to work well. Enough conditioning data are made available so that
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geostatiscal methods can be used in an estimation mode to improve the land covers
estimation.

Importantly, the study shows a considerable increase of time series accuracy
with the proposed method. Furthermore, the evolution of the landscape display
greater spatial continuity and seems more realistic.

Future works will focus on improving the method by using more complex and
potentially better suited spatial model such as training images replacing variogram
models; as well as better way to incorporate the time series information. Another
avenue of research is the modeling of the tau parameters in the combination
algorithm (8), to weight each individual source of information and further increase
the performance of the process.
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SPHERICAL WAVELETS AND THEIR APPLICATION TO
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Abstract. Li (1999) proposed the multiscale spherical wavelet (SW) method. In
this paper, we investigate the potential of the multiscale SW representation for a
climate field through a real experimental study. To represent a field by the multi-
scale SW method effectively, the appropriate choices of networks Nl and spherical
basis function (SBF) Gl(x) are required. We discuss some practical schemes to
choose Nl and Gl(x).

1 Introduction

Spherical data can be found in many applications such as atmospheric sciences
where observations can be regarded as taken at different locations on a unit sphere.
The data set used in this paper is a Northern Hemisphere winter mean temperature
that can be obtained from the average of December, January and February raw
temperatures. They selected 1000 stations to cover the whole sphere for the period
of 1961-1990. Figure 1 shows the distribution of the 1000 stations used in our
analysis. This data set was taken from a large database prepared by Jones et al.
(1991). As shown in Figure 1, the data are scattered: they are not observed on
regular spatial grids, and they have nonhomogeneous spatial densities including
data voids of various sizes.

Given the scattered observations, one important problem is to represent the
underlying spherical temperature field T (n) for every location n on the globe.
To represent T (n), one could use the classical methods of spherical harmonics
and spherical smoothing splines. However, as expected from the drawbacks of
Fourier series estimators on the real line, spherical harmonics are not efficient
for representing nonhomogeneous fields. The smoothing spline method tends to
produce uniformly smooth results, although the data have intrinsic multiscale
structure. Notice that the estimate of smoothing splines can be considered as the
kriging estimates of Gaussian random field in spatial statistics (Cressie, 1993).
The multiscale SWs proposed by Li (1999), on the other hand, are endowed with
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Figure 1. The distribution of the 1000 stations.

localization properties and therefore are particularly effective in representing mul-
tiscale phenomena that comprise activities of different scales at different locations.
Moreover, the orthogonality of wavelets gives rise to multiscale decompositions
that make the wavelet method a powerful tool for extracting the field’s activities
at different scales and detecting regional anomalies from global trends

However to representation a spherical field by using SWs effectively, it is re-
quired to decide some important issues in practice such as the appropriate choice
of networks Nl, SBF Gl(x) and the coefficients β1. We propose methods to choose
the practical issues, and apply multiscale SW method coupled with appropriate
choices to data in Figure 1.

The rest of the paper is organized as follows. Section 2 gives a brief discus-
sion the SW method of Li (1999). In section 3, we discuss some practical issues
with respect to the implementation of the method. The results for the surface air
temperature data are illustrated in Section 4.

2 Multiscale spherical wavelets

In this section, we briefly review the SW method proposed by Li (1999).

2.1 MULTISCALE SBF REPRESENTATION

The general idea of spherical basis function (SBF) representation is to use localized
function call SBF to approximate an integrated squared underlying function on
sphere. A detailed information of SBF can be found in Narcowich and Ward (1996).
Under the spherical coordinate system, n := [cos φ cos θ, cos φ sin θ, sinφ]T denotes
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the unit vector that points to a location from the center of the unit sphere, where
φ and θ denote the latitude and longitude of the location respectively. For a given
network of J observation stations N1 := {nj}J

j=1, let us assume that we have
created a nested sequence of networks N1 ⊃ N2 ⊃ · · · ⊃ NL and have associated
the subnetwork Ml := Nl\Nl+1 with a spherical basis function (SBF) Gl(x) which
may have a different bandwidth for different values of l, where x is the cosine of
the angle between two locations on the sphere. A specific example of constructing
the networks and selecting the bandwidth will be given in Section 4. In this way,
the original network N1 is partitioned into L subnetworks of different scales: N1 =⋃L

l=1 Ml, and each subnetwork is given an SBF with a different bandwidth. For
convenience, let us relabel the stations nj using a double subscript notation such
that Ml = {nlj , j = 1, . . . , Ml}, where

∑L
l=1 Ml = J .

An SBF, G(x), is a square-integrable and rapidly decaying function of x ∈
[−1, 1] whose coefficients in the Legendre series expansion are all positive except a
finite many that can be zero (Freeden et al., 1998). A simple and useful example
is the Poisson kernel,

G(x; η) :=
1 − η2

(1 − 2ηx + η2)3/2
=

∞∑

m=0

(2m + 1)ηmPm(x), (1)

where η ∈ (0, 1) is a bandwidth parameter and Pm(x) is the Legengre polynomial
of degree m. Note that the normalized Poisson kernel G̃(x; η) := (1−η)2

(1+η) G(x; η)

satisfies G̃(0; η) = 1. As can be seen, the Poisson kernel has a peak at x = 0 and
decreases monotonically as x deviates from 0 to ±1. The bandwidth of the Poisson
kernel is small when η is large, and the bandwidth is large when η is small.

A multiscale SBF representation of T (n) takes the form of

T1(n) =
L∑

l=1

Ml∑

j=1

β1jGl(n · nlj), (2)

where the dot product n · nlj is equal to the cosine of the angle between n and
nj at subnetwork l. In this expression, the SBFs Gl(x) have different bandwidths,
ηl according to scale index l. Note that the SBFs at a fixed subnetwork l in
(2) depend only on the angles between the location n and the observation sites
nj , so that the SBF representation is invariant to any rotations of the spherical
coordinate system. In this representation, a large bandwidth is allowed for sparsely
located stations and a small bandwidth for densely located stations. Furthermore,
the nested networks Nl can be arranged so that the sparseness of stations in
Nl increases with the increase of l. One can also choose the SBFs so that the
bandwidth of Gl(x) increases with the sparseness of Nl, and thus the variable l
can be truly regarded as a scale parameter. This can be accomplished, for example,
by using the bottom-up design (BUD) procedure discussed in Li (2001).

Now let us describe a decomposition procedure that decomposes the SBF
representation (2) into global and local components. For any given l = 1, . . . , L,
let

Vl := span{Gk(n · nkj) : j = 1, . . . , Mk; l ≤ k ≤ L}
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be the linear subspace of all SBFs in (2) whose scales are greater than or equal to l.
Define the inner product of two spherical fields by 〈U(·), V (·)〉 :=

∫
U(n)V (n)dΩ(n),

where the integration is over the sphere with
∫

dΩ(n) = 1. Then, because Vl+1 ⊂
Vl, any field Tl(n) ∈ Vl can be decomposed as

Tl(n) = Tl+1(n) + Dl(n), (3)

where Tl+1(n) ∈ Vl+1 is the projection of Tl(n) onto Vl+1 and Dl(n) ∈ Wl :=
Vl � Vl+1 is orthogonal to Vl+1. Because Vl+1 is obtained by removing the SBFs
on Ml from Vl, the orthogonal complement Wl can be interpreted as containing
the local information near Ml that can not be explained by the space Vl+1 that
contains the global trend extrapolated from the sparser network Nl+1. Therefore,
Tl+1(n) is called the global component of scale l + 1 and Dl(n) is called the local
component of scale l.

Because V1 ⊃ V2 ⊃ · · · ⊃ VL and

Vl = Vl+1 ⊕Wl (l = 1, . . . , L − 1), (4)

it follows from (3) that T1(n) in (2) can be decomposed as

T1(n) = TL(n) +
L−1∑

l=1

Dl(n), (5)

where TL(n) ∈ VL and Dl(n) ∈ Wl. Note that the Dl(n) are orthogonal to each
other as well as to TL(n). More details of multiresolution analysis based on SBF
representation are discussed by Li (1999).

2.2 MULTISCALE SPHERICAL WAVELETS

The orthogonal complement Wl can be characterized by spherical wavelets. Li
(1999) showed that with certain filters el(i, j), which depend only on the SBFs
and the subnetworks, the spherical wavelets defined by

Wlj(n) := Gl(n · nlj) −
L∑

k=l+1

Mk∑

i=1

ek(i, j)Gk(n · nki) (6)

completely determine Wl such that

Wl = span{Wlj(n) : j = 1, . . . , Ml}.

As an important feature for spatial adaptivity, it can be shown (Li, 1999) that
under suitable conditions Wlj(n) is localized near nj and the degree of localization
is proportional to the bandwidth of Gl(n · nlj).

Because Dl(n) can be expressed as a linear combination of the SWs that
characterize Wl, T1(n) in (5) has an equivalent SW representation

T1(n) =
ML∑

j=1

βLjGL(n · nLj) +
L−1∑

l=1

Ml∑

j=1

γljWlj(n). (7)
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In commonly-used wavelet terminology, the βLj in (7) can be considered as smooth
coefficients and the γlj as detail coefficients. These coefficients can be computed
from the β1j in (2) by a recursive algorithm (Li, 1999).

In the SW representation (7), a spherical field is decomposed into multi-
scale components which are orthogonal with respect to the scales. This multiscale
decomposition makes the SW representation a potentially useful tool in many
applications such as compressing spherical data, detecting local anomalies, and
multiscale dynamic modelling.

3 Networks and Bandwidth of SBFs

When we investigate the potential of the multi-scale SW representation for a
climate field, the appropriate choice of networks Nl and SBFs Gl(x) are required
to describe the field effectively.

3.1 THE DESIGN OF NETWORKS

In this section, we suggest some schemes to choose the nested networks Nl sys-
tematically for performing the bottom-up design approach. Our network design
depends only on the location of data and the type of grid which is predetermined
without considering geophysical information.

Before explaining the steps of network design, we introduce two types of grid: a
standard grid and Göttelmann’s grid. Each grid type has a regular and a reduced
grid. The reduced grid is designed to overcome the regular grid problem of a strong
concentration of points near the poles. But since the network is selected by the
relation of data-observing sites and a grid type, as will be mentioned later, we
can not assure that the reduced grid produces networks that can better represent
spherical fields. Let us define [0, 2π] as the range of longitude and [0, π] as the
range of latitude to obtain grid points. Then, by simple transformation, all grid
points can be located on [−180◦, 180◦] as longitude and [−90◦, 90◦] as latitude.

3.1.1 Standard Regular Grid
For l ∈ N, we define the index set

Ks
l := {(i, k) : k = 0, 1, . . . , 2l; i = 0, 1, . . . , 2l+1}, (8)

where l is the index of level, i is the index of grid point of longitude and k denotes
the index of grid point of latitude. The regular grid induced by the index set in
(8) is defined

T s
l := {(φi,l, θk,l); (i, k) ∈ Ks

l }, (9)

where grid points of longitude, φi,l = i π
2l and grid points of latitude, θk,l = k π

2l .
Obviously, the sequence {T s

l }l∈N of grids is hierarchical: T s
l ⊆ T s

l+1 for all l ∈ N.
For the simplest example, let l = 1, the grid T s

1 is

T s
1 := {(φi,1, θk,1); (i, k) ∈ Ks

1},
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where φi,1 = {0, π
2 , π, 3π

2 , 2π}, θk,1 = {0, π
2 , π} and Ks

1 = {(i, k) : i = 0, 1, 2, 3, 4; k =
0, 1, 2}.

3.1.2 Standard Reduced Grid
The index set Ks,r

l for reduced grid is

Ks,r
l := {(i, k) : k = 0, 1, . . . , 2l; i = 0, 1, . . . ,

2l+1 − 2rs
k,l

2rk,l
+ 1} ⊆ Ks

l , (10)

where the control parameter for dropping grid points according to latitude level,
rs
k,l is defined to be

rs
k,l =






0, π
4 ≤ θk,l ≤ 3π

4

l − log2(πk)�, 0 < θk,l < π

4

l − log2(π(2l − k))�, 3π

4 < θk,l < π
l − 1, θk,l = 0, π

(11)

Here 
x� denotes the largest integer less or equal to x. The reduced grid is given
by

T s,r
l := {(φi,l, θk,l); (i, k) ∈ Ks,r

l } ⊆ T s
l , (12)

where grid points of longitude, φi,l = i2rs
k,l π

2l and grid points of latitude, θk,l = k π
2l .

3.1.3 Göttelmann’s Regular Grid
The index set KG

l is defined as

KG
l := {(i, k) : k = 0, 1, . . . , 2l+1; i = 0, 1, . . . , 2l+2}. (13)

By setting grid points of longitude and grid points of latitude

φi,l = i
π

2l+1
and θk,l = k

π

2l+1
,

we obtain the grid T G
l := {(φi,l, θk,l); (i, k) ∈ KG

l }. The grid T G
l is the same as

T s
l+1

3.1.4 Göttelmann’s Reduced Grid
Let grid points of longitude, φi,l = i2rG

k,l π
2l+1 and grid points of latitude, θk,l =

k π
2l+1 . The control parameter, rG

k,l is defined to be

rG
k,l =






0, π
4 ≤ θk,l ≤ 3π

4

l + 1 − log2(πk)�, 0 < θk,l < π

4

l + 1 − log2(π(2l+1 − k))�, 3π

4 < θk,l < π
l − 1, θk,l = 0, π

(14)

Thus, the reduced grid is given by

KG,r
l := {(i, k) : k = 0, 1, . . . , 2l+1; i = 0, 1, . . . ,

2l+2 − 2rG
k,l

2rG
k,l

+ 1} ⊆ KG
l .
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T G,r
l := {(φi,l, θk,l); (i, k) ∈ KG,r

l } ⊆ T G
l . (15)

The grid T G,r
l is similar to the grid T s,r

l+1. But the grid points near the two poles
are different from T s,r

l+1.
Figure 2 illustrates the grid points obtained from Göttelmann’s grid.

Figure 2. Grid points of Göttelmann’s grid for l = 2. (a) Regular grid points;
(b) Reduced grid points.

Our network is designed systematically based on the location of data and the
type of grid. As the resulting network, we expect that in each level (resolution)
NL or Ml, stations are distributed over the sphere as uniformly as possible, and
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stations between two levels are not too close so that we can apply SBFs with
different bandwidths to these stations. Here are the steps of network design.

1. Obtain the center points ci of each grid box from the grid T1 which has the
smallest number of grid points. Form a territory (circle) Di around a given
center point. Thus the number of territories should be equal to the number of
center points. Then compute the geodesic distance from locations of data dj ∈
Di within a territory to the center point of the territory, {arccos(θ(ci · dj))}
for i = 1, 2, . . . , NL and find the location of data which has the minimum
distance to the center point. A network with sparsely located stations, NL is
made up from these locations.

2. From the next grid T2, compute the center point ci of each grid box. As
with step 1, draw a territory (circle) Di around a given center point and
find the closest station to the center point within its territory, Di, for all i.
Thus, the set M∗

L−1 is obtained from the selected stations. Then compare
these stations with stations in NL. That is, compute the geodesic distance
from the stations in M∗

L−1 to the stations in NL. If some distance between
two locations is closer than a criterion, the location is deleted from M∗

L−1.
After the comparison procedure, the network ML−1 is formed. Note that
NL−1 = NL ∪ML−1.

3. Repeat step 2 for remaining data and grid points from Tl for l = 2, 3, . . .
until the longitude of grid box from Tl becomes 5 degrees. Finally, N1 =
NL ∪ML−1 ∪ · · · ∪M1 is obtained.

For performing the above steps, we need to discuss the territory and criterion for
each step. The radius of territory should not be too large to reduce the possibilities
which select stations located far from the center point of each grid box. Because
when there are no stations in a given grid box, and the radius of territory is too
large, a station in another grid box can be selected as closest stations to the center
point of this grid box.

Figure 3 shows a set of networks with 6 levels for the stations which recorded
the surface air temperature of 1973. These networks are obtained from the standard
regular grid.

3.2 THE CHOICE OF BANDWIDTHS

We now discuss the scale parameter (bandwidth) of SBFs to be employed for each
network NL,ML−1, . . . ,M1.

First of all, let us look at the scale parameter of 1-d wavelets defined on a real
line in order to preview the bandwidth of spherical wavelets and to understand the
procedure of the choice of bandwidths to be explained later. From the definition
of 1-d wavelets

ψj,k(t) = 2−j/2ψ

(
t − 2jk

2j

)

,
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Figure 3. Networks for 1973 surface air temperature stations. (a) Network M1;
(b) Network M2; (c) Network M3; (d) Network M4; (e) Network M5; (f) Network
N6.

we know that the scale parameter j is decided systematically. That is, as the
scale parameter j increases 1 unit every time, the length of support of the wavelet
increases twice as much as before. Thus there is a relationship between the scale
parameter and the length of the wavelet.

Similarly, we suggest that the bandwidths ηl of SBFs be chosen such that

ηL−l = e−ρl , l = 1, 2, . . . , L − 1, (16)

where ρl = ρ∗

2l . The ρ∗ can be obtained from the bandwidth of the smallest network
level L, ηL by ρ∗ = − log ηL. As mentioned before, the networks are related to a
grid. As the level l decreases, a grid box related to the level decreases one fourth
in size (both intervals of latitude and longitude decrease by a half). Thus, the area
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covered by a SBF decreases as the level l decreases. That is the reason we use the
(16) bandwidths ηl. Hence, if the bandwidth ηL of the sparsest level L is decided,
all bandwidths can be obtained systematically.

Now let us discuss how we can get the bandwidth ηL. From simple geometry,
the surface area covered by surface mass distribution with variance σ2 over unit
sphere Ω is 2π(1 −

√
1 − σ2). Since the total surface area of the unit sphere is 4π

and the variance of SBF or spherical wavelet from Poisson kernel is σ2 =
(

1−η2

1+η2

)2

,

the surface area covered is 2π

(

1 −
√

1 −
(

1−η2

1+η2

)2
)

. Note that as the bandwidth

of SBF is close to 0, the surface area covered becomes 2π. In this case, we need two
stations to cover the whole sphere Ω. In another extreme case, as the η is going to
1, the surface area covered is close to 0. To cover the whole sphere Ω, we need ∞
stations. Under the assumption that the stations are distributed equally over the
sphere, it can be easily known how many stations are needed in order to cover the
whole sphere with fixed η and how large the bandwidth of SBF is needed to cover
the whole sphere when the number of stations are fixed from the following

# of stations = n =
2

1 −
√

1 −
(

1−η2

1+η2

)2
and η =

√
1 − an

1 + an
,

where an =
√

1 −
(
1 − 2

n

)
. Stations in the sparsest network NL based on any grid

scheme are almost distributed equally. Thus, from the above equations, we can
decide the bandwidth ηL. For example, we decide SBFs with 6 different bandwidths
to be employed at networks with six levels in Figure 3. The result is that η1 =
0.9596 for M1, η2 = 0.9209 for M2, η3 = 0.8482 for M3, η4 = 0.7194 for M4,
η5 = 0.5176 for M5 and η6 = 0.2679 for N6.

4 Experimental Study

4.1 THE CHOICE OF COEFFICIENTS

The coefficients β1 = vec{β1j} of (2) can be obtained in many ways. The simplest
example is observations t = vec{T (nj)}. Once the T1(n) is obtained, all global
fields Tl(n) for l = 2, . . . , L and detail fields Dl(n) for l = 1, 2, . . . , L − 1 is
decided by the multiresolution analysis. Thus, whether or not the T1(n) has a
good performance is very important for a good representation.

We now discuss the interpolation methods for obtaining coefficients β1. In
(2), because the interpolation matrix G1 = [Gl′ (ni · nl′ j)]i,j for l

′
= 1, . . . , L

is invertible, we can get β̃1 = vec{β̃1j} = (GT
1 G1)−1GT

1 t by the least squares
method. The solution β̃1 gets values through all data points at the observation
sites. Thus T1(n) is an interpolation function. As another example, let us consider
the interpolation method by penalized least squares. The penalized least squares
solution is β̃

p

1 = vec{β̃p
1j} = (GT

1 G1 + λQ)−1GT
1 t. The λ should be selected
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appropriately. Note that the penalized least squares becomes the ridge regression
method by setting Q = I.

4.2 MULTISCALE SW REPRESENTATION FOR A TEMPERATURE FIELD

The multiscale SW representation for the 1973 winter global temperatures is
displayed in Figure 4. Figure 5 shows spherical smoothing spline estimate. As
expected, the SW representation captures a global pattern of Northern Hemisphere
winter mean temperatures across the world with local activities in some regions
(e.g, Siberia as the coldest spot, North-West region of Australia as the hottest).
The spine estimate, on the other hand, trends to be uniformly smooth across the
globe. Notice that for multiscale SW representation, the standard regular grid
with six levels is adapted for networks and coefficients β1 is obtained from the LS
interpolation method. For spherical smoothing spline method, cross-validation has
been used for selecting smoothing parameter.

Figure 4. Multiscale SW representation for 1973 winter global temperatures.

5 Conclusions

To apply the multiscale SW representation effectively, the appropriate choice of
bandwidth of SBFs and networks is necessary. In this paper, we have proposed
methods to choose the nested networks Nl and the scale parameter (bandwidth)
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Figure 5. Smoothing spline representation for 1973 winter global temperatures.

of SBFs to be employed for each network systematically. Our approach depends
only on the location of data and the type of grid which is predetermined without
considering geophysical information. Bandwidths of SBFs are decided on by a
systematic method to make the best use of the advantage of wavelets which has a
fast algorithm. Based on the above practical issues for implementation of multiscale
SW, we have investigated the potential of the multiscale SW representation for
the surface air temperature data.

In the experimental study for global surface air temperatures, we have shown
that multiscale SW estimators are very powerful for detecting local activities as
well as extracting global trends of temperature fields that cannot be easily detected
by the traditional spherical smoothing spline method.

As related future researches, a network modified by geophysical information
should produce a more effective multiscale SW representation. We can expect that
the bandwidth with more adaptable method such as generalized cross-validation
(GCV) or cross-validation (CV) improves the performance of the multiscale SW
representation.
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Abstract. This study presents a multivariate geostatistical approach for the mapping of 
atmospheric deposition at the scale of the entire French territory, including precipitation 
as an auxiliary variable. By applying cokriging, deposition maps were produced with the 
corresponding uncertainty and with an improved level of detail in comparison to 
previous studies. 

1 Introduction 

At the beginning of the eighties, central European forests showed unusual crown 
deterioration described as a “new type of forest decline”. At that time, suggestions 
linked this deterioration mainly to air pollution. The negative impact of acid deposition 
on the functioning of several ecosystems constitutes a reality (Johnson and Lindberg, 
1992; Draaijers et al., 1997). Due to the limited capacity of forest ecosystems to balance 
acidic atmospheric inputs, in the nineties, the concept of “critical loads” was raised as a 
tool to elaborate protocols for pollutant emissions reductions in Europe. In the last 
decade, in France (Party et al., 2001) and in other countries (Posch et al., 2001), 
important efforts were performed for the characterisation and mapping of the critical 
loads for acidity. In order to obtain such information, it was essential to develop a 
simple and reliable methodology to produce accurate maps of the atmospheric 
deposition in order to identify the sites for which critical loads are in exceedance.

Within the framework of the methodology developed by the ONF (Office National des 
Forêts), the monitoring of ecological parameters is achieved via the RENECOFOR 
network (REseau National de suivi à long terme des ECOsystèmes FORestiers). 
Chemical analyses of atmospheric deposition have been conducted since 1993 using  the 
sub-network CATAENAT (Charge Acide Totale d’origine Atmosphérique sur les 
Ecosystèmes NAturels Terrestres). The objectives of this measurement campaign are the 
monitoring of: (1) potential evolutions of atmospheric deposition in time and (2) the 
spatial distributions of this deposition for France in relation to critical loads for acidity. 
Using six years worth of measurements from the CATAENAT network has allowed us 
to develop deterministic models for deposition (Croisé et al., 2002) with only a few 
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explanatory variables (precipitation, altitude and period of the year). The application of 
this method has resulted in the first reliable deposition maps for France. 

The use of geostatistical methods was motivated by accounting for spatial correlation 
and by producing deposition maps for all of France and not only for discrete locations as 
in previous attempts (Croisé et al., 2002). Furthermore, the use of geostatistical methods 
constitutes a valuable novel alternative for mapping deposition within a probabilistic 
framework. The application and evaluation of these methods for the spatial 
characterisation of atmospheric deposition is the subject of this study. 

2 Multivariate geostatistical mapping 

Mapping of a regionalised variable (Re.V.) such as atmospheric deposition requires the 
interpolation of the data at block centres (i.e., surface centres in 2D) of a regular grid. 
Since, the Re.V. is considered to be a realisation of a random function, the interpolation 
method applies an estimator obtained from a linear combination of the different random 
variables (R.V.) representing the data: 

)(xZ)(sZ i

n

1

i
0

*
i

i

0

N

1i

where:

)(sZ 0
*
i0

 : estimator of the main R.V.,  i0,  for the bloc 0s
i  :  weights (unknowns) 

)(xZi  : R.V. representing main and auxiliary Re.V. 

At the data level, ni represents the number of values for a given Re.V. of index i. N 
corresponds to the number of Re.V. The weights are obtained by solving the linear 
equations of the ordinary cokriging system (Wackernagel, 1995): 

0

0
ii

n

1

0iii

n

1
ij

j
N

1j

iiif0

iiif1

)s,(xµ)x(x

0

i

0

j

where:

)x-(xij
: variograms and cross variograms

0ii  :  mean variograms and cross variograms 

iµ  :  Lagrange multipliers. 
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With the advantage of providing the cokriging variance which quantifies the spatial 
uncertainty associated with the interpolation: 

)s,(sµ)s,(x)(s 00iii

n

1
0ii

j
N

1i
0

2
ck 00

i

0

where:

)(s0
2
ck  : cokriging variance for the bloc 0s .

Prior to the cokriging stage, the experimental variograms and cross variograms are 
estimated from the data. Then, they are fitted semi-automatically by least squares using 
authorised functions within the framework of the linear model of coregionalisation 
which requires particular algebraic conditions for its parameters to be satisfied (Chilès 
and Delfiner, 1999). When more than one auxiliary variable is considered, an iterative 
algorithm by Goulard (1989), implemented in the Isatis (2002) software, is applied for 
model fitting. 

The model performance regarding the contribution of auxiliary variable(s) is evaluated 
by cross validation (Wackernagel, 1995) using the following criteria: 

0i
n

1n

1 2
i)(

*
i xZxZMSE

00

0i
n

1
2

)(ckn

1
2

i)(
*
i xZxZ

VR 00

Where:
MSE  : mean square error 

)(xZ )(
*
i0

 : estimator of the main R.V. at measurement site x

)(xZi0
 : data value at measurement site x

VR  : variance ratio 
2

)ck( : cokriging variance for measurement site x .

3 Mapping of atmospheric deposition 

3.1 DATA 

The ONF (Office National des Forêts) is responsible for the monitoring of ecological 
parameters using the RENECOFOR network (REseau National de suivi à long terme des 
ECOsystèmes FORestiers). Chemical analyses of atmospheric deposition have been 
conducted since 1993 using the 27 stations of the sub-network CATAENAT (Charge 
Acide Totale d’origine Atmosphérique sur les Ecosystèmes NAturels Terrestres) all 
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throughout France (Figure 1). All sites are located in forested areas, out in the open, and 
rather far away from point emission sources. The distribution of the measuring sites 
provides for coverage of all forest regions in France. The altitude of the sites ranges 
between 5 and 1400 m a.s.l.. Representative weighted samples of deposition were 
obtained by mixing weekly samples over a period of four weeks for each site. For these 
samples, the major anions (S-SO4, N-NO3 and Cl) and cations (N-NH4, Ca, Mg, K and 
Na) were analysed as well as the protons (H).

In parallel to deposition sampling, precipitation was measured at each of the 27 sites. In 
addition, daily precipitation data were also available for 2561 stations of the 
meteorological network of Météo-France (Figure 1). 

Figure 1.  Geographical distribution of the CATAENAT measuring sites for deposition 
and precipitation (left) and of the Météo-France precipitation stations (right). 

The data used in this study were recorded over a six year period between 1993 and 
1998.

3.2 REGIONALISED VARIABLES

For the data sampled at the 27 sites of the CATAENAT network, 11 regionalised 
variables were considered for the six year period: the annual mean deposition for nine 
ions (S-SO4, N-NO3, Cl, N-NH4, Ca, Mg, K, Na and H), the annual mean precipitation 
(P) and the altitude of the measurement stations (Z). In addition, annual mean 
precipitation and altitude (below 1400 m) data taken from the Météo-France network 
were available for 2561 stations. 

The deposition variables constitute the main variables; precipitation and altitude are 
taken as auxiliary variables. The main variables are in partial heterotopy with respect to 
all sampling locations; i.e., these variables are only available at 27 locations as opposed 
to precipitation and altitude which were measured at all 2588 stations (Table 1). 
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3.3  VARIOGRAMS 

The statistics of the 11 main and auxiliary variables are given in Table 1. For the 11 
variables, 11 experimental variograms are calculated as well as 19 experimental cross 
variograms corresponding to the selected pairs; i.e., one main variable (deposition) 
associated with one of the two auxiliary variables (precipitation or altitude).

Variable Minimum Maximum Mean Std. dev. Variance Nb.* Network
1 : S-SO4 3.7 kg/ha/yr 15.9 kg/ha/yr 6.7 kg/ha/yr 2.4 kg/ha/yr 5.8 (kg/ha/yr)2 27 CATAENAT

2 : N-NO3 1.8 kg/ha/yr 6.9 kg/ha/yr 3.5 kg/ha/yr 1.2 kg/ha/yr 1.4 (kg/ha/yr)2 27 CATAENAT
3 : Cl 3 kg/ha/yr 84 kg/ha/yr 21 kg/ha/yr 22 kg/ha/yr 496 (kg/ha/yr)2 27 CATAENAT
4 : N-NH4 1.9 kg/ha/yr 10.9 kg/ha/yr 5.0 kg/ha/yr 2.1 kg/ha/yr 4.4 (kg/ha/yr)2 27 CATAENAT

5 : Ca 2.6 kg/ha/yr 15.1 kg/ha/yr 6.0 kg/ha/yr 3.3 kg/ha/yr 11.0 (kg/ha/yr)2 27 CATAENAT
6 : Mg 0.2 kg/ha/yr 6.6 kg/ha/yr 1.7 kg/ha/yr 1.7 kg/ha/yr 3.1 (kg/ha/yr)2 27 CATAENAT
7 : K 0.6 kg/ha/yr 3.8 kg/ha/yr 1.6 kg/ha/yr 0.7 kg/ha/yr 0.4 (kg/ha/yr)2 27 CATAENAT

8 : Na 2 kg/ha/yr 48 kg/ha/yr 12 kg/ha/yr 13 kg/ha/yr 165 (kg/ha/yr)2 27 CATAENAT
9 : H 21 g/ha/yr 353 g/ha/yr 115 g/ha/yr 67 g/ha/yr 4462 (g/ha/yr)2 27 CATAENAT

10 : P 452.0 mm 2765.9 mm 959.4 mm 289.9 mm 84048.8 mm2 2588 CATAENAT
+

Météo-
France

11 : Z 1 m 1400 m 309 m 300.8 m 90507 m2 2588 CATAENAT
+

Météo-
France

*Nb.: number of measurement sites/stations. 

Table 1.  Statistics for the main and auxiliary variables 

Figure 2. Variogram (Z, P and SO4) and cross variogram (SO4 – P; SO4 – Z; P – Z) 
fitted to the experimental variograms and cross variograms (crosses) using the linear 
model of coregionalisation. The dashed horizontal line corresponds to the 
variance/covariance of the data. 
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The observed shapes of the experimental variograms indicate correlated and cross-
correlated spatial behaviours, respectively, for the variables as well as for the variable 
pairs studied (Figure 2); i.e., with increasing distance, the variograms and cross 
variograms display a growth without apparent stabilisation at the working scale of about 
600 km. Such behaviours were observed for all deposition variables. Despite the small 
number of stations, the correlated spatial behaviours shown by the experimental 
variograms and cross variograms were consistent with deposition patterns (Croisé et al., 
2002). These results allow the application of geostatistical methods for the mapping of 
atmospheric deposition. 

The fitting of all variograms and cross variograms was carried out in the framework of 
the linear model of coregionalisation (cf. section 2) using a nested variogram composed 
of nugget effect, and spherical and power components. Therefore, three models are 
available for each deposition variable: a univariate model for deposition and two 
multivariate models with auxiliary variables (deposition + precipitation; deposition + 
precipitation + altitude). 

3.4. CROSS VALIDATION 

The best model should present the smallest mean square error and a variance ratio as 
close as possible to unity (cf. section 2). Cross validation was carried out for the nine 
univariate models as well as for the 18 multivariate models with auxiliary variables 
(Table 2).

Main variable1 Auxiliary Variable(s) MSE

[kg/ha/year]2
VR

 [-] 
Remark

S-SO4 - 6.3 1.3 - 
S-SO4 P 3.5 1.0 -
S-SO4 P + Z 3.6 1.3 - 

N-NO3 - 1.6 1.7 - 
N-NO3 P 0.7 1.0 -
N-NO3 P + Z 0.7 1.2 - 

Cl - 356 1 - 
Cl P 341 1 -
Cl P + Z 304 1 kriged values < 0 

N-NH4 - 3.3 1.2 - 
N-NH4 P 2.7 1.3 -
N-NH4 P + Z 2.7 1.3 - 

Ca - 7.5 1.3 - 
Ca P 7.6 1.6 -
Ca P + Z 7.2 1.5 - 

Mg - 2.0 1.3 - 
Mg P 1.9 1.4 -
Mg P + Z 1.8 1.5 kriged values < 0 

K - 0.5 1.6 - 
K P 0.4 1.5 -
K P + Z 0.4 1.5 - 

Na - 122 1 - 
Na P 101 1 -
Na P + Z 97 1 kriged values < 0 

H - 53112 2 - 
H P 30332 1 -
H P + Z 30332 1 - 

1in grey, the selected models; 2units are [g/ha/year]2

Table 2. Cross validation results. 
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The results show that in general the multivariate model (deposition + precipitation) 
delivers the best cross validation scores. Some models present better scores in the 
presence of two auxiliary variables. However, when applying these models for mapping, 
some of the cokriged values, in zones with low altitude and poor atmospheric 
deposition, can become negative. These results, although being statistically acceptable, 
are physically erroneous. Consequently, these multivariate models were disregarded. 

3.5 COKRIGING OF ATMOSPHERIC DEPOSITION 

The nine deposition variables were interpolated by cokriging using the multivariate 
models (with precipitation) at the centres of 10 x 10 km blocks of a regular grid 
covering all of France. An estimate of the value of atmospheric deposition and the 
cokriging standard deviation were obtained for each block of the grid.

The size of the neighbourhood for the cokriging was determined by cross validation. 
The applied neighbourhood contains 32 measurement sites and stations, which 
corresponds to 48 data values. Thus, the neighbourhood includes the 16 CATAENAT 
sites closest to the block to be estimated (i.e., 16 values of deposition and 16 values for 
precipitation) as well as 16 Météo-France stations for which solely values of 
precipitation are available. No special treatment was applied for Corsica; it was included 
in the dataset for cokriging, given the observed behaviour for the deposition variograms, 
it was considered as acceptable. 

3.6 MAPPING OF ATMOSPHERIC DEPOSITION 

Using the interpolated values (and their standard deviations) mapping is performed for 
the deposition variables for all of France (Figure 3). The obtained maps show that in 
most cases, the contribution of the auxiliary variable precipitation brings about an 
improvement in the deposition maps in terms of: (a) an enhanced level of detail in the 
description of spatial patterns and (b) a decrease in spatial uncertainty for the cokriged 
values as is generally attested by the cross validation results (cf. Table 2: lower MSE 
values for cokriging). 

4 Conclusions and perspectives 

The applicability of multivariate geostatistical methods was demonstrated for the 
mapping of atmospheric deposition at the scale of the whole of France. The obtained 
results are convincing despite the small number (27) of available measurement sites 
from the CATAENAT network. In particular, the application of cokriging has enabled 
the production of deposition maps with an improved level of detail in comparison to 
previous studies. 

Spatially structured behaviours were identified and quantified for the nine atmospheric 
deposition variables analysed at the scale of France. A linear model of coregionalisation 
was fitted using auxiliary variables in order to characterise the spatial variability of 
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atmospheric deposition. Precipitation was selected, by cross validation, as the auxiliary 
variable, as it showed a significant contribution for the majority of interpolations by 
cokriging.

Figure 3. Map of S-SO4 by kriging (above) and map of S-SO4 with cokriging using 
precipitation (below).
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Spatial cross correlations between the different deposition ions were not analysed in this 
study. However, their contribution should be evaluated in geostatistical terms given the 
statistical correlation results obtained by Croisé et al. (2002).

Additional meteorological data, either other types of measurements or results from 
numerical models, could be applied in order to improve mapping of atmospheric 
deposition for France. Indeed, Geostatistics offer multivariate methods (e.g., the external 
drift) that are applicable for variables with no common sample locations. 

Finally, the issue of exceedance of critical loads for acidity could be answered in 
probabilistic terms. By using conditional simulation techniques, probability of 
exceedance, for a given threshold, could be estimated for atmospheric deposition and 
mapped at the scale of France. 
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Abstract. Geophysical methods, for instance seismic cross-hole tomography, are 
fundamental investigation tools in geotechnical site characterization. Tomographic 
inversion procedures allow associating an average P and/or S seismic wave velocity to a 
set of cells and, by “contraction”, to their central points. It is then possible to deduce soil 
elastic modulii necessary to geotechnical design. Geostatistical tools may be a useful 
methodology in modeling the spatial variability of such regionalized geophysical and 
geotechnical variables as well as in their final mapping. However there are various 
aspects that shall be taken in consideration. In this study geostatistical and Fourier 
analysis procedures are applied to data resulting from a seismic cross-hole tomography 
survey using three boreholes defining two sections, in a site of heterogeneous granite 
weathered profile of Porto area, in the framework of the city metro construction. 
Mapping of both shear modulus and Poisson ratio, obtained with different interpolation 
methods and strategies, are presented and discussed, including their related estimation 
and “contraction” variances. It is also discussed the application of Fourier analysis 
aiming namely at quantifying increases or decreases of variability due to changes of data 
frequency content in estimation, as well as an inference of the necessary sampling rate 
capable of detecting high frequency events, i.e. a measure of the possibility of 
recovering the “original” regionalized continuous function through bandlimited 
interpolation, within a certain error, based on Shannon sampling theorem. 

1 Introduction 

Geophysical site characterization with geotechnical purposes generate spatially 
distributed discrete data in which are based the final “continuous” maps. Several 
interpolation methods and strategies may be used to produce such maps/images. It is 
important to obtain accurate models of the underground reality as well as having the 
possibility of assessing their degree of accuracy/uncertainty.
Geophysical methods, for instance seismic cross-hole tomography, are fundamental 
investigation tools in geotechnical site characterization. Soil stiffness properties, namely 
dynamic shear modulus, G0, and Poisson ratio, µ may be inferred, under very low strain 
levels, from measured shear (S) and compressive (P) waves velocities. The G0 and µ 
data used in this study were obtained according to the following generic stages: i) 
application of tomographic inversion procedures to field data acquired in a cross-hole 
tomography seismic survey, using three boreholes defining two rectangular vertical 
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adjacent sections, in a site of heterogeneous granite weathered profile of Porto area, in 
the framework of the city metro construction (Pessoa, J.M., et al. 2002), ii) partition of 
the two sections in square or rectangular cells having each one associated an average P 
or S seismic wave velocity value; iii) contraction of each cell towards its midpoint; iv) 
soil elastic modulii necessary to geotechnical design are then deduce from P and S wave 
velocities.
Geostatistical tools may be a useful methodology, namely, in modeling the spatial 
variability of such regionalized geophysical/geotechnical variables as well as in their 
final mapping. However there are aspects that shall be taken in consideration like the 
support and dispersion issue, unusual increase of variability due to support contraction, 
anisotropic behavior and possible departures from stationarity.
In this study geostatistical and Fourier analysis procedures are applied to such data and 
different interpolation methods and strategies are herein presented and discussed. 
Namely it is suggested the application of Fourier analysis aiming at quantifying 
increases or decreases of variability, i.e. a measure of the possibility of recovering the 
“original” regionalized continuous function through bandlimited interpolation, within a 
certain error, based on Shannon sampling theorem (Carvalho, J. and Cavalheiro, A, 
2000). Fourier analysis in concert with distribution theory is an adequate mathematical 
tool to deal with both stationary and non-stationary phenomena. 
Two types of G0 and µ data sets are considered, differing in size: one with all the 
available values and a partial one with half the values (the odd ones).
Several interpolation algorithms written in Matlab language were used in this study. 

2 Exploratory Data Analysis 

A previous exploratory data analysis was undertaken in order to characterize the studied 
parameters based on their respective sample distributions as well as detecting expected 
existing spatial anisotropies and heterogeneities, trend(s), possible mixed populations 
and lack of homocedasticity. Data sets with all the values and other partial ones with the 
odd values will be considered.
Figures 1 and 2 show the location points, for the whole and partial referred data sets, 
corresponding to the two adjacent tomographic vertical sections defined by three 
boreholes (one centrally located and the two others on each side of the diagrams). 

Figure 1. Data location: whole set. Figure 2. Data location: partial set. 

The µ and G0 distributions are very distinct. The first one (Figure 3) is very negatively 
skewed and the other (Figure 4) very positively skewed, both showing no apparent 
mixing of populations.
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Figure 3. µ: histogram. Figure 4. G0: histogram.

In order to identify and define expected existing trends, four procedures were used: one 
based on a first order mean increment function d(h) of the vertical lag distance, h, 
(Chiasson P., 1994). This increment function allows detecting/confirming departures 
from stationarity: in case of stationarity the data values fluctuate around a mean constant 
value and the mean increments d(h) will tend to zero; in presence of a trend the 
increments will tend to increase with lag distance h. For both cases, µ and G0, there is an 
increase of the d(h) function, pointing generically to some departure from stationarity 
(1st order increment function for G0 in figure5). 

Figure 5. G0: 1
st order increment, d(h). Figure 6. G0 along vertical axis.

Another procedure consisting in plotting the 2D data values against the coordinates axis 
(x: horizontal direction; y: vertical direction) and fitting a least square error trend line in 
the respective scatter plots. In figure 6 there is an example of this last procedure, 
showing a not very intense trend for G0, being the one for µ slightly weaker. 
A third procedure, using the Matlab function ”bootstrap.m”, based on the histogram of 
random correlation coefficient sub-samples between depth z (y axis values) and 
respective parameter values (example in figure 7, with 500 randomly taken sub-
samples). If the minor histogram centre class value is greater than zero, then the relation 
between the variables should be non fortuitous, which happens to be the case for both 
studied parameters. 



846 J.M.C.M. CARVALHO AND A.A.T. CAVALHEIRO 

Figure 7. µ: “bootstrap” histogram. Figure 8. µ: moving window for the 
mean.

In addition, the moving window statistics procedure, aims at complementing the 
exploratory analysis namely at detecting heterocedasticity situations. As an example, in 
figures 8 and 9 can be seen the mean moving window contour plots (using Surfer © 
software inverse square distance method) respectively for µ and G0 and in figure 10 the 
variance moving window contour plot for G0. This last type of plot can also be used as 
an additional indicative spatial confidence distribution map for the obtained estimated 
data.

Figure 9. G0:moving window for the 
mean.

Figure 10. G0: moving window for the 
variance.

The results obtained with the partial sets are generically similar, seeming quite 
representative samples of the whole sets. 

3 Structural Analysis 

The structural analysis study allowed characterizing the pattern of directional variability 
of both studied parameters, showing again their distinct behavior. The variogram 
modeling was done using the software Variowin (Pannatier Y., 1996) along directions 0º 
(horizontal), 45º, 90º (vertical) and 135º with a 22.5º and 90º (omnidirectional 
variogram) tolerance angles. 
In the case of µ there is no evidence of presence of a trend. The ellipse of geometric 
anisotropy is depicted by the respective range rose diagram (figure 11) and the 
omnidirectional variogram is in figure 12. 
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Figure 11. µ ranges rose diagramme. 
Figure 12. µ omnidirectional spherical 

variogram model.

The G0 pattern of variability with direction is much less smooth as it can be observed in 
figures 13 to 16. In fact there are two unbounded variograms along directions 90º and 
135º (power model) and two other bounded ones along directions 0º and 45º (spherical 
model).

Figure 13. G0: 0º spherical model. Figure 14. G0: 45º spherical model. 

Figure 15. G0: 90º spherical model. Figure 16. G0: 135º spherical model. 

Along direction 45º there is a discontinuity in the experimental variogram, around 5.5m 
lag, separating a higher and increasing initial part from a lower decreasing zone. This 
fact can be understood by looking at figures 25 and 26 showing G0 estimation maps and 
at the h-scatterplots of G0 values separated by lag 7m, along directions respectively 45º 
and 135º, in figures 17 and 18. 
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Figure 17. G0: h-scatterplot, direction 
45º, lag 7 m. 

Figure 18. G0: h-scatterplot, direction 
135º, lag 7 m. 

The respective variogram surface shows a clear anisotropic behavior (figure 19). 
However, the G0 omnidirectional variogram (figure 20) happens to be bounded and very 
smooth.

Figure 19. G0: variogram surface. Figure 20. G0:.omnidirectional
spherical variogram model.

Based on the obtained generically well behaved variograms and the posterior cross 
validation and estimation results, it was decided not to try to normalize the data as well 
as not removing the identified weak G0 trend.

4 Cross Validation 

In order to evaluate the adequacy of the spatial variability models as well as the quality 
and characteristics of the estimation procedures, three types of cross validation were 
used, one more conventional and the others based on the referred data splitting into two 
data subsets. One of the subsets was used to estimation and the other for error control, 
after estimating globally their values given the respective locations as if they were 
unknown or to estimate a grid identical to the one obtained with the whole set. When 
there is enough data this is obviously a practical way to assess the relative quality of the 
estimation procedures, namely the associated error distributions. In figure 21 can be 
seen an example of this last cross validation procedure, estimating by ordinary kriging 
with a geometric anisotropy variogram model (OK) the whole grid with the odd values 
subset and in figure 22 the histogram of the difference between this last grid values and 
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those obtained using the whole data set. The mean error is 0.0003 and the median 
0.0017. The analyzed frequency content of the two grids is very similar. 

Figure 21. µ: OK estimation map, using 
odd subset. 

Figure 22. µ: histogram of the grid 
differences.

5 Estimation 

The grid estimation, for both parameters, has been achieved using the inverse square 
distance method (herein not discussed), isotropic and anisotropic ordinary kriging (OK) 
and kriging with a trend (KT) and some explorative experiences with sinc bandlimited 
interpolation based in Shannon sampling theorem (Papoulis, A., 1962). 
The present type of situation, regarding the way of obtaining data, implies a change of 
support from the original square or rectangular cells to their midpoints. This fact implies 
a combination of an increase and a decrease of variance resulting from the kriging 
estimation procedures due, respectively, to the decrease of support (“contraction” 
variance) and to the well-known smoothing (high cut filtering) effect of kriging. 

Figure 23. µ: OK estimation map, 
using the whole data set.

Figure 24. µ: OK variance map. 

In figure 23 is the µ OK map of estimates using the whole data set (shown in the figure) 
and in figure 24 the respective kriging variance map. As expected, the higher kriging 
variance values are positioned in the lower left corner of the map in the non sampled 
zone. Otherwise, as a measure of uncertainty, is not very valuable information. 
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Figures 25 and 26 show the G0 estimated maps using respectively kriging with a vertical 
trend model (estimates: mean = 336, range of values =1968; standard deviation = 406.5) 
and ordinary kriging (estimates: mean = 336, range of values = 1400; standard deviation 
= 344). The first option is advantageous considering the larger range of values (lesser 
smoothing effect) and appeared more realistic when confronted with the available local 
borehole geological information. 
Fourier analysis may be an interesting alternative way to understanding and 
characterizing the observable changes in the estimation maps resulting from different 
interpolation procedures, as it will be discussed in item 6.

Figure 25. G0: KT estimation map, 
using the whole data set.

Figure 26. G0: OK estimation map, using 
the whole data set. 

6 Fourier Analysis 

The possibility of accurately reconstructing a sampled spatial and/or time “continuous” 
signal depends greatly on the adequacy of the sampling rate to the frequency content of 
the studied system or in other words to its variability rate. In addition it is also important 
to use interpolating procedures convenient in terms of the estimated data frequency 
content. Bandlimited interpolators may be an interesting alternative to other methods 
providing the data is abundant enough and supposedly regularly sampled.
In figures 27 and 28 can be seen the spectrograms (instant spectra) of the estimated G0

grid values using respectively KT (figure 27) and OK (figure 28). Each vertical coloured 
column cells corresponds to the related space (horizontal axis) window frequency 
content (instant spectra). The analyzed estimated values vectors correspond to sequential 
grid lines having the same length as the Hanning space window filter used to build the 
spectrograms. This way it is possible to identify, located in space, changes in the 
frequency content among different estimated grids. In figure 29 are plotted the more 
conventional Fourier spectra corresponding to the same referred two data vectors (very 
similar frequency content). This last frequency function, giving only the overall data 
frequency content, does not permit to combine spatial and frequency information as the 
spectrogram does but, even so, may be an useful informative tool for data and sampling 
rate characterization. 
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Figure 27..G0: spectrogram, KT. Figure 28. G0: spectrogram, OK. 

Figure 29. G0: KT and OK estimates 
amplitude spectra.

Figure 30. G0: partial odd set and sinc 
bandlimited interpolated result. 

In both figures 30 and 31 can be seen two graphs corresponding respectively to the 
partial odd and whole G0 data sets and the obtained sinc (bandlimited) interpolated data 
along matrix columns having for each case twice the number of values. In figure 32 are 
the Fourier spectra plots of the last two referred data sets. Excepting the edges the 
differences between the graphs are almost indiscernible. Among others, these results are 
quite promising in both space and frequency domain characteristics. 

Figure 31. G0: whole set and sinc 
bandlimited interpolated almost 

indiscernible graphs. 

Figure 32. G0: Fourier spectra of whole 
set (above) and of sinc interpolated set 

(below).
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7 Final Notes 

The present study basically explores combines and compares different tools and 
approaches used to obtain final images in the framework of geophysical/geotechnical 
site characterization.
One of the main generic conclusions appears to be the advantageous combination of 
(geo)statistical tools with Fourier analysis in order to gain a better understanding of the 
processes underlying estimation namely in terms of assessing their related 
characteristics and accuracy/uncertainty. 
The adequacy of the sampling rate to the variability (frequency content) of the studied 
system is a key point closely related to the possibility level of accurately recovering a 
continuous entity from a discrete sample. Fourier analysis may be, also in this context, a 
very informative tool.
In particular, may be mentioned the following facts: i) the structural analysis worked 
very well with the seismic derived data; ii) the obtained graphical output maps based in 
previously kriged grids followed by lowpass interpolation using the Matlab “interp.m “ 
function appears to be of very good quality; iii) the sinc bandlimited interpolation seems 
to be a promising alternative method namely in terms of frequency content preservation. 
It is also worth mentioning the instant spectrum, relating space and frequency content 
information, as an enlightening tool namely in characterizing interpolated grids as well 
as in the understanding of the underlying studied geo-systems.
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Abstract. Climate station data are increasingly being required in gridded formats for 
many purposes in applied and theoretical environmental science. However, spatial 
analyses of climate data are particularly dependent on the location of the samples. 
Rainfall station data at 123 locations for 1943 in the west African Sahel were used as a 
case study to investigate the influence of station location on estimates. The rainfall data 
were de-clustered to remove the influence of their preferential location in the wet, 
western coastal area. The mean annual rainfall for this year of data and for that of years 
between 1931 and 1990 were considerably smaller than the simple arithmetic mean of 
the data. An omni-directional variogram and indicator variograms for several thresholds 
were computed and fitted with conventional models. The rainfall data, de-clustered 
histogram and variograms were used to condition simulated annealing realizations. The 
simulations were compared with maps of rainfall produced with raw data using 
simulated annealing and ordinary kriging, separately. The results showed that in 
addition to the improved representation of variability in rainfall, the use of simulated 
annealing with de-clustered rainfall data provided a new insight into the magnitude and 
spatial distribution of rainfall in the region. 

1 Introduction 

Global analyses of climate change impacts (e.g. Hulme et al., 1999) and temporal 
variation in global and regional climates (Jones and Hulme, 1996; Dai et al., 1997) 
make use of a considerable body of climate station sample data. These data are also 
increasingly being required in spatially complete (gridded) formats for many purposes in 
applied and theoretical environmental science (New et al., 2002). However, spatial 
analyses of climate data are particularly dependent on the location of the samples. For 
example, samples of rainfall (stations) over the west African Sahel (WAS) are typically 
very sparse in some places and dense in others because the network as a whole is 
dependent on each country’s decisions on the fate of their stations (Figure 1). 
Furthermore, estimates made at unsampled locations are complicated by the location of 
the existing samples in the established climatology of a wet, western coastal and dry, 
eastern continental and northern sub-Saharan areas. Perhaps as a consequence of the 
relatively few data or the need for relatively rapid interpolation techniques (e.g., splines) 
to process climate data across the globe, the use of geostatistics has not been widely 
applied in global climatological datasets. Thus, until recently the temporal pattern of 
rainfall was established by a simple arithmetic average of the annual rainfall totals. In 
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the WAS these totals were dominated by rainfall in June, July and August (Figure 2). 
More recent work has attempted to account for the location of rainfall station locations 
in high- and low-valued regions by subtracting the rainfall value from the long-term 
station mean to produce anomalies for which the average is obtained using a distance  

Figure 1 Rainfall station locations in the west African Sahel in 1943. 

Figure 2 Regional statistics of annual rainfall for the west African Sahel. 

weighting scheme (Jones and Hulme, 1996; Dai et al., 1997). The simple arithmetic 
average is likely to be highly susceptible to the clustering of samples, particularly in the 
high-valued western region of the WAS. Because of its variable (location-dependent) 
filtering property, the appearance (smoothness) of kriging maps depends on the local 
data configuration. For irregularly spaced data, the map is more variable where sampling 
is dense than where it is sparse (Isaaks and Srivastava, 1989). Such an effect may create 
structures that are pure artefacts of the data configuration. One solution consists of 
utilizing simulation algorithms which as opposed to kriging algorithms reproduce the 
full covariance everywhere and represent the characteristics of the data and its 
inherently local variability. 
The aim here is to demonstrate the influence of the rainfall station locations and their 
clustered nature on a map of rainfall and to offer a solution that takes into account de-
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clustered data. A single year of rainfall data (123 locations) for the WAS will be used as 
a case study. The first objective is to apply cell de-clustering to the univariate rainfall 
distribution and to characterise the change in the simple arithmetic mean. Secondly, a 
rainfall map will be produced by kriging with an omni-directional variogram and 
compared with a realization from simulated annealing conditioned on the clustered 
histogram, the previous primary variogram and indicator variograms. Finally, 
realizations will be produced using the same simulation approach but with thresholds for 
the indicator variograms transposed from the de-clustered histogram. 

2 Methods 

This section provides a brief outline of each of the techniques used here. All are 
common in the field of geostatistics and further details can be found elsewhere. The 
originality of the paper lies in the combination of methods and its timely application to 
climate data and an innovative transform between the sample cumulative distribution 
function (CDF) and the de-clustered CDF that enables simulated annealing to use the 
thresholds of the indicator variograms for the de-clustered distribution. 

2.1 CELL DE-CLUSTERING 

The study area was divided into rectangular or square cells and the number of cells with 
at least one datum was counted, and so too were the number of data in each cell. Each 
datum location received a weight =1 / (B . nb), where B is the number of cells that 
contains at least one datum and nb is the number of data within each cell (Goovaerts, 
1997, p. 81). The weight gave more importance to isolated locations (Isaaks and 
Srivastava, 1989). Several cell sizes and origins were tried to identify the smallest 
declustered mean because large values of rainfall were preferentially sampled. Erratic 
results caused by extreme values falling into specific cells were avoided by averaging 
results for several different grid origins for each cell size. The de-clustering procedure 
implemented in GSLIB was used (Deutsch and Journel, 1998). 

2.2 OMNI-DIRECTIONAL VARIOGRAM AND INDICATOR VARIOGRAMS 

Latitude and longitude data are not linear measures of distance, especially over large 
areas. However, close to the equator the distortion is very small and assumed to have a 
negligible effect on the variography and mapping. Despite strong gradients in rainfall 
across longitudes and latitudes there were insufficient data to reliably quantify this 
anisotropic spatial variation (Webster and Oliver, 1992). Since, the inter-annual 
variation in rainfall is large there is no basis to use data from other years to better inform 
the variogram and modelling. Consequently, the traditional variogram of rainfall was 
calculated in all directions (omni-directional). There was a strong possibility that the 
systematic change in rainfall across the WAS would induce a trend in the variogram. To 
investigate this possibility and to characterise the spatial structure for different 
magnitudes of rainfall, indicator variograms were calculated. Five percentiles of the raw 
rainfall cumulative distribution function (CDF) (Table 1) were selected and used to 
convert the rainfall at all locations into five indicator sets of data. Values of rainfall that 
exceeded a threshold were assigned a value of 0 whilst all others were set to 1. Those 
thresholds for the raw rainfall CDF were transposed to the de-clustered rainfall CDF to 
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provide five equivalent thresholds (Table 1) for use in the simulated annealing. Several 
conventional models (spherical, exponential, Gaussian and power) were fitted to the 
experimental variograms using weighted least squares in Genstat (Genstat 5 Committee, 
1992). Selection of the best fitted model was based on the smallest square-root of the 
average difference between the observed and predicted values (RMSE). 

Table 1 Model parameters fitted to the omni-directional variogram and indicator 
variograms for selected rainfall thresholds. 

Percentile (%) Omni 10 25 50 75 90 
Raw threshold (mm) - 178.8 302.8 470.0 660.5 930.0
Model fit (RMSE*) 4171.0 0.01 0.01 0.01 0.01 0.01
Model Gauss Gauss Sph Exp Exp Gauss
Range (a) #3.5 #4.60 6.89 +2.37 +1.82 #2.71
Spatially dependent sill (c) 97537.0 0.09 0.19 0.27 0.21 0.07 
Nugget (c0) 11186.0 

0.01 0.01 0.02 0.00 0.02 
De-clustered threshold (mm) - 218.3 472.1 709.2 872.1 1036
*RMSE – Square root of the average of the squared difference between the observed and predicted values 
+Effective range is 3a. #Effective range is 95% of its sill variance. 

2.3 KRIGING AND SIMULATED ANNEALING 

Using GSLIB (Deutsch and Journel, 1998), the parameters of the models fitted to each 
of the omni-directional and indicator variograms of rainfall were used to solve isotropic 
ordinary punctual kriging equations and estimate rainfall every 0.5 degree across the 
WAS. Isarithmic lines were threaded through these estimates.

Simulated annealing (SA) was performed using GSLIB on several combinations of 
simulation conditions to investigate the effect of each on the resulting realization. In all 
cases the raw data and the histogram were used to condition the simulation. Therefore, 
the SA was conducted separately on the raw rainfall histogram and that of the de-
clustered histogram. In the first case, the omni-directional variogram was included in the 
conditional simulation. In the second case that variogram was replaced with the 
indicator variograms. Therefore, the SA was conducted separately on the thresholds for 
either the raw rainfall histogram or those of the de-clustered rainfall histogram. In the 
final case, the indicator variograms and the omni-directional variogram were combined. 
The sill of the omni-directional variogram was standardized to the variance of the 
univariate distribution to ensure that the variance of the initial random image matched 
the spatial (dispersion) variance implied by the variogram model (Deutsch and Journel, 
1998; p. 187). 

3 Results 

The simple arithmetic mean rainfall for the WAS during 1943 was 518 mm. The 
minimum de-clustered mean rainfall was 385 mm for cells of 12 degrees across 
longitudes and of 6 degrees across latitudes (Figure 3). To demonstrate the importance 
of this procedure and to place this difference in mean annual rainfall into the context of 
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long-term data for the same region, the de-clustered mean was calculated for annual data 
between 1931 and 1990. The results are included with the other aggregated statistics in 
Figure 2. The CDFs for the raw data and the de-clustered data are shown in Figure 4. 
The omni-directional and indicator experimental variograms for raw and de-clustered 
rainfall thresholds are shown in Figure 5. Models that fitted the data best in the least-
squares sense are also shown in Figure 5 and the model parameters are 

Figure 3 Results of the de-clustering procedure using different ratios for cells. 

Figure 4 Cumulative distribution functions and histograms for raw and de-clustered 
rainfall data. 
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in Table 1. The Gaussian model was the only one fitted to the omni-directional 
variogram that had a positive nugget value. In general, the models had unexplained 
variation (nugget variance) that was only a small proportion of the sill variance. The 
model fitted to the median rainfall variogram had the largest range and spatially 
dependent variance and those fitted to variograms of smaller rainfall thresholds had 
smaller values in the respective parameters. This pattern was replicated in the models 
fitted to variograms of large rainfall thresholds. 

Figure 5 Experimental variograms and fitted models for raw rainfall data 

The spatial location of the rainfall stations and the total annual rainfall at each station is 
represented by the size of the symbols in Figure 6a.
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Figure 6  Location of the rainfall stations (a) used with ordinary kriging to estimate 
total annual summer rainfall every 0.5  (b) in the WAS. 

The ordinary kriging map of rainfall displays a smooth and continuous surface of 
rainfall across the region. It represents the high magnitude of rainfall in the south-west 
corner and the low magnitude of rainfall in the east and northern parts of the region. It is 
notable that areas where there are more rainfall stations are more variable than those 
with few stations. The maps of simulated annealing for raw data and de-clustered data 
are shown in Figures 7 and 8, respectively. 

Figure 7 Maps produced by simulated annealing every 0.5  conditioned with raw data, 
its histogram and separately by (a) omni-directional variogram, (b) indicator 
variograms for thresholds of the histogram and combined in (c).
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Figure 7 shows a magnitude of rainfall that is considerably larger than that evident in 
Figure 8. The former figure displays spatial structure that resembles more closely the 
map of rainfall produced by ordinary kriging than the latter. Notably, the maps in Figure 
8 (b and c) show a consolidation of the largest rainfall in the south-west which is in 
marked contrast to the much larger spatial distribution of large rainfall in Figure 7. In 
both figures the first panel (a) represents the simulation conditioned with the omni-
directional variogram. The second panel in both figures (b) shows the results of the 
being conditioned with the indicator variograms. The final panels (c) in the figures show 
the simulation conditioned by the omni-directional and indicator variograms. In both 
cases (Figure 7a and 8a) the omni-directional variogram has provided a general level of 
structure to the data. However, there remains a considerable amount of variability in the 
rainfall pattern. In contrast, the indicator variograms in Figures 7b and 8b provided a 
clear structure with much less variability. The combination of omni-directional and 
indicator variograms (Figure 7c and 8c) reduced the rainfall variability further and this 
is particularly evident at the extremes of the rainfall spectrum. 

4 Discussion 

Figure 8 Maps produced by simulated annealing every 0.5  conditioned with raw data, 
the de-clustered data histogram and separately by (a) the omni-directional 
variogram, (b) indicator variograms for thresholds of the de-clustered 
histogram and combined (c). 

for 1943 and that of the de-clustered data characterises the clustered nature of the 
rainfall station locations. This finding is hardly surprising since the stations were not 
designed collectively to represent the region. The impact of de-clustering for this one 
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year of data is placed into context when all years of rainfall data (1931-1990) for the 
region are de-clustered and compared with the simple arithmetic mean and a recent area-
weighted, inverse-distance average statistic (Figure 2). It appears that the downturn in 
rainfall since 1970 is much less reduced in the de-clustered time series in comparison 
with the other statistics. This crude analysis does not account for the changing location 
of the rainfall station network over time which has been recently shown to explain the 
majority of the downturn (Chappell and Agnew, 2004). The histogram of the raw 
rainfall data is approximately normally distributed (skewness 1.17) whilst that of the de-
clustered rainfall data is much more positively skewed (2.54). The univariate 
distribution of rainfall is notoriously positively skewed as a consequence of relatively 
few high magnitude rainfalls in time and space. This contrasts markedly with the much 
larger number of rainfall amounts that are between small to medium in their magnitude. 
Thus, it appears that the clustered nature of the rainfall station locations, close together 
in the wet region, has hidden the true and expected strongly positively skewed 
distribution. This distribution only became evident after the de-clustering procedure.

The location of the rainfall stations also influence the interpolated rainfall map produced 
by ordinary kriging (OK). This is evident in the north-east part of the map where few 
stations are located and the spatial variation of the rainfall is very small. Given the 
‘spottiness’ of semi-arid rainfall (Sharon, 1972) the variation in this area is likely to be 
similar, if not greater, than that found in the wetter, coastal region where many more 
stations are located. The location and magnitude of the rainfall stations cause the 
interpolated map to have the well-established latitudinal bands of rainfall across the 
WAS (Figure 6). It is very likely that alternative interpolators will reproduce a very 
similar pattern of rainfall as that produced by ordinary kriging. 

The maps of rainfall produced using SA conditioned with the raw sample data (Figure 7) 
show considerably more variation throughout the region than that evident in the OK 
map. These maps display some of the spatial structure of rainfall that was evident in the 
OK map. Generally, there is more rainfall in the lower latitudes than in the higher 
latitudes. However, there remains a large amount of rainfall (ca. 1200-1400 mm) in the 
north-east quadrant of the map. This feature is not consistent with the area being 
reputedly the driest in the region. Furthermore, the rainfall amounts simulated in this 
quadrant are similar to those evident across the longitudes between 10-15  latitude. This 
pattern is also unrealistic because it contradicts the accepted climatology for the region 
where the largest rainfall is found in the south-west quadrant. In contrast, the maps of 
rainfall produced using SA conditioned with the de-clustered rainfall data exhibit these 
desirable climatological characteristics (Figure 8). The north-eastern quadrant has 
rainfall that varies between 0 mm and 400 mm but which is predominantly at the lower 
end of that range. The rainfall in the south-western region varies between 200 mm and 
1800 mm but is dominated by amounts greater than ca. 800 mm. 

Since the omni-directional and indicator variogram are the same in both sets of maps the 
single most important factor controlling the spatial distribution of the SA is the 
histogram. It is evident from the distribution of the rainfall in the maps of Figure 8 that 
the de-clustered histogram conditions the simulation to provide better realizations than 
those using raw data. Of secondary importance to the realistic nature of the simulation 
appears to be the use of indicator variograms. The indicator variograms appear to 
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structure the spatial distribution of rainfall at each of the thresholds. On its own the 
omni-directional variogram does not have the same impact on the simulation. However, 
it appears to make an important contribution when combined with the indicator 
variograms. Its impact is to cluster in space similar rainfall amounts and reduce the 
variability in the map (Figure 7c and 8c). This is probably a result of the Gaussian 
model which has a much larger influence at small lags than at larger lags.

5 Conclusion 

The map of rainfall for the west African Sahel (WAS) produced using ordinary kriging 
(OK) displayed a smooth and continuous surface of rainfall across the region. It 
represented the conventional understanding of the spatial distribution of rainfall in the 
region. Simulated annealing (SA) offered an alternative representation of rainfall in the 
region by emphasising the characteristics of the data, the histogram and the spatial 
structure. There were important similarities between the SA map and the OK map of 
rainfall. However, the realizations of the former were largely unacceptable because the 
fundamental characteristics of the regional climatology were not displayed. It is likely 
that the realizations could be improved with the inclusion of, for example, soft ancillary 
information about two latitudinal classes. 

Of probably greater significance to the use of gridded estimates than the difference 
between OK and SA maps is the importance of de-clustering the rainfall data. De-
clustering of the rainfall data made a considerable difference to the univariate histogram 
and to the mean annual rainfall for 1943. When that rudimentary analysis was applied to 
annual rainfall between 1931 and 1990 the time series showed a much reduced 
downturn in WAS rainfall which opposed the conventional understanding, but supported 
recent developments in the importance of rainfall station locations on the aggregated 
regional statistics (Chappell and Agnew, 2004). The de-clustered weights cannot easily 
be used in the OK map without interfering with the unbiasedness conditions for kriging. 
However, the inclusion of the de-clustered histogram in the SA map of rainfall produced 
realizations (using either the indicator variograms alone or combined with the omni-
directional variogram) that were consistent with the regional climatology, but radically 
different to that of the OK map of rainfall and therefore of the accepted spatial 
distribution of rainfall for the region. 

The SA map of de-clustered rainfall across the WAS provided a new insight into the 
distribution of rainfall. This analysis suggests that despite the well-known declustering 
effect of kriging it could not capture the realistic distribution of rainfall because of the 
inherently extreme nature of the clustered climate station data. Furthermore, the 
uncertainty in the data is not considered. Thus, SA offers considerable advantages over 
this traditional approach.
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S-GEMS: THE STANFORD GEOSTATISTICAL MODELING

REMYNICOLAS
Department of Geological & Environmental Sciences, Stanford University,
CA 94305

Abstract. S-GeMS (Stanford Geostatistical Modeling Software) is a new cross-
platform software for geostatistics. Capitalizing on the flexibility of the C++
Geostatistical Template Library (GsTL), it offers the more common geostatistics
algorithms, such as kriging of one or more variables, sequential and multiple-point
simulations. This software was developed with two aims in mind: be reasonably
comprehensive and user-friendly, and serve as a development platform into which
new algorithms can easily be integrated. S-GeMS is indeed built around a system of
plug-ins which allow new geostatistical algorithms to be integrated, import/export
filters to be added, new griding systems to be used such as unstructured grids.

The S-GeMS source code is made available to everyone to use and modify. It
can be freely copied and redistributed.

1 Introduction

Geostatistics is an application-focused field, and as such requires the availability
of flexible software. Yet most of the current geostatistical softwares lack user-
friendliness, and their dated programming designs make it difficult to add new
functionalities.

One of the main programming effort made publicly available is the Geostatis-
tical Software Library (GSLIB) (Deutsch and Journel , 1998). GSLIB is a rich
collection of geostatistics softwares, but as its authors themselves emphasize, it
does not try to provide a user-friendly interface. GSLIB has served the geostatistics
community well, but its now dated implementation design and awkward interface
make it both impractical and an improbable development toolkit.

This spurred the development of a new cross-platform software: S-GeMS, the
Stanford Geostatistical Modeling Software. S-GeMS retains most of the advantages
of GSLIB :

− it is cross-platform: its source code is written in ANSI C++ and it only relies
on libraries available to most operating systems. S-GeMS has been successfully
compiled on Unix, Linux, Windows and Mac OSX.

SOFTWARE:
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A TOOL FOR NEW ALGORITHMS DEVELOPMENT
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− It is possible to run S-GeMS algorithms in batch: hence tasks such as repetitive
sensitivity analysis can be conveniently performed.

− The source code of the algorithms can be freely studied, modified and distrib-
uted. Based on modern programming language designs, many components
of S-GeMS, most notably its geostatistics part, can be integrated into other
software packages.

S-GeMS brings several additional features:

− a sleek graphical user interface, along with interactive 3D visualization
− improved input-output formats, while retaining backward-compatibility with

the GSLIB data file format.
− a genuine development platform: S-GeMS was designed such that its capa-

bilities could conveniently be augmented by the adjunct of plug-ins. These
plug-ins can be used to add new geostatistics algorithms, support new file
formats, or new grid data structures (e.g. faulted tetrahedralized solids).

2 Geostatistics in S-GeMS

2.1 AVAILABLE ALGORITHMS

S-GeMS provides many of the classical geostatistics algorithms, as well as some
recent developments such as multiple-point statistics simulation. Among the geo-
statistics algorithms included in S-GeMS are the following:

Kriging The kriging algorithm in S-GeMS operates on variables defined on a
constant volume support, in 3-D. It allows to account for non-stationarity
of the mean E(Z(u)) of the random function Z(u) being estimated. That
mean can either be known and constant: E(Z(u)) = m (simple kriging),
unknown but locally constant (ordinary kriging), unknown following a trend:
E(Z(u)) =

∑
k akfk(u), or known but locally varying. Goovaerts (1997) or

Chilès and Delfiner (1999) for example, provide a detailed description of
kriging and its variants.

Indicator kriging The indicator kriging algorithm can account for both hard
equality-type data: z(u) = z0 and inequality data: z(u) ∈ [a,b] or z(u) < a
or z(u) > b

CoKriging A kriging which accounts for a secondary correlated variable. The
means of both primary and secondary variables can be either known or un-
known and locally constant.

Sequential Gaussian Simulation Although the theory of Gaussian simulation
requires that each local conditional cumulative distribution function (ccdf)
be estimated by simple kriging, the S-GeMS version of sequential Gaussian
simulation allows for non-stationary behaviors by using other types of kriging
such as ordinary kriging or kriging with a trend.
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Sequential indicator simulation This algorithm can be used to simulate both
continuous and categorical variables. Equality data, inequality data and sec-
ondary data can all be integrated into the simulated model.

Multiple-points statistics simulation Algorithms based on two-points statis-
tics, e.g. all algorithms based on kriging, fail to model complex curvilinear
heterogeneities. Images with very different structures (e.g. channels stretching
from one end of the image to the other, and non-overlapping ellipses of “small”
dimensions) can share the same two-point statistics (i.e. covariance). Two
point-statistics are not enough to fully characterize complex (low-entropy)
structures, and one must rely on higher order statistics (multiple-point statis-
tics) to model these structures.

The snesim algorithm implements a sequential simulation algorithm, called
single normal equation simulation (Strebelle, 2000), which simulates cate-
gorical variables using multiple-point statistics. In snesim, the multiple-point
statistics are not provided by an analytical function but are directly borrowed
from a training image. The training image depicts the type of structures
and spatial patterns the simulated realizations should exhibit, and it needs
not be constrained to any local data such as sampled values or well data.
Training images can conveniently be generated by unconditional object-based
simulations (Tjelmeland, 2000; Holden et al., 1998; Chilès and Delfiner, 1999).

Finally S-GeMS also provides elementary data analysis tools such as histograms,
QQ-plots, scatter-plots, and interactive variogram modeling.

2.2 A SIMPLE S-GeMS SESSION

This section describes a simple S-GeMS session in which the multiple-point algo-
rithm snesim is used to simulate a fluvial depositional environment, composed of
a sand and shale facies, on a 100∗130∗30 Cartesian grid. Facies data are available
along several vertical and deviated wells. Fig. 1 shows the wells and a cross-section
of the simulation grid. Cross-sections of the training image and display options such
as colormap and cross-section selection are shown on Fig. 2.

The S-GeMS session proceeds as follows:

1. Load the data sets, i.e. the well data and the training image depicting the type
of structures to be simulated.

2. Create a Cartesian grid with 100 ∗ 130 ∗ 30 cells, call it simulation grid.
3. Select the snesim tool in the graphical interface and input the necessary

parameters (see Fig. 2). In this example, 10 realizations are generated.
4. Display the result (i.e. the grid created in step 2), see Fig 3.

The parameters used for this run were saved into an XML file reproduced on
Fig. 4.
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Figure 1. S-GeMS main interface, with the well data and a horizontal cross–
section of the simulation grid displayed. The middle panel is used to choose which
object and object property to display

3 S-GeMS as a development platform

S-GeMS was designed to not only meet the practitioner’s needs, but also provide
a framework into which new ideas can conveniently be tested, and new algorithms
easily implemented. S-GeMS provides two main facilities for the development of
new algorithms: scripts written in the Python language (http://www.python.org),
and plug-ins.

3.1 SCRIPTS

Most of the actions performed in S-GeMS with mouse clicks can also be executed
by typing a command. These commands can be combined into a Python script
to execute a complex sequence of operations. Python is a popular and powerful
scripting language which supports most of the features of modern programming
language, such as object-oriented programming, garbage collection or exceptions
handling. Resources on Python can easily be found on the Internet.

Using scripts, it is for example possible to rapidly implement a cross-validation
procedure to select the best variogram model.

3.2 PLUG-INS

New features can be added into S-GeMS through a system of plug-ins, i.e. pieces of
software which can not be run by themselves but complement the main software. In
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Figure 2. The training image is displayed. The middle panel is used to se-
lect various display options, such as the colormap for a given property or which
cross-section to display. Parameters for the snesim algorithm are input in the left
panel

S-GeMS, plug-ins can be used to add new (geostatistics) tools, add new grid data
structures, e.g. faulted stratigraphic grids, or define new import/export filters. It
is compelling to implement new geostatistics algorithms as S-GeMS plug-in for
several reasons:

− the plug-in can take advantage of the input/output facilities of S-GeMS.
Geostatistics algorithms typically require several user-input parameters, for
instance a data set and a variogram model. S-GeMS automatically generates a
graphical interface for parameters input from a simple text description of the
interface; hence no C++ code is required to gather the user’s input. S-GeMS
also provides several solutions for results output: results can be visualized in
the 3D display of S-GeMS and saved into different file formats.

− The S-GeMS development toolkit includes several components generally needed
by geostatistics algorithms such as data structures to represent data in space,
whether organized on a Cartesian grid or unstructured (e.g. a set of un-
organized points), or algorithms to search spatial neighbors on these data
structures.

− All the components of the S-GeMS development toolkit are fully compati-
ble with the Geostatistics Template Library (GsTL) concepts requirements
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Figure 3. Object simulation grid now contains 10 new properties, one for each
realization.

(Remy al., 2002), allowing the immediate use of the GsTL algorithms and
data structures.

4 Conclusion

S-GeMS is a new geostatistics software freely available to the general public. To
the end-user, it provides most of the classical geostatistics tools: data analysis,
variogram modeling, kriging and simulation. User-friendliness of the software is
achieved by a sleek graphical interface and an interactive 3D display of the data and
results. S-GeMS capitalizes on the GsTL library to deliver algorithms performance
often on par or higher than their (GSLIB) Fortran equivalents.

S-GeMS was also designed to be a platform for future developments. The S-
GeMS API associated with the GsTL library provide an attractive framework in
which to implement new algorithms. Owing to a system of plug-ins, these new
algorithms can be conveniently integrated into S-GeMS. It is also possible to use
scripts to perform complex tasks or quickly test new ideas within S-GeMS.

S-GeMS relies on four external libraries, all available under open-source li-
censes:

− Qt (www.trolltech.com) for the graphical interface
− Coin3D and SoQt (www.coin3d.org) for interactive 3D display
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<parameters> <algorithm name="snesim" />

<GridSelector_Sim value="layer 2" />

<Property_Name_Sim value="snesim_facies" />

<Nb_Realizations value="5" />

<Seed value="211175" />

<PropertySelector_Training grid="TI" property="facies (2)" />

<Nb_Facies value="2" />

<Marginal_Cdf value="0.7 0.3" />

<Max_Cond value="100" />

<Search_Ellipsoid value="10 10 3

0 0 0 " />

<Hard_Data grid="well data" property="facies (2)" />

<Use_ProbField value="0" />

<Use_Rotation value="0" />

<Use_Affinity value="0" />

<Cmin value="1" />

<Constraint_Marginal_ADVANCED value="0.5" />

<Nb_Multigrids_ADVANCED value="4" />

<Subgrid_choice value="1" />

<Previously_simulated value="4" />

</parameters>

Figure 4. SNESIM parameters

− GsTL (Remy, 2002) for the implementation of the geostatistics algorithms

The source code of S-GeMS is distributed under a Free Software license, mean-
ing it can be freely copied, modified and redistributed. It is available on the Internet
at
http://pangea.stanford.edu/~nremy/SGeMS
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EVALUATING TECHNIQUES FOR MULTIVARIATE CLASSIFICATION OF 

NON-COLLOCATED SPATIAL DATA 

SEAN A. MCKENNA 
Geohydrology Department, Sandia National Laboratories
PO Box 5800 MS 0735, Albuquerque, New Mexico  87185  USA 

Abstract. Multivariate spatial classification schemes such as regionalized classification 
or principal components analysis combined with kriging rely on all variables being 
collocated at the sample locations.  In these approaches, classification of the multivariate 
data into a finite number of groups is done prior to the spatial estimation.  However, in 
some cases, the variables may be sampled at different locations with the extreme case 
being complete heterotopy of the data set.  In these situations, it is necessary to adapt 
existing techniques to work with non-collocated data.  Two approaches are considered: 
1) kriging of existing data onto a series of “collection points” where the classification 
into groups is completed and a measure of the degree of group membership is kriged to 
all other locations; and 2) independent kriging of all attributes to all locations after 
which the classification is done at each location. 

Calculations are conducted using an existing groundwater chemistry data set in the 
upper Dakota aquifer in Kansas (USA) and previously examined using regionalized 
classification (Bohling, 1997).  This data set has all variables measured at all locations.  
To test the ability of the first approach for dealing with non-collocated data, each 
variable is reestimated at each sample location through a cross-validation process and 
the reestimated values are then used in the regionalized classification.  The second 
approach for non-collocated data requires independent kriging of each attribute across 
the entire domain prior to classification.  Hierarchical and non-hierarchical classification 
of all vectors is completed and a computationally less burdensome classification 
approach, “sequential discrimination”, is developed that constrains the classified vectors 
to be chosen from those with a minimal multivariate kriging variance.   Resulting 
classification and uncertainty maps are compared between all non-collocated approaches 
as well as to the original collocated approach.  The non-collocated approaches lead to 
significantly different group definitions compared to the collocated case.  To some 
extent, these differences can be explained by the kriging variance of the estimated 
variables.  Sequential discrimination of locations with a minimum multivariate kriging 
variance constraint produces slightly improved results relative to the collection point 
and the non-hierarchical classification of the estimated vectors. 

1 Introduction 

Examples of multivariate statistical techniques applied in the earth sciences include 
principal components analysis (PCA), Cluster Analysis (CA) and discriminant analysis 
(DA).  A number of textbooks (e.g., Davis, 1988; Reyment and Savazzi, 1999) explain 
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the basis of these techniques and their applications to earth science data sets.  
Applications of these multivariate techniques generally require a complete vector of the 
variables at each sampling location and a typical example problem is that of a 
geochemical survey where different chemical elements are assayed for each sample 
location.  If some of the sample vectors are incomplete, several approaches have been 
devised to provide substitutes for the missing values.  However, these approaches are for 
when incomplete sample vectors are the exception, not the rule.  When the multivariate 
data exhibit complete heterotopy, a technique must be applied to construct the 
multivariate vectors prior to any classification or discrimination technique.

A host of techniques for regionalized, or spatial, classification of multivariate data have 
been developed.  These include the use of a multivariate variogram (Bourgault and 
Marcotte, 1991) as a spatial weighting function (Bourgault et al., 1992) and/or 
combinations of principal components analysis coupled with factorial kriging 
(Goovaerts et al., 1993).  However, in these approaches to multivariate spatial statistics, 
incomplete data vectors are also a problem.  As pointed out by Wackernagel (1998), the 
multiple variable cross-variogram for entirely heterotopic data cannot be calculated and 
C(0) cannot be computed.

The problem of interest in this work is the classification of multivariate data sampled in 
a spatial domain into homogeneous groups.  Kriging is used to investigate two 
approaches to dealing with the issue of complete data heterotopy: 1) Estimation of all 
variables at a series of “collection points” where the multivariate classification is done 
followed by estimation of class membership at all locations in the domain through 
kriging of either the probability of class membership or the generalized multivariate 
distance; and 2) Estimation of all variables at all locations in the spatial domain prior to 
classification.  This first approach is similar to the regionalized classification method 
using full vectors as described by Bohling (1997) and Olea (1999).  The two approaches 
are tested on a water chemistry data set (Bohling, 1997) and compared against the 
standard regionalized classification results obtained using the complete data vectors. 

2 Classification and Discrimination 

Classification is the process of assigning each member of a multivariate sample set to a 
finite number of g groups.  This assignment is done on the basis of the same set of, m,
variables contained in the vector, x, measured at each sample location.  The distances 
between samples in m-dimensional multivariate space are calculated and the two 
samples with the shortest distance are combined.  The position of this new group in m-
dimensional space is now defined by the average of the combined variable values.  This 
hierarchical grouping process is continued until a predefined number of groups remain. 

The classification step is done using cluster analysis where the multivariate distance 
between any two vectors of data, xr and xs, is calculated as the Mahalanobis distance: 

)()'( 12
srsrrsd xxCxx

where C is the sample covariance matrix.  The data vectors are clustered by using the 
calculated Mahalnobis distances with Ward’s method: 
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where nr and ns are the number of samples within clusters r and s, respectively.  Ward’s 
method begins with each vector representing a “cluster” in multivariate space and then it 
successively joins clusters so that the increase in the total within group sum of squares is 
minimized.  The within group sum of squares for a cluster is defined as the sum of the 
squared distances between all points in the cluster and the centroid of that cluster.  The 
hierarchical clustering process results in a dendrogram showing the successive grouping 
of individual vectors as the multivariate distance between clusters increases.

Discriminant analysis uses a set of previously classified samples as a training set to 
determine in which group any unclassified samples belong.  Assignment of an 
unclassified sample to a group is done based on maximum posterior probability or 
minimum generalized squared distance.  The latter approach is used in this work, where 
the generalized squared distance (after Bohling, 1997) between a sample and group i is: 

)ln(2ln)()( 22
iiii qCdD xx

where d2 is the Mahalanobis distance and qi is the prior probability of sampling from 
group i.  This calculation of the generalized squared distance is developed within a 
Bayesian framework and under the assumption that multivariate normal density 
functions define the groups.  A further simplification used herein is that the Ci’s are 
equal across groups and therefore linear discriminant analysis can be used.

The entropy of classification, H, provides a convenient single measure of classification 
uncertainty across all posterior probabilities.  (Bohling, 1997): 

g
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where pk is the posterior probability of membership in group k calculated using Bayes’ 
theorem and assumed prior probabilities.  As pk  1.0 for any k, H  0.  Conversely, H
reaches a maximum value of 1.0 when all pk are equal and the classification made was 
highly uncertain.

3 Regionalized Classification 

When the spatial location and spatial covariance of the sample vectors are taken into 
account in multivariate classification and discrimination calculations, the procedure is 
referred to as “regionalized classification”.  Previous work in this area includes Harff 
and Davis (1990); Olea (1999) and Bohling (1997).  The standard approach to 
regionalized classification uses all full vector sample locations to classify the data into 
groups.  After groups are defined, discriminant analysis is then performed on the full 
vectors in a resubstitution (cross-validation) approach.  This discrimination calculation 
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provides the generalized squared distance from each vector to the centroid of each group 
identified in the classification procedure.  The spatial covariance of these distances can 
be modelled and kriging is used to estimate these distances to all locations in the spatial 
domain.  A separate covariance function must be identified for each group.  For any 
location, group assignment is done by identifying the group to which the generalized 
squared distance is a minimum.  This standard approach works well when full data 
vectors exist and serves as the baseline for comparison with two approaches below that 
do not rely on full vectors at the sample locations. 

1.1 Collection Point 
For heterotopic data, it may often be the case that one of the variables is oversampled 
relative to the others and these more numerous sample locations can serve as “collection 
points” onto which all other variables are estimated.  Once this estimation is complete, 
these locations now serve as full vectors and the standard approach to regionalized 
classification can be conducted.  A disadvantage of this approach is the required 
covariance inference for each of the m variables, with the exception of the oversampled 
variable that is not estimated, as well as for the g generalized squared distances. 

1.2 Exhaustive Mapping 
A conceptually simple alternative to the collection point method is to estimate all 
variables to all n unsampled locations across the spatial domain of interest and then do 
the classification at all spatial locations.  This approach only requires spatial covariance 
inference for the m sampled variables as the classification procedure is only done after 
the spatial estimation.  However, a major drawback of this approach is that hierarchical 
classification on large numbers of multivariate samples becomes a very memory 
intensive calculation as n(n-1)/2 distance comparisons must be calculated and stored.  
Non-hierarchical classification provides a less memory intensive alternative. 

In keeping with the spirit of regionalized classification, it is recognized that 
classification is not simply a multivariate problem, but that there is also a spatial 
component, and, in this exhaustive mapping approach, the quality of the estimated 
variables varies spatially. Sequential discrimination is proposed here as a way to 
incorporate the quality of the estimated vectors directly into the assignment of samples 
to groups in the discriminant analysis step.  Rather than classifying all locations at once, 
a classification proportion, Pc, of the estimated locations with the lowest overall 
multivariate kriging variance as summed across all variables are classified and then used 
as training data in a discriminant analysis to classify all other locations. 

4 Example Calculations 

1.3 Data Set 
The example data set is a groundwater chemistry data set from the Dakota aquifer in 
Kansas and consists of six variables measured at each of 224 locations in a 450x325km 
region.  This data set has been analysed previously (Bohling, 1997) and was obtained 
from the IAMG ftp site.  The six variables are the log10 transform of the concentrations 
in mg/l of three cations (Ca, Mg, Na) and three anions (HCO3, SO4 and Cl).  The 
univariate distributions are symmetric (mean/median  1.0) with coefficients of 
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variation between 0.3 and 0.4.  The univariate distribution of each variable is 
transformed to a standard normal distribution prior to classification or estimation. 

1.4 Full Vector Classification 
The full data vectors at each of the 224 locations are used with the standard regionalized 
classification approach to map group membership in the spatial domain.  Following the 
approach of Bohling (1997), the clustering is stopped at four groups.  These groups are 
arbitrarily numbered in terms of increasing Cl concentration and the spatial distribution 
of these groups at the sample locations are shown in Figure 1.  Each full vector is also 
used in a discriminant analysis in resampling mode to determine the multivariate 
distance from each vector to the group to which it is assigned.  These distances are then 
estimated at all unsampled locations and the final classification and the associated 
entropy of classification are shown as the top two images of Figure 2. 

Figure 1. Locations of full vector sample data and groups defined from those full 
vectors.  Distance units on axes are in km. 

1.5 Collection Point Classification 
The available data are isotopic, in order to make the data heterotopic, cross-validation, 
one sample left out at a time, is used to reestimate the values of the six variables at each 
of the 224 sample locations.  In a practical application, only 5 (m-1) variables would be 
reestimated to the collection points with the actual measured values of the most densely 
sampled variable being used directly.  These reestimated values are then considered as 
the full sample vectors and the standard regionalized classification approach is used as 
defined for the full vector case.  The results of the classification and the associated 
uncertainty as defined by the entropy are shown in the middle two images of Figure 2. 

1.6 Exhaustive Mapping Classification 
Kriging is used to estimate values of each variable at all locations on a 5 5 km grid in 
the spatial domain.  The spatial domain is small enough that hierarchical classification 
can be used to classify all vectors.  The results of the exhaustive mapping classification 
are shown in the bottom images of Figure 2.
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5 Results 

Figure 2 shows that the three different approaches to regionalized classification produce 
three different results with the collection point approach producing the greatest level of 
mixing between the four groups.  The standard, full vector, approach to regionalized 
classification is considered the baseline and the other two approaches are compared to it 
in Table 1.  Table 1 shows the percent of the domain that was assigned to each group by 
each approach and it also contains the “mismatch sum” calculated as the sum of absolute 
differences between the groups identified by the standard (full vector) approach and 
each of the two other approaches as calculated across all locations. 

Table 1. Results of three classification approaches.

GroupsClassification

Approach 1 2 3 4 

Mismatch

Sum

Full Vector 19.2% 33.2% 33.9% 13.6% NA 
Collection Pt. 32.9% 37.3% 8.4% 21.3% 3210 
Exhaustive 19.5% 33.4% 31.0% 16.0% 889 

Table 1 shows that the percentage of the domain assigned to each group varies across 
the three approaches.  Both the collection point and exhaustive mapping approaches 
give results that differ from the standard regionalized classification approach with the 
mismatch sum of the collection point approach being more than three times that of the 
exhaustive mapping approach.

The poor performance of the collection point approach is explained, to some extent, by 
the small number of locations, 224, used for the initial classification and the uncertainty 
in the variable values estimated at the collection points.  Imprecision in the estimated 
values at the collection points leads to difficulty in consistently identifying the four 
groups.  This result is highlighted by the entropy map for the collection point approach 
shown in Figure 2 (middle, right image) that shows values near 1.0 at most locations.  
These values of entropy indicate nearly equal probability of classification for each of the 
four groups. 

6 Discussion 

The results in Figure 2 and Table 1 show that the exhaustive mapping classification 
approach is superior to the collection point method.  However, as the number of 
locations requiring classification becomes larger due to a larger domain or a finer spatial 
discretization, hierarchical classification methods will become computationally 
intractable.  Two approaches to exhaustive classification on large fields are examined 
here: 1) initial classification of the Pc values with the lowest kriging variance followed 
by sequential discrimination.  2) k-means clustering, which is a non-hierarchical 
clustering technique.  The steps involved in the sequential discrimination approach are:

1) Rank each estimated location in the spatial domain by summing the normalized 
kriging variances across all estimated variables.  Because the number of samples 
and their spatial configuration is most likely different across the variables, this 
sum will vary considerably across the domain. 
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2) Select a proportion, Pc, of these locations that have the lowest summed variances 
and classify these locations into g groups.  These will serve as the groups into 
which all remaining locations are assigned.

3) Select a proportion, Pp, of the remaining locations with the smallest summed 
variances and determine the multivariate distance from each sample within Pp to 
each group.

4) Assign the sample with the smallest multivariate distance within Pp to the closest 
group and add it to the set of training data. 

Figure 2. Maps of final group membership (left column) and entropy of classification 
(right column) for the full vector (top images), collection point (middle images) and 
exhaustive mapping approaches (bottom images). 

From the list of the remaining unclassified samples, the one with the lowest variance 
sum is added to Pp, and the process is repeated starting at step 3 until all samples have 
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been assigned.  This sequential approach places a multivariate minimum kriging 
variance constraint on the assignment of locations to groups. 

If Pp is set to be small enough to contain only a single sample, the unclassified sample 
with the smallest multivariate kriging variance will be assigned to an existing group.  By 
keeping Pp large enough, the sample with the best fit to an existing group can be found 
from among a number of locations with relatively small kriging variances and this 
location will be the next one assigned.

Two different applications of the sequential approach were completed with Pp set to 
0.05 and 0.20. Pc is set to 0.20 for all calculations.  Sequential discrimination was done 
by iteratively selecting the location in Pp with the minimum value of the generalized 
squared distance and then adding the location with the next lowest sum of variances to 
Pp.  The results of these two classifications and the results of the non-hierarchical 
classification are shown in Figure 3 and summarized in Table 2. 

Table 2. Results of sequential classification approach on exhaustively mapped variables 
with different values of Pp compared to the full vector and non-hierarchical approaches.

GroupsClassification Approach 

1 2 3 4 

Mismatch

Sum

Full Vector 19.2% 33.2% 33.9% 13.6% NA 
Exhaustive Pp = 0.05 28.1% 21.9% 30.8% 19.2% 1432 
Exhaustive Pp = 0.20 27.9% 21.9% 31.0% 19.2% 1413 
Non-Hierarchical: k-mean 15.1% 37.4% 29.8% 17.7% 2074 

The choice of Pp makes a difference in the minimum generalized squared distances 
between the existing group centroids and the next sample to be classified.  When Pp
=0.05, the average minimum generalized squared distance across the first 3000 samples 
assigned to a group is 5.6.  For the case of Pp = 0.20, the looser kriging variance 
constraint, the average minimum generalized squared distance decreases to 5.4.  This 
smaller average minimum generalized squared distance leads to a slightly better match 
to the full vector results (Table 2). 

Over all of the results, hierarchical classification of full vector data obtained at every 
location through kriging of each variable produce results that are most similar to case of 
isotopic data.  The sequential discrimination approach developed here produces the 
results with the second lowest mismatch errors and these results are relatively 
insensitive to the choice of Pp.  The sequential discrimination algorithm results are more 
similar to the full-vector results than are the non-hierarchical classification results. 

It is noted that all of the classification approaches tested here that first require mapping 
of the variables to all locations through kriging lead to entropy of classification values 
that are low with respect to the entropy values calculated for the full vector approach.  
This result is an artifact of the estimation through kriging which acts as a smoothing 
operator thus reducing the calculated entropy values.  Replacement of the kriging step 
with stochastic simulation of each variable followed by classification on each simulated 
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field may allow for the calculation of more realistic entropy values.  This stochastic 
simulation approach is reserved for future work. 

Figure 3. Classification results for the extended algorithm on the exhaustively mapped 
variables.  The top images are results for Pp = 0.05, the middle images for Pp = 0.20 and 
the bottom images for the non-hierarchical classification.  The left images show the 
classification and the right images show the entropy of classification. 

7 Conclusions 

Regionalized classification is an approach to determining spatially homogeneous 
groupings of data defined by multiple variables.  While regionalized classification, as 
well as other multivariate mapping techniques have been developed for the case where 
all variables in the data set are collected at each location, little attention has been paid to 
the problem of regionalized classification from a completely heterotopic data set.  This 
work examined two approaches to the scenario of heterotopic data: collection point and 
exhaustive mapping of the variables prior to classification.  Additionally, a new 
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algorithm was proposed for sequential assignment of estimated locations to previously 
defined groups under the constraint of those locations having a relatively low 
multivariate kriging variance.  All approaches were tested on an example problem using 
a water chemistry data set.  Results were compared to the standard regionalized 
classification approach completed with full data vectors at each sample location. 

Results show that the collection point approach does not provide satisfactory regional 
classification.  These results are most likely due to the relatively small number of 
collection points used in the initial multivariate classification and the necessity of two 
different sets of spatial estimation.  The collection point approach resulted in nearly all 
groups having equal probability of occurrence at all locations as demonstrated by the 
high levels of classification entropy across the spatial domain.

The best results were obtained when all variables were estimated at all locations and 
then hierarchical classification was done across all locations.  However, due to 
computational limits, this hierarchical classification approach will not be practical for 
large domains.  The sequential discrimination approach where only a proportion of the 
estimated locations with the lowest multivariate kriging variances are used for the initial 
classification followed by sequential discrimination constrained to minimize the kriging 
variance of classified locations produces results that are less accurate than the 
hierarchical classification, but that are an improvement on the non-hierarchical 
classification approach.  These results point out that the most important step in the 
regionalized classification procedure is the initial classification of the multivariate data 
into groups. 
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TRAVEL TIME SIMULATION OF RADIONUCLIDES IN A 200 M DEEP 

HETEROGENEOUS CLAY FORMATION LOCALLY DISTURBED BY 
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Abstract. In Belgium, the Boom Clay Formation at a depth of 200 m below surface is 
being evaluated as a potential host formation for the disposal of vitrified nuclear waste. 
The aim of this study is to model the transport of radionuclides through the clay, taking 
into account the geological heterogeneity and the excavation induced fractures around 
the galleries in which the waste will be stored. This is achieved by combining a transport 
model with geostatistical techniques used to simulate the geological heterogeneity and 
fractures of the host rock formation. Two different geostatistical methods to calculate 
the spatially variable hydraulic conductivity of the clay are compared. In the first 
approach, one dimensional direct sequential co-simulations of hydraulic conductivity are 
generated, using measurements of hydraulic conductivity (K) and 4 types of secondary 
variables: resistivity logs, gamma ray logs, grain size measurements and descriptions of 
the lithology, all measured in one borehole. In the second approach, three dimensional 
cokriging was performed, using hydraulic conductivity measurements, gamma ray and 
resistivity logs from the same borehole and a gamma ray log from a second borehole at a 
distance of approximately 2000 m from the first borehole. For both methods, 
simulations of the fractures around the excavation are generated based on information 
about the extent, orientation, spacing and aperture of excavation induced fractures, 
measured around similar underground galleries. Subsequently, the obtained 3D cokriged 
and 1D simulated values of hydraulic conductivity are each randomly combined with the 
simulated fractures and used as input for a transport model that calculates the transport 
by advection, diffusion, dispersion, adsorption and decay through the clay formation. 
This results in breakthrough curves of the radionuclide Tc-99 in the aquifers 
surrounding the Boom Clay that reflect the uncertainty of travel time through the clay.  
The breakthrough curves serve as a risk management tool in the evaluation of the 
suitability of the Boom Clay Formation as a host rock for vitrified nuclear waste storage.
The results confirm previous calculations and increase confidence and robustness for 
future safety assessments.
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1 Aim of the study 

The aim of this study is to model the transport of radionuclides through the Boom clay, 
taking into account the geological heterogeneity and the excavation induced fractures 
around the galleries in which the waste will be stored. 

2 Geological context 

The safe disposal of nuclear waste is an important environmental challenge. The Belgian 
nuclear repository program, conducted by ONDRAF/NIRAS, is in the process of 
characterizing the capacity of the Boom Clay as a natural barrier. At the nuclear zone of 
Mol/Dessel (province of Antwerp) an underground experimental facility (HADES-URF) 
was built in the Boom Clay at 225 m depth. In this area, the Boom Clay has a thickness 
of about 100 m and is overlain by approximately 180 m of water bearing sand 
formations.  Several boreholes provide sets of geological, hydromechanical and 
geophysical data about the Boom clay.

The Boom clay is a marine sediment of Tertiary age (Rupelian) (Wouters and 
Vandenberghe 1994). The average hydraulic conductivity value of this formation is very 
low (K=2.10-12 m/s), but the clay is not completely homogeneous. It contains alternating 
horizontal sublayers of silt and clay with an average thickness of 0.50 m and a large 
lateral continuity (Vandenberghe et al. 1997). Furthermore, the clay exhibits excavation-
induced fractures around the excavated galleries (Dehandschutter et al. 2002). The 
sublayers have hydraulic conductivity values up to 10-10 m/s (Wemaere et al. 2002) and 
the fractures may have even higher hydraulic conductivity values. These fractures are of 
a temporary nature as the clay has a considerable “self-healing” capacity.

3 Methodology 

To test the robustness of earlier obtained results on the migration of radionuclides in the 
Boom clay two different approaches were used: a sequential simulation-based 
(Approach A) and a cokriging-based approach (Approach B). The main characteristics 
of the methods are summarized in Table 1. 

Approach A Approach B 

Dimensionality 1D 3D
Assumptions horizontal continuity explicitly 

assumed
horizontal continuity not 
assumed

Hydraulic
conductivity
samples

52 K values from borehole A 42 K values from borehole A 

Secondary data - gamma ray of borehole A 
- resistivity of borehole A 
- 71 grain size measurements 

- resistivity of borehole A 
- gamma ray of borehole A and 
B
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- lithology of borehole A 
Analysis and 
estimation / 
simulation of K 

- data analysis 
- log transform of K
- subdivision of Boom Clay 
into 3 zones 
- variogram and 
crossvariogram fitting 
- direct sequential simulations 
with histogram reproduction 
of hydraulic conductivity
- 1D grid in z-direction with 
0.2 m interval 

- data analysis 
- no transform of K 
- no subdivision of Boom Clay 
- variogram and crossvariogram 
fitting
- 3D cokriging of hydraulic 
conductivity
- 8 by 85 nodes nodes in  XYdir 
on a 25m grid,  1200 nodes in 
the Z dir on a 0.1m grid (612000 
nodes in total) 

Fracture
simulation

Monte Carlo simulation from 
distributions based on 
observed fractures 

Monte Carlo simulation from 
distributions based on observed 
fractures

Radionuclide Tc-99 Tc-99
Position of 
radionuclide
source

middle of Boom clay  middle of Boom clay  

Hydrogeological
model grid 

A 20m by 15m by 102m box 
subdivided into  1m grid nodes 
in X, 0.17m grid nodes in the 
in Y and 0.2 to 1m grid nodes 
in  the Z direction 

A 100m by 125m by 106m box 
subdivided into 5m grid nodes in 
X and Y and 0.1m grid nodes in 
the Z direction.

Transport
program

FRAC3DVS FRAC3DVS 

Table 1. Summary of the two methodologies 

4 Data analysis 

The value of incorporating the secondary information in the stochastic simulation of 
hydraulic conductivity was investigated by analyzing correlations between primary and 
secondary variables (Table 2). All secondary parameters show a fair to very good 
correlation with hydraulic conductivity and were therefore incorporated in the 
simulation of hydraulic conductivity.

Correlation coefficient with hydraulic 
conductivity

Approach A Approach B 
Data borehole A  borehole A and B 

Electrical resistivity 0.73 0.87
Gamma ray -0.65 -0.73

Grain size (d40) 0.95 N/A 
Table 2. Correlation coefficients between measured hydraulic conductivity and 
secondary variables 



886 M. HUYSMANS, A. BERCKMANS AND A. DASSARGUES 

5 Approach A: simulation of hydraulic conductivity on a 1D grid 

5.1 VARIOGRAPHY

Previous geological work (Vandenberghe et al. 1997) on the Boom clay indicated that 
this formation can be subdivided in three units.  For each unit, variograms and 
crossvariograms were calculated and modeled.  The fitted models are given in Table 3.  
Figure 1a and 1b show two examples of experimental and fitted variograms and cross-
variograms: the variogram of gamma ray of the Belsele-Waas Member and the cross-
variogram of gamma ray and resitivity of the Belsele-Waas Member. 

 Model Nugget Range Sill
Boeretang Member Spherical 0.035 4.6 m 0.03 

Putte and Terhagen Member Spherical 0.003 4.8 m 0.0056 
Belsele-Waas Spherical 0.23 5.5 m 0.38 

Table 3.  Fitted log K variograms of the three zones of the Boom Clay formation 

Figure 1. Experimental and fitted a) vertical variogram of gamma ray and b) vertical 
cross-variogram of gamma ray and resistivity of the Belsele-Waas Member. 

5.2 SIMULATION

In this approach, the Boom clay is assumed to be laterally continuous.   Therefore, one-
dimensional vertical simulations of hydraulic conductivity were calculated on a dense 
grid in the Z direction (Fig. 2).   These hydraulic conductivity values serve as input for 
the hydrogeological model. The simulation algorithm is iterative and contains the 
following steps: 
1. The location to be simulated is randomly chosen. The spacing between the locations 
to be simulated was 0.2 m.
2. The simple co-kriging estimate and variance are calculated using the original primary 
and secondary data and all previously simulated values using COKB3D (Deutsch and 
Journel 1998).
3. The shape of the local distribution is determined in such a way that the original 
histogram of hydraulic conductivity is reproduced by the simulation. This is achieved by 
the following approach. Before the start of the simulation, a look-up table is constructed 
by generating non-standard Gaussian distributions by choosing regularly spaced mean 
values (approximately from -3.5 to 3.5) and variance values (approximately from 0 to 2).
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The distribution of uncertainty in the data 
space can then be determined from back 
transformations of these non-standard 
univariate Gaussian distributions by back 
transformation of L regularly spaced quantiles, 
pl, l=1,...,L:

1 1 * , 1, ...,KK
l lF G G p y l Ly

where FK(K) is the cumulative distribution 
function from the original K variable, G(y) is 
the standard normal cumulative distribution 
function, y* and y are the mean and standard 
deviation of the non-standard Gaussian 
distribution and the pl, l=1,...,L are uniformly 
distributed values between 0 and 1. From this 
look-up table the closest K-conditional 
distribution is retrieved by searching for the 
one with the closest mean and variance to the 
co-kriging values (Oz et al. 2003). 

Figure 2. Simulation of the vertical hydraulic conductivity of the Boom Clay 

4. A value is drawn from the K-conditional distribution by Monte-Carlo simulation and
assigned to the location to be simulated. This approach creates realizations that 
reproduce (1) the local point and block data in the original data units, (2) the mean, 
variance and variogram of the variable and (3) the histogram of the variable (Oz et al. 
2003).

6 Approach B: Estimation of hydraulic conductivity on a 3D grid 

In the first approach a perfect horizontal layering was assumed and therefore the 
hydraulic conductivity values were simulated on a 1D vertical grid.  In this approach we 
assume lateral variability and hydraulic conductivity is estimated on a 3D grid using 
information from boreholes 2000m apart.

6.1 VARIOGRAPHY 

A coregionalization model was fitted to the variograms and cross-variograms.  To model 
the horizontal continuity, gamma ray data are available in two boreholes 2048 m apart. 
The experimental horizontal variogram was calculated in 30 cm horizontal slices 
resulting in two average y(h) points, one at the origin and one at the interdistance 
between boreholes. The model in the horizontal direction has a range of 3 km. Fig. 3 
illustrates the automatic sill fittings of the down hole cross-variograms of gamma ray 
and resistivity and resistivity and hydraulic conductivity.
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Figure 3. Cross-variograms of a) gamma ray and resistivity and b) resistivity and K. 

6.2 ESTIMATION 

The estimation is a straightforward cokriging on a 3D grid with a very fine mesh (10cm) 
in the Z direction.   Fig. 4 illustrates one section between the two boreholes.  There is 
more variability on the left side than on the right side of Fig. 4 due to the better 
conditioning of the co-kriging since the measured hydraulic conductivity values are only 
available in the borehole on the left. 

Figure 4. Logarithm of cokriged hydraulic conductivity in an YZ-profile

7 Simulation of fractures 

Around the galleries in the Boom Clay, excavation-induced fractures are observed (Fig. 
5). The excavation-induced fractures around the future disposal galleries were modeled 
as discrete fractures. Since these fractures will probably have similar properties to the 
fractures observed in previously excavated galleries in the Boom Clay, the input 
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probability distributions of the fracture properties were derived from measurements 
carried out during recent tunnel excavation in the Boom Clay (Dehandschutter et al. 
2002; Dehandschutter 2002; Mertens et al. 2004). These distributions are summarized in 
Table 4. 

Figure 5. Schematic representation of a vertical cross section through the Connecting 
Gallery showing the typical symmetrical form of the encountered shear planes (1. 
Tunneling maching; 2. Supported tunnel; 3. Induced shear planes) 

Variable Distribution 
fracture length uniform distribution U (1m, 3m) 
fracture aperture uniform distribution U (0µm, 50µm)  
fracture spacing normal distribution  (0.7m, (0.12m)²) 

fracture dip normal distribution  (53°, (11°)²) 

fracture strike perpendicular to the excavation 
Table 4. Distributions of fractures properties around an excavated zone.  The five 
distributions are assumed uncorrelated and independent.

8 Hydrogeological model

A local 3D hydrogeological model of the Boom Clay, including the 
estimation/simulations of matrix hydraulic conductivity values and the fractures, was 
constructed. The boundary conditions, radionuclide and source term model are the same 
for the hydrogeological models with the 1D K-simulations and the 3D co-kriged K- 
values. The model size and grid are different for both approaches (Table 1). The size of 
the model was a compromise between including as many fractures as possible and 
keeping the computation time manageable. The fine grid resolution in the Z direction 
was necessary to include the high resolution simulations of hydraulic conductivity and 
the geometry of the fractures. The vertical boundary conditions for groundwater flow are 
zero flux boundary conditions since the hydraulic gradient is vertical. Both approaches 
use the same Dirichlet horizontal boundary conditions. The specified head at the upper 
boundary is 2 m higher than the specified head at the lower boundary as the upward 
vertical hydraulic gradient is approximately 0.02 in the 100 m thick Boom Clay 
(Wemaere and Marivoet 1995). Zero concentration boundary conditions (Mallants et al. 
1999) for transport are applied at the upper and lower boundaries of the clay since 
solutes reaching the boundaries are assumed to be flushed away immediately by 
advection in the overlying and underlying aquifers.
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The model was calculated for the radionuclide Tc-99. Previous calculations revealed 
that this was one of the most important in terms of dose rates from a potential high-level 
waste repository for vitrified waste (Mallants et al. 1999). This radionuclide has a half-
life of 213,000 years, a solubility limit of 3e-8 mole/l and a diffusion coefficient of 2e-
10 m²/s and a diffusion accessible porosity of 0.30 was assumed for the clay. The 
transport processes considered in the model are advection, dispersion, molecular 
diffusion and radioactive decay.

The nuclear waste disposal galleries are assumed to be situated in the middle of the 
Boom Clay. The radionuclide source is modeled as a constant concentration source with 
a prescribed concentration equal to the solubility limit. The radionuclides slowly 
dissolve until exhaustion of the source.

For both approaches the radionuclide migration was calculated using FRAC3DVS, a 
simulator for three-dimensional groundwater flow and solute transport in porous, 
discretely-fractured porous or dual-porosity formations (Therrien et al. 1996, Therrien et 
al. 2003). The fractures were modeled as discrete planes with a saturated hydraulic 
conductivity of (Bear 1972): 

2
2 12K g bf

where  is the fluid density (kg/m³), g is the acceleration due to gravity (m/s²), 2b is the 
fracture aperture (m) and µ is the fluid viscosity (kg/(ms)). The model was run with the 
different simulations of hydraulic conductivity and fractures as input.

9 Results and discussion 

9.1 RESULTS OF APPROACH A 

Figure 6 shows the total Tc-99 fluxes through the lower clay-aquifer interface for 10 
different simulations.

Figure 6. Total Tc-99 flux (Bq/year) through the lower clay-aquifer interface (1Bq = 1 
disintegration / sec) calculated with approach A. Tc-99 has a half-life of 213,000 years. 
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The fluxes through the clay-aquifer interfaces increase relatively fast the first 200000 
years. From 200,000 until 1,750,000 years, the fluxes increase more slowly. The fluxes 
decrease afterwards due to exhaustion of the source. The difference between the fluxes 
of the 10 different simulations is the largest in the time period from 200,000 till 
1,750,000 years. The total amount of Tc-99 leaving the clay was calculated as the flux 
integrated over time for each simulation. The total Tc-99 masses leaving the clay vary 
between 1.423e+13 Bq and 1.541e+13 Bq through the lower clay-aquifer interface and 
between 1.443e+12 Bq and 1.489e+12 Bq through the upper clay-aquifer interface. 

9.2 RESULTS OF APPROACH B 

The Tc-99 fluxes calculated by this model were 1.45e13 Bq through the lower clay-
aquifer interface and 1.38e13 Bq through the upper clay-aquifer interface (Fig.7). The 
flux through the lower clay-aquifer interface is in the range of fluxes calculated with the 
model with one-dimensional hydraulic conductivity simulations. The flux through the 
upper clay-aquifer interface is 4% smaller than the lowest flux calculated with 
approach A. These fluxes are thus approximately the same as the fluxes calculated by 
the model with 1-dimensional hydraulic conductivity simulations. This indicates that the 
assumption of perfect horizontal layering has no large effect on the calculated fluxes. 

Figure 7. Total Tc-99 flux (Bq/year) through the lower and upper clay-aquifer interface 
calculated with approach B. Tc-99 has a half-life of 213,000 years. 

9.3 DISCUSSION AND CONCLUSION 

The range of total Tc-99 masses leaving the clay is rather small. The difference between 
the largest and the smallest calculated mass leaving the Boom clay is 8%. This result is 
important for the evaluation of the suitability of the Boom Clay Formation as a host rock 
for vitrified nuclear waste storage. The total mass fluxes leaving the clay, taking 
excavation induced fractures and high-conductivity sublayers into account, are not very 
different from the mass fluxes calculated by a simple homogeneous model. Changes in 
the modeled heterogeneity of hydraulic conductivity of the clay do not change the 
output fluxes significantly and therefore do not affect the ability of the clay to store 
vitrified nuclear waste in the predictive modeling. This again suggests that the Boom 
clay is a very robust barrier. 
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Abstract. We review possibilities of introducing geostatistical concepts into the
sequential assimilation of data into numerical models. The reduced rank square
root filter and the ensemble Kalman filter are presented from this perspective. Con-
tributions of geostatistics are discussed showing that sequential data assimilation
is a promising area for the application of geostatistical techniques.

1 Introduction

Traditional geostatistical space-time geostatistics (Kyriakidis and Journel, 1999) is
not able to take account of the generally strongly non-linear dynamics of multivari-
ate space-time processes. To this effect physico-chemical transport models are in
general more suitable. However, as the latter do not fully master the complexity of
the processes they attempt to describe, either because of simplifying hypotheses
or because the information serving to set up initial and boundary conditions is
imperfect, it is appropriate to introduce statistical techniques in order to assimilate
a flow of measurements emanating from automatic stations.

Recent projects at Centre de Géostatistique have permitted to explore these
techniques in oceanography and air pollution. Soon it became evident that geo-
statistics could offer concepts and approaches to enhance Sequential Data Assim-
ilation techniques. The thesis of Laurent Bertino (Bertino, 2001) and subsequent
publications (Bertino et al., 2002; Bertino et al., 2003) have permitted to develop
this theme.

More precisely, when dealing with Sequential Data Assimilation (as opposed
to variational techniques) two viewpoints can be adopted. On one hand, from the
point of view of the designer of deterministic numerical models, data assimilation
is seen as an algorithm permitting to correct the state of the mechanistic model as
new data comes in. On the other hand, from the point of view of the statistician
the numerical model can help improve the operational prediction taking advantage
of the knowledge of the non-linear relations between the various data sources.

It is this second viewpoint that we will privilege and seek to develop by position-
ing Geostatistics at the center of all data flows coming from a network of stations, a
transport model coupled with other data sources or remote sensing data. Geostatis-
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tics, with its multivariate models, its anamorphosis and change-of-support models
as well as its conditional simulation methods, offers a unique integrative framework
for connecting these different informations, for understanding and modeling their
statistical structure, for setting up prediction algorithms.

Data assimilation algorithms are needed for setting up operational forecast-
ing systems as they are used in meteorology, oceanography, hydrology, ecology,
epidemiology. An operational forecasting system consists of:

− a network of automatic stations,
− a dynamic forecasting model,
− a data assimilation algorithm.

As the station data generally provide only bad spatial coverage, the numerical
model can compensate for this by a forecast based on known physical, chemical
or biological relations. The data assimilation algorithm is then essential in com-
bining these two sources of information sequentially in time, taking into account
observational and model error.

This paper is divided into three sections. Section 2 describes a particular version
of the extended Kalman filter, insisting on the geostatistical aspects. Section 3
presents another suboptimal Kalman filter which is close in spirit to the geosta-
tistical simulation of Gaussian processes. Section 4 reviews a few possibilities of
introducing geostatistical ideas into sequential data assimilation.

2 Kalman filter

We present the Kalman filter in its so-called reduced rank square-root (RRSQRT)
version (Verlaan and Heemink, 1997) using notation that is close to the one used
in geostatistics. Let zo

t be the vector of the n observations at time t, yt be the
state of the system, we denote the state forecast with a f and the corrected state
with a star, i.e.: yf

t ,y�
t . The forecast is performed by a numerical model M, with

boundary conditions ut, which describes the usually non-linear time dynamics.
For computing error covariances we need to derive from the numerical model the
tangent linear operator M. We also need an observation linear operator H which
serves both to transfer information from grid points to station locations and to
generate from the forecast state "observations" as anticipated by the numerical
model.

Leaving aside a detailed state space presentation of the Kalman filter, we
merely present the algorithm which is composed of two steps. The first step is
a propagation of the state from time t−1 to time t, using the numerical model to
do the forecast:

yf
t = Mt

(
y�

t−1,ut

)
(1)

and using the tangent linear operator to compute the corresponding error covari-
ances,

Cf
t = MtC�

t−1M
�
t + Qt (2)
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The model noise covariance matrix Qt needs to be carefully calibrated as it will
condition the behavior of the filter. In a study of the hydrodynamics of the Baltic
sea the sensitivity of the system stemmed mainly from the errors in the boundary
conditions. Under the assumption that the water level field at the open boundary
can be described by the wave equation a geostatistical model in the form of a
space-time covariance model could be proposed (Wolf et al., 2001).

The second step is a correction of the state by kriging, perfomed at time t as
soon as new data comes in. Kriging weights are computed from the forecast error
covariances as well as the observation error covariances,

Wt = Cf
t H

�
(
HCf

t H
� + Co

)−1

(3)

The corrected state is obtained by simple kriging

y�
t = yf

t + Wt

(
zo

t − Hyf
t

)
(4)

and corresponding error covariances are computed,

C�
t = (I − WtH)Cf

t (5)

In the RRSQRT algorithm the most important eigenvectors ("square roots")
of the error covariance matrices Cf , Co are propagated ensuring both the positive
definiteness of the matrices and a drastic reduction of dimensionality.

3 Ensemble Kalman filter

The Ensemble Kalman filter (EnKF) due to Geir Evensen (Evensen, 1994; Burgers
et al., 1998) is based on a Monte-Carlo framework and has the avantage of not
requiring a linearization of the numerical forecasting model M. At each time step
an ensemble of N forecasts

{
yf,i

t = Mt−1(y
�,i
t−1,q

i
t); i = 1 . . . N

}
, (6)

are propagated using simulated model errors {qi
0}. In geostatistical terms this

first step can be seen as a non-conditional simulation generating N realisations
of a non-stationary random function. The average forecast yf

t and the covariance
matrix Cf

t are computed directly on this ensemble of realizations.
The second step is the conditioning of the realizations by kriging on the basis

of n observations collected at time t,
{

y�,i
t = yf,i

t + Wt(zt −Hyf,i
t + uo,i

t ); i = 1 . . . N
}

, (7)

where the observation errors are simulated according to a normal distribution
N (0,Co) and the observation operator H is allowed to be non-linear. The first two
moments of this ensemble of realizations approximate y�

t and C�
t in the same way as

the mean of a number of conditional geostatistical simulations is equivalent to the



896 H. WACKERNAGEL AND L. BERTINO

solution of the kriging of the data. The details of the algorithmic implementation
of the EnKF are discussed in (Evensen, 2003).

4 Contributions of geostatistics

We have seen that the correction step of the Kalman filter implies a kriging and
that the EnKF is similar in spirit to the conditional simulations used in geosta-
tistics. We also mentioned that geostatistics can be used to model the spatial
correlation of the model error (Cañizares, 1999; Sénégas et al., 2001; Wolf et al.,
2001).

UNIVERSALITY CONDITIONS

The correction step of the Kalman filter implies a simple kriging of the differences
between the observations and their forecast according to the numerical model.
It is possible to add universality conditions to this kriging in order to remove
multiplicative or additive bias (Bertino, 2001). The approach is then equivalent to
the one solved by external drift using numerical model output as external drift
(Wackernagel et al., 2004). However, the difference is that geostatistics fits a
covariance model to the forecast error at time t using some form of stationarity
assumption, while in sequential data assimilation the covariances are propagated
from the past and are not necessarily stationary.

In the RRSQRT filter the error covariance of the corrected state C�
t depends

exclusively on the initial covariances C0, the model error covariances, the model
operator, the location of observations through the matrix H and the observation
error Co

t (generally composed of white noise covariances). So the RRSQRT filter
does not actually learn from the data but depends exclusively on how the error
matrices were calibrated. The EnKF depends on the way how the errors qi

t and
uo,i

t are generated, yet this affects only the mean and not the error covariances
C�

t .
The bias filtering through universality conditions in applications requires more

stations than the five that were available in our study of the Odra lagoon. With
a few stations only it turns out that the results may deteriorate when including
universality conditions.

ANAMORPHOSIS OF NON-GAUSSIAN VARIABLES

The data assimilation methods presented above imply Gaussian assumptions. In
applications the distributions may be skew and an anamorphosis, i.e. a transforma-
tion of the distribution, as used in non-linear geostatistics, may be of advantage.
This idea was tested performing a lognormal transform to reduce skewness when
implementing an EnKF for three variables (nutrients, phytoplancton, herbivores)
in the context of a simplified ecological model of a water column in the ocean
(Bertino et al., 2003). It turned out that data assimilation with anamorphosis
generated smaller errors than with the standard EnKF. In particular, the spring
bloom, which is the principal cause of non-linearity in the dynamics, less perturbs
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the filter with anamorphosis and the number of "false starts" of the phytoplancton
bloom in springtime was significantly reduced.

MODELING THE SUPPORT EFFECT

It appears to be important in data assimilation problems to take account of the
difference in the support of numerical model forecast and of observations, the
support of the latter bein pointwise as compared to that of the state variables,
which is of the size of the numerical model cells. Classical results in geostatistics
have been adapted to the data assimilation context (Lajaunie and Wackernagel,
2000; Bertino, 2001).

For Gaussian state variables and observations the support correction resumes
to an affine correction of the variances, because in the absence of bias the first
moment of the observations is identical to that of the state variable by Cartier’s
relation.

In the framework of a lognormal model with assumption of permanence of log-
normality for the different supports, merely the change of support coefficient needs
to be inferred. The Gaussian anamorphosis generalizes the lognormal approach
in the sense that it permits to transform an unspecified distribution towards a
Gaussian distribution. The discrete Gaussian change of support model governed
by a change of support coefficient can be applied in this context. Other change of
support models like e.g. the gamma model studied by (Hu, 1988) could be used in
the context of sequential data assimilation.

Finally it is also possible to work without an explicit change of support model
in an approach based on geostatistical simulation on point support, where values
on larger support are obtained by spatial averaging. By considering an ensemble
of realizations empirical conditional distributions can then be easily computed.

The modelling of change of support has not yet been studied in detail and
experimented in operational forecasting systems. This is due to the fact that there
is a lack of awareness to implications of the support effect and this awareness is
confined to domains in which geostatistics is already well known. Furthermore non-
linear geostatistical techniques need to be carefully adapted to applications in data
assimilation in order to be able to add performance. A discrete Gaussian change of
support model has been used for the purpose of downscaling air pollution forecasts
at a resolution below that of the model cells by uniform conditioning (Wackernagel
et al., 2004).

5 Conclusion

To keep the presentation simple, we have presented here the basic version of the en-
semble Kalman filter as our main aim was to show the links and cross-fertilization
potential between sequential data assimilation and geostatistical theory and meth-
ods. The EnKF is presently without doubt the most popular algorithm in se-
quential data assimilation (Mackenzie, 2003). Most recent developments (Evensen,
2004) can be found at the web site www.nersc.no/∼geir/EnKF/. Applications are
found in many areas of operational forecasting for oceanography, meteorology,
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environmental and ecological monitoring. While the Kalman filter is a classical
tool in hydrogeology (Eigbe et al., 1998), some new developments could occur in
petroleum reservoir modelling (Naevdal et al., 2002).
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SPATIAL PROPERTIES OF SEASONAL RAINFALL IN SOUTHEAST 

ENGLAND
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Abstract. Interpolated rainfall fields are important inputs to agricultural, hydrological 
and ecological models and serve to enhance our understanding of environmental 
systems and hence the natural and anthropogenic impacts on the surface environment. 
However, the large temporal and spatial variability in rainfall makes this variable 
difficult to estimate at unsampled locations, particularly when station network is highly 
dispersed. In this article, we present preliminary work within the Marie Curie 
Framework 6 project GAP (Geostatistical Analysis of Precipitation). Using one year of 
rainfall data, seasonal rainfall patterns are investigated for South East England. Both 
seasons showed anisotropic conditions with greater dependence in the W-E direction. 
The parameters of the models fitted to the directional variograms showed a larger range, 
but substantially smaller sill, for the summer season compared to those variograms of 
the winter season. Seasonal rainfall depth maps were derived using Simulated Annealing 
(SA) and Ordinary Kriging (OK). The two methods showed large differences in terms of 
local and regional variability, with smooth patterns associated with the OK maps and 
larger spatial variability associated with the SA maps. Both methods however, captured 
the large scale patterns that are typical to summer and winter rainfall in the study region. 
We suggest that the optimized patterns using SA could provide an alternative to OK, 
particularly for high temporal resolution rainfall data when OK produce unrealistically 
smooth maps. 

1 Introduction 

Spatial interpolation of rainfall at previously unsampled locations have proven a 
challenging task particularly when the rainfall network is sparse and with the presence 
of marked orography. A number of approaches have been used to estimate rainfall at 
unsampled locations. The simplest approach consisted of assigning to the unsampled 
location the record of the closest rain gauge (Thiessen, 1911) and it has been applied to 
the interpolation of point rainfall (Dirks et al., 1998). Mathematical functions (e.g., 
inverse-distance squared) are commonly used to weight the influence of surrounding 
values to the estimation of rainfall at unsampled locations (Bedient and Huber, 1992). 
Although these methods are quick and easy to use, they do not provide the user with 
information of spatial dependence nor an estimate of spatial uncertainty. Such 
information could however, be obtained using geostatistical methods. Furthermore, to 
aid the spatial estimation of rainfall patterns, geostatistical methods can incorporate 
secondary variables such as: orography, distance to sea and aspect (Agnew and 
Palutikof, 2000 and Prudhomme and Reed, 1999). 
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In the Marie Curie Framework 6 project GAP (Geostatistical Analysis of Precipitation), 
the aim is to analyze spatial patterns of rainfall in the UK and the Iberian Peninsula 
using geostatistical tools. In this article we present a preliminary study to GAP, where 
seasonal patterns of rainfall in South East (SE) England are at focus. This region has 
been shown to be spatially coherent in terms of rainfall (Wigley et al., 1984) and 
comprises a sufficient number and density of rainfall gauges for geostatistical analysis.

In the first part of the analysis, we produced directional and anisotropic variograms for 
seasonal rainfall totals. The variograms were fitted with authorised models and their 
parameters used to interpret the spatial characteristics of the rainfall. In the second part, 
maps of seasonal rainfall depth were created using Ordinary Kriging (OK), and 
Simulated Annealing (SA). The OK method is already an established method to estimate 
rainfall, although it is usually not preferred in combination with rainfall data of high 
temporal resolution, as it creates too a smooth map. For this reason, we chose to test an 
alternative and much less conventional method, the SA. Unlike the OK, which is 
effectively an optimised interpolator (Armstrong, 1998), the SA is an optimising method 
that can generate alternate conditional stochastic images of either continuous or 
categorical variables (Deutsch and Journel, 1998). The stochastic component of the 
method allows the creation of maps with larger local and regional variability. There are 
few examples in the literature of SA being used within a climatological framework (one 
example being Pardo-Igúzquiza, 1998), and further research is needed to investigate the 
applicability of SA to mapping of rainfall data.

2 Rainfall data 

Daily rainfall totals were provided from the UK Met Office database (MIDAS) via the 
British Atmospheric Data Centre (http://www.badc.rl.ac.uk). An inventory of available 
records for the period 1960 2000 showed that the largest number of available station 
records existed for the year 1972 (443 records). Of these, six records contained some 
degree of missing data; hence 437 records remained for the data analysis. 

For each station, seasonal rainfall depths/or rainfall totals (mm) were computed for the 
meteorological seasons winter: December, January and February, and summer: June to 
August  the autumn and spring seasons are not presented here as we want to show the 
maximum difference in rainfall patterns with respect to rainfall genesis. A seasonal 
partitioning of the data is preferable as different rainfall processes are dominant during 
the different seasons. In summer, SE England experiences both convective and frontal 
rainfall whilst during winter frontal rainfall is dominant.

Plots of the seasonal totals as circles, scaled according to their  relative  magnitude, 
gives an initial image of the spatial differences in rainfall depth between summer 
(Figure 1a) and  winter (Figure 1b).  During  summer,  the  maximum  rainfall  depth 
was 206 mm and  the  minimum 48 mm  (Figure 1a). Larger rainfall depths  are found  
at the eastern most tip of the study region, which may reflect the influence of  
convective storms originating from the continent (Jones and Read, 2001). During the 
winter  of  1972,  the  largest  and  smallest  amount of station  rainfall was 396 mm   
and 119 mm respectively (Figure 1b). A decrease of rainfall from west to  east is  
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evident in the data, indicating the main path of frontal depressions embedded within the 
mid-latitude westwind belt.

Figure 1. Rainfall depth (mm) for (a) summer (June to August) and (b) winter 
(December to February). The size of the circles is scaled relative to the rainfall depth, 
where the largest and smallest sized circles refer to the maximum and minimum rainfall 
depth respectively. 

3 Choice of theoretical variogram

Sample variograms were calculated for four directions (N-S, NE-SW, W-E and NW-SE, 
22 degrees tolerance). Each of these showed the presence of trend in both seasons (not 
shown). An attempt to remove the trend was made by fitting a low-order polynomial to 
the data. Using the residuals, a new set of directional sample variograms were 
calculated. These were fitted to separate authorised variogram models (spherical, 
exponential, circular, Gaussian and power) using weighted least squares in Genstat 
(Genstat 5 Committee, 1992). Selection of the best fitted model was based on the 
smallest mean squared error (MSE) and the results are shown in Table 1. 

In both  seasons, the greatest  spatial dependence  (i.e., the range), was  found  in  the 
W-E direction; 1.56 deg (~170 km) in summer and 0.40 deg (~45 km) in winter. For 
most directions, the range was  shorter  for the  winter  season  compared  to  the 
summer season. The range of residual rainfall in summer in all other directions was 
~0.32 deg (~35 km), and during winter it was 0.29 deg (~ 30 km) in the NW-SE 
direction and ~0.17 deg (~ 20 km) in the NE-SW and N-S directions. An overall 
difference between the seasons was also evident in  the  variance (i.e., the sill), as  



902 M. EKSTRÖM AND A. CHAPPELL 

shown by the substantially larger values during winter compared to summer. In summer, 
the largest variation was found along the W-E direction, followed by the NW-SE, N-S, 
and NE-SW direction. In winter, the largest variation was found in the NW-SE direction 
followed by the N-S, W-E, and NE-SW direction. The nugget is the proportion of 
unexplained variance, hence it may be useful to look at the proportion of the nugget to 
the total sill. We refer to it as nugget-to-sill ratio. During summer, the largest nugget-to-
sill ratio is found in the N-S and NW-SE directions, whilst in winter the largest nugget-
to-sill ratio is given in the N-S and NE-SW directions.

Season Direction Model Range 

(a)

Sill

(c)

Nugget

(c0)

c0/(c+c0)

(%)

Summer N-S Spherical 0.30 204.3 98.3 32.5 
 NE-SW Spherical 0.32 255.6 0.8 0.3 
 W-E Exponential 0.52* 551.2 57.5 9.4 
 NW-SE Spherical 0.35 227.7 83.5 26.8 
 Anisotropic Exponential 0.17* 335.4 35.5 9.6 
Winter N-S Spherical 0.19 774.0 171.2 18.1 
 NE-SW Spherical 0.14 625.4 111.0 15.1 
 W-E Circular 0.40 870.0 32.7 3.6 
 NW-SE Circular 0.29 1006.0 108.0 9.7 
 Anisotropic Spherical 0.31 656.3 232.9 26.2 

*The effective range for the exponential variogram is 3a. 
Table 1. Values of the model parameters fitted to variograms for summer and winter 
residual rainfall from a fitted polynomial. Unit of range is degrees and c is the spatially 
dependent sill.

Because the directional variograms showed clear differences in range and sill, it was not 
appropriate to assume isotropic conditions in the study area. Hence, anisotropic 
variograms were calculated for each season using weighted least squares in Genstat 
(Genstat 5 Committee, 1992) (Table 1 and Figure 2). The fitted anisotropic model of 
summer residual rainfall had a larger range 0.2 deg (~20 km), but smaller spatially 
dependent sill, than that of the fitted anisotropic model of the winter residual rainfall. 
The nugget-to-sill ratio for the model fitted to winter data was 26 % (compared to 9.6 % 
in summer) indicating that a large proportion of the variation was not explained by the 
fitted model.
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Figure 2. Anisotropic variograms for (a) summer and (b) winter. Lag distance is 0.05, 
see Table 1 for parameters of the variograms. 

4 Estimation of gridded residuals 

Two methods were used to produce high resolution (0.02 latitude by 0.02 longitude) 
grids for SE England: Ordinary Kriging (OK) (Figure 3) and Simulated Annealing (SA) 
(Figure 4). The OK estimates a grid by minimising the MSE between the estimated and 
the true field, using the parameters of the anisotropic variogram to describe the spatial 
structure of the residual rainfall. In this article the GSLIB function KT3D (Deutsch and 
Journel, 1998) was used to derive the kriging estimates. The SA is a stochastic global 
minimisation technique that mimics the metallurgical process of annealing. An 
imaginary analogy is made between the slowly cooling metal and the optimisation of the 
rainfall grid. At an initial stage of high temperatures, the molecules of the molten metal 
move relatively freely and reorder themselves into a very low energy structure. In SA 
this process is recreated by allowing gridded values swap places. A perturbation of the 
grid is accepted if an objective function is lowered (Deutsch and Journel, 1998). 
However, the acceptation of a perturbation is not only dependent on the objective 
function. The higher the “temperature” the greater the probability that an “unfavourable” 
perturbation is accepted (Deutsch and Journel, 1998).  In this article, the SA was carried 
out using the GSLIB function SASIM (Deutsch and Journel, 1998), where the SA was 
constrained by a smoothed histogram of the rainfall depth residuals and the anisotropic 
variogram. For further information on SA please see: Deutsch and Journel (1998), 
Chilès and Delfiner (1999), and Lantuéjoul (2002).

5 Results 

The gridded residuals from both the OK and SA were added back to the low-order 
polynomial to give actual rainfall depth (Figure 3 and 4). Altough the two sets of maps 
have rather different appearance, they share the same large scale features. The 
magnitude of rainfall is altogether smaller during summer. Local increases in rainfall are 
controlled by orography and, along the southeast coast, are influenced by convective 
storms encroaching from the continent. The winter pattern shows larger variability with 
increasing rainfall depths in the SW.
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In comparison to the SA maps, the OK maps display smoothed surfaces and much less 
variability for both summer and winter seasons. Some smoothness may be expected as 
the data is in the form of seasonal totals. For example, larger variability would have 
been expected if daily, or even multi-day totals, had been used. Nevertheless, in this 
study, a large proportion of the smoothness in the OK maps is due to spatial 
interpolation. SA, on the other hand, provides larger variability whilst still honouring the 
characteristics of the data in the histogram and the spatial structure of the variogram.

Figure 3. SE England rainfall depth during (a) summer and (b) winter, during one year 
(1972), as estimated using ordinary kriging. 

Figure 4. SE England rainfall depth during (a) summer and (b) winter, during one year 
(1972), as estimated using simulated annealing. 
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6 Discussion and Conclusions 

The seasonal rainfall depth for SE England was analyzed for one year. Directional 
variograms revealed anisotropic conditions in the data, with the strongest spatial 
dependence in the W-E direction for both seasons. Overall, the summer variograms had 
a larger range but smaller sill than the winter variograms. We did, however, expect a 
larger range during winter compared to summer. The reason being that winter rainfall is 
usually associated with frontal depressions whilst summer rainfall is usually associated 
with the smaller scaled convective processes. The smaller range during winter in this 
study is probably due to the study area being too small to capture the real scale of 
rainfall processes.

Two sets of gridded maps were produced using OK and SA. Whilst both methods 
showed the same overall spatial features, the OK maps showed stronger smoothing of 
the data compared to the SA maps. The maps of rainfall produced using SA gave a more 
reasonable representation of the variability in rainfall depth compared to that of the 
smoothed OK map. Further analysis will investigate the use of SA to estimate spatial 
patterns of rainfall. Issues such as: how to best represent multiple SA generated patters, 
what is the correct level of fluctuation in the SA patterns, how sensitive is the method to 
the rate of the “cooling” etc. all needs to be better understood. Nevertheless, we believe 
that the SA could prove a valuable method to investigate variability and uncertainty in 
rainfall mapping.
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Abstract. This paper aims at constructing geostatistical indicators to quantify water 
quality for nutrients. It presents a method to estimate the yearly mean and the 90th 
percentile of concentrations, taking into account temporal correlation, irregularity of 
sampling and seasonal variations of concentrations. On simulations, segment of 
influence declustering, kriging weighting and a linear interpolation of empirical 
quantiles are calculated and compared to the currently used statistical inference, based 
on the independence of random variables. These methods make it possible to correct the 
bias of the yearly mean and the quantile, and to improve their precision, giving a better 
prediction of the estimation variance. The study focuses on nitrates, in the Loire-
Bretagne basin (France). 

1 Introduction 

In order to assess river water quality, nitrate concentrations are measured in different 
monitoring stations and summarized in a few synthetic quantitative indicators such as 
the 90% quantile of yearly concentrations or the annual mean, making it possible to 
compare water quality in different stations, and its yearly evolution. The current French 
recommendations are based on the water quality’s evaluation system (SEQ EAU) and 
the water framework directive in Europe, which aims at achieving good water status for 
all waters by 2015. These calculations, however, use classical statistical inference, 
essentially based on a hypothesis proved to be incorrect for many parameters: time 
correlation is not taken into account. Moreover, the seasonal variations of concentrations 
and the monitoring strategy are ignored. Because of the streaming, nitrate concentrations 
are high in winter and low in summer (Payne, 1993), and then if sampling frequency is 
increased in time in winter out of precaution, the annual mean and the quantile are 
falsely increased. It is therefore necessary that the estimation takes into account both 
time correlations and irregularity of the measurements. We show that kriging or segment 
weights facilitate correction of the bias and improved assessment of the yearly temporal 
mean, as well as the quantile. For quantile estimation, the known bias of classical 
empirical calculations can be reduced using a linear interpolation of the empirical 
quantile function. Methods are presented and compared for simulations of nutrients.
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2 Annual concentrations at one station on the river Cher 

Classical statistical inference consists of estimating the annual mean of nitrate 
concentrations by the sample mean and the 90% quantile by the empirical quantile. 
Figure 1 (left) and table 1 give an example of nitrate concentration measurements from 
the river Cher in 1985 in France. The annual mean and the 90th percentile have been 
estimated first with the totality of measurements (6 in summer, 12 in winter), then with 
an extracted sample of one regular measurement a month. 

Figure 1. Preferential sampling of nitrates concentration during one year at one 
monitoring station (70300). Left: concentrations as a function of dates. Note that the 
frequency of measurements is doubled in winter. Right: associated kriging weights. 

Table 1. Statistical yearly mean and quantile estimations corresponding to nitrates 
concentrations of Figure 2. 

Sample size Sample mean 90% quantile 
12 17.49 25.56 
18 18.75 26.12 

Note that the sample mean is increased by 7% and quantile is increased by 3% when 
sampling is increased in winter. This difference, which can be much more important (up 
to 15 %) depending on the monitoring station, is a consequence of the temporal 
correlation (Figure 2, left). Because of this correlation, better methods are needed to 
assess the yearly temporal mean and the quantiles. 

3 Methodology 

3.1 THE YEARLY MEAN 

For most of the monitoring stations, experimental temporal variograms calculated on 
nitrates concentrations show the evidence of a time correlation. For independent data, 
the sample mean (i.e., the arithmetic mean of the experimental data) is known to be an 
unbiased estimator; but in the presence of a time correlation, the sample mean is no 
longer unbiased, particularly when sampling is preferential. To correct this bias, two 
methods are studied: 

Kriging with an unknown mean (ordinary kriging, or OK), which takes into account 
correlation in the estimation of the annual mean and in the calculation of the 
estimation variance; 
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A geometrical declustering, the only objective of which is to correct the irregularity 
of sampling.

These methods, detailed below, will be compared with simulations (Section 4): 
a) In classical statistics (Saporta, 1990; Gaudoin, 2002): sample values 1 2, ,..., nz z z  are 

interpreted as realizations of independent and identically distributed random variables 

1 2, ,... nZ Z Z with expectation m . The yearly mean is estimated by the sample mean, 

denoted *

1

1 n

i
i

m Z
n

. The estimation variance 
2*Var m m n is deduced from 

the experimental variance 2 :

b) With temporal kriging (Matheron, 1970; Chilès and Delfiner, 1999): sample values 
are interpreted as a realization of a random correlated function Z t at dates 1 2, ,..., nt t t .

In this situation the usual parameter of a distribution is not estimated, but rather the 

temporal,
1

T

T

Z Z t dt
T

, which is defined even in the absence of stationarity. 

Estimation proceeds using ordinary block kriging, as follows, *

1

n

T i i
i

Z Z where i are

the kriging weights and the kriging variance is given by *( ) T TVar Z Z

Analytical expressions necessary to calculate the kriging weights are easy to calculate in 
1D, even without discretization. Figure 1 (right) gives an example of the kriging 
weights, assigning lower weights to winter values, which corrects the bias. The 
estimation variance and confidence interval, overestimated by classical statistics, are 
reduced by kriging taking into account the temporal correlation (figure 2, left) and the 
annual periodicity of the concentration. 

c) Segment declustering, corresponding to 1D polygonal declustering (Chilès and 
Delfiner, 1999).

3.2 THE 90% QUANTILE OF NUTRIENTS CONCENTRATIONS 

The 90% quantile is used to characterize high concentrations but the empirical quantile 
has proven to be biased even for independent realizations of the same random variable 
(Gaudoin, 2002). Moreover, it does not take into account temporal correlation and 
sample irregularity. In the literature there are many references pertaining to percentile 
estimation, especially with regard to statistical modelling of extreme values. However, 
many measurements are needed because of the appeal to asymptotic theorems. For an 
average of 12 measurements a year, classical non-parametric statistics will be used here, 
applying a linear interpolation of the empirical quantile. Then, to take temporal 
correlation into account, the data will be weighted using kriging or segment weights
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4 Testing methods on simulations 

4.1 CHOICE OF THE MONITORING STATION AND SIMULATION 

Because complete time series for one year are not available, we use simulations for 
which the annual mean and the 90% quantile are known. Assuming that measurement 
per day corresponds to the daily concentration, we construct conditional simulations of 
“daily” concentrations with respect to the experimental data of real monitoring stations. 
Thus, we are able to compare the different estimations to the real yearly mean and 
quantile values. Different samplings schemes will be used: preferential, regular and 
irregular sampling. 
The presentation is here restricted to station number 70300, on the river Cher, sampled 
monthly. One thousand of conditional simulations of 365 days conditioned by real 
measurements in 1985 were constructed (one simulation example is given on figure 2 
(right)), using the fitted variogram presented on figure 2 (left). This experimental 
variogram calculated over several years reflects the annual periodicity of nitrate 
concentrations. Variograms calculated for each season would differ, but as we are 
interested in the global annual statistics, the averaged variogram on one year is sufficient 
(Matheron, 1970).

Figure 2. Monitoring station on the river Cher, nitrate concentration. Left: experimental 
variogram and fitted model, with a lag of 30 days. Right: one conditional simulation. 

4.2 ESTIMATION OF THE YEARLY MEAN ON PREFERENTIAL SAMPLING

The results of the estimation of the yearly mean are presented In Figure 3 using 10 
simulations. Estimations are compared on preferential sampling which comprises 18 
measurements a year (6 values in summer and 12 values in winter) using monthly 
sampling (as in figure 1).

Figure 3. A comparison between the kriging and sample mean for the estimation of the 
yearly mean. On the left, scatter diagram between monthly sampling and preferential 
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sampling estimations by kriging and statistics. On the right, scatter diagram between the 
yearly mean estimated with kriging weights and segment weights. 
Figure 3 (left) shows that kriging rectifies the bias of the sample mean in the case of 
preferential sampling. Moreover, the kriging variance is lower than the predicted 
statistical variance of the mean of independent variables, namely because of the yearly 
periodic component of the variogram. Here, the calculation of the estimation variance 
obtained with classical statistics is on average 70 % higher than that obtained with 
kriging. Figure 3 (right) shows the equivalence of segment and kriging weighting in the 
estimation of the yearly mean.
It can be concluded that kriging corrects the bias in case of preferential sampling, that it 
yields a better assessment of the yearly mean, and improved precision. However, if we 
are only interest in the value of the annual mean, segment declustering can be used 
because of its simplicity. If precision is needed, then kriging should be preferred. 

4.3 QUANTILE ESTIMATION ON IRREGULAR SAMPLING 

In this example, samples of different sizes have been extracted from each of the 1000 
simulations, for 4 to 36 measurements a year, irregularly spaced in time. Thus we obtain 
1000 samples of size 4, 1000 of size 5 etc…We estimate the 90% quantile for each 
sample using classical statistics and kriging or segment declustering on a linearly 
interpolated empirical quantile (Bernard-Michel and de Fouquet, 2004). Results are 
given in average for each different sample size and shown in Figure 4. They are 
compared to quantiles calculated in average on the 1000 simulations of 365 days.

Figure 4. Average of the quantile estimation for temporal correlated concentrations, 
compared with the empirical quantity, for 1000 simulations. This empirical quantity 
corresponds to the mean, calculated on all the simulations, of the 90% quantiles of 365 
values. All calculations are made by linear interpolation of quantiles. Upper left figure 
(a): average of quantiles estimation. Upper right figure (b): experimental estimation 
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standard error. Lower left figure (c): experimental 95% confidence interval. Lower right 
figure (d): histogram of quantile errors for samples of size 12. 
Figure 4 (a) shows that the linear interpolation of the empirical quantile corrects the bias 
very well. Kriging or segment of influence weighting takes into account the sampling 
irregularity. However, the estimation variance (figure 8 (b)) remains larget. Actually, for 
36 measurements a year, errors still represent approximately 8% of the real quantile 
which gives an approximate 95% confidence interval (figure 8. (c)) of %20  around the 
real quantile because of the quasi normality distribution of errors (figure 8 (d)). For 12 
measurements a year, they reach 11% of the real quantile, and 18% for 4 measurements 
a year. In the presence of time correlation, the theoretical estimator of a confidence 
interval would be difficult to construct. Even when random variables are independent, 
the theoretical interval (Gaudoin, 2002) is not satisfactory because it is limited by the 
higher order statistics. Simulations can be used to evaluate errors made in estimations 
and to determine the required sample size to achieve a desired precision.

5 Conclusions 

Results are similar for other stations. Kriging the annual mean allows the bias induced 
by a preferential sampling of high concentration periods to be corrected. Associated 
with linear interpolation of the experimental quantile function, the kriging weights give 
an empirical estimation of quantiles that is practically unbiased. The segment of 
influence weighting can be used to simplify the calculations. In all cases, one or two 
measurements a month are not sufficient for a precise estimation of the yearly 90% 
quantile.
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APPLICATION OF GEOSTATISTICAL SIMULATION TO
SATELLITE IMAGE PRODUCTS

CHRISTINE A. HLAVKA and JENNIFER L. DUNGAN
Ecosystem Science and Technology Branch, NASA Ames Research Center,
Moffett Field, CA 94035-1000

Abstract. With the deployment of Earth Observing System (EOS) satellites that
provide daily global imagery, there is increasing interest in defining the limitations
of the data and derived products due to their coarse spatial resolution. Much of the
detail, i.e. small fragments and notches in boundaries, is lost with coarse resolution
imagery provided by systems such as the EOS MODerate Resolution Imaging
Spectroradiometer (MODIS). Higher spatial resolution data such as the EOS
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),
Landsat Thematic Mapper and airborne sensor imagery provide more detailed
information but are less frequently available.

There is, however, both theoretical and analytical evidence that burn scars and
other fragmented types of land covers form self-similar or self-affine patterns, that
is, patterns that look similar when viewed at widely differing spatial scales. There-
fore small features of the patterns should be predictable, at least in a statistical
sense, with knowledge about the large features. Recent developments in fractal
modeling for characterizing the spatial distribution of undiscovered petroleum
deposits are thus applicable to generating simulations of finer resolution satellite
image products. We present example EOS products, an analysis to investigate
self-similarity and a discussion of simulation approaches.

1 Terrestrial remote sensing with coarse spatial resolution

1.1 THE PROBLEM

The Earth Observing System (EOS) is a series of satellites launched by NASA
during the past decade to make scientific measurements of the terrestrial land,
oceans and atmosphere in order to understand how the Earth functions as a planet
(http://eospso.gsfc.nasa.gov). Each satellite, with its suite of sensors collecting
data in different parts of the electromagnetic spectrum, is meant to exploit aspects
of surface and atmospheric interaction to make inferences about biophysical and
geophysical variables. Maps of these variables are being used as model input for
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understanding how changes in the Earth’s surface, such as deforestation and
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Figure 1. On the left, fire scars in the Brazilian savanna mapped with Landsat
TM imagery. On the right, fire scars mapped with simulated MODIS imagery.

applications are being developed to address the priorities of other government
agencies and sensor products are freely available to the general public.

In order to acquire global coverage at high temporal frequency, many EOS
sensors acquire data at coarse spatial resolution (on the order of 1 km). This
represents a one to three order of magnitude change in the size of the fundamental
spatial unit of measurement (representing a huge difference in support) compared
to other data sources such as Landsat Thematic Mapper (30 m), airborne sensors
or ground observations (typically 1–15 m). Coarse products therefore lack details
such as small fragments of a land cover type (Figure 1). These details are especially
relevant to studies of land disturbances such as fire because land cover types such
as burn scars and open water are often highly fragmented. Loss of detail due to
coarse resolution effects limits the utility of these products and complicates quality
assessment that typically involves comparison with finer resolution information.
Most importantly, coarse resolution may lead to significant biases in estimating
quantities of interest. For example, the areal extent of fragmented types of land
cover might be underestimated due to omission of small fragments (Hlavka and
Livingston, 1997; Hlavka and Dungan, 2002). Conversely, the proportion of more
dominant land cover types might be overestimated because of missing small holes.
There may be biases in non-linear computations in biogeophysical models because
image values are pixel-average measures (in counts) of radiance averaged over the
pixel, but f(E(x)) is not equal to E(f(x)) when f is non-linear (Dungan, 2001).

1.2 MOTIVATION

We address the coarse resolution problem by proposing novel methods for 1) ad-
justing area statistics derived from map products and 2) by considering how the
products themselves might be “enhanced” to represent information from smaller
supports (finer spatial resolutions) with better fidelity. Both approaches exploit the
fractal nature of the phenomenon being mapped. This paper is a brief summary
of our progress to date with both approaches. To develop the methods, we have

biomass burning, are related to trends in atmospheric chemistry and climate. Other
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used data from the MODerate Resolution Imaging Spectroradiometer (MODIS)
sensor, in some cases with reference data from higher resolution Landsat images.

1.3 MODIS PRODUCTS

The MODIS instruments aboard NASA’s Terra and Aqua satellites acquire image
data with 250 m, 500 m, and 1000 m pixels in visible and infrared wavelengths.
This imagery is therefore at a much coarser resolution than Landsat Thematic
Mapper’s (TM) 30 m pixels. The smaller data volume and broader swath width
of MODIS allow for more frequent coverage and monitoring the Earth’s surface in
a more comprehensive manner, both spatially and temporally, as required for the
scientific understanding of global climate issues. Unlike Landsat TM or other older
types of satellite imagery, the MODIS imagery is processed into high-level products
such as digital maps of land cover type and percent forest cover (Justice et al., 2002)
representing both categorical and continuous variables. “Land cover” (Friedl et al.,
2002) and “burn area” (Roy et al., 2002) products are both categorical. The land
cover product is a map of land cover type (forest, shrubland, bare ground, wetlands,
etc.) with 1 km pixels. The burned area product maps burn scars by detection
date with 500 m pixels. The “vegetation continuous fields” product maps percent
coverage of forest and non-forest vegetation types with 500 m pixels (Hansen et al.,
2002). Among the data sets we have worked with are land cover and percent forest
over an area of boreal forest and lakes in Manitoba and the burned area product in
the Okavango Swamp in Botswana, Africa where there are massive seasonal fires.

There is fundamental aspect of satellite imagery as data that is central to its
interpretation and processing. Most data collected on the ground and analyzed
with geostatistical methods are essentially point data, that is, the support is very
small compared to distances between samples. Satellite imagery, on the other hand,
is synoptic. The pixel sizes are approximately the distance between neighboring
pixel centers, so that the pixels tile the scene being observed from the satellite
platform. Pixel values represent an average over the extent of the pixel. In image-
based products, values represent a transformation of pixels values (e.g. an estimate
of percent forest) or are a code for a predominant category, such as land of a type
(e.g. forest) or condition (e.g. recently burned).

2 Fractal properties of geographic features observable from space

Analysis of geographic data has provided evidence of the fractal nature of the
Earth’s surface and a variety of geographic features. Probably the best-known
example is the coastline of Britain whose length is a power function of the length
of the measuring stick (Mandelbrot, 1982). The sizes of islands, lakes, and patches
of burned vegetation have been shown to have fractal (i.e. Pareto or power) distri-
butions (Mandelbrot, 1982; Korcák, 1938; Malamud et al., 1998) with probability
density function (theoretical normalized histogram) of the form:

p(x) = Prob(x < X)/dx = Ax−B for x > ε > 0, A > 0, B > 0 (1)
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where ε is a value close to zero. Fractal patterns in continuous field data such as
percent forest cover might also be expected because such measures are strongly
related to burning – forest age in many regions is typically determined by when it
last burned.

The fractal nature of landscape features has also been observed with satellite
imagery. For example, Ugandan forest boundaries are approximately a power func-
tion of satellite pixel size (Hlavka and Strong, 1992). Size distributions of burn
scars and water bodies have been found to be approximately fractally distrib-
uted (Hlavka and Dungan, 2002). However, sometimes the distribution of feature
sizes are more lognormal than fractal, possibly due to imaging effects besides
non-detection of fragments below the pixel size.

Patterns of small and large fragments are linked through process models, in
particular those associated with self-organized criticality (Malamud et al., 1998;
Hergarten, 2002) and other landscape models that generate fractal patterns of
disturbances. The variogram γ(h) of a self-similar fractal pattern Z(x) is:

γ(h) = E[Z(x + h) − Z(x)]2 ∼ h2H (2)

where H is known as the Hausdorff exponent (Hergarten, 2002). The Fourier
spectrum follows a similar form with amplitudes P (ν) ∼ |ν|β where β is the
spectral exponent (Hergarten, 2002; Chen et al., 2001). These characterizations of
fractal pattern at a wide range of spatial resolutions are the basis for proposing
adjusted area estimates and “enhanced” versions of satellite image products that
have the original large land cover patterns from the coarse resolution product with
simulated smaller details.

3 Solutions to the coarse resolution problem using fractal properties

3.1 ADJUSTING AREA STATISTICS

Models of size distribution have been experimentally used to adjust area estimates
for missing small burn scars and water bodies following Maxim and Harrington
(1982) with simulated and actual MODIS products and with Advanced Very High
Resolution Radiometer (AVHRR) weather satellite imagery (1 km pixels). Ad-
justed burn area estimates based on simulated MODIS or AVHRR were found
to be closer to Landsat estimates than simple count × pixel area (Hlavka and
Dungan, 2002). A similar approach has been used to address petroleum reserve
estimation (Barton and Scholz, 1995).

Quantile-quantile plots of the observed sizes of burn scars in the Okavango
burned area product and patches of wetland and open water in the Manitoba land
cover product indicated a fit to a fractal or lognormal distribution, as indicated
by the degree to which the trend in the data fit a straight line (Figure 2). Area
adjustment was implemented with a program “ltfill” (http://lib.stat.cmu.edu/s)
that uses truncated data (x > C, a user- specified value below which data are
missing or unreliable) to estimate the parameters of a lognormal, fractal, or ex-
ponential distribution, then estimates the number and sum of all values. For this
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Figure 2. Quantile-quantile plot comparing the observed quantiles of sizes of
boreal wetlands mapped on the MODIS land cover product to theoretical quantiles
of the fractal distribution.

application, the cutoff value C is chosen to be the area of one or two pixels, since
fragments smaller than this cannot be reliably detected.

For boreal wetlands, the adjusted area was half again the usual area estimate.
The Okavango burns were extensive with many fragments of unburned area within
the largest burn scars, so burned area was adjusted for both small, unobserved
burns and unobserved, unburned fragments with the result of slightly decreasing
the areal estimate.

3.2 SIMULATING 2D FIELDS AT FINE SPATIAL RESOLUTION

Beyond simple adjustments to global statistics, it is desirable to have a model of
what the actual 2D field of the variable of interest looks like. This raises a typical
geostatistical problem but with a new twist: how to create synthetic realizations
defined on a small support that have the correct statistical properties of the
phenomenon of interest without measurements on small support. For lack of a
better term, we use the word, “enhancement” to refer to the process of modeling
a 2D field with small support given a 2D field with large support. Simulation
using such a model would be used in an unconditional sense in that there are no
measurements to honor at the small support. The key information needed to create
an objective function or other figure of merit for constraining the simulations is the
extrapolation of the spatial covariance to smaller lags using (2). The simulation
must also incorporate elements that play the role of conditional information so
that the locations of known features are correct.

One approach is the use of simulated annealing (Deutsch and Cockerham,
1996). The concept would be to use the coarse resolution image initially, then “an-
neal” it using an objective function defined at least partly by the inferred spatial
covariance properties of a fine resolution image based on the fractal characteristics
of the coarse resolution image. Another approach might be an adaptation of a
cascade model (Cheng, this volume), wherein new pixel values replacing an original
pixel value V are constrained to have means equal to V and variances consistent
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with extrapolated short distance covariances or constraints based on multiple point
statistics (Arpat and Caers, this volume).

The approach we took was to generate unconditional realizations in the fre-
quency domain using a modified version of spectral simulation with phase iden-
tification (Yao, 1998; Yao et al., this volume). This method takes advantage of
the deterministic relationship between spatial covariance C(h) and the magnitude
of the Fourier transform A(j) : FT (C(h)) = |A(j)|2 and the role of the Fourier
transform phase in determining the location of features in an image. This approach
was tested using percent forest layer of the vegetation continuous fields product.
We selected a 128×128 pixel chip from this product for an area in central Canada.
The chip was of an area near Lake Athabasca and showed a blocky pattern related
to forest clear-cuts of various ages and stages of regrowth. The magnitudes of the
Fourier transform (|FT |) along three lines (the x and y axes and the 45 degree line)
showed power curve trends, with similar exponents, consistent with an isotropic
fractal pattern. The |FT | was quite rough, i.e. deviations from the trend around
log|FT | versus log(frequency) were large. We created a 1024 × 1024 pixel version
of the original chip by taking the FT inverse of a 1024 × 1024 FT created by
extrapolating the original |FT | into higher frequencies according to a regression
power model and padding out the original phases with zeroes in higher frequencies.
The resulting 1024 × 1024 data product had high amplitude noise and periodic
features (probably an artifact of processing) that obscured the pattern in the
original 128 × 128 chip, indicating that changes in procedure need to be made
before a realistic simulation is achieved.

4 Conclusions

We have presented work to address the biases that may arise from the use of coarse
resolution satellite data for mapping fragmented landscape phenomena such as
burn scars, water bodies and forest patches. Adjusting global area estimates using
a fractally-based extrapolation of the size distribution is a promising technique
that requires further testing on a large set of representative data. We have not
yet succeeded in creating realistic enhanced images using a simulation approach.
Geostatistical methods of unconditional simulation should be further tested for
this purpose. Results from such an effort have the potential to reduce discrepancies
in global biogeophysical measurements for many important Earth-system science
issues.
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GEOSTATISTICAL NOISE FILTERING OF GEOPHYSICAL IMAGES: 

APPLICATION TO UNEXPLODED ORDNANCE (UXO) SITES 
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Abstract. Geostatistical and non-geostatistical noise filtering methodologies, factorial 
kriging and a low-pass filter, and a region growing method are applied to analytic signal 
magnetometer images at two UXO contaminated sites to delineate UXO target areas.  
Overall delineation performance is improved by removing background noise.  Factorial 
kriging slightly outperforms the low-pass filter but there is no distinct difference 
between them in terms of finding anomalies of interest. 

1 Introduction 

The goal of unexploded ordnance (UXO) site characterization is to delineate target areas, 
within which UXOs are expected to be clustered and required excavation or further 
investigation from spatially exhaustive geophysical information. The most 
straightforward characterization approach consists of applying a threshold to each pixel 
in the geophysical map; values above the threshold are considered as potential UXO or 
objects of interest.  However, since available geophysical maps are not usually smooth, 
this approach can lead to a noisy mosaic of pixels flagged for excavation.  This research 
aims to improve the final decision map (i.e., binary map) by filtering spatially 
uncorrelated background noise from the geophysical map using factorial kriging (Wen 
and Sinding-Larsen, 1997).  A region growing method is then applied to the smoothed 
map to detect UXO target areas.  The basic idea of the region growing method is to start 
from a point that meets a criterion (e.g., highest geophysical signal value) and to extend 
the area by adding adjacent pixels in all directions until a specified number of pixels are 
included or a boundary is detected (Hojjatoleslami and Kittler, 1998).  It can then 
provide an optimal estimate of the target area, which is of great regulatory interest.  The 
influence on the final decision maps due to the search window size in factorial kriging is 
investigated and results are compared to those obtained with a non-geostatistical 
filtering technique (i.e., low-pass filter). 

In this study, two UXO sites are used: a hypothetical site created with a Poisson 
simulator (McKenna, et al., 2001) and the Pueblo of Isleta site in New Mexico, where an 
exhaustive magnetic analytic signal map is available.  The benefit of using the 
hypothetical site is that the true spatial distribution of objects is known so that any type 
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of investigation is possible and the accuracy and precision of the results can be fully 
evaluated.  At the hypothetical site, the spatial distribution of objects is modelled by a 
non-homogeneous Poisson process (McKenna, et al., 2001) and corresponding analytic 
signal values are also simulated.  Background noise, on the other hand, was modelled by 
a homogeneous Poisson process (i.e., random noise), in which the object density is 
uniform across the site.  The size of the hypothetical site is 5000  5000 meters and the 
single UXO target is located in the center of the site (Figure 1 left).  A 50  50 meter 
pixel is used as the spatial support over which any characterization decision is made.  
There are a number of simulated objects in each pixel but only the largest signal value 
within each pixel is retained as a representative value of the pixel for further 
investigation (Figure 1, center). 

The Pueblo of Isleta site has been surveyed by the Geophysical team of Oak Ridge 
National Laboratory using their airborne UXO detection system (Doll, et al., 2003).  In 
their system, which is referred to as the Oak Ridge Airborne Geophysical System – 
Hammerhead Array (ORAGSTM-HA), 8 magnetometers are deployed inside booms 
mounted to a helicopter.  Figure 1 (right) shows the highest analytic signal value in 15 

 15 m pixels at the site.  Since no excavation has been conducted at the site, a 
complete analysis is not possible. 

Figure 1. Simulated analytic signals [nT/m] at the hypothetical site (middle) with the 
true UXO distribution (left).  The right image shows the analytic signal values (right) 
obtained at the Pueblo of Isleta site (S3) in New Mexico by Oakridge National 
Laboratory (2002).

2 Methods 

This section briefly reviews the geostatistical filtering technique, factorial kriging, and 
the region growing method.  For the non-geostatistical filtering approach, a low-pass 
filter is used with two different window sizes: 3  3 and 5  5. 

2.1 FACTORIAL KRIGING 

Factorial kriging (FK) is an algorithm to decompose an attribute into spatial components 
with different spatial scales, say (L+1) different scales (Goovaerts, 1997).  The 
underlying assumption is that spatial components from different sources (e.g. scales) are 
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independent of each other and they are additive.  Under these conditions, the random 
function Z(u) can be written as a sum of (L+1) independent random functions and a 
single mean or trend m(u):
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Under this condition, the semivariogram of the random function Z(u) is modeled as the 
sum of (L+1) semivariograms of random functions Zl(u) (i.e., spatial components): 
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where bl is the variance and gl(h) is the basic semivariogram model of the corresponding 
l-th random function Zl(u) with a certain spatial scale.  By convention, the superscript 
l=0 denotes the nugget component, which is a spatially uncorrelated random function 
and is usually regarded as noise.  Spatial components at different scales can be then 
easily identified from their experimental semivariograms. 

When FK is applied to exhaustive data (e.g., images), it amounts to decomposing an 
observation or a map into individual components with different spatial scales, because 
of the exactitude property of the kriging estimator (Goovaerts, 1997, pp. 165).  It allows 
one to filter out an l0-th component (e.g., the nugget effect) from the observation and 
directly estimate the filtered value as a linear combination of surrounding data using: 
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The kriging weights, l0(u), are obtained by solving the following system: 
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The only difference from the ordinary kriging system is that the right-hand-side 
semivariogram is computed by subtracting the semivariogram of the l0-th spatial 
component.

2.2 REGION GROWING METHOD 

There are several algorithms available for the region growing method.  The basic idea is 
to start from a point that satisfies a specific criterion (e.g. highest signal value) and to 
extend the area by adding adjacent pixels in all directions until a boundary is detected or 
a stopping rule satisfied.  This method is based on the idea that pixels belonging to the 
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same region have similar values or at least have values different from those in the 
background.  Variants of the region growing method have different growing and 
stopping rules.  In this study, the method proposed by Hojjatoleslami and Kittler (1998) 
is modified and used because of its theoretical simplicity and the robustness of the 
algorithm.  The method proceeds as follows: 

1. An arbitrary pixel within a region of interest or a pixel that satisfies some 
criterion (such as the pixel with the highest signal value) is selected.  A 
spatially contiguous set of selected pixels is referred to as a region.

2. The pixel with the highest value among pixels adjacent to the region is added 
to the region.

3. Steps 1 and 2 are repeated until a given number of pixels are added to the 
region.

For demonstration purpose, the extension of the region is stopped when a specified 
number of pixels are included.

3 Results 

Factorial kriging (FK) requires a linear model of regionalization.  Figure 2 (left) shows 
an experimental semivariogram of analytic signal values of the hypothetical site and a 
fitted Gaussian model.  The nugget component, which is usually related to spatial 
variability in very short scales, is then filtered out using FK (Figure 2, right).  As 
expected, the image is smoothed out compared to the original signal image (Figure 1) 
especially in the background. 

Figure 2. Experimental semivariogram of analytic signal values at the hypothetical site 
with a Gaussian model fit.  Factorial kriging (FK) is used to remove the nugget 
component from the original analytic signal image.  25 neighbours are used in FK.

The region growing method is then applied to the filtered image to delineate a UXO 
target region.  Figure 3 shows the region consisting of 1000 pixels obtained using both 
original (left) and filtered (right) images.  Since the filtered image is much smoother 
than the original image, the boundary of the region for the filtered image is much more 
continuous.  Considering the effort required for UXO excavation, the region selected 
using the original image is too noisy and not practical. 
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Figure 3. Regions (black pixels) selected using the original and filtered images by 
applying the growing region method.  The extension of the region is stopped when 1000 
pixels are included in the region.  Gray pixels are not included in the region but contain 
at least one UXO (i.e., false negative).

The performance of the noise filtering technique and the region growing method is 
quantified by calculating the proportion of UXO, or anomalies of interest, that fall in the 
selected region.  Table 1 summarizes the results for both sites.  If the region with 1000 
pixels is used at the hypothetical site, filtering the image (i.e., removing noise) does not 
improve identification of UXO.  On the other hand, when 2000 pixels are included in 
the region, noise filtering slightly improves the delineation performance, especially 
when a larger search window is used. 

Table 1. Percentage (%) of UXO at the hypothetical site or anomalies of interest at the 
Isleta site located within the selected region.  The underline values indicate the best 
results among different filtering techniques. 

When the hypothetical site is used, only one region is considered.  As for the Isleta site, 
since there seems to be more than one potential UXO target areas (Figure 1, right), the 
application of the region growing method is slightly different.  To delineate more than 
one target area, the region growing method needs to be applied several times.  For the 
Isleta site, since there are five suspected areas, five starting pixels are chosen from each 
suspected area.  Each region is then grown to a maximum of 1500 pixels in this example.  
When the region selects a pixel already selected by a different region while growing, it 
stops.  In addition, since there is no information about an actual UXO distribution at the 
Isleta site, two signal threshold values, 3.0 and 10.0 [nT/m], are considered to define 
“anomalies of interest.”  For both cases, the best results are obtained when FK is used to 
filter the background noise from the image.  In general, the delineation of anomalies 

Hypothetical site Isleta site 
Filtering

1000 pixels 2000 pixels > 3 [nT/m] > 10 [nT/m] 
None 84.49 97.25 71.45 71.95 

FK (n(u) = 25) 84.89 98.76 76.98 86.40
FK (n(u) = 9) 84.89 98.49 77.78 84.99 

Low-pass (5 5) 84.89 98.76 71.74 83.00 

Low-pass (3 3) 84.89 98.49 77.60 85.84 
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with higher signal values improves for both geostatistical and non-geostatistical filtering 
techniques compared to the result without any filtering (Table 1). 

4 Conclusions 

This study demonstrates a procedure to improve the delineation of suspected UXO 
target areas from exhaustive geophysical images.  Two UXO contaminated sites, the 
hypothetical site and the Pueblo of Isleta site, are used.  The basic approach is first to 
remove the background noise by smoothing the image.  Then, the region growing 
method is applied to delineate the area with high signal values, which should be related 
well to UXO.  This area is considered a suspected UXO target area.  In this study, two 
different filtering techniques, factorial kriging (geostatistical technique) and low-pass 
filter (non-geostatistical technique), are compared. 

The performance of the approach is quantified by calculating the proportion of UXO or 
anomalies of interest found in the region selected.  Both filtering techniques improve the 
overall delineation performance.  Factorial kriging is superior at the Isleta site, while 
there is no distinct difference between FK and low-pass filter at the hypothetical site in 
terms of finding UXO.  One of the main reasons is that, as the range of semivariogram 
(> 2000m) is much larger than the filtering window size (250m); factorial kriging is 
almost identical to takeing the local average as done in the low-pass filtering procedure.  
The geostatistical approach is expected to perform better when the filtering window size 
is much closer to the range of the semivariogram. 
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Abstract. Skewness is present in a large variety of spatial data sets (rainfalls,
winds, etc) but integrating such a skewness still remains a challenge. Classically,
the original variables are transformed into a Gaussian vector. Besides the problem
of choosing the adequate transform, there are a few difficulties associated with
this method. As an alternative, we propose a different way to introduce skewness.
The skewness comes from the extension of the multivariate normal distribution
to the multivariate skew-normal distribution. This strategy has many advantages.
The spatial structure is still captured by the variogram and the classical empirical
variogram has a known moment generating function. To illustrate the applicability
of such this new approach, we present a variety of simulations.

1 Introduction

The overwhelming assumption of normality in the multivariate Geostatistics liter-
ature can be understood for many reasons. A major one is that the multivariate
normal distribution is completely characterized by its first two moments. In ad-
dition, the stability of multivariate normal distribution under summation and
conditioning offers tractability and simplicity. However, this assumption is not
satisfied for a large number of applications. In this work, we propose a novel way
of modeling skewness for spatial data by working with a larger class of distributions
than the normal distribution. This class is called general multivariate skew-normal
distributions. Besides introducing skewness to the normal distribution, it has the
advantages of being closed under marginalization and conditioning. This class
has been introduced by Domı́nguez-Molina et al., 2003 and is an extension of the
multivariate skew-normal distribution first proposed by Azzalini and his coworkers
(Azzalini, 1985, Azzalini, 1986, Azzalini and Dalla Valle, 1996 and Azzalini and
Capitanio, 1999). These distributions are particular types of generalized skew-
elliptical distributions recently introduced by Genton and N. Loperfido, 2005,
i.e. they are defined as the product of a multivariate elliptical density with a
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skewing function. This paper is organized as follows. In Section 2, the definition
of skew-normal distribution is recalled and notations are introduced. In Section
3, we first recall the basic framework of spatial statistics and then present the
spatial skewed Gaussian processes. The estimation procedure of the variogram
and skewness parameters is presented in details and illustrated on simulations. We
conclude in Section 4.

2 Skew-normal distributions

Multivariate skew normal distributions are based on the normal distribution but
a skewness is added to extend the applicability of the normal distribution while
trying to keep most of the interesting properties of the Gaussian distribution.
Today, there exists a large variety of skew-normal distributions (Genton, 2004) and
they have been applied to a variety of situations. For example, Naveau et al., 2004,
developped a skewed Kalman filter based on these distributions. In a Gaussian
framework, spatial data are analyzed using the skew normal distribution (Kim and
Mallick, 2002), but without a precise definition of skew normal spatial processes.
As it will be shown in Section 3.1, this model leads to a very small amount of
skewness and therefore is not very usefull in practice.

From a theoretical point of view, we use in this work the multivariate closed
skew-normal distribution (Domı́nguez-Molina et al., 2003, González-Faŕıas et al.,
2004). It stems from the ”classical” skew-normal distribution introduced by Az-
zalini and its co-authors. It has the advantages of being more general and having
more properties similar to the normal distribution than any other skew-normal
distributions. A drawback is that notations can become cumbersome. The book
edited by Genton, 2004, provides an overview of the most recent theoretical and
applied developments related to the skewed distributions.

An n-dimensional random vector Y is said to have a multivariate closed skew-
normal distribution denoted by CSNn,m(µ,Σ,D, ν,∆), if it has a density function
of the form:

cm φn(y; µ,Σ) Φm(Dt(y − µ); ν,∆), with c−1
m = Φm(0; ν,∆ + DtΣD), (1)

where µ ∈ R
n, ν ∈ R

m, Σ ∈ R
n×n and ∆ ∈ R

n×1 are both covariance matrices,
D ∈ R

m×n, φn(y; µ,Σ) and Φn(y; µ,Σ) are the n-dimensional normal pdf and cdf
with mean µ and covariance matrix Σ, and Dt is the transpose matrix of D. When
D = 0, the density (1) reduces to the multivariate normal one, whereas it is equal
to Azzalini’s density (Azzalini and Dalla Valle, 1996), i.e. the variable Y follows
a CSNn,1(µ,Σ, α, 0, 1), where α is a vector of length n. This distribution was the
first multivariate skew-normal distribution and it was introduced by Azzalini and
his coworkers (Azzalini, 1985, Azzalini, 1986, Azzalini and Dalla Valle, 1996 and
Azzalini and Capitanio, 1999).

The CSNn,m(µ,Σ,D, ν,∆) distribution defined by (1) is generated from the
following bivariate vector. Let U be a Gaussian vector of dimension m and let us
consider the augmented Gaussian vector (Ut,Zt)t with the following distribution:

(
U
Z

)
d= Nm,n

((
ν
0

)
,

(
∆ + DtΣD −DtΣ

−ΣD Σ

))
(2)
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where d= corresponds to the equality in distribution. Then, it is straightforward to
show that conditional on U ≤ 0 the random vector µ + [Z|U ≤ 0] is distributed
according to a CSNn,m(µ,Σ,D, ν,∆) as defined in Equation (1). Here the notation
A ≤ B corresponds to Ai ≤ Bi, for all i = 1, . . . , n. This construction offers a wide
range of possible models depending on the choice of µ, ν, ∆, Σ and D. For more
details on this type of construction, we refer to (Domı́nguez-Molina et al., 2003).

It is well known that the conditional vector [Z|U] is also a Gaussian vector
with distribution

[Z | U] d= Nn(−DtΣ(∆ + DtΣD)−1(U − ν),Σ− DtΣ(∆ + DtΣD)−1ΣD). (3)

This property provides a two-step algorithm for simulating a CSN vector Z: (i)
generate samples of the Gaussian vector U d= Nm(ν,∆+DtΣD) such that U ≤ 0;
(ii) generate the Gaussian vector [Z | U] according to (3). Generating a vector U
conditional on U ≤ 0 is not direct. In particular direct seqential simulations cannot
be used to generate such a vector. MCMC methods must be used instead. Here,
we used a Gibbs sampling technique to simulate the vector U | U ≤ 0.

The moment generating function (mgf) of a closed-skew normal density is equal
to (Domı́nguez-Molina et al., 2003):

The mgf of a CSN random vector is thus the product of the usual mgf of a Gaussian
vector with mean µ and covariance matrix Σ by a the m dimensional normal cpf
with mean ν and covariance matrix ∆ + DtΣD. It is well known that even for
moderate dimensions for m, the cpf Φm is difficult to compute.

3 Spatial skewed Gaussian processes

Let {Z(x)} with x ∈ R
2, be a spatial, ergodic, stationary, zero-mean Gaussian

process with variogram

2γ(h) = Var(Z(x + h) − Z(x)), for any h ∈ R
2

and variance σ2 = Var(Z(x)). For more details on the variogram, we refer to the
following books: Wackernagel, 2003, Chilès and Delfiner, 1999, Stein, 1999 and
Cressie, 1993. The covariance matrix of the random vector Z = (Z(x1), ..., Z(xn))t

built from the covariance function c(h) = σ2 − γ(h) is denoted by Σ. To link this
spatial structure with skew normal distributions, we simply plug the covariance
matrix Σ in Equation (2). Hence, we assume in the rest of this paper that the
vector Z is the same that the one used in Equation (2). Consequently, the process
{Y (x)} is defined through the following equality

Y d= µ + [Z | U ≤ 0].

This is our definition of a CSN random process. In practice, we only observe the
realizations (Y (x1), ..., Y (xn))t, but neither U nor Z.
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Figure 1. Histogram and variogram of simulated skewed Gaussian processes

these limitations, the variogram can be well estimated but more work is needed to
estimate accurately the skewness parameter.

Finally, we believe that spatial models based on the closed-skew normal dis-
tribution can offer an interesting alternative to represent skewed data without
transforming them. Still, much more research, theoretical as well as practical,
has to be undertaken to determine the advantages and the limitations of such a
approach.
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Abstract. Gaussian random simulations are used in petroleum engineering and 
hydrology to describe permeability and porosity distributions in subsurface reservoirs. 
Except by luck, the generated simulations do not yield numerical flow answers 
consistent with the measured production data. Thus, they have to be modified, which 
can be done by running an optimization process. The gradual deformation method was 
introduced to modify Gaussian simulations. As the resulting variations are continuous, 
this technique is of interest for gradient-based optimizations. Based upon the gradual 
deformation method, a preliminary approach was suggested to modify also Boolean 
simulations. In this paper, we aim at going one step further. First, the gradual 
deformation scheme, initially developed for Gaussian probabilities, is reformulated for 
Poisson probabilities. It provides a new tool for varying the number of objects 
populating a Boolean simulation. Up to now, changing this number induced sudden 
object appearance or disappearance, which produced strong objective function 
discontinuities. Such a behavior is especially undesired when running gradient-based 
optimizations. Thus, we extend the proposed approach to continuously add or remove 
objects from Boolean simulations. The resulting algorithm integrates easily into 
optimization procedures and reduces, at least partially, the objective function 
discontinuities due to the appearance or disappearance of objects.

1 Introduction 

The realizations of Gaussian random functions are often used to describe the spatial 
distributions of physical properties, such as permeability or porosity, in subsurface 
reservoirs (Journel and Huijbregts, 1978; Chilès and Delfiner, 1999). To ensure that 
these realizations are valuable images of a given reservoir, we have to make them 
consistent with all of the collected data, that is the static data and the dynamic data. 
Static data gather e.g. core data, log data, seismic data. They can be integrated in 
realizations using for instance kriging techniques. This subject is out the scope of this 
paper. Dynamic data are influenced by fluid displacements: they correspond to e.g.
water cuts, well pressures, flow rates. These dynamic data are usually accounted for 
through an optimization process (Tarantola, 1987; Sun, 1994). It involves the definition 
and minimization of an objective function, which quantifies the discrepancy between the 
available dynamic data and the equivalent simulated answers. In practice, a starting 
realization is sequentially modified until it provides answers, which fit the required data. 
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The gradual deformation method was initially presented as a tool to deform a Gaussian 
realization from a reduced number of parameters while preserving its spatial variability 
(Hu, 2000a; Le Ravalec et al., 2000). It is well suited for gradient-based optimizations: 
deforming gradually Gaussian realizations produces smooth variations in the objective 
function. The efficiency of this deformation technique has been pointed out in many 
study cases (Roggero and Hu, 1998; Le Ravalec et al., 2001; Ferraille et al., 2003). 

Later on, the gradual deformation method, initially designed for Gaussian simulations, 
was extended to non-Gaussian simulations, more especially to Boolean or objects 
simulations. This type of simulation is often used to describe channel systems or fracture 
networks. Channels, or fractures, are recognized as objects, which populate simulations. 
Hu (2000b) suggested to apply the gradual deformation method to modify object 
locations. Furthermore, still based upon the gradual deformation method, Hu (2003) 
proposed algorithms for changing the number of objects included in a simulation. 
Unfortunately, this additional feature induces strong objective function discontinuities 
due to the sudden appearance or disappearance of objects. Such a behavior is obviously 
undesired for gradient-based optimizations. 

In this paper, we first recap the basics of the gradual deformation method as initially 
presented. Then, instead of focusing on Gaussian probabilities as done up to now, we 
introduce a new gradual deformation formulation appropriate for Poisson probabilities. 
The proposed technique allows not only for gradually varying the numbers of objects 
populating a simulation, but also for envisioning a new Boolean simulation technique 
with gradual appearance and disappearance of objects. Last, a numerical experiment 
stresses the potential of the suggested approach. 

2 Recap about the gradual deformation method 

2.1 MULTI-GAUSSIAN RANDOM FUNCTION 

Up to now, the gradual deformation method was intended for multi-Gaussian random 
functions solely. In other words, let Y1(x) and Y2(x) be two independent stationary multi-
Gaussian random functions of order 2. x is the location. For simplicity, both functions 
are assumed to have zero mean and unit variance. They are characterized by identical 
covariances. A new random function Y(t) is built by combining both functions as: 

Y(t) = Y1cos(t)+ Y2sin(t).    (1) 

Whatever the t deformation parameter, Y has the same mean, variance and covariance as 
Y1 and Y2. In addition, Y is also a multi-Gaussian random function since it is the sum of 
two multi-Gaussian random functions. Two independent realizations y1 and y2 of Y1 and 
Y2 provides a continuous chain of  realizations y(t), which depend only on parameter t.
This feature can be taken advantage of to calibrate realizations to production data. The 
leading idea is to investigate successively realization chains by tuning parameter t.
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2.2 POISSON POINT PROCESS 

The central element of Boolean simulations is a Poisson point process. It corresponds to 
the intuitive idea of points randomly distributed in space. 

Let us consider a basic Boolean simulation populated by identical objects randomly and 
uniformly distributed in space. Their locations x comply with a Poisson point process of 
constant intensity. In other words, n independent uniform numbers give the location of 
an object in the n dimensional domain [0,1]n.

A technique (Hu, 2000b) imagined to continuously move objects boils down to applying 
the gradual deformation method to object locations. However, you can not use at once 
the gradual deformation method for uniform numbers, because the sum of two 
independent uniform distributions is not a uniform distribution, but a triangular one. 
Thus, the uniform numbers are first turned into Gaussian numbers: 

Y = G-1(x)       (2) 

G is the standard Gaussian cumulative distribution function. x is the location vector: it 
consists of uniform numbers. Thus, vector Y gathers Gaussian numbers. Let x1 the 
starting  location of a given object and x2 another randomly and independently drawn 
location. Following Equation (1), a trajectory is defined from the gradual combination of 
the two locations: 

x(t) = G[G-1(x1)cos(t)+G-1(x2)sin(t)]           (3) 

Again, x(t) is a uniform point in [0,1]n, whatever parameter t. A two-dimensional 
example is reported in Figure 1. 

Figure 1.  Trajectory defined from the gradual combination of two points in [0,1]2.

2.3 NUMBER OF OBJECTS 

In 1D, Poisson points delimit intervals whose lengths are independent random variables 
with an exponential distribution. Hu (2003) came back to this property to gradually 
modify the number of objects in a simulation. First, this author transformed the interval 
lengths to get Gaussian numbers. Then, he used the gradual deformation method to 
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modify the Gaussian numbers as explained above, before applying the inverse 
transformation. This procedure allows for gradually deforming the interval lengths, 
which results in a variation in the number of objects. 

3 Reformulating the gradual deformation method for Poisson probabilities 

The technique proposed above for changing the number of objects induces strong 
variations in the objective function, because of the sudden appearance or disappearance 
of objects. Such a behavior can not be accommodated by gradient-based optimization 
processes. In this section, we propose a novel approach to alleviate this undesired 
feature. Instead of going back to the basic gradual deformation relation (Equation 1), 
which is appropriate only for Gaussian probabilities, we focus on a new formulation for 
Poisson probabilities. 

3.1 POISSON NUMBERS 

Our purpose is to modify gradually the number of objects populating a Boolean 
simulation. This number is random and respects a Poisson probability law. The 
probability for this non negative number to be n is given by: 

!
expPr

n
nN

n
    (4) 

where N is a Poisson variable with parameter . It can be shown that its mean and 
variance equal .

To produce n, we generate a 1D Poisson point process with unit mean in an interval of 
length . As shown in Figure 2, we sequentially draw independent intervals (OE1, E1E2,
…, EnEn+1) from an exponential distribution of unit mean, denoted 1. We add the 
intervals until their sum is more than .

Figure 2. Simulating realization n from a Poisson variable with parameter .

The cumulative distribution function of an exponential variable with unit mean is: 

F(x) = 1-exp(-x).           (5) 
Let r be a uniform deviate drawn between 0 and 1. Thus, 1-r is also a uniform deviate 
lying within the same range. We assume that 1-r = 1-exp(-x). To produce the successive 
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intervals, we repeat x = -Log(r) for successive r values. Realization n of Poisson 
variable N is the biggest integer so that: 

n

i
ir

1

Log .           (6) 

3.2 GRADUAL DEFORMATION OF POISSON PROBABILITIES 

The gradual deformation method as presented in Section 2 applies to Gaussian random 
variables, which continuously vary in . As Poisson variables provide integers, a new 
deformation scheme is necessary. 

Figure 3. Gradual deformation of a Poisson variable with parameter  by combining 
two independent Poisson variables, N1 and N2.

The sum of two independent Poisson variables with parameters  and , respectively, is 
also a Poisson variable with parameter  + . This fundamental property is the key point 
of the new deformation algorithm developed in this paper. Let N1 and N2 be two 
independent Poisson variables, both with parameter  (Figure 3). We suggest to 
gradually deform the parameters of the two added Poisson variables, while respecting 
the following constraint: the sum of the two deformed parameters equals . To avoid 
any confusion, we will refer to parameter for Poisson variables and to deformation 
coefficient for gradual deformation. Thus, a new Poisson variable with parameter  is 
obtained from: 

taNtaNtN 2211              (7) 

with a1(t)+ a2(t)=1. a1(t)  and a2(t)  are the parameters of N1 and N2, respectively. t is 
the gradual deformation coefficient. Because of the periodicity of the trigonometric 
functions, we choose a1(t) = cos2(t) and a2(t) = sin2(t). In addition, the extension of this 
parameterization to the combination of more than two Poisson variables is 
straightforward.
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Variations in the deformation coefficient induce variations in the parameters of the 
added Poisson variables, which impact the realizations of these variables. As a result, 
their sum is also changed. Starting from two realizations n1 and n2 of N1 and N2, a chain 
of realization n(t) is built by varying deformation coefficient t. When t is 0, n equals n1;
when t is /2, n equals n2. This deformation process is depicted in Figure 4 for a Poisson 
variable with a parameter of 10. 

Figure 4. Gradual deformation of the realization of a Poisson variable with a parameter 
of 10. When t is 0, n is the same as the starting realization (12). When t is /2, n is the 

same as the second realization (9). We will focus on the 4 surrounded dots in the 
subsequent sections. 

Another possibility to gradually deform Poisson variables would be to move a segment 
of constant length  along an infinite axis populated with intervals drawn from an 
exponential distribution. The number of complete intervals included in the segment is a 
realization of a Poisson variable with parameter . It changes depending on the location 
of the segment. 

3.3 BUILDING SUCCESSIVE CHAINS

In the case of multi-Gaussian variables, the gradual deformation method judiciously 
integrates optimization procedures. Briefly, chains of realizations are successively 
investigated until an appropriate realization is identified. The chains are built from the 
“optimal” realization determined for the previous chain and a second randomly drawn 
realization.

The procedure for Poisson variables is very similar. The gradual deformation of two 
Poisson variables (a starting one plus a second independent one) as explained above 
yields a first realization chain. The investigation of this chain provides a first “optimal” 
realization (i.e., segments), which minimizes the objective function. It is used as the 
starting realization of the following chain. To fully define the second chain, an 
independent Poisson realization is randomly drawn. Again, we can explore this second 
chain and try to identify a realization, which reduces further the objective function. This 
process is repeated until the objective function is small enough. 
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4 Smooth appearance and disappearance of Boolean objects 

The gradual deformation of Poisson variables as introduced in the previous section 
allows for varying the number of objects in a Boolean simulation, but it still involves 
sudden appearance or disappearance of objects. This feature results in strong objective 
function variations, which cannot be accommodated by gradient-based optimizations. 
We extend the gradual deformation principles developed for Poisson variables one step 
further and suggest a novel technique to generate Boolean simulations with continuous 
appearance or disappearance of objects. 

4.1 PRINCIPLE 

As shown in Figure 2, we generate a realization n of a Poisson variable with parameter 
by adding intervals until the sum of their lengths is more than . n is the integer so that 
OEn <  and OEn+1 > .

Figure 5. Gradual deformation of the number and locations of objects. Objects appear 
and disappear continuously. Two kinds of objects are identified depending on the 

Poisson variable they refer to (N1 or N2). In this case, a grey ellipse gets smaller and 
eventually vanishes while a black one appears and expands. 

Let L1 be the point so that OL1 equals the parameter of Poisson variable N1 (Figure 3). It 
moves as the deformation coefficient varies. When t is 0, the parameter of Poisson 
variable N1 is . At this point, OL1 contains n complete intervals plus a truncated one. 
We consider that the Boolean simulation is populated by n+1 objects. We assume that 
their sizes are derived from an anamorphosis function applied to the lengths of the n
complete intervals and of the truncated one. If the deformation coefficient increases, the 
length of OL1 decreases, which also induces a decrease in the length of the interval 
En1L1. In other words, the size of the (n+1)th object decreases: this objects continuously 
vanishes. If the parameter of N1 decreases further, at some point the nth object will also 
gets smaller and smaller. In parallel, the parameter of N2 increases. When t is 0, the 
parameter of this Poisson variable is 0. Then, an object starts to appear. Its size depends 
on the length of the increasing interval PL2 (Figure 3), L2 being the point so that PL2

equals the parameter of Poisson variable N2. When PL2 = PI1 (Figure 3), the first object 
is complete. If the parameter of N2 increases again, a second object appears. Its size 
depends on the length of I1L2. The proposed method is illustrated by the example shown 
in Figure 5.

4.2 NUMERICAL EXPERIMENT 

We consider a synthetic reservoir model (Figure 6) formed of lenses with a permeability 
of 50 mD, embedded in a reservoir rock with a permeability of 500 mD. For the sake of 
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simplicity, porosity is assumed to equal 30% everywhere. The reservoir model is 
discretized over a regular grid of 200x200 gridblocks. The size of a gridblock is given 
by DX = 1 m and DY = 0.8 m. At the beginning, the reservoir is fully saturated by oil. 
Then, water has been injected at well I at 100 m3/day for 100 days while oil has been 
produced at well P at constant pressure. The numerical simulations are run using 3DSL 
(Batycky et al., 1997). The simulated pressures at well I and fractional water flow at 
well P are depicted in Figure 6.

Figure 6. Synthetic reservoir model and corresponding pressures at the injecting well 
and fractional water flow at the producing well.

Figure 7. Objective function against the deformation coefficient. Thick curve: smooth 
appearances and disappearances of objects. Thin curve with diamonds: sudden 

appearance and disappearance of objects. 

At this point, we assume that the synthetic reservoir model is unknown. The only 
available data are the pressures and the fractional flow shown above (Figure 6) and 
some prior geological information stating that the number of lenses can be approximated 
by a Poisson variable with parameter 10. First, we generate an initial guess for the 
synthetic reservoir model. Then, by applying the gradual deformation process 
introduced  in  Sections 3  and  4.1,  we  build  a  chain  of  Boolean  realizations. In
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this example, the deformation coefficient impacts the number of lenses and their locations. 
The number of complete objects is the one displayed in Figure 4. For all of the 
realizations, we simulate the previously described water injection test. We compute the 
objective function, which measures the mismatch between the reference data (Figure 6) 
and the simulated ones for the explored Boolean realizations (Figure 7). Two distinct 
cases are envisioned. First, the lenses appear and disappear suddenly. Second, they 
appear and disappear smoothly. In the first case, the objective function exhibits sudden 
jumps, which are reduced in the second case. 

Let us focus on the four surrounded points in Figure 7. In the sudden appearance and 
disappearance case, the objective function shows a very discontinuous variation. On the 
contrary, it varies continuously when objects appear and disappear smoothly. The four 
corresponding realizations are presented in Figures 8 and 9. In Figure 8.2, the sudden 
disappearance of a lense enlarges a lot the flow path towards the producing well. In 
Figure 9.2, the lense does not vanish: it gets smaller. Thus, the flow path does not open 
as much as in Figure 8.2. In Figure 9.4, the lense is so small that it does no longer affect 
flow: the objective functions are the same for Figures 8.4 and 9.4. 

Figure 8. Gradual deformation of the number and location of objects with sudden 
appearance and disappearance. These 4 realizations correspond to the 4 surrounded 

points in Figure 7.

Figure 9. Gradual deformation of the number and location of objects with smooth 
appearance and disappearance. These 4 realizations correspond to the 4 surrounded 

points in Figure 7.

As explained at the end of Section 3, many chains could be investigated successively. 
The only difference with Section 3 is that we also account for the truncated segments. 
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5 Conclusions 

The following main conclusions can be drawn from this study. 

- We developed a new gradual deformation process, which is appropriate for Poisson 
variables. It allows for varying the number of objects populating a Boolean 
realization.

- We suggested to associate the sizes of the objects to the Poisson point process used 
to generate the number of objects. This additional feature makes it possible to 
smoothly introduce or remove objects from the Boolean realization all along the 
gradual deformation process. The suggested algorithm integrates easily into 
optimization procedures. It reduces significantly the objective function 
discontinuities due to the sudden appearance or disappearance of objects and is well 
suited for gradient-based optimizations. 

- However, the suggested method does not prevent the objective function from being 
discontinuous. In some cases, the displacement of an object from a single grid block 
can drastically modify the connectivity of the realization and produce strong 
objective function fluctuations. The proposed gradual deformation technique with 
smooth appearance and disappearance of objects does not eliminate such 
discontinuities, but it contributes to reduce their effects. 
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WHEN CAN SHAPE AND SCALE PARAMETERS OF A 3D
BE ESTIMATED?

PÅL DAHLE, ODD KOLBJØRNSEN, and PETTER ABRAHAMSEN
Norwegian Computing Center, Box 114 Blindern, NO-0314 Oslo, Norway

Abstract. We have used a method of least squares to fit full 3D variogram
models to data, and have tested it on data taken from Gaussian random fields.
The empirical variogram estimates are made using various lag grid definitions
and the best of these grids is identified. Our results suggest that some 200 vertical
wells are needed for obtaining reliable estimates of the azimuth and dip anisotropy
angles, while some 50 wells seem sufficient for the horizontal ranges and the sill.
For the vertical range 10 wells are sufficient.

1 Introduction

Estimation of a variogram is an important issue in spatial problems because in-
ference regarding spatial variables often rest on a variogram model. A common
approach is to fit the model variogram “by eye”. Although this approach is conve-
nient in one dimension, it becomes intractable in two and three dimensions. Unless
one wants to let the variogram model be based on knowledge about the geology of
the field in question or similar fields, this implies that an algorithm for automatic
fitting has to be implemented.

We have done a large computer study for automatic fitting of variograms in
three dimensions; similar studies in one dimension are found in Webster and Oliver
(1992), Pardo-Igúzquiza (1999), and Chen and Jiao (2001).

Although automatic fitting in one dimension may provide valuable information
about the variogram, all directions should be treated simultaneously, as variance
contributions identified for one direction should also hold for the other directions,
as pointed out by Gringarten and Deutsch (2001).

Although it is important to treat all directions simultaneously, all variogram
parameters should not necessarily be optimised. Unless sufficient data is available,
an automatic fit may potentially lead to variograms that are non-geological. The
dip angle, for instance, requires a large number of observations for reliable estima-
tion, and if too few observations are available, an opposite dip may easily be the
result. In such cases, one is better off using a qualified guess.

VARIOGRAM
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2 Fitting model variograms to data

2.1 ESTIMATING EMPIRICAL VARIOGRAMS

A commonly used estimator of the variograms is the method of moments esti-
mator (Matheron, 1963). Given a random variable Z(x), the estimator γ̂(h) is

γ̂(h) =
1

2Nh

∑

N(h)

(Z(xi) − Z(xj))
2
, h ∈ R

3 (1)

where Z(xi) is the value of the random variable Z at some point xi, and h is a
vector connecting the two points xi and xj . N(h) denotes all pairs {(xi,xj)} that
may be connected by the lag vector h, and Nh is the cardinality of N(h).

The variogram estimator proposed by Matheron is sensitive to outliers. Hawkins
and Cressie (1984) recognised this and proposed a robustified alternative

γ̄(h) =
1

2g(Nh)





∑

N(h)

|Z(xi) − Z(xj)|
1
2






4

, h ∈ R
3 (2)

where g(Nh) is a function of the cardinality: g(Nh) = N4
h (0.457 + 0.494/Nh).

2.2 PARAMETRIC MODEL VARIOGRAMS

The parametric model variograms that are to be fitted to the empirical estimates
may be denoted γ(h;θ), where θ are variogram parameters like ranges, anisotropy
angles, and sill. For some variogram models there are also additional parameters.

In this paper we have explored the four variogram types: spherical, exponen-
tial, general exponential (stable), and Gaussian. The mathematical forms of these
variograms may be found in, for example, Yaglom (1987).

2.3 DISTANCE ESTIMATORS

In order to optimise the parameters of the model variogram, we must minimise
some distance measure between the parametric and empirical variograms. Alter-
natively, we can also use a maximum likelihood estimation, but such an approach
is computationally much more demanding and have not been considered.

As a distance measure, we have used the approximated weighed least squared
estimator of Cressie (1985):

n∑

i=1

Nhi

(
γ∗(hi)
γ(hi;θ)

− 1
)2

, (3)

where hi, i = 1, 2, . . . , n are the lags for which the variogram model γ(hi;θ) and
the empirical variogram estimator γ∗(hi) are to be compared. The θ are the
parameters to be optimised.

To increase the amount of data behind each variogram estimate, lag vectors are
collected in bins represented by the grid cells of a lag grid. In this grid, the vector
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hi extends to the centre of the ith grid cell and represents all lag vectors in this
cell. The variogram estimate γ∗(hi), thus becomes an average of the variogram
estimates for all lag vectors belonging to the ith cell.

Since the distance estimator in (3) is nonlinear in θ, nonlinear optimisation
techniques must be employed. We have used a Gauss–Newton type optimisation
(see for example Gill (1981)) in which the distance estimator is approximated
to second order and the Hessian matrix is approximated using the first derivative
Jacobian matrix. The Jacobian matrix, which is also used to compute the gradient,
was calculated using numerical derivatives.

3 Model setup

3.1 DATA SET

The data set was obtained from Gaussian random fields generated with known
variograms. Four variogram types were used: spherical, exponential, Gaussian,
and general exponential, and the variogram model parameters were

1. range 2. range 3. range azimuth dip sill α

200 100 10 60◦ 3◦ 1 1.5

where the parameter α is the exponent in the general exponential variogram, and
does not apply to the other variograms. The 1. and 2. ranges are predominantly
horizontal while the 3. range is predominantly vertical.

The fields were generated in a 500m× 500m× 20m cube using a grid consisting
of 100× 100× 50 cells.

For each variogram type, 100 stochastic realisations of the Gaussian random
field were drawn, and for each realisation, data from 10, 50, 100, and 200 randomly
chosen vertical wells were collected. This gives us a total of 1600 different data
sets containing either 500, 2500, 5000, or 10 000 observations.

3.2 ESTIMATING EMPIRICAL VARIOGRAMS

The empirical variogram estimates were made in a regular grid of lag vectors. Such
a lag grid is fully specified once we have given the size of the grid and the number
of grid cells for each Cartesian direction.

If the grid definition is altered the empirical variogram estimates change, and
this, in turn, changes the shape and scale parameters of the optimised model
variograms. To investigate how sensitive these parameters are to a grid change, we
calculated empirical variograms using 18 different grid definitions. These grids were
made by combining the three lag grid sizes (500m, 500m, 20m), (300m, 300m, 10m),
and (100m, 100m, 4m), which give the size of the lag grid for each Cartesian di-
rection, with six different types of grid binning: (161× 161× 81), (81× 81× 41),
(41× 41× 21), (21× 21× 11), (11× 11× 5), and (5× 5× 3). Lag vectors extending
outside the chosen lag grid were not included in the variogram estimate.
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All variogram estimates were done using both the traditional and the robust
estimators given in section 2.1. Thus, for each data set 36 different empirical
variogram estimates were made. Since there were 1600 different data sets, a total
of 57 600 variogram estimates were made.

3.3 THE FITTING OF PARAMETRIC MODEL VARIOGRAMS

When the shape and scale parameters of the model variograms were estimated, we
initially assumed that the variogram model was known, that is, the model to be
fitted had the same variogram as the variogram model producing the data. When
the lag grid definition that gave the best parameter estimates had been identified,
however, we also made successful attempts to identify the correct variogram model
by fitting different models against the data and comparing residuals.

If good estimates of one or more parameters are known prior to the model
fitting, these parameters may be held constant during the optimisation. The sill,
for instance, is easily estimated directly from data, and this estimate is likely to be
better than the estimate obtained from a multi-dimensional optimisation. Fixing
the sill during the optimisation, however, will affect the ranges and anisotropy
angles as well. To see which of the two approaches gives the overall best parameter
estimates, all fits were made twice; first with a pre-calculated, empirical sill and
then with a freely optimised sill. This gave a total of 115 200 fits.

3.4 EVALUATING THE QUALITY OF THE FITS

To evaluate the quality of the optimised model parameters we used a root-mean-
square error (RMSE) measure

RMSE =
√

E
{

(θ̂ − θ)2
}

(4)

where θ is the true parameter value (as specified in the variogram of the Gaussian
random field) and θ̂ is the estimator for the parameter. The RMSE was based on
parameter values obtained by fitting model variograms to data from 100 repetitions
of the same Gaussian random field, and gave a measure of the total error involved
in the parameter estimate.

When evaluating the quality of the estimator θ̂, we may make a comparison
with the zero estimator (θ = 0). A minimum requirement for θ̂ is that its RMSE
is smaller than the RMSE of the zero estimator; at least for ranges and sill.

By comparing RMSE values obtained using different lag grid definitions and
with either an empirical or an optimised sill, the RMSE may also be used to
identify an optimal fitting strategy.

4 Results

From the 115 200 variogram fits that were made we got a total of 1152 different
cases. In Figure 1, we have plotted the RMSE measures for all the model variogram
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Figure 1. RMSE for variogram model parameters when different variogram
models were fitted to empirical variogram estimates. Each RMSE value is based
on fits to 100 realisations of the same Gaussian random field.

parameters of the different cases, except the variogram parameter of the general
exponential variogram, which is discussed in section 4.3. For clarity, we have used
different plotting symbols for the different variogram types. Since the variogram
fit settings vary in the same manner within each variogram type, we may make
direct comparisons between the different types.

First, we note that the four different variogram types seem to have fairly similar
error trends, but that errors are generally somewhat higher for the general expo-
nential variogram. Since the general exponential variogram has an extra parameter
which is correlated with both ranges and sill, this is to be expected. We also note
that errors tend to decrease to the right within each variogram type, due to an
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increased number of wells being used in the empirical variogram estimate. The
“outliers” from this trend are caused by poor optimisation settings like a bad
choice of lag grid or bad sill treatment.

Since the problem of finding the best optimisation settings is the same for each
variogram type, we have chosen only to study the spherical variogram in more
detail. Conclusions made for this variogram type are valid also for the other types.

In order to identify the factors that are important for the RMSE measures, we
performed a variance analysis on the 288 error measures given for the spherical
variogram type. This analysis showed that for the optimisation of the 1. and 2.
ranges (horizontal), the number of wells was most important, while the treatment
of the sill (optimised vs. empirical) was second most important. These two factors
were also the more important for the optimisation of the 3. range (vertical), but
in the reverse order. Also, for the spherical and Gaussian variograms, the lag grid
size turned out to be more important than the number of wells. With the sill
parameter, as with the 3. range, the most important factor was the treatment of
the sill. The second most important factor was the lag grid size.

For the optimisation of the azimuth and dip angles, the number of wells was
the more important factor for the RMSE measure, followed by the lag grid size.

4.1 SENSITIVITY WITH RESPECT TO MAXIMUM LAG AND WHETHER SILL
IS OPTIMISED OR ESTIMATED EMPIRICALLY.

Guided by the variance analysis, we have plotted RMSE against the number of
wells included in the data sets. The plots are shown in Figure 2. The RMSE have
been connected into six curves corresponding to different lag grid sizes and whether
the sill was optimised or estimated directly from data. Each point in these curves
represents an arithmetic mean of 12 values obtained with different lag grid binning
and different empirical variogram estimators.

The plots show that when the sill is optimised, the ranges and sill are sensitive
to the lag grid size, and when the grid is so small that all lag vectors included in
the empirical variogram estimate are considerably shorter than the true ranges,
the sill and ranges become overestimated. If an empirical sill is used, however, the
sensitivity is reduced to a minimum.

The anisotropy angles do not seem to be sensitive to the sill treatment, but
show a clear dependency on the lag grid size. According to Figure 2, the best
angle estimates are obtained when the smallest lag grid is used for the empirical
variogram estimates. This is to be expected as anisotropy is more pronounced in
regions where the correlation is strong. Outside the range, for instance, there is no
information about anisotropy at all, and for the larger lag grids, we are therefore
including random noise in the variogram estimate.

Based on the results presented in Figure 2, we conclude that the sill should be
estimated directly from data and not optimised along with the rest of the model
parameters. In the following, we concentrate on such variogram fits. Moreover,
we shall only use the smallest lag grid, as this leads to the best anisotropy angle
estimates.
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Figure 2. RMSE plotted against the number of wells. The curves correspond to
different maximum lags and whether the sill was optimised or estimated directly
from data.

4.2 SENSITIVITY WITH RESPECT TO CELL SIZE

To investigate how the grid binning affects the model parameter estimates, we have
plotted RMSE against grid mesh in Figure 3. Each point represents an arithmetic
mean of the RMSE values obtained with the two variogram estimators. Four curves
are given, corresponding to different numbers of wells. For the 1. and 2. ranges,
however, the curves corresponding to 10 wells are out of scale.

Figure 3 shows that the parameter optimisation is rather insensitive to the
grid mesh and that essentially the same RMSE measures are obtained, unless very
coarse-meshed grids are used. The poor performance for the coarsest grid is related
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Figure 3. RMSE plotted against grid mesh. Unit 1 corresponds to the most
fine-meshed grid (161×161×81) and unit 6 to the coarsest (5×5×3).

to the extensive smoothing, and such grids should be avoided. The finest-meshed
grids, on the other hand, give slow optimisations, and the grid having 41× 41× 21
cells are therefore chosen as the preferred one.

4.3 GENERAL EXP. VARIOGRAM FITS: THE VARIOGRAM PARAMETER

The RMSE plots for the variogram parameter of the general exponential variogram
are similar to those given in Figures 2 and 3 and are therefore not given. Again,
it is found that the best parameter estimates are obtained for the smallest lag
grid. Somewhat surprisingly, however, it is found that slightly better estimates are
obtained when the sill is optimised rather than estimated from data.
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Table 1. The variogram types that best fit data from 100 realisations of the
four Gaussian random fields. Each table entry gives the number of realisations for
which the particular variogram model fitted data best.

Variogram of Gaussian random field

200 wells 50 wells 10 wells

Sph Exp Gen Gau Sph Exp Gen Gau Sph Exp Gen Gau

Sph 97 20 – – 94 64 1 – 69 37 4 –

Exp 3 80 – – 5 36 2 – 28 61 1 –

Gen – – 100 – 1 – 96 – 3 1 96 3

B
es

t
m

o
d
el

Gau – – – 100 – – 1 100 – 1 3 97

4.4 FINDING THE VARIOGRAM MODEL THAT BEST FITS DATA

Using the smallest lag grid and 41× 41× 21 grid cells, we fitted the four variogram
models to data from the 100 realisations of the four Gaussian random fields. The sill
was estimated from data, and the exponent of the general exponential variogram
was held fixed at 1.5 during all optimisations. Table 1 shows which variogram
model that fitted data best in each case, in the sense that it had the smallest
least-mean-squares residual.

The table shows that the Gaussian and the general exponential variograms are
readily identified, including when only 10 wells are used. For the spherical vari-
ogram some 50 wells are needed for a positive identification, while the exponential
variogram is falsely identified as spherical in 20 out of 100 cases when as many as
200 wells are used. As the exponential variogram gives less correlated fields than
the spherical variogram, this may come as a result of smoothing of data. Note,
however, that when 10 wells are used there is also a large number of fields having
spherical variogram that are falsely identified as exponential.

Finally, it should be pointed out that if the exponents of the general exponential
variogram had been allowed to vary freely during the optimisation, this variogram
type would probably have given the best fit to most of the fields involved, with
the possible exception of the fields having a spherical variogram.

5 Conclusions

Variogram estimation in 3D is surprisingly difficult. Even when 200 vertical wells
are included in the parameter estimation, the total uncertainty involved is rela-
tively large. However, based on our case study, we have come up with the following
guidelines for minimising the uncertainty:

• The sill should be estimated directly from data rather than optimised.
• When empirical variogram estimates are made, the lag grid should be small;

horisontal and vertical sizes equal to the respective ranges seem appropriate.
• The optimisation is not sensitive to lag grid binning as long as very coarse-

meshed grids are avoided. Very fine-meshed grids should also be avoided to
reduce computation time.
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Table 2. The best RMSE measures obtained within the different data sets.

1. range 2. range 3. range azimuth dip sill α

10 wells 660 180 2.5 35 6.3 0.26 0.12

50 wells 81 41 1.5 17 1.8 0.15 0.15

100 wells 41 34 1.5 10 1.0 0.14 0.18

200 wells 30 22 1.4 5 0.5 0.13 0.12

orig. value 200 100 10 60 3 1 1.5

The second of these guidelines is based on the fact that the (100m, 100m, 4m) grid
generally gave better parameter estimates. The RMSEs obtained with this lag grid
and the 41× 41× 21 binning, are listed in Table 2. The values were obtained with
the spherical and general exponential (α only) variograms.

When 50 wells were used, our estimator gave smaller RMSE measures than
the zero estimator for all parameters; and for the vertical range, the estimator did
better also with 10 wells. If we compare the RMSE measures with the original
parameter values, however, we conclude that some 200 vertical wells are needed
for obtaining reliable estimates of the azimuth and dip anisotropy angles, while
some 50 wells are sufficient for the horizontal ranges and the sill. For the vertical
range 10 wells are sufficient.
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COMPARISON OF STOCHASTIC SIMULATION ALGORITHMS IN 

MAPPING SPACES OF UNCERTAINTY OF NON-LINEAR TRANSFER 

FUNCTIONS

SUMAIRA EJAZ QURESHI AND ROUSSOS DIMITRAKOPOULOS
WH Bryan Mining and Geology Research Centre, University of Queensland, Brisbane, 
Australia

Geostatistical simulations are routinely used to quantify the uncertainty in forecasts 
(responses) generated from any non-linear function of spatially varying parameters. The 
ability to map the uncertainty in these responses is critical. A comparison of sequential 
Gaussian simulation (SGS), sequential indicator simulation (SIS) and probability field 
simulation (PFS) is made in this study, using an exhaustive dataset sampled with a 
random stratified grid and three transfer functions, namely, minimum cost network flow, 
threshold proportion and geometric mean. The results show that SGS and SIS have 
comparable performance in terms of bias and precision while PFS performs less well in 
most cases.  Increased data leads usually to better precision but not necessarily bias. The 
performance of the simulation methods in mapping spaces of uncertainty depends on the 
complexity of the transfer function, and that is not necessarily a well-understood aspect 
of the modelling process. 

1. Introduction 

Spatial uncertainty and risk analysis in earth science and engineering applications, 
including operations in fields such as petroleum, mining and environment, can be 
assessed using stochastic simulation methods coupled with generally non-linear transfer 
functions, in the form of mathematical models. These models may be operations 
research algorithms for mine production scheduling, three-phase flow equations in 
petroleum reservoirs for forecasting production, or complex classification functions for 
the remediation of contaminated land. Understanding how the simulation algorithms 
interact with these non-linear mathematical models in mapping risk in output parameters 
of interest (termed response) is important and identified in pertinent studies. For 
example, studies include optimising mine designs and related net present value 
assessment based on geological uncertainty (e.g., Dimitrakopoulos et al., 2002), 
petroleum reservoir forecasting and production analysis (e.g., Walcott and Chopra, 
1991), or minimising risk in contaminated site assessment and remediation (e.g., 
Qureshi, 2002), and others.

A series of responses generated from the application of a transfer function on a set of 
realizations from stochastic simulations may be expressed as a map/description of the 
space of uncertainty of the responses. This form of expression provides the means for 
optimal decision-making and risk management. It is important to note that, for non-
linear transfer functions, (i) an average type spatial map of the input parameter(s) does 
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not provide an average expected map of the space of response uncertainty, thus there is a 
substantial technical reason to use stochastic simulation rather than estimation; and (ii) 
methods used to stochastically simulate descriptions of pertinent attributes must be 
evaluated in terms of the map of the uncertainty of the response, rather than the maps of 
the description of the attributes. The latter point suggests that comparing commonly 
used simulation algorithms in combination with non-linear transfer functions is of 
interest, as recognised in the past (e.g., Gotway and Rutherford, 1994). 

Some of the commonly used stochastic simulation methods are compared in this study. 
Specifically, the performance of sequential Gaussian simulation (SGS), sequential 
indicator simulation (SIS) and probability field simulation (PFS) (Goovaerts, 1997) is 
assessed in terms of mapping spaces of uncertainty for non-linear transfer functions. The 
functions considered are the minimum cost network flow, threshold proportion, and 
geometric mean. The performance of the combinations is assessed using two different 
sample sets (one of 250 and one of 500) generated from the exhaustive Walker Lake 
data set (Isaaks and Srivastava, 1989) using random stratified sampling. The results are 
then compared with those of the exhaustive data set. Bias and precision of response 
uncertainty distributions are the two quantities used for the comparison, which is based 
on the generation of 100 realizations for each sample dataset and method being 
compared. Note that, for the study presented here, the exhaustive data set and simulated 
realizations represent a 260m x 300m grid of 78,000 points, which are converted into 
500 blocks (20x25 nodes per block) prior to input to the minimum cost path transfer 
functions.

In the following sections, the transfer functions and criteria for comparison are outlined; 
then the mapping of response uncertainty is presented. The results obtained are then 
compared; followed by a summary and conclusions.

2. Transfer functions, response uncertainty and criteria for comparison 

Three transfer functions are used in this study: the mean of geometric means, threshold 
proportions, and minimum cost path. The functions are briefly described below, before 
the methods for the analysis and evaluation of results are described. 

2.1.  MEAN OF GEOMETRIC MEANS TRANSFER FUNCTION 
For each interior grid node, the geometric mean (GM) is first computed as: 

j j
j

j m m
mj

1
y exp ln(g )dg j 1,..., N

m

where yj = geometric mean at node j, mj = 25 closest nodes to node j, 
jmg = 25 simulated 

values closest to node j, N = total number of nodes. For the measurements, which have 
zero or negative values, a constant is added to ensure that all values are positive. Then, 
the mean of geometric means (MGM) is obtained by averaging all the geometric means 
as:

j j
N

1
y y dy

N
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2.2.  THRESHOLD PROPORTION TRANSFER FUNCTION 
The threshold proportion (TP) transfer function is the proportion of the values above a 
specified threshold, i.e. the proportion of the values greater than the Pth percentile of the 
exhaustive data set. For this study, the 90th percentile is used as the threshold. If n = 
number of data greater than Pth percentile (i.e. 90th percentile) of the exhaustive data set 

and N = total number of data, then 
n

TP
N

2.3. MINIMUM COST PATH TRANSFER FUNCTION 
For the minimum cost path transfer function, the exhaustive data set and simulated 
realizations of 78,000 points are first converted into 500 blocks. In this path, a particle is 
released from the upper left corner and allowed to move horizontally from left to right, 
vertically downward or diagonally downward towards the lower right corner. Movement 
costs are based on the reciprocals of the block-averaged values. This transfer function is 
computed by using the minimum cost path network flow model (Qureshi, 2002). AMPL 
(Robert et al., 1993) is used to develop the required models for calculating the minimum 
cost paths. 

2.4. MEASUREMENTS OF UNCERTAINTY DISTRIBUTIONS OF RESPONSE: 
BIAS AND PRECISION

Possibly the most common method for analysing the transfer functions and evaluating 
the results, is the bias measurement of response uncertainty distributions. Bias is 
measured as the absolute difference between the median of the uncertainty distribution 
and the true value, divided by the true value. Mathematically, if X  represents the 
median of the uncertainty distribution and TrueX represents the true value (obtained from 
the exhaustive data set), then the bias measurement can be written as: 

True

True

X X
Bias

X
Lower numbers of the bias measure are indicative of uncertainty distributions whose 
values are consistently close to those computed from the exhaustive data set. 

Precision may be seen as a measure of the magnitude of closeness of agreement among 
individual measurements. Precision is measured as the difference between the 90th

percentile and 10th percentile of each uncertainty distribution divided by the 
corresponding percentile difference of the uncertainty distribution obtained by using 
SGS* with the 250 sample set. If X10 denotes the 10th percentile and X90 denotes the 90th

percentile of uncertainty distributions, and if Strata250(SGS)
10X and Strata250(SGS)

90X denote the 

10th and 90th percentiles respectively of the uncertainty distributions obtained by using 
SGS with the 250 sample set, then mathematically precision can be expressed as:

90 10
Strata 250(SGS) Strata 250(SGS)
90 10

X X
Precision

X X

* Percentile difference of uncertainty distributions can be divided by any percentile 
difference of uncertainty distributions obtained using any simulation algorithm with any 
sample set.
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3. Mapping response uncertainty 

The results of this study show a number of differences between the three simulation 
algorithms being compared. To help assess the methods, each response uncertainty 
distribution is compared to the true value computed from the Walker Lake exhaustive 
data set. For each of the simulation algorithms, response uncertainty distributions are 
compared with respect to sample size to see the effect of increasing the sample size on 
the resulting distributions.

3.1. UNCERTAINTY DISTRIBUTIONS BASED ON SGS  
The SGS-produced uncertainty distributions obtained from the 250 and 500 sample sets 
are shown in Figure 1. In the figure, the horizontal line denotes the true transfer function 
value. Measures of the bias and precision of the response uncertainty distributions are 
summarised in Table 1.

Table 1.  Summary of uncertainty distributions (produced by SGS) combined across all 
the transfer functions and sample sets 

Sample

Size

Transfer

Function Median

True

Value Bias X10* X90* Precision Mean SD* 

G-Means* 263.46  247.50 0.06 251.26 274.97 1.00 263.67   8.62 

250 T-Proportion*   12.96   10.47 0.24   11.64  14.12 1.00   12.99   0.95 

Min-Cost*    6.66     6.96 0.04     5.92    7.81 1.00     6.94   1.21 

G-Means 266.52  247.50 0.08 259.30 272.63 0.56 266.39   5.32 

500 T-Proportion   10.43   10.47 0.00     9.67   11.32 0.67   10.46   0.68 

Min-Cost    6.24     6.96 0.10     5.85     6.69 0.44     6.27   0.39 
G-Means* = Mean of geometric mean transfer function, T-Proportion* = Threshold 
proportion transfer function, Min-Cost* = Minimum cost path transfer function, , X10* = 
10th percentile, X90* = 90th percentile, SD* = Standard deviation 

The uncertainty distribution obtained from the mean of geometric means transfer 
function based on the 250 sample set is less precise (i.e. 1.00) than the distribution 
obtained from the 500 sample set (see Figure 1 and Table 1). The uncertainty 
distribution obtained from threshold proportion transfer function using the 250 sample 
set is also less precise than the distribution based on the 500 sample set. For the 500 
sample set, the threshold proportion transfer function is working really well because the 
uncertainty distribution obtained from this transfer function is unbiased. On the other 
hand, although the uncertainty distribution obtained from the minimum cost path using 
the 500 sample set is more precise than the distribution obtained from the 250 sample 
set, it has higher bias.
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3.2. UNCERTAINTY DISTRIBUTIONS BASED ON SIS 
The SIS produced uncertainty distributions based on the 250 and 500 sample sets are 
presented in Figure 2. Measures of the bias and precision of the response uncertainty 
distributions are summarised in Table 2.

Table 2.  Summary of uncertainty distributions (produced by SIS) combined across all 
the transfer functions and sample sets 

Sample

Size

Transfer

Function Median

True

Value Bias X10* X90* Precision Mean SD* 

G-Means  248.57 247.50 0.00 237.21 258.97 0.92 248.19  8.04 

250 T-Proportion    12.69   10.47 0.21   11.30   14.08 1.12   12.75   1.03 

Min-Cost       6.83     6.96 0.02     5.90     7.52 0.86     6.74   0.63 

G-Means 244.77 247.50 0.01 235.60 252.10 0.70 244.21   6.71 

500 T-Proportion   11.52   10.47 0.10   10.64   12.77 0.86   11.61   0.85 

Min-Cost     6.22     6.96 0.11     5.66     6.58 0.49     6.16   0.36 
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For the mean of geometric means and minimum cost path transfer functions, the 
uncertainty distribution obtained from the 250 sample set is less precise but has lower 
bias than the distribution produced using the 500 sample set. It would appear that 
increase in precision due to increase in sample size is obtained at the expense of bias. 

For the threshold proportion transfer function, precision of the uncertainty distributions 
also increases with increase in sample size. However, for the same transfer function, the 
uncertainty distribution based on the 250 sample set has higher bias than the distribution 
obtained from 500 sample set.

Uncertainty distributions based on SGS and SIS using both the 250 and 500 sample sets 
are acceptable in terms of bias and precision. On average, for the uncertainty 
distributions obtained from both SGS and SIS, the increase in precision due to increase 
in sample size tends to increase bias in the resulting response distributions.

S. E. QURESHI AND R. DIMITRAKOPOULOS 
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3.3. UNCERTAINTY DISTRIBUTIONS BASED ON PFS 
The PFS-produced uncertainty distributions based on the two sample sets are presented 
in Figure 3. The measures of bias and precision of the response uncertainty distributions 
are summarised in Table 3.

Table 3.  Summary of uncertainty distributions (produced by PFS) combined across all 
the transfer functions and sample sets 

Sample

 Size 

Transfer
Function Median 

True
Value Bias X10* X90* Precision Mean SD* 

G-Means 272.55 247.50 0.10 228.98 312.46 3.52 273.39  31.77 

250 T-Proportion  13.00   10.47 0.24     9.00   17.31 3.35   13.36    3.04 

Min-Cost    7.11     6.96 0.02     5.77   10.20 2.34     7.67    1.82 

G-Means   285.56 247.50 0.15 241.13 325.30 3.55 283.06  31.59 

500 T-Proportion     12.69    10.47 0.21     9.01   15.98 2.81   12.56    2.72 

Min-Cost        6.68     6.96 0.04     5.37     9.98 2.44     7.84    4.13 
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For the geometric means and minimum cost path transfer functions, the increase in the 
sample size results in a decrease in the precision of the uncertainty distribution. 
However, the uncertainty distributions based on the threshold proportion transfer 
function are reasonable for both sample sets, and much better than the distributions 
based on the other two transfer functions. For this transfer function, the precision 
increased and bias decreased as the sample size increased.
For the mean of geometric means transfer function, the uncertainty distribution based on 
the 500 sample set is low in precision but high in bias as shown in the Table 3.  For the 
minimum cost path transfer function, PFS, unlike SGS and SIS, produces uncertainty 
distributions in which precision decreases with increase in sample size. 

The uncertainty distributions produced by PFS are visually different from those 
produced by the sequential simulation algorithms, with the latter tending to exhibit more 
clustering of similar values. In most cases for PFS, the uncertainty distributions are less 
precise than the distributions obtained using SGS and SIS. Note that in most cases 
(Table 3) the average value of the response (Column 9) is higher than the true value 
(Column 4).

4. Comparative analysis 

The measures of bias and precision of uncertainty distributions of response, based on 
both the 250 and 500 sample sets and using SGS, SIS and PFS, are combined in Figures 
4 and 5 and 6. The reason for combining all these results is to see which algorithm 
overall is working well in the designed comparative study. 

For the mean of geometric means transfer function (Figure 4), the uncertainty 
distributions based on SGS and SIS are highly precise and very similar to each other, 
compared with the distributions based on PFS. In all the cases, increase in sample size 
increases the precision associated with the uncertainty distributions, but there is no 
guarantee of improvement in bias measurements.

The uncertainty distributions based on SGS and SIS using the threshold proportion 
transfer function (Figure 5) are more precise than the distributions based on PFS. For the 
minimum cost path transfer function (Figure 6), the uncertainty distributions based on 
SGS and SIS are more precise than the distributions based on PFS.

. G_Mean* = Mean of geometric mean transfer function, T_Prop* = Threshold proportion transfer function 
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5. Summary and conclusions  

The performance of SGS, SIS and PFS in mapping spaces of uncertainty for non-linear 
transfer functions was compared for three transfer functions: minimum cost network, 
threshold proportion, and geometric mean.  For the comparison undertaken in this study, 
stratified random sampling was used to choose two sample sets—one of 250 points and 
one of 500 points—from the exhaustive Walker Lake dataset. For each of the two 
sample sets, the three stochastic simulation algorithms being compared were used to 
generate 100 conditional realizations for each simulation method. For each realization, 
transfer functions were computed, each giving one value of the response. The results of 
the experiment provided several uncertainty distributions for each simulation algorithm. 
Each uncertainty distribution corresponded to one of the combinations of sample set and 
transfer function. The uncertainty distributions were then compared to the single value 
obtained from the exhaustive data set, using methods for the analysis and evaluation of 
results presented in this study.

Several broad issues are illustrated by the results of this study. The first is the effect of 
increasing the sample size on the resulting uncertainty distribution. It is found in almost 
all the cases that increasing the sample size improves the precision associated with 
response distribution.

. G_Mean* = Mean of geometric mean transfer function, T_Prop* = Threshold proportion transfer function 

. Min_Cost(N_1)* = Minimum cost path transfer function 
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Second, the results indicate that, overall, sequential Gaussian and indicator based 
simulation models can incorporate the essential features of a spatially varying 
parameter.

From the results, it is clear that the uncertainty distributions produced by sequential 
based simulation algorithms are more precise, and their response values are closer to the 
true values, than the distributions produced by probability field simulation algorithm.
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INTEGRATING MULTIPLE-POINT STATISTICS INTO

SEQUENTIAL SIMULATION ALGORITHMS 
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Abstract. Most conventional simulation techniques only account for two-point statistics 
via the modeling of the variogram of the regionalized variable or of its indicators. These 
techniques cannot control the reproduction of multiple-point statistics that may be 
critical for the performance of the models given the goal at hand (flow simulation in 
petroleum applications, planning and scheduling for mining applications).

Multiple-point simulation is a way to deal with this situation. It has been implemented 
for categorical variables, yet the demand of large data sets (training images) to infer the 
multiple-point statistics has impeded its use in the case of continuous variables.

We propose a method to incorporate multiple-point statistics into sequential simulation 
of continuous variables. Any sequential algorithm can be used. The method proceeds as 
follows. First, the multiple-point statistics are inferred from a training data set or 
training image with the typical indicator approach. The conditional probabilities given 
multiple-point data events enable to update the conditional distributions obtained by the 
sequential algorithm that uses the conventional two-point statistics. The key aspect is to 
preserve the shape of the conditional distribution between thresholds after updating the 
probability for the cutoffs used to infer the multiple-point statistics. Updating takes 
place under the assumption of conditional independence between the conditional 
probability obtained from the training set and the one retrieved from the conditional 
probability defined by the sequential method. The algorithm is presented in generality 
for any sequential algorithm and then illustrated on a real data set using the sequential 
indicator and Gaussian simulation methods. The advantages and drawbacks of this 
proposal are pointed out.

1 Introduction 

Geostatistical simulation is being used increasingly for uncertainty quantification. 
Traditionally, simulation methods only rely on the inference and modeling of a 
variogram that characterizes the spatial continuity of the variable of interest (see for 
example Goovaerts, 1997; Chilès and Delfiner, 1999). However, in most real 
applications the variogram cannot capture some important features of the true variable. 
The main reason for the poor performance of models built using conventional  
simulation tools is that variogram models only control the joint behavior of pairs of 
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points and there is no explicit control on the joint behavior of multiple points. The 
algorithm used and its underlying assumptions dictates how relationships between 
multiple points are controlled.  Two-point statistics such as the variogram or covariance 
are not enough to describe some complex features that the real phenomenon may 
present.

This problem was addressed for categorical variables by Guardiano and Srivastava 
(1993) in the early nineties. They introduced the idea of going beyond bivariate 
moments, through the use of extended normal equations. The method was based on 
using a training image for inferring the multiple-point indicator frequencies and then 
drawing an indicator value for the categorical variable given the probability of the 
unknown node to belong to each category (facies). This approach was improved by the 
implementation of Strebelle and Journel (2000) called single normal equation, where a 
search tree was used to find the multiple-point frequencies. Deutsch (1992) proposed the 
integration of multiple-point statistics in a simulated annealing framework. Caers and 
Journel (1998) used neural networks to infer the conditional distributions in a non-linear 
fashion considering multiple-point statistics. Both authors relied on the use of training 
images and their applications were oriented to categorical variables. 

More recently, Ortiz and Deutsch (2004) suggested the use of multiple-point statistics 
extracted from production data (blast hole data in mining applications). These statistics 
are integrated into sequential indicator simulation. The probability of an unsampled 
location to belong to a class defined by two cutoffs can be approximated using the 
probability obtained by conventional indicator kriging or using the probability estimated 
from the training data for the same configuration of class grades in nearby informed 
locations. These two statistics are then combined under the assumption that they are 
conditionally independent (Journel, 2002). 

In this article, we extend the approach proposed by Ortiz and Deustch (2004) to 
integrate multiple-point statistics in any sequential simulation algorithm. The key aspect 
is to infer the conditional distribution and then update it only at few thresholds, 
preserving its shape as much as possible. The proposed approach is implemented on a 
case study, where two benches of a copper mine are simulated using sequential Gaussian 
and sequential indicator simulation and then updated using multiple-point statistics. 

2 Inferring multiple-point statistics 

Inference of multiple-point statistics is a difficult problem and requires having abundant 
data over a large domain. Furthermore, these should be regularly spaced to allow 
repetition of patterns of several points. In practice, this problem has been solved using 
training images. Alternatively, in mining applications, the use of abundant and pseudo-
regular production data from samples taken in blast holes can replace the training image 
(Ortiz, 2003; Ortiz and Deutsch, 2004).

Inference of the multiple-point statistics is done using the indicator coding. First, a 
number of thresholds are defined and a multiple-point pattern is used to scan the  
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training image or training data set. For each threshold, the training data are coded as one 
if they belong to the corresponding class, that is, if the value is lower than or equal to the 
corresponding threshold value, and zero otherwise. From the scanning of the training 
image or data set, the probability of a node being less than or equal to the threshold can 
be calculated based on the experimental frequencies of that event.

Since there is no modeling of the experimental multiple-point frequencies, an important 
limitation of this procedure is that the training data set and modeling scale must be 
equivalent. That is, the spacing of the (pseudo-)regular data in the training set must be 
identical to the spacing between nodes that are simulated subsequently. A second 
problem of this data-driven approach is that mathematical inconsistencies between 
statistics inferred from the training data and from the sample data used to condition the 
simulation may exist.

3 Updating conditional distributions with multiple-point statistics 

The proposed approach to update conditional distributions with multiple-point statistics 
consists of the following steps: 

1. Define a random path to visit the nodes in the simulation grid. 
2. At every visited node, determine the conditional distribution by simple kriging 

of the (coded) sample data and previously simulated nodes.
3. Discretize the conditional distribution by a set of thresholds, which are 

interpreted as the conditional probability of the variable at that location not to 
exceed the corresponding threshold value. 

4. Update the conditional probabilities originated from discretizing the 
conditional distribution by assuming conditional independence between them 
and the probability of a node to exceed the corresponding threshold given the 
multiple-point configuration of (coded) original sample data and previously 
simulated nodes.

5. Fill in the discretized conditional distribution using some interpolation rule and, 
more importantly, extrapolation of the tails. 

6. Draw a uniform random value in [0,1] to read from the conditional distribution 
a simulated value. 

7. Proceed to the next node in the random path until all nodes have been 
simulated.

The updating technique described in step 4 was presented by Journel (2002) under the 
name of permanence of ratios assumption, but it is equivalent to the well-known 
conditional independence assumption used in the Naïve Bayes classifiers (Warner et al, 
1961; Anderson, 1974; Friedman, 1997).

This methodology can be applied to any sequential simulation algorithm where the 
conditional distribution at the simulation nodes has been defined. The most 
straightforward approach would be to apply it in an indicator context (Ortiz and 
Deutsch, 2004). In the following sections we present the details of implementing this 
method using indicator, Gaussian, isofactorial and direct simulation.
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4 Implementation 

Let the event A be the probability of a node not to exceed a threshold. Event B is 
defined by the indicator coded information provided by n single point events: 

nn iIiIiI )(,...,)(,)( 2211 uuu . Finally, event C is the multiple-point event 

defined by the values of the indicators of m points: mm iIiIiI )(,...,)(,)( 2211 uuu

(some of the n points belonging to B may also be part of C).

Indicator, Gaussian, isofactorial, or direct simulation can provide a conditional 
distribution that allows the calculation of P(A | B). The training dataset provides an 
estimate of P(A | C). Obtaining P(A | B, C) requires knowing the relationship between 
B and C, which is generally extremely difficult to get. Some assumption is required. 
These probabilities are combined assuming they are conditionally independent given A,
that is, considering the expression for P(A | B, C)  and ),|(1),|( CBACBA PP :
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It can be seen that, under the assumption of conditional independence, the probability of 
event A can be calculated with relative ease, since it does not require knowing the 
relationship between B and C. We now present four cases where this approximation can 
be implemented. 

4.1 INDICATOR SIMULATION 

Consider the usual indicator coding: 
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where z(u ) is the value at location u . This can be interpreted as a probability: 

)()(Prob);()( kkk zFzzziP uuA

For a simulated node located at u0, the conditional probability given the data in a search 
neighborhood can be calculated by simple indicator kriging (Journel, 1983; Alabert, 
1987):
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where (n) represents the conditioning information provided by n samples and previously 

simulated nodes in the search neighborhood, );( 0 k
SIK zu  for  = 1,…,n are the simple 

indicator kriging weights, and F(zk) is the global proportion below threshold zk.

From the training information, a different conditional probability can be obtained for 
z(u0) to be less than or equal to zk, given the information of an m-point configuration: 

*
0 )(|)(Prob)|( MPk mzzP uCA

The conditional probabilities obtained by simple indicator kriging can be updated with 
the conditional probabilities obtained from the training dataset, allowing the calculation 
of the conditional distribution that accounts for both, the set of n single point events and 
the single m-points event. Since the discretization of the conditional distributions by the 
indicator approach is generally coarse, the updated conditional distribution will also be a 
coarse approximation of the conditional distribution. The usual interpolation between 
the estimated indicators and extrapolation beyond the first and last thresholds is 
necessary (Deutsch and Journel, 1998).

4.2 GAUSSIAN SIMULATION 

A natural extension to the implementation presented above is to update conditional 
probabilities obtained via a multigaussian sequential simulation. The method requires 
the transformation of the original distribution into a standard Gaussian distribution: 

))(()( uu YZ

It is widely known that under the assumption of multivariate Gaussianity, the 
conditional distributions are fully defined by the mean and variance obtained by simple 
kriging, which requires the knowledge of the covariance function )(hC :
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The expression for the conditional distribution is: 
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An indicator-based approach to update these conditional distributions would consist in 
discretizing them into a series of thresholds, which can be easily done numerically, and 
then updating these conditional probabilities with the conditional probabilities obtained 
from the training set. Again, a decision about how to interpolate between the discrete 
points and beyond the first and last thresholds is necessary; however, in this case, the 
thresholds can discretize the conditional distribution more precisely than in indicator 
simulation. For instance, instead of choosing ten to fifteen thresholds, over a hundred 
thresholds can be easily taken, provided sufficient training information is available for 
reliable estimation of the conditional probabilities P(A | C).

4.3 ISOFACTORIAL SIMULATION 

The next case of interest corresponds to sequential isofactorial simulation (Emery, 
2002). Again, this method relies on a transformation of the original distribution into a 
new variable that follows a bivariate isofactorial distribution with marginal pdf f(.).
Notice that the transformation function may differ from the one used in the case of 
sequential Gaussian simulation and that f(.) is not necessarily the standard Gaussian pdf. 
Typical applications consider transforming the raw variable to a Gaussian or Gamma 
distributions, although other cases can be considered, such as a Beta, Poisson, Binomial 
or Negative Binomial distribution. The conditional probability can be obtained by 
disjunctive kriging of the indicator function at a given threshold zk:
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where the coefficients are calculated as:
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and each factor NpYp ,)( 0u  is estimated by simple kriging from its values at the 

neighboring data locations: 
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The weights )( 0, u
SK

p  are obtained by solving a simple kriging system considering a 

covariance function that depends on the isofactorial distribution and on the degree p. In 
practice only the first few factors are required (Matheron, 1976; Rivoirard, 1994; Chilès 
and Delfiner, 1999).
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As with the conditional probabilities estimated by indicator kriging or under the 
multigaussian assumption, a probability conditional to the multiple-point event for each 
threshold can be estimated using the training data set, and subsequently used to update 
the conditional probability estimated under the isofactorial framework.

4.4 DIRECT SIMULATION 

One last algorithm that could be considered is direct sequential simulation, which 
basically works by estimating the mean and variance of the conditional distribution by 
simple kriging. The shape of this distribution is then determined either by sampling the 
global distribution to match the mean and variance of the local conditional distribution 
(Soares, 2001), or by defining a conditional distribution lookup table (Oz et al., 2003). 
The procedure is virtually the same as in Gaussian simulation: obtain the conditional 
probability from the local distribution and update it with the multiple-point probability 
inferred from the training dataset. 

5 Case study 

The following case study presents some preliminary results about the application of the 
proposed methodology to simulate the point-support grades on a copper deposit, based 
on drill hole (exploration) information. The multiple-point statistics are extracted from 
production (blast hole) data obtained from two benches already mined out. This 
information is used to simulate the copper grade on two lower benches. An assumption 
of strict stationarity is required in order to “export” these multiple-point statistics. The 
example shows the updating technique implemented for the sequential indicator and 
Gaussian simulation algorithms.

Figure 1 shows the exploration data for a specific bench and the training information 
from one of the two benches used for multiple-point statistics inference. These statistics 
are inferred using a 5 points pattern made of a central node and the four adjacent nodes 
in the horizontal plane (no vertical data has been used for the multiple-point statistics 
inference). Figure 2 displays realizations for a specific bench using sequential indicator 
and Gaussian simulation and the proposed methods where the conditional distributions 
are updated with multiple-point statistics extracted from the production data. The typical 
“patchiness” of indicator simulation appears clearly in the maps. This characteristic 
appears more strongly when multiple-point information is incorporated under the 
assumption of conditional independence. The patchiness disappears when using the 
Gaussian algorithm as a base method for inferring the conditional distributions: in this 
case, transitions from high to low grade zones are smoother. However, the integration of 
multiple-point statistics injects more connectivity to the realization.

Table 1 shows the total copper content and quantity of metal above a cutoff of 0.7 %Cu 
calculated over a particular area using the four methods for 20 × 20 × 12 m3 panels. 
Smoother transitions and the added connectivity explain the higher variance obtained 
first, between indicator and Gaussian methods, and second, between the cases without 
and with multiple-point information. Validation remains a difficult issue and further 
research is required in this respect. 
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The implementation of these algorithms has shown some of the possible problems of 
their application. Numerical approximations are required to interpolate and extrapolate 
the tails once the discretization in indicators is performed for the updating procedure. 
Furthermore, the number of thresholds used depends on the quality and size of the 
training data set, in order to ensure reliable estimation of the multiple-point statistics. 

Cutoff = 0 %Cu Cutoff = 0.7 %Cu 
 Mean Std. Dev. Mean Std. Dev. 
SISIM 69.25 1.43 67.12 1.71 
SISIM-MP 70.88 1.72 67.44 2.06 
SGSIM 69.85 1.64 67.54 2.00 
SGSIM-MP 74.27 1.95 71.30 2.32 

Table 1. Total quantity of metal above cutoffs of 0 and 0.7 %Cu from the sets of 100 
realizations obtained with each method (in thousands of copper tonnes).

6 Conclusions 

Integrating multiple-point statistics into sequential simulation algorithms can be 
achieved under some assumption of the relationship (redundancy) between the 
conditional probability inferred from a training data set, given a multiple-point event, 
and the conditional probability inferred by a conventional kriging approach (indicator, 
multigaussian, or disjunctive kriging). We propose assuming conditional independence 
between these two sources of information, to obtain an estimate of the conditional 
probability that accounts for the neighboring data (n points) and the closest multiple 
point configuration (m points). The updating methodology proposed can be applied to 
any sequential simulation algorithm, provided that a conditional distribution is 
calculated at each simulation node on the grid.

Implementation of this technique has proven challenging, particularly because of 
possible inconsistencies between the sources of information (biases) where the statistics 
are inferred, and because of numerical approximations (particularly when extrapolating 
the tails) required to obtain the simulated values from the updated conditional 
distributions. Furthermore, the assumption itself should be investigated. A model that 
accounts for the redundancy between the sources of information could be easily 
constructed by defining a parameter , such that: P(C | A)  P(C | A, B), hence: 
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However, the parameter  is difficult to get and, to make things worse, it is location and 
data dependent. 

The proposal in this article opens an interesting and original research avenue about the 
use of multiple-point statistics in a data-driven mode. Implementation and applications 
to real data will offer challenges that have yet to be discovered. 
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Figure 1. Left: Exploration (drill holes) data. Right: production (blast holes) data. Only 
the data in one bench are displayed. Production data are used to infer the multiple-point 
statistics.

Figure 2. Plan views of a bench simulated using sequential indicator simulation updated 
with multiple-point statistics. 
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POST-PROCESSING OF MULTIPLE-POINT GEOSTATISTICAL MODELS
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Abstract. In most petroleum and groundwater studies, flow performance is highly 
dependent on the spatial distributions of porosity and permeability. Because both 
porosity and permeability distributions primarily derive from facies deposition, facies 
should be the first property to be modeled when characterizing a reservoir. Yet, 
traditional geostatistical techniques, based on variogram reproduction, typically fail to 
model geologically-realistic depositional facies. Indeed, variograms only measure facies 
continuity between any two points in space; they cannot account for curvilinear and/or 
large-scale continuous structures, such as sinuous channels, that would require inferring 
facies joint-correlation at many more than two locations at a time.
Multiple-point geostatistics is a new emerging approach wherein multiple-point facies 
joint-correlation is inferred from three-dimensional training images. The simulation is 
pixel-based, and proceeds sequentially: each node of the simulation grid is visited only 
once along a random path, and simulated values become conditioning data for nodes 
visited later in the sequence. At each unsampled node, the probability of occurrence of 
each facies is estimated using the multiple-point statistics extracted from the training 
image. This process allows reproducing patterns of the training image, while honoring 
all conditioning sample data.
However, because of the limited size of the training image, only a very limited amount 
of multiple-point statistics can be actually inferred from the training image. Therefore, 
in practice, only a very few conditioning data close to the node to be simulated are used 
whereas farther away data carrying important large-scale information are generally 
ignored. Such approximation leads to inaccurate facies probability estimates, which may 
create “anomalies”, for example channel disconnections, in the simulated realizations. In 
this paper, a method is proposed to use more data for conditioning, especially data 
located farther away from the node to be simulated. A measure of consistency between 
simulated realizations and training image is then defined, based on the number of times 
each simulated value, although initially identified as a conditioning datum to simulate a 
nearby node, had to be ignored eventually to be able to infer from the training image the 
conditional probability distribution at that node. Re-simulating the most inconsistent 
node values according to that measure enables improvement in the reproduction of 
training patterns without any significant increase of computation time. As an 
application, that post-processing process is used to remove channel disconnections from 
a fluvial reservoir simulated model. 
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1 Introduction 

Most geological environments are characterized by successive depositions of elements, 
or rock bodies, through time. These elements are traditionally grouped into classes, 
commonly named “depositional facies”, that correspond to particular combinations of 
lithology, physical and biological structures. For example, the typical depositional facies 
encountered in fluvial environments are high permeability sand channels, and 
sometimes, levies and splays with variable ranges of permeability.

Reservoir heterogeneity, hence flow performance, is primarily controlled by the spatial 
distribution of those depositional facies. Thus, a best practice would consist of modeling 
first depositional facies, and then populating each simulated facies with its 
corresponding specific porosity and permeability distributions. Yet traditional facies 
modeling techniques show severe limitations: 

1. Variogram-based techniques, for example sequential indicator simulation 
(Deutsch and Journel, 1998), do not allow modeling geologically-realistic 
depositional elements because identification of two-point statistics, as modeled 
by the variogram, is not sufficient to characterize curvilinear or long-range 
continuous facies such as sand channels (Strebelle, 2000). 

2. Object-based modeling techniques (Viseur, 1997) allow modeling quite 
realistic elements, but their conditioning is still commonly limited to a few 
wells.

An alternative technique proposed by Guardiano and Srivastava (1993) consists of going 
beyond the two-point statistics variogram by extracting multiple-point statistics from a 
training image. The training image can be defined as a three-dimensional conceptual 
geological model that depicts the geometry of each depositional facies expected to be 
present in the subsurface, as well as the complex spatial relationships existing among the 
different facies. Training images are typically obtained by interpreting available field 
data (cores, well logs, seismic), but also by using information from nearby field 
analogues and outcrop data. Figure 1a displays an example of a training image for a 2D 
horizontal section of a fluvial reservoir. That particular image was hand-drawn by a 
geologist, then numerically digitized. In 3D applications, three-dimensional training 
images are preferentially created using unconditional object-based modeling techniques.

Multiple-point statistics (MPS) simulation consists of reproducing patterns displayed in 
the training image, and anchoring them to the data actually sampled from the reservoir 
under study. In more detail, let S be the categorical variable (depositional facies) to be 
simulated, and sk, k=1…K, the K different states (facies types) that the variable S can 
take.  MPS simulation is a pixel-based technique that proceeds sequentially: all 
simulation grid nodes are visited only once along a random path and simulated node 
values become conditioning data for cells visited later in the sequence. At each 
unsampled node u, let dn be the data event consisting of the n closest conditioning data 
S(u1)=s(u1)…S(un)=s(un), which may be original sample data or previously simulated 
node values. The probability that the node u be in state sk given dn is estimated using 
Bayes’ relation:
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Prob{S(u)=sk and dn} and Prob{dn} are multiple-point statistics moments that can be 
inferred from the training image: 

1. Prob{dn}=c(dn)/NTI, where NTI is the size of the training image, and c(dn) is the 
number of replicates of the conditioning data event dn that can be found in the 
training image. By replicates, we mean training data events that have the same 
geometrical configuration and the same data values as dn.

2. Prob{S(u)=sk and dn}=ck(dn)/NTI, where ck(dn) is the number of training 
replicates, among the c(dn) previous ones, associated to a central value S(u) in 
state sk.

The conditional probability of occurrence of state sk at location u is then identified as the 
proportion of state sk obtained from the central values of the training dn -replicates: 

Prob{S(u)=sk | dn}=ck(dn)/c(dn) (1) 

The original MPS simulation implementation proposed by Guardiano and Srivastava 
was extremely cpu-time demanding since, at each node u to be simulated, the whole 
training image had to be scanned anew to search for training replicates of the local 
conditioning data event. Strebelle (2000) proposed decreasing the cpu-time by storing 
ahead of time all conditional probability distributions that can be actually inferred from 
the training image in a dynamic data structure called a search tree. More precisely, given 
a conditioning data search window W, which may be a search ellipsoid defined using 
GSLIB conventions (Deutsch and Journel, 1998), N denotes the data template 
(geometric configuration) consisting of the N vectors {h , =1…N} corresponding to 
the N relative grid node locations included within W. Prior to the simulation, the training 
image is scanned with N, and the numbers of occurrences of all the training data events 
associated with N are stored in the search tree. During the simulation, at each 
unsampled node u, N is used to identify the conditioning data located in the search 
neighborhood W centered on u. dn denoting the data event consisting of the n
conditioning data found in W (original sample data or previously simulated values, 
n N), the local probability distribution conditioned to dn is retrieved directly from the 
above search tree; the training image need not be scanned anew. Furthermore, to 
decrease the memory used to build the search tree and the cpu-time needed to retrieve 
conditional probabilities from it, a multiple-grid approach was implemented that 
consists of simulating a series of nested and increasingly-finer grids, and rescaling the 
data template N proportionally to the node spacing within the grid being simulated 
(Tran, 1994; Strebelle, 2000). That multiple-grid approach enables the reproduction of 
the large-scale structures of the training image while keeping the size of the data 
template N reasonably small (N 100).

The MPS simulation program snesim (Strebelle, 2000) is applied to the modeling of a 
2D horizontal section of a fluvial reservoir. The training image depicts the prior 
conceptual geometry of the sinuous sand channels expected to be present in the 
subsurface (Figure 1a). The size of that image is 250*250=62,500 pixels, and the 
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channel proportion is 27.7%. An isotropic 40-data template was used to build the search 
trees for each of the four nested grids considered in the multiple-grid simulation 
approach. The unconditional MPS model generated by snesim reproduces reasonably 
well the patterns displayed by the training image, although some channel disconnections 
can be observed (Figure 1b).

Figure 1. a) Training image used for the simulation of a 2D horizontal section of a 
fluvial reservoir (left); b) Corresponding MPS model generated by snesim (right) 

If channel disconnections were believed to occur in the reservoir being modeled, due for 
example to some faults, the training image should display such disconnections. In the 
case above, the channel disconnections are not consistent with the information carried 
by the training image, thus they should be treated as “anomalies” that need to be 
corrected.  In this paper we analyze why “anomalies” appear in MPS models. Then we 
propose modifying the snesim algorithm to decrease the number of anomalies, and we 
introduce a post-processing technique to remove those remaining.

2 Multiple-point statistics inference limitation 

Inferring from the training image the probability conditional to a data event dn requires
finding at least one occurrence of dn in that training image. However the likelihood that 
not a single exact replicate of the data event dn can be found increases dramatically with 
the size n of that data event. Indeed, for an attribute S taking K possible states, the total 
number of possible data events associated with a given n-data template n is Kn (for 
n=50 and K=2, Kn 1015!), while the total number of data events associated with n

scanned in the training image is always necessarily smaller than the size NTI of that 
training image (typically less than a few millions nodes).

When no occurrence of a conditioning data event dn is present in a training image, the 
solution proposed by Guardiano and Srivastava (1993), and implemented in the original 
snesim program, consists of dropping the farthest away conditioning data until at least 
one training replicate of the resulting smaller conditioning data event can be found. 
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However, n’ being the number of conditioning data actually used to estimate the 
conditional probability distribution at the unsampled node u, critical information, in 
particular large-scale information, may be ignored when dropping the (n-n’) farthest 
away conditioning data. Such approximation may lead to the inaccurate estimation of 
some conditional facies probability distributions, and the subsequent simulation of 
facies values that may not be consistent with the information carried by the dropped 
conditioning data.

To illustrate the above explanation for the presence of anomalies in MPS models, we 
plotted in Figure 2b the locations of the nodes that were simulated using less than 10 
conditioning data in the MPS model created in the previous section (Figure 1b, repeated 
in Figure 2a).  As expected, a close correspondence can be observed between the 
locations of those poorly-conditioned nodes and the channel disconnection occurrences.

Figure 2. a) MPS model of a 2D horizontal section of a fluvial reservoir generated using 
snesim (left); b) Locations of the nodes simulated using less than 10 conditioning data 
(right). The arrows show the correspondence between the main clusters of poorly-
conditioned nodes and the channel disconnections observed in the MPS model. 

In the next section we propose modifying the original snesim implementation to 
decrease the number of dropped conditioning data.

3 Enhanced method to infer conditional probabilities 

In the original snesim program, the facies probability distribution conditional to a data 
event dn ={S(u1)=s(u1)… S(un)=s(un)} (or dn ={s(u1)…s(un)} to simplify the notations),  
is estimated using the following process: 

Retrieve from the search tree the number c(dn) of dn-replicates that can be 
found in the training image.

 If c(dn) is greater or equal to 1, identify the conditional facies probabilities as 
the facies proportions of type (1). Otherwise drop the farthest away 
conditioning datum, reducing the number of conditioning data to (n-1).
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Retrieve again from the search tree the number of training replicates of that 
lesser data event dn-1={s(u1)…s(un-1)}, and so on… until at least one replicate 
of the sub-data event dn’={s(u1)… s(un’)} (n’ n) can be found in the training 
image.
If the number of conditioning data drops to 1, and still no training replicate of 
d1 can be found, then the conditional facies probabilities are identified as the 
target marginal facies proportions of the simulation.

Instead of starting from the full data event dn, and dropping conditioning data, one can 
obtain the exact same result using a reverse process, starting from the smallest possible 
sub-data event d1, and adding conditioning data until the corresponding conditional 
probability distribution (cpdf) cannot be inferred anymore from the training image. In 
more detail, that inverse process consists of the following steps: 

Retrieve from the search tree the number of replicates of the sub-data event  
d1={s(u1)}, consisting of a single conditioning datum, that closest to the node u
to be simulated.
If no training replicate of d1 can be found, the local conditional facies 
probabilities are identified as the target marginal facies proportions of the 
simulation. Otherwise retrieve again from the search tree the number of 
replicates of the larger sub-data event d2={s(u1),s(u2)}, consisting of the two 
conditioning data closest to u.
If no training replicate of d2 can be found, the probability distribution 
conditional to d1 is used to simulate u.  Otherwise retrieve from the search tree 
the number of replicates of the larger sub-data event d3 consisting of the three 
conditioning data closest to u, and so on… until at least one replicate of the 
sub-data event dn’ (n’ n) can be found in the training image, but no replicate of 
dn’+1.

Because the dropped conditioning data may carry critical information, especially 
information about large-scale training structures, we propose extending the previous 
reverse process to retain additional conditioning data beyond s(un’):

Given that no replicate of dn’+1={s(u1)…s(un’+1)} can be found in the training 
image, drop s(un’+1), but add the next conditioning datum s(un’+2). Retrieve 
from the search tree the number of replicates of the resulting sub-data event 
{s(u1)…s(un’),s(un’+2)} (or dn’+2 -{s(un’+1)})
If no training replicate of the previous sub-data event can be found, drop 
s(un’+2), otherwise keep that conditioning datum. In both cases, consider the 
resulting data event, and add the next conditioning datum s(un’+3), and so on… 
until the last conditioning datum s(un) is reached. 

This new conditional probability distribution function (cpdf) estimation method enables 
the retention of more conditioning data, as confirmed by its application to the previous 
fluvial reservoir section: only 127 nodes were simulated using less than 10 conditioning 
data in the new MPS model (Figure 3d) versus 285 in the original one (Figure 2b, 
repeated in 3c). In particular, the additional conditioning data used are located farther 
away from the node to be simulated. Therefore large-scale information was better 
integrated in the new MPS model (Figure 3b) than in the original one (Figure 1b, 
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repeated in Figure 3a), and a significant number of channel disconnections were 
removed. A post-processing technique is proposed in the next section to remove the 
remaining anomalies. 
Note also that the new cpdf estimation method requires only a minor amount of 
additional cpu-time: generating a simulated realization using the new cpdf estimation 
method took 16.3 seconds versus 16.0 seconds for the original simulated realization on a 
660MHz SGI Octane II.

Figure 3. MPS models generated using a) the original cpdf estimation method (top left); 
b) the new cpdf estimation method (top right). Locations of the nodes simulated using 
less than 10 conditioning data c) in the original MPS model (bottom left); d) in the new 
MPS model (bottom right). The arrows show the channel disconnections that were 
removed from the original model. 



986 S. STREBELLE AND N. REMY 

4 A new post-processing algorithm 

A post-processing algorithm was proposed by Remy (2001) to remove anomalies from 
MPS models using a two-step process:

First, given a data template N, identify in the simulated realization all data 
events associated with N that do not occur in the training image 
Then re-simulate the grid nodes of those data events.

However, because of the limited size of the template N, only small-scale anomalies 
could be corrected. Furthermore, a better identification of the nodes to be re-simulated is 
proposed in this section. 

When estimating local cpdf’s, conditioning data are dropped until at least one replicate 
of the resulting conditioning data event can be found in the training image. Considering 
a larger training image could provide additional possible patterns, thus decreasing the 
number of dropped conditioning data. But in many cases, a datum actually must be 
dropped because the information it carries is not consistent with the information carried 
by the other nearby conditioning data. Dropped conditioning data may be then a good 
indicator of the local presence of anomalies. This is confirmed by the good spatial 
correlation observed between the channel disconnections of the previous fluvial 
reservoir MPS model (Figure 3b, repeated in Figure 4a) and the clusters of nodes where 
conditioning data were dropped (Figure 4b).

Figure 4. a) MPS model obtained using the new cpdf estimation method proposed in the 
previous section (left); b) locations of the conditioning data dropped (right). The arrows 
show the correspondence between channel disconnections and clusters of dropped 
conditioning data.

We propose marking the locations of the conditioning data dropped as the simulation 
progresses from one grid node to the other and revisiting these locations later. The new 
snesim implementation using that post-processing method proceeds in the following 
steps:

1. Define a random path visiting once all unsampled nodes. 
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2. At each unsampled node u, retrieve the local conditional probability 
distribution using the new cpdf estimation method previously described, and 
mark the nodes corresponding to the conditioning data dropped. Draw a 
simulated value for node u.

3. Move to the next node along the random path and repeat step 2. 
4. Once all grid nodes have been visited and simulated, remove values from the 

nodes that have been marked, provided that they do not correspond to original 
sample data.

5. Repeat steps 1 to 4 several times until the generated image is deemed 
satisfactory according to some convergence criterion, for example until the 
number of nodes to be re-simulated stops decreasing. 

To correct anomalies at all scales, this post-processing technique needs to be applied to 
every nested (fine or coarse) grid used in the multiple-grid simulation approach 
implemented in snesim. Figure 5 shows two post-processed MPS models of the 
previous fluvial reservoir. The number of channel discontinuities in both models is 
much lower than in the original model of Figure 4a.
Six post-processing iterations were performed on average per nested grid, and 43 nodes 
were re-simulated on average per iteration. The additional cpu-time required for the 
post-processing is relatively small: generating one realization using post-processing took 
19.2 seconds on average, versus 16.3 seconds without post-processing.

Figure 5. Two MPS models generated using the post-processing. 

In 3D applications, the number of nodes to be re-simulated may be much higher than in 
2D. Thus, instead of simply marking the nodes where conditioning data were dropped, 
we propose measuring the local consistency of the MPS model with regard to the 
training image by counting the number of times each simulated value, although being 
initially identified as a conditioning datum to simulate a nearby node, had to be ignored 
eventually to be able to infer from the training image the conditional probability 
distribution at that node. The post-processing consists then of re-simulating only those 
nodes where the previous consistency measure is greater than a given threshold. 
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5 Conclusion 

A new version of the multiple-point statistics simulation program snesim with 
integrated post-processing is presented in this paper. In this new program, the method 
used to infer local conditional facies probability distributions is modified to increase the 
number of conditioning data actually used in that inference process. This new estimation 
method removes from multiple-point geostatistical models a great number of anomalies, 
i.e. simulated patterns that were not present in the training image. Then a post-
processing technique is proposed to reduce the number of remaining anomalies. The 
application of that post-processing to a 2D horizontal section of a fluvial reservoir 
shows that the cpu-time needed to run the new modified snesim is comparable with that 
of the original snesim, while the number of anomalies decreases dramatically.
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Abstract. Sequential simulation is probably the most used algorithm in geostatistical 
simulation, specially the parametric version, i.e. the sequential Gaussian algorithm. This 
algorithm requires the data to follow a Gaussian distribution, and assumes also that all 
multivariate distributions are also normal. This assumption is very convenient allowing 
the local uncertainty model (or conditional cumulative distribution function - ccdf) to be 
inferred through few parameters given by simple kriging (mean and variance). The set 
of simulated values are drawn through Monte-Carlo methods, randomly sampling the 
ccdf L times. In theory, this method maps the space of uncertainty as the number of 
realizations increase. In practice the number of realizations necessary varies according 
to the characteristics of the conditioning data. It is important that the L simulations 
describe the space of the uncertainty appropriately accordingly to the objective 
addressed. However, in some situations the number of simulations needs to be large, 
making the procedure computationally intense and time-consuming. This paper presents 
a more efficient strategy to generate the local ccdf based on Latin Hypercube Sampling 
(LHS) technique. The idea is to replace the Monte-Carlo simulation by the LHS in order 
to improve the efficiency of the sequential Gaussian simulation algorithm. The use of 
the modified algorithm showed that the space of uncertainty related to the random 
variable modeled was obtained faster than the traditional Monte-Carlo simulation for a 
given degree of precision. This approach also ensures that the ccdf is better represented 
in its entirety. 

1 Introduction 

Geostatistical simulation applications in the mining industry are quickly growing. These 
methods have been employed for risk analysis during pre-feasibility through feasibility 
studies, as in mine planning (short and medium term) and production stages. Most 
applications are aimed at sensitivity analysis on grade-tonnage curves and their effect on 
the projects net present value. Stochastic conditional simulation is able to quantify the 
variability on geological attributes such as grades or any other variable relevant to a 
given mining project. Variability can be assessed by constructing multiple equally 
probable numerical scenarios. Combining these scenarios can provide an assessment on 
the so called space of uncertainty. 
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Geostatistical simulation methods normally are set to create L (L = 1,...,L) equally 
probable images of any attribute from a mineral deposit, reproducing their 1st. and 2nd. 
order statistical moments. To each point or block of a simulated domain there are L 
equally probable values of the attribute. The variability of these simulated values can be 
assessed by uncertainty indices. These indices are calculated after the simulation 
process, using the L equiprobable values. Among the uncertainty indices one can use: 

i. conditional variance; 
ii. conditional coefficient of variation; 

iii. interquartiles (interquantiles) ranges; 
iv. entropy. 

Thus, it is possible to verify the amplitude of variation among several equally probable 
scenarios and calculate the error associated with the estimates. It is assumed that the 
basic statistics and the spatial dependence derived from the samples are representative of 
the parent population. 
The most used stochastic conditional simulation algorithms are the sequential Gaussian 
(Isaaks, 1990), sequential indicator (Alabert, 1987) and the turning bands method 
(Matheron, 1973). These algorithms are available in the most geostatistical softwares 
such as GSLIB (Geostatistical Software's Library) (Deutsch and Journel, 1998) or 
Isatis®. Amongst the cited methods, the sequential ones, parametric or nonparametric, 
are preferentially used. 
The main difference between these two groups is the procedure used for constructing the 
uncertainty models (conditional cumulative distribution function - ccdf): parametric vs. 
nonparametric. Sequential Gaussian simulation (sGs) is based on the multiGaussian 
formalism (parametric), while the sequential indicator simulation (sis) uses the 
homonym formalism (nonparametric). 
The multiGaussian approach assumes that all multivariate distribution of the data 
follows a Gaussian distribution. Thus, the application of sGs algorithm demands the 
experimental distribution of the random variable (RV) Z(u) follows a Gaussian 
distribution. That is, the RV Z(u) must be transformed into a RV Y(u) standard normal. 
The multiGaussian hypothesis is very convenient, as it allows the uncertainty models 
(ccdf) to be obtained from a normal distribution with mean and variance derived from 
kriging. Thus, the mean and the variance of the ccdf in a given unsampled location, u, 
are equal to the respectively estimate ySK

*(u) and variance SK
2(u) of simple kriging 

(SK). Then, the ccdf can be modeled as: 
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where y is a Gaussian value of the domain [- ; + ]. The estimated values ySK
*(u) and 

SK
2(u) are calculated from n information y(u ) (  = 1,...,n) in the neighborhood of u 

(Journel and Huijbregts, 1978 p. 566). 
After constructing the ccdf, a simulated datum y(l)(uj) is draw from it via Monte-Carlo 
simulation. Generally, the following stages are common to all stochastic sequential 
simulation algorithms (parametric or nonparametric): 

i. definition of a random path, in which each unsampled location uj (j = 
1...,N) (point, cell or block of the grid) is visited only once; 

ii. construction of the uncertainty model (ccdf) at the location uj – 
conditional to the n experimental information in the neighborhood of uj;
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iii. simulation of a value y(l)(uj) from the RV Y(uj), by drawing randomly 
from the ccdf (Monte-Carlo simulation); 

iv. inclusion of y(l)(uj) into the data set, representing an addition to the 
conditional information to be used in the following N grid nodes to be 
visited {y(l)(uj), j = 1...,N}; 

v. repetition of the stages (ii) to (iv) until a simulated value is associated to 
each of the N locations; 

vi. repetition of the steps (i) the (v) to generate L equiprobables realizations 
of the spatial distribution of the RV Y(u). 

Hence, the set {y(l)(uj), j = 1,...,N} represents a realization of the random function (RF) 
Y(u) in the physical domain defined by the information y(u ) (u = 1,...,n), in the normal 
space. Whereas the set {y(l)(uj), l = 1,...,L} represents L simulations of the RV Y at 
location uj (j = 1,...,N). After, the simulated data set {y(l)(uj) (j = 1,...,N and l = 1,...,L)} 
is transformed to the original space of the RV Z(u). Therefore, the value of the RV Z at 
each location uj (j = 1,...,N) is simulated within the domain of variation of the RV Z(u), 
through a random procedure, from the ccdf. At each location, the simulation process 
generates a distribution, composed by L values. That distribution can be considered a 
numerical approach of the ccdf; i.e.: 
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where F(u; z| (n)) represents the probabilities assumed by the ccdf at each location uj (j 
= 1,...,N) and i(l)(u;z) is a indicator variable as follows: 
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Indeed, the methods of stochastic sequential simulation make use of a very curious 
algorithm. The objective is to obtain a model of uncertainty, however this model is 
known beforehand, as after kriging all the parameters of the multiGaussian distribution 
are determined. 
Generally, the stochastic methods use the technique of Monte-Carlo simulation (Isaaks, 
1990) to construct the numerical models. The model of uncertainty (ccdf) of the RV Y at 
uj (j = 1,...,N) locations is randomly sampled L times, generating the set of simulated 
values {y(l)(uj) (j = 1,...,N and l = 1,...,L)} and, consequently the set {z(l)(uj) (j = 1,...,N 
and l = 1,...,L)}. In theory, the stochastic methods reproduce the space of uncertainty of 
the RV Z(u) as the number L of realizations increases. However, in practice, this 
number is a function of the experimental distribution, requiring to be as large as the 
variability of data. The number L of random drawings should be sufficiently large to 
guarantee the space of uncertainty of the RV Z(u) is characterized. 
However, frequently L needs to be so large that the technique becomes too 
computationally intense. The dimension of the problem (2D or 3D), the size of the area 
to be evaluated (number of points or blocks on the grid), the number of conditioning 
data, and their statistical characteristics (auto-correlation or variability) can be barriers 
for the adequate use of the stochastic simulation. Various case studies exist to 
corroborate the problem (Godoy, 2002; Santos, 2002). Koppe et al. (2004) simulated in 
3D sonic wave velocity obtained by geophysical logging. Given the amount of 
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conditioning data and the size of the grid, many hours of CPU were necessary (Pentium 
4, 2.8 MHz, 1024 Mb) to generate a single realization. Many industry applications 
require prompt answers and do not allow the processing of an adequate number of 
realizations before a decision is made. Although the use of geostatistical simulation is 
increasing among the mining industry, the correct application of this technique in certain 
situation can be difficult due to the reasons listed above (related to the characterization 
of the space of uncertainty). Thus, in these situations the variability of the studied 
mineral attribute will not be correctly evaluated. 
This paper shows a more efficient strategy able to cover with fewer realizations the 
space of uncertainty. The Sequential Gaussian simulation algorithm was modified, 
aiming at increasing its efficiency. The replacement of Monte-Carlo simulation by Latin 
Hypercube Sampling technique (LHS) (McKay et al., 1979) is proposed. The proposal 
attempts to build the so-called space of uncertainty of the RV Z(u), for a given 
precision, with fewer runs. 

2 Methodology 

Stochastic simulation requires a minimum number of realizations, L, to ensure the space 
of uncertainty of the RV Z(u) is characterized. The substitution of the random drawing 
embedded in Monte-Carlo simulation for LHS can increase the efficiency of the process. 
For a given precision, LHS guarantees that all ccdf is sampled (in it is integrity), 
generating the set of L simulated values {z(l)(uj) j = 1,...,N and l = 1,...,L)}, with fewer 
realizations than Monte-Carlo. 
The algorithm of sequential Gaussian simulation is implemented to get the simulated 
value y(l)(uj) (in the normal space) by means of the following equation: 

y(l)(uj) = xp(l)(uj) . SK(uj) + y*
SK(uj)                  uj = 1,...,N and l = 1,...,L (3)

where KS(uj) and y*
KS(uj) represent the simple kriging standard deviation and the simple 

kriging estimate, respectively at location uj . For each new l, or new run, these values 
change due to the random path used to visit the nodes and the addition of previously 
simulated nodes to the original dataset. Whereas xp(l)(uj) represents a Gaussian value, 
obtained from the standard Gaussian probability distribution function G(y), that is: 

xp(l)(uj) = [G-1(uj, p)]                    uj = 1,...,N and l = 1,...,L (4)

where p is a probability defined in the domain [0; 1], obtained randomly by means of the 
Monte-Carlo method. 
LHS consists of randomly drawing, without substitution (stratified random sampling 
without substitution), of M values, from M distinct equally probable classes of a ccdf. 
Thus, in case of using LHS instead of Monte-Carlo, M values are drawn randomly and 
without substitution from the standard Gaussian probability distribution function G(y) 
representing the standard Gaussian RV Y (Y~N(0,1)). However, LHS requires the M 
values be drawn from M distinct equally probable classes. Firstly, the G(y) distribution 
is split into M disjunctive equally probable classes. From there, values are randomly 
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drawn from each class m (m = 1,…,M), at each location uj (j = 1,...,N) for each L (l = 
1,...,L) realization. The drawing procedure follows: 

xplhs
(m,l)(uj) = [G-1(uj, (plhs(m,l))]             uj = 1,...,N;  m = 1,...,M and l = 1,...,L (5)

where plhs(m,l) (a probability within a class m, among the range of M classes) is defined 
as:

plhs(m,l)(uj) = ((m -1) + Rm)/M               uj = 1,...,N;  m = 1,...,M and l = 1,...,L (6)

where Rm is a random number defined in the domain [0; 1]. 

Thus, at each location uj (j = 1,...,N), a Gaussian value xplhs
(m,l) is randomly taken from 

each class M. Note that to ensure that one Gaussian value xplhs
(m,l) is drawn from each 

class M, the number of realizations L (random drawings) must to be equal the number of 
classes M used to discretize the G(y) distribution, i.e. L = M. 
Following a random path, each location uj (j = 1,..., N) is visited and a SK system is 
solved to obtain SK(uj) and y*

SK(uj). Next, one class M is randomly drawn (without 
substitution) and a probability (plhs(m,l)(uj)), defined in that class, is determined by 
solving Equation 6. Next, a Gaussian value xplhs

(m,l)(uj) is obtained (Equation 5). Finally, 
the simulated values y(m,l)(u) (m = 1,..., M and l = 1,..., L) are obtained as follow: 

Y(m,l)(uj) = xplhs
(m,l)(uj) . SK(uj) + y * SK(uj)       uj = 1,..., N;  m = 1,..., M and

        l = 1,...,L (7)

It is important to stress that m is randomly taken, and it can assume any integer within 
the interval [1; M]. Conversely, the values for l are sequential within the [1; L] interval. 
In the proposed algorithm, the user has to inform the usual parameters of sGs, and 
additionally has to define the number M of classes (i.e. define the way G(y) is 
discretized). Therefore, the new stochastic sequential simulation algorithm would be: 

i. define M disjunctive equally probable classes; 
ii. define a random path, in which each unsampled location uj (j = 1,..., N) 

(cell or block of the grid) is visited once; 
iii. solve a kriging system (SK) to estimate SK(uj) and y*

SK(uj) at each visited 
location uj, giving n(uj) experimental (and previously simulated data) 
within the neighborhood of uj;

iv. random sample without substitution the class defined in (i); 
v. random sample the probability plhs(m,l) (Equation 6); 

vi. draw a Gaussian value xplhs
(m,l)  (Equation 5); 

vii. simulate a value y(m)(uj) (Equation (7); 
viii. add y(m)(uj) to the dataset;

ix. repeat steps (iii) to (viii) until a simulation is associated to each one of the 
N locations; 

x. repeat steps (ii) at (ix) to generate L (L = M) equally probable realizations 
of the RF Y(u); 
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xi. back transform the normalized values y(m)(uj) to obtain the realizations of 
Z(u).

This modification adds a new random component into the original algorithm. In addition 
to drawing the probabilities (plhs(m,l)) there is also the drawing (without substitution) of 
equally probable disjunctive classes M.
Figure 1 shows the experimental Gaussian probability distributions generated by Monte-
Carlo and LHS. These distributions were obtained by plotting 20 outcomes for a 
location uj (j = 1), calculated by equations (4) and (5). The Gaussian values (xp(l) and 
xplhs

(m,l)) are plotted against their probabilities. LHS better reproduces the G(y) 
distribution, especially on its extremes and the stratification is evident in the LHS plot 
(Figures 1 and 2). Consequently, the ccdf of the RV Z(u) is expected to be better 
constructed, i.e. sampled uniformly at all classes (although there is no guarantee that the 
resulting ccdf of Z(u) is stratified). In this case L = 20 was used; therefore to use LHS at 
location uj (j = 1), 20 random draws were taken from 20 classes with 5% of amplitude 
each.

Figure 1: Twenty outcomes (realizations) of a Gaussian distribution sampled by 
Monte-Carlo (left) and by LHS (right). 

Figure 2 presents the probabilities related to same 20 outcomes (L = 20) and 
corroborates the results verified in Figure 1. The horizontal axis plots the realization 
number while the vertical axis the respective drawn probability. A straight line in this 
plot would indicate that the G(y) distribution was properly sampled. LHS plots closer to 
a straight line than the results obtained by Monte-Carlo. 

Figure 2: Probabilities drawn for 20 realizations via Monte-Carlo (left) and via LHS 
(right).

A similar comparison was conducted for several distinct values of L. LHS consistently 
presented better reproduction of the parent Gaussian distribution than Monte-Carlo, 
independently of the location uj (j = 1,..., N) chosen. 
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3 Discussion on the results 

In order to evaluate practical benefits on the modified sGs algorithm, several tests were 
performed and compared to the results obtained using the original sGs. For these tests, 
the Walker Lake dataset (Isaaks and Srivastavas, 1989) was used and its parent 
population is available. 
Two hundred simulation were generated (L = 200) using the original sGs algorithm. The 
variability on the mean of the realizations was calculated using the coefficient of 
variation (CV). The average and CV of the mean of the realizations were calculated for 
an increasing set of realizations. That is, the 10 first realizations had been analyzed, next 
the 20 first ones and so on. For instance, the initial set C of the 10 first realizations (C = 
10) was analyzed and the average of the mean of all 10 realizations (E[m]10) and the 
respective CV(m)10 of this set had been calculated. 
Figure 3(a) plots the average of the mean of several sets of realizations. The average 
reaches a stable value after the 160th realization. Figure 3(b) presents the CV of the 
means for the same realization sets. Similarly, the CV stabilizes after the 150th

realization.

Figure 3: Average (a) and CV (b) of the mean of the realizations using original sGs. 

The difference between the average of the mean values in relation to the sets of 100 and 
160 realizations is small, however the CV is significantly different. Generally, users of 
simulation tend to set L equal 100 to guarantee the space of uncertainty of the RV Z(u) 
is properly covered, ignoring the statistical characteristics of the data. However, this 
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example highlights the fact that in some situation 100 realizations is not enough (or in 
other cases is too much) to assess the space of uncertainty of the RV Z(u). 
The procedure was repeated using the modified sGs algorithm. Several class amplitudes 
were tested. The results were satisfactory, even for a small number of realizations (few 
classes, as L = M). The modified sGs algorithm convey a better characterization of the 
space of uncertainty of the RV Z(u). Figures 4 and 5 compare the results obtained for 
the two algorithms. For these figures, the number of simulations added on each step was 
one (C = 1). The steady values for average and CV are also plotted, i.e. the values which 
the two statistics become stable. Figure 4 shows that after 14 realizations the average of 
the realization’s mean reaches a stable value. LHS in this situation required the standard 
Gaussian probability distribution G(y) to be divided into 14 classes (M = 14) with an 
amplitude of 7,14% each class. The CVs of these means are presented in Figure 5. In 
relation to the variability of the mean for sets of realizations, the performance of the 
modified sGs is also superior. Figures 4 and 5 also show that using M > 14 the statistics 
still fluctuate around the steady values, however the results are better than the original 
sGS algorithm. The results obtained for M > 20 are similar to those obtained by the 
original sGS algorithm. (or: The modified algorithm becomes similar to the original sGS 
algorithm for M > 20). 

Figure 5: CV for the mean of the realizations. 

From a practical perspective, the impact of underestimating the size of the space of 
variability is analyzed via recoverable reserves curves of a mineral deposit. Figure 6 
illustrates the cutoff vs. tonnage curve for 14 equally probable scenarios generated by 
the two methods. 



IMPROVING THE EFFICIENCY OF THE SEQUENTIAL SIMULATION ALGORITHM 997

Figure 6: Recoverable reserves curves (cutoff x tonnage) obtained for 14 realizations 
obtained by original sGs (a) and by the modified sGS (b). 

Although the two sets of curves seem very similar, the amplitude of variation (spread) of 
the curves produced by the 14 realizations generated by the modified sGs is larger 
(Figure 7). The modified algorithm is more conservative in the sense the space of 
uncertainty is wider, as shows the Figure 8. 

Figure 7: Amplitude of the recoverable reserves curves (cutoff x tonnage), original sGs 
(dashed line) and modified sGs (solid line). 

Figure 8: CV for the 14 values of tons (obtained from the realizations) calculated for 
original sGS (thin line) and modified sGs (thick line). 
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Figure 8 presents the CV for the tons calculated at various cutoffs using the 14 possible 
outcomes obtained by simulation. This figure reflects the previous conclusions, i.e. the 
variability on possible values for tonnage is higher (more uncertainty) using the 
modified algorithm. It is expected that using the original algorithm it will be necessary 
more than 100 realizations to achieve the same variability. 

4 Conclusion 

The number of realizations necessary to adequate characterize the variability of the 
mineral attributes can significantly be reduced. Thus, the adequate use of the 
geostatistics simulation methods in the industry can be facilitated by generating smaller 
output files. Hence, the L number of simulation can be reduced (for the same space of 
uncertainty obtained by the original sGs) helping to handle smaller output file. 
The modified algorithm produced a more conservative answer, i.e. a larger space of 
uncertainty. Therefore, in industry applications where the number of realizations is a 
limiting factor, the modified sGs algorithm can be more appropriate, as with fewer 
realizations the variability (space of uncertainty) achieved is similar to the one obtained 
via original sGs. The proposed method does not ensure that the resulting ccdf are 
stratified, but the improvement in mapping the consequential transfer function’s space of 
uncertainty is visible as demonstrated in the case study. 
In practice, the challenge is to find the number M of classes (that discretize the G(y) 
distribution) adjusted to each situation. The choice of M is still a subject to be studied. 
The reproducibility of the results also needs to be verified on a few other datasets. 
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Abstract. A recurrent problem in reservoir characterization is the need to gen-
erate realizations of an attribute conditioned not only to core data measurements,
but constrained also to attribute averages, defined on a larger support. A related
problem is that of downscaling, in which there is a need to generate realizations at
a scale smaller than the available data, yet preserving some type of average relation
between the data and the downscaled realization. Typical larger support data are
those coming from well tests, production data, or geophysical surveys. A solution
is proposed to approach these two problems for the case in which the large support
data can be expressed as linear functions of the original, smaller support, attribute
values, or of some local transform of them. The proposed approach considers two
random functions, one for the point (small support) data, and one for the block
(large support) data. The algorithm is based on the full specification of the point
to block and block to block covariances from the point to point covariance. Once all
direct- and cross-covariances are specified, co-kriging or co-simulation can be used
to either produce estimation or simulation maps. Similar approaches have been
attempted, but this approach distinguishes itself because it is exact, in the sense
that the constraints are exactly honored in the final maps. Although the theoretical
basis for this constrained estimation or simulation is reasonably straightforward,
its implementation is not. In particular, the building of the co-kriging systems and
the concept of search neighborhood presents some non-negligible challenges, which
have been efficiently solved, even for the non-trivial case of overlapping supports
of the constraining data.

1 Introduction

Reservoir or aquifer characterization always faces the problem of how to handle
data taken at different supports. When the relationship between the attribute
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value (or any non-linear transform of it, i.e., the logarithm of the attribute) at
different scales is linear, or it can be established in terms of a p-norm (or power
average), it is possible to use data at any scale to condition either estimation by
kriging or stochastic simulation. Deutsch (1993) approached the problem using
simulated annealing, Srinivasan and Journel (1998) used direct sequential sim-
ulation to approximately constrain the p-norm average of an entire permeability
realization to the well-test derived permeability, and Journel (1999) explained how
to approximately constrain kriging and simulation to p-norm averages.

But conditioning can be made exact with the proper implementation based on
the fact that the covariance is a measure of the linear relationship between two
attributes, thus, covariance reproduction entails linear relationship reproduction.
This property was proven by Gómez-Hernández and Cassiraga (2000) who de-
scribed how to generate realizations conditioned to linear constraints by sequential
simulation.

Constraining to linear averages can be important. For instance, geophysical sur-
veys do not provide information on small supports, yet, geophysical measurements
can be related to linear averages of an attribute such as porosity in a neighborhood
of the geophysics log; or, pumping tests do not provide a measurement of the
permeability at the well, but the antilog of a weighted average of the nearby
logarithm of the permeabilities;

The methods described by Gómez-Hernández and Cassiraga (2000) in their
paper were not suitable neither when the realizations had many cells, nor when
the constraints extended over a very large area, for reasons similar to those in
Srinivasan and Journel (1998) and Journel (1999) who propose only approximate
solutions to the problem of conditioning to average values. In this paper, we de-
scribe and demonstrate an algorithm that solves these problems and that can be
used for either estimation or simulation.

2 Theory

Consider the random function Z to be simulated over a grid of nZ points and the
random function Y linearly related to Z through

A · Z = Y, (1)

in which A is an nY × nZ matrix, with all its rows linearly independent. Random
function Z represents the attribute defined at a given support, and Y represents
the linear constraints that have to be met by Z.

Since Y is fully determined by Z, its covariance and cross-covariance are fully
determined from the covariance of Z, CZ and (1):

CZ = E{Z · ZT },
CZY = E{Z · Y T } = CZ · AT , (2)
CY Z = E{Y · ZT } = A · CZ , (3)
CY = E{Y · Y T } = A · CZ · AT . (4)
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As already mentioned, it has been shown elsewhere that kriging estimation or
stochastic simulation of the random function Z can be made exactly conditioned
to Y samples if kriging or simulation is performed using the CZ covariance and
the CY , CY Z , CZY covariances given by equations (2-4). Conditioning to y data
is equivalent to imposing the corresponding linear constraint onto the realization
of Z.

3 Implementation

3.1 KRIGING

When the algorithm is implemented as an extension of standard estimation or
simulation packages, the constraints are not exactly reproduced. The mismatch is
due to the approximations common to all standard implementations of kriging or
simulation.

The single most critical point for the exact reproduction of the constraints is
the selection of the set of data retained for kriging estimation at a given point.
We cannot renounce to the possibility of using a kriging neighborhood in order
to limit the number of points used in the solution of the kriging system; however,
when dealing with linear constraints several questions arise:

− When should a constraint be retained as an additional datum?
− If a constraint is retained which expands beyond the search neighborhood,

should the search neighborhood be modified?
− How should overlapping constraints be treated?

The proper answers to these questions enable exact reproduction of the linear
constraints:

− A constraint datum yi involves several random function locations {Zj , j ∈
(ni)}, with (ni) representing the locations constrained by yi. If any location in
(ni) is in the search neighborhood of the point being estimated, the constraint
yi must be included in the kriging estimation.

− The search neighborhood must be extended to the union of the initial search
neighborhood plus the locations of all the constraints retained according to
the previous item.

− If there are overlapping constraints, the previous two steps have to be re-
peated, until no more extensions of the search neighborhood happen, since
new constraint locations may be included in the extended neighborhood.

− All data in the search neighborhood must be retained, not just the closest
ones.

The previous considerations imply that the search neighborhood actually used
in the estimation will, in general, be larger than the search neighborhood specified
by the user. At the limit, if there is one of the constraints that involves all nodes,
the search neighborhood will always be global, both for the z and y data. But
failing to modify the search neighborhood according to any of the three items
above will result in only an approximate reproduction of the constraint.
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3.2 SIMULATION

All above considerations must be applied to simulation, too. Gómez-Hernández and
Cassiraga (2000) were aware of them and included them all in their proposal of
sequential simulation with linear constraints. However, considering that sequential
simulation incorporates all simulated nodes as conditioning data, the need to krige
using all data values related to the conditioning constraints quickly yields the
algorithm unfeasible for constraints involving more than a few tens of cells, or
overlapping constraints.

Figure 1. Vertically-averaged porosity in a Nigerian reservoir, obtained from
seismic information and hard conditioning data

The alternative to sequential simulation is simulation by superposition of a
kriging field plus a spatially correlated perturbation based on the orthogonality
between kriging estimates and kriging errors (Journel, 1974). The steps are as
follows:

− Perform kriging with linear constraints as indicated in the previous section.
− Generate an unconditional simulation of Z and Y . Since it is unconditional,

first Z is simulated, then expression equation (1) is applied to the simulation
to obtain the simulated Y values.
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Figure 2. Two realizations of porosity in a Nigerian reservoir, discretized with
a mesh of 200 by 400 blocks horizontally and 20 layers vertically

− Sample the unconditional simulation Z at the z conditioning data locations,
plus the y unconditional values, and perform kriging with linear constraints
as indicated in the previous section with this new set of data.

− Subtract the last kriging map from the unconditional simulation and add the
differences to the first kriging map.

Since the linear constraints are honored in the three first steps of the algorithm,
the final realization is a conditional realization in which the linear constraints are
exactly reproduced.

4 Example

Starting from a geophysical survey and some hard conditioning data, the map in
Figure 1 was generated as a representation of the vertically-averaged porosity in
a Nigerian reservoir.

Using the map in Figure 1 a set of 3D realizations were generated for the
reservoir with 20 layers and discretized with a mesh of 200 by 400 horizontally.
Each realization is the result of a stochastic simulation of porosity with a large
horizontal to vertical anisotropic ratio, conditioned to well data, and conditioned
to the vertical averages in Figure 1. In Figure 2, two such realizations are displayed.

When taking the vertical average of the porosities in the realizations in Figure
2, the resulting average porosity is shown in Figure 3.

Comparison of Figure 3 and 1 indicates that the constraints have been exactly
honored in both realizations. Furthermore, a quantitative evaluation of the con-
ditioning yields a coefficient of correlation of 1.0 between the imposed constraints
and the vertically-averaged simulations.
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Figure 3. Vertical average of the porosity values in Figure 2

5 Conclusions

Although imposing linear constraints on kriging or simulations appears as a simple
task in theory, exact reproduction of the constraints requires the re-evaluation of
the approximations that are embedded in all estimation and simulation algorithms,
especially the concept of search neighborhood.

Once these issues are addressed, the algorithm will reproduce, exactly, these
constraints.
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Abstract. Recently, the authors introduced a tempering framework for construct-
ing non-stationary analytical spatial covariance functions. However, a problem
when using tempering of the spectrum obtained from the Karhunen-Loève ex-
pansion of a covariance matrix lies in the fact that the computational cost of
the estimation procedure is of order O(n3), where n is the size of the data set.
Prediction is also an important issue since it is again of order O(n3). We show that
a method for approximating the eigenvectors of the Karhunen-Loève expansion at
any location allows us to considerably reduce the computation required. This is
achieved by selecting m << n data points from the original data set and estimating
the process using these points. Prediction is then carried out using an approxima-
tion to the full design matrix of the equivalent basis functions representation of
our model. The resulting computational cost of our method is of order O(m2n).
We report results on a Swiss data set and show that setting m << n induces good
accuracy in the solution.

1 Introduction

Modelling the second-order structure of Gaussian Processes is an important task
in Geostatistics. Most current methods assume stationarity, which is equivalent to
stating that the statistical association between two points is solely a function of
the vector distance between them. However, the assumption of stationarity rarely
holds in practise, and more often than not is made for mathematical convenience.

Recently, Pintore and Holmes (2004) proposed a new method for building non-
stationary analytical covariance functions, which relies on the simple idea that
one can easily build valid and interpretable non-stationary models by allowing the
spectrum, taken in a wide sense, of some stationary process to evolve over space.
They consider two representations of a covariance function, namely the Fourier
representation and the Karhunen-Loève expansion. It is shown that when using
the Karhunen-Loève expansion, a simple and natural way to allow for the spectrum
(i.e. the eigenvalues) to evolve over space is by tempering it using a latent spatial
process η(·) defined over the whole field. That is, by heating or cooling the spectrum

TEMPERING
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Figure 1. Plots of the normalised eigenvalues for the one-dimensional example
for η = 1 (squares), η = 5 (circles) and η = 0.2 (diamonds), Section 1.

at each location, one is able to control the amount of smoothness induced by the
model. An example is given in Figure 1 where the non-parametric Karhunen-Loève
spectrum λi, i = 1, ..., n is taken successively to the power η = 0.2, η = 1 and
η = 5.

The authors are then able to show that in the finite dimensional case, the
resulting covariance matrix has an analytical form given by

CNS(si, sj) =
n∑

k=1

λ
η(si)/2
k λ

η(sj)/2
k φk(si)φk(sj), i, j = 1, ..., n, (1)

where λk, k = 1, ..., n and φk(·), k = 1, ..., n are respectively the eigenvalues and
eigenvectors of the eigendecomposition of the “best” fit initial stationary matrix.
Thus they are able to obtain interpretable non-stationary models using empirical
orthogonal functions when only one measurement is available at each location.

With respect to the modelling of η(·), the authors suggest using a Bayesian
regression on log η(·) to ensure that η(·) remains strictly positive across the field,
so that

log η(s) = β0 + sβ1 +
k∑

j=1

ψ(s, uj)βj+2 (2)

where β0, β1 capture linear trends in log η(s) and the regression splines ψ(s, uj)
with knots uj allow for spatial variation in η(s). The following prior is assumed
on the parameters,

β = (β0, ..., βk+2)
′ ∼ N(0, b2I), (3)

where b2 is fixed to some reasonable value. Note however that care must be taken
in order to avoid over-smoothing.

Note that in this paper we focus on modelling non-stationarity in the stochastic
component of the process, which corresponds to “small-scale” variations in the
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structure of the spatial data. Our method could however be accommodated to
consider the modelling of a deterministic trend component, corresponding to the
“large-scale” variations in the process. More detail on the decomposition of a
process into “large” and “small” scales, as well as on the way to account for a
non-constant mean within the spectral tempering framework are given in Pintore
and Holmes (2004).

1.1 PREDICTION

When predicting using (1), one needs to evaluate the covariance function between
any two points in the space and thus extend the eigenvectors φi, i = 1, ..., n
to eigenfunctions φ̃i(·), i = 1, ..., n defined over the whole space. This issue is
discussed in detail in Pintore and Holmes (2004). Briefly, from the theory of the
numerical treatment of integral equations (Baker, 1977), two classes of methods can
be used to extend φi, i = 1, ..., n, the integration formulae and expansion methods
respectively. The expansion method was used in Obled and Creutin (1986) and
consists in approximating φ̃i(·), i = 1, ..., n by a linear combination of linearly inde-
pendent a priori chosen functions. These methods are computationally expensive
however and the choice of the a priori functions is often not straightforward.

The integration formulae methodology on the other hand leads to the following
formula for extending the eigenvectors,

φ̃i(s) = (1/λi)
n∑

j=1

C(s, sj)φi(sj), i = 1, ..., n (4)

where C(·, ·) is the “best” fit stationary matrix. The extension given by (4) is
called the Nyström extension of the eigenvectors φi, i = 1, ..., n. This method was
used by Williams and Seeger (2001). Details on the derivation of (4) are given in
Pintore and Holmes (2004).

We give examples of the predictions obtained in the case of unequally spaced
data in Figures 2 and 3. The figures were drawn using n = 50 randomly chosen
data points in [-5,5] and for four different types of covariance functions: the Matèrn
with ν = 0.25, ν = 0.5 (i.e. Exponential), ν = 1 and ν → ∞ (i.e. Gaussian). We
expand the first and fourth eigenvectors in each Figure respectively. Note that we
focus on the one-dimensional case for illustration purposes only.

It is then clear that one is able to compute the covariance between any two
points using φ̃i(·), i = 1, ..., n, so that, using kriging (Cressie, 1993), prediction is
straightforward.

1.2 ESTIMATION

Pintore and Holmes (2004) estimate the parameters of the latent spatial process
η(·) modelled as (2), using the REstricted Maximum-Likelihood (REML) described
for instance in McCulloch and Searle (2001), that is,

lm(CNS ,Z) ∝ −1
2

log |CNS | − n/2 log(Z
′
C−1

NSZ). (5)
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Figure 2. Numerical estimates of the 1st eigenfunction at 1000 equally spaced
points in [−8, 8] shown by the solid line, using 50 unequally spaced points (circles)
in [−5, 5] for the Matèrn 1 (top left), the Exponential (top right), the Matèrn 2
(bottom left) and the Gaussian (bottom right) covariance function, Section 1.1.

Figure 3. Numerical estimates of the 4th eigenfunction at 1000 equally spaced
points in [−8, 8] shown by the solid line, using 50 unequally spaced points (circles)
for the Matèrn 1 (top left), the Exponential (top right), the Matèrn 2 (bottom
left) and the Gaussian (bottom right) covariance function, Section 1.1.

To maximise the marginal log-likelihood we can use any practical method of opti-
misation, see Fletcher (1987) for examples. Pintore and Holmes (2004) choose to
use a Nelder-Mead optimisation algorithm.
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1.3 COMPUTATIONAL ISSUES

One of the main drawbacks of the spectral tempering method lies in the computa-
tional cost of the estimation procedure. Indeed, when maximising (5), each step of
the optimisation procedure requires the inversion of the n× n matrix CNS , which
is of order O(n3). This leads to an important computational burden on the method
when n is large.

This issue is also of concern in the stationary case when one seeks to estimate
the parameters of the stationary covariance matrix using REML. Each step of
the optimisation procedure again requires to invert an n × n matrix, the only
difference with the non-stationary case being that one usually has fewer parameters
to estimate so that fewer steps are required to maximise (5).

Note finally that prediction using kriging also requires the inversion of a n×n
matrix in both cases which adds to the computational burden of the method. We
consider these issues in the next section.

2 A rank-reduced procedure

2.1 APPROXIMATIONS IN THE STATIONARY CASE

With respect to the computational issues mentioned in the previous section, it
is insightful to consider rank-reduced methods in the stationary case first. Two
methods have been proposed which are reviewed in Williams and Seeger (2001).

− The first method consists in selecting only the first m << n eigenvectors
in order to model the stationary covariance matrix and to make predictions.
The method was briefly discussed in Cohen and Jones (1969) and its overall
computational cost is of order O(m n2). One of its main features lies in the
fact that it uses information from all data points.

− The second method is more recent and makes use of the fact that one is able to
extend the eigenvectors according to (4). The idea is to first randomly select
m << n points from the initial data set and fit a stationary model to these
m points using only p < m eigenvectors. Then the second step consists in
approximating the full stationary covariance matrix using (4) to extend the
p eigenvectors. Using the Woodbury formula (Press et al, 1992) to invert the
resulting approximated covariance matrix leads to a method of order O(m2n).
Williams and Seeger (2001) show that this method gives accurate results for
m << n when averaged over a large number of runs for different m points
randomly chosen on each run. However, while the average is accurate, for a
single run the method appears to be quite sensitive to the choice of the m
points.

2.2 APPROXIMATION IN THE NON-STATIONARY CASE

When considering the non-stationary case, care is needed. Indeed, recalling that
spectral tempering induces non-stationary by spatially adapting the relative weight
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of high frequencies with respect to low frequencies, it is clear that the first method
described in the previous subsection is not applicable. For if we select only the first
p eigenvectors, that is the low frequency components of the process, then spatial
adaptiveness via tempering of the spectrum loses much of its appeal since all the
high frequency components are being ignored. As a consequence, we will use a
method similar in spirit to the second method described in the stationary case but
with important differences.

First, when choosing the initial m locations among the data points, we favour
using the following procedure rather than selecting them randomly:

1. Obtain m locations ci, i = 1, ...,m in the field using k-means clustering on the
full data set.

2. Because the initial locations must be data points, we then choose, for each
cluster i, the data point which is closest to ci.

We believe this procedure to be more efficient in order to obtain an initial set of
m data points well distributed among the data set.

Once this set of m data points is selected, then we perform the spectral tem-
pering method on this set in the usual way. The estimation procedure is thus now
of order O(m3) rather than O(n3). This represents an important computational
gain when n is large.

With respect to the prediction, an important issue lies in the fact that unlike
in the stationary case, we are unable to use the Woodbury formula directly here.
However, we show that our non-stationary modelling framework has features which
allow us to still be able to predict in O(nm2).

2.2.1 Prediction
In Pintore and Holmes (2004), it is shown that spectral tempering using Empirical
Orthogonal Functions has an equivalent basis functions representation where the
variance of the random coefficients evolves over space. The authors refer to this
model as a variance-varying coefficients model. Thus, we are able to write our
model in the form

z(si) =
n∑

k=1

βk(si)φk(si), i = 1, ..., n (6)

where z(si), i = 1, ..., n is the (random) value of the spatial stochastic process
under study at location si, i = 1, ..., n and βk, k = 1, ..., n are independent mean-
zero Gaussian processes such that for all k = 1, ..., n,

Cov(βk(si), βk(sj)) = λ
(η(si)+η(sj))/2
k , i, j = 1, ..., n (7)

Now, the model given by (6)-(7) can be rewritten in the form

z(si) =
n∑

k=1

βkφ
′

k(si), i = 1, ..., n (8)
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where for all k = 1, ..., n,

βk ∼i.i.d. N(0, 1) (9)

φ
′

k(·) = λ
η(·)/2
k φk(·). (10)

that is, as a regression model with fixed random coefficients and spatially adaptive
kernels. This in turn allows us to make predictions of order O(nm2) using the
following procedure.

1. Consider the model (8) obtained from the m selected data points.
2. We extend it to the full data set by constructing the approximated spatially

adaptive design matrix Φ̃
′

of size n × n for all data points. This is done by
considering (10) and using (4) to extend the eigenvectors and (2) to predict
the η(·) process at all locations. This operation is of order O(nm2).

3. The p locations at which we wish to predict can be represented as

Zpred = Φ
′

predβ + εpred (11)

where Zpred = (z1
pred, ..., z

p
pred)

′
, Φ

′

pred = {φ̃′
i(s

j
pred)}i=1,...,m,j=1,...,p is the

approximated design matrix for the points at which we wish to predict, and

εpred ∼ N(0, σ2Ip). (12)

From the theory of Bayesian linear regression, we obtain that

p(Zpred|z(si), i = 1, ..., n) ∼ N(Φ
′

predm
∗, σ2(Ip + (Φ

′

pred)V
∗(Φ

′

pred)
T )) (13)

where

m∗ = (Im + (Φ̃
′
)T (Φ̃

′
))−1(Φ̃

′
)(y(s1), ..., y(sn))T (14)

V ∗ = (Im + (Φ̃
′
)T (Φ̃

′
))−1 (15)

We compare E(Zpred|y(si), i = 1, ..., n) with the kriging predictors (using
all eigenvectors or only p) in the next subsection. The kriging predictors
are obtained as described for the stationary case (i.e. approximating the full
covariance matrix for the data) in the previous section and their derivation
are of order O(n3) and O(pn2) respectively. Our predicting method is of order
O(m3) since (Im + (Φ̃

′
)T (Φ̃

′
)) is of size m × m.

Thus, the computational cost of prediction is of order O(m3 + m2n) = O(m2n).
Hence, since estimation is of order O(m3), the total cost of our method is O(m3 +
nm2) = O(m2n) We present some experimental results in the next subsection.

2.3 RESULTS

We now consider a two-dimensional data set, given in Dubois (1998). This data set
was initially used to compare different spatial interpolation methods and contained
n = 467 rainfall measurements made in Switzerland on the 8th of May 1986. The
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Table 1. Performance (i.e. Coef. of Deter. R2) of the GP, NSGP, NSGPK and
NSGPBF models on the Swiss data set for different values of m, Section 2.3.

m 30 50 75 367
GP 0.8872 0.9075 0.9138 0.9247

NSGP 0.9029 0.9303 0.9320 0.9350
NSGPK 0.8996 0.9214 0.9279 0.9297
NSGPBF 0.8983 0.9248 0.9301 0.9324

focus of the study was on rainfall values since it appeared in a previous study that
it was one of the main parameters defining the radioactive deposition in the case of
the Chernobyl disaster. We refer the reader to Dubois (1998) for a full description
of the data set.

Here, we take our data set to be n = 367 randomly extracted measurements.
Then, for different values of m we build the following models,

1. the stationary model (GP)
2. the non-stationary model built using 5 splines (NSGP)
3. the non-stationary model built using 5 splines and for which prediction is made

using only the first 25 eigenvectors (NSGPK)
4. the non-stationary model built using 5 splines and for which prediction is made

using the basis functions approach described previously (NSGPBF)

We take the Gaussian covariance function for each model. We compare the models
through their computed coefficients of determination from the predictions made
at the n = 100 other data locations. Recall that the coefficient of determination
describes the amount of variability in the data is explained by the model and is
given by

R2 = 1 − SSRes/SST, (16)

where SSRes is the residual sum of squares and SSTotal the total sum of squares
in the data to be predicted. The results are given in Table 1.

It can be seen that the results for small m are close to those obtained with
the full data. Indeed, using only 30 data points, we account for around 90% of the
variance compared with 92% for the full stationary model. This seems to suggest
that our method is able to use all the information in the data. Moreover, the results
using the basis functions representation are very close to the ones obtained using
kriging which suggests it is a good approximation. More work and research will
however have to be done on this subject. As suggested by an anonymous referee, a
possible direction for future work could for instance involve comparing the mean
square of the normalised (by the kriging standard deviation) residuals obtained
for each model in order to get some measure of precision. Note that some of the
important properties of the NSGP model are described in more detail in Pintore
and Holmes (2004).
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3 Conclusions

In this paper, we have described a rank-reduced method for spectral tempering
with Empirical Orthogonal Functions, which is of order O(nm2) where m << n,
that is of the same order of rank-reduced methods in the stationary case. Pre-
diction is carried out using an equivalent basis functions representation to the
spectral tempering model. Although the primary results look promising, more
experiments will have to be done in order to evaluate the efficiency of this method
more accurately.
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Abstract. Spatial association indices (autocorrelation, covariance, and variogram) have 
been largely used to characterize the local structure of surfaces and for data interpolation 
in kriging. Singularity is another index quantifying the scaling invariance property of 
measures from a multifractal point of view. Spatial association and scaling invariance 
characterize the local structure properties of surfaces from different aspects. Both must 
be taken into account in data interpolation and surface modeling. Kriging as one 
mapping technique is based on the spatial association of neighbourhood values through 
semivariogram. Recent study of multifractal modeling has shown that the local 
singularity exponent can quantify the local scaling invariance property characterizing 
the concave/convex properties of the neighbourhood values. The method proposed in 
this paper can incorporate both the singularity and spatial association in data 
interpolation. The ordinary kriging only becomes the special situation of the new 
method when it deals with nonsingular measures. It has been shown by a case study of 
the geochemical distributions of As, Cu, Pb, and Ag in lake sediment samples from 
southwestern Nova Scotia, Canada, that combining spatial association with singularity 
can improve the interpolation results significantly, especially for observed values with 
significant singularity. 

1 Introduction 

Geostatistics has long been applied in geosciences for data estimation and simulation. It 
involves semivariogram as the basic function to measure the spatial association and 
spatial variability of data. Semivariogram as a function of distance between locations 
can measure the spatial auto-correlation between values at locations separated by a 
distance. Various types of functions or models can be fitted to semivariogram and then 
used for assigning weights for weighted averaging in kriging. The main purpose of  
using kriging is for data interpolation, a process of assigning values for those locations 
where there are no observed values available from their neighbourhood observed values. 
Semivariogram has also  been used for characterizing the structural property of 
landscape (Journel & Huijbregts, 1978). The method developed by Cheng (1999a) 
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integrates both spatial association and local singularity, therefore, can enhance and 
retain the local structure properties when applied to 1-D data interpolation. It combines 
the semivariogram quantifying the spatial association and the singularity index 
characterizing the local structure of data. This idea was extended to 2-D situation so that 
surfaces can be created from interpolating 2-D point data (Cheng, 2000, 2001). A more 
general mathematical model is introduced in this paper and it is demonstrated by a case 
study of mapping geochemical concentration values from 1948 lake sediment samples 
from southwestern Nova Scotia, Canada. 

2 Spatial Associations Vs. Singularity

2.1 SPATIAL ASSOCIATION

Spatial association represents a type of statistical dependency of values at separate 
locations. If the value at a location is considered as a realization of a so-called 
regionalized random variable, the spatial association or variability can be measured by 
means of semivariogram as 

Where (x, h) is a function of vector distance h separating locations x and x + h.  The 
semivariogram measures the symmetrical variability between Z(x) and Z(x + h). Under 
an assumption of the second-order stationarity, the semivariogram (1) becomes the 
function of h independent of location x. This strong assumption of the regionalized 
random variable is generally required in kriging. The function (1) has been commonly 
used for structural analysis and interpolation in geostatistics (Journel & Huijbregts, 
1978). It has also been applied for texture analysis in image processing (Atkinson & 
Lewis, 2000; Herzfeld, 1993; Herzfeld & Higginson, 1996).

2.2 SINGULARITY 

The singularity in the multifractal context characterizes how the statistical behaviour 
varies as measuring scale changes. For example, in some locations the mean values 
calculated from the neighborhood values might be independent of the size of the vicinity 
within which the values are averaged. In other cases the mean value might 
proportionally depend on the size of the vicinity. We call the former case nonsingular 
location and the latter singular location. Singularity property has been commonly 
observed in geochemical and geophysical quantities (Cheng, Agterberg and Ballantyne, 
1994; Cheng, 1997, 1999a, 2000). Taking the notation of multifractal model, the 
singularity index (x) is related to the measure defined in a small vicinity around 
location x of linear size , (x, ), as 

Where c is constant. In case of geochemical data,  can be defined as the amount of 
metal in an area of size . For convenience without loss of generality, we will introduce 
a density function  as 

})]()({[,2 2
hxxhx ZZE

xc)(
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Where E is the dimension of the vicinity (x, ) (E=2 for 2-D geochemical map). For 2-
D problems, the vicinity can be chosen as circular or square in shapes. The value of the 
singularity  ranges from min to max. The index can be estimated by least square 
method to fit a straight line to a set of values against  on a log-log paper. This can 
be done directly from the original point sample data so that it is not affected by the 
smoothing of interpolation. The value can be taken as the slope of the straight line. The 
error involved in the estimation can be calculated from least square fitting. The 
singularity index estimated from equation (3) has the following properties (Cheng, 
1999a):

 = E, iff = constant, independent of vicinity size .
, iff is a decreasing function of , which normally implies 

the “convex” property of  at the location x.
, iff is an increasing function of , which indicates the 

“concave” property of at the location x.

The cases (2) and (3) correspond to singular situations in which the density function 
 or 0 as 0. In the case of , it implies that within a small area 

(small ) there is an anomalously high density of element concentration. These singular 
locations are often associated with anomalies in geochemical exploration caused by 
mineralization. The anomalous area may have enriched concentration many times higher 
than the background values. Therefore, the index can be used as measure 
characterizing the structural property of measure  This index, like other indexes, 
measures the local structural property at certain scale which is determined by the scaling 
range used for the estimation of the value index. It needs a good coverage of points in 
order to accurately estimate the singularity index in a small scale. It has been used for 
texture analysis to remote sensing Landsat TM image (Cheng, 1997, 1999b), in 
multifractal interpolation of geochemical concentration values for mineral exploration 
(Cheng, 1999a, 2000) and in well log curve reconstruction (Li and Cheng, 2001). 

2.3 DISTRIBUTION OF SINGULARITY INDEX 

The singularity index usually has finite values around E. For a conservative multifractal 
measure, the dimension of the set with = E is close to E (box-counting dimension) 
which means that the areas on a geochemical map with nonsingular values occupy most 
part of the map. The dimensions of the other areas with (x) E are given by the fractal 
spectrum function f( ) < E (Cheng, 1999a). This implies that the areas with singular 
values (anomalies) are relatively small in comparison with the areas with non-singular 
values (background values). From a statistical point of view, the majority of values on 
the geochemical map where  2 follow either normal or lognormal distribution 
whereas the extreme values on the map with singularity (x) E may follow fractal 
distributions. To remove the samples with extreme values from the inputs for kriging 
has been the common practice in data interpolation. However, for exploration purpose 
the removal of the singular samples will smooth off local variability that may carry 
valuable information for anomaly identification in mineral exploration. The ability of 
dealing with singular values must be the qualification of quantitative methods for 

EE c x/)()( (3)
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handling exploratory dataset in mineral exploration. Most ordinary statistics requiring 
assumption of normal (lognormal) distribution of values may not be effective in dealing 
exploratory dataset with extreme value distribution. Multifractal modeling techniques 
have been demonstrated as possible to solve the above problems.

3 General Model Incorperating Both Spatial Association And Singularity 

Scaling property has been commonly observed in various types of patterns in 
geosciences. Use of scaling property for prediction and estimation purposes has attracted 
tremendous attention. Statistical property derived at one scale may be used to estimate 
the property in another scale on the basis of the scaling property. Data interpolation 
including kriging is to estimate values at unknown locations and this type of process can 
be considered as down scaling process. How to apply scaling property in the process is 
obviously of general interests. The multifractal interpolation method developed by 
Cheng (1999a, 2000) for construction of curves (1-D problem) and surface (2-D) on the 
basis of point observations uses the scaling properties of geochemical data. It 
incorporates the local singularity as well as the spatial association of the data in the data 
interpolation. This paper introduces a general mathematical model of the method and 
discusses its advantages and disadvantages.

Relation (3) shows that the density function at a given location x follows a power-
law relationship with the scale unit (box size ). The exponent (x) –E characterizes the 
local singularity of the function – how the function changes as the scale unit decreases. 
At the singular location, (x) E, the density is dependent of the scale unit. In this case 
the constant c becomes a useful quantity independent of scale unit which can be 
considered as the measure of the density ( ) in the space of (x) –E dimension. It is no 
longer singular value. The value c becomes the ordinary density value in non-singular 
locations; therefore, the quantity c instead of ( ) can be used to form the interpolation 
formulism.
 To derive the new interpolation relation to incorporate both spatial association 
and singularity, let us arbitrarily choose vicinity (x0, ), a small area on 2-D 
geochemical map. For convenience without loss of generality, we will introduce a 
notation Z( ) to represent the average geochemical concentration value at location x

within (x, ). Z( ) is a type of density measurement with common units of ppb, ppm or 
%. Substitute ( ) with Z( ) in (3) gives

Several values of Z( ) with variable  can be used to estimate the constant quantity c(x)
at location x. As discussed previously, the new density quantity c(x) becomes a non-
singular quantity. We can establish a relation between the density quantity c(x0) at the 
center and their neighborhood values c(xi) as following 

(5)
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where c(x0) and c(xi) are density quantities estimated from (3) at locations x0 and xi,

respectively, i xi-x0 ) is the weighting factor to be determined, 1)( 0xxii .

The value of  can be estimated using inverse distance weighting or kriging methods. 
Since the estimation of weighting factor  is well known process, there is no need to 
repeat the actual estimating process. Here we will derive the new interpolation model 
and to compare it with the ordinary model. For a chosen resolution  ( ) for 
generating the interpolating map, the average value of Z( ) within a vicinity of size 
(pixel on the interpolation map) can be replaced by the actual value Zx observed at the 
center of the vicinity which can be related to the estimation c(x) x . Substitute the 
observed values of geochemical density to the density quantity c-values yields 

or

Relation (6) is a general weighted average model that can be used to estimate the value 
(Zx0) at the center of (x0, ) from the neighborhood values (Zxi) within (x0, ). It has 
the following properties: 

1. If the entire dataset does not show singularity,  E, then (5) and (6) are 
identical and the same as the ordinary moving average function that has been 
used commonly in kriging and other data interpolation methods.

2. If all values in the entire vicinity show the same singularity strength,  = 
constant, then (6) becomes the same as the ordinary moving average function 
used in kriging and other methods.

3. If the neighborhood values are non-singular but not the value at the center, 
(x0)  E, and (xi) = E, then (6) is equivalent to the ordinary moving average 

function multiplied by a factor Ex )( 0 .

The factor Ex )( 0 modifies the ordinary average in such that if (x0) < E, then the 

new result is increased by a factor Ex )( 0 given small , whereas if (x0) > E, then the 

new result is reduced by a factor Ex )( 0 . This modification is reasonable because  < 
E and  > E correspond to convex and concave properties of surface Zx around the 
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location x, respectively. The relation (7) was introduced in the author’s previous 
publication (Cheng, 2000, 2001). The model not only involves the spatial association 
reflected in the calculation of weight  but also incorporates the singularity 
characterized by the singularity index . It is obvious that the ordinary weighted average 
model (used by IDW and kriging) becomes the special case of the new method 
expressed in (6). The new model has, therefore, two obvious advantages: it not only 
improves the accuracy of the interpolated results but also retains the local structure of 
the interpolated map. The latter is essential for geochemical and geophysical data 
processing and pattern recognition. This will be demonstrated using geochemical 
concentration values of as from 1948 lake sediment samples from southwestern Nova 
Scotia, Canada.

4 Mapping Geochemical Values Of As From Lake Sediment Samples

Geochemical data from 1948 lake sediment samples have been analyzed using various 
statistical and multifractal techniques for detection of Au, U, Sn and W mineralzation 
associated alteration zones in the southwestern Nova Scotia, Canada (Xu & Cheng, 
2001). The geology of the study area is illustrated in Fig. 1. The study area ( 4000 km2)
is mainly underlain by Cambro-Ordovicien low-middle grade metamorphosed 
sedimentary rocks and Devonian granitoid rocks. The South Mountain Batholith (SMB) 
is a complex of multi-phase granites covering nearly one-third of the entire study area. 
A number of Au, W, and Sn deposits have been found in the area. About 45 Au mineral 
deposits are shown as dots in Fig. 1. More detailed discussion of the geology and 
geological controlling features on the spatial distribution of Au deposits can be found in 
Xu & Cheng (2001). For demonstration purpose, the values of As from the lake 
sediment samples will be mapped both by the ordinary kriging and by the method 
introduced in this paper. 

Fig. 2 shows the 
map generated from 
1948 As values by 
means of ordinary 
kriging with spherical 
model with a search 
distance 8 km and 
maximum interpolation 
point 16 (Xu & Cheng, 
2001).  Fig. 3 illustrates 
the distribution of -
values (< 2 as contours) 
estimated based on the 
distribution of As values 
from 1948 lake 
sediment samples with a 
maximum scaling range 

max = 11km. The values Figure 1. Simplified geology in southwestern Nova Scotia, 
Canada
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of the correlation 
coefficients related to 
the linear fitting in the 
estimation of  by 
plotting log ( ) against 
log  for  = 2, …, 11 
km are calculated and 
these values range from 
0.97 to 1, implying 
significant linear 
relationships exist 
between log ( ) and 
log  for all the 
locations. The results 
obtained using Eq. 7 are 
shown in Fig. 4. It can 
be seen that patterns 
with  < 2 are mainly 
distributed either in the 
south of SMB as linear 
patterns with NW-SE 
orientation or 
aggregated around the 
contacts of SMB, 
specially in those places 
where exist faults or 
transition zones of 
different granitoid 
phases. Some of the 
clusters with low -
values show strong 
spatial correlation with 
the spatial locations of 
Au deposits. This 
should not be surprised 
since low -value may 
indicate the area with 
the enrichment of 
geochemical values that 
might due to 
mineralization in this 
study area. The general 
patterns in Figs. 2 & 4 
look similar, the ratio of 
these two maps, 
however, clearly show the differences of them. Similar as the patterns with  in Fig. 
3, the patterns with the ratio > 1 in Fig. 5 clearly highlight not only the linear 

Figure 2. Kriging map of As. Detailed parameters  can  be found 
in the text. Black outlines represent the granitoid complex 
(SMB). Dots represent gold mineral deposits .

Figure 3. Estimated  singularity  values ( ) for As. Contour

lines represent area with singularity  < 2. Dots present gold

mineral deposits. The map is smaller than map in Figure 2 du e

to edge effect. 
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geochemical anomalies in the south of SMB but also the areas around the SMB at where 
faults or transition of granitoid phases. The improvement shown in Fig. 5 may be 
significant when applied for anomaly interpretation that enhances the local structural 
properties of the mapped surface. The results obtained for other elements (Cu, Pb, and 
Zn) in the area also indicate that the areas with singular geochemical values ( are
favorable for Au mineralization in the study area (results not shown here).

5 Conclusions and Discussions 

The multifractal 
interpolation method 
proposed in this paper 
can be used for 
mapping purpose with 
the localized 
structural properties 
(multifractality)
preserved. It has been 
demonstrated that this 
method is superior to 
the moving average 
techniques. The 
ordinary moving 
average methods can 
be considered as the 
special cases of the 
multifractal
interpolation method 
when the interpolated 
data show 
nonsingular property. 
However, for most 
quantities in the 
exploratory geodatsets that 
show singularity, the 
ordinary moving average 
techniques including 
ordinary kriging are not 
applicable but the 
multifractal interpolation 
method can be used in 
order to retain the 
localized structural 
property. This paper has 
proposed a general 

Figure 5. Ratio of kriging  results  over the results  obtained 
using the multifractal interpolation method for As

Figure 4. Results  obtained  using  the  multifractal  interpolation 
method for As.
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function for cooperating both association and singularity. This may open a direction for 
studying how to improve the interpolation results by including both spatial association 
and singularity. Further study will be devoted to look into the anisotropy association and 
singularity properties and irregular instead of regular moving windows should be used in 
the estimation of singularity index and the moving average. Since the method involves 
the local singularity calculated according to the localized power-law of (4) using the 
original point sample data, it usually requires a dataset with good point coverage so that 
accurate singularity can be estimated. The error associated with the estimation will 
impact on the final interpolated result.
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LOGNORMAL KRIGING: BIAS ADJUSTMENT AND
KRIGING VARIANCES

NOEL CRESSIE and MARTINA PAVLICOVÁ
Department of Statistics, The Ohio State University, Columbus OH 43210-
1247, USA

Abstract. Lognormality of spatial data occurs commonly enough for it to warrant
continued study; contemporary statistical and computational methodologies can
shed new light on the old problem of block kriging for lognormal processes. There
are a number of proposals available for block kriging, many of them discussed in
an unpublished, 43-page, Centre de Morphologie Mathematique “note” written
by Georges Matheron in 1974. Loosely translated, the title of the note is, “The
proportional effect and lognormality or: The return of the sea serpent”. Our paper
is meant to rein in the sea serpent, by comparing an optimal-prediction-based
predictor with a permanence-approximation-based predictor, in the context of
statistics for spatial lognormal data.

Key words: Empirical Bayes, geostatistics, MSPE, optimal spatial prediction

1 Introduction

Lognormal spatial data are common in mining and soil-science applications. Point
kriging results in a map of the region of interest. However, mining and precision
agriculture is carried out selectively and based on block averages of the process on
the original scale. Finding spatial predictions of the blocks assuming a lognormal
spatial process has a long history in geostatistics (Marechal, 1974; Matheron, 1974;
Rendu, 1979; Journel, 1980; Dowd, 1982; Rivoirard, 1990; Roth, 1998). These pa-
pers cover the following topics: determine types of variogram models for lognormal
data; decide whether to do inference on the original scale or the log scale; choose
an optimality criterion for kriging; derive the kriging equations according to the
optimality criterion; consider the cases of known or unknown mean (on the log
scale); and consider whether knowing just the variogram (on the log scale) is
enough to do kriging.

The purpose of this paper is to take a fresh look at two of the many possibilities
for lognormal kriging, based on the following principles: the original scale is for
optimality criteria (including unbiasedness) but the log scale is for linear statistical
analysis; stationarity is needed for estimation of spatial dependence but it is not
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needed for spatial prediction (i.e., kriging); kriging is an empirical-Bayes method-
ology that requires efficient estimators of unknown parameters to be “plugged
into” (simple) kriging equations.

A very influential piece of writing on lognormal kriging has been the unpub-
lished 43 page “note” by Matheron (1974). Matheron’s approach is to look at the
problem from all sides, with many calculations drawn from Matheron (1962), but
no definitive conclusions. His writing touches on all the geostatistical themes given
above. At the time it was written, the statistical influences of linear models, effi-
cient parameter estimation, and prediction theory were not yet felt in geostatistics.
Moreover, computing power 30 years ago was a very small fraction of what it is
today, making some forgotten block-kriging predictors feasible in today’s comput-
ing environments. We concentrate on two predictors in this paper, and for each
predictor we derive an analytical expression for its mean squared prediction error
(i.e., kriging variance). Conditional simulation could produce equivalent results but
without the easy interpretations that come with having analytical expressions.

2 Lognormal spatial process

Let the process {Z(s): s ∈ D} denote a lognormal spatial process defined on a
domain D ⊂ R

d. That is,

Y (s) ≡ log Z(s) ; s ∈ D , (1)

is a Gaussian process defined with first two moments, µY (s) ≡ E(Y (s)); s ∈
D, and CY (u,v) ≡ cov(Y (u), Y (v)); u,v ∈ D. Consequently, from (1), Z(s) =
exp{Y (s)} > 0; s ∈ D, and from Aitchison and Brown (1957),

µZ(s) ≡ E(Z(s)) = exp{µY (s) + (1/2)CY (s, s)} ; s ∈ D , (2)

CZ(u,v) ≡ cov(Z(u), Z(v)) = µZ(u)µZ(v)[exp{CY (u,v)} − 1] . (3)

From (2), µZ(s) ≥ exp{µY (s)}, giving rise to a potential source of bias when
transforming back to the original scale. The presence of the mean terms as multi-
pliers in (3) is sometimes called the proportional effect.

The spatial (lognormal) data are defined as the (n×1) vector, Z ≡ (Z(s1), . . . ,
Z(sn))′, where {s1, . . . , sn} are known spatial locations. Then the transformed
data, Y ≡ (Y (s1), . . . , Y (sn))′, are normally distributed and will be used to
estimate unknown parameters in µY (s) and CY (u,v), as well as to predict an
unknown value Z(s0); s0 ∈ D. The prediction problem is sometimes called point
kriging.

Geostatistics can be thought of as an empirical-Bayes methodology, where the
“Bayes” part refers to putting a prior on the mean (e.g., Cressie, 1993, p. 171),
and the “empirical” part refers to estimation of the fixed but unknown spatial
covariance (or variogram) parameters. In Section 2.1, we consider the case of a
singular prior (known mean), and in Section 2.2 we consider the case of a diffuse
prior (generalized-least-squares estimation of the mean).
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2.1 KNOWN MEAN (COVARIANCE FUNCTION ASSUMED KNOWN)

Assume µY (·) is known (and we always assume CY (·, ·) is known, although its un-
known parameters are ultimately estimated). The minimum-mean-squared-predic-
tion-error predictor Y ∗(s0), which in fact is the simple-kriging predictor, is

Y ∗(s0) ≡ E(Y (s0)|Y ) = µY (s0) + cY (s0)′Σ−1
Y (Y − µY ) , (4)

where cY (s0) ≡ (CY (s0, s1), . . . , CY (s0, sn))′, ΣY ≡ var(Y ), and µY ≡ (µY (s1),
. . . , µY (sn))′. Notice that the simple-kriging variance is,

var(Y (s0)|Y ) = CY (s0, s0) − cY (s0)′Σ−1
Y cY (s0) , (5)

which does not depend on Y .
Scientific interest is in the process Z(·); hence, to predict Z(s0) based on data

Z, classical prediction theory says the optimal predictor is obtained by minimizing
the mean squared prediction error, E(Z(s0)−p(Z; s0))2, with respect to predictor
p. The theory further tells us that the best predictor is (e.g., Cressie, 1993, p. 108):

Z∗(s0) ≡ E(Z(s0)|Z) ; s0 ∈ D . (6)

Calculation of (6) is not always possible, which explains why geostatisticians
compromise with the best linear predictor. Because Z(·) is lognormal, it is un-
wise to use such a compromise here; in what follows, we evaluate (6). Since the
conditional distribution of Y (s0)|Y is normal, then from (4) and (5),

Z∗(s0) = exp{E(Y (s0)|Y ) + (1/2)var(Y (s0)|Y )} ,

= exp{Y ∗(s0) + (1/2)CY (s0, s0) − (1/2)cY (s0)′Σ−1
Y cY (s0)}

= exp{Y ∗(s0) + (1/2)var(Y (s0)) − (1/2)var(Y ∗(s0))} . (7)

Clearly, the optimal predictor (7) is loglinear in the data and unbiased.
Recall that eventual interest is in the spatial prediction of block values Z(B).

The mean squared prediction error of a predictor p(Z;B) of Z(B) is E(Z(B) −
p(Z;B))2; B ⊂ D, and its minimization with respect to p yields the optimal predic-
tor, Z∗(B) = E(Z(B)|Z). Thus, Z∗(B) =

∫
B

E(Z(u)|Z)du/|B| =
∫

B
Z∗(u)du/

|B|, where Z∗(·) is given by (6). That is, the optimal block predictor is,

Z∗(B) =
∫

B

exp{Y ∗(u) + (1/2)CY (u,u) − (1/2)cY (u)′Σ−1
Y cY (u)}du/|B| . (8)

The predictor Z∗(B) was not used in the past because of a comment from Matheron
(1974) that it “is too heavy to be used effectively in practice”; Rivoirard (1990)
says it “would be possible but difficult” to compute, but Cressie (1993, p. 136)
proposes it without comment about difficulties. In fact, vast increases in computing
power in recent times has made quadrature of {Z∗(u):u ∈ B} given by (7), an
easy computing exercise.

We now develop a second predictor of Z(B). Suppose for the moment that we
wish to predict Y (B) ≡

∫
B

Y (u)du/|B| based on data (on the log scale) Y . The
optimal spatial predictor is

Y ∗(B) ≡ E(Y (B)|Y ) = µY (B) + cY (B)′Σ−1
Y (Y − µY ) , (9)
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where µY (B) ≡
∫

B
µY (u)du/|B|, cY (B) ≡ (CY (B, s1), . . . , CY (B, sn))′, and

CY (B,v) ≡
∫

B
CY (u,v)du/|B|. One possible ad hoc block predictor is Z+(B) ≡

exp{Y ∗(B) + k+}, where k+ is an adjustment for bias.
It is straightforward to see that exp{Y ∗(B)} is lognormal, and hence

E(exp{Y ∗(B)}) = exp{E(Y ∗(B)) + (1/2)var(Y ∗(B))}

= exp{
∫

B

µY (u)du/|B| + (1/2)cY (B)′Σ−1
Y cY (B)} .

Now, the mean of the predictand Z(B) is,

E(Z(B)) =
∫

B

E(exp{Y (u)})du/|B|

=
∫

B

exp{µY (u) + (1/2)CY (u,u)}du/|B| ,

from which the appropriate bias adjustment can be found. That is, an unbiased
predictor of Z(B) based on Y ∗(B) is:

Z+(B) = exp{Y ∗(B) −
∫

B

µY (u)du/|B| − (1/2)cY (B)′Σ−1
Y cY (B)} (10)

×
∫

exp{µY (u) + (1/2)CY (u,u)}du/|B| .

We now give the block predictor Z@(B) based on a well known permanence
approximation and show that it is very closely related to Z+(B). In its most
general form, Cressie (2004) shows that

Z@(B) = exp{Y ∗(B) + (1/2)
∫

B

CY (u,u)du/|B| (11)

+(1/2)
∫

B

(µY (u) − µY (B))2du/|B| − (1/2)cY (B)′Σ−1
Y cY (B)} .

Comparing the predictors (10) and (11), we see why (11) based on the perma-
nence approximation is only approximately unbiased. In fact,

Z@(B) = Z+(B)[exp{
∫

B

µY (u)du/|B| + (1/2)
∫

B

(µY (u) − µY (B))2du/|B|

+(1/2)
∫

B

CY (u,u)du/|B|}/
∫

B

exp{µY (u) + (1/2)CY (u,u)}du/|B|]

≡ Z+(B)cB .

Now Z+(B) is unbiased for Z(B); hence, when the factor cB is 1, the block
predictor Z@(B) based on the permanence approximation is also unbiased. As
an example, suppose µY (u) ≡ µY , a constant. Then the factor is:

cB = exp{(1/2)
∫

B

CY (u,u)du/|B|}/
∫

exp{(1/2)CY (u,u)}du/|B| ,
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which is always ≤ 1, by Jensen’s inequality. That is, for a constant mean function,
Z@(B) has negative (or zero) bias. Suppose now that µY (u) ≡ µY and CY (u,u) ≡
σ2

Y , which occurs whenever the Y process is second-order stationary. Then cB = 1,
the permanence-approximation-based predictor Z@(B) is equal to Z+(B), and
hence Z@(B) is unbiased.

Although Z@(B) is the lognormal-kriging predictor that has been used tradi-
tionally (Cressie, 2004), it makes perfect sense to use the exactly unbiased predictor
Z+(B) from now on. This can then be compared to the optimal predictor Z∗(B)
given by (8), to gauge how inefficient Z+(B) is. All of this assumes that the mean
function is known; in the next subsection we consider an unknown mean.

2.2 UNKNOWN MEAN (COVARIANCE FUNCTION ASSUMED KNOWN)

In this section, and thereafter, we assume µY (·) ≡ µY , a constant independent of
location. Generalizaton to µY (·) = x(·)′β can be achieved in a manner similar to
that of Cressie (2004). We return to the problem of predicting Z(s0) and note that
Z∗(s0) given by (7) depends on µY through Y ∗(s0) = µY +cY (s0)′Σ−1

Y (Y −µY 1) ,
where 1 ≡ (1, . . . , 1)′ is an (n × 1) vector of 1s. The simple-kriging predictor
Y ∗(s0) becomes an ordinary-kriging predictor when the generalized least squares
estimator for µ, µ̂Y ≡ (1′Σ−1

Y 1)−11′Σ−1
Y Y , is plugged in for the unknown µY

(Cressie, 1993, p. 173). That is, Ŷ (s0) = µ̂Y + cY (s0)′Σ−1
Y (Y − µ̂Y 1). Following

the principal that the predictor should be unbiased on the original scale, we obtain
the unbiased predictor (Matheron, 1974; Journel, 1980; Rivoirard, 1990; Cressie,
1993, p. 135),

Ž(s0) ≡ exp{Ŷ (s0) + (1/2)var(Y (s0)) − (1/2)var(Ŷ (s0))}
= exp{Ŷ (s0) + (1/2)σ2

Y,k(s0) − m(s0)} , (12)

where Ŷ (s0) ≡ Σn
i=1λi(s0)Y (s0) is the ordinary-kriging predictor; λ(s0) ≡

(λ1(s0), . . . , λn(s0))′ and m(s0) solve the ordinary-kriging equations,

ΣY λ(s0) = cY (s0) + 1m(s0) , 1′λ(s0) = 1 ;

and the kriging variance is σ2
Y,k(s0) = CY (s0, s0) − λ(s0)′cY (s0) + m(s0).

We define the optimal-prediction-based (o-p-b) predictor to be:

Ž(B) ≡
∫

B

Ž(u)du/|B| , (13)

where Ž(·) is given by (12). This will be compared with a (bias-adjusted) perma-
nence-approximation-based (p-a-b) predictor, which we now derive.

The optimal block-kriging predictor of Y (B) when µY is known is given by
(9). By substituting in the generalized least squares estimator, µ̂Y = (1′Σ−1

Y 1)−1

(1′Σ−1
Y Y ), we obtain the ordinary-block-kriging predictor, Ŷ (B) = µ̂Y +cY (B)′Σ−1

Y

(Y − µ̂Y 1) ≡ λ(B)′Y . Since Ŷ (B) is normal, then

E(exp{Ŷ (B)}) = exp{E(Ŷ (B)) + (1/2)var(Ŷ (B))}
= exp{µY + (1/2)λ(B)′ΣY λ(B)} ,
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and hence the analogous expression to (10) yields the p-a-b predictor:

Ẑ(B) = exp{Ŷ (B) − (1/2)λ(B)′ΣY λ(B)} ×
∫

exp{(1/2)CY (u,u)}du/|B|

= exp{Ŷ (B) − (1/2)
∫

B

∫

B

CY (u,v)dudv/|B|2 + (1/2)σ2
Y,k(B) − m(B)}

×
∫

exp{(1/2)CY (u,u)}du/|B| (14)

≡ exp{Ŷ (B) + k̂} ,

where λ(B) and m(B) solve the ordinary-block-kriging equations,

ΣY λ(B) = cY (B) + 1m(B) , 1′λ(B) = 1 ;

and the kriging variance is σ2
Y,k(B) =

∫
B

∫
B

C(u,v)dudv/|B|2 − λ(B)′cY (B) +
m(B). A proof of the equality that results in (14) is given in Cressie (2004).

In the next section, we compare the o-p-b predictor (13) with the p-a-b predic-
tor (14). Both are unbiased and hence the comparison is through mean squared
prediction errors.

3 Comparison of predictors

The comparison of Ž(B) given by (13) and Ẑ(B) given by (14), via mean squared
prediction errors, has a theoretical component and a simulation component.

3.1 THEORETICAL EXPRESSIONS

Cressie (2004) derived the mean squared prediction error of Ž(B) through:

E(Z(B) − Ž(B))2 =
∫

B

∫

B

cov(Z(u) − Ž(u), Z(v) − Ž(v))dudv/|B|2 , (15)

where the integrand of (15) is given by

(exp{µY + (1/2)CY (u,u)})(exp{µY + (1/2)CY (v,v)})(a − b − c + d) ,

and

a = exp{CY (u,v)} ,

b = exp{(cY (u) + 1m(u))′Σ−1
Y cY (v)} ,

c = exp{(cY (v) + 1m(v))′Σ−1
Y cY (u)} ,

d = exp{(cY (u) + 1m(u))′Σ−1
Y (cY (v) + 1m(v))} .

In practice, the double integral in (15) is approximated with a double summation.
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Using a similar derivation to the one found in Cressie (2004), the mean squared
prediction error of (14) is seen to be

E(Z(B) − Ẑ(B))2 =
∫

B

∫

B

cov(exp{Y (u)}, exp{Y (v)})dudv/|B|2

+ var(Ẑ(B)) − 2
∫

B

cov(exp{Y (u)}, Ẑ(B))du/|B|

≡ (
∫

B

∫

B

f dudv/|B|2) + g − 2(
∫

B

h du/|B|) , (16)

where

f = (exp{µY + (1/2)CY (u,u)})(exp{µY + (1/2)CY (v,v)})(exp{CY (u,v)} − 1)

g = (exp{2k̂})(exp{2µY + λ(B)′ΣY λ(B)})(exp{λ(B)′ΣY λ(B)} − 1)

h = (exp{k̂})(exp{µY + (1/2)CY (u,u)})(exp{µY + (1/2)λ(B)′ΣY λ(B)})
· (exp{λ(B)′cY (u)} − 1) ,

and exp(k̂) = exp{−(1/2)λ(B)′ΣY λ(B)} ×
∫

B
exp{(1/2)CY (u,u)}du/|B|.

3.2 EMPIRICAL COMPARISON VIA SIMULATION

A simulation experiment was conducted in order to compare the two lognormal
kriging predictors, Ž(B) given by (13) and Ẑ(B) given by (14). We expect (13) to
have better performance than (14), since it is developed from the optimal predictor.
Still, the question remains as to how close the two predictors are in practice, since
the permanence approximation has been used a lot in past applications.

We generated a spatially dependent Gaussian process Y (·) on a 32× 32 square
with 33 × 33 nodes, each one unit apart; see Figure 1. The Gaussian process had
µY = 0, and an isotropic covariance function CY (u,v) = C

(0)
Y (‖u−v‖) ≥ 0, given

by the spatial moving average described in Cressie and Pavlicová (2002). Different
parameters were varied.
• Sill: C

(0)
Y (0) ≡ σ2

Y ∈ {0.1, 0.7, 2.5}.
• Nugget effect: limh→0{C(0)

Y (0)−C
(0)
Y (h)}/C

(0)
Y (0) ≡ ν ∈ {0%, 10%, 30%, 50%}.

• Range: R ≡ arg inf{h:CY (h′) = 0, h′ ≥ h} ∈ {8, 16, 32, 64}.
The sill values σ2

Y were chosen to give a representative range of coefficients of
variation, CV ≡ (exp{σ2

Y } − 1)1/2 ∈ {.32, 1.01, 3.34}. The nugget effect ν is
anywhere up to 50% of the sill, and the linear dimension of the 32 × 32 square
is anywhere between four times (weak spatial dependence) and half (very strong
spatial dependence) the range R. Although observations on Y (·) were simulated
at each grid node {ui: i = 1, . . . , 33 × 33}, only a subset {si: i = 1, . . . , n} were
used to generate data for the experiment.
• Data: Z(si) ≡ exp{Y (si)}; i = 1, . . . , n, where n ∈ {4, 25, 81} and the data

were nested according to Figure 1. For n = 4, the data are 16 units apart; for
n = 25, the data are 8 units apart; for n = 81, the data are 4 units apart.

Lognormal kriging is carried out on blocks of varying supports since the perma-
nence approximation is likely to be better for smaller blocks.
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Figure 1. Grid upon which data are simulated; locations of data are shown:
(a) 4 observed locations; (b) 25 observed locations; (c) 81 observed locations. The
broken lines show 3 different block sizes (small, medium, large).

• Support: Predict Z(B) on blocks B ∈ {2×2, 4×4, 6×6, . . . , 32×32}, centered
on the center of the 33×33 grid {ui} and nested. Small support (6×6), medium
support (16 × 16), and large support (30 × 30) are featured; see Figure 1.

Finally, the responses of the experiment are based on the two fundamental
properties of a predictor: bias and mean squared prediction error. For both pre-
dictors, Ž(B) given by (13) and Ẑ(B) given by (14), theory tells us that the bias
should be zero. However, the predictors should differ in mean squared prediction
error, where that for Ž(B) is expected to be smaller.

Let Z(	)(·) denote the �-th simulation of the log Gaussian process with specified
σ2

Y , ν, and R; � = 1, . . . , L, and assume Z†(B) is a generic predictor of Z(B). Then
define the mean squared prediction error of Z†(B) as:

MPSE ≡ (1/L)
L∑

	=1

{Z†(B) − Z(B)}2 , (17)

where any integrals in Z†(B) or Z(B) are approximated as sums based on the finest
grid spacing. The value L = 6400 was chosen to guarantee accuracy of results to
the second decimal place, where that digit is conservatively plus or minus 2; see
Aldworth and Cressie (1999) for the relevant calculations that determine L.

From the simulation experiment we conclude that:
• The average observed biases are extremely close to 0.
• The theoretical mean squared prediction errors and their empirical counter-

parts (MSPEs defined in (17)) are approximately equal; see Figure 2.
• The MSPE for Ž(B) is smaller than (and occasionally equal to, up to sampling

error) the MSPE for Ẑ(B). That is, the spatial predictor Ž(B) is dominant
over Ẑ(B); see Figure 3(a).

It is this latter result that we would like to explore at greater depth, since
the improvement in efficiency obtained by using Ž(B) is not uniform over all
combinations of the factors of the simulation experiment. The efficiency of the
p-a-b predictor Ẑ(B) relative to the o-p-b predictor Ž(B) is defined as E ≡
M̌SPE/M̂SPE , where M̌SPE (M̂SPE) is given by (17) with Z† ≡ Ž (Z† ≡ Ẑ).

Figure 3(a) shows E for all combinations of factor levels and the dominance of
Ž(B) over Ẑ(B) is striking. Figure 3(b) shows that the efficiency of Ẑ(B) decreases
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Figure 2. Comparison of theoretical mean squared prediction errors and MSPEs
given by (17), for the optimal-prediction-based (o-p-b) predictor Ẑ(B) and the
permanence-approximation-based (p-a-b) predictor Ẑ(B). Shown is the ratio of
theoretical over MSPE, minus 1, displayed over all combinations of factor levels.

as the sill σ2
Y increases; that is, the more skewed the lognormal distribution, the

greater are the potential gains in efficiency using Ž(B). Figure 3(c) shows that the
efficiency of Ẑ(B) increases as the nugget effect ν increases; that is, as the spatial
dependence gets weaker, Ž(B) is not as dominant over Ẑ(B). A plot of E broken
down by range (not shown here) reinforces this observation; for small R (weaker
spatial dependence), Ž(B) is not as dominant over Ẑ(B). From Figure 3(d), we
see that Ž(B) dominates over Ẑ(B) when data are closer together (in units of
range) and is less dominant when they are far apart. That is, the more nearby the
spatial data are, the better Ž(B) is able to use that information.

4 Conclusion

We recommend unequivocably that for lognormal kriging, the optimal-prediction-
based predictor Ž(B) given by (13) be used. It is unbiased with mean squared
prediction error (i.e., kriging variance) given by (15).
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Abstract.
The general problem of data integration is expressed into that of combining

individual probabilistic information into a joint posterior probability. Any such
combination of information necessarily requires taking into account redundancy
within the information utilized. It is shown that the tau model (Journel 2002) can
provide an exact analytical representation of such combination. The tau weights
express data redundancy for each specific sequence of data conditioning.

Instead of using this exact definition of the tau weights, a more practical
calibration-based method is proposed. The method requires a prior ranking of the
data based on their information content, then the tau weights are approximated by
a function of the correlation of each datum with the single most informative one.
Such calibration would require training information in the form of joint vectorial
data.

The tau model can also be expressed as a log-linear estimator of the distance
to the unknown event. This definition requires considering the distances (or equiv-
alently the odds ratios) as random variables themselves. An application to binary
data is presented.

Keywords: Combining information, tau model, data redundancy, posterior prob-
ability, conditional independence

1 Statement of problem

Combining information from different sources is a difficult problem occurring over
many different disciplines. Consider that we wish to assess our knowledge about
an event A. Here A could be as complex as presence/absence of a set of connected
fractures close to a well or it could be the binary event that the average porosity
of a given region in the subsurface is lesser than a given threshold value. Typically,
we get information about the unknown event from, say, n different sources namely
D1, D2, ..., Dn. Each datum event Di can be quite complex involving different
variables and multiple sample locations in space.
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The conditional probability P (A|Di) is a convenient way of expressing the
information conveyed by the single datum event Di. The extreme values P (A|Di)
= 0 or 1 correspond to decisive information about A as provided by Di. Denote
the prior probability of A occurring as P (A), i.e., as obtained from some prior
information available “prior” to getting any of the data Di.

The problem of combining information can then be stated as:
Given the prior information P (A) and the n data Di, i = 1, . . . n, how can

we combine the single-datum conditional probabilities P (A|Di) into a posterior
probability P (A|D1, . . . , Dn), conditioned to all data events taken together.

An excellent review of techniques addressing aspects of this problem is given
by Genest and Zidek(1986). Many of these techniques call for some sort of in-
dependence assumption which skips the problem of data redundancy. Here, we
develop the tau model to explicitly account for such redundancy, presenting an
interpretation of the tau weights and proposing methods for calibrating these
weights.

2 The tau model

Define the following data probability ratios x0, x1, . . . , xn and the target ratio x,
all valued in [0,∞], as:

x0 = 1−P (A)
P (A) , x1 = 1−P (A|D1)

P (A|D1)
, . . . , xn = 1−P (A|Dn)

P (A|Dn) and x = 1−P (A|D1,...,Dn)
P (A|D1,...,Dn) ,

Note that P (A|Di) = 1 gives xi = 0 and P (A|Di) = 0 gives xi = ∞, therefore
these ratios can be interpreted as distances to the unknown A occurring. They are
also equal to the inverse odds ratio. It is then required to compute the distance x
of the joint data event to the unknown from knowledge of the individual distances
x0, x1, . . . , xn. The tau model is then stated as (Bordley 1982; Journel 2002):

x

x0
=

n∏

i=1

( xi

x0

)τi

(1)

with:

P (A|D1, . . . , Dn) = 1
1+x ε [0, 1]

The tau weights τiε[−∞,∞], i = 1, . . . , n account for the redundancy be-
tween the n data. One property of this model is that if P (A|Di) = 0 or 1, then
P (A|D1, . . . , Dn) = 0 or 1. Individual certainty implies overall certainty.

2.1 TAU WEIGHTS AND SEQUENTIAL DATA REDUNDANCY

Consider a specific sequence s of the n data: D
(s)
1 , . . . , D

(s)
n . With n data there

are a total number of S = n! such sequences. From the definition of conditional
probability and its decomposition, one can write:

P (A|D(s)
1 , . . . , D

(s)
n ) =

P (D
(s)
1 ) P (A D

(s)
1 ) P (D

(s)
2 A,D

(s)
1 )...P (D

(s)
n A,D

(s)
1 ,...,D

(s)
n−1)

P (D
(s)
1 ,...,D

(s)
n )
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and similarly for the conditional probability P (Ã|D(s)
1 , . . . , D

(s)
n ) of the com-

plementary event
Ã = non A.

We then get the ratio:

P (Ã D
(s)
1 ,...,D

(s)
n )

P (A D
(s)
1 ,...,D

(s)
n )

=
P (Ã D

(s)
1 )

P (A D
(s)
1 )

P (D
(s)
2 Ã,D

(s)
1 )

P (D
(s)
2 A,D

(s)
1 )

. . .
P (D

(s)
n Ã,D

(s)
1 ,...,D

(s)
n−1)

P (D
(s)
n A,D

(s)
1 ,...,D

(s)
n−1)

Using the previous definitions of the distances x, x1, we get:

x = x
(s)
1

P (D(s)
2 |Ã,D

(s)
1 )

P (D(s)
2 |A,D

(s)
1 )

. . .
P (D(s)

n |Ã,D
(s)
1 , . . . , D

(s)
n−1)

P (D(s)
n |A,D

(s)
1 , . . . , D

(s)
n−1)

(2)

The analytically exact expression (2) identifies the tau model (1) if each of the

n individual likelihood ratios
P (D

(s)
i

|Ã,D
(s)
1 ,...,D

(s)
i−1)

P (D
(s)
i

|A,D
(s)
1 ,...,D

(s)
i−1)

are written in terms of the tau

parameters as:

P (D(s)
i |Ã,D

(s)
1 , . . . , D

(s)
i−1)

P (D(s)
i |A,D

(s)
1 , . . . , D

(s)
i−1)

=
[ P (D(s)

i |Ã
P (D(s)

i |A)

]τ(s)
i

, i = 2, . . . , n (3)

Thus:

τ
(s)
1 = 1, τ

(s)
i =

log(
P (D

(s)
i

|Ã,D
(s)
1 ,...,D

(s)
i−1)

P (D
(s)
i

|A,D
(s)
1 ,...,D

(s)
i−1)

)

log(P (D
(s)
i

|Ã)

P (D
(s)
i

|A)
)

ε [−∞,+∞], i = 2, . . . , n (4)

The tau parameters are expressed as ratios of log of likelihood ratios, and
they depend on the specific sequence of data conditioning s. Consider first the
second tau parameter τ

(s)
2 : the denominator in expression (4) measures what is

the sensitivity of D
(s)
2 to A changing from any value to its complement. Note

that this ratio is specific to a particular realization of the variables A = a and
D

(s)
2 = d2. That denominator is assumed non-zero, that is D

(s)
2 distinguishes A

from Ã, otherwise the information D
(s)
2 would simply be ignored. The numerator

in (4) can be seen as the same sensitivity of D
(s)
2 to A but now in presence of D

(s)
1 .

Therefore, the tau weight τ
(s)
2 can be seen as the change in sensitivity of D

(s)
2 to

A brought by knowledge of the first datum D
(s)
1 . This weight is specific to the

ordering which sets D
(s)
1 as the first conditioning datum. Changing the ordering

will give a different weight.
More generally, τ

(s)
i measures the change in sensitivity of datum D

(s)
i to A

brought by knowledge of all previous data D
(s)
1 , . . . , D

(s)
i−1 in the sequence s. Sub-

stituting expressions (3) into (2) for i = 2, . . . , n, we get the sequence-specific tau
model:
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x = x
(s)
1

(x
(s)
2

x0

)τ
(s)
2

. . .
(x

(s)
n

x0

)τ(s)
n

(5)

Expression (5) identifies the exact expression for the conditional probability
P (A|D(s)

1 , . . . , D
(s)
n ). The tau weights are dependent on the specific outcome value

of the random variables A,D
(s)
1 , . . . , D

(s)
n and are also dependent on the specific

sequence s of data conditioning.

2.2 INTERPRETING THE TAU WEIGHTS

Expression (4) gives the ith tau weight τ
(s)
i dependent on the previous (i−1) data

D
(s)
1 , . . . , D

(s)
i−1.

Consider the following values for that weight:

• τ
(s)
i = 1:

τ
(s)
i equal to 1 requires that the ratios

P (D
(s)
i

|Ã,D
(s)
1 ,...,D

(s)
i−1)

P (D
(s)
i

|A,D
(s)
1 ,...,D

(s)
i−1)

and P (D
(s)
i

|Ã)

P (D
(s)
i

|A)
be

equal to each other. One possibility is:

P (D(s)
i |Ã,D

(s)
1 , . . . , D

(s)
i−1) = P (D(s)

i |Ã) and

P (D(s)
i |A,D

(s)
1 , . . . , D

(s)
i−1) = P (D(s)

i |A).
This means that datum D

(s)
i is independent of the previous data in sequence s

given A, i.e. conditional independence along the sequence s. However, in general,
equality of these ratios does not require conditional independence, but only that:

P (D
(s)
i

|Ã,D
(s)
1 ,...,D

(s)
i−1)

P (D
(s)
i

|Ã)
=

P (D
(s)
i

|A,D
(s)
1 ,...,D

(s)
i−1)

P (D
(s)
i

|A)
= some constant r. The value r =

1 arises from conditional independence. Any other r ε [0,∞] would also give τ
(s)
i =

1

• τ
(s)
i = 0: incremental non-information

This means that the numerator in expression (4) is equal to 0 calling for:

P (D(s)
i |Ã,D

(s)
1 , . . . , D

(s)
i−1) = P (D(s)

i |A,D
(s)
1 , . . . , D

(s)
i−1),

i.e., D
(s)
i is independent of A given the set of (i − 1) previous data. D

(s)
i does

not add anything towards knowledge of A. Note again that this does not mean that
datum D

(s)
i is independent of A. Another sequence s′ could result in a non-zero

weight.

• τ
(s)
i > 1, τ

(s)
i ε (0, 1): amplifying/diminishing sensitivity

A weight greater than 1 implies that the sensitivity of datum D
(s)
i to change

in A is amplified by knowledge of the (i− 1) previous data. The reverse holds true
for τ

(s)
i < 1.

• τ
(s)
i < 0: reversal of sensitivity
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A negative sign for weight τ
(s)
i means that the numerator and denominator

of expression (4) have opposite signs. This means that knowledge of the previous
data reverses the sensitivity of datum D

(s)
i to A when taken individually. The joint

impact of D
(s)
i is opposite to its individual impact. Again, this is true only for the

particular sequence of previous data D
(s)
1 , . . . , D

(s)
i−1.

As shown here, the tau weights arrive from a specific ordering of the data
conditioning. All previous concepts - conditional independence, incremental non-
information, amplifying/diminishing sensitivity and reversal of sensitivity - are
function of the values taken by the previous data in the sequence. Therefore, they
do not truly reflect the overall dependency between the variables. One could argue,
however, that as long as a certain set of tau weights can reproduce the posterior
probability closely enough, that is all that is required for practice.

However, in order to study the general impact of data redundancy on the tau
weights, it is necessary to consider the different sets of tau weights resulting from
different ordering of data. One possibility is to average the tau weights τ

(s)
i for each

datum Di over all possible sequences s = 1, . . . , S to obtain a sequence-independent
weight τi.

3 Computing the tau weights

Here, we address the practical question of computing the sequence-dependent
tau weights τ

(s)
i using a calibration-based technique. The first step thus calls for

determining a specific sequence of data. Note that any sequence is suitable as long
as expression (4) can be evaluated.

One possibility is to base this ordering on the information provided by the
data towards knowledge of A. The greater is that individual information con-
tent, the higher should be the rank of the datum. This requires a measure of
information content for the data. Literature in information theory is abundant
providing numerous such measures, for example the mutual information measure
(McEliece, 2002). Here, we use a simple measure based on the deviation from the
prior information P (A).

The standardized information content ζ(Di, A) proposed by Liu (2002) is:

ζ(Di, A) =
ε[0, 1]






P (A)−P (A|Di)
P (A) , if P (A|Di) ≤ P (A)

P (A|Di)−P (A)
1−P (A) , if P (A|Di) ≥ P (A)

(6)

It assumes a linear variation of the information content, ranging from 0 when
P (A|Di) is equal to the prior probability P (A) to a maximum 1 at both extremes
when P (A|Di) is equal to 0 or 1. Using this information measure, the n data can
be ranked in decreasing order, so that D1 is the most informative and Dn, the
least informative datum.
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Following from expression (5), the weight τ1 is set to 1. As for τ2, instead of the
exact expression (4), we consider a heuristic approximation using the conditional
correlation ρ2

D1,D2|A of D2 and D1 given A. Intuitively, the greater this correlation,
the lesser should be the weight τ2 given to the less informative data:

τ2 ∼ 1 − ρ2
D1,D2|A

Similarly, the third weight τ3 would be such that:

τ3 ∼ 1 − ρ2
D3,(D1,D2)|A

where ρ2
D3,(D1,D2)|A is the conditional correlation of D3 with the set (D1, D2)

given A.
Continuing to the nth weight τn:

τn ∼ 1 − ρ2
Dn,(D1,...,Dn−1)|A

The conditional correlation ρ2
Dn,(D1,...,Dn−1)|A would capture the redundancy of

Dn with all previous data in the sequence. In practice, such conditional correlation
would be difficult to obtain. Hence we propose to approximate it by the conditional
correlation with the single most informative datum D1, giving,

τn ∼ 1 − ρ2
Dn,D1|A

Providing a calibration parameter t, we can then write the weight τn as:

τn = 1 − (ρ2
Dn,D1|A)f(t)

where t ε [0, 1] is a calibration parameter and f(t) = Ln(1/(1− t)) is a scaling
function. We use the Ln transform in order to map t ε[0, 1] into f(t) ε [0,∞]. This
allows for a standardized parameter t ε[0, 1]. Here, the correlations ρ2 capture the
redundancy between data as to informing A, and the parameter t rescales this
relationship to fit to any available training data.

Summarizing this proposed calibration-based method, we first order the data
in terms of their information content. Then, the most informative datum D1 is
given the maximum weight of τ1 = 1.

Any other datum Di is given a weight τi given by:

τi = 1 − (ρ2
Di,D1|A)f(t) ε [0, 1) (7)

Note that these weights τi lie in [0, 1) as opposed to the tau weights given in
expression (4) which have no such restriction. Therefore, this calibration method
should not be considered for cases where one ought to consider weights τi > 1
(information amplification) and τi < 0 (information reversal).

Expression (7) requires computation of all the n − 1 conditional correlations
ρ2

Di,D1|A and calibration of the single parameter t. Such computation will require
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availability of some approximation of the (n + 1) variables A,D1, . . . , Dn possibly
under the form of joint (vectorial) training data.

4 Probability distances as random variables

The analysis in the previous sections can be seen as a Bayesian approach to com-
bining probabilistic information. The prior information is sequentially updated by
new data. At every stage we consider the worth of the new information in terms
of its redundancy with all previous data. That is just one interpretation of the tau
model. Going back to the definition of the probabilistic distances x0, xi, x, it is
possible to consider these distances as random variables themselves. Rewriting the
tau model (1) by taking logarithm, the log-posterior distance x is given by:

log x∗ − log x0 =
n∑

i=1

τi[ log xi − log x0]

First, we recognize that the conditional probability P (A|Di) can be derived
from the joint distribution of the variables A and Di. One can also view this
conditional probability P (A|Di) as a function valued in [0, 1] of the RV Di. Here,
the discussion is limited to binary indicator variables A,D1, . . . , Dn taking values
0/1, but the approach is general. This makes P (A|Di) a binary random function
of Di (and A) taking on two values P (A|Di = 1) with probability P (Di = 1) and
P (A|Di = 0) with the complement probability P (Di = 0).

The same is true for any transform of the conditional probability P (A|Di),
namely the distances xi or the log-distances yi = log(xi). Define the RV Xi as a
binary variable taking on two values:

x+
i = 1−P (A|Di=1)

P (A|Di=1) with probability P (Di = 1) and

x−
i = 1−P (A|Di=0)

P (A|Di=0) with probability P (Di = 0).

The RV Yi can now be defined as Yi = log(Xi) taking on two values y+
i =

log(x+
i ) and y−

i = log(x−
i ).

Similarly, the target RV Y can be considered a function of D, taking on two
values:

Y = y+ = 1−P (A|D=1)
P (A|D=1) with probability P (D = 1) and

Y = y− = 1−P (A|D=0)
P (A|D=0) with the complement probability P (D = 0). Here P (D) is

the joint probability of all n data occurring together, for example D =
n∏

i=1

Di = 1,

therefore D is a multiple-datum statistic.

Tau model as a kriging estimator

The previous interpretation of the log-distances allows to rewrite the tau model
as an estimator of the target log-probability distance Y .

Taking logarithm on the tau model expression (1), we get:



1044 S. KRISHNAN, A. BOUCHER AND A. G. JOURNEL

Y ∗ − log(x0) =
n∑

i=1

τi(Yi − log(x0)) (8)

Note that this is not a Simple Kriging (SK) expression since E{Y } �= log(x0).
However, a system similar to kriging can be developed for this estimator also and
solving it would require knowledge of the covariances between the data Yi and
those with the unknown Y .

Consider first the covariance Cov{Yi, Yj} between the probabilistic log-distances
Yi and Yj :

Cov{Yi, Yj} = E{YiYj} − E{Yi}E{Yj}
In the case of indicator variables, the product YiYj can take on four values:

YiYj =






y+
i y+

j , if Di = 1, Dj = 1
y+

i y−
j , if Di = 1, Dj = 0

y−
i y+

j , if Di = 0, Dj = 1
y−

i y−
j , if Di = 0, Dj = 0

These four outcomes can be used to compute the above covariance. Some
algebraic steps give:

Cov{Yi, Yj} = (y+
i − y−

i )(y+
j − y−

j )Cov{Di, Dj}

Similarly, the covariance Cov{Yi, Y } between the data log-distance Yi and the
target log-distance Y is:

Cov{Yi, Y } = (y+
i − y−

i )(y+ − y−)Cov{Di, D}

Observe that this latter covariance Cov{Yi, Y } requires knowledge of y+ and
y− where y+ is precisely the unknown log-distance we are trying to evaluate.

Thus, consider instead the correlations expressions Corr{Yi, Yj} and
Corr{Yi, Y }:

Corr{Yi, Yj} = Cov{Yi,Yj}√
V ar{Yi}V ar{Yj}

Corr{Yi, Yj} =
(y+

i
−y−

i
)(y+

j
−y−

j
)Cov{Di,Dj}√

(y+
i
−y−

i
)2V ar{Di}(y+

j
−y−

j
)2V ar{Dj}

= (y+
i
−y−

i
)

|y+
i
−y−

i
|

(y+
j
−y−

j
)

|y+
j
−y−

j
| Corr{Di, Dj}

= Sign[(y+
i − y−

i )(y+
j − y−

j )]Corr{Di, Dj}

Corr{Yi, Y } = Sign[(y+
i − y−

i )(y+ − y−)]Corr{Di, D}.
and Sign[z] = +1, if z > 0 and −1, if z < 0.

The log-distance correlations are equal to the data-correlations up to a sign.
The latter expression for Corr{Yi, Y } requires knowledge of the Sign term which
is likely easier to evaluate than the actual difference (y+

i − y−
i ).
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Using these correlations, the RV interpretation of the log-distances allows for
an evaluation of the tau weights very similar to solving a kriging system. It remains
to be seen how these kriging-type weights relate to the exact weights in expression
(4).

Interpreting the sign of correlation

Consider the product χij = Sign[(y+
i − y−

i )(y+
j − y−

j )].

y+
i > y−

i means that Di = 1 results in a lesser probability of A occurring than
Di = 0, i.e., A is more likely to occur given Di = 0.

Therefore, χij = 1 implies that Di informs A in the same direction as Dj .

Consider now χi = Sign[(y+
i − y−

i )(y+ − y−)].

Applying the same reasoning as above, χi = 1 implies that Di = 1 informs in
the same direction as D = 1 (individual datum agreeing with the joint datum).

5 Discussion and conclusions

The purpose of this paper is to establish the tau model as an exact expression
for combining probabilistic information. It is shown that the tau weights can be
computed for any joint distribution of the data and the unknown. These weights
are dependent on the specific sequence of data conditioning. Any sequence is fine as
long as the weights for that sequence can be estimated. For any given problem, the
most suitable sequence would depend on the specific requirements of the problem.
It might be suitable in some cases to condition first to the easiest datum and
proceeding to the most difficult datum to be conditioned to. As an example,
consider the problem of conditioning geostatistical realizations to point data from
well-logs, soft data from seismic-based sources and flow-based data from well-tests.
In such case, it would be better to condition first to the point data, then to the
seismic information and finally to the flow-based information.

Example of data from different supports

The accompanying paper in this volume (Krishnan, 2004) considers an example
of complex data from different supports. The unknown A is the multiple-point
rectilinear connectivity function at a particular support of interest. The data Di

are strings of connected high values from smaller and larger supports. The exact
tau weights are computed for this example and the effect of data redundancy on
these weights are explained. The proposed calibration technique is then used to
approximate these weights.

One important result relates to the impact of the common assumption of
conditional independence. As noted in this paper, such an assumption leads to
a constant tau weight of 1 for all data. It is shown that putting all weights equal
to 1 leads to a severe bias of overestimating the target conditional probability.
In that case, the various data all compound towards a probability of 1 leading
to extremely high probabilities of A occurring. Accounting for data redundancy
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through the exact expression (4) or through the calibration expression (7) removes
that bias.

Future work
The concepts outlined in this paper open many avenues for research:

• The exact tau weights in expression (4) are dependent on the data value.
One idea is to approximate these exact tau weights by values which are approx-
imately invariant of the data values. Such tau weights could depend on some
homoscedastic measure of data redundancy, eg. covariance or mutual information
measure (McEliece, 2002). Analytical measures of data redundancy can help in
approximating the tau weights for any given distribution of the data. One would
have to evaluate the approximation of the tau weights being independent of the
data values. Our conjecture is that such assumption would be much less severe
than the commonplace assumption of all tau weights equal to 1 which results from
conditional independence.

• The proposed calibration method has several limitations. It does not reflect
the generality of the tau model. Typically, the more generality is needed, the more
difficult is the inference of the required data statistics. One immediate extension
of the proposed method is to allow the weights to go beyond the interval [0, 1].

• The random variable-based approach was developed here only for indicator
variables. Both the distance and log distance are non-linear transformations of the
conditional probability P (A|Di). As shown for the indicator case, the correlation
between the log-distances is equal to the original indicator data correlation up to a
sign. One would also expect convenient analytical expressions if the log-distances
are assumed to be Gaussian distributed (Journel, 1980).
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Abstract. Multiple-point geostatistics aims at reproducing complex patterns involving 
many locations at a time, which is much beyond the reach of a two-point variogram 
model as in traditional geostatistics. In multiple-point geostatistics, sometimes it is 
necessary to have a quantitative measurement of how informative a data event is with 
regard to the unknown node, the multiple-point equivalence of a kriging variance. It 
should be a statistic accounting not only for various possible data configuration and 
specific data values, but also for the spatial structural information provided by prior 
geological knowledge. In this paper, we propose two alternative definitions of 
information content for a multiple-point data event. One is defined as a linear function 
of the conditional probability, and the other uses entropy for the definition. This 
information content measure can be widely applied in many occasions in multiple-point 
simulation. Three applications are presented in the paper. First it is used to rank all 
unknown nodes to generate a structured path for sequential simulation. Second it is used 
to decide how to reduce a data event when not enough replicates of it can be found in 
the training image. Finally it is used to adjust the relative contributions of different data 
sources in a data integration algorithm. All these applications show an improvement of 
simulation due to the utilization of this newly defined multiple-point statistic. 

1 Introduction 

Multiple-point geostatistics (Journel, 1992; Srivastava, 1993; Strebelle, 2000) aims at 
reproducing complex statistics involving many locations at a time. In multiple-point 
simulation, at any unsampled node, all conditioning data within its neighborhood are 
considered as one single data event; then a probability conditioning to this multiple-
point data event is derived. This allows capturing pattern information from a training 
image, which is much beyond the reach of a mere variogram model as in traditional two-
point geostatistics. 

For various purposes, it is helpful to have a quantitative measurement of how 
informative a multiple-point data event is with regard to the unknown event to be 
estimated or simulated. In another word, it is necessary to quantitatively evaluate how 
much additional information a multiple-point data event brings to the unknown event.

Intuitively, an information content measure should depend on the following two factors: 
1. The multiple-point data event, which involves different aspects: 
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number of individual nodes in the data event 
configuration of the data event 
specific values of each individual node in the data event 

2. Any prior knowledge about the spatial patterns of the variable being simulated 

The impact of the first factor is obvious. Figure 1 shows the impact of the second factor. 
Here A denotes the event to be informed at the unsampled node, say, that central node 
belonging to a certain facies; B denotes the multiple-point hard conditioning data event 
surrounding that node, which includes original sample data and previously simulated 
values; P(A|B) denotes the probability of A happening given the conditioning data event 
B. Depending on the training image used, the same B data event can be either very 
informative or not informative at all. 

Figure 1. The same conditioning data event can be either very informative or not 
informative, depending on the training image used. 

We propose to define information content as a function of the conditional probability 
P(A|B), which can be derived either from solving some kriging/cokriging systems in 
two-point geostatistics, or from scanning a training image in multiple-point geostatistics. 
The reason for this definition is that the conditional probability accounts for not only the 
configuration and values of the multiple-point data event B, but also for the prior 
geological knowledge carried by either the variogram model or the training image. In 
the following, two alternative definitions are proposed, then the validity of these 
definitions is shown by their applications to three different occasions. 

2 Information content 

Intuitively, the information content of a multiple-point data event B (denoted as B)
with regard to A is related to the conditional probability P(A|B). Say, if P(A|B)=1, it is 
certain that A is going to happen given the fact that B happens, therefore, B is very 
informative of A. Similarly for the case when P(A|B)=0: it is certain that A is NOT 
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going to happen given the fact that B happens, hence B is again very informative of A. In 
these two cases, the information content of B with regard to A reaches the maximum. 
Conversely, if P(A|B)=0.5, it is not certain whether A is going to happen or not, hence 
the information content of B reaches the minimum. Based on this intuition, we can make 
a generalized definition of information content as a function of P(A|B) satisfying the 
following conditions: 

1. B [0,1];
2. B 1 when B is most informative, i.e., when P(A|B) 0 or 1;
3. B 0 when B is not informative, i.e., when P(A|B) 0.5;
4. B decreases monotically within the range [0,0.5];
5. B increases monotically within the range [0.5,1].

For example, all three curves shown in Figure 2 are valid definitions for information 

Figure 2. Three possible definitions of information content. 

For the case when there is some prior information about A, say, its marginal probability 
P(A), then the lowest information content should be shifted to the point where
P(A|B)=P(A). That is, it measures the "additional" amount of information brought in by 
data event B besides that provided by the marginal P(A).

In the following, two alternative definitions for the information content are proposed 
and discussed: first a linear definiation and then an entropy-based definition.

2.1 A LINEAR DEFINTION 

For any given multiple-point data event B and corresponding conditional probability 
P(A|B), the information content of B with regard to A, denoted B, can be defined as a 
linear function of P(A|B):

)()|(if
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)|()(

)()|(if
)(1

)()|(
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                                  (1) 

where P(A) is the prior probability of the event A to be informed, "prior" in the sense 
that this is what is known about A prior to collecting the data event B.
The first image of Figure 2 illustrates this definition when P(A)=0.5.

Note that this B considers not only the data configuration and values, but also the prior 
geological knowledge carried by either the variogram model or the training image. This 
is because P(A|B) is derived either from solving a kriging system, or from scanning a 
training image. Figure 3 illustrates this point: (a) is a training image that captures the 
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curvilinear patterns of channels; (b) shows conditioning well data; (c) shows the average 
(E-type estimate) of 100 simulated realizations with a multiple-point program, snesim
(Strebelle, 2000). This E-type map is essentially a P(A|B) map. (d) shows the 
information content B map derived from the P(A|B) map using Eq.1. (e) shows the 
posterior variance of the 100 realizations. It is observed from Figures 3 (d-e) that both 
the information content and the posterior variance captures the channels' curvilinear 
structural information displayed by the training image. However, the former can be 
calculated a prior to simulation while the latter can be calculated only after simulation in 
multiple-point simulation. Note that at well locations the information content is always 
the highest, yet the size and shape of their "impact'' areas (the high information content 
area around wells) varies depending on the specific values at well locations and their 
interaction with other neighboring data according to the training image patterns. 

Figure 3. (a) training image; (b) conditional well data; (c) P(A|B) (E-type estimation) 
map; (d) information content map. 

2.2  AN ENTROPY-RELATED DEFINITION 

An interesting link is found between entropy and the previously defined information 
content. Entropy is a core concept in Information Theory (Cover, 1991). An entropy 
measures the amount of "randomness'' of a random variable, say X. The entropy of X,
denoted as H(X), reaches its maximum value when X is uniformly distributed, 
corresponding to minimum information; it reaches the minimum value when there is no 
uncertainty about X, i.e., X happens with probability 1 or 0. The entropy H(X) of a 
discrete random variable X with outcomes x and probability p(x) is defined as: 

x

xpxpXH
possibleall

)](log[)()(

The log is generally to the base 2. 0log0 is taken to be 0.
For a binary categorical variable, say, presence or absence of a certain facies event A at 
an unknown node, each with probability p and 1-p, the entropy H is:

)1log()1()log( ppppH                                   (2) 

Figure 4a shows entropy as a function of p for a binary categorical random variable. It is 
a concave function of p: with maximum 1 when p=0.5 and minimum 0 when p=0 or 1.
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If Figure 4a is flipped upside down (see Figure 4b), we get a valid measure of 
information content , defined as: 

)1log()1()log(11 ppppH                               (3) 

This expression is consistent with the previous requirements for an information content 
measure: when p approaches 0 or 1, the information content  monotonically increases 
to its highest value 1; conversely, when p approaches 0.5, the information content 
monotonically decreases to its lowest value 0 (compare Figure 4b with Figure 2b). 

Figure 4. (a) entropy; (b) information content before standardized by the marginal 
probability; (c) information content after standardized by the marginal probability. 

Eq.3 is actually the relative entropy between the uniform distribution (the least 
informative distribution) and the probabilistic distribution of the random variable A. In 
information theory, this relative entropy or Kullback Leibler distance (Cover, 1992) is 
used as a measure of the distance between two probabilistic distributions. In statistics, 
relative entropy D(p||q) arises as the expected logarithm of the likelihood ratio, defined 
as a measure of the inefficiency of assuming that the distribution is q when it is actually 
p. It can be thought as a measure of the "distance'' between two probability distributions 
p and q. It is defined as, 

x
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Where Ep{ } is the expected value taken over the probability distribution p.

It can be shown (Cover, 1991) that, for an m-category random variable X, the relative 
entropy of any distribution p versus a uniform distribution u is: 
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For binary cases, m=2, the above equation becomes:
)1log()1()log(11)()(log)||( 2 ppppHxHmupD

This is the information content defined in Eq.3. Therefore Eq.3 can be seen as the 
distance of a probability distribution to the uniform distribution, i.e., the least 
informative distribution. The information content is the lowest when p is the same as the 
uniform distribution, and it increases when p is farther away from that uniform 
distribution.

A relative entropy is always non-negative and is zero if and only if the two distributions 
are exactly the same. Note that, however, this relative entropy is not a true distance 
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because it is not symmetric and does not satisfy the triangle inequality, and D(p||q) is 
not equal to D(q||p) in general. 

Note that the information content measure defined by Eq. 4 has the advantage over the 
one defined by Eq. 3 or the linear definition defined by Eq. 1, because it allows multiple 
(>2) categories or even continuous variable. 

Eq.3 applies to cases when no prior information is available, or the prior probability 
p0=0.5. In practice, some prior information may be available, and the prior probability 
p0 could be different from 0.5. The definition Eq.3 is then modified to yield the lowest 
value at p=p0 0.5 (see Figure 4c): 

)'1log()'1()'log('1'1' ppppH                           (5) 

Where p' is the probability standardized by the prior probability p0, defined as: 
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Using Eqs. 5 and 6, along with the knowledge of the marginal probability P(A) and the 
conditional probability P(A|B), we can define the information content of B data event 
about A as: 

))|('1log())|('1())|('log()|('1 BAPBAPBAPBAPB
                 (7) 

Where P'(A|B) is the probability standardized by the marginal probability P(A):
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3 Application Case Studies 

The information content concept can be widely applied to many different occasions. 
Only three applications are discussed in details in this section. Other applications 
include using information content to adjust the amount of probability perturbation 
during servosystem correction (to honor a target global proportion) in snesim program, 
etc. They are not discussed in this paper due to limited paper length. 

3.1 STRUCTURED VISITING PATH

In sequential simulation, multiple equi-probable realizations can be generated through 
changing the random visiting path. One problem with a purely random path concept is 
that a nodal value may be drawn with few or no conditioning data, simply because it is 
visited too early. This problem becomes prominent with the multiple-point simulation 
algorithm, snesim program (Strebelle, 2000). Specifically, an accidentally simulated 
value with low probability could propagate to its immediate neighboring nodes and 
forbids large-scale continuity with other values simulated far away. The resulting 
realizations would then display discontinuities of long-range structures such as channels 
failing to cross the entire field. Figure 5 shows the simulation proceeding of one such 
realization. Image 1 shows the original well data. Image 8 shows the final realization. 
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The other images show the intermediate steps when only part of the field is simulated. It 
is found that starting from Image 3, a mud node (in the small square) is simulated due to 
limited conditioning data, then this simulated mud node gets propagated around it in 
subsequent simulation, finally resulting in discontinuity of the simulated channel. 

To address this problem, Liu (2002) proposed to simulate along a structured path: visit 
first the better informed nodes, then proceed to the less informed nodes. The information 
content is used to rank the nodes for their visiting order. Note that the two definitions by 
Eq. 1 or 5 yield the same results because their ranking orders are the same. This 
information content-based structured path accounts for much more information than 
spiral away from sample data, specifically: 

it considers not only the sample data, but also the previously simulated values

it considers not only the location of any single datum relateive the the location of 
the unsimulated node, but also the multiple-point data configuration

it considers both data locations and data values

it accounts for the prior geological knowledge

Figure 5. The simulation proceeding of one snesim realization. Circles represent 
channel and small dots represent mud nodes.

The original snesim program is modified to implement this structured path, along with a 
better inference of P(A|B) (see the following subsection). Figures 6a-c shows the 
training image, reference field, and conditioning well data. Figures 6d-g show two 
realizations respectively by the original and modified snesim program. It is observed 
that the long-range channels are better reproduced by the modified snesim program. 

3.2 IMPROVED INFERENCE OF P(A|B)

When simulating with snesim program, at any unsampled node, the data found in its 
neighborhood constitute a conditioning data event B. Prior to simulation, a training 
image is scanned and all replicate numbers of different data events found are stored in a 
search tree. Then in simulation, the number of training replicates of a specific data event 
B is retrieved from the search tree. The training proportion of the central node belonging 
to a certain facies category is then taken as the conditional probability P(A|B).

AN INFORMATION CONTENT MEASURE USING MULTPLE-POINT STATISTICS 
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To avoid unreliable inference of that probability, the total number of replicates is 
required to be no less than an input minimum value. When there are not enough 
replicates for the data event B, that data event has to be reduced by dropping 
conditioning data one by one until enough replicates can be found from the search tree. 
The original snesim program reduces this data event B by dropping the furthest away 
data. The decision of dropping the furthest away data amounts to value closer data more 
than further away data, even though the latter carries information about long-range 
structures. As a result, large-scale structures such as continuous channels may get 
broken during simulation. 

Instead of dropping the furthest away data, it is suggested to drop the data that are less 
"certain'', that is, those nodes with lower information content at the time of their 
simulation. Specifically, during a multi-grid simulation, we record the conditional 
probability P(A|B) from which each simulated node has been drawn during simulation at 
the previous coarser grid. The information content B proposed in Eq. 1 is calculated 
from this recorded P(A|B) value. This B is set to 1 if that node identifies an original 
sample datum. When not enough replicates of B are found, instead of dropping the 
furthest away data, we now drop the data with the lowest B, calculated from the 
recorded P(A|B). Through this modification, large-scale structural information provided 
by farther away data is kept when B data event need be reduced. Compare Figures 6(d-e) 
with 6(f-g), it is observed that this new dropping scheme, associated with a structured 
path, helps to alleviate the channel discontinuity problem when simulating channel with 
the snesim program.

Figure 6. (a) Training image; (b) reference facies field; (c) conditioning well data; (d-e) 
two realizations by original snesim; (f-g) two realizations by modified snesim program. 

3.3 DATA INTEGRATION 

In multiple-point simulation, one way to integrate data of different sources (e.g., hard 
data B and soft data C) is to first obtain the individual probabilities P(A|B) and P(A|C),
each conditioned to a single data source B and C. Then combine them into an updated 
probability conditioned to all data sources: P(A|B,C). Journel (2002) proposed a 
"Permanence of Updating Ratios'' paradigm to accomplish this. The basic assumption of 
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this algorithm is that the relative contribution of data event C is the same before and 
after knowing B:

a

c

b

x                                                        (9) 

where, a, b, c and x represent distances ( 0) to the event A occurring defined as: 
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Zhang and Journel (2003) later showed that this approach is equivalent to a Bayesian 
updating under conditional independence of B and C given A. To account for 
dependence between B and C data, they proposed a generalization using a power model 
involving two parameters, B and C (Eq. 10):
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Note that this generalized Eq. 10 is equal to Eq. 9 when B = C = 1.
The challenge now is to determine the parameter values B and C (called -model
hereafter), which should depend on the two data events B and C taken simultaneously. 
One method, although imperfect because it does not account explicitly for the B, C data 
dependence, is to link B and C to the information content of B and C:
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where B and C are the measures of information content of the two multiple-point 
conditioning data events B and C.

The idea of Eq. 11 is to tune up or down the impact of B or C corresponding to their 
respective information content: if B is very informative while C is not, B is tuned up 
and C is tuned down, and vice versa. 

A synthetic data set is generated to test this approach (Liu, 2002). Based on the same 
facies reference field A, three sets of data, each of a different quality, are generated 
respectively for hard data B and soft data C. They form 9 different (B, C) data 
combinations. For each combination, we can obtain P(A|B), P(A|C) and P(A|B,C).
P(A|B,C) is assumed to be unknown and taken as the reference. Then for each (B,C)
combination, we combine the individual probability fields P(A|B) and P(A|C) into an 
estimated P*(A|B,C) using one of the following -models:

-model 1: B = C = 1, which is equivalent to the original permanence of updating 
ratio algorithm (Eq. 9), that is, B and C are conditionally independent given A.
-model 2: Use Eq. 11 to calculate B and C, where the information content B and 
C are calculated from the linear definition (Eq. 1). 
-model 3: Similar to -model 2,but use entropy-related information content (Eq.7). 

The estimated P*(A|B,C) field by each -model is compared with the reference P(A|B,C)
field to obtain the mean squared error (MSE) of the estimated P*(A|B,C). A smaller 
MSE indicates a better estimation. This comparison is done for each of the nine (B, C)
data combinations. 

Table 1 shows the MSE by the three different -models for the nine different (B,C) data 
combinations. It is observed that -models 2 and 3 always yield smaller MSE than -
model 1, that is, utilizing information content helps to reduce the estimation error. 

AN INFORMATION CONTENT MEASURE USING MULTPLE-POINT STATISTICS 
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Another observation is that -models 2 and 3 yield similar results, that is, the linear and 
entropy-related information content are equivalent. However, the latter is preferred 
because of two reasons: (1) The linear definition can deal with only the binary 
categorical cases, while the entropy-related definition can be extended to the cases of 
multi-category (through Eq. 4) or even continuous variable. (2) The entropy-related 
definition has the potential to be further extended to account for data dependence and 
redundancy through utilizing some core concepts in Information Theory, for example, 
mutual information, chain rule of data communication, etc.

B data good fair poor
C data good fair poor good fair poor good fair poor 

Model 1 .075 .077 .071 .092 .179 .174 .080 .169 .216 
Model 2 .059 .067 .068 .075 .153 .165 .077 .168 .211 
Model 3 .059 .067 .068 .076 .152 .165 .077 .167 .211 

Table 1. MSE of estimated P*(A|B,C) versus reference P(A|B,C).

4 Conclusions 

A measure of information content for a multiple-point data event is proposed. It is a 
multiple-point statistic measuring how much additional information is brought in by a 
data event to the unknown event. Two alternative definitions of information content are 
proposed, both are functions of a conditional probability: a linear definition and an 
entropy-related definition. They provide similar results, but the latter is preferred due to 
its potential to be further extended. The validity of these two definitions is shown by 
three application case studies. 
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INTERNAL CONSISTENCY AND INFERENCE OF CHANGE-OF-SUPPORT 

ISOFACTORIAL MODELS 

XAVIER EMERY and JULIÁN M. ORTIZ 
Department of Mining Engineering, University of Chile 
Avenida Tupper 2069, Santiago, Chile, 837 0451 

Abstract. Bivariate isofactorial models are used for global or local change-of-support 
applications. However, so far, their variogram analysis is complicated and may lead to 
mathematical inconsistencies. In this paper, we propose an alternative approach for 
internally consistent variogram inference, which consists in deriving the simple and 
cross variograms at point and block supports from the variogram of transformed data, by 
randomizing the sample locations within the blocks (regularization). This approach is 
illustrated with the discrete Hermitian model, for which we provide guidelines for 
parameter inference and emphasize the limitations of the extreme cases: discrete 
Gaussian and mosaic models. A case study is presented with an application of the 
Hermitian model to a mining dataset, which consists of drillhole samples measuring the 
grade in a porphyry copper deposit. 

1 Introduction 

Change of support is a key problem in application fields such as ore reserve estimation, 
environmental and soil sciences. A full answer to this issue requires specifying the 
spatial distribution of the random function that describes the regionalized variable under 
study. Usually, it cannot be handled analytically and conditional simulations are used, 
which is time-consuming. Another solution is provided by parametric models such as 
isofactorial models that rely on bivariate distributions. In these models, the space is 
divided into non-overlapping blocks which are identical up to a translation, and the 
sample locations are randomized within the blocks (Matheron, 1976b, p. 243; Chilès and 
Delfiner, 1999, p. 439). In order to avoid confusion henceforth, the bold character x will 
refer to a fixed sample location, whereas x (underlined) to a random location. If several 
samples belong to the same block, their random locations are assumed to be independent 
inside this block.

Two types of isofactorial models must be distinguished, depending on whether a global 
or a local description is needed. 

2 Global isofactorial models 

The global change-of-support models are based on the following assumptions: 
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The point-support and block-support variables, denoted by Zx and Zv hereafter, can 
be transformed into other variables (denoted by Yx and Yv respectively), on which 
the isofactorial properties will be stated: 

Zx = (Yx) and Zv = v(Yv) where  and v are the transformation functions.

For any block v and any random location x uniformly distributed inside v, the pair 
{Yx,Yv} has an asymmetric isofactorial distribution (Matheron, 1984b, p. 451): 
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where fx and fv are the marginal pdf of Yx and Yv, {Tp(x,v), p N*} is a set of real 
coefficients, whereas { p

x, p N*} and { p
v, p N*} are orthonormal functions for 

L2(R,fx) and L2(R,fv) respectively (they are called the factors of the isofactorial 
model).

Now, the transformation functions at both supports can be expanded into the factors: 
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Because of Cartier’s relation (Matheron, 1984a, p. 425; Chilès and Delfiner, 1999, p. 
426) and Equation (1), the coefficients of the previous expansions are linked together:
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The global model only requires specifying a set of parameters {Tp(x,v), p N*} so that 
the joint density between point and block supports (Eq. 1) is always positive and the 
block-support variance (known after a variogram analysis of Zx) is honored: 
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3 Local isofactorial models 

Local models rely on the stronger assumption that any pair of values from Yx or Yv (not 
only the collocated values like in Eq. 1) follows an isofactorial distribution (Matheron, 
1984b, p. 450; Chilès and Delfiner, 1999, p. 443) (Figure 1): 
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Figure 1. Global and local models: all paired values follow an isofactorial distribution 

These distributions imply that two factors with different orders have no spatial cross-
correlation and that their simple and cross correlograms are: 
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Accounting for Equation (2) and for the orthonormality of the factors for the bivariate 
distributions, the covariances of Zx and Zv can be expanded as follows: 
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Now, because of the randomization of the sample locations within the blocks, all these 
covariances are equal (except if x x  in Eq. 11, in which case the sample variance is 
obtained) (Chilès and Delfiner, 1999, p. 441). A term-to-term identification leads to: 

otherwise1
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These equations amount to a Markov-type hypothesis for the point and block-support 
variables, similar to the one often used in association with collocated cokriging (Chilès 
and Delfiner, 1999, p. 305). Given a block-support value, any collocated point-support 
information is independent of the nearby information (block or sample values), a 
property also known as conditional independence (Matheron, 1984b, p. 451). 
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4 Proposed approach for variogram inference 

Commonly, the factor correlograms {Tp(v,v ), p N*} are deduced from the first one, 
T1(v,v ), by a simple analytical expression. In practice, given a covariance model for Zx

and therefore for Zv, Equation (13) is inverted to give a discretized approximation of 
T1(v,v ) on which a model is fitted (Rivoirard, 1994, p. 90; Chilès and Delfiner, 1999, p. 
441). However, this approach leads to three difficulties: 

The structural analysis is intricated: the whole model relies on the block-support 
correlogram T1(v,v ) which is not data-charged, i.e. it is obtained indirectly (through 
the transformation function v) and fitted without any block-support data. 

Experience has shown that the discretized correlogram T1(v,v ) may not be positive 
definite (Wackernagel, 2003, p. 267), which proves that the variogram of Zx is not 
always consistent with the transformation functions or the isofactorial assumptions 
(Eq. 5 to 7). 

Which correlograms are allowable for the block-support transformed variable Yv?
Indeed, not every model can be used since it refers to a block-support variable: for 
instance, a pure nugget effect is not conceivable, even in the bigaussian framework. 

A better way to perform the variogram analysis would consist of the following steps: 

i) Transform the fixed-location variable Zx into Yx (classical procedure). 

ii) Perform the structural analysis of Yx and obtain its correlogram T1(x,x ).

iii) Compute the correlogram of the random-location variable Yx: except for the zero 
distance, this amounts to regularizing T1(x,x ) (Chilès and Delfiner, 1999, p. 79): 
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in which |v| is the volume of block v. By comparing with Equation (14), it follows: 
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This condition is part of a more complete system of equations that can be obtained 
if the samples are no longer randomized into the blocks (Matheron, 1976b, p. 241; 
Chilès and Delfiner, 1999, p. 438): 
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However, such fixed-location models are not used as they are not fully consistent: 
Equation (18) leads to a non-positive pdf for the point-block distribution (Eq. 1). 

iv) Deduce the other correlograms {Tp(x,x ), p  2}, {Tp(x,v ), p N*} and {Tp(v,v ),
p N*}, considering the isofactorial model at hand and Equations (14) and (15). 

v) Make sure that all these correlograms lead to positive bivariate pdf (Eq. 5 to 7). 
Otherwise, go back to step ii) and choose a different model for T1(x,x ).

vi) Validate the model: a simple way is to fit and regularize the covariance of Zx and 
compare it to the function obtained by Equation (13). Now, the structural analysis 
of Zx should be used only for validation purposes, not for deriving the correlograms 
of Yx or Yv, as in the traditional approach. In this respect, Chilès and Delfiner (1999, 
p. 442) propose the following formula: 

v v p ppvv '
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2
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but such relation is an approximation: if Tp refers to the random-location variable 
(Yx), the correct formula is given by Equation (13); conversely, the fixed-location 
variable (Yx) is not necessarily isofactorial, hence formula (19) is not valid if Tp

refers to this variable. Another helpful tool for validating an isofactorial model is 
the analysis of the variograms of order less than 2, as detailed in the next section. 

In the proposed approach, the structural model is obtained directly after the transformed
data (Yx), which are those used in the applications of isofactorial models, e.g. uniform 
conditioning, disjunctive kriging, conditional expectation or conditional simulations 
(Guibal and Remacre, 1984; Hu, 1988; Rivoirard, 1994; Chilès and Delfiner, 1999, p. 
445-448 & p. 573; Emery, 2002, p. 96; Emery and Soto Torres, 2005). 

5 Discrete Hermitian model 

5.1 GENERAL PRESENTATION 

In this model, the marginal distributions are standard Gaussian and the factors for both 
the point and block supports are the normalized Hermite polynomials. The general form 
for the factor cross-correlograms (Eq. 9) is (Matheron, 1976a, p. 230): 

]),([E),(T,,,* p
p vRvvp xxxN                                  (20) 

where R(x,v ) is a random variable that lies in [-1,1] and depends on the locations of x
and v  (or, in the stationary framework, on their separation vector only). Under this 
condition, the point-support factor correlograms are defined by Equation (14): 

]),([E]),([E),(T,,* pp
p vRvR''p xxxxxxN                     (21) 
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The generic term of this succession appears as the product of the moments of order p of 
two random variables. It is therefore identified with the moment of order p of a random 
variable R(x,x ) which is the product of two independent random variables with the same 
distributions as R(x,v) and R(x,v ). This statement guarantees the positivity of the 
bivariate point-support distribution (Eq. 5) (Matheron, 1976a, p. 230). However, so far 
such model with random location samples has hardly been used. A simple example is 
presented hereafter and a guideline is proposed to infer and validate the parameters. 

5.2 AN EXAMPLE: THE BETA MODEL 

Suppose that R(x,v ) follows a beta distribution with parameters { rxv ,  (1 – rxv )}
where  is a positive coefficient and rxv  T1(x,v ) is the cross-correlogram between Yx

and Yv . Let r stand for its value at the origin (change-of-support coefficient): r rxv with 
x v. In such case, one has (Chilès and Delfiner, 1999, p. 411): 
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The parameter inference and validation of the model are now detailed. For two different 
random samples {x,x }, Equation (21) gives: 

v'rr'v''v xxxxx ),(T,, 1 ; in particular, if v = v , 22
11 ),(T),(T rv' xxx .

Together with Equations (16) and (17), these formulae provide r and rxv . The scalar 
parameter  can be chosen to honor Equation (4), whereas the correlograms of all the 
factors are obtained from Equations (14), (15) and (22). At this stage, the model is fully 
specified. It can be validated by comparing the variogram of the point-support Gaussian 
variable Yx with its variograms of lower order, defined by 

}|{|E
2

1
),(]0,2], 'YY' xxxx                                   (23) 

The usual variogram corresponds to  = 2, the madogram to  = 1 and the rodogram to 
 = 1/2. The Hermitian model satisfies the following relation (Emery, 2005): 
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In the stationary framework, this quantity only depends on the vector h separating the 
blocks containing x and x . After simplification, the standardized variograms of order 
are expressed as a hypergeometric function (Slater, 1966) of the usual variogram: 
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Equation (25) generalizes the relation between the madogram and the variogram given 
by Wackernagel (2003, p. 260). Note that it applies to the random-location variable Yx,
hence it should be checked on the empirical variograms of Yx for distances greater than 
the block size, for which the randomization of the samples within the blocks has almost 
no effect on the variograms. 

5.3 OBSERVATIONS ON THE DISCRETE HERMITIAN MODEL 

For mathematical consistency, it is preferable to define the change-of-support Hermitian 
model by reference to the point-block distribution, as in Equation (20). Indeed, let us 
write the general form of the Hermitian model for the point-point distribution (Eq. 5): 

]),([E),(T,,,* p
p 'R''p xxxxxxN                                  (26) 

where R(x,x ) is a random variable in [-1,1]. Then, Equation (14) entails: 

]),([E),(T,,,* p
p 'Rvv'p xxxxxN                              (27) 

In general, these terms cannot be identified with the succession of moments of a random 
variable, hence the point-block pdf (Eq. 1) takes negative values and is inconsistent.

5.4 TWO LIMIT CASES: DISCRETE GAUSSIAN AND MOSAIC MODELS 

These models correspond to the limit cases  =  and  = 0 of the above beta model. In 
the discrete Gaussian model, R(x,v ) is deterministic. The change-of-support coefficient r

R(x,v) with x v can be determined i) from a variogram model of Zx using Equation 
(4) or ii), from a variogram model of the Gaussian variable Yx using Equation (17). In 
general, both alternatives are not fulfilled simultaneously, hence the discrete Gaussian 
model is over-determined and may not be internally consistent. Equation (17) would be 
helpful for the parameter inference in other isofactorial models, such as the gamma and 
Laguerre-type models (Hu, 1988; Chilès and Delfiner, 1999, p. 443). 

Another limit case is the mosaic model, in which R(x,v ) only takes two values: 0 or 1. 
In such case, Equation (20) shows that Tp(x,v ) does not depend on p. At a global level 
the block-support transformation v is an affine function of the sample transformation 
(Eq. 3) and the change of support amounts to an affine correction. This is a limitation of 
the mosaic model, as the block-support distribution is expected to be less skewed than 
the point-support one. Concerning the local model, the correlograms T1(x,v ) and T1(v,v )
obtained by Equations (14) to (16) are likely to be smooth near the origin, a feature 
incompatible with a mosaic distribution: T1(x,v ) and T1(v,v ) must belong to the set of 
indicator correlograms, hence their behavior near the origin is at most linear (Matheron, 
1989a, p. 22). In conclusion, more realistic models are needed to describe the change of 
support in the mosaic framework, both at the global and local scales. For instance, one 
can resort to mosaic-type models in which the cell valuations depend on their size 
(Matheron, 1989b, p. 317; Rivoirard, 1994, p. 27). 
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6 Case study 

The previous concepts are illustrated on a real dataset from a Chilean porphyry copper 
deposit with 2,376 diamond-drillhole exploration samples measuring the copper grades. 
Each sample is a twelve-metre-long composite. The drillholes are located in an area of 
400m × 600m × 130m (Figure 2A) and the copper grades are lognormally distributed 
with a mean value of 1.00% (Figure 2B). The structural analysis of the data reveals an 
anisotropy whose main axes are along the horizontal and vertical directions (Figures 2C 
and 2D). For ore reserve estimation, selective mining units of 15m  15m  12m are 
used. The purpose of the study is to model the grades at point and block supports using 
the discrete Hermitian model. 

Figure 2. A, location map of the samples, B, declustered histogram, C, copper grade 
variogram and D, normal scores variogram 

The variogram models for the raw variable (grade) and its normal scores transform are: 
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A regularization of both variograms onto a 15m × 15m × 12m block support gives the 
change-of-support coefficient and the block-support variance: 

854.0),(T, 1 vv xx  (Eq. 17) and 274.0)var( vZ .

In the following, we assume that the point and block-support variables can be described 
by a Hermitian model with a beta random variable R(x,v ) (section 5.2). The parameter 
of this random variable is determined to honor the block-support variance (Eq. 4 and 
22). The evolution of the block variance as a function of , given r  0.854, is shown in 
Figure 3A; for practical calculations, the expansion in Equation (4) is truncated at order  
pmax = 100. The actual block-support variance (0.274) is obtained for a value of  close 
to 23. This value is validated by plotting the standardized experimental variograms of 
orders 0.5, 1 and 1.5 of the normal scores data as a function of their usual variogram, 
and comparing the experimental points to the theoretical curves of a beta model with 
parameter  = 23 (dashed lines in Figure 3B) (Eq. 25). In logarithmic coordinates, such 
curves are close to straight lines, hence a pure Gaussian model (corresponding to  = )
could also be used (Emery, 2005). 

Figure 3. A, determination of parameter  and B, validation of the model 

The analysis must be performed with care due to the sensitiveness of the parameter 
values to the histogram and variogram model: 

The point-support histogram and its variance are strongly dependent on the extreme 
values and the upper-tail modeling. If possible, one should fit a variogram with a 
sill that matches the histogram variance (i.e. the sum of the squared coefficients of 
the point-support transformation function, see Eq. 2), otherwise a shortcut solution 
consists in standardizing the variogram sill around this variance. 

The block-support variance depends on the variogram model at small distances (in 
particular the amplitude of the nugget effect), for which the data pairs are scarce. 
The same observation applies to the inference of the change-of-support coefficient 
from Equation (17). 
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The coefficient  may be determined with low accuracy when its value is high (Fig. 
3A); however, in this case, it has little influence on the results as the corresponding 
Hermitian model is close to the discrete Gaussian model. 

7 Conclusions 

This work focused on the inference and internal consistency of bivariate isofactorial 
models for change-of-support applications. A procedure has been proposed to improve 
the structural analysis and simplify it with respect to the traditional approach. In the 
Hermitian framework, the user should beware of both extreme cases (discrete Gaussian 
and mosaic models): the first one has no flexibility since a single parameter must fulfill 
two equations, while in the second one the global change of support amounts to an 
affine correction. The proposed beta model is more flexible and the parameter inference 
remains relatively simple. These results can be extended to other change-of-support 
models such as the Laguerre-type model. 
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HISTORY MATCHING UNDER GEOLOGICAL CONTROL:

APPLICATION TO A NORTH SEA RESERVOIR 

B. TODD HOFFMAN and JEF CAERS 
Department of Petroleum Engineering,
Stanford University, California, 94305-2220, USA 

Abstract. Solutions to inverse problems are required in many Earth Science 
applications. The problem of determining reservoir properties, such as porosity and 
permeability from flow data, shortly termed “history matching”, is one example.  In 
many traditional inverse approaches, certain model assumptions are made on either the 
data likelihood or the prior geological model, e.g. assumptions of conditional 
independence between data or Gaussianity on the distributions, which do not reflect the 
reality of actual data. This limits the applications of such approaches to practical 
problems like history matching. While modeling assumption are inevitable, this paper 
presents a general inversion technique that can be used with different geostatistical 
algorithms to create models that honor several types of prior geological information and 
at the same time match almost any type the data. The technique is built on the idea of 
perturbing the probability distributions used to create the models rather than perturb the 
properties directly. By perturbing the probabilities, the prior geological model as 
described by a geostatistical model or algorithm is maintained. We present a practical 
implementation of the probability perturbation method. A case study demonstrates how 
the practical implementation would work in an actual situation.  The case study is a 
North Sea hydrocarbon reservoir where the production rates and pressure information 
are iteratively included in the model. 

1 Introduction 

History matching is a term used in reservoir engineering to describe the problem of 
finding a 3D reservoir model that matches the observed production data. In that regard, 
the problem of history matching is no different from any other inverse modeling 
technique aimed at finding a set of model parameters, m based on measured data, d. The 
same issues need to be addressed: 

Non-uniqueness: many 3D models can be found that match equally well the 
production data. 
Need for a prior geological model: any of the models matching the production 
data should also honor information about the geological continuity, either 
provided by a variogram, object model or training image model. In inverse 
terminology: some information about the prior distribution of the model 
parameters, namely f(m) is usually available. 
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The forward model: this model, further denoted as g: d = g(m), provides the 
relationship between the data and the model parameters (not considering data 
and model errors). g is often a strongly non-linear function, and in history 
matching it is provided by a flow simulator (finite difference/element model).

A problem specific to history matching problem lies in the model parameterization. 
Many reservoir features, such as fault position, fault transmissibilities, facies 
proportions, relative and absolute permeability, porosity etc… can be perturbed to 
achieve a history match. In most cases, large scale structures such as fault positions and 
layer geometries are adjusted by hand based on reservoir engineering expertise. The 
reservoir properties (facies, permeability and porosity) are modelled using geostatistical 
methods, hence need to be adjusted in an algorithmic fashion. In this paper we present a 
practical approach to the latter problem by means of the probability perturbation 
method. The theory behind this method will be briefly reviewed but is presented in 
greater details in other papers (Caers, 2003; 2004, this conference). This paper focuses 
on putting this method into actual practice by first extending the basic probability 
perturbation methods, then by presenting an actual reservoir case study. 

2 Probability Perturbation Method 

A brief explanation of the probability perturbation method (Caers, 2003; Caers, 2004, 
this conference) is given to provide the background for further development.  For 
demonstration purposes, we will consider the case where the parameters m of the model 
are given by a set of binary spatial variables described by the indicator variables:

1 the "event" occurs at 
( )

0

if
I

else

u
u                                            (1) 

where u = (x, y, z)  model, is a spatial location, and I(u) could denoted any spatially 
distributed event, for example, i(u)=1 means channel sand occurs at location u, while 
i(u)=0 indicates non-channel sand occurrence.  An initial realization of I(u) on the same 
grid containing all locations u will be termed i

(0)={i(0)(u1) ,…, i(0)(uN)}. The method 
works equally well for continuous and discrete variables. 

The prior model f(m) in this paper is modelled using sequential simulation, whereby 
each variable I(u) is simulated sequentially accounting for any linear data (hard data or 
soft data) and any previously simulated indicators. Each step in a sequential simulation 
algorithm consist of determining a local conditional probability distribution:

 P(I(u)=1 | previously simulated nodes + linear data) 

or in shorter notation denoted as P(A|B). The initial realization does not match the non-
linear production data d, hence need to be further perturbed in an iterative fashion.

Rather than perturbing the initial realization i
(0) directly, Caers (2003) proposes to 

perturb at each step of the sequential simulation algorithm, the probability model, 
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P(A|B), used to generate the initial realization.  This is done by introducing another 
probability model, P(A|D), where the notation D=d is used.  The perturbation of P(A|B) 
by P(A|D) is achieved by combining both conditional probabilities using Journel’s 
method (2002).  The resulting new probability model, P(A|B,D), is used to draw a 
“perturbed” realization using the same sequential simulation algorithm, but with 
different random seed.  P(A|D)  is defined as follows: 

for all u: P(A|D) = (1-rD) i(0)(u) + rD P(A)  [0,1]                                (2) 

where rD is a parameter between [0,1] that controls how much the model is perturbed.  
To better understand the relationship between rD and P(A|D) consider the two limiting 
cases when rD=1 and rD=0.  When rD=0, P(A|D) = i(0)(u) and the initial realization, 
i(0)(u), is retained in its entirety, and when rD=1, P(A|D) = P(A) and a new equiprobable 
realization, i(1)(u), is generated.  The parameter rD, therefore, defines a perturbation of an 
initial realization towards another equiprobable realization. 

There may exist a value of rD, such that i(1)
rD(u) will match the data better than the initial 

realization.  Finding the optimum realization, i(1)
rD(u) is a problem parameterized by 

only one free parameter, rD; therefore, finding the optimum realization is equivalent to 
finding the optimum rD value.

min{ ( ) || ( ) ||}
opt

D

S
D D D

r
r O r D r D                                                  (3) 

where O(rD) is the objective function, which is defined as some measure of difference 
between the data from the forward model, DS(rD) and the observed data, D.  The value 
of rDopt and consequentially the optimum realization can be found using any one-
dimensional optimization routine, for example the Brent method (Press et al., 1989). 

3 Regional probability perturbation 

The previously described method from Caers (2003) is theoretically well founded and 
shown to be linked to the well-established Bayesian inverse theory (Caers, 2004); 
however, going from theory to practice is a non-trivial step.  A number of specific issues 
are addressed in the current paper, and they are summarized as follows: 

(1) In many applications, the parameter space may be large. Hence, parameterizing 
the model perturbations using a single parameter may not achieve a satisfactory 
match in a reasonable amount of CPU time.  Following, a higher order 
parameterization of the perturbation of m is proposed by dividing 3D space 
into regions, each with a different perturbation parameter rD attached to it. 

(2) A higher order parameterization leads to a more difficult optimization than the 
1D optimization of Eq. (3).  With discrete variables, such as in the binary case 
above, gradients may not be available, hence an efficient non-gradient 
approach is necessary. 
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3.1 Model Regions 

The probability perturbation method (PPM) is able to perturb parameters and honor the 
conceptual geologic model; however, for models with vastly different properties in 
different parts of the model, the efficiency of the PPM is not satisfactory.  For many 
applications, the models need to be able to account for local variability by perturbing 
parameters by different amounts in different regions in space (Hoffman and Caers, 
2003).

To be able to achieve this, the region geometry must first be defined.  The regions may 
be any arbitrary shape, but their definition is problem specific and will be left to the 
user.  Some methods are discussed in the Case Study section.  The regions are denoted 
as {R1, R2, …, RK} where K is the total number of regions, and the entire realization is 
R = (R1  R2  …RK).  With multiple regions, P(A|D) must be defined slightly different 
than in the PPM.  It continues to be defined for the entire reservoir, R, but its local value 
depends on the region definition: when u is located in region Rk, the perturbation 
parameter takes on a value of rDk.  Therefore P(A|D) can have different values for 
different regions of the reservoir, and the following equation for P(A|D) is used. 

P(A|D) = (1-rDk) i(0)(u) + rDk P(A)                                        (4) 

Each perturbation parameter is updated based on how well the model matches the data 
in each region.  If the match is good, rDk is small or even zero, and if the match is poor, a 
value rDk close to one should be taken.  Figure 2 shows an illustrative 2D fluid flow 
example of how this works. 

Figure 1: Perturbing two regions by separate amounts, without creating discontinuity at 
the border between the two regions.

There are three wells, one injector in the middle and two producers.  In the initial  
model, the production well on the right (Region 2) is matching the production data 
(water cut in this case) quite well, whereas the well on the left (Region 1) is not 
matching nearly as well.  Therefore, Region 2 will require a small perturbation 
parameter value, and Region 1 will require a larger perturbation.  In the perturbed 
model, Region 2 is changed only slightly; the location of the bodies is roughly the same.  
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Conversely, the bodies location in Region 1 are considerably different in the perturbed 
model compared to the initial model.

Notice there are no model artifacts or discontinuities along the region border illustrating 
that the geology is always maintained.  The reason for not creating artifact 
discontinuities can be explained by the nature of the sequential simulation algorithm and 
by the perturbation method applied.  In sequential simulation, each grid block is 
simulated based on any reservoir data and on any previously simulated grid block 
properties.  The method searches for any such previously simulated grid locations in an 
elliptical search neighborhood.  This search neighborhood may (and should) cross the 
region-boundaries.  When simulating a grid block in one region, the grid block 
properties in other regions are used to determine P(A|B,D), hence creating continuity 
across the boundaries.  Secondly, geological continuity is assured in the perturbation 
method through the probability P(A|B), which is not calculated per region but for all 
regions together (Hoffman and Caers, 2003). 

3.2 Optimization 

Regional changes are convenient for local improvement in the data match; however, this 
requires multiple perturbation parameters, rDks, to be optimized.  Because the forward 
model of these large problems may take up to several hours, a full multi-dimensional 
optimization is not feasible.  Therefore, an efficient procedure to find the optimum 
values for rDk is developed.  First, the forward model is completed on the entire model.  
Then the objective, Ok, is calculated for each region.  The objective is simply the 
mismatch of the production data for all wells in that region. 

1, ,    S
k k kk K O D D                                  (5) 

Because the data in each region can be influenced by the parameters outside that region, 
in general the values of Ok will depend on all {rD1 … rDK}.  However, the data in a 
region is principally dependent on the model parameters within its region; thus, we will 
assume that Ok only depends on rDk.  Based on this assumption, we can update the rDks in 
all regions based on the production data from one flow simulation.  The next rDk for each 
region is determined by performing one step of a one-dimensional optimization routine, 
but since there are multiple regions, the “one step” must now be done K times (once for 
every region).  After all rDks are updated, a new reservoir model is generated and flow 
simulation is completed.  The optimization algorithm for the inner loop of the method is 
given:

 1. Guess initial perturbation parameters (usually 0.5 for all regions). 
 2. Create new reservoir model and run forward model. 
 3. Calculate objective (mismatch) for each region. 
 4. For each region, perform one step of a 1D optimization to find the new  
     perturbation parameters using Brent method (Press et al., 1989).  
 5. Goto step 2.  Loop until there is no improvement in objective. 
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Note that the model is not broken into K independent problems where the forward model 
would be completed on each region separately.  Rather, the realizations are always 
generated over the entire reservoir, and the forward model is always completed over the 
entire reservoir. Regions are only used for objective function calculations and 
perturbation parameter, rDk, updating. The efficiency advantage lies in the fact that only 
one forward model is needed per iteration (the same as the single PPM), yet all regions 
can be improved during every iteration. 

3.3 Perturbing prior proportions 

The PPM and regional PPM perturb the parameters m and at the same time account for a 
prior geological model f(m). An important part of the prior geological model is the 
marginal distribution on each parameter mi.  In the case of a binary variable as in Eq. 
(1), the prior model is the global proportion of the event occurring (e.g. the proportion of 
channel sand). In many practical situations, the global proportion is poorly known, since 
it needs to be estimated from limited data (wells). Moreover, this proportion may vary 
considerably over the extent of the reservoir and one may want to model a local 
proportion per region. Assuming a wrong local or global (prior) proportion may prevent 
the PPM or regional PPM from achieving a satisfactory match. 

We propose to perturb the local proportions per region, LPk, jointly with the parameters 
rDk using a coupled optimization as follows: 

KkfriLPLP cDk
old

k
new

k ,...,1,                                   (7) 

where k is the region indicator and K is the total number of regions. fc is a user-defined 
constant that characterizes the amount of change allowed in each iteration.  Since the 
values of rDk range from 0 to 1, when rDk equals 1, LPold is either increased or decreased 
by an amount equal to fc.  The indicator term, ik, determines whether the LP should 
increase or decrease and is defined as follows: 

desiredisproportionlocalindecreaseif1-

desiredisproportionlocalinincreaseif1
ki

In many instances, there is a known relationship between the proportion of facies and 
the production (e.g. an increase in facies causes an increase in production), hence the 
value of ik is known. However, in some instances the relationship is unknown (e.g. an 
increase in facies may cause an increase or a decrease in production), hence the direction 
of the perturbation (the value of ik) is not known beforehand and needs to be calculated 
using a numerical gradient. Due to the nature of inverse problems involving discrete 
variables, only the sign of the gradient is used, and not the gradient magnitude. 
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4 Case Study 

The case study is a prominent North Sea reservoir with 22 wells (14 producers and 8 
injectors) and 5½ years of production data.  There are four major horizons and the top 
horizon is isolated from the lower three horizons by an impermeable shale layer. A 
significant number of very low permeability nodules are found in the reservoir.  They 
were created by the diagenesis of calcite and tend to have a lenticular shape.  They 
typically have an areal extent of a few meters to tens of meters.  Where clusters of these 
bodies are found, they can have a large affect on fluid flow in the reservoir. 

4.1 Simulation (Forward) Model 

The reservoir model is a structured stratigraphic model with 39 cells in the x-direction, 
98 cells in the y-direction, and 41 cells in the z-direction, but only about half of those 
cells are active.  There are just over 70,000 total active gridblocks in the model. The 
calcite bodies are relatively thin, so they are given no vertical thickness in the simulation 
model.  Gridblock containing a body or a cluster of bodies will get a reduced or zero z-
direction transmissibility.  For this case, the regional proportion (RP) is not a volumetric 
value of proportion, but rather the proportion of gridblocks that have a reduced vertical 
permeability due to the presence of the calcite bodies.  For example if the RP is 30%, 
this does not mean that 30% of a region’s volume is calcite, instead, 30% of the 
gridblocks in the region have reduced vertical permeability.

The location and proportion of calcite bodies is uncertain, so they must be stochastically 
built into the reservoir model using the snesim algorithm (Strebelle, 2002).  The training 
image used for the current work only needs to be 2D because these bodies are modeled 
without a significant vertical dimension.  The size and shape of the bodies are not well 
known, but we assume that where clusters of bodies occur, they affect an area of 
minimum 0.04 km2.  On average the gridblocks have a length around 100 m in the x and 
y directions, so the size of the bodies in the training image is typically two gridblocks 
squared.

To perform history matching with the regional probability perturbation method, a 
method for defining regions in the reservoir is required.  Streamlines are well suited for 
the job because they directly show the flow paths by which fluid enters a production 
well (Milliken et. al., 2001).  These paths identify the gridblocks that, if changed, will 
have an obvious impact on a well’s production.  All blocks hit by the set of streamlines 
entering a well define the “drainage zone” for that well.  The various drainage zones 
define the geometry of the regions used for history matching in this case study. 

Water, oil and gas rates for the 14 production wells and RFT pressure data from a 
number of both injector and producer wells is available; however only water rate and 
RFT pressure are used in the objective function.  In the simulation model, wells have 
fixed liquid rates; hence, if water rates are correct, oil rates are also correct as well as the 
water cuts.  The rates are matched using monthly averages.
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Parameters such as porosity, permeability, relative permeability and fault 
transmissibility were examined to determine if they should be perturbed in the history-
matching algorithm.  However, it was determined that the overriding factor in the model 
is the presence of calcite bodies.  The calcite bodies are perturbed using the regional 
probability perturbation method.  Both the locations and the regional proportions of the 
bodies are allowed to vary.  The bodies are included in the simulation layers 11-36 of 
the 41 total layers.

4.2 Results 

By perturbing only the calcite bodies and allowing all the other parameters to be the 
same as the initial model, a quality history match is achieved for both the rates and the 
pressures.  The water rates for three wells are displayed in Figure 2, and the RFT 
pressure measurements for three different wells are shown in Figure 3.  The black data 
(lines and dots) is the observed data, and the light gray data is the history matched 
results.  The line with the crosses represents the water rate data from the initial model, 
and the open diamonds are the initial pressure data.

For well P-3, the initial model has a water rate and breakthrough time that is much too 
high and much too early compared to the observed data.  The history matched 
breakthrough time is very close and the rate is improved significantly.  For well P-4, 
water is breaking through too late in the initial model, but in the history matched model, 
the data is matching much better. 

Wells P-3 and P-4 have the largest mismatches and thus show the greatest 
improvements, but other wells also improved.  The initial matches were closer, but they 
still showed some improvement (e.g. Well P-10). 

Figure 2: History match of water rates for three wells.

The pressure match was also improved.  For some wells such as P-13, the pressure 
match from the initial model was already quite good, and that remained so in the 
history-matched model.  Other wells such as I-6 went from a poor match to a very good 
match, and while well I-5 showed some improvement. 
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Figure 3: History match of pressures for three different wells. 

For this North Sea reservoir example, the history matching procedure took 5 outer 
iterations.  A normalized plot of the objective (mismatch) versus the iteration number is 
shown in Figure 4.  Each iteration required 3 – 7 flow simulations, and the total number 
of flow simulation required is 28.  The average run time for each simulation was about 
2.5 hours, so the total CPU time was just under 3 days. 

Figure 4: Normalized mismatch for history matching sequence.

Figure 5 shows the locations of the calcite bodies for two layers in a small segment of 
the reservoir.  The proportion of bodies in the history matched model ranges from 1 % 
to 53 % with most regions having between 10 % and 20 %.  The region with 53 % of its 
gridblocks affected by calcite bodies corresponds to well P-3.  This well showed water 
breakthrough 2 years too early in the initial model, hence requiring a significant 
proportion of bodies to impede water flow. 

Figure 5: Location of calcite bodies in a history matched realization. 
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Conclusions

While the theory of the probability perturbation method has been established in other 
papers, this paper demonstrates the practicality for solving large complex inversion 
problems.  History matching a North Sea reservoir serves as an example case study.  
The implementation is carried out by perturbing the locations and regional proportions 
of calcite bodies that have very low vertical transmissibility.  More generally this work 
shows that large-scale structures such as the position of facies bodies as well as their 
local proportion can be perturbed in the inversion process. 
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A DIRECT SEQUENTIAL SIMULATION APPROACH TO
STREAMLINE-BASED HISTORY MATCHING

J. CAERS, H. GROSS and A. R. KOVSCEK
Stanford University, Department of Petroleum Engineering, Stanford, CA
94305-2220

Abstract. Streamlines have proven useful for visualizing and solving complex
history-matching problems that enhance reservoir description. This paper presents
a novel, multiple-scale streamline-based technique that perturbs the reservoir model
in a manner fully consistent with prior geological data. Streamlines define dynamic
drainage zones around production wells and the mismatch between historical and
simulated production is related to the average permeability of each zone. Direct
sequential simulation is employed to propagate geological features within drainage
zones. This method does not rely on time-of-flight inversion, nor is a tedious
multidimensional optimization problem solved.

1 Introduction

History matching plays an important role in monitoring the progress of oil-recovery
displacement processes, predicting future recovery, and choosing possible locations
for the drilling of infill wells. While it is possible to formulate a history-matching
algorithm in a general form consistent with inverse theory and constrained to
a prior model, the shear number of unknowns to be estimated, combined with
the complexity of the forward process model, make such an effort daunting. For
instance, a small reservoir model might contain 50,000 to 100,000 grid blocks; in
every grid block the permeability may be a model parameter. Physically-grounded
inversion techniques help to resolve nonuniqueness and aid in the formation of
algorithms that complete in acceptable time. Various data sources such as geo-
logical and seismic interpretations are available as constraints to the inverse flow
problem, e.g, (Landa and Horne, 1997; Wang and Kovscek, 2003). In general, most
approaches have been formulated to honor the histogram generated from sparse
measurements of permeability and are restricted to variogram-based geological
models (Caers et al., 2002).

This paper illustrates the methodology and basis for an extension to our pre-
vious streamline-based history matching efforts under geological constraint (Wang
and Kovscek, 2000; Caers et al., 2002). Elsewhere, application of this technique to
a large, complex, mature reservoir is reported (Gross et al., 2004). Our primary
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tools are incorporation of streamline information into the inversion methodology
and a prior model formulation using direct sequential simulation–DSSIM (Journel,
1993). The permeability variogram available from measurements is honored from
iteration to iteration. DSSIM does not require the explicit specification of a per-
meability histogram, a property that is used to our advantage. Core permeability
measurements are generally taken on a scale (core scale) unrepresentative of the
modeling scale. Constraining the prior model to a fixed permeability histogram
therefore unduly restricts the model perturbations to a possibly wrong marginal
distribution. Instead, the combination of streamline inversion and DSSIM with a
locally varying mean–LVM is explored as a new approach to history matching.

2 Streamline-Based Inversion

A streamline is tangent everywhere to the instantaneous fluid velocity. Streamlines
bound streamtubes that carry fixed volumetric flux when the system is incompress-
ible. In this approach, flow rate is assigned to streamlines (Batycky et al., 1997).
The time of flight, τ is the time required for a volume of fluid to move from the
start (injector) to the end (producer) of a streamline. In a sense, τ indicates the
breakthrough time for a streamline and the water-cut (water produced upon total
fluid produced) versus time curve for a producer represents the sum of the pro-
duction of all streamlines (Wang and Kovscek, 2003). Streamline simulation (in a
forward sense) assumes that displacement along any streamline is one-dimensional
and that streamlines do not interact. Thus, the flow problem is decomposed into a
series of one-dimensional flow simulations linked by common boundary (i.e., well)
conditions (King and Datta Gupta, 1998).

2.1 BASICS OF STREAMLINE INVERSION

With respect to history matching, casting the inversion problem within a stream-
line framework has many advantages. Each streamline carries a small portion of
the injected fluid and the breakthrough of injected fluid at production wells is
associated to individual streamlines (Wang and Kovscek, 2000). Moreover, non-
interacting streamlines and incompressible fluids match the assumptions of the
Dykstra-Parsons (1950) method for heterogeneous, layered porous media. Deriv-
atives of the breakthrough time of any streamline, or subset of streamlines, are
thereby approximated analytically and efficiently.

Any existing streamline inversion method, perhaps, can be used; however, we
use exclusively the methodology of Wang and Kovscek (2000). The approach, first,
relates the error

Et =
1

NSL

NSL∑

m=1

E2
t,BT,m (1)

Et,BT,m = tD,BT,m − t0D,BT,m (2)

between measured,t0D,BT,m, and computed, tD,BT,m, water breakthrough of each
streamline to the effective permeability, kSLm

, along each streamline. Note that
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tD,BT,m signifies the breakthrough time of streamline m and NSL is the number of
streamlines. The term ”effective permeability” is used to signify a flow-weighted
average permeability along a streamline:

(3)

where uj = (xj , yj , zj) are the coordinates of streamline j, τm is the total time of
flight, τmj is the time of flight through the grid cell uj , and the summation is taken
over the permeability, k(uj), of each grid block through which streamline m passes.
The second step, discussed shortly, propagates the permeability perturbation to
the underlying grid.

In the limits of unit mobility ratio, incompressibility, and a large number of
streamlines, NSL, Wang and Kovscek (2000) reduce the minimization problem to

JT ∆kR
SL = −E (4)

where the Jacobian, J, is diagonally dominant

Jmj = −1 m = j (5)
1

NSL
m �= j (6)

and E is a vector containing the error for each streamline, Eq. 2. The vector, ∆kR
SL

contains the relative perturbations to streamline effective permeability to attain a
match:

∆kR
SL =

∆kSLm

kSLm
(7)

2.2 STREAMLINE-DERIVED FLOW ZONES

Streamline simulation is often appreciated for its fast and efficient computational
properties. Streamlines also allow visualization of flow through the reservoir. With
streamline trajectory one identifies: (i) the fraction of the entire field contacted
with injected fluid, (ii) the volume of the reservoir drained by a given producer,
(iii) the reservoir volume affected by a particular injector-producer pair, and (iv)
the trajectory and volume associated with a given streamline. The definition of
flow zones a priori is difficult and needs to be determined during every iteration
of the history-matching process. To define the producer zone of influence, we track
the set of permeability values through which each streamline passes (Emanuel and
Milliken, 1998), as illustrated by Caers (2003). All streamlines entering a particular
producer are grouped together, thereby defining a portion of the reservoir. There
are as many producer flow zones as there are producers.

An advantage of locating the volume drained by a producer is that an estimate
of the average change to the permeability of that flow zone is given by Eq. 7, once
all streamlines in a flow zone are grouped together. By choosing to correct using
information from individual streamlines, or groups of streamlines, the correction
scale is modulated. Details follow in the presentation of the algorithm.
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3 Prior Model Formulation Using DSSIM with LVM

Sequential Gaussian simulation (Deutsch and Journel, 1998) is the most widely
used sequential simulation algorithm. All measured data are transformed into
a standard Gaussian space. The entire simulation then takes place in standard
normal space, and back transformations are finally performed using the histogram
of the original permeability data. Normalization of simulated data to the original
histogram is valid only when the histogram is known accurately a priori. For
history-matching purposes, the histogram is not known with sufficient accuracy
and constraining an inversion to such data results in an overly narrow search
space for permeability.

Direct sequential simulation (Journel, 1993) appears to be better suited for
history matching purposes. DSSIM is a particular form of sequential simulation
where no transformation into Gaussian space is required. The simulation takes
place directly in the data space, and an explicit histogram (marginal distribution)
need not be provided to DSSIM. Inversions are constrained to the permeability
variogram ensuring geologically sound solutions to the inverse problem.

The theoretical foundations of DSSIM are given by the sufficient conditions
of honoring kriging means and variances at each node to be simulated along the
sequential simulation path. This ensures reproduction of the variogram. For each
node, the permeability value is drawn directly from a local conditional distribution
type specified by the user. Any type of distribution is allowed, and it need not be
stationary over the field. The advantage of using DSSIM lies in the fact that the
histogram is not fixed a priori. The ability to allow the histogram to be perturbed,
while at the same time honoring the variogram, provides a great deal of flexibility,
for instance through perturbation of a local mean, to improve the match accuracy.

We employ DSSIM with locally varying means to perturb portions of the
reservoir to achieve a better match, without creating discontinuities on the edges
of the perturbed zones. In a hierarchical sense, local means are used to perform
corrections to permeability at the field scale through alterations of the overall
field mean. At the producer scale, corrections are performed by altering the mean
permeability of the producer flow zone. LVM is used to perform corrections at
integral scales, and thus transmit local corrections computed with streamlines to
final permeability fields (Caers, 2000). Because the local mean is now provided
by the correction arising from the streamlines, Eq. 7, the permeability histogram
changes during every iteration.

4 Proposed Algorithm

The goal of the algorithm is obtain a match to production history by modifying
the permeability field:

1. Choose an initial permeability field, k(u) that is consistent with the perme-
ability histogram and variogram and has an initial global mean and variance.

2. Iterate from l = 1 to l = Lmax or until convergence
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a. Run a flow simulation to obtain the production history of all producers
and a map of streamline trajectories. Streamline maps are updated as
frequently as any major change in well condition. Alternately, the pressure
of every grid cell may be output and the streamline trajectory calculated
directly (Pollack, 1988).

b. Identify the flow zone (i.e., reservoir volume) associated with a given
producer (Caers, 2003) for all streamline maps.

c. Average the flow zone data using all streamline maps to obtain a time-
averaged flow zone.

d. Calculate the mismatch between simulated and measured history for every
well, j, as

∆Qo,j =
Nts∑

i=2

∣∣Qsim
o (ti) − Qhist

o (ti)
∣∣+
∣∣Qsim

o (ti−1) − Qhist
o (ti−1)

∣∣
|Qhist

o (ti) − Qhist
o (ti−1)|

(8)

where Qo is the oil production rate, the superscripts sim and hist refer to
simulated and measured data, respectively, and Nts refers to the number
of time steps. To date, the mismatch is gauged only on oil production rate.

e. Calculate the change in the average permeability, ∆kR
j for each producer

flow zone as

∆kR
j =

1
Nts

Nts∑

i=1

(
Qsim

w,i (t)
Qsim

T (t)
−

Qhist
w,i (t)

Qhist
T (t)

)
(9)

This is equivalent to lumping all streamlines entering a producer into a
single streamline and then applying the method of Wang and Kovscek
(2000).

f. The change in permeability, ∆kR
j is taken as the mean change in perme-

ability required for each region and this change is propagated to the grid
using DSSIM. Return to step 2a.

5 Case Study

Each step of the history-matching technique is described through a validation
exercise on a synthetic field with a limited amount of production data. The syn-
thetic reservoir is 5000x5000x1000 ft discretized on a 100x100x10 grid. The large
thickness of the reservoir implies that gravity is a driving force in the recovery
process. A view of the reference permeability field and the relative permeability
curves is given in Fig. 1. The permeability distribution of the field is close to
lognormal with an average around 1000mD, the standard deviation is close to
300 mD, and has values ranging from 5mD to 2500 mD. The oil-water relative
permeability curves are not adjusted during matching. The average porosity is 0.22
with a small variance (min. 0.19, max. 0.24). Porosity and permeability values are
assumed uncorrelated.

The field has 10 injectors and 10 producers (Fig. 2); all are on during the 10
years of production. The field is initially at 5,000 psi, and there is no mobile water.
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Figure 1. Reference data: permeability field (left) and oil-water relative
permeability functions (right). The synthetic reservoir is 5000x5000x1000 ft.

Injection rate is set to 1,000 STB/d for all injectors and producers are set on BHP
constraint of 4600 psi. A small solution gas-oil ratio simulates a reservoir containing
dead oil. The end-point mobility ratio is unfavorable (M = 8). Production data
were collected for oil (STB/d) and water (STB/d), and rates range between 100
and 1,000 STB/d per well. The field originally has 77.6 MMSTB in place, and
after 10 years of production, 56.9 MMSTB are left; thus, 27 % of the oil in place
has been produced. The streamline simulator 3DSL (Batycky et al., 1997) is run
in incompressible mode for inverse calculations requiring 8 min of CPU time on a
1.8 GHz PC. In total, 8,500 streamlines and 8,500 gravity lines are updated every
3 months during the simulation. Streamline maps are displayed every 2 years. A
typical streamline map is shown on Fig 2. From the identification of the streamlines
entering a producer, the field is divided into producer flow zones.

Figure 2. Areal view of positions of 10 vertical injectors (I) and producers (P).
Streamlines indicate the division of the field into producer-based flow zones.
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5.1 MATCH

Once an initial permeability field is set up and reference production history ob-
tained, the initial permeability field is modified automatically to retrieve refer-
ence production curves and an estimation of the true permeability field. The
permeability variogram is used to constrain updates to the permeability field.

Although a match between historical and simulated rates is the primary target
of history-matching, restoring the reference permeability field is a more powerful
indicator of the predictive power of the technique. In fact, being able to retrieve
an accurate estimate of the reference permeability field starting from an initial
permeability field and historical production rates indicates that the technique
provides permeability model enhancements. Figure 3 illustrates the initial perme-
ability field input to the history matching routine as well as the final distribution
of permeability. Eight iterations were required to obtain convergence. Direct visual
comparison of the final field in Fig. 3 with the reference field in Fig. 1 is difficult.
Accordingly, a difference map between these permeability fields was prepared, Fig.
4. The map is obtained by subtracting the history-matched field from the reference
field on a grid-cell by grid-cell basis. Figure 4 also presents a summary of the
relative error between the reference production data and the production obtained
with the final permeability model. Interestingly, initial sharp differences in contrast
maps tend to smooth out gradually, meaning that the technique employed here
converges towards the reference permeability field. Seven out of ten producers show
significant reduction in error.

Figure 3. Initial permeability field for history matching (left) and final perme-
ability field after history matching efforts (right). Gray-scale shading is identical
to Fig. 1.

Only one final permeability field is presented, for reasons of brevity. Few it-
erations and relatively short time are required to obtain a satisfactory match.
Although not proven, we assert that the technique allows of order ten to hundreds
of matched models to be obtained rapidly. Multiple history-matched models are
obtained (by changing random seeds in the sequential simulation) thereby allowing
a statistical treatment of the matched model and predictions of future production.
Finally, Fig. 5 compares the variograms for reference, initial, and final reservoir
models. The variogram from the history-matched case is identical to the reference.
Geostatistical consistency is maintained at all levels.
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Figure 4. Summary of history matching efforts: difference map (left) between
initial and reference permeability fields and improvement in match to historical
production data (right).

Figure 5. Semivariogram of reservoir models.

6 A Multi-Scale Perturbation Method

In many practical cases DSSIM with LVM provides a reasonable match to pro-
duction data (Gross et al., 2004). The algorithm presented above perturbs the full
permeability field by perturbing the locally varying mean. The random seed that
is used to generate the single permeability field is fixed. In this approach, it is
assumed that production data informs the local mean variations in permeability
and is not sensitive to any small scale variation of the permeability. If in addition
to a local mean variation, small scale variations in permeability have an impact on
the reservoir production, then perturbing the local mean only may not achieve a
history match. In addition to the local mean, the small scale permeability variation
within each streamline region needs to be perturbed. We propose a multi-scale
approach that perturbs both the local mean (coarse scale) and the underlying
fine-scale permeability. The fine-scale permeability is perturbed using the (PPM)
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probability perturbation method (Caers, 2003). In short, PPM achieves a pertur-
bation between an initial guess realization and another equiprobable realization
and the perturbation is characterized by a single parameter. PPM can be applied to
any sequential simulation approach including DSSIM with LVM. Figure 6 shows
that the initial guess realization and any of the perturbations are constrained
to a locally varying mean and a given permeability variogram. The magnitude
of the parameter rD defines the amount of perturbation. For any locally varying
mean derived from streamlines, the parameter rD is found by solving the following
optimization problem:

O(rD) =
∑

m

∑

t

(
k◦

SLm
(t) − kSLm

(u, rD)
)2 (10)

where k◦
SLm

is the desired streamline (coarse scale) effective permeability resulting
from application of Eq. 7.

Figure 6. Example of multiscale correction based on LVM and employing coarse
and fine scale perturbations. Shading represents permeability in md.

7 Summary

A multiscale history-matching algorithm is developed featuring large to small scale
corrections. The technique is well suited to problems with numerous injectors and
producers. Geostatistical data are honored at all stages of the algorithm, and, thus,
the matches obtained remain consistent with the permeability variogram and hard
data. The advantages of the technique include: (i) adaptability–it is applicable to
any geological situation described by geostatistics and modeled by streamline sim-
ulation, (ii) speed–usually less than 10 iterations are needed to reach a satisfactory
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match, (iii) predictive power–all realizations honor the prior geological model. The
drawbacks are similar to other history-matching techniques: (i) convergence–as in
all gradient based techniques, the convergence depends on the initial guess, (ii)
complexity–streamline and geostatistical concepts must be employed properly, (iii)
prior information–predictive power relies on accurate measurement of production
and fluid properties as well as a robust and accurate prior geological model.
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Abstract

Urban background nitrogen dioxide (NO2) is measured using passive samples, exposed 
during several consecutive fortnights in winter and in summer. Because of unavoidable 
technical incidents, the total number of “annual” measurements collected is limited to a 
few tens, which is not sufficient for estimating precise maps. 
NO2 comes mainly from the combustion of fossil hydrocarbons. Auxiliary variables like 
emission inventories, population density or land use, giving an approximate description 
of those emitters, may be entered in the mapping process as additional information.
For two French cities (Mulhouse and Montpellier) with different geographic context, the 
relationships between seasonal NO2 concentrations and auxiliary variables are 
thoroughly examined. A high correlation between seasonal concentrations is shown, as 
the difference of spatial structures consistency for winter and summer concentrations. 
The usual cross validation method brings out the interest of cokriging the annual 
concentration from the seasonal measurements, with auxiliary variables as external drift. 
This approach ensures the consistency of seasonal or yearly concentration estimations 
and allows a greater precision by the use of all available measurements.

1 Introduction 

Nitrogen dioxide NO2 is an urban air pollutant formed by reaction of oxygen and 
nitrogen produced by the combustion of fossil hydrocarbon. The main sources are road 
traffic, heating and specific industrial activities. Due to complex meteorological and 
photochemical phenomena, NO2 increases in winter and is lower in summer. As NO2 can 
cause respiratory irritations, the European regulation fixed an annual mean lower than 
40 g/m3 as quality objective for 2010.
Nowadays, permanent stations measuring air pollution are only few per town, and it is 
not possible to obtain a precise cartography of the yearly or seasonal means from those 
measurements. Thus, monitoring campaigns are conducted in some towns, first to 
characterize the concentrations level in relation to the main pollution sources (main 
road, industrial zones, etc.), second to map NO2 yearly mean levels as precisely as 
possible. During these campaigns, NO2 is measured using “passive diffusion samples”, 
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installed at sites carefully chosen as representative of the background pollution, and 
exposed for several successive fortnights in winter and in summer.

NO2 measurement campaigns being expensive, the objective assigned to geostatistical 
studies is to improve the accuracy of the estimation by taking into account additional 
information, providing an approximate description of the emission sources. For 
example, road traffic and heating should be partially linked to the population density or 
the land use, e.g. residential, industrial… and the local density of building. For some 
agglomerations, emission inventories including an evaluation of the local road traffic, or 
the declaration of industrial emissions made by the firms, are available.
When this auxiliary information is known at local scale, for example over a 1-km 
resolution grid, it can be used as external drift, or in a cokriging process. Bobbia et al. 
(2000) presented an instructive comparison of concentration maps estimated with or 
without auxiliary information. The remaining question was then to choose for each case 
the “best auxiliary variables”, sometimes among a lot of information.

As measurement campaigns last several fortnights, it occurs that some of the “seasonal” 
measurements are missing because of technical problems. In this case, it is well known 
(Matheron, 1970) that cokriging the yearly concentration from the seasonal 
measurements allows using all the available seasonal data and ensures the consistency of 
the estimations, provided the multivariate variogram model between seasonal and yearly 
concentrations is consistent. Cokriging the yearly concentration is then equivalent to 
cokriging each seasonal concentration and calculating their average. In addition the first 
one gives the cokriging variance of the yearly mean. When the concentrations are 
separately estimated by kriging, the consistency between seasonal and yearly 
estimations is no more ensured, except in some very particular cases. The interest of 
cokriging will be shown on an example. 

Despite not to be neglected (Gallois, 2004) the time component of the estimation 
variance is not considered in the present paper, focusing only on the spatial estimation.

2 Brief literature review 

The European Framework Directive on Ambient Air Quality Assessment defines a 
regulatory framework for monitoring and evaluating air quality. Air pollution mapping 
at a relevant temporal scale is a valuable tool for providing the required information. In 
that context, geostatistical methods have been receiving particular attention for a few 
years and are now commonly applied by the French air quality monitoring (AASQA).
Kriging techniques, which were rather used to interpolate concentrations in areas 
equipped with a relatively dense monitoring network (Casado & al., 1994; Lefohn & al., 
1988;Liu et al., 1996;Nikiforov et al., 1998; Tayanç, 2000), have been implemented to 
process data from passive sampling campaigns at an urban or regional scale. Pollutants 
under study are especially ozone, nitrogen dioxide and benzene. From a spatial point of 
view, interest has been paid to multivariate estimation, such as external drift or 
cokriging, to introduce auxiliary information in the estimation process (Bobbia et al., 
2001;Cardenas et al., 2002; Phillips and al., 1997). Such methods may significantly 
improve the results provided that the auxiliary variables are properly chosen.

D. GALLOIS ET AL.
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3 Correlation of NO2 concentrations : seasonal values and auxiliary information

In the following, neglecting the time component of the estimation error, we assimilate 
the average of the three or four fortnightly measurements collected a season with the 
seasonal concentration, and their average with the yearly concentration.
The exploratory data analysis shows that for two agglomerations with very different 
geographical and industrial context, NO2 concentrations present several analogies, 
mainly the expected links with some auxiliary variables. A useful and new result is the 
high correlation between seasonal concentrations. 

3.1 MEASUREMENTS DURING THREE SEASONS IN MONTPELLIER 

3.1.1 Urban context and sampling
With about 400 000 inhabitants, the agglomeration of Montpellier is located in the south 
of France. Close to the Mediterranean Sea, it is exposed to strong winds, and presents 
some relief. Three sampling campaigns of four fortnights each were conducted in 
different parts of the agglomeration in winter 2001, summer 2001 and winter 2002.
In addition, several auxiliary variables are available: 

- Population density, averaged on discs centred on the sample location, with 
a radius of 200m, 1000m and 1500m; 

- Nitrogen oxides emission inventory NOX, including only road traffic 
evaluations, given on a grid with kilometric mesh.

The location of the samples varies a lot from one season to another. Among 143 samples 
site, 25 are common to winter and summer 2001, and 21 common to winter 2002 and 
summer 2001; only 3 are common to both winters among which 2 are common to the 
three seasons (Figure 1.). 

Figure 1. Location maps of NO2 concentrations in Montpellier. *: informed in both 
winters; : informed in summer; +: others. The presented area is identical for the three 
maps. Distances are given in km. The symbol size is proportional to NO2 concentration.

3.1.2 Relationship between NO2 concentration and auxiliary information 
The three sampled zones correspond to different urban environments (Figure 2): the 
mean of population density on sampled sites decreases from about 5600 ha/km2 for 
winter 2001 in the urban centre, to about 4050 for summer 2001, and 2650 for winter 
2002 in suburban areas. Traffic emissions values follow the same variation. 
As expected, the mean of NO2 concentrations is lower in summer (18.0 g/m3) and 
higher in winter: 23.8 g/m3 in 2001 and 20.1 g/m3 in 2002. Is the concentration really 
higher in winter 2001, or is it a consequence of the preferential location of the samples? 
In fact, for the three samples common to both winters (which present rather high NO2
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levels), concentrations are lower in winter 2001 than in winter 2002, with average 
values of 25.5 and 27.7 g/m3 respectively. Therefore the previous global mean 
concentration decrease is mainly due to the different sampling locations. The scatter 
diagrams between winter concentration and auxiliary information strengthen this 
hypothesis (Fig. 2): the regression of concentration on population density does not show 
a systematic variation between the two winters at same population density value. 

Figure 2. Population density on 1500m radius circles around the samples. Histogram: 
light grey, informed for winter 2001; black, additional summer 2001 data; medium gray, 
additional winter 2002 data. Scatter diagrams of winter concentrations versus population 
density, and associated empirical regression curves: * winter 2001, + winter 2002. The 
three common samples are respectively indicated with x and o.

Figure 3. Principal component analysis of seasonal concentrations and auxiliary 
variables. Correlation circles of the first factors. Left: winter 2001 and summer 2001, 
right summer 2001 and winter 2002. : seasonal concentrations; : NOX emissions 
inventory; +: population density. The first factor represents respectively 67% and 49% 
of total variance.

 number 
of data 

density200 density1000 density1500 emission1000 

winter 2001 31 (36) 0.42 0.62 0.60 0.60 
summer 2001 42 (57) 0.24 0.24 0.20 0.47 
winter 2002 67 (88) 0.72 0.76 0.78 0.60 

Table 1. Correlation coefficients between NO2 seasonal concentrations and auxiliary 
variables with associated number of data. In parentheses, total number of concentration 
measurements. Some auxiliary information is missing.

Two Principal Component Analyses were performed on auxiliary information, summer 
concentration, and respectively winter 2001 or winter 2002 concentrations, keeping only 
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winter 2001 sampling points for the first one, and winter 2002 sampling points for the 
second one (Fig. 3). Population densities on different supports being highly correlated, 
only values for radius 200m and 1500m are retained. The relationships between 
concentration and auxiliary information slightly differ for the two data sets: for the first 
one, all the variables are rather well correlated, whereas for the second one the winter 
concentrations are mainly correlated with road emissions.
Table 1 (calculated on the whole data set for each season) confirms that the correlation 
between NO2 concentration and population density increases in winter, reflecting the 
influence of heating. The lower correlation in winter 2001 than in winter 2002 can result 
from the reduced range of the associated density values or reflects the influence of other 
emitters in the agglomeration centre. This correlation slightly varies with the support on 
which population density is given. The correlation of concentration and road traffic 
remains identical for the two different winter areas, and is lower in summer.
Thus the relationship between concentrations and auxiliary information depends on the 
local characteristics of the area. It is then necessary to check the validity of the 
variographic model before extending it to wider zones. An inadequate model can lead to 
nonsense results, as negative estimated concentration for example.

3.1.3 Relationships between winter and summer concentrations. 
The correlation between winter and summer concentrations (Figure 4) is high (0.82 for 
winter and summer 2001, and 0.72 for summer 2001 and winter 2002) and the scatter 
diagram almost linear. Winter 2001 concentrations are then more correlated with 
summer ones, and summer concentrations much more correlated with winter ones, than 
with auxiliary information. For winter 2002 concentrations, the correlation coefficient is 
slightly higher with population density than with summer concentrations.

Figure 4. Scatter diagrams of winter versus summer concentrations in Montpellier. The 
squares denote the two samples common for the three seasons.

In conclusion, in spite of differences between the two winters and the sampled areas, the 
detailed exploratory data analysis shows: 

- the presence of the expected relationships between NO2 concentrations and 
auxiliary variables depicting the urban context, 

- the importance of the local context for quantifying these relations. For 
example, winter concentrations are better “explained” by the population 
density in the suburban areas, 

- the lower correlation of concentration and auxiliary variables in summer, 
- the high correlation level between seasonal concentrations.  
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3.2 MEASUREMENTS DURING TWO SEASONS IN MULHOUSE 

3.2.1 Context and sampling
Mulhouse is an old industrial agglomeration of more than 110 000 inhabitants, located 
near Germany and Switzerland in the south of Alsace plain (north-east of France), under 
continental climate. 75 urban or peri-urban sites have been monitored for NO2

measurements during three fortnights in winter and in summer 2001. Because of 
technical problems, 62 seasonal measurements are available in winter, 59 in summer, 
and only 50 for the “yearly mean”, the sampling time representing about 25% of the 
year (Figure 5). 
The land use is given on a grid with 200m-resolution grid. Among the available land use 
classes, only the “dense building” is retained. Population density and NOx emission 
inventory, including road traffic and industry, are given on a 1km resolution grid.

3.2.2 Exploratory analysis
The spatial correlation statistics are indicative, the sampling sites being preferentially 
located towards the center of the agglomeration. For the “yearly” sites, the winter 
average, 28.4 g/m3, is strongly higher than the summer one, 16.2 g/m3

Figure 5. Mulhouse. Location (top left), scatter diagram (top right) and histograms 
(bottom) of seasonal NO2 measurements. High concentrations (in black for the 
histograms) are marked as squares on the map and the scatter diagram, and intermediate 
concentrations (light grey) as stars. The stations marked with have a high summer 

concentration and an intermediate winter one. Distances are in km on the map.

The associated standard deviations, respectively 7.2 and 6.0 g/m3, show that the 
variability increases with concentration, whereas the relative variability, given by the 
dispersion coefficient (the ratio of the standard deviation to the mean) is higher in 
summer than in winter (respectively 0.37 and 0.25).
Low concentrations are located at the same sampling sites in winter and in summer (Fig. 
5), mainly around the agglomeration. High summer concentrations correspond either to 
winter concentrations higher than 35 g/m3, or to intermediate winter concentrations 
located in the close suburb, near important traffic infrastructures. Apart from some of  

D. GALLOIS ET AL.
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those high seasonal values, the scatter diagram between winter and summer 
concentration is linear, with high correlation coefficient (0.82).

3.2.3 Relations with auxiliary information
Taking the translated logarithm of the auxiliary variables ( z

mlog 1 , z being the 

variable and m a normative factor, for example the mean) is an easy and robust way to 
linearise the relationships with concentration, as shown in the scatter diagrams (Figure 
6). This linearity will be useful for external drift (co)kriging, which assumes a local 
linear relationship between the main variables and the auxiliary information.
The contribution of heating in winter, and the consequences of summer road traffic 
explain the different location of the high seasonal concentrations. Indeed, the correlation 
coefficients are similar between winter concentration and the three auxiliary variables, 
whereas for summer concentrations, the correlation increases with the NOx emissions 
and decreases with the dense building land use (Figure 6 and Table 2). Note that all 
these coefficients are lower than the one between seasonal concentrations.

Dense building  NOx Population density 
winter 0.69 0.68 0.69
summer  0.57 0.73 0.67

Table 2. Correlation coefficients between the NO2 seasonal concentrations and the 
translated logarithm of auxiliary variables. 

Figure 6. Scatter diagrams of NO2 seasonal concentrations and auxiliary variables (TL 
for translated logarithm). 

3.2.4 Conclusions 
Despite the important differences of climatic and geographical context between the two 
agglomerations, some common conclusions can be drawn, mainly:

- the high correlation level between winter and summer NO2 concentrations, 
- some high correlation between winter concentration and auxiliary 

variables.
When looked in detail, the relationships between concentrations and auxiliary variables 
are different. The correlation with population density, similar in both seasons for 
Mulhouse is lower in summer for Montpellier.

Further estimations are mainly done by external drift kriging or cokriging with moving 
neighbourhood. The corresponding residuals being not available, the variograms are 
indirectly fitted by cross validation. We will then not present here the variograms of 
concentrations.
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4 Estimation of yearly NO2 concentration at Mulhouse 

As mentioned before, each seasonal data value is approximated by the average of three 
fortnight measurements, and the yearly concentration by their mean.
We compare the following estimations of the yearly concentration:

- kriging with external drift, from the annual measurements only, 
- average of the two seasonal kriging with external drift estimations, 
- cokriging with external drift from the seasonal measurements 

4.1 COKRIGING OF THE YEARLY MEAN

The non bias conditions for external drift cokriging of the annual mean 
1

1 22 Z (x) Z (x)  from seasonal data iZ ,i 1,2  are easily obtained. Setting 
i

i i iZ (x) R (x) a f (x) , where if  are the auxiliary variables (eventually after 

transformation such as log translation), and ia  the unknown deterministic coefficients, 

the estimator is written:
*1

1 2 x 1 x 22 Z (x) Z (x) Z (x ) Z (x ) . Assuming 

the ia  without relationships between them and between winter and summer values (i.e. 

for i 1,2 ), the non bias condition 1 2 1 2
*Z (x) Z (x) Z (x) Z (x)

2 2E 0  leads to 

1
x 1 12, f (x ) f (x)  and 1

x 2 22, f (x ) f (x) . In practice, the function 

1
if  is taken as constant, and the two conditions for 1 , also valid for cokriging with 

unknown means and without external drift, simply imply that the sum of the weights 
relative to each measurement period is equal to 1

2 .

It is not necessary to use the same auxiliary variables as drift for both seasons.

4.2 CROSS VALIDATION RESULTS

The classical cross-validation method is used to quantify the improvement of precision 
brought by auxiliary variables used as external drift or by the cokriging from the 
seasonal concentrations (Table 3). When available, the other seasonal data is retained at 
test point for cokriging. Different criteria (correlation coefficient between cross 
validation estimation and data, experimental variance of estimation errors, relative 
variance i.e. variance of the ratio of the estimation error to the data) indicate the same 
rank for the quality of the estimation, except for the kriging of annual concentration, 
with slightly different scores when comparing two sets of external drift. The main 
results are the following:
 - As for seasonal estimation (not shown), different auxiliary variables used as 
external drift give almost the same cross validation result. In practice, other criteria 
should be considered, mainly the resulting maps, to choose the most suited, following 
the practical knowledge of the air pollution phenomenon (Gallois, 2004).

D. GALLOIS ET AL.
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 - Using only the 50 yearly measurements considerably reduces the precision, 
compared to the average of both seasonal kriging, which takes into account all seasonal 
measurements.
 - Because of the high correlation between seasonal concentrations, cokriging 
drastically improves the cross validation results. As a seasonal measurement is not 
available on each cell of the estimation grid, this last cross validation result could be 
regarded as too optimistic. In fact, it has some very interesting practical consequences, 
for example to optimize measurement campaigns. 

model r (Z,Z*) Var error Var relative error 
K ED : Population, dense building .81 12.5 0.032 
K ED : NOx .82 11.8 0.035
Mean of seasonal K ED .85 10.2 0.030 
CK ED from seasonal data .95 3.4 0.011

Table 3. Cross validation results for “yearly” concentration. Kriging (K) and cokriging 
(CK) with external drift. 49 test points, because of moving neighborhood. r denotes the 
correlation coefficient between estimated and measured values and Var. the variance.

4.3 OPTIMIZING MEASUREMENT CAMPAIGNS

Because of the high correlation between seasonal concentrations, sampling the same 
sites during both seasons is partly redundant. Keeping the same number of data, 
sampling different sites in winter and summer would allow increasing the number of 
measured sites, so as to improve the estimation. Another possibility consists in removing 
one of the seasonal measurements, to decrease the sampling cost. 
To check the feasibility of a sparse sampling, 30% of the data are removed, letting 30% 
of the sites sampled only in winter, 30% only in summer, and the remaining 40% being 
sampled during both seasons. The data to be removed are randomly drawn in space. 
Keeping some sites common to both seasons is necessary to model the spatial structure, 
in particular the cross variogram. To evaluate the actual influence of the loss of 
information, a cross validation of the cokriging is realised by suppressing and re-
estimating successively a quarter of the stations. The model used (variograms, external 
drift…) is first the one drawn with all the information. 
The experimental mean quadratic error on the yearly concentration is 11.7 for the 
reduced sampling, and 10.1 for the whole one (on exactly the same yearly sites). The 
precision of the estimation is only slightly reduced compared to the saving of 30% of 
measurements. Moreover, cokriging maps are very similar, whether computed with 
complete or reduced data. Two other reduced samplings were tested in the same way, 
changing the sets of removed data. They gave roughly the same results. 

For more consistency, the model should be drawn from the reduced sampling. Therefore 
a new variogram is now fitted using the 70% retained data, a little different from the 
previous model. The new mean quadratic error on the yearly concentration becomes 
10.0: the estimation seems as good as when using all measurements. In fact, re-drawing 
the model allows making it more appropriate to the reduced sampling. With this new 
model, the estimated map differs from that calculated using all measurements (Fig. 7), 
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but the major differences are located on the edge of the map, where estimations are 
unreliable. The conclusion remains the same if another reduced data set is used. 

As a conclusion, the high correlation between seasonal concentrations allows to 
significantly reduce sampling costs, without diminishing the precision level. In practice, 
it is necessary to keep enough samples common to both seasons to verify the validity of 
the multivariate variogram model, distributing them regularly not only in the geographic 
space but also in the space of auxiliary variables. 

Figure 7. Cokriging of the yearly concentration from seasonal measurements, using all 
(left) or 70% of the data (right).
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A STEP BY STEP GUIDE TO BI-GAUSSIAN DISJUNCTIVE KRIGING 
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Abstract. The Disjunctive Kriging formalism has been implemented for a number of 
tasks in geostatistics. Despite the advantages of this formalism, application has been 
hindered by complex presentations and the lack of simple code. This paper goes through 
the steps to perform Disjunctive Kriging in a simple case. The global stationary 
distribution of the variable under consideration is fit by Hermite polynomials. The 
coefficients of this polynomial expansion fully define the relationship between the 
original values and their normal score transforms. Disjunctive Kriging amounts to using 
simple kriging to estimate the polynomial values at unsampled locations. The estimate 
of the variable is built by linearly combining the estimated polynomial values, weighted 
by the coefficients of fitting of the global distribution. These estimated values 
completely define the local distribution of uncertainty. It is straightforward to implement 
this formalism in computer code; this paper attempts to provide a clear exposition of the 
theoretical details for confident application and future development. 

1 Introduction 

Disjunctive Kriging (DK) has been available for more than 25 years; however the 
seemingly complex theory makes it unappealing for most practitioners. DK is a 
technique that provides advantages in many applications. It can be used to estimate the 
value of any function of the variable of interest, making it useful to assess truncated 
statistics for recoverable reserves. DK provides a solution space larger than the 
conventional kriging techniques that only rely on linear combinations of the data. DK is 
more practical than the conditional expectation, since it only requires knowledge of the 
bivariate law, instead of the full multivariate probability law of the data locations and 
locations being estimated (Maréchal, 1976; Matheron, 1973, 1976a, 1976b; Rivoirard, 
1994). The theoretical basis of DK is sound, internally consistent, and has been 
extensively developed and expanded, among geostatisticians (Armstrong and Matheron, 
1986; Emery, 2002; Maréchal, 1984; Matheron, 1974, 1984). In practice, those 
developments have not been applied to their full potential. DK has been applied mainly 
with the use of Hermite polynomials and the bivariate Gaussian assumption (Guibal and 
Remacre, 1984; Webster and Oliver, 1989). Still, relatively few practitioners have 
mastered DK. The discomfort of many practitioners is due in part to the difficult 

1097

© 2005 Springer. Printed in the Netherlands.
O. Leuangthong and C. V. Deutsch (eds.), Geostatistics Banff  2004, 1097–1102. 



1098 J. M. ORTIZ, B. OZ AND C. V. DEUTSCH 

literature focussed on theory rather than applications. This work aims to present DK in a 
rigorous manner, with greater focus on its practical aspects. 

We start by presenting some background on Hermite polynomials, the bivariate 
Gaussian assumption, and then introduce DK and its implementation steps. More 
extensive theory can be found in Chilès and Delfiner (1999) and Rivoirard (1994). 

2 Hermite Polynomials

Before getting into DK, we need to define and review some of the properties of Hermite 
polynomials. This family of polynomials is important because it will help us 
parameterize Gaussian conditional distributions later on. Hermite polynomials are 
defined by Rodrigues' formula: 

0
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ygd

ygn
yH

n

n

n

where n  is the degree of the polynomial, !n  is a normalization factor, y  is a 

Gaussian or normal value, and )(yg  is the standard Gaussian probability distribution 

function (pdf) defined by 2/2

2/1)( yeyg . For a given value of y  the 

polynomial of degree n , )(yH n , can easily be calculated. A recursive expression, 

useful for computer implementation, exists to calculate polynomials of higher orders: 
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These polynomials have the following properties: (1) Their means are 0, except for the 
polynomial of degree 0, which has a mean of 1; (2) Their variances are 1, except again 
for the polynomial of order 0 which is constant and therefore its variance is 0; and (3) 
the covariance between )(YH n  and )(YH p  is 0 if pn . This property is known as 

orthogonality and can be understood in the same manner as the factors and principal 
components in multivariate statistical analysis; they correspond to uncorrelated 
components of a function of Y . Of course, if pn  the covariance becomes the 

variance of )(YH n . A covariance of zero is sufficient for full independence if the 

bivariate distribution is Gaussian. 

Hermite polynomials form an orthonormal basis with respect to the standard normal 
distribution, other polynomials families can be considered if a different transformation 
of the original variable is performed (Chilès and Delfiner, 1999). 

2.1 BIVARIATE GAUSSIAN ASSUMPTION 

Consider the variable Y  distributed in space. We can define the random function model 
Domain),( uuY , where u  is a location vector in the three-dimensional space. 
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Taking a pair of random variables )(uY  and )( huY  considered stationary, we say 

they are standard bivariate Gaussian if: 

1)(

)(1
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0
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h
µµhuu withNYY

Notice that these two terms, the mean vector and variance-covariance matrix, fully 
define the bivariate Gaussian distribution of )(uY  and )( huY . The correlogram )(h

gives all the structural information of the bivariate relationship.

Under this assumption, one additional property of Hermite polynomials is of interest. 
The covariance between polynomials of different order is always 0, and if the order is 
the same, it identifies the correlation raised to the polynomial's degree power, that is: 

otherwise0

if)(
)(,)(

pn
YHYHCov

n

pn

h
huu

The only term that is left is the covariance between polynomial values of the same 
degree for locations separated by a vector h . Since 1)()( 0h , this spatial 

correlation tends rapidly to zero as the power n  increases, that is, the structure tends to 
pure nugget. 

2.2 FITTING A FUNCTION WITH HERMITE POLYNOMIALS 

Any function with finite variance can be fitted by an infinite expansion of Hermite 
polynomials. The idea is to express the function of y  as an infinite sum of weighted 

polynomial values: 
0

)()(
n nn yHfyf uu

The only question that remains is how to find the coefficients 0, nf n . This can be 

done by calculating the expected value of the product of the function and the polynomial 
of degree n :
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The expected value can be taken inside the summation, since it is a linear operator and 
the coefficients pf  are constants. Notice that the expected value of the product of 

polynomials of different degrees corresponds to their covariance. The property of 
orthogonality comes in so that all terms where np  equal zero and we only have the 

one where np . In this case, the covariance becomes the variance that equals 1. We 

then obtain the expression for the coefficient nf . It is worth noting that the coefficient 

of 0 degree corresponds to the mean of the function of the random variable.
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The practical implementation of this expansion calls for some simplifications: the 
infinite expansion is truncated at a given degree P . The truncation causes some minor 
problems, such as generating values outside the range of the data. These values can 
simply be reset to a minimum or maximum value. If the number of polynomials used is 
large enough, these problems are of limited impact. 

3 Disjunctive Kriging 

Disjunctive Kriging (DK) allows the estimation of any function of )(uZ , based on a 

bivariate probability model. A bivariate Gaussian distribution of the normal scores of 
the data is almost always chosen. DK provides the solution that minimizes the 
estimation variance among all linear combinations of functions of one point at a time. 

In simple words, DK relies on the decomposition of the variable (or a function of it) into 
a sum of factors. These factors are orthogonal random variables, uncorrelated with each 
other, and therefore the optimum estimate can be found by simple kriging each 
component. Consider a random variable Z and a transformed random variable Y , in 
general its Gaussian transform. The disjunctive kriging estimate finds the family of 
functions of Y  that minimizes the estimation variance. Under a particular bivariate 
assumption, an isofactorial family of functions can be found. Under the bivariate 
Gaussian assumption, this family is the Hermite polynomials. However, other 
transformations can be done, in which cases different orthogonal polynomials must be 
used. They are called isofactorial families because they decompose the function of the 
random variable into factors that are spatially uncorrelated. Although in the general case 
the DK estimate is obtained by simple cokriging of the functions of different order, if 
these are uncorrelated from each other, just a simple kriging of the functions of the same 
order and their posterior linear combination suffices to obtain the best estimate. 

The DK estimate is presented next under the bivariate Gaussian assumption using 
Hermite polynomials: 

0
)()(

p

SK
pp

DK YHfYf uu

The expansion is generally truncated at a degree P , usually under 100. To calculate the 
DK estimate, the normal score transformation of the data is necessary. Then, the spatial 
covariance of the transformed variable )(h  is calculated and modelled (it is the 

correlogram, since it has unit variance). The Hermite polynomials are computed for all 
the transformed data up to a degree P . Finally, the coefficients of the Hermitian 
expansion can be calculated. Simple kriging is performed P  times. The estimate of the 
Hermite polynomial at an unsampled location u  is calculated as: 

0)()(
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where ip,  is the simple kriging weight for datum )( iy u  and the degree p ; )(un  is the 

number of samples found in the search neighborhood used for kriging. Notice that the 
term for the mean is not present, since the mean value of the Hermite polynomial is 0, 
for all 0p . Also, note that the SK estimate for the polynomial of degree 0 is 1. 

The weights are obtained by solving the following system of equations: 



BI-GAUSSIAN DISJUNCTIVE KRIGING 1101

p
n

p

np

p

p
nn

p
n

p
n

p

)(

)(

)()(

)()(

0),(

0,1

)(,

1,

)(),(1),(

)(,11,1

uuuuu

u

We can now rewrite the DK estimate as: 
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4 Implementing DK 

Implementation of disjunctive kriging requires the following steps and considerations: 

1. The original data )(),...,( 1 Nzz uu must be transformed to normal scores 

)(),...,( 1 Nyy uu .

2. The Hermite polynomials of each data are calculated up to a degree P :
NiyHyH iPi ,...,1,)(,...,)(1 uu .

3. The coefficients Ppf p ,...,1,  are calculated. Notice that the function 

))(( uYf may simply correspond to the inverse transformation function from 

Z  to Y , or it may be a more complex function of Y . The coefficients are 
calculated as a discrete sum. For example, if the function is the inverse 
transformation to normal scores, then: 
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If the function is the probability for the node to be below a threshold, that is, its 
indicator function, then: 
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The coefficients can be calculated in the same manner for any function of Y .
4. The variogram of normal scores must be calculated and modelled. This 

provides us with the correlogram, which fully defines the spatial continuity for 
polynomials of different degree. 

5. At every location to be estimated, P  simple kriging systems are solved, one 
for each degree of the polynomials, using the covariance (correlation) function 
modelled for the normal scores raised to the power p  of the degree of the 

polynomial being estimated. These systems provide a set of estimated Hermite 
polynomials for the unsampled location, which are then linearly combined 
using the coefficients calculated in Step 3: 
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P
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5 Conclusions 

This paper presents the methodology to estimate the value of a regionalized variable at 
an unsampled location by Disjunctive Kriging, under the bivariate Gaussian assumption. 
The use of the Hermite polynomials as an isofactorial family was discussed and the most 
fundamental equations were presented. The methodology presented here could be 
extended to other transformations using different isofactorial families.
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Abstract. We assess the power of a test used to detect Zones of Abrupt Change
(ZACs) in spatial data, in the center of a moving window. Mapping the power
allows to identify zones where ZACs may be detected.

1 Introduction

Allard et al. (2004) and Gabriel et al. (2004) proposed a method for detecting
Zones of Abrupt Change (ZACs) for a random field, Z(·), defined on D ⊂ R2.
ZACs are defined as a discontinuity or a sharp variation of the local mean. The
method is basically a test based on the estimated local gradient, where the null
hypothesis H0(x): “E[Z(y)] is constant for all y in a neighborhood around x” is
tested against the alternative H1(x): “x belongs to Γ”, where Γ is a curve on which
the expectation of the random field is discontinuous.

In this paper, the power of this test is investigated. For calculating a power,
the alternative must be fully specified: at a point x, we will assume that Γ has a
regular shape and can be locally approximated by a line with unknown direction
containing x. The punctual power is then computed for each point x of D. The local
power of a small window F centered on x is also considered. The difference between
the punctual power and the local power is that several local test statistics are used
for computing the local power. These local test statistics are not independent and
computing the local power must take into account these dependencies. Mapping
punctual or local power shows clearly that the power is not constant on the domain.
Zones with low power indicate that the local sampling pattern is not appropriate
for estimating ZACs, in particular because the local sampling density is too low.

This paper is organized as follows. The method for detecting ZACs is described
in section 2 and the assessment of the power is presented in section 3. In section
4, theoretical results are illustrated on soil data of an agricultural field on which
previous analysis has shown sharp transitions between different zones. It is shown
how the sampling density directly affects the possibility of detecting the ZACs.
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2 Detecting Zones of Abrupt change

In this section we only present the main features of the method for detecting ZACs
and we refer to Allard et al. (2004) and Gabriel et al. (2004) for more details.

Z(·) is assumed to be a Gaussian random field. We assume the covariance
function of Z(·) exists, is stationary :

∀x, y ∈ D, Cov(Z(x), Z(y)) = CZ(x − y),

and regular enough. Assuming second order stationarity with known expectation
m, we can consider without loss of generality that m = 0. The interpolated local
gradient is according to Chilès and Delfiner (1999),

W ∗(x) = ∇Z∗(x) = (∇C(x))′C−1Z, (1)

where Z∗(x) = C ′(x)C−1Z the simple kriging of Z(·) at an unsampled location
x, C(x) = (CZ(x − x1), . . . , CZ(x − xn))

′
, C = E[ZZ

′
] is the covariance matrix

with elements C[ij] = CZ(xi − xj) and Z = (Z(x1), . . . , Z(xn))
′

is the sample
vector. In general, the expectation is unknown and the spatial optimal predictor
is the ordinary kriging (Cressie, 1993). In this case, we replace C−1 by K−1 =
(C−1 − C−111′C−1)/1′C−11 in (1) and the method remains formally identical.

Detecting ZACs consists in testing the null hypothesis H0: “E[Z(x)] = m for
all x ∈ D” versus H1: “the discontinuities of E[Z(·)] define some set of curves Γ”.
To discontinuity jumps correspond local high gradient of the interpolated variable,
denoted Z∗. This global test is the aggregation of local tests.

2.1 LOCAL DETECTION OF A DISCONTINUITY

First, we test H0(x) : “E[Z(y)] = 0, locally, for all y in a neighborhood around x”,
versus the alternative H1(x) : “x ∈ Γ”. Let us denote Σ(x) the covariance matrix
of the interpolated gradient. Then, under H0(x) the statistic

T (x) = W ∗(x)
′
Σ(x)−1W ∗(x)

has a χ2(2) distribution. The local null hypothesis is rejected if T (x) ≥ tα, where
tα is the (1 − α)-quantile of the χ2(2) distribution.

This procedure can be applied on the nodes of a grid superimposed on the
domain D under study, which enables us to map the regions where the local test is
rejected. We define potential ZACs as: {x : T (x) ≥ tα}. The size of the potential
ZACs depends on α: when α decreases, ZACs become smaller; but the depth of
the ZACs are linked to the sample density: high sample density leads to better
detection and more precision about the location of ZACs.
If the random field is stationary, we should find a proportion of about α pixels in
which H0(x) is rejected. The tests in neighboring grid nodes are not independent,
so we should expect the grid nodes where H0(x) is rejected to be structured in ran-
domly located small patches. On the contrary, if there is a discontinuity, or a sharp
variation, of the expectation field, we must expect the grid nodes where H0(x) is
rejected to be much more numerous and located on, or near, the discontinuity Γ.
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2.2 GLOBAL TEST FOR POTENTIAL ZACS

We aggregate the local tests in the global test using the following result. Under
H0 the size of a potential ZAC, say Stα

, is related to the curvature of T at the
local maxima in the potential ZAC, according to

tαStα det(Λ)1/2/π
L→ E(2), as tα → ∞,

where E(2) is an exponential random variable with expectation 2 and Λ is the
2× 2 matrix of the curvature of T at local maximum in the potential ZAC, whose
expression only depends on CZ(h) and the sampling pattern and can be found in
Allard et al. (2004). When tα is very large, there is a high probability that at most
one potential ZAC exists on D under H0 and testing on each potential ZAC is then
equivalent to testing on the entire domain D. At a global level of confidence 1− η,
H0 will be rejected if exp

(
−tαStα

det(Λ)1/2/2π
)

< η. In this case the potential
ZAC is significant and is called a ZAC.

2.3 DETERMINATION OF α AND COVARIANCE ESTIMATION

The value of the local level of confidence 1 − α that achieves the global one 1 − η
is a function of η, but also depends on other parameters such as the mesh of the
grid on which computations are performed, the range parameter of the covariance
function, the density of samples, etc. The appropriate level α is found by Monte-
Carlo simulations under H0: a series of N simulations of a Gaussian field under
the null hypothesis, conditional on the same discretization, sample locations and
covariance function is performed. The level α̂ corresponding to η is then defined
as α̂ = sup{α : Mα ≤ ηN}, where Mα is the number of simulations (among N)
with significant ZACs.

The method assumes that the covariance function is known. In practice, it
must be estimated along with the potential ZACs. In a simulation study, we
showed (Gabriel et al., 2004) that our method is robust with respect to rea-
sonable variations of the covariance parameters (range and parametric family).
Under the alternative hypothesis, the presence of discontinuities of the expectation
field implies an overestimation of the variance and consequently a loss of power
of the method. To solve this difficulty, we proposed an iterative procedure, in
which the covariance function, α and ZACs are estimated at each step. In the
covariance estimation all pair of samples {Z(xi), Z(xj)} for which the segment
[xi, xj ] intersects a potential ZAC are discarded from the estimation procedure.
Convergence is reached when the set of ZACs remains unchanged.

3 Power of the local test

The power of the local test corresponds to the probability to reject the null hy-
pothesis of stationarity under the alternative of existence of a discontinuity. The
problem is that the shape of the discontinuity must be specified in order to assess
the poxer of the test. The method presented above leaves free the shape of the
Zones of Abrupt Change. For assessing the power, we suppose that the disconti-
nuity has a regular shape. This hypothesis allows us to approach the discontinuity
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by its tangent at the point where the power is assessed. Therefore, we consider the
following alternative hypothesis : E[Z(x)] presents a discontinuity represented by
a line containing x. Under this alternative,

W ∗(x) = W ∗
H0(x) + ka(x) = (∇C(x))′C−1Z + (∇C(x))′C−1A(x),

where A(x) is a n-vector. Its elements are ±a/2 depending on which side of
the discontinuity the data point is located. The power must take into account all
the information contained on D. As the local test statistics are not independent,
computing the power is difficult. Hence, we will calculate the power at a point x
using the information contained in the neighborhood around x. We consider x to
be the center of a window Fk ⊆ D containing (2k + 1) × (2k + 1) pixels. For an
increasing sequence of windows, F0 ⊆ F1 ⊆ . . . ⊆ Fk ⊆ . . . ⊆ D, we thus obtain
an approximation of the power:

1 − β(F0) ≤ 1 − β(F1) ≤ . . . ≤ 1 − β(Fk) ≤ . . . ≤ 1 − β. (2)

Because the orientation of the discontinuity is unknown, we consider a uniform
orientation:

1 − β(Fk) =
1

π

∫ π

0

{1 − β(Fk(θ))} dθ, =
1

π

∫ π

0

PH1(x,θ)[H0(x) is rejected]dθ.

H1(x, θ) is the existence of a linear discontinuity containing x and with angle θ.

PUNCTUAL POWER

To calculate the power at the center of the minimal window F0 = {x}, we use
the decomposition of T (x) as the sum of two non independent squared gaussian
random fields with variance 1, U1(x) and U2(x), centered under H0 and with
expectation µi(x; a, θ), i = 1, 2 in presence of a discontinuity. The power on x is:

1 − β(F0) =
1

π

∫ π

0

{1 − β(F0(θ))} dθ, with 1 − β(F0(θ)) = 1 − Fχ2(2, µθ(x))(tα),

where µθ(x) =
∑2

i=1 µ2
i (x; a, θ) is the non-centrality parameter.

LOCAL POWER

Using the parametric form of the circle U2
1 (x) + U2

2 (x) = t:

U1(x) =
√

t cos(ω), U2(x) =
√

t sin(ω), (3)

the power on x considering the information contained in a window Fk having N
points x1, ..., xN is:

1−β(Fk)=
1

π

∫ π

0

{1 − β(Fk(θ))} dθ, with 1−β(Fk(θ))=
1

2N

∫

ω∈[0,2π]N

∫

t∈[tα,∞)N

fVθ (v)dtdω,

where Vθ is a 2N -gaussian vector with elements U1 and U2 in x1, ..., xN under
the alternative, fVθ

is its density, and the parameters t = (tx1 , ..., txN
)′, ω =

(ω1, ..., ωN )′ come from (3).
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4 Application to a soil data set

The data considered here are the soil water content (mm), sampled in October 2000
and August 2001 in an agricultural field (10 ha) in Chambry, Northern France, on
a pseudo-regular grid with 66 and 77 points respectively for each date (distance
between nodes = 36 m). These variables are presented in the following table:

Date Min. 1st Q. Median Mean 3rd Q. Max. σ

October 2000 136.7 232.9 257.1 270.7 313.2 412.5 49.47

August 2001 130.6 240.0 261.7 275.6 318.5 448.1 54.64

In figures 4a and 4c, the interpolation map of the variables on a 62 × 98 grid
display high (resp. low) values in light (resp. dark) grey. Samples are superimposed
on these images. It seems that the total moisture is lower in the Northern part
of the field than in the Southern one. A zone with lower moisture is also visible
in the Eastern part. The results of the analysis are shown in figures 4b and 4d.
Significant ZACs are depicted in black. Two ZACs near the edge of the central part

Figure 1. a) and c): Interpolation and sampling pattern, b) and d): ZACs
(significant in black).

of the field appeared for both dates. For October 2000, the ZAC in the Western
part is not significant. In the central part no ZAC is estimated because this area
corresponds to a smooth transition. Applying the method to the soil water content
for about ten dates (from March 2000 to July 2003), we showed that the ZAC in
the Western part is permanent. It is only badly detected for October 2000. It can
be due to the lack of sample points in the South-Eastern part of the field for this
date. The assessment of the power at each pixel allows to confirm this result. The
practical implementation leads to consider a square window of sidewidth 2k + 1
pixels. The window is moved on the domain and the power is assessed for different
size: k ∈ {0, 3, 5} with a discontinuity a = 3 standard-error (respectively figures
2a, 2b, 2c for October 2000 and figures 2d, 2e, 2f for August 2001). The power is
the mean of 1 − β(Fk(θ)) calculated for four directions of the discontinuity. The
case k = 0 corresponds to the punctual power. Light grey represents values near 1
and the dark one near 0.

These results illustrate the inequalities (2): the larger the window, the higher
the power. If we compare these results and the ones in figures 4b and 4d, we see
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Figure 2. Punctual (k = 0) and local (k ≥ 1) power assessed in the center of a
squared moving window with sidewidth 2k + 1 pixels.

that even if the ZACs obtained in the Eastern part of the field for August 2001
would exist in October 2000, they could not be detected. The zone with low power
define the place where the local sample density is too weak for detecting potential
ZACs.

5 Discussion

We approximated the power of the ZAC detection test assessed in the centre x of a
moving window F . Mapping the power allows to display the zones where the local
sampling pattern is not appropriate for estimating ZACs because its local density
is probably too low.

There is still an open question: for which size of the window can we consider
that we have a good approximation of the power ? One might think that the
window must be as large as possible to take into account all the information
provided by the sample locations. For example, considering a window size equal
to the practical range leads in our experience to quite large windows, probably
larger than appropriate. Indeed, as the window increases the approximation of the
discontinuity by its tangent becomes less acceptable. The optimal window size is
thus the result of a trade-off and further research based on simulation studies are
necessary.
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Abstract

In flow related studies, data comes from widely different volume supports, each 
involving different non-linear, multiple-point averages. The redundancy of these data 
and their respective information contents with regard to a reference variable (the 
unknown) are evaluated using a common, large and finely gridded 2D training image 
(Ti). A consistent vector of data mimicking well log data, well test data and large scale 
seismic impedance data together with the reference flow-based effective permeability 
values of constant size blocks (the unknown) are first obtained from the fine gridded Ti. 

The complex joint dependence between sets of these variables are investigated through 
conditional probabilities directly read from the Ti vector. The exactly fully conditional 
probability of the unknown is obtained directly from that Ti vector.

The individual single-datum conditional probabilities from different supports are 
combined together using the tau model (Journel, 2002). The exact tau weights are 
computed using knowledge of the joint distribution from the Ti-vector. These exact 
weights are compared with weights obtained from a calibration-based technique. It is 
shown that using the tau weights corrects for the severe bias resulting from algorithms 
which would assume the data to be conditionally independent. 

Introduction

Probabilistic data integration is an important problem in many branches of earth 
sciences. Data coming from different supports and measurement devices inform about 
an unknown in varying degrees. Such information can be represented as conditional 
distributions of the unknown given the data. Here, we consider the problem of 
combining various such probabilistic data arriving from different supports. Using the tau 
model, we demonstrate that accounting for data redundancy is critical, and ignoring it 
can lead to severe bias and inconsistencies. 

The data set 

Figure 1 shows the reference data set. Figure 1a shows the fine support permeability 
distribution of size 500 x 500. This has been generated using the sequential simulation 
program sgsim (with locally varying mean) (Deutsch and Journel, 1996) using a 
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 variogram range of 30 and 10 in  East-West (E-W) direction and North-South (N-S) 
respectively. Further, randomly located low permeability shales of average length 50 
pixels in the E-W direction and 5 pixels in the N-S direction were superimposed on this 
high-perm matrix. Figure 1b has been obtained as a geometric average of this fine 
support data over a 11 x 11 window. This represents the support of interest, say of input

into a flow simulator which predicts the transport of fluid through the geological 
medium. Figures 1c and 1d represent two different types of flow based well-test 
averages. Each was obtained by a different combination of power averages. Data shown 
in Figure 1c is obtained by an arithmetic average of 8 radial harmonic averages 
representing radial flow outwards. Data shown in Figure 1d is obtained by a harmonic 

Figure 1: Vectorial training image: a) fine scale, b) 11 by 11 geometric average,  c) 
Radial well-test, d) Annular well-test and e)  51 x 51 linear averages
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average of annular geometric averages representing  regions of radially outward flow.  
Figure  1e shows a large-scale linear average over  a 51 x 51 window. This represents
Data obtained from a seismic type survey. 

One measure of flow-based information provided by data from any support is the 
multiple-point connectivity at that particular support (Krishnan and Journel, 2003). This 
measure of connectivity is defined as the proportion of connected strings of pixels in a 
particular direction (with values greater than a threshold limit). This can also be 
interpreted as the probability P(A) of observing a string of connected pixels of a given 
length. Here, we use the upper quartile as the threshold for high-valued pixels. 

The lowest curve in Figure 2 is the marginal connectivity in East-West direction for the 
reference image of Figure 1b at the 11 x 11 support. Note that the connectivity at lag 1 is 
equal to the proportion 0.25 of high valued pixels and it drops steadily with increasing 
lag, i.e., P(A) drops from 0.25 to 0. 

Now consider the concept of 
conditional connectivity. Generally, we 
do not have data defined at the 
resolution of our model, here at the 11 
x 11 support. One has to infer the 
statistics at this support, given data 
from  other supports. Provided we can 
compute the connectivity at the point 
support, what is the connectivity at the 
11 x 11 support? The conditional
connectivity P(A|Di) denotes the 
probability of observing a connected 
string A at the 11 x 11 support, given 
Di , i.e., a colocated set of connected 
pixels at another support. Here D1 is

the point support, D2 is the first well-test, D3 is the second well-test and D4 is the 
seismic-based average. Figure 2 shows these individual conditional connectivities as 
well as the joint connectivity P(A|D1, D2, D3 ,D4). Here, note that each of the four data 
Di yields a probability greater than the marginal probability P(A). The overall 
probability P(A|D1, D2, D3 ,D4) is greater than all these individual agreeing information. 
This strong compounding of information implies that a simple linear averaging of all 
these probabilities would result in a too low estimate of the joint probability. Note that 
the computed connectivity values at higher lags are less reliable due to ergodic limits. A 
more detailed study of the multiple-support relationships between data D1 through D4 is 
performed in a recent PhD thesis (Krishnan, 2004).  In order to properly combine these 
different individual information P(A|Di), one needs a technique which accounts for 
redundancies between the 4 data and allows for compounding, in this case, P(A|D1, D2,
D3 ,D4) > max{P(A|Di), i=1,…,4}. Such a formula is the tau model developed 
extensively in the companion paper within this volume (Krishnan et al, 2004).

Figure 2: Marginal and conditional 
probabilities:
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The Tau model 

Given the marginal probability P(A) and conditional probabilities P(A|Di), the tau model 
(Journel 2002; Bordley, 1982) gives an expression to compute the combined probability 
P(A|D1,…,Dn). Define the following distances to the event A occuring (A is a connected 
string of a given length at the 11 x 11 support) : 

 The target distance x is given by: 

The combined conditional probability P(A|D1,…,Dn) is given by 1/(1+x) and it always 
lies in [0,1]. 
The tau model gives the unknown distance x as: 
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One can average the tau weights over all possible sequences, s = 1, … , S, i.e. in case of 
4 data we would have 4! = 24 such sequences. That would give the averaged weights 

i . Taking product of different tau model expressions will show that these averaged tau 

weights i  are also exact and would retrieve the combined probability P(A|D1,…,Dn).

It is also shown in the companion paper that assuming the data to be conditionally 
independent given the unknown would result in equal tau weights of 1. Note that the 
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reverse is not necessarily true. In other words, putting the tau weights equal to 1 is not 
equivalent to assuming conditional independence, it is a slightly less restricting 
assumption.

The companion paper 
suggests a calibration 
technique to approximate 
the tau weights. Instead of 
evaluating the joint 
dependency between all 
data, the method involves 
first an information content-
based ranking of the data. 
Then, the most informative 
datum receives a maximum 
weight of 1, and any other 
datum Di receives a weight 
restricted to be in [0,1]. 
This weight is a function of 
the conditional correlation 

i of datum Di with the most Figure 3: Exact tau weights i

informative datum D1 : 

(3)t))-log(1/(1=f(t);[0,1] t ;)(-1=1;= )(2
i1

tf
i

This method involves a calibration parameter t which can be computed from training 
information.

Evaluating the tau weights

The tau weights are used to evaluate the combined probability P(A|D1, D2, D3 ,D4) from 
the four individual datum conditional probabilities. Here, we compute the tau weights 
using both the exact expression (2) and the calibration-based approximation (3). The 
vectorial Ti data described before is used in both cases. Figure 3 shows the exact tau 

weights i  and Figure 4 shows the tau weights from calibration. The exact tau weights 

using (2), then averaged over all possible sequences, are quasi-constant and are 
reasonably equal one to each other. On the other hand, defining a data sequence, setting 
the tau weight equal to 1 for the most informative datum and restricting the others in 
[0,1], results in all data other than the first, receiving a much lesser weight. Note that the 
point support (D1) receives maximum tau weight in Figure 3 and the largest support (D4)
receives the least weight. The approximate invariance of these exact weights (Figure 3) 
with lag along with significant deviation from 1, implies strong dependencies between 
data which do not change much with the string length (abscissa axis). 

The approximated tau weights from Figure 4, though computed from the exact training 
information, consider only 2-data dependency, hence do not reflect behavior similar to 
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those in Figure 3. Other calibration techniques are presently in development to mimic 
better the behavior of the exact tau weights.

Figure 4 : Tau weights computed using the calibration technique 

Impact of conditional independence 

Conditional independence (CI) amounts to setting all tau weights equal to 1. We 
compare the estimate of P(A|D1, D2, D3 ,D4) resulting from CI with the true 
experimental probability obtained from the vector-Ti. Figure 5 shows this comparison. 
Note here that the tau estimate identifies the true probability since we have used an exact 
training information. Here, the assumption of CI ignores data redundancy, giving 
maximum importance to each datum. Therefore it results in an incorrect maximum 
compounding of information P(A|D1, D2, D3 ,D4)  1 at all lags: information are 
compounded so much that the combined probability reaches the maximum of 1 at all 
lags.
Many data combination algorithms for example Bayes nets (Pearl, 2000) and Markov 
chain-Monte Carlo based algorithms make extensive use of conditional independence. 
The maximum data compounding induced by such hypothesis may result in severe bias. 
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Figure 5: Comparing estimate from conditional independence ( i = 1) with
                tau estimate and the true probability P(A|D1,D2,D3,D4)

Conclusions:

This paper shows the generality of the tau model in handling complex dependencies 
between data. Here, the dependency between multiple-point data coming from different 
supports is handled using the tau weights. In general, this model can be used to combine 
probability information derived from any source, spatial or not. One can to devise 
innovative methods to represent the data redundancy for different examples. The tau 
model framework allows to account for joint dependency between data as opposed to 2-
point or 2-data dependence typical of many estimation techniques. Therefore, efforts 
must be made to evaluate such joint data dependence. One way to do that is outlined in 
this paper through the concept of a vectorial training image. As shown here, ignoring 
this data dependence can be costly and making assumptions such as conditional 
independence are seldom safe. 
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Abstract. Spatial variability in the physical and chemical properties of aquifers plays an 
important role in field-scale sorbing solute transport. Stochastic simulation of random 
functions can provide equiprobable maps of important aquifer parameters from a limited 
data set that can be use as input for making predictions of the movement and mixing of 
contaminated plumes. However, although this is the most powerful tool, this method 
requires large computational CPU-times. Stochastic solutions of flow and solute 
transport not only can be used to determine first-order approximations of the solution of 
the forward flow and transport problems but also can be conveniently employed to solve 
the inverse problem. However, these analytical solutions inherit very restrictive 
assumptions that need to be validated. Stochastic simulations of solute transport in 
highly stratified aquifers with spatially varying hydraulic conductivity and retardation 
factors were conducted to examine the validity of first-order stochastic analytical 
solutions for the travel time variance of breakthrough curves (BTCs) obtained at several 
control planes perpendicular to the mean flow direction. First, it is shown how to 
accurately calculate the temporal moments of BTCs and its ensemble average in particle 
tracking transport codes without having to evaluate the actual BTC from the distribution 
of particle travel times. Then, this methodology is used to evaluate how accurate small 
perturbation stochastic analytical solutions are. It is seen that theoretical stochastic 
predictions are valid for 2

lnK up to 1.0. For very heterogeneous aquifers, stochastic 
predictions will largely underestimate the travel time variance of BTCs. 

1 Introduction 

Solute transport in aquifers is greatly influence by natural heterogeneity. The concept of 
random functions offers a convenient way of describing the spatial variability in aquifer 
properties. For instance, stochastic simulation of random functions can provide 
equiprobable maps of hydraulic conductivity and retardation factors from a limited data 
set that can be used for making predictions of the movement and mixing of 
contaminated plumes. That is, these maps of aquifer properties can be used as input 
parameters in flow and solute transport solvers to generate equiprobable solutions of the 
transport problem. However, although this is the most powerful tool, this method 
requires large computational CPU-times. Under some restrictive assumptions, including 
stationary of the log-hydraulic conductivity (lnK) field, simple boundary conditions 
(infinite aquifer extension), negligible local dispersivity, uniform flow and mild 
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heterogeneity (variance of lnK, 2
lnK < 1), analytical stochastic solutions of flow and 

solute transport are available. Despite the fact that these analytical solutions have 
enormously improved the knowledge of solute transport in heterogeneous aquifers, these 
analytical expressions not only can be used to determine first-order approximations of 
the solution of the forward problem but also can be conveniently employed to solve the 
inverse problem. In addition, they can also be used to verify flow and solute transport 
codes in heterogeneous aquifers. 

Within this context, we examine the robustness of these analytical expressions by means 
of three-dimensional stochastic simulations of linearly sorbing reactive solute transport 
in highly stratified physically and chemically heterogeneous aquifer under different 
degrees of heterogeneity. Specifically, we compare the travel time variance of 
breakthrough curves (BTCs) obtained at control planes with stochastic first-order 
analytical expressions for highly stratified aquifers. It is shown that the simulated travel 
time variance is in good agreement with analytical expressions for 2

lnK up to 1.0. 

2 Design of simulations 

2.1 MATHEMATICAL STATEMENT 

In steady-state flow conditions, linearly sorbing solute transport through heterogeneous 
porous media is governed by the following differential equation [Freeze and Cherry,
1979],
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Where C is the dissolved concentration of solute in the groundwater,  is the porosity, qi

is the ith component of Darcy’s velocity, qi(x)=-K(x) h/ xi, Dij is the dispersion tensor, 
R is the retardation factor, h is the hydraulic head, and K is the hydraulic conductivity. 
Solute transport was simulated according to (1). Conservative tracers were only 
transported by advection and dispersion, whereas reactive tracers were further subjected 
to sorption processes represented by a reversible linear equilibrium isotherm which 
considers that sorbed solute mass is proportional to the concentration of dissolve solute 
by a factor known as the distribution coefficient Kd. This is frequently the case for many 
non-polar organic hydrophobic substances dissolved in groundwater. The retardation 
factor is expressed as R(x)=1+Kd(x) b/ . Where b is the bulk density of the soil. 

The natural logs of hydraulic conductivity lnK(x) and distribution coefficient lnKd(x)
were two spatially correlated field variables. The lnK(x) variable was perfectly 
correlated with the lnKd(x) variable assuming a linear negative model. Field 
observations [Garabedian et al., 1988] as well as laboratory column and batch 
experiments [Fernàndez-Garcia et al., 2004a] suggest that sorption properties in an 
aquifer are spatially variable. For instance, distribution coefficients for strontium on 
1,279 subsamples of cores from the Borden aquifer gave Kd values that ranged from 4.4 
ml/g to 29.8 ml/g with a geometric mean of Kd 0.526 ml/g and standard deviation of the 



STOCHASTIC SIMULATIONS FOR HIGHLY STRATIFIED AQUIFERS 1119

lnKd of 0.267 [Robin et al., 1991]. A statistically significant (at the 99.95%) but very 
weak negative correlation between the lnKd and lnK was observed. 

2.2 NUMERICAL FEATURES 

The computational domain is discretized into a regular mesh formed by 250 250 200
parallelepiped cells. The heterogeneous structure of the hydraulic conductivity field 
resembles those from the Borden aquifer [Mackay et al., 1986; Sudicky, 1986]. The 
lnK(x) is a second-order stationary multi-Gaussian random field with anisotropic 
exponential covariance function defined with horizontal correlation scale H = 2.78 m 
and vertical correlation scale V = 0.278 m. The computational resolution is of five grid 
cells within a correlation scale in all directions. Retardation factors were estimated as 
R(x)=1+ b/ Kdgexp[af(x)], with f(x) being the fluctuation of lnK(x) around the mean. 
Kdg is the geometric mean of Kd, and a reflects the relationship between lnKd(x) and 
lnK(x). Here, Kdg, b, and  were similar to the Borden aquifer with values of 0.526 
ml/g, 1.81 g/cm3, and 0.35, respectively. The parameter a was set to –0.5. When sorption 
processes are completely linked to grain surface areas, Garabedian et al. [1988] showed 
that a power law relationship between conductivity and mean grain radius yields a=–0.5.

The hydraulic conductivity field is incorporated into a seven-point finite difference 
ground-water flow model, MODFLOW2000 [Harbaugh et al., 2000]. Upstream and 
downstream boundaries are specified as constant heads, such that the hydraulic gradient 
in the mean flow direction is 0.004. No-flow conditions are prescribed at the transverse, 
top and bottom boundaries. The model calculates the flow rates at the grid interfaces, 
which yields the velocity field. Porosity is spatially homogeneous with a value of 0.35. 
This velocity field is then used in a Random Walk Particle Tracking transport code 
similar to the one by Tompson [1993] and Wen and Gómez-Hernández [1996] that 
simulates the solute migration by partitioning the solute mass into a large number of 
representative particles (the number of particles used for all simulations is 10 000); 
moving particles with the velocity field simulates advection, whereas a Brownian 
motion is responsible for dispersion. Local longitudinal dispersivity was set to 2.78 cm 
and the ratio of the longitudinal to the local transverse dispersivity is 1/10. Molecular 
diffusion was neglected. Initially, the particles are randomly distributed in a plane 
transverse to the mean flow direction. This plane is located three correlation scales away 
from the upgradient boundary to avoid boundary effects. The shape of the particle 
source is a rectangle centered within this plane. The source size is of 40-correlation 
scales in the transverse direction to the mean flow and 30-correlation scales in the 
vertical direction. This leaves a gap of 5-correlation scales between boundaries and 
source.

2.3 EVALUATION OF TRAVEL TIME VARIANCE 

Monitoring the first passage time of particles passing through control planes allows for 
the estimation of BTC temporal moments without having to evaluate the actual shape of 
the BTC. The nth-absolute temporal moment can be calculated as the expected value of 



1120 D. FERNÀNDEZ-GARCIA AND J. GÓMEZ-HERNÁNDEZ 

the arrival time of a particle at the control plane to the nth power [Fernàndez-Garcia,
2003; Fernàndez-Garcia et al., 2004b], 
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Where Q is the total water flux passing through the control plane, m is the total mass 
injected, x1 is the mean flow direction coordinate, Cf is the flux concentration of solute 
passing through a given surface, tp

(k) is the first arrival passage time of the kth particle, 
and NPa is the total number of particles arrived at the x1-control plane. The advantage of 
this methodology is that it avoids constructing the entire BTCs and subsequent 
integration of concentrations over time in (2). Evaluation of the entire BTC from the 
distribution of particle arrival times at control planes requires smoothing techniques 
which would originate larger numerical errors. The nth-absolute temporal moment of the 
ensemble average BTCs is simply the average of the nth-absolute temporal moments 
across all realizations [Fernàndez-Garcia et al., 2004b], 
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Where ’
n(x1) is the nth-absolute temporal moment obtained at the x1-control plane in a 

single realization of the aquifer, Nr is the number of realizations (20), the brackets < >
denotes the ensemble average, and the superscript m indicates the realization number. 
The mean arrival time Ta(x1) and the travel time variance 2

t(x1) of the ensemble 
average BTC is calculated as
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3 Simulations results 

For highly stratified porous media with large anisotropy ratios in the correlation scale of 
the heterogeneous structure ( H/ V > 10) and for small 2

lnK and 2
R, the ratio of the 

variance of the particle position to the mean travel distance can be written as [Dagan,
1989; Dagan and Cvetkovic, 1993; Miralles-Wilhelm and Gelhar, 1996]
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Where RA is the mean retardation factor, e is the ratio of vertical to the horizontal 
correlation scale,  is the mean travel distance of the center of mass normalized by the 
horizontal correlation scale, and a is the parameter that correlates the lnK(x) and lnKd(x)
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random fields as given in section 1.2. In essence, the parameter A( ) is an operational 
dispersivity value that can be used to replace the heterogeneous aquifer with an 
equivalent homogeneous porous media. Operational dispersivity values obtained from 
stochastic simulations used for comparison with (5) were derived from the mean arrival 
time and travel time variances of ensemble average BTCs as 

2
a

2
t

)(T

)(

2
)(A

 (6) 

Where  is the distance from the particle source to the x1-control plane normalized by 
the horizontal correlation scale. It should be noted that operational dispersivity values 
estimated from particle travel times using (6) and those estimated from particle spatial 
location using (5) are equivalent for small 2

lnK and 2
R [Fernàndez-Garcia et al.,

2004b].

Figure 1. Comparison of simulated operational dispersivity values obtained from 
particle travel times at x1-control planes with small perturbation theoretical predictions. 
Error bars represent the 95% confidence interval of the mean simulated value.

Figure 1 compares simulated operational dispersivity values A( ) of the ensemble 
average BTCs obtained at different x1-control planes with analytical stochastic solutions 
for highly stratified aquifers. It is seen that stochastic simulations of solute transport are 
in perfect agreement with analytical solutions for 2

lnK up to 0.5 and they are in 
reasonably good agreement for 2

lnK up to 1.0 where simulated A( ) values start 
deviating from its theoretical prediction. In addition, for very heterogeneous aquifers 
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( 2
lnK > 1.0), it is shown that analytical expressions will underestimate the actual 

operational dispersivity value obtained from BTCs. 

4 Conclusions 

Stochastic simulations of solute transport in highly stratified aquifers with spatially 
varying hydraulic conductivity and retardation factor were conducted to examine the 
validity of first-order stochastic analytical solutions for the travel time variance of BTCs 
obtained at several control planes perpendicular to the mean flow direction. First, it is 
shown how to accurately calculate the temporal moments of BTCs and its ensemble 
average in particle tracking codes without having to evaluate the actual BTC from the 
distribution of particle travel times in heterogeneous aquifers. Then, this methodology is 
used to evaluate how accurate can be the small perturbation stochastic analytical 
solutions. It is seen that theoretical stochastic predictions are valid for 2

lnK up to 1.0, 
but for very heterogeneous aquifers, stochastic predictions will largely underestimate the 
travel time variance of BTCs. 
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Abstract. The role of geophysical methods for assessing archaeological sites has been 
increasing in recent years. One of the most commonly applied is the electrical resistivity 
method, responding to differences in underground electrical conductivity. The raw field 
data resulting from such surveys are often difficult to interpret due to the combined 
effects of regional low frequency trends and/or high frequency noise. The traditional 
treatment of signal based on Fourier analysis, namely the use of filtering techniques is 
sometimes used to improve the quality of the signal. Assuming the bandlimited 
condition of the sampled function, a bandlimited interpolator can be the option as 
estimation method. Alternatively or in parallel with the mentioned approach, 
geostatistical tools may be a useful methodology in modelling the spatial variability of 
the regionalised geophysical variable as well as in interpolation leading to the final site 
mapping. In this study the referred different approaches are applied to data resulting 
from a geophysical survey using the resistivity method and a topographic survey in two 
areas located in the northern part of Portugal in which, most probably, archaeological 
structures are buried. Some of the obtained results using inverse-square distance, kriging 
and band-limited interpolation, are herein presented and compared. 

1 Introduction 

Old constructions of our human ancestors, namely for burial purposes, were often 
progressively covered by soil and, in present days, most of them are hidden underground 
although sometimes suspected through a typical topographic signature (“anomalous” 
elevation). Geophysical methods are sometimes applied in order to investigate places 
where archaeologists found evidences of possibly existing structures, aiming at 
excluding from excavation most unlikely site areas or with the purpose of obtaining an 
estimation of the extension of the archaeological site for planning future work. 
The often existing contrast in electrical conductivity/resistivity between the buried 
manmade stone structures and the surrounding usually more conductive soil, point to the 
adequacy of electrical methods to detecting such buried structures.
Various geological parameters influence the mentioned contrast in resistivity, namely 
porosity, water content and degree of saturation. Lower porosity stones, will tend to 
have lower water content and consequently higher resistivity. 
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In this context, one of the most used electrical methods is the so-called resistivity 
method used to determine from surface readings the underground resistivity distribution. 
Basically, two current electrodes, A and B, are used to inject electrical current into the 
ground and two potential electrodes, C and D, are used for measuring the resulting 
potential difference (Figure 1). The intensity of current and potential readings, together 
with the geometric electrode configuration, allow calculating  the so-called apparent 
resistivity value, meaning the resistivity of a homogeneous ground in which would be 
obtained identical readings as those obtained in the studied inhomogeneous terrain with 
the same geometric electrode configuration. The array AMNB may be successively 
moved along a traverse with each new reading being assigned to the central point of the 
array. Several parallel traverses allow defining a 2D surface of resistivity readings 
assumed situated at a certain depth function of the array length. In Figure 1 is sketched 
the so-called Wenner-alpha array of equally spaced electrodes, a buried structure and the 
correspondent resistivity anomaly. 

Figure 1. The Wenner-alpha array and a resistivity profile over a buried 
archaeological structure. 

The detection aptitude of the method, including signal to noise ratio, depends on several 
factors namely the conductivity contrast between the structure and the surrounding soil, 
the burial depth and size of the structure and the electrode configuration and sampling 
spatial rate.
There are different electrode arrays and field procedures that may be used to obtain 2D 
or 3D images of the underground, combining profiling with vertical electrical 
soundings, leading to apparent resistivity vertical sections. Then, data treatment based 
on inversion algorithms often creates very realistic models of the hidden underground 
reality. Nevertheless, in many practical situations the only used information is the one 
obtained in a regular surface grid survey leading to 2D horizontal mapping.
The improvement of 2D resistivity horizontal mapping, using Kriging, Fourier analysis 
and filtering techniques is the main aim of this paper. 

2 Notes on interpolation 

The common situation when interpolation is used results from the need to reconstruct 
some time and/or space signal based on discrete readings/samples. Interpolation 
possibilities increased a lot with the progressive spread of digital equipment. Analogous 
devices interpolation was physically done, for example the needle tracing a graph over a 
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paper, the light impression of the salt silver grains of the radiographic plate and so on. 
When such devices were substituted by digital equipment the signals, including images, 
were reconstructed using sampled discrete information. Nowadays a very common 
reconstruction device is the cellular phone, using numerically digitized samples of the 
human voice. So we may say that the digitized devices increased the use of interpolation 
techniques and concomitantly a variety of algorithms were developed in different areas. 
Given the pervasive characteristic of the problem, those techniques are spreading to a 
number of different disciplines, as is the case of geostatistical kriging methods. 

3 Fourier analysis point of view versus Kriging 

If the readings are made in the field at a regular sampling step, let’s say l meters, and 
consequently Fourier analysis may be easily used, Shannon’s sampling theorem states 
that the maximum frequency (Nyquist frequency) present in the obtained signal is 1/(2 

l) cycles/m, so a proper interpolation should not introduce higher frequencies than 
those present in the original sampled signal, taking in consideration that those higher 
frequencies would only be present if the sample step had been smaller when acquiring 
the original data in the field.
Obviously when in practice interpolation takes place a combination of accurately 
reconstructed and “invented” information is produced but, as much as possible, the used 
procedures shall be based on some kind of optimized sense. In the Fourier analysis 
perspective the interpolation process must not introduce higher frequencies (bandlimited 
interpolation) than those maximum frequencies allowed by the sampling theorem 
(Papoulis, A., 1962). Otherwise the interpolated data will undergo some kind of aliasing 
when compared with the data that would be obtained with a higher sampling rate. On the 
other hand, the smoothing generic effect (high frequencies cutting) of several 
interpolation procedures namely kriging, is also an inconvenient feature. Kriging 
interpolation uses the auto-correlogram that may be obtained from the Fourier power 
spectrum, loosing the phase information (Bracewell, R., 1978). Apparently kriging does 
not need to use an original equally spaced grid data. Being more exact, in fact kriging 
results based on semi-variogram values, allow a kind of tolerance (Goovaerts, P., 1997) 
enabling the use of a not equally spaced grid of raw-data. Even though, semi-variograms 
calculated values benefits of higher accuracy if the original data is equally-spaced. Both 
methods (bandlimited and kriging interpolation) implicitly accept the additive 
hypothesis - linear superposition of the measures of the studied property – since, in both 
cases, to obtain an interpolated point value a linear combination of original reading 
values is used. One may state that kriging and bandlimited interpolation have common 
characteristics in their mathematical foundations. However, the authors believe that 
Fourier analysis allows an enriching insight into geostatistical estimation. 

4 Megalithic dolmens (“mamoas”) 

An often used indication of the presence of archaeological vestiges of megalithic 
monuments is the “anomalous” elevation of the topographic surface appearing in an 
even surface ground. In Portugal such features are called “mamoas”. Under the 
resistivity perspective a mamoa is a combination of less conductive buried stones  
having a non fortuitous shape and geometry, surrounded by more conductive covering 
soil. The final result is a high resistivity anomaly that may be detected by resistivity 
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surveying. Two mamoas situated on the northern part of Portugal were studied: mamoa-
A, located in Vale da Porca – Trás-os-Montes, and mamoa-B at Castro Laboreiro - 
Minho. The resistivity survey was carried out with an ABEM SAS 300C Terrameter 
resistivimeter.
To graphically represent the resistivity and topographic surfaces, Surfer © software 
shaded relief images overlaid by contour maps were used. The graphical data 
representation, without interpolation, that is, using a grid with only the original data 
points are shown in Figures 2 and 3. For Mamoa-A the rectangular grid opposite corners 
are (2.75, 1.5), (17.75, 25.5), sampling step 1.5 m, and for Mamoa-B (0,0), (20,22), 
sampling step 1 m.

Figure 2. Mamoa-A: original electrical 
resistivity data image. 

Figure 3. Mamoa-B: original 
topographic data image. 

Previously to kriging interpolation, a structural analysis was carried out using the 
software Variowin (Pannatier Y., 1996). In Figures 4 and 5 are respectively the 
variogram surface and omnidirectional variogram model fit corresponding to mamoa-A.

Figure 4. Mamoa-A: variogram surface. Figure 5. Mamoa-A: omidirectional 
spherical variogram fit. 

The correspondent graphs for mamoa-B can be seen in Figures 6 and 7, having the 
variogram surface a distinctive pattern. In case of mamoa-A the shown graphs are 
related to field data prior to being transformed in apparent resistivity values through 
multiplication by the constant Wenner-alpha geometric factor, K = 2 a (a = constant 
distance between electrodes). 
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Figure 6. Mamoa-B: variogram surface. Figure 7. Mamoa-B: omidirectional 
gaussian variogram model fit. 

Next Figures, 8 to 13, show the results of different interpolation methods used to 
increase 10 times the correspondent original grids density, so that for mamoa-A the x 
and y ticks became 0.15 m and for mamoa-B 0.1m. The very spiky aspect of the images 
obtained with the inverse square distance method (ISD), that may be seen in Figures 8 
and 11, is an evident sign of the poor performance of ISD method. Figures 9 and 12 
were obtained with a 2D lowpass bandlimited algorithm (LPBL) adapted in Matlab 
environment using the Signal Processing Toolbox “interp.m” function. Figures 10 and 
13 were obtained using ordinary kriging (OK) with the respective omnidirectional 
variogram models. Note that all the used methods of interpolation reproduce the original 
values whenever any interpolated grid node matches a location of an original data value. 

Figure 8. Mamoa-A:
ISD map. 

Figure 9. Mamoa-A: 
LPBL map. 

Figure 10. Mamoa-A:
OK map. 

Figure 11. Mamoa-B:
ISD map. 

Figure 12. Mamoa-B: 
LPBL map. 

Figure 13. Mamoa-B: 
OK map. 
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Kriging and bandlimited interpolation may be compared using a 2D Fourier transform. 
As an example for mamoa-A original data, Figures 14 and 15 were obtained using a 2D 
fast Fourier transform, FFT, and both show all the transform module graphs, 
respectively along the x and y directions, against the amplitude axis. Along x direction, 
two graphs of the module of the transforms of interpolated data were obtained, as shown 
in Figures 16 and 17. 
All the Fourier transforms of Figures 14 to 17 were obtained after subtracting from each 
value the data global mean value. It may be seen comparing Figures 16 and Figure17, 
that lowpass bandlimited and kriging interpolation produced very similar spectra, yet 
having this last one some more high frequency noise content, as it could be expected 
comparing visually the maps from Figures 9 and 10.

Figure 14. Mamoa-A original data:
x direction spectra. 

Figure 15. Mamoa-A original data:
y direction spectra. 

Figure 16. Mamoa-A LPBL interpolation: 
x direction spectra. 

Figure 17. Mamoa-A kriging 
interpolation: x direction spectra. 

5 Conclusions 

Bandlimited interpolation has the advantage of generating denser grids maintaining the 
original frequency content of the original data. Fourier analysis identifies, as well as the 
variogram representation, the structure of spatial correlation. Its main inconvenience is 
the need of data assuming regularly spaced readings, a hindrance that apparently kriging 
practically overcomes. 
The inverse square distance method maps were of poor quality. 
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Kriging introduced some higher noise in higher frequencies when compared with the 
bandlimited interpolator. The Fourier analysis may be a very useful conceptual tool to 
help understanding the advantages and limitations of geostatistical procedures.
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Abstract. GSLIB is a relatively inexpensive (it is free!) yet flexible and useful software 
library for performing many geostatistical analyses, such as semivariogram calculations, 
kriging, and conditional simulation (Deutsch and Journel, 1998, Oxford University Press).  
Unfortunately, GSLIB provides only FORTRAN source code and executables, and the user 
is required to work with text parameter files or develop his/her own interface to input data 
and output results.  To help alleviate this situation, Battelle has developed the BATGAM©

software which provides just such an interface in a user-friendly Windows environment. 

Battelle has not attempted to implement all of the routines included in GSLIB, but has first 
focused on the most commonly required modules for typical site characterization studies, 
namely semivariogram calculation and modeling, kriging, and conditional simulation.  The 
first program implemented was GAMV for three-dimensional semivariogram calculations 
based on irregularly-spaced (i.e., non-gridded) data.  BATGAM© provides an interface for 
inputting the user’s data and generating an output file of semivariogram values.  
BATGAM© also provides a flexible modeling module, based on GSLIB’s COVA 
subroutine, to fit and graphically display the semivariograms with their models. 

The second program implemented in BATGAM© was KT3D for three-dimensional kriging 
of points or blocks using a variety of kriging options.  In addition to interfacing with the 
user’s input data and calculating a gridded file of kriged estimates, BATGAM© also 
includes a simple module for color display of the kriging results. 

The third GSLIB program implemented in BATGAM©  was SGSIM for three-dimensional, 
sequential Gaussian conditional simulation of continuous variables.  In addition, three 
other auxiliary programs have been implemented with SGSIM because they are useful 
when conducting conditional simulations. These programs are NSCORE, for  
performing a normal-score transformation with the original input data; BACKTR, for 
back-transforming simulated data via the inverse relationship associated with  
NSCORE; and GAM, for calculating semivariogram values based on large data sets with 
gridded data, such as one might construct in a conditional simulation. Similar  
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to the kriging module, this simulation module generates gridded data and interfaces with a 
simple color graphics tool for displaying the simulated results.

1 Introduction 

Over the past twenty years, Prof. André Journel, Prof. Clayton Deutsch, numerous 
Stanford University graduate students, and other colleagues have built a suite of 
geostatistical software routines to perform a wide variety of quantitative analyses.  Many 
of these routines were released in 1992 (with revisions in 1998) as the GSLIB library of 
FORTRAN source code (Deutsch and Journel, 1998).  This software is not meant to 
compete with commercially available computer mapping packages, but rather to provide a 
training tool and set of seed software with which individuals or companies could build 
their own geostatistical computing capabilities.  However, since it is seed software, GSLIB 
does not generally include the important user interfaces needed to input data to the 
geostatistical algorithms and output and has limited options for displaying results for 
interpretation.

Battelle’s BATGAM© software helps fill this void, at least for a few of the more 
commonly used geostatistical routines. Over the years we implemented various 
components of GSLIB, initially just with simple FORTRAN front ends and then more 
recently in a user-friendly Windows environment.  BATGAM© is not flashy, but it is quite 
functional and remains faithful to the underlying GSLIB conventions.  To help further the 
goals of Prof. Journel and make geostatistical software more widely available (thereby 
helping to promote the growing field of geostatistics), Battelle recently decided to make its 
BATGAM© software available free of charge. To obtain a complimentary copy, simply 
visit the environment link on our Web site at: http://www.battelle.org and/or contact one 
of the co-authors of this paper.  Similar to GSLIB, Battelle does not support BATGAM©

and provides no warranty as to its accuracy or usefulness.  There is no BATGAM© user’s 
guide; since we follow exactly the GSLIB conventions, we recommend purchasing a copy 
of the GSLIB book (Deutsch and Journel, 1998) to serve as a user’s guide. 

GSLIB contains a wide variety of geostatistical routines, ranging from simple utility 
programs and display routines, to semivariogram and kriging analyses, and a variety of 
sophisticated simulation algorithms.  BATGAM© currently includes only those common 
routines needed to perform semivariogram, kriging, and conditional simulation analyses, as 
well as to view the results.  Our plans are to gradually add other modules to BATGAM©

when we find them useful for our environmental work. 

2 BATGAM
©
 Modules

BATGAM© currently includes the following modules which are accessed via a simple 
opening screen:  GAMV (to calculate experimental semivariogram results), GAMV 
Modeling (to fit semivariogram models), KT3D (to calculate kriging estimates), KT3D 
Mapping (to display and map the kriging results), SGSIM (to perform a sequential 
Gaussian conditional simulation), GAM (to calculate semivariogram results with  
large, gridded data sets), NSCORE (to perform a normal-score transformation with original  

B. BUXTON, A. PATE AND M. MORARA



BATGAM© GEOSTATISTICAL SOFTWARE BASED ON GSLIB 1133

input data), and BACKTR (to back-transform simulated data via the relationship associated 
with NSCORE).  By clicking the icon down the left side of the main BATGAM© screen 
that is associated with any given module, the user is guided to a tabular screen that requests 
input for each parameter associated with that module.  For example, Figure 1 shows the 
parameter screen associated with the GAMV module.  Each of the parameters corresponds 
to the same inputs that are listed in Deutsch and Journel (1998).  For example, the 
parameters shown in Figure 1 correspond to the same inputs that are described on pages 
53-55 of Deutsch and Journel (1998). 

Figure 1. GAMV Module for Experimental Semivariogram Calculations

GAMV is the module with which a user calculates experimental semivariogram values 
from his/her data set.  As shown in Figure 1, the required user inputs are of two general 
types:  those describing the user’s data set and data coverage (top half of the screen), and 
those describing the specific kinds of experimental semivariogram calculations which are 
needed (bottom half of the screen). 

The file handling conventions for each BATGAM© module follow simple Windows  
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conventions, and are controlled by several buttons in the top-left corner of each 
BATGAM© screen.  The ‘File’ button offers the user options to reset the screen (either by 
adopting a set of default parameter values, or by retrieving a previously saved set of 
parameter values), or to save the current parameter values and close out of the screen.  
Three other buttons (with blank-page, open-folder, and diskette icons) serve the same 
functions in a slightly different format.  A fifth button, with a checkmark icon, instructs  
BATGAM© to run the requested module using the parameter values that are listed on the 
screen.

The file of experimental semivariogram calculations is accessed (via the Open Folder 
button) for graphical display and modeling through the GAMV Modeling screen.  As 
shown in Figure 2, this step in the analysis is broken down into two parts (accessed via two 
tabs):  graphical display on the Main screen, and semivariogram modeling on the Model 
Parameters screen.

Figure 2.  Main Screen of GAMV Modeling Module 

The Model Parameters screen allows the user to specify up to five different  
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semivariogram models, either simply to view on the Main screen, or more typically to 
overlay with a set of experimental semivariogram points for model fitting purposes.  The 
graphical appearance of the models and the specification of whether to plot the models or 
not is determined by the user in the Main screen. 

Kriging is performed in BATGAM©  via the KT3D screen which has four associated tabs 
that request different kinds of input parameters defining the specific analysis needed by the 
user.  The first tab (Main) specifies the user’s file naming selections, various 
characteristics about the input data set, the kriging grid size and spacing, and the strategy 
for searching the data during kriging.  The second tab (Variogram) requests the user’s 
semivariogram model in the same format as it is described in the GAMV Modeling 
module.  There is also a convention included at the top of the second tab to retrieve a file 
with semivariogram model parameters from an existing file that was written by GAMV 
Modeling.  The third and fourth KT3D tabs (Drift and Jackknife) request specialized inputs 
when the user intends to perform kriging with a drift model or to jackknife the data, 
respectively.

After kriging, the user can visualize his/her results via the KT3D Mapping module.  This 
is a simple program that generates color contour maps with the kriging output, either to be 
displayed on the screen, or to be outputted to a file for subsequent hardcopy printing.  In 
addition to the color map, the user can request a simple contour line map.  And in either 
case, the user has some control over the specific contour intervals that are utilized in the 
mapping.

The third major type of analysis (in addition to the semivariogram and kriging analyses) 
that is included in BATGAM© is sequential Gaussian conditional simulation, which can be 
performed using the SGSIM module.  This technique can provide a powerful tool, beyond 
just kriging and the kriging variance, for assessing the uncertainty in estimated maps.  In 
terms of output, SGSIM generates a grid of predicted values similar in format to the 
kriging output.  However, SGSIM generates a large number of equi-probable grids to 
assess uncertainty, rather than relying on the single ‘expected value’ grid of kriging.  As 
such, the multiple grids of SGSIM output are viewed via a different visualization module 
from KT3D Mapping (available with the software at the poster presentation).  SGSIM 
input parameters are obtained from the user via four tabs and associated screens.  The first 
tab (Main) specifies the user’s file naming selections, characteristics about the input data 
set, and the simulation grid size and spacing.  The second tab (Search) determines the 
user’s strategy for searching the data during simulation.  The third tab (Variogram) 
requests the user’s semivariogram model in the same format as KT3D, including the 
convention to retrieve a file with semivariogram model parameters from an existing file 
that was written by GAMV Modeling. The fourth tab (Transformation) requests 
information from the user about data transformation and/or conditioning with an external 
data file, if either of those options is selected. 

As part of the sequential Gaussian simulation approach, it is assumed that the user’s input 
data follow the Gaussian distribution.  As such, the user may require data modules for 
transforming his/her data into, and out of, a Gaussian distribution (SGSIM also has  
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options for doing automatic normal score transforms).  These functions are provided in 
BATGAM© via the NSCORE and BACKTR modules.  NSCORE performs the Gaussian 
transformation via what might be viewed as a graphical procedure where the original input 
data are equated with their normal-score equivalents (i.e., standard normal distribution 
quantiles).  BACKTR then uses this same relationship between standard Gaussian values 
and input data values to back-transform the grid of simulated values into the user’s original 
data units. 

One additional module included in BATGAM© is GAM which is used, similar to GAMV, 
to calculate experimental semivariogram values from data.  However, in the case of GAM, 
the data are simulated values generated by SGSIM.  As such, there is generally a large 
number of these simulated data, and they are located upon a well defined grid.  The 
program GAM is optimized to calculate semivariograms under these conditions, whereas 
the program GAMV might require extensive execution time.  Output from both GAM and 
GAMV can be viewed with the GAMV Modeling module. 

3 Conclusion

BATGAM© is a modest but useful software product which implements some of GSLIB’s 
semivariogram, kriging, and conditional simulation modules.  Battelle has recently decided 
to make it available free of charge, in the hope that others may find it useful.  We plan to 
enhance and expand BATGAM© in the future, depending on Battelle’s needs and positive 
feedback from the geostatistical community. 
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5. A. Soares (ed.): Geostatistics Tróia ’92, 2 volumes. 1993 Set ISBN 0-7923-2157-X
6. R. Dimitrakopoulos (ed.): Geostatistics for the Next Century. 1994

ISBN 0-7923-2650-4
7. M. Armstrong and P.A. Dowd (eds.): Geostatistical Simulations. 1994

ISBN 0-7923-2732-2
8. E.Y. Baafi and N.A. Schofield (eds.): Geostatistics Wollongong ’96, 2 volumes. 1997

Set ISBN 0-7923-4496-0
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