
Lecture Notes in Computer Science 4269
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Radu State Sven van der Meer
Declan O’Sullivan Tom Pfeifer (Eds.)

Large Scale Management
of Distributed Systems

17th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, DSOM 2006
Dublin, Ireland, October 23-25, 2006
Proceedings

13

Volume Editors

Radu State
INRIA-LORIA, Campus Scientifique
BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
E-mail: radu.state@loria.fr

Sven van der Meer, Tom Pfeifer
Waterford Institute of Technology, Telecommunications Software & Systems Group
Cork Road, Waterford, Ireland
E-mail: vdmeer@ieee.org, t.pfeifer@computer.org

Declan O’Sullivan
Trinity College Dublin, Department of Computer Science
Dublin 2, Ireland
E-mail: declan.osullivan@cs.tcd.ie

Library of Congress Control Number: 2006934294

CR Subject Classification (1998): C.2.4, C.2, D.1.3, D.4.4, K.6, K.4.4

LNCS Sublibrary: SL 5 – Computer Communication Networks and
Telecommunications

ISSN 0302-9743
ISBN-10 3-540-47659-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-47659-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11907466 06/3142 5 4 3 2 1 0

Preface

This volume presents the proceedings of the 17th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management (DSOM 2006), which was held
in Dublin, Ireland during October 23rd to 25th, 2006. In line with its reputation as one
of the pre-eminent fora for the discussion and debate of advances of distributed
systems management, the 2006 iteration of DSOM brought together an international
audience of researchers and practitioners from both industry and academia.

DSOM 2006 was the 17th in a series of annual workshops, and it followed the
footsteps of highly successful previous meetings, the most recent of which were held
in Barcelona, Spain (DSOM 2005), Davis, USA (DSOM 2004), Heidelberg, Germany
(DSOM 2003), Montreal, Canada (DSOM 2002) and Nancy, France (DSOM 2001).
The goal of the DSOM workshops is to bring together researchers in the areas of
networks, systems and services management, from both industry and academia, to
discuss recent advances and foster future growth in these fields. In contrast to the
larger management symposia, such as Integrated Management (IM) and Network
Operations and Management (NOMS), the DSOM workshops are organised as single-
track programmes in order to stimulate interaction among participants.

Following the excellent experiences from the previous year, DSOM was for the
second time co-located with several related events, namely the 9th IFIP/IEEE Interna-
tional Conference on Management of Multimedia and Mobile Networks and Services
(MMNS 2006), the 6th IEEE International Workshop on IP Operations and Management
(IPOM 2006), the 2nd IEEE/IFIP International Workshop on Autonomic Grid Netw-
orking and Management (AGNM 2006) and the 1st IEEE International Workshop on
Modelling Autonomic Communications Environments (MACE 2006). All these events
together formed the 2nd International Week on Management of Networks and Services
(Manweek 2006).

The major theme of the DSOM 2006 workshop was the management of large scale
systems. Such systems are becoming a reality, including: large sensor networks,
server farms, distributed content provider networks, and IP and telecommunications
networks. Scalability issues and their impact on the management plane are common
among all such infrastructure, and the existing management approaches are largely
inadequate for emerging large scale and complex systems. The ambitious goal of
DSOM 2006 was to facilitate the sharing of a first research vision on scalable network
management paradigms for large scale service and network infrastructures.
Rethinking network and service management from a scalability perspective and
redefining which management paradigms and approaches are adequate, were the main
challenges of DSOM 2006. With many papers presented at the workshop addressing
some of these challenges, there was also room for papers addressing general and hot-
topics related to the management of distributed systems.

In response to the DSOM 2006 call for papers a total of 85 full paper submissions
were received from 25 countries, out of which 77 were reviewed. The remaining 8
papers were incomplete or withdrawn. Some submissions came from groups affiliated

 Preface VI

with the DSOM TPC co-chairs. These papers passed through a separate review process;
several anonymous accounts were created on JEMS and the remaining TPC co-chairs
delegated the reviews to the wider TPC, who anonymously filled in the review.

Within the comprehensive review process carried out by the technical programme
committee and additional subject area experts, 75% of the submitted papers received
4 reviews and 35% of the submitted papers received 3 reviews. All submissions were
ranked based on review scores as well as the wider technical programme committee’s
view on their contribution and relevance to the conference. After lengthy online
discussions, it was decided to accept 21 of the submissions as full papers (an
acceptance rate of 25.6%). Due to their relevance and quality, we recommended 5 of
the submissions as short papers, of which 4 were presented at the workshop.

The papers presented here, we believe, represent novel and interesting
contributions to addressing these challenges and meeting the goal of DSOM 2006
covering the following topic areas: ontologies and networks management; security
and policy based management; business and service management; complexity of
service management; performance of management protocols; supporting approaches
for network management and management of next generation networks and services.
We believe that this collection of papers provide a valuable insight into the current
state of the art in techniques for scalable management for large scale service and
network infrastructures.

There are many people whose hard work and commitment were essential to the
success of DSOM 2006. Foremost are the researchers who submitted papers to the
conference. The overall quality of submissions this year was very high and we regret
that many high quality papers had to be rejected. We would like to express out
gratitude to the DSOM 2006 technical programme committee, for their advice and
support through all the stages of the conference preparation. We thank all paper
reviewers, in particular those outside the technical programme committee, for their
uniformly thorough, fair and helpful reviews. We also thank the JEMS team, which
provided the infrastructure for the paper evaluation process.

We thank our sponsors, the International Federation for Information Processing
(IFIP) Working Group 6.6 on Management of Networks and Distributed Systems with
technical co-sponsorship by the IEEE Communications Society, Technical Committee
on Network Operations and Management (CNOM). Most of the more time-
consuming practical and logistical organisation tasks for the conference were handled
by the members of the Manweek 2006 Organisation Committee, and this made our
jobs significantly easier, and for that we are very grateful.

Finally, we wish to acknowledge the financial support of both Science Foundation
Ireland and the Manweek 2006 corporate sponsors, whose contributions were hugely
instrumental in helping us run what we hope was a stimulating, rewarding and, most
importantly, an enjoyable conference for all its participants.

October 2006 Radu State
 Sven van der Meer
Declan O’Sullivan

DSOM 2006 TPC Co-chairs

Tom Pfeifer
Manweek 2006 Publication Chair

DSOM 2006 Organisation

Technical Programme Committee Co-chairs

Radu State INRIA-LORIA, France
Sven van der Meer Waterford Institute of Technology, Ireland
Declan O’Sullivan Trinity College Dublin, Ireland

Organisation Co-chairs

Brendan Jennings Waterford Institute of Technology, Ireland
Sven van der Meer Waterford Institute of Technology, Ireland

Publication Chair

Tom Pfeifer Waterford Institute of Technology, Ireland

Publicity Co-chairs

Sasitharan Balasubramaniam Waterford Institute of Technology, Ireland
John Murphy University College Dublin, Ireland

Treasurer

Mícheál Ó Foghlú Waterford Institute of Technology, Ireland

Local Arrangements

Miguel Ponce de León Waterford Institute of Technology, Ireland
Dave Lewis Trinity College Dublin, Ireland
Dirk Pesch Cork Institute of Technology, Ireland
Gabriel-Miro Muntean Dublin City University, Ireland
Seán Murphy University College Dublin, Ireland
Rob Brennan Ericsson, Ireland

Manweek 2006 General Co-chairs

William Donnelly Waterford Institute of Technology, Ireland

John Strassner Motorola Labs, USA

 Organisation VIII

Manweek 2006 Advisors

Raouf Boutaba University of Waterloo, Canada

Joan Serrat Universitat Politècnica de Catalunya, Spain

DSOM 2006 Technical Programme Committee

Ehab Al-Shaer DePaul University, USA
Aidan Boran Bell Labs, Ireland
Raouf Boutaba University of Waterloo, Canada
Nevil Brownlee University of Auckland, New Zealand
Marcus Brunner NEC Europe, Germany
Mark Burgess University College Oslo, Norway
Omar Cherkaoui University of Quebec at Montreal, Canada
Alexander Clemm Cisco Systems, USA
Luca Deri ntop.org, Italy
Gabi Dreo Rodosek Universität der Bundeswehr München, Germany
Olivier Festor LORIA-INRIA, France
Alex Galis University College London, UK
Yacine Ghamri-Doudane Institut d’Informatique d’Entreprise, France
Kurt Geihs University Kassel, Germany
Lisandro Z. Granville Federal University of Rio Grande do Sul, Brazil
Heinz-Gerd Hegering Ludwig-Maximilian-University Munich, Germany
Joseph L. Hellerstein IBM T.J. Watson Research Center, USA
James Hong POSTECH, Korea
Cynthia Hood Illinois Institute of Technology, USA
Gabriel Jakobson Altusys Corporation, USA
Brendan Jennings Waterford Institute of Technology, Ireland
Alexander Keller IBM T.J. Watson Research Center, USA
Dave Lewis Trinity College Dublin, Ireland
Hong Li Intel, USA
Antonio Liotta University of Essex, UK
Emil Lupu Imperial College London, UK
Hanan Lutfiyya University of Western Ontario, Canada
Jean-Philippe Martin-Flatin University of Quebec at Montreal, Canada
Saverio Niccolini NEC Research Lab, Germany
José-Marcos Nogueira Federal University of Minas Gerais, Brazil
George Pavlou University of Surrey, UK
Aiko Pras University of Twente, The Netherlands
Juergen Quittek NEC Europe, Germany
Danny Raz Technion, Israel
Akhil Sahai HP Laboratories, USA

 Organisation IX

Jürgen Schönwälder International University Bremen, Germany
Joan Serrat Universitat Politècnica de Catalunya, Spain
Adarshpal Sethi University of Delaware, USA
Morris Sloman Imperial College, UK
Rolf Stadler Royal Institute of Technology, Sweden
Burkhard Stiller University of Zurich and ETH Zurich, Switzerland
John Strassner Motorola Labs, USA
Joe Sventek University of Glasgow, UK
John Vicente Intel, USA
Vincent P. Wade Trinity College Dublin, Ireland
Carlos Becker Westphall Federal University of Santa Catarina, Brazil
Felix Wu University of California at Davis, USA
Makoto Yoshida The University of Tokyo, Japan

DSOM 2006 Additional Paper Reviewers

Constantin Adam Royal Institute of Technology, Sweden
Sasitharan Balasubramaniam Telecommunications Software & Systems Group,

Ireland
Keara Barrett Waterford Institute of Technology, Ireland
Claudio Bartolini HP Labs, USA
Steffen Bleul University of Kassel, Germany
Ray Carroll Waterford Institute of Technology, Ireland
Ilias Chatzidrossos Royal Institute of Technology, Sweden
Lawrence Cheng University College London, UK
Manish Dave Intel, USA
Steven Davy Waterford Institute of Technology, Ireland
Alan Davy Waterford Institute of Technology, Ireland
Rudy Deca Université du Québec à Montréal, Canada
Kieran Delaney Cork Institute of Technology, Ireland
Roberto Dias CEFET-SC, Brazil
Kevin Feeney Trinity College Dublin, Ireland
Tiago Fioreze University of Twente, The Netherlands
Jochen Fromm University of Kassel, Germany
Sylvain Hallé Université du Québec à Montréal, Canada
Enric Jaén Universitat Politècnica de Catalunya, Spain
Georgios Karagiannis University of Twente, The Netherlands
John Keeney Trinity College Dublin, Ireland
Fernando Koch University of Utrecht, The Netherlands
Abdesselem Kortebi Université de Pierre-et-Marie Curie, Paris 6, France
Elyes Lehtihet Waterford Institute of Technology, Ireland
Ling Lin University of Essex, UK

 Organisation X

Lei Luo University of Delaware, USA
Ricardo Marín Vinuesa Universitat Politècnica de Catalunya, Spain
Jimmy McGibney Waterford Institute of Technology, Ireland
Rossana Motta University of Essex, UK
Belkacem Mourad Daheb Université de Pierre-et-Marie Curie, Paris 6, France
Daniel Nascimento Universidade Federal de Minas Gerais, Brazil
Giorgio Nunzi NEC Europe, Germany
Mícheál Ó Foghlú Waterford Institute of Technology, Ireland
Adetola Oredope University of Essex, UK
Tom Pfeifer Telecommunications Software & Systems Group,

Ireland
Sanjay Rungta Intel, USA
Taghrid Samak DePaul University, USA
Paul Savage Waterford Institute of Technology, Ireland
Chien-Chung Shen University of Delaware, USA
Martin Stiemerling NEC, Germany
Mohamed Taibah DePaul University, USA
Thomas Weise University of Kassel, Germany
Florian Winkler NEC Network Laboratories Heidelberg, Germany
Rolf Winter NEC Europe, Germany
Fetahi Wuhib Royal Institute of Technology, Sweden
Bin Zhang Depaul University, USA
Sergio de Oliveira Universidade Federal de Minas Gerais, Brazil

Table of Contents

Performance of Management Protocols

Efficient Information Retrieval in Network Management Using Web
Services . 1

Aimilios Chourmouziadis, George Pavlou

On Delays in Management Frameworks: Metrics, Models
and Analysis . 13

Abdelkader Lahmadi, Laurent Andrey, Olivier Festor

Performance Analysis of SNMP over SSH . 25
Vladislav Marinov, Jürgen Schönwälder

Complexity of Service Management

Uncertainty in Global Application Services with Load Sharing Policy 37
Mark Burgess, Sven Ingebrigt Ulland

Predictable Scaling Behaviour in the Data Centre with Multiple
Application Servers . 49

Mark Burgess, Gard Undheim

Quantifying the Complexity of IT Service Management Processes 61
Yixin Diao, Alexander Keller

Ontologies and Network Management

Ontology-Based Knowledge Representation for Self-governing
Systems . 74

Elyes Lehtihet, John Strassner, Nazim Agoulmine, Mı́cheál Ó Foghlú

An Ontology-Based Approach to the Description and Execution of
Composite Network Management Processes for Network Monitoring 86

José Maŕıa Fuentes, Jorge E. López de Vergara, Pablo Castells

Towards a Managed Extensible Control Plane for Knowledge-Based
Networking . 98

David Lewis, John Keeney, Declan O’Sullivan, Song Guo

XII Table of Contents

Management of Next Generation Networks and
Services

Voice Quality on the Internet in 2005 as Measured by
www.TestYourVoIP.com . 112

Mark Sylor, Nagarjuna Venna, Harrison Ripps

A WSDM-Based Architecture for Global Usage Characterization of
Grid Computing Infrastructures . 124

Glauco Antonio Ludwig, Luciano Paschoal Gaspary,
Gerson Geraldo Homrich Cavalheiro, Walfredo Cirne

Management of DiffServ-over-MPLS Transit Networks with BFD/OAM
in ForCES Architecture . 136

Seung-Hun Yoon, Djakhongir Siradjev, Young-Tak Kim

Business and Service Management

Detecting Bottleneck in n-Tier IT Applications Through Analysis 149
Gueyoung Jung, Galen Swint, Jason Parekh, Calton Pu, Akhil Sahai

Fast Extraction of Adaptive Change Point Based Patterns for Problem
Resolution in Enterprise Systems . 161

Manoj K. Agarwal, Narendran Sachindran, Manish Gupta,
Vijay Mann

Business-Driven Decision Support for Change Management: Planning
and Scheduling of Changes . 173

Jacques Sauvé, Rodrigo Rebouças, Antão Moura, Claudio Bartolini,
Abdel Boulmakoul, David Trastour

Security and Policy Based Management

Using Argumentation Logic for Firewall Policy Specification
and Analysis . 185

Arosha K. Bandara, Antonis Kakas, Emil C. Lupu, Alessandra Russo

ZERO-Conflict: A Grouping-Based Approach for Automatic Generation
of IPSec/VPN Security Policies . 197

Kuong-Ho Chen, Yuan-Siao Liu, Tzong-Jye Liu, Chyi-Ren Dow

Conflict Prevention Via Model-Driven Policy Refinement 209
Steven Davy, Brendan Jennings, John Strassner

Table of Contents XIII

Short Papers

Minimum-Intrusion Approaches for In-Service BER Estimation in
Transparent WDM Networks . 221

Carolina Pinart

Ontology-Based Policy Refinement Using SWRL Rules for Management
Information Definitions in OWL . 227

Antonio Guerrero, Vı́ctor A. Villagrá, Jorge E. López de Vergara,
Alfonso Sánchez-Macián, Julio Berrocal

Reconfiguring Self-stabilizing Publish/Subscribe Systems 233
Michael A. Jaeger, Gero Mühl, Matthias Werner, Helge Parzyjegla

Policy and Profile: Enabling Self-knowledge for Autonomic Systems 239
Ray Carroll, John Strassner, Greg Cox, Sven van der Meer

Supporting Approaches for Network Management

DECA: A Hierarchical Framework for DECentralized Aggregation
in DHTs . 246

Marc S. Artigas, Pedro Garćıa, Antonio F. Skarmeta

Towards Distributed Hash Tables (De)Composition in Ambient
Networks . 258

Lawrence Cheng, Roel Ocampo, Kerry Jean, Alex Galis,
Casba Simon, Robert Szabo, Peter Kersch, Raffaele Giaffreda

CMDB — Yet Another MIB? On Reusing Management Model
Concepts in ITIL Configuration Management . 269

Michael Brenner, Markus Garschhammer, Martin Sailer,
Thomas Schaaf

Author Index . 281

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 1 – 12, 2006.
© IFIP International Federation for Information Processing 2006

Efficient Information Retrieval in Network
Management Using Web Services

Aimilios Chourmouziadis and George Pavlou

Center of Communications and Systems Research, Department of Electronic
 and Physical Sciences, University of Surrey,

GU27XH Guildford, United Kingdom
{A.Chourmouziadis, G.Pavlou}@surrey.ac.uk

http://www.ee.surrey.ac.uk/CCSR/

Abstract. Web Services is an XML-based technology that has attracted signifi-
cant attention for building distributed Internet services. There have also been
significant efforts trying to extend it to become a unifying management tech-
nology. An all-encompassing management technology needs to support effi-
cient information retrieval, scalable event management, transaction support for
configuration management and also security. Previous technologies, such as
CMIP, SNMP and CORBA have addressed these aspects poorly, partially or at
a high cost. This paper proposes an approach to address efficient information
retrieval in terms of both bulk and selective data transfer. In order to achieve
this, services modelling management information need to be organized in a hi-
erarchy through service association. In order to achieve service association, in-
formation metadata are defined in secondary endpoints compared to the ones
where services are deployed and accessed. We have defined a language for ex-
pressing arbitrarily complex information retrieval expressions and implemented
a parser at the object level that evaluates these expressions, navigates arbitrary
service associations and returns the results. We demonstrate the use and useful-
ness of the approach in an example usage scenario.

1 Introduction

Since the introduction of the Simple Network Management Protocol (SNMP) in the
early 1990’s and the versions of it that followed, its wide deployment for
sophisticated network management still raises a lot of concerns. In the 2002 IAB
Network Management Workshop [1] it became evident that SNMP can not be used
for sophisticated management since its inneficiencies limit its potential usage to
relatively simple monitoring. Therefore, alternative technologies are required to meet
management goals such as efficiency in information retrieval, transaction support,
security and also reduced development & operational costs. Distributed object
technologies and, in particular, the Common Object Request Broker Architecture
(CORBA) was considered as a unifying management technology and, although it has
come a long way since then, it still has serious inefficiencies. In Corba federation and
bulk retrieval are not supported, filtering capabilities lack expressiveness, scalability

2 A. Chourmouziadis and G. Pavlou

is an issue in addition to the large agent footprint. More recently, the introduction of
Web Services, coupled with the advent of maturing eXtensible Markup Language
(XML) technology standards, is seen as a promising approach for faster product
development, tighter system integration and robust device management [2].

Web Services (WS) is an XML technology that encompasses W3C standards such
as the Simple Object Access Protocol (SOAP) [3], the Web Services Definition Lan-
guage (WSDL) [4] and the Universal Discovery Description and Integration protocol
(UDDI) [5]. Since all these have their CORBA equivalents [7], WS can be used for
distributed network management in a similar fashion to CORBA. But can they ad-
dress this goal efficiently? Researchers in [6] and [7] compared the performance of
WS, CORBA and SNMP. The conclusion was that when the amount of information to
be retrieved increases, so does the efficiency of WS in comparison to SNMP. Smaller
amounts of data though results in higher traffic for WS. The performance of WS, in
terms of coding and latency, is poor in comparison to CORBA and SNMP.

Though the measurements in [6] and [7] show that WS could only be used in man-
agement scenarios where large amounts of data need to be exchanged, this is not nec-
essarily true. WS performance at this stage can yield ambiguous results. As discussed
in [8] and [9] approaches to resolve issues such as parsing, tranport problems,
compression and data serialization etc, are still immature. Moreover the support WS
provide to create sophisticated requests needs also to be investigated. Emulating the
behavior of SNMP’s operations such as GetNext and GetBulk is not a good practice
when using WS. Such practices deprive any WS-based framework from the ability to
use alternative sophisticated approaches to perform operations such as complex
information retrieval. Performance and capabilities are thus inhibited.

In this paper we introduce a sophisticated approach to achieve true bulk or
selective information retrieval, a capability that only CMIS/P offers among all
management technologies, albeit at the cost of complexity and adherence to OSI
upper layers that are not used widely anymore. In comparison, SNMP has limited
support for bulk retrieval, mainly due to its mapping to UDP, and has no selective
retrieval capabilities. Finally, CORBA lacks explicit support for such functionality.

Since one of our goals is to provide solutions for real management information
retrieval scenarios, we have used SNMP MIBs modeled as web services to which
retrieval scenarios are applied. In order to facilitate information retrieval it was
important to come up with a way to organize data and services in a hierarchy that
allows navigation of the information being held. To do this, we came up with a
scheme to associate services and define arbitrary relationships between them. This
hierarchical organization allows us to employ schemes of selective or bulk retrieval.
This is done by deploying a parser at the object level on the agent side that accepts
requests in the form of queries from a manager expressed in a language we designed.
The agent uses the parser to interpret these queries and respond to the manager with
the data collected from a list of management web services the agent has access to.

The remainder of this paper is structured as follows. In section II, we provide an
analysis of our system model. In section III we present details on how service
association is performed and how arbitrary service relationships can be defined.
Section IV discusses details about the information retrieval grammar and the parser
we developed. In section V we present a usage scenario that demonstrates the use and
usefulness of our approach. Finally, in section VI we present our conclusions.

 Efficient Information Retrieval in Network Management Using Web Services 3

2 Service Design

Since the appearance of distributed object technologies, researchers realized the im-
portance of converting SNMP and CMIS/P management information models. This
led to the establishment of the Joint Inter Domain Management taskforce (JIDM) that
produced a translation between the SNMP SMI / CMIS/P GDMO and CORBA’s
Interface definition Language (IDL). A JIDM-like translation though of SNMP SMI
to services would be problematic for the same reasons encountered with its mapping
to IDL. First bulk or selective retrieval is not supported. Second, scalability problems
may arise when vast amounts of dynamic entities, i.e. SMI table rows, are modeled as
separate services. As such, we considered an emerging approach for semantic transla-
tion of SNMP MIB’s [7]. In such a translation, there may exist service methods for
returning commonly accessed groups of single instanced objects, e.g. packet counters.
In addition, tabular information is accessed collectively through a method that returns
a table as a list of records. Additional methods may support SNMP-like “get next” or
“get N next, i.e. get bulk” functionality. This type of modeling adds support for bulk
data transfer for multiple instanced objects. Still, selective retrieval is not supported.

2.1 Information Retrieval Approaches

In WS bulk and selective information retrieval operations could be performed in two
ways. The first method involves performing filtering actions at the SOAP level with a
tool such as the XML Path Language (XPath) or similar. Since SOAP’s body is in
XML, XPath can be used to selectively pick portions of it. Such an approach is not
problem-free though. Initially, extra latency is added in the retrieval process because
more data need to be accessed, retrieved and coded in the SOAP body. Moreover,
according to views expressed in the Network Configuration protocol mailing list,
XPath is a very heavy tool for filtering purposes. Even a cut down version of XPath
may still be resource intensive. A second approach to address selective retrieval is to
perform it within the object code that represents a WS. As such we perform filtering
before formation of the SOAP body, avoiding extra latency and keeping resource
usage low by binding selective retrieval to the needs of the information model.

2.2 Modeling Approach

Supporting bulk retrieval for both single instance and multiple instance entities re-
quires a collective view of management data across all levels of the data structure. To
achieve this for SNMP, every MIB is modeled as a service. A level higher from the
service level an agent has a collective view of all services, organized in a hierarchy
through service association. The association scheme allows for arbitrary relationships
to be defined. The agent in the scheme uses a parser to decide based on string expres-
sion queries it receives, the services from which data must be retrieved. Thus the
agent has both a collective view and a selective capability over the services under-
neath it. At object code level, every service contains single instance and multiple
instance entities of SNMP data modeled as simple values and tables. Bulk retrieval is
achieved by three methods with different views on data. One method has access to
single instance data, the other has view on table data and the third method has view of

4 A. Chourmouziadis and G. Pavlou

all the object data. All methods receive string arguments that represent command line
queries that are interpreted by a parser we have built which decides which data will be
sent to the manager requesting them. As such, all methods have both bulk and selec-
tive access to the data in their view. In Fig. 1 the translation of the SNMP’s data into
services is given. Modeling information this way initially allows a collective view of
information at various levels (low level of granularity). At the same time a selective
capability upon any data structure (service, simple data, tables) is offered (high level
of granularity). Thus, our approach not only allows us to perform selective or bulk
information retrieval but also to keep the number of services representing manage-
ment data low. Therefore, it tries to avoid complexity and scalability problems.

Fig. 1. Modeling approach

3 WS Association

From the information modeling approach presented in the previous section, it is evi-
dent that our scheme has two requirements. Firstly, it requires some means to define
logical or physical relationships between services. These relationships will make
navigation and selection of services feasible. These relationships provide an agent
with a hierarchical view of the services underneath it and easy access to their data. A
second requirement is that these relationships must be arbitrary so that traversal can
be based on any relationship. The idea of navigation of arbitrary relationships be-
tween entities modeling management data is originated in [10]. The authors there
propose to make data retrieval more efficient in CMIS/P by allowing traversal of
objects based on any relationship and not only containment. Our concept is to define
different relationships between services and make navigation possible based on them.
Services though have different access requirements than objects (i.e. more latency).
Thus, we decided that it is more efficient to make service selection first and only then
to apply selective actions on the data, in a similar fashion to what CMIS/P does with
scoping and filtering. With these two requirements satisfied, our agent can selectively
pick up services according to string expression queries it receives from a manager.

The remainder of part III continues as follows. In section 3.1 we present the con-
cept of navigating the relationships that are defined between services. In section 3.2
we present how to define such relationships.

 Efficient Information Retrieval in Network Management Using Web Services 5

3.1 Navigation and Selection of Services

The common view for a hierarchical organization of entities is that of a tree, where
elements in the previous level of the tree are connected with containment relation-
ships with the ones in the next level. Navigation among the elements in this tree is
based on containment. If these elements were services capturing SNMP MIBs and the
relationships between these services were arbitrary, then a tree such as the one de-
picted in Fig. 2 can be defined.

Navigation of this tree and selection of services by an agent is possible in our
scheme, by defining simple expressions that identify a starting point for the search,
level restrictions for service selection and relationship patterns to follow. A simplified
Backus Naur Form (BNF) [11] syntax for such an expression is the following:

<path_selection_exp>::={< startpoint_tag> , <minlevel_tag> , <max-
level_tag> , <pattern_tag>} .

(1)

<pattern_tag>::=<identifier> | <pattern_tag> . <identifier> | (<pattern_tag>)! . (2)

<min_level_tag>::=<integer> . (3)

<max_level_tag>::=<integer> . (4)

<startpoint_tag>::=<identifier> . (5)

The path selection expression is dispatched from a manager to an agent in the form of
a “command line” query expression. The agent uses it to select services based on
relationship patterns, the level restrictions and the starting point tag. Selective re-
trieval of data from these services is performed only after selection of services has
been completed. This is achieved by using the parser developed to interpret several
other expressions that we will present later on. In order to demonstrate the usage of
the path selection expression, some examples are given.

1) Path selection expression with no Restriction: A path selection expression such
as the one in equation 6, if used with the information tree of services shown in Fig. 2,
will cause a number of actions. Upon receiving the expression, the agent will use the
parser to evaluate its validity. If the expression is valid then the agent will evaluate
the expression and will start searching the sub-tree defined from the starting point
(Root in this case) for services which can be reached by following relationships first
of type r1 and then of type r2. The services selected are highlighted in Fig. 3. If selec-
tive retrieval expressions are also dispatched, the agent will only return the values that
match the criteria posed by these expressions, as we will see later.

}2.1,,,{exp__ rrRootselpath = (6)

2) Path selection expression with single level Restriction: For the path selection
expression in equation 7 the agent will start searching the sub-tree defined from the
starting point (Root) for services in level 2 to which you can reach following relation-
ships first of type r1 and then r2 . The selected services are highlighted in Fig. 4

6 A. Chourmouziadis and G. Pavlou

}2.1,2,2,{exp__ rrRootselpath = (7)

 Fig. 2. General relationship tree Fig. 3. Service selection no Restriction

3) Path selection expression with multiple level Restriction: In the case where the
path selection expression has multi-level restriction, as in equation 8, the agent will
search the sub-tree defined from the starting point (Root) for services in level 2 and 3
which can be reached by first following relationships of type r1 and then r2. The se-
lected services are highlighted in Fig. 5

}2.1,3,2,{exp__ rrRootselpath = (8)

4) Fringe Services: In all the above service selection examples the agent visits one
after the other all services included in the sub-tree whose head node is the start node
tag. For every selection the agent makes, it evaluates for every service node whether
each pattern tag in the relation pattern can be followed or not, thus there is a recursive
evaluation of the binary state of each pattern tag in the relation pattern. The recursive
evaluation of each pattern tag on a sequence of pattern tags can allow detection of
services where the relation pattern cannot be followed. These services are called

Fig. 4. Service selection single restriction Fig. 5. Service selection multiple restriction

 Efficient Information Retrieval in Network Management Using Web Services 7

fringe services. An example of a path selection expression that captures services
where type r1 relationships cannot be followed is given in equation 9. The services
that are selected are highlighted in Fig. 6

})!1(,,,{exp__ rRootselpath = (9)

Fig. 6. Service selection for fringe Services

3.4 Service Association

In order to use the selection scheme described previously, a method to define relations
between services is required. A simple scheme to define such relationships if con-
tainment was the only option would be to use a simple naming scheme to define the
endpoint URIs where services are deployed. Such a scheme would be to use the num-
ber of slashes “/” in the endpoint URI to denote the level in a hierarchy where a ser-
vice is offered, the tag after the last slash to denote the name of the service and the tag
before it to denote its parent. However, relationships between data may not only be
containment. The definition of other relations must also be possible, so that the defini-
tion of actions between data and conversation scenarios between services is feasible.

One way to define relationships between services is to provide metadata about
them. Initially we considered certain WS standards for the job. WS-Addressing [14]
and WS-MetadataExchange (WS-MEX) [15] are such standards. WS-MEX specifies
the messages that applications exchange in order to retrieve service metadata. WS-
MEX is intended though as a retrieval mechanism for only service description data.
Because introduction of metadata services will increase unnecessarily latency and
memory requirements WS-Addressing was considered as another solution. WS-
Addressing was initially designed to provide service endpoints with capabilities such
as multi protocol and interface information support. This is achieved by adding ser-
vice endpoint references (ER) to endpoint’s Uniform Resource Identifiers (URIs).
ERs are adding information to WS messages so that applications can support various
exchange patterns than simple request responses. WS-addressing allows notification
standards to provide asynchronous event reporting and subscription. It can be used
though in a different way. WS-Addressing could be used to add information about
service relationships. The addition of a metadata element in the standard to provide a
consuming application with WSDL information also allows the provision of other
metadata about a service. Still work on WS-Addressing is not finalized, while the

8 A. Chourmouziadis and G. Pavlou

standard and the metadata element is not supported by many open source toolkits.
Thus, we had to find other means to support metadata information about service rela-
tionships until work in WS-addressing is finalized and open source toolkits support it.

Providing metadata about service relationships requires a simple and flexible
scheme. In WS, WSDL allows to define the interface that services expose and the
access point where they are offered. A WSDL document consists of an abstract part
acting as an access stub and a concrete part affecting its behavior. The interface tag of
the abstract part describes sequences of messages a service sends and/or receives. It
does this by grouping related messages into operations. An operation is a sequence of
input and output messages, and an interface is a set of operations [4]. The endpoint
component of the concrete part defines the particulars of a specific endpoint where a
service is accessed [4]. A service consists of its instance and its endpoint and the later
is as important as the former. Most service properties and settings reside there.

The organization of WSDL and the structure it enforces on its constituent parts al-
lows us to do three things. First, it allows manipulation of the level of transparency
[12]. Secondly, the granularity of services can be altered [12]. Third it permits three
distinct ways to deploy services. The most common way of deployment is by allow-
ing access to an entire object through an interface. Service WS0 in Fig. 7 shows this
deployment scenario. The WSDL document in this case contains one service tag re-
ferring to one binding and one endpoint tag. The second deployment scenario seen in
Fig. 7 is for service WS1 where access to a service is through multiple access points.
In this case the WSDL document for this service contains one service tag which in-
cludes multiple endpoint tags (two in this case) referring to the same binding tag. The
third deployment scenario is seen for services WS2 and WS3. In this scenario two
interfaces to the same object are offered by defining multiple endpoint elements for
the same service element, which refer to different binding elements.

For our association scheme use of the second deployment scheme was made. The
multiple access points of this scheme provide us with the means to define metadata
about service relationships. In our proposal, every service has a primary access point
to provide access to it. For every relationship a service has with another service, the
latter will define a secondary URI. This secondary URI provides metadata about the
relationship that the two services share with a syntax that complies with RFC 3986
[13] about URIs. The syntax for the primary and the secondary URIs is given in (10)
and (11). Parsing secondary URIs provides agents with a view of the association tree.

Fig. 7. Service deployment scenarios Fig. 8. Association scenario with endpoints

 Efficient Information Retrieval in Network Management Using Web Services 9

In Fig. 8 primary and secondary URIs for all services sharing two types of relations
are provided. Service ST-E1 has only one URI to allow access to it. Services ST-E2
and ST-E3 have 3 URIs, the primary and two secondary ones for both the r1 and r2
types of relations they share with other services. All third level services contain one
primary one secondary URI to show an association of type r1 with other services.

Primary_URI =http://serverURL:serverPort/primaryServiceTag (10)

Secondary_URI=http://serverURL:serverPort/sendingServiceTag-
serviceLevel_recipientServiceTag-serviceLevel.relationTag

(11)

4 Selective Retrieval at Service Level

So far we have explained how bulk data retrieval is possible by providing a collective
view upon data accessible by services at the agent level through service association
and at the service level through specific methods that have collective access to the
data. Path selection expressions allow our agent to deploy a selective capability on the
services modeling the management information. To add filtering as selective retrieval
capability on the management data within a service, our parser also evaluates data
selection expressions sent to it by the manager. These expressions mandate which
information from the service should be selected by the agent.

4.1 Data Selection Expressions

SNMP contains two types of data, single and multiple instance (tabular) ones. The
BNF syntax for the data selection expression for single instance data is the following:

<sgl_slct_exp>::={<identifier > | <sgl_slct_exp >, <identifier> } . (12)

An example expression for retrieving the ipIndelivers, tcpOutSegs and the tcpInSegs
from the TCP and IP MIB would be the following:

sgl_slct_exp={tcpInSegs,tcpOutSegs,ipInDelivers} . (13)

Retrieving multiple instance entities is a bit more complex since it requires an expres-
sion to define which entities need be retrieved and a filtering expression to retrieve
only part of the data that meet specific criteria. The BNF syntax for the multi-instance
selection expression and the filter expression is the following:

<mult_slct_exp>::={<mult_inst_tag> | <mult_slct_exp>, <mult_inst_tag >} . (14)

<mult_inst_tag>::=<identifier>([] | [<integer>-<integer>] | [< integer>] | [<
integer>(< | >)><letter>(> |<)< integer>]) .

(15)

<flt_exp>::={<mult_inst_tag ><relational operator> <value>| <flt_exp >
<space><logical_operator><space> <flt_exp>}

(16)

<value>::=<integer>|<string> (17)

A usage example for retrieving all TCP connections is given in (18).

10 A. Chourmouziadis and G. Pavlou

ml_slct_exp={tcpConnEntry[]} (18)

The filter expression for retrieving only FTP and HTTP connections is given in (19).

flt_exp= {tcpConnLocalPort = 22 OR tcpConnLocalPort =80} (19)

5 Usage Scenario

To demonstrate a case where fairly complex network management data must be re-
trieved, we present a use case scenario. In the configuration of Fig. 9, consisting of
five IP routers and 6 Local Area Networks (LAN), LAN N2 receives substantial traf-
fic from an HTTP server it hosts. Both N2 and R1 are able to cope with this traffic. At
some point though, a user in LAN4 creates more traffic by transferring large files
from an FTP server in LAN3. As a result R1 and LAN2 exceed their handling capac-
ity. The cause of congestion in router R1 must be detected by the Central Manage-
ment System (CMS) responsible for managing the overall network.

 Fig. 9. LAN configuration Fig. 10. Service association for usage scenario

Assuming the tree of services in Fig. 10 deployed in every host and router on the
network, the CMS should be notified when congestion builds up and take appropriate
actions. On notification the CMS must determine the cause of congestion and take
actions to alleviate it. In Fig. 10, services IP, TCP, and Interfaces model the corre-
sponding SNMP MIB groups. Other MIBs may also be captured as services but they
are omitted. The TCP Service contains two services that model TCP single instance
data and TCP connections. The Interfaces service breaks into a number of services
representing the interface MIB data of every interface of the managed device. In
Fig. 10, other generic services such as an event service or a logging service might also
be present. To keep things simple we have omitted a WS-based notification service
and assume that notifications to the CMS are sent from the services that produce
them. In the future we will investigate creation of a flexible and scalable WS-based
notification service. At the moment when the traffic congestion threshold is crossed
on interface N2 the relevant interface monitoring service notifies the CMS; we

 Efficient Information Retrieval in Network Management Using Web Services 11

assume here that the CMS has activated the interface monitoring service in R1 Upon
receiving this notification, the CMS must try to determine the cause of congestion.

The CMS should retrieve information about the load that TCP connections be-
tween the various subnetworks are imposing on the interface N2 of router R1. Such
information is not provided by SNMP MIBs. Such an option would be available, if
MIBs would be capable to capture incoming and outgoing traffic per TCP connection
or use the RMON MIB to capture link layer traffic. In our case, let’s assume that the
TCP MIB is equipped with such data in the TCP connection table under two variables
called tcpConnInSegs and tcpConnOutSegs. In this case, the CMS should start moni-
toring hosts with Web or FTP servers and try to identify TCP connections with high
segment counters and also high segment rates.

Path_slct_exp={TCP Monitor Srv,NULL,NULL,empty} (20)

flt_exp={ (tcpConnLocalPort = 22 OR tcpConnLocalPort =80) AND
(tcpConnInSegs>thres_value OR tcpConnOutSegs>thres_value)

(21)

For the CMS to inform the agent which data it requires to retrieve from the TCP
monitoring service, it should dispatch to the agent the expressions in (20) and (21).
On receiving these two expressions, the agent picks up from the TCP monitoring
service only TCP connections for applications on well known ports, usually known to
produce traffic. Such applications are FTP and HTTP on ports 22 and 80 respectively.
In addition, the filter expression tells the agent to only retrieve connections whose
incoming or outgoing traffic exceeds a certain threshold. This way the manager will
acquire a few possible candidates responsible for creating congestion. With further
monitoring on these connections, it can determine the behavior of each one in terms
of segment rate and possibly identify remote hosts through tcpConnRemAddress that
cause the extra traffic. Without the functionality we support, the whole of the remote
TCP connection table would need to be retrieved, and this would incur a lot of addi-
tional traffic to the already congested network. This is a relatively simple scenario but
other scenarios also exist where a lot more information that belongs to different ser-
vices must be selectively retrieved. One such case may be the selective retrieval of
data from the logging service in order to trace particular series of events.

6 Conclusion

This paper presents an approach to address efficient information retrieval using Web
Services. Viewing management information collectively at various levels of the man-
agement hierarchy addresses the problem of bulk retrieval. Using a parser to interpret
expressions that highlight only specific data to be retrieved solves the problem of
selective retrieval. The collective and selective capability we provide in our approach
allows manipulation of management information at a fine level of granularity.

In order to support collective view of data at the object level, we deployed methods
that view SNMP single instance or multiple instance data as a whole. To do the same
at the service level we developed a scheme that defines arbitrary relationships be-
tween services. In order to allow the navigation and selection of services based on any
relationship we developed a parser that interprets appropriate expressions. In order to

12 A. Chourmouziadis and G. Pavlou

perform selective retrieval at the object level, the same parser interprets another series
expressions to highlight the data that will be selected.

We have developed both the parser which performs the path and data selection ex-
pression interpretation and the service association usage scenario to test its applicabil-
ity. This was all done in Java 1.4.2.10 using the regex machine it provides. We used
two WS toolkits to deploy these services, Apache AXIS and WASP, and we also plan
to provide performance data in the future. Until now we have only used custom-made
events that are dispatched directly from the services that produce them to the same
“hardwired” manager. We will be investigating a proper notification service in the
near future, tracking also work that has taken place in relevant standards bodies.

Acknowledgements

The research work in this paper was partly supported by the EU EMANICS Network
of Excellence on the Management of Next Generation Networks (IST-026854).

References

1. J. Schönwälder, “Overview of the 2002 IAB Network Management Workshop,” RFC 3535.
2. L. E. Menten, Bell Laboratories, “Experiences in the application of XML for Device Man-

agement,” IEEE Communications Magazine, Vol. 42, no. 7, pp. 92-100 July 2004.
3. W3C, “The Simple Object Access Protocol 1.2 (SOAP)”, http://www.w3.org/TR/soap12-

part1,h ttp://www.w3.org/TR/soap12-part2
4. W3C,“The Web Services Description Language 1.1 (WSDL)”, http://www.w3.org/ TR/ wsdl/
5. OASIS, “The Universal Discovery Description and Integration Technical Committee Draft

V 3.02 (UDDI),” http://uddi.org/pubs/uddi_v3.html.
6. A. Pras, et al, “Comparing the Performance of SNMP and WS-Based Management,” IEEE

Electronic Transaction on Network and Service Management, eTNSM, FALL 2004.
7. G. Pavlou, P. Flegkas, and S. Gouveris, “On Management Technologies and the Potential

of Web Services,” IEEE Communications Magazine, Vol. 42, no. 7, pp. 58-66 July 2004.
8. D. Davis, M. Parashar, “Latency Performance of SOAP Implementations,” 2nd IEEE ACM

International Symposium on Cluster Computing and the Grid, 2002, p 407.
9. R. van Engelen, “Code Generation Techniques for Developing Light-Weight XML WS for

embedded devices,” ACM symposium on applied computing, 2004, pp.854-861
10. G. Pavlou et al, “CMIS/P++: extensions to CMIS/P for increased expressiveness and effi-

ciency in the manipulation of management information.,” 7th Annual joint conference of the
IEEE Computer and Comms Societies, INFOCOM 98, Vol 2, April 1998 ,pp.430 - 438

11. P. Naur, “Revised Report on the Algorithmic Language of ALGOL 60,” Communications
of the ACM, May 1960, pp. 299-314.

12. J. Schonwalder, A. Pras, and J. P. Martin-Flatin, “On the Future of Internet Management
Technologies,” IEEE Communications Magazine., Oct. 2003, pp. 90–97.

13. T. Berners-Lee, R. Fielding, L. Masinter, “The Uniform Resource Identifier (URI): Ge-
neric Syntax”, RFC 3986, January 2005.

14. D. Box, F. Curbera, “WS-Addressing specification” , W3C submission 10 August 2004.
15. F. Curbera, J. Schlimmer, “WS-Metadata Exchange specification”, Sept. 2004.

On Delays in Management Frameworks: Metrics,
Models and Analysis�

Abdelkader Lahmadi, Laurent Andrey, and Olivier Festor

LORIA - INRIA Lorraine - Université de Nancy 2
615 rue du Jardin Botanique

F-54602 Villers-lès-Nancy, France
{Abdelkader.Lahmadi, Laurent.Andrey, Olivier.Festor}@loria.fr

Abstract. Management performance evaluation means assessment of scalabil-
ity, complexity, accuracy, throughput, delays and resources consumptions. In this
paper, we focus on the evaluation of management frameworks delays through a
set of specific metrics. We investigate the statistical properties of these metrics
when the number of management nodes increases. We show that management
delays measured at the application level are statistically modeled by distribu-
tions with heavy tails, especially the Weibull distribution. Given that delays can
substantially degrade the capacity of management algorithms to react and re-
solve problems it is useful to get a finer model to describe them. We suggest the
Weibull distribution as a model of delays for the analysis and simulations of such
algorithms.

Keywords: Management delays analysis, Management delays metrics, Manage-
ment delays modelling.

1 Introduction

The objectives of a management framework is to maintain the service level objectives
of managed systems by detecting, tracking and resolving problems that might occur
on those systems. A key performance metric in management frameworks to meet these
objectives is the feeding delay of management tasks and its respective quality as per-
ceived by the management algorithms. These algorithms are susceptible to large number
of managed systems with complex managed services.

Many approaches have been proposed for management systems, that varies from data-
oriented approaches (SNMPv2, RMON), object-oriented approaches (Corba, JMX), mo-
bile agents approaches [1], algorithmic approaches [2,3] and more recently autonomic
management and control theory approaches [4]. Those approaches aim at minimizing
the management overhead and costs but still accomplishing their management tasks with
their desired goals. However, to consider a management system as efficient does not only
mean reducing its cost and overhead, but also implies that the achievement of a man-
agement task has a certain level of quality, more specifically timeliness and temporal
accuracy. The timeliness and the temporal accuracy aspects require that management

� This paper was supported in part by the IST-EMANICS Network of Excellence project.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 13–24, 2006.
c© IFIP International Federation for Information Processing 2006

14 A. Lahmadi, L. Andrey, and O. Festor

tasks and the retrieved or altered management data must be taken and fitted within a
reasonable time window [1]. Thus, one fundamental performance metric of a manage-
ment algorithm is the end-to-end delay required to retrieve/alter a management attribute
within a group of management nodes involved in a management task. End-to-end delays
can be expressed in terms of fixed and variable components [5]. In a management sys-
tem, variable delays occur due to processing time at the management nodes (managers,
mid-level-managers and agents), transmission time on the network, and queueing time
while the network is busy. In this study we investigate the random nature of these de-
lays and its effect on the performance of a monitoring algorithm on the manager side,
more specifically the monitoring error. Previous studies of management frameworks de-
lays led to the establishment of simple analytical descriptions [6] or measurement based
analysis where management delays are described by their two first moments (mean and
standard deviation). However, we could not find a real investigation on the statistical
properties of these delays.

We have developed a benchmarking platform for JMX based management appli-
cations [7] to collect management performance metrics at the application-level. In this
paper, we present our results towards defining adequate models to describe management
frameworks delays. Our analysis is done through a single manager/many agents config-
uration using a polling scheme with a fixed monitoring interval. Thereby, the analysis of
the polling is interesting since it remains the main way in which GetAttribute calls oc-
cur in a managed network. We analyse the effect of the number of management agents,
presented as a scalability factor, on the properties of monitoring delays. We demonstrate
that there is a statistical analysis methodology and modelling for describing manage-
ment frameworks performance metrics. This statistical analysis resembles in many ways
to the engineering reliability modelling using the Weibull model [8] and the IP protocol
performance models described in [9].

The remainder of the paper is structured as follows: Section 2 reviews related works.
Section 3 describes our metrics for end-to-end management delays, and the factors that
affect it. Section 4 describes our measurement methodology and data sets. In section 5,
we analyse statistical properties of the delays on a polling-based monitoring algorithm.
Section 6 contains a summary of this contribution as well as an outlook for future work.

2 Related Works

Many investigations have studied partially management delays as part of their proposed
management frameworks, but to our knowledge none of them did propose a delay mod-
els allowing demonstrating the timeliness of management operations. Such models need
the matching of delays with well known underlying statistical distributions. In literature,
the main used statistics to summarize management delays was the mean and the stan-
dard deviation [10,11]. In addition, many works assume that management delays and
specifically monitoring delays are uniform [12]. Such assumption is heavy and becomes
invalid when the number of managed resources and management agents increase [6].
In such cases, monitoring algorithms do not scale well from a delay perspective where
algorithms lost the desired quality (timeliness and temporal accuracy) when achieving
tasks. This aspect of delays scaling or timeliness of management tasks has been take
up by Liotta et al [1] for mobile agents based management applications as an important

On Delays in Management Frameworks: Metrics, Models and Analysis 15

quality parameter for critical management tasks. Chen et al [6] assume in their work of
management approaches evaluation that management delays have a non uniform ran-
dom variable component that fluctuates according to the size of the managed network,
but no additional study has been done to describe this non uniformness.

3 Management Delays Metrics

To define management delay metrics, we start from the IPPM framework [9] for IP
packets delays measurements. We identify a monitoring delay metric to be relative to
a monitoring attribute defined by its name, its delay metric type, the management op-
eration type used to achieve the management task, the agents identifier and the number
of management objects carried by the operation. For example, the delay to retrieve the
FreeMemory attribute from a single agent to a manager is represented as following:
FreeMemory-AttributeDelay-GetAttribute-Manager-Agent-1.

We identify two types of delay metrics: the attribute delay and the group delay. The
attribute delay is relative to a single monitoring attribute retrieved from a single agent.
This metric is for interest to capture the delay to move an attribute value between two
management nodes (for example from an agent to a manager). The group delay captures
the delay to move an attribute value from a group of agents with a fixed size. This metric
is sensitive to perturbation that might arise on retrieving one attribute or computing an
aggregated attribute from a group of agents.

The attribute delay is the total delay that an attribute experiences to retrieve/alter its
values with a specific interaction mode (polling or notification), using a specific man-
agement operation. The attribute delay is measured in a time unit (seconds or millisec-
onds) per target attribute. If the interaction mode is notification, then it is a one way
delay experienced from a sender to a receiver. If the interaction mode is polling, it is
the round trip time between two or more management nodes.

The group delay is the amount of time required for a management algorithm to re-
trieve/alter the value of an attribute from a group of agents. The group delay is indeed
the longest delay served, during a polling round, from any agent of the group. The unit
of measure of the group delay is time units per agents group size. Many management
algorithms are sensitive to this amount of time since it impacts the algorithm reaction
time. During a management task period and according to its scheduling operations ap-
proach (sequential/serial or concurrent/parallel) [13], the group delay is defined by the
maximum of attribute delays from the agent’s group in a parallel management opera-
tions scheduling approach, or the sum of the attribute delays in a serial approach.

4 Measurement Methodology

4.1 Application-Level Versus Packet-Level Measurement

There are three approaches to delay measurement [14]. One is to collect packet-level
information somewhere in a network path between the manager and agents. Another is

16 A. Lahmadi, L. Andrey, and O. Festor

to collect kernel-level information on the manager side. The third is to collect informa-
tion at the application level on a manager or a mid-level managers side. The packet and
the kernel level approaches provide the most detailed information and the most accurate
timings. Application-level measurements are easy to implement, and the benchmarking
tools are portable. We use application-level measurement to develop and evaluate man-
agement delays. The benefit of application-level measurement, in contrast to other lev-
els measurement, is that it reflects delays as perceived by a decision point implemented
on a manager or a mid-level manager sides. Thus, the measured delays will include
network delays, requests and responses processing delays on each management node,
matching and searching attributes values delays on the agent, and security and privacy
processing. Figure 1 depicts a time series of measured delays on the manager side at the

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

Time (seconds)

At
tri

bu
te

 d
ela

ys
 (m

s)

Fig. 1. A time series of measured delays at the application-level on a manager side while sending
1 request per second to a single agent over JMX framework

application-level in a Java-based management framework. We observe some periodic
spikes where delay increases due to garbage collector activities each 60 seconds. There-
fore, only an application-level measurement technique captures easily these spikes that
might affect the performance of the management algorithm. The disadvantages of the
application-level measurement are the overhead that introduces when logging measure-
ments datasets, and the loss of information about each individual component delays
among agent delays, manager delays and messages delays.

4.2 Data Collection

The data we present and analyse in this paper was collected from our JMX benchmark-
ing platform [15] running on a cluster of 100PC (I-Cluster2) 1 where nodes are con-
nected via a gigabyte Ethernet. We built a synthetic benchmarking application based
on some widely used JMX implementations (SUN Reference implementation 1.2 and
MX4J 2.0). The synthetic application is used because it provides a flexibility in ex-
perimentation with various levels of workload: number of requests per second, type of
requests, type of MBeans and the number of attributes on each registered MBean within
the MBean server. We used a BEA WebLogic JRockit JVM from a JDK 1.4.2 04 run-
ning on an Itanium 2 with 2x900MHZ CPU and 3GB memory. We kept the default

1 http://i-cluster2.imag.fr

On Delays in Management Frameworks: Metrics, Models and Analysis 17

options values of all running JVMs on nodes. For all experiments we fixed the mon-
itoring rate in terms of number of requests per second and we varied the number of
agents. On the manager side, we used a concurrent monitoring operations scheduling
strategy. The manager creates for each agent a pool of threads that generates a fixed
number of requests per second. We use the JMX getAttribute operation that carries out
a single attribute value from a single MBean. Thus, the size of requests is the same
for all experiments. For each agent we stored its requests delays in a separate file, dur-
ing a measurement of 20 minutes after a warm-up period of 1 minute as recommended
in [16]. Within the measurement period, we record the timestamps before and after
calling the getAttribute operation on the manager side. The difference between the two
timestamps represents the measured attribute delay. We use the Java instruction current-
Timemillis to get the current time in milliseconds with a resolution of 1 ms on Linux
operating system2. All measurement data are collected and stored on a separate node.
Confronted with 20GB of collected data to analyse, it is clear that we cannot hope to
individually analyse each trace. We must indeed turn to automated analysis. That is, we
use developed Perl scripts to analyse our data and generate the corresponding statistical
properties. For the statistical analysis of delays, we are refereed to the same method-
ology proposed by Paxon in his PhD thesis [17] on which the IPPM framework lies
[9].

4.3 Statistical Analysis Techniques

The first analysis technique we applied is summarizing a data set. If we wish to sum-
marize the attribute delays we might at first think to express them in terms of their
sample mean and variance (or standard deviation). However, in practice we find that
often the collect of an attribute experiences one or more delays that are much higher
than the reminder. These extreme delays greatly skew the sample mean and the vari-
ance, so that the resulting summaries do not accurately describe a typical behavior. A
typical management delays description is reflected by the median and the IQR (Inter-
Quantile-Range) that remain resilient in the presence of extremes or outliers. This typi-
cal description is suitable for management algorithms that require unbounded delays to
retrieve management data. However, an extreme description is reflected by the mean and
the standard deviation since they are less robust to outliers. Hence, the choice of statis-
tical estimators for summarizing delays datasets depends on the evaluated management
algorithm quality requirements. For a real time monitoring algorithm, the mean and the
standard deviation are more adequate to summarize monitoring delays since they reflect
any perturbations that might occur on the monitoring system. One other technique we
apply, is describing delays using statistical distributions of collected data. The empiri-
cal distribution function (EDF) [9] of a set of scalar measurements is a function F(x)
which for any x gives the fractional proportion of the total measurements that were less
equal than x. If x is less than the minimum value observed, then F(x) is 0. If it is greater
or equal to the maximum value observed, the F(x) is 1. Moreover, in our analysis we
match the group and attribute delays data sets against the popular Weibull distribution

2 The resolution or granularity of a clock is the smallest time difference that can be measured
between two consecutive calls.

18 A. Lahmadi, L. Andrey, and O. Festor

model [8] to approximate the underlying statistics. When using this model to approx-
imate the empirical data, we always apply Maximum Likelihood Estimator (MLE) [8]
for parameters estimation.

5 Statistical Properties of Monitoring Delays

5.1 Attribute Delays Analysis

Firstly, we analyse the attribute delay when transferring the values of the same attribute
from a single agent within a variable group size of agents to a manager under a fixed
monitoring rate of 1 request per second. We know that the performance bottleneck is
located at the manager side since the management approach is centralized [6]. Table 1
shows the attribute delay statistics measured on the manager side when retrieving val-
ues of an attribute from an arbitrary agent within a group. We observe from table 1 that

Table 1. Summary of attribute delays statistics measured at the manager side of a single agent
within a varied group size

Group size Attribute Delay (ms) statistics
Mean Std Median IQR Min Max

70 1.02 0.20 1 0 1 4
140 4.45 46.34 1 0 1 973
210 68.47 432.37 1 0 1 3614
280 105.08 983.41 1 0 1 9960
350 392.73 2250.64 1 0 1 20269
420 675.24 3689.65 1 0 1 33365
490 561.55 4254.14 1 0 1 39816
560 1787.82 8179.39 1 0 1 50395
630 1916.86 8764.2 1 0 1 60646
700 2394.55 12073.7 1 0 1 78994

the attribute delay description varies according to the used statistics estimators as men-
tioned in the section 4.3. When increasing the size of the group of agents, we observe
first that the minimum delay is constant, the mean and the standard deviation increases.
Indeed, the median and the IQR 3 remain invariant and constant. Figure 2 shows the
time series of attribute delays of different agents from groups of size 70 and 700. We
observe that the attribute delays become more randomness while the group of agents
size increases. We also observe that the number of delays greater than the monitoring
interval of 1 second with a group of 700 agents increases. This is due to queueing de-
lays at the manager side that experiences monitoring calls when the number of agents
increases and the manager saturates. Figure 3 shows the empirical distribution of an
attribute delay from an agent within a group size of 700. We did not find a suitable
statistical distribution fitting these delays. Indeed, we observe that the distribution of
attribute delays from an agent is multi-modal as depicted in the figure 3. The percentile

3 The Inter Quartile Range is the 0.75−quantile minus the 0.25−quantile.

On Delays in Management Frameworks: Metrics, Models and Analysis 19

0 10 20 30 40 50 60 70
10

0

10
1

10
2

Agents index

A
ttr

ib
ut

e
de

la
ys

 (
m

s)

Mean

0 100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Agents index

A
ttr

ib
ut

e
de

la
ys

 (
m

s)

Mean

70 agents 700 agents

Fig. 2. Empirical time series of attribute delays per agent from two groups of agents of different
sizes (y-axis is in log scale)

10
0

10
1

10
2

10
3

10
4

10
5

10
−0.04

10
−0.03

10
−0.02

10
−0.01

10
0

 Attribute delays (ms)

 C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Fig. 3. Log-Log plot of the Empirical Distribution of the attribute delays of an agent within a
group of 700 agents

α of attribute delays less than the monitoring interval of 1 second follow closely a nor-
mal distribution N(1.10,0.44). These delays represent monitoring calls that experience
less queueing delays on the manager side. However, the 1−α of delays greater than
the monitoring interval follow closely a Weibull distribution. Despite the multi-modal
behavior of the attribute delay, we claim that the attribute delays follow a weibull dis-
tribution since the normal distribution is a particular case of a weibull one. 4

5.2 Group Delay Analysis

Secondly, we analyse the group delay of an attribute from a varied size group during a
management period (a polling round for example) with a given management task (moni-
toring or configuration) and using a given management operation. Within a management
period, the group delay is defined as a random process X = {Xi}i=1,2,,..m of a group of

4 If the shape parameter is close to 3.602 the weibull distribution is close to a normal.

20 A. Lahmadi, L. Andrey, and O. Festor

agents with size m. In this section, we are interested in the behavior of X . We plot the
EDF function as depicted in figure 4 of the mean attribute delays from each agent with
different group sizes varying from 70 to 700. The group mean attribute delays shift right
when the group size increases that means the monitoring messages are more burstiness
and the queueing delays increase on the manager side. We use the maximum likelihood

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Group mean delays (ms)

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

m=70

m=140

m=210

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Group mean delays (ms)

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

m=560

m=630

m=700

Fig. 4. Empirical Distribution of the group mean delays of a monitoring task with a monitoring
period of 1 second, using a polling interaction between one manager and a group of agents of size
m, and using the JMX GetAttribute operation (x-axis is in log scale)

estimators [8] to find an adequate classical statistical underlying distribution of group
delays with a fixed size. Our finding is that the Weibull distribution best fits the group
delays data set. This distribution has been recognized as a good model for TCP inter-
arrival times [18] and for many fields in engineering reliability components lifetimes
[8]. Figure 5 reports the Weibull probability plots 5 of the group attribute mean delays
distribution of respectively 140 and 700 agents. We find that for a size of 140 agents the
group mean delays best fit the weibull distribution than a larger group of 700 agents.
We find that as the group size becomes larger the group mean delays best fit a normal
distribution. It is known that the normal distribution well fits sample means of a large
number of independent observations from a given distribution [19][page 494]. Conse-
quently, samples mean delays of a group of agents well fit a normal distribution as the
size of the group becomes larger. The parameters a, b of the Weibull distribution repre-
sent respectively the so called scale and shape parameters which determine its structure
and statistics. Varying the values of these two parameters highly impacts the appearance
of the Weibull distribution. The parameter a is closely related to the distribution peak,
and the parameter b is concerned with the tail behaviour.

When the shape parameter b� 1, the mode, the median and the mean are close to the
value of the parameter a. Thus, parameter a represents the mean delays values where
data are mainly located (distribution peak). We observe from table 2 that with a small
group of 70 agents, we have a shape parameter of 17.11 large greater than 1. Therefore,

5 The purpose of a Weibull probability plot is to graphically assess whether the data in the
random variable X could come from a Weibull distribution. If the data are Weibull the plot will
be linear.

On Delays in Management Frameworks: Metrics, Models and Analysis 21

10
0.4

10
0.5

10
0.6

10
0.7

10
0.8

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90
0.96
0.99

Group mean delays (ms)

P
ro

ba
bi

lit
y

Weibull Probability Plot

10
1

10
2

10
3

10
4

0.001

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90
0.96
0.99

0.999

Group mean delays (ms)

P
ro

ba
bi

lit
y

Weibull Probability Plot

140 agents 700 agents

Fig. 5. The Weibull probability plot of group attribute mean delays of group sizes of 140 and
700 agents. The fitted Weibull distributions have respectively a scale parameters a(140) = 5.02,
a(700) = 12349 and a shape parameters b(140) = 5.52 ,b(700) = 2.

for small groups the group mean delays well fit a weibull distribution and the first and
second-order statistics are close to the scale parameter. We also observe that the shape
parameter decreases, as the size of the group of agents increases. When the group of
agents becomes larger enough, the shape parameter is close to 2 and the Weibull distri-
bution approximates a normal distribution. It is obviously that the normal distribution
is used whenever the randomness is caused by several independent sources acting addi-
tively; for example sample means of a large number of independent observations from
a given distribution.

5.3 Management Delays Quality

To gauge how well management delays scale when the size of a group of agents in-
creases, we are interested to identify the proportion of attribute delays that are less or
equal to a maximum tolerable delay that we consider, in this work, as the monitoring
interval Δ (1 second in our case). Let θ be this proportion of attribute delays, statisti-
cally we obtain θ = P[X ≤ Δ] = EDF(Δ). The quantity 1−θ represents the proportion
of attribute delays that are late after the monitoring interval and θ is a quality parameter
of a monitoring framework delay. For the group delay metric, the parameter θ becomes
more interesting, since it captures the proportion of agents that respond within a delay
less or equal to the monitoring interval. This quantity represents the monitoring error of
the management system and captures the quality of the monitoring algorithm temporal
accuracy. Table 2 shows the measured and predicted values from the fitted distribution
of the 1−θ parameter.

5.4 Cross-Validation

In order, to give a first insight on the validity of our model, we use the group mean
attribute delays dataset from the study of Pras et al [20] to partially verify that group de-
lays approximate a Weibull distribution. The validation is partial because their datasets

22 A. Lahmadi, L. Andrey, and O. Festor

Table 2. The measured and the predicted monitoring error 1 − θ from group mean delays of
different sizes group of agents

Group size (m) Measured monitoring error
1−θ

Predicted monitoring error
1−θ

Weibull parameters

Shape (b) Scale (a)
70 0 0 17.11 1.07
140 0 0 5.52 5.02
210 0 0 4.54 59.16
280 0 0 1.81 77.54
350 0.05 0.04 2.28 610.36
420 0.51 0.62 1.9 1468.88
490 0.91 0.86 2.1 2519.79
560 0.99 0.95 1.8 4902.03
630 0.99 0.98 1.8 7437.27
700 0.99 0.98 2 12349

are measured for SNMP based monitoring system and are packet-level measurements.
We focus on the dataset delays of retrieving a single object from the group of agents.
Our finding that their group mean attribute delays of their data set with a group size of
23 agents fits closely a Weibull distribution as depicted in the figure 6. In their paper, the
authors record SNMP agents Round-Trip delays at the UDP-level, indeed our dataset
delay are recorded on the application-level with RMI as underlying protocol that lies
on the TCP protocol. As noted in [18], wired TCP flow arrivals are well modeled by
a 2-parameters Weibull distribution and claimed that it gives a better fit than other dis-
tribution models (lognormal, pareto and exponential). Hence, according to these works
based on packet-level measurement and our work based on application-level measure-
ment, we claim that the Weibull model is a good candidate to model delays in manage-
ment frameworks.

10
0

10
1

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.96

SNMP group mean delays (ms)

P
ro

ba
bi

lit
y

Weibull Probability Plot

Fig. 6. The Weibull Probability plot of group attribute mean delays of SNMP agent’s group size of
23. The fitted Weibull distribution has a scale parameter a = 3.46 and a shape parameter b = 0.62.

On Delays in Management Frameworks: Metrics, Models and Analysis 23

6 Conclusion and Future Works

In this paper, we have analysed management delays within a simple centralized mon-
itoring algorithm. Our primary objective is to identify a set of metrics that character-
ize delays. We based our study on standardized work from other fields, specially the
IPPM framework and Vern Paxon work [17]. We identified how to use the statistical es-
timators (mean, standard deviation or median and IQR) to characterize management
delays based on the quality requirements (delays dependant or independent) of the
evaluated algorithm. Our analysis of a synthetic JMX based management benchmark
datasets, shows that group delays have a statistical underlying distribution, identified as
the Weibull model. Understanding the statistical modelling of management delays is im-
portant for the simulation and analytical performance evaluation studies of management
frameworks. It is also interesting for the proper designing of management applications
(buffer sizing and underlying transport protocol). In this work we initiate an empiri-
cally derived analytical models of management frameworks, that could be exploited in
simulation environments or performance prediction. As a further interesting work, we
will investigate the coupling of packet-level and application-level delays measurement
datasets to better understand management frameworks delays and develop more accu-
rate models. Although the polling model is probably the main way in which Get calls
occur in a managed network, it will be interesting to study how the network would be-
have with notifications, particularly when notifications signal errors, and this is the time
that the network is most critical.

References

1. Liotta, A., Knight, G., Pavlou, G.: On the performance and scalability of decentralized mon-
itoring using mobile agents. In: DSOM. (1999) 3–18

2. Chen, Y., Bindel, D., Song, H., Katz, R.H.: An algebraic approach to practical and scalable
overlay network monitoring. In: Proceedings of the ACM SIGCOMM 2004 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communication,
August 30 - September 3, 2004, Portland, Oregon, USA, ACM (2004) 55–66

3. Chua, D., Kolaczyk, E.D., Crovella, M.: A statistical framework for efficient monitoring of
end-to-end network properties. In: Proceedings of the International Conference on Measure-
ments and Modeling of Computer Systems, SIGMETRICS 2005, June 6-10, 2005, Banff,
Alberta, Canada, ACM (2005) 390–391

4. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbuyr, D.M.: Feedback Control of Computing Sys-
tems. Wiley-Interscience (2004) ISBN: 0-471-26637-X.

5. Bolot, J.C.: End-to-end packet delay and loss behavior in the internet. In: SIGCOMM ’93:
Conference proceedings on Communications architectures, protocols and applications, New
York, NY, USA, ACM Press (1993) 289–298

6. Chen, T.M., liu, S.S.: A model and evaluation of distributed network management ap-
proaches. IEEE journal on selected areas in communications 20 (2002)

7. Lahmadi, A., Andrey, L., Festor, O.: On the impact of management on the performance of a
managed system: A jmx-based management case study. In: DSOM. Volume 3775 of Lecture
Notes in Computer Science., Springer (2005) 24–35

8. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions. 2 edn. Vol-
ume 1. John Wiley & Sons (1994) ISBN: 0-471-58495-9.

24 A. Lahmadi, L. Andrey, and O. Festor

9. Paxson, V., Almes, G., Mahdavi, J., Mathis, M.: RFC 2330: Framework for IP performance
metrics (1998) Status: INFORMATIONAL.

10. Lim, K.S., Stadler, R.: Weaver: Realizing a scalable management paradigm on commodity
routers. In: Integrated Network Management. Volume 246 of IFIP Conference Proceedings.,
Kluwer (2003) 409–424

11. Gu, Q., Marshall, A.: Network management performance analysis and scalability tests:
SNMP vs. CORBA. In: IEEE/IFIP Network Operations & Management Symposium, Seoul,
Korea. (2004)

12. Moghe, P., Evengelista, M.: Rap-rate adaptive polling for network management applications.
In: Network Operations and Management Symposium, 1998, NOMS 98, IEEE. Volume 3.
(1998) 395–399 ISBN: 0-7803-4351-4.

13. Beverly, R.: RTG: A Scalable SNMP Statistics Architecture for Service Providers. In: Pro-
ceedings of the 6th Systems Administration Conference (LISA 2002). (2002) 167–174

14. Downey, A.B.: An empirical model of tcp performance. In: MASCOTS, IEEE Computer
Society (2005) 45–54

15. Andrey, L., Lahmadi, A., Delove, J.: A jmx benchmark. Technical Report RR-5598, Loria-
INRIA Lorraine (2005)

16. Demarey, C., Harbonnier, G., Rouvoy, R., Merle, P.: Benchmarking the round-trip latency
of various java-based middleware platforms. Studia Informatica Universalis Regular Issue 4
(2005) 7–24 ISBN: 2-912590-31-0.

17. Paxson, V.E.: Measurements and analysis of end-to-end Internet dynamics. PhD thesis,
Berkeley, CA, USA (1998)

18. A.Feldmann: Characteristics of TCP connections. In: Self-similar Network Traffic and Per-
formance Evaluation. Jonhn Wiley and Sons (2000) 367–399

19. Jain, R.: The art of Computer Systems Performance Analysis. John Wiley & Sons, Inc (1991)
ISBN : 0-471-50336-3.

20. Pras, A., Drevers, T., de Meent, R.V., Quartel, D.: Comparing the performance of SNMP
and web services-based management. eTransactions on Network and Service Manage-
ment(eTNSM) 1 (2004)

Performance Analysis of SNMP over SSH

Vladislav Marinov and Jürgen Schönwälder

Computer Science
International University Bremen

Campus Ring 1, 28759 Bremen, Germany
{v.marinov, j.schoenwaelder}@iu-bremen.de

Abstract. There have been several attempts in the past to secure the
Simple Network Management Protocol (SNMP). Version 3 of the SNMP
protocol introduced a User-based Security Model (USM) which comes
with its own user and key-management infrastructure. However, many
operators are reluctant to introduce a new user and key management
infrastructure just to secure SNMP. This paper describes how the Secure
Shell (SSH) protocol can be used to secure SNMP and it provides a
performance analysis of a prototype implementation which compares the
performance of SNMP over SSH with other secure and insecure versions
of SNMP.

1 Introduction

Network devices maintain large amounts of management data. Management data
can provide insights as to how the network is performing or which abnormal
events have been observed. Moreover, management data can be used to under-
stand how a device is configured and to change the configuration of that device.
The Simple Network Management Protocol (SNMP) [1] allows both for manage-
ment data to be collected remotely from devices and for devices to be configured
remotely. It was first published in August 1988 and since then it has been widely
used in network management.

There was no security implemented in SNMP version one (SNMPv1) and the
attempts to add security to SNMP version two (SNMPv2) lead to failure as
well. Version 3 of the Simple Network Management Protocol (SNMPv3) added
security to the previous versions of the protocol by introducing a User-based
Security Model (USM) [2]. The USM was designed to be independent of other
existing security infrastructures, to ensure it could function when third party
authentication services were not available, such as in a broken network. As a
result, USM utilizes a separate user and key management infrastructure.

Network operators have reported that deploying another user and key man-
agement infrastructure introduces significant costs and hence the USM design
is actually a reason for not deploying SNMPv3. To address this issues, a new
security model is currently being defined by the Integrated Security Model for
SNMP (ISMS) working group of the Internet Engineering Task Force (IETF)
which leverages the Secure Shell (SSH) [3] protocol. It is designed to meet the

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 25–36, 2006.
c© IFIP International Federation for Information Processing 2006

26 V. Marinov and J. Schönwälder

security and operational needs of network administrators, maximize usability in
operational environments to achieve high deployment success and at the same
time minimize implementation and deployment costs to minimize the time until
deployment is possible.

This paper describes the SSH security model for SNMP and provides a per-
formance evaluation of a prototype implementation. It is structured as follows:
Section 2 describes the extensions of the SNMP architecture that are needed
to support security models where security services such as authentication and
encryption are provided by the message transport rather than the SNMP proto-
col itself. Section 3 introduces the SSH security model for SNMP. A prototype
implementation of SNMP over SSH is described in Section 4 and some perfor-
mance figures are presented in Section 5. Section 6 discusses related work before
we conclude our paper in Section 7.

2 Extensions of the SNMP Architecture

The SNMP architecture [4] was designed to be modular in order to support
future protocol extensions such as additional security models. The architecture
defines several subsystems and interfaces between subsystems that should remain
unchanged when subsystems are extended. The goal was to reduce side effects
that can occur without such an architectural framework when the protocol is
extended.

Responder
Notification
Originator Receiver

Notification Proxy
Forwarder

Command
Generator

SNMP Applications

Dispatcher

SNMP Entity

Subsystem
Processing
Message

Subsystem

Security

Subsystem
Control
Access

SNMP Engine (identified by snmpEngineID)

Command

Fig. 1. Structure of an SNMP entity according to the SNMPv3 architecture

According to the SNMP architecture, an SNMP engine consists of a message
processing subsystems, a security subsystem, an access control subsystem, and a
single dispatcher (Fig. 1). Each subsystem can contain multiple concrete models
that implement the services provided by that subsystem. The interfaces between

Performance Analysis of SNMP over SSH 27

subsystems are defined as Abstract Service Interfaces (ASIs). The dispatcher is
a special component which controls the data flow from the underlying transports
through the SNMP engine and up to the SNMP applications1.

As of today, most SNMPv3 implementations support three message processing
models for SNMPv1, SNMPv2c, and SNMPv3 and two security models, namely
the User-based Security Model (USM) (used by the SNMPv3 message processing
model) and the Community-based Security Model (CSM) (used by the SNMPv1
and SNMPv2c message processing models). There is only a single View-based
Access Control Model (VACM) so far.

CACHETMSP

Subsystem
Processing
Message

Transport

Mapping

Subsystem

SNMP Engine (identified by snmpEngineID)

Control
Access

Subsystem

SecurityDispatcher

SMSP

Fig. 2. Structure of an SNMP engine that supports transport mapping security models.
The Transport Mapping Security Processor (TMSP) and the Security Model Security
Processor (SMSP) communicate via a shared cache.

The design of the SNMP architecture assumes that security services (authen-
tication, data integrity checking, encryption) are provided as part of the SNMP
message processing. If, however, the security services are provided by the trans-
port over which SNMP messages are exchanged, the architecture does need some
extensions. The approach followed by the ISMS working group of the IETF [5]
is to split a transport mapping security model (TMSM) into two parts (Fig. 2):

– The Transport Mapping Security Processor (TMSP) is the portion that is
part of the message transport and performs the actual security processing.

– The Security Model Security Processor (SMSP) is the portion that realizes
the appropriate security model required by the SNMPv3 architecture. In
order to provide the required services, it has to interact with the TMSP.

The TMSP and the SMSP need to exchange information (e.g., the name
name of the authenticated SSH user). While this exchange can be realized in
different ways, the simplest and most efficient scheme is to establish a cache
which maintains relevant information and to pass a handle between the TMSP
and SMSP by extending the ASIs.
1 The SNMP architecture should actually have a separate transport subsystem with

proper ASIs to cleanly model the fact that SNMP supports multiple transport mod-
els. The introduction of a transport subsystem has recently been proposed to the
ISMS working group.

28 V. Marinov and J. Schönwälder

Transport security protocols are typically session-based. They usually have
a session establishment phase where a session key and some shared state is
established followed by the secured data exchange. This is very different from the
message-based approach used by USM where all security information is carried
in every single message exchanged between two SNMP engines and there is no
notion of a session or a session key.

3 SSH Security Model for SNMP

The Secure Shell (SSH) protocol [3] is a protocol for secure remote login and
other secure network services over an insecure network. It consists of three major
components:

– The Transport Layer Protocol provides server authentication, confidentiality,
and integrity. It may optionally also provide compression. The transport
layer protocol typically runs over a TCP/IP connection, but might also be
used on top of any other reliable data stream. It uses public-key cryptography
to authenticate the server to the client and to establish a secure connection
which then uses a session key and a symmetric encryption algorithm to
protect the connection.

– The User Authentication Protocol authenticates the client-side user to the
server. It runs over the transport layer protocol. SSH supports several differ-
ent user authentication mechanisms such as password authentication, public-
key authentication, and keyboard-interactive authentication (which supports
challenge-response authentication mechanisms).

– The Connection Protocol multiplexes the encrypted connection into several
logical channels. It runs over the transport layer protocol after successful
completion of the user authentication protocol. Every channel has its own
credit-based flow control state in order to deal with situations where channels
are connected to applications with different speeds.

Note that SSH authentication is usually asymmetric: An SSH server au-
thenticates against an SSH client using host credentials (host keys) while the
user authenticates against the SSH server using user credentials (user keys or
passwords).

The SSH Security Model (SSHSM) for SNMP [6] is an instantiation of a
TMSM which uses SSH, a protocol already widely deployed to secure access
to command line interfaces on network elements. The specification details the
elements of procedure for the TMSP and the SMSP portions of the SSHSM.
It also deals with details such as engineID discovery and the handling of no-
tifications. Notification delivery is not straight forward due to the asymmetric
authentication provided by SSH and the requirement to exercise access control
in a consistent way for read, write, and notify access. The details are still being
discussed in the ISMS working group of the IETF at the time of this writing.

With the SSHSM, no security parameters are conveyed in SNMPv3 messages.
Accordingly, the msgSecurityParameters field of SNMPv3/SSH messages car-
ries a zero length octet string and the implementation of the security model

Performance Analysis of SNMP over SSH 29

portion of the SSHSM simply retrieves the necessary information by accessing a
cache which is shared between the transport mapping porting and the security
model portion of the SSHSM.

4 Implementation

The prototype implementation of SNMP over SSH developed at IUB is an exten-
sion of the widely used open source Net-SNMP SNMP implementation. For the
SSH protocol, the libssh library was used, an open source C implementation
of SSH. The libssh library contains all functions required for manipulating a
client-side SSH connection and an experimental set of functions for manipulating
a server-side SSH connection.

The implementation does not implement the SSHSM as it is currently dis-
cussed in the IETF since the details of the SSHSM were not worked out when
the implementation work was done. The prototype only supports the TMSP part
of SSHSM plus a slight modification of the Community-based Security Model
(CSM) which passes the authenticated SSH user identity as the security name
to the access control subsystem. This basically gives us SNMPv1/SSH and SN-
MPv2c/SSH while the ISMS working group defines SNMPv3/SSH.

The implementation itself consists of a new transport module which is in the
order of 1200 lines of C code. The Net-SNMP internal API for adding transports
worked well and did not require any changes. The fact that Net-SNMP already
supports stream transports was convenient. For password authentication, the
prototype calls the Linux Pluggable Authentication Modules (PAM) [7] library
to make it runtime configurable how passwords are checked.

Most of the development time was spend on optimizing the performance of
the implementation since the overall latency initially was surprisingly high. In
order to optimize the performance of the SSH transport domain, we investigated
the influence of TCP’s Nagle algorithm as well as the windowing mechanism of
the SSH protocol.

4.1 TCP Nagle Interactions

During our initial measurements, we observed that the execution of a snmpget
operation over the SSH transport domain required approximately 800ms. This
surprisingly large delay was introduced by TCP’s Nagle algorithm which essen-
tially delays the sending of a TCP segment until either a segment has been
filled or the previous segment has been acknowledged. We therefore disabled
the Nagle algorithm by setting the TCP NODELAY flag on the agent and on the
manager side of the connection. This lead to a significant improvement in the
performance of the SSH transport domain as the time required for the execution
of a snmpget operation went down to 56.5ms. We further modified the libssh
library to disable the Nagle algorithm immediately after establishing the TCP
connection between the agent and the manager and before any SSH exchanges.
This further reduced the time required for a snmpget operation to 16.17ms on
our fast machines.

30 V. Marinov and J. Schönwälder

4.2 SSH Window Adjustments

The SSH windowing mechanism is used to specify how much data the remote
party can send before it must wait for the window to be adjusted. In the
OpenSSH implementation such window adjustment messages are only exchanged
periodically. During our initial observations we noticed that each message ex-
changed between the agent and the manager was followed by a window ad-
justment message. These additional messages introduced significant bandwidth
overhead as well as latency overhead for long sessions. As a result the SSH trans-
port domain performed worse than the USM transport domain with respect to
latency and bandwidth. In order to optimize the performance, we modified the
libssh library to send window adjustment messages only when necessary. This
improvement lead to better bandwidth and latency performance of the SSH
transport domain when compared to the USM transport domain as explained
below.

5 Performance Analysis

The performance of our SNMP over SSH prototype has been evaluated by
comparing it against SNMPv3/USM with authentication and privacy enabled,
running over both TCP and UDP. In addition, to establish a baseline, the perfor-
mance of plain SNMPv2c over both TCP and UDP was measured. The following
sections first describe the experimental setup and then discuss the session estab-
lishment overhead and the performance for walks of different sizes without and
with packet loss. Finally, the bandwidth used by the different SNMP transports
is compared and the memory requirements for keeping open SSH sessions on a
command responder is discussed.

5.1 Experimental Setup

The experiments were performed on three Debian GNU/Linux machines (see
Table 1). The machines were connected via a switched Gigabit Ethernet with
sufficient capacity.

Table 1. Machines used during the measurements

Name CPUs RAM Ethernet Kernel

meat 2 Xeon 3 GHz 2 GB 1 Gbps 2.6.16.14
veggie 2 Xeon 3 GHz 1 GB 1 Gbps 2.6.12.6
turtle 1 Ultra Sparc IIi 128 MB 100 Mbps 2.6.16.14

The SNMP command responder was running on meat and turtle for the
measurements without packet loss and veggie was acting as a command gen-
erator. Under the condition of packet loss, the command responder was run-
ning on turtle while the command generator was running on meat. For the

Performance Analysis of SNMP over SSH 31

SNMP/USM measurements, we used the authentication plus privacy security
level with HMAC-MD5 as the authentication algorithm and AES-128 as the en-
cryption algorithm. The libssh library was configured to also use the HMAC-
MD5 authentication algorithm and the AES-128 algorithm for encryption and
null compression.

We instrumented the snmpget, snmpwalk and snmpbulkwalk programs (part
of the Net-SNMP package) to measure the latency by calling gettimeofday()
before opening a session (but after parsing of MIB files) and after closing the ses-
sion and computing the time difference. The output was directed to /dev/null
and each experiment was repeated 100 times. The tcpdump tool was used to
calculate the number of bytes exchanged and the pmap tool was used to mea-
sure the memory sizes of the processes. Packet loss was simulated by using
the netem network emulation queuing discipline of the Linux kernel on meat
and turtle.

The object identifier (OID) used for snmpwalk and snmpbulkwalk measure-
ments was the interface table ifTable [8]. The object identifier used for snmpget
measurements was the scalar sysDescr [9]. The number of rows in the ifTable
was manipulated by creating virtual LAN (VLAN) interfaces.

5.2 Session Establishment

Table 2 shows the result of performing snmpget requests on the scalar sysDescr
using different transports. There is a significant cost associated with the estab-
lishment of SSH sessions. This is, however, not surprising since the SSH protocol
establishes a session key using a Diffie-Hellman key exchange (using public-key
cryptography) before the user authentication protocol is executed and the SSH
channel is established. Since the cryptographic operations are CPU bound, the
session establishment times increases significantly on our slow test machine.

Table 2. Performance of snmpget requests (sysDescr.0)

Protocol Time (meat) Time (turtle) Data Packets

SNMPv2c/UDP 1.03 ms 0.70 ms 232 byte 2
SNMPv2c/TCP 1.13 ms 1.00 ms 824 byte 10

SNMPv3/USM/UDP 1.97 ms 2.28 ms 668 byte 4
SNMPv3/USM/TCP 2.03 ms 3.03 ms 1312 byte 12

SNMPv2c/SSH 16.17 ms 91.62 ms 4388 byte 32

Table 2 also shows that there is an clear difference in the amount of data (total
size of the Ethernet frames) and the number of IP packets exchanged between
UDP and TCP transports. While this overhead is usually not a big issue on a
well functioning local area network, it might be an issue in networks with large
delays or high packet loss rates.

32 V. Marinov and J. Schönwälder

5.3 Latency Without Packet Loss

Figure 3 shows the latency for the retrieval of the ifTable [8] with different
sizes using snmpwalk. The difference between the transports UDP and TCP
seems marginal compared to the difference caused by enabling authentication
and privacy. The performance of the SSH transport is interesting. Initially, the
costs of establishing an SSH channel with a new session key cause the SSH
transport to perform worse than SNMPv3/USM. However, there is a break-
even-point after ≈ 500 SNMP interactions where the SSH transport becomes
more efficient than SNMPv3/USM. This observation seems to be independent
of the speed of the machine hosting the command responder.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500

tim
e

(m
s)

number of getnext operations

snmpwalk ifTable on meat with 0% packet loss

SNMPv2c/UDP
SNMPv2c/TCP
SNMPv2c/SSH

SNMPv3/UDP/USM
SNMPv3/TCP/USM

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500

tim
e

(m
s)

number of getnext operations

snmpwalk ifTable on turtle with 0% packet loss

SNMPv2c/UDP
SNMPv2c/TCP
SNMPv2c/SSH

SNMPv3/UDP/USM
SNMPv3/TCP/USM

Fig. 3. Latency comparison of SNMP getnext walks (ifTable) without packet loss
with a command responder on a fast machine (left plot) and on a slow machine (right
plot)

 0

 5000

 10000

 15000

 20000

 25000

 0 500 1000 1500 2000 2500

tim
e

(m
s)

number of getnext operations

snmpwalk ifTable on turtle with 0.1% packet loss

SNMPv2c/UDP
SNMPv2c/TCP
SNMPv2c/SSH

SNMPv3/UDP/USM
SNMPv3/TCP/USM

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 500 1000 1500 2000 2500

tim
e

(m
s)

number of getnext operations

snmpwalk ifTable on turtle with 0.5% packet loss

SNMPv2c/UDP
SNMPv2c/TCP
SNMPv2c/SSH

SNMPv3/UDP/USM
SNMPv3/TCP/USM

Fig. 4. Latency comparison of SNMP getnext walks (ifTable) under packet loss with
a command responder on a slow machine with different packet loss probabilities

5.4 Latency with Packet Loss

Figure 4 shows the latency of the same snmpwalks on the ifTable with 0.1%
and 0.5% packet loss using the slow command responder running on turtle.
The surprising result is that the TCP-based transports all clearly outperform

Performance Analysis of SNMP over SSH 33

the UDP-based transports. It turns out that Net-SNMP has a very simple re-
transmission scheme with a default timeout of 1 second and 5 retries. TCP
reacts much faster to lost segments in our experimental setup and this explains
the bad performance of the UDP transports in the plots of Figure 4. Note that
this result cannot be generalized since other SNMP implementations may have
other retransmission schemes. However, simple statements that UDP transports
outperform TCP transports in lossy networks are questionable as long as the
application layer retransmission scheme is not spelled out.

5.5 Bandwidth

Figure 5 shows the amount of data exchanged during the snmpwalk experi-
ments without packet loss. It can be seen that the amount of data exchanged
increases when switching from UDP to TCP due to larger TCP headers. Fur-
thermore, SNMPv2c/SSH requires less bandwidth than SNMPv3/USM/UDP
and SNMPv3/USM/TCP. Even though the SSH connection protocol adds a tiny
header, it seems that this header is significantly shorter than the space needed
for the SNMPv3/USM header.

 0

 200000

 400000

 600000

 800000

 1e+06

 0 1000 2000 3000 4000 5000

ba
nd

w
id

th
 (

by
te

s)

number of messages exchanged

bandwidth for different number of messages exchanged

SNMPv2c/UDP
SNMPv2c/TCP
SNMPv2c/SSH

SNMPv3/UDP/USM
SNMPv3/TCP/USM

Fig. 5. Bandwidth used for different numbers of exchanged SNMP messages

Table 3 indicates that the change from SNMPv2c to SNMPv3/USM costs
approximately 90 bytes of overhead per packet while the SNMPv2/SSH proto-
type adds approximately 40 bytes of overhead per packet to the SNMPv2c/TCP
transport. While the SNMPv3 message header is slightly larger than the SN-
MPv2c header we have used in our implementation, we believe that also an SN-
MPv3/SSH implementation will consume less bandwidth than SNMPv3/USM
when many packets are exchanged. As can be seen from the total number of
packets, the piggy-backing of TCP ACKs worked nicely for all TCP transports.

34 V. Marinov and J. Schönwälder

Table 3. Packet sizes for the snmpwalk with 2354 getnext operations. The ’range’
column shows the dominating packet size range and the ’packets’ column the number of
packets in that range; the column ’total packets’ indicates the total number of packets.

Protocol Range Packets Total Packets

SNMPv2c/UDP 80-100 4710 4710
SNMPv2c/TCP 110-130 4709 4712

SNMPv3/USM/UDP 170-190 4710 4712
SNMPv3/USM/TCP 200-220 4709 4714

SNMPv2c/SSH 150-170 4711 4742

5.6 Memory Usage

Figure 6 shows the amount of virtual memory used by the command responder
process for an increasing number of concurrently open sessions. Initially, the pro-
cess needed 9312 KByte of memory. The memory consumption grows linearly
with the number of concurrently open sessions. The measured memory overhead
per session is approximately 7 KByte. Note that the sessions were only estab-
lished but not used during these measurements. Some additional memory might
be dynamically allocated by the SSH library once data exchanges take place.

 9200

 9400

 9600

 9800

 10000

 10200

 10400

 10600

 0 20 40 60 80 100 120 140

vi
rt

ua
l m

em
or

y
(K

B
)

number of open sessions

virtual memory used by the SNMP daemon process

"memory"

Fig. 6. Virtual memory consumed by the command responder process for an increasing
number of open sessions

6 Related Work

SSH is already widely used to secure the access to command line interfaces on
network elements. Accordingly, SSH credentials (keys, passwords) are readily
available in many environments. This availability of credentials in many opera-
tional networks has been the main motivation for considering SSH as a secure
transport for SNMP.

Performance Analysis of SNMP over SSH 35

The obvious alternative to SSH is the widely used Transport Layer Security
(TLS) protocol [10]. An implementation of SNMP over TLS has been analyzed
in [11]. Although the authors used a very different setup, some key results are
similar to the results reported in this paper. The authors of [11] also observed
that SNMP over TLS is more efficient in terms of latency than SNMPv3/USM
for longer sessions.

The short-coming of the work done on SNMP over TLS back in 2001 was that
architectural questions were not considered and it thus remained unclear how
model independent values such as the SNMP security name or security level are
determined and passed around. These architectural questions have meanwhile
been addressed in the IETF as described in [5] and summarized in Section 2.

The work reported in [12] compares the costs of using SNMPv3/USM with
different security levels with SNMPv1 and SNMPv2c. While some of the mea-
surements reported in this paper are comparable with results reported in [12]
(e.g., the network capacity consumed for snmpget), the results are not identical
and differ slightly. In particular, the overhead of SNMPv2/USM with authentica-
tion and privacy seems to be generally higher compared to SNMPv1/SNMPv2c
in our measurements. This may be explained by the fact that the SNMP en-
gines used in both studies are different as well as the operating system and
hardware platform used. In addition, different MIB objects were fetched in both
experiments: This study uses the sysDescr scalar, a DisplayString of ≈ 60
characters, while an 4 byte IpAddress object was used in [12].

7 Conclusions

The ISMS working group of the IETF is working on new security models for
SNMP which leverage a secure transport. One crucial question is how the per-
formance of this new approach compares to the existing security solution for
SNMP (SNMPv3/USM) and to the still widely deployed insecure versions of
SNMP (SNMPv1/SNMPv2c).

The measurements presented in this paper try to give answers to some of
these questions. In particular, we quantified the session establishment overhead
for SNMP over SSH. For simple one-shot SNMP requests, SSH seems to be a
rather costly solution since the costs for establishing a session and associated
session keys is significant. For sessions that carry multiple SNMP interactions
(e.g., table walks), the costs for the initial session setup are amortized and there
is a break-even-point where SNMP over SSH starts to become more efficient
than SNMPv3/USM with authentication and privacy enabled.

The answer to the question whether SNMP over SSH is a viable alternative to
SNMPv3/USM therefore depends on the SNMP usage pattern and the typical
session length. While SNMP traditionally has no concept of a session, it is pos-
sible to approximate session life times by analyzing SNMP traffic traces. Work
is underway in the Network Management Research Group (NMRG) of the In-
ternet Research Task Force (IRTF) to collect SNMP traffic traces from different
operational networks [13]. These traces are expected to give insights in which
environments SNMP over SSH is likely to be a viable alternative.

36 V. Marinov and J. Schönwälder

Acknowledgments

The work reported in this paper was supported in part by the EC IST-EMANICS
Network of Excellence (#26854).

References

1. J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction and Applicability
Statements for Internet Standard Management Framework. RFC 3410, December
2002.

2. U. Blumenthal and B. Wijnen. User-based Security Model (USM) for version 3
of the Simple Network Management Protocol (SNMPv3). RFC 3414, December
2002.

3. T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC
4251, January 2006.

4. D. Harrington, R. Presuhn, and B. Wijnen. An Architecture for Describing Simple
Network Management Protocol (SNMP) Management Frameworks. RFC 3411,
December 2002.

5. D. Harrington and J. Schönwälder. Transport Mapping Security Model (TMSM)
Architectural Extension for the Simple Network Management Protocol (SNMP).
Internet Draft (work in progress) <draft-ietf-isms-tmsm-03.txt>, June 2006.

6. D. Harrington and J. Salowey. Secure Shell Security Model for SNMP. Internet
Draft (work in progress) <draft-ietf-isms-secshell-02.txt>, June 2006.

7. A. G. Morgan. The Linux-PAM Application Developers’ Guide. Technical report,
November 1999.

8. K. McCloghrie and F. Kastenholz. The Interfaces Group MIB. RFC 2863, June
2000.

9. R. Presuhn. Management Information Base (MIB) for the Simple Network Man-
agement Protocol (SNMP). RFC 3418, December 2002.

10. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.1. RFC 4346, 2006.

11. X. Du, M. Shayman, and M. Rozenblit. Implementation and Performance Analysis
of SNMP on a TLS/TCP Base. In Proc. 7th IFIP/IEEE International Symposium
on Integrated Network Management, pages 453–466, Seattle, May 2001.

12. A. Corrente and L. Tura. Security Performance Analysis of SNMPv3 with Respect
to SNMPv2c. In Proc. 2004 IEEE/IFIP Network Operations and Management
Symposium, pages 729–742, Seoul, April 2004.

13. J. Schönwälder. SNMP Traffic Measurements. Internet Draft (work in progress)
<draft-irtf-nmrg-snmp-measure-00.txt>, May 2006.

Uncertainty in Global Application Services

with Load Sharing Policy

Mark Burgess and Sven Ingebrigt Ulland

Oslo University College, Norway
mark@iu.hio.no

Abstract. With many organizations now employing multiple data cen-
tres around the world to share global traffic load, it is important to
understand the effects of geographical distribution on service quality.
The Domain Name Service is an important component for global load
balancing. Using controllable simulations, we show that wide area shar-
ing can play an important role in optimization of response times when
traffic levels exceed that which can be supplied by a local infrastruc-
ture. We compute the probability of being able to meet Service Level
Objectives as a function of DNS caching policy (Time To Live), so that
service providers can account for DNS error margins in Service Level
Agreements.

1 Introduction

Meeting Service Level Objectives (SLO) is a crucial goal for online businesses,
especially in the application services sector. Even if no formal Service Level
Agreement (SLA) has been made, Service Level Objectives (SLO) are set by
clients’ demands: users will typically defect from a slow web-site after only a few
seconds of waiting in order to look for an alternative[1], hence performance is
directly related to profit.

One of the benefits that networking offers is the ability to use distributed
resources to one’s advantage. When local resources fail to cope with demand,
external resources can be brought into play simply by redirecting requests to
another location. That location could be a few centimetres away, or several thou-
sand kilometres across a wide area network. However, in wide area, globalized
services there are more links in the chain between server and customer where
uncertainties and delays can creep in, and each of these components becomes a
focus of independent interest for the performance analyst.

The role of the Domain Name Service (DNS) has been of particular interest in
the matter of load sharing and redirection of traffic. On the one hand, this is an
obvious place to overload existing functions for the purpose of load balancing;
on the other hand it is a fragile bottleneck in Internet services with low security
properties and relatively poor performance. Ten years ago, network service ca-
pacities were orders of magnitude poorer than today so the delays incurred by
DNS lookups was less noticeable. Today, the DNS appears as a key bottleneck
which contributes a significant fraction to service round-trip times.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 37–48, 2006.
c© IFIP International Federation for Information Processing 2006

38 M. Burgess and S.I. Ulland

In this paper, we examine the predictability of wide area load-sharing, based
on the Domain Name Service, and attempt to identify strategies for minimizing
its impact on Service Level Objectives.

2 Global Network Services

Global load sharing is a subtle topic, because it makes cost trade-offs based on
quite different currencies. Many layers are involved in directing a service across
the globe, and each of these can add to the uncertainty in response time, and
to the delay experience by the end user. One must therefore try to unravel the
various components.

Why would we not simply centralize a service for easy management? The
reasons for this include security, fail-over redundancy, traffic congestion man-
agement or even power saving (or cost saving under different tariffs)[2]. The
inhomogeneity of load that occurs during the course of a day often makes night-
time processing favourable in a data centre[3], thus it might be a reasonable
strategy to divert traffic to a geographically remote location (on the other side
of the planet) in order to balance a heavy day-time load – this would assume
that the routing and transport cost were acceptable[4,5]. In other work, we have
looked at how local methods can be used to predict the scaling of application
services in a data centre. The ability to respond to a request depends on both
the nature of demand[6] and the availability of supply[7].

There is a need then to be able to predict the performance of wide area redi-
rections for coping with server traffic, and study them in relation to the benefits
of more local strategies. We approach the question of application service perfor-
mance by asking a simple question: how does the use of wide area methods for
network redirection affect application services levels? i.e. What level of uncer-
tainty does globalized load balancing add to service response times?

There is a large literature on application service modelling. Much of it is now
five to ten years old, and some is contradictory. We consider the situation today.

3 DNS

The Domain Name System (DNS) is the global name lookup service in the
Internet. It is a distributed, hierarchical and redundant database running on
many thousands of servers world-wide, each responsible for one or more DNS
zones. When a client issues a request for a URL, the browser will first try to
resolve the hostname in the URL into an IP address, so that it knows where to
send the request. This is where it is possible for a DNS server to influence the
outcome of a query, effectively directing the client to a desired or lightly loaded
site. However, the DNS approach to load balancing is not without challenges, as
will be discussed shortly.

DNS servers come in a variety of flavours all of which allow the service to act
as multiplexers, serving different looked-up values for incoming requests in a one-
to-many mapping. The approaches differ in their ‘back-ends’, i.e. the amount of

Uncertainty in Global Application Services with Load Sharing Policy 39

internal processing they use to adapt to their situation. We shall consider both
static and adaptive ‘back-ends’ in this paper.

Consider a single DNS query, and assume that its return value has not previ-
ously been cached anywhere. The following sequence of events ensues:

1. A client program passes a partially qualified hostname to a system interface,
(normally called gethostbyname().

2. The operating system qualifies the name by adding a local domain name, if
none was specified, and redirects the request to the local resolver (typically
a local DNS nameserver), asking for the A-record (or AAAA-record in IPv6)
for the fully-qualified name – an A-record is a standard hostname-to-IP map-
ping. The request to the resolver is recursive, which enables a flag meaning
“I only want the final answer.”

3. If the local resolver does not have the answer, it performs iterative queries
through the DNS hierarchy. First it asks one of the thirteen root DNS servers.
These know which servers control the top-level domains like com, org and
net. The local resolver caches the response.

4. Further, the resolver asks one of the top level DNS servers for further direc-
tions to the domain. Again, it caches the response.

5. When the iteration process reaches one of the lookup domain’s DNS servers,
this server will know the answer to the query, and reply with an IP address,
e.g. 192.0.34.166. Yet again, the resolver caches the response.

6. The response is sent back to the client operating system, which also caches
the response.

7. The IP address is returned to the browser, which in turn can contact the
server and retrieve the content. In addition to the operating system caching
the response, many clients will do so as well.

Note how this rather simple example introduces at least five levels of caching,
not counting potential intermediate http proxies.

Consider a query to a balanced web site. A typical response could be as in
this example:

;; QUESTION SECTION:

;cnn.com. IN A

;; ANSWER SECTION:

cnn.com. 300 IN A 64.236.29.120

cnn.com. 300 IN A 64.236.16.20

cnn.com. 300 IN A 64.236.16.52

cnn.com. 300 IN A 64.236.16.84

cnn.com. 300 IN A 64.236.16.116

cnn.com. 300 IN A 64.236.24.12

cnn.com. 300 IN A 64.236.24.20

cnn.com. 300 IN A 64.236.24.28

;; AUTHORITY SECTION:

cnn.com. 600 IN NS twdns-04.ns.aol.com.

40 M. Burgess and S.I. Ulland

The nameservers return multiple A-records for the ‘cnn.com’ hostname – this list
is known as a Resource Record Set (RR set). The addresses appear to be within the
same provider network. This does not mean however that they are geographically
close to each other. Clients typically traverse the RR set sequentially, starting from
the top. That is, if the first address on the list does not work, the client tries the
next one, and so on. This is a decision that the client makes.

The numbers in the second column of the response show the Time-To-Live
integer value (TTL) in seconds. This value governs how long the answer can
reside in a cache in any of the intermediate nodes. Once this value has expired,
the cache discards the value and the client must obtain an ‘authoritative’ answer
by iterative querying once again. This is a traditional strategy for off-loading
DNS servers and reduce lookup latency by caching the IP address value of a
DNS lookup for the specified lifetime. The relevance of this mechanism must be
reevaluated in light of performance improvements over the intervening decades.

As long as the TTL is greater than zero, queries will be answered from a cache
instead of being redirected to other servers. In the example, the A-records have
a TTL of 5 minutes. A low TTL ensures that DNS servers are queried often, and
hence are given the possibility to obtain fresh, up-to-date information about a
domain which is making changes over relatively small time intervals. Low TTLs
mean frequent repetition of the arduous look-up process and hence come at the
cost of adding a considerable delay to the total service response time.

For example, the DNS can consume a significant part of the time it takes to
fetch a web page, which might have several in-lined objects, including pictures and
advertisements from many source domains. Shaikh et al note: “25% of the name
lookups (with no caching) add an overhead of more than 3 seconds for the ISP
proxy log sites, and more than 650 ms for the popular sites. respectively. It is in-
teresting to observe that nearly 15% of the popular sites required more than 5 sec-
onds to contact the authoritative nameserver and resolve the name. This is likely
to be related to the 5-second default request timeout in BIND-based resolvers”[9].

As we shall see, caching alleviates this problem considerably (indeed, the
question of caching versus non-caching leads to a strongly bimodal behaviour),
but with a different potential cost: global congestion.

From the above, we note that DNS can employ two basic mechanisms in
multiplexing: it can cyclicly permute the RR set so that each new query is
ordered differently. Since clients normally pick the first element from the list,
this amounts to a continual Round-Robin shuffling of the server set. Second, the
TTL value must be chosen to be a relatively low value to avoid too much re-use
of old data which would bias the fair-weighted Round-Robin distribution.

Clearly, these methods are unreliable. There is much uncertainty. If we have
three servers in the RR set and only every third query from a given client contains
a service request, then all the traffic goes to the same server after all. We are
also trusting clients to act predictably and not try to second guess the results
from the DNS server by performing their own shuffling: DNS implementations
are not required to preserve the order of resource record sets. As for TTL values,
multiple levels of caching make it a challenge to predict and control the actual

Uncertainty in Global Application Services with Load Sharing Policy 41

TTL observed by the end user. The TTL policy is only a polite request to caches,
not an enforcable mechanism.

A problem with low TTL values is in so-called sticky sessions in which a user
is connected to a particular instance of a network service with a cookie of session
identifier that is unique to one server (e.g. in a net bank or online retailer). If
the next request to a persistent session were directed to a different server, the
session would be lost. We shall not discuss this particular issue here, since its
resolution is a story in its own right.

4 DNS Latency

Service Level Objectives are performance wishes often set informally by clients
and estimated by engineers. The service provider wants to guarantee that users
will gain access to their services within a Service Level Objective. Users are
known to give up on slow services within just a few seconds and take their
custom elsewhere[1].

The uncertainty is the response time is rightfully a combination of the uncer-
tainty margins in each of the independent causal factors between the client and
the server. This includes the identification of the appropriate server through the
DNS service. One would like to write:

Δt =
√

(ΔtDNS)2 + (ΔtRouting)2 + ... (1)

Since the DNS is a network service, it is itself dependent on all of the other
uncertainties in a network, so each DNS query invokes all of the latencies in the
system even before a service has commenced. Alas, the inter-dependencies of a
network make the Pythagorean formula above difficult to implement.

A data centre engineer would like to attempt to compensate for the lookup
delay, or at least account for it in service promises to clients. Let us consider
then, how much DNS server redirection could add to the margins needed for the
‘over-provision’ of services, according to this study? On a global scale there are
more sources of possible delay which could add to the overall response time. It
is plausible that the worst bottleneck would be shifted to some other component
in the supply chain. Hence it seems possible that one might win performance
improvements by making a more informed choice based upon monitoring of the
available capacities along different alternative paths.

Consider the scenario in figure 1. We imagine a global organization with al-
ternative data centres at different locations. Redirection to the appropriate data
centre will occur by DNS multiplexing. There are two competing mechanisms in
such a load sharing scheme: the desire to avoid bottlenecks at the dispatcher and
the desire to avoid congestion at the servers themselves. If the dispatcher does
not share efficiently, there might be congestion, but if the dispatcher struggles
to share the load it could add to the service time itself. This is a classic problem
in inventory management[10].

The DNS Time To Live is key here, since a high TTL lowers the load on
the DNS as a dispatcher, but at the same time increases the congestion on the

42 M. Burgess and S.I. Ulland

LAN

Client

Cache Auth

www1

www6

.
.
.

Fig. 1. A schematic illustration of the DNS load sharing scenario

servers. It behaves as a slider-knob trading off these two effects. Figure 2 shows
what one might expect for the relationship between the TTL value set in the
authoritative nameserver and the round-trip time of fetching web-objects from
a hostname that is registered with several IPs in the authoritative nameserver.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

R
ou

nd
-t

rip
 ti

m
e

(m
ill

is
ec

on
ds

)

Time-to-live (seconds)

Fig. 2. Hypothesized cost of a DNS based load balancer at high traffic levels. The cost
rises for low TTL as the load on the DNS server increases. The cost rises for long TTL
as the individual servers start to become loaded inefficiently due to unfair weighting.

What is interesting about this form is the possibility that there exists an
optimal value for the TTL parameter (the inventory re-order time). In previous
work this TTL parameter has been set essentially by hand, without much insight
into its functional role[8,11]. We would like to investigate this causal role of
the TTL value more carefully below by testing DNS implementations against
simulated traffic patterns.

5 Empirical Study

Our experiments investigate the policies that can minimize DNS induced latency.
Such latency can come from the inefficiency of the DNS service itself, from

Uncertainty in Global Application Services with Load Sharing Policy 43

the relative congestion of alternative servers, and from transport uncertainties
(which are unrelated to the DNS). We arrange for the latter to disappear by
isolating a DNS load balancing scenario in the lab. Hence we are left with the
interplay between dispatcher (the DNS response time) and server congestion
(determined by the algorithm used by the dispatcher) which yields a final service
time.

We deploy a client, the client’s local resolver with cache (representing a local
domain nameserver), and the remote domain’s authoritative DNS server. We
also have six web-servers, all configured similarly to answer requests for a single
hostname, e.g. www.example.net. Wide-area network emulation is provided by
the NetEm facility in the 2.6.16 linux kernel[13]. This is a part of the QoS
framework there, and it allows us to specify delays and delay distributions for
outgoing queues to simulate load. In the experiments on TTL vs RTT, the cache
has a mean delay of 20ms, the authoritative has 300ms.

5.1 Effect of TTL on Round-Trip Time, Homogeneous Servers

Running the flood tool to test DNS server response allows us to test our hypo-
thetical inventory processing model for the combined lookup and service time.
For the initial test, we make all of the servers identical in capacity and latency.

The plot in figure 3 shows the effect of TTL on static DNS server response-time
for a full page load, that is, a DNS request for the hostname, TCP connection
setup, sending HTTP request and finally receiving HTTP reply (connection tear-
down is not included). The HTTP request used is trivial to serve and requires
few CPU cycles per request.

For TTL 0, there is little variance in the results. We found that it was essentially
impossible to overload a DNS server running on modern hardware with realistic
traffic intensities. The uncertainty bars corresponds exactly to a controlled delay
distribution which we specified for the authoritative nameserver (using NetEm).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

C
om

bi
ne

d
H

T
T

P
+

D
N

S
 r

ou
nd

-t
rip

 ti
m

e
(m

s)

Time-to-Live (sec)

HTTP+DNS round-trip time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1 2 3 4 5 6 7 8 9

R
ou

nd
-t

rip
 ti

m
e

(m
ill

is
ec

on
ds

)

Time-to-live (seconds)

HTTP round-trip time

Fig. 3. Cost of lookup as a function of TTL for a ‘static backend’ DNS server. To be
compared with the hypothesized form. Rather than rising at the end, it flattens out.
The second graph has no low TTL lookup cost up shows a rising inefficiency cost as
server balancing fails.

44 M. Burgess and S.I. Ulland

For TTL 1 and beyond, DNS requests are served both by the authoritative and
caching nameserver. Since these two servers have very different delays set up for
their outward queues, a request would either be served by the cache or the author-
itative server. As TTL increases, the chance for a cache hit in the caching server
increases proportionally. We see a flattening out of the tail for large TTL and no
apparent rise in server congestion, since the load presented by our test page was
low. Thus, this data represents primarily the behaviour of the dispatcher.

Figure 4 shows how the DNS response time distribution is strongly bi-modal,
clearly showing the influence of caching. The figure is dislocated so we can view
the two peaks in more detail. We see that for TTL 0, there are no cache-hits on
the caching server. But as TTL increases, so does the cache-hit rate. For TTL
100, we see a very high number of cached replies, and a close to zero amount of
time-intensive authoritative requests.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

P
ro

ba
bi

lit
y

de
ns

ity
 P

(x
)

 250 300 350 400 450 500

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

DNS lookup time (ms)

DNS lookup time, TTL 0
DNS lookup time, TTL 1
DNS lookup time, TTL 2

DNS lookup time, TTL 50
DNS lookup time, TTL 100

Fig. 4. The bimodal response time distribution for DNS showing the effect of caching

The above experiment was repeated for a dynamic back-end DNS server:
PowerDNS (with PostgreSQL as back-end). Here the database is loaded with
the zone-data containing the resource records. PowerDNS is set up to query
the database using a simple query, and appending "ORDER BY random() LIMIT
1", which returns one random IP address when requesting the hostname. The
linearly increasing uncertainty in second figure 3 can be attributed to server load-
ing due to poor entropy. Requests are queued and the system enters a thrashing
phase. It increases with the TTL since a low TTL spreads the requests very effi-
ciently among the servers, avoiding overload. As TTL increases, the probability
of server load does too, and thus also the uncertainty. Thus we have measured
both tails of our hypothetical curve for different traffic regimes.

5.2 Distribution Entropy

The plot in figure 5 shows the cumulative frequency distribution of overall re-
sponse times. What we observe is that for a zero TTL, most requests (90%) lie
within the range of 0 to 1000 milliseconds per request. For TTL 9, we can see
that approx 60% of the requests lie within the range of 0 to 2000 milliseconds

Uncertainty in Global Application Services with Load Sharing Policy 45

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000 12000 14000

C
um

ul
at

iv
e

fr
eq

ue
nc

y
(%

 o
f r

eq
ue

st
s)

HTTP request round-trip time (ms)

TTL = 0
TTL = 1
TTL = 2
TTL = 3
TTL = 4
TTL = 5
TTL = 6
TTL = 7
TTL = 8
TTL = 9

Fig. 5. Cumulative frequency plot of service times show with what certainty we can
specify a response time as a function of TTL

Fig. 6. Entropy of load balancing by DNS for one client

per request. Also for TTL 9, we see that approx 90% of the requests lie within
the range of 0 to 6000 milliseconds per request. Note that a long TTL seems to
imply a longer wait, which warns against the very large TTL values suggested by
authors several years ago. These results are of great interest to the Service Level
Agreement architects. The efficiency of the load scheduler itself also depends
on the TTL. Ideally a load balancer will maximize the entropy of the connec-
tions histograms[14]. Figure 6 shows how well BIND distributes requests evenly
among servers in a resource record set for a single client.

In the“Cyclic B” case, with a TTL of three seconds we see a more uneven
response caused by BIND resetting the order of the resource record set each time
the TTL expires. This causes a greater uncertainty which the simple round-robin
algorithm does not cope well with: an unfair weighting is induced on the server
record distribution.

46 M. Burgess and S.I. Ulland

The variations are very small, however, and do not pose any risk of over-
utilisation for server ‘www1’ unless there is critically high traffic, in which case a
non-linear instability could be seeded by this lack of parity. However, seen in the
context of requests arriving from a source of many clients in diverse domains,
there could be sufficient entropy of clients to even out this behaviour.

6 Comparable Work

Several researchers have examined load balancing using DNS with varying con-
clusions. Cardellini et al survey proposed and commercially available balancing
schemes, including constant and adaptive TTL schemes for DNS, dispatcher-
based packet rewriting, and server-based mechanisms[8]. They find that both
constant TTL with server and client state information, and the adaptive TTL
scheme perform better than stateless round-robin approach.

Bryhni et al also compare a set of load-balancing implementations, with a fo-
cus on dispatcher-based systems[11]. The round-robin DNS is discussed with
TTLs of 1 and 24 hours. Their trace-driven simulation results show that a
dispatcher-based design running a round-robin algorithm yields the best distri-
bution of load and amongst the lowest response times observed for that particular
scenario.

In another paper Cardellini et al present a more thorough examination of web-
server load balancing using DNS, and introduce HTTP redirection as a potential
remedy for the otherwise coarse-grained nature of DNS[15]. They claim superior
performance of redirection mechanisms over classic DNS-only balancing.

Shaikh et al, show that lowered TTL values must be carefully chosen to bal-
ance page responsiveness against excessive latency observed by the client[8]. The
authors recognise that, to allow a fine-grained and responsive DNS-based server
selection scheme, the TTL should be set to zero or a very low value, however
this can lead to two orders of magnitude of extra delay, according to the paper.
Other authors also explore the effectiveness of lowered TTL values. Jung et al
[16], Teo [17], Park [18].

7 Discussion and Conclusions

DNS load balancing is a somewhat controversial topic. We have examined the
behaviour of the DNS implementations with regard to their caching policy in
order to find the expected uncertainty in meeting Service Level Objectives.

We find that today’s DNS servers easily cope with high request volumes,
in high levels (notwithstanding denial of service attacks). Caching policy does
not impact directly on performance from the viewpoint of the server. However,
the response time of the DNS service is relatively high by comparison to other
services, due to the iterative nature of queries.

Round robin load balancing in DNS service works adequately with high levels
of entropy, but are more likely to become unstable under high traffic conditions
for low TTL. Low level load balancers favour simple round-robin load-sharing

Uncertainty in Global Application Services with Load Sharing Policy 47

at low to medium intensity[7]; there one has very low latency routes between
the dispatcher and server and the cost of looking for improvements outweighs
any benefits. In global routes, a DNS server can benefit from a knowledge of
the round-trip time when load balancing. Unfortunately, there is not a clear
correlation between the time measured by the client, and that measured by the
DNS server load balancer, so this does not work well.

The uncertainties inherent in wide area load sharing mean that a DNS load
balancing strategy is not a substitute for low level load-sharing mechanisms.
Failover redundancy is a main reason for having multiple data centres, but this
is not the same as load balancing by DNS. Cumulative frequency plots indicates
the additional round-trip time with corresponding uncertainties for requests.
This shows us what one can expect to achieve in an agreement 80% or 90% of
the time. Pre-sorting sites, e.g. by ‘picking the site in your country’ etc preempts
DNS weaknesses.

DNS cannot be avoided, but is it the right tool for load balancing? Clearly it is
not. However, it is nearly the only viable interface for load-balancing on a global
scale (IPv4 anycast is another). DNS, with the solid backing of a dynamical
back-end (based on a database with state-information gathered from the servers,
maybe proximity information from ARIN’s IP-to-country mappings, time zone
info, etc), is a very powerful tool for global server load balancing.

We are grateful to Jon Henrik Bjørnstad and Gard Undheim for helpful discus-
sions. This work is supported by the EC IST-EMANICS Network of Excellence
(#26854).

References

1. J. Sauve et al. Sla design from a business perspective. In IFIP/IEEE 16th inter-
national workshop on distributed systems operations and management (DSOM),
in LNCS 3775.

2. M. Burgess and F. Sandnes. A promise theory approach to collaborative power
reduction in a pervasive computing environment. In Springer Lecture Notes in
Computer Science, page to appear.

3. M. Burgess, H. Haugerud, T. Reitan, and S. Straumsnes. Measuring host normality.
ACM Transactions on Computing Systems, 20:125160, 2001.

4. B. Abrahao et al. Self-adaptive sla-driven capacity management for internet ser-
vice. In Proceedings of the 10th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2006), pages 557568. IEEE Press, 2006.

5. M. Burgess. Probabilistic anomaly detection in distributed computer networks.
Science of Computer Programming, 60(1):126, 2006.

6. J.H. Bjrnstad and M. Burgess. On the reliability of service level estimators in
the data centre. In Proc. 17th IFIP/IEEE Distributed Systems: Operations and
Management (DSOM 2006), volume submitted. Springer, 2006.

7. M. Burgess and G. Undheim. Predictable scaling behaviour in the data centre
with multiple application servers. In Proc. 17th IFIP/IEEE Distributed Systems:
Operations and Management (DSOM 2006), volume submitted. Springer, 2006.

8. V Cardellini and M Colajanni. Dynamic load balancing on web-server systems.
Internet Computing IEEE, 3(4):2839, 1999.

48 M. Burgess and S.I. Ulland

9. Anees Shaikh, Renu Tewari, and Mukesh Agrawal. On the effectiveness of dns-
based server selection. In Proc. of IEEE INFOCOM 2001, Anchorage, AK 2001.

10. H.L. Lee and S. Nahmias. Logistics of Production and Inventory, volume 4 of Hand-
books in Operations Research and Management Science, chapter Single Product,
Single Location Models. Elsevier, 1993.

11. E Klovning H Bryhni and O Kure. A comparison of load balancing techniques for
scalable web servers. 14(4):5864, 2000.

12. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
SOSP 03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164177, New York, NY, USA, 2003. ACM Press.

13. Stephen Hemminger. Network emulation with netem. In LCA national Linux con-
ference 05, 2005.

14. M. Burgess. Analytical Network and System Administration - Managing Human-
Computer Systems. J. Wiley & Sons, Chichester, 2004.

15. Valeria Cardellini, Michele Colajanni, and Philip S. Yu. Geographic load balancing
for scalable distributed web systems. In MASCOTS, pages 2027, 2000.

16. Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. Dns performance
and the effectiveness of caching. IEEE/ACM Trans. Netw., 10(5):589603, 2002.

17. YM Teo and R Ayani. Comparison of load balancing strategies on cluster-based
web servers. Transactions of the Society for Modeling and Simulation, 2001.

18. Kihong Park, Gitae Kim, and Mark Crovella. On the relationship between file sizes,
transport protocols, and self-similar network traffic. In ICNP 96: Proceedings of
the 1996 International Conference on Network Protocols (ICNP 96), page 171,
Washington, DC, USA, 1996. IEEE Computer Society.

Predictable Scaling Behaviour in the Data

Centre with Multiple Application Servers

Mark Burgess and Gard Undheim

Oslo University College, Norway
mark@iu.hio.no

Abstract. Load sharing in the data centre is an essential strategy for
meeting service levels in high volume and high availability services. We
investigate the accuracy with which simple, classical queueing models
can predict the scaling behaviour of server capacity in an environment
of both homogeneous and inhomogeneous hardware, using known traffic
patterns as input. We measure the performance of three commonly used
load sharing algorithms and show that the simple queueing models un-
derestimate performance needs significantly at high load. Load sharing
based on real-time network monitoring performs worst on average. The
work has implications for the accuracy of Quality of Service estimates.

1 Introduction

Network services are now a central paradigm in the management of commercial
resources in a market framework. They are divided broadly into network level
services (such as sale of subscriber lines) and application level services (such as
Internet banking and other Web-based portals). Predicting the expected service
delivery is an important prerequisite for selling services in a market place; these
expectations are then codified in Service Level Agreements in order to place the
relationships on a contractual footing[1]. In simplistic terms, a service provider’s
task is to deliver the promised service level in as lucrative a way as possible (the
Service Level Objective). There is a clear need for models which can reliably
predict the relationship between supply and demand.

Meeting the requirements set by SLAs, with variable demand and resources,
has become a keen point of interest in the last year[2,3,4]. A common strategy for
trying to determine this relationship is to opt for “over-provision”, i.e. providing
more resources than are needed, by some acceptable margin. This is a straight-
forward way of dealing with uncertainty, but it can be a relatively expensive way
and, without a model for capacity, it is not clear exactly what margin is required
for meeting the peaks in demand. Another approach would be to try to adapt
the service scheduling strategy and resource pool to better adapt to changing
requirements[3,4]. In each case, there is a role for parallelism in the provision of
the services both for the purpose of load sharing and redundancy.

In this paper, we consider how well one is able to predict the scalability of an
application service by means of low level load balancing. We examine how the

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 49–60, 2006.
c© IFIP International Federation for Information Processing 2006

50 M. Burgess and G. Undheim

simple queueing models behave as estimators of local load balancing techniques,
and we look at how response times vary as a function of traffic and number of
servers. This information is of direct interest to data centre managers, especially
when the hardware in a data centre in inhomogeneous, with varying processing
capacity.

We quantify the expected uncertainty in service levels for different kinds of
demand and equipment, so as to provide an estimate of service level margins,
suitable for inclusion in a Service Level Agreement.

2 Experiment

Consider the following problem. Suppose our data centre resources are not fixed,
but that we can add additional computing nodes in a cluster-like fashion, how
can we adapt to changing service levels using models to predict the effects of
changing the number of servers used in parallel?

We base our experiment on simulated traffic running on real hardware. The
traffic is a stream of page-lookups to PHP-enabled web pages, generated us-
ing httperf. Each page involved CPU-bound iteration (spin delay); this was
necessary to offer the server any load at all, as the server CPU hardware was
comparable to that of the traffic generator.

There is some controversy in the literature about the exact arrival charac-
teristics of Web traffic requests and how this affects the ability of a server to
process them. We do not wish to involve ourselves in that question here (see
[5] for a treatment of this matter); rather we wish to answer a far less ambi-
tious question: assuming that the traffic follows the simplest, most predictable
pattern, are we able use the corresponding models for load sharing to predict
the performance of the balanced system? As we shall see below, this is far from
being a straightforward question.

In our tests, we use a commercial Alteon 2208 load balancing switch as the
dispatcher, to a back end of symmetrical IBM blade servers running Apache2 on
GNU/Linux. These servers can be made identical, and they can be switched into
power saving modes of lower CPU frequency (from 1.2 GHz to 2.8 GHz, step-
wise). We make use of this feature to simulate the transition from homogeneous
to inhomogeneous server hardware.

We would like to be able to predict the performance of servers in a data centre,
with regard to

– Average delivery time of a job in the system.
– Change in average delivery time on adding new hardware.

This information is of direct use to a data centre manager adapting to demand,
and it is also useful to the sales staff who decide when to promise specific service
levels in their agreements.

Since we are dealing with random processes, exact prediction is not an option.
A realistic picture is to end up with a probability or confidence measure e.g. what
is the likelihood of being able to be within 80% or 90% of an SLA target value?

Predictable Scaling Behaviour in the Data Centre 51

Fig. 1. The topology for low level load sharing using a commercial dispatcher

The shape of this probability distribution will also answer the question: what is
the correct level at which to ‘over-provision’ a service in order to meet the SLA
requirements. Fig. 1 shows the schematic arrangement of servers.

3 Queues and Service Prediction

Queueing theory is the domain of experts, not of data centre engineers. In-
deed, in engineering terms, only the simplest queueing models are really used
as predictors[6], because the more complex models require input that is not
available to the average engineer. What is the distribution of traffic at a given
moment? Does it vary throughout the course of a day or a week? These are
questions that are not easily answered and, even if they are, those answers are
not easily used in an advanced queueing model to give a simple result. We need
therefore simple models that give approximate rules of thumb.

Recent work by Sauvé et al discusses the matter of trying to convert low
level knowledge of a system into SLA margins, in a multi layered model using
the cost of the equipment and services to add an element of risk analysis to
the problem[2]. They use the simplest kind of queue model to estimate capacity
– this is understandable given the complexity of the problem. However, they
do not evaluate whether the model actually has any predictive power. Another
group has considered the idea of combining queueing models with an adaptive
control framework to allow service capacity to change with demands[3]. This
work is rather interesting from a design point of view, but it does not answer
the basic questions that an engineer might ask, such as how to deal with the
varying demand in lieu of this new technology.

The basic queueing models we consider are, in Kendall notation, the M/M/1
queue and the M/M/n queue for n servers[7]. The M stands for ‘memoryless’,
i.e. discrete time Poisson inter-arrival time traffic. This is the ‘simplest’ case
for queues, since Poisson traffic has simple analytical properties. It is known
that Web traffic is rarely this well-behaved in practice, however, we use it as
a source with the rationale that, if we cannot predict Poisson traffic, then we
certainly cannot deal with more long-tailed traffic patterns. There is evidence
to suggest that it is good enough to compensate for this model with additional
uncertainty[5].

52 M. Burgess and G. Undheim

The total quality of service in a system must be viewed as the combined
qualities of the component parts[8]. It is a known result of reliability theory[9]
that low level parallelism is, in general, more efficient than high level parallelism,
in a component-based system. Thus a single M/M/n queue is generally superior
in performance to n separate M/M/1 queues (denoted (M/M/1)n). The M/M/n
queueing model is already significantly more complex than the M/M/1 model.
A natural question is then: how to actual measurements of performance tally
with either of these models, given a Poisson traffic source?

4 Server Performance

For calibration, we begin by considering the response of a single server to in-
creasing load, as a control. The graph in fig. 2 shows a rising CPU utilization
on the left of the graph, and a response time which stays low until we reach
approximately 100 requests/second.

Notice that the response time eventually levels out, as packets are simply
dropped above the threshold. Above 110 requests/second the response time stays
between 1200 and 1400 ms. From these results it is clear that the server can
handle somewhere between 100 and 110 requests per second, and that this task
is heavily CPU bound (this is a result of our experiment design, but we believe
that it is representative for many application tiered web services).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

R
es

po
ns

e
T

im
e

[m
s]

C
P

U
 U

til
iz

at
io

n
[p

er
ce

nt
]

Requests/Second

Response Time Server Utilization

Fig. 2. Response time and CPU utilization of a single server as a function of requests
per second, using Poisson distribution with exponential inter-arrival times

We also see that the CPU utilization increases linearly until around 105 re-
quests/second, then it drops. This is a telling result since the server should be
heavily utilized above this rate if the system is working efficiently. Looking at
the standard deviation of the results obtained for CPU load, we see that it is
very high when the request rate is above 110 requests/second. This implies that

Predictable Scaling Behaviour in the Data Centre 53

the server is unable to deliver the maximum level of service when requests per
second exceed the maximum threshold due to thrashing at the server side. This
is a strong indication that we want to avoid this region at all costs.

The response time also flattens out when the load exceeds approximately
105 requests per second. Above this rate the server starts to refuse connections
instead of accepting all of them. Data show that the error rate above 100 requests
per second increases proportionally with the increasing request rate. This again
indicates that the server can’t process request at any higher rate.

The reason for the results shown in fig. 2 is the queue length configured on
the Apache web-server. Apache only spawns a limited number of child processes
to handle incoming requests, and when all these processes are busy it needs to
queue up waiting requests. This queue has a maximum length, in our case defined
by the Apache ListenBacklog directive. The errors start to increase when the
server has filled up its queue; 120 requests/second gives an error rate of 5.91
packets, and when the request rate increases above this we see that the increase
in errors is almost the same as the increase in requests per second.

5 Load Sharing

Our load balancing arrangement uses a dispatcher at the bottleneck to distribute
load to the back-end servers, using one of three different sharing algorithms:

– Round Robin: the classic load sharing method of taking each server in turn,
without consideration of their current queue length or latency.

– Least Connections: the dispatcher maintains state over which back end server
currently has fewest on-going TCP connections and channels new arrivals to
the least connected host.

– Response Time: the dispatcher measures the response time of each server in
the back end by regularly testing the time it takes to establish a connection.
This has many tunable parameters.

In elementary queueing theory, there is no simple way of dealing with the issue
of inhomogeneous servers. A simple question is therefore whether the simplest
classical queueing models provide sensible predictive power for the data centre
engineer in either a homogeneous or non-homogeneous case, on average.

6 Queueing Models as Sharing Predictors

We consider how queueing models perform compared to results obtained from
our lab experiment. We use a c script to calculate response times using both
M/M/1n and M/M/n queues. From the previous sections we have calculated
the performance of a single web-server, and we use this result in our queueing
simulation. Below is a list of parameters used for expected response times using
queueing theory:

54 M. Burgess and G. Undheim

– μ This is the variable we calculated when doing performance tests against
one server. It is the processing capability of the server, also called the service
rate and is often expressed in completions per millisecond. We take μ =
0.10413from the fact that each server is able to process 0.10413 requests per
millisecond.

– λ This is the arrival rate, and is expressed in arrivals per millisecond
– n Number of servers available. In our experiments we had at most 5 available

servers to balance the load between.
The max rate specifies the limit at which we stopped simulation. This is
usually equal to n·μ since the queueing algorithms do not produce well-
defined results when the servers are overloaded. In figure 3 max rate equals
2 · μ = 0.20826.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250

R
e

s
p

o
n

s
e

 T
im

e

Requests/Second

M/M/12 M/M/2 Response time

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

R
e

s
p

o
n

s
e

 T
im

e

Requests/Second

M/M/13 M/M/3 Response time

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450

R
e

s
p

o
n

s
e

 T
im

e

Requests/Second

M/M/14 M/M/4 Response time

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

R
e

s
p

o
n

s
e

 T
im

e

Requests/Second

M/M/15 M/M/5 Response time

Fig. 3. Theory vs. Experiment: This graph shows the results obtained from simulating
load balancing with both M/M/n and (M/M/1)n queues and response times from a
real experiment

Figure 3 shows a comparison of queue model with experiment for 2-5 inden-
tical servers, using the Round Robin algorithm to balance the load between two
servers. We see that the experimental results for n servers follow those for the
M/M/n queue quite closely up to the point of about 90% saturation. This is

Predictable Scaling Behaviour in the Data Centre 55

an encouraging sign for theory – given that the servers truly are measurably
identical. It is perhaps better than one would expect given the simplicity of the
queueing model. However, there is an indication that the model worsens as the
number of servers increases. The (M/M/1)n is overly pessimistic for all n at low
traffic, but M/M/n traces the actual behaviour with surprising accuracy.

At about 90% of the maximum expected capacity (as calibrated against the
single server levels) the models begin to fail. A summary of requests per sec-
ond, errors and network input/output in Table 1 reveals that errors first start to
occur when the request rate exceeds this 88% mark. The actual 2,3,4-server so-
lutions even out-perform the M/M/2, 3, 4 predictions across the whole spectrum
of loads, even when entering the thrashing regime. This is likely due to the fact
that each server in fact deals with requests using parallel processing threads, not
a First Come First Served (FCFS) discipline as the queue model assumes[5]; this
is more efficient than FCFS. Nonetheless, the closeness of behaviour is notable
for two servers. As the total load rises in the 5 server case, this behaviour changes
and the thrashing regime cuts in even more sharply. This could be a sign of a
change in the performance of the load balancer itself.

Table 1. A summary of CPU utilization, request and error rates when using Poisson
distributed inter-arrival times in a 2-server regime

No. of requests Response Time Std. Dev. No. of errors

2 9.89 0.09 0
10 9.87 0.12 0
50 10.45 0.13 0
100 12.49 0.12 0
150 17.64 0.36 0
160 20.12 0.67 0
170 24.40 1.00 0
180 31.40 1.72 0
190 41.08 3.27 0
200 66.04 18.35 0
202 78.44 34.21 0.002
204 97.91 77.31 0.003
220 853.56 76.73 0.1

Repeating the simulation for higher numbers of shows a similar story, but one
which becomes progressively worse earlier. Figure 3 shows the comparison for
M/M/15 and M/M/5. Here performance reaches approximately 490 out of the
expected 520 requests per second (77%) before significant deviation sets in. Then
at about 490 requests/second the experimental system reaches an instability
and diverges drastically from the theoretical models. The fact that this occurs
more quickly here is an anomaly; alas, we did not have more identical servers
to attempt to extend the number to an even higher level, but this would have
been interesting. Clearly, when theory and practice do not agree, some of the
theoretical assumptions are incorrect. It is unlikely that the problem lies with
the distributions. A clue as to the reason is found in the next section.

56 M. Burgess and G. Undheim

7 Scalability with Increasing Servers

If performance scales linearly when adding servers it means that we can easily
predict the effect of adding more servers. This would be a useful property when
considering QoS and maintaining SLA agreements. In figure 4 we show the ad-
dition of servers at four traffic levels intended to saturate the same number of
servers.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6

R
e
s
p
o
n
s
e
 t
im

e
 [
m

s
]

No. of machines

100 requests per second ¿

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6

R
e
s
p
o
n
s
e
 t
im

e
 [
m

s
]

No. of machines

200 requests per second

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6

R
e
s
p
o
n
s
e
 t
im

e
 [
m

s
]

No. of machines

400 requests per second ¿

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6

R
e
s
p
o
n
s
e
 t
im

e
 [
m

s
]

No. of machines

600 requests per second

Fig. 4. How response rates scale when adding extra servers. For low traffic, adding a
new server results in a discontinuous improvement in response time. At very high load,
adding a server seems to reduce performance, leading to the upward curve in the last
figure as the limitations of the bottleneck dispatcher become apparent.

In the first graph we see that the response time is kept low in all scenarios. This
fits with the assumption that even a single server should be capable of handling
104 requests per second. The next graph shows that all scenarios except the one
with a single server are capable of handling 200 requests per second. This fits the
scaling predictions. With 400 requests per second, in the third graph, four servers
just cut it. In the fourth graph we request 600 connection per second, and we see
that the response rate is high for all scenarios. These results make approximate

Predictable Scaling Behaviour in the Data Centre 57

1 2 3 4 5
Number of servers

100

200

300

400

500

M
ax

 c
ur

va
tu

re
 r

eq
ue

st
s/

se
co

nd

Fig. 5. Maximum processing capacity as a function of number of servers

sense, yet the scaling is not exactly linear; there is some overhead when going
from having 1 server to start load balancing between 2 or more servers. We
explore this further below. Figure 5 shows how the rates scale with number of
servers. Note the discontinuities in points of maximum curvative in the response
functions after one server and four servers. the response is not exactly linear.

8 Load Sharing Performance

The measurements above have been made with the round robin sharing strategy.
It makes sense that this would agree maximally well with the M/M/n model
when all of the servers are indentical. In any real data centre, the likelihood of

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

R
es

po
ns

e
T

im
e

Requests/Second

Round robin algorithm reponse time
Least connections algorithm response time

Response time algorithm response time

Fig. 6. The performance of the RT, LC and RR algorithms in a homogenous server
environment. RR is superior at low traffic intensity, LC survives to slightly higher
levels, but a small instability around 250 req/s.

58 M. Burgess and G. Undheim

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400

R
es

po
ns

e
T

im
e

Requests/Second

RR algorithm LC algorithm RT algorithm

Fig. 7. Performance of the RT; LC and RR algorithms in an inhomogeneous environ-
ment. Surprisingly both RR and RT measurements behave similarly under load, while
RR is best at low loads. This indicates that there is no advantage to using RT. LC
holds out longest here before saturating as it is able to utilize the extra capacity in the
faster servers.

having perfectly identical hardware is near zero given the rate at which technol-
ogy advances. Equipment bought even a few weeks later could have dramatically
different specifications.

To investigate the effects of inhomogeneities on the balancing, we manually
adjusted the CPU speed on some of the blades to create a stepwise inhomoge-
neous environment with the following processor capacities: 1.4, 1.75, 2.1, 2.45,
2.8 GHz. The result is shown in figure 6 and 7.

Figure 6 shows results from using Least Connected (LC), Round Robin (RR),
and Response Time (RT) algorithms to balance load between 5 servers. The
algorithms perform approximately the same under low loads. The LC algorithm
performs well marginally longer than the others. The RT algorithm perform
almost as well, but succumbs to noise before earlier.

For the inhomogeneous case, the results are more surprising. Here the Round
Robin and Response Time strategies (based on actual measurements of the sys-
tem performance) perform equally well. Both succumb to noise at about the same
point. Remarkably the Least Connections approach (which uses state information
directly in the dispatcher) survives the longest. We suspect that this is because,
once the variance in the computing nodes blows up due to thrashing, it dominates
the measurements of response times and they become so unreliable that the infor-
mation make no difference and the performance of RT. RT is therefore no better
than RR (random chance) in practice. The dominance of uncertainty matches the
conclusions made in [5]. The fact that Least Connections works longer is probably

Predictable Scaling Behaviour in the Data Centre 59

a result of the greater reliability of the state kept by the dispatcher combined with
the fact that the faster machines finish their equal tasks more quickly, thus main-
taining an equilibrium. In real traffic, job lengths will be variable and we suspect
that LC will not perform significantly better than random chance.

9 Conclusions

There is surprisingly little literature on dispatcher load balancing, in spite of the
importance of this technology for business. Ref. [10] performs similar studies to
ours and arrives at somewhat different conclusions. In [10,11] they found the RR
algorithm to be the worst under all conditions. Teo[10] also show results that
indicate that RR, LC and RT converges at high loads. These results contradict
our results and the ones found by Cardellini[12], as we found the RR algorithm
to have best performance at low intensities, and that the LC algorithm could
sustain higher traffic intensity than RR and RT. We suspect that the results are
dependent on the nature of the test data downloaded. Our results have been
easily controllable, and yet we see the effects of uncertainty start to dominate
behaviour. In this regime, none of the expensive technology does much better
than random chance.

In terms of scalability, we see that adding servers is not a smooth operation,
in contrast with ref. [10]. Even at high traffic loads, modern servers have such
power that they lead to very discontinuous changes in the performance. If one
fixes the traffic level, the addition of a single server can have a large impact on
the processing time, assuming that the trunk service is not a bottleneck. One
can move from saturation to a comfort zone fairly easily. In this regard, there is
no reason not to have extra capacity available in a server centre. Even a single
extra server on standby can make a significant impact if one can predict the
rise.

Our results indicate that there is little reason to use anything other than RR
as a load sharing algorithm. This is a rather depressing conclusion. One would
hope that monitoring and analysis would improve performance, but there is no
strong evidence of this here.

What does the data centre engineer learn from this study? We believe that
the key message of this work is that dispatcher capacity is the key in server
load balancing. The sharing algorithm plays a lesser role than the ability of the
dispatcher to cope with the connections. A simple Round Robin sharing works
approximately as well the more sophisticated methods, but as the total load
increases, the efficiency of the sharing appears to waver. We are not able to
confirm this last conclusion in our experiment, but we think this point is worth
further study. Once again, Service Level Objectives are far from predictable close
to maximum capacity. We see here an operating level of 80% of maximum as
being a reasonable over-capacity in production.

We are grateful to Jon Henrik Bjørnstad and Sven Ingebrigt Ulland for help-
ful discussion. This work is supported by the EC IST-EMANICS Network of
Excellence. (#26854)

60 M. Burgess and G. Undheim

References

1. British Standards Institute. BS15000 IT Service Management, 2002.
2. J. Sauvé et al. Sla design from a business perspective. In IFIP/IEEE 16th inter-

national workshop on distributed systems operations and management (DSOM), in
LNCS 3775.

3. W. Xu, X. Zhu, S. Singhal, and Z. Wang. Predictive control for dynamic resource
allocation in enterprise data centers. In Proceedings of the 10th IEEE/IFIP Net-
work Operations and Management Symposium (NOMS 2006), pages 115–126. IEEE
Press, 2006.

4. X. Li, L. Sha, and X. Zhu. Adaptive control of multi-tiered web applications using
queueing predictor. In Proceedings of the 10th IEEE/IFIP Network Operations and
Management Symposium (NOMS 2006), pages 106–114. IEEE Press, 2006.

5. J.H. Bjørnstad and M. Burgess. On the reliability of service level estimators in
the data centre. In Proc. 17th IFIP/IEEE Distributed Systems: Operations and
Management (DSOM 2006), volume submitted. Springer, 2006.

6. D.A. Menascé and V.A.F. Almeida. Scaling for E-Business: Technologies, Models,
Performance, and Capacity Planning. Prenctice Hall, 2000.

7. M. Burgess. Analytical Network and System Administration — Managing Human-
Computer Systems. J. Wiley & Sons, Chichester, 2004.

8. G.B. Rodosek. Quality aspects in it service management. IFIP/IEEE 13th Inter-
national Workshop on Distributed Systems: Operations and Management (DSOM
2002), page 82, 2002.

9. A. Høyland and M. Rausand. System Reliability Theory: Models and Statistical
Methods. J. Wiley & Sons, New York, 1994.

10. YM Teo and R Ayani. Comparison of load balancing strategies on cluster-based
web servers. Transactions of the Society for Modeling and Simulation, 2001.

11. Paul Barford and Mark Crovella. Generating representative web workloads for net-
work and server performance evaluation. In SIGMETRICS ’98/PERFORMANCE
’98: Proceedings of the 1998 ACM SIGMETRICS joint international conference on
Measurement and modeling of computer systems, pages 151–160, New York, NY,
USA, 1998. ACM Press.

12. V Cardellini and M Colajanni. Dynamic load balancing on web-server systems.
Internet Computing IEEE, 3(4):28–39, 1999.

Quantifying the Complexity of

IT Service Management Processes

Yixin Diao and Alexander Keller

IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA

{diao, alexk}@us.ibm.com

Abstract. Enterprises and service providers are increasingly looking to
process-based automation as a means of containing and even reducing the
labor costs of systems management. However, it is often hard to quantify
and predict the additional complexity introduced by IT service manage-
ment processes before they actually have been deployed. Our approach
consists in looking at this problem from a different, new perspective by
regarding complexity as a surrogate for potential labor cost and human-
error-induced problems: In order to effectively evaluate the benefits of IT
service management processes – and to target the types of processes that
contribute most to management complexity and cost – we need a set of
metrics for quantifying the complexity and human cost of carrying out
IT service management processes. This paper proposes such measures,
and demonstrates how they can be applied to a typical service delivery
process in order to assess its complexity hotspots as a basis for process
re-engineering.

1 Introduction

The complexity of managing computing systems and information technology
(IT) processes represents a major impediment to efficient, high-quality, error-
free, and cost-effective service delivery, ranging from small-business servers to
global-scale enterprise backbones. In order to accomplish these goals, enterprises
and service providers turn increasingly to the IT Infrastructure Library (ITIL)
[1]. ITIL comprises disciplines such as service management, support and delivery,
and has established itself as the most widely used standardized process-based
approach to IT service management. When implementing ITIL by means of IT
management processes, however, one needs to be able to quantitatively measure
the degree of IT management complexity exposed by particular processes, so
that process designers and architects can discover complexity hotspots early in
the design phase, and optimize the IT processes to reduce their complexity.

We regard complexity as a surrogate for potential labor cost and human-error-
induced problems: IT systems and processes with a high degree of complexity
demand humans and expertise to manage that complexity, increasing the total
cost of ownership. Likewise, complexity increases the amount of time that must
be spent interacting with a computing system or between administrators to per-
form the desired function, and therefore decreases efficiency and productivity.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 61–73, 2006.
c© IFIP International Federation for Information Processing 2006

62 Y. Diao and A. Keller

Fig. 1. Quantitative IT management process complexity evaluation

Furthermore, complexity results in human errors, as complexity challenges hu-
man reasoning and results in erroneous decisions even by skilled administrators.
The goal is to reduce IT process complexity by designing, architecting, imple-
menting, and assembling systems and processes with minimal complexity level.

There is little existing work in the area of process complexity analysis: Busi-
ness process modeling tools typically include a process simulator, which allows
the designer to run a set of simulated process executions (either through Monte
Carlo or discrete event simulation) in order to assess the performance of the
process, generate statistics about its execution, and pinpoint potential areas of
improvement and optimization. However, many parameters need to be specified
by the designer a priori: for example, for each task (or action), a duration is
assigned during the modeling phase; for decisions, the designer needs to indicate
up-front a percentage for each of the branches that indicates the probability
that it will be taken (the sum of all branch probabilities equals 100%). None of
the available business process model simulators focuses on process complexity as
described in this paper. There is no overlap between existing work in the process
simulation area and the work presented in this paper.

Related work in the system administration discipline has been carried out
with a focus on establishing cost models, which take into account the impact
of decisions. The most relevant work is [4], which generalizes an initial model
for estimating the cost of downtime [7], based on the previously established
System Administration Maturity Model [5]. Other related work can be found in
information theory (e.g., Kolmogorov complexities [6]) or quality management
in manufacturing (e.g., Six Sigma [9]).

Figure 1 illustrates our vision of quantitative IT management process com-
plexity evaluation: Once a set of IT processes has been designed and archi-
tected, a process complexity analysis is carried out to pinpoint possible com-
plexity hotspots and inefficiencies (depicted at the top of the Figure). In order
to mitigate or even eliminate complexity hotspots, techniques like IT process
re-engineering can be used to re-design the process(es); in addition, activities
within a process that exhibit a very high degree of complexity are identified as
candidates that should be further modeled and investigated. For example, they

Quantifying the Complexity of IT Service Management Processes 63

can be broken down to human comprehensible sub-tasks, which can be further
supported by tooling or delegated to automation. In a third step, the process
complexity analysis is applied to the simplified IT processes (depicted at the
bottom of the figure). Finally, the results of the ‘before’ and ‘after’ analyses
are evaluated side-by-side to obtain quantified complexity savings in order to
measure the improvements.

The focus of this paper is the process complexity analysis because the pro-
cess complexity model and its measures are the basis of both ‘before’ and ‘after’
analyses of the overall quantitative process complexity evaluation. The paper
is organized as follows: Section 2 overviews our model for IT management pro-
cesses. Section 3 details the complexity measures for quantifying processes and
Section 4 describes the tooling we have implemented. In Section 5, we perform
a process complexity analysis by applying our model. Our conclusions are con-
tained in section 6.

2 IT Process Complexity Model

This section describes the proposed model of IT process complexity, which is
used for computing the operational complexity of IT processes. Configuration
management, change management, release management, and problem manage-
ment are all examples of IT service management processes.

In [2], we have introduced a model for assessing configuration complexity. The
intent of that model was to capture and quantify the complexity of a straight-
line flow through a configuration procedure. Three different complexity measures
have been identified, which are briefly summarized below in order to provide
some background for the following discussion: Execution Complexity refers to
the complexity involved in performing the configuration actions that make up
the configuration procedure, typically characterized by the number of actions
and the context switch distances between actions. Parameter Complexity is the
complexity involved in providing configuration data to the computer system
during a configuration procedure. Memory Complexity takes into account the
number of parameters that must be remembered, the length of time they must
be retained in memory, and how many intervening items were stored in memory
between uses of a remembered parameter.

While the above three complexity measures are sufficient to capture the in-
teractions of an administrator with a managed system at runtime, we need to
extend this model to provide a quantitative assessment of IT management com-
plexity that involves:

1. interaction between 2 or more roles in a process,
2. passing data in various formats (a.k.a., business items) between tasks, and
3. decision making among multiple roles.

Specifically, we model a process as a set of roles, each of which may par-
ticipate in a set of tasks that either consume or produce business items. As
depicted in Figure 2, IT management processes are modeled using the follow-
ing three components: Roles, Tasks, and Business Items. This is consistent with

64 Y. Diao and A. Keller

Task n-1

Task n

Role 1

Role 2

Role 3

Task n+1 (Decision)

Business Item

Fig. 2. Complexity model extensions for IT management processes

how common-off-the-shelf business process modeling tools, such as IBM Web-
Sphere Business Modeler (WBM) or Tibco Business Studio structure business
processes. Consequently, the information needed for complexity calculation can
be extracted from typical process model data (see also section 4).

3 IT Process Complexity Measures

This section describes the per-task complexity metrics for each of the three
aspects of the process complexity. Note that these metrics are designed to capture
the first-order effects. However, our experience shows that even at this level they
have demonstrated the effectiveness in identifying key automation opportunities
and complexity bottlenecks, and in tracking process improvement.

3.1 Execution Complexity

Execution complexity covers the complexity involved in performing the tasks
that make up the IT process. We use two metrics for execution complexity: base
execution complexity and decision complexity.

Base Execution Complexity indicates complexity of the task according to
its execution type. Values for this score are assigned according to a weighting
scale of different task types. Each role involved in the task must be assigned an
execution type chosen from below with corresponding values shown in square
brackets next to the type name. The base execution complexity for that task is
then the sum of values from all the roles. That is, for a task involving R roles
(r = 1, 2, . . . , R), its base execution complexity is computed as

Ebase =
R∑

r=1

execType(r) (1)

where the execution type execType(r) is defined with regard to three types.
automatic [0] - if the task is fully automated. toolAssisted [1] - if the task
is manual, but tool-assisted. For example, manual triggering of a provisioning
workflow or script involves providing workflow definitions. A service invocation

Quantifying the Complexity of IT Service Management Processes 65

task is also classified as toolAssisted, as it transfers the work to an external role.
manual [2] - if the task is a fully manual procedure.

The above approach defines a normalized, unit-less score for base execution
complexity. However, there are two possible extensions: (1) If data on average
task times is available, they can be used to define the base execution complexity.
(2) If task level procedure complexity analysis has been conducted, the base
execution complexity can be defined with regard to procedure-wide execution,
parameter, and memory complexity. Note that as a starting point we choose
metric values in a linear scale (0, 1, 2) throughout the model; however, further
studies need to be conducted to determine if a quadratic or exponential scale is
more appropriate.

Decision Complexity quantifies additional execution complexity due to de-
cision making. For non-decision making task, its value is zero. If a decision needs
to be made, its complexity is based on the following four sub-metrics.

– nBranches: the number of branches in the decision. The intuition is that
more choices result in higher decision complexity.

– gFactor: the degree of guidance. That is, how much information is provided
to the user to make the correct choice. This is quantified with a three-level
scale of increasing complexity: [0] for a specific (correct) recommendation of
the decision branch to follow, [1] if general information is provided relating
choices to goals so that a user could extract the correct decision with some
processing of the information, and [2] if no information is provided to help
the user select the correct choice.

– cFactor: the consequence of impact. That is, how significant is the impact
if a wrong decision has been made. This is also quantified with a three-level
scale of increasing complexity: [1] for negligible consequence, [2] for moderate
consequence, and [3] for severe consequence.

– vFactor: the visibility of impact. That is, how much information is provided
to the user to illustrate the consequences of their choice. This is also quanti-
fied with a three-level scale of increasing complexity: [1] for immediate con-
sequence, [2] for short-term consequence, and [3] for long-term consequence
in terms of end-state features.

With the above three sub-metrics, the decision complexity for that task is
then multiplied by the number of roles (R) involved in that task.

Edecision = R × (nBranches − 1) × gFactor × cFactor × vFactor (2)

The above formula reflects the following intuition: the decision complexity is
zero if the number of decision branches is one (no decision, straight flow); clear
guidance reduces decision-making tasks to non-decision making tasks, even if
it may involve multiple branches; immediate choice consequence may make the
task tedious, if there are multiple branches and the guidance is unclear, but the
level of complexity remains low since the decision uncertainty does not exist. Al-
though the decision complexity formula may be expressed differently, we choose
to use a multiplication format as we view the effects of multiple factors as being

66 Y. Diao and A. Keller

orthogonal to each other. For example, if the guidance is clear (gFactor = 0),
the decision complexity is 0 no matter how many branches it may have. This
is the case where the system administrator needs to classify problem tickets to
many different categories such as ’file system full’ and ’high application response
time’.

3.2 Coordination Complexity

The per-task metrics for coordination complexity are computed based on the
roles involved and whether or not business items are transferred.

Coordination Link Complexity is indicated by a unit-less value represent-
ing the complexity of coordinating between multiple roles. For each link between
the task under consideration and other tasks carried out by different roles, score
values are assigned according to a weighting scale of different coordination link
complexities. The coordination link complexity for that task is then the sum of
values from all the links (l = 1, 2, . . . , L) multiplied by the number of roles (R)
involved in that task.

Clink = R ×
L∑

l=1

linkType(l) (3)

where the link type linkType(l) is defined as follows. autoLink [0] - if it is linking
to an automated task. controlLink [1] - if it is a control flow link to a non-
automated task without any business item being transferred. dataT ransferred
[2] - if business items are transferred. dataAdapted [3] - if the transferred business
items need to be adapted. For example, adaptation is needed if the consuming
role is automated and the source data format is not machine-readable.

We also define Shared Task Complexity for tasks that involve multiple
roles. For example, conducting a change review meeting requires the participa-
tion of multiple roles. The shared task complexity is computed from the assigned
score below multiplied by the number of roles (R) involved in that task.

Ctask = R × taskType × (meetingIndicator + 1) (4)

where taskType is defined as follows. notShared [0] - if it is not a shared task.
shared [1] - if it is a shared task. BIConsumed [2] - if business items are con-
sumed. The intuition is that coordination of data input requires extra cost.
BIProduced [3] - if business items are produced. The intuition is that coordi-
nation of data output is more expensive because it requires agreement among
multiple roles. The meeting indicator meetingIndicator takes a Boolean (0, 1)
value: it takes a value of 0 if there is no meeting involved; otherwise, if a meeting
is required, it takes a value of 1. Thus, having a meeting raises the shared task
complexity by a factor of 2.

3.3 Business Item Complexity

The per-task business item (BI) complexity is computed based on the business
items produced by the task under consideration.

Quantifying the Complexity of IT Service Management Processes 67

Base BI Complexity is indicated by a unit-less value representing the com-
plexity of involving business items. That is, for a task involving R roles and I
business items either consumed or produced by that task, its base BI complexity
is computed as

Bbase = R × I (5)

BI source complexity is indicated by a unit-less value representing the
complexity of supplying this field’s value. Values for this score are assigned ac-
cording to a weighting scale of different source complexities. Each field used in
the business item must be assigned a source type chosen from one of the values
given below. The field source complexity value for that field is then the value
shown in square brackets below next to the type name. For each produced busi-
ness item, a source complexity is assigned to each field based on the source that
provides the field’s data. Then, each source score is summed across the business
items to produce the final per-task metric. That is, for a task involving R roles
(r = 1, 2, . . . , R), producing IP business items (i = 1, 2, . . . , IP), and f fields
(f = 1, 2, . . . , Fi), its per-task business item complexity is computed as

Bsource = R ×
IP∑

i=1

Fi∑

f=1

sourceScore(i, f) (6)

where sourceScore(i, f) is defined as follows: internal [0] - if the field value
was produced from automation. freeChoice [1] - if the field value can be cho-
sen freely, e.g., a new password. documentationDirect [2] - if the field value
was taken directly from the task documentation, an online source, or a pro-
cess description manual (e.g., a Redbook), without extrapolation or adapta-
tion. documentationAdapted [3] - if the field value was extrapolated from an
example in the task documentation, an online source, or a process descrip-
tion manual. bestPractice [4] - if the field value would be obvious to a sys-
tem operator versed in the administrative best practices for the application
domain. environmentF ixed [5] - if the field value is constrained by the envi-
ronment to a specific value that is selected by the operator after further re-
search. environmentConstrained [6] - if the parameter value is constrained by
the environment to a limited set of possible choices.

These seven sources are ranked in order of increasing complexity burden. For
example, a field sourced internally or pulled straight from the documentation
does not require the system administrator to figure out its value. On the other
hand, a parameter constrained by the environment, where that constraint is not
obvious, imposes significant complexity since the system administrator needs to
infer the possible legal value.

4 Process Complexity Model Tooling

We will now discuss the architecture, design and implementation of the tooling
that we have developed in order to support the process complexity model and

68 Y. Diao and A. Keller

its measures that we have described in the previous sections. Our Integrated
Complexity Analyzer is in charge of computing the complexity scores, according
to the measures described in section 3.

Exported
Process
Model

Complexity
Scorer

Process Model Classifier-tagged
Process Model

Complexity Benchmarking Database

Manual Data Capture GUI Graphical Analyzer

Procedure
Capture

Data

Administrator

Integrated Complexity Analyzer

Data Access Objects

X
M

L P
arser P

lot G
enerator

P
rocess T

agging

IT Process Designer

Complexity
Data

Complexity
Scores

Consumability
Architect

re-designed Procedure

EMF EMF

Fig. 3. Architecture of the Integrated Complexity Analyzer

4.1 Complexity Evaluation Scenarios

As depicted in Figure 3, there are two possible scenarios that need to be sup-
ported by the architecture of the Integrated Complexity Analyzer. The first
scenario, depicted at the top of the figure, addresses complexity analysis at pro-
cess design time and is the subject of this paper: An IT management process
designer models a process by means of a common-off-the-shelf business process
modeling tool, in our case IBM WebSphere Business Modeler version 6 [10]. In
order to determine the complexity of the process and to pinpoint complexity
hotspots, the designer exports the process to a file in the XML metadata in-
terchange (XMI) format and executes our Integrated Complexity Analyzer. The
latter automatically captures complexity data directly from the XMI file, com-
putes the complexity scores and annotates the process model by tagging it with
classifiers. The process designer can then re-import the process model and iden-
tifies, by means of color-coded activities that correspond to the different degrees
of complexity, which activities and roles are considered complexity hotspots and
should be simplified, if possible. Note that the redesign of the process model
involves domain-specific knowledge and thus requires the involvement of the
process designer. Once the model has been redesigned, the analysis is repeated
until the complexity hotspots have been addressed.

The second scenario consists in having an administrator capture the configu-
ration actions and parameters while executing a setup, change or configuration
procedure for a product on a (distributed) system. This scenario, along with its

Quantifying the Complexity of IT Service Management Processes 69

measures, is the subject of [2]. It is depicted at the bottom of Figure 3. The
major differences to the first scenario are as follows: First, the complexity anal-
ysis is performed at runtime and therefore reflects a straight-line flow through
the procedure. In addition, all complexity data is gathered manually (by means
of a web based manual data capture GUI) as no tooling is available that would
log the actions automatically; furthermore, assigning complexity ratings to con-
figuration parameters requires the involvement of an administrator. Finally, the
consumers and producers of the complexity data are typically different people:
while the administrator is needed to perform the configuration procedure and
capture the procedure complexity data, the consumer of the complexity scores
is typically a so-called consumability architect, whose role consists in diagnosing
the configuration procedure for a specific product from a complexity perspective
in order to re-design the procedure. Once the administrator has completed the
procedure, the procedure capture data are input to the Integrated Complexity
Analyzer, which calculates the complexity scores from the input data and dis-
plays the complexity scores on a per-activity basis by means of the graphical
analyzer. This data can then be viewed and interpreted by the consumability
architect of the product/procedure so that he can identify complexity hotspots
and re-design the procedure, which is then again carried out by an administrator.
The differences in the complexity scores for subsequent runs of the procedure
reflect the quantitative improvements in terms of complexity.

4.2 Tooling Components

In addition to addressing the requirements for two fairly different usage scenarios,
the architecture of the Integrated Complexity Analyzer needs to be adaptable
to changes in the model and the summary scores. This is needed because the
model is continuously being refined, based on the results we obtain by running a
variety of scenarios. Traditionally, this is a major challenge, because the model
and its measures are at the heart of the overall system, and any change to the
model ripples through the data structures that are evaluated by the Complexity
Scorer to compute the complexity scores. In order to mitigate the impact of
changes, we have decided to isolate the representation of the data (both input and
output data) as much as possible from the complexity scorer logic. A thorough
modularization of the architecture and a combination of several technologies
turned out to be particularly useful in order to accomplish this. We will describe
each of the components of the Integrated Complexity Analyzer along with the
technologies that have been used in their implementation.

We use an ‘XML-centric’ approach (as changes to the complexity model are
introduced into the overall system by a change of the XML schema) and rely on
the Eclipse Modeling Framework (EMF) [3] to automatically generate the Java
objects that correspond to the elements in both XML schemas that represent
the incoming complexity data and the complexity scores, respectively (depicted
in the center of Figure 3). By doing so, every time a new element or attribute
is added to an XML schema, we simply re-generate the EMF objects for the
XML schema in which the change occurred. While a corresponding EMF object

70 Y. Diao and A. Keller

– a Java class with accessor methods – representing the new XML element is
generated (for which new code needs to be written in the complexity scorer),
already existing EMF objects remain unchanged. An additional advantage of
EMF is that we obtain the XML parser ‘for free’, as appropriate Java classes
to serialize/deserialize XML files into/from EMF objects are automatically gen-
erated by EMF. Seamless transformation between XML, UML and relational
database schemas based on Java is the core purpose of EMF.

The Complexity Scorer – the core component that summarizes and scores
the complexities of both processes and procedures according to the measures
described in the previous section – is implemented in Java and inputs the com-
plexity data that is represented as an EMF model. The complexity scorer needs
to distinguish between the two scenarios described above as their complexity
data is fairly different. The XML schema for input data specifies a flag indicat-
ing whether the data in an input file refers to either procedure capture data or
to an exported process model. The calculated complexity scores are represented
as EMF objects, too.

The remaining three components of the Integrated Complexity Analyzer lever-
age various EMF extensions. The Plot Generator inputs an EMF model contain-
ing the complexity scores and transforms them into a graphical representation
(typically a bar chart whose various display options can be selected by the user).
Flexible support for graphic widgets is provided by the eclipse plugin for Scalable
Vector Graphics (SVG) [11], which can be directly displayed in the Mozilla Fire-
fox v1.5 web browser. The Process Tagging component works off the EMF model
containing the complexity scores and serializes them by means of EMF into the
XMI format so that the classifier-tagged process model is output in a format that
can be directly consumed by the WebSphere Business Modeler tool. Finally, for
each analysis, both the raw complexity data that is input into our system as
well as the complexity scores computed by the Integrated Complexity Analyzer
are persistently stored in a hybrid relational/XML database. We use an early
adopter version of the IBM DB2 Universal Database Enterprise Server Version
9.1. The Data Access Objects implement persistent storage for EMF models in
a relational database based on Service Data Objects (SDO) [8]. The advantage
of storing structured EMF objects over storing a set of text documents merely
as character large objects (CLOBS) in an RDBMS improves their retrieval sig-
nificantly: as the data remains structured, one can easily issue queries of the
type ‘retrieve all the actions in a procedure/process whose memory complexity
is greater than X’ against the database.

5 Evaluation

In this section we consider a sample subprocess of ITIL Change Management: the
process accepts a change request and updates the corresponding configuration
items (CIs). A change request results in the creation of new CIs or the modifica-
tion of existing CIs. As part of the process, it is necessary to extract information
referring to the CI from the change request, authorize and validate the changes

Quantifying the Complexity of IT Service Management Processes 71

Log CI RequestCM System
Agent

CM CI
Request

Automation

CM Activity
Data

CM CI
Request

Problem with
Associated RFC

ChgM Change
Information
Repository

CM Activity
Repository

CM Policy
Repository

Select CI
Request Type

Problem with
Change

Yes

No

CM CI
Request

9

10 11

Exception

CM Policy
Repository

CM Operational
Schedule
Repository

Yes

No
Configuration
Record
Administrator

CI Information
Requester

CM
Authoritative
CI Repository

CI Information
Repository

CM CI
Information

CM CI
Record

P6

P5

P10

CM
Operational
Schedules

CM
Policies

CM
Policies

ChgM
Change
Information

CM CI
Request

12

CM CI
Request

Exception

Fig. 4. Partial workflow for a change management subprocess

against policies, issue necessary queries to extract other needed CIs to accommo-
date the request, request modification of the CM Authoritative CI Repository
design if needed (for new CI types), either create or update the appropriate CIs,
and finally report the results of the CI changes in a history repository.

The sample subprocess consists of 27 tasks; a part of the flow is depicted
in Figure 4, which includes the tasks numbered from 9 to 12 that are carried
out by four different roles: Change Management (CM) System Agent, Config-
uration Record Administrator, Configuration Item (CI) Information Requester,
and Automation (with a set of data repositories and services).

The per-task complexity is computed based on the complexity metrics intro-
duced in Section 3. For example, task 11 is a decision point which checks if a
requested change is allowed by the policies and execution schedule. It generates
either an exception or proceeds to task 12 if the change can be carried out.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Task #

Execution Coordination Business Item

Fig. 5. Process complexity per-task view for a change management subprocess

72 Y. Diao and A. Keller

Table 1. Process-wide complexity metrics

Complexity Measure Metric Value

Execution Number of Tasks 27
Number of Decision Points 11

Coordination Number of Shared Tasks 0
Number of Meetings 0

Business Item Number of Business Items 10

Task 11 involves one role, four business items, two decision branches, and one
coordination link with a different role (CI Information Requester).

Once the per-task metrics have been computed, they can be aggregated to
produce process-wide views to identify the complexity bottlenecks within this
process, or process-wide metrics to facilitate cross-process comparison. Per-task
views are graphs showing all per-task metrics in bar charts. Figure 5 provides
a per-task view for all 27 tasks. The x axis indicates the tasks, and the y axis
indicates the metric values. All per-task metrics can be plotted separately, or
aggregated for three high-level views of execution complexity, coordination com-
plexity, and business item complexity. The per-task metrics can be analyzed to
pinpoint complexity bottlenecks. For example, Figure 5 indicates that task 10
and 11 are relatively more complex in comparison to the other tasks in the pro-
cess. On the other hand, this process does not have significant complexity spikes.
The overall process complexity metrics are summarized in Table 1.

6 Conclusions and Outlook

In this paper we have proposed an approach to quantifying complexity of IT
management processes. We model a process as a set of roles, each of which may
participate in a set of tasks that either consume or produce business items.
Moreover, process complexity is quantified from three dimensions: execution
complexity with regard to the level of automation and decision making, co-
ordination complexity with respect to the coordination links and the complexity
of shared tasks, and business item (BI) complexity representing the source score
for supplying values into the business item. Finally, we have described the design
and implementation of the tooling we implemented, and have evaluated an IT
management process to demonstrate the usage and applicability of the approach.

The benefits of our approach are as follows: First, the complexity analysis re-
sults guide the IT process reingeneering effort and identify activities that should
be delegated to automation. Second, the IT process complexity model and its
measures establish the basis for measuring improvements between two versions
of an IT service management process. Third, the approach is applicable to dif-
ferent stages in the lifecycle of a process: while its core focus is on providing a
quantitative framework for evaluating processes in the design stage, it can be
applied to an already deployed process as well, in which case the measurements
obtained during its execution apply to a specific flow through the process.

Quantifying the Complexity of IT Service Management Processes 73

While these initial results are encouraging, there are several areas of further
work: As an example, we are currently working on a mapping from the measures
in this paper to higher-level measures such as success probability, configuration
time, labor cost, and required skill level to complete configuration tasks. We
are also exploring more service management process examples such as problem
management and release management, and studying its applicability to busi-
ness processes, e.g., Information and Communication Technology (ICT) business
management processes for communication services, fulfillment, and billing.

Acknowledgments

The authors would like to express their gratitude to Aaron B. Brown for his
work on an early version of the complexity model and to Christopher Ward for
his assistance in obtaining a variety of IT Service Management Process Models.
Both are employed by IBM. In addition, we are indebted to the reviewers for
their helpful and constructive comments that helped us improve the quality of
this paper.

References

1. IT Infrastructure Library. ITIL Service Support, version 2.3. Office of Government
Commerce, June 2000.

2. A.B. Brown, A. Keller, and J.L. Hellerstein. A Model of Configuration Complexity
and its Application to a Change Management System. In A. Clemm, O. Festor,
and A. Pras, editors, Proc. of the 9th IFIP/IEEE International Symposium on
Integrated Management (IM 2005), pages 631–644, Nice, France, May 2005. IEEE.

3. F. Budinsky, E. Merck, and D. Steinberg. Eclipse Modeling Framework. Addison-
Wesley, 2nd edition, 2006.

4. A.L. Couch, N. Wu, and H. Susanto. Toward a Cost Model for System Admin-
istration. In D.N. Blank-Edelman, editor, Proc. 19th Large Installation System
Administration Conference (LISA ’05), pages 125–141, San Diego, CA, USA, De-
cember 2005. USENIX.

5. C. Kubicki. The System Administration Maturity Model – SAMM. In Proc. 7th
Large Installation System Administration Conference (LISA ’93), pages 213–225,
Monterey, CA, USA, November 1993. USENIX.

6. Ming Li. An Introduction to Kolmogorov Complexity and Its Applications. Springer,
1997.

7. D. Patterson. A Simple Way to Estimate the Cost of Downtime. In A.L. Couch,
editor, Proc. 16th Large Installation System Administration Conference (LISA ’05),
pages 185–188, Philadelphia, PA, USA, November 2002. USENIX.

8. Service Data Objects. http://www.eclipse.org/emf/sdo.php.
9. Geoff Tennant. Six Sigma: SPC and TQM in Manufacturing and Services. Gower

Publishing, Ltd., 2001.
10. IBM WebSphere Business Modeler. http://www-306.ibm.com/software/integra

tion/wbimodeler.
11. World Wide Web Consortium, W3C Recommendation. Scalable Vector Graphics

(SVG) 1.1 Specification, January 2003. http://www.w3.org/TR/SVG/.

Ontology-Based Knowledge Representation for

Self-governing Systems

Elyes Lehtihet1,3, John Strassner2, Nazim Agoulmine3, and Mı́cheál Ó Foghlú1

1 Telecommunications Software & Systems Group -
Waterford Institute of Technology

Waterford, Ireland
{elehtihet, mofoghlu}@tssg.org

2 Autonomic Research Lab - Motorola Labs,
Schaumburg, IL 60010, USA

John.Strassner@motorola.com
3 Networks and Multimedia Systems Group - University of Evry-Val d’Essonne

Evry Courcouronnes, France
Nazim.Agoulmine@iup.univ-evry.fr

Abstract. Self-governing systems need a reliable set of semantics and
a formal theoretic model in order to facilitate automated reasoning. We
present an ontology-based knowledge representation that will use data
from information models while preserving the semantics and the tax-
onomy of existing systems. This will facilitate the decomposition and
validation of high level goals by autonomous, self-governing components.
Our solution reuses principles and standards from the Semantic Web
and the OMG to precisely describe the managed entities and the shared
objectives that these entities are trying to achieve by autonomously cor-
relating their behavior. We describe how we created UML2, MOF, OCL
and QVT ontologies, and we give a case study using the NGOSS Shared
Information and Data model. We also set the requirements for integrat-
ing existing information models and domain ontologies into a unique
knowledge base.

1 Introduction

The representation of knowledge at the autonomic manager level is a critical
issue for designing and deploying self-governing systems. We see an autonomic
manager as a set of software agents that use an expressive and dynamically
updateable knowledge base to represent the relationships between managed en-
tities, the system configuration, the objectives of the administrators (policies)
and the explicit semantics of the goals of the system. For autonomic networks,
this flexible knowledge base enables the system to dynamically adjust to the
changing demands of its users, as well as changing environmental conditions.

Self-governing systems can be described as very reactive systems, with a pre-
cise modeling structure, data description and behavior. The basis for structuring
is hierarchical decomposition and type hierarchies. Data description is based on

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 74–85, 2006.
c© IFIP International Federation for Information Processing 2006

Ontology-Based Knowledge Representation for Self-governing Systems 75

data types of values and objects. The basis of behavior description is extended
finite state machines communicating by messages [1].

A knowledge base requires an expressive, unique representation. Arguably,
this is best realized using a knowledge representation language with well defined
semantics and a practicable inference algorithm for reasoning on a system speci-
fication. A system specification, in a broad sense, is the specification of both the
behavior and a set of general parameters of the system [1].

The integration of the structural and the dynamic aspects of a self-governing
system is a difficult task that is even harder to achieve because of: 1) the com-
plexity of describing and refining a high level goal into lower level objectives
that can be enforced by autonomous system entities, and 2) the lack of interop-
erability between existing modeling standards. Interoperability is a major issue
for system integrators and tools vendor; several initiatives are trying to solve
the problem by unifying knowledge representation without loosing the associ-
ated semantics of the data. Until this is accomplished, it will be impractical to
effectively share models among heterogeneous (competing) modeling tools.

In this paper, we present an approach for unifying the representation of the
information needed by an autonomic manager, and preserving the inherent se-
mantics of a domain — this is a crucial step toward automating the reasoning
process and integrating heterogeneous knowledge bases.

1.1 Using Software Engineering Principles to Specify Self-governing
Systems

An autonomic manager is a software agent, which must be developed by apply-
ing technologies and best practices from computer science, applications domains
and other fields. Due to the complexity of describing a high level goal and its
refinement into low level objectives, we argue that an agile (adaptive) develop-
ment framework, as opposite to a plan-driven (predictive) framework, is the most
appropriate methodology for designing, deploying and testing self-governing sys-
tems. The Agile methodology is quite simple to understand: Instead of creating
extensive models before writing source code, you start by developing and testing
agile models with a concise and a precise kernel.

Another approach for defining IT system specification is the OMG Model
Driven Architecture (MDA). The aim of MDA is not to replace the existing
system with something completely different; the objective is to make that system
more efficient by incrementally automating the parts of it that can easily be
automated, so it will accelerate the integration of new technologies and automate
their integration into the existing solution.

Many would argue that principles of Agile Modeling and OMG Model Driven
Architecture are disjointed (not compatible), but we see the two methodologies
as complementary: First, to accelerate the (agile) development, the behavior of
a system must be derived from the specification. It is only this way that we will
ensure that the business goals (desired behavior) meet the implementation (effec-
tive behavior). Second, as software architectures grow in size and complexity, the
need to subsequently incorporate software models into the system development
automation stream grows even faster.

76 E. Lehtihet et al.

In the white paper comparing the OMG-MDA and the TMForum Next Gen-
eration Operation Support System (NGOSS) [2], the authors argue that: “While
following an approach similar to MDA, NGOSS has chosen to focus on build-
ing a framework for identifying and specifying well-defined business and system
views on a modeled OSS/BSS solution”. NGOSS principles and standards will
be discussed more in detail in section 4 and 5. Note that our work extends the
work of NGOSS.

The OMG Unified Modeling Language (UML) is the software industry’s dom-
inant modeling language. The current standard is UML 2.0., a major rewrite on
the previous 1.5 version. This 1.5 version, used by the NGOSS Shared Infor-
mation and Data model (SID), will continue to be the official current version
until all four components of UML2 (Infrastructure, Superstructure, Diagram
Interchange and Object Constraint Language) are completed and ratified.

In section 8.2 of the OMG Ontology Definition Metamodel (ODM) specifi-
cation [3], it is mentioned that: “The lack of reliable set semantics and model
theory for UML prevents the use of automated reasoners on UML models. Such
a capability is important to applying Model Driven Architecture to systems inte-
gration ... UML lacks a formal model theoretic semantics, OCL also has neither
a formal model theory nor a formal proof theory, and thus cannot be used for
automated reasoning (today)”.

The same arguments can be used against the OMG Meta Object Facility
(MOF), and since every modeling language used in MDA “must be” described
in terms of the MOF language, the OMG Vision is missing a formal, explicit
specification of concepts and relationships for its modeling languages (UML2,
MOF, OCL and QVT). Thus, any information model that “only” relies on UML
would not fulfill the requirements of a decidable knowledge base and will prevent
the use of automated reasoning.

Reasoning on a precise and computer-processable semantic is the ultimate
objective of the Semantic Web vision. The essential principles, standards and
technologies are discussed in the following section.

1.2 Semantic Web Technologies

While trying to ensure the long term growth of the web, the World Wide Web
Consortium (W3C) issued the Web Ontology Language (OWL) — a markup
language for publishing and sharing data using ontologies on the Internet. On-
tologies are agreements about shared conceptualization [4], and hence a basis
for information exchange by putting documents with machine-readable meaning
(semantics) on the Web. OWL permits varying degrees of reasoning depending
on the expressivity of the Description Logic subset that is used. Description Log-
ics, sometimes called terminological systems or concept languages, are a family
of knowledge representation languages which can be used to represent the ter-
minological knowledge of an application domain in a structured and formally
well-understood way [5].

OWLDL is based on the description logic category known as SHOIN (D). Its
subset OWL Lite is based on the less expressive logic category SHIF (D). OWL

Ontology-Based Knowledge Representation for Self-governing Systems 77

Full is the most expressive level but, because of that, can lead to infinite loops —
not recommended for automated reasoning. The Semantic Web Rule Language
(SWRL) extends the set of OWL axioms in order to include conditional rules
(Horn clauses).

As noted by Ushold and Menzel in [4], the strength of the W3C standard
for representing ontologies, in addition to its soundness and unique implementa-
tion, is the ability to express logical equivalence and other relationships between
concepts, properties and individuals in different ontologies. One main weakness
is the lack of support for procedural functions (e.g. arithmetic, string manipu-
lation/comparison) that are, in our opinion too, essential for mapping between
real-world ontologies.

The following section will give a summary of existing approaches for represent-
ing knowledge for Autonomic systems. In section 3, we describe the methodology
that we have used to create a precise modeling language for information mod-
els. Then, we will demonstrate how our solution can be applied to the TMF
NGOSS set of principles. Finally, we will discuss the results of our experiments
and describe the future orientation of our research.

2 Related Works

As stated in [6], Information models alone are not enough to capture the seman-
tic and behavior of managed network entities. The ideal solution is to use an
ontology language to precisely formalize a domain problem. In this section, we
will give a short overview on existing approaches and their use of information
modeling.

2.1 Autonomic Network Management

In 2004, IBM issued a toolkit that includes components, tools and scenarios for
designing and deploying Self-managing systems. In [7], the importance of on-
tologies in the design and the implementation of autonomic computing systems
is described: without an explicit meaning, the resolution of a problem is not pos-
sible. As shown in Figure 1, IBM uses the DMTF Common Information Model
(CIM) as a reference model to infer properties about distributed systems. The
system behavior is expressed using the Simplified Policy Language (SPL). Com-
mon Base Event (CBE) is the IBM standard for exchanging messages between
autonomic management engines (implementation of the autonomic-manager).
The CBE model provides a basis for sounder problem determination and is a
cornerstone of automatic computing system management. This profusion of for-
mats creates a semantic gap between the specification of the system and its
behavior; since they are not expressed in the same language and do not share
the same semantic, how can they be integrated in a unique knowledge base?
Furthermore, as noted in [6], the DMTF, IETF and ITU do not produce UML
compliant models, and thus cannot reuse off-the-shelf UML tools to represent
their concepts.

78 E. Lehtihet et al.

Fig. 1. IBM Autonomic Computing Vision

As shown in Figure 2, the advantage of using UML notations is to capture the
specification of the system and its behavior. We believe that the implementation of
Self-governing systems will rely on a specification of Executable Models [8] — with
a formal model theoretic and a precise semantic, necessary to implement a reliable
model compiler (Reasoner). This model compiler will allow automated reasoning
and help in discovering hidden inconsistencies in the system specification.

Guerrero et al., in [9], proposed the utilization of OWL+SWRL for the defini-
tion of the management behavior. SWRL would replace the conventional policy
language while the CIM-to-OWL mapping will enable system properties to be
inferred. However, we think that this approach has two important limitations:

1. The fundamental difference between Object Oriented (OO) models and On-
tologies is the representation of semantics: Ontologies use a declarative ap-
proach (Constraints, Axioms and Rules), but OO models only represent
imperative semantics (operations). Therefore, it is not possible to map OO
models into OWL without loosing semantics (e.g., for the CIM, as used in
the IBM toolkit, semantics attached to the CIM Methods and Qualifiers are
lost).

2. The DMTF uses their own proprietary Managed Object Format (DMTF-
MOF), which is not compatible with the OMG-MOF. Hence, CIM Models
will not produce valid UML models and, as discussed in section 1.1, it will
not be possible to reuse any software development methodology (e.g., Agile
or MDA) for the design, deployment and testing of a self-governing system.

In [10], López de Vergara proposed to refine and extend the CIM Metaschema by
using the Object Constraint Language (OCL); however, this necessary formal-
ization was not incorporated into the DMTF specification. Recently, the DMTF
realized the advantage of aligning its model with the OMG standards. This key
work will enable the use of off-the-shelf UML tools for CIM development. How-
ever, the first draft will not be available before the 3rd quarter of 2006 [11].
Until then, we will not consider any CIM-based approach as a possible solution
for representing knowledge for self-governing systems.

Ontology-Based Knowledge Representation for Self-governing Systems 79

Fig. 2. Systems specification using UML

2.2 Ontologies, Information Models and Constraint/Rule
Languages

Ontologies and Information models (Object Oriented Languages) have very simi-
lar approaches for the declaration of static structures, namely classes (concepts),
class hierarchies (using inheritance), attributes, relationships, and instances [12].
However, an ontology only describes concepts and their inter-relationships; it
does not provide support for behavioral features (e.g., operations, parameters,
and state machines). Therefore, trying to represent a UML-based information
model in OWL will lead to major inconsistencies and loss of valuable semantics.

As previously noted, SWRL extends OWL with Horn-like Clauses. SWRL
provides formal semantics and thus allows computation, unlike the OMG-OCL
which does not provide a formal proof theory (see section 1.1). We are working
on a mechanism to map existing OCL Expressions into SWRL axioms, but this
is beyond the scope of this paper and hence, will be developed in future work.

An advantage of using an ontology, in addition to the computation guarantee,
is the uniqueness of the representation, since the implementation of the W3C
specification guarantees interoperability between different ontology tools and
repositories. On the other hand, for all OMG specifications, the informal defini-
tion of the concrete syntax is not given in the semantics document, but in the
notation guide. There is no mapping between the concrete syntax and the ab-
stract syntax. This lead to an implementation problem: there is no way to check
that the output of a tool conforms to the language specification (UML, MOF,
OCL or QVT). This is because the OMG only produces the specifications —
documents that precisely describe what something should do, and how it should
act. The implementations of the specifications (UML Modeling tools, Transfor-
mation Engine, Model Compiler/Checker) are not, and will never be, produced
by the OMG [13]. Thus, the lack of constraints in the specification of the lan-
guage (metamodel) and the heterogeneous implementations create informal (not
precise) models.

We investigated the work of Cranefield [14] and Knublauch [12], who spec-
ified a mapping from UML models to RDF and OWL, respectively. However,

80 E. Lehtihet et al.

these approaches are not appropriate for capturing the semantics attached to
behavioral diagrams, as well as some semantic aspects of the class diagrams.

3 Ontology Based Metamodel for UML2, MOF, OCL
and QVT

Our approach is to represent the UML, MOF, OCL and QVT metamodels into
OWL models. Therefore, any UML model can be checked against the precise
specification of its metamodel and thus, all the concepts from our system model
(structure and behavior) will be instantiated in a unique format that will surely
comply to the OMG specification previously captured by an ontology.

In this way, we have built a knowledge base using an expressive and unique
language (OWL) with well defined semantics (Description Logic) and practica-
ble inference algorithms (DL Reasoners) for reasoning on a system specification
(UML structural and behavioral models).

Fig. 3. Ontology-based knowledge specification of reactive systems

3.1 Transformation Principles

We have implemented transformations from the main OMG specifications (MOF,
UML2, OCL and QVT) to W3C-OWL. UML2, MOF1.4 and MOF-QVT are
available in Rational Rose format on the OMG website. UML and MOF reuse
the InfrastructureLibrary; MOF and OCL are decomposed into two main pack-
ages: Essential and Complete, while QVT extends EssentialMOF and Essen-
tialOCL. However, we were not able to find any reference to CompleteOCL. As
a result, every OMG sublanguage is a distinct package that has dependencies
(import/merge) with other packages.

In Figure 4, we show an example of dependencies between UML top level
packages and the UML subset that the SID Business View employs. In this
paper, we outlined the transformation rules and detail the implemented parser
for the XMI output of the Rational Rose Unisys Add-In. Every package was
transformed into a separate OWL ontology (file).

For UML2, we generated 82 ontologies that import each others depending on
their dependencies (import/merge) and the inter-references between elements in

Ontology-Based Knowledge Representation for Self-governing Systems 81

Fig. 4. UML2 top level packages and the SID Business View Subset

separate packages. Every class, owned by a package, has a unique name and thus
map to an owl:Class. For the range of the attributes (String, Boolean, Integer
and UnlimitedNatural), we did not want to use the predefined xsd datatypes
(used by Protégé), the reason is that they are not supported by the current
version of reasoners — this limitation should be addressed in the next version
of OWL. Therefore, all the data types were represented as an owl:Class; the
attributes were all mapped to owl:ObjectPropertywith the following pattern :
<ClassName>.<AttributeName>. The same mechanism was used for the Associ-
ationEnds, where the role name of every navigable association end was mapped
to an object property of the source class. We treated the cardinalities of the
object properties, respectively lower and upper, as follow:

- [1..1] ⇒ FunctionalProperty;
- [0..n] ⇒ Default Cardinality;
- [x..n] ⇒ minCardinality(x);
- [0..x] ⇒ maxCardinality(x);
- [x..x] where x�=1 ⇒ cardinality(x);
- [x..y] where x>0 ∧ x�=y ∧ y�=n ⇒ minCardinality(x) ∧ maxCardinality(y).

The Enumeration Classes (AggregationKind, VisibilityKind, etc.) were map-
ped to an owl:Class. Their possible values, previously represented as attributes,
were mapped to OWL instances of the owning class and explicitly made disjoint.
Example: UML VisibilityKind enumerated attributes {package protected private
public} were made disjoint by applying an owl:allDifferents construct.

We created our specific URI to identify the ontologies, which is also their on-
line repository. The results of the transformations can be found at : http://www.
tssg.org/public/ontologies/org/spec/year/PackageName.owl; where:

- UML2 : BaseUri + omg/uml/2004/UML2-Super-MDL-041007.owl
- QVT : BaseUri + omg/qvt/2005/QVT.owl
- MOF : BaseUri + omg/mof/2004/MOF.owl

82 E. Lehtihet et al.

The ontologies (which import their dependent ontologies), canbe loaded inProtégé.
When performing the Classification Hierarchy, the Reasoners will remove the un-
necessary superclasses. For example, Transition and RedefinableElement are sub-
classes of NamedElement ; and Transition is also a subclass of RedefinableElement.
Therefore, the inheritance between Transition and NamedElement is superficial
and thus can be removed without altering the consistency of the model — This
should be considered as an optimization of the language.

3.2 Limitation of the Transformation

As noted in section 2.2, ontologies do not support behavioral features; thus the
operations (and parameters) present in the UML2 metamodel were mapped into
annotation properties (rdfs:Comment) of the owning class. UML2 encloses 107
private operations. All the operations specify an OCL expression as Text — not
XML constructs. The automated mapping of OCL to SWRL is not supported
by our tool as yet, a solution to this will be proposed in our future work.

OWL does not apply the Unique Name Assumption (UNA) by default: ev-
ery concept is not, by default, necessarily distinct from the others. In our case,
this implies that all the constructs of the OMG metamodel are not necessarily
distinct. This in turn implies that an Association is not by default different
from a Class. To precisely describe the metamodel, we implemented an auto-
matic generation of disjointment between classes in the same package; however,
we had to abandon this solution because it created too many inconsistencies
related to multiple inheritances. Example: an AssociationClass is a Class
and an Association at the same time, so if a Class is semantically disjoint
from an Association, it implies that an AssociationClass is disjoint with it-
self. However, this can be solved in the instantiation of the model by explicitly
creating an owl:allDifferents construct between instances or specifying an
owl:disjointWith between subclasses.

There is another issue with the cardinality restrictions. Because ontologies
use the Open World Assumption (OWA) for reasoning, it means that what is
given to the reasoner is not necessarily complete. The reasoner will only gen-
erate an error when there are more than the allowed owl:maxCardinality (or
owl:cardinality) instances associated with an object property. However, if
there are fewer instances than the owl:minCardinality restriction then the
reasoner will assume that it could be defined elsewhere and therefore infer that
the ontology is consistent. The solution is to implement a pre-compiler to check
the cardinalities and corresponding instances before using the reasoner to check
to overall consistency of the model.

Another limitation concerns Package naming. There are only two cases where
the name of the Package is duplicated in the specification. An algorithm can
look for such conflicts and change the name of the package (sub-ontology); we
used the convention <owningNamespace>.<PackageName>. Example:
InfrastructureLibrary.Profiles and UML.Profiles.

Ontology-Based Knowledge Representation for Self-governing Systems 83

4 Mapping the TMF NGOSS SID to OWL

Once the UML2 ontology was defined, we could check the consistency of any
UML2 model (structure and behavior) against the precise specification of the
language. In this section we will describe how we applied a mapping from the
SID (UML Model) to an Ontology, without loosing the semantics of the modeling
language (behavioral features).

As noted in section 1.1, the SID uses UML version 1.5. After a review of
the UML specifications, we noticed that the main differences between the two
versions concern the behavioral aspect of the language. For the object structure,
with the exception of the NestedClassifier pattern that is not used in the actual
version of the SID Business View, there is no difference between UML 1.5 and 2.0.
Therefore, the UML subset used by the SID is fully compatible with the UML2
ontology since it does not use any behavioral diagram. The transformation rules
are described in the following paragraphs.

The SID is the “lingua franca” for all TMF work. It defines a common set
of concepts, in the form of an object-oriented information model, that all other
TMF programs can use. The mapping from the SID to OWL, having a UML2
ontology, is quite straightforward. Every language construct used by the model:
Class, Association, Property, Operation, Attribute, Stereotype, DataType, Asso-
ciationClass, Dependency, etc. has a direct equivalence in the ontology model.
The interrelation between entities, ownedAttributes, ownedOperations, owned-
Parameters, stereotypes, datatypes, etc. is inherently present and constrained
(cardinalities, domain and range) in the imported UML2 sub-ontologies: Kernel,
AssociationClasses, Dependencies and PrimitivesType.

There are two different ways of representing a UML model: by instantiat-
ing the element of the model from their specification in the ontology (i.e.,
represent the model as a set of individuals), or by subclassing every element
of the model and expressively constraining the values of its object properties
(owl:allValuesFrom). The choice will not make any semantic difference for the
reasoner. However, we preferred the second approach, as it offers a better visu-
alization with the Protégé editor.

If the approach for representing the model is to subclass and constrain the
corresponding language constructs, then all the owl:Class elements in a sub-
ontology must be disjointed. But, if the representation mechanism is to create an
instance of the model, then all the individuals must be distinguished by adding
an owl:allDifferents axiom.

The mapping principles are also quite simple; every SID package will be rep-
resented in a separate file and imports the required UML2 sub-ontologies, in
addition to the other SID packages referenced by its elements (datatype, con-
strainedElement, etc.). Every sub-ontology extend the imported Kernel:Package
to create an owl:Class with the name of the package as an ID. The same mech-
anism is applied to every language construct. The algorithm for naming the
sub-ontologies is similar to the one described in section 3.1.

One minor limitation is the representation of the AssociationEnd and Con-
straint. We implied that every element in the model must be properly named,

84 E. Lehtihet et al.

because it is more readable than the xmi:id that distinctively identify the el-
ements. However, it is not the case with all the SID elements, so we had to
manually update the model.

5 Discussion and Future Work

Our approach can be used for any UML2-based model, and the UML2 ontology
could be refined/extended to capture additional artifacts not present in the ac-
tual specification. Two important aspects of the NGOSS Methdology that can
benefit from our solution are the NGOSS Contracts and the NGOSS Metamodel
specifications.

NGOSS Contracts extend the Design by Contract paradigm to ensure that
all information that is exchanged between components is done so in a consistent
way. All NGOSS Contracts have a view-specific portion (NGOSS contains views
that are used to represent the needs of different constituencies, such as business
analysts vs. programmers and architects). The view specific model part contains
various types of models (UML and others) tailored to support the specific view
of the contract, i.e. Business, System, Implementation and Deployment views.
All these views need to be integrated in order to provide a coherent mapping
between NGOSS views: reasoning on Contracts models. Therefore, our solution
could be fully reused to represent the model part of the Contracts expressed at
different level; the Reasoning mechanism would allow their automatic validation.

The NGOSS Metamodel (TMF053D) extends the UML metamodel in order
to introduce specific concepts, building blocks and artifacts that are required to
represent telecom needs. Thus, TMF053D is a necessary reference document to
support the creation of NGOSS-based models of software system solutions. These
models will capture specific aspect of the telecom world and will need to be stored
in a unique and precise knowledge base. Now, for the same reason described in
section 2.2, a solution based on the extension of the UML2 Ontology with the
NGOSS artifacts will ensure the different NGOSS stakeholders that the semantic
of their systems will be fully captured in the model and they will have a unique,
open repository for all their views of the system based on the “homogeneously”
implemented W3C OWL specification.

6 Conclusion

Autonomic systems require knowledge from different sources to be represented
in a common way. While conflicting attribute and datatype definitions present
problems, semantic dissonance is a far more difficult problem to solve — one that
requires an extensible, common representation of knowledge that does not lose
its associated semantics. This paper has introduced an ontology-based knowledge
representation to solve this problem. We have used the algorithms described in
this paper to construct an OWL representation of the TMF NGOSS SID, which
we are using in other autonomic computing works. The OWL mapping provides
a machine-readable representation of the SID managed entities and concepts

Ontology-Based Knowledge Representation for Self-governing Systems 85

— this enables semantics to be properly captured and associated with model
elements.

Future work will include mapping OCL into SWRL axioms and building a
reasoner that can use the OWL SID mapping (which includes NGOSS Contracts)
to build a reliable reasoner for contract-based interactions and workflows. These
two work items will then be used to continue our research in semantics for
autonomic computing.

Acknowledgement

This research has been funded by SFI “Autonomic Management of Communi-
cations Networks and Services” PI Cluster Award: 04/IN3/I404C.

References

1. International Telecommunication Union (ITU-T): Specification and Description
Language (SDL), Recommendation Z.100, August 2002.

2. Strassner J., Fleck J., Huang J., Faurer C., Richardson T.: TMF White Paper on
NGOSS and MDA, TMForum, April 2004.

3. Object Management Group (OMG): Ontology Definition Metamodel, Fourth Re-
vised Submission, November 2005.

4. Ushold M., Menzel C.: Achieving Semantic Interoperability & Integration Using
RDF and OWL, W3C Draft, January 2006.

5. F. Baader, D. Calvanese, D. L. McGuiness, D. Nardi, P. F. Patel-Schneider: The
Description Logic Handbook: Theory, Implementation, Applications. Cambridge
University Press, Cambridge, UK, 2003

6. Strassner J., Agoulmine N., Lehtihet E.: FOCALE A Novel Autonomic Networking
Architecture, in Latin American Autonomic Computing Symposium (LAACS),
July 18-19, 2006, Campo Grande, MS, Brazil.

7. Stojanovic L., Schneider J., Maedche A., Libischer S., Studer R., Lumpp Th.,
Abecker A., Breiter G., Dinger J.: The role of ontologies in autonomic computing,
Published in IBM Systems Journal, Volume 43, Issue 3, 2004.

8. Mellor S. J., Balcer M. J.: Executable UML: A Foundation for Model Driven Ar-
chitecture, Addison-Wesley Longman Publishing Co., Inc., 2002.

9. Guerrero A., Villagrá V. A, López de Vergara J. E, Berrocal J.: Ontology-Based
Integration of Management Behaviour and Information Definitions Using SWRL
and OWL. DSOM 2005, October 24-26, 2005, Barcelona, Spain: pp 12–23.

10. López de Vergara J. E, Villagrá V. A, Berrocal J.: On the formalization of the Com-
mon Information Model metaschema. DSOM 2005, October 24-26, 2005, Barcelona,
Spain, pp 24-26.

11. DMTF Newsletter : can be found at http://www.dmtf.org/newsroom/newsletter/
2006/05/page4, May 2006.

12. Knublauch H. : An Agile Development Methodology for Knowledge-Based Sys-
tems Including a Java Framework for Knowledge Modeling and Appropriate Tool
Support, Dissertationsschrift (PhD thesis), University of Ulm (2002)

13. Object Management Group - Specifications and Process, can be found at
http://www.omg.org/gettingstarted/specsandprods.htm#SpecProd, May 2006.

14. Cranefield S. : Networked Knowledge Representation and Exchange using UML
and RDF, Journal of Digital Information, Volume 1 Issue 8 Article No. 44, 2001.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 86 – 97, 2006.
© IFIP International Federation for Information Processing 2006

An Ontology-Based Approach to the Description and
Execution of Composite Network Management Processes

for Network Monitoring

José María Fuentes, Jorge E. López de Vergara, and Pablo Castells

Departamento de Ingeniería Informática, Escuela Politécnica Superior,
Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain

{Chema.Fuentes, Jorge.Lopez_Vergara, Pablo.Castells}@uam.es

Abstract. Web service technology has been proposed to implement manage-
ment interfaces of managed resources. These web services can usually be com-
bined to perform composite processes. These composite processes can be
defined with service ontologies such as OWL-S, which allows their formal de-
scription. However, other technologies, including the Web Services Business
Process Execution Language (WSBPEL), provide more mature execution en-
gines. This paper presents an approach to define and execute composite net-
work management processes with existing technology. For this, a use case is
developed in which a set of web service interfaces are defined for a network
probe, and a composite process is specified using OWL-S to monitor the net-
work load. Then, this specification is later translated to WSBPEL and inter-
preted by a real execution engine.

Keywords: OWL-S, WSBPEL, Composite Process, Network Management,
Network Monitoring.

1 Introduction

Integrated management frameworks have traditionally provided a way to use homo-
geneous procedures to access managed resources. However, the evolution of the
networks and the services deployed on them have implied the necessity of new man-
agement mechanisms [1]. Currently, new technologies compete in the network
management arena, where web services and ontologies can be used respectively for
the exchange of management information and the definition of management informa-
tion itself. Web services provide a maximum decoupling among components and
abstraction of the inner complexities with well defined interfaces. Ontologies provide
a way to formally describe the management information, avoiding misinterpretations.

Web service composition is another technology with application in network man-
agement. A set of web services can be called in a sequence to accomplish the tasks of
a management application. The composition of web services can be defined formally
by using service ontologies such as OWL-S that describe by a set of processes how
and when to invoke these web services. However, current semantic web service tools
are not mature enough to interpret such process descriptions. Then, in the meantime,

 Description and Execution of Composite Network Management Processes 87

another approach is needed to execute such descriptions in a similar manner, albeit
less expressive than a proper ontology-based representation. For instance, Web Ser-
vices Business Process Execution Language (WSBPEL) definitions can be used in-
stead, as there exist process engines that can interpret this language.

This paper presents an approach to define and execute composite network man-
agement processes based on semantic web service technologies. For this purpose, web
services and the semantic web technologies are introduced in next section. Then, the
representation of composite processes with the OWL-S service ontology is presented,
showing a case study for network monitoring. Later on, an approach is proposed to
cope with the lack of a semantic web service execution environment by redefining the
process with WSBPEL, tackling the translation issues. Finally, some conclusions are
given.

2 Web Services and the Semantic Web

This section briefly describes the technologies that support this proposal to execute
composite network management processes. For this a short introduction to web ser-
vices is given, followed by a review of ontology-based technologies and an analysis
of the confluence of both areas, in the scope of the so-called semantic web services.

2.1 Web Services in Network Management

A web service, as described in [2], is a software system designed to support the inter-
operable machine-to-machine interaction through a communication network. To
achieve this goal, web services describe their functionality with the Web Service
Description Language (WSDL) and they interact with each other by exchanging
SOAP messages serialized in XML and sent over a transport protocol, usually HTTP.

The benefits of introducing a web service layer to encapsulate basic functionalities
that are useful for network management have already been studied in several works
[3, 4, 5], which analyze both service granularity and performance aspects. The last
one of these papers points out a fundamental aspect in our study: the benefits of ob-
taining a common and interoperable interface to access a set of basic functionalities
for network management, which can be used to build further, more complex
processes.

2.2 Semantic Web and Ontologies in Network Management

The semantic web area [6] comprises a set of technologies to change current web
from a network of contents and services interpreted and used by humans to a network
in which such contents and services can be exploited by software agents. Among
these technologies it is especially relevant in this work the use of ontologies.

An ontology is defined in [7] as “a formal specification of a shared conceptualiza-
tion”. In practical terms, an ontology is a hierarchy of concepts with attributes and
relations that defines a terminology to define in consensus semantic networks of inter-
related information units. An ontology provides a vocabulary of classes and relations
to describe a domain, stressing knowledge sharing and knowledge representation.

88 J.M. Fuentes, J.E. López de Vergara, and P. Castells

The use of ontologies to represent information related to the network management
scope has been addressed to a significant extent in recent research [8, 9, 10, 11, 12,
13]. In the work presented here, the line started in [8] is extended by using a common
representation ontology to formalize a set of specifications for network traffic moni-
toring. In this way, those definitions can be used to obtain a uniform access to a set of
basic functions, common to different network management protocols, which will be
used as a base to define a set of composite management processes based on these
definitions.

2.3 Semantic Web Services in Network Management

Semantic web services are a particularly thriving area within semantic web technolo-
gies. Their objective is to provide a set of functionalities that can be understood by
software systems to exploit (discovery, composition, invocation) these functionalities
in an automatic or semi-automatic manner.

In this way, a set of ontologies have been defined that allows the description of
these functionalities to achieve this goal. Among these proposals, the most relevant
are OWL-S (OWL Services), WSMO (Web Service Modeling Ontology), and SWSO
(Semantic Web Services Ontology) [14]. Although all of them share a similar seman-
tics (they describe in the same terms of inputs, outputs, preconditions and effects the
information about a functionality), the tools and methods provided by each represen-
tation are not so similar. In this paper OWL-S is used to represent the set of basic
functionalities to be later exploited to obtain composite processes based on these
functionalities, resuming the work described in [15]. For this, OWL-S process de-
scription is used, as detailed later. Other work [16] also proposes OWL-S for the
description of network management processes. Using these OWL-S descriptions, for
example, a generic management application could manage resources based on Web
Services, even if it does not know a priori how to do it, which can be very useful in
autonomic environments.

Up to this point, semantic descriptions have been introduced, but not how to im-
plement described functionalities. A common practice is to ground the semantic de-
scriptions on web services. Thus, a grounding between the semantic description and
the WSDL description of the web service is set up, so that when a semantic web ser-
vice is used, a traditional web service is finally invoked.

3 Composite Processes Representation

Starting from the perspective described in the previous section, the objective of this
work is to illustrate a set of techniques to allow the description of web services related
to network management. For this, a set of composite processes relevant for network
management is specified. OWL-S is used for the process description, as it is presented
in next subsection.

3.1 OWL-S Process Representation

OWL-S [17] allows the representation of a service as a set of interactions with other
services. To represent this interaction, the ServiceModel class and its subclass Process

 Description and Execution of Composite Network Management Processes 89

have been defined. They are based on existing techniques for workflow and process
modeling to describe a service as a process. In this context, two kinds of processes
can be distinguished: atomic processes and composite processes.

An atomic process receives an input message and returns an output message. Thus,
this type of processes can be executed directly. To make it possible, each At-
omicProcess class has a Grounding information associated to it, allowing a client to
build and interpret the messages interchanged with the service.

A composite process is expressed as a composition of other processes (atomic or
composite). This composition can be expressed by the following control structures:
sequence, split, split and join, any-order, choice, if-then-else, iterate, repeat-while,
and repeat-until. Other specific characteristic of these processes is the data flow.
Whereas in an atomic process inputs are generated by a client and outputs are gener-
ated by the process, in a composite process, inputs can come from a client or another
process, and outputs can be generated by different processes. OWL-S provides con-
structs to manage the control structures as well as the information flow in composite
processes.

Both atomic and composite processes can have two purposes:

1. Change the environment, represented as preconditions and effects.
2. Process data (transform a certain input into a concrete output), represented as proc-

ess inputs and outputs.

In OWL-S, preconditions and effects are represented as logic formulas. OWL-S
does not define a default language to represent such logic formulas. However, it rec-
ommends and provides some facilities to work with the Semantic Web Rule Lan-
guage (SWRL) [18], and gives a mechanism to represent those formulas in other
languages. Service inputs and outputs have to be typed with a class of the related
domain ontology.

With these tools, it is possible to achieve the objective of creating a complex and
interoperable description, based on less complex services, to represent a composite
process, which is useful in the network management scope.

3.2 Case Study: Network Monitoring

To illustrate the concepts described above, a detailed case study is provided. In this
case, a network traffic monitoring process has been defined to analyze the network
load. This process creates a report about network traffic for those interfaces of a probe
that have a load with a value higher than a given threshold. For this, it is necessary to
define the following set of elements:

• A domain ontology developed in OWL that represents the network traffic man-
agement domain. For this purpose, we have used the work in [9], whereby RMON-
MIB (RFC 2819) is translated into OWL as a set of classes and properties.

• A set of web services that encapsulate the functionality provided by the RMON-
MIB. One service has been generated automatically for each object group of the
MIB, defining configuration functions needed to create, modify and delete moni-
toring tasks, and information retrieval functions needed to obtain the results of

90 J.M. Fuentes, J.E. López de Vergara, and P. Castells

the monitoring tasks. The semantics of the defined tables has been extracted to
distinguish between a configuration table, that includes read-create objects and an
EntryStatus (or RowStatus) column, and a results table, which includes read-only
objects. Fig 1 shows an example of the operations generated for the tables hostCon-
trolTable and hostTable, in pseudo-code, of the RMON-MIB host object group.

• Finally, these web services are used as a grounding for a set of OWL-S descrip-
tions. These descriptions represent the services, and relate them with the concepts
contained in the domain ontology defined before. Also, SWRL rules are defined, as
described in [11], in order to establish how the represented service interacts with
the real world.

hostControlIndex createHostControlEntry(
 hostControlDataSource, hostControlOwner)
void removeHostControlEntry(hostControlIndex)
void modifyHostControlDataSource(
 hostControlIndex, hostControlDataSource)
void modifyHostControlOwner(
 hostControlIndex, hostControlOwner)
HostControlEntry[] getAllHostControlEntry()
HostControlEntry getHostControlEntryByHostControlIndex(
 hostControlIndex)
HostControlEntry[] getHostControlEntryByHostControlOwner(
 hostControlOwner)
HostEntry[] getAllHostEntry()
HostEntry[] getHostEntryByHostIndex(hostIndex)
HostEntry[] getHostEntryByHostAddress(hostAddress)

Fig. 1. Operations generated for the RMON-MIB host object group

Then, the monitoring process can be described by using these elements. Fig. 2
shows the modeled process. This process takes the following steps:

SWS InvocationPrecondition

Effect Execution flow

Monitoring iteration for each interface

List
available
interfaces

Start
etherstats
monitoring

Not monitoring

Low network load

Monitoring

Stop host
traffic

monitoring

High network load

Monitoring

Obtain host
traffic report

Obtain
etherstats

report

Monitoring

High network load

Not monitoring

Start host
traffic

monitoring

Send host
traffic report

SWS InvocationPrecondition

Effect Execution flow

Monitoring iteration for each interface

List
available
interfaces

List
available
interfaces

Start
etherstats
monitoring

Not monitoring

Low network load

Monitoring

Stop host
traffic

monitoring
Not monitoring

Low network load

Monitoring

Stop host
traffic

monitoring

High network load

Monitoring

Obtain host
traffic report

High network load

Monitoring

Obtain host
traffic report

Obtain
etherstats

report

Monitoring

High network load

Not monitoring

Start host
traffic

monitoring
Monitoring

High network load

Not monitoring

Start host
traffic

monitoring

Send host
traffic report
Send host

traffic report

Fig. 2. Conceptual representation of the traffic-monitoring OWL-S process

 Description and Execution of Composite Network Management Processes 91

1. Call the service operation “List available interfaces”, based on IF-MIB (RFC 2863)
ifEntry. This service takes a void input, and offers an output with information
about all available interfaces in the network probe.

2. Call the service operation “Start etherstats monitoring”, based on RMON-MIB
etherStatsEntry. This service takes as an input the interface list to monitor, and
starts the monitoring task, obtaining Ethernet statistics for each interface.

3. For each interface:
a. Call the service operation “Obtain etherstats report”, based also on RMON-MIB

etherStatsEntry.
b. If the preconditions “high network load” and “not monitoring” are met, call the

service “Start host traffic monitoring”, based on RMON-MIB hostControlEntry.
This service starts the monitoring of each host in a concrete interface of the
probe. If it is correctly invoked, call the service operation “Obtain host traffic
report”, described below.

c. If the “high network load” and “monitoring” preconditions are met, call the ser-
vice operation “Obtain host traffic report”, based on RMON-MIB hostEntry.
This service obtains the report of traffic by host in a concrete interface of the
probe. If it is correctly invoked, call the service operation “Send host traffic re-
port”, in charge of sending reports to a network manager.

d. If the “low network load” and “monitoring” preconditions are met, call the ser-
vice operation “Stop host traffic monitoring”. This service stops the monitoring
of hosts in a concrete interface of the probe.

4 Implementation Approach: Use of WSBPEL

Although the formal approach has been introduced, it is necessary to make an extra
effort when working with semantic web technologies, because current tools are still
under development. Then, first of all, a revision of currently available OWL-S tools
has been done. Among them, only Mindswap’s OWL-S API1 and CMU OWL-S VM2
provide some support to execute semantic web services from an OWL-S description,
although with important limitations. Neither the if-then-else and repeat-while control
structures, nor conditional outputs and effects are supported by the OWL-S API,
unless custom extensions are introduced. The CMU OWL-S VM is not sufficiently
documented to assess the level of support provided by this tool for the execution of
complex semantic web service descriptions. Other tools also exist, as stated in [15],
but they are just devoted to the edition of OWL-S instances.

Due to these limitations, and given that the defined semantic web services are
grounded on a conventional web services, other existing technologies for web service
composition have been studied. In this way, if the semantic web services are grounded
on a traditional web service, process descriptions can also be grounded on traditional
web service composition technologies. In this scope, there are three main approaches:
WSBPEL (Web Services Business Process Execution Language), WSCI (Web Ser-
vices Choreography Interface), and BPML (Business Process Modeling Language).

1 http://www.mindswap.org/2004/owl-s/api/
2 http://projects.semwebcentral.org/projects/owl-s-vm/

92 J.M. Fuentes, J.E. López de Vergara, and P. Castells

However, only WSBPEL currently provides a sufficient mature set of tools, including
graphical process editors, execution engines, deployed process managers, process
debuggers, etc. Moreover, being an OASIS standard, WSBPEL is highly accepted,
and has the support of a large community of users.

4.1 WSBPEL Process Representation

WSBPEL [19] defines a model and a grammar to describe the behavior of a business
process based on the interactions among the process and its partners. This interaction
is achieved by means of web services. Moreover, WSBPEL allows defining how the
partners and the process are coordinated to achieve a goal, as well as the state of the
interaction and the logic needed to make this coordination possible. Finally, WSBPEL
provides a mechanism to describe the way in which some activities have to be com-
pensated or undone if any error occurs in the business process. Then, WSBPEL pro-
vides a language to generate process descriptions, independent of the platform, and
supporting the definition of all the fundamental aspects of processes.

As it can be observed, a WSBPEL process implementation externally consists of a
web service, which defines a set of operations to let other systems interact with the
process. Internally, however, a WSBPEL process consists of a complex business
process description, which includes variables, partners, error handling and business
flow definition.

The variables section is composed of the variable descriptions used by the process,
providing its definition in terms of WSDL messages, XSD (XML Schema Data type)
types or XML Schema elements. These variables are useful to maintain data and in-
formation related to the process status, based on the exchanged messages at a certain
time. To access these variables, XPath expressions can be used.

The partners or partnerLinks section describes the behaviour of each web service
that interacts with the process. Each partner is defined by a type and a role. This in-
formation represents the functionality that a partner has to provide so that the process
performs correctly.

The error handling section allows the definition of the actions to be done when an
error occurs during the execution of a business process.

The definition of a business flow allows the description of the set of activities to be
done in order to achieve the goals defined for the business process. For this purpose,
WSBPEL offers a wide set of primitives to deal with data, message reception and
transmission, service invocation, conditional expressions and other control structures.

Finally, WSBPEL can be considered a sufficiently expressive language to be used
for the execution of the composite processes described in OWL-S. Nevertheless, there
are some aspects that WSBPEL cannot cover. The next subsection studies the viabil-
ity of using WSBPEL to support the execution of OWL-S definitions.

4.2 OWL-S Process Grounding on a WSBPEL Description

The grounding of an OWL-S process on a WSBPEL description is relatively easy to
do. WSBPEL offers control structures that are similar to OWL-S structures. At the
same time, other functionalities (data flow, variable declaration) are also similar in
both descriptions. However, there are some issues to be taken into account: service,

 Description and Execution of Composite Network Management Processes 93

data and logic expression descriptions. Then, this subsection analyzes those points in
which both technologies differ, which instruments can be used to solve these differ-
ences, or what functionality is lost if WSBPEL is used instead of OWL-S. The inverse
approach (i.e. a translation from WSBPEL to OWL-S) can be found in [20].

The first aspect to deal with is related to the types used when defining process data.
In OWL-S, data are typed by an OWL class or a basic XSD type. However, in both
WSDL and WSBPEL descriptions, data are represented by a basic XSD type or a type
described with XML Schema. Thus, a translation from an OWL class instance to an
XML Schema element is needed. For this kind of translation, document transforma-
tion languages such as XSLT (eXtensible Stylesheet Language Transformation) are
commonly used. Nevertheless, this process is usually not trivial, because in OWL and
other ontology languages based on description logics, classes can be defined as a set
of restrictions, and the form of an instance is not easily known. It is worth mentioning
that this problem is not common in network management ontologies, because most
ontologies are derived from existing MIB or CIM schema specifications, based on
objects and properties. Another consideration is about the unique identification of an
instance with a URI, which is lost when transforming it to an XML Schema data type.
Once again, this problem is not common in network management ontologies, in which
functional properties are usually used to identify a concrete instance of a class.

The next aspect is related to logic expressions and their use in both OWL-S and
WSBPEL. Logic expressions in OWL-S are mainly used to define conditions in con-
trol structures, preconditions and effects. As stated before, WSBPEL allows the use of
control structures, but it does not have preconditions and effects when calling a part-
ner. Then, OWL-S preconditions and effects have to be extracted from each service
call, and included in the process flow to achieve a functional correspondence in the
WSBPEL process. This extraction cannot be easily automated, so it has to be done by
hand. Another relevant issue is the expressiveness of the logic expression languages
used in OWL-S and WSBPEL. WSBPEL does not provide such a language, using
XPath instead. XPath [21] is a language to manipulate XML with a set of added func-
tions, such as arithmetic comparisons (<, >, =) and simple Boolean expressions (and,
or, not). On the other hand, OWL-S proposes the use of SWRL to define logic expres-
sions, which joint with the OWL descriptions provides a higher expressiveness than
XPath. Given that current WSBPEL engines do not support SWRL, the logic expres-
sions contained in the OWL-S descriptions have to be limited so that they can be
translated to XPath. Then, this translation cannot be done automatically.

Finally, the description of partners has to be analyzed. As commented before,
WSBPEL allows the definition of roles for those partners involved in the process.
This definition is done based on the set of operations that a partner provides. Semantic
Web techniques aim at allowing partner descriptions to be presented in terms of what
is going to be obtained instead of describing a communication interface. Given this
fact, and keeping in mind that the objective of this work is to obtain a practical result,
this kind of partner descriptions have to be avoided. Instead, just operations, inputs
and outputs, along with the appropriate XML Schema mappings, should be defined.

94 J.M. Fuentes, J.E. López de Vergara, and P. Castells

4.3 Application to the Case Study: Network Monitoring Process in WSBPEL

Once the WSBPEL process representation and its relationship with OWL-S have been
described, this subsection explains the adaptation to WSBPEL of the case study pre-
sented in subsection 3.2, where an OWL-S specification was defined for a network
monitoring process.

First of all, it is necessary to bind all data. For this purpose, a transformation is per-
formed from the OWL class instances, defined as service inputs and outputs, to the
XML Schema data types of the web services, which encapsulate the RMON function-
ality. There are several ways of doing this binding, among which XSLT transforma-
tions are our proposed approach in this work.

Next, it is necessary to model the OWL-S composite process in WSBPEL. As men-
tioned before, this translation is complex and cannot be done automatically, so it has to
be done manually, taking advantage of the available editing tools. In our work, the Ac-
tiveBPEL Designer3 editor has been used. The translation process has been as follows:

1. Include in the specification all the web service calls needed to complete the process.
During this step, it is necessary to define the partner profiles for the process. That is,
the set of methods that any network probe has to implement. Given that semantic
web services are used, this definition can be done in terms of objectives (precondi-
tions and effects) instead of inputs and outputs. However, due to the problem men-
tioned above, this description has to include the required operations, as well as their
inputs and outputs, in order to obtain an executable WSBPEL process.

2. Define the flow and control structures needed to execute the process. In this step,
the control structures used in the OWL-S description are translated to WSBPEL
structures. This process also requires the translation of the logic expressions used
in the OWL-S specification to those of the WSBPEL description. This is only pos-
sible if the expressivity of OWL-S expressions is limited to fit in the accepted
WSBPEL expressions.

3. Extract the logic introduced in the preconditions and effects of the OWL-S descrip-
tion, and integrate it in the WSBPEL process definition. This step has to be done
again manually for each precondition and effect.

One important aspect to translate the OWL-S description to WSBPEL is the role
that performs the reasoner when processing OWL-S descriptions. In OWL-S proc-
esses, the definition of memory structures does not exist, because it is the reasoner
who takes care of it. However, when describing a WSBPEL process, it is necessary to
specify all the data structures to be used. Then, it is possible that during translation,
some auxiliary variables have to be declared, and the management of these variables
(access, init values, etc.) needs to be specified. If all these facts are taken into account,
the result is a WSBPEL process that can be loaded into a BPEL engine and run as
shown in Fig. 3.

In this work, ActiveBPEL Engine4 has been used to run the WSBPEL process. The
result of this development is a WSBPEL process definition that implements the func-
tionality contained in the OWL-S process description. This WSBPEL definition

3 http://www.active-endpoints.com/freebpel/
4 http://www.activebpel.org/

 Description and Execution of Composite Network Management Processes 95

presents a WSDL service interface that can be used as a grounding for the OWL-S
Service description. Thus, this WSBPEL process definition is completely interoper-
able, so it can be deployed in any WSBPEL engine. The location of the component
services implied in the WSBPEL process description can be modified using a WS-
Address. In Fig. 4, the process deployed in the ActiveBPEL Engine is shown.

Monitoring iteration for each interface

WS Invocation

Execution flow

List
available
interfaces

Flow Operation

If low
load

If high
load

No
monitoring

Obtain
etherstats

report

Calculate
load

If
monitoring

If no
monitoring

Start host
traffic

monitoring
Monitoring

If
monitoring

Stop host
traffic

monitoring

Obtain
host traffic

report

Send host
traffic
report

Start ether
stats

monitoring

Monitoring iteration for each interface

WS Invocation

Execution flow

List
available
interfaces

List
available
interfaces

Flow Operation

If low
load

If high
load

No
monitoring

Obtain
etherstats

report

Calculate
load

If
monitoring

If no
monitoring

Start host
traffic

monitoring
Monitoring

If
monitoring

Stop host
traffic

monitoring

Obtain
host traffic

report

Send host
traffic
report

Start ether
stats

monitoring

Start ether
stats

monitoring

Fig. 3. Conceptual representation of the traffic monitoring WSBPEL process

Fig. 4. Load-based Network Management process deployed in the ActiveBPEL Engine

96 J.M. Fuentes, J.E. López de Vergara, and P. Castells

5 Conclusions

Web service technology allows the definition of network management interfaces to be
deployed on the network resources. These services are usually combined to perform a
management task, but WSDL specifications only provide the information related to
each interface. To address this problem, service ontologies, such as OWL-S, are use-
ful to define the relation among different web services in a management process. This
definition can be interpreted by a manager, which calls the services following a se-
quence with control structures. The advantage of this approach is the shift of the ap-
plication development workload to a process definition, aided by graphical editors
which directly generate that definition from a flow diagram. This paper has presented
a case study in which OWL-S has been used to describe the composite process to
monitor the traffic load of a network.

Due to the necessity of using an execution engine to interpret such definitions, this
work has also studied how to translate an OWL-S definition to WSBPEL. Thus, until
future OWL-S engines make this task unnecessary, the defined composite process has
been translated to WSBPEL and loaded into an execution engine, performing the
network monitoring previously described. Using currently available WSBPEL en-
gines has several benefits, including the use of BAM (Business Activity Monitoring)
technologies [22] to monitor and assess the correctness and quality of the deployed
processes. When OWL-S engines are available and related technologies like BAM
can work with such engines, a future task shall be to load the defined semantic proc-
ess and check if they perform as foreseen.

Given this approach, one may think that WSBPEL can be used directly in most of
cases to combine web services for a management application. However, WSBPEL is
somehow limited, as web services must comply with a set of defined inputs and out-
puts. On the other hand, the semantics of OWL-S enable the future definition of auto-
nomic systems that can interpret the semantics of the processes to achieve their goals.
Future process execution engines will either use OWL-S Process descriptions or
should improve current WSBPEL, importing some of OWL-S semantics key points
identified in this work.

In our envisioned future work we shall also study the application of these tech-
nologies to other management functional areas, following the FCAPS (Fault, Con-
figuration, Accounting, Performance and Security) model, to assess the feasibility of
such management architecture.

References

1. J. Schönwälder, A. Pras, J.P. Martin-Flatin: On the Future of Internet Management
Technologies. IEEE Communications Magazine, Vol. 41, Issue 10 (2003) 90-97.

2. H. Haas, A. Brown: Web Services Glossary. W3C Working Group Note (11 February
2004)

3. G. Pavlou, P. Flegkas, S. Gouveris, A. Liotta: On Management Technologies and the
Potential of Web Services. IEEE Communications Magazine, Vol. 42 Issue 7 (2004) 58-66.

4. A. Pras, T. Drevers, R. van de Meent, D. Cuartel: Comparing the Performance of SNMP
and Web Services-Based Management. eTransactions on Network and Service Manage-
ment, Vol. 1, No. 2 (2004) 72-82.

 Description and Execution of Composite Network Management Processes 97

5. T. Fioreze, L.Z. Granville, M.J. Almeida, L. Tarouco: Comparing Web Services with
SNMP in a Management by Delegation Environment. In. Proc. 9th IFIP/IEEE Intl. Symp.
on Integrated Network Management (IM 2005), Nice, France, (May 2005) 601-614.

6. T. Berners-Lee, J. Hendler, O. Lassila: The Semantic Web. Scientific American, Vol. 284,
No. 5 (2001) 34–43

7. T. R. Gruber: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, Vol. 5, No. 2 (1993) 199-220.

8. J.E. López de Vergara, V.A. Villagrá, J.I. Asensio, J. Berrocal: Ontologies: Giving
Semantics to Network Management Models. IEEE Network, Vol. 17, Issue 3, (2003) 15-21.

9. J.E. López de Vergara, V.A. Villagrá, J. Berrocal: Applying the Web Ontology Language
to management information definitions. IEEE Communications Magazine, Vol. 42, Issue 7
(2004) 68-74.

10. S. Quirolgico, P. Assis, A. Westerinen, M. Baskey, E. Stokes: Toward a Formal Common
Information Model Ontology. WISE’2004, Lecture Notes in Computer Science, Volume
3307, Springer Verlag (2004) 11-21.

11. A. Guerrero, V.A. Villagrá, J.E. López de Vergara, J. Berrocal: Ontology-based integration
of management behaviour and information definitions using SWRL and OWL. DSOM’2005,
Lecture Notes in Computer Science, Vol. 3775, Springer Verlag (2005) 12-23.

12. A.K.Y. Wong, P. Ray, N. Parameswaran, J. Strassner: Ontology Mapping for the
Interoperability Problem in Network Management. IEEE Journal on Selected Areas in
Communications, Vol. 23, Issue 10 (2005) 2058-2068.

13. J. Keeney, D. Lewis, D. O’Sullivan, A. Roelens, A. Boran, R. Richardson: Runtime
Semantic Interoperability for Gathering Ontology-based Network Context. In Proc. 10th
IFIP/IEEE Network Operations and Management Symposium (NOMS’2006), Vancouver,
Canada (April 2006)

14. M. Burstein, C. Bussler, T. Finin, M.N. Huhns, M. Paolucci, A.P. Sheth, S. Williams, M.
Zaremba: A semantic Web services architecture. IEEE Internet Computing, Vol. 9, Issue 5
(2005) 72-81.

15. J.E. López de Vergara, V. A. Villagrá, J. Berrocal: Application of OWL-S to define
management interfaces based on Web Services. MMNS’2005, Lecture Notes in Computer
Science, Vol. 3754, Springer Verlag (2005) 242-253.

16. J. Keeney, K. Carey, D. Lewis, D. O'Sullivan, V. Wade: Ontology-based Semantics for
Composable Autonomic Elements. In Proc. Workshop on AI in Autonomic
Communications at the 19th International Joint Conference on Artificial Intelligence
(IJCAI), Edinburgh, Scotland. (July 2005)

17. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, K. Sycara: OWL-S: Semantic
Markup for Web Services. W3C Member Submission (November 2004)

18. I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission
(May 2004)

19. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C.K. Liu, V. Mehta, S.
Thatte, P. Yendluri, A. Yiu, A. Alves: Web Services Business Process Execution
Language Version 2.0. OASIS Consortium Committee Draft (December 2005)

20. D. J. Mandell, S. A. McIlraith: Adapting BPEL4WS for the Semantic Web: The Bottom-
Up Approach to Web Service Interoperation. ISWC’2003, Lecture Notes in Computer
Science, Vol. 2870, Springer Verlag (2003) 227-241.

21. J. Clark, S. DeRose, eds.: XML Path Language (XPath) Version 1.0. W3C Recommen-
dation (November 1999)

22. Alan Joch: Containing Business Processes. Oracle Magazine (March/April 2005)

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 98 – 111, 2006.
© IFIP International Federation for Information Processing 2006

Towards a Managed Extensible Control Plane for
Knowledge-Based Networking

David Lewis, John Keeney, Declan O’Sullivan, and Song Guo

Knowledge & Data Engineering Group (KDEG)
Centre for Telecommunications Value Chain Research (CTVR)

Department of Computer Science,
Trinity College Dublin,

Dublin, Ireland
{Dave.Lewis, John.Keeney, Declan.OSullivan, gsong}@cs.tcd.ie

Abstract. This paper proposes an open, extensible control plane for a global
event service, based on semantically rich messages. This is based on the novel
application of control plane separation and semantic-based matching to
Content-Based Networks. Here we evaluate the performance issues involved in
attempting to perform ontology-based reasoning for content-based routing. This
provides us with the motivation to explore peer-clustering techniques to achieve
efficient aggregation of semantic queries. The clustering of super-peers using
decentralized policy engineering will deliver the incremental deployment of
new peer-clustering strategies.

1 Introduction

As networks, distributed computing and pervasive computing converge, an increasing
trend can be observed for making elements in a network more autonomous, be it an IP
router, a wireless terminal, an application server or a sensor. This involves delegating
more decision making capability to the elements and providing them information on
their changing operational context, which can be used in making that decision. For
example, much effort goes into the means for distributing information between
elements when designing routing algorithms for ad hoc networks. From an operations
perspective there is a need for such complex networks to become increasingly self-
managed, or autonomic. Autonomic systems use knowledge of their operational state
and operational context to self-manage, i.e. to self-configure, self-heal, self-optimize
and self-protect, by monitoring state and context, planning and adapting. Though the
need to self-manage was initially recognized as a challenge in dramatically reducing
the operating costs of complex computing systems, increasingly complex networking
systems comprising the Internet and telecommunications networks are also seen as
needing to self-manage. Clark et al identified the central role of a knowledge-driven
approach to support advanced AI techniques for monitoring and analyzing network
conditions in order to drive the planning of optimization, protection or corrective
strategies [clark].

 Towards a Managed Extensible Control Plane for Knowledge-Based Networking 99

The major challenges faced in distributing knowledge in converging networks are:

• Heterogeneity of contextual information: convergence means elements
increasingly need to gather contextual information from peer elements of
dissimilar types;

• Rapid evolution of applications: resulting in uncertainty about the type of
contextual information that an element will need to gather in the future;

• Volatile peer set: with wireless and mobile communications playing an increasing
role in integration, a given element will need to gather contextual information
from a frequently changing set of peers.

This requires an autonomic knowledge delivery service that can inherently scale to
the size of the network it supports. Equally, the recent interest in applying autonomic
principles to communications networks has emphasized the need for access to
network operational knowledge in an ontological form [mulvenna][stevenson].

In this paper we examine a common, scalable solution for gathering distributed
context information that can be used by arbitrary peers in a future converged network. To
address the volatility of peer sets we adopt the Publish-Subscribe (Pub-Sub) paradigm
[meier] for the gathering of context information. The elements requiring contextual
information express an interest through a subscription which is matched to messages
published by other elements holding that type of information as it changes. Pub-Sub
systems are already used for loosely coupled communication in a variety of applications.
However, existing Pub-Sub systems require agreements on message types between the
developers of publishing and subscribing applications. This places severe restrictions on
the heterogeneity and dynamism of the information elements that can be exchanged. One
solution to this is a Pub-Sub system that filters events based on matching client
subscriptions to message attributes rather than the full message type, a technique known
as content based networking. Content-Based Networks (CBN) thus facilitate still looser
coupling between producer and consumer applications than Pub-Sub. Several CBN
solutions and prototypes exist, e.g. [carzaniga01][segall][pietzuch][chand][strom].
However, widespread CBN deployments have been slow to emerge. This is partly due to
the difficulty in reaching a general compromise between the expressiveness of event
types and subscription filters and the need both to match these efficiently at CBN nodes
and to efficiently maintain forwarding tables by aggregating new subscriptions with any
existing ones that cover a superset of matching messages [carzeniga99]. As a result
current CBNs only support a very limited range of data types and operators for use in
matching consumer subscriptions to message attributes, typically: Strings, Integers,
Booleans and associated equality, greater then, less than, and regular expression matches
on strings. This falls well short of supporting the heterogeneity and flexibility that
elements in a converged network require to gather operational context. Selecting a more
expressive language involves a difficult trade-off, since higher level features, e.g. set
functions, introduce more complexity into a CBN node, and may only be of use to a
subset of applications. We must aim therefore to have a CBN message and subscription
language that can be expanded incrementally and autonomously to meet the
requirements of emerging application domains without placing unnecessary
overheads on the network as a whole.

100 D. Lewis et al.

Increasingly, researchers are turning to the use of ontology-based semantics to
address this issue. The standardization of ontology languages by the Semantic Web
initiative at the World Wide Web Consortium (W3C) [berners-lees] has spurred an
increasing number of researchers to use ontology-based semantics to support
interoperability in evolving systems [wang][masuoka][belecheanu]. However, these
solutions have either been centralized or based on middleware scaled only to
enterprise networks.

Therefore, we assert that the target for CBN expressiveness should be the subject-
predicate-object structure of ontological knowledge representations, standardized as
the W3C’s Resource Description Framework (RDF) [rdf]. Thereby, subscription
queries can contain arbitrary logic based on any binary predicate defined for message
attributes. A CBN based on such triple-structure messages and corresponding RDF
queries is far more flexible, open and reusable to new applications. We call such a
semantic-based CBN a Knowledge-Based Network (KBN). Previous work by authors
detail a number of prototype systems that have been implemented to partially achieve
this [lynch05][lynch06][keeney05][keeney06].

The scalability of a KBN to Internet proportions requires a routing control plane
that minimizes both the size of routing state held in KBN nodes and the overhead of
ontological reasoning in nodes. At the same time this control pane must itself auto-
configure in response to topology changes, exhibit robustness to network failures and
maximize reachability. The scalability of the routing control plane in the Internet
relies, through the use of the Border Gateway Protocol [rekhter], on the natural
administrative partitioning of the Internet into Internet Service Provider (ISPs)
domains. However, in a KBN addressing schemes play only a small part in how the
knowledge is organised and partitioned in the network. The efficient partitioning of
routing space must be based on groupings related to the semantics of message
contents rather than grouping within the hierarchies of network addresses.

Cluster
membership

requests

Event messages

Event
advertisements

Subscriptions

Matching
events

Logically clustered
KBN network

Clustering / Routing policies

Clustering /
Routing decisions Knowledge

Producer

KBN routing
node

KBN clients

(Producers &
Consumers)

Control Plane

Knowledge
Consumer

Governing Policies

Fig. 1. A control plane for a Knowledge Based Network

 Towards a Managed Extensible Control Plane for Knowledge-Based Networking 101

Clearly, any software-based event forwarding algorithm will struggle to match the
hardware optimized performance of packet forwarding in IP routers. Basing the
forwarding algorithm on today’s ontological reasoners will incur a particularly heavy
computational load. However we do not seek to develop optimized reasoners for
KBNs. Instead we are exploring the extent to which intelligent clustering in KBN
routing algorithms that are cognizant of the performance profiles of existing reasoners
and of the semantics being exchanged by client applications, can off-set this relatively
poor forwarding algorithm performance.

In the remainder of this paper we propose an architecture for the KBN that
separates the routing protocol from the matching and forwarding aspects (Figure 1).
This split aims to minimize routing table size, as well as minimizing matching latency
due to ontological reasoning. The routing protocols will exploit the robust behaviour
and efficient look-up of peer-to-peer networks, and will use hierarchical clustering to
minimize the ontological load on individual routers. To correctly dimension such a
clustering scheme we must first understand the performance of existing reasoners. To
this end we present in section 5 performance measures of such reasoners for use in
KBN routers. We also discuss the impact this may have on the design of the routing
plane. In addition we discuss related work (section 3) and design issues (section 4).

2 Architectural Principles

To reach its potential in flexibly supporting heterogeneous autonomic systems at
Internet scales, the KBN must exhibit the following characteristics:

• Scalability in terms of latency and message throughput by minimizing the
reasoning overhead at each router while minimizing routing configuration
overhead.

• Robustness to the node and link failures that are inevitable at Internet scales.
• Self-configuration in response to the addition or removal of KBN nodes.
• Governance through policies, so that operational goals and constraints of

different administrative domains can be applied in terms of high level rules
to the relevant portions of the global KBN.

The use of RDF will support extensibility and applicability to new applications,
while allowing the system to be extensible and modular in its routing and self-
management functions by allowing co-existence of different routing and management
schemes based on different sets of application semantics with configurable reasoning
logic. It will support incremental deployment by different administrative domains,
initially edge-based overlays, and later in the ISP-operated network core.

We therefore place an emphasis on Internet engineering values, (i.e. incremental
deployment of new network features, support for application innovation, minimal
standardization of core network features) in addition to the measurable properties of
network scalability and performance. Overall, these issues represent a significant
departure from the mainstream of knowledge-based systems research that has rarely
extended beyond desktop applications and enterprise scope. Though the Semantic
Web enables knowledge exchange at a global scale, communication is via HTTP or
enterprise-scale middleware infrastructures, and are thereby insulated from the issues

102 D. Lewis et al.

of Internet scaling. By addressing asynchronous messaging over a highly
decentralized network we uniquely attempt to reconcile Internet engineering values
and knowledge engineering solutions, thereby exploiting the new efficiencies yielded
by clustering KBN nodes based on semantic concerns.

The significance of the approach taken is that it exploits the ontological knowledge
to construct efficient routing schemes through semantic clustering so that routing
table sizes can be minimized and the knowledge base at each router can be kept small
to minimize reasoning overhead. Clustering thereby both increases the scalability of
RDF-based routing and supports the deployment of routing schemes tailored to
specific application domains, thus allowing a wide range of strategies to co-exist in
rendezvousing events advertisements and subscriptions via the KBN control plane.

3 Related Work

There has been little examination of the use of ontology-based semantics in content-
based networking in the scientific literature. In [petrovic], an extension to the Toronto
Publish/Subscribe System (ToPSS) is described that proposes extending the
event/subscription matching function of this CBN to include class equivalence,
ontological sub-class and super-class relationships (i.e. subsumption) and semantic
mapping based relationships, which is equivalent the CBN extensions we have
implemented as described in [keeney06][lynch05][lynch06]. However, [petrovic]
does not address scalability issues of including ontology-based reasoning into the
CBN, and no proposal is made to integrate this with the P2P routing extension for
ToPSS. More significantly, however, no report of an implementation or evaluation of
this proposal has yet emerged. In [li] a semantic publish/subscribe system is
presented, but it is based on a centralized pub/sub bus implementation and thus is
limited to enterprise scale and does not offer true CBN capabilities.

Much work to date on content-based networks has focused on how efficiency in
routing can be gained through subscription aggregation and merging, where routes to
subscribing clients are multiplexed with ones with covering subscriptions, i.e. broader
subscriptions that will match all the event messages that would match the covered
subscription. Recent progress with the XNET CBN has shown that perfect routing can
be achieved in a scaleable manner independently of subscriber joins and leave rates
though subscription aggregation [chand]. XNET does not, however, address how
possible routes from KBN nodes to message producers are established. The default
approach is flooding, where a node requests all other nodes for relevant routes, but this
is not scaleable to large numbers of nodes [muhl]. This is addressed in the SIENA CBN
through the static set up of spanning trees [carzeniga03] from producers to all possible
consumers. However, these are then costly to recalculate in the event of configuration
change or failures, thus failing our requirements for robustness and self-configuration.

The HERMES CBN [pietzuch], ToPSS [muthasumy] and the REBECCA CBN
[tempstra] have all addressed these issues by applying peer to peer distributed hash
table (P2P DHT) mechanisms to the formation of routing tables in CBN nodes. P2P
DHTs such as CAN, CHORD and Pastry have well known properties of scalability,
robustness and self-organization. It should be noted that though P2P system are
concerned with efficiently routing queries to matching information sources, they do
not address the CBN concern of optimally routing a sequence of asynchronous replies

 Towards a Managed Extensible Control Plane for Knowledge-Based Networking 103

back to the set of querying, or in CBN terms, subscribing clients. P2P DHTs provide
efficient routing by using a cost metric keyed to the physical topology of the network
resulting in average hop-counts for a route in the order of the log of the number of
nodes in the network i.e. O(log(N)). It is the demonstrated strengths of DHT-based
routing protocols for CBNs that indicate the appropriateness of peer-to-peer Semantic
Overlay Networks as a routing mechanism that meets our requirements for an
Internet-scale KBN.

There are several attempts at applying P2P DHT techniques to the retrieval of
distributed ontology encoded knowledge information, e.g. in RDF, in semantic
overlay networks [tempich][cai][loser]. In supporting an ontology-driven DHT-based
P2P routing mechanism for the KBN, the approach outlined in [loser] seems most
promising due to its support for peer clustering. Used in this way, peer clustering
introduces a hierarchy of peer groups based on policies. Such policies can admit
nodes based on semantic closeness, recorded performance, administrative domains or
indeed reasoning capabilities. It therefore provides a mechanism for these different
routing configuration strategies to co-exist, serving different application domains or
user communities in a way that supports incremental deployment and innovation.

The engineering of policies for a potentially complicated network of overlapping
clusters, however, manifests as further technical policy engineering challenges.
However, we have developed a novel policy engineering platform which uses the
concept of communities as a resource and policy grouping abstraction [feeney]. This
avoids the need for centralized engineering required in role-based policy schemes,
and is therefore well suited to the decentralized evolution of policies by the
interconnected network of autonomous decision makers that would characterize the
operators of KBN clusters in a global setting. The core technical significance of this
architecture is in applying semantic clustering based on reasoned knowledge bases at
KBN routers through policy-driven super-peer hierarchies to KBN route management.

4 Design Issues

The fully decentralized approach of peer-to-peer systems results in highly scalable
systems that can operate on an Internet-scale, prompting the proposed use of P2P
techniques in the KBN control plane. By identifying the more significant concepts
used to determine where messages should be routed around the network, it is
envisioned that a set of determining keys can be used to semantically cluster peers. By
supporting such clustering of producers and consumers, message forwarding can be
largely restricted within clusters or between super peers, thereby improving scalability
and load balancing. Further, these semantic clusters will be based on application
semantics and usage, rather than static address hierarchies, so the management of
KBN routing domains will need to respond to the needs and activities of application
user communities as much as to ISP administrators, especially when operated as an
overlay. As such, application-based grouping semantics will be very heterogeneous
and so the control plane in which routing information is calculated and exchanged
must be inherently more flexible. It must support the operation of multiple routing
domains to reflect application heterogeneity while still supporting the sub-grouping
needed to enable efficient dissemination of routing information. In addition, as shown
in [carzaniga03], such use of determining keys in the node-level forwarding algorithm

104 D. Lewis et al.

of CBNs leads to substantial improvements in performance and scalability. Route
recalculation and dynamic clustering of peers will be a relatively expensive operation,
and will be effected by the amount of churn in the network as new nodes arrive and
depart or new subscriptions and advertisements are published. This will therefore be a
key performance indicator for the efficiency and scalability of the proposed scheme.
Well optimized routes within and between clusters will still be required to minimize
the number of hops required between producers and consumers.

The performance of the dynamic clustering and route determination algorithms will
be of importance in terms of the overhead in the network and its ability to stabilize
during and after churn. However a key overhead (see next section) is the loading of
new ontology classes into a KBN node’s reasoner, so the ability of the routing scheme
to limit this is a key metric to be observed during simulation. This can be evaluated in
terms of how the load of the network is balanced across clusters, but in a manner
where traffic can be largely contained within the clusters and short routing paths are
maintained between producers and consumers. The performance of the forwarding
algorithms will depend on the size and complexity of the routing information stored at
each node. This can be evaluated in terms of the average time taken to determine the
forwarding strategies for individual messages in terms of the semantics of their
content. It will be necessary to evaluate the degree to which new or cancelled
subscriptions are either covered by another subscription or cause churn within the
network, and contrast this with the heterogeneity of the semantics of the subscriptions
present in the network. To further compare performances of the KBN a benchmark is
presented in [keeney06b].

5 Initial Evaluation of Knowledge Model Reasoning

Recent exploratory experimentation by the authors has evaluated the integration of
ontological equivalence and subsumption into SIENA CBN event/subscription
matching [lynch05][lynch06][keeney06] yielding the following results. Firstly, the
loading of new ontologies into a reasoner embedded in a KBN node is
computationally expensive due to load-time inference, so the frequency of changes to
the ontological base of a given KBN node must be minimised since changes will need
to be distributed to each of the nodes in the network. Secondly, ontological reasoning
is memory intensive and memory usage is proportional to the number of concepts and
relationships loaded into the reasoner so reasoning latency can be controlled by
limiting this number in any given KBN node. However, once loaded and reasoned
over, the querying of such an ontological base is relatively efficient, with performance
relative to size of the ontological base. Based on these initial observations, that the
(re-)loading and (re-)reasoning of ontologies is expensive and that such operations
will greatly affect the scalability of the network, it was considered possible that such
axioms could form the basis of semantic clustering policies for partitioning the
routing mechanism, thereby localising the effect of such operations and minimising
the ontological base at each node and so improving routing performance.

In order to determine the extent to which ontology reasoner implementations
differed with respect to initial loading and subsequent querying times, it was decided
to undertake an experiment to compare OWL Description Logic (DL) implement-
tations. Three typical DL implementations are measured in our experiment: Racer

 Towards a Managed Extensible Control Plane for Knowledge-Based Networking 105

[haarslev], the Jena framework [jena], and Pellet [parsia]. Racer implements a highly
optimized tableau calculus for very expressive description logic and offers reasoning
service for multiple TBoxes and for multiple ABoxes. Pellet is an open-source Java
based OWL DL reasoner and supports the full expressivity of OWL DL including
reasoning about nominals (enumerated classes). Two Pellet structural reasoners were
tested: one is the “OWLReasoner” designed to provide an Jena-like interface to
applications using Jena to access ontologies by translating the results of common calls
to provide Jena data structures; the second “OWLAPIReasoner” reasoner is
designed to support applications using the OWL API framework [owlapi] to query
and manipulate ontologies. Both Pellet and Racer implement tableaux optimization
techniques to improve their description logic reasoning performance. Finally, the Jena
framework supports a number of different inbuilt reasoning modes, four of which are
discussed here: The first, the “OWL_MEM_RDFS_INT” reasoner, incorporated
directly into Jena, performs RDFS entailment reasoning. The second
“OWL_MEM_TRANS_INF” reasoner, also supplied with Jena, performs transitive
reasoning. The third reasoner configuration is where Pellet is plugged directly into
Jena to perform full OWL DL reasoning and is accessed directly from within Jena
like one of Jena’s own reasoners. The fourth mode “OWL_MEM”, is where Jena
undertakes no reasoning, and is included for comparison.

A thorough and fair comparison of all aspects of these implementations is difficult,
because they are implemented in different programming languages with the reasoning
algorithms varying considerably. However for our purposes this is not important,
rather we were interested in the performance of the implementations given a certain
expected pattern of usage. This pattern of usage for knowledge routing is where the
ontology is loaded and reasoned over initially at KBN start up time (which we call the
loadtime stage) and then the ontology would be subsequently queried on a repetitive
and ongoing basis (which we call the runtime stage) to facilitate the KBN routing.
Thus in the experiment, for a number of ontologies, loadtime performance is given as
the times taken for the different reasoners to load, parse and check the ontology,
combined with the time taken to perform TBox classification, perform ABox
realisation and an initial query of all concepts. The time taken to perform subsequent
queries for the set of concepts in those ontologies was measured as the runtime
performance of the reasoners.

For the purpose of investigating the impact of the complexity of ontologies upon
the reasoner implementations, five ontologies were chosen for test. These were
chosen in order to reflect a range of ontology complexity, from simple ontologies
with instances through to complex ontologies with no instances. First, a large but
relatively simple subset of DMTF’s CIM (Common Information Model) ontology
with 167 classes and 733 individuals was used in the test. This ontology contains the
set of CIM concepts required to manage printing devices. (A plug-in for the Protégé
editor from the Universidad Politécnica de Madrid (UPM) [lópezdevergara02] was
used for the conversion of the CIM object-oriented model of classes and properties to
an ontological model.) Secondly, we tested a more extensive ontology that represents
the entire DMTF CIM Core Model, with 1215 classes and 5734 individuals. This
ontology is very large by comparison to most ontologies, but relatively simple in
terms of content. Next, the wine ontology [wine] from the W3C community contains
a classification of wines, with only 138 classes of which 61 are imported from a food
ontology, and 206 individuals of which 45 are also imported. The nominals

106 D. Lewis et al.

(individuals in class expression) and advanced DL constructors (e.g. disjunctions and
equality) used in wine ontology makes it very complex to reason over, and is used as
the de-facto stress test for OWL DL tools. The fourth test data set is the Galen
ontology [galen]. It is a medical terminology ontology with a very large and complex
class and property model (2749 classes) but without instances. It has traditionally
been used as a benchmark for terminological reasoning. Finally, the Mindswap
ontology [mindswap] is a relatively small but detailed ontology containing the student
and staff details and listings of the Semantic Web Research Group in the University
of Maryland. It contains 49 classes, of which 37 are imported, and 122 individuals, of
which only 6 are imported.

All tests were performed on a desktop computer with Dual 3.2 GHz Intel Xeon
processors, 2GB of RAM, running Windows XP Service Pack 2. For Java-based
tools, Sun’s JDK 1.5.0 was used. All the timings presented in this section are
computed as the average of numerous independent timings.

Fig. 2. Loadtime performance of reasoners

Fig. 3. Runtime performance of reasoners

 Towards a Managed Extensible Control Plane for Knowledge-Based Networking 107

As can be seen from the loadtime performance (Figure 2) of the different
reasoners, all of the reasoners perform similarly with the small ontologies, with the
ones accessed through Jena performing a little worse than Racer and Pellet when
accessed directly. However for the large and complex ontologies the Jena based
reasoners perform substantially better than the others. When the operation of the other
Jena based reasoners is compared to the Jena configuration performing no reasoning it
is clear that much of the Jena loadtime overhead is independent of the level of
reasoning required. Of all of the reasoners, only Pellet, whether or not through Jena,
performed an adequate level of reasoning on the complex Wine ontology. For this
reason, of the reasoners tested, the Pellet reasoner configurations seems to perform
best, perhaps using its own Jena style interface or its OWL API interface for small
ontologies, but definitely embedded in Jena for large and complex ontologies.

From the runtime performance graph (Figure 3) it is clear that all of the reasoners
accessed using the Jena framework perform far superior to the others. This seems to
be achieved by the clever use of model caching for second and subsequent queries
within Jena. When compared to the other reasoner configurations, the use of Pellet
through the Jena framework would appear to be the best overall choice for runtime
performance. However, further investigation may be required to explain the counter-
intuitive poor performance of Jena’s own reasoners with the smaller ontologies.

In the event that an off-the-shelf generic reasoner is required, taken together, the
results point to the adoption of the Pellet reasoner accessed through the Jena
framework as the default reasoning configuration. However, in situations where very
good runtime performance is required, such as in network routing, and this
performance requirement outweighs the need for complete and correct reasoning, the
use of cut-down or application specific reasoners may prove beneficial. It is also
envisioned that in a large scale network different reasoners will be used by different
nodes in accordance with their role in the clustered network’s routing scheme.

6 Further Work and Conclusions

In this paper we propose an approach to managing the distribution of routing
information between clusters of peers using super-peer communication in order to
minimize the impact of ontology-based reasoning in the matching function of a
Knowledge Based Network router. We propose that the policies for managing such
clustering must therefore be based on the closeness of concepts in a web of ontologies
and the likelihood of semantic similarity between subscriptions and advertisement.
This work builds on experience gained in extending the basic SIENA CBN router
with RDF sub-class and super-class operators, described in detail in
[keeney06][lynch05][lynch06]. We do not aim to build a specialized RDF reasoner
for this purpose, but to select from the various ones available. Thus in this paper we
present the results from comparing several reasoners in order to both select an initial
candidate and to understand further the performance trade offs between the addition
of new concepts to a reasoners loaded knowledge-based and matching involving those
concepts. This latter understanding may be particularly important if semantic
clustering prompts certain nodes to specialize in certain groups of types and
predicates by integrating reasoners optimized for those semantics and resulting in

108 D. Lewis et al.

faster messages matching. This work will continue by evaluating further extensions to
the KBN router incorporating the selected Pellet reasoner, both through simulation
and through a limited testbed.

Future work will involve integrating an existing community based policy
management system [feeney] with the KBN control plane as the mechanism by which
clustering policies are defined and potential conflicts identified and resolved. Policy-
driven clustering enables the size of the super-peer network and the size and
granularity of peer clusters to reflect different application domains needs. This will
support overlapping clusters and hierarchies of clusters under separate administrative
control. Different policy combinations will be applied to the testbed implementation
of the KBN to verify stable behaviour, before those policies are included in the
simulated KBN to evaluate the scalability of the resulting clusters. For example,
the clustering policy may be specified in terms of accuracy and latency as well as the
semantic spread of the query-able knowledge-base, or in terms of queries across a
peer population and of the querying load across that population. Though the
practicalities and performance impact of policy enforcement will be verified in the
testbed, the validation of policy sets and the communication between super-peers in
different cluster will be assessed through simulation.

The scalability and flexibility of the KBN under high load of heterogeneity will be
evaluated using an OPNET based simulation, in order to test the message overhead
involved in P2P clustering and the effectiveness of semantic load sharing. The key
semantic distance measures used in clustering will be recorded for each node such that an
analysis of the entire network of nodes will be possible in order to evaluate the efficiency
of the KBN node clustering scheme that was simulated. A range of semantic distance
measures have been proposed, such as [rada][jiang] [sussna][kashyap], and initial
investigation will be required to determine the most suitable ones for use in different
sizes of clusters or in ontology profiles associated with application domain clustering.
The clustering schemes will be initially optimized to cope with a Zipf-like distribution of
ontological terms, given that recent analysis of the usage of ontological terms in semantic
web documents have shown Zipf-like distribution characteristics [swoogle].

Ultimately we aim to design and validate differing clustering policies that can be
used to tune and compliment semantic distance calculations. We will also assess the
impact of policies on the coexistence of different (simulated) reasoning capabilities in
KBN nodes. It is also planned to extend our work on incorporating semantic
interoperability in node matching functions [keeney05][lewis] and in inter-cluster
communications.

Further work will also focus on the use of further clustering policies. Such policies
can admit nodes based not only on semantic closeness, but also in terms of recorded
performance, availability of resources, trustability of nodes, reasoners used and
reasoning capabilities, or administrative domains. It therefore provides a mechanism
for these different routing configuration strategies to co-exist, serving different
application domains or user communities in a way that supports incremental
deployment and innovation. This use of clustering policies also supports innovation in
clustering strategies by allowing peers to introduce new policy elements and the
supporting super-peer matching capabilities.

 Towards a Managed Extensible Control Plane for Knowledge-Based Networking 109

Acknowledgements

This research was partly supported by Science Foundation Ireland under grant no.
03/CE3/I405, and by the Irish Higher Education Authority under the M-Zones
programme.

References

[belecheanu] Belecheanu, R., Jawaheer, G., Hoskins, A., McCann, J.A., Payne, T., “Semantic
web meetings autonomic ubicomp” in proc. of the Workshop on Semantic Web Technology
for Mobile and Ubiquitous Applications, Hiroshima, Japan, 2004

[berners-lee] Berners-Lee, T., Hendler, J., Lassila, O., “The Semantic Web”, Scientific
American, May 2001

[cai] Cai, M., Frank, M., “RDFPeers: A scalable distributed RDF repository based on a
structured peer-to-peer network”, in proc of WWW 2004, May 2004, New York, USA.

[carzaniga99] Carzaniga, A., Rosenblum, D., Wolf, A.L., “Challenges for Distributed Event
Services: Scaleability vs. Expressiveness” in proc of Engineering Distributed Objects (EDO
'99), ICSE 99 Workshop, Los Angeles CA. May, 1999.

[carzaniga01] Carzaniga, A., Rosenblum, D. S., and Wolf, A. L., “The Design and Evaluation
of a Wide-Area Event Notification Service”, ACM Transactions on Computer Systems, Vol.
19, Issue 3, August 2001

[carzaniga03] Carzaniga, A., Wolf, A. L., “Forwarding in a Content-Based Network” in proc
SIGCOMM’03, August 25-29 2003, Kaelsruhe, Germany, ACM Press

[chand] Chand, R., Felber, P.A., “A Scalable Protocol for Content-Based Routing in Overlay
Networks”, IEEE International Symposium on Network Computing and Applications, April
2003, Cambridge, MA

[clark] Clark, D., Partridge. C., Ramming, J.C., Wroclawski, J.T. “A Knowledge Plane for the
Internet”, in proc of SIGCOMM’03, 25-29 August 2003, Karlsruhe, Germany

[feeney] Feeney, K. Quinn, K. Lewis, D. O'Sullivan, D. Wade, V., “Relationship-Driven
Policy Engineering for Autonomic Organisations”, in proc 6th IEEE Int’l Workshop on
Policies for Distributed Systems, Stockholm, Sweden, 6-8 June 2005, pp 89-98

[galen] The Galen Ontology, http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/galen.owl
[haarslev] Haarslev, V., Moller, R. 2001. “RACER System Description”, In proc IJCAR 2001,

volume 2083 of LNAI, 701–706. Siena, Italy, Springer.
[jena] Carroll, J., Dickinson, I., Dollin, C., “Jena: Implementing the Semantic Web

Recommendations”, in proc of WWW 2004, New York. May 2004. http://jena.sourceforge.net/
[jiang] Jiang J. Conrath D., “Semantic Similarity based on corpus statistics and lexical

taxonomy”, in proc of Intl Conference on Research in Computational Linguistics, 1997.
[kashyap] Presentation, NIST Invitational Workshop on Semantic Distance, Gaithersburg, MD,

November 2003
[keeney05] Keeney, J., Lewis, D., O'Sullivan, D., Roelens, A., Boran, A., Richardson, R.,

"Runtime Semantic Interoperability for Gathering Ontology-based Network Context", in
proc of NOMS 2006, Vancouver, Canada. 3-7 April 2006

[keeney06] Keeney, J., Lynch, D., Lewis, D., O’Sullivan, D., "On the Role of Ontological
Semantics in Routing Contextual Knowledge in Highly Distributed Autonomic Systems",
Tech. Report (TCD-CS-2006-15), Dept of Computer Science, Trinity College Dublin. 2006.

[keeney06b] Keeney, J., Lewis, D., O'Sullivan, D., "Benchmarking Knowledge-based Context
Delivery Systems", in proc of ICAS 06, Silicon Valley, USA, July 19-21, 2006.

110 D. Lewis et al.

[lewis] Lewis, D., O'Sullivan, D., Power, R., Keeney, J., "Semantic Interoperability for an
Autonomic Knowledge Delivery Service", in proc of WAC 2005, Athens Greece, Oct 2005

[li] Li, H., Jiang, G., “Semantic Message Oriented Middleware for Publish/Subscribe
Networks”, in proc of SPIE, Volume 5403, pp 124-133, 2004

[loser] Loser, A., Naumann, F., Siberski, W., Nejdl, W., Thaden, U., “Semantic overlay clusters
within super-peer networks”, in proc Int’l Workshop on Databases, Information Systems
and Peer-to-Peer Computing in Conjunction with the VLDB 2003

[lópezdevergara02] López de Vergara, J.E., Villagrá, V.A., Berrocal, J, “Semantic Management:
advantages of using an ontology-based management information meta-model”, in proc of HP-
OVUA'2002, distributed videoconference, 11-13 June 2002

[lynch05] Lynch, D., “A Proactive approach to Semantically Oriented Service Discovery”,
MSc dissertation, Dept of Computer Science, Trinity College Dublin, 2005

[lynch06] Lynch, D., Keeney, J., Lewis, D., O'Sullivan, D., "A Proactive approach to
Semantically Oriented Service Discovery", in proc of IWI’06, at WWW’06, Scotland. 2006.

[masuoka] Masuoka, R., Labrou, Yannis, Parsia, B., Sirin, E., “Ontology-Enabled Pervasive
Computing Applications”, IEEE Intelligent Systems, Sep-Oct 2004, pp 68-72

[meier] Meier, R., Cahill, V., “Taxonomy of Distributed Event-Based Programming Systems“,
The Computer Journal, vol 48, no 5, pp 602-626, 2005

[mindswap] The Mindswappers Ontology, http://www.mindswap.org/2004/owl/mindswappers
[muhl] Muhl, G., Fiege, L., Gartner, F., Buchman, A., “Evaluating Advanced Routing

Alogorithms for Content-Based Publish/Subscribe Systems”, in proc of MASCOT 2002
[muthusamy] Muthusamy, V., Jacobsen, H.A., “Small–scale peer-to-peer publish/subscribe” in

proc Workshop on Peer-to-Peer Knowledge Management, San Diego, USA, July 2005
[mulvenna] Mulvenna, M., Zambonelli, F., “Knowledge Networks: the nervous system of an

autonomic communication infrastructure”, in proc of WAC 2005, Athens Greece, Oct 2005
[owlapi] Sean Bechhofer, Phillip Lord, Raphael Volz. Cooking the Semantic Web with the

OWL API. In proc of ISWC2003, Sanibel Island, Florida, October 2003.
[parsia] Parsia, B., Sirin, E. 2004., “Pellet: An OWL-DL Reasoner”, Poster at ISWC 2004,

Hiroshima, Japan, 2004.
[petrovic] Petrovic, M., Burceaa, I., Jacobsen, H.A. “S-ToPSS – a semantic publish/subscribe

system” in proc VLDB, Berlin, Germany, September 2003
[pietzuch] Pietzuch, P., Bacon, J., "Peer-to-Peer Overlay Broker Networks in an Event-Based

Middleware". in proc DEBS'03 at ACM SIGMOD/PODS Conference. California, June 2003
[rada] Rada R., Mili H., Bicknell E., Blettner M., “Development and application of a metric on

semantic nets”, IEEE Transactions on Systems, Man, and Cybernetics 19, pp 17-30, 1989.
[rdf] W3C (1999) World Wide Web Consortium, Resource Description Framework (RDF)

Model and Syntax Specification, W3C Recommendation, http://www.w3c.org/
[rekhter] Rekhter, Y., Li, T., (eds) “A Border Gateway Protocol 4 (BGP-4)”, IETF RFC 1771,

March 1995
[segall] Segall, B. et al, “Content-Based Routing in Elvin4”, In proc AUUG2K, Canberra 2000.
[stevenson] Stevenson, G., Nixon, P., Dobson, S, “Towards reliable wide-area infrastructure for

context-based self-management of communications”, in proc of WAC 2005, Athens, 2005
[strom] Strom et al., “Gryphon: An Information Flow Based Approach to Message Brokering“,

In Intl. Symp. on Software Reliability Engineering 1998
[sussna] Sussna M., “Word sense disambiguation for free-text indexing using a massive

semantic network”, proc of Conference on Information and Knowledge Management, 1993.
[swoogle] “Swoogle statistics: Figure 6. Cumulative Term/Namespace usage distribution”,

http://swoogle.umbc.edu/modules.php?name=Swoogle_Statistics&file=figure&figurename=
figure6

 Towards a Managed Extensible Control Plane for Knowledge-Based Networking 111

[tempich] Tempich, C., Staab, S., Wranik, A., “REMINDIN’: semantic query routing in peer-
to-peer networks based on social metaphors” WWW 2004, New York, USA, 2004.

[terpstra] Terpstra, W.W., Behnel, S., Fiege, L., Zeidler, A., Buchmann, A.P., “A peer-to-peer
approach to content-based publish/subscribe”, in proc of DEBS 2003, ACM Press 2003

[wang] wang, X., Dong, J.S., Chin, C.Y., Hettiarachchi, R., Zhang, Daqing, d., “Semantic
Space: An Infrastructure for Smart Spaces”, IEEE Pervasive Computing Magazine, Jul-Sep
2004, pp 32-39

[wine] W3C: The Wine Ontology, http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 112 – 123, 2006.
© IFIP International Federation for Information Processing 2006

Voice Quality on the Internet in 2005 as Measured by
www.TestYourVoIP.com

Mark Sylor, Nagarjuna Venna, and Harrison Ripps

Brix Networks, 285 Mill Rd, Chelmsford, MA, 01824
{msylor, nvenna, hripps}@brixnet.com

Abstract. How well can the Internet serve as a network carrying voice calls?
To answer that question, we have been running a web site called TestYourVoIP
where users can run tests of VoIP Quality from their PC. In this paper we
describe how TestYourVoIP operates, the kinds of tests it performs, and the
results we have found from those tests. Our findings indicate that while many
users will get acceptable call quality, too many will not. We offer some insights
as to the reasons for poor quality based on these real world experiences. Lastly,
we note that over 2005, voice quality on the Internet has gotten worse.

1 Introduction

All communications, including voice and video, are converging on IP networking
technology. IMS (IP Multimedia Subsystem) is but the latest trend towards converged
services. While private IP networks run by service providers and large enterprises will
be important carriers of converged services, the Internet will remain as the core
network to which everyone connects.

While the Internet is ubiquitous, it was designed to carry best-effort data services
such as email and the web. Many have long feared that the Internet was not suitable
for carrying real time services such as voice calls. That fear raises the question at the
heart of this work, “How well can the Internet serve as a network carrying voice
calls?” This question is critical for VoIP Service Providers who route calls over the
Internet as well as for network providers rolling out next generation services over IP
such as IPTV, Metro-Ethernet, and VoIP peering services. After all, some fraction of
the calls will traverse the Internet even in walled garden networks.

To answer the Internet Voice Quality question, we have been running a public web
site at http://www.TestYourVoIP.com where users have been testing Internet Voice
Quality since mid-2004. In that time users of TestYourVoIP have successfully run over
500,000 tests of Internet VoIP Quality. The software and hardware used in Test-
YourVoIP are based on a Brix Networks product called BrixCare, which is normally
used by VoIP service providers in their customer care departments to provide “self help”
testing.

This paper describes the results of tests done in 2005, and describes some
conclusions we have drawn from those tests.

 Voice Quality on the Internet in 2005 as Measured by www.TestYourVoIP.com 113

2 Test Description

TestYourVoIP tests voice quality on the public Internet using hardware and software
verifiers located worldwide. Each test run is performed between a software verifier
run by a user and one of 7 hardware verifiers located in various cities around the
world. Anyone with a web browser and access to the Internet can run a test. Users
simply connect their web browser to http://www.TestYourVoIP.com, select a few test
parameters and then run the test. The verifiers measure call signaling quality, media
quality, and network quality. When the test is completed, the results are displayed to
the user, and recorded in a database.

When a user runs a test the user’s browser downloads a web page that contains a
software verifier implemented as a Java Applet that runs in the user’s web browser.
The applet is signed by Brix Networks and the user must grant it the privilege to
communicate with the hardware verifier.

2.1 Call Signaling Testing

The applet verifier calls the hardware verifier, using SIP as shown in Fig 1. This
sequence simulates a call established directly between a calling party and a called party.

Calling
Applet

Called
Verifier

ACK

Upstream RTP 1
Upstream RTP 2

Downstream RTP 2

Downstream RTP n

 BYE

OK

S1

R1

S2

S3

R3

U1 R4

W1

V1

U2

Y1

Y2

W2

S5

Yn

R6

Wn

R5

S6

R2

S4

Invite

V2

180 Ringing

200 Answer

Downstream RTP 1

Fig. 1. SIP Call Messages

Fig. 2. Voice Latency

2.2 Voice Media Testing

Once the call has been set up, the verifiers exchange voice media traffic in RTP
streams over UDP/IP packets. The voice signal is encoded with either the G.711 or
the G.729 codec. The specific parameters used in the codecs are listed in Table 1. No
silence is inserted in the signal. The call is maintained for 15 seconds. At the end of
that time, each party disconnects the call; generally the applet verifier finishes first.

114 M. Sylor, N. Venna, and H. Ripps

Table 1. Codec Parameters

G.711 G.729
RTP packet sent every 20 milliseconds
160 Samples per RTP packet
64 Kbits/sec generated by the codec
80 Kbits/sec generated by IP
87.2 Kbits/sec over the Ethernet link

RTP packet sent every 20 milliseconds
2 10ms frames per RTP packet
8 Kbits/sec generated by the codec
24 Kbits/sec generated by IP
31.2 Kbits/sec over the Ethernet link

During the call, we count and measure the quality of the received RTP streams.
Numerous measurements are made on the RTP traffic; a few of the more important
metrics are listed and described in Table 2. Each measurement is made on both
streams. In the results that follow, we call the stream sent from the calling applet
verifier to the called hardware verifier the upstream media stream and the stream from
the called hardware verifier to the calling applet verifier the downstream media stream.

Table 2. RTP Media Stream Metrics

Metric Description
CMOS Conversational Quality Mean Opinion Score, an objective

measure of voice quality in a conversation.
LMOS Listening Quality Mean Opinion Score, an objective

measure of voice quality when the user is just listening.
Voice Latency The round trip time of a voice signal from caller to called

party and back.
Lost Packets The percentage of RTP packets not delivered by the

network.
Late Packet Discards

The percentage of RTP packets delivered, but too late for
them to be played out.

Out Of Order Packets The percentage of RTP packets delivered out of order.
Duplicate Packets The percentage of RTP packets received as duplicates of

packets already received.
Average Jitter A measure of variation in network delay in delivering

packets.

Of these metrics, the most important is the objective measurement of the Mean
Opinion Score (MOS) for voice quality. MOS takes into account multiple sources of
degradation in voice quality. MOS is determined using the methodology described in
the G.107 standard.

We also send RTCP packets between the verifiers. RTCP allows us to measure
voice round trip latency. The user applet verifier may fail to establish the SIP call
with the hardware verifier in some cases. One common cause is the presence of
devices on the network that block traffic going out on the standard UDP port used by
SIP (5060). If a test fails because of call setup problems, we run it again using an
alternate port. In general, media is sent and received on a randomly chosen even

 Voice Quality on the Internet in 2005 as Measured by www.TestYourVoIP.com 115

numbered port between 50000 and 51000. The RTCP stream is sent and received on
the next odd numbered port. The tests send the media streams as normal, best effort IP
traffic. No special QOS marking is done to the packets; neither in the Ethernet LAN
header nor in the IP packet header.

After the media test completes, the call is disconnected using SIP. Results are
reported back to the TestYourVoIP site by both verifiers, and the test results are
displayed to the end user.

2.3 MOS

MOS (Mean Opinion Score) is the most commonly used measure of Voice Quality.
What follows is a summary of the techniques used to derive MOS. For a more
complete and detailed explanation, see [1,2].

MOS scores are based on subjective tests of voice quality done by representative
telephony users in a lab environment. A group of users are asked to listen to a
recorded voice sample through the system under test and score the quality of the voice
call on a scale from 1 to 5 where 1 is Bad (or Unacceptable), 2 is Poor, 3 Fair, 4
Good, and 5 Excellent. The individual scores are averaged to derive the Mean
Opinion Score.

The user’s perception of voice quality depends on the task being performed.
Simply listening to a voice sample for understandability and legibility is less
demanding than attempting to hold a conversation over a network. Thus two types of
MOS scores have been developed, Listening MOS and Conversational MOS.

Subjective testing is difficult and expensive to operate. It also is limited to
laboratory test environments. So a number of objective techniques for measuring
voice quality have been developed over time. They all take measurements of voice
calls, either test calls, or observed calls, and compute an estimate of the MOS score
that would have been given to that call by users. The technique used in TestYourVoIP
is based on the E Model standardized in ITU G.107. The E Model is packet based, in
that it measures statistics such as packet loss and delay and uses those metrics to
estimate CMOS and LMOS in an objective fashion. The E Model is efficient to
measure and compute, thus making it a practical for large scale testing.

The E Model computes a value called the R Factor, a transmission quality rating,
based on the assumption that the causes of degradation are additive. The formula is

AIIIRR eds +−−−= 0 (1)

Where R0 is a base factor that depends on noise and loudness, Is represents signal
impairments, Id represents impairments that are delayed with respect to speech like
echo, Ie represents equipment impairments, and A represents an advantage factor, the
users willingness to tolerate poorer voice quality in exchange for convenience. These
impairments are derived from: the codec, audio signal loss due to lost packets, audio
signal loss due to late packet discards, and voice round trip latency (delay). For details
on how the impairment factors are computed, see [1].

The R Factor is then converted into a MOS score. The relationship between R
Factor, MOS, and user satisfaction is given in Table 3. In this paper, we use the
average of upstream and downstream CMOS scores as the CMOS score for each test.

116 M. Sylor, N. Venna, and H. Ripps

Too put this value into perspective, a MOS score of 4.4 is generally considered to
be toll grade quality. The maximum MOS that can be achieved with the G.711 codec
is 4.4. While there is no universal agreement on what constitutes acceptable call
quality for VoIP, we count tests that achieve an average CMOS score of 3.6 or better
as having acceptable call quality.

Table 3. R Factor to CMOS Conversion

R Factor CMOS User Opinion
Users scoring call Good or
Excellent

90 – 100 4.3 – 5.0 Very Satisfied 97%
80 – 90 4.0 – 4.3 Satisfied 90%
70 – 80 3.6 – 4.0 Some Users Dissatisfied 70%
60 – 70 3.1 – 3.6 Many Users Dissatisfied 50%
50 – 60 2.6 – 3.1 Almost All Users

Dissatisfied
20%

0 – 50 1.0 – 2.6 Not Recommended 0%

3 Related Work

Numerous studies of Internet performance have been made, but we are unaware of
any studies similar to the study done at TestYourVoIP. A recent survey of publicly
available measurements can be found in [5]. One source of such measurements can be
found at CAIDA[6]. Most Internet performance studies have set up a mesh of active
testers. Examples include AMP and NLANR. These studies are based on a limited
number of testers located in universities and other network hosting sites, and so does
not have the scope of TestYourVoIP. Two research efforts, DIMES [8] and
NETI@home[7], are attempting to build a larger mesh of testers by asking users to
download software that runs in the background following the SETI@home model.
DIMES is collecting data on Internet topology through traceroute data. NETI@home
is focused more on performance data collection for tests between sites. None of these
studies are specifically designed to measure VoIP quality.

A number of publicly available sites on the Internet allow users to run speed tests,
often to assess if a user can expect acceptable voice quality. These tests measure
available bandwidth upstream and downstream using a variety of techniques. They do
not take into account the effects of loss, discards, or voice delay, nor do these sites
compute MOS. None of the sites we are aware of have published results.

Keynote Systems conducted one test that does focus on VoIP Quality over the
Internet[10]. This test was run between San Francisco and New York over a number
of Internet service providers and VoIP providers. The purpose of the test was to
compare the quality provided by those ISPs. It did not cover the scale (in either space
or time) covered by this study.

The goals of the study reported on in Markopoulous, et.al.[4], are similar to those
of our work. However, they are focusing on the Internet Backbone between 5 cities
and thus do not include the user access network. Because the user access link is likely
to be the main source of loss and delay variation, we believe our study is more
reflective of actual user experience. Similarly, the study reported on by Jiang, et.al.

 Voice Quality on the Internet in 2005 as Measured by www.TestYourVoIP.com 117

[9] looks at the availability of VoIP on the Internet. It too uses a mesh of active tests
between 14 sites, half of which are Internet2 sites and half of which are connected to
the Internet via commercial ISPs via Cable Modem or ADSL links. It does not cover
voice quality once a call has been made, nor does it cover the scope of this study.

4 Results

In this paper we report on the following questions.

1. What voice quality can users of VoIP over the Internet expect?
2. What are the causes of degradation?
3. What is the affect of codec choice on voice quality?
4. What is the trend in voice quality over time?

The body of data we have collected offers a wealth of information on other questions
as well. See the section on Future Work below for some of the other questions we are
exploring.

4.1 Filtering Out Bad Network Connections

One reason users run a test on TestYourVoIP is to see whether their Internet
connection is good enough to use for VoIP calls. For some tests, the user’s Internet
connection is not good enough. Tests from bad connections skew the results, and so
we have filtered them out of the results we report here. The criterion used to filter the
tests was to exclude tests where the round trip voice latency was greater than 1 second
or more than 20% of the packets were lost or late packet discards in either direction.
Note that in these tests, the MOS score is usually very low (in the Unacceptable
range). 9.1% of the tests were filtered out by this criterion.

4.2 Basic Results and ACQ

During 2005, the Average Conversational Objective MOS score across all the
included tests run using TestYourVoIP was 3.94. This is a good score, which while
not toll quality would satisfy users.

Averages can hide important details. While the users may be happy with the
average call, a few bad calls can outweigh the average experience. The distribution of
CMOS scores thus gives a better picture of user voice quality experience than the
average. Fig 3. shows a cumulative probability distribution of the CMOS scores seen
from best (5.0) to worst (1.0). Table 4 below lists the percentage of calls that fall into
the quality ranges listed in Table 3.

Most users are satisfied with a call where the CMOS is 3.6 or better. The
percentage of test calls that achieve a CMOS score of 3.6 or better is the Acceptable
Call Quality Percentage (or ACQ3.6). The tests show that during 2005 the tests run on
TestYourVoIP achieved an ACQ3.6 of 81.1%. While commendable, there remain
18.9% of tests whose CMOS fell below 3.6. Or to put it another way, about 1 out of 5
test calls did not have acceptable call quality. This voice quality is unlikely to satisfy
most users of VoIP on the Internet. An ACQ3.6 of 95% or 99% would be closer to the
quality that users would expect for Telephony over the Internet.

118 M. Sylor, N. Venna, and H. Ripps

Table 4. CMOS Cummulative Proba-
bility Distribution (CPD) by Range

CMOS Density CPD

4.3 – 5.0 31.1% 31.1%
4.0 – 4.3 31.9% 63.0%
3.6 – 4.0 18.1% 81.1%
3.1 – 3.6 9.2% 90.3%
2.6 – 3.1 5.1% 95.4%
1.0 – 2.6 4.6% 100.0%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4.5 4 3.5 3 2.5 2 1.5 1

CMOS

C
P

D

Fig. 3. CMOS Cumulative Distribution

Table 5. Degradation Factors for all calls Table 6. Degradation Factors for poor quality
calls

Cause Absolute Percentage Cause Absolute Percentage
Codec 0.75 70.0% Codec 0.77 37.4%

Late Discards 0.17 16.3% Late Discards 0.49 23.6%
Delay 0.09 8.5% Delay 0.46 22.4%

Lost 0.06 5.2% Lost 0.33 15.8%

4.3 CMOS Degradation Factors

A number of factors affect the computed CMOS score using the E Model. They are:
the codec used, lost packets, late packet discards, and the round trip voice latency
(delay). The codec degradation is fixed by choice of codec; the others vary with
network effects. Because these impairments are additive in the E Model computation
of the R Factor, we can compute the relative importance of the degradation causes by
the percentage of degradation they cause. By comparing the degradation factors, we
can identify the largest contributor to a poor MOS score, the one that should be
improved first.

Table 5 shows the CMOS degradation factors that determine the Average CMOS
for 2005 as 3.94 both in absolute terms (CMOS points degraded) and as a percentage.
The largest factor is the codec, followed by discarded packets, delay and lost packets.

Table 6 shows the degradation factors for tests with low voice quality (CMOS <
3.6). Each factor has roughly the same magnitude, implying there is no single answer
to improving those calls with unacceptable voice quality. Each degradation cause
must be addressed if we hope to raise the ACQ3.6 of the network.

Lost and Discarded Packets. The effect of a lost packet and a packet that arrives too
late to be played out is the same, lost audio and degraded call quality. However the
cause of lost packets and late packets is quite different. A packet is lost if it is
discarded somewhere in the network between the two endpoints. Packets are lost in
the network due to congestion or errors. Packets are late because the network delayed
delivering the packet until its time for playout has passed.

 Voice Quality on the Internet in 2005 as Measured by www.TestYourVoIP.com 119

Table 7 shows the percentages of packets discarded and lost for three cases: all
tests, tests with acceptable call quality (CMOS ≥ 3.6) and tests with unacceptable call
quality (CMOS < 3.6). We also show the percentage of packets that are lost or
discarded, as well as the duplicate and out of order packet percentages. Out of order
packets do not in general affect VoIP because the playout buffer reorders the voice
samples into their proper order. Similarly, duplicate packets only waste bandwidth.
They do not affect VoIP quality directly.

To achieve acceptable call quality, the sum percentage of lost and discarded
packets must be kept less than 1%.

Table 7. Lost, Discarded, Duplicate, and Out of Order Packets

 Acceptable Unacceptable
 All Tests CMOS ≥ 3.6 CMOS < 3.6

Late Packet Discards% 1.03% 0.72% 2.37%
Lost Packets% 0.43% 0.12% 1.78%

All Unplayed Packets% 1.46% 0.83% 4.15%
Out of Order Packets% 0.24% 0.17% 0.53%

Duplicate Packets% 0.06% 0.03% 0.17%

Voice Latency. Voice latency affects conversational quality in two ways. First,
callers hear the echo of their own voice, and if the delay is too large, the echo
becomes noticeable and disruptive. Second, long voice delay interferes with the
ability of two people to know when to speak leading to collisions in the conversation.

Voice latency, L, comprises: codec delay, C, network delay, N, and playout delay
which is also known as jitter buffer delay, B, in both directions as shown in Fig. 2 and
the following formula.

ddduuu BNCBNCL +++++= (2)

The codec delays Cu and Cd are fixed by the choice of codec. For G.711, it is 20
milliseconds. For G.729 it is 30 milliseconds.

Network delays vary depending on the propagation delays due to distance,
transmission delays due to link speed and packet size, forwarding delays in the
routers, and queueing delays due to congestion. Network delays are measured using
RTCP. RTCP packets are sent periodically during the call in both directions. Each
RTCP packet i includes a timestamp Ti when it was sent. The receiver stores Ti and
the time it received that packet Ri. When the receiver next sends RTCP packet j, it
includes within the RTCP packet Ti, Tj-Ri, and Tj. When the sender receives that
packet, it notes the time it received the packet Rj, and computes the network round trip
delay using the formula:

)()()(ijijdu RTTRNN −−−=+ (3)

The jitter buffer is a mechanism used to deal with variation in network latency. The
delay introduced by jitter buffers Bu and Bd can be fixed if a fixed size jitter buffer is
used or can vary if an adaptive jitter buffer is used. TestYourVoIP implements an

120 M. Sylor, N. Venna, and H. Ripps

adaptive jitter buffer based on [3]. The verifiers measure the average jitter buffer
delay and include the measured value in the voice latency they report.

Long voice round trip delay negatively impacts conversational voice quality. Its
affect on Average CMOS accounted for 8.5% of the degradation. The average voice
round trip latency measured was 263 milliseconds. For calls with low voice quality
(CMOS < 3.6), the effect of delay increases to 22% of the total degradation. Average
voice round trip latency has increased to 467 ms for the 18% of the test calls with
unacceptable voice quality.

Jitter. A packet is discarded when it arrives too late to be played out by the receiver.
Packets arrive too late if they are delayed more than the playout buffer can
accommodate. At the beginning of each talk spurt, the jitter buffer duration and size is
adjusted based on observed values of delay and delay variation for earlier packets.
The playout time for each incoming packet is computed based on its transmit time and
the current jitter buffer duration. Packets that are delayed in network more than the
jitter buffer can accommodate will arrive after their scheduled playout time and so
will be discarded as too late. While some jitter buffer implementations have a finite
size, for TestYourVoIP, we have set up the jitter buffer to be of unlimited size and so
we never have any early packet discards.

Average jitter is a measure of the variation in network delay and is relatively easy
to compute. Average jitter is often quoted in Service Level Agreements as a limit on
the variation in delay experienced by packets. Average upstream jitter JU, downstream
jitter JD, and total jitter J for a call are defined as:

() () () ()
() 2,

1
,

1

1

1
11

1

1
11

DU

n

i
iiii

D

n

i
iiii

U JJJ
n

WYWY
J

n

UVUV
J +=

−

−−−
=

−

−−−
=

∑∑
−

=
++

−

=
++

 (4)

The jitter measured for all test calls, and calls with acceptable and unacceptable
call quality are shown in Table 8. The measured average jitter is relatively small, 6.8
milliseconds for all tests. When we compare tests that achieved an acceptable voice
quality with tests with unacceptable voice quality, we find the average jitter only
increases from 6.1 to 9.9 milliseconds. Note that the average delay increases by
roughly the same percentage. The ratio of jitter over delay stays roughly the same.

The data hints that the average jitter is not a very good measure for predicting
whether or not a network can support VoIP. Instead we should examine late packet
discards since they directly impact voice quality. Late packet discards takes into
account the distribution of network delays, not just the average.

Table 8. Jitter Measurements

 Acceptable Unacceptable
 All Tests CMOS ≥ 3.6 CMOS < 3.6

Upstream Jitter JU 7.3 msec 6.4 msec 11.2 msec
Downstream Jitter JD 6.2 msec 5.7 msec 8.6 msec

Total Jitter J 6.8 msec 6.1 msec 9.9 msec
Voice Delay 263 msec 216 msec 467 msec

Jitter/Delay Ratio 0.026 0.028 0.021
Late Packet Discards 1.03% 0.72% 2.37%

 Voice Quality on the Internet in 2005 as Measured by www.TestYourVoIP.com 121

4.4 Codec Comparison

TestYourVoIP users can select the codec used in their test calls. While most choose
the default G.711 codec, slightly more than 35,000 tests were run using the low
bandwidth G.729 codec. Table 9 compares the results obtained for the two codecs.
Because the G.729 codec degrades the voice quality more than the G.711 codec, it is
not surprising that the average CMOS of the G.729 codec is less than that of G.711.
However, one would hope that the G.729 codec would perform better under more
challenging network conditions due to its decreased bandwidth. Fig. 4 shows the
distribution of CMOS values for both codecs. The G.711 codec is more likely to
outperform the G.729 codec through most of the range. Only when the CMOS score
drops to below 1.4 is the G.729 codec more likely to have a better CMOS than that
score. This only accounts for 0.3% of all tests.

Table 9. Codec Comparison

 Acceptable Unacceptable
G.711 All Tests CMOS ≥ 3.6 CMOS < 3.6

Average CMOS 3.97 4.19 2.93
Voice Delay 256 msec 214 msec 457 msec

Lost Packets 0.43% 0.12% 1.92%
Late Packet Discards 1.01% 0.72% 2.38%

ACQ3.6 82.6%
Tests with bad network 8.2%

G.729

Average CMOS 3.63 3.97 2.94
Voice Delay 327 msec 235 msec 510 msec

Lost Packets 0.43% 0.09% 1.10%
Late Packet Discards 1.19% 0.63% 2.31%

ACQ3.6 66.7%
Tests with bad network 16.8%

These results suggest that the conditions where the G.729 codec outperforms the
G.711 codec are rare. Given all the work done to develop low bandwidth codecs, we
are surprised at this result.

4.5 Trends

Call quality over 2005 has generally been trending downwards as shown in Fig 5.
When we fit linear least squares trends to the data, we find CMOS is decreasing by
0.007 points per month and ACQ is decreasing by 0.4% per month with R2 values of
0.66 and 0.70 respectively. We find the trend in Acceptable Call Quality to be
particularly distressing. If this trend continues, each year 5% more of the VoIP calls
on the Internet will experience unacceptable call quality.

122 M. Sylor, N. Venna, and H. Ripps

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4.4 4 3.6 3.2 2.8 2.4 2 1.6 1.2

CMOS

C
D

F

G711 CDF G729 CDF

Fig. 4. Comparing CMOS for G.711 and
G.729

75%

80%

85%

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

A
C

Q
 (

T
es

t
w

h
er

e
C

M
O

S
 ≥

 3
.6

)

3.80

3.85

3.90

3.95

4.00

4.05

4.10

C
M

O
S

ACQ CMOS

Fig. 5. Call Quality Trends in 2005

5 Future Work

TestYourVoIP has collected a rich dataset describing VoIP quality on the Internet. In
this paper we have only scratched the surface of the lessons this data can teach us.
Some other questions we can explore are:

• Does voice quality vary by time of day or day of the week?
• Is voice quality symmetric?
• Is voice quality the same worldwide, or are there geographic differences?
• How does voice quality vary by distance, hops, and route?
• How do different jitter buffer strategies perform?
• What the impact of the components of voice round trip latency?
• What is the cause of the differences seen in voice quality between codecs?
• How does average jitter statistically relate to late packets and voice quality?

6 Conclusions

While average CMOS on the Internet in 2005 was 3.94, only 81% of the test calls
achieved an acceptable call quality of 3.6 (ACQ3.6). Far too many calls had
unacceptable call quality.

Of the three causes of degraded voice quality that network providers can affect;
late packet discards, lost packets, and voice latency, the most important is late packet
discards. However, if we focus on only those calls with unacceptable call quality, the
pattern changes, and the three causes have roughly equal weights. Providers cannot
focus on improving just one cause of poor voice quality to improve ACQ3.6, rather,
they must work to improve all three causes.

The data hints at two surprising results.

1. Average Jitter, a metric often used in service level agreements does not seem to be
a good predictor of voice quality. A better choice for service level metrics is Late
Packet Discards, a metric that directly affects voice quality.

 Voice Quality on the Internet in 2005 as Measured by www.TestYourVoIP.com 123

2. When we compare the voice quality that codecs actually achieve on the Internet,
we find that the G.711 codec is more likely to produce good voice quality than the
low bandwidth G.729 codec. While 82.6% of the tests with the G.711 codec had
acceptable call quality, only 66.7% of the tests with the G.729 codec had
acceptable call quality.

Finally, the data clearly shows a slow but clear decrease in voice quality during 2005.
Voice Quality on the Internet is getting worse.

References

1. The E Model: A computational model for use in transmission quality, ITU-T
Recommendation G.107, Dec 1998.

2. Telchemy, Inc. Voice Quality Measurement, Jan, 2005,
http://www.telchemy.com/appnotes/TelchemyVoiceQualityMeasurement.pdf.

3. Ramjee. R., Kurose, J., Towsley, D., and Schulzrinne, H., "Adaptive playout mechanisms
for packetized audio applications in wide-area networks", in Proceedings of the
Conference on Computer Communications (IEEE Infocom), Toronto, Canada, June 1994,
pp. 680-688.

4. Markopoulou, A., Tobagi, F., and Karam, M., “Assessing the Quality of Voice
Communications Over Internet Backbones”, IEE/ACM Trans. Networking, v. 11, no. 5,
Oct 2003.

5. Claffy, K.C., Crovella, M., Friedman, T., Shannon, C. and Sring, N., “Community-
Oriented Network Measurement Infrastructure (CONMI) Workshop Report”, ACM
SSIGCOMM Comp. Comm. Review, V. 36, No. 2, Apr 2006.

6. CAIDA, the Cooperative Association for Internet Data Analysis, http://www.caida.org/
7. Simpson, Jr., C. and Riley G., “NETI@home: A Distributed Approach to Collecting End-

to-End Network Performance Measurements", PAM2004 - A workshop on Passive and
Active Measurements, Apr 2004.

8. Shavitt, Y. and Shir, E., “DIMES: A Distributed Architecture for Internet Measurement
and Monitoring”, IEEE Infocom 2005.

9. Jiang, W. and Schulzrinne, H. “Assessment of VoIP Service Availability in the Current
Internet”, PAM 2003 A workshop on Passive and Active Measurements.

10. “Keynote's Hard Numbers On VoIP Quality”, VOIP Magazine, July 2005,
 http://www.voip-magazine.com/content/view/275/

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 124 – 135, 2006.
IFIP International Federation for Information Processing 2006

A WSDM-Based Architecture for Global Usage
Characterization of Grid Computing Infrastructures

Glauco Antonio Ludwig1, Luciano Paschoal Gaspary2,
Gerson Geraldo Homrich Cavalheiro1, and Walfredo Cirne1

1 Universidade do Vale do Rio dos Sinos (UNISINOS), Brazil
{glaucol, gersonc}@unisinos.br

2 Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
paschoal@inf.ufrgs.br

3 Universidade Federal de Campina Grande (UFCG), Brazil
walfredo@dsc.ufcg.edu.br

Abstract. Current solutions to characterize grid computing usage are limited in
three important aspects. First, they do not provide a global, uniform view of the
use of infrastructures comprised of heterogeneous grid middleware. Second,
they do not allow the specification of policies to publicize the collected
information. Third, they do not generate statistics about the applications that are
executed on the grid. To fill this gap, we propose an architecture based on the
Web Services Distributed Management standard and on access control policies
to characterize global usage of grid computing infrastructures, even when such
grids are formed by heterogeneous middleware packages. We introduce this
architecture and present preliminary results obtained with a prototype.

1 Introduction

The lack of solutions to manage complex systems such as grid computing infrastruc-
tures has hampered the widespread use of this technology, specially in the corporate
arena. When used in large scale, involving many institutions and participants, it is
necessary – in addition to managing faults, configuration, performance, and security –
to characterize the use of the grid infrastructure. The objective is sixfold: (i) obtain
detailed information about the applications executed on the grid (i.e. where they were
executed, execution duration, resources consumed, and users who submitted them);
(ii) identify the execution of malicious applications (an application executing for a
very long time could indicate the intention of only consuming grid resources,
impeding their legitimate use); (iii) determine users who contribute resources for the
grid and those who consume most of the computing power available; (iv) guarantee a
fair scheduling of jobs on the grid, denying or allowing users to execute new
applications based on their usage history (users that exceed a usage quota should not
have access to the resources of the grid); (v) identify stations of the grid which are not
contributing in a productive way (a certain station receives jobs to compute and ends
up failing to process them very often); and (vi) follow the evolution of the grid
computing infrastructure (allowing the recognition of usage patterns and trends).

 A WSDM-Based Architecture for Global Usage Characterization 125

Currently, there are several solutions [2, 4, 9, 11, 12, 14, 17] that provide the
administrator with statistics about the use of grid systems. Most of them are limited to
monitor the status of environment resources, neglecting statistical and historical data
about the execution of applications on the grid. For example, with the existing
solutions it is possible to observe that a certain station had its CPU highly loaded for
the past twelve hours. However, one cannot precisely infer the reason for that. In
short, these solutions do not relate in a proper way information about the resources
and the applications running on top of them.

It is usual to have heterogeneous grid middleware being employed in a large scale,
inter-institutional grid computing infrastructure. Each of them (e.g. Globus [7], Con-
dor [3], and OurGrid [13]) uses its own indicators to report job execution. In this
context, a problem to be overcome by a characterization and accounting solution is
the use of a common format to represent basic accounting and usage data. Existing
tools do not handle well such heterogeneity and, therefore, are unable to provide the
grid administrator with a uniform, integrated view of the usage of a heterogeneous
grid setup.

While institutions involved in a grid computing infrastructure are willing to share
usage information with its collaborating sites, each institution has a different security
policy to be applied. Some of the data gathered by a characterization and accounting
tool can be classified (e.g. details of the station that executed a job) and, therefore,
their distribution conflicts with the security policy in place. Here, again, there is no
support in current solutions to define and enforce a policy for the distribution of data
to the sites comprising the grid.

Considering the above limitations, we propose an architecture to support global
usage characterization of grid computing infrastructures composed of different mid-
dleware packages such as Globus, Condor, and OurGrid. Our architecture allows the
grid administrator to obtain long-term statistics and real-time notifications about ma-
jor events generated by both the grid resources and applications. Currently, we are
focusing on managing the grid applications, filling a not yet explored gap. In addi-
tion, we propose a mechanism to allow each institution participating of the grid infra-
structure to specify and enforce policies for the publication of usage information
generated inside the institution.

In line with current grid technologies, whose components have been organized as
web services, the architecture relies on the recent OASIS Web Services Distributed
Management (WSDM) standard [15]. Despite the fact this work focuses on the issue
of accounting, we regard it as a building block to achieve a more scalable and
autonomous management solution, based on the composition/choreography of com-
plementary WSDM-compliant grid management services.

The remainder of the paper is organized as follows. Section 2 discusses related
work on usage characterization of grid computing infrastructures. Section 3 intro-
duces the architecture and Section 4 details its components. Section 5 presents pre-
liminary results obtained with a prototype. Section 6 closes the paper with concluding
remarks and perspectives for future work.

126 G.A. Ludwig et al.

2 Related Work

Important steps have been taken towards characterization of grid computing infra-
structures, with relevant mechanisms being proposed in the past to address specific
issues such as distributed resource usage monitoring. Nevertheless, they are not fully
prepared to (i) provide a global, uniform view of the use of infrastructures comprised
of heterogeneous grid middleware, (ii) allow the specification of policies to publicize
the collected information, and (iii) generate statistics about the applications executed
on the grid.

Solutions such as Remos [4], visPerf [9], GridRM [2], MonALISA [12], and Gan-
glia [11] are unable to operate over heterogeneous infrastructures, which share
re-sources employing distinct grid computing middleware packages. Since each mid-
dleware tends to adopt a proprietary format to represent statistics about applications
executed and resources consumed, they are not prepared to collect such statistics and
normalize them using a uniform information model. Due to this limitation, it becomes
a challenge to provide the grid administrators with a global view of the grid usage.

Regarding selective dissemination of grid usage information, just a few systems –
such as visPerf and GridRM – provide access control mechanisms. These mecha-
nisms, however, are limited. visPerf, for example, employs only one credential for the
whole grid; users that possess this credential can access all information generated by
the infrastructure. GridRM adopts an access control mechanism based on administra-
tive domains. When an institution decides to make part of a grid infrastructure that
uses GridRM, it starts to publicize – to the domains of interest – all the information
generated by the monitoring agents located within its administrative boundaries. In
this context, we claim that neither of the approaches are flexible enough to handle the
definition and enforcement of information publicization policies.

MonALISA and Usage Record (UR) [10] are the only solutions that provide
statistics related to the execution of applications on the grid. The former does not
relate such statistics with the resources consumed, hampering a precise understanding
of the grid usage. The latter constitutes an information model that merges data from
both applications executed and resources consumed. Since it is not a software
architecture, UR does not define how this data must be collected, processed,
consolidated, and presented to the grid administrator.

3 Architecture Overview

The architecture proposed is composed of four major components: Publishers,
Characterization Service, Authorization Service, and Management Application.
Figure 1 illustrates a general view of the architecture and the relations between its
components.

Publishers are grid-technology-dependent piece of software responsible for
monitoring the occurrence of predefined events generated by the components
comprising the grid (e.g. a log message informing that a certain application has been
submitted). Whenever such an event is observed, the publisher extracts the data of
interest from the event, normalizes and send it to the characterization service.
Publishers are supposed to be developed and distributed across the infrastructure, in

 A WSDM-Based Architecture for Global Usage Characterization 127

accordance to the needs of every grid middleware taking part of the overall inter-
institutional setup. For example, supposing a scenario composed of two distinct grid
middleware packages, say Globus (domain A) and OurGrid (domain B), specific
Globus and OurGrid publishers should be installed in both domains – exactly in the
location where data about the resources and the running applications is generated.

Management
Application

Publishers

Resources
Schedulers

S1

P1

S2

P2

Domain A

Database

Authorization
Service

GUACS

S2

Domain B

Database

Authorization
Service

GUACS

P2

GUACS: Grid Usage Accounting and Characterization Service
Si: Scheduler for grid middleware i; Pi: Publisher for grid middleware i

Management
Application

Publishers

Resources
Schedulers

S1

P1

S2

P2

Domain A

Database

Authorization
Service

GUACS

S2

Domain B

Database

Authorization
Service

GUACS

P2

GUACS: Grid Usage Accounting and Characterization Service
Si: Scheduler for grid middleware i; Pi: Publisher for grid middleware i

Fig. 1. Conceptual view of the architecture

The Characterization Service is a software entity, whose purpose is, among other,
to receive data from the publishers and store them in a local, normalized database. By
normalized database we mean that regardless of the grid middleware being monitored,
the database always stores the same data (i.e. the information model is the same). To
address potential scalability problems, the service can be instantiated in several
locations (e.g. per institution, per department, etc.); important is to cover the whole
grid infrastructure.

In addition to receiving and processing data sent by the publishers, the
characterization service also serves a management application (or other management
services), which may request for historical and/or real-time information about the
resources and the applications running on the grid. Two types of requests are
currently supported: publish/subscribe and query/response.

Whenever a request is received by the characterization service, it is first passed to
an Authorization Service, which is responsible for granting or not the former
permission to reply the request. Based on a role-based access control policy [5], it
determines whether or not (and to what extent) a request originated from a certain
institution can be replied.

The architecture is also composed of a Management Application, from where the
administrator can subscribe for/be notified of relevant events generated by the whole
grid infrastructure. He/she can also gather historical information from the

128 G.A. Ludwig et al.

characterization service instances and plot several graphs in order to characterize grid
usage. Note that, due to the normalized information model employed by the
characterization service, all the data gathered – regardless of the grid system used in
every institution – has the same format. Therefore, it is possible to draw a picture of
the whole grid infrastructure usage in an integrated, uniform way. This complete view
of the grid will may be compromised if the policy to distribute information employed
by the institutions making part of the grid is too restrictive.

It is possible to have several instances of the management application running
simultaneously (e.g. one per domain or department). Each of them will present a more
or less detailed view of the grid infrastructure, depending on the permissions that the
requester has in the characterization services.

4 Components of the Architecture and Implementation

In this section we describe the components of the architecture in more detail, focusing
on design and implementation decisions. Recall that the architecture stands on the
WSDM specification. Therefore, other associated standards such as WS-Notification
[8] and WSRF (Web Services Resource Framework) [6] are also employed.

Table 1. Usage Record format

Field name Description
Username User’s login name corresponding to user Id in /etc/passwd file.
ProjectNam
e

Name/identifier of the project or charge group associated with
this usage.

JobId Identifier of the job.
Queue Name of the queue from which the job was executed or submitted.
GridId User’s global unique Id. Distinguish Name in the user’s X509

certificate.
FromHost Name of the host from which the job was submitted.
Host Name of the host on which the job ran.
StartTime Date when the job started running in date time format (UTC time zone).
EndTime Date when the job completed in date time format (UTC time zone).
Processors Number of processors either used or requested that each center uses (for

billing purpose).
NumNodes Number of nodes used.
CpuTime CPU time used, summed over all processes in the job.
WallTime Wall clock time elapsed while the job was in the running state.
Memory Maximum amount of virtual memory used by all concurrent processes

in the job.
Disk Disk storage used.
Network Network used (withdrawals) or requested (reservations).
JobName Job or Application name.
Status Number representing completion status of the job.
Charge Total charge of the job in system’s allocation unit.

 A WSDM-Based Architecture for Global Usage Characterization 129

4.1 Information Model

As already mentioned in the previous section, we have adopted a uniform information
model to be used by all instances of the characterization service. We use the UR
(Usage Record) model [10], proposed by the Usage Record Working Group of the
Global Grid Forum. This model is the result of an effort to define a common usage
record based on those employed in current grid sites.

Table 1 illustrates the fields included in the Usage Record. As one can see, it
merges information related to resource usage (e.g. Processors and NumNodes) and
applications (e.g. JobName and Status).

4.2 Publishers

For every grid middleware there must exist a specific publisher, which is able to
collect data about the resources and the running applications on that particular system.
In our current implementation of Globus and OurGrid publishers, this data is gathered
from the log files generated by both grid systems.

Whenever a new event is detected in the grid system (e.g. job started and job
completed), the publisher executes a SETRESOURCEPROPERTIES request to the
Characterization Service (to where it is virtually attached) updating a resource
property defined within the service (e.g. JOBSTARTED and JOBCOMPLETED). The
content of such a request is illustrated in figure 2a and b. Note that each set operation
comprises the update of several data into the service (through the use of complex
types). A simplified XML document is used to express the updates required by each
possible SETRESOURCEPROPERTIES request. In addition, as it is the case of the
examples presented, the data updated by a set request to a certain property (e.g.
JOBCOMPLETED) is complementary to the data supplied by the set request to other
property (e.g. JOBSTARTED).

<JobStarted>
 <Username> glauco_ludwig </Username>
 < ProjectName> bio_paua </ProjectName>
 <JobId> 1.1.1.node01.unisinos.br </JobId>
 <Queue> node01 </Queue>
 <GridId> glauco_ludwig@unisinos.br </GridId>
 <FromHost> node01.unisinos.br </FromHost>
 <Host> node09.unisinos.br </Host>
 <StartTime> 2005-09-13 17:24:50 </StartTime>
 <JobName> intracel_dynamics </JobName>
</JobStarted>

 <JobCompleted>
 <JobId> 1.1.1.node01.unisinos.br </JobId>
 <EndTime> 2005-09-13 17:30:22 </EndTime>
 <Processors> 2 </Processors>
 <NumNodes> 1 </NumNodes>
 <CpuTime> PT15S </CpuTime>
 <WallTime> PT45M48S </WallTime>
 <Memory> 1234 </Memory>
 <Disk> 560 </Disk>
 <Network> 1.000.000 </Network>
 <Charge> 300 </Charge>
</JobCompleted>

(a) JobStarted (b) JobCompleted

Fig. 2. Format of a SETRESOURCEPROPERTIES request

4.3 Characterization Service

The characterization service operates as an intermediary component between the
publishers and the management application. The communication of both publishers and
the management application with the service is carried out through a WSDM interface.

130 G.A. Ludwig et al.

Publishers update data into the service through SETRESOURCEPROPERTIES requests,
while a management application can (i) request for the value of a single property
(GETRESOURCEPROPERTY), (ii) request for a filtered set of information – through an
XPath query – of one or more resource properties (QUERY RESOURCEPROPERTIES), and
(iii) subscribe for a resource property, as well as receive notifications. Figures 3 and 4
illustrate part of the SOAP envelope of both a subscription to and a notification of
change in the resource property JOBFAILED.

<wsnt:Subscribe>
 <wsnt:ConsumerReference>
 <wsa:Address> http://www.unisinos.br:8080 </wsa:Address>
 <wsa:ReferenceProperties/>
 </wsnt:ConsumerReference>
 <wsnt:TopicExpressionDialect=”http://docs.oasis-open.org/wsn/2004/06/TopicExpression/Simple”>
 cs:JobFailed
 </wsnt:TopicExpression>
</wsnt:Subscribe>

Fig. 3. Format of a WSN-based subscription to JOBFAILED resource property

<wsn:Message>
 <wsrf:ResourcePropertyValueChangeNotification xmlns:wsrf=”http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
 ResourceProperties-1.2-draft-01.xsd”>
 <wsrf:OldValue>
 <cs:JobFailed xmlns:wsrp=”http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.
 Xsd” xmlns=”http://schemas.xmlsoap.org/soap/envelope/” xmlns:fs=”http://ws.apache.org/resource/gaems”>
 …
 </cs:JobFailed>
 </wsrf:OldValue>
 <wsrf:NewValue>
 <cs:JobFailed xmlns:wsrp=”http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.
 Xsd” xmlns=”http://schemas.xmlsoap.org/soap/envelope/” xmlns:fs=”http://ws.apache.org/resource/gaems”>

 <fil:JobId> 2.1.1.node02.unisinos.br </fil:JobId>
 <fil:EndTime> 2005-09-13 15:30:24 </fil:EndTime>
 <fil:Processors> 4 </fil:Processors>
 <fil:NumNodes> 4 </fil:NumNodes>
 <fil:CPUTime> PT15S </fil:CPUTime>
 <fil:WallTime> PT45M48S </fil:WallTime>
 <fil:Memory> 5000 </fil:Memory>
 <fil:Disk> 850 </fil:Disk>
 <fil:Network> 10.000.000 </fil:Network>
 <fil:Charge> 0 </fil:Charge>

 </cs:JobFailed>
 </wsrf:NewValue>
 </wsrf:ResourcePropertyValueChangeNotification>
</wsn:Message>

Fig. 4. Format of a WSN-based notification for the JOBFAILED resource property

With reference to the resource properties available in the characterization service,
currently six properties are offered: JOBSTARTED, JOBCOMPLETED, JOBABORTED,
JOBFAILED, JOBCANCELED, and JOBHISTORY. These properties are detailed in table 2.

 A WSDM-Based Architecture for Global Usage Characterization 131

Note that the first fifth properties are expected to be subscribed for. Hence, when a
job is completed, successfully or not, the management application may receive a real-
time notification, which can be used either by the grid system itself (e.g. to reschedule
a failed job) or the administrator. The JOBHISTORY property, on the other hand, stores
multiple instances of the Usage Record, which can be retrieved by a management
application through GETRESOURCEPROPERTY or QUERYRESOURCEPROPERTIES
requests.

The characterization service has been implemented based on the Muse framework
[1] from the Apache Software Foundation.

Table 2. Resource properties available in the characterization service

Resource property Operations supported Information available
JobStarted Subscribe/publish Username, ProjectName, JobId,

Queue, GridId, FromHost, Host,
StartTime, JobName

JobCompleted,
JobAborted,
JobFailed,
JobCanceled

Subscribe/publish JobId, EndTime, Processors,
NumNodes, CpuTime, WallTime,
Memory, Disk, Network, Charge

JobHistory GetResourceProperty,
QueryResourceProper
ties

Username, ProjectName, JobId,
Queue, GridId, FromHost, Host,
StartTime, EndTime, Processors,
NumNodes,
CpuTime, WallTime, Memory, Disk,
Network, JobName, Status, Charge1

1 The information available matches those of the Usage Record. The JobHistory property stores multiple
instances of the record.

4.4 Authorization Service

The authorization service is invoked by the characterization service whenever it
receives a request from a management application. Depending on the identification of
the requesting institution and the policies defined by the owner of the characterization
service, three situations may occur: a response is not sent; a response with partial
content is sent; or a complete response is sent.

The authorization model employed by the service to specify and enforce
information distribution policies is the RBAC (Role-Based Access Control) [5].
RBAC was chosen because it is widely accepted and simplifies the management of
policies. In this format, policies (e.g. permissions and restrictions) are associated to
roles, and institutions are assigned to the proper roles.

Table 3 illustrates the organization proposed for the policy repository. Institutions
may belong to one or more roles. Each role, on its turn, comprises the set of the Usage
Record fields allowed to be distributed.

132 G.A. Ludwig et al.

Table 3. Example of policies specified for a hypothetical institutional characterization service

Host/institution Role Policies1
University A University JobStarted, JobCompleted, JobAborted, JobFailed,

JobCanceled, JobHistory
Username, ProjectName, JobId, Queue, GridId,
FromHost, Host, StartTime, EndTime, Processors,
NumNodes, CpuTime, WallTime, Memory, Disk,
Network, JobName, Status, Charge

Company B Enterprise JobHistory
JobId, GridId, FromHost, StartTime, EndTime,
CpuTime, JobName, Status, Charge

Company C Enterprise JobHistory
JobId, GridId, FromHost, StartTime, EndTime,
CpuTime, JobName, Status, Charge

Other Default None
1 Information allowed to be distributed.

4.5 Management Application

In the management application, the grid administrator can configure the
characterization services it is going to interact with, as well as dynamically subscribe
for/be notified of relevant events generated by them. In the case of the notifications
received, they are presented in an event console. As for the historical information
retrieved from one or more characterization service instances, several plots can be
automatically generated, providing an integrated view of the usage of the grid
computing infrastructure (see figure 5 for a simple example).

Our current prototype was implemented in Linux, using the Java programming
language, the HSQLDB database, and the JFreeChart library (for the generation of
plots). We are also working on the design and implementation of a release of the
management application to run integrated to the HP Open View management
platform.

(a) Short-term (b) Long-term

Fig. 5. Plot of job execution statistics

 A WSDM-Based Architecture for Global Usage Characterization 133

5 Experimental Evaluation

To prove concept and technical feasibility of the architecture, we have instantiated it
in a real setup, composed by three administrative domains: A, B, and C. In two of
them, A and B, both Globus and OurGrid middleware packages were deployed, while
in domain C only OurGrid was used. One instance of the Characterization Service
was installed and executed in each domain. In this environment, we were able to
evaluate the impact of policy definition on the dissemination of grid usage data
among the domains (explored in a paper being currently prepared by our research
group). In addition, we were able to stress both the publish/subscribe mechanism
(properties JOBSTARTED, JOBCOMPLETED, JOBABORTED, JOBFAILED, and
JOBCANCELED) and the requests for historical data (property JOBHISTORY). Data
retrieved by requesting the latter allowed the management application to draw plots
offering an integrated view of the whole grid infrastructure.

A preliminary performance evaluation of the architecture has also been carried out,
restricting the experiment to one Publisher, one instance of the Characterization
Service, and the Management Application. Each of these components was executed in
a different PC with 2 Pentium4 2.4 GHz processors, 1 GB of RAM memory, and
GNU/Linux Red Hat 8.0 operating system, which were interconnected through a 100
Mbps switch.

To obtain statistically sound results, each experiment was repeated 400 times. The
end-to-end delay, i.e. the time interval measured between the moment when an event
is generated by the grid middleware and the moment when it is reported to the
management application, was in average 245.62 ms. The standard deviation of the
observed measurements was 3 ms. Although this a hardware-dependent result, it
represents a good estimative of what one can expect in terms of the processing
overhead imposed by the management plane. We consider this result acceptable, since
the management application will be almost immediately informed about the
occurrence of important events and will be able to react, in a timely manner, to
interruptions in the execution of applications.

6 Conclusion and Future Work

The use of grid computing infrastructures is consolidated in academic environments,
but in corporate environments their deployment is not as accelerated as originally
expected. We attribute this to the lack of security and, specially, management
mechanisms to provide a reliable, secure, and controllable grid computing
environment. In this paper we proposed an architecture – based on a management
standard highly conformant with the current web services orientation of grid
technologies – to characterize and account, in a uniform and integrated way, usage of
grid computing infrastructures composed of heterogeneous middleware packages.

The architecture allows the grid administrator, in addition to receiving real-time
notifications about major events, to obtain long-term statistics about jobs executed,
resources used, and so on. This information allows one to precisely characterize grid
usage (e.g. in terms of top grid consumers, types of jobs executed, stations most
used). Existing solutions are limited, since they only gather complementary

134 G.A. Ludwig et al.

information such as CPU load and memory use of the grid machines. From a grid
management perspective, the statistics the architecture is able to provide are important
(i) to assess the volume of accesses to the grid infrastructure, the communications
established, (ii) to draw a global grid usage profile, and (iii) to optimize and plan the
capacity of the grid.

Another important aspect of the architecture to be highlighted is its ability to
selectively distribute information taking into account the policies defined by every
institution comprising the grid computing infrastructure. Although a complete view of
the grid may not be offered if the policies are too restrictive, we believe it can be
avoided through negotiation and agreements between the institutions.

A major contribution of this work relies on the usage of WSDM, which consists of
a common approach for managing all components of a grid environment, including
resources and services. As far as we are aware, this is one of the first research papers
to propose (and report a real implementation of) a grid management service compliant
with this recently standardized specification.

As future work we intend to better evaluate the architecture developed, stressing it
under different number of (and simultaneous) publishers, subscriptions, and policies.
Besides, we will extend the architecture with complementary services to support
additional grid management functionality (fault, configuration, performance, and
security), following a plug-and-play design.

Acknowledgments

This work has been developed in collaboration with HP Brazil R&D.

References

1. Apache Web Services – Muse Project Home Page (2006). http://ws.apache.org/muse/.
2. Baker, M. and Smith, G. (2003). GridRM: An Extensible Resource Monitoring System.

IEEE International Conference on Cluster Computing, pp. 207-215.
3. Condor Project Home Page (2005). http://www.cs.wisc.edu/condor.
4. Dinda, P., Gross, T., Karrer, J. et al. (2001). The Architecture of the Remos System. IEEE

International Symposium on High Performance Distributed Computing, pp. 383-394.
5. Ferraiolo, D. F., Sandhu, R., Gavrila, S. et al. (2001). Proposed NIST Standard for Role-

Based Access Control. ACM Transactions on Information and System Security, v. 4, n. 3,
pp. 224-274.

6. Foster, I., Czajkowski, K., Ferguson, D. E. et al. (2005). Modeling and Managing State in
Distributed Systems: the Role of OGSI and WSRF. Proceedings of the IEEE, v. 93, issue
3, pp. 604-612.

7. Globus Toolkit Home Page (2005). http://www.globus.org.
8. Graham, S., Hull, D., and Murray, B. (2006). Web Services Base Notification 1.3 (WS-

BaseNotification). OASIS Public Review Draft. http://www.oasis-open.org/committees/
download.php/18546/wsn-ws_base_notification-1.3-spec-pr-03.doc.

9. Lee, D., Dongarra, J., and Ramakrishna, R. et al. (2003). VisPerf: Monitoring Tool for
Grid Computing. International Conference on Computational Science, pp. 233-243.

 A WSDM-Based Architecture for Global Usage Characterization 135

10. Mach, R., Lepro-Metz, R., and Jackson, S. (2005). Usage Record – Format Recommendation.
Global Grid Forum Usage Record Working Group. http://www.psc.edu/ ~lfm/ PSC/Grid/UR-
WG/UR-Spec.v1.pdf.

11. Massie, M. L., Chun, B. N., and Culler, D. E. (2004). The Ganglia Distributed Monitoring
System: Design, Implementation, and Experience. Parallel Computing, v. 30, n. 7, pp. 817-
840.

12. Newman, H. B., Legrand, I. C., Galvez, P. et al. (2003). MonALISA: A Distributed
Monitoring Service Architecture. Computing in High Energy and Nuclear Physics.

13. OurGrid Project Home Page (2005). http://www.ourgrid.org.
14. Tierney, B., Aydt, R., Gunter, D. et al. (2002). A Grid Monitoring Architecture. Global

Grid Forum Performance Working Group. http://www-didc.lbl.gov/GGF-PERF/GMA-
WG/papers/GWD-GP-16-3.pdf.

15. Vambenepe W. (2005). Web Services Distributed Management: Management Using Web
Services (MUWS 1.0) Part 1. OASIS Standard. http://docs.oasis-open.org/wsdm/2004/
12/wsdm-muws-part1-1.0.pdf.

16. Vinoski, S. (2005). Web Service References. IEEE Internet Computing, v. 9, no. 3, pp. 90-93.
17. Wolski, R., Spring, N., and Hayes, J. (1999). The Network Weather Service: A Distributed

Resource Performance Forecasting Service for Metacomputing. Journal of Future
Generation Computing Systems, v. 15, n. 5-6, pp. 757-768.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 136 – 148, 2006.
IFIP International Federation for Information Processing 2006

Management of DiffServ-over-MPLS Transit Networks
with BFD/OAM in ForCES Architecture*

Seung-Hun Yoon, Djakhongir Siradjev, and Young-Tak Kim**

Dept. of Information and Communication Engineering,
Graduate School, Yeungnam University

214-1, Dae-Dong, Kyungsan-Si, Kyungbook, 712-749, Korea
bthuni@yumail.ac.kr, m0446086@chunma.yu.ac.kr, ytkim@yu.ac.kr

Abstract. This paper proposes a management of DiffServ-over-MPLS transit
network with BFD(Bidirectional Forwarding Detection)/OAM (operation,
administration and maintenance) in ForCES (Forwarding and Control Element
Separation) architecture for QoS-guaranteed DiffServ-over-MPLS traffic
engineering. The proposed BFD and ForCES functions are implemented on
Intel 2400 network processor, where BFD/OAM packets for MPLS TE-LSP are
exchanged every 5 ~ 10 ms interval for performance measurements and link
failure detection. The operations of BFD/OAM-based fault detection and
performance measurement are controlled via distributed control plane with
ForCES (forwarding and control element separation) architecture for large scale
IP/MPLS router using multiple network processors in each network interface
card. We explain the implementation details of ForCES-based distributed
control plane functions, hierarchical traffic grooming with label stacking, and
BFD/OAM mechanisms. The link failure detection performance of BFD/OAM
functions for MPLS TE-LSP is evaluated.

Keywords: DiffServ-over-MPLS, QoS, ForCES, BFD, OAM, Network Processor.

1 Introduction

In next generation Internet, various QoS-guaranteed realtime broadband multimedia
services, such as video telephony, multimedia teleconference, IP-TV and video-on-
demand, should be provided based on IP/DiffServ-over-MPLS transit networks with
efficient traffic engineering [1]. For end-to-end QoS-guaranteed multimedia service
provisioning, the virtual overlay transit network for each DiffServ class-type must be
continuously monitored for available bandwidth and edge-to-edge packet delivery
performance, such as delay, jitter, and packet loss/error rate[1].

IETF BFD (Bidirectional Forwarding Detection) has been designed to detect faults
in the bidirectional path between two forwarding entities with protocol independent to
physical layer and path types [2-5]. BFD also provides the continuity checking

 * This research was supported by the MIC, under the ITRC support program supervised by the

IITA.
** Corresponding author.

 Management of DiffServ-over-MPLS Transit Networks with BFD/OAM 137

functions of data link layer as OAM (operation, administration and maintenance), and
the link management protocol (LMP) of WDM optical link. The most important
function of BFD is protocol-independent fast detection of data link failure on any kind
of path between two nodes, including direct physical links, virtual circuits, tunnels,
MPLS LSPs, multi-hop routed paths, and uni-directional links, so long as there are
some return paths. Except SONET/SDH transmission systems, fast link failure
detection and fault restoration are not mostly supported by physical layer. In order to
provide link failure detection and fault restoration within 50 ms (as in the automatic
protection switching of SONET/SDH), the BFD/OAM continuity check must be
performing at 5 ~ 10 ms interval, and dedicated hardware functions of network
processor are required.

IETF ForCES (forwarding and control element separation) standards [6-9] aim to
define a framework and associated mechanisms for exchange of information between
the logically separate functionality of the control plane (including routing protocols,
admission control, and signaling) and the forwarding plane (including fast packet
processing such as packet forwarding, queuing, and header editing). The standard
separation mechanism of ForCES allows the control plane and forwarding plane to
innovate in parallel while maintaining interoperability [5]. In distributed/parallel
IP/MPLS packet switching architecture, the control plane functions and the data
forwarding plane functions should be carefully distributed to increase the processing
capacity by parallelism while minimizing the inter-module communication overhead.

In this paper, we design and implement the management functions of DiffServ-
over-MPLS transit network with BFD/OAM in ForCES architecture for QoS-
guaranteed broadband realtime multimedia service provisioning. The proposed BFD
and ForCES functions are implemented with Intel 2400 network processor, where
BFD/OAM packets for MPLS TE-LSP are exchanged every 5 ~ 10 ms for
performance measurements and link failure detection. The operations of BFD/OAM-
based fault detection and performance measurement are controlled via distributed
control plane with ForCES architecture for large scale IP/MPLS router using multiple
network processors in each network interface card (NIC).

The rest of this paper is organized as follows. Section 2 describes the related work
on BFD/OAM, ForCES, and distributed OSPF function. In Section 3, we explain the
implementation of BFD/OAM functions for DiffServ-over-MPLS transit networks
with hierarchical TE-Links. Section 4 analyzes the overall performance of the
proposed BFD/OAM functions for DiffServ-over-MPLS transit networks, and finally
we conclude this paper in section 5.

2 Background

2.1 Bidirectional Forwarding Detection

BFD is a protocol intended to detect faults in the bidirectional path between two
forwarding engines, including physical interfaces, subinterfaces, data link(s), and to
the extent possible forwarding engines themselves, with potentially very low
latency[2-5]. It operates independent of transmission media, data protocols, and
routing protocols. An additional goal is to provide a single mechanism that can be

138 S.-H. Yoon, D. Siradjev, and Y.-T. Kim

used for continuity checking and QoS measurement (including delay, jitter, and
packet error/loss) over any transmission media, at any protocol layer, with a wide
range of detection times and overhead, to avoid a proliferation of different methods.

BFD includes following important characteristics [2]: i) It must be simple, fixed-
field encoding to facilitate implementations in hardware, ii) It should be independent
of the data protocol being forwarded between two systems; BFD packets are carried
as the payload of whatever encapsulating protocol is appropriate for the medium and
network, iii) BFD must be path-independent. BFD can provide failure detection on
any kind of path between systems, including direct physical links, virtual circuits,
tunnels, MPLS LSPs, multi-hop routed paths, and unidirectional links, so long as
there is some return paths. BFD also provides the continuity checking functions of
data link layer as OAM, and the link management protocol (LMP) of WDM optical
link.

2.2 ForCES (Forwarding and Control Element Separation)

IETF ForCES aims to define a framework and associated mechanisms for
standardizing the exchange of information between the logically separated
functionality of the control plane (including routing protocols, traffic engineering link
maintenance, admission control, and signaling) and the forwarding plane (including
per-packet processing, packet forwarding, queuing, and protocol data unit (PDU)
header editing). Fig. 1 shows examples of control elements (CEs), forwarding
elements (FEs), and their interactions using ForCES protocol. Having standard
mechanisms allows CEs and FEs to be developed by different vendors and
interoperate with each other [6-9]. ForCES will enable rapid innovation in both
control and forwarding planes while maintaining interoperability. Scalability is also
easily provided by ForCES architecture where additional forwarding or control
capacity can be added to existing network elements without the needs of big change
in system architecture.

Control
Element (CE)

Forwarding
Element (FE)

ForCES Protocol

User defined
control

applications

Routing
Protocols

(OSPF, BGP)

Signaling
Protocols

(RSVP-TE)

ForCES Interface

ForCES Interface

Longest
Prefix Matching

Forwarding

Packet
Classification

Metering &
Marking Traffic shaper

Per-class-type
queuing

Network
Address

Translation

Control
Element (CE)

Forwarding
Element (FE)

ForCES Protocol

User defined
control

applications

Routing
Protocols

(OSPF, BGP)

Signaling
Protocols

(RSVP-TE)

ForCES Interface

User defined
control

applications

Routing
Protocols

(OSPF, BGP)

Signaling
Protocols

(RSVP-TE)

User defined
control

applications

Routing
Protocols

(OSPF, BGP)

Signaling
Protocols

(RSVP-TE)

ForCES Interface

ForCES Interface

Longest
Prefix Matching

Forwarding

Packet
Classification

Metering &
Marking Traffic shaper

Per-class-type
queuing

Network
Address

Translation

Longest
Prefix Matching

Forwarding

Packet
Classification

Metering &
Marking Traffic shaper

Per-class-type
queuing

Network
Address

Translation

Fig. 1. Examples of control elements, forwarding elements and interactions with ForCES protocol

In ForCES architecture the physical forwarding elements may be implemented by
using multiple network processors, ASICs, general purpose processors, installed on

 Management of DiffServ-over-MPLS Transit Networks with BFD/OAM 139

line cards, daughter boards, mezzanine, or stand-alone boxes. The control element and
the forwarding element may be in close proximity (same room or small number of
hops) or in very short distance (same box or single hop). In real implementations, the
control elements may also be distributed on several functional modules for better
performance. For example, the link status monitoring and update function in OSPF
for multiple high-speed links in a large scale IP/MPLS router requires time
consuming processing, and can be distributed to multiple network processors that
control and manage multiple physical ports individually. Also, with distributed link
status monitoring module, we can implement fast fault discovery and fast link
restoration.

2.3 Distributed Control Plane with Distributed OSPF Link Status Monitoring
Supported by Bidirectional Forwarding Detection (BFD)

The control plane functions, such as IP routing protocols (OSPF, IS-IS and BGP, and
MPLS signaling (RSVP-TE), are generally implemented on a centralized controller
for the whole IP/MPLS router/switch. For better scalability and functionality, some
part of control functions may be carefully distributed to multiple functional modules
which utilize high-speed multiprocessing with network processor. As an example, the
periodic link status monitoring for each data link of OSPF can be distributed to each
network interface module that can exchange BFD/OAM message periodically with its
neighbor network interface module.

Traffic Engineering
Manager

(Backbone Trunk
LSP Information)

Constraint-based Shortest
Path First (CSPF) Routing

OSPF Link status data
gathering, LSDB update

Shortest Path Search
(Dijkstra’s Algorithm)

Connection setup/release
Resource Management
(Bandwidth allocation,
Wavelength allocation,
Resource status table)

RSVP-TE
Signaling

Traffic Engineering
Agent

(LSP Bandwidth Update)

IP Router / MPLS LSR (Label Switching Router)

LSP setup/releaseDistributed link status
monitoring / collection

MPLS Signaling Message

Network Management Message

Link Status
Database
(LSDB)

TE-LSP

TE-LSP

TE-LSP
TE-LSP

BFD/OAM

BFD/OAM

BFD/OAM

BFD/OAM

Traffic Engineering
Manager

(Backbone Trunk
LSP Information)

Constraint-based Shortest
Path First (CSPF) Routing

OSPF Link status data
gathering, LSDB update

Shortest Path Search
(Dijkstra’s Algorithm)

Connection setup/release
Resource Management
(Bandwidth allocation,
Wavelength allocation,
Resource status table)

RSVP-TE
Signaling

Traffic Engineering
Agent

(LSP Bandwidth Update)

IP Router / MPLS LSR (Label Switching Router)

LSP setup/releaseDistributed link status
monitoring / collection

MPLS Signaling Message

Network Management Message

Link Status
Database
(LSDB)

TE-LSP

TE-LSP

TE-LSP
TE-LSP

BFD/OAM

BFD/OAM

BFD/OAM

BFD/OAM

Fig. 2. Distributed Control Plane Architecture of IP/MPLS Router

Fig. 2 shows the functional architecture of distributed control plane, where the
OSPF link status data gathering and LSDB (Link Status Database) update in a large
scale IP/MPLS are distributed to multiple network interface modules that utilize high-
speed packet processing and parallel processing with network processor. BFD/OAM
function is implemented for each physical link or TE-LSP that is used for traffic
engineering trunk. The connection setup and release function can also be partially
distributed to network interface module for increased performance of control plane.

140 S.-H. Yoon, D. Siradjev, and Y.-T. Kim

When physical layer protocol supports a well defined OAM function, such as
SONET/SDH transmission system, the link status monitoring can utilize the
performance measurement and fault monitoring function of the physical layer. If the
physical layer protocol does not support well defined OAM functions as in Gigabit
Ethernet link, however, the IP/MPLS layer protocol must implement BFD
(bidirectional forwarding detection) function to detect the connectivity failure of each
data link. Within the network interface module where multiple network processors
might be used, the embedded processor (i.e., Xscale embedded processor in
IXP2400/2800) in each network processor can execute these partial control element
functions.

For fast detection of any connectivity failure in physical and logical data link
protocol layer between two network interface modules, the BFD should be used. For
example, in order to achieve the fault detection and recovery performance of the
SONET physical layer which is limited to 50 ms, the BFD message must be
periodically exchanged within every 5 ~ 10 ms, to enable the network interface
module to decide logical path/link failure based on 3 consecutive BFD message
losses.

3 Design of BFD/OAM for Management of DiffServ-over-MPLS
Transit Network

3.1 BFD/OAM for QoS-Guaranteed DiffServ-over-MPLS Service Provisioning
with Hierarchical Traffic Grooming

In order to guarantee the pre-configured QoS for DiffServ-over-MPLS, the virtual
overlay network for the class-type must be continuously monitored, and the available
bandwidth and edge-to-edge packet transfer delay must be continuously measured and
analyzed. Fig. 3 shows the traffic grooming with hierarchical MPLS TE-LSP label
stacking in DiffServ-over-MPLS virtual overlay networks, and their associated OAM
functions.

AF

EF
TE-Link BFD/OAM

AF
EF

EF

EF

Edge-to-Edge TE-LSP for EF, AF Traffic

TE-Link for EF, AF Traffic

Edge-to-Edge
BFD/OAM

AF

EF
TE-Link BFD/OAM

Autonomous System (AS) 1 Autonomous System (AS) 2

End-to-End
BFD/OAM

End-to-End
BFD/OAMEdge-to-Edge

BFD/OAM

packet
flows

through
access

networks
AF

EF
TE-Link BFD/OAM

AF
EF

EF

EF

Edge-to-Edge TE-LSP for EF, AF Traffic

TE-Link for EF, AF Traffic

Edge-to-Edge
BFD/OAM

AF

EF
TE-Link BFD/OAM

Autonomous System (AS) 1 Autonomous System (AS) 2

End-to-End
BFD/OAM

End-to-End
BFD/OAMEdge-to-Edge

BFD/OAM

packet
flows

through
access

networks

Fig. 3. Traffic grooming and associated OAM/BFD function

 Management of DiffServ-over-MPLS Transit Networks with BFD/OAM 141

Each network interface module can implement the BFD function for edge-to-edge
TE-LSP for each class-type, and for the aggregated TE-LSPs of a class-type between
adjacent IP/MPLS routers. BFD for each TE-LSP and TE-Link will send periodic
monitoring packet with time stamp to measure the packet transfer delay, jitter (delay
variation), packet error rate, and packet loss rate. The distributed control function will
update the link status periodically, and allow the centralized OSPF daemon to retrieve
the most up-to-date link information. If there is any abnormal condition on any TE-
Link or TE-LSP, the distributed control element on network processor should inform
the fault to the centralized OSPF daemon immediately.

3.2 Design of ForCES Based Distributed Control Plane

Fig. 4 depicts an example of highspeed packet switch architecture with multiple
control elements and forwarding elements distributed in multiple functional modules.
In this architecture a centralized controller with signaling functions will control the
overall routing and switching of user packet flows. The centralized controller is
usually implemented as a special control module in the router/switch node, or can be
implemented as a remote control node system. Partial control functions, such as link
monitoring of OSPF by BFD/OAM, may be distributed at each network interface
module where forwarding elements are collocated. Multiple forwarding engines are
used to support multiple physical link interfaces for 1 ~ 40 Gbps rate.

uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

CE
(Control Element)

CE
(Control Element)

CE
(Control Element)

Centralized Controller

Highspeed Switching Fabric / Bus / Shared Memory

CSIX CSIX CSIX

ForCES
protocol

ForCES
protocol

ForCES
protocol

TCP/IP Transport
Mapping Layer (TML)

uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

CE
(Control Element)

CE
(Control Element)

CE
(Control Element)

Centralized Controller

Highspeed Switching Fabric / Bus / Shared Memory

CSIX CSIX CSIX

ForCES
protocol

ForCES
protocol

ForCES
protocol

uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

CE
(Control Element)

CE
(Control Element)

CE
(Control Element)

Centralized Controller

Highspeed Switching Fabric / Bus / Shared Memory

uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

uEuEuEuEuEuEuEuE uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

uEuEuEuEuEuEuEuE uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

uEuEuEuEuEuEuEuE uEuEuEuEuEuEuEuE

FE (Forwarding
Element)

CE
(Control Element)

CE
(Control Element)

CE
(Control Element)

Centralized Controller

Highspeed Switching Fabric / Bus / Shared Memory

CSIXCSIX CSIXCSIX CSIXCSIX

ForCES
protocol
ForCES
protocol

ForCES
protocol
ForCES
protocol

ForCES
protocol
ForCES
protocol

TCP/IP Transport
Mapping Layer (TML)

Fig. 4. Distributed control elements and forwarding elements with multiple network interface
modules

One forwarding element may contain 1 ~ 2 network processors to support multiple
link/port interfaces, and each forwarding element is connected to a high-speed
switching fabric/bus or shared memory via CSIX (common switch interface) to
support packet switching among different forwarding element modules.

The ForCES protocol provides the communication functions among CE-FE for
resource discovery, establishment of associations, configuration, query and response,
event notification, redirection of IP packets, and heartbeat messaging. When the

142 S.-H. Yoon, D. Siradjev, and Y.-T. Kim

partial control element is collocated with forwarding elements on a network interface
module where multiple network processors are used, the communication between the
partial control elements and the forwarding elements may be implemented within the
same network interface module. So, the ForCES communication can be much simpler
than the communication among remote systems. The communication between the
centralized controller and the partially distributed control elements can be
implemented with TCP/IP transport mapping layer (TML) [10].

3.3 BFD/OAM with ForCES Functional Blocks on IXDP2400

Fig. 5 depicts the BFD/OAM component block diagram on Intel IXDP2400 platform.
The BFD/OAM configuration component provides interface functions, such as
session creation/deletion, BFD/OAM activate/deactivate, performance analysis, fault
detection and notification, and clock synchronization. BFD/OAM core component is
using BFD/OAM session table that contains the detailed information of the BFD
session for each TE-LSP. For each TE-LSP creation, the BFD session entry is created
and the BFD/OAM activity is initialized as default deactivated state. In this state
BFD/OAM does not transmit polling packets, but does respond to the polling packets
transmitted from remote side. When the control plane activates the BFD/OAM
function through ForCES protocol, the BFD/OAM core component starts periodically
transmitting polling packets and receiving BFD/OAM respond packets.

User Side

Kernel Side

BFD/OAM Configuration Utility

Forwarding Plane Control Plane

Control
P lane User
Interface

ForCES

Micro Engine

QMMPLS
ILM

BFD/OAM packets

Packets

Control Message

- BFD/OAM Configuration and control
- Interface for CPUI

BFD/OAM Core Component

- BFD/OAM pkt handler
- Session manager
- Fault detection

BFD/OAM Configuration Driver

- Interface between core
component and user space

- Fault notification handler

MPLS Core Component

- Exception MPLS pkt handler

BFD/OAM packets

User Side

Kernel Side

BFD/OAM Configuration Utility

Forwarding Plane Control Plane

Control
P lane User
Interface

ForCES

Micro Engine

QMMPLS
ILM

BFD/OAM packets

Packets

Control Message

- BFD/OAM Configuration and control
- Interface for CPUI

BFD/OAM Core Component

- BFD/OAM pkt handler
- Session manager
- Fault detection

BFD/OAM Configuration Driver

- Interface between core
component and user space

- Fault notification handler

MPLS Core Component

- Exception MPLS pkt handler

BFD/OAM packets

Fig. 5. BFD/OAM related functional blocks

BFD/OAM Core Component (CC) functional block diagram is shown in Fig. 6.
BFD/OAM CC maintains two basic data structures: BFD/OAM session table and
BFD/OAM active session list. BFD/OAM session table stores BFD related
information about bi-directional link. BFD/OAM active sessions list store sessions
that are currently checking their link status. BFD/OAM active sessions list entries and

 Management of DiffServ-over-MPLS Transit Networks with BFD/OAM 143

BFD/OAM sessions table entries are cross-linked, to avoid search of entries and allow
faster processing. MPLS CC provides couple validation message handling to allow
BFD/OAM CC to know whether LSPs in the couple are valid or not. Also if any LSP
participating in BFD/OAM session does not exist anymore by some reason (e.g.,
removed), BFD/OAM CC is informed that LSP couple is not valid anymore.
BFD/OAM configuration driver registers fault notification handler in BFD/OAM CC
and it is called once any link changes its status.

MPLS microblock forwards all packets containing Router Alert label to the MPLS
CC as exception, which forwards them to BFD/OAM CC. BFD/OAM CC packet
handler processes the packet according to usual BFD processing. If received packet is
polling, response is sent, if received packet is response, timestamp of last received
packet and average Round-Trip Time (RTT) is updated. Also, if the link is DOWN,
when the response is received, its status is changed to UP and fault notification
handler is invoked to inform control plane about link status change.

BFD/OAM

Message

Handler

BFD/OAM Active

Sessions List

BFD/OAM

Connection

Check

BFD/OAM

Packet

Handler

BFD/OAM

Sessions Table

BFD/OAM CC

BFD/OAM

Configuration

Driver

MPLS CC

in_port in_label

Out LSP handle

Average RTT

Last RX Time Stamp

Pointer_list entry

flags reserved

U V

2 bits

2 words

4 bytes

8 bits

UP – Link status Entry is valid BFD/OAM packet

BFD/OAM packet

Control Message

Fig. 6. BFD/OAM Core Component Functional Block Diagram

BFD/OAM core component creates a separate thread for active sessions list
traversal. When the traversal starts, time is saved, and next traversal is scheduled after
5 ~ 10 ms. If the traversal takes more than 5 ~ 10 ms, next traversal is scheduled
immediately after the previous is finished. Linked list entries and timestamps are
accessed by one thread at the same time to avoid data corruption. During traversal
BFD/OAM packets are transmitted for each active session, and also time difference
between current time and last received packet timestamp is calculated. If this
difference exceeds the pre-defined limit (i.e., 15 ms for BFD/OAM interval of 5 ms),
connection is marked as DOWN, and fault notification handler is executed.

3.4 Clock Synchronization Among Distributed BFD/OAM Modules

Clock synchronization among network processors is another important issue for
correct analysis of the packet delivery delay of the link or tunnel. In order to increase

144 S.-H. Yoon, D. Siradjev, and Y.-T. Kim

Fig. 7. NTP based clock synchronization of BFD/OAM modules

the clock precision for link failure detection, the time clock of BFD/OAM transmitter
and receiver must be synchronized in micro-second order.

We enhanced the network time protocol (NTP) version 4 [18] implemented in
Monta Vista Embedded Linux system on IXPD2400, to synchronize the network
processors. Fig. 7 shows the NTP based clock synchronization for BFD/OAM. The
system clock in each network processor is synchronized with higher precision (less
than 11 us) with enhanced NTP protocol with time stamp in micro-second order.

4 Implementation and Performance Analysis of Distributed
Control Plane on Intel IXDP2400 Platform

4.1 Implementation of BFD/OAM on Intel IXP2400 Network Processor

In real implementation of large scale IP/MPLS router/switches, each network
interface module will include 2 ~ 10 optical ports, multiple network processors,
shared memory, and optional switching fabric block with CSIX (common switch
interface). The network interface modules and backbone switching module will
comprise the forwarding element (FE) function. The control element (CE) will be
mostly implemented on the system controller board that contains signaling
protocols (RSVP-TE), routing protocols (OSPF or ISIS, BGP), and open service
architecture (OSA) interface. Some part of the control element function should be
distributed on each network interface module to increase the scalability and fast
processing. For the scalability of control plane and packet forwarding plane, the
overall system must be optimized in parallelism while minimizing the inter-
module communication overhead.

We implemented the proposed distributed control plane on IXDP 2400 network
processor development platform and Linux host machine. Centralized control plane
function of OSPF daemon is implemented on a remote Linux host machine, and BFD
and OAM functional modules are implemented on the embedded Xscale processor in
IXP2400. The communication between OSPF daemon and the BFD/OAM module is
implemented with TCP/IP socket, and one IXP2400/2800 network processor controls

 Management of DiffServ-over-MPLS Transit Networks with BFD/OAM 145

4 ports in IXDP2400 (10 ports in IXDP2800) of 1 Gbps Gigabit Ethernet interface.
For each port, a dedicated thread of embedded Linux is created which periodically
sends / receives BFD/OAM packet to/from its neighbor. BFD standard defines uni-
directional link status monitoring with return path. In our implementation, for
efficient processing of bidirectional link status monitoring and analysis, we use
piggyback mechanism in BFD/OAM packet exchange.

Fig. 8 shows the BFD/OAM packet which includes fields of discriminators, Tx and
Rx intervals, minimum response Rx interval, sequence number, time stamps for delay
measurements, total transmitted packet count and size for packet loss/error analysis.
In current implementation, the BFD/OAM packet is sent every 5 ~ 10 msec,
containing the time stamps and packet transmission statistics data. The receiving
thread records the arrival time of the BFD/OAM packet, checks the packet reception
statistics data from the micro engine that handles the input port, compares the
transmission statistics data from the BFD/OAM packet, and replies a BFD/OAM
packet with piggybacked response data.

My Discriminator

Your Discriminator

Desired Min TX Interval

Required Min RX Interval

Required Min Echo RX Interval

LengthVers Detect MultDiag P F C A D RSta

Auth LenAuth type Authentication Data…

BFD/
Mandatory

BFD/
Optional

4 bytes

Request TX Time stamp

Seq Number

Ack Number

TX packet counter RX packet counter

TX byte counter

Request RX Time stamp

Response TX Time stamp

RX byte counter

OAM

My Discriminator

Your Discriminator

Desired Min TX Interval

Required Min RX Interval

Required Min Echo RX Interval

LengthVers Detect MultDiag P F C A D RSta

Auth LenAuth type Authentication Data…

BFD/
Mandatory

BFD/
Optional

4 bytes

Request TX Time stamp

Seq Number

Ack Number

TX packet counter RX packet counter

TX byte counter

Request RX Time stamp

Response TX Time stamp

RX byte counter

OAM

Fig. 8. BFD/OAM packet format

4.2 Analysis of Failure Detection Performance with BFD/OAM

Fig. 9 shows the interaction between the control element and forwarding element with
BFD/OAM function. The control element configures the operation mode of
BFD/OAM function, specifying the interval of BFD/OAM packet delivery and event
notification condition. The fault restoration procedure should be implemented as an
additional network management function. For faster link failure detection, the
BFD/OAM packet delivery interval should be shortened.

146 S.-H. Yoon, D. Siradjev, and Y.-T. Kim

Failure

FE/
BFD(Tx)

FE/
BFD(Rx)

BFD_Control

BFD_Response

CE
(i.e., OSPFD)

Activate BFD/OAM

FE_Event_Notification
(link failure)

ForCES (FLEX)
messages

BFD
Packet exchange

timeout with no 3
consecutive responses

(15 or 30 ms)

5ms or 10ms
interval

Failure

FE/
BFD(Tx)

FE/
BFD(Rx)

BFD_Control

BFD_Response

CE
(i.e., OSPFD)

Activate BFD/OAM

FE_Event_Notification
(link failure)

ForCES (FLEX)
messages

BFD
Packet exchange

timeout with no 3
consecutive responses

(15 or 30 ms)

5ms or 10ms
interval

Fig. 9. Procedure of BFD packet exchange

In order to provide 50 ms link-failure restoration performance, as in SONET
transmission system, we configure periodic BFD/OAM packet exchange, and if 3
consecutive BFD/OAM response packets do not arrive in expected time (i.e., 15 or
30 ms), it determines that a link failure occurred, and sends a link failure
notification.

Table 1 shows the link failure detection time with BFD/OAM that has been
implemented on Intel IXP2400 network processor. As shown in Fig. 5, the
BFD/OAM core component periodically generate BFD/OAM packet periodically
through MPLS core component that delivers the BFD/OAM packets through TE-LSP
for link fault & performance management. When 3 consecutive BFD/OAM packet
losses are used to indicate link failure detection, around 8 ms was taken to determine
the link failure occurrence. As BFD/OAM period is reduced from 10 ms to 5 ms, the
link failure detection time can be shortened from 38.029 ms to 23.095 ms.

Table 2 shows the overhead of BFD/OAM for TE-LSP. As the BFD/OAM interval
is shortened, the transmission rate of BFD/OAM increases, and thus the overhead for
the TE-LSP. When the TE-LSP transmission rate is more than 10 Mbps, however, the
overhead of BFD/OAM with 5 ms interval is less than 1 %. Another consideration is
the processing time for BFD/OAM by the network processor. In Intel IXP2400
network processor, the maximum number of active sessions is limited by 77 and 38
because of the processing speed limit of Xscale processor at the BFD/OAM interval
of 10 ms and 5 ms, respectively.

Table 1. Link failure detection time with BFD/OAM

BFD/OAM
period

Link failure
detection time

Remark

10 ms 38.029 ms Excluding propagation delay
5 ms 23.095 ms Excluding propagation delay

 Management of DiffServ-over-MPLS Transit Networks with BFD/OAM 147

Table 2. BFD/OAM overhead

Polling interval TE-LSP
Transmission Rate 10 ms 5 ms

1 Mbps 5.4400% 10.8800%
10 Mbps 0.5440% 1.0880%
100 Mbps 0.0544% 0.1088%
622 Mbps 0.0087% 0.0175%

1 Gbps 0.0054% 0.0109%
2.4 Gbps 0.0023% 0.0045%
10 Gbps 0.0005% 0.0011%

Maximum number
of active sessions

(IXP2400)
77 38

5 Conclusion

In this paper, we designed and implemented the management functions of DiffServ-
over-MPLS transit network with BFD/OAM in ForCES architecture for QoS-
guaranteed broadband realtime multimedia service provisioning. The proposed BFD
and ForCES functions are implemented with Intel IXP 2400 network processor,
where BFD/OAM packets for MPLS TE-LSP are exchanged every 5 ms or 10 ms for
performance measurements and link failure detection. The operations of BFD/OAM-
based link failure detection and performance measurement are controlled via
distributed control plane with ForCES architecture for large scale IP/MPLS router
using multiple network processors in each network interface card (NIC).

We analyzed the processing overhead and maximum number of active BFD/OAM
session that can be configured on IXP2400 network processor. With the BFD/OAM
functions with less than 5 ms interval, we could implement protocol-independent fast
link failure detection within 23 ms (excluding the propagation delay) without
sophisticated link failure detection in physical layer. The proposed BFD/OAM
function also provides performance measurement of delay, jitter, packet loss/error for
TE-LSPs in DiffServ-over-MPLS virtual overlay transit networks. The measure QoS
parameters of TE-LSPs are used in the constraint-based shortest path first routing for
QoS-guaranteed multimedia service provisioning across multiple domain networks.

References

1. Young-Tak Kim, Hae-Sun Kim, and Hyun-Ho Shin.: Session and Connection
Management for QoS-guaranteed Multimedia Service Provisioning on IP/MPLS
Networks. Proceedings of ICCSA2005 (LNCS 3481). (2005) 157 ~ 168

2. IETF Bidirectional Forwarding Detection (bfd) working group.: http://www.ietf.org/
html.charters/bfd-charter. html

3. D. Katz, et. al.: Bidirectional Forwarding Detection. IETF Internet Draft (2005)
4. D. Katz, et. al.: BFD for IPv4 and IPv6 (Single Hop). IETF Internet Draft (2005)
5. D. Katz, et. al.: BFD for Multihop Paths. IETF Internet Draft (2005)

148 S.-H. Yoon, D. Siradjev, and Y.-T. Kim

6. L. Yang, et. al.: ForCES Architecture Framework. IETF RFC 3746 (2004)
7. A. Doria.: ForCES Protocol Specification. IETF Draft, draft-ietf-forces-protocol-01.txt

(2004)
8. A. Audu, et. al.: Forwarding and Control Element Separation IP Transport Mapping Layer.

IETF Draft, draft-audu-forces-iptml-00 (2004)
9. Furquan Ansari, et. al.: ForCES Intra-NE Topology Discovery. IETF Draft, draft-ansari-

forces-discovery-01.txt (2004)
10. Hormuzd Khosravi, et. al.: TCP/IP based TML (Transport Mapping Layer) for ForCES

protocol. IETF Draft (2004)
11. Raul Aggarwal, et. al.: BFD for MPLS LSPs. IETF Internet Draft (2005)
12. Douglas E. Comer.: Network Systems Design using Network Processors. Prentice Hall

(2004)
13. Bill Carlson.: Intel Internet Exchange Architecture and Applications. Intel Press (2003)
14. Erik J. Johnson and Aaron R. Kunze.: IXP2400/2800 Programming. Intel Press (2003)
15. Intel IXP2400/IXP2800 Network Processors – Microengine C Language Support

Reference Manual (2003)
16. Intel Internet Exchange Architecture Software Development Kit – Software Framework

Installation Guide, Intel (2004)
17. Intel Control Plane – Platform Development Kit, Intel (2004)
18. Network Time Protocol (NTP) Distribution (2005)

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 149 – 160, 2006.
IFIP International Federation for Information Processing 2006

Detecting Bottleneck in n-Tier IT Applications Through
Analysis

Gueyoung Jung1, Galen Swint1, Jason Parekh1, Calton Pu1, and Akhil Sahai2

1 CERCS, Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30332

{gueyoung.jung, galen.swint, jason.parekh, calton}@cc.gatech.edu
2 HP Laboratories

Palo-Alto, CA
akhil.sahai@hp.com

Abstract. As the complexity of large-scale enterprise applications increases,
providing performance verification through staging becomes an important part
of reducing business risks associated with violating sophisticated service-level
agreement (SLA). Currently, performance verification during the staging proc-
ess is accomplished through either an expensive, cumbersome manual approach
or ad hoc automation. This paper describes an automation approach as part of
the Elba project supporting monitoring and performance analysis of distributed
multi-tiered applications that helps in bottleneck detection. We use machine-
learning to determine service-level objectives (SLOs) satisfaction and locate
bottlenecks in candidate deployment scenarios. We evaluate our tools with
TPC-W, an on-line bookstore, and RUBiS, an on-line auction site.

Keywords: Bottleneck detection, n-tier application, Decision tree, SLOs, Elba.

1 Introduction

The increasing complexity of enterprise applications has emphasized the importance of
verifying and validating the configuration performance prior to production use. While
functional properties are typically verified during system integration and testing, per-
formance as specified in SLOs of SLA is verified and validated by a pre-production
process referred to as staging. Since a failure to fulfill SLA requirements results in busi-
ness losses, staging has the critical role of verifying and validating the deployment plan
to cover a wide range of system configurations and workloads. Current staging processes
have been largely manual, augmented occasionally with ad hoc automation scripts, and
these processes have become increasingly error-prone and costly in terms of time and
effort. To reduce costs and increase the coverage of staging, the Elba project seeks to
automate staging and tuning for n-tier applications in a distributed environment [4].
Automated staging and tuning uses high-level requirement specifications and translates
them into both staging deployment and workload parameter settings which are then used
for execution in a staging environment. Monitors first collect performance data, followed
by analysis which automatically identifies performance deficiencies. Generating and ana-
lyzing performance data to uncover SLOs satisfaction and performance bottlenecks are
significant challenges to realizing tiered, self-tuning applications.

150 G. Jung et al.

Our prior work in the Elba project, represented in Figure 1, reported on the challenges
of automatically mapping design specifications into deployment tool specifications for
production and provided a solution using a code generation and translation tool [4][5].

Elba: Automated, Iterative
Staging

Cauldron

Mulini
Staging

Deployment

Redesign/
Reconfiguration

Analyzer

Staging
Environment

Staging
Environment

PoliciesPolicies

DeploymentDeployment

Staging/
Deployment
Code

Staging/
Deployment
Code

Analyzed
results

Analyzed
results

Deployment/
Resource
assignment

Deployment/
Resource
assignment

Analyzed
results

Analyzed
results

(1)

(2) (3)

(4)

(5)

TBLTBL

Elba: Automated, Iterative
Staging

Cauldron

Mulini
Staging

Deployment

Redesign/
Reconfiguration

Analyzer

Staging
Environment

Staging
Environment

PoliciesPolicies

DeploymentDeployment

Staging/
Deployment
Code

Staging/
Deployment
Code

Analyzed
results

Analyzed
results

Deployment/
Resource
assignment

Deployment/
Resource
assignment

Analyzed
results

Analyzed
results

(1)

(2) (3)

(4)

(5)

TBLTBL

Fig. 11. Staging in Elba is an automated and iterative process. (1) Cauldron converts the policy
documents into resource and deployment assignments. (2) Mulini re-maps resource assign-
ments and application staging test guideline (TBL) to generate three types of code: instru-
mented application code, deployment code, and monitoring/analysis code. (3) A deployment
tool installs and configures the application and then executes it. (4) Monitoring data is fed into
analysis tools, and (5) the result of the analysis is handed to an engine to generate recommenda-
tions for policy changes. In this paper, we focus on (4), highlighted by black boxes, for the
automated monitoring and analysis using generated code from Mulini code generator. Note that
dashed boxes are on progress.

This paper presents our work on collecting data and analyzing bottlenecks for a
significant number of performance metrics. It helps answers two questions:

• Does the application configuration meet performance requirements? This question
is answered by observing metrics that correspond to policy objectives in SLOs.

• If the requirements are not met, then where in the configuration is the bottleneck?
This question should be answered by examining metrics data establishing, first,
what metrics are relevant, and second, which metrics best represent the bottleneck.

Neither task is trivial, but both are valuable for staging and production. Of course,
over-provisioned systems can meet SLOs, but this entails additional capital outlays,
maintenance, and sometimes over-engineering of the software itself [8]. Systematic,
automated staging mitigates the risks of under- and over-provisioning and can provide
valuable application behavior information applicable to the production application.

The contribution of this paper is an approach to support automated monitoring,
analysis, and reporting by applying machine-learning in the context of staging. This
automated approach will assist service providers in answering the previous two ques-
tions while preventing resource wastage through over-provisioning. With Mulini code
generator improved from [4], our approach uses policy documents to generate metrics
monitoring and performance analysis code and hooks into a machine-learning tool for

1 We have slightly improved the figure of Elba used in [4] and [12].

 Detecting Bottleneck in n-Tier IT Applications Through Analysis 151

automated bottleneck detection. We compared different classifiers and decided that
the decision tree classifier (J48) was more robust in detecting bottlenecks [12]. In this
article, we evaluate the accuracy of our bottleneck detection approach by analyzing
two well-known benchmarking applications2 that have differing bottleneck profiles,
TPC-W and RUBiS.

The remainder of this paper is organized as follows. Section 2 presents the chal-
lenges and our approach to providing analysis support in the Elba project. Section 3
describes the evaluation environment, and Section 4 presents evaluation results for
TPC-W and RUBiS. Section 5 discusses related work, and Section 6 presents our
conclusions.

2 Automated Staging and Analysis

2.1 Challenges

For a distributed n-tier application, staging is an important, complex task that entails
repeated tests over an extended period of time; the system and configuration are re-
fined until they meet performance requirements. If performed early in the application
development cycle, staging can provide crucial feedback that helps steer application
development by identifying bugs, performance shortfalls, “hotspots,” and resource
waste. Increasing application complexity makes staging worth automating to enable
faster, earlier testing.

Staging may share some tools and techniques with production, but three important
factors differentiate application staging from production. First, the hardware available
in a staging environment mirrors but may not replicate exactly the production envi-
ronment. Perfect duplication would provide higher application assurance once staged,
but involves high costs in terms of initial expenditures and ongoing maintenance. To
best utilize an approximate environment that minimizes the costs requires staging the
application multiple times to establish predictive performance trends. Each staging
iteration tests one particular application configuration and may involve multiple stag-
ing trials under varying staging parameters. A second differentiator is that applica-
tions may require additional fine-grained implementation to ascertain bottlenecks
accurately which must be removed from the production code. Finally, staging requires
the generation of synthetic workloads that stress the application similarly to produc-
tion environments in a limited time period.

Automated analysis adds challenges to the staging process. First, automated analy-
sis entails the orchestration of several tasks and may drive multiple executions with
slightly different staging parameterizations. Second, automated analysis requires sys-
tem and application instrumentation derived from performance requirements to record
metrics data. Third, it requires the construction of an analysis, decision, and detection
process which can answer the two questions presented in the introduction.

Automated analysis tools must translate policy-level documents into functional ar-
tifacts that become part of the staging process. Service-level indicators (SLIs) are

2 In this paper, they are used as exemplar distributed multi-tiered e-commerce applications with

defined metrics rather than as benchmarks; our results can not be used for performance com-
parisons outside this paper.

152 G. Jung et al.

obtained from the SLA and its components, SLOs; these are translated into metrics
and staging parameters. Furthermore, administrator/operator policies that may govern
aspects such as acceptable resource usage must also be mapped into metrics. Test-
specific information, such as machine locations, testing times, and workload, must be
incorporated. Once recorded, a custom analysis engine automatically processes the data
and compares its results against performance goals set forth in policy specifications.

Even automating bottleneck detection from gathered data requires the recognition
and resolution of several problems. First, a single trial may not provide enough infor-
mation to determine bottlenecks – a metric may appear “maxed” out even though it
really reflects normal operating levels. In such cases, several trials of varying work-
loads are required to establish operating baselines and trends. Interactions between
metrics can also make bottleneck detection difficult. For example, CPU usage and
network throughput may trend in parallel, but only the CPU is the bottleneck. Finally,
bottleneck detection requires sorting through copious metrics data. The total number
of metrics varies with the number of both hardware and software components in the
system, and they can be categorized generally as either application-level (e.g., the
number of threads, the number of database connections, and elapsed query time) or
system-level (e.g., CPU and memory utilization) metrics.

To detect bottlenecks and sort through the myriad metrics produced during moni-
toring, we employ an automated classifier. The input to the classifier is the first de-
rivative of the metrics, since we are interested in trends. It is first trained by inputting
the metrics with the result of a SLO-evaluator, a tool generated for deciding the viola-
tion of the SLOs. The output of the classifier is metrics whose derivatives correlate
strongly to SLOs violation. From these identified metrics, we discover the bottlenecks
of the system.

2.2 Automating Monitoring and Analysis

Our approach to automated staging and analysis occurs within the context of the Elba
project [4]. The project goal is to first realize iterative staging to determine the inade-
quacies of application performance, then evaluate the results, and finally enable
automated tuning of the system to meet the expected performance objectives. In par-
ticular, to integrate our automation for monitoring and analysis, we extended Elba’s
Mulini code generator which employs XML/XSLT techniques with Aspect Oriented
Programming (AOP) paradigm to create the necessary code for monitoring and analy-
sis, including the instrumentation of source code for application-level metrics, and for
the generation of the analysis code. Interested readers for code generation and Mulini
can refer to [4][9] for more details. The metrics data can then be fed to a machine-
learning tool to identify performance bottlenecks. The Analysis addresses the two
questions posed in the introduction, namely,

Does the application configuration meet its performance requirements?
This must be answered for each trial. Mulini generates an SLO-evaluator with policy-
specific code that computes the individual satisfaction of the component SLOs. The
SLO-evaluator uses data collected by the synthetic workload generators and computes
application-specific throughput and average response time. Once the SLOs satisfac-
tion is determined, overall SLA satisfaction can be determined.

 Detecting Bottleneck in n-Tier IT Applications Through Analysis 153

If the requirements are not met, then where in configuration is the bottleneck?
This question is answered with aggregated data from multiple trials. If SLA is not
met, the tools begin a three-step bottleneck detection process to correlate performance
shortfalls and metrics. The detection process requires performance data from a series
of trials. The first trial subjects the application to a low synthetic workload, and each
subsequent trial increments the workload until consecutive trials fail the SLA. For
example, a trial for a retail store application may begin with 10 concurrent simulated
users, and then in each subsequent trial the number of concurrent simulated users in-
creases by 10 over the previous trial until the SLA is violated for 70, 80, and 90 users.

In subsequent analysis, the first step is to determine the bottleneck tier. For each
tier, the average duration spent by each service request is computed, and we identify
the bottleneck tier as tier with the fastest growing duration (change in duration divided
by the change in synthetic workload). The second step is to select, from the metrics of
the bottleneck tier, the highly utilized metrics as candidate indicators. The assumption
is that high utilization of a resource implies high demand from the application and a
potential bottleneck. This also helps distinguish between highly-correlated metrics,
such as bandwidth and CPU usage. To be considered a candidate indicator, a metric
must either surpass 90% utilization or some threshold value as specified by a policy
document, heuristic, or system administrator. The third step in bottleneck detection is
to discover the metrics indicating bottlenecks using the aggregated performance data
from all trials. For our applications and metrics, we have found that using the change in
a metric from trial to trial provides a reliable indicator for correlating a metric to SLOs
violation. The change, effectively a first derivate of the metric, will drop from some
positive factor (utilization increases) towards around zero (utilization constant) when
the underlying resource is fully utilized. In comparison, a non-bottleneck metric can
continue to increase – constant growth does not correlate a change in SLOs satisfac-
tion. In other words, our bottleneck detection searches out the metric that best corre-
lates to reduced SLOs satisfaction (i.e., greater SLOs violation).

For the third step mentioned above, we apply machine-learning to form a decision
tree where tree nodes embody if/then decisions based on growth in a metric (the delta
metric value) and whose leaves embody overall SLOs satisfaction. After training, the
set of nodes traced from a leaf (SLOs satisfaction) to the root will be a set of inequali-
ties that is able to distinguish the leaf prediction attribute from the other prediction
attributes. We categorize the satisfaction levels as quintiles since the decision tree
classifier must have nominal types for prediction attributes. Five categories balance
enough categories to allow correlations with each category to still collect multiple
trials from the training set. By inspecting the generated decision tree, the bottleneck
detection process is able to find the metric that was identified to have the highest cor-
relation to SLOs. In situations where the decision tree consists of multiple metrics, the
metric that appears most often in the tree will be selected as the highest potential bot-
tleneck. To illustrate the bottleneck detection process, we present a sample scenario
where CPU is the bottleneck metric and memory is shown to be high but not consid-
ered a bottleneck as it is cached data that accounts for most of the memory (the
cached data will be replaced if an application requires additional memory). In Figure
2 (b), the utilization for both CPU and memory is shown along with the SLOs satis-
faction at each workload trial. The first step for bottleneck detection is taking the
difference of each metric’s utilization across the change in workload trials. The trends

154 G. Jung et al.

resulting from this are shown in Figure 2 (c) where the delta CPU utilization is some-
what linear until flattening out at 0% (in which case its utilization reaches 100%), and
the delta memory utilization remains mostly constant around 0%-1%. By feeding this
data to a decision tree classifier, we obtain a sample tree similar to Figure 2 (a). In this
case, the CPU metric was chosen at each node as its delta is most correlated to the dif-
ferent SLOs satisfaction categories. Memory was not chosen as it is not possible to use
the delta memory utilization to differentiate each of the SLOs satisfaction categories.

3 Evaluation Environment

We evaluated the described automation approach by using TPC-W, an on-line book-
store application for a transactional web-based e-commerce benchmark [2][3], and
RUBiS, e-commerce application implementing the core features of an online auction
site [2]. These applications have differing performance characteristics, as described in
[2]. In both, customer interaction is simulated by remote simulated browsers that send
and receive HTTP messages. Each simulated browser starts from a home interaction
and executes another interaction after “thinking” for a random period of time. The
visitation path is governed by a chosen transition matrix which encodes probabilities
for visiting the next page according to current visiting page. For our tests, we chose
shopping transition and bidding transition models for TPC-W and RUBiS, respec-
tively, since these are the most representatives of the workload of these applications
as described in [2][4].

0

20

40

60

80

100

10 30 50 70 90 110

Num of Users

0

20

40

60

80

100

20 40 60 80 100 120

Num of Users

CPU utilization Memory utilization

SLO satisfaction

Change in CPU > 20%

True False

100% SLO
Satisfaction Change in CPU > 1%

25% SLO
SatisfactionChange in CPU > 7%

75% SLO
Satisfaction

50% SLO
Satisfaction

True False

True False

(a)

(b)

(c)

0

20

40

60

80

100

10 30 50 70 90 110

Num of Users

0

20

40

60

80

100

20 40 60 80 100 120

Num of Users

CPU utilization Memory utilization

SLO satisfaction

Change in CPU > 20%

True False

100% SLO
Satisfaction Change in CPU > 1%

25% SLO
SatisfactionChange in CPU > 7%

75% SLO
Satisfaction

50% SLO
Satisfaction

True False

True False

(a)

(b)

(c)

Fig. 2. (a) decision tree, (b) metric utilization, and (c) delta graph

In our evaluation, we used two software architectures common in the e-commerce
domain: Java servlets for TPC-W and Enterprise Java Beans for RUBiS. A minimum
configuration of the TPC-W in our evaluation consists of a web server (Apache), a
servlet engine (Apache Tomcat), and a database server (MySQL) each running on a
dedicated host; a minimal TPC-W installation requires three machines. A minimal
RUBiS configuration comprises a web server (Apache), a servlet engine (Tomcat), an
EJB server (JOnAS), and a database server (MySQL). The servlet engine and EJB
server (the application tier) share a single machine. Beginning with these minimal

 Detecting Bottleneck in n-Tier IT Applications Through Analysis 155

configurations, we iterate through more complex configurations by employing higher-
performance machines or adding new machines to each bottleneck tier until a con-
figuration satisfies the given SLA.

We employ two classes of hardware in our evaluation. A low-end machine, L, is a
Pentium III 800MHz dual-processor with 512 MB memory, and a high-end machine,
H, is a Xeon 2.8GHz dual-processor with 4GB memory. A configuration may com-
bine these two classes of hardware. For instance, the L/2H/L configuration represents
one low-end machine for a web server, two high-end machines as application servers,
and one low-end machine for a database server. All machines are connected through
100 Mbps Ethernet. For basic cost accounting of the configurations, we assign low-
end machines a cost of $500 and high-end machines a cost of $3500.

4 Evaluation Results

4.1 Automated Analysis for TPC-W

Consistent with [2], the SLO-evaluator indicates that the L/L/L configuration for TPC-
W fails the SLA of 10.7 WIPS with average response times less than 500 ms at staging
with 150 concurrent simulated users. This triggers the process of the automated bottle-
neck detection with aggregated monitoring results of the L/L/L configuration, which is
adjusted, and then re-staged iteratively until a configuration satisfies the SLA.

From the first step of the automated bottleneck detection process, the automated bot-
tleneck detection identifies the database server tier as the bottleneck tier. Figure 3 shows
the results of application-level monitoring in the L/L/L configuration of TPC-W. Mulini
weaves monitoring code with the TPC-W application source code to record response
times elapsed in database
queries and execution for the
presentation and business
logic of “BestSeller” interac-
tion, a representative TPC-W
interaction. This figure shows
that the duration of the data-
base tier grows fastest. That
is, the database server tier
dominates the overall re-
sponse time of the interac-
tion. In fact, the average du-
ration for executing database
queries is about 89s while the
average duration both for
executing presentation and
business logic and for execut-
ing requests forwarding at
web server are about 1.3s when the synthetic workload generators run 150 concurrent
simulated users. Once the database server tier is identified as a bottleneck, the bottleneck
detection proceeds to the thresholding step, which focuses on metrics that indicate
high-resource utilization.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Num of Users

T
im

e
(m

s)

Overall Response time Duration in HTTP server
Duration in App. server Duration in DB server

Fig. 3. Average response time and duration in each tier of
BestSeller interaction

156 G. Jung et al.

Figure 4 (a) displays each metric as a percentage of its maximum capability. Any
metric not reaching 90% utilization is automatically dropped from bottleneck consid-
eration. We can see from the figure that the metrics reaching the 90% threshold are
the CPU and overall memory usage.

The final step of bottleneck detection is training the J48 decision tree classifier
(WEKA toolkit’s implementation of the C4.5 decision tree [6]) to locate metrics that
most influence the SLOs satisfaction. Our classifier is trained with the nine derivative
metrics values and the first order derivatives of the metrics to identify trends rather
than the values of metrics to SLOs satisfaction. In our experience using only metric
values can lead to false conclusions about which metrics are the real bottlenecks as is
illustrated in this case by overall memory utilization. In Figure 4 (a), we see that the
overall memory usage value is about 98% under a load of 100 concurrent simulated
users. Note that the memory usage of database processes is very low. If we turn our
attention to the derivatives of the metrics in Figure 4 (b), our inquiries are guided a
different direction. The trend of the memory usage derivative is nearly constant. In
this case, it turns out that memory is not the bottleneck because the high utilization

-40

-20

0

20

40

60

80

100

20 30 40 50 60 70 80 90 100

Num of Users

P
er

ce
n

ta
g

e

CPU Overall Memory Process Memory

Memory Page Swap Disk I/O Throughput Network Throughput

SLO Satisfaction

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Num of Users

P
er

ce
n

ta
g

e

CPU Overall Memory Process Memory
Memory Page Swap Disk I/O Throughput Network Throughput
SLO Satisfaction

-40

-20

0

20

40

60

80

100

20 30 40 50 60 70 80 90 100

Num of Users

P
er

ce
n

ta
g

e

CPU Overall Memory Process Memory

Memory Page Swap Disk I/O Throughput Network Throughput

SLO Satisfaction

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Num of Users

P
er

ce
n

ta
g

e

CPU Overall Memory Process Memory
Memory Page Swap Disk I/O Throughput Network Throughput
SLO Satisfaction

 (a) (b)

Fig. 4. For the TPC-W database tier, (a) metric values and (b) their derivatives

stems from OS caching. Taking the derivative screens out linearly increasing metrics,
which correlate but have adequate headroom for growth. The metric with the highest
correlation to SLOs satisfaction is the CPU usage since the inequality “change in CPU
usage > 20” can be used to differentiate the 100% SLOs satisfaction. The decision
tree further differentiates the 75% SLOs satisfaction with the inequality “change in
CPU usage > 2 and change in CPU usage < 15”.

Since the CPU of the database server tier limits performance, we set Elba to first in-
crease the number of low-end database server machines. This approach is much cheaper
than the approach employing a few high-end machines in terms of configuration cost.
The results of several iterations are shown in Figure 5. We see that only the L/L/H2L
configuration (cost $5500), in which we use one high-end and two low-end machines
as database servers, and the more-costly L/L/2H (cost $8000) configuration satisfy
the given SLOs (configurations arranged by increasing cost). To show that neither the
web server nor the application server is the bottleneck, we set Elba to conduct

 Detecting Bottleneck in n-Tier IT Applications Through Analysis 157

 (a) (b)

Fig. 5. TPC-W iterative staging results (a) WIPS and (b) overall average response time

extra staging with the H/H/H configuration. Fig. 5 shows that the performance results
of both the L/L/H and the H/H/H configurations are almost identical in terms of WIPS
and overall average response time even though we use high-end machines for both the
web and the application servers. Therefore, H/H/H configuration is discovered as an
over-provisioning.

Figure 6 breaks performance into per-interaction SLOs which must meet a 90% SLOs
satisfaction level. Configurations that employ only cheap machines like L/L/3L cannot
meet the SLOs in most interactions of the TPC-W. Using a single high-end as database
server, L/L/H, also fails the SLOs for “BestSeller” and “BuyConf”. The L/L/H2L con-
figuration narrowly meets these SLOs, and L/L/2H is clearly sufficient. From this stag-
ing result, the service provider can choose either a configuration at lower cost with less
growth potential (i.e., L/L/H2L) or higher cost with high growth potential (i.e., L/L/2H).

Fig. 6. TPC-W, per-interaction 90% SLOs satisfaction

158 G. Jung et al.

4.2 Automated Analysis for RUBiS

Our SLO-evaluator indicates the L/L/L fails the target SLA of 25.7 WIPS and overall
average response time of less than 500 ms under a load of 360 concurrent simulated
users. This triggers the process of the automated bottleneck detection just as we have
done with the TPC-W evaluation.

In the first step with “SearchItemsInCategory” interaction, we found that the appli-
cation server tier dominates the overall response time of the interaction. In fact, the
average duration for executing presentation and business logic (i.e., time spent in
servlets and EJBs) is about 28s while the average duration in database server tier for
executing database queries is about 30ms, and web server tier for forwarding requests
and responses 104ms with 360 concurrent users.

0

20

40

60

80

100

120

30 60 90 120 150 180 210 240 270 300 330 360

Num of Users

P
er

ce
n

ta
g

e

CPU Overall Memory Process Memory
Memory Page Swap Disk I/O Throughput Network Throughput
SLO Statisfaction

-100

-80

-60

-40

-20

0

20

40

60

80

100

60 90 120 150 180 210 240 270 300 330 360

Num of Users

P
er

ce
nt

ag
e

CPU Overall Memory Process Memory
Memory Page Swap Disk I/O Throughput Network Throughput
SLO Satsifaction

0

20

40

60

80

100

120

30 60 90 120 150 180 210 240 270 300 330 360

Num of Users

P
er

ce
n

ta
g

e

CPU Overall Memory Process Memory
Memory Page Swap Disk I/O Throughput Network Throughput
SLO Statisfaction

-100

-80

-60

-40

-20

0

20

40

60

80

100

60 90 120 150 180 210 240 270 300 330 360

Num of Users

P
er

ce
nt

ag
e

CPU Overall Memory Process Memory
Memory Page Swap Disk I/O Throughput Network Throughput
SLO Satsifaction

 (a) (b)

Fig. 7. For RUBiS app server tier, (a) metric values and (b) derivative values

Figure 7 (a) displays that the only metrics reaching the 90% threshold are the CPU
and overall memory usage. In the final step, the decision tree classifier is trained us-
ing eleven instances. In Figure 7 (a), we see that the overall memory usage value is
about 98% under a load of 360 concurrent users. However, its trend linearly increases.
In Figure 7 (b), the trend of the memory usage derivative is first nearly constant and
then erratic. Taking the derivative screens out the jittery metrics, which have no corre-
lation, and linearly increasing metrics, which correlate but have adequate headroom
for growth.

The metric with the highest correlation to the SLOs satisfaction is CPU usage since
the inequality “change in CPU usage > 4” can be used to differentiate the 100% SLOs
satisfaction. The decision tree would be able to further differentiate SLOs satisfaction
with a more fine-grained distinction since the CPU reaches its peak of near-100%
utilization and the derivatives approach much smaller values. The inequality “change
in CPU < 1.5 and change in CPU > -1” distinguishes the 50% SLOs satisfaction.

5 Related Work

Argo/MTE [1] uses automation and code generation via XSLT to evaluate middle-
ware implementations. The Weevil framework supports the management of testing in

 Detecting Bottleneck in n-Tier IT Applications Through Analysis 159

widely distributed systems again using a generative programming approach [11].
Weevil’s focus has been on automating deployment and workload generation for
applications utilizing overlay networks. Our work targets the enterprise n-tier IT envi-
ronment and applications and emphasizes the re-use of existing policy-level specifica-
tions for automation of both performance testing and bottleneck identification with
machine-learning technique.

Te-Kai et al. [10] have provided a capacity sizing tool to recommend cost-effective
hardware configuration for integrated business processes; their tool is tailored to the
WebSphere InterChange server. It assumes a prototype of the system is not available
for system staging. Instead, it relies on similar previously benchmarked systems to
predict capacity. The Elba project is geared towards staging an application that will be
deployed to a production without pre-existing performance data. Our approach for
bottleneck detection shares similarities with [7], but their work targets production
systems to forecast problems; our work intervenes during application design to locate
candidate bottleneck points, and our system also emphasizes automation support for
testing alternative designs.

6 Conclusion

With the increasing complexity of large-scale enterprise applications, effective stag-
ing can ensure the SLA performance goals of complex application configurations.
The goal of the Elba project is to automate iterative staging. The main contribution of
this paper is the automated monitoring and performance analysis of large-scale appli-
cations through a decision tree approach for bottleneck detection assisted by code
generation techniques. From declarative specifications of distributed n-tier applica-
tions, we generated the code to collect, process, and analyze performance data (e.g.,
SLOs satisfaction levels) to locate performance bottlenecks in configurations being
staged.

Our evaluation results of TPC-W and RUBiS demonstrated the feasibility and ef-
fectiveness of automating the monitoring and performance analysis in the staging
process. By generating and running various configurations, our tools analyzed the
SLOs satisfaction levels, found potential bottlenecks, and guided the reconfiguration
process towards the lowest cost solution. The analysis tool utilized simple machine-
learning techniques to classify the resource consumption metrics and find potential
bottlenecks.

References

[1] Cai, Y., Grundy, J., and Hosking, J.: Experiences Integrating and Scaling a Performance
Test Bed Generator with an Open Source CASE Tool. Int. Conf. on Automated Software
Engineering, Linz, Austria, Nov. 2004.

[2] Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., and Zwaenepoel, W.: Performance
Comparison of Middleware Architectures for Generating Dynamic Web Content. Int.
Middleware Conf., Rio de Janeiro, Brazil, June 2003.

[3] García, D., and García, J.: TPC-W E-Commerce Benchmark Evaluation, IEEE Computer,
Feb. 2003.

160 G. Jung et al.

[4] Swint, S. G., Jung, G., Pu, C., and Sahai, A.: Automated Staging for Built-to-Order Ap-
plication Systems. Network Operations and Management Symposium, Vancouver, Can-
ada, April 2006.

[5] Sahai, A., Pu, C., Jung, G., Wu, Q., Yan, W., and Swint, S. G.: Towards Automated De-
ployment of Built-to-Order Systems, Distributed Systems; Operation and Management,
Barcelona, Spain, Oct. 2005.

[6] WEKA distribution. http://www.cs.waikato.ac.nz/ml/weka.
[7] Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., and Chase, J.: Correlating Instrumenta-

tion Data to System States: A building block for automated diagnosis and control. Operat-
ing System Design and Implementation, San Francisco, CA, USA, Dec. 2004.

[8] Sauvé, J., Marques, F., Moura, A., Sampaio, M., Jornada, J., and Radziuk, E.: SLA De-
sign from a Business Perspective, Distributed Systems: Operation and Management, Bar-
celona, Spain, Oct. 2005.

[9] Swint, S. G., Pu, C., Consel, C., Jung, G., Sahai, A., Yan, W., Koh, Y., and Wu, Q.:
Clearwater - Extensible, Flexible, Modular Code Generation. Int. Conf. on Automated
Software Engineering, Long Beach, CA, USA, Nov. 2005.

[10] Te-Kai, L., Hui, S., and Kumaran, S.: A capacity sizing tool for a business process inte-
gration, Int. Middleware Conf., Toronto, Ontario, Canada, Oct. 2004.

[11] Wang, Y., Rutherford, M., Carzaniga, A., Wolf, A.: Automating Experimentation on
Distributed Testbeds, Int. Conf. on Automated Software Engineering, Long Beach, CA,
USA, Nov. 2005.

[12] Parekh, J., Jung, G., Swint, S, G., Pu, C., and Sahai, A.: Comparison of Performance
Analysis Approaches for Bottleneck Detection in Multi-Tier Enterprise Applications, Int.
Workshop on Quality of Service, Yale University, New Haven, CT, USA, June, 2006.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 161 – 172, 2006.
IFIP International Federation for Information Processing 2006

Fast Extraction of Adaptive Change Point Based
Patterns for Problem Resolution in Enterprise Systems

Manoj K. Agarwal, Narendran Sachindran, Manish Gupta, and Vijay Mann

IBM India Research Labs, Block 1, IIT campus,
Hauz Khas, New Delhi - 110016, India

{manojkag, nsachind, gmanish, vijamann}@in.ibm.com

Abstract. Enterprise middleware systems typically consist of a large cluster of
machines with stringent performance requirements. Hence, when a performance
problem occurs in such environments, it is critical that the health monitoring
software identifies the root cause with minimal delay. A technique commonly
used for isolating root causes is rule definition, which involves specifying
combinations of events that cause particular problems. However, such
predefined rules (or problem signatures) tend to be inflexible, and crucially
depend on domain experts for their definition. We present in this paper a
method that automatically generates change point based problem signatures
using administrator feedback, thereby removing the dependence on domain
experts. The problem signatures generated by our method are flexible, in that
they do not require exact matches for triggering, and adapt as more information
becomes available. Unlike traditional data mining techniques, where one
requires a large number of problem instances to extract meaningful patterns, our
method requires few fault instances to learn problem signatures. We
demonstrate the efficacy of our approach by learning problem signatures for
five common problems that occur in enterprise systems and reliably recognizing
these problems with a small number of learning instances.

Keywords: fault localization, patterns, problem signatures, change point
detection, adaptive learning.

1 Introduction

Modern enterprise systems are often required to provide services based on service
level agreement (SLA) specifications at minimum cost. SLA breaches typically result
in a significant penalty. Performance problems in these systems usually manifest
themselves as high response times, low throughput, or a high rejection rate of
requests. However, the root cause of these problems may be due to subtle reasons
hidden in the complex stack of this execution environment. For example, badly
written application code may cause an application to hang. Network problems like
non availability of a connection between an application server and a database server
can cause critical transactions to fail. Backup processes on a machine could cause
performance degradation of servers running on that machine. Further, various
components in such systems could have inter-dependencies which may be temporal or

162 M.K. Agarwal et al.

non-deterministic as they may change with changes in topology, application or
workload. This further complicates root cause localization.

A commonly used event correlation technique for localizing the root cause of
performance problems is rule definition [4]. In rule definition, all possible root causes
are represented by rules specified as condition-action pairs. Conditions are typically
specified as logical combinations of events, and are defined by domain experts. A rule
is satisfied when a combination of events raised by the management system exactly
matches the rule condition. Rule based systems while popular, suffer from two major
drawbacks. First, they need domain experts to define rules. Second, rules are
inflexible - they require exact matches and do not adapt as the environment changes.

Automatic learning of rules has been studied earlier by Hellerstein et al. [1]. They
discover patterns using association rule mining based techniques [14]. They observe
that when a fault occurs, it is usually accompanied by a burst of events. Additionally,
each fault is usually associated with an event pattern. To corroborate these findings,
we performed experiments on a multi-tier application running in a cluster. We
employed change point based monitoring of performance metrics to generate alarms.
The experiments consisted of several repetitions of different faults and resulted in the
following observations:

• Certain alarms always occur when a fault occurs, resulting in a pattern that is very
indicative of the underlying fault. This core set of alarms is repeated for every
occurrence of a particular fault under different operating conditions.

• A few alarms occur repeatedly. These alarms represent innocuous events that occur
during normal operation, and will probably not help in root cause analysis.

In this paper we present a method that exploits these properties to automatically
associate patterns of change point based alarms with a given fault. Unlike earlier
approaches [1], we can learn the problem signature for a fault with a very small
number of fault instances. Our method also adaptively updates problem signatures as
new information becomes available. Additionally, our method does not assume any
prior domain-expert knowledge, and it learns effective problem signatures based only
on feedback from the system administrator. Further, the problem signatures learned
by our method are flexible and do not require exact matches to locate a root cause.

The layout of this paper is as follows. Section 2 presents related work. Section 3
describes our learning method. Section 4 describes our system design. Section 5
presents experimental results. Section 6 discusses future work and conclusions.

2 Related Work

The most common approaches to fault localization include AI techniques [3] such as
rule-based techniques, model-based techniques, neural networks, decision trees,
model traversing techniques such as dependency graphs [5][11] and fault propagation
techniques [9] such as Bayesian networks and causality graphs.

As discussed in Section 1, automatic learning of rules has been studied earlier by
Hellerstein et al. [1]. They discover patterns using association rule mining based
techniques [14]. Additionally, each fault is usually associated with a specific pattern
of events. Association rule based techniques require a large number of sample

 Fast Extraction of Adaptive Change Point Based Patterns for Problem Resolution 163

instances before discovering “k-itemset” [16] in a large number of events. The
method presented in this paper overcomes this limitation and is able to discover
patterns with very few fault instances. Another drawback of their technique is their
reliance on pattern periodicity. Our method does not make any such assumption.

In another closely related work [9], the authors describe an event driven fault
diagnosis technique that employs incremental learning. The authors propose
techniques to rank a fault according to a “goodness” measure that allows multiple
simultaneous faults to be identified. Fault diagnosis is incrementally improved as
more symptoms become available. Although this technique is promising, it makes an
assumption about the presence of a symptom-fault map as an input. Such a map may
not be available in an enterprise environment. Our method makes no such assumption.

Several earlier approaches have used dependency analysis for fault localization. In
[5][11] the authors assume that the mechanism to generate events is already in place
and the root cause analysis algorithm analyzes these events in a systematic way using
certain properties of the executing environment such as a dependency tree. Alarms
relying on static dependencies between system components may be analyzed for
problem determination [7]. Katker et al. [12] also shows how the dependency graph
may be used to perform systematic analysis of a problem and identify the root cause
in the network fault management domain. In both these approaches, the authors
assume the presence of a dependency tree. These approaches may not work in
dynamic enterprise systems where dependencies are ephemeral.

Other related work [10][6] has focused on studying the behavior of the various
components and structural changes in the system and looking for anomalies in them.
These approaches usually isolate the problem to one system component. Thus, they
fall short of localizing the actual root cause and can only detect bottlenecks in the path
of transactions. In [10], the incoming requests are traced and the list of the
components used by several succeeded or failed requests are clustered to statistically
identify the set of failed components. In [6], an optimized set of synthetic transactions
is used to probe the system for possible problems. This technique puts additional load
on the system which may not be acceptable to customers in a production environment.
Further, constructing an optimized set of probes is an N-P hard problem.

In [8], a combination of probing (using fault injection) and dependency analysis is
used for fault localization. Dependency information is generated by Active
Dependency Discovery (ADD). ADD builds the system dependency graph by
individually perturbing the system components during a testing phase, while fault
injection is used at run-time. This technique suffers from similar disadvantages as [6].

Rule based systems such as [4] are used to define rules, and events are generated
based on satisfaction of these rules. In classical rule based systems, rules are specified
manually and they are static in nature i.e. they do not evolve automatically.

3 Learning Methodology

In this section we describe our method for learning patterns (or problem signatures1)
corresponding to faults that occur in enterprise environments. We assume that no two

1 We use the terms patterns, signatures and problem signatures interchangeably in this paper.

164 M.K. Agarwal et al.

faults occur simultaneously. The learning method operates on the premise that when a
fault occurs in a system, it is usually associated with a specific pattern of events. In
our system, these events correspond to abrupt changes in performance metrics.

The input to our learning method comprises of:

a. A sequence of time-stamped events representing change point based alarms that
arise from each application server in a clustered system;

b. Times of occurrence of faults at a given application server;
c. Input from a system administrator who correctly labels a fault when it occurs for

the first time, or when the method fails to detect it altogether;
d. Feedback from a system administrator to verify the correctness of our output.

The mechanism to provide the first two inputs is described in Section 4. We first
define two scores computed by our learner - co-occurrence score and relevance score,
and then describe our learning and matching algorithm.

3.1 Co-occurrence Score

Our learning method computes a co-occurrence score, or c-score, for every alarm that
is ever raised within a fixed time window around the occurrence of a fault. For a fault
F, the c-score measures the probability of an alarm A being triggered when F occurs.
The c-score is computed as follows

F

FA
c

#

)&(#=

Here)&(# FA is the number of times A is raised when F occurs and F# is the

total number of occurrences of F. The c-score for an alarm-fault pair ranges from 0 to
1. A high c-score indicates a high probability of A occurring when F occurs.

3.2 Relevance Score

Our learning method computes a relevance score, or r-score, for every single alarm
that it ever encounters. The r-score for an alarm is a measure of the importance of the
alarm as a fault indicator. An alarm has high relevance if it usually occurs only when
a fault occurs. The r-score for an alarm A is computed as follows

A

FaultA
r

#

)&(#
=

where)&(# FaultA is the number of times A is raised when any fault occurs in the

system, and A# is the total number of times A has been raised so far. The r-score for
an alarm ranges from 0 to 1. Note that the r-score is a global value for an alarm i.e.
there is just one r-score for an alarm unlike the c-score which is per alarm-fault pair.

An assumption here is that the system runs in normal mode more often than it does
in faulty mode. When this is true, alarms raised regularly during normal operation
have low r-scores, while alarms raised only when faults occur have high r-scores.

 Fast Extraction of Adaptive Change Point Based Patterns for Problem Resolution 165

3.3 Learning and Matching Algorithm

We present here our method for learning and matching fault patterns. The method
uses a pattern repository to store patterns that it learns. It starts with an empty
repository and adds patterns based on administrator feedback. If a fault occurs when
the repository is empty, our method just notifies the administrator that a fault has
occurred. After locating the root cause, the administrator provides a new fault label2.
Our method then records the alarm pattern observed around the fault, along with the
fault label, as a new signature. Each alarm in this signature is assigned a c-score of 1.

For every subsequent fault occurrence, our method uses the following procedure in
order to attempt a match with fault patterns that exist in the repository. Assume that

FS is the set of all the faults currently recorded in the repository. For each

fault FSF ∈ , let AFS represent the set of all the alarms A that form the problem

signature for F. Let each alarm A ∈ AFS have a c-score FAC | , when associated with a

fault F. Also, assume that the set of alarms associated with the currently observed

fault in the system is
CS . For each fault FSF ∈ , the learner computes two values, a

degree of match and a mismatch penalty. The degree of match rewards F for every
alarm in

CS that also occurs in
AFS . The mismatch penalty penalizes F for every

alarm in CS that does not occur in AFS .

To compute the degree of match for a fault FSF ∈ , the learning method first

obtains an intersection set CFS - a set of alarms common to AFS and CS

CFS AFS= CS∩ .

It then computes the degree of match
FD as follows

∑
∑

∈∀
∈∀

=
AFFA

CFFA
F SAC

SAC
D

|

|

The numerator in the above formula is the sum of the c-scores of alarms in the
intersection set CFS , and the denominator is the sum of the c-scores of alarms in

AFS .

The ratio is thus a measure of how well
CS matches with AFS . When a majority of

alarms (that have a high c-score) in
AFS occur in CS , FD is high.

To compute the mismatch penalty for a fault FSF ∈ , the learning method first

obtains a difference set MFS - a set of alarms that are in CS but not in AFS

MFS = CS - AFS

It then computes the mismatch penalty as follows

∑
∑

∈∀
∈∀

−=
CA

MFA
F SAR

SAR
M 1

2 Fault labels have a one to one correspondence with problem signatures in the repository.

166 M.K. Agarwal et al.

The numerator in the second term for the
FM formula is the sum of the r-scores of

alarms in
MFS , and the denominator is the sum of the r-scores of alarms in CS . By

definition, the r-score is high for relevant alarms and low for irrelevant alarms.
Hence, if there are mostly irrelevant alarms in MFS , the ratio in the second term would

be very low and
FM would have a high value.

Using
FD and

FM we compute a final ranking weight
FW for a fault F as,

FFF MDW *=

Once our method computes ranking weights for all faults in the repository, it presents
to the administrator a sorted list of faults with weights above a threshold. If no fault in
the repository has a weight above the threshold, it reports that there is no match.

The administrator uses this list to locate the fault causing the current performance
problem. If the actual fault is found on the list, the administrator accepts the fault.
This feedback is used by the learning method to update the c-scores for all alarms in

CS for that particular fault. If list does not contain the actual fault, the administrator

rejects the list and assigns a new label to the fault. The learner then creates a new
entry in the pattern repository, containing the alarms in

CS , each with a c-score of 1.

3.4 Matching Algorithm Example

We present here an example that explains the functioning of our method. Assume that

FS is the set of faults currently in the fault repository and =FS { 321 ,, FFF }. These

faults have the following signatures stored as sets of alarm and c-score pairs.
})35.0,(),0.1,(),0.1,{(3211 AAAS AF = ,)}75.0,(),0.1,(),75.0,{(5422 AAAS AF =

)}9.0,(),0.1,(),6.0,{(7653 AAAS AF =

Suppose we now observe a fault with a set of alarms },,,{ 6421 AAAASC = .

Assume that r-scores of these alarms are 4.01 =AR , 0.12 =AR , 9.04 =AR , 45.06 =AR .

The intersection of the alarms in
CS with 1AFS , 2AFS and 3AFS yields the sets

},{ 211 AASCF = , },{ 422 AASCF = and }{ 63 ASCF =

The degree of match for each problem signature is computed as

85.0
35.00.10.1

0.10.1
1 =

++

+
=FD , 7.02 =FD and 4.03 =FD

For mismatch penalties, we compute the difference of set CS from 1AFS , 2AFS , 3AFS

to obtain
 },{ 641 AASMF = , },{ 612 AASMF =

and },,{ 4213 AAASMF = .

The mismatch penalties are

51.0
45.09.00.14.0

45.09.0
11 =

+++

+
−=FM , 69.02 =FM and 16.03 =FM

 Fast Extraction of Adaptive Change Point Based Patterns for Problem Resolution 167

The ranking weights are 43.051.0*85.01 ==FW , 48.02 =FW , 06.03 =FW . With a

weight threshold of 0.4, the output list is 2F , 1F . Note that even though 1F has a higher

degree of match than 2F , 1F is second on the list due to a higher mismatch penalty.

4 System Design

We describe here our system design for providing inputs to the learning method. The
first input required by our method is a sequence of time-stamped alarms for each
server in the cluster. For this, we monitor and sample runtime performance metrics at
each server and use change point detection techniques such as difference of means [2]
to generate alarms. A learning component is implemented on each server, and a
pattern repository is shared amongst all learning components. The trigger for the
method comes from an SLA breach predictor (SBP) operating at each server.

The SBP triggers the learning method when it detects an abrupt change in response
time or throughput in the absence of any significant change in the input load on a
server. Once the learning component gets a trigger from the SBP, it fetches all the
alarms in a fixed time window around the current trigger. These alarms are then fed to
the learning method and it operates on them as described in Section 3. The output
from the learning method is a list of faults sorted in order of relevance. This list of
faults is sent to a central controller which takes one of the following actions:

a. If only one server reports a list of faults during a given time interval, a single list is
displayed to the administrator along with the name of the affected server.

b. If all running servers report a list of faults during a given time interval and the
most relevant fault is the same for all servers, it is assumed that the fault is at a
resource shared by all the servers, typically a database system. The controller
chooses the most relevant fault and displays that fault to the administrator.

c. If a subset of running servers report a list of faults during a given time interval,
this could either be caused by multiple independent faults or by a fault that
occurred on one server and has affected the runtime metrics of other servers due to
an “interference effect”. In our current design, the controller treats the two cases in
the same manner and displays the lists for all affected servers.

5 Evaluation

We describe in this section, our test-bed, three-tier application and workload
generator, system implementation, and our experimental results.

5.1 Test-Bed, Application and Workload

Our test-bed consists of eight machines: one machine hosting two load generators,
two request router machines, three application server machines, a relational database
server machine, and a machine that hosts the cluster management server. The back
end servers form a cluster, and the workload arriving at the routers is distributed to
these servers based on a dynamic routing weight assigned to each server. The

168 M.K. Agarwal et al.

machines running the back end servers have identical configurations. They have a
single 2.66GHz Pentium4 CPU and 1GB RAM. The machine running the workload
generators is identical except that it has 2GB RAM. Each of the routers have one
1.7GHz Intel Xeon CPU and 1GB RAM. The database machine has one 2.8GHz Intel
Xeon CPU and 2GB RAM. All machines run RedHat Linux Enterprise Edition 3,
kernel version 2.4.21-27.0.1.EL. The router and back end servers run the IBM
WebSphere middleware platform, and the database server runs DB2 8.1.

For our experiments, we ran Trade 6 [17] on each of the servers. Trade 6 is an end-
to-end benchmark that models a brokerage application. It provides an application mix
of servlets, JSPs, enterprise beans, message-driven beans, JDBC and JMS data access.
It supports operations provided by a typical stock brokerage application.

We used IBM WebSphere Workload Simulator [18] to drive our experiments. The
workload consists of multiple clients concurrently performing a series of operations
on their accounts over multiple sessions. Each of the clients has a think time of 1
second. The actions performed by each client and the corresponding probabilities of
their invocation are: register new user (2%), view account home page (20%), view
account details (10%), update account (4%), view portfolio (12%), browse stock
quotes (40%), stock buy (4%), stock sell (4%), and logoff (4%). These values
correspond to the typical usage pattern of a trading application.

5.2 Experimental Runs

In order to perform a detailed evaluation of our learning method over a number of
parameters and fault instances, we generated traces containing the inputs required by
our method and performed an offline analysis. The only difference from an online
version is that the administrator feedback was provided as part of the experimentation.

We implemented the breach predictor as a component that resides within one of the
routers in our test-bed. It subscribed to router statistics and logged response time
information per server at a 5 second interval. Each server in the cluster also monitored
and logged performance metric information. We ran a total of 60 experiments, each of
duration one hour (45 minutes of normal operation followed by a fault). The five
faults that we randomly inserted in our system were:

• CPU hogging process at a node hosting an application server
• Application server hang (created by causing requests to sleep)
• Application server to database network failure (simulated using Linux iptables)
• Database shutdown
• Database performance problem (created either by a CPU hog or an index drop).

We maintained a constant client load during individual experiments, and varied the
load between 30 and 400 clients across experiments. After obtaining the traces for 60
experiments, the learning and matching phase involved feeding these traces to our
method sequentially. This phase presents a specific sequence of alarms to the learning
method. In order to avoid any bias towards a particular sequence of alarms, we
repeated this phase a 100 times, providing a different random ordering of the traces
each time. For all our experiments we used a c-score threshold of 0.5.

 Fast Extraction of Adaptive Change Point Based Patterns for Problem Resolution 169

5.3 False Positives and Negatives

We first explore the performance of our learning method in terms of false positives
and negatives. We compute the false negative count as the number of times our
method does not recognize a fault. However, when our method sees a fault for the
first time, it does not count as a false negative. After completing all 100 runs, we
compute the average number of false negatives generated by our method.

False positives occur when a newly introduced fault is recognized as an existing
fault. We use the following methodology to estimate false positives. We randomly
choose a fault F and remove all traces containing F from the learning phase. We then
feed traces containing F to our method and calculate the number of times it is
recognized as an already observed fault. We repeat this procedure for each fault and
compute the average number of false positives.

 Fig. 1. False positives and negatives Fig. 2. Precision

Figure 1 shows the average percent of false positives and false negatives generated
by our method as we vary the ranking weight threshold between 10 and 100. Recall
that the ranking weight is our estimate of the confidence that a new fault pattern
matches with a pattern in our repository. Only pattern matches resulting in a ranking
weight above the threshold are displayed to the administrator.

As one would expect, when the threshold is low (20% or lower) we generate a
large number of false positives. This is because at low thresholds even irrelevant
faults are likely to generate a match. As we increase the threshold beyond 20%, the
number of false positives drops steadily, and it is close to zero at high thresholds
(80% or higher). Note that false positives are generated only when a new fault occurs
in the system. Since new faults can be considered to have relatively low occurrence
over a long run of a system, a false positive percent of 20-30% may also be acceptable
after an initial learning period. Our method generates few false negatives for
thresholds under 50%. For thresholds in the 50-70% range, false negatives range from
3-21%. Thresholds over 70% generate a high percent of false negatives.

Hence, there is a trade off between the number of false positives and negatives.
The curves for the two measures intersect when the ranking weight threshold is about
65%, and the percent of false positives and negatives is each about 13%. A good
region of operation for our method is between a weight threshold of 50-65%, with
more false positives at the lower end, and more false negatives at the higher end. An

170 M.K. Agarwal et al.

approach that we can use to obtain good overall performance is to start our method
using a threshold close to 65%. During this initial phase, it is likely that a fault
occurring in the system will be new, and the high threshold will help in generating
few false positives. As our method learns patterns, and new faults become relatively
rare, the threshold can be lowered to 50% in order to reduce false negatives.

5.4 Precision

If a fault is always detected but usually ends up at the bottom of the list of potential
root causes, the analysis is likely to be of little use. In order to measure how
effectively our method matches new instances of known faults, we define a precision
measure. Each time our method detects a fault, we compute a precision score using

the formula
F

iF

#

)1(# −− , where #F is the number of faults in the repository, and i is the

position of the actual fault in the output list. A false negative is assigned a precision of
0, and our method is not penalized for new faults not present in the repository. We
perform 100 iterations over the traces using the random orderings described above,
and compute the average precision.

Figure 2 shows average precision values for ranking weight thresholds ranging
from 10-100. We can see that our precision score is high for thresholds ranging from
10-60%. For thresholds ranging from 10-30%, the average precision is 98.7%. At a
threshold of 50% the precision is 97%, and at a threshold of 70% the precision is
79%. These numbers correspond well with the false negative numbers presented in
the previous section, and they indicate that when the method detects a fault, it usually
places the correct fault at the top of the list of potential faults.

5.5 Rate of Learning

We demonstrate in this section a key property of our learning method – it can learn a
relevant pattern for a fault given very few instances of the fault. To evaluate the rate
at which our method learns patterns, we perform the following experiments. We first
set a learning threshold which is the maximum number of instances of a fault that our
method can use in order to learn. Any fault instances over the learning threshold are
only used to evaluate the precision of our method, and cannot be used by the learner
to update its scores. We then run our method over each fault using several values of
the learning threshold, and obtain an average precision score for each threshold value.

Figure 3 shows precision scores for three values of the learning threshold, 1, 2, and
4. The precision values are shown for ranking weight thresholds ranging from 10-100.
We can see that when our method is provided with only a single instance of a fault, it
has precision values of about 90% when the ranking weight is 50%. This is only about
8% worse than the best possible precision score. At a ranking weight threshold of
70%, the precision is about 14% lower than the best possible precision.

This data clearly shows that our method learns patterns rapidly, with as few as two
instances of each fault required to obtain high precision. This is largely due to two
reasons. First, we use change point detection techniques to generate events and we
have found that they reliably generate unique patterns for different faults. Second, the
c-score and the r-score used by our method help us filter out spurious events.

 Fast Extraction of Adaptive Change Point Based Patterns for Problem Resolution 171

Fig. 3. Rate of Learning

6 Conclusions and Future Work

In this paper, we presented a novel technique for discovering change point based
adaptive patterns for problem resolution in enterprise systems. We demonstrated the
efficacy of our technique by learning the problem signatures for five common faults
that occur in enterprise systems and reliably recognizing these problems with high
precision. One of the main contributions of this paper is that we discover these
patterns quickly, with few fault instances. This is a significant improvement over
traditional data mining techniques which require a large number of fault instances to
discover patterns. The patterns generated by our method are flexible, in that they do
not require exact matches for triggering. Another significant contribution of our work
is that our technique can discover adaptive patterns i.e. if a fault pattern changes over
time due to reasons such as changes in topology, workload, application version, our
method automatically updates the pattern repository with the new pattern over time.

There are a few future directions to the work presented in this paper. One of the
issues that we intend to tackle is the absence of certain alarms during the problematic
phase. The absence of a particular alarm during the problematic phase may be as
indicative of a fault as the presence of other alarms. Our method currently does not
handle cases where significantly different patterns are generated for a single fault. An
extension to our method would associate more than one pattern to a fault if there is a
significant mismatch between the patterns. Another improvement to our technique is
the use of negative feedback from the administrator. In our future research, we also
intend to include events generated by sources other than the currently monitored
performance metrics, such as event logs.

References

1. Hellerstein J. L., Ma S., Perng C.: Discovering Actionable Patterns in Event Data. IBM
Systems Journal, Vol 41, No 3, 2002.

2. Agarwal M., Gupta M., Mann V., Sachindran N., Anerousis N., Mummert L.: Problem
Determination in Enterprise Middleware Systems using Change Point Correlation of Time
Series Data. 9thIEEE/IFIP Network Operations and Management Symposium (NOMS),
Vancouver, Canada, May 2006.

172 M.K. Agarwal et al.

3. Steinder M., Sethi A.:The present and future of event correlation: A need for end-to-end
service fault localization. SCI-2001, 5th World Multiconference on Systemics,
Cybernetics, and Informatics, Orlando, FL (July 2001), pp. 124-129

4. Appleby K., Goldszmidt G., Steinder M.: Yemanja A Layered Fault Localization System
for Multi-domain Computing Utilities. IM 2001

5. Gruschke B.: Integrated Event Management: Event Correlation Using Dependency
Graphs. DSOM 1998.

6. Brodie M., Rish I., Ma S., Odintsova N.: Active Probing Strategies for Problem Diagnosis
in Distributed Systems. IJCAI 2003

7. Gao J., Kar G., Kermani P.: Approaches to Building Self Healing Systems using
Dependency Analysis. IEEE/IFIP Network Operations and Management Symposium
(NOMS), April, 2004.

8. Brown A., Kar G., Keller A.: An Active Approach to Characterizing Dynamic
Dependencies for Problem Determination in a Distributed Environment. IM 2001.

9. Steinder M., Sethi A.: Non-deterministic Event-driven Fault Diagnosis through
Incremental Hypothesis Updating, In Integrated Network Management, VIII} (G.
Goldszmidt and J. Schonwalder (eds.)), pp. 635-648, Boston, MA: Kluwer Academic
Publishers, 2003

10. M. Y. Chen, E. Kıcıman, E. Fratkin, A. Fox, E. Brewer: Pinpoint: PD in Large, Dynamic
Internet Services, International Conference on Dependable Systems and Networks
(DSN'02), 2002.

11. Choi J., Choi M., Lee S.: An Alarm Correlation and Fault Identification Scheme Based on
OSI Managed Object Classes. IEEE International Conference on Communications,
Vancouver, BC, Canada, 1999, pp. 1547–51.

12. Katker S., Paterok M.: Fault Isolation and Event Correlation for Integrated Fault
Management. Integrated Network Management V, Chapman and Hall, May 1997.

13. Aguilera M. et.al.: Performance Debugging for Distributed Systems of Black Boxes. 19th
ACM Symposium on Operating Systems Principles, October 2003.

14. Agarwal R., Imielinski T., and Swami A.: Mining association rules between sets of items
in large databases. ACM SIGMOD Conference on Management of Data, pp. 207-216, May
1993.

15. Agarwal M., Appleby K., Faik J., Kar G., Neogi A., Sailer A.: Threshold management for
Problem Determination in Transaction Oriented e-Commerce Systems., 9th IFIP/IEEE
International Symposium on Integrated Network Management (IM 2005), May 2005.

16. Fu A., Kwong R., Tang J., "Mining N most interesting Itemsets" 12th International
Symposium on Methodologies for Intelligent Systems (ISMIS), Springer-Verlag, LNCS,
Charlotte, North Carolina, USA, Oct 11-14, 2000

17. IBM Trade Performance Benchmark Sample, http://www-306.ibm.com/software/
webservers/ appserv/was/performance.html

18. IBM Websphere Studio Workload Simulator, http://www-306.ibm.com/software/awdtools/
studioworkloadsimulator/

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 173 – 184, 2006.
IFIP International Federation for Information Processing 2006

Business-Driven Decision Support for Change
Management: Planning and Scheduling of Changes

Jacques Sauvé1, Rodrigo Rebouças1, Antão Moura1, Claudio Bartolini2,
Abdel Boulmakoul3, and David Trastour3

1 Departamento de Sistemas e Computação - University of Campina Grande (UFCG), Brazil
2 HP Laboratories Palo Alto, USA

3 HP Laboratories Bristol, UK
{jacques, rodrigor, antao}@dsc.ufcg.edu.br,

{claudio.bartolini, abdel.boulmakoul, david.trastour}@hp.com

Abstract. From the results of a web survey we carried out in 2006, the main
challenge in IT change management from a change manager’s perspective was
identified as planning and scheduling of changes. This paper begins to address
this problem by taking business considerations into account; this is done
through a business-driven IT management (BDIM) approach. A reference
architecture that follows BDIM principles is sketched; it includes a
mathematical model linking IT availability metrics to business objectives.
Monetary loss due to service level violations on service availability is used as
the main business metric. We present a numerical illustration of how the
derived metrics may support change management decisions in order to plan and
schedule changes to minimize adverse business impact.

Keywords: Change management, business-driven IT management, service
level management, Information Technology Infrastructure Library (ITIL),
business metrics, modeling, performance evaluation, business impact, decision
and negotiation support tools.

1 Introduction

IT management has become more user-centric and less service provider-dependent
with the popularity of the practices recommended by the Information Technology
Infrastructure Library – ITIL [3], which is used as the basis for the IT Service
Management framework – ITSM [8]. ITSM defines a number of processes that are
organized into 5 modules: security management; IT & communication infrastructure
management; application management; service support (incident, problem,
configuration, change and release management processes); and service delivery
(service level, capacity, availability, continuity and financial management for IT
services). Within the realm of ITSM, this paper focuses on the change management
process.

ITSM expresses goals and gives guidelines to IT managers for ensuring smooth
running of IT service delivery and support. For instance, the mission of the change

174 J. Sauvé et al.

management process is defined as “[ensuring] that standardized methods and
procedures are used for efficient and prompt handling of all changes, in order to
minimize the impact of any related incidents upon service” [3]. However, it falls
short of defining control objectives for IT. This shortcoming is addressed by the
COBIT framework (Control Objectives for Information and related Technologies) [2].
In order to gauge the maturity and quality of IT service delivery and support
activities, COBIT introduces a number of key performance indicators (KPIs) that
drive the process goals, which in turn are measured by process key goal indicators
(KGIs). Examples of key performance indicators for the change management process
are the number of emergency changes, or the number of changes that were rolled
back, in a change management context. For activities in the service delivery scope,
such as service level management, metrics such as service availability and reliability
are taken into account.

The first wave of management software (from the early 90’s), concentrated on
monitoring availability, resource consumptions levels, etc. In the last three or four
years, software tools have appeared that help with other IT management activities, in
particular with help desk and IT service support. These tools provide valuable help to
IT managers in making informed decisions on the actions to take to ensure the smooth
running of IT processes.

However, just because the IT systems are running smoothly, it does not follow that
the business that IT supports is best served by it. In order to ensure business-IT
alignment, metrics should be taken into account which are more business-oriented in
nature, such as cost, revenue or financial loss. This consideration is the basis for the
Business–Driven IT Management (BDIM) discipline [6]. BDIM steers ITSM towards
business alignment, i.e., to contribute to business results. This paper uses a BDIM
approach to address change management challenges.

BDIM attempts to gauge the impact that IT has on the business and aims at
rethinking IT management from this perspective. BDIM involves a new culture, tools
and decision–making processes that aim to help the business. A complete ITSM shift
to BDIM requires IT personnel or automated tools to use business metrics to gauge
the QoS offered to a business user. Although BDIM has been attracting mounting
research efforts, attempts at investigating the feasibility and options of spreading
BDIM applications to cover ITIL management processes are still scarce. Some recent
applications include incident prioritization [1], capacity planning [5], and automatic
change management process [4]. Embedding results of such efforts in tools for
automating decision and negotiation support is at its very beginning. This is
particularly true for the case of human-assisted change management processes. This
paper proposes a BDIM-based solution which could be embedded in a tool to support
decision and negotiation activities in a more generic, ITSM–based change
management process.

The remainder of the paper is organized into sections 2 through 7. Section 2
discusses current change management challenges as elicited by a survey performed in
early 2006. Section 3 begins to address some of these challenges by describing a
layered reference architecture for business-driven IT change management (BDIM-
CM) solutions. Section 4 details how metrics for the BDIM-CM solution may be
derived. Section 5 presents a numerical illustration on how the derived metrics may

 Business-Driven Decision Support for Change Management 175

support change management decisions in order to minimize adverse business impact.
Section 6 briefly examines competitive and related work, including the few tools
available on the market. In section 7 we draw our conclusions and give a preview of
our further work in this space.

2 Major Challenges in Change Management

The change management process comprises four groups of activities:

• Request For Change (RFC) acceptance, classification and processing;
• approval, planning of changes;
• execution, tests and reversal of changes;
• change evaluation.

Current state-of-the-practice solutions for change management suffer from several
acute problems, including the volume of changes, change complexity and
inappropriate tools. It appears that the most demanding challenges faced by technical
personnel in charge of change management lie in activities from the first two groups.
ITIL recommends that change classification be done according to change priority and
change category (which components are affected). Priority is set according to the
business importance of an RFC relative to other RFCs; category is determined based
on the availability of resources, risk to services and on the impact of the changes.
Planning items include scheduling, allocation of resources, budgeting, sequencing of
activities, back out plans and communication. According to results from a Web
questionnaire posted in the first quarter of 2006 [7], particular attention should be
devoted to planning and scheduling issues. The questionnaire respondents were ITSM
practitioners, all engaged in change management (some with over 10 years of
experience), from 21 companies worldwide. Seventeen of these companies already
have change management processes in place (11 use ITIL and 6 adopt other
practices); four are just starting to implement change management. Nine of the
companies are in the business of providing IT services (including consulting), 4 are
telecoms, 4 are in financial services and the others are either in government, health
care or manufacturing. Seven companies have yearly revenues over US$ 1 billion
while eight make under US$ 10 million annually. Questionnaire respondents who
follow ITIL change management process recommendations ranked the first 3 most
important change management challenges as being (Figure 1):

1. scheduling/planning changes (with 47 points out of a maximum 55, or over 85%);
2. high number of emergency changes (43 points or 78%); and
3. RFC scope ill-definition (40 points or 72%).

The survey also indicates that:

• adopters of an ad-hoc change management process (as opposed to a formal
process like ITIL’s) rank planning/scheduling as the most important challenge
(80%), together with “unauthorized changes”; unauthorized changes are a
problem to be expected in an ad-hoc process

176 J. Sauvé et al.

85% 80% 75% 73% 72% 67%

0%

20%

40%

60%

80%

100%

Plan/Schedule Emergencies RFC scope

ITIL process

Ad-hoc process

Fig. 1. Most frequent problems in Change Management

• “high number of emergency changes” is ranked second (73%) together with
“notification of people affected”;

• “RFC scope mal-definition” is ranked third (67%), but together with
“inconsistent Configuration Management DataBase (CMDB)” (again, a
possibly symptom of an ad-hoc process).

This paper contributes to addressing the most critical issues of change planning/scheduling
to minimize negative impact to a service provider’s business.

Properly addressing change planning and scheduling challenges is no trivial
endeavor. As commented by one of the survey respondents, “scheduling is non-trivial
due to people and process problems”. Changes take place in a very dynamic
environment: people become unavailable, business conditions vary and “urgent
changes” may materialize. Hence, change plans and schedules have to be adjusted
correspondingly. A change manager may have to build and consider several
plans/schedules before a given plan is actually implemented. In an outsourcing
environment, negotiating change windows with business clients is another
complicating, human-dependent factor. Typically, outsourcing agreements do not
provide explicit information on feasible time windows for scheduling changes that
affect the associated service. Since no contractual binding exists, windows may be
(and are) re-negotiated, causing re-planning and re-scheduling. The sheer volume of
requests for change – RFCs – makes the scheduling exercise very complicated. As an
example, the HP Managed Services organization handles 300 to 400 RFCs per
weekend for a single customer. Therefore change classification and planning are
currently driven by technical issues with little consideration for business needs or
priorities. The solution for (re-) scheduling and elaborating such diverse plans that we
begin to sketch in the next section can ease the lives of those responsible for the
change management process.

3 Business-Driven Planning and Scheduling of Changes

Figure 2 depicts a reference architecture for BDIM solutions for change management,
built upon a three-layer hierarchical model.

The bottom part of the figure shows objects from the IT and business
environments; on the IT side, this can include, for example, RFCs and the
Configuration Management Data Base (CMDB). Since a Service Level Agreement

 Business-Driven Decision Support for Change Management 177

(SLA) captures the business requirements imposed on the IT function, it sits at the
boundary between the two environments. From its inputs, the lower layer uses
business-IT linkage models to produce IT-business linkage metrics in the sense
defined in [6]: metrics that numerically capture relationships between IT causes and
their effects on business results. Examples of such metrics are: risk of adversely
affecting business operations if a change is not successful and the impact of an
unsuccessful or delayed change (such as potential financial loss). As will be seen in
the next section’s examples, these metrics are calculated from the probability of
violating an SLA, which in turn may depend on the change schedule. The solution
discussed here adopts impact as the linkage metric and uses the probability of SLA
violation to estimate it.

Linkage metrics are then fed to the middle layer – labeled decision support - where
decisions are made and used to steer activities of the change management process (to
the left of Figure 2) and/or to help negotiate change management process details –
such as change windows – with the IT client (at the top of the figure – negotiation
support).

Fig. 2. A hierarchical model for business-driven change management solutions

We propose to use the above reference architecture in a change management
setting according to the following BDIM approach. By knowing details of a given
RFC such as the affected components (called configuration items or CIs by ITIL), the
past history of service levels and service level objectives (SLOs), one can calculate
the probability of violating a given SLA if the change is implemented at a given time.
The business-IT linkage metrics produced by the linkage layer allow one to determine
the expected monetary loss that will potentially result from a given change schedule.
As a result, the change manager now has numerical business impact estimates from
which to choose the changes that should be implemented during a particular change
window. The past comments assume a known change window time. When this time

178 J. Sauvé et al.

must be negotiated with the client, impact metrics will be helpful in choosing
appropriate time windows to perform changes. The business perspective
introduced through the business-IT linkage model eases negotiations because
arguments are presented to the client in familiar business terms (in this case, as
potential financial loss).

4 Business-IT Linkage Model

This section develops a model to capture the impact of changes on the business.
Consider a scenario where a service organization provides support for IT services
subject to SLAs including an SLO that states a minimum availability. The client
organizations use the services to process “revenue-generating sessions”; an example
of such a service could be an e-commerce site where site visitors generate buying
transactions during sessions accessing the service.. The provider earns a fixed fee for
each successfully completed session and pays a penalty whenever the SLA is violated.
Whenever a service is down but the associated SLA is not (yet) violated, the provider
stops collecting fees on that service since no session can be serviced. If the SLA is
violated however, besides losing the contracted fees, the provider must pay a penalty
to the client at the end of the SLA evaluation period.

The business objective that we consider is to minimize the financial business
loss incurred by the provider due to imperfections of supporting IT services.
Changes to the IT infrastructure are “imperfections” in the sense that they may
force a service to be brought down to perform the changes; as a result, changes can
cause business loss. In our example, the episodes that can have an impact on the
business loss are violations of the minimum availability SLO and system downtime
due to changes.

• Violation of SLO on minimum availability. Due to penalties included as SLA
clauses and, more importantly, in order not to tarnish the service provider’s image,
SLA violation is frequently cited by change managers as a prime driver for
decision making during change planning and scheduling.

• System downtime. In our example, whenever the service is down and the
availability SLO is not violated, the provider stops collecting fees since no session
can be serviced. This has a direct impact on the business loss.

Next, we will estimate the likelihood and extent of impacting episodes due to
requested changes (subsection 4.1), and derive their impact on the business loss (4.2).

4.1 Probability of SLA Violation and Extent of System Downtime

In order to calculate business loss – in the next section – expressions for the
probability of SLA violation and the extent of system downtime must be obtained.

Before formalizing the analysis, let us informally explain what we seek. Imagine
that the change manager has a set of changes that may be implemented in the current
SLA evaluation period and that the SLA contains an SLO on service availability. Of
this evaluation period (which has duration T), duration t has already elapsed and the

 Business-Driven Decision Support for Change Management 179

change manager knows how service availability is standing up so far; in other words,
the past is known. The future is not known but may be estimated: certain changes may
be performed (or not) and they may bring down service, thus affecting the availability
metric. Given the knowledge of all that has occurred in the past, the set of changes
that may be considered and estimates of future availability, which changes should the
change manager choose to perform in the current SLA evaluation period so as to
minimize business loss?

We now formalize the problem and provide a solution. Let us first consider a
single IT service sj from the provider’s set of services, S={s1,...,s|S|} and assume that
the associated Service Level Agreement (SLA) in force for sj has a Service Level
Objective (SLO) on availability, Aj

min. Let the mean service availability for sj be
calculated over an evaluation period T 1, as determined by the associated SLA. This
mean availability takes on a different value over each evaluation period and it is thus
a random variable, denoted by Ãj. We indicate the cumulative distribution of the
service availability random variable with Fj(x) = Pr[Ãj ≤ x]. Without loss of
generality, let the current evaluation for availability start at time 0 and end at time T.
Let us examine the situation at a point in time, t, s.t. 0 ≤ t ≤ T when the change
manager must make scheduling decisions. Let the availability over period (t1,t2) be
Aj(t1, t2). The past mean availability over the time period [0,t] is known (it is
measured) and is simply: Aj(0,t). The future mean availability over time period [t,T] is
Aj(t, T). Finally the overall availability over the whole SLA evaluation period is Ãj =
Aj(0, T). Now, we ask: “At time t, what is the probability that the availability
threshold, Aj

min, specified in the SLA will be violated by time T?” The mean
availability, Aj(0, T), over the whole evaluation period, [0, T], can be calculated from
the mean values of past and future availability by summing up the uptime over both
time periods:

T

tTTtAttA

T

uptime
TAÃ jj

jj

))(,(),0(
),0(

−+
=== (1)

In the above, the term Aj(0,t)t is the uptime accumulated in the past and Aj(t,T)(T-t) is
the expected future uptime. Then the distribution for availability, given that time has
reached t, follows:

[] ⎥
⎦

⎤
⎢
⎣

⎡
−

−
≤=≤

tT

ttAxT
TtAtxTA j

jj

),0(
),(Pr),0(Pr (2)

Given that the probability distribution for availability is assumed to be the same over
any time period in the interval [0,T], we can now express Vj(t, T, Aj

min), the
probability, at time t, of violating the availability SLO for service sj by time T:

[] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=≤=
tT

ttATA
FtATAATtV jj

jjjjj

),0(
),0(Pr),,(

min
minmin (3)

1For simplicity we assume that all services have this same evaluation period.

180 J. Sauvé et al.

This result does not take into account the fact that, in the future, changes will be
implemented, that these changes may bring down the service and that the situation for
availability is actually worse that that given above. We now turn our attention to the
impact of changes affecting service sj. Let C = {c1, …, c|C|} be the set of all changes to
be considered by the change manager and let],0[TT c

n ⊆ be the time interval during

which a given change cn in C is performed. Notice that implementing cn may or may
not affect sj availability. Let service sj be provisioned with a set, Ij

s, of components
(Configuration Items or CIs, in ITIL parlance). If we let I={i1,...,i|I|} be the set of all

CIs in the CMDB, then II s
j ⊆ . Each change is subject to a plan that specifies the time

at which the change implementation will start, and a subset II c
n ⊆ of the CIs that

will be affected by change cn. The plan specifies which CIs will be brought down and
when, so that one can calculate the time at which service will be brought down (if it is
not already down) and the time at which it will be available again. The set of all
intervals during which service sj becomes unavailable within T is given by the union
of all sj–affecting change intervals, Tn

c, i.e.,

∪
∩ ∅≠∀

=
c
n

s
j IIn

c
n

s
j TT

|

 (4)

Now let ΔTj
s (a scalar) correspond to the total time period during which sj is

unavailable, i.e., the sum (disconsidering overlaps) of the durations of all change
intervals in Tj

s. Notice that all changes affecting service sj will be implemented after
the present moment (time t) so that any service downtime will need to be added to the
“future” part of the evaluation period. Observing that the time period between [t,T]
but outside the service downtime called for in the change plan still obeys the same
distribution of availability, we conclude that, with the changes planned for the current
evaluation period, the probability of violating the SLA for service sj is:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ−−
−

=
s
j

jj
jjj TtT

ttATA
FATtV

),0(
),,(

min
min (5)

In order to conclude the development, we need the cumulative probability
distribution function, Fj(x) = Pr[Ãj ≤ x]. A result from reliability theory [9] states that,
when the uptime (time-to-failure) and downtime (repair times) are exponentially
distributed, availability follows the two-parameter Beta distribution with parameters α
and β. The mean value for availability is simply E[Ãj] = α/(α+β). α and β are chosen
to match historical availability distribution data. Typical values are α = 7 and β =
0.03, yielding 99.57% availability averaged over several evaluation periods.

4.2 Impact of SLA Violations on Business Loss

We can now turn our attention to estimating business loss due to a single service sj.
Table 1 summarizes the parameters of the provider’s revenue model.

 Business-Driven Decision Support for Change Management 181

Table 1. Provider’s parameters for service sj

Principal impact function variables
),,(min

jj ATtV Probability of SLA violation, given the knowledge available at time t
s
jTΔ Service sj unavailability period due to implementation of change

selected by the change manager
Other impact function parameters

jπ Penalty ($) for service sj SLA violation

T SLA evaluation period for sj

jγ Session throughput for service sj

jσ Fixed fee ($) per successful session, for service sj

At time t, the expected provider financial loss for service sj during the current SLA
evaluation period ending at time T is given by:

j
s
jjjjj

p
j TATtVTtL σγπ ⋅Δ⋅+⋅=),,(),(min (6)

Notice that loss is a function of the time at which decisions are made (t) since, as time
passes, the duration of the “past” (period [0,t]) becomes larger, and availability
becomes more and more defined by what happened in the past.

In the case of multiple services S={s1,.sj..,s|S|} supported by the provider and
affected by multiple changes, the total expected provider loss at time t is:

),(),(
||

1

TtLTtLoss
s

j

p
js ∑

=
= (7)

5 Numerical Illustration of BDIM Support in Change
Management

Consider a scenario where a service provider offers services S={s1,s2,s3}: s1 is a web
auction service; s2 an e-commerce service; and s3 a database service. At time t = day
10, three changes appear on the change manager’s desk: service s1 is to be brought
down due to two changes to two of its supporting CIs: an operating system (CI1),
whose change (c1) is to be implemented in 3 hours; and, a DataBase Management
System (CI2), whose version upgrade (change c2) is expected to last 2 hours.
Furthermore, services s2 and s3 share a firewall (CI3) and do not use CI1 and CI2. A
firewall change (c3) is expected to last 4 hours. Table 2 lists SLA parameters for these
three services as well as the availability situation at day 10. Let T = 30 days (monthly
SLA evaluation).

Due to staff limitations, the change manager cannot do both {c1,c2} and {c3}
simultaneously. He must choose which set of changes to implement during the current
SLA evaluation period: should changes {c1,c2} or {c3} be done? Assume that there is
no overlap possible between c1 and c2. Table 2 indicates that s1 is the service with the

182 J. Sauvé et al.

greatest revenue stream ($24/s) and has good (past) availability. The combined
duration of the changes for this service (3 + 2 = 5 hours) will not cause SLA violation
over the current SLA evaluation period (at t=30 days). On the other hand, choosing to
implement c3 will cause the service s2 SLA to be violated, making the provider pay a
$10,000 penalty; SLA for service s3 will not be violated. If one disregards all other
change schedule influencing factors – such as political pressure from clients, concerns
with provider image, change roll-back problems and the cost of not executing a given
change – and if one simply analyzes SLA clauses and short-term past history, one
may be tempted to opt for implementing {c1,c2}, affecting s1 since this option is likely
to yield a smaller loss. This is an approach commonly employed by change managers
(avoid SLA violations!).

Table 2. Service configuration

Input Service s1 Service s2 Service s3

jγ (session/s) 16 12 13

jσ $ 1.5 $ 0.7 $ 0.8

jπ $ 30,000 $ 15,000 $ 10,000

min
jA 0.99 0.99 0.99

Aj(0, day 10) 0.998 0.992 0.9998

Let us now examine the situation in the light of business loss metrics (Figure 3).
This figure compares business loss for both alternatives (choosing {c1,c2}or { c3}) as
the decision time point changes (horizontal axis). This figure shows that, at day 10,
selecting change {c3} is preferable since it causes lower business loss (around $14,000
compared to $21,000). However, should the three changes land on the change
manager’s desk for decision on day 17, say, it would be more advisable to select
{c1,c2} since expected loss for change {c3} has now increased substantially (to
$27,000). The reason for this drastic change around day 16 is that, from that time on,
change {c3} will cause an SLA violation for service s3. Change management decisions
are dynamic in nature and our business-IT linkage metrics captures this dynamic
behavior.

Fig. 3. Expected losses with changes in illustration scenario

css
III

332
∩∩

ccs
III

211
∩∩

10 15 20 25 30
1

1.5

2

2.5

3
x 10

4

Time (days)

P
o

te
n

ti
al

 L
o

ss
 (

$)

Service 1

Services 2, 3

 Business-Driven Decision Support for Change Management 183

6 Related Work

IT management software tools available on the market (such as HP OpenView
ServiceDesk and ServiceCenter and BMC Routes-to-Value Change and Configuration
Management) provide administrative support to the change management process by
tracking a change in all phases of its lifecycle, coordinating its different activities,
assigning activities to the appropriate people and monitoring its progress until it is
closed. However, these tools provide no support to the decision-making process, and,
although concepts such as risk and impact are present, their definition is rather
ambiguous and their assessment is left to the tool user.

CHAMPS [4], a research prototype out of IBM Research, represents the state of
the art in automation for change management, but it does not address aspects of
project management of the changes such as scheduling activities that require human
intervention. Further, it is assumed that business impact is an input parameter and the
intended application is to an autonomic computing setting. The linkage model in our
work helps to evaluate business impact. Our solution addresses change management
challenges holistically: it considers all three components people, process and
technology. Thus, our work may be seen as complementary to that of [4]. The work in
[1] brings ideas that could be adapted for prioritization/classification of RFCs, since
RFCs are frequently related to incidents. Usage of utility functions is particularly
attractive.

7 Conclusions and Future Work

From the results of a web survey we carried out in earlier 2006 [7], the main
challenges in IT change management were identified as 1) planning/scheduling
changes, 2) high number of emergency changes and 3) ill-definition or wrong scoping
of requests for change. In this paper we have begun to address the problem of
planning and scheduling changes by taking business considerations into account,
following a business-driven IT management (BDIM, [6]) approach. We have sketched
a reference architecture that follows BDIM principles; the architecture includes a
model linking IT availability metrics to business objectives (in our example:
minimizing financial loss due service unavailability and SLA violations). A numerical
illustration was presented to show how the derived metrics may support change
management decisions in order to plan and schedule changes to minimize adverse
business impact.

This initial work supports the conception of an automated tool for decision support
for planning and scheduling changes. We have received encouraging feedback from
the respondents of our survey in [7], to whom we presented the scenario here exposed
in a follow up interaction. The respondents agree that the information these metrics
provide will definitely “add value to the decision process”. However, much remains
to be done before we can embody the capabilities here described into a software tool
that is complete enough to be of value to change managers in their decision making
activities and while negotiating with customers. The main contribution of this paper is
the formalization of a sound base for supporting change scheduling and planning. Our
next step will be to formally bring in change windows and solve an optimization

184 J. Sauvé et al.

problem to find the “best” allocation of changes to change windows. Design and
implementation of the decision support tool is also the subject of a future phase of our
research.

Acknowledgements

This work was developed in collaboration with HP Brazil R&D.

References

1. Bartolini, C., and Sallé, M., “Business Driven Prioritization of Service Incidents”, In
Proceedings of the 15th IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management (DSOM 2004), 15-17 Nov. 2004, Davis, CA, USA, pp 64-75.

2. IT Governance Institute, “Cobit 4th Edition”, 2006, www.isaca.org/cobit.htm
3. IT Infrastructure Library, “ITIL Service Delivery” and “ITIL Service Support”, Office of

Government Commerce, UK, 2003.
4. Keller, A., Hellerstein, J., Wolf, J.L., Wu, K. and Krishnan, V., “The CHAMPS System:

Change Management with Planning and Scheduling”, In Proceedings of the IEEE/IFIP
Network Operations and Management Symposium (NOMS 2004), IEEE Press, April 2004,
pp. 395-408.

5. Sauvé, J. P., Marques, F. T., Moura, J. A. B., Sampaio, M. C., Jornada, J., Radziuk, E.,
Optimal Design of E-Commerce Site Infrastructure from a Business Perspective, In:
Proceedings of the 39th Annual Hawaii International Conference on System Sciences
(HICSS'06), Waikoloa, Hawaii. IEEE Computer Society, 2006. v.8. p.178.3 - 178.3

6. Sauvé, J., Moura, A., Sampaio, M., Jornada, J. and Radziuk, E., “An Introductory Overview
and Survey of Business–Driven IT Management”, in Proceedings of the 1st IEEE / IFIP
International Workshop On Business-Driven IT Management, in conjunction with NOMS
2006, Vancouver, Canada, pp. 1-10.

7. The HP-Bottom Line Project, “IT Change Management Challenges – Results of 2006 Web
Survey” Technical Report DSC005-06, Computing Systems Department, Federal University
of Campina Grande, Brazil, March 2006. http://www.bottomlineproject.com/bl/_media
/techreport/005-2006.pdf

8. Van Bon, J., Chief Editor, “IT Service Management, an introduction based on ITIL”, itSMF
Library, Van Haren Publishing, 2004.

9. Abramowitz, M. and Stegun, I. A. (Eds.). "Beta Function" and "Incomplete Beta Function."
§6.2 and 6.6 in Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing. New York: Dover, pp. 258 and 263, 1972.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 185 – 196, 2006.
© IFIP International Federation for Information Processing 2006

Using Argumentation Logic for
Firewall Policy Specification and Analysis

Arosha K. Bandara1, Antonis Kakas2, Emil C. Lupu1, and Alessandra Russo1

1 Department of Computing, Imperial College London, London SW7 2AZ
2 Department of Computer Science, University of Cyprus, Cyprus

{bandara, ack, ecl1, ar3}@doc.ic.ac.uk

Abstract. Firewalls are important perimeter security mechanisms that imple-ment
an organisation’s network security requirements and can be notoriously difficult
to configure correctly. Given their widespread use, it is crucial that network
administrators have tools to translate their security requirements into firewall
configuration rules and ensure that these rules are consistent with each other. In
this paper we propose an approach to firewall policy specification and analysis
that uses a formal framework for argumentation based preference reasoning. By
allowing administrators to define network abstractions (e.g. subnets, protocols etc)
security requirements can be specified in a declarative manner using high-level
terms. Also it is possible to specify preferences to express the importance of one
requirement over another. The use of a formal framework means that the security
requirements defined can be automatically analysed for inconsistencies and
firewall configurations can be automatically generated. We demonstrate that the
technique allows any inconsistency property, including those identified in
previous research, to be specified and automatically checked and the use of an
argumentation reasoning framework provides administrators with information
regarding the causes of the inconsistency.

1 Introduction

Firewalls are widely used perimeter security mechanisms that filter packets based on
a set of configuration rules that are derived from the organisation’s network security
requirements. The rules are specified in priority order and are of the form:

 <order> : <action> if <network conditions>

where the <network conditions> identify a certain type of traffic, typically from one
domain to another under some protocol, and the action field, <action>, typically takes
the values “allow” or “deny” thus specifying if the traffic is to be allowed to flow or
stopped. The semantics of the firewall policy is given operationally and it is crucially
dependent on the total ordering of its rules. The ordering position of a rule is given by
a (unique) number in <order> and for a given packet the firewall will check the rules
in ascending order. The action field of the first rule whose network conditions are
satisfied by the packet determines if it will be allowed or blocked. All subsequent
rules are ignored.

In this paper we propose a technique for specifying security requirements within an
argumentation based framework for Logic Programming with Priorities (LPP). This

186 A.K. Bandara et al.

allows us to specify and use high-level abstractions for network entities, e.g.
protocols, applications, sub-networks. It also allows us to specify relative ordering
between security requirements. The framework supports automatic generation of
firewall configuration rules that satisfy the requirements including the relative
ordering. Additionally, we demonstrate that the framework can detect a range of
inconsistencies, including the anomaly types identified by Al-Shaer and Hamed [1],
and also perform anomaly resolution.

Figure 1 shows an example system taken from [1] where a firewall is used to
protect hosts in an enterprise network (acme.com) from malicious network traffic
together with the set of rules that control the behaviour of the firewall. In this
example, Rules 8 and 11 implement the default security requirement that all traffic
should be blocked unless there is a specific requirement to allow specific types of
traffic. These exception cases to the default requirement are implemented by
specifying firewall policy rules that have a higher priority ordering than the default
policy rule. For example, Rule 7 implements the requirement to “allow FTP
connections from hosts in the coyote.com network to the host ftp.acme.com” and Rule
1 and 2 to “allow all HTTP requests from coyote.com to acme.com except those from
the host wiley.coyote.com”.

INTERNET
..*.*

acme.com
161.120.33.*

coyte.com
140.192.37.*

wiley
140.192.37.20

tricky
140.192.37.30

161.120.33.40
fudd

blockany*.*.*.*any*.*.*.*udp11

allow53161.120.33.40any*.*.*.*udp10

allow53161.120.33.40any140.192.37.*udp9

blockany*.*.*.*any*.*.*.*tcp8

allow21161.120.33.40any140.192.37.*tcp7

allow21*.*.*.*any140.192.37.*tcp6

block21*.*.*.*any140.192.37.30tcp5

block80161.120.33.40any140.192.37.*tcp4

allow80161.120.33.40any*.*.*.*tcp3

allow80*.*.*.*any140.192.37.*tcp2

block80*.*.*.*any140.192.37.20tcp1

ActionDst PortDst IPSrc PortSrc IPPtrclOrder

Fig. 1. Example network and associated firewall policy rules [1]

In this example, the translation of these requirements into the rules shown is done
manually and depends on administrators’ knowledge of the low-level network
topology and protocols and also having the expertise to assign the correct priority
order to the rules. This method of policy specification has the added disadvantage
that no link is maintained between the security requirements and the policy rules that
implement them. This makes policy specifications hard to understand and it is easy
for the administrator to make errors, particularly when dealing with large distributed
systems that involve many networks, hosts and applications. Some firewall solution
vendors have made an attempt to support high-level abstractions by mapping named

 Using Argumentation Logic for Firewall Policy Specification and Analysis 187

traffic classes to low-level properties such as host IP addresses, port numbers and
protocols [2]. However, this process involves a significant amount of manual effort
on the part of the administrator and the tools provided do not maintain any link
between the security requirements and the underlying policy rules.

Another shortcoming with existing approaches to firewall policy specification is
the limited support for automated analysis that verifies that the specification satisfies
desired security properties and does not contain any inconsistency. Work done by Al-
Shaer et al. goes some way to addressing this problem by identifying a number of
inconsistency types (or anomaly types) and defining an algorithm for detecting the
presence of these inconsistencies [1]. Whilst this technique has been extended to
detect inconsistency in complex scenarios that involve distributed firewalls, it only
detects a fixed set of inconsistency types [3]. Additionally, given that the analysis
algorithm operates on the low-level firewall policy rules, it is not able to provide any
information about the reasons for an anomaly to exist.

The rest of this paper is organised as follows. In the next section we present
information regarding the capabilities of LPP framework together with examples of
how the notation can be used to specify network abstractions and security
requirements. In section 3 we present the different types of analysis supported by our
technique followed by a discussion of our work in section 4. We describe how our
work compares with related research in the field in section 5 before presenting our
conclusions and plans for further work in section 6.

2 Security Requirements and the Argumentation Framework

One of the objectives of our work is to provide administrators with the ability to
specify their security requirements using high-level abstractions that are closer to their
natural specifications. We wish to do this in the context of a formal reasoning
framework that supports the prioritised ordering of firewall rules and also provides
automated analysis capabilities. In this section we present a formal language based
on an argumentation framework that is capable of representing background
information regarding the network, hosts and traffic types together with network
security requirements and relative priorities between rules.

Argumentation has been shown to be a useful framework for formalizing non-
monotonic reasoning and other forms of reasoning [4-7]. In general, an argumentation
framework is a pair <T,A> where T is a theory in some background (monotonic)
logic, equipped with an entailment relation, ╞, and A is a binary relation on the
subsets of T. These subsets of T form the arguments of the framework and A is a
non-symmetric attacking relation between arguments. For any two arguments A1
and A2 we say that A1 attacks A2 when (A1,A2) belongs to the attacking relation A.
In this context, an argument A1 attacks A2 if, given the same background knowledge,
A1 supports a conclusion that is incompatible with a conclusion supported by A2 and
A1 is defined to be stronger than A2. Argumentation reasoning is given through the
notion of an admissible argument, i.e. an argument that counterattacks another
argument. The formal definition of the argumentation framework is presented in [4, 6].

188 A.K. Bandara et al.

2.1 Representing Security Requirements and Firewall Rules

In the specific argumentation reasoning framework we use in this paper, a theory T is
represented in the background logic (L, ╞), where the language L consists of
(extended) logic programming rules of the form:

 Name: L L1, . . . , Ln, (n ≥ 0).
Here, L,L1, . . ., Ln are positive or negative literals. A negative literal is a literal of the
form ¬A, where A is an atom. As usual in Logic Programming a rule containing
variables is a compact representation of all the ground rules obtained from this under
the Hebrand universe. Each ground rule has a unique (parametric) name, Name, given
at the front of the rule. Using this notation we can specify a security requirement by
defining a rule with name req(…) that associates a given action with packets that
match the source, destination and traffic type. For example, the requirement to
“allow HTTP requests from the coyote.com network to web servers in the acme.com
network” would be defined as follows:

req(allow_http_coyote, allow, Pkt):
action(allow, Pkt)
 packetFrom(coyote, Pkt), packetTo(Server, Pkt),
 property(‘web’, host, Server), traffic(http, Pkt).

The packet terms in the above rule are defined using 5-tuples of the form
pkt(Protocol, SourceIP, SourcePort, DestIP, DestPort). In the above
definition, the packetFrom(…) and packetTo(…) predicates are used to map the name
of a source or destination entity to the appropriate IP address fields of the packet. In
the above definition, the packetFrom(…) and packetTo(…) predicates are used to map
the name of a source or destination entity to the appropriate IP address fields of the
packet. These predicates are defined as follows:

 pktSource(SrcIP):
 packetFrom(From, pkt(_,SrcIP, _, _, _)) ipaddr(From, SrcIP).

 pktDest(DstIP):
 packetTo(To, pkt(_, _, _, DstIP, _)) ipaddr(To, DstIP).

The ipaddr(…) predicate is used to define background information regarding the
network, namely the IP address of a given network entity. This is described in more
detail in the next section.

The overall theory T is separated into two parts: the basic part and the strategy
part. The basic part contains rules (of the form given above) whose conclusions, L,
are any literal except the special predicate, prefer(…), which is the only predicate
that can appear in the conclusion of rules in the strategy part. Hence rules in the
strategy part take the special form

Name: prefer(rule1, rule2) L1, . . . ,Ln, (n ≥ 0).

where rule1 and rule2 are the names of any other two rules in the theory. A rule of
this form then means that under the conditions L1, . . . ,Ln, the rule with name, rule1,
has priority over the rule with name, rule2. The role of this priority relation is
therefore to encode locally the relative strength of (argument) rules in the theory. The
priority relation prefer(…) is required to be irreflexive. The rules rule1 and rule2
can themselves be rules expressing priority between other rules and hence the
framework allows higher-order priorities.

 Using Argumentation Logic for Firewall Policy Specification and Analysis 189

We can use the prefer(…) predicate to defined security requirements express a
precedence relationship between two simpler requirements. For example, the
administrator might specify a requirement to “block any traffic except HTTP requests
to fudd.acme.com”. This type of requirement can be composed from “block any
traffic” and “allow HTTP requests to fudd.acme.com” together with the addition of a
rule that makes the latter requirement take precedence. The two simple requirements
would be specified as follows:

 req(block_any, block, Pkt):
 action(block, Pkt)
 packetFrom(any, Pkt), packetTo(any, Pkt), traffic(any, Pkt).

 req(allow_http_fudd, allow, Pkt):
 action(allow, Pkt)
 packetFrom(any, Pkt), packetTo(fudd, Pkt), traffic(http, Pkt).

This is followed by the precedence relationship between these requirements using
the prefer(…) predicate:

 order(allow_http_fudd, block_any):
 prefer(req(allow_http_fudd, allow, Pkt)),
 req(block_any, block, Pkt)).

In addition to representing security requirements, the notation described can be
used to specify legacy firewall rules, denoted by the term fwr(Order, Action, Pkt).
For example, the first rule shown below represents Rule 9 given in Figure 1. Notice
that we use finite domain constraints to specify IP address and port ranges:

fwr(9, allow, pkt(udp,ip(140,197,37,D),SP,ip(161,120,33,40), 53)):
 action(allow, pkt(udp,ip(140,197,37,D),SP,ip(161,120,33,40), 53))
 D in 0..255, SP in 1..65536.

 order(N1, N2):
 prefer(fwr(N1, A1, Pkt), fwr(N2, A2, Pkt)) N1 < N2.

The second rule shows how we can use the prefer(…) predicate to specify the
ordering of legacy firewall rules. In this fashion our formal framework can combine
the requirements specifications described above with legacy firewall rules.

2.2 Representing Background Information

We can separate out an auxiliary part, T0, of a given theory, T, from which the other
rules can draw background information in order to satisfy some of their conditions.
The reasoning of the auxiliary part of a theory is independent of the main
argumentation-based preference reasoning of the framework and hence any
appropriate logic can be used. In the context of this paper, we can use this feature to
specify subnets, hosts and traffic types in a network using the following three
predicates:

 network(Name, [Properties]).
 host(Name, [Properties]).
 ipaddr(Name, ip(A, B, C, D)).

The network(…) predicate defines a named network (e.g. acme.com, coyote.com etc)
together with a list of associated properties (e.g. wireless, WEP, etc.). Similarly, the
host(…) predicate defines a host name together with a list of properties associated
with that host. Finally, the ipaddr(…) predicate associates a particular host (or
network) with an IP address (or address range). The ip(…) function has four

190 A.K. Bandara et al.

arguments that correspond to each byte of a 32-bit IP address. Using these predicates,
the ‘acme.com’ network and ‘fudd.acme.com’ host in the example (Figure 1) would
be specified as follows:

 network(acme, [‘acme.com’, ‘wired’]).
 ipaddr(acme, ip(161, 120, 33, D)) D in 0..255.

 host(fudd, [‘fudd.acme.com’, ‘web’, ‘ftp’, ‘dns’]).
 ipaddr(fudd, ip(161, 120, 33, 40)).

We use the finite domain constraint 0..255 to specify the range of values for the
‘acme’ network. Notice that each rule in the above definitions is prefixed with a
parameterised name, which becomes part of the arguments for the answer derived if
the rule forms part of the theory that supports a given goal. For example, if we query
the system for the available networks, each answer will be accompanied by an
argument set that includes the term network(…), identifying the network rule that
defines each network. We can also specify a auxiliary predicate, property(…), which
can be used to identify the network elements that have a given property:

 property(Prop, network, Element)
 network(Element, [Props]), member(Prop, Props).

 property(Prop, host, Element)
 host(Element, [Props]), member(Prop, Props).

In the above definition, the member(Property, Properties) predicate holds if the
property denoted by the first parameter is a member of the list denoted by the second.
The property(…) predicate can also be used to express higher-level, composite
properties. For example, the notion that all Linux hosts on a wired network are
considered to be secure can be expressed as follows:

 property(secure, host, Element)
 property(wired, network, Network),
 property(Network, host, Element),
 property(linux, host, Element).

Finally we define a predicate, traffic(Name, Pkt) that associates the protocol
and ports fields of an IP packet with a given type of traffic. This predicate can be also
be used to define ranges of ports. For example, we can define the following rules to
specify an application called ‘http’ which matches TCP packets from any non-
reserved port (1024-65536) to port 80; and a generic application called ‘any’ which
matches packets containing any port number and protocol:

 traffic(http, pkt(Prtcl, SrcIP, SP, DstIP, DP))
 Prtcl=tcp, SP in 1024..65536, DP = 80.

 traffic(any, pkt(Prtcl, SrcIP, SP, DstIP, DP)))
 (Prtcl=tcp; Prtcl=udp), SP in 1..65536, DP in 1..65536.

It is important to note that specifying this background information is a one-time
task that can be automated using host/service discovery tools. Of course the
specification will have to be updated if there are any changes in the system, but this
process can also be automated.

In addition to background information regarding the network, the auxiliary part of
our theory also contains the definition of what constitutes a conflict (over and above
the standard conflict of classical negation, i.e. between an atom, A and its negation

 Using Argumentation Logic for Firewall Policy Specification and Analysis 191

¬A). This is given through the definition of an auxiliary predicate, complement(…),
which is of the form:

 complement(L1, L2) B.

stating that literals L1 and L2 are conflicting under some (auxiliary) conditions B.
Typically, the conditions B are empty and the definition of the complement(…)
predicate is kept simple. Also we will assume that the conditions of any rule in the
theory do not refer to the predicate prefer(…) thus avoiding self-reference problems.
Note also that the definition of complement(…) always includes that any ground atom,
prefer(rule1, rule2), is incompatible with the atom prefer (rule2, rule1) and
vice-versa. In the context of firewall policies, we would define the actions allow and
block to be complementary using the following rule:

 complement(action(allow, _), action(block, _)).

The logical framework for argumentation and preference reasoning described here
has been realised in the GORGIAS tool developed at the University of Cyprus [8] and
has been used to implement the examples and generate the results presented in this
paper. This tool provides a query, prove([L1, L2, …, Ln], Args), which generates
the set of admissible arguments, Args, that support the conjunction of terms L1, …, Ln
for a given theory. In order to support the analysis of security requirements and
firewall policies, we define the following auxiliary query to determine if a particular
packet will be allowed or blocked by a firewall together with the rule (or requirement)
that causes this decision and the supporting arguments:

 packet_action(Action, Pkt, Rule, Args)
 prove([action(Action, Pkt)], Args), member(Rule, Args),
 (Rule=requirement(R, Action, Pkt); Rule=fwr(N, Action, Pkt)).

3 Analysing Firewall Policies

As a network grows, the task of managing the network security policies quickly
becomes unwieldy. Therefore it is very important to provide administrators with
support to analyse the policy specification and ensure that desired properties hold.
These analysis tasks can be divided into the following categories:

1. Anomaly Detection: Analysing the policy specification for potential anomalies.

2. Property Checking: Performing “what-if” analysis to determine if a given class
of traffic will be forwarded or blocked. For example, “Which packets are allowed
to reach the host fudd.acme.com?” This type of query can also be used to verify
that the policy specification satisfies desired behaviour.

3. Anomaly Resolution: Determining the correct ordering of policy rules to ensure
that anomalies are avoided (i.e. ensuring that rules related to exception cases are
given a higher precedence than general rules).

3.1 Anomaly Detection

Al-Shaer et al [1] have identified four firewall policy anomaly types – shadowing,
generalisation, correlation and redundancy and here we show how these anomalies

192 A.K. Bandara et al.

can be detected using the argumentation logic framework. From the description of
the various anomaly types it is clear that the key determinants of an anomaly is
whether the packets that match a rule are a subset (or superset) of the packets matched
by another rule; and the relative ordering of the rules. For example, rule R2 is said to
be shadowed by R1 if the rules specify incompatible actions, R1 has preference over
R2 and every packet that matches R2 is matched by R1. In order to detect this type of
anomaly we define the following rule:

 anomaly(shadow, R1, R2, Pkt1)
 packet_action(A1, Pkt1, R1, _),
 complement(action(A1,_,_), action(A2,_,_)),
 packet_action(A2, Pkt2, R2, _),
 match(subset, Pkt1, Pkt2).

The above rule identifies a requirement R1 where the matching packets, Pkt1, are a
subset of the packets that match another requirement R2 and R2 defines an
incompatible action. The preference reasoning capabilities of the LPP framework
ensures that the above query identifies rules derived from R2 that have higher
precedence than rules derived from R1. Rules that participate in a generalisation
anomaly would cause a shadow anomaly if their relative order was reversed. We use
this property to define the following rule to detect this type of anomaly:

 anomaly(generalisation, R1, R2, Pkt2)
 packet_action(A1, Pkt1, R1, _),
 complement(action(A1,_,_), action(A2,_,_)),
 packet_action(A2, Pkt2, R2, _),
 match(subset, Pkt2, Pkt1).

The above definition identifies a policy rule derived from requirement R2 that takes
precedence over a rule derived from requirement R1, where the packets matched by
R2 are a subset of those matched by R1 and the actions of R1 and R2 are
complementary.

Correlation anomalies occur when two rules with complementary actions match the
same packets, and the rules are not part of a shadowing or generalisation anomaly.
These can be detected using the following rule:

 anomaly(correlation, R1, R2, Pkt)
 packet_action(A1, Pkt, R1, _),
 complement(action(A1,_,_), action(A2,_,_)),
 packet_action(A2, Pkt, R2, _),
 ¬ anomaly(generalisation, R1, R2, _),
 ¬ anomaly(generalisation, R2, R1, _),
 ¬ anomaly(shadow, R1, R2, _).

Redundancy anomalies differ from the other types in that they involve rules that
specify the same action. We define the following rule to detect this type of anomaly:

 anomaly(redundant, R1, R2, Pkt1)
 packet_action(A, Pkt1, R1, _), packet_action(A, Pkt2, R2, _),
 R1 \== R2, match(subset, Pkt1, Pkt2).

Using these rules, we can detect all the anomalies in a specification using a single
high-level query. For example, performing such a query on the example system
shown in Figure 1 would generate the following result:

?- findall(Type-(R1, R2), anomaly(Type, R1, R2, _), List).
List = shadow-(deny_coyote_http_fudd,allow_coyote_http)
 shadow-(deny_coyote_http_fudd,allow_http_fudd)
 generalise-(deny_wiley_http,allow_coyote_http)
 ...

 Using Argumentation Logic for Firewall Policy Specification and Analysis 193

 generalise-(allow_udpdns_fudd,deny_all)
 correlated-(deny_wiley_http,allow_http_fudd)
 correlated-(deny_tricky_ftp,allow_coyote_ftp_fudd)
 redundant- (allow_coyote_ftp_fudd, allow_coyote_ftp)
 redundant- (allow_coyote_udpdns_fudd,allow_udpdns_fudd)

3.2 Property Checking

In addition to checking for the anomaly types identified in the literature, the formal
framework for firewall policy specification described in this paper is a general one
that can be used to check if a specification satisfies other properties. For example, the
administrator might wish to verify which packets are allowed to reach the host
fudd.acme.com. This property would be checked by the following high-level query:

?- packet_action(allow, Pkt, Rule, Args), packetTo(fudd, Pkt).

 Rule = allow_coyote_http
 Packet = pkt(tcp, ip(140,192,37,D1), SP, ip(161,120,33,40), 80)
 D1 = 0..255, SP = 1024..65536
Arguments:
requirement(allow_coyote_http, allow, pkt(tcp, coyote, SP, any, 80)).
pktDst(any,ip(161,120,33,40)).
pktSrc(coyote,ip(140,192,37,D1)).
...

The arguments explain that a TCP packet from 140.192.37.*-port:1024-65536 to
161.120.33.40-port:80 is allowed because the requirement ‘allow_coyote_http_allow’
specifies that packets from the ‘coyote.com’ network to port 80 of any host should be
allowed. Furthermore, the arguments show how the IP address and port ranges in the
allowed packet match the IP addresses of ‘coyote.com’ and ‘fudd’.

Notice that the use of the finite domain constraints for IP address and port ranges
means that the query returns an expression that describes all the packets that are
allowed to reach the host ‘fudd’. The ability to consider the relative priorities
between security requirements and also provide this type of coverage of the potential
packet space when reporting results is possible because we are using a logic
programming based approach that supports preference reasoning.

3.3 Anomaly Resolution

Of the anomaly types defined in the previous section, only redundancies and
shadowing anomalies are considered to be errors. Of these, shadowing anomalies can
be resolved by reversing the relative ordering of the two rules. This can be expressed
in our framework using a ‘higher-order’ preference reasoning rule as follows:

resolve(shadow, R1, R2):
prefer(R1, R2) anomaly(shadow, R1, R2, _).

The above rule states that preference should be given to rule R1 over R2, i.e. the
shadowed rule is given higher priority. Redundancy anomalies on the other hand can
be resolved by ensuring the redundant rule has lower priority. This resolution process
is specified in our formal framework as follows:

resolve(redundancy, R1, R2):
prefer(R2, R1) anomaly(redundant, R1, R2, _).

194 A.K. Bandara et al.

Here the anomaly(…) predicate holds if R1 is redundant to R2 and the prefer(…)
predicate defines that R2 should take precedence over R1. In our framework,
performing the resolution actions shown above will remove any redundancy and
shadowing anomalies from the specification. Additionally, the decision to perform a
particular resolution action will be explained with a set of arguments.

4 Discussion

In the study of the analysis of firewall policies we have shown specifically that the
various types of anomalies in firewall policies, identified separately in the literature,
can be captured naturally under the same and unified definition based on the standard
notion of an admissible argument in Logic Programming with Priorities (LPP). This
high level definition means (a) that we are more complete in capturing the notion of
anomaly and (b) that our definitions remain invariant as we further develop the types
of policy supported by the notation, e.g. as we consider extensions of policies for
distributed firewalls. The high-level of expressivity of the LPP framework,
particularly its ability to represent preference orderings which can be conditional on
some background properties means that the formalism can accurately capture the
behaviour of a firewall where policies are specified with an explicit priority order.
The LPP framework can be used to detect all the anomaly types identified in the
literature and also supports other types of property checking, thus allowing an
administrator to verify the behaviour of a firewall that is controlled by a given set of
requirements. Whilst we have yet to complete experiments on large policy sets, the
complexity of the argumentation reasoning framework for the restricted type of theory
described in this paper has been shown to be P-complete [9]. We are working to
validate the scalability of our approach as part of our ongoing research efforts.

In addition to experimenting with larger policy sets, we also hope to work on more
complex scenarios involving multiple firewalls in the network. In such a system,
where policies will be distributed across the network the problem of the existence of
anomalies is more severe as there are more possibilities for conflicts to occur. We can
have situations where one component decides to accept traffic whereas another
component decides to deny it. For example, an upstream firewall blocking a traffic
that is permitted by a downstream firewall is a type of inter-firewall shadowing
anomaly. In a “classical” approach to anomaly detection the definition of this
anomaly requires a detailed (and somewhat ad hoc) examination of the pairs of rules
from the two firewalls. In our declarative approach this anomaly falls under the same
definition given above.

5 Related Work

Work presented by Wool et al., proposes a high-level language for specifying network
information and firewall policies that allows firewall configuration to be performed at
an abstraction level that is closer to high-level programming. This work has led to the
development of a number of tools that support offline firewall policy analysis and
management [10]. However, the analysis process does not detect specific anomaly
types such as shadowing and redundancy.

 Using Argumentation Logic for Firewall Policy Specification and Analysis 195

Uribe and Cheung have developed a technique for automating the analysis of
firewall and network intrusion detection systems that uses constraint logic
programming to model the networks and policies [11]. The use of finite domain
constraints to specify IP address and port ranges means that the analysis process
covers all IP address and port combinations for potential problems. However, the
technique does not support specification of explicit priorities between firewall policy
rules and the tool does not provide administrators with any explanation to support the
analysis results generated.

Al Shaer et al. and Yuan et al., have focussed on tools and techniques for analysing
legacy firewall policies for networks with centralised and distributed firewalls [1, 3,
12]. We use the classification of anomalies into the types: shadow, correlation,
generalisation and redundancy anomalies presented in [1] to specify the analysis rules
used in the framework presented in this paper. One shortcoming of their approach is
the dependence on legacy firewall policies in order to perform anomaly detection and
resolution. In contrast, our approach allows network security requirements to be
specified using high-level notations whilst still being capable of a range of analysis
tasks such as anomaly detection, resolution and property checking. Additionally by
using an argumentation reasoning framework, our approach has the advantage that the
administrator is given an explanation of the analysis results and resolution actions.

6 Conclusions and Future Work

We have presented an approach to specifying network security requirements that is
based on Argumentation for Logic Programming with Priorities (LPP). The use of logic
programming allows the specification to include high-level abstractions such as
networks, hosts, traffic types and their associated properties. This means that
administrators can specify their network security requirements in more familiar terms,
without having to know the exact IP address and port ranges for a given traffic flow.
We have shown that the technique is capable of performing a range of analysis tasks,
from detecting the firewall anomaly types identified in the literature to performing more
general property checking and conflict resolution. The use of LPP allows preferences
to be encoded, thus allowing complex reasoning over the relative priorities between
rules. Additionally, the encoded preferences can be conditional on arbitrary system
properties, an approach that allows greater flexibility than simple assigned priorities
between rules. Also, because LPP is implemented using argumentation reasoning, the
results of performing queries are enhanced by explanations containing the rules that
support a particular conclusion. This information is particularly helpful to the user in
understanding the reason for a traffic flow to be allowed or blocked by the firewall. The
current implementation of the technique presented in this paper focuses on security
requirements specification for firewalls. However, given an appropriate formalisation
of the underlying system, the use of LPP can be extended to other application domains,
such as network QoS management.

Our system is implemented using the GORGIAS tool running in a standard Prolog
environment. Given a formal description of the network elements and security
requirements, it provides support for checking general properties, including checking
for the presence of the anomaly types identified in the literature, and also supports

196 A.K. Bandara et al.

anomaly resolution. At present we are focused on extending the tool to provide
automated generation of ‘anomaly-free’ operational firewall policies. Additionally are
developing a GUI that will shield the administrator from the underlying formal notation,
providing an interface that simplifies the process of defining their network security
requirements and analysing them for consistency. Our future work also includes
extending the formal notation to include information required to specify and analyse
network security requirements that are implemented using distributed firewalls.

Acknowledgements

We acknowledge financial support for this work from the EPSRC (Grant Numbers -
GR/R31409/01, GR/S79985/01 and GR/T29246/01) and IBM Research.

References

[1] E. S. Al-Shaer and H. H. Hamed. "Firewall Policy Advisor for Anomaly Doscovery and
Rule Editing." In Proceedings of 8th IFIP/IEEE International Symposium on Integrated
Network Management, Colarado Springs, CO, IEEE, March 2003.

[2] Cisco. "Cisco PIX Firewall Configuration White Paper (DOCID: 68815),
http://www.cisco.com/warp/public/707/ezvpn-asa-svr-871-rem.pdf", Cisco Inc, 2006.

[3] E. S. Al-Shaer and H. H. Hamed. "Discovery of Policy Anomalies in Distributed
Firewalls." In Proceedings of 23rd IEEE Communications Society Conference
(INFOCOM), Hong Kong, IEEE, March 2004.

[4] P. M. Dung (1995). "On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games." Artificial
Intelligence(77): 321-357, 1995.

[5] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni (1997). "An abstract
argumentation theoretic approach to default reasoning." Artificial Intelligence 93: 63-101,
1997.

[6] A. Kakas, P. Mancerella, and P. M. Dung. "The acceptability semantics for logic
programs." In Proceedings of 11th International Conference on Logic Programming,
Santa Marherita Ligure, Italy, 1994.

[7] H. Prakken and G. Sartor. "A system for defeasible argumentation, with defeasible
priorities." In Proceedings of International Conference on Formal and Applied Practical
Reasoning, Springer-Verlag, LNAI 1085, 1996.

[8] Gorgias. "Argumentation and Abduction, http://www2.cs.ucy.ac.cy/~nkd/gorgias/",
[9] Y. Dimopoulos, B. Nebel, and F. Toni (2002). "On the Computational Complexity of

Assumption-based Argumentation for Default Reasoning." Artificial Intelligence 141: 57-
78, 2002.

[10] A. Mayer, A. Wool, and E. Ziskind (2006). "Offline firewall analysis." International
Journal on Information Security 5(3): 125-144, 2006.

[11] T. E. Uribe and S. Cheung. "Automatic Analysis of Firewall and Network Intrusion
Detection System Configurations." In Proceedings of ACM Workshop on Formal
Methods in Security Engineering, Washington, DC, ACM Press, October 2004.

[12] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra. "FIREMAN: a toolkit
for FIREwall Modeling and ANalysis." In Proceedings of IEEE Symposium on Security
and Privacy, Oakland, CA, May 2006.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 197 – 208, 2006.
© IFIP International Federation for Information Processing 2006

ZERO-Conflict: A Grouping-Based Approach for
Automatic Generation of IPSec/VPN Security Policies*

Kuong-Ho Chen, Yuan-Siao Liu, Tzong-Jye Liu, and Chyi-Ren Dow

Department of Computer Science, Feng Chia University,
No. 100 Wenhwa Rd., Seatwen, Taichung, Taiwan 40724, R.O.C

cyne@pluto.iecs.fcu.edu.tw, {m9301324, tjliu, crdow}@fcu.edu.tw

Abstract. IPSec/VPN management is a complicated challenge, since IPSec
functions correctly only if its security policies satisfy all administrated
requirements. Computer-generated security policies tend to conflict with each
other, which would causes network congestion or creates security vulnerability.
Thus conflict resolving has become an issue. In this paper, a method to
automatically generate policies is proposed. Instead of performing complicated
conflict-checking procedures as most existing works do, the proposed Zero-
Conflict algorithm is able to predict and avoid conflict in advance by using
requirement groups and cut points techniques. Since policies are established
without the need to perform backward conflict check, thus yielding a
significantly less time-complexity, which is O(nlogn). Experimental results
show that it maintains a satisfactorily minimal numbers of generated tunnels.

Keywords: IP security, network management, policy conflict, security policy,
security requirement.

1 Introduction

Network management in large distributed networks, in particular IPSec/VPN
management [8, 13], is a complicated challenge. IPSec functions will be executed
correctly only if policies are correctly specified and configured, but due to the
growing number of secure Internet applications today, IPSec policy [1, 7] deployment
has become rather complex in large distributed networks, and manual configuration is
rather tedious, ineffective, and often erroneous. On the other hand, a policy-based
management system treats network requirements as goals to be achieved,
automatically translates them into low-level machine-understandable policies, and
systematically applies them to right network devices. Since IPSec is basically a typical
policy-enabled networking service, policy-based network management [3, 11] is a good
solution in handling complicated IPSec policy, and various solutions for IPSec/VPN
policy management have been proposed in researches such as [2, 4, 5, 6, 12, 13].

A class of high level policy is defined in [5], which is called security requirement.
Conceptually, security requirements (high level policy) are like goals, while implemental

* This Research is supported in part by the National Science Council under the grants No. NSC

NSC94-2213-E035-025, NSC95-2221-E035-071.

198 K.-H. Chen et al.

IPSec policies (low level policy) are like specific plans to achieve these objectives.
IPSec policies are considered correct only if these policies as a whole are able to
satisfy all specified security requirements. However, security requirement and IPSec
policy may not directly map to each other since one security requirement might be
satisfied by several sets of implemental policies. Moreover, it is possible that there are
conflicts between requirements and policies. If such conflicts exist on one of the
gateways/routers, packets could be dropped, network could be down, and security
could be breached. Conflicts occur when given requirements conflict with each other,
or when a set of policies binding together is unable to support given requirements. An
exemplary scenario of the latter case is given in Table 1 and Fig. 1. (In this paper, the
terms policy and tunnel will be used interchangeably.)

Table 1. Two Requirements

Requirement

Req1 All traffics from A to D must be applied encryption
Req2 All traffics from C to E must be applied authentication

A B C D EAA BB CC DD EE

Encryption

Authentication

Fig. 1. Overlapping Tunnels

In this scenario, there are two requirements for all traffics from A to E: the
coverage of Req1 is from A to D and the coverage of Req2 is from C to E. According
to these two requirements, two tunnels were built: one from A to D with encryption
and another from C to E with authentication. With these tunnels, all packets are
encapsulated in A, encapsulated again in C, and then sent to E. E decapsulates these
packets and finds that their destinations are D, thus send them there. Finally, D
decapsulates them and sends the packets to their final destination E. However, while
the original requirement was to authenticate the traffic from C to E, the traffic is
actually sent without protection from D to E due to tunnel overlapping.

Thus said, in spite of policy generation, an IPSec policy management system will
also need to tack tunnel overlapping and identify possible policy conflicts. Researches
so far in automatic IPSec policy generation [2, 4, 6, 12] focus their efforts on conflict
resolving: in these algorithms, each newly generated security policy is compared with
existing policies to check for conflict. Once found, operations are called for conflict
resolve. The process of requirement comparison, however, is rather time-consuming,
since any change or addition in security requirements will require the entire execution
of conflict-check (and possibly conflict-resolving) procedure.

If tunnels were constructed in a way such that conflicts are predicted and avoided
in advance, establishment of policies without need for time-consuming backward
conflict check would be made possible, thus yielding a faster result. With this in

 ZERO-Conflict: A Grouping-Based Approach for Automatic Generation 199

mind, this paper proposed a Zero-Conflict algorithm, which is an efficient conflict-
avoiding method for automatic generation of IPSec/VPN security policy. In this
paper, a 3-phased automatic policy construction procedure is proposed, which seeks
to lower the complexity of conflict dealing by dividing requirements into groups, and
establish bus tunnels and branch tunnels inside each group. In comparison with
several existing methods [2, 4, 12], which mostly came with the efforts of O(n2), this
approach requires the effort of only O(nlogn), where n is the number of requirements.
Simulation results also show that the proposed Zero-Conflict approach maintains an
appropriately minimal number of established tunnels.

The rest of this paper is organized as follows. Related works are addressed in
Section 2. Analysis of policy conflict problem is described in Section 3. Automatic
policy generation algorithms are described in Section 4. The complexity analysis and
simulation are in Section 5 and Section 6. Finally, conclusions are made in Section 7.

2 Related Works

In this section, research backgrounds and literatures related to our work are described
in Section 2.1, including the categories and the definitions of security requirements.
Various approaches for automatic IPSec/VPN policy generation are then described
and discussed in Section 2.2, including bundle approach [4], direct approach [4],
Order-Split approach [12], and Conflict-Free approach [2].

2.1 Security Requirements

In [5], two levels of security policies are defined: the requirement level and the
implementation level. The needs to distinguish high-level security requirements and
low-level policies were addressed in [9, 10]. A security policy set is correct if and
only if it satisfies all the requirements. A requirement R is a rule of the following
form: If condition C then action A:

R ≡ C → A (1)

There are four cases of requirements defined in [5]:

• Access Control Requirement (ACR):
flow id → deny | allow

• Security Coverage Requirement (SCR):
flow id → enforce (sec-function, strength, from, to, [trusted-nodes])

• Content Access Requirement (CAR):
flow id, [sec-function, access-nodes] → deny | allow

• Security Association Requirement (SAR):
flow id, [SA-peer1, SA-peer2] → deny | allow
flow id is used to identify a traffic flow, and is composed of 5 to 6 sub-selectors

including src-addr, dst-addr, src-port, dst-port, protocol, and optional user-id. A
requirement is satisfied if and only if all packets selected by the condition part
execute the action part of the requirement. As were mentioned in [2, 12], other
requirements such as SAR or CAR can be validated after SCR results are produced.

200 K.-H. Chen et al.

ACR policies also can be determined after tunnel configurations are done. Therefore
the algorithm in this paper will seek to focus on the handling SCR requirements only.

2.2 Previous Works

Bundle approach [4] is the first algorithm for automatic policy generation. In this
approach, the problem is divided into two phases. From given requirements, the entire
traffic is first divided into several disjointed traffic flows, which are called bundles.
Sets of security policies are then built from each bundle. Although correct and
solution-guaranteed, this approach is not efficient since redundant tunnels for the
same area could be built from different bundles.

Direct approach which was also proposed in [4], tunnels are built from each
requirement directly, and all the while with the system making sure new tunnels do
not overlap with any existing ones. If overlapping occurs, the new tunnel is divided
into two connecting tunnels. In comparison with bundle approach, this approach
produces fewer tunnels and has better efficiency. It does not, however, yield solutions
for every case.

Ordered-Split algorithm [12] is based on traditional task-scheduling schemes for
automatic policy generation. Original requirements are converted into tie-free
requirement sets; a minimal sized Canonical Solution for the new requirements are
then acquired. The condition for a Canonical Solution is that no two tunnels share the
same start as well end, while the condition for a tie-free requirement is that no two
requirements share the same from and to. According to [12], this algorithm generates
fewer tunnels than Bundle/Direct approach, and is free of tunnel-redundancy problem.
Its time-complexity is O(n2).

Conflict-Free approach [2] focuses on the handling with the intersection relationship
between tunnels. In this approach all tunnel are made as long as possible since if two
security policy sets have the same number of tunnels, the set which has longer
average tunnel length will be preferred since longer tunnel decreases the number of
times a traffic has to be encapsulated/decapsulated. The time-complexity, of this
algorithm is O(n2).

3 Analysis of Overlapping Relationship Possibilities

A policy conflict is caused when two or more tunnels have certain overlapping
relationships. To be more specific, when packets in one tunnel are passing through a
node in the network, they will be pulled into other tunnels due to the policies of the
same node, which is likely to cause a policy conflict. To better understand the nature
of policy conflict, shown in Fig. 2 are the six possibilities of overlapping relationships
between two tunnels, whose analysis could be used to find the possible cause of
conflicts.

 ZERO-Conflict: A Grouping-Based Approach for Automatic Generation 201

T1

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

* Indicates starting/ending in the same node

T1 T1

T1 T1 T1

T2 T2

T2 T2

T2

T2

T1T1

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

* Indicates starting/ending in the same node

T1T1 T1T1

T1T1 T1T1 T1T1

T2T2 T2T2

T2T2 T2T2

T2T2

T2T2

Fig. 2. Overlapping Relationship Possibilities for Two-tunnel Scenario

According to [2], conflicts could possibly appear in case 5 and case 6 only. In case
5, packets are encapsulated at the start of T1. When traveling through the network to
the middle node, which is the start of T2, they will be encapsulated again, then be
directly sent to the most right node, which is the end of T2, and be unwrapped and sent
back to the end of T1. After arriving at the end of T1, the traffic will leave T1 and be
sent to the most right node. Since there is a sent back occurrence, conflicts are likely
to be caused. In case 6, T1 and T2 start at the same node, and packets will be
encapsulated twice here. When being unwrapped first time at the end of T2, these
packets will be sent back to the end of T1, which might cause a policy conflict. Note
that case 2 and case 6 differ only in the order of input tunnels. While processing,
algorithms in [2, 4, 6, 12] will perform extra order switching in order to convert case
6 into case 2, thus avoiding conflict, which generates extra overhead. In contrast with
these, we hope to construct a scheme that is free of this problem of ordering, whereas
policies are processed in the order as they were inputted.

To sum it up, a conflict exists when send back occurs in two overlapping tunnels,
therefore only case 5 and case 6 can possibly cause conflicts. Knowing this in
advance, our algorithm, different from those aforementioned, seeks to avoid the
occurrences of these two situations at all, rather than dealing with them headfirst.

4 Zero-Conflict Algorithm

Taking advantages from analysis above, Zero-Conflict algorithm was designed with
the concepts of requirement group and cut point in mind. In this section these two
major concepts are described, the mechanism of the Zero-Conflict algorithm itself
explained, and an example is also given for better understanding.

4.1 Requirement Group

In a two-tunnel scenario, if these two tunnels do not overlap with each other, no
conflict will occur. A requirement group is a set of requirements that do not overlap
with the requirements belonging to other group. In other words, a group is composed
of at least one or more overlapping requirements so that the conflicts will appear only
in their own respective groups.

202 K.-H. Chen et al.

4.2 Cut-Point

Once requirement groups are finalized, conflicts inside each group are to be resolved.
Common methods for resolving overlapping is to divide the requirement in question
into two non-conflicting ones.

T1

T2

T1

T2i T2j

T1

T2i
T2j

+

cut point

policies with conflict tunnel division conflict resolved

T2i

T1

T2

T1

T2i T2j

+

policies with conflict tunnel division conflict resolved

T2j

T1

cut point

Fig. 3. Conflict Resolving with Tunnel Division

The center of the problem is to find where to “cut”, thus the cut point. An
observation was made: If the original requirement list is first sorted by from values in
ascending order and tunnels are established accordingly, when conflicting cases in Fig. 3
appear, the tunnel T2 will be divided at the end of the tunnel T1 (thus T2.cutpoint=T1.to).
Thus T2 will be replaced by T2i=(T2.from, T1.to) and T2j=(T1.to, T2.to). Any subsequent
tunnels, if in conflict with T1, will be divided at the same cut point, thus T1.to.

Thus if every to in the requirement list is treated as a cut point, and all tunnels are
to be divided according to these cut points, conflicts can be avoided (In this way, a
tunnel covering n cut points will be divided n times). Basing on this assumption, two
facts can be derived: a) a cut point is the end of one tunnel and the start of another,
but a start of one tunnel is not necessarily a cut point. b) Between every two
neighboring cut points in a group, there must be at least one tunnel. According to a)
and b), those tunnels whose establishments are guaranteed can be determined in early
stage of the algorithm. These are called bus tunnels, which will be established after
the acquisition of the to of a security requirement in advance, and serve as backbones
shared by all requirements in the same group. Branching tunnels will later be built
from these buses, covering remaining areas, which are henceforth called branch
tunnels. It could be observed that the from and to of a bus tunnel are both cut points.
For a branch tunnel, its from must not be a cut point, while its to must be one. Branch
tunnels, in conjunction with bus tunnels, satisfy the overall covering demands of the
requirement list. Therefore any given requirement can satisfied by connecting its from
with a closest bus tunnel using a branch tunnel.

4.3 Zero-Conflict Algorithm

Taking advantages from analysis above, an algorithm for automatic policy generation
which avoids the two conflict cases can thus be designed, which is called “Zero-Conflict
algorithm”. The pseudo code of Zero-Conflict is shown in Fig. 4. Sub- functions are
explained as follows:

 ZERO-Conflict: A Grouping-Based Approach for Automatic Generation 203

Zero-Conflict Algorithm
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

Zero-Conflict_Algorithm (Reqs)
{
 remove_length_1_requirement (Reqs, lenegth1_Req_list);

sort_by_from_value (Reqs);
assign_group_number_to_each_requirement (Reqs);
gather_cut_points_for_each_requirement_group (Reqs, Cut-Point_list);

build_bus_tunnel (Cut-Point_list, Policy_List);
build_branch_tunnel (Reqs, Cut-Point_list, Policy_List);
build_length_1_tunnel (length1_Req_list, Policy_List);

remove_redundant_tunnel (Policy_List);

return Policy_List;

}

Fig. 4. Pseudo code for Zero-Conflict Algorithm

remove_length_1_requirment (Reqs, length1_Req_list). Requirements with their
from and to as neighbors (hop count is 1, thus one-hop requirement) does not conflict
with other requirements, but increases the number of cut points unnecessarily, thus
has to be moved to backup space length1_Req_list and be processed in later stage.

sort_by_from_value (Reqs). The original requirement list is then sorted by from in
ascending order. Note that most subsequent operations are done directly on the sorted
requirements list, thus lowering their time-complexity to O(n).

assign_group_number_to_each_requirement (Reqs). To the sorted requirement
list, a variable max_end_node is used to record the end node of current group, which
is also the to of the first requirement. A single n-loop operation is executed to
determine the group of each requirement. If a requirement belongs to current group,
its from must be less or equal to max_end_node, else it belongs to the next
requirement group. In the latter case, a new group is created, and max_end_node is set
to the to of first requirement in this group. Note that if to is greater then
max_end_node, then max_end_node is set to the to.

gather_cut_points_for_each_requirement_group (Reqs, Cut-Point_list). The end
nodes from each requirements are collected in non-repeated fashion as cut points, and
then sorted with their group numbers as primary key and to as second key, thus
generating the cut point list.

build_bus_tunnel (Cut-Point_list, Policy_List). For every two neighboring cut
points in each requirement group, bus tunnels are established between them.

build_branch_tunnel (Reqs, Cut-Point_list, Policy_List). Once bus tunnels are
established, a single n-loop operation is executed to establish branch tunnels. Since
the to of a branch tunnel is a cut point, which itself is the from of a certain bus tunnel.
Thus for each requirement, a branch tunnel is established between its from and the

204 K.-H. Chen et al.

nearest cut point, thus linking itself with the backbone of the requirement group. Note
that for each from, only one branch tunnel will be established, since there may be
multiple requirements with identical from.

build_length_1_tunnel (length1_Req_list, Policy_List). Finally, the removed one-
hop requirements are established. (After this function is completed, established
tunnels are already able to satisfy all requirements.)

remove_redundant_tunnels (Policy_List). This function removes redundant
tunnels. If the area covered by several tunnels is also the covered area by a single
tunnel, the latter tunnel is considered redundant, and will be removed.

Generated tunnels are first sorted by from in descending order and by hop count
(hop count = to-from) in ascending order. This is due to that all tunnels excluding
one-hop end in a cut point. Since hop count is the distance between to and from,
therefore sorting by from equals to sorting by the distance between the start of each
tunnel and its nearest cut point. In this way, shorter tunnels will be pushed toward the
top. Since a redundant tunnel can only be replaced by several shorter tunnels (thus
tunnels with less hop count) that interconnect together, therefore a variable Ma is used
to record the area covered by current set of connecting tunnels.

An n-loop operation is then executed for removal. Since there could be multiple
tunnels connecting together, a variable Ma is used to record the area covered by
current set of connecting tunnels. The initial value of Ma is set to the area covered by
the first tunnel, thus Ma=(To.from, T0.to).

Each tunnel Ti is first compared with Ma. If identical, Ti will be erased. If not, the
operation proceeds to see whether Ti is connected with the area covered by Ma. If Ti.to
= Ma.form, then Ti is added into the set (thus Ma.from = Ti.from). Else, Ma is set to
(Ti.from, Ti.to), and then the loop is carried onto the next tunnel.

4.4 An Example of Zero-Conflict Method

For better understanding, an example is given in Table 2, where 8 requirements are
input.

First of all, one-hop requirements are to be removed. In this case, Req3 is removed,
and the remaining requirements are sorted by from, thus generating Table 3.

To the finding of group numbers, there are two groups in this case. The first group,
G0={Req2, Req4, Req5, Req6, Req8}, with max_end_node = 6. While processing Req1 it
can be noted that Req1.from is greater than current max_end_node, thus forming a
new group, G1={Req1, Req7}, with max_end_node = 10.

Subsequently, cut points in each requirement groups are to be decided. In this case,
they are {5, 6} for Go, and {9, 10} for G1.

Thus onto the construction of bus tunnels. In this case, T1=(5,6) is established for
G0, while T2=(9,10) is established for G1.

For branch tunnel construction, the nearest cut point for requirements in G0 is 5.
And since Req5 and Req8 share the same from, only one branch tunnel will be
generated for these two requirements. Thus 4 branch tunnels : T3= (1,5), T4= (2,5),
T5= (3,5), T6= (4,5) are established for G0, and 2 for G1 : T7= (7,9), T8= (8,9).

 ZERO-Conflict: A Grouping-Based Approach for Automatic Generation 205

Now the one-hop requirements removed earlier can be put back and established,
thus T9= (2,3).

Onto the redundancy check. Sorted by from in descending order, the check will
start from the farest tunnel, which is T2, thus Ma=(9, 10).

Table 2. An Example of Eight Requirements

Requirement
Req1 SCR(E, 7, 9)

Req2 SCR(E, 1, 5)

Req3 SCR (A, 2, 3)

Req4 SCR (E, 2, 6)

Req5 SCR (E, 3, 5)

Req6 SCR (E, 4, 6)

Req7 SCR (E, 8, 10)

Req8 SCR (A, 3, 6)

Table 3. Sorted Requirement List

Sorted Requirement
Req2 SCR (E, 1, 5)

Req4 SCR (E, 2, 6)

Req5 SCR (E, 3, 5)

Req8 SCR (A, 3, 6)

Req6 SCR (E, 4, 6)

Req1 SCR (E, 7, 9)

Req7 SCR (E, 8, 10)

T8 is then compared with Ma, and it is found that Ma.from = T8.to, indicating that T8

are connected to current Ma, therefore T8 is merged with Ma, thus Ma = (T8.from,
Ma.to).

T7 is then compared with Ma, and it is found that Ma.from ≠ T7.to, indicating that T7
are neither redundant nor connected with Ma, therefore Ma = (T7.from, T7.to).

While checking T1, since T1.to>Ma.from, indicating that T1 is not connected with
Ma, thus Ma is set to (T1.from, T1.to).

Onto the checking of T6, Ma.from = T6.to, indicating T6 is connected with M6,
therefore T6 is merged into Ma, thus Ma=(T6.from, Ma.to).

T5.to < Ma.from, indicating that T5 is not connected with Ma, thus Ma = (T5.from,
T5.to).

Onto the checking of T9, Ma.from=T9.to, thus Ma = (T9.from, Ma.to).
Onto the checking of T4, it is found that both T4.from and T4.to equals to those of

Ma, thus T4 is considered redundant, and is removed.
Finally, T3 passed the checking with Ma, thus the redundant check is completed.

The final result is shown in Fig. 5.
Note that the goal of this approach focuses on rapidly establishment of non-conflict

tunnels. Once a tunnel is established, its attributes could be determined right away.

206 K.-H. Chen et al.

Since this algorithm shares the same goal with both Order-Split and Conflict-Free
approach, and since these two are proven so far to be out-perform other approaches,
thus here Zero-Conflict is compared with them. Shown in Table 4 are the numbers of
resulting tunnels of Order-Split, Conflict-Free, as well as Zero-Conflict, generated
from requirements in Table 2. It can be observed that Zero-Conflict yields same
results for this case.

Group 0

1 2 3 4 5 6 7 8 9 10

T5

T6

T4

T3

T1

Group 1

T8

T7

T2
T9

Group 0

1 2 3 4 5 6 7 8 9 1011 22 33 44 55 66 77 88 99 1010

T5

T6

T4

T3

T1

Group 1

T8

T7

T2
T9

Fig. 5. The Solution for the Example of Table 2 by Using Zero-Conflict Algorithm

Table 4. The Compare of Three Algorithms

Approach Total Number of Tunnels
Ordered-Split Approach 8
ï ï ï ïïïï ïïï ïï ï ïAlgorithm 8
Zero-Conflict Algorithm 8

5 Time Complexity Analysis

The proposed Zero-Conflict Algorithm generates cut points right after security
requirements are acquired. Checking for conflicts are unnecessary, since possible
cases are successfully avoided. Removing of 1-hop requirements, grouping, and the
three phases of tunnel building, are all O(n) operations. However several steps in the
algorithm employed sorting operation, such as the sorting of requirement list, and
gathering of the cut point list, which raised the over-all time-complexity to O(nlogn).

In the final redundancy removal, the generated tunnels are sorted. It should be
noted that in this approach, n input requirements will generate at most 2n tunnels.
Assuming there are x 1-hop requirements in these n requirements, then there will be at
most n-x bus tunnels, n-x branch tunnels, and x 1-hop tunnels. Therefore the maximal
number of generated tunnels is 2n-x. Since x ≦ n, it is thus proven that n
requirements generated at most 2n tunnels, making redundancy removing itself a
O(nlogn) operation. Thus the time-complexity of Zero-Conflict is bounded in
O(nlogn), which, in comparison with Order-Split and Conflict-Free, is significantly
more efficient, as well as scalable.

 ZERO-Conflict: A Grouping-Based Approach for Automatic Generation 207

6 Simulation Results

To show that Zero-Conflict, in addition of being fast, generates no more tunnels then
existing approaches, a simulation was conducted. The simulator for Zero-Conflict
algorithm was implemented under Windows platform. The simulation program takes
a requirement file as input, and outputs a file containing generated tunnels. The
Order-Split and the Conflict-Free approaches were also implemented. The
performances of these algorithms were tested with inputs ranging from 1-200
requirements, each randomly generated 1000 times. The results of average amount of
tunnels are shown in Fig. 6. The X-axis represents the number of the requirements
input, while the Y-axis represents the number of tunnels generated. It could be seen
that the result of Zero-Conflict is close Order-Split and Conflict-Free. Noted that
under the assumption that the end nodes of all requirements are cut points, a tunnel
covering n cut points will be divided into n+1 connecting tunnels, which would raise
the number of resulting tunnels. However, the simulation results show that the
average number of tunnels generated by the proposed Zero-Conflict approach meets
(or in some cases, beats) the results of most known approaches.

Fig. 6. The Average Number of Tunnels in the Network of 50 Routers

7 Conclusion

This paper proposed a Zero-Conflict algorithm, an automatic policy construction
algorithm which is able to predict and avoid conflict in advance by using requirement
groups and cut points techniques. Moreover, the worse case of time-complexity of
this approach is only O(nlogn), which as far as we know, beats most known
approaches, whose worse cases of time-complexity are at least O(n2). Thus it is shown
that by avoiding possible cases for conflicts, this approach yields both satisfying
efficiency as well as effectiveness so that the resource for network management and
the performance of the entire network is further improved.

208 K.-H. Chen et al.

In addition, most preceding algorithms are suitable for central processing, whereas
security requirements are dealt with only after all of them are collected. The proposed
concept of cut point prediction is more suitable for distributed processing. Future
works can be made on utilizing this concept on constructing distributed processing
algorithms.

References

1. M. Blaze, A. Keromytis, M. Richardson, and L. Sanchez, “IP Security Policy (IPSP)
Requirements," RFC 3586, IPSP Working Group, August 2003.

2. C. L. Chang, Y. P. Chiu, and C. L. Lei, “Automatic Generation of Conflict-Free IPSec
Policies,” International Conference on Formal Techniques for Networked and Distributed
Systems, pp. 233-246, October 2005.

3. J. Conover, “Policy-Based Network Management,” Network Computing, Vol. 10, No. 24,
pp. 44-50, November 1999.

4. Z. Fu and S. F. Wu, “Automatic Generation of IPSec/VPN Security Policies in an Intra-
Domain Environment,” 12th International Workshop on Distributed Systems: Operations
& Management (DSOM 2001), pp. 279-290, 2001.

5. Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu, “IPSec/VPN Security
Policy: Correctness, Conflict Detection, and Resolution,” IEEE Policy 2001 Workshop,
pp, 39-56, 2001.

6. H. Hamed, E. Al-Shaer, and W. Marrero, “Modeling and verification of IPSec and VPN
security policies,” 13th IEEE International Conference on Network Protocols (ICNP
2005), Vol. 0, pp. 259-278, November 2005.

7. S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol,” RFC 2401,
Internet Society, Network Working Group, November 1998.

8. M. Li, “Policy-based IPSec management, ” Network, IEEE, Vol. 17, No. 6, pp. 36-43,
November 2003.

9. J. D. Moffett, “Requirements and Policies,” Position paper for Workshop on Policies in
Distributed Systems, HP- Laboratories, November 1999.

10. J. D. Moffett and M. S. Sloman, “Policy Hierarchies for Distributed Systems
Management,” IEEE Journal on Selected Areas in Communication, Vol. 11, No. 9, pp.
1404-1414, December 1993.

11. M. Sloman, “Policy Driven Management for Distributed Systems,” Journal of Network
and Systems Management, Vol. 2, No. 4, pp. 333-360, December 1994.

12. Y. Yang, C. U. Martel, and S. F. Wu, “On Building the Minimal Number of Tunnels - An
Ordered-Split approach to manage IPSec/VPN policies,” 9th IEEE/IFIP Network
Operations and Management Symposium (NOMS 2004), Vol.1, pp. 277-290, April 2004.

13. Y. Yang, Z. Fu, and S. F. Wu, “BANDS: An Inter-Domain Internet Security Policy
Management System for IPSec/VPN,” 8th IFIP/IEEE International Symposium on
Integrated Network Management 2003, pp. 231- 244, March 2003.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 209 – 220, 2006.
© IFIP International Federation for Information Processing 2006

Conflict Prevention Via Model-Driven Policy
Refinement

Steven Davy1, Brendan Jennings1, and John Strassner2

1 Telecommunication Software & Systems Group,
Waterford Institute of Technology, Cork Road, Waterford, Ireland

{sdavy, bjennings}@tssg.org
2 Motorola Labs, Chicago, IL, USA

john.strassner@motorola.com

Abstract. This paper describes an approach for application specific conflict
prevention based on model-driven refinement of policies prior to deployment.
Central to the approach is an algorithm for the retrieval of application-specific
data from an information model relating to the subject and targets of a given
policy. This algorithm facilitates the linkage of policies loosely defined at a
high level of abstraction to detailed behavioural constraints specified in the
information model. Based on these constraints policies are then modified so that
conflicts with other deployed policies can be readily identified using standard
policy conflict detection techniques. This approach enables policy enforcement
to be cognisant of application specific constraints, thereby resulting in a more
trustworthy and dependable policy based management system.

1 Introduction

This paper presents an approach for refinement of newly created or modified policies
so that application specific conflicts with already deployed policies can be readily
prevented. We propose the use of a policy analyser that can interrogate an information
model containing detailed information about the system for which policy is being
defined, and use this information to refine the high level policy into a policy
embodying information regarding system constraints its actions may be subject to.

This paper describes the operation of a policy analyser, and a prototype
implementation demonstrating its use in a policy based management system. The
paper is structured as follows. §2 discusses current work on policy conflict detection
and prevention, and on methods for analysing information contained within an
information model. §3 presents an architecture for policy conflict prevention and
specifies the algorithms for retrieval of relevant information and policy refinement.
Our prototype implementation is described in §4, whilst its operation in an
experimental test bed is described in §5. Finally, §6 summaries the paper and outlines
topics for future work.

2 Related Work

This section discusses published work in the domains of policy conflict analysis and
information model processing.

210 S. Davy, B. Jennings, and J. Strassner

2.1 Policy Conflict Analysis

Policy conflict detection and resolution is a necessary component of any Policy
Based Management System (PBMS). A PBMS must employ a facility to verify
that newly created or modified policies conform to intended system behaviour
before they can be deployed. From the perspective of our approach, a policy
conflict can be seen to be a potential occurrence of unintended behaviour within
the PBMS. This can manifest itself in many forms. Most have been documented by
Charalambides, et al. [1], who categorise conflicts as domain independent or
application specific. Domain independent conflict analysis can be carried out by
offline processes that indicate whether conflicts will definitely occur or may occur
in a specific context. If we can detect the conditions in which a conflict can occur,
then we can resolve the conflict by either modifying or removing one or more
conflicting policies. The issue, of course, is if we have enough knowledge to detect
all conditions in which a conflict can occur. For example, if conflicts are known at
design time, then one can devise strategies to deal with them. However, in
networking, one often encounters conflicts at run-time which were not envisaged
during the design period. Hence, the challenge is to design a robust conflict
detection approach that can deal with unforeseen situations.

Detection of application specific conflicts requires more information about the
system for which policies are being defined. In [2] the authors augment the PBMS
with extra information, expressed as rules relating to the managed entities. These
rules are triggered when an application specific conflict is about to occur; such
conflicts are resolved based on specific resolution policies associated with each of
these rules. This approach depends on the policy author both being able to specify
system constraints that policies must adhere to, and being able to translate these
constraints into the appropriate custom rule format. In [13] Shankar and Campbell
use pre-conditions and post conditions to describe the effects specific actions will
have on a system, they use this axiomatised rule-actions to help in the conflict
prediction process. These again have to be encoded into the policies to be
effective.

2.2 Information Model Processing

An Information Model is a representation of managed entities, concepts and their
relationships independent of platform, language, and protocol. Information models
play a central role in network management and considerable efforts have been
expended on the specification of standard information models. One of the more
mature standards is the TM-Forum’s Shared Information and Data Model, which is
closely related to DEN-ng [3]. One of the main advantages of DEN-ng is its extensive
use of patterns and abstractions (such as roles) to allow behaviour to be defined and
orchestrated over the associated components of the system being described. Use of an
information model of a system to aid in policy based management is also described in
[4], aimed at managing specifically IP networks, and more recently towards
autonomic communication networks [5].

 Conflict Prevention Via Model-Driven Policy Refinement 211

For model-driven policy refinement we are specifically interested in efficient
retrieval of relevant information from a system model. For UML-based models like
SID/DEN-ng a number of approaches for information retrieval exist. One such
method described in [11] details how the UML artefacts used to build a class diagram
describing an information model can be translated to an ontology where it is
represented in OWL (Web Ontology Language). This ontology can then be reasoned
over and queried using semantic web technologies. A benefit of this approach is the
ability to use existing ontologies to expand the information model such as linking to
user profiles.

Another approach would be to translate the UML into an XML format such as
XMI (XML Metadata Interchange) [8] where it can be efficiently queried over using
XQuery. XQuery provides an efficient method of querying repositories of XML
documents within an XML database. Meier [9] describes the performance of such an
XML database called eXist, where test documents of about 40 Megabytes can be
efficiently queried. Information model repositories generated from UML to XMI are
not expected to reach this size.

3 Description of Approach

Model-driven policy conflict prevention is the process of refining newly created or
modified policies so that conflicts with already deployed policies can be readily
detected using standard policy conflict detection approaches. Policy refinement in
this context involves the specification of additional condition clauses within the
policy, which subsequently allows the detection of conflicts with other policies
that would otherwise have gone undetected by standard policy conflict detection
algorithms.

More specifically, in cases where system information models describe constraints
relating to the operation of managed entities, relevant policies can be augmented with
conditions reflecting these constraints, so that they will not be enforced in a manner
that results in these constraints being violated. System constraints in the information
model are defined by the system architect who has expert knowledge in the
functionality of the system being modelled. These system constraints may come in the
form of action pre-conditions, invariants, or post-conditions. However the policy
authors, be they business analysts or network administrators, have vastly differently
views of the system for which they are defining policy. Therefore they have an
incomplete view of the system as a whole. System constraints defined within the
information model can help bridge this gap by supplying implicit knowledge not
usually available to the policy authoring process. Our approach is to introduce an
automated policy refinement process which obviates the need for policy authors to be
cognisant of the detailed constraints on system operation, but which outputs policies
that are sufficiently well specified that policy conflict detection processes can be
effective and efficient. Our approach is primarily concerned with action
pre-conditions or action constraints.

212 S. Davy, B. Jennings, and J. Strassner

Fig. 1. PBMS Architecture incorporating model-driven conflict prevention

3.1 PBMS Architecture Incorporating Policy Conflict Prevention

Fig. 1. illustrates a PBMS architecture incorporating model-driven conflict
prevention. We now briefly describe the role of the Policy GUI, the information
model and the Policy Analyser. The Policy GUI is the interface used by policy
authors who are primarily concerned with ensuring that services and resources are
managed in a manner consistent with business objectives and goals. Policy authors
are likely to be business analysts who define or modify policies relating to
particular customers and their access to the services provided by the network. They
are unlikely to have the detailed knowledge of the network required to specify
policies at the level of detail required for easy detection of conflicts with other
deployed policies.

The information model describes, in a platform independent manner, the
characteristics and behaviour of the different managed entities comprising the
managed environment, as a set of related model elements. Model elements include
classes, attributes, relationships, constraints, and other artefacts. For example, the
information model will describe which customers can use which services where and
how. Constraints within the information model can be described using a constraint
language like the Object Constraint Language (OCL) [7]. OCL specifies constraints
using invariants, pre-conditions and post conditions associated with all attributes,
associations and operations on each modelled class.

Policies created or modified by policy authors are expressed in strict accordance
with the terms used in the information model, since the policy GUI is tightly coupled
to the information model, as described in [5]. Once created/modified policies are
passed to the Policy Analyser, which takes their subjects and/or targets and queries
the information model for relationships (and constraints on these relationships) for
these subjects/targets. Using relationship and constraint information it is possible to
assess more precisely those circumstances in which the policy actions should be
invoked. To achieve this, the Policy Analyser employs an algorithm that retrieves the
relevant relationships and constraints from the information model given an arbitrary

 Conflict Prevention Via Model-Driven Policy Refinement 213

Inputs [Policy]
Outputs [Relationships and Constraints]

List Subjects defined in Policy
List Targets defined in Policy
List Actions defined in Policy
For every element of Subjects

Subject Managed Entities = Look up the corresponding Class
descriptions from the Information Model

For every element of Targets
Target Managed Entities = Look up the corresponding Class
descriptions from the Information Model

For every element of Target Managed Elements,
If there is an Action requested by the Subject Managed Entity
define within the Target Managed Entity that matches the
Action in the Policy then add the pre-conditions of this
action to the relationships and constraints list.

Return (Relationships and Constraints)

Fig. 2. Policy Action Constraint Retrieval Algorithm

policy defined in accordance with that information model. Such an algorithm is
specified in §3.2 below.

3.2 Policy Action Constraint Retrieval Algorithm

In specifying an algorithm for policy action constraint retrieval we firstly assume that
policies specify the policy subject using the terms used in the information model (e.g.
there must be a one-to-one, or one-to-many, mapping between a policy subject and a
class in a UML based model). The target(s) of the policy, if included, must also be
similarly specified. If the target is not specified explicitly, it must be possible to infer
it from the information model by examining the relationships between the subject and
the actions. Finally, policy actions must map to relationships between those model
artefacts representing the policy subjects/targets.

Given these assumptions the algorithm outlined in Fig.2 provides a means of
discovering the relevant policy action constraints based on model artefacts and their
relationships.

3.3 Policy Refinement Algorithm

Once the associated relationships and constraints have been retrieved, the original
policy needs to be refined. As there may be multiple action constraints to be added
into the policy, they must first be checked against each other so that the resulting
policy action constraints do not logically contradict. An example of this would be if
two constraints were added to a policy specifying that the action may only be
performed during daytime hours, and another constraint specifying that the action
may only be performed during night time hours. This type of rule contradiction will
cause the policy not be enforced at anytime, and so the policy can not be refined and
is invalid against the referenced information model. The constraints must also be
checked against existing policy conditions for completeness.

214 S. Davy, B. Jennings, and J. Strassner

Inputs [(Relationships and Constraints); Policy Conditions]

Outputs [newPolicy]

For every Relationship select PolicyAction.PreConditionsConstraint

A Pre Condition Constraint is selected from each Relationship
and tested against all previously selected Constraints

 For each Constraint in Constraints and Policy Conditions

If newConstraint AND Constraint

is a Logical Contradiction

 Then

The Condition Clause of the Policy will never be
satisfied and the algorithm is aborted

Else

 Add newConstraint to the list of Constraints

Combine the resulting list of constraints to the Policy Conditions as
new conditions

Return newPolicy

Fig. 3. Policy Refinement Algorithm

4 Prototype Implementation

The prototype implementation, depicted in Fig.4., will now be described. The Policy
GUI is developed in Java, and enables the policy author to create high level policy
using context sensitive drop down menus. A detailed description of this GUI can be
found in [5]. The options available to the policy author are limited to the entities
describe in the information model, so that subject, targets and actions must be
specified in the information model before they can be used to define policies. The
policies output from the GUI are defined from the view the policy author has of the
managed system. This allows the policy author to only be concerned with authoring
policy appropriate to his level of knowledge, while enabling the policy analyser to
develop more specific instances of this policy.

The Policy Analyser is a Java process that is invoked on every new or modified
policy. Access to the information model is performed by processing a set of XML
files that represent the information model. The information model is initially
described using a UML class diagram editor, and is exported to an XMI [8] format.
XMI is the OMGs (Object Management Group) standard format for describing UML
diagrams, however only the class diagram aspects of the standard are of interest for
the moment. The information model constraints are defined in a separate OCL file.
The OCL constraints are translated from managed entities action pre-conditions into
policy conditions that can be understood by the policy repository and policy analyser
via Kent OCL library [10]. This library provides java class implementation of OCL
constraints that can be evaluated in real-time. The policy repository takes two forms;
policies are stored in an XML format for query and retrieval using eXist XML
database for storage and XQuery for searching; they are also stored in a JBoss rules
engine in working memory, where reasoning over policies is performed. Policies
stored in the JBoss rules engine [12] are encoded as Java Bean objects, so a
simple policy class hierarchy is used. The JBoss rules engine also holds a runtime

 Conflict Prevention Via Model-Driven Policy Refinement 215

Fig. 4. Prototype Implementation

representation of the data defined in the information model, such at router information
and link information which is updated at regular intervals.

Some simple policy types are defined such as permit, obligation, and refrain.
Policies added to the JBoss rule engine can be rapidly reasoned over to discover
whether there are any domain independent conflicts, such as a conflict of modality.
The rule engine can also detect if two policies referring to the same action and target
will potentially cause a conflict when the conditions are satisfied.

The system being managed is simulated with OPNET, allowing for flexibility at
the network level where it is easy to modify the underlying network scenario. PDPs
receive updated policy and enforce it through the simulated PEPs. A more detailed
description of the simulated system is provided in [5].

5 Scenario and Results

This section describes a scenario where there are two customer networks
subscribed to services provided by a single Internet Service Provider (ISP). Our
ISP has defined a simple information model (using a subset of DEN-ng) and
policies as follows.

5.1 High Level Policies and Information Model

The policies will describe the conditions as to when a certain customer is permitted to
request provision of RTP (Real Time Protocol) traffic for its usage.

There may be several similar policies defined for other customers of the system
where they too are permitted to request the allocation of bandwidth. There may also
be policies defined not by the business user but by the network administrator that will
also require the allocation of bandwidth. When the defined policy in Fig.5 is enforced,
the core network will modify the PHB (per hop behaviour) of the edge and core
routers to reflect the provision of the requested service. We can see this interaction
modelled in the information model in Fig. 6 below. As Fig. 6 shows, a customer can

216 S. Davy, B. Jennings, and J. Strassner

<policy name=”WITServicePolicy” type=”permit”>
 <subject type=”Customer”>WIT</subject>
 <event type=”From”>09:00</event>
 <event type=”To”>17:00</event>
 <event type=”Trigger”>RequestRTPSession</event>
 <operation>
 <target type=”RouterLink”/>
 <action type=”AllocateBW”>
 <param name=”grade” value=”1”/>

<param name=”amount” value =”5Mbps”/>
 </action>
 </operation>
 <condition/>
</policy>
<policy name=”TSSGServicePolicy” type=”permit”>
 <subject type=”Customer”>TSSG</subject>
 <event type=”From”>08:00</event>
 <event type=”To”>16:00</event>
 <event type=”Trigger”>RequestRTPSession</event>
 <operation>
 <target type=”RouterLink”/>
 <action type=”AllocateBW”>
 <param name=”grade” value=”1”/>
 <param name=”amount” value =”4Mbps”/>
 </action>
 </operation>
 <condition/>
 </policy>

Fig. 5. High Level Policies

subscribe to the RTP service which uses resources such as the EdgeRouter and the
CoreRouter.

Focussing on the RouterLink managed entity; there are two operations available
for this scenario – allocation and deallocation of bandwidth. We will now discuss the
former, as the latter is very similar. AllocateBW() will instruct the nested core and
edge routers to configure their PHBs to reflect the request. As there are always limited
resources on the network, we cannot keep calling AllocateBW() and expect
bandwidth to be always available to allocate. OCL is used to define the semantics of
these attributes and the following OCL is attached to the AllocateBW() operation to
constrain its use concerning how bandwidth can be allocated.

context RouterLink::AllocateBW(ToS:Integer, amount:Real)
pre perserveBWLimit: self.currentBW + amount <self.maxBW

When the original policy is run through the policy analyser it is refined with
information describing more accurately when the policy should be actually enforced.
The algorithm defined in Fig.2 is implemented as a set of XQuery functions where the
policy document is input. For example the subjects of the policy can be discovered
using the XQuery terminology, doc(“policy.xml”)/policy/subject/@type, which
will return a type represented by the subject mention in the policy. Similar statements
can retrieve the targets and actions of the policy. XQuery is also used to query the

 Conflict Prevention Via Model-Driven Policy Refinement 217

CustomerService
Relationship

Customer

Resource Service

CoreToCoreLink

EdgeRouterCoreRouter

EdgeToCoreLink

RouterLink

currentBW : Double
maxBW : Double

AllocateBW()
DeallocateBW()

RTPServiceRouter

ServiceRouter
Relationship

usesResources

modifiesPHBs

subscribesToService

Fig. 6. Den-ng Subset Information Model

XMI representing the information model. To look up a class entity’s id the query
below can be used.

for $x in doc("InfoModel.xmi")//*[@name]
where (compare(name($x),'UML:Class') = 0) and (compare($x/@name,
'Service') = 0)
return string($x/@xmi.id)

Once we have the id of the policy entities we can then discover further
associations, and relationships between other entities using the information model.
The algorithm finishes with selecting the appropriate OCL from the OCL files; this is
easily carried out because every OCL statement includes a context mentioning the

<policy name=”WITServicePolicy” type=”permit”>
 <subject type=”Customer”>WIT</subject>
 <event type=”From”>09:00</event>
 <event type=”To”>17:00</event>
 <event type=”Trigger”>RequestRTPSession</event>
 <operation>
 <target type=”RouterLink”/>
 <action type=”AllocateBW”>
 <param name=”grade” value=”1”/>
 <param name=”amount” value =”5Mbps”/>
 </action>
 </operation>
<condition>RouterLink.currentBW + 5 < RouterLink.maxBW</condition>
</policy>

Fig. 7. Modified Policy

218 S. Davy, B. Jennings, and J. Strassner

reference class and actions it is constraining. The Kent OCL library then processes the
OCL and generates the extra policy conditions required to refine the associated
policy. The policy in Fig.7. is a refined policy from Fig.5.

The policy defined in Fig.7 describes an extra condition of which the original
policy author would not be aware. The clause is evaluated in real-time when the
policies are being processed to see if they apply at the current situation. This new
information will further constrain when the policy will be valid. The Kent OCL
library generates a java bean that will evaluate this condition for the JBoss rule engine
during analysis and at runtime.

5.2 Policy Enforcement

Suppose that the two original policies were deployed to the system, and currently the
currentBW and maxBW of the related RouterLinks are 0.0Mbps and 8.0Mbps respectively.
An event of type Request RTP is initiated by the customer WIT at approximately
08:15am. This event triggers the enforcement of the relevant policies allocating 5Mbps of
bandwidth over the related RouterLinks (first policy enforcement in Fig. 8.). An event of
type Request RTP is then initiated by the customer TSSG at approximately 9:40am
(second policy enforcement in Fig. 8.). This triggers an attempt to allocate a further
4Mbps of bandwidth on the related links. However an application specific conflict occurs
that was not detected previously, whereby more bandwidth is being allocated than is
available. The effects of allowing this conflict to go “untreated” are unpredictable, as the
situation is not catered for. From Fig.8 we see that the allowable capacity of the core link
is 8 Mbps, and as the new RTP session was allowed, it can only be partially met. Also,
this will adversely affect other existing sessions.

Now suppose the original policies were analysed and refined to reflect the
constraints specified within the information model. The policy information added in

Fig. 8. Application Conflict Illustration

 Conflict Prevention Via Model-Driven Policy Refinement 219

Fig.7 is added to both policies. In this updated scenario, the first event still succeeds,
but the second event does not trigger the permit policy and is discarded, as the policy
will not meet all of its conditions. Specifically, when the condition clause of the
policy is checked, it is evaluated to false because the currentBW plus the requested
bandwidth exceeds the maxBW of the related RouterLinks.

6 Conclusions and Future Work

Policy conflict situations, when not catered for, will allow the system being managed
to produce unpredictable behaviour. This is an undesirable scenario for potential ISPs
looking to employ policy based management to control the behaviour of their
network. This paper introduces an architecture and prototype implementation that
refines high level business policies with application specific information so that
conflicts can be readily detected. This form of conflict prevention is made possible
using an information model defined over the services and resources of the system,
where the constraints of the system are defined by a domain expert. Algorithms that
process a policy in order to retrieve constraint information and subsequently refine the
policy are defined and implemented. A model-driven approach to refining policies
towards conflict prevention frees the business user from being concerned with the
behavioural details of the core network, and introduces a level of safety and
dependability into the system. One potential downside is that certain business policies
may not be enforced as originally described, thus provision of appropriate feedback to
the policy author would be desirable.

Future work will be focused on developing our algorithm to be used with existing
policy languages and policy based management systems such as Ponder [6]. We also
intend on developing a richer information model along with a set of obligation, permit
and refrain policies to investigate what other information can be used from the
information model to aid in conflict prevention. We also intend on exploring other
aspects of Information Models that define system behaviour such as flow charts and
finite state machines.

Acknowledgements

The authors would like to take this opportunity to thank the anonymous reviewers for
their useful comments and feedback on the paper. This work has received support
from the Science Foundation Ireland under the Autonomic Management of
Communications Networks and Services programme (grant no. 04/IN3/I404C).

References

1. Charalambides, M. et al., “Policy Conflict Analysis for Quality of Service Management,”
in Proceedings of the Sixth IEEE International Workshop on Policies for Distributed
Systems and Networks POLICY'05, Stockholm, Sweden (2005) 99-108

2. Charalambides, M. et al., “Dynamic Policy Analysis and Conflict Resolution for DiffServ
Quality of Service Management” in Proceedings of the IEEE/IFIP Network Operations and
Management Symposium 2006, Vancouver, Canada (2006) 294-304

220 S. Davy, B. Jennings, and J. Strassner

3. Strassner, J., “Policy-based Network Management: Solutions for the Next Generation”,
Morgan-Kaufman Publishers. ISBN 1-55860-859-1 (2004)

4. Strassner, J., “Directory Enabled Networks”, Macmillan Technical Publishing, ISBN 1-
57870-140-6, (1999)

5. van der Meer, S., Davy, A., Davy, S., Carroll, R., Jennings, B., Strassner, S. 2006,
"Automonic Networking: Prototype Implementation of the Policy Continuum", in Proc.
Workshop in Broadband Converged Networks at IEEE/IFIP Network Operations &
Management Symposium, Vancouver, Canada (2006)

6. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M., “The Ponder Specification Language,”
presented at 2nd IEEE Workshop on Policies for Networks and Distributed Systems,
Bristol, UK (2001)

7. OMG, UML 2.0 OCL Specification v2.0, Object Management Group Specification,
Available at http://www.omg.org/docs/formal/06-05-01.pdf: accessed July (2006)

8. OMG, Meta Object Facility (MOF) 2.0 XMI Mapping Specification, v2.1, Object
Management Group Specification, Available at http://www.omg.org/docs/formal/05-09-
01.pdf accessed July (2006)

9. Meier, W., eXist: An Open Source Native XML Database, In Web, Web-Services, and
Database Systems. NODe 2002 Web- and Database-Related Workshops, Erfurt, Germany
(2003) 169-183

10. Akehurst, D., Patrascoiu, O., OCL 2.0 – Implementation the Standard for Multiple
Metamodels”, Workshop Proceedings, 6th International Conference on the Unified
Modeling Language and its Applications, UML2003, Electronic Notes in Theoretical
Computer Science (2003)

11. Lehtihet, E., Strassner, J., Agoulmine, N., O Foghlu, M., Ontology-Based Knowledge
Representation for Self-Governing Systems, accepted for publication in 17th IFIP/IEEE
International Workshop on Distributed Systems: Operations and Management, DSOM
2006, Dublin, Ireland, October (2006)

12. JBoss Rules, JBoss, Available at http://labs.jboss.com/portal/jbossrules/ accessed August
(2006)

13. Shankar, C., and Campbell, R., A Policy Based Management Framework for Pervasive
Systems using Axiomatized Rule-Actions in Proceedings of the 2005 Fourth International
Symposium on Network Computing and Application (NCA’05), Cambridge,
Massachusetts, July (2005) 255-258

Minimum-Intrusion Approaches for In-Service
BER Estimation in Transparent WDM Networks

Carolina Pinart

Centre Tecnològic de Telecomunicacions de Catalunya
carolina.pinart@cttc.cat

Abstract. The bit error rate (BER) is a key measure to quantify the
reliability of a transmission system. In transparent networks, link bit
error checks are not cost-effective. This paper proposes approaches for
low-cost, real-time BER estimation with minimum opto-electronic con-
versions and applies them to a transparent optical networking testbed1.

1 Introduction

Today’s optical transport networks are based on the Synchronized Digital Hier-
archy (SDH) [1]. Electrical regeneration may amount to 70-90% of the cost of
lighting up a new wavelength in an SDH network [2]. Therefore, the removal of
opto-electrical (O/E) conversions in core nodes, which is known as transparency,
will result in the efficient transportation of any type of data traffic (predomi-
nantly based on the Internet Protocol, IP), regardless of its payload or format.
Moreover, equipment for Wavelength Division Multiplexing (WDM), tunable
lasers, reconfigurable optical cross-connects and optical add-drop multiplexers,
along with emerging approaches of optical intelligence, have matured sufficiently
to build ultra-high-capacity networks. Future optical networks are also expected
to provide new on-demand connectivity services with different quality levels. In
the context of transparency (analog transmission), this results in a major chal-
lenge for in-service performance monitoring due to the lack of electrical regener-
ation in the core elements, which limits the amount of monitoring information
available, especially a paramount digital parameter: the Bit Error Rate (BER).

In the first deployment phase of transparent networks, each WDM connection
is expected to transport a single service, which is known as a wavelength-based
or lambda service. A WDM connection is an amplified intensity-modulation,
direct-detection (IM/DD) system [3][4]. Physical-layer (layer 1, L1) quality of
service (QoS) will be crucial here in the sense that each service class will have to
be defined by a set of parameters characterizing the quality of the optical signal
transporting it; a wavelength-based Service Level Agreement (SLA). Defined as
the ratio of errored bits to the number of transmitted bits, the BER captures
the overall performance of the physical layer, and is a basic SLA parameter.

1 This work was partially funded by the Spanish Ministry of Science and Education
through the project RESPLANDOR under contract TEC2006-12910/TCM.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 221–226, 2006.
c© IFIP International Federation for Information Processing 2006

222 C. Pinart

However, in practice it takes long to calculate the BER in terms of received bits.
Therefore, the BER is usually estimated in real time by performing bit and block
checks at each link, that is, in edge and core SDH nodes. In a transparent net-
work, such checks are only possible at the edges, which makes on-line link BER
estimation a challenge. Service providers are beginning to use non-intrusive mon-
itoring (NIM) capabilities in their WDM networks to determine physical-layer
performance metrics that measure the integrity of optical signals without electri-
cal regeneration. Among them, the Optical Signal to Noise Ratio (OSNR) seems
a good candidate to estimate the BER [3] [5]. Network-layer parameters, such
as the Packet Error Rate (PER), are also candidates for in-service monitoring.

This paper proposes scenarios with minimum or absence of O/E conversions
to estimate the BER in transparent networks using non-intrusive capabilities
where possible and provides a practical example in the form of a laboratory
testbed. The remainder of the paper is organized as follows. In Section 2 we
propose three monitoring scenarios for detecting bit errors at layers 1, 2 and 3
in transparent WDM networks. Section 3 provides a practical example of BER
estimation according to the scenarios of Section 2 that do not require O/E at the
core nodes, which is implemented in the ADRENALINE testbed, a transparent
network that supports QoS-enabled services monitored non-intrusively.

2 Scenarios for BER Estimation in Transparent IM/DD

When offering a transparent lambda service, traffic is mapped natively onto in-
dividual wavelengths. The service is logically and physically terminated directly
onto the end user’s IP router or layer 2/3 (L2/L3) switch, and is transported
across an individual wavelength over the transparent network to be terminated
on another IP router or L2/L3 switch. This transparency allows the delivery of
the service to be more cost-effective but at the same time it makes the measure-
ments of SLA metrics difficult to implement. Without optical-based monitoring
capabilities, measurement of QoS in transparent networks is reduced to measur-
ing the physical connectivity. With SLA metrics being provided on a per-service
basis, service monitoring and SLA measurements will have to be implemented on
each individual wavelength. Real-time performance monitoring and management
will be essential in this context, which results in the following requirements:

1. Accurate monitoring of the raw bit stream in real time at multi-gigabit rates.
2. Independence of the bit rate.
3. Use with high number, dense-spaced, multiple-bitrate WDM channels.
4. Rapid detection of degradation and proactive response.
5. Limited latency and/or overhead.

Apart from these requirements, monitoring should not defeat transparency
(i.e., be non-intrusive) and be low-cost. The rationale behind this is twofold:
independence of bitrate and format, and low capital and operational expenses.

Minimum-Intrusion Approaches for In-Service BER Estimation 223

2.1 L1/L2 Monitoring (Electrical)

– Framework: A carrier owns one or more transparent networks (from source
to destination ports of two IP routers).

– Challenges: This scenario resembles bit/block error measurements in the
receiving ends of SDH networks [1]. For example, the Optical Transport Net-
work [6] uses the digital wrapper (DW) to multiplex data streams from var-
ious sources into common telephony-based payloads. Multiple data streams
from different sources are mapped into the same DW bandwidth as time do-
main multiplexing (TDM) payloads. The information in the communications
stream is multiplexed at the physical layer (TDM payload).

– Solutions: If using SDH or Generic Frame Procedure (GFP), bit/block error
measures [1]. If using Gigabit Ethernet (GigE), parity check. Another option
is the estimation of BER from the received electrical signal [4].

– Monitoring: This scenario requires intrusive monitoring (O/E conversions).
Some IP routers have embedded GigE/SDH/GFP framing capabilities. Al-
ternatively, devices for bit/block error check and/or Signal to Noise Ratio
(SNR) testers with embedded BER estimation must be employed.

2.2 L1 Monitoring (Optical)

– Framework: Same as previous scenario.
– Challenges: The main complication in this scenario is that the performance

measurements available, which are typically limited to optical power, OSNR
and wavelength registration, do not directly relate to QoS measures used in
SLAs. Since the monitoring system only accesses the optical layer, no parity
checks or SNR measurements are possible. Moreover, transparency means
that it is not possible to access overhead bits in the transmitted data to
obtain performance-related measures.

– Solution: Estimation of the BER from the OSNR. Since this solution is
non-intrusive and performed in the optical domain, it can be applied at any
point in the network by tapping a small portion of the transmitted WDM
signal. The use of the channel OSNR (ONSRc) as a means to estimate the
BER of the signal (BERc) is based on the assumption that the Q factor can
be used as an intermediate parameter. Humblet and Azizog̃lu [3] derived
widely-used approximate expressions for the Q factor as a function of the
OSNR. While the Q factor can be directly converted to an electrical SNR
value [4], the relationship to the OSNR is unfortunately not so simple. The
study of Humblet and Azizog̃lu for ASK systems has the following result:
Pe = Q(2 S

N√
4 S

N +M+
√

M
), where Q(x) denotes the CDF of a zero mean, unit

variance Gaussian random variable [3], and 2M = 2BoT + 1 and S/N is the
SNR. Assuming M=1, and combining the results of [3] and Becker et al. [5],
the relation between the Q factor and the OSNR can be approximated as:

Q =
√

Bo

Be

2OSNRc√
4OSNRc + 1 + 1

(1)

224 C. Pinart

where Be is the electrical bandwidth of the receiver filter and Bo is the optical
bandwidth. IM/DD systems with low inter-symbol interference and Gaussian
noise distribution verify that the Q-factor expression [4] and eq. 1 are equal
[3]. Gaussian distribution is used to model the ASE noise introduced by
optical amplifiers as dominant over the receiver shot and thermal noises.
Therefore, we obtain the channel BER (BERc) from the channel OSNR [7].

– Monitoring: Optical Performance Monitoring (OPM) devices perform non-
intrusive monitoring by tapping a WDM fiber. Commercial OPMs monitor
several fiber ports, each supporting tens to hundreds of WDM channels.
OPM monitors are integrated in edge and core nodes using optical splitters.

Fig. 1. Combination of scenarios for BER estimation in transparent networks

2.3 L3 Monitoring

– Framework: Customer-empowered fiber networks, which are becoming a
reality due to the access to dark fiber resulting from the liberalization of
leased line provisioning. Little effort on OPM is expected from these net-
works, which basically provide IP services (packet-level monitoring).

– Challenges: The Packet Error Rate (PER), defined as the rate at which
errors in transmission/reception result in the rejection of a packet, is a stan-
dard measure of network-layer performance. Packet loss is the main SLA
parameter monitored by users and service providers. This parameter can be
monitored in real time with fairly good accuracy. In a transparent network,
packet errors occur because of errors and impairments in the physical layer,

Minimum-Intrusion Approaches for In-Service BER Estimation 225

which cause data bits to toggle. A transparent WDM network is seen by the
IP layer as a single hop, which means that network load, congestion avoid-
ance mechanisms or IP header corruption do not cause packet losses, simply
because they do not exist. Many research efforts have been put into reflecting
the relationship between the raw PER and the link BER when the packet
loss is a result of bits in error at the physical layer: BERc = 1− s

√
1 − PER,

where s is the size (in bits) of a packet when no coding is done.
– Solution: The coding scheme affects the way in which bit errors on the

physical layer propagate up the network stack. Both the errors occurring
on a WDM connection and the protection scheme have an impact on the
PER for the packets transmitted over that channel. In a low power regime,
[8] shows that 8B/10B block-coding causes a non-deterministic relationship
between PER and BER in optical GigE. Therefore, PER monitoring does
not seem a substitute to BER monitoring, but rather a complement.

– Monitoring: For NIM, IP routers connected to edge nodes have embedded
packet statistics capabilities. Otherwise, packet analyzers can be used. In
core nodes, optical splitters (after demultiplexing) and packet analyzers are
needed. For intrusive monitoring, IP test traffic generation and monitoring
nodes are needed both in edge and core nodes.

In a network with N core nodes with F in/out fibers per node and C WDM
channels per fiber, and M edge nodes with W channels per receiving end, the
capital expenses for estimating the BER on-line (cnumber of scenario) are:

– End-to-end (edge): c1 = McL1/L2; c2 = M(cOPM + Fcsplitter); c3 = McL3
– At each hop (core and edge nodes): c1 = 2NFCcO/E +(N +M)cL1/L2; c2 =

(N + M)cOPM + (2N + M)Fcsplitter ; c3 = NFCcsplitter + (N + M)cL3

where cO/E is the cost of a transponder, CL1/L2 is the cost of bit/block error
count capability, csplitter is the cost of an optical splitter, cOPM is the cost of
an OPM monitor and cIP is the cost of a dedicated device for packet statistics.
For simplicity, in scenario 2 we assume that each optical node is equipped with
a single multi-fiber OPM monitor. For scenario 3, we assume that L3 monitor-
ing is done non-intrusively with a single packet-capturing device per receiving
end and that no coding is done. Note that the O/E cost for the MW channels
added/droped at the edge nodes is not included because it is an expense nec-
essary for the operation of the network. Note also that scenario 1 is the only
one that requires overhead to compute bit/block errors (e.g., GFP). Figure 1
illustrates possible combinations of the above scenarios with minimum O/E.

3 The Example of the ADRENALINE Testbed

The ADRENALINE testbed is a transparent dense WDM network developed at
the Centre Tecnològic de Telecomunicacions de Catalunya. Each node is enabled
with an OPM monitor that measures channel power, frequency drift and OSNR
of the in/out fibers. A broadband tester measures L3 statistics for IP traffic.

226 C. Pinart

3.1 On-Line SLA Validation in ADRENALINE

ADRENALINE supports three service types, whose QoS of these services can
be verified in real-time by a NIM system [7]. The monitoring scenario of the
ADRENALINE testbed is novel because it combines pure non-intrusive scenarios
at L1 and L3 (scenarios 2 and 3, Figure 1c). The rationale is to accomplish the
monitoring goals listed in Section 2 and to build a solution that supports easy
migration to full OPM once the current technological limitations are removed:

1. The OSNR is obtained by NIM and allows link BER estimation.
2. Spectral monitoring is bitrate-independent.
3. Non-intrusive OPM allows monitoring of DWDM channels in milliseconds.
4. Non-intrusive OPM allows detecting degradations such as OSNR levels and

power losses in milliseconds. Suitable fault location algorithms are needed for
proactive response due to the propagation of faults in transparent networks.

5. L1 and L3 NIM add neither overhead nor latency.

Moreover, L3 NIM at the edge nodes results in a minimum amount of O/Es
and low cost by using embedded packet statistics capabilities of the routers.
The cost of on-line BER estimation in the testbed is cADRENALINE = 3cOPM +
12csplitter . Note that no overhead is added to the transported data for monitoring
purposes, because no bit error checks are done. On the other hand, this model
relies on the OSNR as the means to estimate the BER. In some cases, the
difference between the real and estimated BER may be too large. Then, it may
be interesting to add an offset or to compensate estimation errors.

References

1. “Network Node Interface for the Synchronous Digital Hierarchy (SDH),” ITU-T
Rec. G.707, 1996.

2. S. Barnes, “All-optical networks: principles, solutions and challenges,” in in Proc.
Optical Fiber Communication Conference (OFC), 2002.

3. P. A. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with
optical amplifiers,” IEEE/OSA Journal of Lightwave Technology, vol. 9, no. 11, pp.
1576–1582, November 1991.

4. D. Marcuse, “Derivation of analytical expressions for the bit-error probability in
lightwave systems with optical amplifiers,” IEEE/OSA Journal of Lightwave Tech-
nology, vol. 8, no. 12, pp. 1816–1823, December 1990.

5. P. C. Becker et al., “Erbium-doped fiber amplifiers fundamentals and technology,”
in Optics and Photonics. NY Academic Press, 1999.

6. “Architecture of Optical Transport Networks,” ITU-T Rec. G.872, November 2001.
7. C. Pinart and G. Junyent, “The INIM system: in-service non-intrusive monitoring

for QoS enabled transparent WDM,” to appear in the IEEE JSTQE, 2006.
8. L. B. James, A. W. Moore, and M. Glick, “Structured errors in optical Gigabit

Ethernet,” in Proc. Passive and Active Measurement Workshop (PAM), April 2004.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 227 – 232, 2006.
© IFIP International Federation for Information Processing 2006

Ontology-Based Policy Refinement Using SWRL Rules
for Management Information Definitions in OWL

Antonio Guerrero1, Víctor A. Villagrá1, Jorge E. López de Vergara2,
Alfonso Sánchez-Macián1, and Julio Berrocal1

1 Dpto. de Ingeniería de Sistemas Telemáticos, Universidad Politécnica de Madrid
2 Dpto. de Ingeniería Informática, Universidad Autónoma de Madrid

antonio.guerrerocasteleiro@telefonica.es, villagra@dit.upm.es,
jorge.lopez_vergara@uam.es, aasmp@dit.upm.es,

berrocal@dit.upm.es

Abstract. The goal of ontology-based management is to improve the manage-
ability of network resources through the application of formal ontologies. Prior
research work has studied their application to represent the management infor-
mation definitions, the mapping and merging processes to obtain a semantic in-
tegration of those definitions, and the representation of behaviour and policy
definitions. Using ontologies allows the additional advantage of integrating, in
the same semantic manager, business and service level ontologies with the net-
work management ontology, in a framework for automated management. This
integration allows for policy refinement and interoperation between high level
policies and low level policies.

1 Introduction

Network administrators need more intelligent management systems that hide the un-
derlying complexity of the network, allowing them to manage the infrastructure at an
abstract level, focusing on what the expected behaviour should be, instead of on how
to specifically achieve it. In this context, Policy-Based Network Management
(PBNM) [1] proposes the use of policies to administer, manage, and control network
resources, in such a way that they can be centrally defined and applied to large num-
bers of devices uniformly. In [2] Strassner depicts the “Policy Continuum”, where
policies can be defined at several layers with different levels of abstraction. This lay-
ering should allow network administrators to manage their systems at a higher level of
abstraction than the mere technology configuration, therefore hiding the complexity
from the administrator.

This paper presents a generic ontology-based approach to bind the behaviour speci-
fied at higher levels of abstraction to the expected behaviour at the network level, in
such a way that an ontology reasoner can dynamically perform this High Level (HL)
to Low Level (LL) refinement process at run-time. The next sections describe the
semantic management framework within which this work is presented, and how the
policy refinement process can be accomplished. Then, a simplified policy refinement
example will be used to illustrate the mechanisms being presented.

228 A. Guerrero et al.

2 Semantic Management

The ontology-based semantic management framework [3] proposes a single manager
working with a unique information model, which integrates all the different defini-
tions of the managed resources, taking into account the semantic aspects of those
definitions (i.e. their meaning). In [4] it is shown how to merge and map management
definitions from different domains into a Common Management Ontology. A seman-
tic manager could then apply generic policies for all the network resources, independ-
ently of the management models in which they are originally defined.

OWL [5], the Web Ontology Language, is proposed as the language for policy and
management definitions, since it contains all the necessary constructors to formally
describe most of the information management definitions [6]. This semantic approach
allows the integration, in the same unified management information model, of the be-
haviour definitions and policies for the managed resources, which can also be ex-
pressed in OWL using the SWRL language [7], as shown in [8].

A comparison of other Semantic Web policy languages is presented in [9], from a
PBM point of view, stating that the possibility to represent entities and behaviours at
multiple levels of abstraction makes ontology frameworks adequate to deal with sev-
eral kinds of contexts at different level of specifications. The advantages of semantic
policy frameworks are analysed in [10], stating that semantic approaches using
RDF/OWL as standards for policy representation enable runtime extensibility and
adaptability of the system, as well as the ability to work with policies relating to enti-
ties described at different levels of abstraction. The use of ontology-based PBM to
provide dynamically adaptive network management solutions is also proposed in [11].

3 Ontology-Based Policy Refinement

The proposed semantic manager can therefore work with ontologies and policies de-
fined at different abstraction levels, which allows facing one classical problem in the
PBNM area: policy refinement. Policy refinement is concerned with the process of
mapping a set of HL policies to a set of LL policies [1]. Most approaches, such as in
[12] and [13], attempt this decomposition of HL policies relevant to a composite sys-
tem into a set of policies that are executed in its constituent parts to implement the
behaviour intended by the overall higher level policies. In contrast to refinement, [14]
introduces the concept of Policy Interoperability. While refinement is concerned with
the unidirectional mapping HL →LL, interoperability is the bi-directional mapping
HL↔LL. The purpose of this interoperability mapping is to allow LL policies at run-
time to dynamically refer to their HL parents as the need arises.

The approach being presented can be summarized in the following three steps:

1) First, we have OWL ontologies both for the upper domain an the lower domain.
Definitions of HL and LL policies could be included, as shown in [8].
2) Relating HL ontologies to LL ontologies can be achieved in the OWL ontology
language by means of meaningful OWL relationships between HL and LL classes.
These will be referred to as Interoperability Relationships.
3) Finally, translation SWRL rules can be used to make the semantic manager able to
derive the necessary information translations in order to: 1) populate the higher level

 Ontology-Based Policy Refinement Using SWRL Rules 229

with data useful for this layer, hiding the complexity of the data at the lower level,
and 2) add data to the lower level based on the information from the upper layer. The
following is a generic example of 1) in SWRL logic syntax:

LLproperty1(?LLclassYindividual) ^
InteroperablityRelationship1(?LLclassYindividual,
?HLclassAindividual) => HLproperty1(?HLclassAindividual)

More complex conditions combining classes from both layers could be expressed.
With the model and the SWRL rules programmed, the manager will be able to per-

form this bi-directional information mapping at run time, in such a way that changes
in the HL data affect the LL data and vice versa. This way, policies defined at the HL
layer can govern policies at the LL layer, achieving dynamic policy interoperability.

4 Proof of Concept Use Case: Backup for DSL Premium Lines

The scenario for the use case is an Internet Network Access service offered by a Ser-
vice Provider for thousands of users. The service is supported by an IP backbone and
an ATM access network. Each subscriber’s modem-router is connected to its corre-
sponding Broadband Remote Access Server (BRAS), through an ATM circuit, that
runs over the telephone line and enters the ATM network through the DSLAM.

Since DSL circuits run over the telephone lines (POTS or ISDN), which can also
be used for dial-up Internet access, the Service Provider wants to offer a backup ser-
vice for some of his DSL subscribers. For this matter he has installed a Remote
Access Server (RAS) that will accept incoming telephone connections from the sub-
scribers’ modem-routers. However, he only wants subscribers with a PREMIUM con-
tract to make use of this backup network infrastructure, so he has installed a RADIUS
server in order to authorize or deny access through the RAS.

The ontology model for this scenario, including the SWRL rules, has been defined
in the namespace http://www.dit.upm.es/jlopez/geseman/policy.owl#, and a simula-
tion has been implemented in Bossam [15], a Rule/OWL reasoner.

4.1 HL and LL Ontologies in OWL

At the network level we would have an Integrated Network Management Ontology,
such as the Common Management Ontology proposed in [3]. For simplicity purposes,
we have restricted the information used in this example to what is strictly needed. The
RDF graph [16] in Fig. 1 shows the chosen HL and LL classes and properties.

In the HL specifications, we can also define the HL policies, as shown in [8]: If a
subscriber has a PREMIUM service contract, and his DSL service is down, then he is
allowed to use the telephone backup access service. For this HL policy, we used the
following SWRL rule:

ServiceContract(?subscriber, ?contract) ^
swrlb:equal(?contract, "PREMIUM") ^
DSLServiceStatus(?subscriber, ?status) ^
swrlb:equal(?status, "NOT OK")
=> BackupAllowedSubscriber(?subscriber, "YES")

230 A. Guerrero et al.

Other two HL rules were used in the simulation to set the value of the BackupAl-
lowedSubscriber to “NO” when appropriate.

Classes Properties / Relationships Values

a) LOW Level Ontology

DSLWAN
Interface

IfOperStatus IncomingNumber

BRAS
System

hasInterface

User
Profile

RADIUS
Service

hasUserProfile

Authorized

Subscriber

SubscriberName

b) High Level Ontology

DSLLineNumber
ServiceContract

DSLServiceStatus BackupAllowed
Subscriber

UP/DOWN - String YES/NO

YES/NO

- String - String

OK /
NOT OK

SILVER /
GOLD /
PREMIUM

Classes Properties / Relationships Values

a) LOW Level Ontology

DSLWAN
Interface

IfOperStatus IncomingNumber

BRAS
System

hasInterface

User
Profile

RADIUS
Service

hasUserProfile

Authorized

Subscriber

SubscriberName

b) High Level Ontology

DSLLineNumber
ServiceContract

DSLServiceStatus BackupAllowed
Subscriber

UP/DOWN - String YES/NO

YES/NO

- String - String

OK /
NOT OK

SILVER /
GOLD /
PREMIUM

Fig. 1. RDF graph representation of High and Low Level ontologies

4.2 Interoperability Relationships

New relations in order to bind the HL and LL representations are required:

• A Suscriber DSLWANInterface binding: the hasWANInterface relationship. For
this binding, all interface data for all users will come from the provisioning system
in this example, so it will be available in the semantic manager’s database of facts.

• A RADIUS UserProfile Subscriber binding: the relatesToSubscriber relation-
ship. This binding will take place at run time. It will be inferred by the semantic
management system whenever an incoming call enters the RAS.

4.3 Translation SWRL Rules

Rules 1 an 2: DSLServiceStatus should be “OK” if the ifOperStatus of the sub-
scriber’s WAN interface is “UP”, and “NOT OK” otherwise. This is the representa-
tion of the first rule in SWRL logic syntax:

hasWANInterface(?subscriber, ?wanif) ^ ifOperStatus(?wanif,
?operstatus) ^ swrlb:equal(?operstatus, "UP")
=> DSLServiceStatus(?subscriber, "OK")

This is an example of setting HL information from LL information.
Rule 3: A UserProfile relates to a specific Subscriber if the IncomingNumber of the
profile matches the subscriber’s DSLLineNumber. This rule is an example of relating
HL information to LL information. Expressed in SWRL logic syntax:

swrlb:equal(IncomingNumber(?userprofile),
DSLLineNumber(?subscriber))
=> relatesToSubscriber(?userprofile, ?subscriber)

 Ontology-Based Policy Refinement Using SWRL Rules 231

Rules 4 and 5 (SWRL not shown): The value for the Authorized property of UserPro-
file should be “YES” if subscriber is allowed to use the backup service, and “NO”
otherwise. These rules are examples of setting LL information from HL information.

4.4 Overview of the Backup for DSL Lines Use Case

The semantic manager holds the database of facts, with all of the facts and axioms of
the ontology model, including HL Policies, HL facts (subscribers’ service contracts
and DSL line numbers), LL facts (operational status for all DSL WAN Interfaces),
HL to LL bindings, and Translation SWRL Rules. With all this information, the
ontology manager – having an inference engine – is able to act as a PDP (Policy
Decision Point), answering the query on whether an incoming call, identified by its
telephone number, should be allowed to access the network through the RAS. For a
generic implementation, the RDF query in RDQL (RDF Query Language), would be

SELECT ?auth WHERE (dit:<subscriber> dit:Authorized ?auth)
USING dit FOR <http://www.dit.upm.es/jlopez/geseman/policy.owl#>

which returns a value of “YES” or “NO” for the auth variable depending on the instance
of <subscriber> entered and the simulation data. The RADIUS service would finally no-
tify the allowance or denial of the incoming call to the RAS (Policy Enforcement Point).

5 Conclusion and Further Work

A general purpose ontology reasoner can work with HL and LL ontologies, being
completely independent of their abstraction levels, and allowing for interoperability,
whereas some other expert systems and policy languages usually have a more specific
orientation. The ontology reasoner, having an inference engine, will be able to under-
stand the model, work with the network data, and enforce the expected behaviour,
therefore becoming an implementation of a management system.

The present work presents an approach on how ontology representation could be
used for dynamic policy interoperability between HL business rules and LL network
policies, while maintaining the separation of concepts of HL and LL information.

In the use case presented as a proof of concept, a change at the network level, such
as when a DSL connection goes down, affects the expected behaviour of the Remote
Access Server, also at the network level. This LL behaviour is governed by authoriza-
tion HL business policies, in a dynamic and bi-directional refinement cycle.

Unlike other methods such as those presented in [12] and [13], this approach does
not attempt to directly translate policies from the upper level into a set of policies or
configuration commands at the lower level. Also, it is not restricted to service ori-
ented architectures as in [11], in which behaviour defined for a certain HL service
affects the behaviour of the LL services in which the former is decomposed. It also
presents the semantic web advantages for network management about working with
data distributed over different systems with heterogeneous RDF-based semantics [11].

The possibility to represent and work with meaningful and reusable interrelations
between different abstraction levels could be useful for other specific purposes of
ontology-based network management. Areas for further work include its application
to event enrichment, service composition, and event correlation.

232 A. Guerrero et al.

References

1. A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh,
M. Carlson, J. Perry, S. Waldbusser: Terminology for Policy-Based Management. IETF
Request For Comments 3198 (2001)

2. J. Strassner: Policy-Based Network Management – Solutions for the Next Generation.
Morgan Kauffman (2003)

3. J. E. López de Vergara, V. A. Villagrá, J. I. Asensio, J. Berrocal: Ontologies: Giving Se-
mantics to Network Management Models. IEEE Network, Vol. 17, Issue 3 (2003) 15-21.

4. J. E. López de Vergara, V. A. Villagrá, J. Berrocal: Benefits of Using Ontologies in the
Management of High Speed Networks. Proc. 7th IEEE Intl. Conf. on High Speed Net-
works and Multimedia Communications (HSNMC'04), LNCS 3079, Toulouse, France
(June 2004) 1007-1018.

5. M. K. Smith, C. Welty, D. L. McGuinness: OWL Web Ontology Language Guide. W3C
Recommendation, (February 2004)

6. J. E. López de Vergara, V. A. Villagrá, J. Berrocal: Applying the Web Ontology Language
to management information definitions. IEEE Communications Magazine, Vol. 42, Issue 7
(2004) 68-74.

7. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean: SWRL: A Se-
mantic Web Rule Language Combining OWL and RuleML. W3C Member Submission (21
May 2004)

8. A. Guerrero, V. Villagrá, J. E. López de Vergara, J. Berrocal: Ontology-Based Integration
of Management Behaviour and Information Definitions Using SWRL and OWL. Proc.
16th IFIP/IEEE Intl. Workshop on Distributed Systems: Operation and Management
(DSOM’05) , Barcelona, Spain, LNCS 3775 (October 2005) 12-23.

9. G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri1, A. Uszok: Semantic Web
Languages for Policy Representation and Reasoning: A Comparison of KAoS, Rei, and
Ponder. Proc. 2nd Intl. Semantic Web Conference, Sanibel Island, Florida, USA, LNCS
2870 (October 2003) 419-437.

10. F. J. García, G. Martínez, J. A. Botía, A. F. Gómez Skarmeta: Representing Security Poli-
cies in Web Information Systems. Proc. Policy Management for the Web (PM4W), 14th
Intl. WWW Conference, Chiba, Japan (May 2005)

11. D. Lewis, K. Feeney, K. Carey, T. Tiropanis, S. Courtenage: Semantic-based Policy Engi-
neering for Autonomic Systems. Proc. 1st IFIP Intl. Workshop on Autonomic Communi-
cation (WAC 2004), Berlin (October 2004)

12. R. Darimont, A. van Lamsweerde: Formal Refinement Patterns for Goal-Driven Require-
ments Elaboration. Proc. 4th ACM Symposium on the Foundations of Software Eng.
(FSE4) (1996) 179-190.

13. A. Bandara, E. Lupu, J. Moffet, A. Russo: A Goal-based Approach to Policy Refinement.
Proc. 5th IEEE Workshop on Policies for Distributed Systems and Networks (Policy 2004)

14. S. Magrath, R. Braun, F. Cuervo: Policy Interoperability and Network Autonomics. Proc. 1st
IFIP Int. Workshop on Autonomic Communication (WAC 2004), Berlin (October 2004)

15. Minsu Jang, Joo-chan Sohn: Bossam: an extended rule engine for the web. Proc. 3rd
RuleML Intl. Workshop (RuleML 2004), LNCS Vol. 3323, (November 2004) 128-138.

16. F. Manola, E. Miller: RDF Primer, W3C Recommendation (10 February 2004)

Reconfiguring Self-stabilizing
Publish/Subscribe Systems

Michael A. Jaeger�, Gero Mühl��, Matthias Werner, and Helge Parzyjegla���

Communication and Operating Systems Group
Berlin University of Technology

Einsteinufer 17, 10587 Berlin, Germany
{michael.jaeger, g muehl, m werner, parzyjegla}@acm.org

Abstract. Recent work on self-stabilizing routing in publish/subscribe
systems showed that it is feasible to automate reconfigurations in case of
faults by enabling the system to recover from arbitrary transient faults.
In this paper, we discuss how to incorporate planned reconfigurations of
the broker topology into self-stabilizing publish/subscribe systems with-
out service interruption. We present an algorithm that uses a coloring
mechanism to enable the system to be automatically switched from one
system configuration to another. The colors thereby synchronize the bro-
ker overlay and the publish/subscribe routing layer.

1 Introduction

A publish/subscribe (pub/sub) system consists of brokers and clients. Brokers
connect to other brokers to form an overlay network and to provide the event
notification service. Clients connect to one broker and publish notifications or
subscribe to filters. The broker overlay network routes published notifications to
all brokers with clients that are currently subscribed to a matching filter.

Recent work on fault tolerance in the field of pub/sub middleware has shown
that self-stabilization is feasible on the pub/sub routing layer [6] (for the sake
of readability, we will use “routing” in the following when we actually mean
“pub/sub routing”). Self-stabilization is an elegant mechanism for gaining fault
tolerance. However, the solutions presented for pub/sub routing do not yet ex-
plicitly deal with reconfiguration [8,10], although managing these systems has to
include reconfiguration of the broker overlay topology. In many self-stabilizing
systems, reconfigurations are treated as faults and the system tries to “recover”
from them. In contrast to this, our approach is to hold a “shadow” broker over-
lay topology that has already implemented the reconfiguration, to subsequently
build up “shadow” routing tables on the pub/sub routing layer, and to finally
switch the system atomically from one correct configuration to the next one us-
ing a coloring scheme. Thereby, we avoid notification and (un)subscription loss
as well as duplication during reconfiguration.

� Funded by Deutsche Telekom Stiftung.
�� Funded by Deutsche Telekom.

��� Funded by Deutsche Forschungsgemeinschaft (DFG SPP 1183 Organic Computing).

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 233–238, 2006.
c© IFIP International Federation for Information Processing 2006

234 M.A. Jaeger et al.

2 Related Work

There are only a few publications in the area of self-stabilization that deal with
reconfiguration issues explicitly. Most authors treat them as faults that will even-
tually stabilize like Dijkstra did in the initial paper on self-stabilization [1]. The
concept of superstabilization, introduced by Dolev and Herman, has a more differ-
entiated view by explicitly considering a certain class of topological changes [3].
Superstabilizing protocols are self-stabilizing and additionally require that if one
change of this class occurs a passage predicate holds until the system is stable
again. The passage predicate is usually weaker than the correctness predicate but
is supposed to be strong enough to be still useful. In contrast to our approach,
topological reconfigurations are supposed to happen immediately without any
announcement and can thus not be delayed as we assume here. The concept
of fault containment as described by Nelson [9] and applied to self-stabilizing
protocols by Ghosh et al. [5] also tries to maintain service availability by keep-
ing the effects of faults (or reconfigurations) locally bounded. Although fault-
containment can dramatically reduce the effects of reconfiguration on the system
in whole there is still an interruption of the service—at least in those parts of
the system that are directly affected by the reconfiguration.

3 Assumptions and Model

As starting basis, we build on a model for self-stabilizing pub/sub systems devel-
oped in previous work [8]. Basically, we assume a hierarchical routing algorithm
based on an acyclic broker topology with bidirectional FIFO links connecting in-
dividual nodes. Furthermore, there is an upper bound η on the number of brokers
as well as a dedicated root broker R, which is globally known within the system.
Considering self-stabilization, we require that the brokers’ routing tables can be
rebuilt from an initial routing configuration, which is empty for many routing
algorithms [7], and that the routing algorithm bases its routing decisions solely
on the contents of the routing table and the notification to forward.

Such a pub/sub system works correctly, if it meets the following two require-
ments [8]: (i) every client receives only the published notifications it has sub-
scribed for (without duplicates) and (ii) every subscription becomes active after
finite time, from which on the client receives every published notification match-
ing its subscription until it unsubscribes.

A pub/sub system is called self-stabilizing, if started in an arbitrary state, it
eventually begins to satisfy its specified behavior provided that no faults occur
for a sufficient long time. A fault may lead to arbitrary perturbations of any
variable stored in RAM as well as removed, manipulated, and inserted messages.
Links may go down and come up, processes may crash and restart due to faults.

To guarantee persistence in spite of arbitrary memory faults, we assume that
all algorithms used are stored in non-perturbable ROM. Additionally, we treat
the reference to the root broker as well as the initial routing configuration as an
intrinsic part of the respective algorithm itself and include them in ROM, too.

Reconfiguring Self-stabilizing Publish/Subscribe Systems 235

To maintain self-stabilization in case of crashed processes, the root broker R can
be implemented in a self-stabilizing fashion using a root group [4].

While faults happen suddenly and may lead to abrupt changes in the broker
topology, a reconfiguration is a cooperative process that is usually planned in
advance and needs some time to take effect. More precisely, a reconfiguration is
a change of the broker overlay topology, including leaf broker removals, additions,
and link replacements, that can be delayed for a finite time.

Since reconfigurations affect several algorithm layers simultaneously, all ac-
tions carried out must be synchronized to meet the system’s correctness require-
ments and to reach atomicity. A major challenge is to integrate the individual
self-stabilizing algorithms of each layer into the whole reconfiguration process.

4 Layered Self-stabilization

Systems that are layered can be made self-stabilizing by making all layers in-
dividually self-stabilizing. This transparent stacking of self-stabilizing layers is
a standard technique which is referred to as fair composition [2]. It is easy to
combine self-stabilizing algorithms this way to create a new and more powerful
self-stabilizing mechanism as long as no cyclic dependencies exist among the lay-
ers. Taking this approach, it is sensible to layer self-stabilizing routing in pub/
sub systems on top of a broker topology that employs a self-stabilizing tree algo-
rithm like the ones given in literature. However, this approach has its drawbacks
because a reconfiguration on the broker overlay layer may be handled as a fault
on the pub/sub layer when the routing table entries are not consistent with the
new topology anymore. Additionally, most self-stabilizing tree algorithms impose
a specific structure on the topology that is, for example, dependent on the IDs of
the nodes. As a consequence, a topological reconfiguration of the self-stabilizing
pub/sub system might result in a service interruption like missed notifications
or control messages (subscriptions and unsubscriptions).

Our approach in the following is to realize a self-stabilizing overlay topology
that maintains an arbitrary tree structure and to layer self-stabilizing routing
on top of it in a way, such that reconfigurations of the overlay topology can be
processed without service interruption. Two problems have to be tackled to solve
this problem: (i) designing a self-stabilizing broker overlay topology that does
not necessarily impose a certain structure on the resulting tree and (ii) coupling
the self-stabilizing mechanisms on the overlay and the routing layer to allow for
atomic topology switches without loss of messages.

Coloring Scheme. The coloring scheme synchronizes reconfigurations on the
overlay layer with the routing layer. Therefore, selected data structures are
marked with a color attribute. On the overlay topology layer this concerns the
child and parent broker pointers (C and P , respectively), while on the routing
layer the routing entries are affected. To allow atomic switches between different
colors, every broker maintains data structures for three different colors that can
be accessed on both layers: the color ccur that is currently used, the color cold

236 M.A. Jaeger et al.

that has been used last, and the color cnew that will be used when the color
changes for the next time. These colors are rotated regularly. The reason why
we need three different colors is due to the communication and processing delay
in the network. If the value of ccur becomes the value of cold, for example, there
may still be messages on the network that are colored with cold. To be able to
deliver these messages, the topology for cold has to be kept long enough. For a
better understanding, we assume in the following that the routing entries are
stored in separate routing tables T for each color although a tag on each entry
suffices in the implementation.

It is the task of the root broker R to regularly recolor all brokers in the
tree. To accomplish this, a timeout runs on every broker that triggers different
actions on R and on each broker B �= R. On a timeout, R resets its timer,
rotates its colors and subsequently initializes the child broker pointers Ccnew

and
the parent broker pointer Pcnew

with the respective values colored with ccur

(which has been cnew before the timeout). The routing table T cnew
is initialized

with the initial routing configuration. Then, it disseminates the new color in
a recolor message RECmsg to all child brokers stored in Cccur

, if they are still
alive as indicated by a flag that was set when the child broker acknowledged the
previous RECmsg. For every other broker B �= R a timeout is viewed as a fault
and hence B tries to reconnect to the tree (as part of the self-stabilizing overlay
topology). Reconfigurations are stored in RECmsg and handled as described later
in a separate section. When B receives a recolor message, it resets its timer,
replies with an acknowledge message, rotates its colors, initializes its pointers
like R, and forwards the message to its child brokers. The broker accepts the
recolor message only if it has been sent by the broker Pcnew

points to and if the
new color m.c stored in the message is different from the color stored in cnew.
This test is needed to detect cycles that may result from faults.

Self-Stabilizing Broker Overlay Topology. The self-stabilizing mechanism
on the broker overlay network is based on timeouts regarding recolor messages
as described above. Recolor messages are forwarded recursively down the tree,
the last leaf broker receives the message at the latest after time h · δmax, where
h is the height of the tree and δmax is the maximum delay for processing and
sending a message to a child broker. As the tree may degenerate arbitrarily h
can be at most equal to the maximum number of brokers η in the system (which
we assume is known and stored in ROM). Given that the timeout on R occurs
every time ξ, a timeout ξ′ = ξ + h · δmax is necessary on every broker B distinct
from R, which is resetted everytime a new recolor message is received from its
parent broker. When B �= R runs into a timeout, it took more than ξ′ to receive
the next recolor message after the last one. This can only be due to a fault, since
forwarding a message from R to B cannot take more than h ·δmax. In this case, B
contacts R to rejoin the tree. There are many ways to find a new parent broker
for B depending on the topology requirements. One is to look for an arbitrary
broker that has less than b child brokers down the tree and use it as a new
parent for a requesting broker. This way, the broker is integrated as a leaf into
the tree and the degree of a the broker topology can be maintained. The broker

Reconfiguring Self-stabilizing Publish/Subscribe Systems 237

overlay is in a correct state if the parent and child broker relation between every
broker in the system is consistent for the data structures colored with the values
of cold and ccur at R and the tree that is defined by Pcold

and Ccold
, and Pccur

and Cccur
respectively, is not partitioned. The value of Ccnew

and Pcnew
is treated

differently as explained in the next subsection about reconfiguration.

Reconfiguration. Whenever a leaf broker wants to join or leave the overlay
network or a link has to be replaced by another one, the topology of the broker
network changes. When a reconfiguration should be implemented, the intended
changes are sent to R, which collects them in the set R and disseminates them in
the next recolor message. Every broker that receives a recolor message carrying
reconfiguration data that affects it, implements the change into its Pcnew

and
Ccnew

pointers. The recolor message serves as a synchronizer to prevent race
conditions when switching from one topology to another. Recolor messages are
routed using Cccur

of every broker B that receives a recolor message (where ccur

equals cnew before recoloring). Thus, reconfigurations take two recolor messages
to become active: one to disseminate the reconfiguration and one to activate it.

As mentioned earlier, a change in the topology may imply a change in the
routing tables on the pub/sub routing layer. As the routing tables are regularly
rebuilt from an initial routing configuration the reconfiguration of the overlay
topology can be incorporated by delaying the switch to the new topology in
Pcnew

and Ccnew
long enough, such that they have been rebuilt completely.

Self-Stabilizing Routing. Recolor messages are used on the topology layer
to trigger timeouts and coordinate reconfigurations. Therefore, three different
topologies are held in form of colored parent/child pointers. On the routing
layer, the color is used for two different purposes: (i) to rebuild the routing
tables periodically and (ii) to avoid notification loss and duplicates.

It is necessary to periodically rebuild the routing tables as we assume that
they can be perturbed arbitrarily. Therefore, we rely on the leasing mechanism
described earlier [8]: clients regularly refresh their subscriptions and brokers use
a second chance algorithm to remove stale entries from their routing tables.
To incorporate reconfigurations into this mechanism, we demand that control
messages are colored with cnew, while notifications are colored with ccur. Noti-
fications and control messages are then forwarded and applied to the routing
tables T ccur

and T cnew
, respectively. Thereby, we ensure that notifications will

be routed over the topology, the publishing broker belonged to at publishing
time. This way, we prevent duplicates, i.e., notifications sent multiple times to
the same broker. The second chance algorithm is implemented through rotating
the colors and initializing T cnew

with a legal initial routing configuration.

5 Summary

We presented an algorithm that allows self-stabilizing pub/sub systems to be
reconfigured while maintaining service availability. To achieve this, we use the

238 M.A. Jaeger et al.

color attribute to synchronize the self-stabilizing broker overlay and the self-
stabilizing pub/sub routing layer. We connect the different layers such that it
is possible to switch the topology atomically without losing or duplicating mes-
sages. The presumption is that reconfigurations can be delayed a bounded time
before becoming active (e.g., before a broker is removed). We consider this “co-
operative” behavior as the main difference between a fault and a reconfiguration.
Our work is a necessary prerequisite to combine the self-stabilizing routing layer
with an adaptive reconfiguration mechanism that runs on top of the pub/sub
layer and issues reconfiguration stimuli that are implemented by the lower layers
as described in this paper. Hence we come one step closer to fault-tolerant and
adaptive publish/subscribe systems. However, the mechanism we described is
not limited to self-stabilizing pub/sub. It is a general principle that can be used
to realize reconfigurations in arbitrary layered self-stabilizing systems.

References

1. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643–644, 1974.

2. S. Dolev. Self-Stabilization. MIT Press, 2000.
3. S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed sys-

tems. Chicago Journal of Theoretical Computer Science, 4, Dec. 1997. Special
Issue on Self-Stabilization.

4. S. Dolev and R. I. Kat. Hypertree for self-stabilizing peer-to-peer systems. In
Network Computing and Applications (NCA 2004). Proceedings. Third IEEE In-
ternational Symposium on, pages 25–32, Washington, DC, USA, 2004. IEEE.

5. S. Ghosh, A. Gupta, T. Herman, and S. Pemmaraju. Fault-containing self-
stabilizing algorithms. In Proceedings of the Fifteenth Annual ACM Symposium
of Distributed Computing (PODC96), pages 45–54. ACM, ACM, 1996.

6. M. A. Jaeger and G. Mühl. Stochastic analysis and comparison of self-stabilizing
routing algorithms for publish/subscribe systems. In G. F. Riley, R. Fujimoto, and
H. Karatza, editors, The 13th IEEE/ACM International Symposium on Model-
ing, Analysis and Simulation of Computer and Telecommunication Systems (MAS-
COTS 2005), pages 471–479, Atlanta, Georgia, USA, Sept. 2005. IEEE Press.

7. G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Darmstadt University of Technology, Sept. 2002.

8. G. Mühl, M. A. Jaeger, K. Herrmann, T. Weis, L. Fiege, and A. Ulbrich. Self-
stabilizing publish/subscribe systems: Algorithms and evaluation. In J. C. Cunha
and P. D. Medeiros, editors, Proceedings of the 11th European Conference on Paral-
lel Processing (Euro-Par 2005), volume 3648 of Lecture Notes in Computer Science
(LNCS), pages 664–674, Lisboa, Portugal, Aug. 2005. Springer.

9. V. P. Nelson. Fault-tolerant computing: Fundamental concepts. Computer,
23(7):19–25, 1990.

10. Z. Shen and S. Tirthapura. Self-stabilizing routing in publish-subscribe systems.
In 3rd International Workshop on Distributed Event-Based Systems (DEBS’04),
pages 92–97, Edinburgh, Scotland, UK, May 2004. IEE.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 239 – 245, 2006.
© IFIP International Federation for Information Processing 2006

Policy and Profile: Enabling Self-knowledge for
Autonomic Systems

Ray Carroll1, John Strassner2, Greg Cox2, and Sven van der Meer1

1 TSSG, Waterford Institute of Technology, Waterford, Ireland
{rcarroll, vdmeer}@tssg.org
2 Motorola Labs, Schaumburg, IL, USA

{john.strassner, greg.cox}@motorola.com

Abstract. The standard definition of autonomics is that of self-governance,
including such properties as self-configuring, self-healing and self-optimizing.
To really enable self-anything, however, we must first deliver another ‘self-’
property - self-knowledge. We define self-knowledge as information about a
system enabling it to reason on its own capabilities and actions. This knowledge
can come in many forms but we propose that there are essentially two key
elements: knowledge of the individual parts of the system, and knowledge
about the rules that determine the interaction of these system components. This
paper presents a model describing self-knowledge, with policy for defining
rules and profiles to express the individual entities knowledge.

1 Introduction

Autonomic management [1] aims to ease system management by abstracting
complexity and making common management tasks the responsibility of the system,
rather than the administrator. A critical objective of autonomic systems is the need to
be able to adapt to changes in the managed environment. For example, an autonomic
network [2] would adapt it’s services and resources in accordance with changing
environmental conditions and user needs. In order for any system to be capable of this
sort of autonomic management, it must be able to understand its own component parts
and the combined effect of these parts. In essence, autonomics is about self-
knowledge [3] and the usage of this knowledge to determine an appropriate action. It
is our supposition that self-knowledge is essentially a function of two factors.

1. Knowledge of the rules that govern the system: high-level business rules which
determine the overall goal of the system and specific rules (scoped by higher-level
rules) that govern the interaction of system parts for specific situations.

2. Knowledge of the system itself, i.e. all relevant managed elements within the
system and all their relevant possible roles/functions and data.

In this paper we present a model describing the factors listed above in the form of
policy (1), profile and roles (2) and the relationships between these. Policies are rules
that govern a system and its components, and hence represent information about how
the system acts. The combination of profile and roles provide individual entity data

240 R. Carroll et al.

and behavioural information. Section 2 describes our policy framework and section 3
explains our profile framework. Section 4 then describes our model of how policy,
profile and roles interact to facilitate self-knowledge for autonomic network
management systems. Section 5 then presents our conclusions and future work.

2 Policy

As mentioned in the introduction section, policy rules are used to govern an
autonomic system. In the DEN-ng [4] model policy is realized as an Event, Condition,
Action (ECA) triplet, having the semantics: “ON event, evaluate condition clause,
THEN execute appropriate actions in the action clause”. One or more of a
PolicyRule’s PolicyEvents trigger the evaluation of a PolicyRule. A PolicyEvent may
contain flexibly defined combinations of events (PolicyEventComposite) or
individual events (PolicyEventAtomic). As such, a PolicyRule may be triggered on a
combination or sequence of events.

When a PolicyRule is triggered by PolicyEvents, evaluation of a PolicyRule’s
PolicyConditions occurs. Similar to PolicyEvents, PolicyConditions also can include
combinations of conditions as PolicyConditionComposite or individual conditions as
PolicyConditionAtomic. Further, an attribute of PolicyConditionComposite allows for
specification of whether the composite condition is expressed in Conjunctive Normal
Form or Disjunctive Normal Form. These features and others in the DEN-ng policy
model allow for the expression of complex PolicyConditions in a PolicyRule.

When a PolicyEvent triggers evaluation of the PolicyConditions, then one or more
of a PolicyRule’s PolicyActions can occur. There are two types of actions: pass
actions are invoked if the condition is TRUE, and fail actions are invoked if the
condition is FALSE. Like before PolicyActions can include combinations of
PolicyActionComposite objects and/or PolicyActionAtomic objects. As such,
complex actions and sequences of actions can be expressed using the DEN-ng policy
model. Taken together, all these features provide a rich expression of policy needed to
enable knowledge of the rules that govern the interaction of system parts in today’s
complex systems. The need to accommodate multiple views as described in the DEN-
ng Policy Continuum [4] further motivates this rich means of modelling policy,
acknowledging that the various stakeholders in a complex system have different
views of policy and degrees of abstraction in policy expression. DEN-ng defines 5
views: Business, System, Network, Device and Instance. Policies become more
specific and increase in technical detail as one moves from the Business to the
Instance View. Other policy models exist in the art (e.g., Ponder policy specification
language) and are discussed in [4]. However, these alternative policy models tend to
be less general than the DEN-ng ECA approach, often tailored to a specific use. As
such, this work focuses on the DEN-ng approach employing ECA rules.

3 Roles and Profiles

We initially listed two items that are important for self-knowledge in any system, where
Policy provides the first of these. The second was knowledge about the individual
components of the system. Our approach to modelling this information is to develop a

 Policy and Profile: Enabling Self-knowledge for Autonomic Systems 241

generic framework that allows us to define entity information in a standard yet flexible
way. The principle aim is to allow entities have different sets of information as per their
functionality and also to allow information from various sources be associated to an
entity. As such we propose the concepts of roles and profiles.

3.1 Roles

Typically, the behaviour of a managed entity is represented by the actual methods and
properties of that entity. However, methods and properties alone are not enough to
enable self-management as they do not allow us to fully understand an entities
function or how it interacts with other entities. In many cases, an entity may have
different attributes, tasks or functions that depend on the current situation, and so will
use different sets of attributes and methods to execute a task. This enables the entity
to adapt to a particular context. The DEN-ng model uses the role-object pattern [5]
and we introduce the idea of Role to abstract this, so that the different situational
requirements are not dependent on individual entities. This enables the model of the
entity to be separated from the model of the functions that the entity takes on, and is
seen in Figures 1 & 2. Here we see that an Entity (e.g. Organisation or Individual) can
aggregate zero or more EntityRoles. This enables the Entity to take on the
characteristics of two different entities (e.g. Vendor and Service Provider) without
changing the attributes of the Entity directly. This reflects the real world as the Entity
itself did not change, only the role that it was playing at a given time.

Role is a well established concept in terms of access control [6] and has also
received attention in context–aware and ubiquitous systems [7, 8]. For us, role
presents a means to specify what information is relevant based on the current function
it is trying to fulfil. Thus, roles present an extensible means for us to introduce
contextual characteristics and behaviours, modelled as classes, into the model. Roles
also allow separate sources of data that together prove more useful to be grouped
together. Fig. 1 shows that EntityRole has an aggregation relationship to Data. This
enables data to be associated to an entity via its roles, making pertinent information
available based on the set of active roles of an entity.

3.2 Profiles

There are many initiatives that propose the use of profiles at some level. However,
most of these are focused on some very specific purpose. Our aim is not to specify
particular profile data models, but rather to develop a profiling framework for
integrating these disparate sources of information. We believe this will not only
increase system knowledge, but also improve accessibility, reusability and overall
usefulness of an entity’s information. We define a new variant of the role object
pattern [5], where the Role object itself aggregates new information. We call this new
information Data and use the composite pattern to define appropriate subclasses of
data. This enables additional data to be associated to a particular role, instead of
embedding the data in a role. We then specialise data to suit the needs of a Profile
(Figure 1). This enables each set of profile information to be defined independently
and attached to a role at runtime. A Profile is a container for data and we specialise
this to EntityProfile, for data about a specific entity. We then use a Composite Pattern
[9] to separate EntityProfile into a container (EntityProfileComposite) and component

242 R. Carroll et al.

(EntityProfileComponent) enable hierarchies of Profiles to be built. This allows us to
provide a single profile that can contain many profile components and enhances the
approach specified in initiatives like 3GPP Generic User Profile [10].

An EntityProfileComponent is also a container for ProfileData. ProfileData is
subclassed from EntityData, which is a generic class for any data related to some
entity. This structure provides future flexibility and extensibility for our design.
ProfileData is the actual data about an entity that composes a Profile. Again, the
composite pattern is used so that ProfileData can be either atomic or composed of
other data (i.e. nested data values). Figure 2 gives a simple example of a user entity
and their associated roles and profiles.

Fig. 1. The Data model

The entity JoeBloggs has a role of Employee and a profile jbloggsProfile which
aggregates EntityProfileComponents (LIP[11] and CC/PP[12]) and provides
management functionality such as adding, removing, updating, querying etc. It is also
important that an entity (e.g. JoeBloggs) is associated to its data (e.g. jbloggsProfile)
directly (not just via Roles) for more integrated management of profiles. For Joe
Bloggs’ role of Employee two profile components are relevant (i.e. LIP and CC/PP).
This example is based on a user scenario, but the same mechanism may apply to any
entity, (e.g. services and resources). This reflects the needs of autonomic systems,
which require functionality to change with changing user needs and/or environmental
conditions. In our system, we meet this challenge by dynamically instantiating new
roles using policy. The combination of roles and policy then enable which profiles are
allowed to be used.

Fig. 2. Example of Entity JoeBloggs with role Employee, profile and profile components

 Policy and Profile: Enabling Self-knowledge for Autonomic Systems 243

4 Model for Enabling Self-knowledge

In the previous sections we described the individual parts of our proposed system that
are core to enabling self-knowledge. However, these parts are not sufficient on their
own; rather it is the overall view of how they interact (Figure 3) that makes self-
knowledge possible. As the approach to autonomic management that we have adopted
is policy-based, policy is a core part of the system and, in effect, governs our system
at every level. While each entity provides its own behaviour, policy determines what
parts, under what circumstances and to what effect that behaviour is executed. As we
can see from Figure 3, Policy governs Entity, EntityRole and Data. As regards Entity,
Policy will govern specifically their creation, management, and deletion, as well as
the addition and removal of roles (and hence profiles) associated with an Entity.
Specific semantics of different management functions controlled by Policy for an
Entity are defined by the PolicyEntityDetail association class.

Fig. 3. Overall model of policy, data, entity and role (subclasses omitted for readability)

Since an Entity is largely characterised by its roles, the use of Policy to govern
which EntityRoles an Entity can have provides both an abstract view of the Entity’s
functionality as well as detailed control over the Entitys characteristics and behaviour.
Based on the Policies governing the system and knowledge of the environment and
users, the EntityRoles relevant to the Entity in question must be determined and
enabled or disabled accordingly. This in turn controls the functionality that an Entity
has at any given time. The particular semantics of which EntityRole a particular
Policy can select is given in the PolicyEntityRoleDetail association class. Multiple
EntityRoles can be selected by the same Policy for different reasons and enabling
policies to be reused but tailored to the specific needs of a given EntityRole. For
example, a device may have many subclasses of the same role (e.g. EdgeDevice,
DSLEdgeDevice) but implement that role using very different functionality (e.g. PC v
Switch v Router). The Policy should stay the same (“give access”) but the particular
mechanisms used will vary. This association class enables these details to be captured
while keeping the same abstracted pattern. The relationship of EntityRole to Data is

244 R. Carroll et al.

characterized by the EntityRoleDataDetails class. This enables specific semantics to
be attached to how a given EntityRole uses particular Data.

The third and final governance relationship Policy has is with the Data class. This
relationship signifies that Policies will also govern Data; by this we specifically mean
that Policy will govern the set of Profiles that an Entity can have. Note, however, that
Data is aggregated by EntityRole. In effect, Policy will determine the set of
EntityRoles that an Entity can have; based on this, the set of Profiles that are allowed
to be used is subsequently determined. As before, the PolicyDataDetail association
class enables specific semantics for a given {Data, Policy} combination to be
realized. Policy also has a number of Uses relationships with EntityRole, Data and
Entity. These signify that policy will also use these classes in its inherent decision
making process.

5 Conclusions and Future Work

This paper has presented a novel design for capturing self-knowledge in autonomic
systems using the DEN-ng information model and policy design. In addition, a novel
combination of policy, profile and role interaction has been presented: in our system,
Policy is used to enable or disable the set of EntityRoles that a given Entity has; the
combination of EntityRole and Policy is in turn used to enable or disable the set of
Profiles that a given Entity can use. This enables system changes to trigger
PolicyEvents, and those PolicyEvents to control the functionality of an Entity (via its
roles and Profiles). This enables the autonomic system to (indirectly) use Profile
information to control the resources and services that a network provides, as well as
those that a user can utilise, as a function of context. Furthermore, it is an extension of
the Shared Information/Data model, which is standardised in the TeleManagement
Forum (also being considered for standardisation in ETSI TISPAN and ITU-T).

While we have described a model that we feel can enable self-knowledge, we have
not yet addressed the issue of how this model can be utilised in a real system to
provide autonomic management. A model is a view of the systems underlying data
structure and does not provide system behaviour. As such future work will investigate
algorithms for processing the components of self-knowledge to truly produce
autonomic network behaviour and in line with this also investigate the relationship of
this work to context.

References

[1] Kephart, J.O. and Chess, D.M., “The Vision of Autonomic Computing”, IEEE Computer,
January 2003, www.research.ibm.com/autonomic/research/papers/

[2] Strassner, J. and Kephart, J., “Autonomic Networks and Systems: Theory and Practice”,
NOMS 2006 Tutorial, April 2006

[3] Thomas Cofino et al "Towards Knowledge Management In Autonomic Systems," iscc, p.
789, Eighth IEEE Symposium on Computers and Communications, 2003.

[4] Strassner, J., “Policy-based Network Management: Solutions for the Next Generation”,
Morgan-Kaufman Publishers. ISBN 1-55860-859-1, (2004)

 Policy and Profile: Enabling Self-knowledge for Autonomic Systems 245

[5] The Role Object (Design) Pattern. Download PDF from http://www.riehle.org/computer-
science-research/1997/plop-1997-role-object.pdf

[6] National Institute of Standards and Technology (NIST), Role Based Access Control.
http://csrc.nist.gov/rbac/

[7] Beresnevichiene, Y. “A Role and Context Based Security Model”, Technical Report,
University of Cambridge, Computer Laboratory January 2003.

[8] Sashima, A. et al. 2006. Toward Role-based Agent Coordination for Mobile and
Ubiquitous Services. In Proceedings of the 20th international Conference on Advanced
information Networking and Applications, Volume 02 (April, 2006). AINA. IEEE
Computer Society, Washington DC, 262-266.

[9] E. Gamma, et. al., “Design Patterns”, pp 163-173
[10] 3GPP, Generic User Profile, http://www.3gpp.org.
[11] IMS Learner Information Package, http://www.imsglobal.org
[12] W3C “CC/PP: Structure and Vocabularies”, 2004. http://www.w3c.org

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 246 – 257, 2006.
© IFIP International Federation for Information Processing 2006

DECA: A Hierarchical Framework for DECentralized
Aggregation in DHTs

Marc S. Artigas1, Pedro García1, and Antonio F. Skarmeta2

1 Universitat Rovira i Virgili,
Tarragona, Spain

{marc.sanchez, pedro.garcia}@urv.cat
2 Universidad de Murcia,

Murcia, Spain
skarmeta@dif.um.es

Abstract. As Structured Peer-to-Peer (P2P) Networks become popular, there is
an emerging need to monitor continuously the huge number of participants in a
robust and scalable manner. To this end, aggregation has emerged as a basis for
the self-management of these networks. However, the structured P2P networks
lack today of efficient mechanisms for the decentralized computation of these
aggregates. In this paper, we propose a hierarchical theoretic model based on
Cayley Graphs, which overcomes the requisite to accommodate growth without
impacting the efficiency of distributed applications. Also, the paper presents an
aggregation protocol that fuses the fault-resilience of gossip algorithms with the
scalability of trees. In particular, simulation results show that this algorithm is
capable to cope with the distributed and unreliable nature of P2P networks.

Keywords: Structured P2P Networks, DHT, Aggregation, Hierarchical model,
Gossip, Cayley Graphs.

1 Introduction

In recent years, Structured Peer-to-Peer (P2P) Networks, which offer an efficient,
scalable, resilient and self-organizing substrate for building distributed applications
have become widely popular, including Chord[1], CAN[2], Pastry[3] and Tapestry[4].
As these networks grow in popularity, there is an emerging need to collect a variety of
statistical information about resources and/or peers to allow primarily individuals and
then administrators to perform global control actions without explicit coordination.
However, the P2P principles themselves pose a challenge for developing large scale
management applications. Particularly, it is apparent that their decentralized nature
should not be violated for any reason. Precisely, it is this need of decentralization
what do P2P management systems be markedly different from traditional ones. In this
line, we believe that the main challenge of P2P paradigm concerning management lies
in developing decentralized architectures capable to support up-to-date techniques
without disregarding the symmetric functionality of peers. To this end, a first natural
step consists of enabling AGGREGATION, i.e. the computation of global network

 DECA: A Hierarchical Framework for DECentralized Aggregation in DHTs 247

parameters through the use of functions MIN, MAX, SUM, COUNT or AVG, which
is an efficient technique for provisioning nodes with valuable information.

A research area that can benefit substantially from AGGREGATION is autonomic
computing: monitoring is an essential feature of autonomic systems and entails to log
statistics about autonomic elements which serve as the basis for self-adaptation; self-
healing, self-protection etc. Note that the essence of autonomic computing systems is
self-management, the intent of which is to free system administrators from the details
of system operation and maintenance.

The focus of this paper is on a decentralized model for computing AGGREGATION
functions in Distributed Hash Tables, DHTs. Briefly, a DHT is a decentralized object-
location mechanism for P2P systems that manages the distribution of content among a
dynamic set of nodes by using a consistent mapping of keys to nodes. The DHT
abstraction provides the same functionality as a hash table — associating key-value
pairs with physical network nodes rather than hash buckets. They provide the put(key,
value) and get(key) functions to allow DHT members to efficiently store and retrieve
stored resources by name without using centralized servers. In practice, we consider
that a nice AGGREGATION scheme for DHTs must fulfill the following:

i. Accuracy: let us consider a request to compute an aggregate function F.
Then, “accuracy” refers to the maximum allowed error (ζ) for the returned
estimation . We define accuracy as (1− /Ftrue), where Ftrue denotes the true
value for function F. Then, if the answer lies in the range [(1−ζ)Ftrue, (1+ζ)Ftrue],
we say that the aggregation scheme ensures practical validity.

ii. Scalability: popular P2P networks maintain a large number of participants
throughout the time. Consequently, a management protocol must scale to
networks of very large size, that is, the load and the traffic generated by message
exchanges must be small and evenly distributed.

iii. Robustness: the participants of a DHT are expected to be very dynamic. This
means that our protocol must adapt gracefully to changes in the overlay,
including node and link failures.

In this paper, we propose DECA: a hierarchical management framework capable to
augment ordinary DHTs with robust, accurate and scalable AGGREGATION facilities.

 Significant contributions distinguish DECA from previous work. These are:

― Hierarchical P2P-theoretic model that effortlessly exploits the in-built recursive
decomposition of ordinary DHTs. The main reason is that hierarchies are ideal for
accommodating growth and isolating faults. To this end, we introduce a powerful
tool based on Cayley graphs which converts an overlay — like Chord, Pastry, CAN
... — in a collection of clusters mimicking a hierarchical organization. Hereinafter,
we refer to this as function Ή. Although in [5] we devise a pragmatic technique for
constructing hierarchical DHTs, however, Ή extents are broader. It endeavors to
uncover the hidden hierarchical structure of typical DHTs. Also, we assume that
there exists an effective mapping tool that groups topologically close nodes into the
same cluster. It is our position to consider that topology concerns are of paramount
importance for a practical P2P AGGREGATION service. To the date, we believe that
DECA is the first attempt to build an effective management infrastructure built on
top of a hierarchical DHT.

F̂F̂

248 M.S. Artigas, P. García, and A.F. Skarmeta

― Efficient AGGREGATION protocol that blends together the scalability of trees with
the resilience of epidemic algorithms. To compute a global parameter, a system
must provide redundancy to ensure practical validity. Node failures must not lead
to severely hampering management operation. Hence, a gossip protocol is a better
alternative than a single tree to compute function F over the weights of all nodes in
the system.

The paper is organized as follows. Section 2 reviews related work. Section 3
describes formally our hierarchical model and AGGREGATION algorithm. Section 4
provides a discussion about function Ή. Section 5 provides Whirl, the Chord instance
of our framework. Section 6 describes our simulation results. Finally, Section 7 draws
some conclusions.

2 Related Work

Although there exists a large body of literature in the network management area, we
believe that DECA is the first attempt to build a P2P distributed AGGREGATION [6, 7]
mechanism based on hierarchical distributed hash tables, DHTs.

To the best of our knowledge, there are only a few proposals that try to solve the
node aggregation problem in DHTs. In [8, 9, 10], a tree structure is constructed and
maintained to propagate aggregates to the root. Except SOMO[10], fault-tolerance is
achieved in these approaches by a mechanism that reconstructs the tree after node
addition, removal or failure. Ji Li et al. in [8] demonstrated analytically that even with
the presence of a refreshing algorithm that corrects failures; tree infrastructures cannot
ensure practical validity. Besides, tree-based aggregation schemes share another
important difficulty. Since link and node congestion increase as the distance to the
root decreases, the scalability of the whole system becomes tightly coupled not only
to the nodes capacities, but also to the actual tree organization of participants.

Willow[11] and DASIS[12] built a logical binary tree on top of a P2P system to
provide participants with aggregation facilities. Whereas Willow is a general purpose
aggregation service, DASIS employs aggregates to load balance the underlying peer-
to-peer graph. In contrast, DECA is a multilayered hierarchical model which offers an
efficient dissemination infrastructure; it organizes participants in a hierarchy of self-
contained clusters which are, in practice, locality-aware overlays.

GAP[13] is characterized by the construction and maintenance of a BFS tree on top
of the network and consequently, it suffers from the same aforementioned drawbacks.

The most similar abstraction in spirit to ours is Astrolabe[14]. In short, Astrolabe is
a distributed management service designed to monitor and report continuously the
state of a collection of dynamically changing resources to users. To do it, it organizes
the resources into a hierarchy of domains, called zones, and associates attributes with
each zone. A zone name, which is unique and describes its position in the hierarchy, is
given to each zone to globally identify it. Similar to us, Astrolabe uses aggregation
and a gossip protocol for quickly spreading changes throughout the system. However,
it presents three important shortcomings. It is not self-organized since the hierarchy is
implicitly defined when the administrators name the zones. It is semi-decentralized as
each zone elects a set of hosts, called representatives, to gossip on behalf of the zone

 DECA: A Hierarchical Framework for DECentralized Aggregation in DHTs 249

and it is not fault-tolerant. With only one representative per zone, Astrolabe is highly
sensitive to host crashes.

3 A Hierarchical Management Framework

To meet the scalability demands for distributed AGGREGATION, we propose a hybrid
technique that blends together the scalability of trees with the resilience of epidemic
algorithms.

3.1 Hierarchical Model

We are considering a dynamic P2P overlay graph G(V(t), E(t)), where V(t) is the set
of vertices at time t, and E(t) ⊆ V(t)×V(t) is the set of edges that may change over
time. Each node x has an associated value wx(t) at time t. It represents the value that is
being subjected to the AGGREGATION function F.

 Because G is a DHT, it has a finite m-bit identifier space of 2m elements denoted
as I. Besides, G is also a hierarchical substrate recursively built up from a proper
nesting of clusters. By a proper nesting, we mean that for any pair of clusters in G, the
two clusters are either disjoint, or one is a proper subset of the other. Technically, the
latter means that our architecture defines a partial-order tree; nodes are organized into
clusters, clusters are organized into superclusters, superclusters are organized into
hyperclusters etc. As a result of this partial ordering, the set I is at tier-0, the highest
tier, whilst in any subsequent tier-k provided k > 0, the potential number of identifiers
for each cluster falls off. This occurs because each cluster C∈G is a proper subset of I,
that is, C ⊂ I. In other words, there are not duplicate identifiers since I ⊇ G and C∈G.
To conclude, let L denote the number of tiers.

Fig. 1. A DECA hierarchy

Node status. Each node x (that is a peer) is contained in a sequence of telescoping
clusters: Cl−1(x) ⊂ Cl−2(x) ⊂ … ⊂ C0(x), for some l ∈ {0 ,…, L – 1} and where Cl−1(x)
denotes the x’s leaf cluster and l − 1 its tier depth. For each C∈G, we say that C is a
leaf cluster if and only if C is not a union of a finite number of other sets in G. In
other words, any node is part of a raising sequence of larger groups up to the root. To
retain the routing capabilities of the flat design, each node x requests for some routing

N2

Tier-2

Tier-1

N1

C0

x

C1

250 M.S. Artigas, P. García, and A.F. Skarmeta

information at each tier-k, for k > 0. Particularly, it is Ή responsibility to provide an
efficient hierarchical substrate equivalent in degree and diameter to the flat design.
Later in section 4, we discuss in more detail the Ή involvements.

Let Ni(x) be the set of tier-i subtrees not including node x. Let N be the collection
of sets Ni(x) for all i ∈ {0, 1, …, L – 1}. Then, for each subtree Sj(x) ∈ {Ni(x) | ∀ Ni(x)
∈ N} node x knows at least one node, namely, x΄ in Sj(x). Such a node x΄ is said to be
the x’s delegate node in Sj(x). In fact, a delegate node x΄ can be viewed as a kind of
bridge since it lets a pair of nodes exchange its weights w(t) at a given time t. Because
function Ή strips G into smaller graphs of the same “family”, each node x has at least
one delegate in each height-k subtree, k > 0. The latter is advantageous in that nodes
joining or leaving require only local changes in the network. Besides, it isolates faults;
it enables effective bandwidth utilization, adaptation to the underlying network and a
scalable network management. We note that no global information about the structure
of the hierarchy is necessary; it suffices for each node to know its current position in
the hierarchy and the list of ancestor groups up to the root. To ease the membership
management, we assume that each cluster has a unique group identifier.

When a node x joins the system, x asks an arbitrary existing node, say y, to
determine the closest node to x — using a topological aware mapping. Denote this
closest node by z. Node x then initializes its routing table with z’s routing table. Let
x’s routing table be defined as follows. Let D(x) be the set of x’s delegate nodes. Let
L(x) be the x’s routing table for its leaf cluster. Then, the x’s routing table consists of
D(x) + L(x) nodes. For robustness to node failures, a “diversity” property should be
maintained across the routing tables of nodes in the system. To accomplish this goal,
it suffices for each node x to apply the maintenance rules of the flat design along the
sequence of telescoping clusters: Cl−1(x) ⊂ Cl−2(x) ⊂ … ⊂ C0(x). Therefore,
maintenance of the hierarchical network is relatively simple and almost identical to
the flat overlay.

― Network Awareness. As mentioned above, one of the most challenging questions

facing DHTs is whether they can compute aggregates for real-time management.
To do it, a common technique consists of integrating the so-called “proximity” into
the target DHT. In DECA, this means that nodes that are topologically close are
organized into clusters; topologically-close clusters are gathered into superclusters
etc. Because the cluster nestings come directly up from the underlying topology,
DECA can assume an asynchronous distributed model i.e., a known upper bounds
on message transmission delays, and clock drift rates. Hence, we can integrate all
the above bounds in a known universal maximum delay Δ between any pair of
nodes. A message sent a time t will be received by the destination node within time
t to time t + Δ. Also, we can assume that the communication time between two
nodes within its leaf cluster is smaller than Δ. This method may introduce errors
but exact synchronization is not necessary, so gossiping fully suffices.

3.2 Node Aggregation

In this section, we address the fundamental question regarding DECA: “What is the
actual protocol used to calculate the global function F over data residing at the nodes
of a DHT?” We answer this question proposing a hybrid protocol that combines a

 DECA: A Hierarchical Framework for DECentralized Aggregation in DHTs 251

gossip-based dissemination mechanism with a tree-based propagation structure that
reflects the hierarchical organization of groups. First, a node “gossips”, within its leaf
cluster, about the individual weights it knows about. Then, it computes an estimate of
F in a bottom-up fashion using the estimates it receives from delegate nodes. As G is
expected to materialize into a proper nesting of clusters, our algorithm requires about
O(h) phases to compute F, where h is the height of the tree.

Protocol overview. The major aim of DECA is to cope with the inaccuracies found in
aggregates and provoked by the transient nature of P2P networks, where a significant
fraction of nodes become inactive within a short period of time. In such settings, a
pure tree-based approach tends to be rather unpractical since a single node failure can
cause the root to miss the information of the whole subtree below the fault. In order to
achieve more fault-tolerance, we need more redundancy in messages sent. Thus,
gossip protocols, which are simple and fault-tolerant — though, at the cost of a higher
number of messages —, constitute an attractive alternative. Fortunately, we believe
that our scheme far affords the expenses of carrying out such form of massive data
dissemination. Recall that clusters are expected to be small and topologic-centric. So
scalability is achieved through the distribution of AGGREGATION across the clusters.

Regarding the flow of information, we distinguish between push, pull and push-
pull gossip protocols. Assume a node x calls node y. Then, we have:

i. In push gossip, the rumor is pushed if x tells y the rumor.
ii. In pull gossip, the rumor is pulled if x requests y for the rumor.

iii. In push-pull gossip, the rumor is both pulled and pushed.

These protocols are reliable in a probabilistic sense. Karp et al. [15] show that if a
push-pull gossiping is run for O(ln n) rounds, then, w.h.p., all nodes have the rumor,
and in addition, the total number of messages sent is O(n ln ln n).

In order to bound the communication cost, we assume a push gossip algorithm that
can be described as follows. Each node x receives rumors for O(log n) epochs, where
an epoch is a fixed time interval of length Δ (network delay for clusters is O(Δ)). In
each epoch, each node x gossips to δ other nodes, randomly chosen from the subset of
nodes x knows about. We will refer to this subset as x’s local view Γx. Views may be
partial and inconsistent but large enough to ensure a fast convergence.

In push gossip, nodes gossip at a constant rate in each round, and therefore, the
number of messages sent is O(n log n). However, we can reduce such overhead by
tailoring the choice of targets to the underlying graph topology G, but a more general
strategy applicable to any P2P topology is desirable.

To conclude this section, we describe how a node x obtains the estimate for level i,
for (i > 0). We call this method GET_ESTIMATE(i, F). Let Si(x) be the set of all
height-i subtrees not including x. Let ψi,j(x) be the estimate corresponding to subtree-j
at height-i not including x. Then, procedure GET_ESTIMATE(i, F) consists of two
steps. First, it obtains the estimates ψi,j(x) from all x’s sibling subtrees S∈Si(x) through
the corresponding delegate nodes. Finally, it applies function F over these estimates.

After these preliminaries, we are ready to describe how our algorithm manages to
compute F.

Aggregation algorithm. DECA algorithm starts “simultaneously” at each node. The
algorithm consists of 3 phases:

252 M.S. Artigas, P. García, and A.F. Skarmeta

1. Phase 1: this phase lasts O(log max{|Ck|}k ≥ 0) epochs, where |Ck| denotes the
cardinality of leaf cluster k. In order to estimate O(log max{|Ck|}k ≥ 0), it suffices
for nodes to use function MAX over the cardinalities of leaf clusters. In this
phase, each node x “gossips” about the individual weights stored across its leaf
cluster, which of course include x’s local weight. To do it, node x i) periodically
(once in every epoch) selects a random subset of nodes from its local view Γx
and ii) sends them an arbitrary weight chosen uniformly at random along with
the identifier of the node that keeps it. In turn, x discovers the weights of other
nodes of its own cluster the first time it receives them via a push message. After
O(log max{|Ck|}k ≥ 0) epochs, x applies the function F to all weights it has
collected in its cluster, and bumps itself to phase 2.

2. Phase i (1 < i ≤ h + 1): in phase i, each node x invokes GET_ESTIMATE(i, F)
to obtain the estimate for tier-i. Then, x bumps itself to phase i + 1. Note that
any node has not available the estimate for its height-i subtree until phase i
terminates.

3. Final phase: when a node x finds itself in phase i = h + 1, it has an estimate of the
global function F evaluated over the entire DHT. Then, the protocol finishes at x.

Time Complexity. The number of phases for the algorithm is h + 1, where h is the
height of the hierarchy. Besides, let λ be the set of leaf clusters. Since phase 1 lasts
O(log c) rounds, where c = max{|C|: C ∈ λ}, the time complexity for the algorithm is
O(log c + h).

Message Complexity. The communication cost is O(bn log n + bn), where b is the
size in bits of the weights and n the number of nodes in the network.

4 The Hierarchical Function Ή

In general, the problem of finding a suitable Ή is complex. In [16], Ganesan et. al.
provide a framework to transform a variety of DHTs into their hierarchical versions.
As a part of our ongoing research, we use instead Cayley graphs, a common technique
in design of interconnection networks, to devise the exact Ή for a given input overlay.
Briefly, Cayley graphs are extremely helpful in the analysis of static topologies with
regards to quality measures such as diameter or degree — our hierarchical DHTs must
preserve the same degree and routing performance as the flat designs. In particular,
many Cayley graphs, such as hypercubes, are hierarchical. Further, if an algebraic
theoretic model that can elucidate the hierarchical structure of a graph exits, then to
procure it a proper Ή is quite simple: upon an overlay is proven to be a Cayley graph,
it suffices to use the standard definition of hierarchical Cayley graph to approximate
it. Although many Cayley graphs are hierarchical, not all of them admit a recursive
decomposition into smaller graphs of the same family. More specifically, we are only
interested in those DHTs that are recursively built up by adding isomorphic copies of
smaller Cayley graphs. A hierarchical DHT is not just a graph, but rather a family of
graphs G0, G1, G2 etc. defined for any of the potential static sizes.

Definition 1. Let Γ(V, ○) be a finite group, 1 its neutral element, and let S ⊆ V – {1}
be closed under inversion (i.e. s-1 ∈ S for all s ∈ S). The Cayley graph G(Γ, S) = (V, E)
of (V, ○) is the graph on V where x, y are adjacent if and only if x ○ y-1 ∈ S. In other

 DECA: A Hierarchical Framework for DECentralized Aggregation in DHTs 253

words, there is an edge (x, y) if and only if there exists a generator s ∈ S such that x ○
s = y.

Cayley graphs include a large number of families of graphs, like hypercubes, star and
pancake graphs [17] etc. The next definition constitutes the core of our scheme to
build up hierarchies from the ground:

Definition 2. Let < {s1,s2,…,si} >Γ be the subgroup of Γ(V, ○) generated by the set
{s1,s2,…,si } ⊆ S i.e. the smallest subgroup of Γ which contains {s1,s2,…,si}. Let Γ(V,
○) be a finite group and S ⊆ V – {1} such that S = S-1. Then, the Cayley graph G(Γ,S)
is said to be hierarchical if there exits an ordering {s1, …, sk} of the generators of G
such that the subgroups < {s1,s2,…,si} > Γ are all distinct.

The above definition yields a surprising outcome. If we order the generators such that
each si+1 is outside the subgroup generated by the subgroup <{s1, s2,...,si}>Γ, then we
can obtain an accurate approximation of Ή. Specifically, each si+1 incorporates the
additional edges required to interconnect the exact number of copies of graph Gi to
produce the next family graph Gi+1. Therefore, Cayley graphs give us a useful hint to
the question of how to get a suitable method to obtain hierarchical substrates from flat
topologies. Although Cayley graphs are very helpful, they only give a static solution
to the problem of hierarchical construction. In fact, adopting a concrete instance of Ή
involves a further analysis to determine if Ή properly fits in a dynamic environment
where the nodes join or leave independently. However, this topic is beyond the scope
of this work.

To conclude, we want to underlie that in our case study, the hierarchical version of
Chord we obtain via Ή preserves the logarithmic bound O(log N), both in degree and
number of routing hops.

5 Whirl: The Hierarchical Version of Chord

In this section, we concisely present the hierarchical version for Chord. First, we give
the Cayley graph definition for Chord. Second, we discuss the specific function Ή
which manages to map Chord to Whirl, our hierarchical version of Chord. Since a
detailed description of Whirl was provided in [5], we omit the irrelevant details from
network management viewpoint.

Let Γ be the cyclic group (, +) of 2m elements with generators 2i for i=0…m−1.
The Cayley Graph G(Γ, {±2i: i∈{0,…,m−1}}) is the Chord graph with diameter m/2
and degree 2m.

The next theorem claims that Chord is a hierarchical Cayley graph. It also sets the
order for the generators ±2i, for i=0…m−1, which reveals the in-built Ή for Chord:

Theorem 1. Let Γ be the cyclic group (, +) of 2m elements. Let G(Γ, {±2i: i∈
{0,…,m−1}}) be the Cayley graph of Chord. Then, Chord is a hierarchical overlay if
and only if its generators are ordered as follows: ±2m−1, ±2m−2, …, ±1.

Proof. Omitted due to space constraints.

The above definition theorizes that a Chord graph of 2m elements can be viewed as
two interleaved copies of a Chord graph of 2m−1 nodes with the additional connections

2m

2m

254 M.S. Artigas, P. García, and A.F. Skarmeta

linking adjacent vertices. For example, consider the cyclic group (8, +) for a Chord
graph of 8 vertices {0, 1, ..., 7} and degree 6. The ordered set of generators for the
Cayley graph is {±4, ±2, ±1}. Then, the Chord graph of 8 vertices can be obtained by
applying the generator ±1 to two copies of 4 vertices, one with vertex set {0, 2, 4, 6},
the other with vertex set {1, 3, 5, 7} and both with generators {±4, ±2}. It is easy to
notice that the vertex sets of both copies are left cosets of group (8, +). Concretely,
this leads to a more general implication. It signals that the union of two copies of the
graph Gi to produce graph Gi+1 entails to establish only one additional link per node.
Technically, the latter is the reason why Whirl is optimal regarding both degree and
diameter. For further details, refer to [5].

Bearing in mind the above facts, function Ή for Chord is two-fold: (i) it retains the
standard Chord’s rule for link creation and (ii) performs a simple operation on node
identifiers. The reason to maintain Chord’s rule is for enabling “hierarchical” lookups
in Whirl. In general, a hierarchical lookup works as follows. Suppose a node q looks
for an item k. First, q tries to find k within its leaf cluster to take advantage of network
proximity. If q finds k the search stops. Otherwise, the query reaches the closest
predecessor p of k at this tier. Then, node p switches to the next higher cluster and
continues routing on that cluster. By repeating the latter, item k finally is found.

Besides, Ή divides the node identifiers in two parts. A PREFIX of m − p bits and a
SUFFIX of p bits provided 0 ≤ p ≤ m, where m is the length of node identifiers within
Chord circular identifier space [0, 2m). The SUFFIX determines the cluster of a node
(cluster ID) whereas the PREFIX, drawn uniformly at random, specifies the identity
of a node inside the actual cluster (node ID). Then, the application of the generator ±1
to any pair of neighboring clusters with an m-bit identifier space, produces a larger
cluster with a (m+1)-bit identifier space and “ring” links between adjacent vertices.
Also, the generator ±1 installs the delegate nodes at that tier. As a result, merging a
pair of clusters of the same level is achieved easily by i) contracting the SUFFIXes
and ii) extending the PREFIXes of nodes one bit, respectively. The last result has a
broader scope: it lets nodes reuse the links of “lower” clusters for routing at “higher”
tiers. As simulation results demonstrate in next section, our theoretic model is capable
to elucidate a hierarchical degree-optimal version of Chord.

6 Simulation Results

We now present a battery of tests to evaluate the functionality and performance of our
framework through simulation. Because the underlying substrate is a Chord overlay,
maintenance costs are of the same order as Chord. The main hypotheses we want to
evaluate are:

1. The basics of Whirl: the degree distribution and average number of routing
hops to demonstrate the quality of function Ή.

2. The proximity: the capacity that offers a hierarchical DHT for adaptation to
the underlying network in comparison to its flat design.

3. The performance of DECA: it includes the convergence time for a tailored
push gossip algorithm, applicable to Chord; the communication cost in terms
of number of messages sent and the accuracy of our solution.

All of the experiments for this section use a hierarchy with a fan-out of 2 at each
internal node. The number of tiers in the hierarchy varies from 1, plain Chord, to 5.

 DECA: A Hierarchical Framework for DECentralized Aggregation in DHTs 255

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0

0.1

0.2

0.3

0.4

0.5

Degree Distribution

P
D

F

Chord
2 Levels
3 levels

1000 2000 3000 4000
5.5

6.5

7.5

Nodes

A
V

G
. #

H
o

p
s

Chord

2 Levels

3 levels

 Fig. 2. a) Number of links distribution b) Average Number of Routing Hops

The number of nodes oscillates from 1K to 4K, and all the nodes choose a random 14-
bit identifier. Nodes are evenly distributed across the leaf groups.

Ή Test. Our first set of experiments evaluates function Ή abilities. In particular, the
distribution of the number of links and the average number of routing hops are
provided. Regarding the first metric, figure 2.a) plots the distribution of number of
links for a 1K-node network in a 1-level (Chord), 2-level and 3-level hierarchy. We
observe that for Chord this distribution is peaked around the average of 12 links/node.
As the number of tiers in the hierarchy increases, the mean shifts to the right whilst the
distribution “flattens out” to the left of this value. Although the number of links is not
exactly the log|V|, we see that the average number of links is log|V| + c, i.e. O(log|V|),
where c is a small constant that depends on the number of tiers. On the other hand,
figure 2.b) depicts the average number of hops required to route between two nodes as
function of the network size. We see that the number of routing hops is extremely close
to log|V| irrespective of the number of tiers. To evaluate the above metric, we inserted
1K items into the system. Later, ten nodes were requested to retrieve all items. For
each item, a “hierarchical lookup” was issued and the number of hops it spent,
accounted. In conclusion, DECA through function Ή is capable to produce hierarchical
versions of flat DHTs that preserve the same degree and number of routing hops.

Proximity Test. In this test, we evaluate DECA routing performance in terms of
network delay. To make a fair comparison, both the flat Chord and its hierarchical
version have the same number of nodes, denoted |V|. In order to measure DECA
adaptation to the physical network, we use GT-ITM[18] topology generator to
produce a 100-node highly connected backbone. For each node in the backbone, we
attach a number of graphs representing stub domains. The latency weights are: 10ms
for backbone edges, 100ms for backbone-stub edges and 5ms for stub-stub links. To
construct the desired |V|-node network, we attach each node to a stub through a 1ms-
latency edge. Figure 3 depicts the relative performance of an arbitrary 3-level, 4-level
Whirl graph versus a plain Chord without proximity. Clearly, it illustrates that Whirl
widely outperforms Chord.

Performance Test. This test evaluates DECA performance in terms of convergence
time, number of messages sent and degree of accuracy. To this end, we implement a
push gossip protocol over Chord partially based on the foundations of lbpcast [19].
Each node x maintains a partial view Γx of the system that varies as node x discovers
other nodes via push messages. Also, we employ COUNT function for our analysis.
Basically, this test aims to count the total number of nodes in the overlay. For all the

256 M.S. Artigas, P. García, and A.F. Skarmeta

1000 2000 3000 4000
0

500

1000

1500

2000

2500

3000

Nodes

A
V

G
. D

el
ay

 /
N

o
d

e
(m

s)

Chord

3 Levels

4 levels

8 12 16 20 24 28
80

180

280

380

480

Epochs

#N
o

d
es

delta=10

delta=12

delta=14

 Fig. 3. Average delay between nodes Fig. 4. Convergence Time

tests, the probability of a node crash (without recovery) in every epoch and in every
phase i (i >0) is pf = 0.001.

Figure 4 shows the relationship between the “gossip” rate δ and the number of
rounds that it takes to aggregate an event in a leaf cluster. The figure shows that
increasing δ decreases the number of necessary epochs to aggregate a value, but
conveys also the fact that the gain is not proportional. Figure 5.a) illustrates the cost in
number of messages that DECA spends. Note that leaf clusters are expected to be
several orders of magnitude smaller than a flat DHT. Then, it is easy to see that as the
average depth of the hierarchy increases, the overhead sharply reduces. Finally, figure
5.b) presents the fraction of nodes whose estimation of COUNT function is outside
the range [0.9|V|, 1.1|V|]. The high degree of accuracy comes from: i) the high degree
of reliability provided by the gossip protocol and ii) from the small quantity of
delegate nodes required to aggregate. The advantage of using delegates is that the
maintenance algorithm of the flat design carries out their refreshing.

1000 2000 3000 4000
60

460

860

1260

Nodes

M

es
sa

g
es

 (
10

e+
3)

3 levels
4 levels
5 levels

1000 2000 3000 4000

10
-4

10
-3

10
-2

10
-1

10
0

Nodes

P
r[

In
co

m
p

le
te

n
es

s]

3 levels

4 levels

5 levels

 Fig. 5. a) Number of messages sent (10e+3) b) Incompleteness probability

7 Conclusions

In this paper, we have expressed the need for a scalable AGGREGATION framework for
DHTs as a basis for wide-area management architectures. We have argued the reason
why traditional approaches for solving this problem do not scale in large groups, and
do not perform well over fault-prone networks. To cope with this, we have sought for
new theories that fit neatly into Peer-to-Peer paradigm foundations. In this line, we

 DECA: A Hierarchical Framework for DECentralized Aggregation in DHTs 257

have introduced a hierarchical abstraction that manages to extend AGGREGATION to
P2P wide-area networks. Also, a hierarchical methodology based on Cayley Graphs,
which produces hierarchical systems from the usual flat DHTs, has been unveiled.
Finally, an AGGREGATION algorithm which is hybrid, since it combines the fault-
resilience of gossip algorithms with the scalability of trees, has been carefully devised
to achieve the scalability/fault-tolerance requirements of large-scale P2P networking.

References

1. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet application”. In ACM SIGCOMM, 2001.

2. S. Ratsanamy, P. Francis, J. M. Hellerstein, and S. Shenker. A scalable content-
addressable network. In ACM SIGCOMM, 2001

3. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In IFIP/ACM Middleware, 2001.

4. B. Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A. D. Joseph, and J. D. Kubiatowicz.
Tapestry: A global-scale overlay for rapid service deployment. IEEE Journal on Selected
Areas in Communication, 22, 2004.

5. M.S. Artigas, P. García, J. Pujol, A. F. Skarmeta. Cyclone: A novel design schema for
Hierarchical DHTs. In Proc. 5th Conf. On P2P Computing, 2005.

6. S. Madden, M. J. Franklin , J.M. Hellerstein, W.Hong. TAG: a tiny aggregation service for
ad-hoc sensor networks. SIGOPS Operating System Review 36 (2002).

7. M. Bawa, H. García-Molina, A. Gionis, and R. Motwani. Estimating aggregates on a peer-
to-peer network. In Manuscript, 2003.

8. Ji Li, Karen Sollins, Dah-Yoh Lim. Implementing aggregation broadcast over distributed
hash tables. In ACM SIGCOMM, 2005.

9. G.Doyen, E.Nataf, and O.Festor. A hierarchical architecture for a distributed management
of P2P networks and services. In Proc. of DSOM’05, 2005.

10. Z. Zhang, S.-M. Shi, and J. Zhu, SOMO: Self-Organized Metadata Overlay for resource
management in p2p DHT. In Proc. IPTPS’03, Feb. 2003.

11. R. Van Renesse, and A. Bozdog. Willow: DHT, Aggregation, Publish/Subscribe in One
Protocol. In Proc. IPTPS’04, Feb. 2004.

12. K. Albrecht, R. Arnold, and R. Wattenhofer. Aggregating Information in Peer-to-Peer
Systems for Improved Join and Leave. In Proc. 4th Conf. On P2P Computing, 2004.

13. M. Dam and R. Stadler. A Generic Protocol for Network State Aggregation. In Proc.
Radiovetenskap och Kommunikation (RVK), 2005.

14. R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust and scalable
technology for distributed system monitoring, management, and data mining. ACM Trans.
Comput. Syst., 21(2), 2003.

15. R. Karp, C. Schindelauer, S. Shenker, and B. Vöcking. Randomized rumor spreading. In
Proc. 41st IEEE Symp. on Foundations of Computer Science, 2000.

16. P. Ganesan, G. Krishna, H. García-Molina. Canon in G major: Designing DHTs with
hierarchical structure. In Proc. ICDCS, 2004.

17. Akers, S.B., Krishnamurity, B.: A group-theoretic model for symmetric interconnection
networks. IEEE Trans. Comput. Vol. 38, 1989.

18. E.Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork. In Proc.
INFOCOM96, 1996.

19. P. Eugster, R. Guerraoui, S.B. Handurukande, A.-M Kemarrec, P.Koutnetsov. Lightweight
probabilistic broadcast. In Proc. Conf. Dependable Systems and Networks (DSN), 2001.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 258 – 268, 2006.
© IFIP International Federation for Information Processing 2006

Towards Distributed Hash Tables (De)Composition in
Ambient Networks

Lawrence Cheng1, Roel Ocampo1, Kerry Jean1, Alex Galis1, Casba Simon2,
Robert Szabo2, Peter Kersch2, and Raffaele Giaffreda3

1 University College London, Electrical Engineering Department, Torrington Place, London,
WC1E 7JE, UK

{l.cheng, r.ocampo, k.jean, a.galis}ee.ucl.ac.uk
2 Budapest University of Technology and Economics, Dept. of Telecoms and Media

Budapest, Hungary
{simon, szabo, kersch}@tmit.bme.hu

3 British Telecommunications PLC
raffaele.giaffreda@bt.com

Abstract. When different wireless networks come in close proximity there is
often a need for them to logically combine, or compose. We focus on a known
research problem particularly in Ambient Networks (ANs), where hetero-
geneous Distributed Hash Tables (DHTs) contained in these wireless networks
need to merge or divide as a result of these dynamic (de)composition processes,
respectively. We present two novel DHT (de)composition models for ANs,
known as absorption and gatewaying, that are designed to handle
(de)composition of DHTs in different AN network environments, with minimal
disturbance to existing member nodes.

Keywords: Ambient Networks, Composition, Decomposition, Distributed Hash
Tables.

1 Introduction

The aim of the Ambient Networks (ANs) project [7] is to develop the next generation
wireless networks. An AN consists of potentially large numbers of independent,
heterogeneous mobile nodes that can logically interact with each other to share a
common control space, known as the Ambient Control Space (ACS) [7], for resource
sharing. Given that an AN may consist of large number of AN nodes, there is clearly
a need for a distributed and scalable management data storage and retrieval
mechanism for each AN. Previous research works [1][2][4] have suggested that
Distributed Hash Tables (DHTs) is a candidate. Example DHTs are Content
Addressable Network (CAN) [3], Chord [6], Pastry [5], and others. However, much of
the existing research mainly focuses on optimising DHT routing and scalability; and
usually assumes a common DHT across the entire network that any nodes can join
[2]. Since ANs may constantly compose and decompose with other ANs1, we argue

1 By AN composition, we refer to process of which the ACSs of two (or more) ANs interact

with each other, to establish a common ACS between the two (or more) ANs for resource
sharing. AN decomposition refers to the process of a common ACS being divided [7].

 Towards Distributed Hash Tables (De)Composition in Ambient Networks 259

that the successful use of DHTs in implementing various distributed management
components in ANs depends on an ability to efficiently compose and decompose
DHTs. By DHT (de)composition, we refer to member nodes of homogeneous or
heterogeneous2 DHTs of different ANs interacting with each other to share distributed
information.

The challenge is that DHT (de)composition in ANs must be conducted in a
resource-limited environment i.e. a wireless environment. Thus, in addition to the
need for a more efficient underlying routing algorithm in DHTs (which is beyond
the scope of this paper), there is a need to minimise the disturbance caused by the
(de)composition process to existing member nodes of the DHTs. By minimising the
disturbance, we mean to minimise: (a) the amount of network overhead incurred by
the (de)composition process, and (b) the amount of storage data that needs to be
(re)distributed to other nodes in the DHT after (de)composition has completed (during
which keyspace might have been re-assigned to new members). As far as we are
aware, there has not been a vast amount of research work on DHT (de)composition; a
DHT merging process designed for DHTs based on the Chord protocol was presented
in [2] (see later). In this paper, we shall outline two novel (de)composition models for
CAN-based DHTs for AN. We shall also discuss the mappings of our models to DHT
implementations other than CAN. We start our investigation based on CAN-based
DHTs because of its design simplicity, which could help readers understand this new
research challenge (of DHT (de)composition). Furthermore, this would enable us to
gain a better understanding of the design requirements of DHT (de)composition, and
put ourselves in a better position to evaluate, experiment with, and to tailor a generic
DHT (de)composition model that would also cover other DHTs.

2 Background

In this section, we will start off with explaining some of the assumptions that we have
made when designing our approaches. Then, we shall provide an overview of our
approaches, by discussing their unique features and triggering factors.

2.1 Assumptions

To simplify our discussion, we assume that each AN has DHT-based management
components. Each AN node will have its own keyspace in the DHT once it has joint a
DHT; and each node maintains a coordinate routing table that keeps IP addresses and
virtual coordinate zones of its neighbours in the approach as indicated in [3]. To
simplify our discussion, we assume one DHT establishment per AN. Remember that
we are interested in DHT (de)composition in this paper; thus, (pre)establishment of
DHT in each AN is assumed. Readers are referred to [1][8] for more detail on
optimized DHT establishment techniques for wireless networks.

2 By homogenous DHTs, we refer to DHTs that use keyspace of the same keysize (e.g. both

uses 160-bit keyspace). By heterogeneous, we refer to the opposite (e.g. 160-bit keyspace Vs.
256-bit keyspace).

260 L. Cheng et al.

2.2 An Overview on the Two Models

We present two DHT composition models for ANs, known as absorption and
gatewaying. The absorption model (Fig. 1a) refers to two (or more) individual DHTs
(that are owned by two or more ANs respectively) completely merging together,
resulting in one uniform DHT across the composing ANs. The gatewaying model
(Fig. 1b) refers to bridging two (or more) individual DHTs together without
modifying their original keyspace. Both approaches enable information sharing
between DHTs, but are tailor-designed to accommodate different network
environments (see later).

Fig. 1. The generic models of absorption and gatewaying

2.3 Triggering Factors for the Two Models

Although we do not intend to specify the exact criteria when absorption or gatewaying
between DHT should be triggered3, but to illustrate the differences between absorption
and gatewaying, first, consider this deployment scenario: when a coach arrives at a
train station, an unknown (but potentially large) number of passengers will be getting
off the coach and walking towards the station. Assume each passenger is a passenger
node, and DHTs have already been established among member nodes of the station
and the coach respectively. Because the number of passenger nodes getting off the
coach is unknown (i.e. a very dynamic situation), it would be difficult to establish a
fresh, new DHT (e.g. passenger DHT) among members of such a highly dynamic
group in real-time. Instead, because the station DHT is readily available, should

3 We believe these issues should be defined by the corresponding AN/DHT Service Providers

(SPs) (readers are referred to [7] for more details). Also, SPs should define policies for
guiding nodes when nodes are presented with multiple joining offers from different (nearby)
DHTs.

 Towards Distributed Hash Tables (De)Composition in Ambient Networks 261

passenger nodes (those getting off the coach) wish to become members of a DHT (say,
to share information), they should be absorbed into the (more static) DHT (i.e. the
station DHT). The absorption model is therefore designed to minimise the network
overhead on members (whether they are existing members of a DHT or not) when
many nodes attempt to join practically at the same time.

The gatewaying model is suitable when one (or more) of the ANs/DHTs come
together within reachable distance, but member nodes of the AN/DHTs remain
(relatively) static. For example, when two wagons are joined together at an
intermediate train station, member nodes of the two wagons are likely to be static
(some passengers might get off the train but the majority would stay). There is a need
to bridge between the DHTs, so that the DHTs can share information.

3 The Absorption Model

3.1 The Protocol

One way of enabling absorption (as identified in [2]) would be to allow nodes (of a
discarded DHT, or do not belong to any DHT) to join a stable DHT, by negotiating
with nodes of the stable DHT individually using the standard procedure as [3].
Typically this would require each of the joining nodes to randomly select a keyspace,
and obtain keyspace directly from the node that "owns" it in the stable DHT. We refer
this as simple merging. The advantage of simple merging is its simplicity, i.e. no
changes to the existing protocols are needed. But the drawback is that all key-value
pairs hosted on member nodes of the discarded DHT or on individual nodes would
have to be re-distributed to nodes of the stable DHT. Also, if keyspace is randomly
selected, many nodes in the stable DHT must also update their neighbourhood
information each time a new node joins (see later for more details). In the case of
large scale deployment, this could potentially create unnecessary network traffic,
which is not desirable, particularly in wireless networks.

We suggest that, absorption negotiations should be conducted through the point(s)
of contact between the (two) ANs only. Points of contact are the nodes that have
physical connections with other ANs. For example, Y2 and Y3 are the points of
contact of AN/DHT Y (Fig. 2); whereas X1 and X4 are the points of contact of AN X.
In this example, we assume that nodes in AN/DHT Y (i.e. the coach AN/DHT) will
join with AN/DHT X (because the station AN/DHT is more stable). Instead of Y2 and
Y3 randomly selecting points in the keyspace of any nodes of DHT X (which is the
case in [2][3]), X1 and X4 will give up some of their keyspace to Y2 and Y3
respectively, by carefully selecting appropriate keyspace from within the keyspace
that they own. Note that the entire absorption process is a transient process, which
ceases to operate after a timeout. After the timeout, new nodes will be joining the
(unified) DHT under the normal procedure; that is, by randomly selecting keyspace
from any nodes in the DHT (see later).

Note that a key feature of absorption is that keyspace is selected within a keyspace
(instead of splitting), with the goal of reducing the level of disturbance to
neighbouring nodes. Fig. 34 shows the resultant keyspace partitioning under different

4 For simplicity, we illustrate our examples using a 2-dimentional coordinate space.

262 L. Cheng et al.

Fig. 2. The absorption model

approaches. Fig. 3a shows the original keyspace of DHT X (before composition). If
nodes of DHT Y are allowed to randomly select keyspace from member nodes of
DHT X, or if X1 and X4 simply split up their keyspace for Y2 and Y3 respectively,
the resultant keyspace might end up as shown in Fig. 3b. As a result, X1, X2, X3, X4
and X5 would all have to update their neighbourhood information. This is obviously
less desirable. However, by carefully selecting keyspace within the owner’s keyspace
(Fig. 3c), only node X1 and X4 would have to update their keyspace respectively.
Once dedicated members of DHT Y (i.e. Y2 and Y3) have been assigned with
keyspace, they will (re)distribute the keyspace to other members of DHT Y wishing
to join DHT X (i.e. Y1) (Fig. 3d). This arrangement is again to minimise the
disturbance to existing member nodes of DHT X.

Fig. 3. Resultant keyspace ownership in different approaches

 Towards Distributed Hash Tables (De)Composition in Ambient Networks 263

Imagine if all the remaining nodes of DHT Y (i.e. just Y1 in this case, and
potentially many more) join DHT X using the standard procedure: if the scale is large
(i.e. many nodes joining at once), existing member nodes of DHT X would have to
expend significant resources on the tasks of keyspace partitioning and updating
neighbourhood information. When absorption is used, remaining nodes (e.g. Y1)
should not obtain keyspace from nodes other than their points of contact (i.e. Y2 and
Y3). When node Y1’s join_DHT request traverses through Y2 (or Y3), Y2 should
terminate the request; Y2 should select within the portion of its assigned keyspace,
and return the selected keyspace to Y1. The same approach is repeated between Y1
and other nodes of DHT Y: when Y1 has intercepted a join_DHT request from other
nodes of DHT Y, Y1 will terminate the request, and will response with a selected
portion of keyspace within its own keyspace. In this way, each node is responsible for
(re)distributing keyspace; thus, a distributed approach for keyspace (re)distribution
among the joining nodes is achieved.

3.2 Discussion

The advantage of the absorption approach is that once keyspace has been assigned by
X1 and X4 to Y2 and Y3, all other existing member nodes of DHT X (except X1 and
X4) are not disturbed. The process is entirely transparent to other nodes that are
existing members of the original DHT X; and other nodes that were members of DHT
Y may join DHT X through Y2 and Y3 (and subsequently through Y1 once Y1 has
obtained its keyspace from Y2 and Y3), which is also a transparent process to existing
member nodes of DHT X. Unlike the simple merging approach, our approach requires
only a few nodes of the DHT (i.e. DHT X) to be disturbed, and with much less
network traffic (i.e. negotiation and communications between AN/DHT are conducted
between the points of contact only). Furthermore, because each node is capable of
(re)distributing keyspace, keyspace distribution is achieved in a distributed and
scalable manner.

It may appear that the requirement of explicit assignation of keyspace by keyspace
owners (e.g. Y2) to new joiners (e.g. Y1) violates the random balancing rules in
DHTs (i.e. nodes should randomly select keyspace for balance loading). However, we
argue that absorption is a transient procedure. After the timeout, new nodes must join
through the normal procedure; the keyspace would eventually be randomly and
evenly distributed on average. It is possible that all nodes in the DHTs have physical
connectivity with each other (i.e. a fully meshed structure of physical connectivity). In
this case, one may argue the use of absorption, because effectively all nodes are
points of contact. However, if all (wireless) nodes are physically interconnected, then
the nodes must be within close physical range. This implies that the number of
participating nodes in this merging would be limited. Thus, the amount of network
traffic created by, say, a simple merging, would have much less effect. It should be
noted that the use of dedicated points of contact for handling keyspace does not affect
scalability of the absorption model. The points of contact are responsible for initially
collecting a portion of keyspace from nodes of the other DHT (i.e. DHT X), and
redistributing keyspace to their immediate neighbours only. Once the immediate
neighbours have obtained their keyspace from the points of contact, the immediate
neighbours shall intercept (and terminate) any traversing join_DHT requests from

264 L. Cheng et al.

other member nodes (of DHT Y), and (re)distribute keyspace to those nodes.
Therefore, keyspace (re)distribution to member nodes of DHT Y is carried out in a
distributed fashion.

Once new nodes have joint a DHT, they may distribute their local data to other
nodes in the DHT if desired (i.e. the put(key, value) operation). To minimise
traffic caused by many nodes putting data onto many other nodes at one time,
provisioning [4] is made in our approach to upload pointers only, instead of the actual
piece of data. For example, if Y3 needs to put a piece of data on X2, a pointer is put
instead of the actual piece of data. The pointer refers to the actual location of where
the data is residing on (e.g. the data source). Thus, the amount of data storage traffic
caused by (many) new joining nodes is reduced. One may argue that this arrangement
increases the round-trip delay for retrieving a piece of data. However, this approach is
ideal for situation where the data to be stored requires frequent updating, such as real-
time bandwidth monitoring data. Instead of the data source continually updating the
data values on a remote node, a requester – once obtained a pointer to the data source
through the DHT – can contact the data source directly (readers are referred to [4] for
more details).

The arrangement of giving out keyspace to a physical neighbouring node also
enhanced routing locality. This is because the resultant overlay DHT neighbourhood
reflects the underlying physical neighbourhood. In the standard CAN approach,
keyspace ownership are randomly distributed. This means that two neighbouring
overlay nodes may be in fact physically distanced. This has a major impact on routing
especially in wireless networks; because if routing locality is not addressed, the
overhead to route from one overlay node to another can be significantly much higher.
However, at the time of absorption, routing locality is optimised in the portion(s) of
the keyspace that is being given out during absorption. Note that this approach does
not result in creating de facto gateways. It may appear that in Fig. 2 the absorption
approach turns X1 to be the de facto gateway of Y2 on the DHT overlay (because to
route to Y2 you must always route through X1). However, according to the
underlying network connection, X1 is the physical gateway to Y2 prior to absorption
beings. Therefore, the absorption approach does not create new gateways, but the
overlay gateways are the results of absorption that reflects the underlying physical
network. Furthermore, we have discussed that the absorption model is a transient
process: so in the longer run, when more nodes join through the standard CAN
approach, the overlay routing will become more balanced.

4 The Gatewaying Model

4.1 The Protocol

We have mentioned in an earlier section that through gatewaying, the composed
AN/DHTs would be able to share information, but at the same time retaining their
original keyspace. Existing DHT approaches usually assume only one common DHT
(i.e. one common keysize); however, due to the dynamic and heterogeneous nature of
ANs, there is a need to support composition between DHTs of different keysize.
Thus, there are two environments in which gatewaying may be deployed: gatewaying

 Towards Distributed Hash Tables (De)Composition in Ambient Networks 265

between DHTs that use keyspace of the same keysize; and gatewaying between DHTs
that use keyspace of different keysize. When gatewaying between DHTs of the same
keysize, nodes of the composing DHTs are notified of the existence of the other
DHTs that are now becoming accessible, as well as their own gateways to the other
DHTs5. Gateways are the points of contact which have physical connections with
nodes of another DHTs; but they serve a different purpose from the points of contact
in the absorption model.

Fig. 4. The gatewaying model between two wagon AN/DHTs

For example, nodes of DHT A (Fig. 4) must be notified that A1 and A4 are the
gatewaying nodes to another DHT (i.e. DHT B). The gateways do no more than
notification (i.e. they will not request for keyspace). To gain access to another
(gatewayed) DHT, member nodes would need to maintain the state of at least one of
their gateways6. Let's say A5 would like to retrieve a piece of information (after DHT
gatewaying). We provide two options for this node to do a search over the gatewayed
DHTs: (a) a sequential minimal-evaluation search, and (b) a parallel search.
Sequential minimal-evaluation search is ideal for locating unique pieces of data (e.g. a
particular video file); whereas parallel search enables a node to locate network-wide
information e.g. a node that needs Internet access may wish to search all gatewayed
ANs for the best available Internet throughput link that.

In the sequential minimal-evaluation search, A5 computes the location of the
information in its home DHT (DHT A) in the same way as stated in the standardised
protocol [3], and tries to get the information from the node (of DHT A) that is
supposed to hold the information. Suppose the information of interest is not stored in
DHT A (i.e. data not found); with gatewaying, the search will continue searching for
the same piece of information from other gatewayed DHTs (i.e. DHT B). The node of
DHT A which fails to provide A5 with the requested information, say, A3, will
inform one of its gateways (i.e. A1), and requests the gateway to search for the same
piece of information in other (gatewayed) DHTs. The request is conducted through
the gatewaying nodes i.e. A1 and B2. B2 (i.e. the corresponding gatewaying node of
DHT B) will try to locate the piece of information on behalf of A1, and will fetch

5 As an initial approach, notifications are sent to member nodes of a DHT through multicast.

Multicast is chosen for its simplicity.
6 Ideally for robustness, member nodes should maintain as much state of its gateways as

possible. However, there is a trade-off between overhead and robustness. As an initial design,
we require each node to maintain at least one of its gateways.

266 L. Cheng et al.

over the results to A1 (and subsequently node A5) if the information can be located in
DHT B. The search terminates as soon as the information is located (hence the term
minimal evaluation), and is not forwarded to other DHTs that may be similarly
gatewayed in this scenario. In contrast, in a parallel search, as the name implies, the
query is forwarded simultaneously (through the gateways) to all DHTs through their
respective gateways.

If the composing DHTs’ keyspace are of different keysize, we use a similar
approach as above, except that B2 must use the correct hash algorithm to compute the
correct location in DHT B. For instance, if DHT A’s keyspace is 160-bit whereas DHT
B’s keyspace is 256-bit, B2 must use SHA-256 to compute the correct keyspace of the
requested information. Note that when a new AN node wishes to join a DHT that has
already been gatewayed, the new node joins the DHT that it is in contact with.

4.2 Discussion

The advantage of gatewaying is its simplicity and reduction in network overhead. It
enables information retrieval across DHTs without modifying existing keyspace
structure. Thus there is no need to update neighbourhood information on each node in
the gatewayed DHTs (which would be required in simple merging or, to some extent,
absorption). Also, the chances of successfully retrieving a particular piece of
information increase as the number of gatewayed DHTs increases; which enhances
the robustness of the overall data retrieval process (i.e. more likely to locate the piece
of data of interest). The scale of state maintenance at one gateway is not dependent on
the size of the neighbouring networks/DHTs, but depends only on the number of
immediate neighbouring gateways, which makes our approach scalable. More
importantly, because there is no change to ownership of the keyspace of the
gatewayed DHTs, there is no need for data (pointer) (re)distribution, which reduces
network overhead. The downside is that the gatewaying model is only applicable
when member nodes of the to-be-gatewayed DHTs are relatively static. It may appear
that the use of gateways for inter-DHT communications would result in some
centralised processing (on the gateways). However, it should be noted that not all
get(key, value) requests are processed by the gateways; for example, cross-DHT
data search takes place only when data retrieval within a DHT fails in sequential
minimal-evaluation search, and stops as soon as the data of interest is found; whereas
parallel search is used for searching specific-types of information only (e.g. network-
wide information). This mode therefore trades off slightly higher traffic costs and
processing overhead (on the gatewaying nodes), to enhance overall robustness of the
data retrieval process (when comparing to searching for data within one DHT only i.e.
no gatewaying), and achieves potentially faster and more comprehensive searches
over the entire composed space, with the possibility of returning multiple results from
all gatewayed DHTs.

5 DHT Decomposition in ANs

By AN decomposition, an AN is virtually divided into two (or more) ANs, the
decomposed ANs do not recognise the existence of each other in the view of control

 Towards Distributed Hash Tables (De)Composition in Ambient Networks 267

and management7. There are several decomposition scenarios. Decomposition
between DHTs that were composed through gatewaying is the simplest form. This
may happen when, using our previous train scenario for this example, two wagons
(which were gatewayed) are detached. Nodes in the gatewayed DHT are informed
that the other DHT no longer exists, and the DHTs are said to be decomposed.
Decomposition of nodes of a DHT that share one unified keyspace (i.e. may have
previously composed through absorption) is slightly more complicated. A node may
leave a DHT without establishing its own DHT or joining with another DHT. For
instance, a train passenger switches off his laptop. This situation can be considered as
a node departure, and can be handled through the standard procedure as specified in
[3]: the departing node either handovers its keyspace to a neighbour (i.e. a clean
approach), or the unoccupied keyspace will be taken over by its neighbours when its
neighbours think it is dead [3]. In other circumstances, a set of nodes may decompose
from a DHT, and would like to have a DHT of their own but using the original
assigned keyspace. This can be achieved by the departing nodes simply by expanding
their own keyspace as if some other nodes have departed from the DHT (Fig. 5). For
instance, if 2, 3, and 5 are the departing nodes, they will expand to occupy the
remaining space that appears to be “left over” by 1 and 4. The same applies to those
who did not leave the DHT. The result would be two separate DHTs, but nodes would
be able to retain the original assigned keyspace structure. The last scenario would be
when some departing nodes decided to create a new DHT among themselves. In this
case, they must discard the original DHT, and creates a new DHT from scratch.

Fig. 5. DHT Decomposition

6 Conclusion and Future Work

We presented two novel models for DHT (de)composition in ANs under different
networking environments. We have discussed how our designs minimise the
disturbance to existing member nodes during DHT (de)composition, taken into
account scalability and efficiency. We believe the research work presented in this
paper gives us the insight for developing more generic models for other DHT

7 This does not necessary mean the decomposed ANs are physically disconnected: we are

referring to a separation of control space during decomposition of ANs.

268 L. Cheng et al.

implementations such as ring-based DHTs. As future work, we intend to investigate
further into the inter-node communications during DHT (de)composition in ANs, and
deploying our approaches on other DHT protocols.

Acknowledgement

This paper describes work undertaken in the context of the EU-funded IST Ambient
Networks (Phase 2) project.

References

1. H. Pucha, S. Das, Y. Hu, “Ekta: An Efficient DHT Substrate for Distributed Applications in
Mobile Ad Hoc Networks”, in Proceedings of the 6th IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA), English Lake District, UK, Dec 2004.

2. T. Heer, S. Gotz, S. Rieche, K. Wehrle, “Adapting Distributed Hash Tables for Mobile Ad
Hoc Networks”, in Proceedings of the 4th IEEE International Conference on Pervasive
Computing and Communications Workshop (PERCOM), Pisa, Italy, March, 2006, pp.
173-178.

3. S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, “A Scalable Content-
Addressable Network”, in Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications (SIGCOMM), San
Diego, CA, USA, August 2001, pp. 161-172.

4. R. Ocampo, L. Cheng, K. Jean, A. Prieto, A. Galis, “Towards a Context Monitoring System
for Ambient Networks”, to appear in the Proceedings of the 1st International Conference on
Communications and Networking in China (Chinacom), Peking, China, 2006, temporarily
available at: http://www.ee.ucl.ac.uk/~lcheng/Papers/CHINACOM_2006.pdf

5. A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems", in Proceedings of the IFIP/ACM Middleware,
Heidelberg, Germany, pages 329-350, November, 2001, http://research.microsoft.com/
~antr/ PAST/pastry.pdf

6. I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek and H. Balakrishnan, "Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications", in Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer
communications (SIGCOMM), San Diego, CA, USA, August 2001.

7. R. Campos, C. Pinho, M. Ricardo, J. Ruela, P. Poyhonen, C. Kappler, “Dynamic and
Automatic Interworking between Personal Area Networks using Composition”, in
Proceedings of the 16th IEEE International Symposium on Personal Indoor and Mobile
Radio Communications (PIMRC), Berlin, Germany, Sep 2005.

8. T. Zahn, J. Schiller, “MADPastry: A DHT Substrate for Practicably Sized MANETs”, in
Proceedings of the 5th Workshop on Applications and Services in Wireless Networks
(ASWN), Paris, France, Jun 2005.

CMDB - Yet Another MIB?
On Reusing Management Model Concepts in ITIL

Configuration Management

Michael Brenner, Markus Garschhammer, Martin Sailer, and Thomas Schaaf

Munich Network Management Team
University of Munich

Oettingenstr. 67
D-80538 Munich, Germany

{brennera, garschha, sailer, schaaf}@mnm-team.org

Abstract. According to ITIL, a CMDB (Configuration Management Database),
containing a logical model of the IT infrastructure, forms the basis for effective
and efficient IT Service Management. However, a common understanding of what
constitutes a CMDB has not yet been established. By contrast, concepts for build-
ing and using MIBs (Management Information Base) – also aimed at providing
logical models of the IT infrastructure – have long since been established in the
area of systems management.

This paper presents an overview of the CMDB and MIB concepts, discusses
how they relate to each other and compares them based on the main purposes
of a CMDB. It discusses whether modeling approaches used for MIBs can be
reused for CMDBs. To this end, a criteria catalog based on core CMDB concepts
and basic information requirements of ITIL’s Service Management processes are
derived, and the challenges of implementing a CMDB reusing concepts of com-
mon management models are discussed. Concluding, basic approaches towards
integrating CMDBs and MIBs are presented.

1 Introduction

In approaching ITSM (IT Service Management) issues, there is a current trend towards
greater consideration of organizational (rather than purely technological) aspects. In this
context, the IT Infrastructure Library (ITIL) has, of all standardization efforts, gained
the biggest popularity and can – at least in Europe – now indeed be called a de-facto
standard. In its core titles Service Support and Service Delivery, ITIL provides “best
practice” guidelines for IT Service Management.

Implementing Configuration Management, a central process of Service Support [1],
is often considered the biggest stumbling block in ITIL realization. This is not just
because the Configuration Management process itself is not as structured as the other
Service Support processes [2]. It is defining the scope and structure of the CMDB, as
well as filling and maintaining it, which often proves to be exceedingly difficult and
time-consuming. Thus, one of the main challenges in developing solutions for sup-
porting the application of ITIL is to detail the CMDB concept in order to facilitate its
implementation.

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 269–280, 2006.
c© IFIP International Federation for Information Processing 2006

270 M. Brenner et al.

In the area of systems management, however, integration efforts have given rise to a
number of standardized information and data models. Essentially, these models provide
means to build a Management Information Base (MIB) to be used by IT infrastructure
management systems – i.e. a MIB is a logical view on the management-relevant aspects
of a part of an IT infrastructure. Thus, at first glance, a CMDB could be seen as not
much else than yet another MIB (or a collection of MIBs).

The remainder of this paper is structured as follows: Sec. 2 defines the usage of im-
portant terms in the context of this paper and illustrates correlations between the terms
used in a CMDB context and those used in a MIB context. This leads to the interesting
question: Are existing techniques (management models) capable of solving some of the
problems occurring when setting up a CMDB? The answer is based on examining core
CMDB concepts (Sec. 3), defining basic criteria for a potential CMDB model, and ap-
plying these criteria to some of the most common management models (Sec. 4). Sec. 5
concludes by further investigating the commonalities and differences of the concepts
underlying CMDBs and MIBs and discussing possible integration approaches.

2 From Managed Objects to Configuration Items

When discussing management models or ITIL Configuration Management, many terms
mean different things to different people. The following will define the usage of some
essential terms for the context of this paper.

Managed

Object
CI

Record

abstracts from abstracts from

Resource

Managed

Object Class
CI Type

instance of instance of

Fig. 1. CIs vs. MOs

The Managed Object (MO) concept has been
defined in the OSI Management Framework [3]
and been referred to in various architectures for
network and systems management. MOs repre-
sent the management view of resources, i.e. they
abstract from resources (components) in a man-
aged IT infrastructure. They can be seen as an
abstract model of a resource or as the data record
used to express this model1. The set of MOs as-
sociated with a system constitutes that system’s
Management Information Base (MIB). MOs that
share the same definition are instances of the
same Managed Object Class (MOC) [4].

Basically, a management Data Model (DM)
contains MO definitions (or MOCs) in a for-
malized and detailed enough way to enable a

straightforward MIB implementation. Consequently, a DM is bound to a Data Model
Language (DML) which defines the syntax in which MOCs are described. If the DML
prescribes how management information is represented in the DM, the Information
Model2 (IM) defines what this management information should comprise. In other

1 In common usage, the term “MO” can also denote the managed component itself.
2 In the context of this paper the term “Management Model” will be used to refer to the compos-

ite model that the union of IM, DML and DM builds (cp. Sec. [5]), but note that in a broader
context this is often referred to as the “Information Model” of a management architecture [6].

CMDB - Yet Another MIB? On Reusing Management Model Concepts 271

words, a DM is formalizing and detailing the concepts contained in an IM – conse-
quently various DMs can be derived from a single IM. In an IM context an MO would
be an abstract model – in a DM context, an MO would be a data record representing that
model. Analogous, in an IM context, MOC is the abstract model of a class of MOs (or a
type of MO) – in a DM context, an MOC is a formal definition that is used to instantiate
MOs of a specific type (or used to be refined into other MOCs). Most of the standard-
ized management models focus on defining a DM, and document the underlying IM
only informally or incompletely [5].

The concept of a Configuration Item (CI) in the context of ITIL’s guidance on Confi-
guration Management (CM) seems similar to that of an MO. A CI is a component of an
IT infrastructure (or other items associated with that infrastructure) which is put under
the control of the Configuration Management process [1]. Relevant information on CIs
(CI attributes) and the relationships between CIs are to be recorded in the Configuration
Management Database (CMDB). ITIL does not make a clear distinction between the
CM view (model) of a component or its expression in the documented CI attributes and
the component itself. In this paper, the term CI Record (CIR) will be used to refer to the
data record contained in the CMDB, while CI will denote the abstract model (CM view)
of the component. As depicted in Fig. 1, a CI is abstracting from a resource much in the
same manner as an MO. According to ITIL, CIs should be classified into CI types. ITIL
takes a broader view on what should be regarded as a CI (including e.g. documentation
and services defined in SLAs) than what is usually referred to as an MO. Also a CMDB
seems to cover a larger part of an IT infrastructure than what one usually thinks of as a
“system” (the scope of the management information stored in a MIB). However, since
CI records often describe the same kind of IT resources (like software and hardware
items) as MOs, there is an obvious analogy between the concepts of MO and CI/CIR,
MOC and CI type as well as MIB and CMDB.

Given the existence of standardized management models for network and systems
management that define a DML, as well as DMs with large numbers of pre-defined
MOCs, it surprises that equivalent standards for building CMDBs have not been pro-
posed so far. This begs the question whether some of the existing management models
might be useful for filling this gap. Before this, the concept and purpose of a CMDB
needs to be analyzed in more detail.

3 The CMDB Idea

Unfortunately, the guidance ITIL itself gives on the CMDB is neither comprehensive
nor consistent in all details. Consequently, it is difficult to give a compendious defi-
nition of it. Basically there are two views on the CMDB within ITIL which are not
necessarily conflicting, but still address distinct aspects. On the one hand, the CMDB is
a logical model of the IT infrastructure and IT services whose creation and maintenance
is the main deliverable of the Configuration Management process, as discussed in the
according chapter in Service Support [1]. On the other hand, the CMDB is seen as a
sort of “information hub”: In most cases, whenever an ITIL service management pro-
cess needs to access information outside its immediate scope of responsibility, this is
supposed to happen through querying the CMDB. This information can refer to things

272 M. Brenner et al.

quite different from IT infrastructure elements or services, e.g. artifacts of other ITIL
processes like incident records, but also records on information like customer and user
data, whose control is usually not within the scope of IT management. ITIL itself makes
no definitive statements on this duality of the CMDB (or even acknowledges it expres-
sively), but it is up to discussion in any real-world implementation whether Configu-
ration Management needs to maintain the latter kind of information – or just ensure
access to it. Besides demanding the documentation of relations and dependencies be-
tween CIs (including containment relations), ITIL gives almost no guidance on CMDB
implementation specifics.

For Configuration Management ITIL defines five3 basic activities [1,7]: Configura-
tion Management Planning (defining scope, purpose, responsibilities etc. of Configura-
tion Management), Configuration Identification (defining what CIs are to be included
into the CMDB and in what form), Control of CIs (assuring up-to-date recording of
the characteristics of CIs – in particular in the event of changes), Configuration Sta-
tus Accounting (reporting and control of the current version and change history of all
CIs) andConfiguration Verification and Audit (Planning and carrying out configuration
audits to verify accuracy and completeness of the CMDB).

The first two activities listed could be seen as parts of a CMDB setup project. In
the terms of Sec. 2 main tasks of such a project would include defining an IM for the
CMDB, choosing a suitable DML and a DM. Note however that Continuous Improve-
ment is a central concept underlying all ITIL guidance, and consequently, these two
activities might be repeated in its context. An important conclusion can be drawn from
this: The requirements for the information contained in the CMDB are scenario specific
(IT organization specific), can change, and consequently the IM underlying a CMDB
might need to be adapted (see also Sec. 4.1). This does not mean however that the re-
quirements on the IM will differ vastly between two providers of similar IT services –
there should be large intersections that could be used for building “Base Information
Models” for CMDBs.

“Configuration Status Accounting” is a concept adopted from Software Configura-
tion Management that refers to keeping track of the life cycle status of a CI (what ver-
sion of a specific CI is “in testing”, “in operation” etc.). This implies that infrastructure
elements should be tracked in a CMDB even before they come into operation. Also,
as can be seen from the activities “Control of CIs” and “Configuration Verification and
Audit”, the concept of ITIL Configuration Management per se assumes more or less
manual maintenance of the CMDB and does not rely on any technology to feed data
into it. In a ITIL-aligned organization this is not necessarily as complex as one might
assume. In day-to-day operations, the only modifications to the content of a CMDB
should be triggered by activities of the Change Management process. Results from au-
tomatic infrastructure scans can be extremely useful for “Configuration Verification and
Audit”, but should not be fed unreviewed into the CMDB. Still, this implies that the
practice of CMDB maintenance stays comparatively labor-intensive and rises with the
amount of information stored in the CMDB. It is therefore important to find the appro-
priate level of detail in which CIs are to be recorded in the CMDB, achieving a balance

3 Seven on some counts, but we disregard like most other literature the very generic “CMDB
back-ups, archives and housekeeping” and “Providing a Configuration Management service”.

CMDB - Yet Another MIB? On Reusing Management Model Concepts 273

between the benefits of information availability and the resources and effort needed to
support it [1]. So in summary, a CMDB

– exits to serve the essential information needs of the ITSM processes defined in ITIL
– should be kept “slim” and closely aligned with these information requirements
– contains a model of the IT infrastructure and services
– documents relations between any CIs.

But even though the concept of a CMDB is different from that of a MIB (see Sec. 5),
at their core they still both model (parts of) IT infrastructures. ITIL neither gives con-
crete instruction towards implementing a CMDB, nor have standardized models been
established. This begs the question, whether existing information models can be used
or adapted for building CMDBs.

4 On Reusing Management Models

Even in the few instances where criteria for CMDB tools are discussed, these efforts
are usually focussed on functional requirements (e.g. visualization) and integration with
other databases [8,9]. Limiting assessments only to these requirements however bears
the danger of not addressing key standardization issues for CMDBs. An effective and
sustainable solution to CMDB integration issues will need to be based on at least some
partial standardization on the level of a CMDB IM, DM and DML. Consequently, the
criteria outlined below are a first step towards documentation of requirements for the
design (or selection) of an IM, DM and DML that a CMDB tool will explicitly or
implicitly have to be based upon. In Sec. 4.2 the proposed criteria are applied to three
existing management models to evaluate the possibilities of reusing their concepts.

4.1 Requirements on a Management Model Reusable for Building a CMDB

With the CMDB concept being rather ambitious, a management model for a CMDB will
need to fulfill a number of requirements. Note that many requirements cannot be exactly
mapped to either DM, DML, or IM, as there are many interdependencies between these
aspects (e.g. a very simple DML might not be able to express complex IM concepts)
as well as between them and implementation or architecture specifics (e.g. will the
CMDB comprise several physical databases, has Configuration Management a say in
how information is stored and accessed in other enterprise databases?).

Adaptability of Model - All ITSM processes are subject to Service Improvement Pro-
grams (Continuous Improvement, cp. Sec. 3). Consequently, the CMDB, subject to
Continuous Improvement as well, must be capable of dealing with changing require-
ments, especially regarding scope, nature and level of detail of the documented informa-
tion. To keep the costs of adapting the IM low, the DML should allow easy extensibility
of the DM.

Alignment to ITSM information needs - Obviously, the IM for CMDB should ad-
dress all the information requirements of the ITSM processes and consequently include
models of all relevant entities (including e.g. Incident Records etc.). On the other hand,

274 M. Brenner et al.

to keep the CMDB in principle “human maintainable”, it should not cover too much
information or aspects which are not essential in this context.

Comprehensive view on infrastructure and component relations - The documentation
of CI relationships (e.g. for service impact analysis) is maybe the single most essential
concept in the CMDB context. Consequently, the IM should include basic relations
between common CI types and the DML should support modeling multiple, preferably
even user-definable, relationships between CIs.

Inclusion of ITSM process artifacts - This criterion refers to the “information hub” na-
ture of the CMDB (cp. Sec. 3). Each ITSM process defined in ITIL not only has specific
requirements about what information should be contained in a CMDB, it also creates
(ITSM) data itself, i.e. process artifacts such as incident records. Analogous to above
criterion, the relationships among these process artifacts (e.g. what incident records are
linked to a specific problem record?) as well as between them and infrastructure CIs
(e.g. what problem records are associated with a specific infrastructure CI?) need to be
included in the CMDB and in consequence should be part of the IM. As there is no
convincing argument for putting all process artifacts under Configuration Management
control in the same way it is done with infrastructure CIs – and these process records
are usually controlled through process-specific tools (e.g. Incident Management Sys-
tem) – it seems likely that in a real-world CMDB implementation these artifacts and
infrastructure CIs will be stored in separate physical databases. In that case, a com-
mon DML suited for building models of infrastructure components as well as process
artifacts could ensure obstacle-free integration.

Integration with external databases - Information of relevance for ITSM might be
managed and stored outside the IT organization itself – either in enterprise databases
(for example employee data managed by the Human Resources department) or in ex-
ternal CMDBs (e.g. of an external IT sub-service provider). This information will most
likely be outside Configuration Management control, and consequently so will be the
technical nature of access methods. The DML and DM should therefore lend them-
selves to integration with a variety of data sources (e.g. by providing easy XML/Web
Services mappings).

Integration with (other) network and systems management data stores - Much of
the information that should be contained in a CMDB cannot be gathered solely by
using resource management or discovery tools (e.g. systems’ locations, compositions of
services). However, for information aspects that can be discovered using management
tools, verification and audit of CMDB records can benefit greatly from integration with
these tools. A DML for Configuration Management should therefore ease reconciliation
of data stored in the CMDB with that of other existing management systems (e.g. by
providing mappings to other common DMLs).

Support for life cycle status accounting - ITIL demands that the life cycle status of
any CI is tracked and documented. This should be reflected in the IM. Also information
pertaining to all life cycle phases should be accessible through a CMDB – via attributes
or relationships to other CIs and data records (e.g. acquisition date, test records, etc.).

CMDB - Yet Another MIB? On Reusing Management Model Concepts 275

Catalog of basic CI types - Provisioning of common CI types (or MOCs) (informally
in the IM – though preferably in the form of an extendable but ready-to-use DM) could
significantly shorten the time-to-implementation for a CMDB.

4.2 Assessment of Current Management Models

The apparent similarity of the MO and CI concepts prompts for a reexamination of ex-
isting management models. By applying the criteria catalogue presented above, we as-
sess state of the art management models regarding their possible reuse building CMDBs.

Fig. 2 gives a comprehensive overview of the criteria catalog and illustrates how dif-
ferent approaches fulfill these criteria. In the following, we discuss the Internet Manage-
ment Model (IMM) [10], the Common Information Model (CIM) [11] and the Shared
Information/Data Model (CIM) [12].

Internet Management Model (IETF). The Internet Management architecture has two
main pillars: The Simple Network Management Protocol (SNMP) and a large number
of MIB modules published in RFCs [5]. The latter build what, though there is no official
name for it, could be called the Internet Management Model (IMM) that covers a lot
of system types in its scope. Following its original design goal of providing a simple
way to manage network resources, this model’s focus is comparatively narrow. MIB
modules contain the MO definitions for a specific type of system – but in IMM an MO
often represents a very small aspect of a system that one would generally rather think of
as an attribute, e.g. an MO can be a single counter variable. In the Internet Management
architecture MOs/MIBs are intended to be stored on the managed system and accessed
remotely via an SNMP agent. In the terms defined in Sec. 2, a MIB module (e.g. for a
type of switch) could be seen as a data model MOC representing a type of system.

Documenting relationships between MOs is not supported by IMM (except contain-
ment within a single system’s scope) and as an IMM-MIB is limited to describing a
single system, a view on the entire infrastructure and the relationships between its com-
poments is not supported by the model. In practice this gap is often filled by functional-
ity provided by SNMP-based network management tools (management platforms) that
for example support viewing network topologies. Also, an Internet MIB is concerned
only with the operational state of a resource. IMM is not designed to support tracking
the lifecycle status of a resource.

With the Internet Management architecture being the first widely adopted and im-
plemented management standard, integration with other standards was at the time of its
conception of no concern – though concepts for integrating it with later management
architectures have been designed. Also, due to its technical focus, support for integra-
tion with enterprise databases or linking to documents (process artifacts) was never
intended in IMM. The concept of IMM presumes the requirements of management to
be rather static. It is not intended that MIB modules can be customized by the user
(i.e. the operator of the infrastructure), e.g. for addressing operator-specific or chang-
ing requirements.In practice, it is again management platforms that address this gap
by filtering or consolidating information or allowing to retrofit the infrastructure view
gathered from the MIBs with manually added information.

Common Information Model. The Common Information Model (CIM) [11] is an
object-oriented management model that aims at providing a common way to represent

276 M. Brenner et al.

IMM CIM SID

Adaptability of Model � � �
Alignment to ITSM information needs � � � � satisfied

Comprehensive view � � � � partially satisfied

ITSM process artifacts � � � � not satisfied

Integration with external databases � � not applicable

Integration with management data stores � �
Support for life cycle status accounting � � �

Catalog of basic CI types � � �

IMM: Internet Management Model CIM: Common Information Model SID: Shared Information/Data Model

Legend

Fig. 2. Assessment of management models

information about networks and systems as well as services. It defines managed re-
sources as object classes that can be further refined by means of strict inheritance. Part
of CIM is textual, human-readable language (Managed Object Format (MOF)[13]) for
describing modeling constructs that can be processed by automated tools. Since all
CIM classes derive from the managed element class as defined in the Core Model,
CIM provides a coherent view on the modeled infrastructure. This view, however, does
not include the linkage of ITSM processes to infrastructure elements. In particular, key
concepts of ITIL such as Incident records fall out of CIM’s scope.

CIM makes extensive use of relationships, namely associations and aggregations;
together with its object-oriented approach this yields a sufficient level of expressive-
ness and extensibility. CIM features a large amount of standardized object definitions.
In total, the amount of managed object classes defined in CIM comes close to 900. It
is therefore fair to say that CIM represents a solid basis for integrated management,
but is a fairly complex model. Understanding the relationships between these classes
and adapting CIM to the needs of an organization requires a serious effort [14]. More-
over, much of the information conveyed in these classes deals with low level details of
resources and clearly exceeds the ITSM scope.

Despite some exceptions within the CIM application schema, CIM’s focus is on the
operation phase of an IT infrastructure. Thus, it provides only rudimentary support for
life cycle phases such as planning.

While CIM provides a rich data model, it currently shows deficits in expressing
business-oriented concepts as required by ITSM. In particular, only few MOCs for ex-
pressing service-related management information have been defined so far. This might
be due to the fact that it has its roots in the area of desktop systems and has over time
developed into a more generic model.

Shared Information/Data Model. Compared to CIM and IMM, SID (Shared Infor-
mation/Data Model) [12,15] is less centered around DM concepts, but provides an in-
formation model. SID is an integral part of the NGOSS (New Generation Operations
Systems and Software) initiative by TMF (TeleManagement Forum). Including SID
in this assessment thus bears some ambiguities. However, SID is the first information
model tightly coupled to management processes. If there was a CMDB for the eTOM
process framework, it would be based on SID.

CMDB - Yet Another MIB? On Reusing Management Model Concepts 277

The SID model employs an object-oriented modeling approach and draws a clear
distinction between the system and business view on management information. Ac-
cordingly, it is organized into System and Business domains, which are in turn parti-
tioned into Aggregate System Entities (ASEs) respectively Aggregate Business Entities
(ABEs). ASEs are intended to facilitate linkage between business and system view,
since they elaborate on the concepts defined in ABEs. SID is strongly tied to the eTOM
Process Framework [16] in that Business Domains accord with eTOM Level 0 concepts.
However, since eTOM and ITIL vary considerably in structure, SID’s ABEs will not be
suitable for unqualified inclusion into a CMDB information model.

The concept of Continuous Improvement is not explicitly addressed in eTOM and
NGOSS. It is therefore not quite clear yet wether user/operator adaptability will be a
central design goal for future implementations of a SID data model. Inherently, the
SID model is specified as a rooted class hierarchy. It makes use of object-oriented
concepts like generalization, associations, aggregations and compositions to express
relationships between entities and is thus able to provide a coherent view on the IT
infrastructure.

With entities and attributes being described by a mixture of descriptive text, UML
diagrams and tables, SID also provides a reasonable level of expressiveness. This in-
cludes the use of finite-state machines to model life-cycle aspects – a concept that has
been incorporated from DEN-ng.

SID’s strength clearly lies in its modeling of higer-level concepts (e.g. Service, SLA),
where most MOCs have been defined. While in this regard SID offers considerable
benefits over IMM and CIM in terms of maturity, it currently defines only few MOCs
for expressing low level details of resources. While SID’s focus is clearly on eTOM
processes, it exhibits a number of sound concepts that a CMDB information model
would benefit from. This includes the coupling of model entities and business processes
to provide a business viewpoint on the data/information.

The detailed investigation of three different concepts for information modeling show-
ed that none of them is directly applicable to build a CMDB. For instance IMM and
CIM do not offer any support to model the life cycle dependence of CIs. All approaches
lack a strict focus on ITSM. Besides SID, no information model offers standard, easy
to deploy MOCs for expressing higher-level concepts such as services. However, it
shows deficits in modeling low-level parameters of system and network components
– whereas CIM and IMM feature a large amount of standard MOCs for that purpose.
Fig. 2 comprehensively illustrates these gaps towards implementing a CMDB based on
well established information models.

5 The CMDB-MIB Gap and First Steps on Bridging It

As seen in Sec. 4.2, the established management models do not lend themselves to
immediate application for CMDB design. The reason for this apparently lies in some
fundamental differences between the design goals and design philosophies for MIBs
and CMDBs. The purposes a CMDB and a MIB serve are, despite seeming similar on
the surface (“providing a model for IT management”), quite distinct. Some distinctions
were already touched upon in previous sections. This section outlines some additional
aspects before continuing to discuss approaches to integrate MIBs and CMDBs.

278 M. Brenner et al.

5.1 Understanding Differences and Similarities – The CMDB-MIB Gap

A MIB serves to make the tasks of day-to-day operations easier for operators and ad-
ministrators by addressing the challenges of infrastructure diversity and (physical/geo-
graphical) distribution. In contrast, a CMDB serves decision makers in the various ITIL
service management processes for which a comprehensive overview (e.g. on the factors
influencing service performance) is often more valuable than minute detail.

Also the philosophy of who has the last say about the contents of a CMDB or MIB
differs. A MIB usually comes with the system it models, i.e. its design is done by the
system vendor. A later customization by (management) users on a model level is not
intended. Realizing adapted models is often possible through functionality of manage-
ment systems – these are then usually stored in a format proprietary to that manage-
ment system. ITIL’s “adopt and adapt” philosophy by contrast suggests that the scope
and structure of a CMDB should be adaptable to cope with changing scenario-specific
requirements.

Also, while tracking components through all life cycle phases, CMDBs do not pro-
vide up-to-the-minute data of the operational status of components – nor is a CMDB
intended to be a tool to manipulate that status with effect onto the live environment.
Even though editing and auditing the CMDB can be made more efficient by tools, the
maintenance of the CMDB as a whole is an organizational practice independent from
any technology, and can consequently probably never be 100% automatized.

So, a CMDB is really a different beast than a MIB. Both emphasize in their models
distinctly different aspects of the IT infrastructure as they serve to support different
tasks by different groups of stakeholders. But then again, they both offer an abstracted
management view of the same infrastructure.

There is an analogy to that in IT system modeling. It is commonly accepted that
there is a need for different model types in software and systems engineering. As it is
good practice in this discipline, there should be mechanisms for ensuring consistency
between MIB and CMDB models and facilitate reuse of shared information.

5.2 Further Directions – Bridging the CMDB-MIB Gap

Some ITIL consultants might argue that the requirements for the model underlying a
CMDB are dependent on the individual characteristics of every IT organization, and
therefore no common model will fit all scenarios. However, the growing adoption of
ITIL (and related standards like ISO 20000) furthers a basic organizational standard-
ization – while on the infrastructure side, standardization of hardware and software has
also been evolving. It therefore seems very unlikely that the requirements for a CMDB
will vary so enormously across IT organizations that are comparable in size and of-
fered services. Given the very high level of abstraction and generality in ITIL’s CMDB
guidance, there is ample room (and need) for a common CMDB “reference model”,
comprising an IM, DML and DM that are applicable to a large number of CMDB sce-
narios (and adaptable to suit most).

While a sound approach for such a standardized model for ITIL is currently missing,
the TMF has pursued a similar goal with SID (cp. Sec. 4.2). Although SID is built
around eTOM processes and therefore not directly applicable to ITIL-based ITSM,

CMDB - Yet Another MIB? On Reusing Management Model Concepts 279

many of its concepts seem to be general enough in design to be suitable for reuse in
CMDB models.

Towards this goal, we are working on the definition of a CMDB reference model.
The first step is to define a set of CI types which are indispensable for ITIL-based IT
Service Management and the relationships between them. (e.g. ServiceIncident, Servi-
ceProblem). When defining CI Types for common kinds of infrastructure components
or business entities, we try to reuse existing (abstract) information model concepts from
CIM and SID. Information items that have not been covered by these approaches, such
as ITIL process artifacts, are conceptualised using reference processes we concurrently
develop based on ITIL process descriptions (cp. [2]). In particular, this includes the in-
formation flow between processes – an aspect only incompletely addressed by ITIL for
some processes – and basic Key Performance Indicators (KPIs).

Given the differences between MOs and CIs, it seems likely that MIBs and CMDBs
will coexist in most IT organizations in the foreseeable future. It would be advantageous
to have means of exchanging information between them, e.g. for facilitating CMDB ver-
ification and audit. After all they both contain models of the same infrastructure. For
this, the ability to define mappings between the MIB and CMDB data models (nec-
essarily based on IM and DML mappings) would be desirable. But we hope that also
information flow in the opposite direction could be an asset. If service dependencies
maintained in a CMDB can be integrated with the real-time data out of MIBs, this
might be a step forward towards the ambitious goal of tracking the operational status of
a service in a “Service MIB” (cp. [17]).

6 Conclusion

This paper presented a comparison of the common notion of a MIB against the yet
evolving idea of a CMDB. An assessment of established management models showed
that their concepts cannot be reused unadapted for building a CMDB. The cause for
this lies in a fundamental difference between the principles underlying both concepts,
stemming primarily from the distinct goals pursued in their design.

In the light of ITIL-based ISO 20000 certifications for IT service providers gaining
momentum, an approach for building capable and sustainable CDMBs is dearly needed.
This is achieved best not by retrofitting existing tools, but by approaching CMDB de-
sign “top-down” – based on a sound requirements analysis and the development and
standardization of appropriate models. In addition, given the existence of MIB-based
management systems in most larger IT organizations, there is a strong point for arguing
that a CMDB should be closely integrated with these. Approaching such an integration
should start at the model level as well and not be based on “bottom-up” application
integration.

Acknowledgment

The authors wish to thank the members of the Munich Network Management (MNM)
Team for helpful discussions and valuable comments on previous versions of this

280 M. Brenner et al.

paper. The MNM Team directed by Prof. Dr. Heinz-Gerd Hegering is a group of re-
searchers of the University of Munich (LMU), the Technical University of Munich
(TUM), the University of the Federal Armed Forces Munich, and the Leibniz Super-
computing Center of the Bavarian Academy of Sciences. Their web-server is located at
http://www.mnm-team.org. This paper was supported in part by the EC IST-EMANICS
Network of Excellence (#26854).

References

1. Office of Government Commerce (OGC), ed.: Service Support. IT Infrastructure Library
(ITIL). The Stationary Office, Norwich, UK (2000)

2. Brenner, M.: Classifying ITIL Processes — A Taxonomy under Tool Support Aspects. In:
First IEEE/IFIP Workshop on Business–Driven IT Management (BDIM 06), IEEE (2006)

3. ISO/IEC: Management Framwork. (1989) ISO 7498-4.
4. ISO/IEC: Management Information Model. (1993) ISO 10165-1.
5. Pras, A., Schoenwaelder, J.: On the difference between information models and data models.

Technical report, IETF (2003) RFC 3444.
6. Hegering, H.G., Abeck, S., Neumair, B.: Integrated Management of Networked Systems.

Morgan Kaufmann Publishers (1999)
7. OGC, ed.: Introduction to ITIL. IT Infrastructure Library. The Stationary Office (2005)
8. Colville, R.J.: CMDB or Configuration Database – Know the Difference. Gartner. (2006)

Research Note G00137125.
9. Pink Elephant: PinkVerify – Configuration Management Certification Criteria. (2006)

http://www.pinkelephant.com/en-GB/PinkVerify/.
10. Case, J., McCloghrie, K., Rose, M., Waldbusser, S.: RFC 1902: Structure of Management

Information for SNMP V2. (1996)
11. DMTF: Common Information Model (CIM) Version 2.9. (2005)
12. TMF: Shared Information/Data (SID) Model Concepts, Principles, and Domains. TMF.

(2006) GB922.
13. DMTF: Core MOF Specification 2.1. (1998)
14. Alexander Keller, Heather Kreger, K.S.: Towards a CIM schema for runtime application

management. In: International Workshop on Distributed Systems: Operations & Manage-
ment (DSOM 2001), IFIP/IEEE (2001)

15. Strassner, J.: Policy based network management. Morgan Kaufmann Publishers (2004)
16. TMF: enhanced Telecom Operations Map (eTOM), The Business Process Framework For

The Information and Communications Services Industry. (2002) GB921.
17. Sailer, M.: Towards a Service Management Information Base. In: IBM PhD Student Sym-

posium at ICSOC05, Amsterdam, Netherlands (2005)

Author Index

Agarwal, Manoj K. 161
Agoulmine, Nazim 74
Andrey, Laurent 13
Artigas, Marc S. 246

Bandara, Arosha K. 185
Bartolini, Claudio 173
Berrocal, Julio 227
Boulmakoul, Abdel 173
Brenner, Michael 269
Burgess, Mark 37, 49

Carroll, Ray 239
Castells, Pablo 86
Cavalheiro, Gerson

Geraldo Homrich 124
Cheng, Lawrence 258
Chen, Kuong-Ho 197
Chourmouziadis, Aimilios 1
Cirne, Walfredo 124
Cox, Greg 239

Davy, Steven 209
Diao, Yixin 61
Dow, Chyi-Ren 197

Festor, Olivier 13
Fuentes, José Maŕıa 86

Galis, Alex 258
Garćıa, Pedro 246
Garschhammer, Markus 269
Gaspary, Luciano Paschoal 124
Giaffreda, Raffaele 258
Guerrero, Antonio 227
Guo, Song 98
Gupta, Manish 161

Jaeger, Michael A. 233
Jean, Kerry 258
Jennings, Brendan 209
Jung, Gueyoung 149

Kakas, Antonis 185
Keeney, John 98

Keller, Alexander 61
Kersch, Peter 258
Kim, Young-Tak 136

Lahmadi, Abdelkader 13
Lehtihet, Elyes 74
Lewis, David 98
Liu, Tzong-Jye 197
Liu, Yuan-Siao 197
López de Vergara, Jorge E. 86, 227
Ludwig, Glauco Antonio 124
Lupu, Emil C. 185

Mann, Vijay 161
Marinov, Vladislav 25
Moura, Antão 173
Mühl, Gero 233

Ó Foghlú, Mı́cheál 74
Ocampo, Roel 258
O’Sullivan, Declan 98

Parekh, Jason 149
Parzyjegla, Helge 233
Pavlou, George 1
Pinart, Carolina 221
Pu, Calton 149

Rebouças, Rodrigo 173
Ripps, Harrison 112
Russo, Alessandra 185

Sachindran, Narendran 161
Sahai, Akhil 149
Sailer, Martin 269
Sánchez-Macián, Alfonso 227
Sauvé, Jacques 173
Schaaf, Thomas 269
Schönwälder, Jürgen 25
Simon, Casba 258
Siradjev, Djakhongir 136
Skarmeta, Antonio F. 246
Strassner, John 74, 209, 239
Swint, Galen 149

282 Author Index

Sylor, Mark 112
Szabo, Robert 258

Trastour, David 173

Ulland, Sven Ingebrigt 37
Undheim, Gard 49

van der Meer, Sven 239
Venna, Nagarjuna 112
Villagrá, Vı́ctor A. 227

Werner, Matthias 233

Yoon, Seung-Hun 136

	Front matter
	Chapter 1
	Introduction
	Service Design
	Information Retrieval Approaches
	Modeling Approach

	WS Association
	Navigation and Selection of Services
	Service Association

	Selective Retrieval at Service Level
	Data Selection Expressions

	Usage Scenario
	Conclusion
	References

	Chapter 2
	Introduction
	Related Works
	Management Delays Metrics
	Measurement Methodology
	Application-Level Versus Packet-Level Measurement
	Data Collection
	Statistical Analysis Techniques

	Statistical Properties of Monitoring Delays
	Attribute Delays Analysis
	Group Delay Analysis
	Management Delays Quality
	Cross-Validation

	Conclusion and Future Works

	Chapter 3
	Introduction
	Extensions of the SNMP Architecture
	SSH Security Model for SNMP
	Implementation
	TCP Nagle Interactions
	SSH Window Adjustments

	Performance Analysis
	Experimental Setup
	Session Establishment
	Latency Without Packet Loss
	Latency with Packet Loss
	Bandwidth
	Memory Usage

	Related Work
	Conclusions

	Chapter 4
	Introduction
	Global Network Services
	DNS
	DNS Latency
	Empirical Study
	Effect of TTL on Round-Trip Time, Homogeneous Servers
	Distribution Entropy

	Comparable Work
	Discussion and Conclusions

	Chapter 5
	Introduction
	Experiment
	Queues and Service Prediction
	Server Performance
	Load Sharing
	Queueing Models as Sharing Predictors
	Scalability with Increasing Servers
	Load Sharing Performance
	Conclusions

	Chapter 6
	Introduction
	IT Process Complexity Model
	IT Process Complexity Measures
	Execution Complexity
	Coordination Complexity
	Business Item Complexity

	Process Complexity Model Tooling
	Complexity Evaluation Scenarios
	Tooling Components

	Evaluation
	Conclusions and Outlook

	Chapter 7
	Introduction
	Using Software Engineering Principles to Specify Self-governing Systems
	Semantic Web Technologies

	Related Works
	Autonomic Network Management
	Ontologies, Information Models and Constraint/Rule Languages

	Ontology Based Metamodel for UML2, MOF, OCL and QVT
	Transformation Principles
	Limitation of the Transformation

	Mapping the TMF NGOSS SID to OWL
	Discussion and Future Work
	Conclusion

	Chapter 8
	Introduction
	Web Services and the Semantic Web
	Web Services in Network Management
	Semantic Web and Ontologies in Network Management
	Semantic Web Services in Network Management

	Composite Processes Representation
	OWL-S Process Representation
	Case Study: Network Monitoring

	Implementation Approach: Use of WSBPEL
	WSBPEL Process Representation
	OWL-S Process Grounding on a WSBPEL Description
	Application to the Case Study: Network Monitoring Process in WSBPEL

	Conclusions
	References

	Chapter 9
	Introduction
	Architectural Principles
	Related Work
	Design Issues
	Initial Evaluation of Knowledge Model Reasoning
	Further Work and Conclusions
	References

	Chapter 10
	Introduction
	Test Description
	Call Signaling Testing
	Voice Media Testing
	MOS

	Related Work
	Results
	Filtering Out Bad Network Connections
	Basic Results and ACQ
	CMOS Degradation Factors
	Codec Comparison
	Trends

	Future Work
	Conclusions
	References

	Chapter 11
	Introduction
	Related Work
	Architecture Overview
	Components of the Architecture and Implementation
	Information Model
	Publishers
	Characterization Service
	Authorization Service
	Management Application

	Experimental Evaluation
	Conclusion and Future Work
	References

	Chapter 12
	Introduction
	Background
	Bidirectional Forwarding Detection
	ForCES (Forwarding and Control Element Separation)
	Distributed Control Plane with Distributed OSPF Link Status Monitoring Supported by Bidirectional Forwarding Detection (BFD)

	Design of BFD/OAM for Management of DiffServ-over-MPLS Transit Network
	BFD/OAM for QoS-Guaranteed DiffServ-over-MPLS Service Provisioning with Hierarchical Traffic Grooming
	Design of ForCES Based Distributed Control Plane
	BFD/OAM with ForCES Functional Blocks on IXDP2400
	Clock Synchronization Among Distributed BFD/OAM Modules

	Implementation and Performance Analysis of Distributed Control Plane on Intel IXDP2400 Platform
	Implementation of BFD/OAM on Intel IXP2400 Network Processor
	Analysis of Failure Detection Performance with BFD/OAM

	Conclusion
	References

	Chapter 13
	Introduction
	Automated Staging and Analysis
	Challenges
	Automating Monitoring and Analysis

	Evaluation Environment
	Evaluation Results
	Automated Analysis for TPC-W
	Automated Analysis for RUBiS

	Related Work
	Conclusion
	References

	Chapter 14
	Introduction
	Related Work
	Learning Methodology
	Co-occurrence Score
	Relevance Score
	Learning and Matching Algorithm
	Matching Algorithm Example

	System Design
	Evaluation
	Test-Bed, Application and Workload
	Experimental Runs
	False Positives and Negatives
	Precision
	Rate of Learning

	Conclusions and Future Work
	References

	Chapter 15
	Introduction
	Major Challenges in Change Management
	Business-Driven Planning and Scheduling of Changes
	Business-IT Linkage Model
	Probability of SLA Violation and Extent of System Downtime
	Impact of SLA Violations on Business Loss

	Numerical Illustration of BDIM Support in Change Management
	Related Work
	Conclusions and Future Work
	References

	Chapter 16
	Introduction
	Security Requirements and the Argumentation Framework
	Representing Security Requirements and Firewall Rules
	Representing Background Information

	Analysing Firewall Policies
	Anomaly Detection
	Property Checking
	Anomaly Resolution

	Discussion
	Related Work
	Conclusions and Future Work
	References

	Chapter 17
	Introduction
	Related Works
	Security Requirements
	Previous Works

	Analysis of Overlapping Relationship Possibilities
	Zero-Conflict Algorithm
	Requirement Group
	Cut-Point
	Zero-Conflict Algorithm
	An Example of Zero-Conflict Method

	Time Complexity Analysis
	Simulation Results
	Conclusion
	References

	Chapter 18
	Introduction
	Related Work
	Policy Conflict Analysis
	Information Model Processing

	Description of Approach
	PBMS Architecture Incorporating Policy Conflict Prevention
	Policy Action Constraint Retrieval Algorithm
	Policy Refinement Algorithm

	Prototype Implementation
	Scenario and Results
	High Level Policies and Information Model
	Policy Enforcement

	Conclusions and Future Work
	References

	Chapter 19
	Introduction
	Scenarios for BER Estimation in Transparent IM/DD
	L1/L2 Monitoring (Electrical)
	L1 Monitoring (Optical)
	L3 Monitoring

	The Example of the ADRENALINE Testbed
	On-Line SLA Validation in ADRENALINE

	Chapter 20
	Introduction
	Semantic Management
	Ontology-Based Policy Refinement
	Proof of Concept Use Case: Backup for DSL Premium Lines
	HL and LL Ontologies in OWL
	Interoperability Relationships
	Translation SWRL Rules
	Overview of the Backup for DSL Lines Use Case

	Conclusion and Further Work
	References

	Chapter 21
	Introduction
	Related Work
	Assumptions and Model
	Layered Self-stabilization
	Summary

	Chapter 22
	Introduction
	Policy
	Roles and Profiles
	Roles
	Profiles

	Model for Enabling Self-knowledge
	Conclusions and Future Work
	References

	Chapter 23
	Introduction
	Related Work
	A Hierarchical Management Framework
	Hierarchical Model
	Node Aggregation

	The Hierarchical Function Ή
	Whirl: The Hierarchical Version of Chord
	Simulation Results
	Conclusions
	References

	Chapter 24
	Introduction
	Background
	Assumptions
	An Overview on the Two Models
	Triggering Factors for the Two Models

	The Absorption Model
	The Protocol
	Discussion

	The Gatewaying Model
	The Protocol
	Discussion

	DHT Decomposition in ANs
	Conclusion and Future Work
	References

	Chapter 25
	Introduction
	From Managed Objects to Configuration Items
	The CMDB Idea
	On Reusing Management Models
	Requirements on a Management Model Reusable for Building a CMDB
	Assessment of Current Management Models

	The CMDB-MIB Gap and First Steps on Bridging It
	Understanding Differences and Similarities -- The CMDB-MIB Gap
	Further Directions -- Bridging the CMDB-MIB Gap

	Conclusion

	Back matter

