
Lecture Notes in Artificial Intelligence 2473
Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo

Asunción Gómez-Pérez
V. Richard Benjamins (Eds.)

Knowledge Engineering
and Knowledge Management

Ontologies and the Semantic Web

13th International Conference, EKAW 2002
Sigüenza, Spain, October 1-4, 2002
Proceedings

1 3

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Authors

Asunción Gómez-Pérez
Universidad Politécnica de Madrid
Campus de Montegancedo, s/n, 28660 Boadilla del Monte, Madrid, Spain
E-mail: asun@fi.upm.es

V. Richard Benjamins
Intelligent Software Components, S.A. (iSOCO)
Francisca Delgado, 11 - 2°, 28108 Alcobendas, Madrid, Spain
E-mail: richard@isoco.com

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Knowledge engineering and knowledge management : ontologies and the semantic
web ; 13th international conference ; proceedings / EKAW 2002, Sigüenza,
Spain, October 1 - 4, 2002. Asunción Gomez-Perez ; V. Richard Benjamins
(ed.). - Berlin ; Heidelberg ; New York ; Hong Kong ; London ; Milan ; Paris ;
Tokyo : Springer, 2002

(Lecture notes in computer science ; Vol. 2473 : Lecture notes in
artificial intelligence)
ISBN 3-540-44268-5

CR Subject Classification (1998): I.2, H.4, H.3, C.2, J.1

ISSN 0302-9743
ISBN 3-540-44268-5 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 10871348 06/3142 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 13th International Conference on
Knowledge Engineering and Knowledge Management (EKAW 2002) held in
Sigüenza, Spain, October 1-4, 2002.

Papers were invited on topics related to Knowledge Acquisition, Knowledge
Management, Ontologies, and the Semantic Web. A total of 110 papers were
submitted. Each submission was evaluated by at least two reviewers. The selection
process has resulted in the acceptance of 20 long and 14 short papers for publication
and presentation at the conference; an acceptance rate of about 30%. In addition, one
invited paper by a keynote speaker is included. This volume contains 8 papers on
Knowledge Acquisition, 4 about Knowledge Management, 16 on Ontologies, and 6
papers about the Semantic Web.

This was the second time (EKAW 2000 being the first) that the event was
organized as a conference rather than as the usual workshop (hence the acronym:
European Knowledge Acquisition Workshop). The large number of submissions (110
versus the usual 40-60) is an indication that the scientific community values EKAW
as an important event to share experiences in the Knowledge Technology area, worthy
of being organized as a prestigious international conference. Knowledge is the fuel of
the upcoming Knowledge Economy. Therefore, we believe that conferences such as
EKAW, that focus on Knowledge Technologies, will continue to play a major role as
a platform for sharing and exchanging experiences and knowledge between key
players in the area.

Another point to highlight is the appearance of the Semantic Web as a topic at
EKAW 2002. We received 24 submissions in this area of which we could accept 6.
The Semantic Web envisions a web where software can automatically process content
in order to achieve task delegation as opposed to the current information retrieval
paradigm. Topics traditionally dealt with at EKAW are key ingredients for building
Semantic Web technology, such as ontologies, knowledge modeling and
representation, languages and tools, knowledge management, and knowledge
acquisition. Therefore, the Semantic Web is an excellent opportunity for the
community to capitalize on our expertise in Knowledge Technology, built up over the
last 15 years.

We would like to thank the International Program Committee for their enormous
effort in the review process (many reviewers had to evaluate up to 10 papers). In all,
46 additional reviewers were called upon to complete the review process in time. We
are also grateful to EKAW�s Steering Committee for their advice on strategic
decisions.

Inexpressible are our thanks to Angel López who designed and implemented a
web-based system to manage the whole review process, without which we never
would have made the deadlines. We thank Mariano Fernández-López for organizing
the tutorials and workshops; Oscar Corcho for organizing the demo sessions; and Jose
Angel Ramos for his help with managing the registration process. Last but not least,
we are very grateful to the local organizers.

July 2002 Asunción Gómez-Pérez
 V. Richard Benjamins

Conference Organization

Conference Chair
Asunción Gómez-PØrez Universidad PolitØcnica de Madrid (Spain)

Conference Co-chair
V. Richard Benjamins iSOCO (Spain)

Steering Committee
Nathalie AUSSENAC-GILLES IRIT- CNRS Toulouse (F)
V. Richard BENJAMINS iSOCO (ES)
Joost BREUKER University of Amsterdam (NL)
Rose DIENG INRIA-Sophia-Antipolis, (F)
Dieter FENSEL Free University of Amsterdam (NL)
Brian GAINES University of Calgary (CA)
Riichiro MIZOGUCHI Osaka University (JP)
Enrico MOTTA Open University (UK)
Mark MUSEN Stanford University (USA)
Nigel SHADBOLT University of Southampton (UK)
Rudi STUDER University of Karlsruhe (D)
Frank VAN HARMELEN Free University Amsterdam (NL)

Program Committee
Stuart AITKEN University of Edinburgh (UK)
Hans AKKERMANS Free University Amsterdam (NL)
Nathalie AUSSENAC-GILLES IRIT- CNRS Toulouse (F)
Brigitte BIEBOW LIPN, UniversitØ Paris-Nord (F)
Joost BREUKER University of Amsterdam (NL)
Olivier CORBY INRIA-Sophia-Antipolis (F)
Paul COMPTON University of New South Wales (AU)
Ying DING Free University of Amsterdam (NL)
Rose DIENG INRIA-Sophia-Antipolis (F)
John DOMINGUE Open University (UK)
Jerôme EUZENAT INRIA Rhône-Alpes, (F)
Dieter FENSEL Free University of Amsterdam (NL)
Mariano FERNANDEZ-LOPEZ Universidad PolitØcnica de Madrid (ES)
Yolanda GIL ISI, University of Southern California (USA)
Nicola GUARINO Consiglio Nazionale delle Ricerche (I)
Udo HAHN Universitaet Freiburg (D)
Knut HINKELMANN University of Applied Sciences Solothurn (CH)
Catholinj JONKER Free University of Amsterdam (NL)
Rob KREMER University of Calgary (CA)
Frank MAURER University of Calgary (CA)
Robert MEERSMAN Free University Brussels (BE)
Riichiro MIZOGUCHI Osaka University (JP)
Martín MOLINA Universidad PolitØcnica de Madrid (ES)
Hiroshi MOTODA Osaka University, (JP)
Enrico MOTTA Open University (UK)

 Conference Organization VII

Mark MUSEN Stanford University (USA)
Daniel E. O’LEARY University of Southern California (USA)
Enric PLAZA I CERVERA Spanish Scientific Research Council, CSIC (ES)
Ulrich REIMER Swiss Life (CH)
Chantal REYNAUD University of Nanterre, Univ. of Paris-Sud (F)
Alfonso RODRIGUEZ Universidad PolitØcnica de Madrid (ES)
François ROUSSELOT LIIA-ENSAIS, University of Strasbourg (F)
Marie-Christine ROUSSET University of Paris-Sud (F)
Guus SCHREIBER University of Amsterdam (NL)
Nigel SHADBOLT University of Southampton (UK)
Derek SLEEMAN University of Aberdeen (UK)
Rudi STUDER University of Karlsruhe (D)
Mike USCHOLD Boeing (USA)
Frank VAN HARMELEN Free University of Amsterdam (NL)
Gertjan VAN HEIJST Oryon KMD BV (NL)
Mike WOOLDRIDGE University of Liverpool (UK)

Tutorial and Workshop Chair
Mariano FernÆndez López Universidad PolitØcnica de Madrid (Spain)

Demo Chair
Óscar Corcho Universidad PolitØcnica de Madrid (Spain)

Local Organizers
Asunción Gómez-PØrez (UPM)
Mariano FernÆndez-López (UPM)
Óscar Corcho (UPM)
`ngel López Cima (UPM)
Socorro Bernardos Galindo (UPM)
JosØ `ngel Ramos Gargantilla (UPM)

Additional Reviewers
Harith Alani
Trevor Bench Capon
Mercedes BlÆzquez
Peter Brockhausen
Jeen Broekstra
Robert Colomb
Ernesto Compatangelo
Jesœs Contreras
Oscar Corcho
Antoine Cornuejols
Monica Crubezy
Martin Dzbor
Pete Edwards
Aldo Gangemi
Nick Gibbins
Siegfried Handschuh
Steve Harris

Koichi Hayashi
Yannis Kalfoglou
Hideaki KANAI
Yoshinobu Kitamura
Manuel Lama Penin
Jerome Lang
Peter Lucas
Ralf Molitor
Kieron O’Hara
Juan Pazos
Stephen Potter
Luc Schneider
Stefan Schulz
Peter Spyns
Steffen Staab
Martin Staudt
Ljiljana Stojanovic

Heiner Stuckenschmidt
Arthur Stutt
Kaoru Sumi
Valentina Tamma
Rainer Telesko
Farouk Toumani
Raphaºl Troncy
Maria Vargas-Vera
Robert Woitsch
Tetsuya Yoshida
Daniela Zbinden
Jijuan Zheng

VIII Conference Organization

EKAW 2002 Sponsors

Universidad PolitØcnica de Madrid (UPM)
http://www.upm.es/

Facultad de InformÆtica, UPM
http://www.fi.upm.es/

iSOCO (Intelligent Software Components,
S.A.)
http://www.isoco.com/

Ministerio de Ciencia y Tecnología
http://www.mcyt.es/

OntoWeb
http://www.ontoweb.org/

AAAI (American Association for Artificial
Intelligence)
http://www.aaai.org/

IBROW
http://www.swi.psy.uva.nl/projects/ibrow/h
ome.html

Extending a Lexical Ontology by a Combination

of Distributional Semantics Signatures�

Enrique Alfonseca1 and Suresh Manandhar2

1 Ingenieŕıa Informática, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Enrique.Alfonseca@ii.uam.es

2 Computer Science Department, University of York, YO10 5DD York, U.K.
suresh@cs.york.ac.uk

Abstract. Ontologies are a tool for Knowledge Representation that is
now widely used, but the effort employed to build an ontology is high.
We describe here a procedure to automatically extend an ontology such
as WordNet with domain-specific knowledge. The main advantage of
our approach is that it is completely unsupervised, so it can be applied
to different languages and domains. Our experiments, in which several
domain-specific concepts from a book have been introduced, with no
human supervision, into WordNet, have been successful.

1 Introduction

Lexical semantic ontologies are now widely used for Natural Language Process-
ing, and several of them are available for English and other languages, such as
WordNet [Miller, 1995] and EuroWordNet [Vossen, 1998]. However, they are usu-
ally very general, and their enrichment with domain-specific information requires
a high degree of supervision. This has motivated the appearance of knowledge
acquisition methods for building domain-specific ontologies automatically.
Maedche and Staab [2001] define Ontology Refinement (OR) as the adapta-

tion of an ontology to a specific domain or to some user’s requirements, without
altering its overall structure. An important problem inside OR is the placement
of the domain-dependent concepts in the ontology. Applied to lexical ontologies,
if we have an ontology W and a set of domain-specific documents D containing
some unknown concepts and instances U = {u1, u2, ..., un}, we have to find, for
every unknown concept or instance ui, its maximally specific hypernym si in the
ontology.
This paper reports a system that extended WordNet with new synsets learnt

both from Tolkien’s The Lord of the Rings and Darwin’s The Voyages of the
Beagle. The unknown concepts that were learnt include locations, rivers, seas,
animals, races and people. The classification of these concepts in the taxonomy
is performed in a fully unsupervised way. The only input it requires is an initial
ontology (we use WordNet) and a collection of documents. It will find unknown
� This work has been partially sponsored by CICYT, project number TIC2001-0685-
C02-01.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 1–7, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

2 Enrique Alfonseca and Suresh Manandhar

concepts in the documents and attach them to WordNet. We show that a Dis-
tributional Semantic (DS) model can be a good starting point for locating the
right places in the ontology for placing the learnt synsets, and we present a way
in which different DS metrics can be combined.

1.1 Related Work

We can group related systems in two groups. Deterministic systems are those
that provide, for each unknown concept, one or several hypernyms all of which
are supposedly correct. One of such systems, described by Hearst [1998], obtains
regular expression patterns from free texts by looking at pairs of (hypernym,
hyponym) that co-occur in the same sentence, and then uses them to learn new
hypernymy relations. However, she notes that these extracted relations contain
a high degree of noise. Kietz et al. [2000] quantified the error rate of hand-coded
patterns as 32%, so he concludes that the concepts had to be ultimately revised
and placed in the hierarchy by the user. A different approach is that described
by Grefenstette and Hearst [1992].

Non-deterministic systems are those that provide a set of likely candidates,
only some of which are correct. Hastings [1994] describes one such framework,
Camille, that learns nouns and verbs. He has beforehand concept ontologies
for nouns and verbs about the terrorist domain, and verbs are annotated with
selectional preferences, e.g. the object of arson is known to be a building. If an
unknown word was found being the direct object of arson, it can thus be classified
as a building. Hahn and Schnattinger [1998] describes a similar approach. These
systems do not return a single hypernym, but a set of plausible hypotheses.

2 Algorithm

Our aim is the enrichment of WordNet with new concepts learnt from general-
purpose texts. Let us suppose that we have found a new term u that is not
in WordNet. The aim is to find the place where it should be attached to the
ontology. The algorithm we use performs a top-down search along the ontology,
and stops at the synset that is most similar to u. The search starts at the most
general synset s, and compares u with s and with all its immediate hyponyms. If
s is more similar to u than any of s’s children, then u is classified as a hyponym
of s. Otherwise, we proceed one step downwards to the most similar hyponym.
For a detailed description please refer to [Alfonseca and Manandhar, 2002b].

2.1 Similarity Metrics

The tools we used to compute the semantic distance between synsets are all based
on the DS model, which assumes that there is a strong correlation between the
semantics of a word and the set of contexts in which that word appears, and
which has produced good results when applied to fields such as Information
Retrieval and summarisation.

Extending a Lexical Ontology 3

We have used the following tools:
– A topic signature of a concept c is the list of the words that simply co-occur
with c in the same context (we have used the same sentence), and their
frequencies.

– A subject signature of a nominal concept c is the list of verbs for which c
appears as a subject.

– An object signature of a nominal concept c is the list of verbs and prepositions
for which c appears as an argument.

– A modifier signature of a nominal concept c is the list of adjectives and
determiners that modify c inside a Noun Phrase.
The intuition behind our procedures is that, if two words are semantically

related, their signatures will also be similar. They can be automatically col-
lected for every concept in an ontology, by collecting documents from Internet
and collecting the frequencies as described by Agirre et al. [2000]; therefore, the
classification procedure can be made fully unsupervised. As an example, Table 1
shows the highest frequency words in the signatures of the concept <person>.
In order to compare the topic signature of an unknown concept u and the

signatures of a set of WordNet synsets {s1, s2, ..., sn}, the raw frequencies of
the synsets’ signatures have be changed into weights, to decide which words
do provide support that they are in the context of a synset, and which ones
are equally frequent for all synsets [Alfonseca and Manandhar, 2002b]. In a few
words, for each decision of the algorithm, the following steps are followed:
– Take the synsets that will be compared to u.
– For each synset, add up the frequencies of the context vectors of all its
hyponyms in WordNet, and smooth the frequencies by adding 1 to every
frequency value.

– For each one of them, use the rest as a contrast set to change its frequencies
into weights. We have obtained the best results with Xi2 (see [Agirre et al.,
2000]).

– To calculate the similarity between u’s list of words and frequencies, and
a synset si’s words and weights, perform the dot product of both vectors
[Yarowsky, 1992].

2.2 Combining the Similarity Measures

Each signature (topic, subject, object and modifier) provides different similarity
values that have to be combined. Let us suppose that we are classifying an
unknown concept u, and that we have n choices to take: {s1, ..., sn} and m
signatures. Let us call Psigj (si) the similarity value obtained from the signature
sigj, normalised so all the similarity values obtained from a given signature sum
to 1:

∑n
i=0 Psigj (si) = 1. We combine the metrics with a weighted sum, by giving

a weight to each of the kind of signatures: P (si) =
∑m

j=0 weightj · Psigj (si)
The baseline experiment was calculated by giving them the same weight 1m .

In our experiments, we calculated the weights that produce a weight distribu-
tion P that is equidistant to the partial distributions Psigj . The distance metric

4 Enrique Alfonseca and Suresh Manandhar

Topic signature Subject signature Object signature Modifier signature
Word Freq weight Word Freq weight Word Freq weight Word Freq weight
Rights 314 23.16 be 23 0.71 of 77 0.38 innocent 16 8.28
Human 162 12.89 have 14 4.24 to 54 3.15 contact 10 9.51
that 161 0.00 use 10 15.09 for 45 3.31 live 8 3.34
Resources 136 19.19 write 6 20.51 in 29 1.11 own 6 5.62
Irights 109 19.94 live 5 4.59 be 23 0.32 indigenous 6 7.28
Department 102 21.77 make 5 6.37 with 15 0.82 other 5 0
Chromosome 96 24.82 kill 4 24.60 on 14 1.30 same 5 6.70
information 65 11.04 work 4 24.60 from 14 2.23 controlling 5 10.25
Center 63 16.04 hold 3 12.65 that 11 0.00 first 3 7.57
Health 63 15.86 produce 3 5.14 as 10 0.06 human 3 2.76
not 56 0.00 suffer 3 11.29 by 9 0.35 right 3 6.36
has 56 3.75 wish 3 16.56 say 6 12.45 whole 3 6.88
have 55 1.98 get 3 12.65 seek 6 13.41 particular 3 5.15

Table 1. Topic, subject, object and modifier signatures of the concept
<person>. The words shown are the top frequency words and their weights.

chosen to compare distributions is relative entropy, also called Kullback-
Leibler distance. Therefore, we calculated the weights weightj such that the
final distribution P is equidistant (with the minimal distance) to each weight
distributions Psigj , using D(p||q) as the distance metric. These weights are calcu-
lated with a simulated annealing procedure. They are initialised as 1m , and then
we proceeded changing them, slowing down, until the distances D(Psigj ||P) all
converge to the same value (if possible). Finally, the synset chosen by the al-
gorithm is argmaxiP (si). Table 2 shows the similarity metrics produced in the
first two decisions when classifying the concept <orc>, using the topic, subject
and object signatures.

3 Experiments and Results

We have calculated the topic, subject, object and modifier signatures for the top
1,200 synsets of the WordNet taxonomy which is rooted by entity. This was done
automatically by downloading the documents from Internet using the procedure
detailed by Agirre et al. [2000].
For learning some new concepts, the domain-dependent texts were processed

with our own ad hoc shallow parser, and the most frequent unknown words
and sequences of words (collocations) were extracted: a total of 46 concepts that
appeared 50 or more times in the texts, so we had enough contextual information
to classify them. We also hypothesised that every appearance of an unknown
common noun (e.g. hobbit, orc, etc.) refers to the same concept, i.e. that they
are not polysemous. This did not always occurred (e.g. in Darwin’s text York
Minster was a person; and St. Yago was both a person and a place), so this is
a shortcoming that should be addressed in the future.
We have used four different metrics. The first one, accuracy, is defined as the

portion of correctly classified concepts. We have distinguished two measures of
accuracy: strict accuracy is the percentage of times that the hypernym proposed
by the program was the one we expected (as classified by a human), and lenient

Extending a Lexical Ontology 5

First decision: entity
synset synset Id Psig1 Psig2 Psig3 total

being, organism n00002908 0.40 0.23 0.29 0.3207
causal agency n00004753 0.38 0.24 0.23 0.3121
location n00018241 0.11 0.17 0.17 0.1383
body of water n07411542 0.09 0.12 0.20 0.1112
thing (anything) n03781420 0.00 0.11 0.02 0.0457
thing (object) n00002254 0.00 0.11 0.02 0.0442
(16 more)

Second decision: being
synset synset Id Psig1 Psig2 Psig3 total

human n00005145 0.64 0.80 0.40 0.6161
animal n00010787 0.24 0.18 0.41 0.2790
host n01015823 0.00 0.01 0.05 0.0243
parasite n01015154 0.01 0.00 0.04 0.0192
flora n00011740 0.00 0.00 0.04 0.0169
(34 more)

Table 2. Similarity values for each of the decisions that have been taken when
classifying the unknown concept <orc>. The similarities correspond to the topic,
subject and object signatures (in that order), and the combination of the three
of them. In the first place, when deciding between <entity> and its children,
the chosen one was <being, life form>. In the second decision, the winner was
<human> (both were correct)

Method Accuracy L.A. C.D. C.P.
strict len.

Uniform 13.04% 23.91% 0.34 71.09% 1.98
Entropy 13.04% 28.26% 0.38 73.44% 1.95

Table 3. Comparison of two methods to combine the results provided by the
signatures.

accuracy is the percentage of times that the system proposed a hypernym that
can be considered valid, although it is not the best one (e.g. if a man was
classified as grown man).
Other metrics that we can measure on our top-down algorithm are Correct

decisions (C.D.), the percentage of times that a correct decision was chosen at
each iteration of the algorithm; and Correct position (C.P.), which measures,
at each step in the search, when the different children synsets are ordered accord-
ing to the signatures, the mean position of the correct one. Ideally, this metric has
to be as low as possible. Finally, Learning Accuracy [Hahn and Schnattinger,
1998] takes in consideration the distance, in the ontology, between the proposed
hypernym and the correct one. Please refer to [Alfonseca and Manandhar, 2002a]
for a detailed description.
Keeping constant the number of signatures at three: topic, subject and ob-

ject, we tried the two methods to combine them: the baseline, using a uniform
weight, and the simulated annealing, using relative entropy. Results are displayed
at Table 3. The procedure that uses relative entropy to find an intermediate dis-
tribution improved all the metrics when compared to the uniform weighting.

Next, we tested different combination of the signatures. Table 4(a) shows
the results. The signature that produced the worst results was the modifier
signature: the learning accuracy is the smallest, and the mean position of the
correct concept at each decision is very high, nearly 1.5 over the next mark. Also,
when used with the others, the modifier signature greatly degrades the results.
A manual examination of the signatures seems to indicate that the modified

6 Enrique Alfonseca and Suresh Manandhar

Method Accuracy L.A. C.D. M.P.
strict len.

Topic 6.52% 17.39% 0.30 68.21% 2.30
Modifiers 16.28% 21.74% 0.29 62.96% 4.47
Subject 10.87% 23.91% 0.30 68.80% 3.06
Object 17.39% 28.26% 0.38 71.43% 2.63
T+S+O 13.04% 28.26% 0.38 73.44% 1.95
TSOM 10.87% 21.74% 0.35 70.31% 2.00

System Accuracy L.A.
strict lenient

T+S+O 28.26% 36.96% 0.44
single set

[Hastings, 1994] 19% 41% -
Hahn [1998] 21% 22% 0.67
Hahn [1998]-TH 26% 28% 0.73
Hahn [1998]-CB 31% 39% 0.76

Table 4. (a) Results using different signatures. (b) Comparison with related
systems.

signature has a low quality, with a high degree of words which are not adjectives.
The other three signatures produced acceptable results, and the best mark was
attained by combining them all. Most of the errors were produced at the lowest
levels of the ontology, when deciding between semantically similar synsets such
as <man> and <woman>, for which the context is not much help.
Some characteristics of WordNet complicate the task, such as the fine-grained

senses and the lack of multiple inheritance. For example, geographical locations
(e.g. continents) are classified as object, while political locations (e.g. countries)
are classified as location. However, the context of these two kinds of entities are
very similar, and they are very different to the context of other objects such as
artifacts. Our algorithm “incorrectly” classified concepts such as mountains or
woodlands as locations.
Table 4(b) shows results obtained by our system, labelled T+S+O, compared

to similar work. There are some important differences, and thence the results
are not really comparable. First, the ontologies used in each approach are dif-
ferent, which can have dramatic consequences on the evaluation. Secondly, the
other systems are not deterministic. In Table 4(b), the column labelled single
accuracy shows the percentage of outcomes in which the systems returned a
unique hypernym and that one was correct (like our own algorithm); and the set
accuracy is the percentage of times that the system returned several outcomes
among which was the correct one.

4 Conclusions

We have presented here a fully unsupervised method for extending lexical on-
tologies with unknown concepts taken from domain-specific documents. It can
be applied to different domains as it is; and, if we have a shallow parser avail-
able, to different languages. It allows the attachment of new concepts to any
intermediate level in an ontology, not only at the leaves; and it can tackle large
ontologies, such as WordNet. It has been used for generating hypermedia courses
using text summarisation as described by Alfonseca and Rodŕıguez [2002].
Compared to previous approaches (c.f. [Hahn and Schnattinger, 1998,

Hastings, 1994]), it requires less resources, as all the signatures are collected
automatically, and it does not need a previous encoding of selectional restric-
tions or article scripts.

Extending a Lexical Ontology 7

The main drawback of our system, as it is now, is that the signatures need
to have a certain size in order to provide reliable classifications. An unknown
concept that only is cited once will provide a signature with at most a few entries,
and the classification will probably be wrong, so an open line for future work is
to improve it for low-frequency terms. It has also low precision when classifying
concepts that are semantically very related, such as man and woman. Finally, it
still cannot discover whether an unknown word is a synonym of a word already
in the ontology.

References

E. Agirre, O. Ansa, E. Hovy, and D. Martinez. Enriching very large ontologies using
the www. In Ontology Learning Workshop, ECAI, Berlin, Germany, 2000.

E. Alfonseca and S. Manandhar. Proposal for evaluating ontology refinement methods.
In Language Resources and Evaluation (LREC-2002), Las Palmas, 2002a.

E. Alfonseca and S. Manandhar. An unsupervised method for general named entity
recognition and automated concept discovery. In 1st Conf. on Gen. WordNet, 2002b.

E. Alfonseca and P. Rodŕıguez. Automatically generating hypermedia documents de-
pending on the user goal. In Workshop on Doc. Compression, AH-2002, 2002.

G. Grefenstette and M.A. Hearst. Method for refining automatically-discovered lexical
relations: Combining weak techniques for stronger results. In Weir (ed.) Statistically
based natural language programming techniques, Proc. AAAI Workshop, 1992.

U. Hahn and K. Schnattinger. Towards text knowledge engineering. In AAAI/IAAI,
pages 524–531, 1998.

P. M. Hastings. Automatic acquisition of word meaning from context. University of
Michigan, Ph. D. Dissertation, 1994.

M. A. Hearst. Automated Discovery of WordNet Relations. In Christiane Fellbaum
(Ed.) WordNet: An Electronic Lexical Database, pages 132–152. MIT Press, 1998.

J. Kietz, A. Maedche, and R. Volz. A method for semi-automatic ontology acquisition
from a corporate intranet. In Workshop “Ontologies and text”, EKAW’2000, 2000.

A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE Intelligent
systems, 16(2), 2001.

G. A. Miller. WordNet: A lexical database for English. Communications of the ACM,
38(11):39–41, 1995.

P. Vossen. EuroWordNet - A Multilingual Database with Lexical Semantic Networks.
Kluwer Academic Publishers, 1998.

D. Yarowsky. Word-sense disambiguation using statistical models of roget’s categories
trained on large corpora. In Proceedings of COLING-92, pages 454–460, 1992.

Acquiring Knowledge and Numerical Data to

Support CBR Retrieval

Stefania Bandini, Sara Manzoni, and Fabio Sartori

Department of Computer Science, Systems and Communication (DISCo)
University of Milan - Bicocca
via Bicocca degli Arcimboldi, 8

20126 - Milan (Italy)
tel +39 02 64487857 - fax +39 02 64487839

{bandini, manzoni, fabio.sartori}@disco.unimib.it

Abstract. This paper illustrates a Knowledge Acquisition and Repre-
sentation tool (KARM) to support the design in a restricted and specific
domain (i.e. the design of tyre treads for motor racing). The main goal
of the KARM tool is to allow the acquisition and representation of track
knowledge in terms of its morphology, and meteorological features. Two
ways to analyze the geometric structure of tracks are combined into
KARM; the first one is based on the acquisition and representation of
qualitative knowledge (the block view technique), while the second one
is based on the analysis of quantitative knowledge (P–Race Telemetry).
Moreover, two fuzzy based modules that allow the representation of un-
certain and imprecise knowledge about weather and asphalt conditions
will be pointed out.

1 Introduction

The process of acquiring and modelling core knowledge concerning a specific do-
main is a very important research topic. Many Knowledge Based Systems (KBS)
have been developed to deal with several knowledge fields [10], but the phase of
knowledge acquisition and representation is still the main problem of this type of
tools [7]. Knowledge engineering methodologies, such as CommonKADS [1] and
MIKE [2], have been proposed as standard and generalized solutions to solve
this problem.

Anyway, the knowledge acquisition and representation tasks can often be
tackled more precisely with specific tools, due to the specific nature of involved
knowledge, that can not always be captured exploiting methodologies designed
for heterogeneous domains.

This paper presents the Knowledge Acquisition and Representation Module
(KARM) of P–Race [3], a system based on CBR [11] technology that supports the
experts (i.e. race engineers and compound designers) of an enteprise providing
tyres to motor racing teams. Race engineers analyze the track where a race will
take place and make assumptions about its geometric profile and conditions, in
order to obtain a characterization of the circuit from the tyre wear point of view.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 8–13, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Acquiring Knowledge and Numerical Data to Support CBR Retrieval 9

Fig. 1. The general architecture of KARM

Compound designers exploit race engineer considerations to design the rubber
compounds to be adopted for a given race. Motor racing is a very dynamic
field: track geometric features and conditions change frequently (e.g. due to the
adoption of new safety rules), and so the knowledge on them. Thus, a KBS to
support the activity of race engineers and compound designers must guarantee
easy and continuous knowledge acquisition and representation.

The general architecture of KARM (see Figure 1) includes a graphical inter-
face devoted to acquire knowledge of race engineers, and two modules for the
representation of knowledge on track geometric features and track conditions.
The description of track morphology is based on the block description: a block
is an abstraction of a significant sector from the tyre wear point of view. This
description can be made by the race engineer (block view technique) or through
a numerical method based on car performance data (P–Race Telemetry).

In order to acquire and represent the qualitative and uncertain knowledge
concerning track conditions, two fuzzy based modules are important components
of KARM. The use of fuzzy techniques to acquire and represent knowledge in
CBR systems has been widely adopted in many knowledge fields, as weather
prediction [9], finance [6], traffic control [8] and so on. In the case of the motor
racing domain, the integration of KARM into the P–Race system allows the use

10 Stefania Bandini, Sara Manzoni, and Fabio Sartori

Fig. 2. The block view technique: a block is a rectangle pointing out a relevant
part of the track geometric profile, from the point of view of tyre wear.

of race engineer knowledge in the computation of similarity among tracks, in
order to retrieve solutions to old problems and to adapt them to new situations.

2 Acquisition and Representation of Knowledge about
Geometric Features of Tracks

The definition of the geometric profile of a track is based on the so called block
description: a track is an ordered set of blocks, each one representing a relevant
part of it. The block decomposition of a track can be based on both qualitative
(block view technique) and quantitative (P–Race Telemetry) approaches: in the
first case the knowledge source is the race engineer, in the second one it is a set
of numerical data acquired through a telemetering system.

A block is mainly characterized by two attributes: type and weight. Type
reflects the morphologic nature of the block and can assume one of a given set
of values (e.g. straight, left bend, right bend, chicane and so on). Weight is
an integer value expressing an evaluation of the wear suffered by tyres on the
block, on a range from 1 (very low influence) to 5 (very high influence). Block
view technique and P–Race Telemetry value these parameters in a different way.
In the first case, the expert exploits a graphical interface (Figure 2) to directly
identify the most significant blocks of the track. According to its own experience,
the race engineer estimates the attributes type and weight.

In the second case, P–Race Telemetry creates a block description of tracks
based on the concept of Curvature. Curvature in a point of the track is the value

Acquiring Knowledge and Numerical Data to Support CBR Retrieval 11

ay

v2 , where ay and v are respectively the tangential acceleration and the speed of a
car in that point, and they are observed by a telemetering system. According to
the value of curvature, P–Race Telemetry can value both the attribute type (the
curvature of a straight is approximately null, the one of a bend has an absolute
value greater than zero) and the attribute weight (the greater is the curvature
of a block, the greater is its influence on tyre wear). P–Race Telemetry manages
blocks as sequences of points with similar curvature values: a mathematical for-
mula based on the mean deviation is used to determine if a point of the track
belongs to a block, comparing its curvature with the curvature of the block.

The representation of knowledge aims to define the relation between track
and tyre wear, exploiting the block description obtained during the knowledge
acquisition phase. To this aim, KARM builds the track block typologies, clas-
sifying blocks according to their type. Then, KARM evaluates the influence of
each block typology on tyre wear, as the mean value of the weight of all blocks
belonging to it. The result of this representation is a qualitative characterization
of track geometric structure from the tyre wear point of view.

3 Acquisition and Representation of Knowledge about
Weather and Track Conditions

The simple morphologic description is not sufficient to completely character-
ize the main features of a track. Climatic and geographic characteristics of the
track or the nature of its asphalt are important sources of information too. A
fuzzy based system, shown in Figure 1, has been designed and implemented for
acquiring and representing knowledge on these topics.

The acquisition of knowledge is focused on five parameters: asphalt con-
ditions, weather conditions, asphalt temperature, type of asphalt and weather
conditions.

KARM uses linguistic variables to represent each of them: a graphical inter-
face allows the user to input the values. By using sliding cursors a race engineer
can indicate a qualitative value for each input, within an integer range. A set
of fuzzy rules implementing a concept frame transforms the final position of the
cursor in a linguistic value. A concept frame for a linguistic variable var is the
pair (Uvar, Cvar), where Uvar is the range of possible values a race engineer can
assign to it (i.e. the position of the sliding cursor) and Cvar (conceptual domain)
is the set of linguistic values the variable can assume. The binding between a
value of U and a point of C is given by one or more fuzzy sets (i.e. membership
functions). The conceptual domain is the union of all fuzzy sets defined for a
specific variable.

The fuzzy system is composed of two modules: every module is a set of rules
activated by a set of conditions. The first fuzzy module helps race engineers
to choose the best type of tyres (slick, intermediate or rain) for a race. The
choice is made on the basis of track and weather conditions. The second fuzzy
module determines the level of wear (very low, low, medium, high, very high)

12 Stefania Bandini, Sara Manzoni, and Fabio Sartori

Fig. 3. Concept frame of the linguistic variable representing thermal severity
index

suffered by tyres because of the track influence, according to asphalt type, asphalt
temperature and weather conditions.

Two other linguistic variables allow KARM to represent the type of tyre and
thermal severity index. Figure 3 shows an example of the concept frame related
to the linguistic variables adopted by KARM.

4 Concluding Remarks

The P–Race system is the result of a project deriving from the co-operation
between the Department of Computer Science, Systems and Communication of
the University of Milano - Bicocca and the Motorsports Department of Pirelli
Tyres. It is currently in use and supports the decision making process for the
main championships in which Pirelli provides tyres to racing teams.

The modular architecture of the P–Race system is characterized by a set of
components dedicated to specific tasks. The KARM module presented in this
paper is an example of such modules. Another significant example is the Adapter
Module [4], that supports compound designers in the chemical formulation.

The most significant benefit derived from the development of KARM is the
possibility to provide a good characterization of tracks when either qualitative
or quantitative information on them are available. In the former case, the block
view technique provides a very detailed level of expressivity in the description
of track profile features, modelling the core knowledge of a race engineer. In the
latter case, P–Race Telemetry and the analysis of car performance data give a
user independent geometric representation of tracks. Other important features
of KARM can be summed up as follows:

– the combination of fuzzy techniques and CBR approach [5] allows the P–
Race system to design a similarity relationship among tracks, helping the

Acquiring Knowledge and Numerical Data to Support CBR Retrieval 13

user to choose the right rubber compounds for a race on the basis of solutions
adopted in the most similar past events;

– the integration of KARM with the CBR core of the P–Race system allows the
use of track knowledge representation (i.e. block description, type of tyre and
thermal severity index) during the retrieval phase: different tracks from the
geometric profile standpoint may be similar because of weather or asphalt
conditions;

– the characterization of tracks is a subjective task: race engineers may have
different opinions about it, so one or more meetings among race engineers are
usually necessary to reach a common point of view. KARM is a useful tool
to be used during these meetings that provides a standard representation of
track knowledge;

– the KARM approach could be applied to the description of racing paths
different from tracks, in order to support the design of rubber compounds
for other types of competition (e.g. rallies).

References

1. Akkermans, H., de Hoog, R., Shreiber, A., van de Velde, W.,Wielinga, B., Com-
monKADS: A Comprehensive Methodology for KBS Development, IEEE Expert,
pp 28-37, 1994.

2. Angele, J., Fensel, D., Studer, R., Developing Knowledge-Based Systems with MIKE,
Journal of Automated Software Engineering, 1998.

3. Bandini, S., Manzoni, S., A Knowledge-Based System for the Design of Rubber Com-
pounds in Motor Racing, Proceedings of 14th European Conference on Artificial
Intelligence (ECAI) 2000, W. Horn (ed.), IOS Press, Amsterdam, 2000.

4. Bandini, S., Manzoni, S. CBR Adaptation for Chemical Formulation, in Aha, D.W.,
Watson, I. & Yang, Q. (Eds.), Proceedings of the 4th International Conference on
Case Based Reasoning (ICCBR01), Case–Based Reasoning Research and Develop-
ment, LNCS/LNAI 2080, Springer Verlag, 2001.

5. Bandini, S., Manzoni, S., Application of Fuzzy Indexing and Retrieval in Case Based
Reasoning for Design, Proceedings of the 2001 ACM Symposium on Applied Com-
puting (SAC), March 11-14, 2001, Las Vegas, NV, USA, ACM, 2001, pp 462-466.

6. Bonissone, P. P., Cheetham, W., Financial Application of Fuzzy Case-Based Rea-
soning to Residential Property Valuation, Proceedings of the 6th IEEE International
Conference on Fuzzy Systems, Vol. 1, pp 37-44, 1997.

7. Cairò, O., The KAMET Methodology: Contents, Usage and Knowledge Modeling,
in Gaines, B. and Mussen, M. (eds.), Proceedings of the 11th Banff Knowledge Ac-
quisition for Knowledge-Based Systems Workshop (KAW’98), SRGD Publications,
Department of Computer Science, University of Calgary, Proc-1, pp 1-20, 1998.

8. Gomide, F., Nakamiti, G., Fuzzy Sets in Distributed Traffic Control, 5th IEEE Inter-
national Conference on Fuzzy Systems - FUZZ-IEEE 96, pp 1617-1623, New Orleans
- LA - EUA, 1996

9. Hansen, B.K., Riordan, D., Weather Prediction Using Case-Based Reasoning and
Fuzzy Set Theory,Workshop on Soft Computing in Case-Based Reasoning, 4th In-
ternational Conference on Case-Based Reasoning (ICCBR01), Vancouver, 2001.

10. Hayes-Roth, F., Jacobstein, N., The State of Knowledge Based Systems, Commu-
nications of the ACM, 37(3) March 1994, pp 27-39.

11. Kolodner, J. Case–Based Reasoning, Morgan Kaufmann, San Mateo (CA), 1993.

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 14-20, 2002.
 Springer-Verlag Berlin Heidelberg 2002

An OO Model for Incremental Hierarchical KA

Ghassan Beydoun

Department of Mathematics and Computer Science
American University of Beirut

850 Third Ave., 18th Floor, New York N.Y. 10022-6297
U.S.A., fax: (219) 583 76 50
ghassan.beydoun@aub.edu.lb

Abstract Using a database management system (DBS) to build a knowledge
base system (KBS) is sometimes desirable because DBS systems allow
management of large sets of rules, control of concurrent access and managing
multiple knowledge bases simultaneously. In this paper, we describe how to
build a KBS using a database management system DBMS for its schema
evolution ability. This allows the use of an Object Oriented DMBS (OODBMS)
to manage the consistency of an incrementally built hierarchical knowledge
base (KB). The underlying knowledge representation scheme, which we use, is
our Nested Ripple Down Rules (NRDR).

An NRDR KB evolves into a hierarchy of concepts where each concept is
defined as a collection of hierarchical rules with exceptions. To modify a
concept definition, exception rules are added by a domain expert, they are never
deleted or modified. This eases maintenance and development of a concept
definition, but may cause inconsistencies to occur in the KB. We analyse the
relation between cases and rules as the knowledge base evolves and as these
inconsistencies occur. We explore what specific features an OO database model
should accommodate to be used to implement an NRDR KB. The aim is that
this in turn allows the use of the built-in mechanisms to manage the consistency
of an evolving NRDR conceptual hierarchy. The significance of this paper is
two folds: first, it describes an efficient mechanism maintaining consistency of
an evolving classification hierarchy, using built-in schema evolution features of
an OODBMS. Second, it proposes an intelligent interface for an OODBMS, to
allow intelligent classification queries over stored objects.

1. Introduction

In [3], we introduced a substantial extension to the incremental knowledge acquisition
(IKA) framework of RDR [8], Nested Ripple Down Rules (NRDR). NRDR eases the
IKA process by allowing experts to introduce their own terms, and operationalise
these terms while they are incomplete. The resultant NRDR KB is a conceptual
hierarchy, where a concept (term) introduced by an expert is defined by a set of rules.
NRDR addresses RDR�s inability to uncover the underlying domain model used by
the expert [9].

Interactions between NRDR concepts add extra effort in maintaining an NRDR
knowledge base. In [4], we provided a probabilistic analysis to quantify this added
effort. We showed that it quickly decreases as the accuracy of the knowledge base
increases. In this paper, we describe how OO technology can be used to manage this

 An OO Model for Incremental Hierarchical KA 15

effort to deal with NRDR inconsistencies. We observe that NRDR concepts can be
viewed as classes in an object-oriented database. In turn, instances of any NRDR
concept are viewed as objects belonging to different classes simultaneously. These
objects migrate between classes in (during the development of NRDR KB), and they
potentially become inconsistent with respect to past classifications by the expert.
Problematic objects can then be detected by an NRDR interface over an OO Database
system with which can accommodate the dynamic relation between instances and
their descriptions. Existing NRDR development policies [6] are enforced by the
interface.

We illustrate our ideas in the domain of fitting Air Conditioning (AC) systems. This
task normally requires the expertise of AC engineers who consider the specification
of the AC system, the space features and the user requirements. They then decide
whether or not the AC system can fulfil the user requirements in the given space.

2. Constructing Class Hierarchies with NRDR

Experts struggle to express themselves as they explain (justify) their expertise. To
ease this difficulty experts use intermediate abstractions that they (re) use in further
explanations. For example in chess, experts introduce notions like �centre
development� to justify some of their opening moves. When asked to explain such
intermediate concepts, experts often fail to provide a complete explanation that
always covers their use, instead they provide an operational solution sufficient for the
purpose of explaining the context on hand. Moreover, expert articulation of
intermediate concepts may depend on his articulation of other concepts, which may
not yet be made explicit or completely defined. NRDR adapts the incremental KA
process to match the expert�s natural tendencies, in introducing explanatory
intermediate terms. This enables the expert more easily to express his/her knowledge
and to build an operational KB more effectively.

To represent every
concept in NRDR, an
RDR tree is used, to allow
experts to deal with
exceptions and refine the
definition of their
concepts readily. The root
node of the tree contains
the default rule: �If true
then default conclusion�.
Every case classification
starts at this root node.
Every other rule can have
two branches to other rules: a false-branch and a true-branch (figure1). The true
branch of a rule is taken if its condition is satisfied, otherwise the false branch is
taken. This is repeated until a terminal node t is reached. If the condition of t is
satisfied then the conclusion of the rule in t is returned. If the condition of an
exception rule (true-branch child rule) is satisfied it overrides the conclusion of its
parent rule. If a false-branch leads to a terminal node t, and the condition of t is not

Figure 1. An RDR tree. Rules 1, 2, 3 are exceptions of rule 0.

16 Ghassan Beydoun

fulfilled, then the conclusion of the last rule satisfied on the path to t is returned by the
KB. When the expert disagrees with the returned conclusion, the KB is said to fail and
requires modification. An RDR tree is incrementally constructed by adding new leaf
nodes when the expert wants to correct a KB failure. Rules are never deleted or
modified. Child nodes are treated as exceptions to the parent rule, each rule has only a
local effect, which simplifies the KA process.

Conclusions of rules in an NRDR concept (RDR tree) have a boolean value
indicating whether or not the concept is satisfied by a given case. Defined concepts
can in turn be used as higher order attributes by the expert to define other concepts.
No recursive or circular definition of concepts are allowed. The concept hierarchy of
our NRDR example is also shown in figure 2 (right) where A is the highest level
concept. An NRDR KB is said to fail and requires modification if the expert disagrees
with the conclusion returned by any of its RDR trees. Two maintenance issues arise
here: firstly, given a case that requires an NRDR KB to be modified, the modification
can occur in a number of places. The choice of refinement depends on the expert’s
judgment. Secondly, localized updates in the hierarchical KB can cause the expert to
inadvertently introduce inconsistency to the KB with respect to past seen cases. For
example, if the expert modifies the RDR tree of a concept D which is used in the
definition of a higher concept A, this may cause classification of past seen cases by A
to change. Following every KB update, inconsistencies are checked and have to be
fixed by the expert. In the next section, we discuss what features an OO model should
have to allow implementing NRDR concepts.

Figure 2. (left) Each concept in an NRDR KB is represented as a separate RDR tree. (right) The
corresponding conceptual hierarchy.

3. Accommodating NRDR Features in an Object Orient Model

In this section, we analyse NRDR features from a semantic and structural point view.
That is, we overview the entities which constitute an NRDR knowledge base, and we
explore the relation between these entities as the knowledge base is developed. In
particular, relations between cases and rules in an NRDR knowledge base are
analysed and mapped to an OO framework.

Unlike RDR, in NRDR, the scope1 of a rule is not stable [6]. Cases in the scope
of the rule can travel as the condition of the rule changes due to an update elsewhere

1 The scope of a rule is the set of cases for which the condition of the rule is satisfied during the
usage of the KB. These cases are used to maintain the KB consistent.

 An OO Model for Incremental Hierarchical KA 17

in the KB. As a case is classified by an expert, the case can be given more than one
description. That is, the same case can belong to scopes of different rules
simultaneously, where these rules belong to different concepts (corresponding to the
different descriptions given by the expert). Modeling NRDR concepts as classes in an
OO system requires a similar dynamic relation between classes and objects. Indeed
the view of an object as modeling a world entity and a class as a fixed set of these
entities is to be revisited. In modeling our NRDR concepts, classes must describe
facets or views of the world which are liable to change and are context dependent. For
example, a staff member at a university may also be a student. The class hierarchy no
longer should describe relations between the world entities. Instead the class hierarch
is a reflection of the way we conceptualise the world, and this class hierarchy depends
on the designer of the hierarchy in as much as it depends on the world. This is
consistent with the situated view of knowledge as articulated in [7].

This view of classes is evident in modern object oriented database systems,
which accommodate features to allow for changes in the class hierarchy during the
lifetime of the database. Such systems also accommodate a dynamic relationship
between objects and classes. These features are often bundled under the facility of
Schema Evolution of a database management system. For example in the OO database
management system, F2 [2], an object can belong to many classes simultaneously.
Such objects are called multi-objects. Each object of a multi-object Mo = {oC1, oC2, ...,
oCn}, Mo, denotes a facet of the entity and carries data specific to its corresponding
class Ci. If an entity possesses an object in a class C, then it entity also possesses
objects for all the ancestors (direct and indirect superclasses) of C. A case can be
described by any concept in an NRDR KB, so a case is viewed as a multiobject.

The relation between objects and classes can further be conditioned by special
symbolic rule of the form �if condition then object belongs� which are called
specialization constraints. This feature is also in the schema evolution toolbox of F2.
These features make F2 a suitable system which can be used to implement an NRDR
KB as we illustrate in the next section.

3.1. NRDR Class Hierarchies in an OO System

In an OO database management system objects are considered at three levels:
database objects, schema objects and meta-schema objects. To represent an NRDR
class hierarchy, new meta-classes for NRDR concepts and rules are needed.
Depending on the system, further meta-classes might be required. In F2, for example,
all three meta-classes are required. Introduction of new meta-classes is a routine
activity in database systems using a Data Definition Language [1].

An NRDR KA domain, K, becomes in an OO database system a root class D. A
case K is an object in D. Each concept in K has a corresponding subclass C in D. Each
such C has two boolean attributes: cvalue and cexpert. For each object in D, cvalue is the
answer of the KB, cexpert is the answer of the expert. cvalue values are automatically set
by the database system. This behaviour can be implemented by triggers2 of the
classes. cexpert values are set by the domain expert. For an object not directly classified
by the expert, cexpert has an undetermined value. A rule of an NRDR concept is

2 A trigger is a procedure which gets executed automatically by a database management system
when certain interactions between the user and the system take place.

18 Ghassan Beydoun

represented in an OO database management system as a subclass R of C. Condition of
this rule is represented by the set of specialization constraints defined on R. The scope
of this rule in K is the set of objects that belong to R.

An NRDR concept C1 can have a concept C2 in the condition of one its rules r. C1
is evaluated using backward chaining (see section 2). Correspondingly in an OO
database management system, attributes corresponding to the knowledge base
classification (e.g cvalue above) should be automatically maintained. This can be
accommodated with existing triggers. A method UpdateKBAnswer (object in the
meta-class Method) that updates the boolean value for the KB answer for a given case
is also required.

4. NRDR in Domain of AC Installation

Our task here is to check whether an air conditioner (AC) system is suitable for a
given setting. This setting depends on the dimensions and location of the room to be
air-conditioned and the manufacturer specification of the available AC system. The
KB is developed with the help of an AC installation engineer.

An AC system is suitable to a given room if it can cool the room adequately
during the summer at its efficient running capacity. An AC which is too large can be a
waste of a budget, and an AC which is too small will not provide adequate cooling.
The adequacy of a system depends on inherent features of the system, e.g. its power
(measured in B.T.U), it also depends on the room. A larger room or one with a sunny
aspect requires an AC with more BTU. Further, some AC systems are designed for
heavy duty - non-interrupted running, some are not. Whether heavy duty systems are
required or not depends on the aspect and the volume of the space involved. The
knowledge of matching an AC to the space requires training and study of the
specifications of available AC systems in the market.

An NRDR concept maps to a class in an OO system such as F2, a rule of this
concept is mapped to sub-class of is corresponding class. For example: the KB starts
with the default rule "if true then unsuitable". In an OO system such as F2, this
corresponds to the following initialisation steps:

1. create a class �unsuitable� with all available objects added to it.
2. create a sub-class unsuitable0 for the default rule of the concept unsuitable.
Since the default rule is always satisfied, no constraint is required.
Each added class (e.g. unsuitable) must have two attributes which correspond to

the classification of the KBS and the expert advise. These get compared by a trigger
which controls the interface to the database. Following the addition of any class a
consistency check is carried out (see section 2).

To acquire the rest of the domain knowledge, we enlist the help of an AC
engineer with five years experience who develops our knowledge base. Table 2 shows
example training cases. Cases were automatically generated. A subset of these was
manually classified by our expert. 40 training cases were randomly sampled for the
expert to use to build a classification knowledge base. 100 randomly cases were used
for testing. The performance of the system was then monitored by our expert. The
expert extends the KB each time he disagrees with the trace (or part of it) returned by
the KB.

 An OO Model for Incremental Hierarchical KA 19

Case
no. Brea.

Lengt
h volume Aspect location year make power

1 5 2 30 North 0 2000 Fugistu 3000
2 5 6 90 East 4 2001 Ge 3000
3 3 5 45 East 2 1999 Fugistu 6000
4 3 4 36 North 5 1999 Fugistu 6000
5 5 2 30 South 7 2002 Fugistu 12000
6 4 6 72 West 9 2002 Fugistu 9000

Table 1. Subset of AC cases. Each case is two parts, the first part contains the specification of
the setting (location dimension, volume, aspect and height within the building. The second part
contains features of the AC (its make, year and power).

It should be noted that the domain model here is simplified. For instance,
attributes with respect to location have been simplified, they could potentially include
architectural aspects of the building. The specification of the available AC�s can also
be extended and made to be interfaced to a database of commercial systems. Instead
of a room denoting the space to be air-conditioned, a building with its specification
can be used in the cases representation. These extensions would make the domain
substantially more complex and commercially usable. However, our simplified view
of the domain illustrates the useability of the NRDR approach by an expert without
computing training. The expert was able to introduce intermediate concepts with ease,
and the knowledge base matured to 52 rules and 11 concepts. The depth of the
hierarchy was 4 at its deepest. The knowledge base results were 98% accurate on 200
randomly chosen cases. In the next section, we conclude this paper with a broad
discussion of the work presented and a preview of future possibilities.

5. Discussion and Conclusion

In this paper, we described how to view an incremental knowledge acquisition
scheme from a schema evolution perspective in an OO Database System. This
scheme, NRDR, guides expert to produce a conceptual hierarchy which reflects their
conceptualization of their domain of expertise. Implementing NRDR with an
OODBMS results in a generic expert system shell which is completely domain
independent. Using such an NRDR implementation for a new domain is a simple a
matter of introducing the cases feature-vector representation to the DB system.

From an inheritance perspective, the resultant knowledge representation of NRDR
supports multiple inheritance with exceptions (A concept X in an NRDR KB can be
used to define a number of high level concepts). From an ontology perspective NRDR
is an ontology with two relations between concepts: Is-A and order or
dependence/priority between concepts which define the NRDR hierarchy. In this
limited ontological framework, we contribute to ongoing research of ontologies and
multiple inheritance [10]. More specifically, our approach circumvents some of
technical challenges by using a mature object oriented technology of existing
DBMSs.

20 Ghassan Beydoun

From a purely DBMS perpsective, our work extends the services of an OODBMS
to allow the capture and sharing of expertise. Building an NRDR KB using different
experts is an important possibility which warrants future exploration.

Current extension of this work is extending the domain of air-conditioning system
to cover more features concerning location, and building attributes. This will then be
sufficiently complex to be of commercial interest and to be also used as a testbed for
providing an empirical assessment of incremental KA monitoring technique which we
presented in [5]. Further possibilities for future extensions include weighing potentials
for our framework as a mediating step for informed labeling for training examples.
This is in a wider knowledge refinement framework which can include machine
learning as in [11].

Acknowledgment
Implementing the NRDR F2 interface was undertaken in collaboration with L. Al-
Jadir and F. Moukadem. This research is supported by the AUB Research Board.

References

1. Al-Jadir, L. and G. Beydoun. Using F2 OODBMS to Support Incremental Knowledge
Acquisition . in International Database Engineering & Applications Symposium (IDEAS02) .
2002. Canada.
2. Al-Jadir, L., et al. Evolution Features of the F2 OODBMS in 4th International Conference
on Database Systems for Advanced Applications (DASFAA95) . 1995. Singapore: World
Scientific.
3. Beydoun, G. and A. Hoffmann. Acquisition of Search Knowledge. in The 10th European
Knowledge Acquisition Workshop (EKAW97) . 1997. Spain: Springer.
4. Beydoun, G. and A. Hoffmann. A Holistic Approach for Knowledge Acquisition in 11th
European Conference on Knowledge Acquisition and Management (EKAW99) . 1999.
Germany: Springer.
5. Beydoun, G. and A. Hoffmann. Monitoring Knowledge Acquisition, Instead of Evaluating
Knowledge Bases . in 12th European Conference on Knowledge Acquisition and Knowledge
Management (EKAW2000) . 2000. France: Springer.
6. Beydoun, G. and A. Hoffmann, Theoretical Basis of Hierarchical Incremental Acquisition.
International Journal of Human Computer Interactions, Academic Press, 2001. 54 (3): p. 407-
452.
7. Clancey, W.J., The Knowledge Level Reinterpreted: Modelling How Systems Interact.
Machine Learning, 1989. 4 : p. 285-291.
8. Compton, P. and R. Jansen. Knowledge in Context: a strategy for expert system maintenance
. in Second Australian Joint Artificial Intelligence Conference (AI88) . 1988.
9. Richards, D. and P. Compton. Knowledge Acquisition First, Modelling Later . in 10th
European Knowledge Acquisition Workshop (EKAW97) . 1997. Spain: Springer.
10. Tamma, V.A.M. and T.J.M. Bench-Capon. Supporting Inheritance Mechanisms in
Ontology Representation. in 12th International Conference on Knowledge Engineering and
Knowledge Management (EKAW2000) . 2000. France: Springer.
11. Wiratunga, N. and S. Craw. Informed Selection of Training Examples for Knowledge
Refinement. in 12th International Conference on Knowledge Engineering and Knowledge
Management . 2000. France: Springer.

Experiences with Modelling Issues in Building

Probabilistic Networks

Linda C. van der Gaag and Eveline M. Helsper

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{linda,eveline}@cs.uu.nl

Abstract. Building a probabilistic network for a real-life application is
a difficult and time-consuming task. Methodologies for building such a
network, however, are still lacking. Also, literature on network-specific
modelling issues is quite scarce. As we have developed a large proba-
bilistic network for a complex medical domain, we have encountered and
resolved numerous non-trivial modelling issues. Since many of these is-
sues pertain not only to our application but are likely to emerge for
other applications as well, we feel that sharing them will contribute to
engineering probabilistic networks in general.

1 Introduction

More and more knowledge-based systems are being developed that build upon
the formalism of probabilistic networks for their knowledge representation. Half-
way through the 1990s, we started with the construction of such a system in
the field of oesophageal cancer. The system’s probabilistic network was built
and refined with the help of two experts in gastrointestinal oncology. It captures
knowledge about the characteristics of an oesophageal tumour, about the patho-
physiological processes underlying the tumour’s growth, and about the possible
effects of the various available therapies. When a patient’s symptoms and test
results are entered, the network assesses the stage of the patient’s cancer and
prognosticates the most likely outcomes for the different treatment alternatives.

Building a probabilistic network involves three basic tasks, for which usually
domain knowledge is acquired from experts. As a probabilistic network in essence
is a graphical model of a joint probability distribution over a set of statistical
variables, the first task in its construction is to identify the important variables
to be captured along with the values they may adopt. Once these variables
have been decided upon, the relations between them have to be analysed and
expressed in a graphical structure. The last task is to assess various numerical
probabilities. As building a probabilistic network is a creative process, the three
tasks are typically iterated in a cyclic fashion.

For building knowledge-based systems in general, sophisticated knowledge-
engineering methodologies are available [1]. Such methodologies are still lacking,
however, for building probabilistic networks. Also, literature on network-specific

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 21–26, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

22 Linda C. van der Gaag and Eveline M. Helsper

modelling issues is quite scarce. The literature that is available, typically ac-
knowledges the assessment of the probabilities required for a network to be the
most daunting among the three engineering tasks [2]. Moreover, it is often stated
that the construction of the network’s graphical part is rather straightforward.
In building the oesophagus network, however, we found that this task can also
be far from trivial. In fact, we had to address various intricate modelling issues.
Some of these were related to engineering knowledge-based systems in general,
but many of them pertained specifically to building probabilistic networks and
were for example related to eliciting and capturing the independences between
the statistical variables. We expect that the modelling issues that we encountered
in the construction of the graphical part of our network are likely to emerge in
other applications as well, and we feel that sharing them will contribute to the
advancement of methodologies for engineering probabilistic networks in general.

The paper is organised as follows. In Section 2, we briefly describe the field
of oesophageal cancer and introduce our probabilistic network. In Section 3, we
review the general set-up of the knowledge-acquisition sessions with our domain
experts. In Section 4, we address some of the modelling issues that we encoun-
tered in the construction of the graphical part of the oesophagus network. The
paper ends with our concluding observations in Section 5.

2 The Oesophagus Network

Due to various factors, for example related to drinking and eating habits, a tu-
mour may develop in a patient’s oesophagus. This primary tumour has various
characteristics, such as its length, its cell type, and its circumference. The tu-
mour typically invades the oesophageal wall and upon further growth may invade
neighbouring organs. In time, it may give rise to secondary tumours, or metas-
tases. The extent of these metastases and the depth of invasion, summarised
in the cancer’s stage, largely influence a patient’s life expectancy. These factors
are also important in deciding upon an appropriate therapy from among the
different treatment alternatives. The effects aimed at by these therapies include
improvement of the, often impaired, passage of food through the oesophagus.

The state-of-the-art knowledge about oesophageal cancer and its treatment
has been captured in a probabilistic network. Such a network is a graphical model
of a joint probability distribution over a set of statistical variables [3]. It includes
an acyclic directed graph that models the variables of the distribution by means
of nodes. The arcs in the graph with each other capture the probabilistic inde-
pendences between the variables: two variables are independent if every chain
between the two variables contains either an observed variable with at least one
emanating arc, or a variable with two incoming arcs such that neither the variable
itself nor any of its descendants in the graph have been observed. With the vari-
ables are associated conditional probabilities that describe the strengths of the
influences between the variables. The oesophagus network currently comprises
over 70 statistical variables for which more than 4000 conditional probabilities
have been specified [4].

Experiences with Modelling Issues in Building Probabilistic Networks 23

3 The Set-Up of Knowledge Acquisition

The oesophagus network was built with the help of two experts in gastrointestinal
oncology from the Netherlands Cancer Institute, Antoni van Leeuwenhoekhuis.
Over a period of more than five years, many knowledge-acquisition sessions were
held by a single knowledge engineer, who is the first author of the present paper.

The acquisition was conducted in a cyclic fashion. After each session, the
knowledge engineer carefully analysed the elicited knowledge and modelled it,
as far as possible, into a segment of the probabilistic network in the making.
Upon analysing the elicited knowledge, often various indistinctnesses and gaps
were found. The results of the analysis were therefore used as input for the next
session that thus started off with a structured interview. The second part of
the session consisted of an unstructured interview addressing a new fragment of
the experts’ domain. This fragment was pre-selected by the knowledge engineer,
based upon a tutorial overview given by the two experts in the first session.

During the structured interviews, detailed questions were asked of the do-
main experts. These questions were sometimes asked directly, such as the precise
meaning of a term. More often, however, structured case descriptions were used;
we elaborate on the use of such descriptions in Section 4. Also during the struc-
tured interviews, the knowledge captured thus far was carefully reviewed. In
the early sessions, the graphical structure of the network was used directly as a
means for communication between the knowledge engineer and the two domain
experts. Unfortunately, however, the experts often appeared to misinterpret the
structure. This observation contrasts the literature on probabilistic networks, in
which it is commonly suggested that these networks are easy to understand be-
cause of their graphical structure [3]. In the later sessions, therefore, the structure
of the network was discussed indirectly, once again using case descriptions.

4 Modelling Issues

As we have argued in our introduction, building a probabilistic network for
a real-life application involves various engineering tasks. Among these is the
task of constructing the network’s graphical part, which in essence amounts to
identifying the probabilistic independences between the represented variables
and capturing them in an acyclic directed graph. In this section, we focus on
this task of building the graphical structure and share some of our experiences.

4.1 Causality as a Guiding Principle

Since our domain experts did not have a background in probability theory,
eliciting independences from them directly was deemed infeasible. We there-
fore decided to use a heuristic guiding principle for acquiring knowledge about
the relationships between the variables. To this end, we exploited the notion
of causality. Typical questions asked during the interviews were ”What could
cause this effect?” and ”What manifestations could this cause have?”. The thus

24 Linda C. van der Gaag and Eveline M. Helsper

elicited causal relations were expressed in graphical terms by taking the direction
of causality for directing the arcs between the variables. The notion of causality
appeared to match our experts’ way of thinking about tumour growth and about
the effects of the various treatment alternatives. Since it was used merely as a
guiding principle during knowledge acquisition, the resulting graphical structure
had to be validated and refined in terms of independence, however. A careful
review of the structure proved the heuristic principle to be serviceable.

4.2 Correlations

Our domain of application involved not just causal relations between variables
but also relations that could not be interpreted as causal. For example, the
location of an oesophageal tumour and its cell type are strongly correlated, yet
neither can be considered a cause of the other. Such non-causal relations required
a more elaborate analysis before they could be expressed in graphical terms.

The correlation between a tumour’s location and its cell type originates from
various pathophysiological processes. A tumour in the upper part of the oesoph-
agus, termed a proximal tumour, is generally the consequence of toxic damage
of the oesophageal wall. The tumour then consists of the squamous cells that are
typical of the oesophageal wall. A tumour in the lower part of the oesophagus,
called a distal tumour, usually is the result of frequent reflux which causes gastric
juices from the stomach to enter into the oesophagus. The squamous cells of the
oesophageal wall are then gradually replaced by the cylindrical cells of which the
wall of the stomach is composed. We thus have that proximal tumours generally
have squamous cells for their type, and distal tumours have cylindrical cells. As
the processes influencing location and cell type are not modelled explicitly in
the network, the causalities involved are also not represented.

A correlation between two variables is represented in a network’s graphical
structure by an arc that in essence can be directed in either way. The two direc-
tions may give rise to different independences, however, that must be carefully
examined before deciding upon the arc’s final direction. In our network, the arc
between location and cell type could be directed in either way. We decided to
point it from location to type. The main consideration underlying our decision
was the way the experts talked about their domain. They indicated for example
that, for deciding upon a therapy for a patient, the tumour’s location is of crucial
importance; the cell type is merely a derivative concept.

4.3 Indirect Relations

By building upon the notion of causality, knowledge acquisition was focused
on the direct relations between the variables. These relations were then com-
bined into a graphical structure from which indirect relations were read. Figure
1 shows an example segment of the oesophagus network modelling such an in-
direct relation. It expresses that the length of an oesophageal tumour influences

Experiences with Modelling Issues in Building Probabilistic Networks 25

Length

Passage

Circumference

Fig. 1. The influences of the tumour’s length on the patient’s ability to swallow
food

the patient’s ability to swallow food, both directly and indirectly through its in-
fluence on the tumour’s circumference. Such indirect relations had to be carefully
reviewed in terms of independence.

The network segment from Figure 1 expresses that the three variables in-
volved are mutually dependent and, moreover, that any two of them remain
to be so given an observation for the third one. To validate these dependence
statements with our domain experts, we used case descriptions to help them
access the relevant knowledge [1,5]. The following case was posed, for example:
”Suppose that you have a patient with a circular tumour and that you have
made an assessment of this patient’s ability to swallow food. Can knowledge of
the tumour’s length change your assessment?”. If the experts would have an-
swered this question in the negative, then the direct relation from the tumour’s
length to the patient’s ability to swallow food would have been a re-statement of
the indirect one, and could have been removed from the structure. The experts’
responses to the various case descriptions revealed that many of the acquired
direct relations were in fact superfluous. Our domain experts apparently had
difficulties distinguishing between direct and indirect relations in their domain.

4.4 The Trade-Off between Richness and Efficiency

Building a probabilistic network for a real-life application often requires a careful
trade-off between the desire for a large and rich model to obtain accurate results
from reasoning on the one hand, and the costs of construction and maintenance
as well as the complexity of reasoning on the other hand.

Various considerations may underlie a decision not to incorporate a specific
variable or relation in a network under construction. One of these considerations
pertains to the feasibility of obtaining all probabilities required. In the oesopha-
gus network, for example, the process by which a tumour gives rise to metastases
in a patient’s lungs and liver, is not represented explicitly. Modelling this pro-
cess would have required a new statistical variable that captures whether or not
cancer cells are being transported through the blood vessels. However, as it is
hardly feasible to establish whether or not cancer cells are present in the blood,
the experts cannot have experiential knowledge that would allow for reasonably
reliable assessment of the probabilities required. Also, obtaining probabilities for
a single variable conditioned on numerous different contexts, in general is highly
infeasible. As the number of probabilities for a variable is exponential in its

26 Linda C. van der Gaag and Eveline M. Helsper

number of predecessors in the graphical structure, we restricted the number of
incoming arcs for each variable in the oesophagus network, in close consultation
with our experts. Another reason for such a restriction in general is the observa-
tion that a large number of incoming arcs per variable contributes exponentially
to the computational complexity of reasoning.

5 Conclusions

While for building knowledge-based systems in general sophisticated, detailed
knowledge-engineering methodologies are available, no such methodologies exist
as yet for addressing the intricate modelling issues to be resolved upon con-
structing a probabilistic network. As we developed a large probabilistic network
for a complex medical domain, we built up some experience with addressing
these issues. In this paper, we focused on the construction of the graphical part
of our network. In contrast with the suggestion often found in the literature,
we noticed that this engineering task can be far from trivial. We handled the
various problems that we encountered in various different ways. To support the
acquisition of knowledge about the independences between the statistical vari-
ables, we exploited the notion of causality. For resolving the detailed modelling
issues, we used structured case descriptions. Since we noticed that our experts
had difficulties interpreting the graphical structure of our network, we used case
descriptions also for reviewing and validating the modelled knowledge. As we
expect that many of the issues that we encountered are not restricted to our
domain of application but are likely to emerge in other applications as well, we
hope that sharing our experiences will contribute to engineering probabilistic
networks in general.

Acknowledgements. We are grateful to Babs Taal and Berthe Aleman from
the Netherlands Cancer Institute, Antoni van Leeuwenhoekhuis, who provided
the domain knowledge for the construction of the oesophagus network.

References

1. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. Van de
Velde, B. Wielinga, Knowledge Engineering and Management: The CommonKADS
Methodology, MIT Press, Cambridge, Massachusetts, 2000.

2. M.J. Druzdzel, L.C. van der Gaag, ’Building Bayesian networks: ”Where do the
numbers come from?” Guest editors’ introduction’, IEEE Transactions on Knowl-
edge and Data Engineering, 12, 481 – 486, 2000.

3. F.V. Jensen, Bayesian Networks and Decision Graphs, Statistics for Engineering
and Information Science, Springer-Verlag, New York, 2001.

4. L.C. van der Gaag, S. Renooij, C.L.M. Witteman, B.M.P. Aleman, B.G. Taal,
’Probabilities for a probabilistic network: a case study in oesophageal cancer’,
Artificial Intelligence in Medicine, 25, 123 – 148, 2002.

5. A.C. Scott, J.E. Clayton, E.L. Gibson, A Practical Guide to Knowledge Acquisition,
Addison-Wesley, Reading, Massachusetts, 1991.

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 27-36, 2002.
 Springer-Verlag Berlin Heidelberg 2002

IKRAFT: Interactive Knowledge Representation and
Acquisition from Text

Yolanda Gil and Varun Ratnakar

USC Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
gil@isi.edu, varunr@isi.edu

Abstract. We propose a new approach to develop knowledge bases that
captures at different levels of formality and specificity how each piece of
knowledge in the system was derived from original sources, which are often
Web sources. If a knowledge base contains a trace of information about how
each piece of knowledge was defined, it will be easier to reuse, extend, and
translate the contents of the knowledge base. We are investigating these issues
with IKRAFT, an interactive tool to elicit from users the rationale for choices
and decisions as they analyze information used in building a knowledge base.
Starting from raw information sources, most of them originating on the Web,
users are able to specify connections between selected portions of those
sources. These connections are initially very high level and informal, and our
ultimate goal is to develop a system that will help users to formalize them
further.

1 Introduction

Large knowledge bases contain a wealth of information, and yet browsing through
them often leaves an uneasy feeling that one has to take the developer’s word for why
certain things are represented in certain ways, why other things were not represented
at all, and where might we find a piece of related information that we know is related
under some context. Although the languages that we use are quite expressive (e.g.,
KIF, MELD), they still force knowledge into a straightjacket: whatever fits the
language will be represented and anything else will be left out. Many other things are
also left out, but for other reasons such as available time and resources or perhaps lack
of detailed understanding of some aspects of the knowledge being specified. The
challenges that arise in understanding, reusing, extending, translating, and merging
knowledge bases [Burstein et al 00.; Chalupsky 00; McGuinness] may be due in no
small part to the impoverished products that we create as knowledge base developers.
When the knowledge base needs to be extended or updated, the rationale for their
design is lost and needs to be at least partially reconstructed. The knowledge sources
are no longer readily available and may need to be accessed. While it is the case that
entire knowledge bases can be reused and incorporated into new systems, it is harder
to extract only relevant portions of them that are appropriate in the new application.
Parts of the knowledge base may be too inaccurate for the new task, or may need to be

28 Yolanda Gil and Varun Ratnakar

modeled in a different way to take into account relevant aspects of the new
application.

We believe that knowledge bases should contain the fine-grained, detailed
analysis, assumptions, and decisions that their developers made during their design.
They should record in enough detail what were the original sources consulted, what
pieces seemed contradictory or vague, which were then dismissed, what additional
hypotheses were formulated in order to complement the original sources. Knowledge
engineers have a sense for what topics or areas within the knowledge base they are
more confident about, either because they spent more resources developing them,
because they found better sources, or because as knowledge engineers had assessed
the end result as more complete and consistent.

This information turns out to be also key to put the answers of a knowledge-based
system in context. Consider, for example, our experiences with a system to estimate
the duration of carrying out specific engineering tasks, such as repairing a damaged
road or leveling uneven terrain. Users invariably wanted us to explain where the
answers came from in terms of the sources we consulted and the sources that we chose
to pursue when they suggested alternative models. They wanted to know whether
common manuals and/or sources of expertise were consulted, which were given more
weight, whether practical experience was considered to refine theoretical estimates,
and what authoritative sources were consulted to design the content of the knowledge
base. In other words, the analysis process that knowledge engineers perform during
the implementation phase is part of the rationale of a knowledge base, and needs to be
captured in order to justify answers to users.

Our goal is to capture the results of analyzing various information sources
consulted by knowledge engineers as they design the detailed contents of a knowledge
base. This paper presents our work to date on IKRAFT, a tool that enables
knowledge base developers to keep track of the knowledge sources and intermediate
knowledge fragments that result in a formalized piece of knowledge. The resulting
knowledge base is enhanced with pointers that capture the rationale of its
development. There are several other potential benefits to including this rationale
within a knowledge base, such as supporting its maintenance, facilitating its
integration with other knowledge bases, and transferring (and translating) knowledge
among heterogeneous systems.

The paper begins motivating our work with a description of how knowledge bases
are built. We then describe the approach we are taking in IKRAFT, and show with
several examples how users can keep a trail of sources and intermediate knowledge
fragments to support each item in the knowledge base. We finalize with a discussion
of the implications of the approach and conclude with our plans for future work.

2 Creating a Knowledge Base

In order to illustrate why it is important to capture how each individual piece of
knowledge in the knowledge base came about, we use a brief example taken from
previous work on building a knowledge base from a chapter of a biology textbook.
We describe the process of formalizing knowledge with three steps. These steps can
be found in typical descriptions of knowledge engineering [Buchanan et al. 83; Stefik
95; Schreiber et al. 00]. Our description sets aside other steps concerning knowledge
base development, such as feasibility studies, integration within the organization,

 IKRAFT: Interactive Knowledge Representation and Acquisition from Text 29

refinement and maintenance. Our focus here is on the steps that involve a single
developer set to the task of creating formal definitions given a set of sources that have
been previously compiled (through interviews, literature research, or other
consultations). We also assume the developer is not following any particular
knowledge engineering methodology (such as CommonKADS).

STEP 1: Selecting relevant knowledge fragments
��The first step a cell takes in reading out part of its genetic instructions is to copy the required

portion of the nucleotide sequence of DNA � the gene � into a nucleotide sequence of RNA. The process is
called transcription because the information, though copied into another chemical form, is still written in
essentially the same language � the language of nucleotides. Like DNA, RNA is a linear polymer made of
four different types of nucleotides subunits linked together by phosphodiester bonds. It differs from DNA
chemically in two respects: (1) the nucleotides in RNA are ribonucleotides � that is, they contain the sugar
ribose (hence the name ribonucleic acid) rather than deoxyribose; (2) although, like DNA, RNA contains
the bases adenine (A), guanine (G), and cytosine (C), it contains uracil (U) instead of the thymine (T) in
DNA. Since U, like T, can base-pair by hydrogen-bonding with A, the base-pairing properties described
for DNA also apply to RNA��

STEP 2: Composing stylized knowledge fragments
- ribose
 - it is a kind of sugar, like deoxyribose
 - it is contained in the nucleotides of RNA
 - uracil
 - it is a kind of nucleotide, like adenine and guanine
 - it can base-pair with adenine
 - RNA
 - it is a kind of nucleic acid, like DNA
 - it contains uracil instead of thymine
 - it is single-stranded
 - it folds in complex 3-D shapes
 - nucleotides are linked with phospohodiester bonds, like DNA
 - there are many types of RNA
 - RNA is the template for synthesizing protein
 - gene : - subsequence of DNA that can be used as a template to create protein
 - protein synthesis
 - non-destructive creation process: RNA and protein created from DNA
 - its speed is regulated by the cell
 - substeps: (ordered in sequence)
 1) RNA transcription
 - a DNA fragment (a gene) is copied, just like DNA is copied during DNA synthesis
 - the result is an RNA chain
 2) protein translation
 - RNA is used as a template

STEP 3: Creating knowledge base items
 � (defconcept uracil :is-primitive nucleotide :constraints (:the base-pair adenine))
 (defconcept RNA :is (:and nucleic-acid (:some contains uracil))) �

Fig. 1. Steps in Creating a Knowledge Base

30 Yolanda Gil and Varun Ratnakar

The steps are illustrated with an example in Figure 1, Here the developer is trying
to extract and represent a description of the protein synthesis process through its
substeps and the entities that participate in that process.

In the first step, the developer selects original sources (in this case only one is
shown, but typically there would be several) and selects from them relevant
knowledge fragments. Source text will typically contain the relevant information
embedded within details that may be irrelevant to the developer or commentary from
the author. In the second step, the developer restates the knowledge fragments in terse
English. Typically these new fragments are phrased as unambiguously and briefly as
possible. They may be organized in a list of items and sub-items. The developer may
combine two or more fragments into one sentence, or break a fragment into several
sentences. This step is akin to making a summary when studying for an exam. The
developer will often go back to step one to gather more documentation and knowledge
fragments as he or she makes sense of the fragments listed. Step two can be done in
several iterations, each iteration containing more stylized fragments.

Finally, the third step involves formalizing those fragments into the target language
and syntax. Notice that some of the fragments extend existing definitions that are
assumed to be already known, and as a result their formalization needs to take into
account existing definitions.

Notice that the final formalization of the knowledge does not necessarily contain all
the information in the original knowledge fragments selected or in the restated
fragments. The developer may decide to formalize only those portions, or perhaps the
formal language was not expressive enough to represent certain aspects of the
knowledge.

Looking at the figure, it is easy to see where each assertion in the formal definition
comes from, what portions of the stylized fragments are formalized, and where in the
initial sources the information came from. Unfortunately, the knowledge fragments
selected in step one and those composed in step two shown in the figure are never
captured in the knowledge base, only the resulting formal definitions included are.

We believe that knowledge bases should include this information, i.e., that the final
formalized knowledge items should point back to previous knowledge fragments
considered by the developer, and ultimately to the source documents where the
knowledge was drawn from. There are many benefits to this approach:

• Knowledge can be extended more easily. The formalized, final expressions may
not necessarily contain every detail in every knowledge source, but if the need
arises the developer is better positioned to track down additional knowledge
missing. One could even consider natural language processing tools that would
enable the system could use some automated tools to extract that knowledge itself,
since it has access to the sources and to stylized fragments that are likely to contain
information in the boundaries of the knowledge that was formalized the first time
around. Today’s knowledge bases are best (more efficiently) extended by their
developers.

• Knowledge can be reused at any level of formality. Reusing and translating
today’s knowledge bases means reusing and translating expressions in different
formal languages, which can be challenging [McDermott 01; Chalupsky 00]. Here,
intermediate knowledge fragments can be reused and formalized in a new
language without having to go through the original developer’s language as an
intermediate step. Moreover, during reuse of intermediate knowledge fragments

 IKRAFT: Interactive Knowledge Representation and Acquisition from Text 31

can be further detailed and extended incorporating other sources to create different
final formalized expressions.

• Knowledge can be integrated and translated at any level to facilitate
interoperability. Translation is often used to enable integration and interoperation
among intelligent tools. Today’s translation tools have to deal with the different
levels of expressivity and modeling styles of the source and target systems. One
can envision developing translators that operate (or are supported by) the stylized
knowledge fragments, either automatically or semi-automatically depending on the
difficulty of the expressions used by the developer. Also, symbols would be
annotated with their intended meaning, which is key when two systems may be
using the same term differently. The rationale and meaning of different pieces of
knowledge can be available to support translation and interoperation.

• Intelligent systems will be able to provide better justifications. We find that
many users are reluctant to accept the solutions presented by the systems and ask
for explanations not of how the system derived an answer automatically but instead
ask for explanations of why the system starts out with a certain fact or belief.
When users are shown the reasons for certain assumptions and the fact that certain
sources were consulted to make that assumption they are reassured in the
competence of the system to provide those answers. Capturing this trail within the
knowledge base will enable the system to generate these kinds of justifications and
explanations.

• Content providers will not need to be knowledge engineers. Although only
those trained in the art of designing, modeling, and writing formal expressions can
write the final formal knowledge items, anyone can contribute to the initial steps of
the process. Many people in diverse disciplines acquire the analytical skills that
suffice to organize and digest knowledge sources. The intermediate knowledge
fragments shown in Figure 2 were not created by a knowledge engineer, one could
argue that they may be more reusable than those shown in Figure 1 that were
created by a knowledge engineer. In fact, if the knowledge base is in their area of
expertise, they are likely do a much better job at re-expressing knowledge items
than knowledge engineers. This would make knowledge base creation a true
collaboration between domain experts and knowledge engineers where each is
contributing at the stages of the process where they have relevant skills.

Protein : - unique amino acid sequence. - this sequence provides it a unique structure.
DNA : - a sequence of 4 types of nucleotides, linked by phosphodiester bonds.
 - stores genetic information. - double stranded helix
RNA : - sequence of 4 types of nucleotides linked by phosphodiester bonds,
 - like DNA. - short copies of nucleotide sequence of the DNA.
 - passes genetic information.
Transcription : - Part of DNA is copied to the ’RNA
Translation: - Nucleotide sequence of the RNA generates the protein

Fig. 2. Knowledge Fragments that were not created by a knowledge engineer.

32 Yolanda Gil and Varun Ratnakar

3 Overview of IKRAFT

IKRAFT allows users to create new items in the knowledge base from multiple
sources, while keeping track of the knowledge sources and intermediate knowledge
fragments that were used in deriving the new item.

After collecting enough relevant sources, the user can now make statements to
summarize salient parts of the sources with the Statement Editor. This is easily
accomplished by highlighting parts of the source (or sources) and summarizing those
parts in a statement. Later, when the statement is clicked, the parts in the sources
where this information was gathered from are highlighted.

Each statement is parsed by an NLP tagger, which identifies nouns and verbs in the
sentence. The nouns are referred as objects, and verbs as events. These objects and
events are checked with those in the database. The user is then shown with a list of
objects and events which do not occur in the database. They can be defined by the
user with the Object Editor. The user is also shown the list of objects which do occur
in the database. If the definitions in the database are not what the user wants, then
another definition for the same object can be made by the user.

Also, when the user clicks on an object, the statement where the word came from is
highlighted. This is useful in finding the context in which the word is used.

Fig. 3. IKRAFT allows a user to keep track of knowledge sources and intermediate knowledge
fragments used in creating a new item in the knowledge base.

 IKRAFT: Interactive Knowledge Representation and Acquisition from Text 33

Figure 3 shows how the trail of knowledge sources and fragments are captured by
IKRAFT as a user represented the scenario described in Figure 1. The knowledge
fragments are represented as a collapsible tree structure of statements in the bottom
left frame. The objects that have to be defined, and those that are already defined (not
visible) are shown in the bottom right frame.

Our current prototype implementation addresses steps 1 and 2 in Fig 1. Supporting
the formalization stage (step 3 in Fig 1) will be addressed by future work.

4 Using IKRAFT

In this section, we show an example created using IKRAFT. It is summarized in
Figures 4 and 5.

Fig. 4. Demonstrating supplementary information from different sources

This example displays a user trying to find out more about Anthrax. The user has
three different sources of information. The first one is from a news article, and the
other two are from interviews of experts in the area. In Figure 4, the user summarizes
the information from one of the interviews to conclude that Anthrax can be contracted
by inhalation and through skin contact. Later, he finds supplementary information to
this in the other interview, and concludes that it can also be contracted through
ingesting infected meat.

Figure 5 shows the user finding out about the durability of Anthrax spores. The
newspaper article provides the information that Anthrax spores are extremely durable
as long as there is no sunlight. However it is not clear if the spores are destroyed in
sunlight or not. This is made clear by one of the other sources that they are indeed
destroyed by sunlight.

34 Yolanda Gil and Varun Ratnakar

Fig. 5. Demonstrating clarification

5 Discussion

Our current tools can be enhanced with other work on natural language processing and
knowledge base analysis. Many existing tools for text extraction (e.g, to extract
significant event descriptions from news articles) and discourse analysis (e.g., to
segment text into meaningful portions) could be used to support these earlier steps of
the analysis [Croft 99; Cowie and Lehnert 96; Radey and McKeown 98]. Existing
approaches to derive interdependencies among pieces of knowledge may be used to
help users create connections among diverse pieces of knowledge [Kim and Gil].
Other tools can be developed to support transformations at the lower levels (e.g., to
turn tables into instances and role values).

The approach presented here has many relations to software engineering
methodologies to capture the rationale for knowledge-based development [Schreiber
et al 00], and to higher-level languages and frameworks to develop knowledge-based
systems [Fensel et al. 98]. However, these methodologies are often aimed at software
and knowledge engineers and are not very accessible to other potential knowledge
base developers, such as end users and/or domain experts.

The overhead that may be incurred in creating knowledge bases using this approach
is, in our view, not as significant compared to the analysis efforts that developers
already undergo. It may even save developers time if others can look up the rationale
trail instead of asking them directly detailed questions about the portion of the
knowledge base they are developing. As in any issue that creates overhead during
development, it depends on the motivation and ultimately payoff to the developers in
terms of facilitating maintenance and reuse by others.

The Semantic Web [Berners-Lee et al 01] will provide an ideal substrate to ground
knowledge bases into their original knowledge sources, and to contain the
progressively defined pieces of knowledge and the connections among them. More
and more every day, knowledge originates and ends in the Web, and we find ourselves
extracting knowledge from the Web, processing it inside of a knowledge base, then
putting the results back on the Web. It only makes sense to integrate knowledge bases
(their content and their reasoning) more closely with the Web. Currently, IKRAFT
represents the links to the sources and knowledge fragments in its own language. In

 IKRAFT: Interactive Knowledge Representation and Acquisition from Text 35

future work we plan to turn IKRAFT into a Web-based annotation tool, where these
pointers would be converted into annotations in a suitable markup language. If the
final knowledge base is published as a Web resource, it will be linked to other Web
resources that represent the original documents, as well as intermediate knowledge
fragments that can be turned into Web resources as well. Using IKRAFT may perhaps
allow web users that are not AI experts to contribute to knowledge base development,
at least in the initial stages as presented in steps 1 and 2 in Fig 1 in this paper. Others
who are more savvy about knowledge representation techniques may take on the
subsequent formalization stages (step 3 in Fig 1). Many knowledge bases will finally
be open source, and one can only hope they will be adopted, extended, and used by
much larger numbers of people than they are today.

6 Conclusions

Knowledge base developers may consult many sources presenting contradictory or
complementary information, analyze the different implications of each alternative
belief, and decide what and how to model the knowledge. In essence, developers
often capture in the knowledge base only their final beliefs about some body of
knowledge. The rationale for modeling the knowledge the way it appears in the
knowledge base is not captured declaratively. Only consistent and complete
information is captured. No indication of inconsistent but possible statements is
added to the knowledge base.

In ongoing work, we are developing a knowledge base using IKRAFT to represent
terms in the geosciences domain. We plan to measure whether the rationale capture
by IKRAFT is useful by measuring how users access the rationale from the application
as they try to find out how and why terms were defined as they appear in the final
formal representation. We also plan to use IKRAFT to develop a knowledge base
using two kinds of users: a user that is an experienced domain expert and that
performs the first two steps outlined above, and a user that is a knowledge engineer
and formalizes the statements input by the first user. An interesting possibility would
be to explore how our framework would support collaborative knowledge base
development by larger groups of users, both experts and knowledge engineers.

Intelligent systems should be able to access the roots and rationale of the
knowledge they contain. This is the approach that we have taken in developing
IKRAFT, a tool to allow users to link knowledge bases to their original sources and
other knowledge fragments that result from the analysis of the knowledge base
developer. This approach would create a new generation of knowledge bases that will
be more amenable to updates, reuse, migration, and interoperation.

References

1. Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The Semantic Web. Scientific American
78(3):20�88.

2. Burstein, M., McDermott, D., Smith, D. R., Westfold, S. 2000. "Derivation of Glue Code
for Agent Interoperation". Proceedings of the International Conference on Autonomous
Agents 2000. Barcelona, Spain.

36 Yolanda Gil and Varun Ratnakar

3. Chalupsky, H. 2000. "OntoMorph: A Translation System for Symbolic Knowledge".
Proceedings of the International Conference on Knowledge Representation and Reasoning,
KR-2000, Breckenridge, CO.

4. Cooke, N. J. 1994. �Varieties of Knowledge Elicitation Techniques�, International Journal
of Human-Computer Studies, Vol. 41.

5. Cowie, J. and Lehnert, W. 1996. "Information Extraction". Communications of the ACM,
39(1):80--91, Jan 1996.

6. Croft, W.B. 1999. "Combining Approaches to Information Retrieval," in Advances in
Information Retrieval: Recent Research from the CIIR, W. Bruce Croft, Ed. Kluwer.

7. Fensel, D., Angele, J., and Studer, R. 1998. "The Knowledge Acquisition and
Representation Language KARL", Knowledge and Data Engineering, 10 (4).

8. Kim J., and Gil, Y. 2000. "Acquiring Problem-Solving Knowledge from End Users: Putting
Interdependency Models to the Test." Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-2000), Austin, TX.

9. McGuinness, D. L., Fikes, R., Rice, J., and Wilder, S. 2000. "An Environment for Merging
and Testing Large Ontologies". Proceedings of KR-2000, Breckenridge, CO.

10. Radev, D. and McKeown, K. 1998. "Generating natural language summaries from multiple
online sources". Computational Linguistics, 1998.

11. Schreiber, G, Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde,
W., and Wielinga, B. 2000. "Knowledge Engineering and Management: The
CommonKADS Methodology". MIT Press.

12. Shum, S.B. 1996. Design Argumentation as Design Rationale. Encyclop- edia of Computer
Science and Technology (M.Dekker Inc: NY).

13. Stefik, M., 1995. "Introduction to Knowledge Systems". Morgan Kaufmann.
14. Swan, R. and Jensen, D. 2000. �TimeMines: Constructing Timelines with Statistical Models

of World Usage�, Proceedings of KDD-2000

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 37-42, 2002.
 Springer-Verlag Berlin Heidelberg 2002

TRELLIS: An Interactive Tool for Capturing
Information Analysis and Decision Making

Yolanda Gil and Varun Ratnakar

USC Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
gil@isi.edu, varunr@isi.edu

Abstract. TRELLIS provides an interactive environment that allows users to
add their observations, opinions, and conclusions as they analyze information
by making semantic annotations about on-line documents. TRELLIS includes a
vocabulary and markup language for semantic annotations of decisions and
tradeoffs, and allows users to extend this vocabulary with domain specific terms
or constructs that are useful to their particular task. To date, we have used
TRELLIS with a variety of scenarios to annotate tradeoffs and decisions (e.g.,
military planning), organize materials (e.g., search results), analyze
disagreements and controversies on a topic (e.g., intelligence analysis), and
handle incomplete and conflicting information (e.g., genealogy research).

1 Introduction

In a world of overwhelming on-line information access and global communications,
more and more people are asked to provide faster and more accurate answers based on
up-to-date knowledge that is increasingly more disseminated in vast amounts of
information sources. Research in text retrieval, extraction, and summarization, is
aimed to sifting out relevant information to users [Croft 99, Cowie and Lehnert 96,
Rader and McKeown 98]. Research in knowledge management and CSCW tools
focuses on delivering information to interested parties in relevant formats [Smith and
Farquhar 00, Ackerman & McDonald 96]. These tools can help users to manage all
the information so they can make their decisions with reasonable accuracy and time
bounds But users need support after they have made a decision, reached a conclusion,
or made a recommendation. He or she will be often required to: 1) explain and justify
their views to others, 2) update the decision in light of additional information or new
data, 3) expose the intermediate products of the final recommendation to others that
may be analyzing related information to make similar decisions. Our approach is to
enable users to annotate the rationale for their decisions, hypotheses, and opinions as
they analyze information from various sources. Once this rationale is recorded, it can
be used to help users justify, update, and share the results of their analysis. This paper
presents TRELLIS, an interactive tool that helps users create these annotations.
TRELLIS includes a language for annotating information analysis, which can be
extended by users to suit their needs. Additional information about how TRELLIS

38 Yolanda Gil and Varun Ratnakar

represents and reasons about information sources can be found in [Gil and Ratnakar
2002].

The paper starts by describing our markup language to annotate information
analysis, followed by an overview of the TRELLIS architecture and its functionality.
We then show a use case scenario for intelligence analysis for feasibility of a special
operations plan. We finalize with a discussion of contributions and plans for future
work.

2 A Vocabulary to Help Users Annotate Information Analysis

The language that we propose uses the following basic components to describe this
information. A statement is a piece of information or data relevant to an analysis,
such as "The average water temperature in March is 63 degrees". A statement may
have been extracted or summarized from a document, which is often a Web resource
(text, imagery, or any other format) indicated by a URI or could also be a user-
provided document such as an email message or a note relating a conversation. A
statement can also be created by the user to introduce a hypothesis, conclusion, or
observation that will be used in the analysis. Every document has a source
description, describing its creator, publisher, date, format, etc. Each statement and its
source can have a source qualification specified as a degree of reliability and
credibility. Reliability is typically based on credentials and past performance.
Credibility specifies the probable truth of a statement. Reliability and credibility are
not the same, for example a completely reliable source may provide some information
that may be judged to be not very credible given other known information.

A compound statement or a unit is composed of several statements related by a
construct. Constructs reflect how individual statements are related in the analysis.
For example, a causal construct is used to form the compound statement: "The average
water temperature in March is 63 degrees" results in "unlikely use of divers". A
likelihood qualification is a subjective informal indication of the analyst’s reaction to a
statement (or compound statement). This can indicate surprise, dismissal, saliency,
accuracy, etc. A reason can be used to justify a compound statement, a source
qualification, and a likelihood qualification.

These basic components are used to create units, such as the one shown in Figure 1.
The basic structure of a unit is:

 statement {and statement}* construct {and statement}*
 is {not} likelihood-qualifier because
 according to source-description which is
 reliability-qualifier because statement and
 credibility-qualifier because statement

The user may or may not provide all the components, only a statement is required
to form a unit.

An analysis is composed of many such units. They can be linked as subunits of one
another. Units or statements can be left with no links to the overall analysis, and in
that case they can be specified as attachments to the analysis. This is useful to
indicate that they have been considered by the user but do not appear in the derivation
of the final analysis (for lack of time, or because the analyst found better options to

 TRELLIS: An Interactive Tool for Capturing Information Analysis 39

justify their conclusions. An analysis can be done with an overarching purpose, which
is often a question or request that the information analyst starts with.

 water temperature unsustainable for SDV divers
 is elaborated in
 average March water temperature is 55-60 degrees
 and
 platoon requires minimum water temperature of 65 degrees
 according to source
 Cmdr Smith which is
 completely reliable (A)
 because Cmdr Smith has 15 years experience with JSOC
 and
 probably true
 because Cmdr Smith has been platoon cmdr for 3 years

Fig. 1. An Example of a Basic Unit that Captures a Portion of the Analysis Regarding Water
Temperature

We provide a default set of constructs. This default set can be extended by the user
to incorporate new constructs useful in the particular topic of the analysis. Our default
set of constructs is drawn from argumentation and discourse relations [Mann and
Thompson 85, Pollock 94], logic connectives (drawing mostly from natural deduction,
sequent calculus and tautologies), action representations (including temporal and
causal relations) [Myers and Wilkins 96, Allen 84], and object representations (parts
and roles) [Gruber 91]. In developing the default set of constructs, our concern was
not completeness (since the user can extend the default set), nor precise semantics
(since users would not necessarily be able or willing to follow the pre-specified
meanings), nor computability (since, at least initially, we were not intending to
automate or verify of the derivation of the analysis). Instead, our aim was to select a
set of constructs that were understandable to end users and had the potential of being
useful in a variety of analysis and situations. For example, to specify disjunction we
did not include "or" as a construct and give it semantics, as would be done with a logic
system. Instead, we included two constructs that indicate whether the disjunction is
intended to be an exclusive or. The default set of constructs, grouped into three
practical categories, include:
• Discourse relations: provides background for, depends on, stands though

contradicted by, conceding, can be interpreted through, evaluated by, restates,
summarizes, in contrast with, is solved by, shows how to do, is elaborated in (set
and members, abstract and instances, whole and parts, process and steps, object and
attributes, generalization and specialization), is motivation for, depends on,
otherwise, causes, causes choice of, resulted in, choosing S1 results in S2,
happened and resulted in, is purpose of.

• Logic connectives: not S1, S1 and S2, S1 or S2 but not both, S1 or S2 or both, S1
therefore S2, if S1 therefore S2 then not S2 therefore not S1, if S1 therefore S2
then S2, if not S1 and S1 or S2 but not both then S2, if not S2 and S1 therefore S2
then not S1.

• Temporal relations: is before, is after, meets, is met by, overlaps with, is
overlapped by, starts, is started by, is during, contains, ends, is ended by, equals.

40 Yolanda Gil and Varun Ratnakar

Users can also indicate partial knowledge by choosing from a small set of general
constructs that include: related to, temporally related to, unrelated to.

We followed a similar path to design our initial set of likelihood qualifiers, drawing
from modal logic [Lemmon & Scott 77]. Our initial set includes definitely true/false,
probably true/false, maybe true/false, likely, impossible, surprising, shocking,
reassuring, believable, absurd, accurate, dismissable, and salient.

3 TRELLIS: Capturing Information Analysis and Decision
Making

Figure 2 shows the components of TRELLIS.
A user typically starts searching the Web for a certain document using the Search

Tool, or indicating a pointer to a specific Web resource that contains useful
information.

The Statement Editor is used to add statements about these documents. A Statement
is normally a short statement, backed up by a document or user text, and by
information on its source. All metadata that is allowed for the source comes from the
Source Description Schema. See [Gil and Ratnakar 2002] for details.

An issue with web resources is that they are not persistent. We have found it useful
to have a Caching Module to cache any online resource that is added to the system.

Fig. 2. The architecture of Trellis

The Unit Editor is used to add or edit units of knowledge in the system. It helps
users compose statements and constructs into compound statements, and to add
likelihood, reliability and credibility. These constructs are defined in the Schema.
Users extend the schema when they define their own constructs specific to the domain
being worked upon.

The Analysis Editor is used to organize the various units in a tree structure, which
represents the reasoning pattern in reaching a conclusion for a given purpose. There is
also a Search/Import utility for the Analysis Editor, which can be used to search

 TRELLIS: An Interactive Tool for Capturing Information Analysis 41

analyses of other Trellis users for certain keywords either in the purpose or individual
units. Any part of the other user�s analysis can be imported into the current analysis.

TRELLIS is available on-line at trellis.semanticweb.org. In order to demonstrate
the versatility and coverage of TRELLIS to annotate information analysis, we show
here analyses created in a wide range of situations. Portions of the analyses discussed
in this section are summarized in Figure 4. All these examples can be browsed on-line
from the above Web site logging in as guest.

A genealogy example helps illustrate how TRELLIS helps annotate analysis of
contradictory information. It shows how to capture an analysis of the date in which a
user’s family event occurred, in this case when an ancestor left Europe for the US.
Another example concerns military planning and decision making. Here, a commander
is trying to decide on the feasibility of using an SDV platform (Seal Delivery Vehicle)
by analyzing weather conditions. Our last example captures the analysis of a user
searching the Web in order to find a hotel for a trip to San Diego.

Fig. 3. Examples of Annotations in TRELLIS

4 Discussion

SEAS [Lawrence et al 01] shows an alternative approach to support intelligence
analysis. Users define argument templates that contain questions to support the
argument and an inference structure to derive the conclusion from the answers to the
questions. The system contains a sizeable amount of patterns about early crisis
warning for national security analysis. The approach emphasizes the use of shared
patterns as well as support for automated inference on demand. TRELLIS has more
generality but does not provide as much support for sharing and automation.

Collaboration is often supported through annotations. Web annotation and
document annotation tools enable users to add commentary to documents [Koivunen
& Swick 2001; Nagao et al 2001]. The emphasis of these approaches is more on
collaboration, while our work has a more specific focus on information analysis for
decision making. Other annotation tools provide a structured vocabulary such as the

42 Yolanda Gil and Varun Ratnakar

one used in TRELLIS to annotate debates and arguments [Lawrence et al 2001; Shum
et al 2000]. These tools provide more ontologies and templates that the users must
follow in order to enforce sharing and understanding by a specific user community.

TRELLIS provides an interactive environment that allows users to add their
observations, opinions, and conclusions as they analyze information by making
semantic annotations to documents and other on-line resources. This is in essence a
knowledge acquisition problem, where the user is adding new knowledge to the
system based on their expertise as they analyze information.

References

1. Ackerman, M.S. and McDonald, D.W. 1996. Answer Garden 2: Merging Organizational
Memory with Collaborative Help. In Proceedings of CSCW’-96.

2. Allen, J. F. 1984. A General Model of Action and Time. Artificial Intelligence 23 (2).
3. Cowie, J. and Lehnert, W. 1996. Information Extraction. Communications of the ACM,

39(1): 80-91, Jan 1996.
4. Croft, W.B. 1999. Combining Approaches to Information Retrieval," in Advances in

Information Retrieval: Recent Research from the CIIR, Kluwer Academic Publishers.
5. Gil, Y. and Ratnakar, V. 2002. Trusting information sources one citizen at a time,

Proceedings of the First International Semantic Web Conference, Sardinia, Italy.
6. Gruber, T.R. 1991. The Role of Common ontology in achieving sharable, reusable

knowledge bases. In Proceedings of the Second International Conference, Principles of
Knowledge Representation and Reasoning.

7. Koivunen, M.R. and Swick, R. 2001. Metadata Based Annotation Infrastructure offers
Flexibility and Extensibility for Collaborative Applications and Beyond. In: Proceedings
of the K-CAP 2001 Workshop on Knowledge Markup and Semantic Annotation, BC.

8. Lawrence, J. D.; Harrison, I.W.; and Rodriguez, A. C. 2001. Capturing Analytic
Thought. In Proceedings of the First International Conference on Knowledge Capture (K-
CAP 2001). Victoria, British Columbia, October 2001.

9. Lemmon, E. and Scott, D. 1977. An Introduction to Modal Logic. Oxford: Blackwell.
10. Mann, W. C. and Thompson, S. A. 1988. Rethorical Structure Theory: Toward a

Functional Theory of Text Organization. Text 8(3).
11. Nagao, K., Shirai, Y., Squire, K. 2001. Semantic Annotation and Transcoding: Making

Web Content More Accessible. IEEE MultiMedia 8(2): 69-81.
12. Pollock, John L. 1994. Justification and Defeat, Artificial Intelligence, 67 p. 377 � 407.
13. Radev, D. and McKeown, K. 1998. Generating natural language summaries from multiple

online sources. Computational Linguistics, 1998.
14. Shum, S.B., Motta, E., Domingue, J. 2000. ScholOnto: An Ontology-Based Digital

Library Server for Research Documents and Discourse. Journal on Digital Libraries, 3 (3).
15. Shum, S.B. 1996. Design Argumentation as Design Rationale. Encyclop- edia of

Computer Science and Technology (M.Dekker Inc: NY).
16. Smith, R. and Farquhar, A. 2000. AI Magazine, Fall 2000.
17. Wilkins, D.E., Myers, K.L. 1995. A Common Knowledge Representation for Plan

Generation and Reactive Execution, Journal of Logic and Computation, 5 p. 731-761.

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 43-48, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Web-Based Document Management for Specialised
Domains: A Preliminary Evaluation

Mihye Kim and Paul Compton

School of Computer Science and Engineering,
University of New South Wales, Sydney NSW 2052 Australia.

{mihyek, compton}@cse.unsw.edu.au

Abstract. A Web document management system has been developed aimed at
small communities in specialised domains and based on free annotation of
documents by users. Knowledge acquisition support includes suggesting terms
from external ontologies. Preliminary evaluation in a domain of research topics
in Computer Science supports the utility of the approach, The most interesting
result suggests that although an established external taxonomy can be useful in
proposing annotation terms, users appear to be very selective in their use of
terms proposed.

1 Introduction

There is a widespread belief, manifest through the Semantic Web initiative1, that to
make full use of the resources on the World Wide Web, documents will need to be
marked up according to agreed ontological standards. Our aim has been to explore the
possibility of document annotation systems that do not commit to a priori ontologies
and expect that documents will be annotated according to pre-defined ontologies.
Rather our aim is systems which support the user in freely annotating a document and
the ontology evolves as a consequence. Rather than this being totally ad hoc, we
would like the system to assist the user to make extensions to the developing ontology
that are in some way improvements.

Our first attempts at incremental development of document management systems
were based on selecting keywords that discriminate between documents [1] and was
based on earlier knowledge acquisition techniques [2]. A limitation of this approach
is that it does not directly organise the knowledge in a way that is suitable for
browsing. The system outlined below uses the lattice-based browsing supported by
Formal Concept Analysis.

The aim of this paper is to provide some preliminary information on how actual
users interact with such a system. The application domain for this study is annotation
of researchers� home pages according to their research interests, so that they can be
more readily found by prospective research students, industrial partners and so on.

1 http://www.semanticweb.org/

44 Mihye Kim and Paul Compton

2 Method

The core technology in our system is Formal Concept Analysis (FCA) [3,4] In FCA
a concept is specified by its extension as well as intention. This results in a lattice
structure, where each node is specified by a set of objects and the attributes they
share. The lattice can be quite sparse as a node is added only if the attributes at the
node distinguish the objects from those at another node.

A number of researchers have advanced this lattice structure for document retrieval
[5,6]. Several researchers have also studied graphically represented lattices for
specific domains such as medicine, e-mail management, flight information and
libraries [7-10].

The difference in our approach is mainly in the way the system is used rather than
its underlying FCA basis. The system we have developed is aimed at multiple users
being able to add and amend document annotations whenever they choose. The
system is Web-based with documents represented by their URLs (see Fig. 1). We
have previously described the main features of this system [11]. It can be explored at:
http://pokey.cse.unsw.edu.au/servlets/RI. The following outlines some of the features
relevant to the evaluation results.

2.1 Annotation Support

To assist in finding relevant keywords, a user can select from the keywords used by
other researchers with whom they may share interests. After the user has selected
some terms they are presented with a display of terms that co-occur with the selected
terms somewhere in the lattice. As well, users are shown terms suggested from
external taxonomies. In the present study the terms are from the ACM computing
classification taxonomy2 and ASIS&T thesaurus for information science3. If the
user�s terms occur in one of these hierarchies, the system shows all the parents of
these terms up the hierarchy, but in a simple list without specifying the relations. The
user is free to select none, some, or all of these parent terms to annotate their
document. The result is a new taxonomy that is made up of parts of other taxonomies
that users perceive as most useful along with other terms they add. We believe this
may provide a very simple but powerful way of validating and improving on the
ontological standards that are being established.

2.2 Browsing and Searching Support

Browsing is based on showing a web page with the hyperlinks and keywords for the
immediate parent and child nodes of the current node as shown in Figure 1. As well
as navigating the lattice, users can select terms from a list or enter terms into a text
box. If the entered term is not a keyword a conventional text word search is carried

2 ACM (Association for Computing Machinery); http://www.acm.org/class/1998/ccs98.html
3 ASIS&T (American Society for Information Science and Technology);
 http://www.asis.org/Publications/Thesaurus/isframe.htm

 Web-Based Document Management for Specialised Domains 45

out. A sub-lattice containing only the documents that contain these text words is then
displayed.

Figure 1. This shows the main features of the lattice-browsing interface in a domain of
researcher home pages in a Computer Science school. The numbers in brackets indicate the
number of researcher home pages at each node. The URLs for these researchers can be
accessed via the folders on the left. The researchers for the current node are also listed at the
bottom of the screen (not shown). The �nested� button gives a Conceptual Scale view as
appropriate. The taxonomies available are towards the top of the main screen.

Figure 1 is an example of the advantage of lattice browsing. Users who search for
Data Mining under Artificial Intelligence find that there are only 5 researchers in this
area. However this node has 2 parents and so the lattice view makes it obvious that
there in fact 13 researchers in the School who do research in Data Mining. Most of
these researcher are under Data Bases rather than Artificial Intelligence.

A hierarchical display is also available. This is accessed via nested pop-up menus
showing the subclasses below the current node. This display is generated using the
Conceptual Scale extension to FCA [12,13]. A conceptual scale gives a view of a
sub-lattice formed from objects that have specified attribute-value pairs.

The user can also view the lattice using one of the imported taxonomies available �
in this case the ACM, ASIS&T and a local UNSW taxonomy. This recreates the
lattice assuming that any document annotated with a term that occurs in the imported
taxonomy also has all the parent terms for that term. One can browse this lattice or
alternatively one can navigate the hierarchy at any stage as above.

3 Evaluation

The School of Computer Science and Engineering has used traditionally used simple
research topic indices to help prospective research students and collaborators find

46 Mihye Kim and Paul Compton

School researchers4. We chose this as an evaluation domain as it seemed likely that
researchers would be motivated to add appropriate annotations to attract prospective
students. Secondly there would be sufficient students browsing, looking for
supervisors to provide a reasonable evaluation, and that these students may be willing
to fill in an evaluation questionnaire.

To stimulate researcher interest the starting lattice was populated by annotating
researchers� home pages with terms specified as their research areas in the School�s
research topic index. This meant that then we could not see how a lattice would
evolve from scratch. Once the system was set up for research staff it was opened up
for use by PhD students. In this case their home pages were not initially annotated.

To carry out the evaluation we logged all actions of users whether browsing or
annotating home pages. We also set up some evaluation forms for both browsing and
annotating which we invited users to fill in. The following results are preliminary
and cover just one aspect of the study.

To date 76 annotated home pages are registered in the system and 52 staff and
students have carried out annotation of their pages. Of course this means that another
24 were either happy with their annotations or ignored the experiment. The 76 home
pages of have been annotated with an average of 8 research topics. The concept
lattice contains 367 nodes with an average of 2 parents per node and path lengths
ranging from 2 to 7 edges. The 52 researchers who actively annotated their home
pages used 480 terms. 446 (93%) of these were terms that were already used to
annotate other pages, while 34 (7%) of the terms were newly entered into the system.
A total of 193 terms were suggested from the imported ontologies. Of these only 19
terms (4%) were used for annotation. The annotators were interviewed to investigate
the reasons for the low uptake. The proposed topics were seen as applicable but too
general in specifying a research area.

The relevance of terms suggested from ontologies can be seen in Table 1. The
table shows the numbers of researcher home pages retrieved using the various terms
in the left column with and without imported taxonomies. Recall that the lattice
shows all the researchers who use a particular term, and that this number can be
increased by importing taxonomies and considering that pages are implicitly
annotated by any terms in the taxonomy that are parents of terms selected by the
researcher. These would be the results if the researchers were obliged to conform to
that ontology.

One can observe that ASIS&T and ACM taxonomies have different ideas of what
constitutes Knowledge Engineering, but that UNSW researchers agree with the ACM.
However they do not agree with the ACM about Learning or Operating Systems.
However, there is a high degree of consistency with terms such as Knowledge
Representation and Data Bases. These results suggest not just random variations, but
specific and relatively consensual decisions about the value of the various terms
available.

4 (http://www.cse.unsw.edu.au/school/research/research2.html).

 Web-Based Document Management for Specialised Domains 47

Table 1: retrieval of home pages without and without imported taxonomies

Number of researcher home pages retrieved
Terms Lattice only ACM taxonomy ASIS&T taxonomy
Artificial Intelligence
Data Mining
Machine Learning
Knowledge Engineering
Knowledge Representation
Learning
Information Retrieval
Databases
Software Engineering
Operating Systems

37
16
22
 3
17
 4
 8
10
 7
 2

46
16
-
 3
17
18
 8
10
10
 7

43
-
22
29
19
-
 9
11
-
-

4 Discussion

We do not have sufficient data to make strong claims about the value of a lattice-
based approach to browsing. However, the case in Figure 1 provides an example of
the power of lattice based browsing � a hierarchical pathway found only a small
number of documents, but other related documents were readily found with lattice
browsing.

The most interesting result from this study is in the use of the imported
taxonomies. Standardised global ontologies are increasingly seen as the solution to
many problems related to document and knowledge management. The results here
suggest that within a small community, even a quite diverse community, selective use
will be made of a more global ontology. The results suggest such ontologies are of
value as a resource, but that in small communities and specialised domains people
will prefer to pick and choose what is of value from an ontology. It should be noted
that the researchers were not annotating documents for their own use but specifically
to assist people outside the community who would be expected to have a more
superficial knowledge of the terms used.

These accidental results confirm our original motivation for this project � that there
is a clear need for tools which allow small communities to flexibly and freely develop
their own document annotation and retrieval systems. However, as standards for
representing ontologies take hold, these small community systems should be able to
very flexibly import ontologies and make selective use of their resources. In turn the
use these communities make of external ontologies and the extra terms they add will
provide useful feedback on the external more standardised ontologies may be usefully
evolved.

Acknowledgement: This research has been supported by an Australian Research
Council (ARC) grant and is part of Mihye Kim�s PhD project.

48 Mihye Kim and Paul Compton

References

1. Kang, B. H., Yoshida, K., Motoda, H. and Compton, P. Help Desk System with
Intelligent Interface. Applied Artificial Intelligence, 11 (1997) 611-631.

2. Compton, P. and Jansen, R. A Philosophical Basis for Knowledge Acquisition.
Knowledge Acquisition 2 (1990) 241-257.

3. Wille, R. Restructuring Lattice Theory: An Approach Based on Hierarchies Of Concepts,
In: Ivan Rival (ed.): Ordered set. Reidel, Dordrecht, Boston, (1982) 445-470.

4. Ganter, B. and Wille, R. Formal Concept Analysis: Mathematical Foundations. Springer,
Heidelberg (1999).

5. Godin, R., Missaoui, R. and April, A. Experimental Comparison on Navigation In a
Galois Lattice with Conventional Information Retrieval Methods. International Journal of
Man-Machine Studies. 38 (1993) 747-767.

6. Carpineto, C. and Romano, G. Information Retrieval Through Hybrid Navigation of
Lattice Representations. International Journal of Human-Computer Studies. 45 (1996)
553-578.

7. Cole, R. and Eklund, P. Text Retrieval for Medical Discharge Summaries Using
SNOMED and Formal Concept Analysis. In: Australian Document Computing
Symposium. (1996) 50-58.

8. Cole, R. and Stumme, G. CEM - A Conceptual Email Manager. In: Proceedings of the 8th

International Conference on Conceptual Structure (ICCS 2000). Darmstadt. Springer-
Verlag (2000) 438-452.

9. Eklund, P., Groh, B., Stumme, G. and Wille, R. A Contextual-Logic Extension of
TOSCANA. In: Proceedings of the 8th International Conference on Conceptual Structure
(ICCS 2000). Darmstadt, Springer-Verlag (2000) 453-467.

10. Rock, T. and Wille, R. TOSCANA-System zur Literatursuche. In: G. Stumme and R.
Wille (eds): Begriffliche Wissensverarbeitung: Methoden und Anwendungen. Springer,
Berlin-Heidelberg (2000) 239-253.

11. Kim, M. and Compton, P. A Web-based Browsing Mechanism Based on the Conceptual
Structures. In: Conceptual Structures: Extracting and Representing Semantics.
Proceedings of the 9th International Conference on Conceptual Structures (ICCS 2001).
Stanford University, California. USA (2001) 47-60.

12. Ganter, B. and Wille, R. Conceptual Scaling. In: F. Roberts (ed.): Application of
Combinatorics and Graph Theory to the Biological and Social Sciences. Springer (1989)
139-167.

13. Stumme, G. Hierarchies of Conceptual Scales. In: B Gaines; R Kremer; M Musen (eds):
12th Banff Knowledge Acquisition. Modelling and Management. Banff Canada, 16-21
Oct., SRDG Publication, University of Calgary (1999).

From Informal Knowledge to Formal Logic:
A Realistic Case Study in Medical Protocols

Mar Marcos1�, Michael Balser2, Annette ten Teije3, and Frank van Harmelen1

1 Vrije Universiteit Amsterdam, Dept. of Artificial Intelligence
De Boelelaan 1081a, 1081HV Amsterdam, Netherlands

2 Universität Augsburg, Lehrstuhl Softwaretechnik und Programmiersprachen
86135 Augsburg, Germany

3 Universiteit Utrecht, Institute of Information and Computing Sciences
P.O. Box 80.089, 3508TB Utrecht, Netherlands

Abstract. We report our experience in a case study with constructing fully for-
malised knowledge models of realistic, specialised medical knowledge. We have
taken a medical protocol in daily use by medical specialists, modelled this knowl-
edge in a specific-purpose knowledge representation language, and finally for-
malised this knowledge representation in terms of temporal logic and parallel
programs. The value of this formalisation process is that each successive for-
malisation step has contributed to improving the quality of the original medical
protocol, and that the final formalisation allows us to provide machine-assisted
proofs of properties that are satisfied by the original medical protocol (or, al-
ternatively, precise arguments why the original protocol fails to satisfy certain
desirable properties). We believe that this the first time that a significant body
of medical knowledge (in our case: a protocol for the management of jaundice
in newborns) has been formalised to the extent that it becomes amenable to au-
tomated theorem proving, and that this has actually lead to improvement of the
original body of medical knowledge.

1 Introduction

During the last years a high number of medical practice guidelines or protocols1 have
been produced from systematic evidence-based reviews [1]. They are “systematically
developed statements to assist practitioners and patient decisions about appropriate
health care for specific circumstances” [2]. Medical protocols contain more or less pre-
cise recommendations about the diagnosis tests or the interventions to perform, or about
other aspects of clinical practice. These recommendations are based on the best empir-
ical evidence available at the moment. Among the potential benefits of protocols, we
can highlight the improvement of healthcare outcomes [3]. More precisely, they can
help to promote high quality practice, recommending interventions of proved benefit
and discouraging those that are not supported by good evidence. They can also be used

� On research leave from the Dept. of Computer Engineering and Science, Universitat Jaume I,
Castellón, Spain.

1 In this paper we use the terms guideline and protocol indistinctively. However, the term proto-
col is in general used for more specific versions of a guideline.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 49–64, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

50 Mar Marcos et al.

to reduce variations in care. Finally, protocols can be useful to improve cost efficiency,
thanks to the standardisation of healthcare. Indeed, it has been shown that adherence to
protocols may reduce the costs of care upto 25% [4].

In order to enable their potential benefits, protocols must fulfill strong quality re-
quirements. This is true not only for the final product, the protocol, but also for the
development process. Medical bodies worldwide have made efforts in this direction,
e.g. elaborating appraisal documents that take into account a variety of protocol as-
pects, of both protocols and their development process (see [5] for a comparison of
appraisal instruments). However, these initiatives are not sufficient since they rely on
informal methods and notations. We are concerned with a different approach, namely
the quality improvement of medical protocols through formalisation. Currently, proto-
cols are described using a combination of different formats, e.g. text, flow diagrams
and tables. The underlying idea of our work is that making these descriptions more pre-
cise, with the help of a more formal language, will expose parts where the protocols are
ambiguous, incomplete or even inconsistent. By pointing out these anomalous parts,
and the reasons why they could be problematic, we expect to obtain useful indications
for the improvement of the protocols. This idea is widely acknowledged in fields like
software engineering, where formal methods are used as a tool for early detection of
specification and design errors, but has been largely unexplored for medical protocols.

However, the formalisation of medical protocols can be tackled at different degrees
of formality. In this paper we aim at a fully formal specification. The research question
that we try to answer is: can medical protocols be formalised in terms of logic? and can
this formalisation contribute to the improvement of their quality? In order to answer this
question, we have carried out a case study on protocol formalisation. The main contri-
bution of this paper is to show (1) that it is possible to formalise medical knowledge to
a high degree of formality; (2) that this process must be divided into a number of steps,
each increasing the degree of formality; and (3) that each step in this process uncovers
problems in the protocol. An early report on similar problems in protocols can be found
in [6]. It is important to notice that our work differs in significant aspects, namely that
we aim at a much higher degree of formality, and that we focus on the verification and
validation of the original protocol rather than the design of an enhanced version thereof.

For the purpose of our case study, a choice had to be made on the target formalism(s)
as well as on the medical protocol to be used. Concerning the formalisms, we have first
used a special purpose knowledge representation language suited for medical protocols–
Asbru, and afterwards the logic of the KIV theorem prover. As for the medical protocol,
we have selected one devoted to the the management of jaundice in newborn babies.
Figure 1 illustrates the process of our case study, and also the structure of this paper.
First the jaundice protocol is discussed in section 2. Then the Asbru language and the
model of the jaundice protocol in this language are described in section 3. The next step
in the formalisation process is to translate the Asbru protocol to the fully formal calculus
of KIV. This step is described in section 4. In each of the previous two sections we also
discuss the benefits of the corresponding formalisation step, as well as the difficulties
we encountered. Finally, section 5 concludes the paper.

From Informal Knowledge to Formal Logic 51

Fig. 1. The formalisation process of our case study.

2 The Jaundice Protocol

Jaundice (or hyperbilirubinemia) is a common disease in newborn babies. Under cer-
tain circumstances, elevated bilirubin levels may have detrimental neurological effects.
In many cases jaundice disappears without treatment but sometimes phototherapy is
needed to reduce the levels of total serum bilirubin (TSB), which indicates the presence
and severity of jaundice. In a few cases, however, jaundice is a sign of a severe disease.

The jaundice protocol of the American Association of Pediatrics2 (AAP) [7] is in-
tended for the management of the disease in healthy term3 newborn babies. The main
reason for choosing this protocol was that it is considered a high-quality protocol: the
jaundice protocol of the AAP is included in the repository of the National Guideline
Clearinghouse4.

The guideline is a 10 pages document which contains knowledge in various informal
forms, namely:

– text (this is the main body of the protocol),
– a list of factors to be considered when assessing a jaundice infant (for instance,

family history of significant hemolytic disease),
– two tables, one for the management of Hyperbilirubinemia in the healthy term new-

born and another for the treatment options for jaundice breast-fed infants, and
– a flowchart-like notation representing the steps described in the guideline.

The protocol consists of an evaluation (or diagnosis) part and a treatment part, to be
performed in sequence. During the application of the protocol, as soon as the possibil-
ity of a more serious disease is uncovered, the recommendation is to exit without any
further action. The rationale behind this is that the protocol is exclusively intended for

2 http://www.aap.org/policy/hyperb.htm
3 Defined as 37 completed weeks of gestation.
4 http://www.guideline.gov

52 Mar Marcos et al.

the management of jaundice in healthy newborns. An important part of the protocol is
the table used to determine the adequate treatment from the TSB value and the age of
the infant.

3 Modelling the Jaundice Protocol in Asbru

A number of languages have been proposed to represent medical protocols and their
specific features (see [8]). Most protocol-based systems consider protocols as a com-
position of actions to be performed and conditions to control these actions [9]. Most
of them provide some support for text-based or graphical editing of protocols, text an-
notation of protocols, and simple protocol execution. However, although the trend is
changing lately, many of the protocol representation languages in the literature (e.g.
GLIF [10]) are not formal enough. For instance, they often incorporate many free-text
elements which do not have clear enough semantics. Exceptions to this are PROforma
[11] and Asbru [12]. In this work we have chosen Asbru, firstly because it is more pre-
cise in the description of various medical aspects, and secondly because Asbru protocols
are more declarative, and thus they are more amenable to formal analysis.

3.1 Asbru: A Knowledge Representation Language for Protocols

The main aspects of Asbru are: (i) in Asbru a medical protocol is considered as a plan
skeleton with sub-plans in the sense of the AI planning literature, (ii) the possibility to
specify the intentions of a plan in addition to the actions of a plan, (iii) the possibility to
specify a variety of control-structures within a plan, and (iv) a rich language to specify
time annotations. Asbru allows us to represent medical protocols in a precise way. Be-
low we will give a short description of the Asbru language (see [12] for a more detailed
description).

Plan A medical protocol is considered as a hierarchical plan. The four main com-
ponents of a hierarchical plan in Asbru are (1) intentions, (2) conditions, (3) effects and
(4) plan-body. Furthermore a plan can have arguments, and has the possibility to return
a value. Next we will briefly discuss each of these components.

Intentions Intentions are the high-level goals of a plan. Intentions can be given
in terms of achieving, maintaining or avoiding a certain state or action. Such states
or actions can be intermediate or final (overall). For example, the label “achieve
intermediate-state” means that sometime during the execution of the plan, a certain
state must be achieved. “Achieve overall-state” means that at the end of the plan
execution, a certain state must be achieved (e.g. at the end of the plan execution,
bilirubin levels must be normal). In the same way, “achieve intermediate-action”
means that sometime during the plan execution, a certain action must have occurred
(e.g. the bilirubin level must have been measured). Notice that in total there are twelve
possible forms: [achieve/maintain/avoid] [intermediate/overall]-[state/action].

Conditions There are a variety of conditions that can be associated with an Asbru
plan, each of which determines a different aspect of a medical protocol. Asbru has the
following conditions:

From Informal Knowledge to Formal Logic 53

– filter conditions: These must be true before the plan can be started. For instance,
“the blood-type of the mother is not known”.

– setup conditions: Like the filter conditions, these must also be true before the plan
can be started, but in this case they can be achieved with additional actions, i.e. by
executing other plans.

– suspend conditions: When these are true, the plan will be suspended.
– reactivate conditions: These conditions determine when a suspended plan has to be

restarted.
– abort conditions: Such conditions determine when a started, suspended or restarted

plan must be aborted.
– complete conditions: These conditions determine when a started or restarted plan

can be considered successfully completed.
– activate conditions: These can have the values “manual” or “automatic”. If the ac-

tivate mode is manual, the user is asked for a confirmation before the plan can be
started.

Effects Effects describe the expected effect of a plan on the values of observable
medical parameters (e.g. administration of insulin decreases the blood glucose levels).
Effects can have associated a likelihood to state how likely they are to occur.

Plan-body The plan-body contains the actions and/or sub-plans that will be exe-
cuted as part of the plan. A plan-body can have one of the following forms:

– user-performed: an action to be performed by the user, which requires user interac-
tion and thus is not further modelled.

– single step: an action which can be either an activation of a sub-plan, an assignment
of a variable, a request for an input value or an if-then-else statement.

– subplans: a set of plan steps to be performed in a given manner. The possibilities
are: in sequence (SEQUENTIALLY), in parallel (PARALLEL), in any possible
sequential order (ANY-ORDER), and in any possible order, sequential or not (UN-
ORDERED).

– cyclical plan: a repetition of actions over time periods.
– loop construct: a repetition of actions, either in the form of the for loop of conven-

tional programming languages, or iterating on the elements of a list or set.

In the case of subplans, besides the specification of the ordering (SEQUENTIALLY
and so forth), it is necessary to specify a waiting strategy. The main aspect here is the
so called continuation specification, which describes the plans that must be completed
so that the parent plan can be considered successfully completed. For instance, it is
possible to define whether all the subplans should be executed (ALL) or not (e.g. ONE
or NONE).

Time-annotations Many elements in an Asbru plan (intentions, conditions, effects
and plan activations) can have a time annotation. A time annotation specifies (1) in
which interval things must start, (2) in which interval they must end, (3) their minimal
and maximal duration, and (4) a reference time-point. Any of these elements can be
left undefined, allowing the specification of incomplete time annotations. The general
scheme for a time annotation is:

54 Mar Marcos et al.

([earliest-starting-time, latest-starting-time],
[earliest-finishing-time, latest-finishing-time],
[minimal-duration, maximal-duration],
reference-point)

The use of a time annotation in the context of a plan activation determines the span
of time and duration that the plan under execution should have. For example, the action
follow a folic acid treatment for 3-4 months, starting in first month of pregnancy, could
be expressed as:

Folic-acid-treatment ([week 0, week 4], ”start in the first month”
[week 12, week 20], ”end in 3rd, 4th or 5th month”
[12 weeks, 16 weeks], ”do it for 3-4 months”
conception) ”counting from conception”

However, time annotations associated to conditions indicate the period of time dur-
ing which the conditions are to be evaluated. Once this time has elapsed, there is no
possibility for the condition to become true. In case it is necessary to monitor continu-
ously a condition, a special time annotation can be used: NOW.

3.2 Asbru Model of Jaundice Protocol

Figure 2 shows the global structure of the jaundice protocol as a hierarchy of plans.
The most important entry point of the protocol is the plan “Diagnostics-and-treatment-
hyperbilirubinemia” (the three “Check-for-...” plans are Asbru artifacts to model check-
ups at temporally specified intervals). Figure 2 shows that “Diagnostics-and-treatment-
hyperbilirubinemia” is divided into a diagnostics and a treatment subplan, to be exe-
cuted sequentially.

The diagnostics stage is again subdivided into four sequential subplans. One of these
plans is “Jaundice-determination”, which has four optional subplans among which one
of them is required. The protocol specifies that one of the corresponding methods has to
be applied to determine if jaundice is clinically significant. This has been modelled as
an any-order plan with a waiting strategy ONE, which enables the execution of any of
the subplans and states that only one of them is needed. In addition, each subplan has a
manual activate condition which requires a confirmation by the user and thus enforces
a manual selection.

The treatment phase consists of two subplans (see label (-)): “Regular-treatments”
and “Exchange-transfusion”. One of them, the “Regular-treatments” plan, contains the
main treatment procedure. However, it is possible that this procedure is aborted at
some point (when its abort condition becomes true), at which point the “Exchange-
transfusion” plan is triggered: it is the emergency action to be taken when the “Regular-
treatments” plan aborts. In such an emergency case, the prescriptions of both intensive
phototherapy and exchange transfusion must be done, in parallel. In parallel with the
treatment plans in group (-), further cyclical actions specify that two important param-
eters must be measured every 12-24 hours.

The “Regular-treatments” plan has also a quite complicated control structure. This
plan consists of two parallel parts: the study of feeding alternatives and the different

From Informal Knowledge to Formal Logic 55

Fig. 2. Overview of the jaundice model in Asbru.

therapies (see label (*)). The plans in group (*) can be tried in any order, one at a time.
The intentions of “Regular-treatments” plan are both avoiding toxic bilirubin levels and
attaining normal (observation) ones at the end. The plan completes when the feeding
alternatives and the therapies complete. The latter in turn depends on the completion of
observation (compulsory). It aborts when either bilirubin raises to transfusion levels or
intensive phototherapy fails to reduce them sufficiently, pointing to a pathologic reason.

The main surprise from this description is the richness and complexity of the control
structures that are found in a medical protocol like the jaundice one: steps are executed
in parallel or sequentially, in either a specific or an unspecified order; some steps are
compulsory and other steps are optional; some plans are triggered when other plans
abort; etc. The Asbru language contains a rich set of modelling primitives to represent
these complicated control structures. Notice that these control structures (which ap-
parently appear naturally in a realistic medical protocol) are much more complex than
those found in typical programming languages or in planning languages.

56 Mar Marcos et al.

The full Asbru specification of the jaundice protocol as well as a high-level
overview of its structure can be found in [13]. To give a flavour of Asbru,
figures 3 and 4 show, respectively, the “Diagnostics-hyperbilirubinemia” and the
“Treatment-hyperbilirubinemia” plans. Notice that the notation used in these figures
does not correspond to the XML syntax of the Asbru language, but it is a more
readable representation5.

PLAN Diagnostics-hyperbilirubinemia
INTENTIONS ACHIEVE OVERALL-STATE:

is-known(pathologic-reason) AND
is-known(jaundice-clinically-significant) NOW

PLAN-BODY DO type=SEQUENTIALLY, wait-for ALL
pathologic-reason = no
Anamnesis-abnormal-signs
Blood-tests
Anamnesis-hemolytic-disease
Jaundice-determination

Fig. 3. Plan “Diagnostics-hyperbilirubinemia”.

PLAN Treatment-hyperbilirubinemia
INTENTIONS AVOID INTERMEDIATE-STATE:

bilirubin = toxic
ACHIEVE OVERALL STATE:
bilirubin = observation

PLAN-BODY DO type=PARALLEL, wait-for ONE
DO type=ANY-ORDER, wait-for ONE

Regular-treatments
ON-ABORT Exchange-transfusion

Exchange-transfusion
CYCLICAL-PLAN

DO type=SEQUENTIALLY, wait-for ALL
ask TSB-value
ask age-child

retry-delay min = 12 h, max = 24 h

Fig. 4. Plan “Treatment-hyperbilirubinemia”.

3.3 Benefits of Asbru Modelling: Detection of Protocol Anomalies

During the Asbru formalisation of this protocol, numerous anomalies became apparent.
In a general sense, we have used the term anomaly to refer to any issue preventing
a satisfactory interpretation of the original protocol. Below we give examples of the
different types of anomalies we found. For presentation purposes we have grouped them
into three general categories: ambiguity, incompleteness, inconsistency and redundancy.

5 The full XML version of the protocol can be found in http://www.protocure.org/.

From Informal Knowledge to Formal Logic 57

Examples of ambiguity: A problem we encountered during our modelling exercise
in jaundice was determining whether the terms “jaundiced”, “clinically jaundiced” and
“clinically significant jaundice by medical judgement” have the same meaning or not.
These are terms that are used in the flowchart form of the original protocol, but not
defined elsewhere. In the Asbru protocol these different terms are translated into the
single variable “jaundice-clinically-significant”. See, for instance, the intentions of plan
“Diagnostics-hyperbilirubinemia” in figure 3.

Examples of incompleteness: An example of incompleteness anomaly is the fol-
lowing: the original protocol contains a table with “factors to be considered when as-
sessing a jaundiced infant”. One of these factors is “Rapid increase in the TSB level
after 24-48 h”. However, what “rapid” exactly means is missing in the protocol. We
have solved this problem by looking for the information in other protocols, and have
given the rate value 0.5 mg/dl/h. This value is used e.g. in the filter condition of plan
“Check-for-rapid-TSB-increase” (see figure 5).

PLAN Check-for-rapid-TSB-increase
INTENTIONS ACHIEVE OVERALL-STATE:

is-known(possibility-of-G6PD) AND
is-known(possibility-of-hemolytic-disease)

CONDITIONS Filter: (TSB-decrease = no) NOW AND
(TSB-change > 0.5) NOW

PLAN-BODY DO type=SEQUENTIALLY, wait-for ALL
possibility-of-hemolytic-disease = yes
IF age = day2 THEN

possibility-of-G6PD = yes
Exit-possibility-of-G6PD

ELSE
possibility-of-G6PD = no
Exit-possibility-of-hemolytic-disease

Fig. 5. Plan “Check-for-rapid-TSB-increase”.

The rate of TSB increase is important for the treatment. The guideline says “Deter-
mination of the rate of rise of TSB and the infants age may help determine how often to
monitor bilirubin levels and whether to begin phototherapy”. To solve the imprecision
of this sentence, we interviewed an expert, who provided us with the information that
this monitoring should be done every 12-24 hours. This can be seen in the retry de-
lay specification of the cyclical part within “Treatment-hyperbilirubinemia” plan (see
figure 4).

Examples of inconsistency: We found an inconsistency concerning the applicabil-
ity of the guideline. The guideline is meant for “healthy newborns” according to the
title. The protocol specifies that “clinically jaundiced children of <= 24 hours old are
not considered healthy”. However, elsewhere in the protocol (in point 5 of the Evalua-
tion part), an action is advised for exactly these children (i.e. the children to whom the
protocol is not supposed to be applied): “A TSB level needs to be determined in infants
noted to be jaundiced in the first 24 hours of life”.

58 Mar Marcos et al.

The previous inconsistency occurs only in the text version of the guideline and not
in the flowchart form, where a simple exit condition is specified for these children. Our
Asbru protocol models this version of the guideline.

Redundancy: Another type of anomaly is redundancy. We did not find any occur-
rence of this type of anomaly in the jaundice protocol. However, we did find redundan-
cies during the Asbru modelling of a protocol for the management of diabetes mellitus
type 2, developed by the Dutch Association of General Practitioners6 [14].

To give a better idea of the extent of uncovered anomalies, some numbers follow
(see [15] for more details and examples). In the case of jaundice protocol, we found
1 ambiguity, 10 incompleteness anomalies, 6 inconsistencies and no redundancy. Re-
garding the diabetes protocol, we identified 4 ambiguities, 38 incompletenesses and 2
redundancies, but no inconsistency.

3.4 Experiences and Difficulties

Next we summarise the lessons learned during the modelling of the informal guideline
as an Asbru protocol. First of all, not all of Asbru’s features described in section 3 were
needed to model the protocol. This experience has been confirmed after the modelling
other protocols. In particular, the following Asbru constructs were never used: setup,
suspend and reactivate conditions, and effects. This has led us to the definition of Asbru-
Light, a strict subset of Asbru containing only the features used in our case-studies until
now.

Secondly, it was a significant surprise for us that even high quality protocols such as
the jaundice protocol of the AAP contain significant numbers of anomalies, including
serious problems such as inconsistencies. This already proves that the first step of our
formalisation process is worth the significant effort it takes.

Although it is not described in this paper, we have used an interpreter of Asbru-
Light to “debug” the jaundice protocol: by running the interpreter on case-data we could
check if the protocol behaved as intended. It turns out that using the interpreter is neces-
sary for improving the Asbru model. Of course, such a debug-run cycle is only possible
after the protocol has been sufficiently formalised.

A final observation is the significant increase in size when going from the informal,
original version of the protocol to the formal version thereof. The original 10 pages of
the AAP protocol turned into 40 subplans, taking about 18 pages in the intermediate
notation used in the figures above, and more than 2000 lines of XML in the machine
readable version of Asbru. We have observed the same effect in our other case-studies.

4 Formalising the Jaundice Protocol in KIV

In the second stage of our formalisation case-study we have used the KIV verification
tool [16]. KIV is an interactive theorem prover with strong proof support for higher
order logic and elaborate heuristics for automation. Currently, special proof support
for temporal logic and parallel programs is being added. In contrast to fully automatic

6 http://nhg.artsennet.nl/standaarden/M01/start.htm

From Informal Knowledge to Formal Logic 59

verification tools, the use of KIV interactive tool allows for the verification of large and
complex systems, as it has been shown by its application to a number of real-world
systems (distributed systems, control systems, etc.).

4.1 KIV

KIV supports the entire software development process, i.e. the specification, the imple-
mentation and the verification of software systems. Next we will briefly describe the
relevant aspects of KIV for Asbru specification and verification needs.

For specification, three aspects are important: specifications can be structured, and
both functional and operational system aspects can be described. A specification is bro-
ken down into smaller and more tractable components using structuring operations such
as union and enrichment, that can be used to combine more simple specifications. For
functional aspects, algebraic specifications are used to specify abstract data types.

Complex operational behaviour can be specified using parallel programs. Programs
in KIV can contain assignments (v := τ), conditionals (if ϕpl then ψ1 else ψ2),
loops (while ϕpl do ψ), local variables (var v = τ in ψ), nondeterministic choices
(choose ϕ or ψ), interleaving (ϕ || ψ) and synchronisation points (await ϕpl).

For a better support of Asbru, additional basic constructs have been implemented:
interrupts (break ψ if ϕpl), for modelling different plan conditions, and synchronous
parallel execution (ϕ ||s ψ), as well as any-order execution (ϕ ||a ψ), for a more direct
translation of plan bodies. With the help of these constructs, the main features of Asbru-
Light can be translated one to one. Others still need to be encoded using additional
program variables.

Concerning the verification, we use a variant of Interval Temporal Logic (ITL) [17]
to formulate properties about Asbru plans. This logic is first order and allows finite
and infinite intervals. In this paper we will restrict ourselves to the temporal operators
always (2 ϕ), eventually (3 ϕ), next (◦ ϕ), and last–which is true only in the last step of
an interval.

Single transitions are expressed as first order relations between unprimed and
primed variables (v and v′). A primed variable represents the value of the variable in
the next state. For example, the formula v = 0 ∧ (2 v′ = v + 1) → 3 v = n states that,
if variable v is initially 0, and the value v′ in the next state is always incremented by
one, then eventually the variable will be equal to an arbitrary natural number n.

In KIV, the proof technique for verifying parallel programs is symbolic execution
with induction. Details can be found in [18]. Since programs are treated as formulas
–for both, the semantics is a set of traces– they can be arbitrarily mixed. This gives
rise to a modular proof technique, which is very important for the verification of Asbru
plans as they tend to be large.

4.2 KIV Formalisation of Jaundice Protocol

In order to formally examine Asbru plans in a first attempt, we have translated them
into parallel programs. The translation of the Asbru model into KIV has been done in
a structure preserving way, by mapping each Asbru plan into a KIV specification. This

60 Mar Marcos et al.

has been possible thanks to the modularisation facilities that KIV provides. Thus, the
structure of the jaundice protocol in KIV roughly mirrors the Asbru model shown in
figure 2. This is one of the key ideas of our formalisation strategy, because it gives the
possibility to obtain some feedback from the specification and verification phases in
terms of the Asbru model, and to exploit this structure during proof attempts.

Following this idea, Asbru plans have to be translated into different types of KIV
programs. For the moment this translation has been performed manually. Table 1 gives
some of the translations of Asbru constructs into KIV programs that we have used in
this process.

Table 1. Translation of some Asbru constructs into KIV.

Asbru KIV
filter condition ϕ NOW body await ϕ; body
filter condition ϕ body if ϕ then body
complete condition ϕ body break body if ϕ
abort condition ϕ body break body if ϕ
<<name>> (plan activation) <<name>>#(...) (procedure call)
do type=sequentially P1,... Pn P1;... Pn
do type=any-order P1,... Pn P1 ||a ... Pn
do type=unordered P1,... Pn P1 ||s ... Pn
wait-for Pi body break body if some expression on Pi-state

The example in figure 6, corresponding to the plan “Diagnostics-
hyperbilirubinemia” of figure 3, serves to illustrate the kind of translations that have
been obtained. In this example we can see that the KIV translation closely follows
the structure of the original Asbru plan, except for an additional interrupt (break)
construct. This construct has been introduced to model the waiting strategy of the plan,
which is “wait-for ALL”. This implies that all the subplans must complete successfully
so that the parent plan can do so. Conversely, as soon as any of the subplans abort, the
parent will abort too. The latter has been modelled with the help of specific plan state
variables which are explicitly set within the subplans. Other translations, however,
did not result in a version so close to the Asbru plan. This is due to the encodings
necessary to represent the Asbru elements not directly supported by KIV.

Currently we are working on the verification of several protocol properties. Proper-
ties are expressed in the above described variant of ITL. For instance:

Diagnostics−hyperbilirubinemia#(. . .) ∧ (2 time′′ = time′ + 1) → 3 last

is a property expressing the termination of the previous program/Asbru plan. It states
that, if the programDiagnostics−hyperbilirubinemia is executed, it will stop some-
time in the future. The always formula in the antecedent is used to model the environ-
ment, in which time changes from one state to the next.

Termination of (sub)plans is a basic property necessary to prove the termination
of the protocol. Although it might seem a not very interesting property in itself, our

From Informal Knowledge to Formal Logic 61

Diagnostics-hyperbilirubinemia#(var patient-data, time,
jaundice-clinically-significant, pathologic-reason)

begin
var anamnesis-abnormal-signs-state = inactive,

blood-tests-state = inactive,
anamnesis-hemolytic-disease-state = inactive in begin

break begin
pathologic-reason := false;
anamnesis-abnormal-signs#(; time, pathologic-reason,

anamnesis-abnormal-signs-state);
blood-tests#(; patient-data, time, pathologic-reason,

blood-tests-state);
anamnesis-hemolytic-disease#(; time, pathologic-reason,

anamnesis-hemolytic-disease-state);
jaundice-determination#(; time, jaundice-clinically-significant)

end
if anamnesis-abnormal-signs-state = aborted
∨ blood-tests-state = aborted
∨ anamnesis-hemolytic-disease-state = aborted

end
end

Fig. 6. KIV translation of “Diagnostics-hyperbilirubinemia” plan.

experiences until now show that it can serve to identify assumptions implicitly made
in the protocol. These assumptions could be used e.g. to improve the description of the
applicability conditions of the original protocol.

Another promising property is ensuring that the intentions of a plan follow from
the intentions of its subplans. Although Asbru intentions are not included in the KIV
formulation, they can be used to verify if the composition of subplans complies with
what is intended in the plan.

As part of the IST Protocure7 project, we are investigating other properties more
significant from the medical point of view. Amongst them, we can cite the use of indi-
cators issued by medical organisations, which define a variety of features that specific
protocols should comply with.

4.3 Experiences and Difficulties

In the following paragraphs we briefly describe the experiences in the second stage of
our formalisation case-study, and in our first verification attempts.

First, the KIV formalisation step has taken considerably less effort than the Asbru
modelling one. This is mainly due to the structure preserving strategy we have followed.
Thanks to it, the formalisation roughly consists in the translation of Asbru plans into
KIV procedures.

Second, concerning this translation, a limitation of the current approach is that it
is not automatic. Besides, in some cases it requires many creative tricks to adequately

7 http://www.protocure.org/

62 Mar Marcos et al.

encode the Asbru constructs not directly supported by KIV. As result, sometimes the
KIV translation suffers from a weak resemblance to the initial Asbru protocol. These
problems will be solved if verification turns out to be profitable, by means of a direct
KIV support of Asbru syntax allowing for a direct translation of arbitrary Asbru models.

We cannot strictly say that the formalisation in KIV has contributed to the improve-
ment of the original protocol, as in the case of its Asbru modelling. As for the verifi-
cation, after the completion of the first proofs we can say that it is feasible and that it
serves to detect implicit knowledge, such as underlying assumptions. We are confident
that it is possible to use the jaundice formalisation and KIV for the verification of more
significant properties like the ones mentioned before, which could actually be used to
improve the original protocol.

5 Conclusions

It is of course well known that many forms of knowledge can be represented in lan-
guages that are formalised to a certain extent. Indeed this is the entire premise of fields
such as knowledge engineering and knowledge representation. However, we would ar-
gue that it is a non-trivial result that is has turned out to be feasible to formalise a
significant piece of realistic medical knowledge to such an amount of detail that it can
be used as the basis for mechanised theorem proving (a much greater level of formality
than is used even in common mathematical publications). This shows that the tradi-
tional gap between practical knowledge engineering and academic formal knowledge
representation can indeed be bridged even for realistic applications.

Naturally, such an achievement comes at a price: a significant amount of effort is
required for such a formalisation effort. Although we are not in a position to make
strong quantitative statements, the case-study reported has taken close to a person-year
to complete.

However, we would argue that this price is worth paying. A number of anomalies
were uncovered in the original medical guideline, even though this guideline is repre-
sentative of the best quality that the medical profession can offer. All of these anomalies
were uncovered in the first stage of our formalisation (from original guideline to As-
bru). The most important contribution of the second stage of our formalisation (from
Asbru to KIV) until now has been to disambiguate any remaining unclarities in the As-
bru model that resulted from the first stage: a number of semantic problems with Asbru
were uncovered, and finally resolved by providing a fully formal semantics of Asbru
in KIV. To date, we have only very limited experience in using the KIV formalisation
in formal proofs of properties of the protocol. We expect that this usage of KIV will
uncover further anomalies in the protocol.

A final observation is that of the two steps in our formalisation process (from orig-
inal guideline to Asbru, and from Asbru to KIV), the first step was by far the most
labour intensive. This step involved most of the conceptual analysis that was required
for the formalisation. Consequently, we would argue that this stage of the formalisation
process would benefit from being split up in a number of smaller steps, each yielding
its own model, in ever increasing degrees of formality.

From Informal Knowledge to Formal Logic 63

Acknowledgements

This work has been partially supported by the European Commission’s IST program,
under contract number IST-2001-33049–Protocure. We also want to thank Hugo
Roomans and Geert Berger, for their contribution to the Asbru modelling of the
jaundice protocol, Tibor Bosse, for his work on the interpreter of Asbru-Light and his
efforts in debugging the protocol, and all other Protocure members: Silvia Miksch,
Andreas Seyfang, Wolfgang Reif, Cristoph Duelli, Kitty Rosenbrand, Joyce van
Croonenborg, and Peter Lucas.

References

[1] Weingarten, S.: Using Practice Guideline Compendiums To Provide Better Preventive Care.
Annals of Internal Medicine 130 (1999) 454–458

[2] Field, M., Lohr, K., eds.: Clinical Practice Guidelines: Directions for a New Program.
National Academy Press, Washington D.C., USA (1992)

[3] Woolf, S., Grol, R., Hutchinson, A., Eccles, M., Grimshaw, J.: Potential benefits, limita-
tions, and harms of clinical guidelines. British Medical Journal 318 (1999) 527–530

[4] Clayton, P., Hripsak, G.: Decision support in healthcare. Int. J. of Biomedical Computing
39 (1995) 59–66

[5] Graham, I., Calder, L., Hébert, P., Carter, A., Tetroe, J.: A comparison of clinical practice
guideline appraisal instruments. International Journal of Technology Assessment in Health
Care 16 (2000) 1024–1038

[6] Musen, M., Rohn, J., Fagan, L., Shortliffe, E.: Knowledge engineering for a clinical trial
advice system: Uncovering errors in protocol specification. Bulletin du Cancer 74 (1987)
291–296

[7] AAP: American Academy of Pediatrics, Provisional Committee for Quality Improvement
and Subcommittee on Hyperbilirubinemia. Practice parameter: management of hyperbiliru-
binemia in the healthy term newborn. Pediatrics 94 (1994) 558–565

[8] Elkin, P., Peleg, M., Lacson, R., Bernstam, E., Tu, S., Boxwala, A., Greenes, R., Shortliffe,
E.: Toward Standardization of Electronic Guidelines. MD Computing 17 (2000) 39–44

[9] Miksch, S.: Plan Management in the Medical Domain. AI Communications 12 (1999)
209–235

[10] Ohno-Machado, L., Gennari, J., Murphy, S., Jain, N., Tu, S., Oliver, D., Pattison-Gordon,
E., Greenes, R., Shortliffe, E., Octo Barnett, G.: Guideline Interchange Format: a model
for representing guidelines. J. of the American Medical Informatics Association 5 (1998)
357–372

[11] Fox, J., Johns, N., Lyons, C., Rahmanzadeh, A., Thomson, R., Wilson, P.: PROforma: a
general technology for clinical decision support systems. Computer Methods and Programs
in Biomedicine 54 (1997) 59–67

[12] Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project: a task-specific framework for
the application and critiquing of time-oriented clinical guidelines. Artificial Intelligence in
Medicine 14 (1998) 29–51

[13] Roomans, H., Berger, G., Marcos, M., ten Teije, A., Seyfang, A., van Harmelen, F.: As-
bru Protocol for the Management of Hyperbilirubinemia in the Healthy Term Newborn.
Technical Report IR-495, Vrije Universiteit Amsterdam (2002) To be published.

[14] Rutten, G., Verhoeven, S., Heine, R., de Grauw, W., Cromme, P., Reenders, K., van Bal-
legooie, E., Wiersma, T.: NHG-Standaard Diabetes Mellitus Type 2 (eerste herziening).
Huisarts en Wetenschap 42 (1999) 67–84 First revision.

64 Mar Marcos et al.

[15] Marcos, M., Roomans, H., ten Teije, A., van Harmelen, F.: Improving medical protocols
through formalisation: a case study. In: Session on Formal Methods in Healthcare, 6th
International Conference on Integrated Design and Process Technology (IDPT-02). (2002)

[16] Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system development
with KIV. In Maibaum, T., ed.: Fundamental Approaches to Software Engineering. Number
1783 in LNCS, Springer (2000)

[17] Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. IEEE Com-
puter 18 (1985) 10–19

[18] Balser, M., Duelli, C., Reif, W., Schellhorn, G.: Verifying concurrent systems with sym-
bolic execution. Journal of Logic and Computation (Special Issue) (2002)

KMsim: A Meta-modelling Approach and Environment
for Creating Process-Oriented Knowledge Management

Simulations

Anjo Anjewierden1, Irina Shostak2, and Robert de Hoog1,2

1 Social Science Informatics, University of Amsterdam,
Roetersstraat 15, 1018 WB Amsterdam, The Netherlands,

anjo@swi.psy.uva.nl
2 Faculty of Educational Science and Technology, University of Twente,

PO Box 217, 7500 AE Enschede, The Netherlands,
{shostak,hoog}@edte.utwente.nl

Abstract. This paper presents a new approach to modelling process-oriented
knowledge management (KM) and describes a simulation environment (called
KMSIM) that embodies the approach. Since the beginning of modelling researchers
have been looking for better and novel ways to model systems and to use appro-
priate software to create simulations. The application of the approach and KM-
SIM make it possible to create realistic business models (BMs) and simulate the
consequences of KM interventions and events. The validity of the approach and
tools is being evaluated in the game KM Quest.

1 Introduction

With the ever growing interest for knowledge management, it is unavoidable that the
demand for a more formal approach increases in parallel. After the first flush of ideas,
whose main function it was to create awareness, more precise and hands-on methods
are called for (see for example [9]). This holds in particular for models that show how
knowledge and knowledge processes can influence organisational effectiveness (see [5],
[4] and [8]). This “show how” becomes even more valuable when these influences can
be simulated in a business model (BM), as this is the only way one can capture and
understand the dynamics of knowledge. The need for modelling and simulating knowl-
edge management relevant business models raises the question whether additional tools
are required beyond the standard simulation environments already available.

This paper describes KMSIM, a set of tools which have been specifically designed
to support creating and simulating knowledge management relevant business models. It
is argued that the need for these tools can be derived from the nature of knowledge man-
agement as a discipline, the peculiar properties of knowledge relevant business models
and the intended users of the tools. The tools were developed in the context of the
KITS project. The goal of this project is to develop a comprehensive game-based col-
laborative learning environment for knowledge management called KM Quest [1]. An
essential part of this environment is a knowledge management relevant business model
that simulates the behaviour of a (fictitious) company. This model has been developed
and partly validated with the tools described in this paper.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 65–79, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

66 Anjo Anjewierden, Irina Shostak, and Robert de Hoog

The paper consists of four sections. In Sect. 2 the factors driving the need for a
specific and new set of tools are discussed. Sect. 3 describes the architecture of the
simulation environment based on the requirements. The last two sections describe the
functionality provided by the tools from the point of view of creating business models
(Sect. 4) and simulating and validating these models (Sect. 5).

Acknowledgements We would like to thank the three anonymous reviewers whose
comments we have tried to take into account. Work partially supported by the European
Community under the Information Society Technology (IST) RTD programme, con-
tract IST-1999-13078 (KITS). The authors are solely responsible for the content of this
article. It does not represent the opinion of the European Community, and the European
Community is not responsible for any use that might be made of data appearing herein.
Partners in the KITS project are University of Twente (NL), University of Amsterdam
(NL), CIBIT (NL), ECLO (UK), Tecnopolis (I) and EADS (F).

2 Factors Driving the Design of the Tools

2.1 Knowledge Management Has an “Object”

Knowledge management, as a branch of general management disciplines, has an “ob-
ject” that is different from the “objects” that are the focus of other sub-disciplines. There
are many simulation environments that allow one to model various kinds of business
processes, including manufacturing, public systems, and service systems simulations
(for example Powersim R©). Most environments, however, do not provide for treating
knowledge as a simulated entity. Rather, in these environments the simulated entities
are the implicit result of applying knowledge in a specific domain. Knowledge is not
considered an object on which different actions can be applied, for example to model
“stocks” and “flows” of knowledge.

To illustrate this idea, consider a manufacturing simulation which allows one to get
answers to questions like “How can work-in-process inventory and cycle time be re-
duced while increasing throughput?” or “When should the next piece of equipment be
purchased and how many people are needed to work with this equipment?” In this simu-
lation knowledge about manufacturing processes is applied while simulating inventory,
amount of labour, time are not taken as a simulated entity in contrast to knowledge man-
agement simulations. “Stocks” and “flows” of domain-specific knowledge compose the
area of interest of KM simulations. For KM simulations it is important to quantify, mea-
sure and model “manufacturing knowledge” as a simulated entity, which can be done by
introducing variables such as level of competence in manufacturing and speed of knowl-
edge gain in manufacturing. As an example of one of the first knowledge management
simulations we can mention Tango! [2]. Apparently the business model underlying this
simulation does not handle knowledge as a separate entity, but operates directly through
employees on key performance indicators of a company. So, the nature of the object of
knowledge management in terms of stocks and flows requires a set of tools that al-
lows the modeller of the knowledge management relevant business to map the “paper”
representation of this model with a minimum of effort on a simulation engine.

KMsim: A Meta-modelling Approach and Environment 67

2.2 Nature of the Knowledge Management Relevant Business Model

The model that is introduced in this paper was developed for KM training and is applied
in the game KM Quest. To support this function the business model should satisfy the
following basic principles:

– A business units’ output depends on the level of knowledge and the level of knowl-
edge usage (or utilisation). The output of work would be more valuable if people in
the company possess better and use/apply (more recent, novel, advanced) knowl-
edge. However this result could be counteracted by non-effective organisation of
work processes, and vice versa. The ideal situation consists of effective organisa-
tion of work processes and highly skilled, highly knowledgeable employees.

– Certain changes outside or inside a company should influence its knowledge house-
hold – individual and organisational knowledge.

– An important assumption is that knowledge can be seen as a quantifiable object and
can be measured in relative terms.

– There is a natural depreciation of knowledge due to volatility, instability, and ageing
of knowledge. If in a company nobody takes care of renewal, gaining, and retention
of knowledge, the company will in the long run not be able to compete with market
conditions.

These considerations play a fundamental role in our modelling approach. Thus, in
the model knowledge “stocks” are introduced as the level of competence(s) and knowl-
edge “flows” are introduced as the efficiency of processes involving knowledge, such
as knowledge gaining, development, utilisation, transfer, and retention.

Simply stated, any event that happens outside or inside the company and any inter-
ventions taken inside the company can have an influence on the knowledge processes
– knowledge flows. These also influence the “state” of knowledge in the organisation –
knowledge stocks, which influence business processes and determine their quality. Fi-
nally, the business processes contribute and generate the values of the key organisational
effectiveness variables like profit and market share.

Based on what has been said above, our modelling approach resulted in a four-level
model consisting of:

Organisational effectiveness variables These variables reflect the competitive char-
acteristics of the company and are represented by variables like market share, profit,
level of sales and so on.

Business processes related variables These reflect the quality of internal processes
and “how well” work is done within the company. Examples are: average time of
bringing a new product to the market and production level.

Knowledge related variables These variables reflect the relevant knowledge domains
(e.g. marketing, research, production) and represent the level of competence in each
domain.

Knowledge processes related variables Reflect the properties of processes involving
knowledge in the organisation (e.g., speed of knowledge gaining, effectiveness of
knowledge transfer).

68 Anjo Anjewierden, Irina Shostak, and Robert de Hoog

Organisational effectiveness variables

Business process related variables

Knowledge related variables

Knowledge process related variables

Internal
events

KM
interventions

External
events

Fig. 1. Conceptual structure of the business model

The general structure of this knowledge management relevant business model is
shown in Fig. 1.

Events and interventions are important components of the model. In our view, events
are any changes outside or inside a company that happen independently from manage-
ment of a company. Interventions are actions taken by management in order to prevent
or to react to events and are aimed at improving the knowledge household of a company.
These interventions become knowledge management interventions and differ from man-
agerial interventions by its operational object(s).

However, knowledge is something that is difficult to measure in absolute terms. So,
it is impossible to perform actions that (immediately) increase the “amount” of knowl-
edge, i.e. quantitative characteristics of knowledge. On the other hand, it is relevant and
possible to change the quantity of other objects such as raw materials, time, amount of
labour, investments, which are the subjects of other managerial interventions. One can
argue that managerial decisions concern not only these tangible, physical objects, but
also include decisions about strategic development, market policy and strategies, part-
nership policy, and so on. Those decisions are qualitative and based on and impacting
knowledge that is needed for a company to improve its value. Simpler examples include
the decisions to conduct training programmes or ICT implementation. Those decisions
lead to qualitative changes in the organisation and, in many cases, cannot be measured
directly and more importantly they affect the knowledge household.

KMsim: A Meta-modelling Approach and Environment 69

As a consequence we should treat interventions not as a quantitative, but as qualita-
tive entities and which require a very specific implementation in the simulation.

Summarizing what was discussed above and referring to the classification of models
[6], and the types of interactions that can occur between discretely changing and con-
tinuously changing state variables [7], both discrete and continuous components must
be present in our simulation model, in particular the ones listed below:

– State variables change continuously with respect to time. Knowledge related vari-
ables exhibit decay behaviour and consequently influence the state of other types
of variables;

– Discrete events (in our terminology - events and KM interventions) cause discrete
changes in the value of continuous state variables;

– Continuous state variables achieving threshold values may cause a discrete event
to occur. Threshold values of knowledge related variables could be conditioned to
enable occurrence of several events. This feature of the model is relevant for the
game and probably not applicable in reality, since events are unpredictable in many
cases. Despite this fact, events still can be generated to consider several scenarios.

In addition we assume that the state of the business is never monitored on a perma-
nent basis as is done both on aircraft and in many industrial processes. Usually some
kind of reporting takes place at fixed points in time (monthly, quarterly, yearly). This
should also be reflected in the model: it should be able to provide reports about relevant
variables at pre-determined time intervals.

2.3 Practical Requirements for Tool Support

Apart from factors derived from the topic (knowledge management) and the business
model, also factors reflecting the intended users of a tool are important. In general,
the quality of a tool depends to a large extent on how the vocabulary of the user is
made available in terms of tool functionality. The operationalisation of the functionality
should be hidden from the user as much as possible.

In the KM Quest context the main concern is the need for modifying business mod-
els. As only rarely a single model can serve different purposes, one expects that people
want to tailor a model to their own organisational context or even build an entirely new
model. People having the knowledge to modify or build those models, usually don’t
have the skills needed to implement it in a simulation engine. Thus what is needed
is a fairly simple and easy to learn way of creating running simulations. The techni-
cal skills we expect from users are more or less similar to the skills needed to use
spreadsheets. Satisfying this requirement makes it possible that a business model can
be created or modified, and simulated interactively without any technical training. Some
further, more detailed, requirements are:

– Dedicated support for creating, modifying and maintaining BMs, interventions and
events

– Vocabulary of the BM modeller and the tools is identical
– No limits in terms of complexity of the model and all common mathematical mod-

elling constructs

70 Anjo Anjewierden, Irina Shostak, and Robert de Hoog

– Automatic error detection where possible
– Extensive support for simulation, visualisation and validation

We are not aware of an existing simulation environment that is sufficiently close to
what our model requires, in particular the notion of interventions and events acting on
the BM variables. Using a general purpose simulation or programming environment is
not an option, given the intended users.

From a historical point of view, we would like to note that in the KITS project
initially extensive tool support was not deemed necessary. It soon became apparent
that the nature of BMs in general and the additional complexities of connecting KM
interventions to such BMs made dedicated tool support a necessity.

3 Architecture

In this section we provide an overview of the architecture of the tools. The main archi-
tectural decision is to maintain two representations of the BM. The first representation is
a specification in terms of the meta-model. This specification can be edited and browsed
by a set of model entry tools. The second representation is operational, and is a transla-
tion of the specification into storage, computational statements and control structures.
The operational representation, called the BM engine, computes successive states of the
BM and is used by the simulation and validation tools. Obviously, the translation from
specification to engine is completely transparent to the user (Fig. 2).

BM
specification

compilation

BM
engine

model entry
tools

simulation
tools

Fig. 2. Representations and tools involved in the architecture of KMSIM

The requirements are realised in detail through seven tools which are briefly de-
scribed below. There is an additional tool to make the BM engine available as a server
over the internet, following from a requirement of KM Quest. All tools are implemented
in XPCE-Prolog [10].

Model entry (three tools) A BM can be created, modified and viewed using three
model entry tools for the variables, interventions and events respectively (Sect. 4).

KMsim: A Meta-modelling Approach and Environment 71

These tools allow the specification of the BM in terms the modeller will be fa-
miliar with: status of variables, ranges, constraints on variable values, notions of
decay and depreciation, influence over time, delay and effects of interventions and
events. In addition, some administrative aspects can be entered (domain within the
company, precision for visualisation, description).

Charts design Charts are an important way to convey values of BM variables to the
user. A high-level chart design tool supports the definition of visually attractive
charts. The simulation tool automatically links values to the charts. The charts de-
sign tool is not further discussed in this paper.

Simulation Interaction between a user (model developer, validator, game player) and
the BM is possible in a simulation tool (Sect. 5). The user can activate and de-
activate interventions, issue events and view the effects on the BM variables as
charts, numerically (HTML, XML) or as a comprehensive visualisation of all knowl-
edge process related variables (called the knowledge map).

Validation and tuning support A very important aspect of a simulation environment
is to provide assistance for tuning and validating the model. These tasks are sup-
ported by a tuning tool (which randomly generates events and interventions and
checks whether user defined assertions are met) and a tool that traces the behaviour
of the model graphically (Sect. 5.2).

Embedding A special version of the BM engine, called the BM server, can be run as
a server on the internet in which it communicates using XML as input (specifying
events and interventions) and outputs the BM state in XML and charts as bitmapped
images. The BM server is used as part of KM Quest.

BM interventions

events

BM entry and simulation tools

model
developer

events and interventions

visualisation
definitions

model state

visualisations

visualisation
designer

validator /
end user

model entry tool
intervention tool
event tool

chart design tool

simulation tool
tuning tool

validation tool

Fig. 3. Tools in KMSIM as seen from the roles of those interacting with them

Fig. 3 shows the roles of the various users involved with the tools. The model de-
veloper uses the model entry tools to create a BM and associate KM interventions and
events with the BM. A visualisation designer defines how variables in the model are
shown to the user. The validator uses the the simulation, tuning and validation tools to
verify the correctness of the BM. Often the model developer and the validator will be

72 Anjo Anjewierden, Irina Shostak, and Robert de Hoog

the same person. And finally, the end user interacts with the BM engine embedded in
the KM Quest game.

4 Model Entry Tools

The “core” BM represents a model of a company. The variables part of the BM are
related to the business process (e.g. production level, number of employees), the knowl-
edge process (e.g. competence in marketing), and the organisational effectiveness (prof-
it, market share). The relations between these variables are such that the organisational
effectiveness of the company deteriorates (decay) when no attempts are made to im-
prove the knowledge process through interventions.

BP

I

KP

BP

I I

KPKP

BP

Intervention

Business process

Knowledge process

Input variables

Fig. 4. Interventions (and events) influence input variables, which in turn influence the
knowledge process variables and business process.

The link between the “core” BM and the knowledge management interventions and
events is represented by a set of input variables. A “complete” BM therefore consists of
the “core” BM and the input variables (see also Fig. 4). Because there are no randomised
elements in the BM, it will always display the same behaviour when no interventions
are implemented and no events occur.

Interventions and events are defined in terms of how they affect the input variables.1

This makes it possible to define interventions and events independently of the BM. A
BM that can be simulated therefore requires: (1) a BM consisting of variables repre-
senting the business and knowledge processes, input variables that distribute the effects

1 External events can also affect the organisational effectiveness variables directly, for example
when a competitor brings an innovative product to the market and thereby gains market share.

KMsim: A Meta-modelling Approach and Environment 73

of interventions and events over knowledge process variables; (2) a set of interventions;
and (3) a set of events. Different simulations can be created by replacing the interven-
tions and/or events, without changing the BM.

4.1 Business Model Entry Tool

The BM entry tool supports the creation and modification of a business model. Each
variable in the model has several attributes (see Fig. 5) defined in an ontology. Most of
the concepts in this ontology are fixed, some, for example the domains in the company
(marketing, research) can be changed by the user. One of the attributes is a formula
which explicitly specifies how the value of the variable is computed and implicitly
defines the influence relation between variables. An important aspect of the nature of
the BM is the notion of time. This is modelled in discrete periods, which are called
cycles in the tool.

The initial state of the model (cycle 0) is bootstrapped by computing constants. The
constants represent a particular business case and can be used to “scale” the model for
companies of various sizes or currencies.

Fig. 5. Business model entry tool

A subsequent state of the model is computed by ordering the variables on their
dependency on other variables. Once all dependent variables are computed, the formula
associated with a variable is applied by the BM engine. Some examples of how BM
notions are mapped onto formulae are given below:

Decay As explained in Sect. 2 the decay of knowledge process variables is fundamen-
tal to our meta-model. We can model the decay of knowledge utilisation with the

74 Anjo Anjewierden, Irina Shostak, and Robert de Hoog

formula KU = KU * C1 (where C1 is a constant, e.g. C1 = 0.94). The BM
engine translates this formula to KUc = KUc−1 ∗ C1, where KUc stands for the
value of KU in the current cycle and KUc−1 for the value in the previous cycle.
Because of the propagation of values from knowledge process (via knowledge and
business process variables) to organisational effectiveness, the overall performance
of the company will also exhibit decay.

Propagation of influence An example of influence between variables is the formula
for competence in marketing: CM = KG + KD + KR. The level of competence
depends on knowledge gain (KG), development (KD) and retention (KR). Here, all
variables are computed using the same cycle, which implies that KG, KD and KR
have to be computed first and that the computation is CMc = KGc+KDc+KRc.
A visualisation of influences and computation order can be seen in Fig. 8.

Relative change and delayed influence Relative change and delayed influence can be
computed by referring to a previous cycle using the notation V - V[-1] which
is the difference between the value during the current and the previous cycle (com-
putationally Vc − Vc−1).

Constrained values Values can be constrained by other values. For example, the sales
level is constrained by the production level and sales level based on market share
(see example in Fig. 5).

Depreciation Depreciation is an extreme case as it specifies decay in the future. For ex-
ample, patents expire after some time. In the BM, depreciation is specified through
a special function and the BM engine automatically subtracts the values for future
cycles.

Scaling and natural constraints The knowledge process variables are scaled to lie be-
tween 1 and 10, this is specified in the min and max attributes of a variable. Simi-
larly, market share has the natural constraint to lie between 0 and 100%.

Formulae may contain all common mathematical, conditional, comparison and log-
ical operators.

The formulae are “hypotheses” about the relative dependencies that have to be tested
by simulation, they are partly based on ideas from the literature. Defining the formulaes
is obviously part of the knowledge acquisition problem the tools support.

4.2 Intervention and Event Entry Tools

Interventions (Fig. 6) and events consist of a control and a computational part. The con-
trol part states whether the intervention or event is possible and the computational part
states which input variables (see Fig. 4) are affected. Events are slightly more compli-
cated than interventions as they may depend on the current state of the model, whereas
interventions do not. For example, the event “intranet breaks down” requires that the
model is in a state in which the intranet is installed (through an intervention). Events
therefore may have enabling and disabling conditions. If these conditions are not spec-
ified, the event can always occur. Otherwise interventions and events are specified in
precisely the same manner and we will only consider interventions in this section.

KMsim: A Meta-modelling Approach and Environment 75

Fig. 6. Intervention entry tool

The control and computational aspects of interventions are:

Control aspects The control aspects deal with the possibility, frequency and duration
of an intervention. An intervention can be unavailable because it has already been
implemented (e.g. installing an intranet). An intervention can be implemented a
limited number of times (Max), there has to be some time between subsequent im-
plementations (Periods) or the intervention is automatically removed after a certain
number of cycles (Remove after).

Computational aspects For each input variable (middle browser in Fig. 6) affected
by an intervention, the effect has to be specified. Unfortunately, a simple formula
does not suffice here, as the effect may be distributed over time in complicated
ways. For example, installing an intranet has immediate effect on expenses (i.e.
buying equipment), but there are additional expenses periodically (i.e. hiring staff
to maintain the intranet). The effect of interventions (and events) is specified using
the following vocabulary:

Delay Many of the KM interventions do not take immediate effect, there is a delay
of some cycles.

Initial effect The initial effect of an intervention is usually positive (e.g. knowl-
edge development increases).

Next effect But, this effect disappears completely or partially.
Repeat and repeat effect Effects can repeat every so many cycles (e.g. paying for

subscriptions).

The BM engine treats the effects of interventions similarly to depreciation. When
an intervention is implemented the future changes to the input variables are computed
and these values are used when computing subsequent states of the model. These future
effects are not applied when an intervention is undone.

76 Anjo Anjewierden, Irina Shostak, and Robert de Hoog

It may now also be apparent why existing simulation environments could not be
used. The value of a variable depends on its formula, the cumulative effects of interven-
tions and events, and depreciations.

5 Simulation and Validation

In the previous section we have described how to create a BM in KMSIM and how the
BM engine computes subsequent states. Crunching out the numbers is, however, only
part of the simulation.

Fig. 7. Simulation tool. The two clickable browsers on the left display the events and
interventions. Colour coding is used to indicate whether they are possible or active. The
results are shown on the right. At the bottom are controls to run a simulation.

5.1 Simulation

There are often several reasons for simulating a BM. The BM modeller needs simulation
to study the effects of interventions and events on the behaviour of the model. The main
motivation for simulation for the BM modeller is to validate and tune the model.

In KM Quest the learner is only provided with a partial picture. The learner can
ask for the past values of output variables (organisational effectiveness and business
process) which are displayed using charts defined by the chart design tool. A complete
simulation involves a little more. The state of the model at any point in time includes
the values of the BM variables and the status of interventions and events.

KMsim: A Meta-modelling Approach and Environment 77

Fig. 7 shows the interactive simulation tool. The status of interventions and events
(active, possible) is displayed using a colour coding scheme. When validating the model
developer uses the simulation tool to implement interventions and to issue events. The
tool can visualise the BM variables in various ways: they can be shown in charts, as
HTML tables (for later reference) or as a so called knowledge map.

5.2 Validation and Tuning

Visualising the BM itself is mainly useful for the model developer. The most obvious
visualisation is a graph that displays the influence relations between variables (Fig. 8).

Fig. 8. Influence graph. Vertices represent variables (I=input, S=state, O=output) and
edges represent influence. Colour is used to indicate whether the variable reflects or-
ganisational effectiveness, business process, knowledge process or knowledge.

For compactness, the graph is displayed as a sphere where influence extends inwards.
Algorithms to draw such graphs dynamically can be found in [3]. The vertices in the
graph are colour coded and indicate the status of the variable. The visualisation makes
the organisation of the meta-model clear. The outer ring contains the input variables

78 Anjo Anjewierden, Irina Shostak, and Robert de Hoog

(which are influenced by interventions and events), the second ring mainly contains
knowledge variables and the inner rings contain the business process and organisational
effectiveness variables (for some reason Profit is in the centre). The graph has turned
out to be a very powerful tool for finding “obvious” errors in the model.

Fig. 9 shows a simulation of an intervention; note the use of KMSIM’s visualisation
features. The vertices again represent variables in the BM. On the left are the input
variables affected by the selected intervention and all vertices are decorated with a
symbol indicating the value relative to not implementing the intervention. For example,
Profit (on the very right) is lower (H) as a result of the intervention, whereas most other
variables are higher (N) or the same (•).

Although the validation tools are aimed at validating and tuning the BM, they also
turned out to be of practical value for finding errors in the implementation of the BM
engine.

Fig. 9. Validating an intervention

6 Conclusions

The designer of tools is caught between the devil and the deep blue sea when faced with
the choice between generality and specificity. Making a tool very general increases its
applicability but decreases its support for the user because it will contain less “content”
about the application domain. Making it very specific decreases its applicability because
it can only be used in a well defined limited context but increases its support for the user
because it will contain more “content” about the application domain.

The natural tendency is to go for generality: this will appeal to a larger market. As
a consequence many simulation support tools are not too far removed from ordinary

KMsim: A Meta-modelling Approach and Environment 79

“visual” programming tools (e.g. Powersim R©2), which makes them still difficult to use
for domain experts without any programming experience. From a knowledge acquisi-
tion and knowledge creation perspective these domain experts are the people who really
matter. In domains where acquiring and creating knowledge by means of systematic
empirical investigations is either very time consuming, hard or dangerous, simulation
is the preferred way to validate theoretical models on their plausibility. So, supporting
domain experts in areas where these kind of limitations apply with easy-to-use tools for
building, inspecting and running simulated versions of their models, can be seen as a
key area for knowledge acquisition. By necessity tools that serve this purpose will be
on the “specific” side of the continuum outlined above. In our domain this specificity is
derived from the nature of the domain, the nature of the models that must be build and
the intended users.

The domain described in this paper, knowledge management, and the tools devel-
oped are a clear demonstration of the power of this approach. Of course, more experi-
ence with the toolset is needed. For example, the range of users should be expanded,
more research has to be done concerning actual ease of use, flexibility over a wide range
of different business model types will be investigated. However, the application of the
tool in the KITS project has significantly speeded up the creation and validation of a
critical aspect of the learning environment: the business model represents in an active
way the company the learning is dealing with. At the same time, the availability of the
tools will make creating versions of the business model, fitting very specific require-
ments, much easier and this will contribute to the commercial value of the KM Quest
environment.

References

[1] KMQuest simulation. See for more information www.kmquest.com.
[2] Tango! simulation. See for more information www.tangonow.net.
[3] G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Graph drawing: Algorithms for the

visualization of graphs. Prentice-Hall, Upper Sadle River, 1999.
[4] T.J. Beckman. The current state of knowledge management. In J. Liebowitz, editor, The

knowledge management handbook, pages 1.1–1.22. CRC Press, Boca Raton, 1999.
[5] T.H. Davenport. Knowledge management and the broader firm: strategy, advantage and

performance. In J. Liebowitz, editor, The knowledge management handbook, pages 2.1–
2.11. CRC Press, Boca Raton, 1999.

[6] A. Law and W. David Kelton. Simulation modeling and analysis. McGraw-Hill, Boston,
2000.

[7] A. Pritsker. Introduction to Simulation and SLAM II. John Wiley, New York, 1995.
[8] R. Reinhardt. Knowledge management: linking theory with practice. In D. Morey, M. May-

bury, and B. Thuraisingham, editors, Knowledge management: Classic and contemporary
work, pages 187–221. MIT Press, Cambridge, Mass, 2000.

[9] A. Tiwana. The knowledge management toolkit: Practical techniques for building a knowl-
edge management system. Prentice-Hall, Upper Sadle River, 2000.

[10] J. Wielemaker and A. Anjewierden. Programming in XPCE-Prolog. Available from
www.swi-prolog.org, 2002.

2 It should be mentioned that this environment also has a kind of “meta-model”: system dynam-
ics.

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 80-95, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Skills Management in Knowledge-Intensive
Organizations

V. Richard Benjamins, JosØ Manuel López Cobo, Jesœs Contreras, Joaquín Casillas,
Juan Blasco, Blanca de Otto, Juli García, Mercedes BlÆzquez, Juan Manuel Dodero

Intelligent Software Components, S.A.
Spain

www.isoco.com
{richard, ozelin, jcontreras}@isoco.com

Abstract. In order for organizations to survive on increasingly competitive and
global markets, adequate management of intellectual capital is essential.
Although increasingly more information is found in electronic formats, turning
this information into valuable knowledge is still the responsibility of people by
applying it in professional situations to generate value. In this paper, we
describe an approach and software tool to accompany organizations in the
Knowledge Economy, where intellectual capital is the principal asset for
organizations. In our approach we view people as sellers of knowledge, while
departments, projects, profiles, and organizations are viewed as knowledge
buyers. Together they constitute a knowledge market where the goods to be
traded are competencies. The identification of knowledge gaps forms an
important event to undertake action to compensate for the lack of competencies
(training, new hiring, promoting, etc.).

1 Introduction

We are in the midst of the Knowledge Economy [10]. Although intellectual capital
does not (yet) appear on companies� yearly balance sheets, and it is not subject to
audits, many organizations recognize that intellectual capital is among their most
strategic assets. Intellectual capital mostly resides in people in terms of their
expertise, skills, and experience. This is one of the reasons for the high acquisition
prices that are paid for companies whose main asset are very smart people.

The success of any company depends on the clever definition of its strategy (select
market, define products and services, fix size and resources, select alliances, etc.) and
the capacity to intelligently execute it (involving people, technology and processes,
etc.). This paper contributes to improving the people and technology part.
Management of skills [6], [1], [8] is an important tool to maintain the balance in real
time between the needs of an organization and the capacities of its people (time-to-
competency).
�If we only knew what we know�, Jerry Junkins, CEO of Texas Instruments, said. An
organization that is capable of knowing what skills it possesses, is able to better adapt
to the ever-changing environment in which we operate today. �Do we have the right

 Skills Management in Knowledge-Intensive Organizations 81

skills to face the coming technological changes?� �Do we need to acquire another
company in light of the new UMTS technology?� �Is our Paris office as prepared for
B2B business as our London office?� Those types of questions are bothering top
management on a frequent basis. However, not only at a strategic level such insights
are important, also at a more tactical level we can identify many benefits. For
example, improving the process to find the optimal (in terms of knowledge) person
for a particular task or project, taking into account such constraints as availability,
interests, experience, office base, etc. Or, to support the decision with real time
information whether to hire a new employee or to promote and train an existing one
could mean important savings. Also at the human resource level important wins can
be made. For example, promoting the adequate person to a higher position would
create a motivated person, whereas a new hire for that same position could cause
frustration for the �not promoted� employee. At an individual level, providing
employees the possibility to manage and monitor their skill and interest level, to see
the evolution in time, and to enable calculations of knowledge gaps between current
and desired positions, will likely improve employee involvement and motivation.

In this paper we describe a web-based software product to manage skills in
knowledge-intensive organizations. The product provides value for different types of
people in an organization, including HR managers, top management, staffing, project
managers and knowledge workers. In Section [2 The approach: a knowledge market],
we describe the approach we have taken. Section [3 The software program] describes
technical aspects of the product. Section [4 Practical experience] reports on some
practical experiences with the tool, and finally, Section [5 Discussion and
conclusions] discusses the results and concludes the paper.

2 The Approach: A Knowledge Market

We use the metaphor of a market with offer and demand, where people are sellers of
knowledge, and organizations (departments, profiles, projects) are its buyers. Skills
are the goods to be traded1 with more or less value depending on the skill level
(beginner, expert, etc.). Buyers and sellers are brought together through a mechanism
that values the goods based on a weighted multi criteria approach.

2.1 Demand and Offer of Competencies

Important concepts in a market include: sellers, buyers, goods, and the value of the
goods for which they are transferred. The last one is reflected in the compensation
measures of organizations for their employees, and not considered in this paper

1 Actually, skills are a peculiar kind of goods because it has many distinguishing characteristics

from traditional assets such as increase while using (rather than decrease), no loss if
transferred to another, etc.

82 V. Richard Benjamins et al.

The Goods � The Competencies
A skill reflects the knowledge and/or capacity a person has to perform a certain task.
Skills can refer to job-specific knowledge, such as �Java� in an IT company and
�financial products� in a bank. Often such skills are called hard skills. The more
socially oriented skills, such as �communication� and �motivation� are usually referred
to as soft skills. Skills can be organized in a skill hierarchy, where higher-level skills
are more general than lower-level skills. Higher-level skills are used to categorize the
lower-level skills. It is not the case that a parent skill is defined by its children skills;
rather it is the other way around: the children are defined through their parent. Fig. 1
illustrates a skill hierarchy for a non-existing company.

Fig. 1. Skill hierarchy with description of skill levels.

As can be seen in the left part of Fig. 1, there are soft skills and specific (hard) skills,
each of which is sub-divided into more refined skills. The right part illustrates an
explanation of what the different levels of a skill mean in terms of capacities.
�Scarceness of skill� reflects how difficult it is to find the skill on the labour market.
Such skill hierarchies can be obtained from various locations, for free or paid, or
developed in-house. Soft skills, in any case, are more or less standard for most
organizations. Concerning hard skills, it is interesting to mention the possibility to
have �sector-specific� hard skills, such as for the IT sector, the financial sector, etc.
that could be reused across organizations of the same sector.

 Skills Management in Knowledge-Intensive Organizations 83

The Sellers � The People
Skills are owned by people. In the knowledge economy, knowledge workers apply
their skills to perform tasks that are part of projects of assignments. In this sense,
people can be considered as knowledge sellers, whereas the projects are knowledge
buyers. The values of the skills are expressed in levels, reflecting their rate of
mastering. On a five-point scale, the levels could mean: 1:beginner, 2:can work with
significant support, 3:can work independently, 4:advanced, 5:expert. Other scales are
possible (e.g. 3-point, 7-point, 10-point) depending on the granularity needed. It is
important that the persons who associate skill levels to people (the persons
themselves, their peers, managers, HR) apply the same criteria, otherwise the results
will reflect more personal opinions rather than intellectual capital. Apart from levels,
people usually have a degree of interest in a skill expressing their attitude towards
elaborating the skill. Fig. 2 illustrates the skills of a particular person acquired through
self-evaluation.

Fig. 2. Skills belonging to a person with their corresponding level, acquisition date, source and
interest level.

As can be seen in Fig. 2, a skill and interest level are associated to a person, as well as
the date and the agent (source) of the action. The date is especially important for
viewing the evolution over time of a person�s skills, which is a tool to support
professional career management. Fig. 3 shows the progress of a particular person. The
figure is a visual presentation of one level of the hierarchy (languages). The
application allows one to navigate through the hierarchy, thereby showing at each
level the corresponding progress.

84 V. Richard Benjamins et al.

The Buyers � Projects, Departments, Profiles
Continuing the metaphor of a knowledge market, buyers of skills are projects,
departments, profiles, and the organization as a whole. Those entities need the skills
of people in order to function well. Instead of specifying what skills are offered, in
this case, one specifies what skills are required by the project, department, etc. The
vocabulary used to express those requirements is defined through the skill hierarchy.
Thus for example, a project could need a specific skill like �databases: level 3� with
importance: 5 (on a five-point scale). This would mean that for the particular project,
intermediate knowledge of databases is required, and the importance that this skill be
present in the project team is very high (i.e. its non-presence may lead to severe
problems in project execution).

Fig. 3. Graphical visualization of knowledge progress (fictive) of a particular person. There is
no progress except for English.

In the same way that projects have requirements (and thus are knowledge buyers), this
is also true for profiles (a description of the competencies required to fulfil certain
functions in an organization), departments (competencies required to work in a
particular department) and the organization as a whole (a high-level characterization
of the competencies needed in the organization in order to accomplish its mission). In
each of those, one can specify the levels of the skills needed along with their
importance.

 Skills Management in Knowledge-Intensive Organizations 85

2.2 The Market Mechanism � Matchmaking

Since we have implemented the approach in a software program, we have created an
electronic online marketplace of knowledge. Buyers and sellers can now be brought
together through a matchmaking algorithm. We have designed an algorithm able to
deal with approximate matches [4] when no perfect matches exist. The algorithm
considers the following factors:
• The skills needed versus offered
• The skill level needed versus offered
• The importance of the skill required
• The agents who introduced the skill level. If there are several agents who evaluated

a skill of a person, a weighted average is taken based on a hierarchy of permissions
(see section on [3.2 Profile-based permissions]): the higher in the hierarchy, the
more weight the evaluation of that agent has.

The algorithm can be parameterised on the following points:
• The availability of the sellers (e.g. not assigned to other projects)
• Ignore, prevent or penalize higher skill levels than required
• Consider or ignore the interest of the persons in the skill
• Consider only particular profiles
• Consider or ignore other relevant factors as location, opportunity cost, etc.

Any user with the required permissions can perform this parameterisation through the
web-based interface. The factors mentioned above are considered in the current
application. However, one could add any constraint useful for a particular
organization as long as the needed knowledge is stored somewhere in a corporate
database.

The essence of the algorithm can be described as follows. For each skill-level
required (to buy), we find all persons having that skill (whatever its level). A person
having (to sell) all the skills with the required level will obtain a high ranking.
Persons covering fewer skills or inferior levels, have lower ranking. The ranking is
based on the contribution of the seller to the buyer�s need. The contribution to each
required skill is based on the seller�s skill level for the required skill, its interest in
that skill, and the importance of that skill for the buyer. The matching algorithm
considering a single person is represented with the following formulas:

∑
=

⋅=
n

i
ijSWiVj

1

δ
(1)

Where
• Vj is the calculated value for each person with respect to all required skills of the

buyer.

86 V. Richard Benjamins et al.

• SWi is the normalized importance (weight) of a skill for the buyer. Normalization
is needed for later ranking.

• ijδ represents the contribution of a personj. to a required skilli.

Normalization means that the sum of all skill weights (SW) equals 1:

1
...21

1 1

==+++==∑ ∑
= = Y

Y
Y

ynyy
Y
yiSWi

n

i

n

i

(2)

Where yi is the importance (weight) of each skilli required, and Y is a dynamic
normalization factor for each sale.

The contribution of a person�s skill to the calculated value of that person concerning
that required skill is a function of the person�s skill level, his interest, and the
importance of the skill for the buyer:

),,(ijiijfij ϕµλδ =
(3)

Where

• ijλ is the average skill level on skilli for personj.

• iµ is the average need for the skilli (in terms of the buyer).

• ijϕ is the average interest that personj has in skilli.
• f calculates the score of the person in a given skill

Average refers to the fact that there can be multiple sources for the same information.
E.g., two project managers can assign different importance to the same skill required
for a project. Since the resulting Vj is normalized (0 ≤ Vj ≤ 1), we can sort the

results of the matching process. The higher the value of Vj , the more valuable
personj is for the buyer.

Apart from calculating the value for single persons, we can also suggest teams of
specific sizes (a group of sellers) whose union of skills satisfy the demand. In order to
do this, we need to repeatedly apply the matching process until the team size has been
reached, or until all requirements have been fulfilled. On each cycle of the algorithm,
which adds a member to the team, a corresponding reduction of the buyer�s needs
takes place (since part of the needs are now satisfied).

An interesting feature of the algorithm is that it calculates knowledge gaps: explicit
representations of the set of skills missing for a particular project, profile, department,
etc. Gaps are important indicators that some action needs to be taken.

 Skills Management in Knowledge-Intensive Organizations 87

Propagation of Skills
Skill levels of persons are scored only on the leaf skills, i.e. the terminal skills of the
skill hierarchy (OBDC, Java, etc.). Buyers of skills (projects, profiles, etc.) can in
addition express their needs in terms of non-terminal skills, i.e. intermediate nodes in
the hierarchy (e.g. programming). The reason for this is that sometimes buyers are not
interested in specific skills but rather in a range of skills organized in a category.

Because we use higher-level skills to categorize lower-level skills (see Section [The
goods � the competencies]), skill levels of the former depend on those of the latter. In
order to apply the matching algorithm, a propagation process is needed from the
values on low-level skills to higher-level skills. The heuristic underlying the
propagation process are the following:
• The parent skill-level is equal to the maximum of the children�s skill level if the

average of the children is greater than/equal the maximum of the children minus 1
• The parent skill level is equal to the maximum minus 1 of the children�s skill level

if the average of the children is smaller than the maximum of the children minus 1

The propagation algorithm favours a balanced lower-level skill set over an
unbalanced one. In other words, when two persons have the same arithmetical
average level concerning children skills of a particular parent skill, then the person
having medium levels on all children skills gets a higher score on the parent skill than
a person who has some high scores and some low scores on the children skills.

2.3 Beneficiaries of the Market

A combination of a web-based interface, an interactive visualization tool, and an
explicit permission management system maximizes optimal use of the tool for a range
of different users. The tool is able to visualize knowledge progress of persons (as in
Fig. 3), departments and the organization as a whole, as well as knowledge coverage
and gaps between skills needed and required, for example with respect to a project (as
illustrated in Fig. 4). The permission management system allows for example persons
to view and edit their own skills, but prevents viewing the soft skills of others. It also
allows managers to edit the skills of people who are under their responsibility. Notice
that it is always known who assigned a particular score to a person and when that
assignment took place.

Human Resources Managers
The work of human resource departments is facilitated in the following ways:
• Central repository of the skills definition relevant for the organization, enabling

easy actualisation
• Reduced maintenance effort of the skill levels due to distributing task to

knowledge workers and managers
• Up-to-date access to skill levels and interests of each person along with

progression, allowing better planning of personalized training and professional
careers.

88 V. Richard Benjamins et al.

• Definition and immediate publication of profiles and department requirements on
the corporate intranet

• Knowing at all times the knowledge coverage and gaps in the organization,
departments and profiles (demand), which, along with the actual knowledge
available (offer) allows for a balanced decision concerning hiring versus
promoting. Taking informed decisions prevents unnecessary hiring as well as
employee frustration

• Knowing with one click what an organization knew more than a year ago

Staffing Department and Project Management
�Finding the right person for the job� is a problem many companies face frequently. In
practice this is a hard problem because many factors need to be taken into account,
but often the information supporting those factors is not easy available. Skillman
alleviates this problem in the following ways:
• Providing easy access to up-to-date information about the knowledge available
• Find an expert for particular skills
• Knowing who is available and who not
• Viewing the requirements (demand) of projects
• Find the person who best matches project requirements
• Find a team of specific size that best matches project requirements
• Consider various constraints in the matching process such as office location,

profile, and interests of people
• Calculate and view the knowledge coverage of a particular team for a project
• Provide fact-based information to HR anticipating possible future knowledge gaps

Fig. 4 illustrates the coverage/gap of skills required for a project. It is also possible to
select sub teams to see how the coverage changes depending on the presence of
particular people (illustrated in Fig. 5).

Knowledge Workers (Including Categories Mentioned Above)
For all people working in an organization, the tool contributes to knowledge
management [3] and so-called employee information systems. In particular it provides
the following benefits:
• Self management (view, update, add, delete) of own skills and interests
• View progress from a specified date until actual date
• View profile and department requirements
• Calculate gaps between actual competencies and desired ones (e.g. those belonging

to a category higher)
• Find experts in particular skills (illustrated in Fig. 6)
• Browse and search the skill hierarchy

 Skills Management in Knowledge-Intensive Organizations 89

Fig. 4. Knowledge coverage for a particular project. As can be seen, the software part is more
than covered, but there are small gaps in database, security and quality assurance knowledge.

Fig. 5. Knowledge coverage for a particular person of the team of Fig. 4.

90 V. Richard Benjamins et al.

Fig. 6. Ranked list of expert for the HR skill: ’labour relations’.

Top Management
The tool allows top management to easy monitor the knowledge evolution of the
organization as a whole. It reveals the organization�s strong points, weak points,
growth per knowledge area, new knowledge areas, trends, key persons, etc. Fig. 7
illustrates an organizational knowledge coverage map for hard skills. By varying the
selection of people in the top right box (Resource area), key persons can be identified.

3 The Software Program

3.1 Architecture and Principles

The tool is based on Java technologies, using Java servlets, JSP, J2EE, JDBC and
Javascript. It is a web-based architecture consisting of the following components, and
illustrated in Fig. 8. We have used open source software such as the Resin application
server (http://www.caucho.com/), the Postgress Object-Relational database
management system (http://www.postgresql.org/). However, the tool also works with
other application servers and DBMS. The visualization software is based on Java
Webstart (http://java.sun.com/products/javawebstart/).

 Skills Management in Knowledge-Intensive Organizations 91

Fig. 7. Organisational knowledge coverage and gaps. The larger (roundish) surface represents
skills offered by the employees, the smaller surface represents skills demanded by the
organization.

Fig. 8. Architecture of Skillman.

Skillman Client Side

Internet
Browser

Jav a Web
Start

Client Serv er

Firewall

HTTP

Skillman Core Serv er

Web
Serv er
Resin

Jav a Web
Start

Serv er Side

HTTP

Postgress
DDBB

Skillman Server Side

SQL

XML

XML

92 V. Richard Benjamins et al.

One of the principles we have applied in developing the tool is non-intrusiveness. We
believe companies are tired of the significant implications software acquisition can
have on their existing information structure and business processes. Those
implications carry with them a large risk, both technological and social (change
management). With this principle in mind, Skillman is designed to run on Windows
and Linux platforms, and with MS Internet Explorer and Netscape. It integrates with
existing corporate information systems in order to use already available data in the
organization. For instance, in our company, Skillman gets its data about persons from
the HRMS, and the information about projects and its teams from MS Project. Due to
the open architecture, it is possible to integrate with other software such as SAP,
PeopleSoft, Meta4, etc.

3.2 Profile-Based Permissions

While it is very important that every employee has access to �who knows what�
concerning hard skills, for soft skills this is less desired. Soft skills often represent an
evaluation of personal traits, such as motivation, able to work in teams, capacity to
negotiate, openness to ideas, etc. This is confidential information, which should only
be accessible to the appropriate people (e.g. HRM).

Another aspect concerns �who has what permissions?� in the tool. In iSOCO�s case,
knowledge workers can update their own skills, and view the hard skills of others.
Project managers, in addition, can evaluate the skills of the people they are working
with. Those permissions are temporal (when the project has terminated, they should
be withdrawn), and are automatically taken from MS Project based on the role people
have in the project. Only the HR department has permission to change the skill
hierarchy, or can delegate this permission to experts in the various areas. All this
important information about permissions is managed explicitly and can be adapted to
each organization�s needs

3.3 User Interface

We have chosen for a web-based interface due to the importance of universal access
for all employees, and in order to minimize maintenance efforts. Moreover, we
designed an interactive graphical interface using Kiviat diagrams (e.g. Fig. 7) to
provide a navigable and intuitive view on the information available. Note that the
graphical interface needs the Webstart plug-in for the browser (see Section [3.1
Architecture and Principles]).

4 Practical Experience

In the Knowledge Management literature one reads often that technology alone is not
the solution, but that organizational processes and cultural issues are as important. We

 Skills Management in Knowledge-Intensive Organizations 93

confirm those findings. In order to successfully roll out the project, the following
points have to be taken into account:
• Involve representative people from the organization in the definition of the skills

hierarchy (facilitates buy-in)
• Convince people of the importance of the initiative (e.g. by top management

involvement and communications)
• Provide basic training concerning the scoring of skill levels. There should be

consensus to a certain extent as to when to score a particular level (1-5). Modest
people might assign themselves a 3 while being cracks, whereas self-assertive
people might put a 5 while performing average. In general this is an unsolvable
problem, but a minimal normalization effort has to be carried out. In some cases a
workflow protocol might help to solve the problem by having skill-level
assignments approved before inclusion in the tool. In any case, if agents give
significantly different scores to the same skill, this is an indication that something
is wrong. With Skillman, it is possible to detect such issues

• Consider timely actualisation of skills as a criterion for the bonus of salaries
• Show clearly to people how they benefit from the tool. Prevent that it is considered

as extra work
Make the HR department leading the implementation of the tool in the organization,
which is consistent with the view that such initiatives should be driven by a business
pull rather than by a technology push

5 Discussion and Conclusions

As with any decision concerning the acquisition of software products, organizations
want to know the expected return of investment. Metrics in knowledge management
are not yet advanced enough to give precise answers to this. One of the reasons is that
it depends on many factors, such as the type of organization, the existing corporate
information systems, the number of employees, its physical distribution, etc. Another
reason is that it is very difficult to come up with reliable concrete indicators. It is our
experience that best ROI is obtained in knowledge-intensive organizations, such as
professional services industry or companies where product innovation is essential due
to competitive environment (e.g. pharmaceutical industry, electronic consumer goods,
etc.).

Efficiency
• How much time is spent on finding the right person to ask a question?
• How much time is needed to find the right person/team for a particular project?
• How large is the effort to determine what person needs what course?
• What is the damage of wrong allocation of persons to work (counterproductive or

non-optimal work)?
Motivational
• What is the ’damage’ of wrong allocation of persons to work (frustration)?
• How large is the �damage� when a new person is hired while an existing employee

should have been promoted?

94 V. Richard Benjamins et al.

• How much is it worth if employees can view and manage their skills, and calculate
knowledge gaps?

Strategic
• How much is it worth to know what persons are key for your business?
• What is the damage if skilled persons leave the company with all their knowledge

without knowing what they take with them?
• How much is it worth to know in real time what an organization knows

(strong/weak points, trends)?

In the development of Skillman, we adhere to the principle �sense and respond� as
opposed to �make and sell� [7]. This means that with feedback of actual users we will
gradually improve the product. Current feedback has put the following features on our
to-do list:
• Generate configurable reports in excel (for reporting)
• Generate printable standard profile descriptions
• Generate printable standard company CVs
• Integrate with applicants information obtained from company�s websites (hiring

versus promoting decision)
• Intelligent skill updates (e.g. automatically deduce that if a person has been a

programmer in a project that used Java, then this person can be assumed to have
some knowledge of Java [11])

• Integrate Skillman with a Learning Management System in order to recommend
courses based on knowledge gaps and interests.

In this paper we argued that skills management is important for knowledge-based
companies. We presented an approach and tool to support this organizational process
based on high quality and rich employee profiles. Apart from the proper value of
managing those assets, significant added value can be obtained by exploiting the
profiles in other applications. The key point to make here relates to personalization,
meaning to offer different content to people based on their profiles. In the context of
intranets of organizations, interesting content to offer based on Skillman profiles,
concerns training information including eLearning, internal documents, and external
web content.

References

1. Boam, R and Sparrow, P. Designing and Achieving Competency: A Competency-Based
Approach to Developing People and Organizations. London: McGraw-Hill, 1992.

2. V. Richard Benjamins, Dieter Fensel and Asuncion Gomez Perez, Knowledge
Management through Ontologies. In proceedings of the Second International Conference
on Practical Aspects of Knowledge Management (PAKM), 29-30 October, 1998, pp. 5.1-
5.12, Basel, Switzerland.

3. V. Richard Benjamins, Knowledge Management in Knowledge-Intensive Organizations.
iSOCO white paper (available at http://www.isoco.com/isococom/whitepapers/files/km-
88.pdf).

 Skills Management in Knowledge-Intensive Organizations 95

4. Torgeir Dingsłyr, Emil Rłyrvik: Skills Management as Knowledge Technology in a
Software Consultancy Company. In Proc. of 3rd International Workshop on Learning
Software Organizations (LSO’01) September 12 & 13, 2001, Kaiserslautern, Germany.

5. Drew, S.A.W. "Building Knowledge Management into Strategy: Making Sense of a New
Perspective," Long Range Planning, February 1999

6. Green, P.C. Building Robust Competencies: Linking Human Resource Systems to
Organizational Strategies, San Francisco: Jossey-Bass Publishers, 1999.

7. Stephan H. Haeckel, Adaptive Enterprise: Creating and Leading Sense-And-Respond
Organizations. Harvard Business School Press, Boston, Masachusetts.

8. Hebrero, C. Competency-Based HR Management, THE ERICSSON EXPERIENCE,2001.
Available at: :
http://www.andersen.com/resource2.nsf/vAttachLU/HC_competencybasedHR/$File/Com
petency-Based%20HR%20Management.pdf.

9. Hwang, C. -L. & Kwangsun, Y. (1981). Multiple attribute decision making, methods and
applications. In Lecture Notes in Economics and Mathematical Systems, number 186.
Springer-Verlag, Berlin, Heidelberg, New York.

10. Merrill Lynch. The Knowledge Web, May 2000.
11. Sure, Y., Maedche, A. and Staab, S: Leveraging Corporate Skill Knowledge - From

ProPer to OntoProPer. . Third International Conference on Practical Aspects of
Knowledge Management, Basel, Switzerland 2000/01/10.

Knowledge Acquisition and Modeling

in Clinical Information Systems: A Case Study

Göran Falkman1 and Olof Torgersson2

1 Department of Computer Science, University of Skövde,
PO Box 408, SE–541 28 Skövde, Sweden

goran.falkman@ida.his.se
2 Department of Computing Science, Chalmers University of Technology and

Göteborg University, SE–412 96 Göteborg, Sweden
oloft@cs.chalmers.se

Abstract. The goal of the MedView project is to develop models, meth-
ods, and tools to support clinicians in their daily work and research.
MedView is based on a formal declarative model, which constitutes the
main governing principle in MedView, not only in the formalization of
knowledge, but in visualization models and in the design and implemen-
tation of individual tools and the system as a whole as well.
Tools are provided for modeling, acquiring, and sharing knowledge, and
for visualization and analysis of data.

1 Introduction

In 1995, the MedView project, a joint project with participants from computer
science and oral medicine, was initiated. The overall goal of the project is to
develop models, methods, and tools to support clinicians in their daily work and
research. The central question in MedView is how computing technology can
be used to model and manage clinical knowledge in everyday work such that
clinicians more systematically can learn from the gathered clinical data.

MedView provides a formalization of clinical examination data and clinical
procedures, providing a possibility for recognizing patterns and trends otherwise
hidden in the monumental amount of clinical information. MedView is based on
a coherent declarative model that constitutes the main governing principle in
the project, not only in the formalization of clinical terms and concepts, but in
visualization models and in the design and implementation of individual tools
and the system as a whole as well.

Several tools have been developed for knowledge formalization, knowledge
acquisition, visualization and analysis of data, and knowledge sharing.

MedView is in daily use at several clinics within the Swedish Oral Medicine
Network (somnet).

The rest of this paper is organized as follows: Section 2 presents the under-
lying design principles and the declarative model used. Section 3 describes the
various knowledge structures used in MedView. In Sect. 4, we describe the tools
used for knowledge acquisition. Examples of applications are given in Sect. 5.
The paper is concluded in Sect. 6 with a short discussion.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 96–101, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Knowledge Acquisition and Modeling in Clinical Information Systems 97

E

8>>>>>>>><
>>>>>>>>:

Anamnesis = Common
Common = Drug
Common = Smoke

Drug = Levaxin
Smoke = 4 cigarettes/day

Diagnosis = Diag-def
Diag-def = Gingival lichen planus

Fig. 1. A definition E defining parts of an examination record in MedView

2 The MedView Approach

2.1 A Formal Foundation

The information stored in traditional paper records is not sufficiently organized
and formalized to allow for a general data analysis. MedView addresses the defi-
ciencies of the traditional medical record system by adopting reliable computer
science principles with a solid foundation in formal knowledge representation.
Basic health care activities and concepts are established and formally defined
within somnet. The formal foundation provides the necessary means for getting
insight into the structure and meaning of medical knowledge [1].

The result is a clear separation between different kinds of knowledge and
between different cognitive acts, e.g., between basic examination data and clas-
sifications of clinical terms and between the act of gathering knowledge and the
act of viewing knowledge. This enables knowledge representations to be tailored
to their respective purposes and knowledge management tools to be optimized
for each particular act. As a consequence, MedView provides a tool for entering
data and several ‘viewers’ for viewing data in different ways.

2.2 Everyday Tools

A formal foundation is not enough, though. It is equally important that tools
are user-friendly, flexible, and extendable by end-users, and rapidly are brought
into everyday practice [2]. One of the central design principles of MedView is
therefore to provide a transparent framework in which user-centered and flexible
tools can be developed, tools which, to a large extent, can be re-configured and
extended by the users themselves, without the need of computer experts.

2.3 Declarative Model

The need for closing the gap between the formal foundation and everyday clinical
practice [1] motivates a declarative approach: a high abstraction level of tools
and interaction models can be maintained without losing the connection with
the underlying data and computational models.

98 Göran Falkman and Olof Torgersson

The declarative model of MedView is based on the assumption that defini-
tions are central tools in all attempts to give a precise and formalized represen-
tation of knowledge.

The formal declarative model of MedView is given by a theory of partial
inductive definitions [3]. Definitions have a logic interpretation, making them
suitable for automated reasoning. At the same time, the concept of a definition
and the act of defining are simple enough to have obvious intuitive readings.

The conceptual view of a definition is that of a collection of equations. Fig-
ure 1 shows a definition, E, defining a small part of an examination record in
MedView. In this definition, the term Anamnesis is defined by the term Com-
mon, which in turn is defined by the terms Drug and Smoke and so on.

2.4 Visualization of Knowledge

Effective presentation of information is an important component in any medical
information system, since it can prevent information overload and visually em-
phasize subtle aspects of clinical processes and data, which otherwise would be
hard to discover [4]. Therefore, MedView is designed to take visualization and
interaction with knowledge into account right from the start.

The visualization models are based on the underlying declarative model,
thereby decreasing the distance between users and visualization [5] and facili-
tating component-based visualization and integration [6]. Interaction models are
provided that allow users to take active part in the various knowledge processes.

3 Knowledge Organization

3.1 Fundamental Knowledge Structures

In MedView, clinical data is seen as definitions of clinical terms. Abstract clinical
concepts, e.g., diagnosis, examination, and patient, are given by definitions of
collections of specific clinical terms.

For example, the terms Anamnesis, Common, Drug, and Smoke are all part of
the general template defining the concept ‘examination’. A concrete instance of a
template, an examination record, is given by defining terms like Drug and Smoke
in terms of observed values, e.g., Levaxin and 4 cigarettes/day respectively.

Values for the terms defined in templates are taken from formalized lists
of valid values. These value lists are given as definitions, and are stored in a
knowledge base (kb) along with template definitions and value lists.

Templates and initial value lists are developed by the users themselves using
the InterfaceMaker tool (see Sect. 4.2).

3.2 Additional Knowledge Structures

As the kb grows, it becomes increasingly important to be able to group related
values into classes in a hierarchical manner. For example, diseases such as Her-
pes labialis, Herpetic gingivostomatis, and Shingles can be classified into viral

Knowledge Acquisition and Modeling in Clinical Information Systems 99

diseases. The ability to categorize values into different classes has proven very
useful in order to be able to perform more interesting analysis of data.

Value classes are constructed by the users themselves using class definitions,
which are stored in the kb for future use. The class definitions are definitions
in the same sense as template definitions and examination records, and they are
expressed in the same format as the examination records. As an example, the
following class definition classifies smoking habits into three classes:

S1

1 cigarettes without filter/day = < 10 cigarettes/day

10–15 filter cigarettes/day = > 10 cigarettes/day
No = Non-smoking

.

To further categorize smokers, a second class definition can be constructed:

S2

{
< 10cigarettes/day = Smoking
> 10cigarettes/day = Smoking .

Thus, a complete classification of smoking habits is given by combining S1 and
S2, i.e., conceptually we form the definition S = S1 + S2.

In some cases, several clinical terms t1, . . . , tn should be viewed as specializa-
tions of another term T . For these situations, we use another kind of definition,
in which a generalized term (T) is defined in terms of its instances (t1, . . . , tn).

4 Knowledge Acquisition

4.1 Formalizing Data

MedView allows domain experts to develop all parts of the underlying knowledge
representation model without any direct intervention from computer experts and
without requiring any programming knowledge.

For example, when the domain experts have agreed upon a formalization of a
particular examination protocol and the associated value lists, the formalization
is put into a form that can be used in other knowledge-oriented activities using
the InterfaceMaker application (im). Essentially, clinicians use im to:

– Turn an examination protocol into a template definition providing the gen-
eral structure of examinations for use by other tools

– Create a textual description of the protocol, consisting of lead-texts and
links, used for entering data into the kb (see Sect. 4.2)

– Define initial value lists for all terms defined in a protocol
– Administer the templates used for generating summaries of examination data
using natural language generation (see Sect. 5.1).

Thus, using im, it is possible to both maintain the current set of templates used,
and define completely new ones for use in other areas. For instance, MedView
could be adopted to dermatology by using im only.

To keep the value lists complete and harmonized, a tool called MVDManager
(mm) has been developed. Using mm, definitions with replacements for incorrect
values are defined. mm can also be used for localizing a kb to different languages.

100 Göran Falkman and Olof Torgersson

4.2 Entering Data

MedRecords (mr) is the application used to enter data at examinations. In the
MedView setting, entering data is the act of creating a definition. Therefore, mr
aims to support the act of defining, in a precise manner, a medical examination.

mr is best thought of as presenting a template definition i.e., an incomplete
definition, to the user. Using value lists, class definitions, free text, and digitized
images, the user completes the template by defining the descriptive parameters,
e.g., Occup and Born, in terms of observed values, e.g., Dentist and Sweden. The
result is stored into the kb as a new examination record.

5 Knowledge Application

5.1 Generation of Summaries

The basic viewer is MedSummary (ms). The view of the kb presented by ms
is that of a textual summary of one or more examination records using natural
language generation. ms uses a summary template definition and a slot-filler
definition together with one or more examination records to generate a summary
text, which is then presented together with any associated images. By defining
different summary templates using im, the user can experiment with different
texts without having any linguistic expertise.

5.2 Knowledge Exploration and Analysis

Using dynamic queries [7], a user can explore a data set by manipulating a set
of simple query devices, which immediately updates a graphic display of the
data set. Dynamic querying has proven very efficient and stimulating for users
to interact with.

MedViewer (mv) uses dynamic querying to give users a simple hands-on pos-
sibility of exploring data without posing complex queries or learning any par-
ticular concepts. The visualizations currently provided by mv are scatter plots,
pie charts, bar charts, tables, image browser, and a summary view (generated
by ms), but the system is simple to extend with other kinds of visualizations.

The Cube [8] is another analysis tool that uses a dynamic 3D parallel coor-
dinate plot [9] to provide an overview of the terms defined in the kb. The Cube
was developed to enhance the clinician’s ability to intelligibly analyze existing
patient material and to allow for pattern recognition and statistical analysis.

On the conceptual level, The Cube is a tool for interactive visualization of
the kb in terms of relationships between and within knowledge structures. The
Cube itself is modeled using the declarative model of MedView.

5.3 Knowledge Sharing

The clinics participating in MedView maintain local kbs that are regularly added
to a central kb shared by all clinics. The WebPhotos application is an early exam-
ple of a tool for accessing the kb over the Internet. Clinicians also communicate
knowledge using summaries created by ms.

Knowledge Acquisition and Modeling in Clinical Information Systems 101

6 Discussion

MedView is in daily use at a growing number of clinics within somnet. Since
1995, clinical data from over 3000 examinations has been collected into the kb.
Clinical practice has indicated that the basic ideas are conceptually appealing
to the involved clinicians and that MedView has promoted knowledge sharing
within the network.

MedView is rather unique in that it applies a uniform declarative model to
all aspects of a clinical information system, from the implementation framework
used to the design of the overall system, from fundamental knowledge structures
to interaction and visualization models.

The galen project [10] has a similar approach in that it provides a uniform
representation language for medical terminology and medical concepts together
with a common framework for application builders. Compared to galen, so far,
MedView has focused on the tight coupling between users, visualization, and
knowledge structures.

References

[1] Lucas, P.: Logic engineering in medicine. The Knowledge Engineering Review 10
(1995) 153–179

[2] Aarts, J.: On articulation and localization—some sociotechnical issues of design,
implementation, and evaluation of knowledge-based systems. In Quaglini, S.,
Barahona, P., Andreassen, S., eds.: Artificial Intelligence in Medicine. Proceedings
of the 8th Conference on Artificial Intelligence in Medicine in Europe, aime 2001,
Cascais, Portugal, July 1–4, 2001. Volume 2101 of Lecture Notes in Artificial
Intelligence, Springer-Verlag (2001) 16–19

[3] Hallnäs, L.: Partial inductive definitions. Theoretical Computer Science 87 (1991)
115–142

[4] Chittaro, L.: Information visualization and its application to medicine. Artificial
Intelligence in Medicine 22 (2001) 81–88

[5] Fechter, J., Grunert, T., Encarnação, L.M., Straßer, W.: User-centered develop-
ment of medical visualization applications: Flexible interaction through commu-
nicating application objects. Computers & Graphics: Special Issue on Medical
Visualization 20 (1996) 763–774

[6] North, C.L., Shneiderman, B.: Snap-together visualization: A user interface for
coordinating visualizations via relational schemata. In: Proceedings of Advanced
Visual Interfaces 2000. (2000) 128–135

[7] Ahlberg, C., Shneiderman, B.: Visual information seeking: Tight coupling of
dynamic query filters with starfield displays. In: Human Factors in Computing
Systems. Proceedings of chi’94, acm Press (1994) 313–317

[8] Falkman, G.: Information visualization in clinical odontology: Multidimensional
analysis and interactive data exploration. Artificial Intelligence in Medicine 22
(2001) 133–158

[9] Inselberg, A.: The plane with parallel coordinates. The Visual Computer 1 (1985)
69–91

[10] Rector, A.L., Nowlan, W.A.: The galen project. Computer Methods and Pro-
grams in Biomedicine 45 (1993) 75–78

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 102-107, 2002.
 Springer-Verlag Berlin Heidelberg 2002

MEGICO: An Intelligent Knowledge Management
Methodology

JosØ Luis MatØ1, Luis Felipe Paradela2, Juan Pazos1, Alfonso Rodríguez-Patón1,
AndrØs Silva1

1Facultad de InformÆtica, UPM, Campus de Montegancedo s/n, Boadilla del Monte, 28660
Madrid

jlmate@fi.upm.es, jpazos@fi.upm.es, arpaton@fi.upm.es, asilva@fi.upm.es
2INAP (Instituto Nacional de Administración Pœblica), Madrid

Abstract. In this paper, we describe a knowledge management system (KMS)
design and construction methodology. For this purpose, section 1 gives a brief
introduction that justifies the need for a genuine KMS methodology, like
MEGICO. Section 2 very briefly presents MEGICO and section 3 discusses the
results and conclusions of its use.

1. Introduction

Looking at the literature on frameworks and methods for KM initiatives that is sum-
marised in [1], added to in [2] and, owing to its importance, Tiwana�s roadmap [3],
we find that not one of these frameworks or methods is really a methodology as de-
fined by de Hoog [4] and Paradela [2]. This is because, among other things, they do
not meet each and every one of the general and specific conditions that de Hoog
specified as necessary and sufficient for any proposal supporting KM initiatives to be
considered a genuine methodology. Indeed, most proposals are either descriptive or
prescriptive, but not hybrid. And they do not meet the conditions of holism and
learning ability, among others. For this reason, we present a methodology that does
meet the above conditions, and others specified by Rubenstein-Montano et al. [1]. The
methodology is called MEGICO, which is the Spanish abbreviation of Intelligent
Knowledge Management Methodology.

2. MEGICO

For obvious reasons of space, we have opted to describe MEGICO using a LISP-type,
bracketed linear formula, by means of which all its elements can be reasonably com-
pacted and, based upon their numeration, easily restructured as a tree. Moreover, the
description only goes as far as level 3, step, although, in some cases, the methodology
can be decomposed down to level 5 [2].

With regard to Phase I, it is evident that there are structural elements that can be
completed straightforwardly, such as, Stage I.1.1. Coordinates, for example, or are

 MEGICO: An Intelligent Knowledge Management Methodology 103

easy to carry out, such as Stage I.2, Contextual Definition, for instance. However,
Stage I.3, Definition of the current situation: Feasibility study, calls for a little more
attention. Indeed, apart from being difficult to perform, Step I.3.1 Classification of the
current situation: Problem analysis and scope is of utmost importance. A problem is
unlikely to be able to be solved unless it has been identified and defined beforehand.
The question then is as follows. What is the problem? Who has the problem? Why?
Where and under what circumstances does it arise? When? How can it be solved?
That is, for each particular situation, we will need to clearly answer the six honest-
serving men to identify, define and, finally, solve the problematic situation at hand.

Now, let us turn to the stages that are, as we see it, most problematic, namely,
problem predefinition and definition. Firstly, it is inconceivable to try to solve a
problem unless the problem is felt. Feeling a problem basically involves perceiving a
deviation of events with regard to an objective, hence these objectives will have been
explicitly and exhaustively established previously in Step I.2.3. Strictly speaking, this
predefinition is not final, whence its name. Indeed, it has to be considered as a hy-
pothesis that is questionable until confirmed or refuted by the facts.

On the basis of the information gathered and classified in the respective stage, the
Cartesian method is strictly and rigorously applied in the problem definition stage, as
follows. Rule of evidence: most problems are not solved because they are poorly de-
fined. It is a well-known fact that a well-defined problem is a problem half-solved.
Actually, many problems remain unsolved because the people involved are reticent or
refuse to define the problems as they are, perhaps because they foresee what difficul-
ties the alternative to which a proper definition leads entails. Moreover, we often tend
to look for a good solution, when, in many cases, the only one that is feasible is a less
bad solution. The rule of analysis is then used to, first, completely and exhaustively
ascertain all the subproblems and aspects and, secondly, identify the relationship be-
tween the identified facts, signs and symptoms, the existing concepts and their rela-
tionships. Then, the rule of synthesis is applied to output the conceptual model of the
problem, which is the fundamental reference point for the person who has the prob-
lem and the person who has to solve the problem. This process of synthesis should
avoid any unnecessary assumptions, i.e. assigning an effect to what is merely a possi-
ble cause. Finally, the rule of testing is applied to check that nothing has been omitted
and nothing is superfluous.

PHASE I. Identification of the Institution and Its Culture:
A. Structural Elements

{STAGE I.1. CO-ORDINATES [STEP I.1.1. Physical Co-ordinates][STEP I.1.2. Finan-
cial Co-ordinates][STEP I.1.3. Business Co-ordinates]}{STAGE I.2. CONTEXTUAL
DEFINITION[STEP I.2.1. Establishment of the Environment][STEP I.2.2. Maturity
Level of the Institution as regards KM][STEP I.2.3. Institutional Objectives]}{STAGE
I.3. DEFINITION OF THE CURRENT SITUATION: FEASIBILITY STUDY[STEP I.3.1. Classifi-
cation of the Current Situation: Analysis of the Problem and Problem Scope][STEP
I.3.2. Impact Analysis and Solution Improvements][STEP I.3.3. Cost-Benefit Analy-
sis]}

104 JosØ Luis MatØ et al.

B. Functional and Representative Elements

<TASKS: Gather all the information required to clearly establish the location of the in-
stitution and its self-knowledge, Establish its context and maturity level, Define and
prioritise the institution�s purposes, ends and objectives, Framework defini-
tion><ACTIVITIES: Update all the information, Run surveys, Define the knowledge
assets, carry out a knowledge audit and calculate the intellectual worth of the organi-
sation, Analyse surveys, Establish return on investment rates, Calculate indexes and
determine the intellectual capital equation><TOOLS: Organisational charts and dia-
gramming, Questionnaires, SWOT matrix, Internet, Documentary management,
Audit, Cost-benefit analysis techniques><MODELS AND PROGRAMMES: Institutional
ontology, Institutional model, Intellectual capital audit process model>

Phase II, praxiologics or action, is basically, but not exclusively, prescriptive, and
its key elements include conceptualisation, the associated conventional knowledge
map, the institutional memory and the definition of the knowledge network, with its
sources, drains, repositories, etc. All these models and deliverables appear below.
This is the phase that demonstrates the flexibility of the methodology. Indeed, de-
pending on the type of KM initiative in question (lessons learned, best practices,
global KM system, etc.), the structural and functional elements required will be se-
lected, ignoring the others. For example, if we aim to embark upon a best practices
initiative, the task would be confined to conceptualising the problem at hand, activity
to defining the state of art and target and so on successively. Accordingly, this phase
can be seen as a generator of efficient and adaptable ad hoc methods, which is what
makes it a genuine methodology.

PHASE II. Praxiologics: A. Structural Elements

{STAGE II.1. CONCEPTUALISATION[STEP II.1.1. Inventory KM Elements][STEP
II.1.2. Bottleneck Analysis][STEP II.1.3. SWOT Analysis]}{STAGE II.2.
REFLECTION[STEP II.2.1. Identify Policy Goals][STEP II.2.2. Define and Select Im-
provements][STEP II.2.3. Define Improvement Models]}{STAGE II.3. KNOWLEDGE
CREATION AND DEVELOPMENT[STEP II.3.1. Knowledge Generation][STEP II.3.2.
Consolidate Knowledge(][STEP II.3.3. Distribute and Use Knowledge]}

B. Functional and Representative Elements

<TASKS: Classify, monitor and evaluate the performance of the institution or part of
the institution, Conceptualise the problem at hand, Define the process of the knowl-
edge>< ACTIVITIES: Define the current state of the art and target, Define knowledge
assets policies><TOOLS: Surveys, Questionnaires, Protocol analysis, SWOT matrices,
Charts: Ishikawa or fishbone diagrams, Benchmarking, Roadmaps><MODELS AND
PROGRAMMES: Effectiveness improvement programmes, Knowledge construction
program, Knowledge transfer programmes, Process model and knowledge networks,
Hardware, software and legal protection of knowledge><DELIVERIES AND OUTPUT
DOCUMENTS: Description of the business situation, Definition of constraints, Defini-
tion of alternatives, Results of the use of the referenced methods, Knowledge, infor-

 MEGICO: An Intelligent Knowledge Management Methodology 105

mation maps, etc., Knowledge infrastructure management manual, Corporate memo-
ries, KBS, Patents, Copyright, Products, Services, Practical improvements>

Finally, Phase III, implementation, testing and maintenance, is also mainly pre-
scriptive. A variation on the information packaging method (IPM) will be used in this
phase, the basic process of which is shown in Figure 1. It is developed in the follow-
ing four stages. Stage one involves the system architecture and planning. Stage two
concerns design and analysis. Stage three addresses technological implementation.
Finally, stage four deals with deployment and testing against metrics and users. The
spiral represents the infinite cycle between stages 4 and 1, which leads to iterative and
incremental improvements.

1 2

34

Strategic alignment measure

Incorporated feedback

Identify critical success factors
Financial, time, resource constraints
Identify success measures

Identify: Knowledge problem
Strategic objectives
Immediate resources
Long-term returns
Involvement
User groups

System Architecture & Planning

Deployment & Metric Testing Technological Implementation

Design & Analysis

Identify: Goals
Alternatives
Risks

Define group(s) of target users
Select/build components
Define preliminary specifications

Specify components in detail
Build/select components
Verify independent components

Pilot test
Incorporate preliminary user feedback
Increment
Integration test at institutional level

User training
User reaction
Switch over
Integration into inherited applications

Formal authorisation

Fig. 1. Information packaging methodology

PHASE III. Implementation or Replacement, Testing and Maintenance:
A. Structural Elements

{STAGE III.1. DESIGN AND IMPLEMENT TECHNOLOGICAL SUPPORT[STEP III.1.1. Es-
tablish the Technological Infrastructure][STEP III.1.2. Establish the Technological
Structure][STEP III.1.3. Define the Technology Replacement Policy]}{STAGE III.2.
PROTECT AND SAFEGUARD KNOWLEDGE[STEP III.2.1. Identification of Expert Knowl-
edge and Hazards][STEP III.2.2. Safeguarding Expert Knowledge][STEP III.2.3.
Protection of Knowledge]}{STAGE III.3. EVALUATION AND TESTING: DEFINE THE
ELEMENTS OF THE EVALUATION[STEP III.3.1. Establish the Evaluation Criteria][STEP
III.3.2. Identify the Assessment Techniques][STEP III.3.3. System Verification and
Validation]}{STAGE III.4. EVALUATION OF KNOWLEDGE TRANSFER[STEP III.4.1.
Definition of Criteria][STEP III.4.2. Establishment of Strengths and Weak-
nesses][STEP III.4.3. Measurement of Learning Effectiveness]}{STAGE III.5.
IMPLEMENTATION TESTING[STEP III.5.1. Simulation of the Redesign][STEP III.5.2.
White Box Tests][STEP III.5.3. Parallel or Field Testing]}{STAGE III.6. CORRECTIVE
MAINTENANCE[STEP III.6.1. Identification of Faults and Deficiencies][STEP III.6.2.
Analysis of Detected Faults and Deficiencies][STEP III.6.3. Correction of Faults and
Rectification of Deficiencies]}{STAGE III.7. ADAPTIVE MAINTENANCE[STEP III.7.1.
Adaptation to Internal Changes][STEP III.7.2. Adaptation to Changes in the External

106 JosØ Luis MatØ et al.

Environment][STEP III.7.3. Adaptation to Changes of Location]}{STAGE III.8.
PERFECTIVE MAINTENANCE[STEP III.8.1. Improved Performance][STEP III.8.2. Ex-
tensions][STEP III.8.3. On Demand from Users and Managers]}>

B. Functional and Representative Elements

<TASKS: Evaluate the implementations carried out on an overall and individual basis,
Define and implement corrective, adaptive and perfective maintenance><ACTIVITIES:
Define the objectives, aspects and assessment techniques, and establish the evaluation
method, Identify false manoeuvres, obsoleteness, and faults and deficiencies, Run
structural, functional and behavioural analyses, Define the adaptive and perfective
models for personnel, organisation and functions, Establish the dynamic technologi-
cal, methodological and ecological change models><TOOLS: Follow the adapted
evaluation process proposed by Gómez et al. [5], Expert choice, SWOT matrices for
knowledge transfer, Virtual reality techniques, Maintenance process road-
maps><MODELS AND PROGRAMMES: Simulate the redesign, Performance improve-
ment programmes, Corrective, adaptive and perfective models><DELIVERIES AND
OUTPUT DOCUMENTS: Evaluation document, Test results, Test iconography, Mainte-
nance manual, Obsoleteness alerts, List of anticipated changes and extensions, Main-
tenance processes roadmap>

3. Results and Conclusions

MEGICO has been used as a methodology to carry out over twenty different KM ini-
tiatives in different domains, having different scopes and ranges. The most important
are summarised in Table 1. The first column in Table 1 contains the organisation
promoting or using the initiative. The second column describes the organisation�s
business area and the third describes the initiative or the type of courses in which it is
used.

The following are the findings related to the initiatives carried out using MEGICO:
• Management backing and stakeholder cooperation are essential for the success of

the initiative.
• The interaction between the cultural and technological approaches is more intense

than it was thought to be and they converge at the organisational level. This in-
teraction affects the entire organisation and leads to changes.

• After applying KM to the methodology itself, as lessons learned from the use of
MEGICO, we consider it to be good practice to design specific pathways when
MEGICO users are looking for partial initiatives. For example, for the construc-
tion of lessons learned systems, they could be offered the part of the methodology
they need for this purpose and only this part. This would make MEGICO a partial
methodology generator. The same applies for practical improvements and insti-
tutional memories, etc.

• Knowledge sharing is more a question of confidence than of financial reward.
However, the creation of practice communities and knowledge networks favours
sharing.

 MEGICO: An Intelligent Knowledge Management Methodology 107

Table 1. Representative sample of KM initiatives carried out with MEGICO

ORGANISATION BUSINESS INITIATIVE
ASAJA Trade union Best practices
BBK (Bilbao Savings Bank) Finances Design of good practices for

its retail banking offices
BBVA (Banco Bilbao Vizcaya
Argentaria)

Banking, Finances Lessons learned systems for
corporate banking

La Caixa Banking, Finances Institutional memory
COFAGA Logistics Institutional memory
Deusto University Training and R&D Master
FINSA Holding Company Best practices and lessons

learned
Iberia Transport Ontologies for an institutional

memory
INAP (Spanish National In-
stitute of Public Administra-
tion)

Public Administration Master and institutional mem-
ory

LANTIK, S.A. Computing services Global KM system for the
whole institution

Motril Local Administration Public Administration Best practices
Technical University of Ma-
drid

Training and R&D Master, doctorate and artificial
intelligence laboratory institu-
tional memory

• It is important, whenever possible, not to develop integrated knowledge architec-
tures, networks and flows in one go. It is much more efficient to do this gradu-
ally.

• Finally, a software tool to support MEGICO application was missed in all projects.

Acknowledgements. We would like to thank the CICYT for funding project
TIC1998-0741 and all the institutions (which appear in Table 1) that have used or are
using the MEGICO methodology. Our thanks also go to Rachel Elliott (CETTICO)
for her invaluable help in translating this paper.

References

1. Rubenstein-Montano, B., Liebowitz, J., Buchwalter, J., McCaw, D., Newman, B., Rebeck,
K.: A Systems Thinking Framework for Knowledge Management. Decision Support Sys-
tems 31 (2001) 5-16

2. Paradela, L. F.: Ph.D. Thesis. UPM (2002) (under review process)
3. Tiwana, A.: The Knowledge Management Toolkit. Prentice Hall PTR, Upper Sadle River,

New Jersey (2000)
4. De Hoog, R.: Methodologies for Building Knowledge-Based Systems: Achievements and

Prospects. In Liebowitz J. (ed): The Handbook of Applied Expert Systems. CRC Press,
Boca Ratón, Florida (1998) 1-1, 1-14

5. Gómez, A.; Juristo, N.; Montes, C., Pazos, J.: �Ingeniería del Conocimiento�, Editorial
Centro de Estudios Ramón Areces, S.A. Madrid (1997)

A Process Ontology

Stuart Aitken1 and Jon Curtis2

1 Artificial Intelligence Applications Institute,
University of Edinburgh
stuart@aiai.ed.ac.uk

http://www.aiai.ed.ac.uk
2 Cycorp Inc., 3721 Executive Center Drive,

Austin, Texas 78731
jonc@cyc.com

http://www.cyc.com

Abstract. This paper describes an ontology for process representation.
The ontology provides a vocabulary of classes and relations at a level
above the primitive event-instance, object-instance and timepoint de-
scription. The design of this ontology balances two main concerns: to
provide a concise set of useful abstractions of process, and to provide an
adequate formal semantics for these abstractions. The aim of concise-
ness is to support knowledge authoring - ideally a domain expert should
be able to author knowledge in the ontology - providing a sufficiently
advanced toolset and interface has been implemented to support this
task.

1 Introduction

The Rapid Knowledge Formation project (RKF) [7] aims to develop powerful
tools to enable domain experts to author knowledge directly. These tools require
knowledge-engineering knowledge in order to function adequately. In addition,
the knowledge acquisition process is aided by providing a suitable set of abstrac-
tions - in the form of ontology classes and relations - that permit the expert to
make complex, and well-founded statements in a concise manner.

This paper describes an ontology for process representation which allows
processes to be described purely at the type-level. The semantics of these rela-
tions is expressed in terms of more primitive event-to-object relations in the Cyc
ontology[6]. A similar semantics in terms of the Process Specification Language
(PSL)[9] types and relations has also been developed in the course of this work
showing the (relative) independence of the type level and the ground level.

The process ontology aims to provide a concise set of useful abstractions
of process which apply across numerous domains. The first domain studied was
processes in cell biology, where models were derived from a textbook [1]. Latterly,
we are considering military courses of action. The process ontology augments an
existing theory of scripted events in Cyc, which is the theory behind the powerful
user interface tools developed and tested in RKF.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 108–113, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Process Ontology 109

The connection between the ontology and the user tools is the subject of
Section 2, we then outline the existing Script vocabulary and then present the
extensions to it. The theories of participants, conditions and effects and of re-
peated processes are documented in Section 3. Finally, we consider related work
in Section 4, and draw some conclusions in Section 5.

2 The RKF Tools and Ontology

The Cyc knowledge base currently contains more than 100,000 concepts, and
1.4 million axioms and rules [8]. Cyc’s knowledge is represented using CycL, a
highly expressive language based on second order logic. The Cyc tools developed
in the RKF project provide the core functionality of the KRAKEN knowledge-
entry system. KRAKEN incorporates powerful natural language tools that allow
the user to interact with the system through simple questions and statements
in English. The parsing components of the interface use Cyc’s lexical and syn-
tactic knowledge to produce intermediate logical representations. The resulting
underspecified representation must be ‘finalised’ to construct valid CycL. This ’fi-
nalisation’ process proceeds via both syntactic and semantic (knowledge-driven)
transformation rules. More details of the NLP components can be found in [8].

The User Interaction Agenda (UIA) provides the following tools:
The precision suggestor for placing a concept appropriately in the hierarchy. This
tool identifies a small set of possible generalisations and specialisations of a new
concept and suggests these to the user.
The salient descriptor aims to add a minimal, appropriately general set of
relevant assertions about new (or existing, but under-ontologized) concepts.
This tool queries the user, in English, for the additional information using gen-
eral, context-dependent knowledge-acquisition rules. Prompting these queries are
knowledge-acquisition rules of the form, if P(a), it is useful to know Q(a). Again,
the precision suggestor can be used against the output of any salient descriptor
interaction, to help ensure that the right level of generality has been achieved.
The process descriptor assists the user to enter descriptions of structured event
types, or Scripts. A Script is a typical pattern of events that can be expected to
re-occur - ‘dining in a restaurant’ being a well known example. The tool allows
the various steps of a process to be defined and ordered, and for the types of
actors and roles in the various steps to be identified. The precision suggestor and
salient descriptor tools are called upon as necessary.

The relevance of a process ontology becomes all the more evident when one
realizes that knowledge creation and refinement is itself a process, describable
as a Script in CycL. Thus a rich and inferentially powerful theory of Scripts is
potentially useful beyond giving the KRAKEN system the resources to guide the
user in defining new processes. With the knowledge that every UIA knowledge-
entry session is itself an instantiation of a kind of Script, Cyc will be able to
’follow’ the Script, anticipating decision points and user actions, and, overall,
more effectively guide knowledge-entry sessions from start to finish, in much the
way a genuinely intelligent agent would. Thus one way to interpret the results

110 Stuart Aitken and Jon Curtis

reported here is to think of them as important stepping stones towards the larger
goal of using a process ontology as a core component of knowledge-entry tools,
generally.

3 The Process Theory: An Extension of Scripts

This section presents three extensions to the Script theory: Participants, Condi-
tions and Repetition. The Participants theory extends the existing vocabulary
for identifying the objects that play a role in a scripted event or a Scene. The
Conditions theory is a new theory for specifying the preconditions and effects
of a Scene. The Repeated Scripts theory provides the semantics for the repeti-
tion of an Event type, within the Process theory. These theories all provide a
type-level vocabulary, and are grounded at the instance-level which provides the
semantics. As a consequence of the type-level definitions, the problem of identity
arises, i.e. which instance plays a given role in an event, given that only its type
is specified. Selected ontology relations and their rules are presented to illustrate
the approach.

3.1 Participants in Processes

Processes are formalised as Scripts. However, the representation of participants
is modified for Processes. Firstly, an explicit count of objects of the given type
which play a role in the event must be specified. Secondly, it is necessary to know
which objects of that type play a role in a specific event. The new formulation
contains the information required for process instances to be created. As the
process description is really a specification, we cannot immediately derive a
ground instance of the process (a model in terms of event-instances and objects)
from it, but can validate a ground model against the type level description.

The relations actorTypeInScriptCount and actorTypeInSceneCount state the
number of things of a given type that play any role in a Script or Scene. These
relations have the following rules which conclude with the Cyc relation relation-
InstanceExistsCount, specifying the number of instances of ?TYPE for which
(actors ?EVENT instance) holds. actors is used as the most general predicate
relating events and instances, it will be specialised during process modelling.

F: (implies (and (actorTypeInScriptCount ?TYPE ?SCRIPT ?INT)

(instantiatesScript ?EVENT ?SCRIPT))

(relationInstanceExistsCount

actors ?EVENT ?TYPE ?INT)).

The following KE suggestion rules are defined to encode the knowledge ac-
quisition requirements as they apply to Processes. This type of information is
important as it drives the suggestion mechanisms of the GUI tools. For a Script-
edEventType, an actorTypeInScriptCount is expected, therefore the following
rule is defined:

A Process Ontology 111

F: (implies (isa ?SCRIPT ScriptedEventType)

(keStrongSuggestion ?SCRIPT

(thereExists ?TYPE (thereExists ?INT

(actorTypeInScriptCount ?TYPE ?SCRIPT ?INT))))).

Explicit assertions that the object(s) playing a role in one Scene is(are) the
same as those in another Scene, or in the Script as a whole, are required. The
problem of identifying instances from subevent to subevent arises from the type-
level approach where properties of Scenes are stated in the context of Script,
but otherwise in isolation from each other. Additional relations are introduced
to allow such statements.

3.2 Conditions in Processes

The conditions and effects of scenes are also defined at the type-level. Only
Scenes are treated as it is assumed that the conditions of Scripts are derivable
from those of the constituent Scenes.

preconditionOfScene holds of a Scene, a predicate, and a specification term.
The semantics at the instance level are expressed in terms of the existing Cyc
predicate preconditionFor-PropSit which holds of an ELSentence-Assertible and
an Event. The predicate and the specification of preconditionOfScene determine
the ELSentence-Assertible. The specification term selects among the objects that
have been defined to play a role in the Scene, that is, all objects that are referred
to in the conditions must be declared to play a role in the Scene. This is done
using the Participant vocabulary.

F: (implies (and (preconditionOfScene ?SCENE ?PRED

(TypeArgSpec-UnaryFn ?ROLE))

(isa ?ROLE BinaryRolePredicate)

(isa ?PRED UnaryPredicate)

(isa ?SUBEVENT ?SCENE))

(thereExists ?E (and (?ROLE ?SUBEVENT ?E)

(preconditionFor-PropSit (?PRED ?E) ?SUBEVENT)))).

A Scene may have several preconditions. These are stated independently of
each other, and have the interpretation that the conjunction of these precondi-
tionOfScene assertions must hold for the event to be executable. The conditions
may be unary, binary or ternary relations.

Postconditions are treated in a similar manner to preconditions. Again, es-
tablishing identity between the arguments of the pre/postconditions again arises,
and additional vocabulary is introduced to allow identity to be asserted.

Planning We have implemented translation procedures that transform the
type-level encodings of actions into PDDL and also construct a constraint theory
in Cyc [2]. The semantics of the constraint theory are equivalent to those of the
PDDL problem definition. Thus we have a dual representation of conditions:
a Process semantics which is consistent with Process models, and a constraint
semantics which is consistent with the PDDL action encoding. This allows us to

112 Stuart Aitken and Jon Curtis

call an external planner to perform plan generation when this type of reasoning
is required. It is worth noting that the ability to plug in an external planner,
though desirable, is not necessary. Cycorp has developed a hierarchical planner
within Cyc, currently deployed as a part of their Cyc Secure (TM) product.

3.3 Repetition in Processes

Biological models commonly include processes that are repeated. The number
of repetitions may be known, or may be unspecified. Further, repetition may
occur until a specific condition is achieved. The key ideas are to define prop-
erties of repeated processes, such as termination, and introduce functions that
creates a new process (event type) from an existing event type, for example,
(RepeatInOrder ?EVENT ?INT). Space prohibits a more detailed presentation.

4 Related Work

The Process ontology is closely related to the Process Specification Language,
in terms of both the intended area of application and formal approach. The
PSL Core is an instance-level theory of activity which can be mapped to the
equivalent event/object relations in Cyc. While the predicates differ, equivalent
instance-level models of events can be created.

PSL has several theories which the Process ontology currently lacks. However,
PSL does not provide a well defined set of type-level relations for subevent
ordering, participants or conditions (fluents in PSL)1. Modelling using the core
PSL theories must be performed primarily at the event instance level. PSL does
define a theory of junctions in processes.

DAML-S [4] contains a process ontology which contains many concepts found
in PSL, and in the ontology presented here. For example, types of process include
atomic, simple and composite, process parameters (properties) include inputs,
outputs and participants and these correspond to roles in our ontology. DAML-S
also has preconditions and effects, sequence, split+join and repetition. However,
DAML-S currently only defines the names of collections or properties so no
detailed comparison is possible.

IDEF3[5] is a process modelling methodology which primarily diagrammatic.
Processes, process products, and their connections are represented by a conven-
tion of boxes and arrows. The visual presentation is important in the modelling
process, and in explaining the model to the managers and employees in an or-
ganisation. IDEF3 models have several features which inform the interpretation
of the diagrams, including and/or/xor junctions. Processes may have attributes
such as triggers which are not shown in the diagram but are documented else-
where. None of these features have formal semantics. The informality allows a
single model to describe many complex phenomena, such as repetition, splits in
the flow of processes (junctions) and synchronisation, in a relatively intuitive

1 Many of the type-level relations have no axioms and only a textual definition.

A Process Ontology 113

way. Naturally, IDEF3 models cannot be processed by machine without creating
an interpretation (explicitly or implicitly). Defining an underlying formal seman-
tics for informal modelling techniques allows the consistency and integrity of the
models to be maintained [3]. These practical benefits are important justifications
for formalisation in a business context.

5 Conclusions

Through pursuing the type-level approach, we have found there to be a relatively
small set of useful abstractions of processes. Consequently, the combination of a
type-level vocabulary with the associated knowledge-elicitation rules is a power-
ful technique for knowledge acquisition. Rather than authoring rules with uni-
versally and existentially quantified variables as is required at the event-instance
level (a task which, when given to domain experts, certainly requires them to
become much more familiar with the logical encoding), the Process Ontology
allows a process description to be created incrementally in terms of classes and
relations only.

Acknowledgements

This work is sponsored by the Defense Advanced Research Projects Agency
(darpa) under subcontract 00-C-0160-01 with Cycorp on BAA99-35. The u.s.
Government is authorised to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright annotation hereon. The views and
conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing official policies or endorsements, either express
or implied, of darpa, Rome Laboratory or the u.s. Government.

References

1. Alberts, B., Bray, D., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P.
Essential Cell Biology Garland Publishing, London, 1998.

2. Aitken S. Process Planning in Cyc: From Scripts and Scenes to Constraints. Proc.
Twentieth Workshop of the UK Planning SIG, PLANSIG 2001, Ed. Levine, J., De-
cember 2001, pp. 257-260.

3. Chen-Burger, Y. and Robertson, D. Formal Support for an Informal Business Mod-
eling Method. Proc. SEKE 1998.

4. DAML Web Service Ontology http://www.daml.org/services/
5. IDEF3 Method Report, KBSI Inc. http://www.idef.com/idef3.html
6. Lenat, D.B. Leveraging Cyc for HPKB Intermediate-level Knowledge and Efficient
Reasoning http://www.cyc.com/hpkb/proposal-summary-hpkb.html

7. Rapid Knowledge Formation Project http://reliant.teknowledge.com/RKF/
8. Panton, K., Miraglia, P., Salay, N., Kahlert, R.C., Baxter, D., and Reagan, R.
Knowledge Formation and Dialogue using the KRAKEN Toolset. Proc. IAAI-02

9. Schlenoff, C., Gruninger, M., Tissot, F., Valois, J., Lubell, J., and Lee, J., The
Process Specification Language (PSL) Overview and Version 1.0 Specification. NIST
Report (NISTIR) 6459, Jan. 1999.

Semantic Commitment for Designing Ontologies:

A Proposal

Bruno Bachimont1, Antoine Isaac1,2, and Raphaël Troncy1,3

1 Institut National de l’Audiovisuel, Direction de la Recherche
4, Av. de l’Europe - 94366 Bry-sur-Marne

{bbachimont,aisaac,rtroncy}@ina.fr & http://www.ina.fr/
2 LaLICC, Université de Paris-Sorbonne,
http://www.lalic.paris4.sorbonne.fr
3 INRIA Rhône-Alpes, Action EXMO,

http://www.inrialpes.fr/exmo

Abstract. The French institute ina is interested in ontologies in order
to describe the content of audiovisual documents. Methodologies and
tools for building such objects exist, but few propose complete guidelines
to help the user to organize the key components of ontologies: subsump-
tion hierarchies. This article proposes to use a methodology introducing
a clear semantic commitment to normalize the meaning of the concepts.
We have implemented this methodology in an editor, DOE, complemen-
tary to other existing tools, and used it to develop several ontologies.

1 Introduction

With the emergence of technical systems which exploit numerical contents, ac-
cessing and processing information are evolving at a fair rate. The French in-
stitute ina1 has to manage large multimedia and audio-visual databases, a task
that includes allowing an access as efficient as possible to the data stored. ina is
thus greatly concerned with indexing – the core of its mission –, which implies
dealing with ontologies to create relevant content description of the audio-visual
documents.

While trying to use ontologies, one soon has to face the problem of the way
they are designed, especially as regards to taxonomy structuration. Indeed, it is
acknowledged that the taxonomies of domain concepts are key components of
the built ontologies. Consequently, we searched for a methodological approach
that gives guidelines to structure taxonomies (Section 2). We claim that none
of these methodologies force the ontologist to explicit the real meanings of the
concepts and consider thereafter a possible solution, using natural language. We
detail the three steps of a methodology proposal (Section 3) and present a tool
implementing it. We then conclude and outline further work (Section 4).

1 ina (Institut National de l’Audiovisuel) has been archiving TV documents for 45
years and radio documents for 60 years. It stores more than 700 000 hours of broad-
cast programs (3 000 000 audio-visual documents) and some 2 000 000 images.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 114–121, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Semantic Commitment for Designing Ontologies: A Proposal 115

2 Which Methodology for Building Ontologies?

2.1 A Work Still in Progress

Many approaches (for a complete survey, the reader can refer to the OntoWeb
Technical RoadMap2) have been reported to build ontologies, but few fully de-
tail the steps needed to obtain and structure the taxonomies. For instance,
Uschold and Grüninger methodology [7], Methontology proposed by the
LAI of Madrid [2], or researchers involved in the On-To-Knowledge project3

are rather interested in giving methodological outlines for the whole process of
ontology engineering. They focus on the life cycle and the ordering of the ge-
neral steps to develop these ontologies: identify the purpose of the information
system, collect the relevant information for knowledge acquisition, evaluate the
results, etc. Obviously, all these tasks are essential according to an “ontological
engineering” point of view. However, the conceptualization step, in which the
concepts and the relations between them are captured, has to be detailed.

For instance, Methontology proposes to build the ontology at the knowl-
edge level using a set of intermediate representations. Although the taxonomy
is one of these representations, the methodology does not stress on the way
to classify the concepts. The methodology introduced in the framework of On-
To-Knowledge uses lexical pattern matching to extract some subsumption in-
formation from the answers given to informal competency questions [3]. It is
an original way of considering the problem, but one may wonder whether this
helping function could be generally applied. Finally, we may mention Nicola
Guarino’s taxonomy cleaning method [4], which aims at removing wrong sub-
sumption relation from concept hierarchies thanks to meta-properties defined
by logical axioms. It is an interesting approach, yet only applicable after one
has already built such a hierarchy: the first move remains to be done by the
ontologist alone, which is not satisfying. That is the reason why we are eager to
learn about whatever may follow from the merge attempt between this method
and Methontology [3].

2.2 Requirements for a Methodology Focusing on Natural Language

Among the methodologies evoked, few propose complete guidelines to help the
user to organize the hierarchies. We claim here that, finally, none of these
methodologies force the ontologist to explicit the real meanings of the concepts
in the most natural way: using natural language (NL). Actually, some method-
ologies recommend using NL to explicit the meaning of the concepts inside com-
ments or through documents surrounding the modeling process, but not in a
principled way. The terms used to denote the concepts are still liable to multiple
interpretations. This results in possible misunderstandings and consequently bad
modeling and use of the ontology. We suggest then to follow an evolved version
of methodological guidelines that were first proposed in [1].
2 http://babage.dia.fi.upm.es/ontoweb/wp1/OntoRoadMap/index.html
3 http://www.ontoknowledge.org

116 Bruno Bachimont, Antoine Isaac, and Raphaël Troncy

The first problem to face is the under-determination of meaning: every ex-
pression in language has its meaning contextually defined, since interpretation
may vary according to the context (a specific application). Modeling will thus
consist in choosing linguistic labels and associating with them a relevant and
non-contextual semantics. The problem is then to determine which kind of se-
mantics and how to use it in a normalization effort.

Second, defining a linguistic meaning is not sufficient to specify a system. A
usual approach consists in associating a formal semantics with concepts. Formal
semantics allows a mathematical modeling of the linguistic meaning as well as
of the system behavior. The ontologist needs a semantics formal enough to ef-
ficiently specify computations, and yet close enough to the knowledge level to
make these computations intelligible.

Finally, an ontology has to introduce knowledge primitives which will be the
building blocks for programming a Knowledge-Based System (KBS). From this
point of view, a label will be used in rules, or grammars, or inferences, to perform
computation. The associated semantics is here a computational or operational
one.

To sum up, a knowledge primitive has three semantic descriptions :

a linguistic semantic description that provides a human user with an un-
ambiguous understanding of a term;

a formal semantic description that provides a human user with a mathe-
matical and formal account of the previous level;

a computational description that makes explicit the intended behavior of
the computer when handling with this primitive;

The first level is what a human being can understand, the third what a com-
puter can perform, and the second the formal modeling establishing a mapping
between the two: how to understand what the KBS is doing, how to specify what
it should do.

3 Methodology

The three steps we propose (Fig. 1) consist in a semantic normalization of the
terms introduced in the ontology, followed by a formalization of the meaning
of the knowledge primitives obtained and an operationalization using knowledge
representation languages. The two last steps are not very different from what
can be found in other methodologies. The point is the way they are integrated
in a process aimed at making ontology development and use easier.

3.1 First Step: Semantic Normalization

The first step of this methodology aims at reaching a semantic agreement about
the meaning of the labels used for naming the concepts. Natural language is
usually the best access to the knowledge of a domain. In ina, the archivists use a
collection of textual documents that are delivered with TV programs. Hence, it

Semantic Commitment for Designing Ontologies: A Proposal 117

Fig. 1. The 3 steps of the differential methodology for building ontologies

seems natural to look for possible labels, candidates for future primitives, within
these documents.

One of our ontologies deals with the field of cycling race, especially the Tour
de France event. During the analysis of that domain we discovered, for instance,
numerous terms referring to human beings who do not play obviously similar
roles in a cycling race : race cyclist, spectator, team manager, reporter,
race supervisor, climber, wheeler, sprinter. . .

After having extracted labels, the ontologist has to specify their meaning
clearly, and therefore to use a relevant semantic theory. We are going to build
a differential ontology which will turn these terms into notions based on dif-
ferential semantics ([5]). Practically, the ontologist has to be able to express
the similarities and differences of each notion with respect to its neighbors: its
parent-notion and its siblings-notions. The result will be a taxonomy of notions,
where the meaning of a node is given by the gathering of all similarities and
differences attached to the notions found on the way from the root notion (the
more generic) to this node.

We propose four principles to render explicit this information:

– The similarity with parent principle (or SWP): explicits why the notion
inherits properties of the one that subsumes it;

– The similarity with siblings principle (or SWS): gives a semantic axis, a
property – assuming exclusive values – allowing to compare the notion with
its siblings.

– The difference with siblings principle (or DWS): precises here the property
allowing to distinguish the notion from its siblings;

– The difference with parent principle (or DWP): explicits the difference al-
lowing to distinguish the notion from its parent;

In the example given above, we can notice that terms like climber, wheeler
and sprinter refer to race cyclists who are employed by teams. Actually, all

118 Bruno Bachimont, Antoine Isaac, and Raphaël Troncy

the people who usually attend the Tour de France do not play the same role. We
can thereby gather these terms according to the role people play during the race.
Thus, the notion Person can be specialized in three new notions – Race Staff
Member, Team Member and Spectator – according to the differential principles
given in Tab. 1.

Actually, all those principles do not have the same methodological status.
First, we have noticed that the SWP and SWS principles are shared among the
concepts from the same siblings. Second, the DWP principle has often proved to
be the sum of the principles SWS and DWS : we give firstly a means to create a
difference, and then we put it in a concrete form to finalize the concept definition.

−→ For all the following notions
swp: he is a person
sws: a property precises why the person is present during the race

−→ Race Staff Member

dws: he is accredited by the race management

−→ Team Member

dws: he is employed by a team that takes part in the race

−→ Spectator

dws: he is neither accredited by the race management, nor employed by a team that
takes part in the race

−→ For all these notions
dwp: {sws} + {dws}

Table 1. The differential principles linked to the concepts directly specializing
Person

3.2 Second Step: Knowledge Formalization

The ontological tree obtained in the first step allows to disambiguate the notions
and to clarify their meanings for a domain-specific application. The transition
to extensional semantics aims at linking the notions to a set of referents. The
notions become concepts behaving as formal primitives and being part of a ref-
erential ontology. Each concept refers to a set of objects in the domain (its
extension). Therefore, we can use the operations that exist for sets (i.e. union,
intersection or complementary) in order to obtain new concepts.

The comparison of extensions allows to define an extensional inheritance re-
lation between concepts: one is subsumed by another if and only if its extension
is included in its parent’s extension. The subsumption relations of the differ-
ential ontology are still true in the referential ontology, but additional nodes
may change the tree structure. For instance, Climber and Wheeler are exclusive
notions, but the matching formal concepts can have extensions with common
individuals. Typically, the race cyclist Lance Armstrong has these two skills.

Semantic Commitment for Designing Ontologies: A Proposal 119

Hence, we can define in the referential ontology – with a necessary and suffi-
cient condition – a new concept ClimberAndWheeler to gather such individuals.
Multiple inheritance is thereby possible.

Referential semantics allows to introduce new defined concepts but also def-
initions for existing concepts imported from the differential ontology. Also, the
ontologist has to precise here the arity and domains of the relations. Relation
signatures are defined by the means of cartesian product of concepts references.
Finally, the ontologist can add some logical axioms in relation to relational alge-
bra, part-whole reasoning, composition of relations, exhaustive partitions, etc [6].
For instance, Race Staff Member, Team Member and Spectator form a disjoint
coverage of the concept Person.

3.3 Third Step: Towards a Computational Ontology

The third and last step of the methodology allows to equip the referential con-
cepts with the possible computational operations available in a KBS: this is the
computational ontology. The system uses an operational knowledge representa-
tion language which allows particular inferences. For a language based on the
conceptual graph formalism, these inferences are graph operations (joint, projec-
tion, etc). For a language based on description logics, these inferences are mainly
subsumption tests and classification.

The example below asserts that a Person, from the cycling point of view,
is either a Race Staff Member, a Team Member or a Spectator. This assertion
is written in the DAML+OIL language, an ontology language proposal for the
Semantic Web.

<daml:Class rdf:about="#Person">

<daml:disjointUnionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#RaceStaffMember"/>

<daml:Class rdf:about="#TeamMember"/>

<daml:Class rdf:about="#Spectator"/>

</daml:disjointUnionOf>

</daml:Class>

3.4 Implementing the Methodology: The DOE Editor

DOE4 (Differential Ontology Editor) is a simple prototype that supports the
three steps of the methodology detailed above. It is not intended to bring a
direct competition with other existing environments (like Protégé2000, OILed,
OntoEdit or WebODE). Rather, its purpose is to demonstrate by experimenta-
tion how taxonomy structuring can benefit from the methodology described in
this paper.

During the first step, the ontologist can enter the definition of the notions
according to our principles. The tool automatizes partly this task, following the

4 The tool is available for free at http://opales.ina.fr/public/.

120 Bruno Bachimont, Antoine Isaac, and Raphaël Troncy

observations made in Section 3.1. As an illustration, the Fig. 2 shows the inter-
face recalling our Race Staff Member example. For the second step, it imports
the taxonomies built in the previous step and allows the ontologist to special-
ize existing concepts and relations, as well as specify the arity and domains of
the relations. Here the editor is able to make some consistency checking (prop-
agation of the arity all along the hierarchy – if specified – and inheritance of
domains). The last step is implemented by exporting the referential ontology
into commonly-used KR languages (DAML-OIL, RDFS). This export mecha-
nism also allows to refine the ontologies built, using the features supported by
other editors.

Fig. 2. The differential principles bound to the notion Race Staff Member in the
DOE tool

4 Conclusion and Future Work

We have briefly evoked some methodologies for building ontologies but we have
noticed a weakness: nothing forces the ontologist to assign a clear meaning to

Semantic Commitment for Designing Ontologies: A Proposal 121

concepts, the comments remaining mostly informal. We have proposed guide-
lines, mainly based on linguistics recommendations (using differential semantics)
to explicit the linguistic meaning of the knowledge primitives of the ontology.
The proposed methodology follows three steps: normalization, formalization and
operationalization. We have implemented this methodology in an edition tool
prototype, DOE, and several quite important ontologies have already been built
within it.

For the future, we plan to better integrate our solution in a more complete
ontology engineering process. Prior to the first step of the methodology, we could
use the results of terminological extraction tools to get candidate-concepts and
discover candidate-relations. We should also develop import mechanisms to reuse
ontologies developed with other tools.

References

1. Bouaud, J., Bachimont, B., Charlet, J., Zweigenbaum, P.: Methodological principles
for structuring an ontology. In IJCAI-95 Workshop on Basic Ontological Issues in
Knowledge Sharing, Montreal, Canada, 1995.

2. Fernández, M., Gómez-Pérez, A. and Juristo, N.: Methontology: From Ontolog-
ical Art Towards Ontological Engineering. In AAAI97 Spring Symposium Series on
Ontological Engineering, 33-40, Stanford, California, 1997.

3. In Gómez-Pérez, A. (editor): Notes for SIG on Enterprise Standard Ontology Envi-
ronment. Second Ontoweb Meeting, Amsterdam, December 2001.

4. Guarino, N. and Welty, C.: Evaluating Ontological Decisions with OntoClean. In
Communications of the ACM, 45(2): 61-65.

5. Rastier, F., Cavazza, M. and Abeillé, A.: Sémantique pour l’analyse. Masson, Paris,
1994.

6. Staab, S. and Maedche, A.: Ontology Engineering beyond the Modeling of Concepts
and Relations. In 14th European Conference on Artificial Intelligence (ECAI’00),
Workshop on Applications of Ontologies and Problem-Solving Methods, Berlin, Ger-
many, 2000.

7. Uschold, M. and Grüninger, M.: Ontologies: Principles, Methods and Applications.
Knowledge Engineering Review, (2), 93-155, 1996.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 122-137, 2002.
 Springer-Verlag Berlin Heidelberg 2002

User-System Cooperation in Document Annotation
Based on Information Extraction

Fabio Ciravegna1, Alexiei Dingli1, Daniela Petrelli2, and Yorick Wilks1

1 Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello Street, S1 4DP, Sheffield, UK,
{fabio|alexiei|yorick}@dcs.shef.ac.uk

 2 Department of Information Studies, University of Sheffield,
Regent Court, 211 Portobello Street, S1 4DP, Sheffield, UK,

D.Petrelli@shef.ac.uk

Abstract. The process of document annotation for the Semantic Web is
complex and time consuming, as it requires a great deal of manual annotation.
Information extraction from texts (IE) is a technology used by some very recent
systems for reducing the burden of annotation. The integration of IE systems in
annotation tools is quite a new development and there is still the necessity of
thinking the impact of the IE system on the whole annotation process. In this
paper we initially discuss a number of requirements for the use of IE as support
for annotation. Then we present and discuss a model of interaction that
addresses such issues and Melita, an annotation framework that implements a
methodology for active annotation for the Semantic Web based on IE. Finally
we present an experiment that quantifies the gain in using IE as support to
human annotators.

1. Introduction

The effort behind the Semantic Web (SW) is to add information to web documents in
order to access knowledge instead of unstructured material, allowing knowledge to be
managed in an automatic way. Much effort has been spent in developing
methodologies for enriching documents, mainly requiring manual insertion of
annotation. It is reasonable to expect users to manually annotate new documents up to
a certain degree, but annotation is a slow time-consuming process that involves high
costs. Therefore it is vital for the Semantic Web to produce automatic or semi-
automatic methods for document enrichment, either to help in annotating new
documents or to extract additional information from existing unannotated or partially
annotated documents. Information Extraction from texts (IE) can provide the
backbone for such tools. IE is an automatic method for locating important facts in
electronic documents. In the SW context, IE can be used for document annotation
either in an automatic way (via unsupervised extraction of information) or semi-
automatic way (e.g. as support for human annotators in locating relevant facts in
documents via information highlighting).
IE is an area of Natural Language Processing with a long history. Its development has
been mainly driven by the MUC conferences, a number of competitive exercises

User-System Cooperation in Document Annotation Based on Information Extraction 123

supported by Darpa. One of the main issues in IE is the way in which applications are
defined. The main constraint in the MUC conferences is that applications are to be
developed in a short time (e.g. one month). The MUCs represent a scenario in which
the cost of new application is not considered important: by bounding the development
time they did not put an upper bound neither to the amount of personnel needed for
the application nor to the skills used [1]. As a result, most of the systems were
portable by IE expert only.
The Semantic Web represents a completely different scenario where the cost is the
issue. The rapid and uncontrolled growth of the Web in the last years is mainly due to
the simplicity and effectiveness of HTML. Everyone can make available his/her own
pages at nearly no cost (the cost of a PC and a telephone line) with very limited skills
(i.e. mainly the ability of using a web editor). If we want the Semantic Web to
become the widespread evolution of the current Web we have to provide
methodologies with the same type of requirement: portability with limited skills and
no (or very limited) cost. The requirement is to be extended to all the tools necessary
for building the SW. If IE is to be used for annotation, it must be usable at no cost
(exactly as web browsers are free) with limited skills. The kind of IE technologies that
require experts in IE can be afforded only by big companies and or big service
providers (e.g. search engines companies) and can be used for generic indexing.
EaroDAML, [2] is an example of a tool that requires an expert to adapt the system to
new applications and that is used for very generic IE for the Web (e.g. named entity
recognition). The situation is different in scenarios with distributed agents that
provide local services. For example a university department wanting to provide a SW
service for their Web pages. In this case they will need to define a specific indexing
service themselves. The available budget here is very low and the available skills are
quite limited (e.g. a student want-to-be web designer and a system manager). No
experts in IE can be envisaged here, nor does the budget allow hiring an expensive
external company. In an IE perspective for the SW there is the clear need to allow
users with no knowledge of IE to build applications (e.g. specialized annotation
services for the set of pages).
Adaptive IE systems (IES) use Machine Learning to learn how to adapt to new
applications/domains using only annotated corpora [3] 4][5]. They can be adapted to
provide annotations for the SW: they monitor the annotations inserted by the user and
learn how to reproduce them. When equivalent cases are encountered, annotations are
automatically inserted by the IES and users have just to check them. Some new
annotation tools for the Semantic Web are starting including adaptive IE as support to
annotation. At the Open University, the MnM annotation tool [6] interfaces with both
the UMass IE tools1 and Sheffield�s Amilcare2. At the University of Karlsruhe the
Ontomat annotizer [7] interfaces with Sheffield�s Amilcare. The current methodology
of interaction between annotation tool and IES is still quite simplistic, influencing
also the way in which users and annotation system interacts. Generally a batch
interaction mode is adopted, i.e., the user annotates a batch of texts and the IE tool is
trained on the whole batch. Then annotation is started on another batch of texts and
the IE system proposes annotations to users when cases similar to those found in the
training batches are recognized. Although the use of adaptive IE constitutes quite an

1 www-nlp.cs.umass.edu/software/badger.html
2 www.dcs.shef.ac.uk/~fabio/Amilcare.html

124 Fabio Ciravegna et al.

improvement with respect to the completely manual annotation approach, in our
opinion the tremendous potentialities of adaptive IE technologies are not fully
exploited. We believe that it is time to consider the way in which the interaction can
be organized in order to both maximize effectiveness in the annotation process and
minimize the burden of annotating/correcting on the user�s side. We expect that such
change will also influence the user-annotation tool interaction style by moving from a
simplistic user-system interaction to real user-system collaboration3. We propose two
user-centered criteria as measure of appropriateness of this collaboration: timeliness
and intrusiveness of the IE process. The first shows the ability to react to user
annotation: how timely is the system to learn from user annotations. The latter
represents the level to which the system bothers the user, because for example it
requires CPU time (and therefore stops the user annotation activity) or because it
suggests wrong annotations.

Timeliness: when the IE system (IES) is trained on blocks of texts, there is a time
gap between the moment in which annotations are inserted by the user and the
moment in which they are used by the system for learning. User and system work in
strict sequence, one after the other. This sequential scheduling hampers true
collaboration. If a batch of texts contains many similar documents, users may spend
considerable amount of time in annotating similar documents without receiving
feedback from the IES for the simple reason that no learning is scheduled for the
moment. The IES is not supportive to the user neither the user effort is very useful,
since similar cases are of very little use for the learner because they cannot offer the
variety of phenomena that empower learning. The bigger the size of the batch of texts
the worse, the problem of lack of timeliness is. A true collaboration implies a
(re)training of the system after every annotated text is released by the user. Training
can take a considerable amount of CPU time, therefore stop the annotation session for
a while. A positive collaboration requires not to constraint the user time to the IES
training time (otherwise intrusiveness increases). We believe that an intelligent
scheduling is needed to keep timeliness in learning without increasing intrusiveness.

Intrusiveness: the IE system can bother users in a number of ways, for example by
proposing annotations generated by unreliable rules (e.g. induced using an insufficient
number of cases). A positive collaboration requires to enable users to tune the
proactivity of the IE system in order to avoid intrusiveness.

In this paper we present an IE-based annotation methodology for the Semantic
Web that takes into account the problems of timeliness and intrusiveness mentioned
above. Moreover we quantitatively evaluate the support provided by IE in a
simulation of experiment of text annotation.

2. Towards a New Interaction Model

We propose an interaction model that aims at producing a non-intrusive and timely
support for users during the annotation process. In this section we describe the way in

3 Collaboration means working together for a common goal, all partners contributing with their

own capabilities and skills.

User-System Cooperation in Document Annotation Based on Information Extraction 125

which user and system interact and discuss how such requirements are met by our
model.

2.1. User-System Interaction

We split the annotation process into two main phases from the IES point of view: (1)
training and (2) active annotation with revision. In user terms the first corresponds to
unassisted annotation, while the latter mainly requires correction of annotations
proposed by the IES.

During training users annotate texts without any contribution from the IES. Here
the IES uses the user annotations to train its learner. During this phase the IES is
constantly inducing rules. We can define two sub-phases: (a) bootstrapping and (b)
training with verification. During bootstrapping the only IES task is to learn from the
user annotations. This sub-phase can be of different length, depending on the
minimum number of examples needed for a minimum of training. During the second
sub-phases, the user continues with the unassisted annotation, but the IES behaviour
changes, as it uses its induced rules to silently compete with the user in annotating the
document. The IES automatically compares its annotations with those inserted by the
user and calculates its accuracy. Missing annotations or mistakes are used to retrain
the learners. The training phase ends when the IES accuracy reaches the user
preferred level of pro-activity. It is therefore possible to move to the next phase:
active annotation.

The active annotation with revision phase is heavily based on the IES
suggestions and the user�s main task is correcting and integrating the suggested
annotations (i.e. removing and adding annotations). Human actions are inputted back
to the IES for retraining. This is the phase where the real system-user cooperation
takes place: the system helps the user in annotating; the user feeds back the mistakes

to help the system perform better. In user terms this is where the added value of the
IES becomes apparent, because it heavily reduces the amount of annotation to insert
manually. This supervision task is much more convenient from both cognition and
actions. Correcting annotations is simpler than annotating bare texts, it is less time
consuming and it is also likely to be less error prone.

Figure 1. The training with verification sub-phase. In this figure Amilcare is used as example of
adaptive IES.

126 Fabio Ciravegna et al.

2.2. Coping with Intrusiveness

The design of the interaction model aims to limit intrusiveness of the IES in a number
of ways. First of all the IES does not require any specific annotation interface or any
specific adaptation by the user. It integrates in the usual user environment and
provides suggestions in a way that is both familiar and intuitive for the user. To some
extent users could even ignore that the IES is working for them.
Secondly intrusiveness as a side effect of proactivity is coped with, especially during
active annotation with revision, when the IES can bother users with unreliable
annotations. The requirement here is to enable users to tune the IES behaviour so that
the level of suggestions is appropriate. Some IES provide internal tuning methods for
balancing features such as precision and recall or the minimum number of cases to be
covered in order to accepted a rule for annotation. Such tuning methodologies are
designed for IE experts since they require a deep knowledge of the underlying IE
system. This is especially true because the user�s goal is tuning the level of
intrusiveness in the annotation process and very often there is no obvious
correspondent in the IES tuning methodology. For example Amilcare allows to
modify error thresholds for rules, number of cases covered by rules for acceptance,
balance of precision and recall in rule tuning: none of these correspond directly to
tuning the level of intrusiveness (even if large part of it relies in the precision/recall
balance). Moreover, the acceptable level of intrusiveness is subjective: some users
might like to receive suggestions largely regardless from their correctness, while
others do not want to be bothered unless suggestions are absolutely reliable. A user-
friendly interaction methodology requires enabling the user in selecting the
appropriate level of intrusiveness, without coping with the complexity of tuning an
adaptive IE system. In our model the annotation interface bridges the qualitative
vision of users (e.g. a request to be more/less active or accurate) with the specific IES
settings (e.g. change error thresholds), as also suggested in [8]. This is important
because the annotation interface is a tool designed for specific user classes and
therefore able to elicit tuning requirements by using the correct terminology for the
specific context.
Finally the IES training requires CPU time and this can slow down or even stop the
user activity. For this reason most of the current systems use a batch mode of training

Figure 2. The active annotation with revision phase

User-System Cooperation in Document Annotation Based on Information Extraction 127

so to limit training to specific moments (e.g. coffee time). As explained above, the
batch approach presents timeliness problems. We propose background learning to
provide timely support without intrusiveness. If we observe how time is spent in the
annotation process (select a document, manually annotate the document, save the
annotation), we notice that most of the user time is spent in the manual annotation
process. This is the right moment to train the IES in the background without the user
noticing it. In principle it is possible to treat every annotation event in the interface as
a request to train on a specific example, but this requires the ability to retreat
annotations in case of user errors, making the interaction with the IES quite complex.
In our approach the IES works in the background with two parallel and asynchronous
processes. While the user annotates document n+1 the system learns the annotations
inserted in document n (i.e. the last annotated). At the same time (i.e. as a separate
process) the IES applies the rules induced in the previous learning sessions (i.e. from
document 1 to document n-1) in order to extract information from document n (either
for suggesting annotations during active annotation or in order to silently test its
accuracy during unassisted learning). The advantage is that there is no idle time for
the user, as the annotation of a document generally requires a great deal more time
than training on a single text.

2.3. Coping with Timeliness

Timeliness means just in time learning from previous user annotations. Timeliness is
not fully obtained with the above interaction methodology: the IES annotation
capability always refers to rules learned by using the entire annotated corpus but the
last document. This means that the IES is not able to help when two similar
documents are annotated in sequence. From the user point of view such a situation is
equivalent to train on batches of two texts. In this respect the collaboration between
the system and the user fails in being effective. We believe that timeliness is a matter
of perception from the user side, not an absolute feature; therefore the only important
matter is that users perceive it. Considering that in many applications the order in
which documents are annotated is unimportant, in such cases it is possible to organize
the annotation order so to avoid the possibility of presenting similar documents in
sequence and therefore to hide the small lack of timeliness. In order to implement
such feature we need a measure of similarity of texts from the annotation point of
view. The IES can be used to work out such a measure. At the end of each learning
session all the induced rules are applied to the unannotated part of the corpus so to
identify two main subsets: texts were the available rules fire (i.e. annotations can be
added: positive subset) and texts were they do not fire at all (uncovered texts:
negative subset). Each text in the positive subset can be associated with a score given
by the number of annotations that can be added. The score can be used as an
approximation of similarity among texts: inserted annotations mean similarity with
respect to the part of the corpus annotated so far, no inserted annotation means actual
difference. Such information can be used to make the timeliness more effective: a
completely uncovered document is always followed by a fairly covered document. In
this way a difference between successive documents is very likely and therefore the
probability that similar documents are presented in turn within the batch of two (i.e.
the blindness window of the system) is very low. Incidentally this strategy also

128 Fabio Ciravegna et al.

tackles another major problem in annotation, i.e. user boredom, which can make the
user productivity and effectiveness fall proportional to time. Presenting users with
radically different documents avoids the boredom that comes from coping with very
similar documents in sequence.

In the next section a first implementation of the presented interaction model is
presented. We introduce both the IES used (Amilcare) and the annotation interface
(Melita). Finally we discuss how the current implementation meets the requirements
described.

3. Adaptive IE in Amilcare

The model above requires an adaptive IES to strictly cooperate with the user. In our
implementation we have used Amilcare4. Amilcare is a tool for adaptive Information
Extraction from text (IE) designed for supporting active annotation of documents for
the Semantic Web. In its standard version it performs IE by enriching texts with XML
annotations, i.e. the system marks the extracted information with XML annotations. In
the Semantic Web version in which it is supposed to be interacting with an annotation
tool, it actually leaves the text unchanged and it returns the extracted information as a
triple <annotation, startPosition, endPosition> so to let the annotation tool decide how
to actually annotate the text. The only knowledge required for porting Amilcare to
new applications or domains is the ability of manually annotating the information to
be extracted in a training corpus. No knowledge of IE is necessary.
Adaptation starts with the definition of a tag-set for annotation possibly organized as
an ontology where tags are associated to concepts and relations. Then users have to
manually annotate a corpus for training the learner. An annotation interface is to be
connected to Amilcare for annotating texts, e.g. using XML-based mark ups. As
mentioned Amilcare has been integrated with a number of annotation tools so far,
including MnM[6], Ontomat[7]. For example MnM automatically converts the user
annotations into XML tags to train the learner. Amilcare's learner induces rules that
are able to reproduce such annotation. Amilcare can work in two modes: training,
used to adapt to a new application, and extraction, used to actually annotate texts. In
both modes, Amilcare first of all preprocesses texts using Annie, the shallow IE
system included in the Gate package ([9], www.gate.ac.uk). Annie performs text
tokenization (segmenting texts into words), sentence splitting (identifying sentences)
part of speech tagging (lexical disambiguation), gazetteer lookup (dictionary lookup)
ad Named Entity Recognition (e.g. proper names spotting and classification).

When operating in training mode, Amilcare induces rules for information
extraction. The learner is based on (LP)2, a covering algorithm for supervised learning
of IE rules based on Lazy-NLP [10] [11]. This is a wrapper induction methodology
[12] that, unlike other wrapper induction approaches, uses linguistic information for
rule generalization. The learner starts inducing wrapper-like rules that make no use of
linguistic information, where rules are sets of conjunctive conditions on adjacent
words. Then the linguistic information provided by Annie is as the basis for rule

4 www.dcs.shef.ac.uk/~fabio/Amilcare.html

User-System Cooperation in Document Annotation Based on Information Extraction 129

generalization: conditions on words are substituted with conditions on the linguistic
information (e.g. condition matching either the lexical category, or the class provided
by the gazetteer, etc. [11]). All the generalizations are tested in parallel and the best k
generalizations are kept for IE. The idea is that the linguistic-based generalization is
used only when the use of NLP information is reliable or effective. The measure of
reliability here is not linguistic correctness (immeasurable by incompetent users), but
effectiveness in extracting information using linguistic information as opposed to
using shallower approaches. Lazy NLP-based learners learn which is the best strategy
for each information/context separately. For example they may decide that using the
result of a part of speech tagger is the best strategy for recognizing the speaker in
seminar announcements, but not to spot the seminar location. This strategy is quite
effective for analysing documents with mixed genres, quite a common situation in
web documents [13].

The learner induces two types of rules: tagging rules and correction rules. A
tagging rule is composed of a left hand side, containing a pattern of conditions on a
connected sequence of words, and a right hand side that is an action inserting an XML
tag in the texts5. Correction rules correct imprecision, i.e. shift misplaced tags to the
correct position. They are learnt from the mistakes made in attempting to re-annotate
the training corpus using the induced tagging rules. The output of the training phase is
a collection of rules for IE that is associated to the specific scenario. When working in
extraction mode, Amilcare receives as input a (collection of) text(s) with the
associated scenario (including the rules induced during the training phase). It
preprocesses the text(s) by using Annie and then it applies its rules and returns the
original text with the added annotations (or just the annotation triples in the SW
version).

With Amilcare it is possible to define automatic or semiautomatic services for the
SW with limited skills (the ability of annotating the texts) and limited cost (the
number of texts to be annotated for training �as we will see- is quite limited). For
example the university department mentioned in the introduction could use the
student creating the pages to annotate the pages. Amilcare would learn in the
background without requiring any specific adaptation except the definition of the
annotation set (necessary in any case for defining SW services). This is the reason
why some annotation tools include Amilcare as support to annotation.

4. The Melita Framework

Melita is an ontology-based demonstrator for text annotation. The goal of Melita is
not to produce a further annotation interface, but a demonstrator of how it is possible
to actively interact with the IES in order to meet the requirements of timeliness and
tuneable pro-activity mentioned above. Melita�s main control panel is depicted in
figure 3. It is composed of two main areas:

5 In the SW version no tag is actually inserted in the text; as mentioned a triple <annotation,

startIndex, endPosition> is returned to the external annotation interface.

130 Fabio Ciravegna et al.

1. The ontology (left) representing the annotations that can be inserted; annotations
are associated to concepts and relations. A specific color is associated to each node
in the ontology (e.g. �speaker is depicted in blue).

2. The document to be annotated (center-right). Selecting the portion of text with the
mouse and then clicking on the node in the ontology insert annotations. Inserted
annotations are shown by turning the background of the annotated text portion to
the color associated to the node in the hierarchy (e.g. the background of the portion
of text representing a speaker becomes blue).
Melita does not differ in appearance from other annotation interfaces such as the

Gate annotation tool, or MnM or Ontomat. This is because � as mentioned � it is a
demonstrator to show how a typical annotation interface could interact with the IES.
The novelty of Melita is the possibility of (1) tuning the IES so to provide the desired
level of proactivity and (2) scheduling texts so to provide timeliness in annotation
learning. The typical annotation cycle in Melita follows the two-phase cycle based on
training and active annotation described in the previous section. Users may not be
aware of the difference between the two phases. They just will notice that at some
point the annotation system will start suggesting annotations and that they have a way
to influence when and with which modalities this will happen.

Figure 3: The Melita annotation Interface

User-System Cooperation in Document Annotation Based on Information Extraction 131

4.1. Suggesting Annotations

There are two ways in which Melita can suggest annotations to users, according to the
reliability of such suggestions. For suggestions Amilcare is quite sure about, Melita
will present them in the document panel in a way similar to the annotations inserted
by the user. The background of the text where the information has been found turns
into the specific annotation colour (e.g. grey for speaker in figure 3). The difference
with respect to the actual user annotations is that a darker border surrounds them in
order to be easily spotted for user checking. For example in figure 3 the location �SEI
Auditorium� highlighted in red is a reliable Amilcare�s suggestion, while �12 PM� is
a user defined annotation. In case of suggestions Amilcare is less sure about, they are
presented in a different way. The background is left unchanged (white), but a
coloured border (the same colour of the potential annotation, e.g. grey for speaker)
surrounds the text. For example �11 am� (at the text centre in figure 3) is a suggestion
of this type. They are easy to spot by the user, but they are marked as unreliable. A
difference in the suggestion�s semantics corresponds to the difference in presentation:
reliable annotations are supposed to be correct; a user action is required to remove
them if they are wrong. Less reliable annotations are supposed to be just suggestions
to the user; an action is required to confirm them; otherwise they will not be saved
with the text in the end. We believe that both annotation types are useful as they allow
to clearly communicating the user what suggestions are to be trusted and which are
just a reasonable guess. Reasonable guesses are presented for two reasons: first of all
they represent a situation in which the learner requires user feedback: removing such
information means a clear message to the learner that the guess is wrong and therefore
rules are to be changed. From the user point of view guesses are very often useful
because they are often imprecise but nonetheless they tend to correctly identify the
area in which such information is present even if the information is not correctly
identified (e.g. in �at <time> 3:00</time> pm� the annotation is imprecise � pm
should be part of the time � but it is useful to focus the user attention on the place
where the correct annotation should go). Note that reliability can vary for different
pieces of information. For example a system can become quite reliable in a short time
in recognizing some information (e.g. seminar start time) requiring more training
examples for others (e.g. speaker). In this case there will be a moment in which the
suggested annotations for the time will be reliably inserted (i.e. with coloured
background) while the annotations for the speaker will be less reliable (presented with
coloured border only).

4.2. Balancing Proactivity

Users must be empowered to customize the strategy above, participating in the
definition of what is reliable information and what is not. Also some very unreliable
suggestions can be not presented, and � again � we want to empower the user to say
which of them are not to be presented. This means that users must be empowered to
control proactivity (and therefore intrusivity). In Melita, users can customize the
behaviour of the IES, i.e. tuning the IES�s level of proactivity, by using a special
slidebar (fig.4). It allows to set two thresholds that divide the accuracy space in three
areas: the first level decides which is the minimum accuracy the IES must be able to

132 Fabio Ciravegna et al.

reach in order to start considering annotations as reliable. The second threshold
defines the minimum accuracy the system must reach before starting presenting less
reliable suggestions. In the example in figure 4 the system will consider reliable (and
therefore suggest with coloured background) when the annotation accuracy is greater
than 75%. Annotations that do not reach 75% reliability are still suggested (using the
coloured border only) if they reach at least 43% of reliability. When accuracy is less
than 43% the IES does not suggest at all. There is a general default that can be
customised and holds for all the nodes in the ontology and that can be overridden for
specific nodes by using the same kind of window. Changing the default for specific
annotations (e.g. �speaker�) is useful because users can have different feelings about
intrusiveness for different kinds of information. Note that users do not need to know
in detail what 45% means. They can easily reason from a qualitative point given the
current IES behaviour. If the user feels that the IES is not proactive enough, s/he can
decide to lower (one of the) two thresholds. If the system is intrusive the user can

decide to raise them. For turning off all the system suggestions it is just necessary to
raise both the thresholds above100%. Moreover the more you move in either
direction, the more the effect on the IES will be relevant. It is important that the
thresholds are independent because users can have different feeling on intrusiveness
for the different suggestion modes. The same slidebar shows also the average
accuracy currently reached by the IES in annotating a specific information type: a
blue filler mark grows from the bottom (around 10% in figure 4). It represents the
distribution of accuracy of the potential suggestions for the specific annotation. Such
information can be used in tuning proactivity: less intrusivity=raise a threshold above
the average, more proactivity, move a threshold below the average.

Reliable Suggestions

Tentative Suggestions

Field: Speaker

Reliable Suggestions

Tentative Suggestions

Field: Speaker

Figure 4. the slidebar to customize intrusiveness

User-System Cooperation in Document Annotation Based on Information Extraction 133

5. An Experiment on IE�s Effectiveness

We performed a number of experiments for demonstrating how fast the IES
converges to an active annotation status and to quantify its contribution to the
annotation task, i.e. its ability to suggest correctly. We selected a subset of the
Computer Science Jobs announcement corpus, manually annotated by M. E. Califf
[14]. This is a corpus used for evaluating adaptive IE algorithms on semi-structured
texts [15]. The subtask we selected was to recognise in a set of 250 news posts about
job offers for computer scientists: the city, country and state in which the job is
offered, the company offering the job, the actual recruiter, the required knowledge
about both computer languages and platforms, and the offered salary. We believe that
this task can be considered a representative task for the Semantic Web.

In our experiment the annotation in the corpus was used to simulate human
annotation. We have evaluated the potential contribution of the IE system at regular
intervals during corpus tagging, i.e. after the annotation of 5, 10, 20, 25, 30, 50, 62,
75, 100 and 150 documents (each subset fully including the previous one). Each time
we tested the accuracy of the IES on the following 100 texts in the corpus (so when
training on 25 texts, the test was performed also on the following 25 texts to be used
for training on 50). The ability to suggest on the test corpus was measured in terms of
precision and recall. Recall represents here an approximation of the probability that
the user receives a suggestion in tagging a new document. Precision represents the
probability that such suggestion is correct. Results are shown in the figure at the end
of the paper. On the X-axis the number of documents provided for training is shown.
On the Y-axis precision, recall and f-measure6 are presented.

The maximum support comes in annotating city, country, state and posting date.
This is not surprising as they present quite regular fillers. Other experiments on other
corpora have shown that an equivalent gain can be obtained also for annotations
requiring time expressions as fillers. After training on only 10 texts, the system is
potentially able to propose 253 instances of cities (out of 303 present in the corpus),
228 are correct, 22 are wrong, 3 partially correct7, 72 missing, leading to Precision=90
Recall=75 (see figure 5 and table 1). This is possible because of Amilcare�s ability to
generalize over both the text context and the gazetteer information provided by Annie,
where a list of locations is present. Please note that the recognition of cities, state and
country is not a simple Named Entity Recognition task. The system must not only
recognise the name of a place, but also recognise that such place is the location of
work. There are other locations in the texts that are irrelevant (e.g. in the address of
the recruiter) and only the job location must be recognised. This implies the ability to
recognise the context in which the location name appears. The same applies to the
posting date: there are many other dates in the texts and only the correct one must be
identified. The situation is more complex for other fields such as recruiter or
company, where 80% F-measure is reached after 100 texts. These annotations are
much more difficult to learn than expressions whose filler are either very regular (e.g.
time or date expressions) or can be listed in a gazetteer (we did not have a suitable list

6 A balanced average of precision and recall.
7 Where the proposed and correct annotations partially overlap. They count as half correct in

calculating precision and recall.

134 Fabio Ciravegna et al.

of companies), because their regularity is much less direct. We performed the same
type of analysis on other corpora for adaptive IE, the CMU seminar announcements
corpus, where 483 emails are manually annotated with speaker, starting time, ending
time and location of seminars (www.isi.edu/~muslea/RISE/) and found analogous
results.

Table 1. Amount of training texts needed for reaching at least 75% precision and 50% recall

Tag Amount of Texts
needed for training

Prec Rec F-measure

City 10 90 75 82
country 10 81 92 86
state 5 79 87 83
company 100 91 72 86
recruiter 30 81 50 62
language 50 80 59 68
platform 50 77 52 62
salary 5 75 54 62
post_date 5 97 100 98

The above experiments show that the contribution of the IES can be quite high.
Reliable annotation can be obtained with limited training, especially when adopting
high precision IES configurations. In the case of the job announcement task, our
experiments show that it is possible to move from bootstrapping to active annotation
after annotating a very limited amount of texts. In table 1 we show the amount of
training needed for moving to active annotation for each type of information, given a
minimum user requirement of 75% precision. This shows that the IES contribution
heavily reduces the burden of manual annotation and that such reduction is
particularly relevant and immediate in case of quite regular information (e.g., known
location names). In user terms this means that it is possible to focus the activity on
annotating more complex pieces of information (e.g. company and recruiter),
avoiding to be bothered with easy and repetitive ones (such as locations). With some
more training cases the IES is also able to contribute in annotating the complex cases.
onclusions and future work
IES can strongly support users in the annotation task, alleviating users from a big deal
of the annotation burden. Our experiments show that such help is particular strong
and immediate for repetitive or regular cases, allowing focusing the expensive and
time-consuming user activity on more complex cases.In our experiment we have
quantified such support for an experiment about job announcements. Despite these
positive results, we claim that the simple quantitative support is not enough. An
interaction methodology between annotation interface, user and IES is necessary in
order to reduce intrusivity and maintain timeliness of support. The methodology
proposed in this paper addresses such concern, as:
1. It inserts in the usual user environment without imposing particular requirements

on the annotation interface used to train the IES (reduced intrusiveness).

User-System Cooperation in Document Annotation Based on Information Extraction 135

2. It maximizes the cooperation between user and IES: users insert annotations in
texts as part of their normal work and at the same time they train the IES. The IES
in turn simplifies the user work by inserting annotations similar to those inserted
by the user in other documents; this collaboration is made timely and effective by
the fact that the IES is retrained after each document annotation.

3. The modality in which the IES system suggests new annotations is fully tuneable
and therefore easily adaptable to the specific user needs/preferences (intrusiveness
is taken under control).

4. It allows to timely train the IES without disrupting the user pace with learning
sessions consuming a large amount of CPU time (and therefore either stopping or
slowing down the annotation process).
There are two open issues that arise from our experience. On the one hand the

effect on the user of excellent IES performances after a small amount of annotation is
still to be considered. For example when P=90, R=75 is reached after only 10 texts (as
for company in the jobs announcement task), users could be tempted to rely on the
IES suggestions only, avoiding any further action apart from correction. This would
be bad not only for the quality of document annotation, but also for the IES
effectiveness. As a matter of fact, each new annotated document is used for further
training. Rules are developed using existing annotations. They are tested on the whole
corpus to check against false positives (e.g. the rest of the corpus is considered a set
of negative examples). A corpus with a relevant number of missing annotations
provides a relevant number of (false) negative examples that disorients the leaner,
degrading its effectiveness and therefore producing worse future annotation. The
entire dimension of the problem is still to be analysed. We are currently considering
applying strategies such as randomly removing annotations in order to test the user
attention. On the other hand the time saved by using an IES is still to be quantified.
The experiments above seem to suggest a strong reduction of annotation time, but we
intend to actually measure the improvement in experiments with real users.

Acknowledgements
This work was carried out within the AKT project (http://www.aktors.org), sponsored
by the UK Engineering and Physical Sciences Research Council (grant
GR/N15764/01). AKT involves the Universities of Aberdeen, Edinburgh, Sheffield,
Southampton and the Open University. Its objectives are to develop technologies to
cope with the six main challenges of knowledge management: acquisition, modelling,
retrieval/extraction, reuse, publication and maintenance. Thanks to Enrico Motta,
Mattia Lanzoni, John Domingue, Steffen Staab and Siegfried Handschuh for a
number of useful discussions. Thanks to the Gate group for providing Annie
(www.gate.ac.uk) and for help in integrating it into Amilcare.

Bibliography

1. F. Ciravegna, A. Lavelli, G. Satta: �Bringing information extraction out of the
labs: the Pinocchio Environment', in ECAI2000, Proc. of the 14th European Conference
on Artificial Intelligence, ed., W. Horn, Amsterdam, 2000. IOS Press

136 Fabio Ciravegna et al.

2. P. Kogut and W. Holmes: �Applying Information Extraction to Generate DAML
Annotations from Web Pages�, K-CAP 2001 Workshop Knowledge Markup & Semantic
Annotation, Victoria B.C., Canada (2001).

3. M. E. Califf, D. Freitag, N. Kushmerick and I. Muslea (eds.): AAAI-99 Workshop on
Machine Learning for Information Extraction, Orlando Florida (1999),
http://www.isi.edu/~muslea/RISE/ML4IE/

4. R. Basili, F. Ciravegna, R. Gaizauskas (eds.) ECAI2000 Workshop on Machine Learning
for IE, Berlin (2000), www.dcs.shef.ac.uk/~fabio/ecai-workshop.html

5. F. Ciravegna, N. Kushmerick, R. Mooney and I. Muslea (eds.), IJCAI-2001 Workshop on
Adaptive Text Extraction and Mining held in conjunction with the 17th International
Conference on Artificial Intelligence, Seattle, (2001), http://www.smi.ucd.ie/ATEM2001/

6. M. Vargas-Vera, Enrico Motta, J. Domingue, M. Lanzoni, A. Stutt and F. Ciravegna:
�MnM: Ontology driven semi-automatic or automatic support for semantic markup�, Proc.
of the 13th International Conference on Knowledge Engineering and Knowledge
Management, EKAW02, Sigüenza, Spain (2002).

7. S. Handschuh, S. Staab and F. Ciravegna: �S-CREAM - Semi-automatic CREAtion of
Metadata�, Proc. of the 13th International Conference on Knowledge Engineering and
Knowledge Management, EKAW02, Sigüenza, Spain, (2002).

8. F. Ciravegna and D. Petrelli: �User Involvement in Adaptive Information Extraction:
Position Paper� in Proceedings of the IJCAI-2001 Workshop on Adaptive Text
Extraction and Mining held in conjunction with the 17th International Conference on
Artificial Intelligence, Seattle (2001).

9. D. Maynard, V. Tablan, H. Cunningham, C. Ursu, H. Saggion, K. Bontcheva and Y.
Wilks: �Architectural Elements of Language Engineering Robustness�, Journal of Natural
Language Engineering, Special Issue on Robust Methods in Analysis of Natural Language
Data, forthcoming in 2002.

10. F. Ciravegna: "Adaptive Information Extraction from Text by Rule Induction and
Generalisation" in Proceedings of 17th International Joint Conference on Artificial
Intelligence (2001).

11. F. Ciravegna: "(LP)2, an Adaptive Algorithm for Information Extraction from Web-
related Texts" in Proceedings of the IJCAI-2001 Workshop on Adaptive Text Extraction
and Mining held in conjunction with the 17th International Conference on Artificial
Intelligence (IJCAI-01), Seattle, August, 2001

12. N. Kushmerick, D. Weld and R. Doorenbos: `Wrapper induction for information
extraction', Proc. of 15th International Conference on Artificial Intelligence, Japan (1997).

13. F. Ciravegna: �Challenges in Information Extraction from Text for Knowledge
Management�, IEEE Intelligent Systems and Their Applications, 16-6, November, (2001).

14. M. E. Califf: �Relational Learning Techniques for Natural Language� IE, Ph.D. thesis,
Univ. Texas, Austin, (1998), www.cs.utexas.edu/users/mecaliff

15. D. Freitag and N. Kushmerick, `Boosted wrapper induction�, in R. Basili, F. Ciravegna, R.
Gaizauskas (eds.) ECAI2000 Workshop on Machine Learning for Information Extraction,
Berlin, 2000, www.dcs.shef.ac.uk/~fabio/ecai-workshop.html.

User-System Cooperation in Document Annotation Based on Information Extraction 137

city

0
20
40
60
80

100

0 50 100 150

training texts

%

company

0
20
40
60
80

100

0 50 100 150

training texts

%

country

0
20
40
60
80

100

0 50 100 150

training texts

%

post date

0
20
40
60
80

100

0 50 100 150

training texts

%

recruiter

0
20
40
60
80

100

0 50 100 150

training texts

%

state

0
20
40
60
80

100

0 50 100 150

training texts

%

platform

0
20
40
60
80

100

0 50 100 150

training texts

%

language

0
20
40
60
80

100

0 50 100 150

training texts

%

salary

0
20
40
60
80

100

0 50 100 150

training texts

%

precision recall fmeasure

Figure 5. The learning curve for the different information in the job task

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 138-153, 2002.
 Springer-Verlag Berlin Heidelberg 2002

WebODE: An Integrated Workbench for Ontology
Representation, Reasoning, and Exchange

Óscar Corcho, Mariano FernÆndez-López, Asunción Gómez-PØrez, Óscar Vicente

Facultad de InformÆtica . Universidad PolitØcnica de Madrid
Campus de Montegancedo, s/n. 28660 Boadilla del Monte. Madrid. Spain

{ocorcho, mfernandez, asun}@fi.upm.es;
ovicente@delicias.dia.fi.upm.es

Abstract. We present WebODE as a scalable, integrated workbench for
ontological engineering that eases the modelling of ontologies, the reasoning
with ontologies and the exchange of ontologies with other ontology tools and
ontology-based applications. We will first describe the WebODE’s knowledge
model. We will then describe its extensible architecture, focusing on the set of
independent ontology development functionalities that are integrated in this
framework, such as the Ontology Editor, the Axiom Builder, the OKBC-based
inference engine, and the documentation and interoperability services.

1 Introduction

In the last decade, many definitions for the term �ontology� (in the context of AI) have
appeared [15] and some of them have changed and evolved over the time. We think
that the most representative definition is: �an ontology is a formal specification of a
shared conceptualization� [19] (which extends Tom Gruber’s and Pim Borst’s ones).

Several tools for ontology development have also come up on the last decade:
Ontolingua [9], OntoSaurus [21], WebOnto [7], ProtØgØ2000 [22], OilEd [3],
OntoEdit [20], etc. (a study on some of these tools appeared in [8]); and others for
merging ontologies (Chimaera [18], PROMPT [11]), translating ontologies into
ontology languages (Ontomorph [4]), annotating web pages with ontological
information (OntoMat, SHOE Knowledge Annotator [16], COHSE [2]), etc.

These tools perform different activities of the ontology development process
(design, implementation, merge and annotation, among others). However, most of
these tools have been built as isolated independent tools and they are not normally
capable of interoperating among them [13]. In fact, heterogeneous ontology
platforms should be able to exchange ontologies owned by different organizations,
built with different tools, and implemented on different languages; but no guidelines
are available about how to make platforms mutually interoperable. The need for a
deep study on tools’ interoperability is being addressed in the Special Interest Group
on Enterprise-Standard Ontology Environments of the European IST network
OntoWeb and a survey on these tools can be found at [24].

 WebODE: An Integrated Workbench 139

Except for ProtØgØ2000 [22] and OntoEdit [20], the other tools do not provide an
integrated support for most of the activities of the ontology lifecycle, nor do they
support any existing methodology for building ontologies.

Taking into account this situation, in [13] we presented the need for an integrated
ontological engineering workbench supporting three groups of activities (see figure 1):
(1) ontology development, management and population activities; (2) ontology
middleware services to allow the easy used and integration of ontological technology
in information systems; and (3) ontology-based applications’ development suites to
ease the creation of ontology-based applications.

In the context of this framework, we have developed WebODE1 as a scalable
ontological engineering workbench that gives support to most of the ontology
development, management and population activities presented in figure 1. It also
includes middleware services to aid in the integration of ontologies into real-world
and Semantic Web applications as well as to provide rapid development tools for
applications using ontologies. Finally, WebODE has been created to provide
technological support for Methontology [10], an ontology construction methodology.
Nevertheless, this fact does not prevent it from being used following other
methodologies or no methodological approach at all.

Next sections describe the knowledge model, architecture and main features of
WebODE. We will specially focus on the WebODE Axiom Builder (WAB) and the
WebODE inference engine.

1 http://webode.dia.fi.upm.es/

Fig 1. Main modules of an ontological engineering workbench (adapted from [13]).

140 Óscar Corcho et al.

2 WebODE's Knowledge Model

The WebODE�s knowledge model [1] is based on the intermediate representations
proposed in Methontology [10]. Hence, it allows modelling concepts and their
attributes (both class and instance attributes), taxonomies of concepts, disjoint and
exhaustive class partitions, ad-hoc binary relations between concepts, properties of
relations, constants, axioms and instances of concepts and relations.

Bibliographic references can be attached to any of the aforementioned ontology
components. Besides, it is possible to import terms from other ontologies. Imported
terms are referred to by means of URLs.

Now we describe in depth all the components of the WebODE’s knowledge model:
• Concepts are identified by their name, though they can also have synonyms and

abbreviations. A natural language (NL) description can be also included.
o Class attributes are attributes that specify characteristics of a class, and whose

value is the same for all the instances of the concept. They are defined with the
following information: attribute name (which must be different from the rest of
attribute names of the same concept); name of the concept it belongs to
(attributes are local to concepts, that is, two different concepts can have
different attributes with the same name); value type or range, which can be a
basic data type (String, Integer, Cardinal, Float, Boolean, Date, Numeric
Range, Enumerated, URL) or a concept (specified by the concept name);
minimum and maximum cardinality, which constrains the number of values that
the class attribute may have; and value(s).
Class attributes can optionally have a NL description, measurement unit and
precision (the last two ones just in case of numeric attributes).

o Instance attributes are attributes whose value may be different for each
instance of the concept. They have the same properties than class attributes and
two additional properties, minimum value and maximum value, which are used
in attributes with numeric value types. Values inserted for instance attributes
are interpreted as default values for them.

• Concept groups are sets of disjoint concepts that are also known as partitions.
They are used to create disjoint and exhaustive class partitions. They have a
name, the set of concepts they group together and, optionally, a NL description. A
concept can belong to several concept groups.

• Built-in relations are predefined relations in the WebODE’s knowledge model.
They are divided into three groups: taxonomy relations between concepts
(subclass-of, not-subclass-of), taxonomy relations between groups and concepts
(disjoint-subclass-partition, exhaustive-subclass-partition), and mereology
relations between concepts (transitive-part-of, intransitive-part-of).

• Binary ad-hoc relations between concepts are characterized by their name, the
origin (source) and destination (target) concepts, and their cardinality, which
establishes the number of destination terms of each origin term through the
relation. Cardinality can be restricted to 1 (only one destination term) or N (any
number of destination terms). Optionally, we can provide their NL description
and properties (they are used to describe algebraic properties of the relation).

 WebODE: An Integrated Workbench 141

• Constants are components that have always the same value and can be used in
any expression. They are identified by their name, and have a value type, value
and measurement unit. Its NL description can be optionally provided.

• Axioms and rules are defined by their name, an optional NL description and a
formal expression in first order logic (using the syntax provided by WebODE).
They will be deeply studied in section 4.2.

• Properties are used to describe algebraic properties of ad-hoc relations. They are
divided in two groups: built-in properties (reflexive, irreflexive, symmetric,
asymmetric, antisymmetric and transitive), and ad-hoc user-defined properties.

• Imported terms are components from other ontologies that are included in
another ontology. They are described by their name and a URL that includes the
host and the ontology name from which the term is retrieved and the term name in
that ontology.

Besides, the WebODE’s knowledge model supports views and instance sets. Views
are used to highlight specific parts of the ontology. They are analogous to the classical
views of database modelling theory.

Concerning instance sets, they make possible to populate a conceptual model for
different applications or scenarios, maintaining different, independent instantiations of
the same conceptual model in WebODE.

3 WebODE�s Architecture

WebODE is built according to a four-tier architecture: client, presentation, business
logic, and database tiers. In all these tiers, we have used standard technology. The
client tier uses HTML, XML, CSS, JavaScript and Java applets. The presentation tier
uses servlets and JSPs. The business logic tier uses Java and RMI-IIOP. Finally, the
database tier uses JDBC and Oracle.

We will analyse further the database and business logic tiers, which comprise the
�ontology middleware� modules and services from figure 1.

3.1 Database Tier

Currently, WebODE ontologies can be stored in any relational database with JDBC
support (WebODE has been tested both in Oracle and MySQL, which gives an idea of
the flexibility of this workbench). Its main features are the optimisation of connections
to the database (connection pooling) and transparent fault tolerance capabilities.

Besides, the underlying physical model that represents the WebODE knowledge
model has been tuned for obtaining maximum performance.

The database access is abstracted out as an independent service in the platform. In
fact, it has been designed as a pluggable component in the architecture. This allows its
easy replacement by other modules in charge of data management, such as XML-
based databases or RDF-based repositories.

142 Óscar Corcho et al.

3.2 Business Logic Tier

The business logic tier has been implemented through a proprietary Java and RMI-
IIOP based application server called Minerva_LIA. This application server provides
an API to create services, which can be added or removed easily with its management
console, thus improving the system�s flexibility, scalability and integration with third-
party solutions, following the latest trends in enterprise middleware.

Minerva_LIA application server’s core (built-in) services comprise the basic
building blocks for more complex services in WebODE. They are the following:
authentication, log, administration, thread management, scheduling and backup.

The other services are plugged on top of the Minerva_LIA application server. In
figure 2 we show the structure of all the services used by the WebODE ontology
editor. Any of these components can be plugged in or out, so that the whole WebODE
workbench and the WebODE ontology editor can be easily personalised.

The core of the WebODE’s ontology development services are: the database service
(db), the cache, consistency and axiom services, and the ontology access service (ode),
which defines an API for accessing WebODE ontologies. One of the main advantages
of this architecture is that these services can be accessed remotely from any other
application or any other instance of the WebODE workbench.

Finally, the WebODE interoperability services and the ontology documentation
service are completely based on the WebODE ontology access API, and the inference
engine uses extensively the Prolog exportation service. Other middleware services,
such as ODEMerge, ODECatalogue and WebPicker also use the WebODE ontology
access API.

Fig 2. WebODE ontology engineering workbench’s architecture.

 WebODE: An Integrated Workbench 143

4 WebODE Ontology Development Services

4.1 Ontology Edition Service

The WebODE Ontology Editor allows the collaborative construction of ontologies at
the knowledge level. It provides a default form-based web user interface to create
ontologies according to the knowledge model aforementioned. Figure 3 shows the
look and feel of the ontology editor, as well as its three main areas. The main user
interface components are:

Fig 3. WebODE Ontology Editor

! Browsing area. It allows browsing the whole ontology and provides operations to
create new elements and modify or delete the existing ones.

! Clipboard. It allows copying and pasting information easily between forms.
! Edition area. It presents the forms to be filled by the user, according to the

component (concept, attribute, relation, etc.) that is being edited.
The WebODE Ontology Editor also includes OntoDesigner, a visual tool that aids

in the construction of concept taxonomies and ad-hoc relations between concepts.
Concept taxonomies are created with the following set of predefined relations:

subclass of, disjoint decomposition, exhaustive partitions, transitive part of and non-
transitive part of. In figure 5 we show a snapshot of OntoDesigner while editing an
ontology on the travelling domain.

144 Óscar Corcho et al.

Fig 4. OntoDesigner. Some concepts, groups and taxonomic and ad-hoc relationships.

With OntoDesigner, users can create different views of an ontology, so that they
can highlight parts of the ontology, as explained in section 2. Moreover, users can
decide whether showing or hiding different kinds of relations among concepts (either
predefined or ad-hoc ones), in the sense of a graphical prune. This feature helps in the
manual evaluation of the relations contained in an ontology.

4.2 WAB: WebODE Axiom Builder Service

Axioms and rules are important modelling components in the WebODE’s knowledge
model. However, we noticed that ontology developers did not usually include them in
their domain ontologies. The reason for this was twofold: either (a) they did not know
the exact syntax they had to use to define axioms and rules; or (b) they found
difficulties to write them in a simple HTML form, as WebODE did not provide
adequate support for the axiom modelling task.

To solve this problem, we have created WAB (WebODE Axiom Builder). WAB is
an axiom and rule editor that is integrated in the WebODE Ontology Editor. It allows
creating first order logic axioms and rules using a graphical user interface. It also
provides a library of built-in axioms, which can be reused for creating other axioms,
rather than building them from scratch.

4.2.1 Axiom Building
We will explain how WAB works using an example. Let us suppose that we want to
create the following axiom: �every train that departs from a European location must
arrive at another European location�. This axiom is written in WebODE as follows:

 WebODE: An Integrated Workbench 145

forall(?X,?Y,?Z) (Train(?X) and
 Origin(?X,?Y) and EuropeLocation(?Y) and
 Destination(?X,?Z)
 -> EuropeLocation(?Z))

Figure 5 shows the WAB interface once we have pressed the universal
quantification symbol in order to write our axiom. In this sense, this interface helps
non-expert users in writing their axioms.

Fig 5. WAB: WebODE Axiom Builder. Well-formed axioms’ construction

Figure 6 shows the axiom completed in WAB. In this axiom editor, we can create
well-formed expressions in first order logic, using: universal quantification, existential
quantification, negation, conjunction, disjunction, implication and biconditional. We
can also use those terms that have been already defined in the ontology (concepts,
attributes, relations and constants). If we select a concept in the Concept drop-down
list, shown in figure 4, the attributes and relations that can be applied to this concept
appear in the Attribute and Relation drop-down lists, respectively (including those
attributes and relations that are not defined directly in the concept but are inherited in
the concept taxonomy). In the example of figure 6, companyName is an attribute of
concept MeanOfTransport and Destination is an ad-hoc relation between
MeanOfTransport and Location. This prevents users from entering attributes or
relations that cannot be applied to a concept.

WAB also allows users to write directly the axiom expression, without using its
facilities for doing it. The following grammar is used in WebODE axioms:

axiom ::= atom | axiom OR axiom | axiom AND axiom | axiom -> axiom | axiom <->

axiom |

 NOT axiom | FORALL (var_list) axiom | EXISTS (var_list) axiom | (axiom)

atom ::= ID (term_list) | SUBCLASS (term_list) | NOT_SUBCLASS (term_list) |

 DISJOINT (term_list) | EXHAUSTIVE (term_list) | TRANSITIVE (term_list) |

 INTRANSITIVE (term_list) |

 term > term | term < term | term >= term | term <= term | term = term | (atom)

term ::= ID | num | ID (term_list) | term + term | term - term | term * term | term / term | (term)

term_list ::= term | term , term_list

var_list ::= ID | ID , var_list

146 Óscar Corcho et al.

Once the axiom is defined, we must click on the �Make Prolog� button to parse it
and ensure that it has been correctly defined. Not only does WAB perform a syntactic
check of the axiom, in the sense of testing that it is compliant with the WebODE’s
axiom grammar. But also it checks that the vocabulary used in the axiom is defined in
the ontology, that the ad-hoc relations can be applied between two variables, that the
attributes are defined for the concepts to which they are applied, etc.

The final result of this parsing is that the axiom is transformed to Horn clauses, if
possible. To perform this transformation, we follow a well-known process. First,
WAB generates the prenex form of the axiom; then the Skolem Normal Form; next, it
generates the Conjunctive Normal Form and, finally, WAB obtains the Horn clauses.

The result of this process for the axiom presented above is the following:

¬Train(x2) ∨ ¬Origin(x2,x1) ∨ ¬Destination(x2,x0) ∨
¬ EuropeLocation(x1) ∨ EuropeLocation(x0)

Fig 6. WAB: WebODE Axiom Builder. Axiom transformation into Prolog

For each clause obtained in the previous transformation, WAB creates a Prolog
rule, which can be stored in the WebODE database, so that they can be used in the
WebODE�s Prolog inference engine. In this process, the vocabulary used in the logical
expression is also transformed according to the vocabulary provided by the OKBC
protocol knowledge representation primitives [5]. As shown below, our example uses
the OKBC primitives instance_of and value_facet_of are used.

instance_of(Z,europelocation):-
 instance_of(X,train),
 value_facet_of(Y,value,origin,X),
 value_facet_of(Z,value,destination,X),
 instance_of(Y,europelocation).

 WebODE: An Integrated Workbench 147

4.2.2 Rule Building
The same approach is used for creating rules with WAB. Let’s suppose that we want to
create a rule that states that �all the trips by ship that depart from Europe are handled
by the company Costa Cruises�. In this case, we will create the following rule (shown
in figure 7):

if EuropeLocation(Y) and Origin(X,Y) and Ship(X)
then companyName(X,costaCruises)

The syntax of WebODE rules is much simpler than that used for axioms. This eases
the modelling of knowledge in the form of �if ... then� structures, which are used in
many systems. The following grammar is used for WebODE rules:

 lhs ::= atom | atom AND lhs

 rhs ::= atom

 rule ::= IF lhs THEN rhs

Hence, the left-hand side of the rule consists of conjunctions of atoms, while the
right-hand side of the rule is a single atom.

Once a rule is created, WAB checks both the syntax of the rule and its consistency
with the rest of the ontology, and it transforms the rule into Horn clauses. For the
example above, we obtain the following Horn clause:

¬EuropeLocation(Y) ∨ ¬Origin(X,Y) ∨ ¬Ship(X) ∨
companyName(X,costaCruises)

And, consequently, the following Prolog rule, which can be stored in the WebODE
database:

value_facet_of(costaCruises,value,companyname,X):-
 instance_of(Y,europelocation),
 value_facet_of(Y,value,origin,X),

instance_of(X,ship).

Fig 7. WAB: WebODE Axiom Builder. Rule edition

148 Óscar Corcho et al.

The transformations of axioms and rules to the OKBC vocabulary are done because
the WebODE’s inference engine allows working with the primitives defined in OKBC,
as we will see in the next section. Moreover, WebODE ontologies are completely
translated to Prolog syntax, so that these generated Prolog rules can be used either for
checking constraints on the ontology or for generating new information from it. We
will see the results of the Prolog translation in section 4.4.

4.3 WebODE's Inference Engine Service

As we have commented in section 4.2, WebODE includes an OKBC-based inference
engine. This inference engine reasons with a subset of the primitives identified in that
protocol [5], and allows using such primitives to query ontologies (currently,
WebODE’s inference engine makes use of Ciao Prolog [17]).

The following groups of OKBC primitives have been implemented:
• Primitives to query about concept taxonomies and instances: get-class-instances,

get-class-subclasses, get-class-superclasses and get-instance-types.
• Primitives to query about slots: get-frame-details, get-slots, get-slot-domain, get-

slot-type, get-slot-value, get-slot-values, get-slot-values-in-detail, get-slot-facets,
get-facet-value and get-facet-values.

• Primitives to check whether a condition holds for a term (class, instance or slot):
individual-p, instance-of-p, member-facet-value-p, and member-slot-value-p.

At present, we are using this inference engine for several purposes:
• Querying about the ontology components, either with these OKBC primitives or

with a user-defined Prolog program, as long as it uses these OKBC primitives or
the Prolog representation of ontology components, which are presented in section
4.4.

• Asserting new knowledge using the Prolog expressions that correspond to the
rules and axioms created with WAB, as explained above.

• Detecting inconsistencies in the ontology. Each axiom in the ontology can be
tested independently from the other ones, as long as it can be transformed into
Horn clauses. It is important to mention that, in this sense, we are not using
axioms for theorem proving, but just for constraint checking.

The WebODE’s inference engine is also used by the WebODE’s OntoClean service.
This service uses the OntoClean method [23], which allows cleaning concept
taxonomies according to philosophical notions such as: rigidity, identity and unity.

Besides, the WebODE’s inference engine has been designed to be easily extensible,
so that other inference engines can be attached to it and used with the same interface.

Finally, WebODE also provides other constraint checking capabilities, though it
does not use the WebODE inference engine for it. It checks type constraints,
numerical values constraints, cardinality constraints and taxonomic consistency [14]
(i.e., common instances of disjoint classes, loops, etc.). These evaluation capabilities
can be used when an ontology is built either using the form-based user interface or
OntoDesigner. Such functionality is supplied through the use of a Minerva_LIA
service, as part of the ontology development and management services.

 WebODE: An Integrated Workbench 149

4.4 WebODE Interoperability Services

Ontologies built using WebODE can be easily integrated in other ontology servers or
used in ontology-based applications. Possible choices for interoperability include:
! WebODE’s ontology access API, which can be accessed by other applications

using RMI, and is completely compliant with the WebODE’s knowledge model.
! XML. WebODE ontologies can be exported into and imported from XML,

following a well-defined DTD2 that uses the same knowledge representation
vocabulary used for expressing the WebODE knowledge model. Ontologies can
be translated completely or on a view or instance-set basis.

! Ontology languages, through the ontology language export/import modules.
Currently, WebODE is able to export to and import ontologies from: RDF(S),
OIL, DAML + OIL, the XMLization of CARIN and FLogic. If we take into
account that the WebODE knowledge model is very expressive [1], we are able to
provide high quality translations that preserve most of the original information
contained in the ontology and take advantage of most of the modelling
characteristics of the target and source languages. As with XML, ontologies can
be translated completely or on a view or instance-set basis.

! Jess [12]. WebODE generates all the concepts as Java beans, which contain also
information about their attributes and ad-hoc relations. These beans can be easily
uploaded in the Jess system. This means that we can use the ontology developed
in WebODE inside the Jess system, and develop our own programs in Jess using
the ontology components.

! Prolog syntax of OKBC [5]. WebODE provides a subset of the primitives defined
in the OKBC protocol. They are expressed in Prolog, as explained in the previous
section. Table 1 summarizes the mapping between the WebODE’s knowledge
model and the Prolog OKBC translation.

WebODE ontology component OKBC Prolog representation
Concept: Travel class: class(travel)
Concept groups -- (they do not exist in OKBC)
Class attribute: Hotel quality own slot: own-slot-of(quality,hotel)
Instance attribute: Hotel price template slot: template-slot-of(price,hotel)
Subclass-of:
 Flight is a subclass of Travel

subclass of: subclass-of(flight,travel)

Ad-hoc relation:
 the departure place of a
 Travel is a Location

slot:
slot-of(departurePlace,travel)
facet-of(type,departurePlace,travel,location)

Constant: average price term: averagePrice
Axiom & rule Prolog rule: cf. section 4.2
Instance: John is a Traveller instance: instance-of(john,traveller)
Property -- (they do not exist in OKBC)
Imported term: Date term: date

Table 1. Summary of WebODE transformations into OKBC Prolog syntax.

2 http://webode.dia.fi.upm.es/webode/dtd/webode_2_0.dtd

150 Óscar Corcho et al.

4.5 WebODE's Ontology Documentation Service

WebODE ontologies are automatically documented in different formats: HTML tables
representing the Methontology’s intermediate representations, HTML concept
taxonomies and XML.

Fig 8. WebODE’s documentation service: Concepts Dictionary Intermediate Representation.

Users can decide whether obtaining the documentation of the whole ontology or of
parts of it (specific views or instance sets). As an example, figure 8 presents part of
the concept dictionary of the Travel ontology, which contains its concepts, their class
and instance attributes, instances and ad-hoc binary relations.

The HTML documentation service shows the concept taxonomy, the concept
attributes and the ad-hoc binary relations between concepts.

5 WebODE Middleware Services

In this section, we present some middleware applications that we have built inside the
WebODE workbench. They are fully integrated in the middle tier and, as such, run
within the Minerva_LIA application server. They use some of the services described
in this paper, such as the interoperability services and the inference engine.
! WebPicker [6] is a set of wrappers that allow importing standards of

classification of products and services in the context of electronic commerce into
WebODE (UNSPSC, e-cl@ss and RosettaNet). We are currently extending it to
wrap other sources of information, such as Cyc.

! ODEMerge performs merging of concepts, attributes and relationships from two
different ontologies built for the same domain, according to semantic criteria and
resources used for natural language processing.

! ODECatalogue is able to generate electronic catalogs from ontologies according
to some parameters. The catalogue generation from an ontology assures a correct
and rich classification of the different products.

 WebODE: An Integrated Workbench 151

6 Conclusions

In this paper, we have presented the WebODE ontological engineering workbench,
whose main contributions are detailed below:

1) Integrated technological support for many activities of the ontology lifecycle.
! WebODE supports in an integrated platform many activities of the ontology

lifecycle that, until recently, have just been supported by isolated, independent
tools. In fact, it does not only support development activities, but also
management and support ones, such as documentation, evaluation, merge or
integration.

! Additionally, WebODE allows developing ontologies at the knowledge level.
Ontology developers do not need worry about building an ontology directly in an
implementation language. Later, the contents of the ontology can be automatically
translated into several implementation languages.

! First order logic axioms and rules can be more easily created according to the
WebODE syntax, using the WebODE Axiom Builder. They are also translated
into Prolog syntax, if possible, using some primitives extracted from the OKBC
knowledge model. Primitives from the OKBC protocol can be used to send
queries about WebODE ontologies with the Prolog inference service.

! Finally, WebODE is not only useful for building ontologies, but also provides a
wide range of services for ontology-based applications.

2) Technological support for ontology development methodologies.
! WebODE has been built to provide support to a methodology for ontology

development: Methontology.
! However, this does not prevent WebODE from being used with another ontology

development methodology or without any specific methodological approach.

3) Ontology interoperability.
! Interoperability amongst modules and services inside the WebODE workbench.

The use of a common API to access WebODE ontologies from any service and
the use of XML exportation/importation functionalities allow modules and
services interoperate easily.

! Interoperability with other tools and applications. The translation functionalities
available in the workbench allow exchanging ontologies with other tools,
environments or applications.

This workbench has been successfully used, with different domains and purposes
and by different groups of people, in the following projects:
! The European IST project MKBEEM (IST 1999-10589). In this project, B2B and

B2C ontologies have been built and reengineered using WebODE.
! The Ontoweb thematic network (IST-2000-29243). We have built the

OntoRoadMap application3 on top of WebODE. It is an ontology-based web
application that allows the community to register, browse and search ontologies,
methodologies, tools and languages for building ontologies, as well as ontology-

3 http://babage.dia.fi.upm.es/ontoweb/wp1/OntoRoadMap/index.html

152 Óscar Corcho et al.

based applications in areas like the: semantic web, e-commerce, KM, NLP, III,
etc., This application uses an ontology in the domain of ontologies.

! The Spanish CICYT project ContentWeb (TIC2001-2745). In this project, we
have created WebPicker for (semi)automatic ontology acquisition from e-
commerce standards for the classification of products and services (UNSPSC,
RosettaNet and e-cl@ss) and in the domain of leisure activities.

! The Spanish CICYT project on Methodology for Knowledge Management (TIC-
980741). We have built using WebODE ontologies that model a few institutions.

! (Onto)2Agent. We have built the Reference Ontology, that asseses ontology-based
applications’ developers on the most suitable ontology to use in an application.

! Environment Ontology (UPM-AM-9819). In this project, we have built the
Elements and Environmental Ions ontologies, in the domain of chemistry, and
have integrated them with existing ontologies, such as the Ontolingua’s ontology
Standard Units.

! MRO (Ontologies for cataloguing business services). In this project, we have
merged heterogeneous electronic catalogues in the domain of office furniture.

In the future we will provide more functions both to the WebODE Ontology Editor
and the middleware area, such as an ontology translation manager for the WebODE
interoperability services, ontology configuration management capabilities, ontology
upgrading and semantic annotation services. We will therefore lay the foundations for
a more complete implementation of the workbench presented in section 1. We will
also focus on the implementation of an ontology development suite that allows a high
reusability of ontologies and rapid creation of ontology-based applications. Finally,
WebODE services will be soon made available as Semantic Web services.

Acknowledgements

This work is supported by a FPI grant funded by UPM and by the project
"ContentWeb: Plataforma tecnológica para la web semÆntica: ontologías, lenguaje
natural y comercio electrónico 4" (TIC-2001-2745). This work would not have been
possible without the help of JC Arpírez, JF CebriÆn, R de Diego, M Lama, A López,
V López, E Mohedano, JP PØrez and JA Ramos in the implementation and tests of
WebODE services, and M BlÆzquez and JM García-Pinar in the development of ODE.

References

1. Arpírez, J.C.; Corcho, O.; FernÆndez-López, M.; Gómez-PØrez, A. WebODE: a scalable
ontological engineering workbench. First International Conference on Knowledge Capture
(K-CAP 2001). Victoria, Canada. October, 2001.

2. Bechhofer, S., Goble, C. Towards Annotation Using DAML+OIL. KCAP’01 Workshop on
Semantic Markup and Annotation. Victoria, Canada. October, 2001.

3. Bechhofer, S.; Horrocks, I; Goble, C.; Stevens, R. OilEd: a Reason-able Ontology Editor
for the Semantic Web. Proceedings of KI2001, Joint German/Austrian conference on
Artificial Intelligence, September 19-21, Vienna. Springer-Verlag LNAI Vol. 2174, pp
396--408. 2001.

4 ContentWeb: Platform for the Semantic Web: ontologies, natural language and e-commerce

 WebODE: An Integrated Workbench 153

4. Chalupsky, H. OntoMorph: A Translation System for Symbolic Knowledge. KR-2000.
471-482. 2000.

5. Chaudhri V. K.; Farquhar A.; Fikes R.; Karp P. D.; Rice J. P. The Generic Frame
Protocol 2.0. Technical Report, Stanford University.1997.

6. Corcho, O.; Gómez-PØrez, A. WebPicker: Knowledge Extraction from Web Resources. 6th

Intl. Workshop on Applications of Natural Language for Information Systems (NLDB’01).
Madrid. June, 2001.

7. Domingue, J. Tadzebao and Webonto: Discussing, Browsing and Editing Ontologies on
the Web. KAW98. Banff, Canada. 1998.

8. Duineveld, A.; Studer, R.; Weiden, M; Kenepa, B.; Benjamis, R. WonderTools? A
comparative study of ontological engineering tools. KAW99. Banff. Canada. 1999.

9. Farquhar A., Fikes R., Rice J., The Ontolingua Server: A Tool for Collaborative Ontology
Construction. 10th Knowledge Acquisition for Knowledge-Based Systems Workshop,
Banff, Canada. 1996.

10. FernÆndez-López, M.; Gómez-PØrez, A.; Pazos, J.; Pazos, A. Building a Chemical
Ontology using methontology and the Ontology Design Environment. IEEE Intelligent
Systems and their applications. #4 (1):37-45. 1999.

11. Fridman, N., Musen, M. PROMPT: Algorithm and Tool for Automated Ontology Merging
and Alignment. AAAI-2000. Austin, Texas. August, 2000.

12. Friedman-Hill, E.J. Jess, The Expert System Shell for the Java Platform. Version 6.1a1 (3
April 2002). http://herzberg.ca.sandia.gov/jess/docs/61/

13. Gómez-PØrez, A. A proposal of infrastructural needs on the framework of the semantic
web for ontology construction and use. FP6 Programme Consultation Meeting 9. April
27th, 2001.

14. Gómez-PØrez, A. Evaluation of Ontologies. International Journal of Intelligent Systems.
16(3). March, 2001.

15. Guarino, N.; Giaretta, P. Ontologies and Knowledge Bases: Towards a Terminological
Clarification. In N. Mars (ed.) Towards Very Large Knowledge Bases: Knowledge
Building and Knowledge Sharing. IOS Press, Amsterdam: 25-32. 1995

16. Heflin, J.; Hendler, J. A Portrait of the Semantic Web in Action. IEEE Intelligent Systems,
16(2), 2001.

17. Hermenegildo, M., Bueno, F., Cabeza, D., Carro, M., García, M., López, P., Puebla, G.
The Ciao Logic Programming Environment. International Conference on Computational
Logic (CL2000). July, 2000.

18. McGuinness, D., Fikes, R., Rice, J., Wilder, S. The Chimaera Ontology Environment.
AAAI-2000. Austin, Texas. August, 2000.

19. Studer, R.; Benjamins, V.R.; Fensel, D. Knowledge Engineering: Principles and Methods.
IEEE Transactions on Data and Knowledge Engineering, 25(1-2), 1998, pp.161�197.

20. Sure, Y.; Erdmann, M.; Angele, J.; Staab, S.; Studer, R.; Wenke, D. OntoEdit:
Collaborative Ontology Development for the Semantic Web. International Semantic Web
Conference (ISWC02). Sardinia. Italy. June, 2002. LNCS 2342. pp. 221-235.

21. Swartout, B.; Ramesh P.; Knight, K.; Russ, T. Toward Distributed Use of Large-Scale
Ontologies. AAAI Symposium on Ontological Engineering. Stanford. USA. March, 1997.

22. Using Protégé-2000 to Edit RDF. Technical Report. Stanford University.
http://www.smi.Stanford.edu/ projects/protege/protege-rdf/protege-rdf.html

23. Welty, C.; Guarino, N. Supporting Ontological Analysis of Taxonomic Relationships.
Data and Knowledge Engineering. September 2001.

24. A survey on ontology tools. Deliverable D13.IST OntoWeb Thematic Network. May
2002.

Some Ontology Engineering Processes

and Their Supporting Technologies

Alan Flett, Mariana Casella dos Santos, and Werner Ceusters

Language and Computing (L&C), Hazenakkerstraat 20A,
9520 Zonnegem, Belgium

Tel: +32 (0)53 62 95 45 Fax: +32 (0)53 62 95 55
{mariana, werner}@landc.be

http://www.landc.be

Abstract. We describe the ontology engineering processes and their
supporting technologies at L&C, a company developing intelligent medi-
cal applications based on ontologies. We describe the principal tasks that
the modellers of our ontology have to execute, how they are supported
and guided by some specifically ontology-focused management practices,
and how (semi-)automated technology can also aid in their support and
guidance, so as to produce a higher quality and quantity of ontology
product. The ontology processes include the development of new struc-
tures of concepts and relations, the integration of other ontologies and
terminologies, the integration of the ontology to natural language ap-
plications, and the reforming of the current ontology’s formal structure.
The automated supports we talk about include OntoClean, a principled
methodology for analyzing ontological properties and their constraints.
We finally note how far we think our ontology technology comes to some
proposed desiderata recently given for “enterprise standard” ontology
environments.

1 Introduction

L&C develops intelligent medical applications that process medical language.
This intelligent processing of medical language can either be in the form of under-
standing prescriptions, performing semantic indexing and information retrieval,
or voice operated medical applications. Typically, these have as a foundation the
knowledge-based resource of an ontology. This ontology, called LinkBase(r), is a
model of various aspects and parts of medicine, including anatomy, pharmaceu-
ticals, occupational risk, and procedures: in short, everything to do with health-
care. It consists of approximately 1,000,000 concepts, 400 link types, 3,000,000
terms, and 3,000,000 links. The other important component in our technologi-
cal armory as intimated above is language technology. Consequently, integrating
the ontology with the language technology is also an important area for us. But,
it is the ontology development processes that are the focus of this paper. In
the section “Modelling processes” we describe the various ontology development
processes gone through here at L&C. In the section “Ontology management pro-
cesses and technologies” we describe how our technology supports these various

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 154–165, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Some Ontology Engineering Processes and Their Supporting Technologies 155

modelling processes. In the section “Future work: intelligent automated support”
we describe the future work we will do to help better support these processes
using (semi-)automated techniques. The section “Conclusions” concludes our
paper.

2 Modelling Processes

The modelling processes are arguably the most critical processes in the company,
after perhaps product development, for the success of the company. Medical
ontologies are currently perhaps the largest scale domain ontology development
tasks today. Medical ontologies arguably have one very complicated system to
model (the human body), which has been analyzed and continues to be analyzed
in the greatest detail possible; not to mention all the contingent procedures and
pharmaceuticals devised over time to repair it. So, it can be claimed with some
justification that it is one of the most finely grained, comprehensive, and large,
bodies of knowledge (BoKs) in existence (the gene sequencing projects-taken as
medical knowledge-reinforcing this somewhat!); several attempts at representing
in a formal manner various chapters of the book of medical knowledge have
been made over the years including Open GALEN1, The Digital Anatomist
Project2, MeSH3, and a swarm of others. So, the modelling processes undertaken
herein are large-scale and complex, and bring in to focus many domain ontology
development issues. To these we now turn.

2.1 Novel Refinement

Novel refinement is where new modelling primitives and structures/patterns are
deemed necessary to either model some previously un-modelled aspect or part
of the world (of medicine, in our case). This typically requires the creation of
new concepts and relations.

LinkBase(r) content is updated on the basis of information coming from
various sources: clinical reports, literature, coding and classification systems, etc.
A set of criteria are used to decide whether or not new primitives are required.
The main primitives are concepts, terms and relationships.

A new concept is added if at least one of the following criteria is met: i) the
concept is explicitly represented in a third party system towards which a mapping
from LinkBase(r) has to be maintained; ii) there is at least one language covered
by the system that has the possibility to express the candidate concept using one
word or token; iii) there are terms that in a given language are polysemous and
for which all possible meanings are not yet represented; iv) a newly introduced
relationship may lead to reification (hence concepts) that are expressed by terms
in at least one language; v) a term is found for which no concept already exists.

1 http://www.opengalen.org/
2 http://sig.biostr.washington.edu/projects/da/
3 http://www.nlm.nih.gov/mesh/meshhome.html

156 Alan Flett, Mariana Casella dos Santos, and Werner Ceusters

A new term is added to an existing concept if at least one of the following
criteria is met: i) it is found in relevant documents and is a true synonym of
the existing concept; ii) it is a multiword term in which the individual com-
ponents co-occur significantly; iii) it is a multiword term and the meaning of
the term contains more information than the sum of the individual tokens (e.g.,
“bacterial meningitis” adds to “bacterial” and “meningitis” by specifying the
actor-relationship, while in “bacterial cell wall” a part-whole relation is speci-
fied).

A new relationship is added when the set of existing relationships is insuf-
ficient to capture in detail the semantics of new concepts, or when a literature
review reveals new insights with respect to logics on issues such as time, mere-
ology, processes, etc. In addition to these basic primitives, additional elements
turned out to be useful. They might provide better quality assurance of the
model (e.g., role restrictions), or improved reasoning (e.g., transitivity and com-
positionality over relationships). Their integration in the system follows (as yet)
a less formal path. A paradigmatic case of novel refinement was the introduc-
tion of elements of occupational medicine to LinkBase(r). Concepts denoting
a “risk” for a disease or condition, or substances and situations considered as
“risk factor” to the development of these diseases or conditions, where not yet
present in our ontology and couldn’t be fully represented with the existing rela-
tionships. These concepts, amongst others, as well as new types of relationships
to be placed between them, where introduced in Link Base. The result was the
creation of a new modelling form where the “risk” of a particular disease is a
property of the “risk factor” for this disease, which is then related to the disease
itself. Other new concepts involved (e.g., the ”exposure to a risk factor“) are
also completely represented in this new form.

2.2 Integrative Refinement

Integrating content is where ex-L&C ontologies/terminologies are deemed to be
interesting or required for our applications. Interesting content consists typically
of more specialized information, or have a substantial large quantity of concepts
and terms, e.g., Anatomical Therapeutic Chemical (ATC), a classification system
for classifying drugs, widely used in Europe. The required contents are necessary
for the functioning of L&C’s applications, e.g., the International Classification
of Diseases (ICD) is currently used in a coding application.

An assumption is that all concepts will already find suitable parents in our
ontology. It has two distinguished phases. On the first stage, which is fully auto-
mated, the external ontologies/terminologies are stored in an area of Link Base
called META ENTITY, with their original style and structure. The concepts
from these ontologies/terminologies are compared to the existing terms/concepts
in the representation field of Link Base called DOMAIN ENTITY. When an ex-
act match is found a specific relationship is placed between the META concept,
from the external ontology/terminology, and the matching existing DOMAIN
concept. If an exact match is not found a new DOMAIN concept is created
(see novel refinement) in order to be related to the META concept. The second

Some Ontology Engineering Processes and Their Supporting Technologies 157

stage of integration includes asserting primitive criteria (e.g., the parent of the
concept, necessary relations) and definitional criteria (i.e., necessary and suffi-
cient conditions) to the newly created concepts. It is done by the ontologists
in a fully manual procedure or in a semi automated procedure (e.g., if we have
many concepts describing cancer, and all are a subclass of the concept “cancer”,
then we can add a is-a link between all of those cancer concepts and the concept
“cancer”).

Many obstacles and difficulties can be encountered during the process of in-
tegration, and might require the revising of previous modelling structures and
patterns (see reflective refinement), or to create new ones (see novel refinement),
e.g., during the mapping to OPCS 4 (Office of Population Census and Survey)4—
a classification of surgical procedures-a terminological problem was encountered.
Some terms were considered to be of a different meaning amongst the already
integrated terminologies and OPCS 4, while within Link Base’s representation
field DOMAIN ENTITY a mix of these different meanings was found. The ne-
cessity then arose of reclassifying those concepts and stipulating a consensual
meaning for them, as well as stipulating new relations between the concepts
representing the surgical procedures from OPCS 4 and pre-existing relational
DOMAIN concepts, as body parts or specific actions that take place during
these procedures).

One of the main problems that we currently face during the mapping pro-
cess is related to its first stage where an exact match between terms needs to
be found.5 Possible term variations that would still keep the same conceptual
meaning (e.g., plural, presence of commas or hyphens, British and American
English spelling differences) are not taken into consideration, which results in a
large amount of newly created concepts with the same conceptual meaning as
pre-existing concepts that must then be aligned. One might believe this prob-
lem would have a rather simple solution, but considering the great ambiguity of
medical terminology it’s difficult not to fall into mistakes of interpretation and
consequently false results on our applications if assumptions are made blindly
between potentially similar terms (e.g., a concept named “Salivary gland exci-
sion” had a different interpretation than a concept named “Excision of salivary
gland”, the former representing the excision of a structure from the salivary

4 http://www.doh.gov.uk/hes/standard data/coding information/opcs/
5 As a partial solution to this problem a new tool has been developed in the manage-

ment system, where the paths of relationships are followed to find possible concepts
with the same conceptual meaning. Given a certain token, the tool will first find
concepts in the ontology that have terms assigned to them where one or more of the
words in the token are present. Then it intersects, following existing relationships,
the concepts found for each of the words present in the token. This intersection
generates as a result a set of concepts, ranked by their relationship’s importance,
which are probable to have the same meaning as the given token. In order to avoid
any wrong assumption the result set of concepts is then analyzed by an Ontologist
that validates the alignment or relationship between the given token and the result
concept.

158 Alan Flett, Mariana Casella dos Santos, and Werner Ceusters

gland like a tumour or a cyst, while the later represents the excision of part or
the whole of the salivary gland itself).

The process of mapping is evolutionary, and has been progressing to be-
come each time more automated and efficient as a deeper study of the ex-
ontologies/terminologies is made before integration and the possible obstacles
are foreseen and partially automatically prevented. One example of a more au-
tomated approach to mapping is our database integration bean. This bean allows
for the mapping of tables and relations, and hence the content, of an external
database to the concepts and relations used in LinkBase(r). So, for example, if a
concept called “drug type” was mapped to the concept “pharmaceutical” in the
LinkBase(r) ontology, we could seamlessly explore the new drug child concepts
under “pharmaceutical” as though these concepts were part of the ontology. The
clever part is in the method used to find the semantically valid mappings. Here
we use an algorithm that uses the terms of the database and the terms of the
concepts in the ontology and finds new concepts which might be useful given the
database terms. The application has obvious shortcomings, and should be con-
sidered as more of a CASE tool to help the developer on the semantic mapping.

Integrating Content to Language Systems L&C’s ontology is completely
language independent, in the sense that it doesn’t make use of any grammatical
information from any language. On the other hand, applications based on our
ontology can be applied in any European language by the assignment of multi-
lingual terms and lexemes to the modelled and integrated concepts in the DO-
MAIN ENTITY representation field. During the process of language integration
important focus is given to the consensual meaning determined by the modelling
representation of the DOMAIN concepts, and only terms used in natural lan-
guage to express exactly this same meaning can be assigned to these concepts
(this is an assumption we make). Time is then spent on careful research of sim-
ilar terms or literal translations which might have different meanings in their
current use. (The main difficulties of the process of language integration are:
The absence of a spelling check, due to the lack of reliable medical dictionaries
that could be used as a source; The presence of concepts expressed by terms
composed by a combination of many words, which leaves room for endless pos-
sibilities of combinations (e.g., KIDNEY CANCER can have as terms “kidney
malignancy”, “renal malignancy”, “malignant neoplasm of kidney”, “malignant
tumor of kidney”, “malignant renal neoplasm”).

2.3 Reflective Refinement

Reflective refinement is where a review of the current form of the content is
made and deemed inadequate somehow, resulting in a partial recasting of some
or all of the current content into partially new forms (evolutionary reforming),
e.g., the addition of a new relation to a concept, or in a total reforming of
some or all current content into new forms (revolutionary reforming), e.g., the
deletion of an existing relation to a concept, and the creation of a new (form

Some Ontology Engineering Processes and Their Supporting Technologies 159

of) concept. Reflective refinement is different from novel refinement in that it
is more concerned with the structure and form of the content, as opposed to
simply being a content issue (which is what novel refinement is).

For example, reforming the ontology with the General Ontological Language
(GOL) [SHH01] would be a reforming of content. In that methodology (on-
tology) there are several novel and primitive ontological relations which are at
present not in our ontological model of the worlds of healthcare. It is to be ex-
pected that some reforming of the current ontology would be necessitated if we
were to try and incorporate those new relations and concepts.

Conditions where reflective refinement is needed are amongst others:

1. Discrepancy amongst the meaning of content from different ex-Link Base
ontologies/terminologies to be mapped and the meaning of content in Link
Base’s DOMAIN representation field.

2. Content form organized in a particular field of Link Base where restricted
kinds of relationships are allowed and which are not fully appropriate in
relation to the new content.

3. Content form that brings errors of assumption by the ontology browser and
consequently errors to our applications.

4. Content deemed insufficient for natural language processing.

During the process of adding content we often encounter obstacles related to
the actual form of some content. The form can be either insufficient or inappro-
priate for a complete representation of the new content (e.g., while integrating
content related to surgical procedures, the form in which the “surgical approach”
(the specific anatomic dissection by which an organ or part is exposed in surgery)
content was structured was considered inappropriate to represent the difference
between surgical approaches and consequently between the surgical procedures
where they take place. The surgical approaches were represented as a STATE
(characteristic) of a surgical procedure, what didn’t allow us to place an ap-
propriate/valuable relation between them and the body sites involved in the
dissection. A revolutionary reforming was then done, where the old modelling
form as STATES was abandoned, and the surgical approaches are now modelled
as MOTION PROCESSES that have the different body sites as their targets
and a specific link to the surgical procedures where they take place). Reflective
refinement can be done on a specific part of content, as the example above, or
on a whole field of the content involved in relations to various different other
fields (e.g., a new form was given to the field that represents the anatomy of
the human body on an evolutionary reforming process. For example, there are
concepts that should be related to a body part/anatomical site in a represen-
tation that expresses a relation either to the totality of that body part or to a
smaller part of if (e.g., the concept PANCREATECTOMY represents either an
excision of the totality of the pancreas or of a smaller part of it, as the pancreas
head or tail). This representation was not possible on our previous approach that
considered only the totality of a body part as a target concept to the necessary
relationships. Our new approach (as detailed by Hahn in [HSR98]) consists of

160 Alan Flett, Mariana Casella dos Santos, and Werner Ceusters

three possible concepts that can be related to, defined as such by the specific
relations between them: the “body part structure”, representing the totality or
a part of the totality of a body part; the “body part”, representing the totality;
and the “body part part”, representing a part of the totality of a body part
(e.g., PANCREAS STRUCTURE, PANCREAS and PANCREAS PART). The
concept PANCREATECTOMY is then represented by a relation to the concept
PANCREAS STRUCTURE.).

3 Ontology Management Processes and Technologies

The modellers require varied and continuous support for them to be able to
model effectively and efficiently execute the previously described processes above.
The more automated this goal can be achieved the better. Many ontology-related
development issues have as a root the observation that are domain experts with
no ontology modelling expertise who do the modelling. This state of affairs has
some support to being preferred over having logicians model some domain (it is
what Smith et al. [SHH01] call the ontologists credo)—it should be noted that it
is to be expected that (ontologically-minded) logicians model upper level ontolo-
gies to do with space, time, causality, etc. The problem then, however, is that the
kind of modelling required is often of a formality and complexity that takes a lot
of getting used to. In the sections that follow we describe some of the technology
which we have developed to try and support the ontology development process,
where the majority of the ontology modelling work is undertaken by healthcare
domain experts (mostly doctors).

3.1 Modelling Editor

The ontology editor, called LinKFactory(r), is a bean-based multiple-windows
environment, where there are around 30 specialized beans, which can be linked to
each other both intra- and inter-window. All its beans have a drag and drop func-
tionality, and through the bean environment, the user can build user-oriented
focussing (e.g., if she clicks on a concept then one of the other beans, a full defini-
tion bean will be notified of the event, its parameters, and will display the criteria
(necessary conditions) and full definitions (necessary and sufficient conditions)of
the concept). There are different scenarios of process focus bean configurations
ready-rolled for the user to select in a library. A partial enumeration of the
beans we have developed include: link type hierarchy, link type property, con-
cept hierarchy, concept property, concept full definition, translation, bookmark,
terminology, query, and so on.

Technical Details LinKFactory(r) stores its data in a relational database (we
currently use Oracle). The data is accessed using a functional API which hides
the actual structure of the data (some of the API could be described as “knowl-
edge level”). LinKFactory(r) is platform independent (Windows, Solaris, UNIX,
and Linux, have all been successfully used) and database vendor independent

Some Ontology Engineering Processes and Their Supporting Technologies 161

(Oracle, Sybase, SqlServer have all been successfully used). The application is
written in Java and uses RMI. LinKFactory(r) uses Beans, where each bean
has a view of the underlying data structure and can consequently display the
relevant views onto the ontology that the modeller wants when performing a
certain task. For more detail on the technical aspects of the implementation of
LinKFactory(r), see [CMDT01].

3.2 Modeller Support and Guidance

Apart from the automated support the modellers should receive at edit-time,
there are also other management issues, such as hierarchical user privileges,
modelling guidance and teaching. Our ontology contains about 350 different link
types sometimes of subtle semantic difference and a complex and strict interac-
tion between the different elements (concepts, terms, links, definitions). It focuses
simultaneously at the medical knowledge and at the linguistic value involved in
the content, and quality and consistency of modelling are vital for the success of
further inferred knowledge and natural language processing. Consequently the
Link Base is of high degree of complexity, which brings difficulties to the ontol-
ogists to provide an accurate and consistent modelling of the content. Coaching
and quality control management are then important and some mechanisms were
developed to support them:

1. “Hierarchical user privileges” is a mechanism in the management system
where elements are owned by the users that created them. The users are
organized in a hierarchical structure according to their skills and experience.
Elements can only be modified by its owner user, or by users at a higher
level in the hierarchy. This mechanism prevents content to be changed in a
circular/redundant process, prevents content modelled in a correct form to
be modified to an incorrect form, and brings up mistakes and problems on
the reasoning of the ontologists. It has the problem of relatively hampering
the work of very talented new users.

2. “Log files review” is a mechanism of reviewing the actions performed by
the users in the management system that are stored in a log file. The re-
view is done either by the user that performed the actions or by another
user, and has the purpose of revealing problems and mistakes of all kinds
(attention, reasoning, spelling, knowledge) as well as providing a learning
opportunity on different modelling techniques, reasoning and style. The files
are distributed and checked weekly, in a way that each Ontologist reviews
the work of a different Ontologist each week This allows them to get in con-
tact with different aspects of the ontology, and it brings up diversity of point
of view.

3. “Restricted action privileges” is a mechanism of the management system by
which users are restricted to perform actions that imply substantial changes
in the ontology (e.g., joining concepts, creating new link types). Any ac-
tion can be allowed or restricted to a user according to a decision of the
management of the ontology team based on the users skills and experience.

162 Alan Flett, Mariana Casella dos Santos, and Werner Ceusters

Coaching is an important activity within the ontologists group and it’s done
either individually, from a more experienced modeller to a new one, or with
group lectures and discussions of new issues.

4 Future Work: Intelligent Automated Support

We are currently in the process of implementing a version of OntoClean to help
structure the ontology with regards to more rigorous and formal metaphysical
ideas. This is the first phase of a rolling development program to beef-up the
automated support and modelling capabilities of the ontology technology. We
also aim to support our modellers though the completion of as many inferences
as is possible axiomatically. That is, we will try and maintain a collection of
applicable axioms that formally describe the ontology and make these available
to some support algorithm that tries and applies these axioms locally and in a
not necessarily complete manner. That is, we are only supporting the user in
making the modelling easier and more complete, but we are not interested, at
present, with having a complete model.

4.1 OntoClean

OntoClean [GW02, WG01, GW00] is a methodology to guide the development
of ontologies with fewer modelling errors. This is achieved by applying meta
properties to ontology, which, when expressed of domain properties, constrain
the subsumption relation between those so described domain properties. This
brings more rigor to the modelling process, resulting in more “clean” ontologies,
with the result that categorical errors in modelling are reduced or eliminated.
This is a “good thing” per se but can also help when ontologies are attempted
to be merged or integrated in some way. Examples of the metaproperties which
OntoClean takes careful note of are rigidity, identity, unity, and dependence. The
various permutations of having or not having such metaproperties results in a
set of type, e.g., type, sortal, category, phased-sortal, etc. These types form a
hierarchy and there are various enforceable constraints. For example, if we have
concluded that a domain property is a sortal, then it may only subsume further
sortals, no non-sortals may be subsumed by it. There are various other useful
constraints, and these help to structure and constrain what is permissible a la an
observance of the OntoClean methodology. We aim to implement OntoClean in
LinKFactory(r), where it will provide online support for modellers, constraining
and supporting what they do. One problem, already noted above as being one
major problem in supporting modellers, is that they often have no modelling
expertise. So, one may be wondering, how does the introduction of even more
sophisticated metaphysical ideas supposed to help the average modellers, as op-
posed to the ontologically sophisticated. Well, the answer we give here (and we
think the authors of OntoClean do seem to hint at it) is that the properties they
are dealing with are general, and that actually quite simple questions can be
asked of the user to ascertain whether or not certain of the metaproperties do

Some Ontology Engineering Processes and Their Supporting Technologies 163

in fact hold. So, instead of asking the user “Is this property anti-rigid?”, simpler
questions can be asked such as “Are there any instances of this property which
necessarily must at some time not be of this type?” This question is basically
an informal definition of what it means to be anti-rigid, and is perhaps still not
the ideal way of acquiring such information. We think this is a valid concern, if
we also accept the ontologist’s credo and its implications in the real world.

4.2 Axiomatization

Axiomatization of the ontology is an important task, which will help to further
specify the interpretation and meaning of the terms in it. It will also facilitate
the support of the modellers through both constraining the space of valid mod-
elling and by completing incomplete modelling. This should help to speed up
the modelling as well as delivering a higher quality ontology product.

Example Axiomatization We use here the relation (“link” in our parlance)
has-theme and its contra link is-theme-of. For patterns of links and concepts
as shown below in Figure 16 we may conclude that “bronchial aspirate” is a
subclass of “aspirate”.

bronchial aspirate

is theme of
has themeaspirate

bronchial aspiration

aspiration

is theme of
has theme

is ais a

Fig. 1. An example where the inference does hold between the concepts
“bronchial aspirate” and “aspirate”.

We can generalize this to the axiom:

∀xz(∃yw
is− theme − of(x, y) ∧ is − a(y, w)∧
is− theme − of(z, w) ∧ has − theme(w, z))
→ is − a(x, z).

(1)

6 The legend for this figure is as follows. A solid line is told information, whereas a
dotted line is deduced information. An arrow means that the link is valid, whereas
a circle means that the link is invalid. A filled end-of-line shape means that the top
relation is to be read in the direction of it, whereas the bottom relation is to be read
in the direction of the hollow end-of-line shape.

164 Alan Flett, Mariana Casella dos Santos, and Werner Ceusters

Here, based on the axiom new knowledge is inferred about the ontology, that
is there should be a link between those two concepts. If instead we happened to
be modelling the situation as we se below in Figure 2 then we should actually be
stopped from adding a subclass relation between the concepts “supplement” and
“drug used for hepatic amebiasis”, as not all drugs used for hepatic amebiasis
are supplements (that is, supplemental to some other drug). To make the link
contra we would need to have, what we call, mutual semantic specificity on the
source (domain) and target (range) of the link (relation).

is theme of
has theme

giving processsupplement

drug used for
hepatic amebiasis

is theme of
has theme

substance
administration

process

is a is a

Fig. 2. An example where the inference does not hold between “drug used for
hepatic amebiasis” and “supplement”.

5 Conclusions

We believe that Language and Computing has developed an ontology develop-
ment environment of “enterprise-standard”, and which will be improved further
by the current work being done on automated support. If we measure what Lan-
guage and Computing have against the proposals given in [FB01] for “enterprise-
standard” ontology environments, then it is our claim that we at Language and
Computing go a long way to satisfying almost all of the desiderata contained
therein. Such desiderata included: visualization, modularization, versioning, rea-
soning transparency, multitasking (query, browsing, editing, and database like
features in general, such as stability, scale), competency, and methodology. We
claim that LinKFactory(r) has most of the multitasking desiderata; users can
access, edit, and query, the ontology server in a safe manner (over the Internet if
need-be). We also claim that LinKFactory(r) has other data-base-like desiderata,
as well as mufti-user access; that is, versioning, stability, and scalability. We also
claim that we measure up well to the user-interface desiderata of being highly
configurable and personalizable; and, in the future, we will have much more in
the way of automated support of the modellers, making them more efficient and
increasing the quality of the final ontology product.

Some Ontology Engineering Processes and Their Supporting Technologies 165

References

[CMDT01] Werner Ceusters, Peter Martens, Christoffel Dhaen, and Boris Terzic.
Linkfactory: an advanced formal ontology management system. Victo-
ria, Canada, October 2001. K-CAP 2001.

[FB01] Alan Flett and Mike Brown. Enterprise standard ontology environments.
Seattle, USA, 2001. IJCAI. Presented at an ontology workshop at IJCAI
2001.

[GW00] Nicola Guarino and Chris Welty. A formal ontology of properties. In
R. Dieng and O. Corby, editors, Knowledge Engineering and Knowledge
Management: Methods, Models and Tools. 12th International Conference
EKAW2000, pages 97–112. Springer Verlag, 2000.

[GW02] Nicola Gurino and Chris Welty. Evaluating ontological decisions with
ontoclean. Communications of the ACM, 45(2):61–65, 2002.

[HSR98] Udo Hahn, Stefan Schulz, and Martin Romacker. An ontological engi-
neering methodology for part-whole reasoning in medicine. 1998. cite-
seer.nj.nec.com/hahn98ontological.html.

[SHH01] Barry Smith, Barbara Heller, and Heinrich Herre. A unified framework
for building ontological theories with application and testing in the field
of clinical trials (first draft). 2001. http://www.ontology.uni-leipzig.de/.

[WG01] Chris Welty and Nicola Gurino. Supporting ontological analysis of taxo-
nomic relationships. Data and Knowledge Engineering, 39(1):51–74, 2001.

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 166-181, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Sweetening Ontologies with DOLCE

Aldo Gangemi, Nicola Guarino, Claudio Masolo,
Alessandro Oltramari, Luc Schneider

ISTC-CNR, Rome/Padua, Italy
gangemi@ip.rm.cnr.it, {Nicola.Guarino, Alessandro.Oltramari,

Claudio.Masolo, Luc.Schneider}@ladseb.pd.cnr.it

Abstract. In this paper we introduce the DOLCE upper level ontology, the first
module of a Foundational Ontologies Library being developed within the Won-
derWeb project. DOLCE is presented here in an intuitive way; the reader should
refer to the project deliverable for a detailed axiomatization. A comparison with
WordNet's top-level taxonomy of nouns is also provided, which shows how
DOLCE, used in addition to the OntoClean methodology, helps isolating and
understanding some major WordNet�s semantic limitations. We suggest that
such analysis could hopefully lead to an �ontologically sweetened� WordNet,
meant to be conceptually more rigorous, cognitively transparent, and efficiently
exploitable in several applications.

1 Introduction

In the recent years, we developed a methodology for testing the ontological adequacy
of taxonomic links called OntoClean [14, 13], which was used as a tool for a first
systematic analysis of WordNet�s upper level taxonomy of nouns [6]. The first version
of OntoClean was based on an ontology of properties (unary universals), character-
ized by means of meta-properties. We are now complementing OntoClean with an
ontology of particulars called DOLCE (Descriptive Ontology for Linguistic and Cog-
nitive Engineering), which is presented here in some detail.

DOLCE is the first module of a Library of Foundational Ontologies being devel-
oped within the WonderWeb project1. In contrast with �lightweight� ontologies, which
focus on a minimal terminological structure (often just a taxonomy) fitting the needs
of a specific community, the main purpose of foundational ontologies is to negotiate
meaning, either for enabling effective cooperation among multiple artificial agents, or
for establishing consensus in a mixed society where artificial agents cooperate with
human beings. The WonderWeb vision is to have a library of such ontologies, re-
flecting different ontological choices. The idea is to make the rationales and alterna-
tives underlying such choices as explicit as possible, as a result of a careful isolation
of the fundamental ontological options and their formal relationships. The library
would form a network of different but systematically related modules which the vari-
ous Semantic Web applications can commit to, according to their ontological assump-
tions.

1 http://wonderweb.semanticweb.org/deliverables/D17.shtml

 Sweetening Ontologies with DOLCE 167

This paper is structured as follows. In the next section we introduce the basic as-
sumptions and distinctions underlying DOLCE; then we discuss some ontological
inadequacies of WordNet�s taxonomy of nouns, revising and extending the analysis
presented in [6]. Finally, we discuss the preliminary results of an alignment work
aimed at improving WordNet�s overall ontological (and cognitive) adequacy, and
facilitate its effective deployment in practical applications.

2 The DOLCE Upper Ontology

According to the vision introduced above, we do not intend DOLCE as a candidate for
a �universal� standard ontology. Rather, it is intended to act as starting point for com-
paring and elucidating the relationships with other future modules of the library, and
also for clarifying the hidden assumptions underlying existing ontologies or linguistic
resources such as WordNet.

As reflected by its acronym, DOLCE has a clear cognitive bias, in the sense that it
aims at capturing the ontological categories underlying natural language and human
commonsense. We believe that such bias is very important for the Semantic Web
(especially if we recognize its intrinsic social nature [3]). We do not commit to a
strictly referentialist metaphysics related to the intrinsic nature of the world: rather, the
categories we introduce here are thought of as cognitive artifacts ultimately depending
on human perception, cultural imprints and social conventions (a sort of �cognitive�
metaphysics). We draw inspiration here from Searle�s notion of �deep background�
[18], which represents the set of skills, tendencies and habits shared by humans be-
cause of their peculiar biological make up, and their evolved ability to interact with
their ecological niches [9]. The consequences of this approach are that our categories
are at the so-called mesoscopic level, and they do not claim any special robustness
against the state of the art in scientific knowledge: they are just descriptive notions
[21] that assist in making already formed conceptualizations explicit. They do not
provide therefore a prescriptive (or �revisionary� [21, 15]) framework to conceptual-
ize entities. In other words, our categories describe entities in a post-hoc way, reflect-
ing more ore less the surface structure of language and cognition.

DOLCE is an ontology of particulars, in the sense that its domain of discourse is
restricted to them. The fundamental ontological distinction between universals and
particulars can be informally understood by taking the relation of instantiation as a
primitive: particulars are entities which have no instances2; universals are entities that
do have instances. Properties and relations (corresponding to predicates in a logical
language) are usually considered as universals. We take the ontology of universals as
formally separated from that of particulars. Of course, universals do appear in an on-
tology of particulars, insofar they are used to organize and characterize them: simply,
since they are not in the domain of discourse, they are not themselves subject to being
organized and characterized (e.g., by means of metaproperties). An ontology of unary
universals has been presented in [12]. In this paper, we shall occasionally use notions
(e.g., rigidity) taken from such work in our meta-language.

2 More exactly, we should say that they can�thave instances. This coincides with saying that

they have no instances, if we include possibilia (possible instances) among instances.

168 Aldo Gangemi et al.

2.1 Enduring and Perduring Entities

DOLCE is based on a fundamental distinction between enduring and perduring enti-
ties, i.e. between what philosophers usually call continuants and occurrents [19], a
distinction still strongly debated both in the philosophical literature [22] and within
ontology standardization initiatives3. Again, we must emphasise that this distinction is
motivated by our cognitive bias: we do not commit to the fact that both these kinds of
entity �really exist�, and we are indeed sympathetic with the recent proposal made by
Peter Simons, that enduring entities can be seen as equivalence classes of perduring
entities, as the result of some kind of abstraction mechanism [20].

The difference between enduring and perduring entities (which we shall also call
endurants and perdurants) is related to their behavior in time. Endurants are wholly
present (i.e., all their proper parts are present) at any time they are present. Perdurants,
on the other hand, just extend in time by accumulating different temporal parts, so
that, at any time they are present, they are only partially present, in the sense that
some of their proper temporal parts (e.g., their previous or future phases) may be not
present. E.g., the piece of paper you are reading now is wholly present, while some
temporal parts of your reading are not present any more. Philosophers say that endu-
rants are entities that are in time, while lacking however temporal parts (so to speak,
all their parts flow with them in time). Perdurants, on the other hand, are entities that
happen in time, and can have temporal parts (all their parts are fixed in time) 4.

Hence endurants and perdurants can be characterised by whether or not they can
exhibit change in time. Endurants can �genuinely� change in time, in the sense that the
very same endurant as a whole can have incompatible properties at different times;
perdurants cannot change in this sense, since none of their parts keeps its identity in
time. To see this, suppose that an endurant has a property at a time t, and a different,
incompatible property at time t': in both cases we refer to the whole object, without
picking up any particular part. On the other hand, when we say that a perdurant has a
property at t, and an incompatible property at t', there are always two different parts
exhibiting the two properties.

The main relation between endurants and perdurants is that of participation: an en-
durant �lives� in time by participating in a perdurant. For example, a person, which is
an endurant, may participate in a discussion, which is a perdurant. A person�s life is
also a perdurant, in which a person participates throughout its all duration.

In the following, we shall take the term occurrence as synonym of perdurant. We
prefer this choice to the more common occurrent, which we reserve for denoting a
type (a universal), whose instances are occurrences (particulars).

3 See for instance the extensive debate about the �3D� vs. the �4D� approach at suo.ieee.org, or

the SNAP/SPAN opposition sketched at ontology.buffalo.edu/bfo.
4 Time-snapshots of perdurants (i.e., in our time structure, perdurants whose temporal location

is atomic, and which lack therefore proper temporal parts) are a limit case in this distinction.
We consider them as perdurants since we assume that their temporal location is fixed (a time-
snapshot at a different time would be a different time-snapshot).

 Sweetening Ontologies with DOLCE 169

2.2 DOLCE�s Top Categories

The taxonomy of the most basic categories of particulars assumed in DOLCE is de-
picted in Figure 1. They are considered as rigid properties, according to the Onto-
Clean methodology that stresses the importance of focusing on these properties first.
Some examples of �leaf� categories instances are illustrated in Table 1.

Fig. 1. Taxonomy of DOLCE basic categories.

M
Amount of

Matter

AC
Arbitrary
Collection

RP
Relevant

Part

PL
Place

ASO
Agentive

Social Object

NASO
Non-agentive
Social Object

SC
Society

MOB
Mental Object

SOB
Social Object

AG
Aggregate

F
Feature

POB
Physical
Object

NPOB
Non-physical

Object

PSB
Physical

Substantial

NPSB
Non-physical
Substantial

SB
Substantial

ED
Endurant

Q
Quality

PQ
Physical
Quality

NPQ
Non-physical

Quality

TQ
Temporal
Quality

PD/O
Perdurant/
Occurence

EV
Event

STV
Stative

ACH
Achievement

ACC
Accomplishment

ST
State

PRO
Process

ALL
Entity

R
Region

PR
Physical
Region

NPR
Non-physical

Region

TR
Temporal
Region

T
Time

Interval

S
Space
Region

AB
Abstract

SetFact

SAG
Social Agent

APO
Agentive
Physical
Object

NAPO
Non-agentive

Physical
Object

…

… …

…

170 Aldo Gangemi et al.

Qualities and quality regions. Qualities can be seen as the basic entities we can
perceive or measure: shapes, colors, sizes, sounds, smells, as well as masses, lengths,
electrical charges� The term �Quality� is often used as a synonymous of �property�,
but this is not the case in DOLCE: qualities are particulars, properties are universals.
Qualities inhere to entities: every entity (including qualities themselves) comes with
certain qualities, which exist exactly as long as the entity exists. Within a certain on-
tology, we assume that these qualities belong to a finite set of quality types (like color,
size, smell, etc.), and are characteristic for (inhere in) specific individuals: no two
particulars can have the same quality, and each quality is specifically constantly de-
pendent on the entity it inheres in: at any time, a quality can�t be present unless the
entity it inheres in is also present. So we distinguish between a quality (e.g., the color
of a specific rose), and its �value� (e.g., a particular shade of red). The latter is called
quale, and describes the position of an individual quality within a certain conceptual
space (called here quality space) [8]. So when we say that two roses have (exactly) the
same color their two colors have the same position in the color space (they have the
same color quale), but still the two roses have numerically distinct color qualities.

Table 1. Examples of �leaf� basic categories.

�Leaf� Basic Category Examples
Accomplishment a conference, an ascent, a performance
Achievement reaching the summit of K2, a departure, a death
Agentive Physical Object a natural person
Amount of Matter some air, some gold, some cement
Arbitrary Collection my left foot and my car
Mental Object an idea
Non-agentive Physical Obj. a hammer, a house, a computer, a human body
Non-agentive Social Object a law, an economic system, a currency, an asset
Non-physical Quality the value of a stock share
Non-physical Region a 1Euro value
Physical Quality the weight of a pen, the color of an apple
Physical Region the Euclidean space, an area in the color spec-

trum
Place a hole, a gulf, an opening
Process running, writing
Relevant Part a bump, an edge, a skin
Social Agent a legal person, a contractant
Society Fiat, Apple, the Bank of Italy
State being sitting, being open, being happy, being red
Temporal Quality the duration of a battle, the starting time of a race
Temporal Region the time axis, 22 june 2002, one second

 Sweetening Ontologies with DOLCE 171

This distinction between qualities and qualia is inspired by [10] and the so-called
trope theory [1] (with some differences that can�t be discussed here5). Its intuitive
rationale is mainly due to the fact that natural language � in certain constructs � often
seems to make a similar distinction. For instance, when we say �the color of the rose
turned from red to brown in one week� or �the room�s temperature is increasing� we
are not speaking of a certain shade of red, or a specific thermodynamic status, but of
something else that changes its properties in time while keeping its identity. This is
why we assume that qualities are endurants.

On the other hand, when we say that �red is opposite to green� or �red is close to
brown� we are not speaking of qualities, but rather of regions within quality spaces.
The specific shade of red of our rose � its color quale � is therefore a point (or an
atom, mereologically speaking) in the color space.

Each quality type has an associated quality space with a specific structure. For ex-
ample, lengths are usually associated to a metric linear space, and colors to a topo-
logical 2D space. The structure of these spaces reflects our perceptual and cognitive
bias.

In this approach, we can explain the relation existing between �red� intended as an
adjective (as in �this rose is red�) and �red� intended as a noun (as in �red is a color�)
(Figure 2): the rose is red because its color is located in the red region within the color
space (more exactly, its color quale is a part of that region). Moreover, we can explain
the difference between �this rose is red� and �the color of this rose is red� by inter-
preting �red� as synonymous of red object in the first case, and of red color in the
latter case.

Fig. 2. Qualities and quality regions.

5 An important difference is that standard trope theories explain a qualitative change in terms of

a substitution of tropes (an old trope disappears and a new one is created). We assume in-
stead that qualities are a sort of �enduring tropes�.

qtC

Physical Object

Non-agentive
Physical Object

Rose

rose#1

Quality

Physical Quality

Color

the color
of rose#1

Region

Physical Region

Color Region
color space

red color

color#1 color#2 color#3

qtC(rose#1) qlt

ql(qtC(rose#1, t))
Red Object

PP P

P

172 Aldo Gangemi et al.

In our ontology, space and time are considered as quality types like color, weight,
etc. The spatial (temporal) individual quality of an entity is called spatial (temporal)
location, while its quale is called spatial (temporal) region. For example, the spatial
location of a physical object is just one of its individual qualities: it belongs to the
quality type space, and its quale is a region in the geometric space. Similarly for the
temporal location of an occurrence, whose quale is a region in the temporal space.
This allows an homogeneous approach that remains neutral about the properties of the
geometric/temporal space adopted (for instance, one may assume a circular time).

Concerning the inherence relation, we distinguish between direct and indirect
quality inherence. So temporal qualities are those that directly inhere to occurrences,
and physical qualities are those that directly inhere physical entities (physical entities,
in turn, are those having a direct spatial location). Then, for example, occurrences
have physical qualities only indirectly, insofar these qualities directly inhere to their
participants.

Substantials. Roughly, we see substantials as stable aggregates of qualities: they are
endurants that can have qualities, but are not themselves qualities. Most of such
aggregations are cognitive artifacts, resulting from the tendency humans have to
partition their environment around �islands of stability� that have enough permanence
and features to be used as pervading frameworks of reference [21]. The term
�substantial� is inspired to the Aristotelian notion of substance, but is indeed more
general than the latter, which is closer to our notion of object (see below).

Substantials form the main branch of our taxonomy. We distinguish between physi-
cal and non-physical substantials, according to whether they have direct spatial quali-
ties. At the moment, the ontology of non-physical substantials is still in progress.
Within physical substantials, we distinguish between aggregates, objects, and fea-
tures. This distinction is mainly based on the notion of unity we have discussed and
formalized in [5]. In principle, the general structure of such distinction is supposed to
also hold for non-physical substantials: nevertheless, we fully exploit it only on for
physical substantials, since the characteristics of non-physical aggregates and features
have not been considered yet.

Aggregates. The common trait of aggregates is that they are endurants with no unity
(according to [5], none of them is an essential whole). We consider two kinds of
aggregates: amounts of matter and arbitrary collections. The former are
mereologically invariant, in the sense that they change their identity when they change
some parts. The latter are defined as mere mereological sums of essential wholes (e.g.
objects, see below) which are not themselves essential wholes (like the sum of a
person�s nose and a computer keyboard). They are essentially mereologically pseudo-
invariant, in the sense that they change their identity when a member6 is changed,
while a change in the non essential parts of a member is allowed. We may have called
these arbitrary collections �groups�, or perhaps �sets�; but we prefer to use �set� for
abstract entities, and �group� for something having an intrinsic unity.

6 We assume here that a member is a special part of a collection, see [5].

 Sweetening Ontologies with DOLCE 173

Objects. The main characteristic of objects is that they are endurants with unity. They
have no common unity criterion, however, as different subtypes of objects may have
different unity criteria. Differently from aggregates, (most) objects are admitted to
change some of their parts while keeping their identity: they can have therefore
temporary parts. Often objects (indeed, all endurants) are considered as ontologically
independent from occurrences (discussed below). However, if we admit that every
object has a life, it is hard to exclude a mutual specific constant dependence between
the two. Nevertheless, we may still use the notion of dependence to (weakly)
characterize objects as being not specifically constantly dependent on other objects.

Features. Typical examples of features are �parasitic entities� such as holes, bumps,
surfaces, or stains, which are (in most cases) specifically constantly dependent on
physical objects7 (their hosts). All features are essential wholes, but no common unity
criterion may exist for all of them. However, typical features have a topological unity,
as they are singular entities. Features may be relevant parts of their host, like a bump
or an edge, or places like a hole in a piece of cheese, the underneath of a table, the
front of a house, which are not parts of their host. We include within features also
boundaries, which may be conceptualized in various ways, and are not discussed here.

It may be interesting to note that we do not consider body parts like heads or hands
as features: the reason is that we assume that a hand can be detached from its host
(differently from a hole or a bump), and we assume that in this case it retains its iden-
tity. Should we reject this assumption, then body parts would be features (relevant
parts).

Non-physical substantials and the agentive/non-agentive distinction. Physical
objects that have intentionality (the capability of heading for/dealing with objects or
states of the world, see [18]) are called Agentive, those which do not are called Non-
agentive. In general, the former are constituted by the latter: human persons are
constituted by organisms, robots are constituted by machinaries, and so on
(constitution is taken here as a primitive relation, which is axiomatized in [17]).
Among non-agentive physical objects we have ordinary objects like houses, organs,
pieces of wood, etc. Non-physical Objects are divided into Mental and Social
according to whether they are �produced� by a single agent or recognized by a
community of agents. In the first case we say that mental objects (like an idea) are
specifically dependent on agentive physical objects, while in the second case we need
to further distinguish between Agentive and Non-agentive social objects. Examples of
the former category are social agents like the president of United States or a top
manager of Microsoft, conceived as �reified roles� depending on agentive physical
objects (certain persons) only in a generic way, as the role may survive a replacement
of the person. Social agents are not constituted by agentive physical objects (although
they depend on them), while they can constitute societies, like the CNR, Microsoft,
etc. Non-Agentive Social Objects like laws, shares, peace treaties ecc. are generically

7 In some cases, features are just generically dependent on their host, in the sense that some

(suitable) object must exist whenever the feature exists: think for instance of a whirlpool: if it
is a feature, what is its host?

174 Aldo Gangemi et al.

dependent on societies, which are therefore the �conditio sine qua non� of their
ontological status.

Occurrences. Occurrences comprise what are variously called events, processes,
phenomena, activities and states. They can have temporal parts or spatial parts. For
instance, the first movement of (the execution of) a symphony is a temporal part of it.
On the other side, the play performed by the left side of the orchestra is a spatial part.
In both cases, these parts are occurrences themselves. We assume that objects can�t be
parts of occurrences, but rather they participate in them.

An ontology of occurrences has to take into account two basic aspects: change and
homeomericity.

The first one concerns a naive view of our everyday experience of the world: for
instance, if we see a ship standing still on the sea for an hour, we’ll say that «the ship
hasn’t changed its position for an hour»; on the other side, if during the same interval
we see the ship navigating from the harbor to an oil platform, we�ll say «the ship has
been moving for an hour». In the latter example, the detection of a movement implies
that we are talking about a dynamic occurrence, while in the former we are speaking
about a stationary occurrence.

The second aspect has been extensively discussed in [2]: intuitively, we can say
that an occurrence is homeomeric if and only if all its temporal parts can be described
in the same way used for the whole occurrence. Every temporal part of �John sitting
here� for an hour is still a �sitting here of John�. But if we consider "the complete
ascent of Everest by Messner", there are no parts of such event which constitute a
complete ascent of Everest by Messner. In linguistic as well as in philosophical termi-
nology, the notion of the �homeomericity� of an occurrence is often introduced with
respect to a property characteristic of (or exemplified by) the occurrent itself. If such
property holds for all the temporal parts of the occurrence, then the occurrence is
homeomeric. In our axiomatization, this presupposes a finite list of occurrence-types
which have to be "declared" in advance. An occurrence-type is stative or eventive
according to whether or not it holds of the mereological sum of two of its instances.
For instance, a sitting occurrence is stative since the sum of two sittings is still a sit-
ting occurrence. Within stative occurrences, we distinguish between states and proc-
esses according to whether the corresponding types hold of every part of their in-
stances: so sitting is a state, while running is a process, since there may be (very short)
temporal parts of a running that are not themselves runnings.

Finally, eventive occurrences (events) are called achievements if they are atomic,
otherwise they are accomplishments.

3 Ontological Problems in WordNet

Let us see now how the ontology we introduced, together with the general principles
of the OntoClean methodology, can be of help in analyzing the ontological structure of
WordNet8. We believe that such analysis is important, as the number of applications

8 We refer here to WordNet 1.6 (see [6] for a partial overview on the top-level structure)

 Sweetening Ontologies with DOLCE 175

where WordNet is being used more as an ontology than just as a lexical resource
seems to be growing more and more. To be used as an ontology, however, some of
WordNet�s lexical links need to be re-interpreted as semantic links, connecting to-
gether intended meaning of words, according to our own conceptualizations. One of
such links is the hyponym/hypernym relation, which corresponds in many cases to the
usual subsumption (or IS_A) relation between concepts. An early attempt at exploring
the semantic and ontological problems lying behind this correspondence is described
in [11]. Let us extend now such discussion in the light of the DOLCE ontology.

Confusion between concepts and individuals. The first critical problem we found in
WordNet was the confusion between concepts and individuals. For instance, if we
look at the hyponyms of the �unique beginner� Event, we’ll find the synset Fall - an
individual - whose gloss is �the lapse of mankind into sinfulness because of the sin of
Adam and Eve�, together with conceptual hyponyms such as Social_Event, and
Miracle.9 Under Territorial_Dominion we find Macao and Palestine together with
Trust_Territory. The latter synset, defined as "a dependent country, administered by a
country under the supervision of United Nations", denotes a general kind of country,
rather than a specific country as those preceding it. If we go deeper in the taxonomy,
we find many other examples of this sort. For instance, the hyponyms of Composer
are a mixture of concepts and instances: there are classes corresponding to different
special fields, such as Contrapuntist, or Songwriter, and examples of famous musicians
of the past, such as Bach, and Beethoven.

Under Martial_Art, whose top hypernym is Act, we find Karate, and Kung Fu, but
these synsets do not stand for concepts, they represent individuals, namely particular
examples of martial arts.

If we look through Organization, under the branch whose root is Group, we find
conceptual hyponyms such as Company, Alliance, Federation, Committee, together
with instances like Irish_Republican_Army, Red Cross, and so on.

We face here a general problem: the concept/individual confusion is nothing but
the product of an �expressivity lack�. In fact, if there was an INSTANCE-OF relation, we
could distinguish between a concept-to-concept relation (subsumption) and an indi-
vidual-to-concept one (instantiation).

Confusion between object-level and meta-level: the case of Abstraction. The
synset Abstraction_1 seems to include both object-level concepts, such as Set, Time,
and Space, and meta-level concepts such as Attribute and Relation. From the
corresponding gloss, an abstraction �is a general concept formed by extracting
common features from specific examples�. An abstraction seems therefore intended as
a psychological process of generalization, in accordance to Locke’s position ([16],
p.211). This meaning seems to fit the latter group of terms (Attribute, Relation, and
possibly some hyponyms of Quantity), but not the former. Moreover, it is quite natural
to consider attributes and relations as meta-level concepts, while set, time, and space,
seem to belong to the object domain.

9 In the text body, we usually do not report all the synonyms of a synset (or their numeration),

but only the most meaningful ones.

176 Aldo Gangemi et al.

OntoClean constraints violations. A core aspect of OntoClean is the analysis of
subsumption constraints induced by the identity, rigidity, and unity meta-properties. In
our analysis, we only found rigidity violations. We suspect that there are two reasons
why we didn�t observe other kinds of violation: on one hand, we limited our analysis
to the consistency of lower levels against the upper level, where the criteria of identity
and unity are very general; on the other hand, WordNet tends, notoriously, to multiply
senses, so the chances of conflict are relatively limited.

The most common violation we have registered is bound to the distinction between
roles and types. A role cannot subsume a type. Let’s see an important clarifying exam-
ple.

In its first sense, Person (which we consider as a type) is subsumed by two different
concepts, Organism and Causal_Agent. Organism can be conceived as a type, while
Causal_Agent as a formal role. The first subsumption relationship is correct, while the
second one shows a rigidity violation. We propose therefore to drop it.

Someone could argue that every person is necessarily a causal agent, since �agen-
tivity� (capability of performing actions) is an essential property of persons.
Causal_Agent should therefore be intended as a synonym of �intentional agent�, and
considered as rigid. But, in this case, it would have only hyponyms denoting things
that are (essentially) causal agents, including animals, spiritual beings, the personified
Fate, and so on.

Unfortunately, this is not what happens in WordNet: Agent, one of Causal_Agent
hyponyms, is defined as: "an active and efficient cause; capable of producing a certain
effect; (the research uncovered new disease agents)". Causal_Agent subsumes roles
such as Germicide, Vasoconstrictor, Antifungal. Instances of these concepts are not
causal agents essentially. This means that considering Causal_Agent as rigid would
introduce further inconsistencies.

These considerations allow us to add a pragmatic guideline to our methodology:
when deciding about the formal meta-property to attach to a certain concept, it is use-
ful to look at all its children.

Missing polysemy detection. WordNet is said to recognize most of the conventional
senses of a word (obviously not all the possible contextual senses10). Nonetheless,
there are cases where relevant polysemy has not been detected. Such a case emerges in
two modalities: the first is multiple hyperonymy, the second is sense gap. Here we
show an example of the first.

Multiple hyperonymy is not widespread in WordNet nouns (about 900 synsets) and
it is often used appropriately, as in Surgical_Knife, which has two hyperonyms: Surgi-
cal_Instrument and Knife_1. In this case, Surgical_Instrument is a role, then there is no
conflict in specializing from Knife_1 (which is a type) to Surgical_Knife (which is a
role). But there are cases of multiple and incompatible identity criteria, as in Law,
which has the two hyperonyms Legal_Document and Rule. According to DOLCE, we
consider Legal_Document as subsumed by Non-Agentive Physical Object, and Rule
as subsumed by Non-Agentive Social Object. So the two categories are disjoint. Con-

10 By the way, contextual polysemy does not usually affect the category of the sense of a word,

but its so-called connotation.

 Sweetening Ontologies with DOLCE 177

sequently, this multiple hyperonymy generates a logical incoherence, which could not
be detected without an explicitly axiomatized upper-level.

Moreover, this is a case of systematic polysemy, since a legal document is the
physical support for a law. The relation axioms in DOLCE help detecting systematic
polysemy, which is a major source for building domain core ontologies [7].

Heterogeneous levels of generality. Going down the lower layers of WordNet’s top
level, we register a certain �heterogeneity� in their intuitive level of generality. For
example, among the hyponyms of Entity there are types such as Physical_Object, and
roles such as Subject. The latter is defined as �something (a person or object or scene)
selected by an artist or photographer for graphic representation�, and has no
hyponyms (indeed, almost any entity can be an instance of Subject, but none is
necessarily a subject)11.

For Animal (subsumed by Life_Form) this heterogeneity becomes clearer. Together
with classes such as Chordate, Larva, Fictional_Animal, etc., we find out more specific
concepts, such as Work_Animal, Domestic_Animal, Mate_3, Captive, Prey, etc. We are
induced to consider the formers as types, while the latters as roles.

Although problematic on the side of ontological distinctions among event-classes,
the hyponyms of Phenomenon_1 represent another meaningful example of heteroge-
neity. At the same taxonomic level there are �reasonably� general synsets like Natu-
ral_Phenomenon and Process together with a specific concept like Consequence,
which could be modeled as anti-rigid (every event can be a consequence of the occur-
ring of a previous event, but we could assume that this is not the essential characteris-
tic of the event itself).

In short, intuitively some synsets sound too specific when compared to their sib-
lings. Look at them from the formal point of view we are developing, we can pinpoint
their "different generality" by means of the distinction between types and roles.

4 Mapping WordNet into DOLCE

Let us consider now the results of integrating the WordNet top concepts into our up-
per level. According to the OntoClean methodology, we have concentrated first on the
so-called backbone taxonomy, which only includes the rigid properties. Formal and
material roles have been therefore excluded from this preliminary work.

Comparing WordNet’s unique beginners with our ontological categories, it be-
comes evident that some notions are very heterogeneous: for example, Entity looks
like a "catch-all" class containing concepts hardly classifiable elsewhere, like Antici-
pation, Imaginary_Place, Inessential, etc. Such synsets have only a few children and
these have been already excluded in our analysis.

Some examples of our merging work are sketched in Table 2. Some problems en-
countered for each category are discussed below.

11 We can draw similar observations for relation_1 and set_5 with respect to abstraction_1, etc.

178 Aldo Gangemi et al.

Table 2. Mapping WordNet into DOLCE (some examples).

Aggregate
Amount of matter

body_substance
chemical_element
mixture
compound$chemical_compound
mass_5
fluid_1

Arbitrary collection
�

Physical Object
Non-agentive

body_of_water$water
landdry_landearth$�
body$organic_structure
artifact$artefact*
biological_group

 kingdom
 collection

Body
blackbody$full_radiator
body_5
universe$existence$nature$creation
�

Agentive
life_form$organism$being$�
citizenry

 sainthood
 ethnic group
Social Object
Non-agentive

rule$prescript
law
�

circuit_5
Agentive

social_group
�

Feature
Relevant Part

edge_3
skin_4
paring$parings
�

Place
opening_3

excavation$hole_in_the_ground

Quality
position$place
time_interval$interval
chromatic_color
�
Occurrence
State

condition$status
cognitive_state
existence
death_4
degree
medium_4
relationship_1
relationship_2
conflict
�

Process
decrement_2
increment
shaping
activity_1
chelation
execution
activity_1
�

Accomplishment
accomplishment$achievement
�

Abstract
Region

space_1
time_1
time_interval$interval
chromatic_color
�

statement_1
proposition
�

symbol
set_5
�

 Sweetening Ontologies with DOLCE 179

4.1 Aggregates, Objects, and Features

Entity is a very confused synset. A lot of its hyponyms have to be "rejected": in fact
there are roles (Causal_Agent, Subject_4), unclear synsets (Location12) and so on.
This Unique Beginner maps partly to our Aggregate and partly to our Object category.
Some hyponyms of Physical_Object are mapped to our top concept Feature.

By removing roles like Arrangement and Straggle, Group$grouping appears to in-
clude Agentive Social Object (social group, ethnic group), Non-agentive Social Object
(circuit), Agentive Physical Object (citizenry) and Non-agentive Physical Object (bio-
logical group, kingdom; collection).

Possession_1 is a role, and it includes both roles and types. In our opinion, the
synsets marked as types (Asset, Liability, etc.) should be moved towards lower levels
of the ontology, since their meanings seem to deal more with a specific domain - the
economic one - than with a set of general concepts (except some concepts that can be
mapped to Mental Object, such as Own_Right). This means that the remainder branch
has also to be eliminated from the top level, because of its overall anti-rigidity (the
peculiarity of roles).

4.2 Abstracts and Qualities

ABSTRACTION_1 is the most heterogeneous unique beginner: it contains abstracts such
as Set_5, quality regions such as Chromatic_Color, qualities (mostly from the synset
Attribute) and a hybrid concept (Relation_1) that contains social objects, concrete
entities (as Substance_413), and even meta-level categories. Each child synset has
been mapped appropriately.

Psychological_feature contains both mental objects (Cognition14) and events (Feel-
ing_1). We consider Motivation as a material role, so to be added to lower levels of the
taxonomy of mental objects.

The classification of qualities deals mainly with adjectives. This paper focuses on
the WordNet database of nouns; nevertheless our treatment of qualities foreshadows a
semantic organization of the database of adjectives too, which is a current desideratum
in the WordNet community (see [4], p. 66).

4.3 Occurences

Event_1, Phenomenon_1, State_1 and Act_1 are the Unique Beginners of those
branches of WordNet denoting occurrences. In particular, the hyponyms of State_1
seem to fit well with our state category, as the children of Process (a subordinate of
Phenomenon). For the time being, we restrict the mapping of our accomplishment
category to the homonymous synset of WordNet. Event_1 is too heterogeneous to be

12 Referring to Location, we find roles (There, Here, Home, Base, Whereabouts), instances

(Earth), and geometric concepts like Line, Point, etc.).
13 �The stuff of which an object consists�.
14 �The psychological result of perception, and learning and reasoning�.

180 Aldo Gangemi et al.

clearly partitioned in terms of our approach: to a great extent, however, its hyponyms
could be added to lower levels of the taxonomy of occurrences.

5 Conclusions

We are confident that foundational ontologies will eventually improve communication
among agents in most cases of information exchange: information retrieval and ex-
traction, semantic web services, software requirement analysis and unified modeling
process, control knowledge, etc. In fact, foundational ontologies can act as a reference
for agents to commit to certain theories, as a set of formal guidelines for domain mod-
eling, and as a tool for making heterogeneous ontologies interoperate or merge. Ac-
cording to the needs, an upper level ontology can be used either in a light version, for
computationally intensive applications, or as an off-the-shelf fully axiomatized theory,
to be consulted as a reference source for more sporadic meaning negotiation purposes.
That is why we intended DOLCE to be as detailed and rigorous as possible, and yet
we plan to release a light-weight version.

In the light of this vision, we have started using DOLCE (or one of its preliminary
versions) in several projects, either as a tool or a set of guidelines, with substantial
results in the creation of well-founded and useful ontologies (by the way, there is still
no benchmark or testbed for ontology quality, since there is small agreement on the
criteria to adopt, and we are suggesting some of them �).

The WordNet experiment is one of the research applications of DOLCE, already
presented in several contexts, which seems promising in bridging one of the multidis-
ciplinary gaps in ontological engineering, between the domain of lexical technologies,
and that of conceptual modelling.

6 Acknowledgements

We would like to thank Stefano Borgo for the fruitful discussions and comments on
the earlier version of this paper. This work was jointly supported by the Eureka Proj-
ect IKF (E!2235, Information and Knowledge Fusion), the IST Project 2001-33052
WonderWeb (Ontology Infrastructure for the Semantic Web) and the National project
TICCA (Cognitive Technologies for Communication and Cooperation with Artificial
Agents).

References

1. Campbell, K.: Abstract Particulars. Basil Blackwell, Oxford. (1990)
2. Casati, R. and Varzi, A. (eds.): Events. Dartmouth, Aldershots, USA (1996)
3. Castelfranchi, C.: Information Agents: The Social Nature of Information and the Role for

Trust. In: M. Klusch and F. Zambonelli (eds.), Cooperative Information Agents V, 5th
International Workshop, CIA 2001. Springer, Modena, Italy (2001) 208-210

 Sweetening Ontologies with DOLCE 181

4. Fellbaum, C. (ed.) WordNet - An Electronic Lexical Database. MIT Press (1998)
5. Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A.: Understanding top-level onto-

logical distinctions. In Proceedings of IJCAI-01 Workshop on Ontologies and Information
Sharing. Seattle, USA, AAAI Press (2001) 26-33

6. Gangemi, A., Guarino, N., and Oltramari, A.: Conceptual Analysis of Lexical Taxono-
mies: The Case of WordNet Top-Level. In: C. Welty and S. Barry (eds.), Formal Ontology
in Information Systems. Proceedings of FOIS2001. ACM Press (2001) 285-296

7. Gangemi, A., Pisanelli, D. M., and Steve, G.: Understanding Systematic Conceptual
Structures in Polysemous Medical Terms. In Proceedings of AMIA Annual Symposium
(2000)

8. Gärdenfors, P.: Conceptual Spaces: the Geometry of Thought. MIT Press, Cambridge,
Massachussetts (2000)

9. Gibson, J. J.: The Theory of Affordances. In: R. E. Shaw and J. Bransford (eds.), Perceiv-
ing, Acting and Knowing. LEA, Hillsdale (1977)

10. Goodman, N.: The Structure of Appearance. Harvard University Press, Cambridge MA.
(1951)

11. Guarino, N.: Some Ontological Principles for Designing Upper Level Lexical Resources.
In: A. Rubio, N. Gallardo, R. Castro and A. Tejada (eds.), Proceedings of First Interna-
tional Conference on Language Resources and Evaluation. ELRA - European Language
Resources Association, Granada, Spain (1998) 527-534

12. Guarino, N. and Welty, C.: A Formal Ontology of Properties. In: R. Dieng and O. Corby
(eds.), Knowledge Engineering and Knowledge Management: Methods, Models and
Tools. 12th International Conference, EKAW2000. Springer Verlag, France (2000) 97-
112

13. Guarino, N. and Welty, C.: Evaluating Ontological Decisions with OntoClean. Communi-
cations of the ACM, 45(2) (2002) 61-65

14. Guarino, N. and Welty, C.: Identity and subsumption. In: R. Green, C. Bean and S.
Myaeng (eds.), The Semantics of Relationships: an Interdisciplinary Perspective. Kluwer
(in press) (2002)

15. Loux, M. J.: Metaphysics, a Contemporary Introduction. Routledge (1998)
16. Lowe, E. J.: The possibility of metaphysics. Clarendon Press, Oxford (1998)
17. Masolo, C., Gangemi, A., Guarino, N., Oltramari, A., and Schneider, L.: WonderWeb

Deliverable D17: The WonderWeb Library of Foundational Ontologies. (2002)
18. Searle, J.: Intentionality. Cambridge University Press, Cambridge (1983)
19. Simons, P.: Parts: a Study in Ontology. Clarendon Press, Oxford (1987)
20. Simons, P.: How to Exist at a Time When You Have No Temporal Parts. The Monist,

83(3) (2000) 419-436
21. Strawson, P. F.: Individuals. An Essay in Descriptive Metaphysics. Routledge, London

and New York (1959)
22. Varzi: Foreword to the special issue on temporal parts. The Monist, 83(3) (2000)

Turning Lead into Gold?
Feeding a Formal Knowledge Base with

Informal Conceptual Knowledge

Udo Hahn1 and Stefan Schulz2

1 Text Knowledge Engineering Lab
Universität Freiburg, Werthmannplatz 1, D-79085 Freiburg

2 Abteilung Medizinische Informatik
Universitätsklinikum Freiburg, Stefan-Meier-Str. 26, D-79104 Freiburg

Abstract. We describe an ontology engineering methodology by which concep-
tual knowledge is extracted from an informal medical thesaurus (UMLS) and
automatically converted into a formal description logics system. Our approach
consists of four steps: concept definitions are automatically generated from the
UMLS source, integrity checking of taxonomic and partonomic hierarchies is
performed by the terminological classifier, cycles and inconsistencies are elimi-
nated, and incremental refinement of the evolving knowledge base is performed
by a domain expert. We report on experiments with a knowledge base composed
of 164,000 concepts and 76,000 relations.

1 Introduction

Unlike many other disciplines, medicine has a long standing tradition in assembling
and structuring its knowledge, e.g, disease taxonomies, medical procedures, anatomi-
cal terms, etc., in a wide variety of medical terminologies, thesauri and classification
systems. These efforts are typically restricted to the provision of broader and nar-
rower terms, related terms or (quasi-)synonymous terms. This is most evident in the
UMLS, the Unified Medical Language System [15, 14], an umbrella system which
covers more than 60 medical thesauri and classifications (e.g., MeSH, ICD, SNOMED,
Digital Anatomist). Two components of the UMLS are of special interest for knowledge
engineering, viz.

1. The UMLS SN (Semantic Network) forms the upper ontology and consists of 134
semantic types linked by 54 types of semantic relations, which makes a total of
7,473 edges,

2. The UMLS Metathesaurus contains 776,940 concepts in its 2002 version, each of
them being assigned to one or more types of the UMLS SN. These concepts are
tightly linked by the semantic relations given by the UMLS SN. There is a total of
10,147,419 semantic links between Metathesaurus concepts, most of them inherited
from the sources, some added by the UMLS developers. The vast majority of these
links introduce thesaurus-like broader/narrower relationships.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 182–196, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Turning Lead into Gold? 183

Both, the UMLS SN and the Metathesaurus, form a huge semantic network. Its se-
mantics is shallow and entirely intuitive, which is due to the fact that their usage was
primarily intended for humans as a backbone for various forms of health-related knowl-
edge management. Given the size, the evolutionary diversity and inherent heterogeneity
of the UMLS, there is no surprise that the lack of a formal semantic foundation leads
to inconsistencies, circular definitions, etc. [2]. This may not cause utterly severe prob-
lems when humans are in the loop and its use is limited to disease or procedure encod-
ing, accountancy or document retrieval tasks. However, anticipating its use for more
knowledge-intensive applications such as natural language understanding of medical
narratives [7] those shortcomings might lead to an impasse.

As a consequence, formal models for dealing with medical knowledge have been
proposed, using representation mechanisms based on conceptual graphs, semantic net-
works or description logics [3, 13, 19, 29, 5]. Not surprisingly, there is a price to be paid
for more expressiveness and formal rigor, viz. increasing modeling efforts and, hence,
increasing maintenance costs [17]. Operational systems making full use of this rigid ap-
proach, especially those which employ high-end knowledge representation languages,
are usually restricted to rather small subdomains. The most comprehensive of these
sources we know of is the GRAIL-encoded GALEN knowledge base which covers up
to 9,800 concepts [19]. The limited coverage then hampers their routine usage, an issue
which is always highly rewarded in the medical informatics community.

The knowledge bases developed within the framework of the above-mentioned ter-
minological systems have almost all been designed from scratch – without making sys-
tematic use of the large body of knowledge contained in those medical terminologies.
An intriguing approach would be to join the massive coverage offered by informal
medical terminologies with the high level of expressiveness and reasoning capabilities
supported by rigid knowledge representation systems in order to develop formally solid
medical knowledge bases on a larger scale. In the paper, we describe such a knowledge
engineering methodology. The resulting medical ontology will form the domain knowl-
edge backbone of MEDSYNDIKATE, a system for the automatic acquisition of factual
and evaluative knowledge from medical finding reports [7, 6].

2 Reasoning Along Part-Whole Hierarchies

Medical ontologies are typically organized around taxonomic (is-a relation) and parto-
nomic (part-of relation) knowledge. Hence, medical knowledge representation efforts
have to take account of both hierarchy types and the reasoning patterns they imply.
Partonomic knowledge has been an issue within diverse areas ranging from philosophy
(mereology), data modeling for database systems and object-oriented programming, to
knowledge representation proper in the field of artificial intelligence. Major strands of
this work are discussed by Artale et al. [1] under the heading of object-centered repre-
sentation approaches. This also includes the description logic (DL) paradigm to which
we subscribe in our work, too.

From our application domain, the need arises to have formally solid inference mech-
anisms for taxonomic (generalization hierarchies), as well as partonomic reasoning
(part-whole hierarchies) available within a uniform representation model. We also re-

184 Udo Hahn and Stefan Schulz

quire an inference engine which performs this style of advanced reasoning on large
data sets (� 10,000 items). Hence, we consider KL-ONE-type descriptions logics [31],
at the formal representation level, and LOOM’s classification-based inference machine
[11, 12], at the system level, the most convenient match of our requirements and the
current state of the art in terminological reasoning.

Unlike generalization-based reasoning in concept taxonomies, no fully conclusive
mechanism exists up to now for reasoning along part-whole hierarchies. In the descrip-
tion logics community several language extensions have been proposed which provide
special constructors for part-whole reasoning [19, 10]. This seems a reasonable way to
proceed as long as the transitivity property of a relation can be assumed, in general.
In the medical [8] as well as commonsense domains [4, 30], however, various excep-
tions exist such that the transitivity of part-of relations cannot be granted, in general.
Hence, both the expression of regular transitive use, as well as exception handling for
nontransitive part-of relations have to be taken into consideration. Even a more press-
ing issue is the phenomenon of the propagation of properties across part-of hierarchies,
often referred to as ‘inheritance across transitive roles’ (e.g., inflammation-of ◦ part-of
→ inflammation-of) [18]. Especially with biomedical knowledge this reasoning pattern
cannot be generalized.

Motivated by previous informal approaches [22, 24], we formalized a model of
partonomic reasoning [8] that meets the above requirements and also does not exceed
the expressiveness of the well-understood, parsimonious concept language ALC [31].1

Our proposal is centered around a particular data structure for partonomic reasoning,
so-called SEP triplets (cf. Figure 1). They define a characteristic pattern of is-a hierar-
chies which support the emulation of inferences typical of transitive part-of relations. In
this formalism, the relation anatomical-part-of describes the partitive relation between
physical parts of an organism.

DE

DS

DPpart-of

is-
a is-ais-
a

CE

CS

CPpart-of

is-
a is-ais-
a

is-a

anatomical-

anatomical- HE

HS

HPpart-of

is-
a is-ais-
a

FE

FS

FPpart-of

is-
a is-ais-
a

is-a

anatomical-

anatomical-
Hand

Finger

structure

partentity

Fig. 1. SEP Triplets: Partitive Relations within Taxonomies

A triplet consists, first of all, of a composite ‘structure’ concept, the so-called S-
node (e.g., Hand-Structure, HS). Each Structure concept subsumes directly an anatom-
ical Entity concept, on the one hand, and a common subsumer of anything that is a part

1 ALC allows for the construction of hierarchies of concepts and relations, where � denotes
subsumption and

.= definitional equivalence. Existential (∃) and universal (∀) quantification,
negation (¬), disjunction (�) and conjunction () are supported. Role filler constraints (e.g.,
typing by C) are linked to the relation name R by a dot, ∃R.C.

Turning Lead into Gold? 185

of that entity concept, on the other hand. These two concepts are called E-node and
P-node, e.g., Hand (HE) and Hand-Part (HP), respectively.

Whereas E-nodes denote the anatomical concepts proper to be modelled in our do-
main, S-nodes and P-nodes constitute representational artifacts required for the formal
reconstruction of systematic patterns of partonomic reasoning. More precisely, a P-
node is the common subsumer of those concepts that have their role anatomical-part-of
filled by the corresponding E-node concept, as an existential condition. For example,
Hand-Part subsumes those concepts all instances of which have a Hand as a necessary
whole. As an additional constraint, E-nodes and P-nodes can be modelled as mutually
disjoint. This is a useful assumption for most concepts standing for singleton objects,
where parts and wholes cannot be of the same type (a red blood cell cannot be part of
yet another red blood cell). On the contrary, masses and collections can have parts and
wholes of the same type, e.g., a tissue can be part of another tissue. A reconstruction of
some basic anatomical relations in terms of SEP triplets is illustrated in Figure 2.

Partonomic Hierarchy

is-a

NS NP

NE
pa

rt-
of

is-a

is-a

FNS FNP

FNE

pa
rt-

of
is-a

is-a

TNS TNP

TNE

pa
rt-

of

is-a

is-a

FS FP

FE

pa
rt-

of

is-a

is-a

TS TP

TE

pa
rt-

of

is-a

is-a

HS HP

HE

pa
rt-

of

is-a

Hand

Finger

Nail

Thumb-
nail

Finger-
nail

ThumbTa
xo

no
m

ic
 H

ie
ra

rc
hy

Fig. 2. SEP Triplet Model of a Partonomic Hierarchy

The reconstruction of the relation anatomical-part-of by taxonomic reasoning pro-
ceeds as follows. Let us assume that CE and DE denote E-nodes, CS and DS denote
the S-nodes that subsume CE and DE , respectively, and CP and DP denote the P-nodes
related to CE and DE , respectively, via the role anatomical-part-of (cf. Figure 1). These
conventions can be captured by the following terminological expressions:

CE �CS � DP � DS (1)

DE � DS (2)

The P-node is defined as follows (here with the disjointness constraint between DE

and DP, i.e., no instance of D can be anatomical-part-of any other instance of D):

DP
.= DS �¬DE �∃anatomical-part-o f .DE (3)

186 Udo Hahn and Stefan Schulz

Since CE is subsumed by DP (according to (1)), we infer that the relation anatomical-
part-of holds between CE and DE , too:

CE � ∃anatomical-part-o f .DE (4)

An extension of this encoding scheme which allows additional reasoning about has-
part in a similar way, is proposed in [26], though it has not been considered in the
knowledge base described in this paper.

The encoding of concept hierarchies in terms of SEP triplets allows the knowledge
engineer to switch the transitivity property of part-whole relations off and on, dependent
on whether the E-node or the S-node, respectively, is addressed as the target concept
for a conceptual relation. In the first case, the propagation of roles across part-whole
hierarchies is disabled, in the second case it is enabled. As an example (cf. Figure 3),
Enteritis is defined as has-location IntestineE . The range of the relation has-location is
restricted to the E-node of Intestine. This precludes, e.g., the classification of Appendici-
tis as Enteritis though the Appendix is related to the Intestine via an anatomical-part-
of relation. Glomerulonephritis (has-location GlomerulumS), however, is classified as
Nephritis (has-location KidneyS), since the Glomerulum is an anatomical-part-of the
Kidney. In the same way, Perforation-of-Appendix is classified as Intestinal-Perforation
(cf. Hahn et al. [8] for an in-depth analysis of these phenomena).

IE

IS

IPpart-of

is-
a is-a

Intestineis-
a

CE

CS

CPpart-of

is-
a is-a

Colonis-
a

AE

AS

APpart-of

is-
a is-a

Appendixis-
a

is-a

is-a

Appendicitis

Enteritis

Intestinal-
Perforation

Perforation-of-
Appendix

has-location

has-location

has-location

has-location

is-a

no
is-a
relationship

KE

KS

KPpart-of

is-
a is-a

Kidneyis-
a

GE

GS

GPpart-of

is-
a is-a

Glomerulumis-
a

is-a

is-a

Glomerulo-
nephritis

Nephritis has-location

has-location

anatomical-

anatomical-

anatomical-

anatomical-

anatomical-

Fig. 3. Enabling/Disabling Transitivity in a SEP-Encoded Partonomy

Turning Lead into Gold? 187

3 Knowledge Import and Refinement

Our goal is to extract conceptual knowledge from two major subdomains of the UMLS,
viz. anatomy and pathology, in order to construct a formally sound knowledge base
using a terminological knowledge representation language. This task will be divided
into four steps: (1) automatic generation of terminological expressions, (2) automatic
consistency checking by a terminological classifier, (3) manual restitution of formal
consistency in case of inconsistencies, and, finally, (4) manual curation and refinement
of the formal representation structures. These four steps are illustrated by the workflow
diagram depicted in Figure 4.

Step 1: Automatic Generation of Terminological Expressions. Sources for con-
cepts and relations were the 1999 release of the UMLS SN and the UMLS metathe-
saurus. Figure 5 exhibits the semantic links between two UMLS CUIs (concept unique
identifier),2 These tables, available as ASCII files, were imported into a Microsoft Ac-
cess relational database and manipulated using SQL embedded in the VBA program-
ming language. For each CUI in the mrrel subset its alphanumeric code was substituted
by the English preferred term.

After manual remodeling of the top-level concepts of the UMLS SN (in variable
depth, according to the target domain) we extracted, from a total of 85,899 concepts,
38,059 anatomy and 50,087 pathology concepts from the metathesaurus. The criterion
for the inclusion into one of these sets is the assignment to predefined semantic types.
Also, 2,247 concepts were found to be included in both sets, anatomy and pathology.
Since we wanted to keep the two subdomains strictly disjoint, we maintained these
overlapping concepts duplicated, and prefixed all concepts by ana- or pat- according to
their respective subdomain. This can be justified by the observation that these hybrid
concepts exhibit, indeed, multiple meanings. For instance, tumor has the meaning of a
malignant disease on the one hand, and of an anatomical structure on the other hand.

As target structures for the anatomy domain we chose SEP triplets. These are ex-
pressed in the terminological language LOOM which we had previously extended by a
special deftriplet macro (cf. Table 1 for an example).

Only UMLS-supplied part-of, has-part and is-a relation attributes were considered
for the construction of taxonomic and partonomic hierarchies (cf. Figure 4). Hence,
for each anatomy concept one SEP triplet was created. The result is a mixed is-a and
part-whole hierarchy a straightforward example of which is depicted in Figure 2.

For the pathology domain, we treated CHD (child) and RN (narrower relation) from
the UMLS as indicating taxonomic (is-a) links. No part-whole relations were consid-
ered, since this category does not apply to the pathology domain. Furthermore, for all
anatomy concepts contained in the definitional statements of pathology concepts the
S-node is the default concept to which they are linked, thus enabling the propagation of
roles across the part-whole hierarchy.

2 As a convention in UMLS, any two CUIs must be connected by at least a shallow relation (in
Figure 5, CHilD relations in the column REL are assumed between CUIs). Shallow relations
may be refined in the column RELA, if a thesaurus is available which contains more specific
information. Some CUIs are linked either by part-of or is-a. In any case, the source thesaurus
for the relations and the CUIs involved is specified in the columns X and Y (e.g., MeSH 1999,
SNOMED International 1998).

188 Udo Hahn and Stefan Schulz

Step 1 Step 2 Step 3 Step 4
UMLS relation number

of
links

Automatic generation of
Loom definitions,
augmented by P-Loom
language elements
;;; = comment line

Submission to Loom
classifier.
Validation for formal
consistency by Loom

Manual restitution of
formal consistency

Manual rectification and
refinement of the resulting
knowledge base

sibling_of 267.218 ;;; SIB add negations in order to
express taxonomic or partitive
disjointness

child_of 59.808 ;;; CHDRN

narrower_term 24.223 ;;; CHDRN

isa 9.755 :is-primitive check for definitional
cycles

remove taxonomic
parent concepts

substitute of primitive links by
non-primitive ones where
possible

location_of 4.803 ;;; LOCATION_OF include related concepts into
:has-part clause where plausible

has_location 4.803 ;;; HAS_LOCATION include related concepts into
:part-of clause, where plausible

has_part 4.321

has_conceptual_part 126

part_of 4.321

conceptual_part_of 126

parent 59.808 ;;; PARRB
broader_term 24.223 ;;; PARRB
inverse_isa 9,755
associated_with 14
mapped_from 2.643
other_relation 10.908
qualified_by 1.864
allowed_
qualifier

1.864

mapped_to 2643
<other named relations> 11.886 (:some x) check for inherited

constraints
remove constraints remove or add constraints

sibling_of 457.542 ;;; SIB add negations in order to
express taxonomic disjointness

child_of 72.426
narrower_term 26.972
isa 3.635
inverse_isa 3.635
associated_with 13.902
mapped_to 15.024
mapped_from 15.024
part_of 1
has_part 1
parent 72.426
broader_term 28.972
other_relation 25.796
qualified_by 6.255
allowed_qualifier 6.255
<other named relations> 4.162 (:some x) check for inherited

constraints
remove constraints remove or add constraints

CUIpat = CUIana 2.247 (:some
 has_anatomic_correlate)

plausibility check of concept
"duplication" (assignment to
both domains)

<missing> <do nothing> add pathology-anatomy links
associated_with 2.314 (:some

 associated_with
 <anatomy_concept>_S)

has_location 9,230 (:some
 has_location
 <anatomy_concept>_S)

<other> <do nothing>

:part-of

1. check for partonomic
cycles
2. check for disjointness
between E and P node

1. remove partonomic
or taxonomic parent
concepts
2. redefine triplet as
single concept

check for plausibility and
completeness

<do nothing>

Pathology Concepts Linked to Pathology Concepts

render links complete,
link to E-node instead of S-node
when role propagation has to be
disabled

check for consistency

substitute primitive links by non-
primitive ones whenever
possible

Pathology Concepts Linked to Anatomy Concepts

:is-primitive
check for definitional
cycles

remove parent
concepts

<do nothing>

Anatomy Concepts Linked to Anatomy Concepts

include related concepts into :is-
primitive or :part-of clause where
plausible

:has-part

include related concepts into
:has-part clause where plausible

check whether this part is
mandatory (under "real-
anatomy" assumption)

Fig. 4. Workflow Diagram for the Construction of a LOOM Knowledge Base from the UMLS

As a fundamental assumption, all roles generated in this process were considered
as being existentially quantified. This means that any relation r (part-of, has-location,
etc.) which holds between two concepts, A and B, is mapped to a role R.B which is a
necessary condition in the definition of the concept A. All conceptual constraints for a
concept definition are mapped to a conjunction of constraints.

Turning Lead into Gold? 189

CUI1 REL CUI2 RELA x y
C0005847 CHD C0014261 part_of MSH99 MSH99
C0005847 CHD C0014261 CSP98 CSP98
C0005847 CHD C0025962 isa MSH99 MSH99
C0005847 CHD C0026844 part_of MSH99 MSH99
C0005847 CHD C0026844 CSP98 CSP98
C0005847 CHD C0034052 SNMI98 SNMI98
C0005847 CHD C0035330 isa MSH99 MSH99
C0005847 CHD C0042366 part_of MSH99 MSH99
C0005847 CHD C0042367 part_of MSH99 MSH99
C0005847 CHD C0042367 SNM2 SNM2
C0005847 CHD C0042449 isa MSH99 MSH99

Fig. 5. Semantic Relations in the UMLS Metathesaurus

In both subdomains, shallow relations such as the extremely frequent sibling rela-
tion (SIB) were included as comments into the code to provide heuristic guidance for
the subsequent manual refinement phase.

Step 2: Automatic Consistency Checking by the LOOM Classifier. The import of
UMLS anatomy concepts resulted in 38,059 deftriplet expressions for anatomical con-
cepts and 50,087 defconcept expressions for pathological concepts. Each deftriplet was
expanded into three defconcept (S-, E-, and P-nodes), and two defrelation (anatomical-
part-of-x, inv-anatomical-part-of-x)expressions, summing up to 114,177 concepts. This
yielded (together with the concepts from the UMLS SN) a total of 240,764 definitory
LOOM expressions.

From 38,059 anatomy triplets, 1,219 deftriplet statements contained a :has-part
clause followed by a list of a variable number of triplets, with more than one argu-
ment in 823 cases (average cardinality: 3.3). 4,043 deftriplet statements contained a
:part-of clause, only in 332 cases followed by more than one argument (average car-
dinality: 1.1). The resulting knowledge base was then submitted to the terminological
classifier and checked for terminological cycles and consistency. In the anatomy sub-
domain, one terminological cycle and 2,328 inconsistent concepts were found, in the
pathology subdomain 355 terminological cycles though not a single inconsistent con-
cept were determined (cf. Table 2).

Step 3: Manual Restitution of Consistency. The inconsistencies in the anatomy
part of the knowledge base identified by the classifier could all be traced back to the si-
multaneous linkage of two triplets by both is-a and part-of links, an encoding that raises

(deftriplet Heart
:is-primitive Hollow-Viscus
:has-part (:p-and

Fibrous-Skeleton-Of-Heart
Wall-Of-Heart
Cavity-Of-Heart
Left-Side-Of-Heart
Right-Side-Of-Heart
Aortic-Valve
Pulmonary-valve))

Table 1. Generated Triplets in LOOM Format

190 Udo Hahn and Stefan Schulz

Anatomy Pathology

Triplets 38,059 —
defconcept
statements 114,177 50,087
cycles 1 355
inconsistencies 2,328 0

Table 2. Classification Results

a conflict due to the disjointness required for corresponding P- and E-nodes we used as
a default (cf. expression (3)). In most of these cases the affected parents belonged to a
class of concepts that obviously cannot be appropriately modeled as SEP triplets, e.g.,
Subdivision-Of-Ascending-Aorta or Organ-Part. The meaning of each of these concepts
almost paraphrases that of a P-node, so that the violation of the SEP-internal disjoint-
ness condition could be accounted for by substituting the triplets involved with simple
LOOM concepts, by matching them with already existing P-nodes, or by disabling is-a
or part-of links.

In the pathology part of the knowledge base, we expected a large number of termi-
nological cycles to occur, simply as a consequence of interpreting the extremely weak
narrower term and child relations in terms of taxonomic subsumption (is-a). Bearing in
mind the size of the knowledge base, we consider 355 cycles a tolerable number. Those
cycles were primarily due to very similar concepts, e.g., Arteriosclerosis vs. Atheroscle-
rosis, Amaurosis vs. Blindness, and residual categories (“other”, “NOS” = not other-
wise specified). These were directly inherited from the source terminologies and are
notoriously difficult to interpret out of their definitional context, e.g., Other-Malignant-
Neoplasm-of-Skin vs. Malignant-Neoplasm-of-Skin-NOS. In many cases the decision
which relations could be maintained and which relations had to be eliminated was taken
arbitrarily, since in biomedical terminology often no consensus can be achieved on the
exact meaning of terms. As the result of the analysis we obtained a negative list which
consisted of 630 concept pairs. In a subsequent extraction cycle we incorporated this
list in the automated construction of the LOOM concept definitions and, with these new
constraints, a fully consistent knowledge base was generated.

Step 4: Manual Rectification and Refinement of the Knowledge Base. To set up
this high-volume knowledge base including the aforementioned working steps required
three months of work for a single person, in total. The fourth step – when performed for
the whole knowledge base – is very time-consuming and requires broad and in-depth
medical expertise. Random samples from both subdomains were analyzed by the second
author, a domain expert. The data we here supply refer to the analysis of two random
samples of each 100 anatomy and 100 pathology concepts. This took one person about a
single month. From the experience we gained in the anatomy and pathology subdomains
so far, the following workflow can be derived:

– Checking the correctness of the taxonomic and partonomic hierarchies. Taxonomic
and partonomic links are manually added or removed. Primitive subsumption is
substituted by non-primitive one whenever possible. This is a crucial point, because
the automatically generated hierarchies contain only information about the parent
concepts and necessary conditions. As an example, the automatically generated

Turning Lead into Gold? 191

definition of Dermatitis includes the information that it is an Inflammation, and
that the role has-location must be filled by the concept Skin. An Inflammation that
has-location Skin, however, cannot automatically be classified as Dermatitis.
Results: In the anatomy sample, only 76 concepts out of 100 could be unequiv-
ocally classified as belonging to ‘canonical’ anatomy. (The remainder, e.g., ana-
Phalanx-of-Supernumerary-Digit-of-Hand, referring to pathological anatomy was
immediately excluded from analysis.) Besides the assignment to the UMLS seman-
tic types, only 27 (direct) taxonomic links were found. 83 UMLS relations (mostly
child or narrower relations) were manually upgraded to taxonomic links. 12 (di-
rect) part-of and 19 has-part relations were found. Four part-of relations and one
has-part relation had to be removed, since we considered them as implausible. 51
UMLS relations (mostly child or narrower relations) were manually upgraded to
part-of relations, and 94 UMLS relations (mostly parent or broader relations) were
upgraded to has-part relations. After this workup and upgrade of shallow UMLS
relations to semantically more specific relations, the sample was checked for com-
pleteness again. As a result, 14 is-a and 37 part-of relations were still considered
missing.
In the pathology sample, the assignment to the pathology subdomain was consid-
ered plausible for 99 of 100 concepts. A total of 15 false is-a relations was identified
in 12 concept definitions. 24 is-a relations were found to be missing.

– Check of the :has-part arguments assuming ‘real anatomy’. In the UMLS sources
part-of and has-part relations are considered as symmetric. According to our trans-
formation rules, the attachment of a role has-anatomical-part to an E-node BE ,
with its range restricted to AE , implies the existence of a concept A for the defini-
tion of a concept B. On the other hand, the classification of AE as being subsumed
by the P-node BP, the latter being defined via the role anatomical-part-of restricted
to BE , implies the existence of BE given the existence of AE . These constraints do
not always conform to ‘real’ anatomy, i.e., anatomical concepts that may exhibit
pathological modifications. Figure 6 (left) sketches a concept A that is necessarily
anatomical-part-of a concept B, but whose existence is not required for the def-
inition of B. This is typical of the results of surgical interventions, e.g., a large
intestine without an appendix, or an oral cavity without teeth, etc.

BE

BS

BPpart-of

is-
a is-ais-
a

AE

AS

APpart-of

is-
a is-ais-
a

is-a

anatomical-

anatomical- BE

BS

BPpart-of

is-
a is-ais-
a

AE

AS

APpart-of

is-
a is-ais-
a

anatomical-

anatomical-

has-anatomical-part

Fig. 6. Patterns for Part-whole Reasoning Using SEP triplets

Results: All 112 has-part relations obtained by the automatic import and the man-
ual workup of our sample were checked. The analysis revealed that more than half

192 Udo Hahn and Stefan Schulz

of them (62) should be eliminated in order not to obviate a coherent classifica-
tion of pathologically modified anatomical objects. For instance, maintaining has-
anatomical-part.Thumb as an existential restriction in the definition of Hand would
disallow to classify as Hand all those that have no thumb due to congenital or ac-
quired abnormalities.3 As an example, most instances of Ileum do not contain a
Meckel’s Diverticulum, whereas all instances of Meckel ’s Diverticulum are neces-
sarily anatomical-part-of Ileum. Many surgical interventions that remove anatomi-
cal structures (appendix, gallbladder, etc.), produce similar patterns. In our formal-
ism, this corresponds to a single taxonomic link between an S-node and a P-node
(cf. Figure 6, left part). The contrary is also possible (cf. Figure 6, right part): the
definition of AE does not imply that the role anatomical-part-of be filled by BE , but
BE does imply that the inverse role be filled by AE . As an example, a Lymph-node
necessarily contains Lymph-follicles, but there exist Lymph-follicles that are not
part of a Lymph-node. This pattern is typical of the mereological relation between
macroscopic (countable) objects, such as organs, and multiple uniform microscopic
objects.

– Analysis of the sibling relations and defining concepts as being disjoint. In UMLS,
the SIB relation links concepts that share the same parent in a taxonomic or parto-
nomic hierarchy. Pairs of sibling concepts may have common descendants or not.
If not, they constitute the root of two disjoint subtrees. In a taxonomic hierarchy,
this means that one concept implies the negation of the other (e.g., a benignant
tumor cannot be a malignant one, et vice versa). In a partitive hierarchy, this can
be interpreted as spatial disjointness, viz. one concept does not spatially overlap
with another one. As an example, Esophagus and Duodenum are spatially disjoint,
whereas Stomach and Duodenum are not (they share a common transition struc-
ture, called Pylorus), such as all neighbor structures that have a surface or region in
common. Spatial disjointness can be modeled so that the definition of the S-node
of the concept A implies the negation of the S-node of the concept B [27].
Results: We found on the average 6.8 siblings per concept in the anatomy domain,
8.8 in the pathology domain. So far, the analysis of sibling relations has been per-
formed only for the anatomy domain. From a total of 521 sibling relations, 9 were
identified as is-a, 14 as part-of, and 17 as has-part, whereas 404 referred to topo-
logically disconnected concepts.

– Completion and modification of anatomy–pathology relations. Surprisingly, only
very few pathology concepts contained an explicit reference to a corresponding
anatomy concept. Therefore, these relations have to be added by a domain expert.
In each case, the decision must be made whether the E-node or the S-node has to be
addressed as the target concept for modification such that the propagation of roles
across part-whole hierarchies is disabled or enabled.
Results: In the sample we found 522 anatomy-pathology relations, from which 358
(i.e., 69%!) were judged incorrect by the domain experts. In 36 cases an adequate

3 In Table 1 the concepts marked by italics, viz. Aortic-valve and Pulmonary-valve should be
eliminated from the :has-part list, because the anatomical entities they denote may be missing
in certain cases as a result of congenital malformations, inflammatory processes or surgical
interventions.

Turning Lead into Gold? 193

anatomy-pathology relation was missing. All 164 has-location roles were analyzed
as to whether they were to be filled by an S-node or an E-node of an anatomical
triplet. In 153 cases, the S-node (which allows propagation across the part-whole
hierarchy) was considered to be adequate, in 11 cases the E-node was preferred. The
analysis of the 100 pathology concepts revealed that only 17 were to be linked with
an anatomy concept. In 15 cases, the default linkage to the S-node was considered
to be correct, in one case the linkage to the E-node was preferred, in another case
the linkage was considered to be false.
The high number of implausible constraints points to the lightweight semantics of
has-location links in the UMLS sources. While we interpreted them in terms of a
conjunction for the import routine, a disjunctive meaning seems to prevail implic-
itly in many definitions of top-level concepts such as Tuberculosis. In this exam-
ple, we find all anatomical concepts that can be affected by this disease linked by
has-location. All these constraints (e.g., has-location Urinary-Tract) are inherited
to subconcepts such as Tuberculosis-of-Bronchus. A thorough analysis of the top-
level pathology concepts is necessary, and conjunctions of constraints will have to
be substituted by disjunctions where necessary.

4 Discussion and Conclusions

In medicine, domain knowledge has to be supplied on a larger scale. Instead of devel-
oping sophisticated medical knowledge bases from scratch, we here propose a ‘conser-
vative’ approach — reuse existing large-scale resources, but refine the data from these
resources so that advanced representational requirements imposed by more expressive
knowledge representation languages are met. The resulting knowledge bases can then
be used for sophisticated applications requiring formally sound medical reasoning such
as text understanding.

The benefits and problems of converting conceptual knowledge from semantically
weak specifications to a rigorous knowledge representation formalism have been de-
scribed by Pisanelli et al. [16]. They extracted knowledge from the UMLS semantic
network, as well as from parts of the metathesaurus and converted it into a description
logics system. Spackman & Campbell [28] describe how the SNOMED nomenclature
evolves from a multi-axial coding system into a formally founded ontology. Their gen-
eral goal is to avoid ambiguous or semantically invalid representations of composite
concepts. However, both approaches do not provide a special reasoning mechanism for
partonomic relations.

Within the formal framework of GALEN, a fragment of the Read Thesaurus was
translated into Grail, a knowledge representation system also based on description log-
ics [20]. In a cross-validation study it was checked, on the one hand, whether the def-
initions contained in the Read Thesaurus were logically consistent and, on the other
hand, whether the Grail domain model was rich enough to encode them. Although
Grail comes with a special-purpose reasoning mechanism dedicated to partonomies,
the adaptation was limited to simple generic hierarchies as only these structure the
Read Thesaurus.

The developers of VOXEL-MAN [23], a multimedia tutoring systems for anatomy,
and of the Digital Anatomist (UWDA), an anatomical semantic network [21], have

194 Udo Hahn and Stefan Schulz

both emphasized partitive hierarchies though at an informal level. Whereas in VOXEL-
MAN a fine-grained ontology of partonomic relations is sketched that accounts for var-
ious part-whole relations found in the anatomy domain, the UWDA developers restrict
themselves to a small set of relations leading to a precise separation between parto-
nomic and taxonomic hierarchies. They excel with a high granularity of description and
a broad coverage.

Our approach tries to combine the broad coverage and fine-grained concept de-
scriptions of the UWDA with the formal rigor of description logics. Additionally, we
enhance the imported knowledge with part-whole specific reasoning capabilities in-
dispensable in the medical domain, though this has already been described as a hard
problem for terminological languages [9].

It remains to be seen whether conservative structural extensions of a stable language
platform are able to carry over to the many varieties of partonomic reasoning and dif-
ferent part-whole relations, or whether newly designed operators or other fundamental
language extensions are needed. In the medical domain, at least, where the restriction
to one subrelation of part-of, viz. anatomical-part-of, is sufficient, a relatively simple
“data structure” extension like the SEP triplets yields already adequate results, without
the necessity to resort to profound extensions of the terminological language. We have
evidence that the triplet mechanism we here propose can be straightforwardly extended
to cover mereotopological and (limited) spatial reasoning, as well [27, 25].

Our study shows that it is relatively straightforward to restitute consistency of the
UMLS knowledge base, but it is nearly impossible to reach a high degree of both ade-
quacy and completeness due to the huge amount of manual work required. Restituting
adequacy should, however, not be primarily taken as eliminating obvious ‘errors’ con-
tained in the UMLS sources, but rather as making choices between alternative concep-
tualizations of medical term whose meaning differs slightly due to the heterogeneity of
the knowledge sources. Another aspect is the need of rectification of concept definitions
which have become incorrect due to rigid axiomatic assumptions driving the automated
export procedure (e.g., the conjunctive reading of defining attributes), which is not true
in all cases, and, thus, necessarily requires individual manual specification.

A realistic scenario may consist in the manual elimination of obviously inadequate
statements, followed by the completion of the concept definitions focused on a specific
subdomain of interest. In these repetitive manual refinement cycles we found the im-
plications of using the terminological classifier, the inference engine which computes
subsumption relations, of utmost importance and of outstanding heuristic value. Hence,
the knowledge refinement cycles are truly semi-automatic, fed by medical expertise on
the side of the human knowledge engineer, but also driven by the reasoning system
which makes explicit the consequences of (im)proper concept definitions.

References

[1] Alessandro Artale, Enrico Franconi, Nicola Guarino, and Luca Pazzi. Part-whole relations
in object-centered systems: An overview. Data & Knowledge Engineering, 20(3):347–383,
1996.

[2] James J. Cimino. Distributed cognition and knowledge-based controlled medical termi-
nologies. Artificial Intelligence in Medicine, 12(1):153–168, 1998.

Turning Lead into Gold? 195

[3] James J. Cimino, Paul D. Clayton, George Hripsack, and Stephen B. Johnson. Knowledge-
based approaches to the maintenance of a large controlled medical terminology. Journal of
the American Medical Informatics Association, 1(1):35–50, 1994.

[4] D. Alan Cruse. On the transitivity of the part-whole relation. Journal of Linguistics, 15:29–
38, 1979.

[5] Aldo Gangemi, Domenico M. Pisanelli, and Geri Steve. An overview of the ONION project:
Applying ontologies to the integration of medical terminologies. Data & Knowledge Engi-
neering, 31(2):183–220, 1999.

[6] Udo Hahn, Martin Romacker, and Stefan Schulz. Discourse structures in medical reports
– watch out! The generation of referentially coherent and valid text knowledge bases in
the MEDSYNDIKATE system. International Journal of Medical Informatics, 53(1):1–28,
1999.

[7] Udo Hahn, Martin Romacker, and Stefan Schulz. How knowledge drives understanding:
Matching medical ontologies with the needs of medical language processing. Artificial
Intelligence in Medicine, 15(1):25–51, 1999.

[8] Udo Hahn, Stefan Schulz, and Martin Romacker. Part-whole reasoning: A case study in
medical ontology engineering. IEEE Intelligent Systems & Their Applications, 14(5):59–
67, 1999.

[9] Ira J. Haimowitz, Ramesh S. Patil, and Peter Szolovits. Representing medical knowledge in
a terminological language is difficult. In R. A. Greenes, editor, SCAMC’88 – Proceedings
of the 12th Annual Symposium on Computer Applications in Medical Care, pages 101–105.
Washington, D.C.: IEEE Computer Society Press, 1988.

[10] Ian Horrocks and Ulrike Sattler. A description logic with transitive and inverse roles and
role hierarchies. Journal of Logic and Computation, 9(3):385–410, 1999.

[11] Robert MacGregor and Raymond Bates. The LOOM knowledge representation language.
Technical Report RS-87-188, Information Sciences Institute, University of Southern Cali-
fornia, 1987.

[12] Robert M. MacGregor. A description classifier for the predicate calculus. In AAAI’94 –
Proceedings of the 12th National Conference on Artificial Intelligence, volume 1, pages
213–220. Seattle, WA, USA, July 31 - August 4, 1994. Menlo Park, CA: AAAI Press &
MIT Press, 1994.

[13] Eric Mays, Robert Weida, Robert Dionne, Meir Laker, Brian White, Chihong Liang, and
Frank J. Oles. Scalable and expressive medical terminologies. In J. J. Cimino, editor,
AMIA’96 – Proceedings of the 1996 AMIA Annual Fall Symposium (formerly SCAMC).
Beyond the Superhighway: Exploiting the Internet with Medical Informatics, pages 259–
263. Washington, D.C., October 26-30, 1996. Philadelphia, PA: Hanley & Belfus, 1996.

[14] Alexa T. McCray. The nature of lexical knowledge. Methods of Information in Medicine,
37(4/5):353–360, 1998.

[15] Alexa T. McCray and Stuart J. Nelson. The representation of meaning in the UMLS. Meth-
ods of Information in Medicine, 34(1/2):193–201, 1995.

[16] Domenico M. Pisanelli, Aldo Gangemi, and Geri Steve. An ontological analysis of the
UMLS metathesaurus. In C. G. Chute, editor, AMIA’98 – Proceedings of the 1998 AMIA
Annual Fall Symposium. A Paradigm Shift in Health Care Information Systems: Clinical
Infrastructures for the 21st Century, pages 810–814. Orlando, FL, November 7-11, 1998.
Philadelphia, PA: Hanley & Belfus, 1998.

[17] Alan L. Rector. Clinical terminology: Why is it so hard? Methods of Information in
Medicine, 38:147–157, 1999.

[18] Alan L. Rector. Analysis of propagation along transitive roles: Formalisation of the galen
experience with medical ontologies. In I. Horrocks and Tessaris S., editors, DL02 - 2002 In-
ternational Workshop on Description Logics, Toulouse, France, 2002. Published as CEUR
Workshop Proceedings (CEUR-WS.org) via http://CEUR-WS.org/Vol-53/.

196 Udo Hahn and Stefan Schulz

[19] Alan L. Rector, Sean Bechhofer, Carole A. Goble, Ian Horrocks, W. Anthony Nowlan, and
W. Danny Solomon. The GRAIL concept modelling language for medical terminology.
Artificial Intelligence in Medicine, 9:139–171, 1997.

[20] Jeremy E. Rogers, Colin Price, Alan Rector, W. Daniel Solomon, and Nick Smeijko. Val-
idating clinical terminology structures: Integration and cross-validation of READ THE-
SAURUS and GALEN. In C. G. Chute, editor, AMIA’98 – Proceedings of the 1998 AMIA
Annual Fall Symposium. A Paradigm Shift in Health Care Information Systems: Clinical
Infrastructures for the 21st Century, pages 845–849. Orlando, FL, November 7-11, 1998.
Philadelphia, PA: Hanley & Belfus, 1998.

[21] Cornelius Rosse, José Leonardo V. Mejino, Bharath R. Modayur, Rex Jakobovits, Kevin P.
Hinshaw, and James F. Brinkley. Motivation and organizational principles for anatomical
knowledge representation: The DIGITAL ANATOMIST symbolic knowledge base. Journal
of the American Medical Informatics Association, 5(1):17–40, 1998.

[22] James G. Schmolze and William S. Mark. The NIKL experience. Computational Intelli-
gence, 6(1):48–69, 1991.

[23] Rainer Schubert and Karl-Heinz Höhne. Partonomies for interactive explorable 3D-models
of anatomy. In C. G. Chute, editor, AMIA’98 – Proceedings of the 1998 AMIA Annual Fall
Symposium. A Paradigm Shift in Health Care Information Systems: Clinical Infrastructures
for the 21st Century, pages 433–437. Orlando, FL, November 7-11, 1998. Philadelphia, PA:
Hanley & Belfus, 1998.

[24] Erich B. Schulz, Colin Price, and Philip J. B. Brown. Symbolic anatomic knowledge repre-
sentation in the Read Codes Version 3: Structure and application. Journal of the American
Medical Informatics Association, 4(1):38–48, 1997.

[25] Stefan Schulz and Udo Hahn. Mereotopological reasoning about parts and (w)holes in
bio-ontologies. In Chris Welty and Barry Smith, editors, Formal Ontology in Information
Systems. Collected Papers from the 2nd International Conference, pages 210–221. Ogun-
quit, Maine, USA, October 17-19, 2001. New York, NY: ACM Press, 2001.

[26] Stefan Schulz and Udo Hahn. Necessary parts and wholes in bio-ontologies. In D. Fensel,
F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors, Principles of Knowledge Rep-
resentation and Reasoning. Proceedings of the 8th International Conference – KR 2002,
pages 387–394. Toulouse, France, April 22-25, 2002. San Francisco, CA: Morgan Kauf-
mann, 2002.

[27] Stefan Schulz, Udo Hahn, and Martin Romacker. Modeling anatomical spatial relations
with description logics. In J. M. Overhage, editor, AMIA 2000 – Proceedings of the An-
nual Symposium of the American Medical Informatics Association. Converging Informa-
tion, Technology, and Health Care, pages 779–783. Los Angeles, CA, November 4-8, 2000.
Philadelphia, PA: Hanley & Belfus, 2000.

[28] Kent A. Spackman and Keith E. Campbell. Compositional concept representation using
SNOMED: Towards further convergence of clinical terminologies. In C. G. Chute, editor,
AMIA’98 – Proceedings of the 1998 AMIA Annual Fall Symposium. A Paradigm Shift in
Health Care Information Systems: Clinical Infrastructures for the 21st Century, pages 740–
744. Orlando, FL, November 7-11, 1998. Philadelphia, PA: Hanley & Belfus, 1998.

[29] Françoise Volot, M. Joubert, and Marius Fieschi. Review of biomedical knowledge and data
representation with Conceptual Graphs. Methods of Information in Medicine, 37(1):86–96,
1998.

[30] Morton Winston, Roger Chaffin, and Douglas J. Herrmann. A taxonomy of part-whole
relationships. Cognitive Science, 11:417–444, 1987.

[31] William A. Woods and James G. Schmolze. The KL-ONE family. Computers & Mathe-
matics with Applications, 23(2/5):133–177, 1992.

Ontology Versioning and Change Detection on the Web

Michel Klein1, Dieter Fensel1, Atanas Kiryakov2, and Damyan Ognyanov2

1 Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam, the Netherlands

{michel.klein|dieter}@cs.vu.nl
2 OntoText Lab., Sirma AI Ltd.

38A Hristo Botev blvd., Sofia 1000, Bulgaria
{naso|damyan}@sirma.bg

Abstract. To effectively use ontologies on the Web, it is essential that changes
in ontologies are managed well. This paper analyzes the topic of ontology ver-
sioning in the context of the Web by looking at the characteristics of the version
relation between ontologies and at the identification of online ontologies. Then, it
describes the design of a web-based system that helps users to manage changes in
ontologies. The system helps to keep different versions of web-based ontologies
interoperable, by maintaining not only the transformations between ontologies,
but also the conceptual relation between concepts in different versions. The sys-
tem allows ontology engineers to compare versions of ontology and to specify
these conceptual relations. For the visualization of differences, it uses an adapt-
able rule-based mechanism that finds and classifies changes in RDF-based on-
tologies.

1 The Web Needs Change Management for Ontologies

The envisaged next generation of the Web (called Semantic Web [6]) will consist of
data defined and linked in such a way that it can be used for more effective discovery,
automation, integration, and reuse across various applications1. In this vision, ontolo-
gies have an important role in defining and relating concepts that are used to describe
data on the web. However, the distributed and dynamic character of the web will cause
that many versions and variants of ontologies will arise. Ontologies are often devel-
oped by several persons and continue to evolve over time. Moreover, domain changes,
adaptations to different tasks, or changes in the conceptualization might cause modifi-
cations of the ontology. This will likely cause incompatibilities in the applications and
ontologies that refer to them and will give wrong interpretations to data or make data
inaccessible [14].

To form a real Semantic Web, it is necessary that the knowledge that is represented
in the different versions of ontologies is interoperable. It is therefore important to cre-
ate links between ontology versions that specify how the knowledge in the different
versions of the ontologies is related. These links can be used to re-interpret data and
knowledge under different versions of ontologies.

1 http://www.w3.org/2001/sw/Activity

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 197–212, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

198 Michel Klein et al.

In this paper, we present various elements of a methodology for ontology version-
ing. We describe a method to specify relations between versions of ontologies and we
also propose an identification scheme for ontologies. We then present a web-based sys-
tem that supports the user in specifying the relations between ontology versions. The
system, called OntoView, can also be used store ontologies and to provide a transparent
interface to different versions. The goal of this system is not to provide a central registry
for ontologies, but to allow ontology engineers to store their versions and variants of
ontologies and relate them to other (possibly remote) ontologies. The resulting mapping
relations between versions can also be exported and used outside the system.

The rest of the paper is organized as follows. In the next section, we analyze the
characteristics of the relation between different versions of ontologies. Section 3 con-
tains a discussion of ontology identification and proposes a identification scheme for
ontologies. In section 4, we give an overview of the versioning support system and de-
scribe its the main functions. Section 5 describes the main feature of the system: com-
paring ontologies. In that section, we explain the mechanism we used to find changes
in RDF-based ontologies and present some of the rules that we used to encode change
types. We discuss some open issues in section 6, and we conclude the paper in section 7.

2 Characteristics of a Version Relation

There are three important aspects to discuss when considering an version relation be-
tween ontologies. First, this is the difference between version relations and concep-
tual relations inside an ontology.

Ontologies usually consist of a set of class (or concept) definitions, property defi-
nitions and axioms about them. The classes, properties and axioms are related to each
other and together form a model of a part of the world. A change constitutes a new
version of the ontology and also a version relation between the definitions of concepts
and properties in the original version of the ontology and those in the new version.2

The relations between concepts inside an ontology, e.g. between class A and class
B, are thus fundamentally different from the version relations between two versions
of a concept, e.g. between class A1.0 and class A2.0. In the first case, the relation is a
purely conceptual relation in the domain of interest; in the second case, however, the
relation describes meta-information about the change of the concept.

Nevertheless, two versions of a concept still have some conceptual relation. In other
words, although the update relation itself is not a conceptual relation, the participating
versions of a concept (e.g. A1.0 and A2.0) do have a particular conceptual (logical)
relation to each other.

Altogether, we distinguish the following properties of an version relation:

– transformation or actual change: a specification of what has actually changed
in an ontological definition, specified by a set of change operations (cf. [1]), e.g.,
change of a restriction on a property, addition of a class, removal of a property, etc.;

– conceptual relation: the relation between constructs in the two versions of the
ontology, e.g., specified by equivalence relations, subsumption relations, or logical
rules;

2 Except for removals and additions of classes and properties, of course.

Ontology Versioning and Change Detection on the Web 199

– descriptive meta-data like date, author, and intention of the update: this describes
the when, who and why of the change;

– scope: a description of the context in which the update is valid. In its simplest
form, this might consist of the date when the change is valid in the real world,
conform to valid date in temporal databases [18] (in this terminology, the “date” in
the descriptive meta-data is called transaction date). More extensive descriptions
of the scope, in various degrees of formality, are also possible.

A well-designed ontology change specification mechanism should take all these char-
acteristics into account.

Another issue to discuss about ontology updates is the possible discrepancy be-
tween changes in the specification and changes the conceptualization. We have seen
that an ontology is a specification of a conceptualization. The actual specification of
concepts and properties is thus a specific representation of the conceptualization: the
same concepts could also have been specified differently. Hence, a change in the speci-
fication does not necessarily coincide with a change in the conceptualization [14], and
changes in the specification of an ontology are not per definition ontological changes.

For example, there are changes in the definition of a concept which are not meant
to change the concept itself: attaching a slot “fuel-type” to a class “Car”. Both class-
definitions still refer to the same ontological concept, but in the second version it is
described more extensively. Theoretically, the other way around is also possible: a con-
cept could change without a change in its specification. However, this usually means
that the concept is badly modelled.

It is important to distinguish changes in ontologies that affect the conceptualization
from changes that don’t. In [19] the following terms are used to make this distinction:

– conceptual change: a change in the way a domain is interpreted (conceptualized),
which results in different ontological concepts or different relations between those
concepts;

– explication change: a change in the way the conceptualization is specified, without
changing the conceptualization itself.

It is important to notice that it is not possible to determine automatically whether a
change is a conceptual change or a explication change. This requires insight in the con-
ceptualization, and is basically a decision of the ontology engineer. However, heuristics
can be applied to suggest the effects of changes. We will discuss that later on.

A third, somewhat different, aspect of an update is the packaging of changes, i.e.,
the way in which updates are applied to an ontology. This is an important practical issue
for the development of an ontology change management system.

We can distinguish two different dimensions with respect to the packaging of the
change specification. One dimension is the granularity of the specification: this can be
either the level of a single “definition” or the level of a “file” as a whole.

The second dimension is the method of specification. There are several methods
thinkable:

– a “transformation specification”: an update specified by a list of change operations
(e.g., add A, change B, delete C);

200 Michel Klein et al.

– a “replacement”: an update specified by replacing the old version of a concept or
an ontology with a new version; this is an implicit change specification;

– a “mapping”: an update specified as a mapping between the original ontology and
another one. Although this is not a update in the regular sense, an explicit map-
ping to another ontology can be considered as an update to the viewpoint of that
ontology.

This gives several possible change specifications. For example, a change can be spec-
ified individually, as a mapping between one specific definition in one ontology and
another definition in another ontology, but it can also be done at a file level, by defining
the transformation of the ontology.

Notice that the packaging methods are not equivalent, i.e., they do not give the
same information about the update relation. It is clear that the mapping provides a
conceptual relation between versions of concepts, something that is not specified in
a transformation.

3 Ontology Identification on the Web

Identification of versions of ontologies is very important. Ontologies describe a consen-
sual view on a part of the world and function as reference for that specific conceptual-
ization. Therefore, they should have a unique and stable identification. A human, agent
or system that conforms to a specific ontology, should be able to refer to it unambigu-
ously. We will now discuss the major issues of ontology identification on the Web, and
outline an identification mechanism.

3.1 Identity of Ontologies

The first question that has to be answered when we want to identify versions of an on-
tology on the web is: what is the identity of an ontology? This is not as trivial as it
seems. For example, one could ask whether an update of a natural language description
changes the identity of an ontology. If one regards a specific specification of a concep-
tualization as an essential characteristic of an ontology, then every modification to that
specification forms a new version of the ontology. In that case, the descriptions specify
different concepts, which are per definition not equal.

Looking at this from another perspective, one might regard an ontology primarily as
a conceptualization, which is represented as complete as possible in a specification. In
this case one could argue that an update to a natural language description of a concept is
not a conceptual change, but just a more precise description of the same conceptualiza-
tion. This would be an example of an explication change: the specification is changed,
but the concept that is described remains the same.

In this philosophical debate, we take the following (practical) position. We assume
that an ontology is represented in a file on the web. Every change that results in a
different character representation of the ontology constitutes a revision. In case the log-
ical definitions are not changed, it is the responsibility of the author of the revision

Ontology Versioning and Change Detection on the Web 201

to decide whether this revision is conceptual change and thus forms an new concep-
tualization with its own identity, or just an change in the representation of the same
conceptualization.

If we relate this to the distinction between conceptual changes and explication
changes, this means that whenever there has been a conceptual change in an ontol-
ogy, it gets a new identifier. In case of explication changes, the ontology keeps the same
identifier if and only if these changes were non-logical changes (thus, changes in the
natural language description). This is summarized in table 1. Again, note that it is up to
the ontology engineer to decide whether a change is a conceptual change or not.

logical non-logical
conceptual new new
explication new unchanged

Table 1. Change types and their effect on the identity of an ontology.

3.2 Identification on the Web

The second question is: how does this relate to web resources and their identity? To
answer this question, we have look at identification mechanisms on the web (i.e. URIs,
URNs and URLs) and see how we can use them for the identification of the “entities”
in our domain (i.e., the entities in the domain of ontology versions, e.g. a conceptual-
ization, a revision, a specification).

Things on the web are called “resources” in the W3C3-terminology. According to
the definition of Uniform Resource Identifiers (URI’s) (defined in [5]), “a resource can
be anything that has identity”. In [7] is stated: “a ‘resource’ is a conceptual entity (a
little like a Platonic ideal)”. Both definitions comprise our idea of an ontology. Hence,
an ontology can be regarded as a resource. An URI, which “is a compact string of char-
acters for identifying an abstract or physical resource” [5] can be used to identify the
resources. Notice that URI’s provide a general identification mechanisms, as opposed
to Uniform Resource Locators (URL’s), which are bound to the location of a resource.

Usually, the XML Namespace mechanism [8] is used for the identification of web-
based ontologies. This means that an ontology is identified by a URI. In practice, people
tend to use a URL for this. In other words, they couple the identity of an ontology with
the location of the ontology file on the web. The important step in our proposed method
is to separate the identity of ontologies completely from the identity of files on the
web that specify the ontology. In other words, the class of ontology resources should
be distinguished from the class of file resources. As we have seen above, a revision —
which is normally specified in a new file — may constitute a new ontology, but this is
no automatism. Every revision is a new file resource and gets a new file identifier, but
does not automatically get a new ontology identifier. If a change does not constitute a

3 The standardization body for the World Wide Web

202 Michel Klein et al.

conceptual change, the new version gets a new location, but does not get a new identifier.
For example, the location of an ontology can change from “../example/1.0/rev0” to
“../example/1.0/rev1”, while the identifier is still “../example/1.0”.

3.3 Baseline of an Identification Method

When we take into account all these considerations, we propose an identification
method that is based on the following points:

– a distinction between three classes of resources:
1. files;
2. ontologies;
3. lines of backward compatible ontologies.

– a change in a file results in a new file identifier;
– the use of a URL for the file identification;
– a change in the conceptualization or in the logical definition results in a new ontol-

ogy identifier, but a non-logical explication change doesn’t;
– a separate URI for ontology identification with a two level numbering scheme:

• minor numbers for backward compatible modifications (an ontology-URI end-
ing with a minor number identifies a specific ontology);

• major numbers for incompatible changes (an ontology-URI ending with a ma-
jor number identifies a line of backward compatible ontologies);

– individual concepts or relations, whose identifier only differs in minor number, are
assumed to be equivalent;

– ontologies are referred to by an ontology URI with the according major revision
number and the minimal extra commitment, i.e., the lowest necessary minor revision
number.

The ideas behind these points are the following. As already pointed out in the begin-
ning of this section, the distinction between ontology identity and file identity has the
advantage that file changes and location changes (e.g., copy of an ontology) can be iso-
lated from ontological changes. By using a separate URI, it is possible to encode all
the information in it that is necessary for our usage, and it also prevents confusion with
URL’s that specify a location.

The distinction between individual ontologies on the one hand and lines of back-
ward compatible ontologies on the other hand, provides a simple way to indicate a very
general type of compatibility, likewise the “BACKWARD-COMPATIBLE-WITH” field
in SHOE [13]. The distinction we make is also in line with the idea of “levels of gener-
ality”, which is discussed in [7]. Applications can conclude directly — without formal
analysis or deduction steps — that a version can be validly used on data sources with
the same major number and a equal or lower minor number. To achieve a maximal
backward compatibility, we also propose that not the minor number of the newest re-
vision is specified in a data source, but the minimal addition to the base version that is
used by this data source. For example, suppose an ontology with concepts A, B and C.
Version 1.1 added a concept D and version 1.2 added concept E. Then a data source

Ontology Versioning and Change Detection on the Web 203

data only relies on concepts A, C and D, would specify its commitment only to ver-
sion 1.1, although there is already a version 1.2 available. We adopted this idea from
software-program library versioning, as described in [10].

An interesting point for discussion is whether it would be possible to specify the
real ontological commitment, instead of only the necessary extra commitment. In our
example, this would mean that the data sources specifies that it relies on exactly A, C
and D. This would require a different type of identification.

The point that states that individual concepts with a identifier that only differs in
minor number are considered to be equivalent, is necessary to actually enable the back-
ward compatibility. By default, all resources on the web with a different identifier are
considered to different. This statement allows the creation of a stand-alone ontology
revision, which has concepts that are equal to a previous version.

4 OntoView: Support for Ontology Versioning

Up to now, we discussed two theoretical aspects of ontology versioning: the character-
istics of a version relation and the identification of ontologies. Based on this, we will
now describe a system that provides support for the versioning of online ontologies.
The main function of the system is to help a user to manage changes in ontologies and
keep ontology versions as much interoperable as possible. It does that by comparing
versions of ontologies and highlighting the differences. It then allows the users to spec-
ify the conceptual relation between the different versions of concepts. This function is
described more extensively in the next section.

It also able to store ontologies and to provide a transparent interface to arbitrary
versions of ontologies. To achieve this, the system maintains an internal specification
of the relation between the different variants of ontologies, with the aspects that were
defined in section 2: it keeps track of the meta-data, the conceptual relations between
constructs in the ontologies and the transformations between them.

OntoView is inspired by the Concurrent Versioning System CVS [4], which is used
in software development to allow collaborative development of source code. The first
implementation is also based on CVS and its web-interface CVSWeb4. However, dur-
ing the ongoing development of the system, we are gradually shifting to a complete
new implementation that will be build on a solid storage system for ontologies, e.g.,
Sesame5.

The ideas underlying the versioning system are not depending on a specific ontology
language. However, the implementation of specific parts of the system assume RDF
based languages, for example the mechanism to detect changes. In the remainder of this
article, we will use DAML+OIL6 [11,12] and RDF Schema (RDFS) [9] as ontology
languages. These two languages are widely considered as basis for future ontology
languages for the Web.

Besides the ontology comparison feature — which will be described in detail in the
next section — the system has the following functions:

4 Available from http://stud.fh-heilbronn.de/˜zeller/cgi/cvsweb.cgi/
5 A demo is available at http://sesame.aidministrator.nl
6 Available from http://www.daml.org/language/

204 Michel Klein et al.

– Reading changes and ontologies. OntoView will accept changes and ontologies
via several methods. Currently, ontologies can be read in as a whole, either by pro-
viding a URL or by uploading them to the system. The user has to specify whether
the provided ontology is new or that it should be considered as an update to an
already known ontology. In the first case, the user also has to provide a “location”
for the ontology in the hierarchical structure of the OntoView system.
Then, the user is guided through a short process in which he is asked to supply the
meta-data of the version (as far as this can not be derived automatically, such as the
date and user), to characterize the types of the changes (see below in section 5), and
to decide about the identifier of the ontology.
In the future, OntoView will also accept changes by reading in transformations,
mapping ontologies, and updates to individual definitions. These update methods
provides the system with different information than the method described above.
For that reason, this also requires an adaptation of the process in which the user
gives additional information.

– Identification. OntoView uses the namespace mechanism with URIs for ontology
identification, separated from the location of the ontology file. Depending on the
compatibility effects of the type of change (see table 1), it assigns a new identifier
or it keeps the previous one.
OntoView supports two ways of persistent and unique identification of web-based
ontologies. First, it can in itself guarantee the uniqueness and persistency of names-
paces that start with “http://ontoview.org/”, because the system is located at the
domain ontoview.org. Second, because the location and identification of on-
tologies are not necessarily coupled, it can also store ontologies with arbitrary
namespaces. In this case, the ontology engineer is responsible for guaranteeing the
uniqueness. The ontologies with arbitrary namespaces are not directly retrievable
by their namespace, but can be accessed via a search function.

– Analyzing effects of changes. Changes in ontologies do not only affect the data
and applications that use them, but they can also have unintended, unexpected and
unforeseeable consequences in the ontology itself [16].
OntoView provides some basic support for the analysis of these effects. First, on
request it can also highlight the places in the ontology where conceptually changed
concepts or properties are used. For example, if a property “hasChild” is changed,
it will highlight the definition of the class “Mother”, which uses the property
“hasChild”. In the future, this function should also exploit the transitivity of prop-
erties to show the propagation of possible changes through the ontology.
Further, we expect to extend the system with a reasoner to automatically verify the
changes and the specified conceptual relations between versions. For example, we
could couple the system with FaCT [3] and exploit the Description Logic semantics
of DAML+OIL to check the consistency of the ontology and look for unexpected
implied relations.

– Exporting changes. The main advantage of storing the conceptual relations be-
tween versions of concepts and properties is the ability to use these relations for
the re-interpretation of data and other ontologies that use the changed ontology.
To facilitate this, OntoView can export differences between ontologies as separate
mapping ontologies, which can be used as adapters for data sources or other ontolo-

Ontology Versioning and Change Detection on the Web 205

gies. The mappings are created on basis of conceptual information that is attached
to the update relation.
Mapping ontologies are separate ontologies that import definitions from two other
(versions of) ontologies and relates these definitions conceptually to each other.
They only provide a partial mapping, because not all changes can be specified con-
ceptually, e.g. complicated changes like splits of concepts, or deletions. The defi-
nitions are imported by the namespace mechanism. This mechanism allows RDF-
based ontologies to refer to definitions in other ontologies, by connecting the URI
(identifier) of an other ontology with a symbolic name. The exported mapping on-
tologies are represented with the standard constructs of the ontology langauge.
The meta-data about the ontology update is specified as a set of properties of the
conceptual relations themselves. In RDF Schema and DAML+OIL, this meant that
we also have to re-ify the mapping statements. For this purpose, we defined an
RDFS “meta-schema” that specifies the classes and properties that are used to at-
tach the meta-information about an update to the mapping statements. Due to space
restrictions, we cannot show it here.
This method has two advantages. First, when specified over re-ified statements, the
meta-data does not interfere with the actual ontological knowledge, as would be
the case when meta-data is specified as characteristics of classes and properties.
Second, because the meta-data is data about the mappings themselves, agents or
systems that understand the meta-data can use this to decide which mappings are
applicable in a specific context and which are not.
In the future, it should also be possible to export transformations between two
versions of an ontology. A transformation is a complete specification of all the
change operations. This can be used to re-execute changes and to update ontologies
that have some overlap with the versioned ontology in exactly the same way as the
original one. However, transformations facilitates data re-interpretations only to a
very small extent. A mapping ontology provides better re-interpretation, because it
also captures human knowledge about the relations.

5 Comparing Ontologies

One of the central features of OntoView is the ability to compare ontologies at a struc-
tural level. The comparison function is inspired by UNIX diff, but the implementation
is quite different. Standard diff compares file version at line-level, highlighting the
lines that textually differ in two versions. OntoView, in contrast, compares version of
ontologies at a structural level, showing which definitions of ontological concepts or
properties are changed. An example of such a graphical comparison of two versions of
a DAML+OIL ontology is depicted in Figure 1.7

5.1 Types of Change

The comparison function distinguishes between the following types of change:

7 This example is based on fictive changes to the DAML+OIL example ontology, available from
http://www.daml.org/2001/03/daml+oil-ex.daml.

206 Michel Klein et al.

Fig. 1. Comparing two ontologies

– Non-logical change, e.g. in a natural language description. In DAML+OIL, this
are changes in the rdfs:label of an concept or property, or in a comment inside a
definition. An example is the first highlighted change in Figure 1 (class “Animal’).

– Logical definition change. This is a change in the definition of a concept or prop-
erty that affects its formal semantics. Examples of such changes are alterations of
subClassOf, domain, or range statements. Additions or deletions of local property
restrictions in a class are also logical changes. The second and third change in the
figure is (class “Male” and property “hasParent”) are examples of such changes.
Note that there are also logical changes that do not affect the semantics

– Identifier change. This is the case when a concept or property is given a new iden-
tifier, i.e. a renaming.

– Addition of definitions.
– Deletion of definitions.

Each type of change is highlighted in a different color, and the actually changed lines
are printed in boldface.

Most of these changes can be detected completely automatically, except for the
identifier change, because this change is not distinguishable from a subsequent deletion
and addition of a simple definition. In this case, the system uses the location of the
definition in the file as a heuristic to determine whether it is an identifier change or not.

It is a deliberate choice not to show all changes, but only the ones which we think
that are of interest to the ontology modeler. This choice is explained in the next para-

Ontology Versioning and Change Detection on the Web 207

graphs, together with the mechanism that we use to detect and classify changes. Exper-
imental validation should show whether this list of change types is sufficient.

5.2 Detecting Changes

There are two main problems with the detection of changes in ontologies. The first
problem is the abstraction level at which changes should be detected. Abstraction is
necessary to distinguish between changes in the representation that affect the meaning,
and those that don’t influence the meaning. It is often possible to represent the same
ontological definition in different ways. For example, in RDF Schema, there are several
ways to define a class:

<rdfs:Class rdf:ID="ExampleClass"/>

or:

<rdf:Description rdf:ID="ExampleClass">
<rdf:type rdf:resource="...org/2000/01/rdf-schema#Class"/>

</rdf:Description>

Both are valid ways to define a class and have exactly the same meaning. Such a change
in the representation would not change the ontology. Thus, detecting changes in the
representation alone is not sufficient.

However abstracting too far can also be a problem: considering the logical meaning
only is not enough. In [2] is shown that different sets of ontological definitions can yield
the same set of logical axioms. Although the logical meaning is not changed in such
cases, the ontology definitely is. Finding the right level of abstraction is thus important.

Second, even when we found the correct level of abstraction for change detection,
the conceptual implication of such a change is not yet clear. Because of the difference
between conceptual changes and explication changes (as described in section 2), it is
not possible to derive the conceptual consequence of a change completely on basis of
the visible change only (i.e., the changes in the definitions of concepts and properties).
Heuristics can be used to suggest conceptual consequences, but the intention of the
engineer determines the actual conceptual relation between versions of concepts.

In the next two sections, we explain the algorithm that we used to compare ontolo-
gies at the correct abstraction level, and how users can specify the conceptual implica-
tion of changes.

5.3 Rules for Changes

The algorithm uses the fact that the RDF data model [15] underlies a number of popular
ontology languages, including RDF Schema and DAML+OIL. The RDF data model
basically consists of triples of the form <subject, predicate, object>, which
can be linked by using the object of one triple as the subject of another. There are
several syntaxes available for RDF statement, but they all boil down to the same data
model. An set of related RDF statements can be represented as a graph with nodes and
edges. For example, consider the following DAML+OIL definition of a class “Person”.

208 Michel Klein et al.

<daml:Class rdf:ID="Person">
<rdfs:subClassOf rdf:resource="#Animal"/>
<rdfs:subClassOf>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasParent"/>
<daml:toClass rdf:resource="#Person"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

When interpreted as a DAML+OIL definition, it states that a “Person” is a kind of
”Animal” and that the instances of its hasParent relation should be of type “Person”.
However, for our algorithm, we are first of all interested in the RDF interpretation of it.
That is, we only look at the triples that are specified, ignoring the DAML+OIL meaning
of the statements. Interpreted as RDF, the above definition results in the following set
of triples:

subject predicate object
Person rdf:type daml:Class
Person rdfs:subClassOf Animal
Person rdfs:subClassOf anon-resource
anon-resource rdf:type daml:Restriction
anon-resource daml:onProperty hasParent
anon-resource daml:toClass Person

This triple set is depicted as a graph in Figure 2. In this figure, the nodes are re-
sources that function as subject or object of statements, whereas the arrows represent
properties.

Fig. 2. An RDF graph of a DAML class definition.

The algorithm that we developed to detect changes is the following. We first split the
document at the first level of the XML document. This groups the statements by their
intended “definition”. The definitions are then parsed into RDF triples, which results in

Ontology Versioning and Change Detection on the Web 209

a set of small graphs. Each of these graphs represent a specific definition of a concept
or a property, and each graph can be identified with the identifier of the concept or the
property that it represents.

Then, we locate for each graph in the new version the corresponding graph in the
previous version of the ontology. Those sets of graphs are then checked according to a
number of rules. Those rules specify the “required” changes in the triples set (i.e., the
graph) for a specific type of change, as described in section 5.1.

The rules have the following format:

IF exist:old
<A, Y, Z>*

exist:new
<X, Y, Z>*

not-exist:new
<X, Y, Z>*

THEN change-type A

They specify a set of triples that should exists in one specific version, and a set that
should not exists in another version (or the other way around) to signal a specific type
of change. With this rule mechanism, we were able to specify almost types of change
(except the identifier change).

For example, a rule to specify a change in the property type looks as follows:

IF exist:old
<X, rdf:type, rdf:#Property>
<X, rdf:type, daml:#UniqueProperty>

exist:new
<X, rdf:type, rdf:#Property>

not-exist:new
<X, rdf:type, daml:#UniqueProperty>

THEN logicalChange.propertytype X

The rules are specific for a particular RDF-based ontology language (in this case
DAML+OIL), because they encode the interpretation of the semantics of the language
for which they are intended. For another language other rules would have been neces-
sary to specify other differences in interpretation. The semantics of the language are
thus encoded in the rules. For example, the last example not looks at changes in values
of predicates (as the first does), but at a change in the type of property. This is a change
that is related to the specific semantics of DAML+OIL.

Also, notice that the mechanism relies on the “materialization” of all rdf:type
statements that are encoded in the ontology. In other words, the closure of the
RDF triples according to the used ontology language has to be computed. For ex-
ample, the rules in example rule above depend on the existence of a statement
<X,rdf:type,rdf:#Property>. However, this statement can only be derived using
the semantics of the rdfs:subPropertyOf statement, which — informally spoken8

— says that if a property is an instance of type X , then it is also an instance of the super-
types of X . The application of the rules thus has to be preceded by the materialization of

8 The precise semantics of RDF Schema are still under discussion.

210 Michel Klein et al.

the superclass- and superproperty hierarchies in the ontology. For this materialization,
the entailment and closure rules in the RDF Model Theory9 can be used.

5.4 Specifying the Conceptual Implication of Changes

The comparison function also allows the user to characterize the conceptual implica-
tion of the changes. For the first three types of changes that were listed in section 5.1,
the user is given the option to label them either as “identical” (i.e., the change is an
explication change), or as “conceptual change”, using the drop-down list next to the
definition (Figure 1). In the latter case, the user can specify the conceptual relation
between the two version of the concept. For example, the change in the definition of
“hasParent” could by characterized with the relation hasParent1.1 subPropertyOf

hasParent1.3.
More complicated changes, such as deletions, splits of concepts, replacements

etcetera, require additional characterizations that specify how the new change should
be interpreted. We will developed this in the future.

6 Discussion

There are a few other issues and choices about the design of the system that we want
to discuss. First, we purposely do not provide support for finding mappings between
arbitrary ontologies. The intention of our system is to provide users with a system to
manage versions of ontologies and maintain their relations. Finding the relations is a
different task. However, it might be possible to incorporate this function in a future
version of the system, e.g. by interfacing it with a ontology mapping tool.

We did not yet specify the way in which the “scope” of the mapping is described.
The “scope” will have several dimensions, of which “time” is only one. This is some-
thing what still has to be done. Without such a specification, it is difficult to assess the
validness of a conceptual relation between concepts in different versions. We can as-
sume that such a relation is at least valid between two successive versions, but we do
not know whether such mapping is allowed to “propagate” via other mappings to other
ontologies. Research on this is necessary.

A situation in which versioning support is also necessary is the collaborative de-
velopment of an ontology [17]. We think that OntoView is also useful in this situation,
especially because all the conceptual implications of versions have to be characterized
individually by users. This integrates the conflict resolution in the update procedure.
That is, because users specify the conceptual relation of their changes with the previ-
ous version while specifying the update, it is not necessary to resolve conflict between
definitions afterwards. Every version of the definition has its own identifier and is con-
ceptually related to the other versions.

A side remark about the use of a versioning system for collaborative ontology de-
velopment is that this gives an evolutionary way of ontology building. Each person can
have its own conceptualization, which is conceptually linked to the conceptualizations

9 http://www.w3.org/TR/rdf-mt/

Ontology Versioning and Change Detection on the Web 211

of others. In this sense, the combination of versions and adaptations in itself forms a
shared conceptualization of a domain.

Finally, we want to mention that the system is still under construction. In section 4
we extensively depicted the foreseen functionality of OntoView. However, as became
clear of some of the descriptions, not everything is already realized. The basis functions
are implemented, but a number of more advanced functions are still being developed.

7 Summary and Conclusion

When ontologies are used in a distributed and dynamic context, versioning support is
essential ingredient to maintain interoperability. In this paper we have analyzed the
versioning relation, described its aspects, proposed an identification mechanism and
finally depicted a system that helps users to manage changes in online ontologies.

We described how this systems supports helps users to compare ontologies, and
what the problems and challenges are. We presented a algorithm to perform a compari-
son for RDF-based ontologies. This algorithm doesn’t operate on the representation of
the ontology, but on the data model that is underlying the representation. By grouping
the RDF-triples per definition, we still retained the necessary representational knowl-
edge. We also explained how ontology engineers have to specify the conceptual impli-
cation of changes. This honors the fact that it is not possible to derive all conceptual
implications of changes automatically, because this requires insight in the conceptual-
ization.

The analysis of a versioning relation between ontologies revealed several dimen-
sions of it. In the system that we described, all these dimensions are maintained sepa-
rately: the descriptive meta-data, the conceptual relations between constructs in the
ontologies, and the transformations between the ontologies themselves. This multi-
dimensional specification allows both complete transformations of ontology represen-
tations and partial data re-interpretations, which help interoperability. The conceptual
differences can be exported and used stand alone, for example to adapt data sources and
ontologies.

The important step in the identification method that we proposed is to separate the
identity of ontologies completely from the identity of files that contain the specification
of the ontology. This allows to distinguish identity changing revisions from explication
changes. Moreover, we distinguish backward compatible revisions from incompatible
revisions.

The described versioning methodology and the system is not yet finished and have
to be developed further. Moreover, validation in a realistic setting is needed. However,
we believe that the things that we presented can help to manage changes in ontologies,
which will be an essential requirement for the interoperability of evolving ontologies
on the web.

References

1. J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. SIGMOD Record (Proc. Conf. on Management of
Data), 16(3):311–322, May 1987.

212 Michel Klein et al.

2. S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is not enough. In Proceedings of the
International Semantic Web Working Symposium (SWWS), Stanford University, California,
USA, July 30 – Aug. 1, 2001.

3. S. Bechhofer, I. Horrocks, P. F. Patel-Schneider, and S. Tessaris. A proposal for a description
logic interface. In P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and P. Patel-Schneider,
editors, Proceedings of the International Workshop on Description Logics (DL’99), pages
33–36, Linköping, Sweden, July 30 – Aug. 1 1999.

4. B. Berliner. CVS II: Parallelizing software development. In USENIX Association, edi-
tor, Proceedings of the Winter 1990 USENIX Conference, pages 341–352, Washington, DC,
USA, Jan. 22–26, 1990. USENIX.

5. T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2396: Uniform Resource Identifiers
(URI): Generic syntax, Aug. 1998. Status: DRAFT STANDARD.

6. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5):34–43, May 2001.

7. T. Berners-Lee. Generic resources, 1996. Design Issues.
8. T. Bray, D. Hollander, and A. Layman. Namespaces in XML.

http://www.w3.org/TR/REC-xml-names/, Jan. 1999.
9. D. Brickley and R. V. Guha. Resource Description Framework (RDF) Schema Specification

1.0. Candidate recommendation, World Wide Web Consortium, Mar. 2000.
10. D. J. Brown and K. Runge. Library interface versioning in solaris and linux. In Proceedings

of the 4th Annual Linux Showcase and Conference, Atlanta, Georgia, Oct., 10–14 2000.
11. D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein. OIL in

a nutshell. In R. Dieng and O. Corby, editors, Knowledge Engineering and Knowledge
Management; Methods, Models and Tools, Proceedings of the 12th International Conference
EKAW 2000, number 1937 in LNCS, pages 1–16, Juan-les-Pins, France, Oct. 2–6, 2000.
Springer-Verlag.

12. D. Fensel and M. A. Musen. The semantic web: A new brain for humanity. IEEE Intelligent
Systems, 16(2), 2001.

13. J. Heflin and J. Hendler. Dynamic ontologies on the web. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI-2000), pages 443–449. AAAI/MIT
Press, Menlo Park, CA, 2000.

14. M. Klein and D. Fensel. Ontology versioning for the Semantic Web. In Proceedings of the
International Semantic Web Working Symposium (SWWS), pages 75 – 91, Stanford Univer-
sity, California, USA, July 30 – Aug. 1, 2001.

15. O. Lassila and R. R. Swick. Resource Description Framework (RDF): Model and Syn-
tax Specification. Recommendation, World Wide Web Consortium, Feb. 1999. See
http://www.w3.org/TR/REC-rdf-syntax/.

16. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging and testing
large ontologies. In A. G. Cohn, F. Giunchiglia, and B. Selman, editors, KR2000: Principles
of Knowledge Representation and Reasoning, pages 483–493, San Francisco, 2000. Morgan
Kaufmann.

17. H. S. Pinto and J. ao Pavão Martins. Evolving ontologies in distributed and dynamic set-
tings. In Proceedings of the Eighth International Conference on Principles of Knowledge
Representation and Reasoning (KR2002), Toulouse, France, Apr. 22–25, 2002.

18. J. F. Roddick. A survey of schema versioning issues for database systems. Information and
Software Technology, 37(7):383–393, 1995.

19. P. R. S. Visser, D. M. Jones, T. J. M. Bench-Capon, and M. J. R. Shave. An analysis of onto-
logical mismatches: Heterogeneity versus interoperability. In AAAI 1997 Spring Symposium
on Ontological Engineering, Stanford, USA, 1997.

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 213-218, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Hozo: An Environment for Building/Using Ontologies
Based on a Fundamental Consideration of �Role� and

�Relationship�

Kouji Kozaki, Yoshinobu Kitamura, Mitsuru Ikeda, and Riichiro Mizoguchi

The Institute of Scientific and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, 567 -0047 Japan
Tel: +81-6-6879-8416, Fax: +81-6-6879-2123,

{kozaki,kita,ikeda,miz}@ei.sanken.osaka-u.ac.jp

Abstract. We have developed an environment for building/using ontologies,
named Hozo, based on both of a fundamental consideration of an ontological
theory and a methodology of building an ontology. Since Hozo is based on an
ontological theory of a role-concept, it can distinguish concepts dependent on
particular contexts from so-called basic concepts and contribute to building
reusable ontologies.

Introduction

Building an ontology requires a clear understanding of what can be concepts with
what relations to others. Although several tools for building ontologies have been
developed to date, few of them were based on enough consideration of an ontological
theory. We argue that a fundamental consideration of these ontological theories is
needed to develop an environment for developing an ontology. We discuss mainly
�role concept� and �relationship�, and consider how these ontologically important
concepts should be treated in our environment. On the basis of the consideration we
have developed an environment for building and using ontologies, named �Hozo�.
This paper presents an outline of the functionality of Hozo. The next section discusses
a role-concept and a relation concept in Hozo. Section 3 outlines the architecture of
Hozo. Section 4 presents the implementation of Hozo and examples of its use. Next
we discuss conclusions and some future work.

A Consideration of �Role� and �Relation�

What Is a Role? : Basic Concept, Role Concept, and Role Holder

John Sowa introduces the firstness and the secondness of concepts [Sowa 95]. The
former is roughly defined as a concept which can be defined without mentioning other
concepts. Examples include ion, a man, a tree, etc. The latter is roughly defined as a
concept which cannot be defined without mentioning other concepts. Examples

214 Kouji Kozaki et al.

include wife, husband, student, child, etc. We call concepts of the secondness type
except artifacts role-concepts in this paper. Based on his theory, we identified three
categories for a concept. That is, a basic concept, a role-concept, and a role holder.

A role-concept represents a role which a thing plays in a specific context and it is
defined with other concepts. On the other hand, a basic concept does not need other
concepts for being defined. An entity of the basic concept that plays a role such as
husband role or wife role is called a role holder. For example in �a bicycle�, its wheel
plays the role as a front wheel (�a front wheel role�) or a role that steers its body (�a
steering role�), which is defined as a role-concept. A wheel that plays these roles is
called �a front wheel� and �a steering wheel�, respectively, which are role holders.

Dependency Analysis of Role-Concepts

There are various roles dependent on the whole,�a relation, a task or a domain, and
roles in artifacts, and so on. For building an ontology, it is important to discriminate
among a role concept, a role holder and a basic concept. To give a guideline for such
discrimination, we organized domain concepts which role concepts dependent on. In
this paper we extracted 5 top-level categories and about 300 domain concepts from
technical documents about oil-refinery plant operation [Mizoguchi 00]. Those top-level
categories are as follows:
− Device: components of the plant.
− Target object: objects which a device targets in processing.
− Attribute: attributes of devices or target objects.
− Domain activity: behaviors and functions of devices.
− Condition/Feature vocabulary: vocabulary of condition and feature of devices or

objects.
We do not claim the concepts listed in Table 1 are exhaustive. However, we

carefully analyzed our domain, oil-refinery plant operation, and came up with domain
concepts which role concepts dependent on from each categories, and classified them
into 27 concepts in all. Although they might look domain dependent, the authors
believe the dependency on the oil refinery domain is small, which is partially
demonstrated by the concepts which are not from the oil-refinery plant domain.

Table 1. The domain concepts which role concepts dependent on. (part)

Target object
- functions which the object receive:

e.g.) remained ingredient, combustion gas, reflux object,
exhaust gas Cdrinking water

- a name of the whole device which has the object as
input/output:

e.g.) decomposition device material Cradiator water
- a name of place (a part of a device):

e.g.) side reflux, top reflux
- roles dependent on functions of the object:

e.g.) cooling medium, solvent medium, diluting medium,
catalyst (catalytic agent), cleaner (cleaning material)

- roles against a device:
e.g.) input object, output object, raw materials

- time (temporal ?) position in a production process:
e.g.) intermediate product, finished product

Target object
- functions which the object receive:

e.g.) remained ingredient, combustion gas, reflux object,
exhaust gas Cdrinking water

- a name of the whole device which has the object as
input/output:

e.g.) decomposition device material Cradiator water
- a name of place (a part of a device):

e.g.) side reflux, top reflux
- roles dependent on functions of the object:

e.g.) cooling medium, solvent medium, diluting medium,
catalyst (catalytic agent), cleaner (cleaning material)

- roles against a device:
e.g.) input object, output object, raw materials

- time (temporal ?) position in a production process:
e.g.) intermediate product, finished product

(a)

Device
- its physical relationship with other devices (structure):

e.g.) pre flash drum, front wheel, rear wheel
- functions which the device has:

e.g.) heating furnace Cdraw pump, steering wheel, stay bar
- a name of the device which it is attached to:

e.g.) bypass valve, radiator hose
- target attribute for its function:

e.g.) liquid level control valve
- target object for its function:

e.g.) crude dram, off-gas compressor
- way of achievement which was applied to the device:

e.g.) atmospheric-pressure distillation device,
reduced-pressure distillation device

Device
- its physical relationship with other devices (structure):

e.g.) pre flash drum, front wheel, rear wheel
- functions which the device has:

e.g.) heating furnace Cdraw pump, steering wheel, stay bar
- a name of the device which it is attached to:

e.g.) bypass valve, radiator hose
- target attribute for its function:

e.g.) liquid level control valve
- target object for its function:

e.g.) crude dram, off-gas compressor
- way of achievement which was applied to the device:

e.g.) atmospheric-pressure distillation device,
reduced-pressure distillation device

(b)

 Hozo: An Environment for Building/Using Ontologies 215

Relation Concept and Wholeness Concept

There are two ways of conceptualizing a thing. Consider a �brothers� and a
�brotherhood�. �The Smith brothers� is a conceptualization as a concept, on the other
hand �brotherhood between Bob and Tom� is conceptualized as a relation. On the
basis of the observations that most of the things are composed of parts and that those
parts are connected by a specific relation to form the whole, we introduced
�wholeness concept� and �relation concept�. The former is a conceptualization of
the whole and the latter is that of the relation. In the above example, the �brothers� is
a wholeness concept and the �brotherhood� is a relation concept. Because a
wholeness concept and a relation concept are different conceptualizations derived
from the same thing, they correspond to each other. Theoretically, every thing that is a
composite of parts can be conceptualized in both perspectives as a wholeness concept
and a relation concept.

Hozo

We have developed an environment, named �Hozo1�, for building/using ontologies
based on fundamental ontological theories. �Hozo� is composed of �Ontology
Editor�, �Onto-Studio� and �Ontology Server�(Fig.1). The ontology and the resulting
model are available in different formats (Lisp, Text, XML/DTD,DAML+OIL) that
make it portable and reusable.

Ontology Editor provides users with a graphical interface, through which they can
browse and modify ontologies by simple mouse operations. It treats �role concept�
and �relation� on the basis of fundamental consideration discussed in section 2
[Kozaki 00]. This interface consists of the following four parts (Fig.2):

1. Is-a hierarchy browser displays the ontology in a hierarchical structure
according to only is-a relations between concepts.

1 �Ho� is a Japanese word and means unchanged truth, laws or rules in Japanese, and we

represent �ontologies� by the word. �Zo� means to build in Japanese.

Fig. 1. The architecture of Hozo

Language
management system

Ontology Server

Clients
(other agents)

building /
browsing

O
ntology
E
ditor

Ontology/
model authors

Models

OntologiesOntologies reference
/ install

management of
ontologies and models

Onto-Studio
(a guide system for
ontology design)

supportsupport
Is-a hierarchy

browser

Browsing Pane Definition Pane

Edit Pane

Tool Bar & Menu Bar

Fig. 2. A snapshot of Ontology Editor

216 Kouji Kozaki et al.

2. Edit panel is composed of a browsing panel and a definition panel. The
former displays the concept graphically, and the latter allows users define a
selected concept in the is-a hierarchy browser.

3. Menu bar is used for selecting tools

4. Tool bar is used for selecting commands
 Onto-Studio is based on a method of building ontologies, named AFM (Activity-
First Method) [Mizoguchi 95]. It helps users design an ontology from technical
documents. Figure.3 shows the skeletal building process of ontologies using Onto-
Studio. It consists of 4 phases and 12 steps. The followings outline these 4 phases.
1. Extraction of task-units: In this phase, users extract task-units which contain only

one process from technical documents which are written in natural language.
(1) Divide technical documents into small blocks to extract vocabulary easier.
(2) Extract task-units which contain only one process from these blocks.
(3) Make each task-unit a flow chart which is called concrete task-flow.

2. Organization of task-activities: In this phase, users specify input/output of task-
activities and organize task-activities.
(4) Conceptualize task-activities from verbs in task-units.
(5) Organize task-activities in an is-a hierarchy.
(6) Define role-concepts, called task-activity roles, which appear in input/output of

these task-activities.
3. Analysis of task- structure: In this phase, users analyze flow of task-activities,

specify flow of objects from input to output, and define task-context-roles.
(7) Generalize concrete task-flows to obtain general task-flows.
(8) Describe object-flows, which clearly express relations between inputs and

outputs of task-activities, in the general task-flows obtained above.
(9) Define task-context roles on the basis of these object-flows. By task-context

roles, we mean role-concepts dependent on the whole process of a task.
(10) Extract domain terms which play the task-context role.

Fig. 3. The building process of ontologies using Onto-Studio.

3. Analysis of task-structure4.Organization of domain concepts

[discover]
[a change of the current]

[discover]
[a change of the current]

0000

technical
documents

(2) Extract task-units (3)Make concrete
task-flows

[discover]
[a change of
the current]

[discover]
[a change of
the current]

[check]
[a change of the

concentration]

[check]
[a change of the

concentration]
presumepresume

discoverdiscover

(4) Conceptualize
task-activities

reasonreason

discoverdiscover

presumepresume

Task-activityTask-activity

discoverdiscover
discoverdiscover

presumepresume

(5) Organize
task-activities

presumepresume
abnormalityabnormality

causecause
planplan

planplan

discoverdiscover

presumepresume

planplan

discoverdiscover

(7) Generalize task-flows

(8) Describe object-flows
(9) Define task-context roles
(10) Extract domain terms

pumppump
actuatoractuator

HeaterHeater

devicedevice

naphthanaphthaproductproduct

objectobject

Domain conceptDomain concept

(12) Organize domain
concepts

(11) Discriminate domain roles

drawdraw

Naphtha draw pump Naphtha draw pump

1.Extraction of task-units 2.Organization of task-activities

(1) Divide documents
into blocks

[check]
[a change of the

concentration]

[check]
[a change of the

concentration]

(a target for
the presumption)

(the results of
the presumption)

(6) Define task-activity roles

(11)Discriminate
domain roles

(11)Discriminate
domain roles

(12) Organize
domain concepts

(12) Organize
domain concepts

Fig. 4. A snapshot of Onto-Studio

 Hozo: An Environment for Building/Using Ontologies 217

4. Organization of domain concepts: In this phase, users organize domain concepts
extracted in phase 3.
(11) Discriminate between roles dependent on domain concepts and basic concepts.
(12) Organize domain concepts in an is-a hierarchy.

In practice these steps are not done in a water fall manner. Users can go back and
forth during the process. In each step Onto-Studio provides users with graphical
interfaces to help them perform suggested procedures. For example, Figure.4 shows a
window to help users discriminate domain roles from basic concepts.

Implementation and Application

The current version of Ontology Editor has been implemented in Java2 (JDK1.3) and
been used for five years not only by our lab members but also by some researchers
outside [Jin 99, Inaba 00, Barros 01,Kitamura 01].

Here we give more detail of the plant ontology [Mizoguchi 00]. The plant model
contains a remarkable fact that multiple names are used to denote the same entity. Let
us take an example shown in Fig.5 in which two controllers exist: Level controller
(LC29) and flow controller (FC29). Both controllers use the same control valve
(VFC29) as an actuator. The control valve VFC29 is called by a different name
depending on which controller the operator focuses on. In Hozo, this example is
represented that the basic concept �control valve� plays multiple roles depending on
the context (Fig.6).

Role concept analysis and its use in helping users extract role concept from a set of
domain concepts have been investigated on the basis of our experience in the
development of a plant ontology described above. In order to see the performance of
Onto-Studio, we restructured the plant ontology from the same technical documents
we used at the first time. As a result, we extracted 355 task-units and restructured a
task ontology which is consists of 36 task-activities. Based on the task ontology, we
obtained 5 general task-flows and extracted 356 domain concepts. A domain ontology
consists 190 basic concepts which were discriminated from the role concepts. As a
consequence of this restructuring, we identified about 20 errors in role concept
extraction in the original ontology. This result suggests that Onto-Studio can provide
a good support in building an ontology.

Fig.5. Cascaded control
of LC and FC

Naphtha Extraction Flow
Control valve

Overhead drum level

Naphtha
draw pump

Sour water

Naphtha

FC29

V13.
Overhead drum

LC29

VFC29

Fig.6. A snapshot of the plant ontology definition
about Controller

218 Kouji Kozaki et al.

Conclusion and Future Work

We discussed an environment for ontology development, Hozo, concentrating mainly
on how its Hozo treats role-concepts and wholeness/relation concepts. Several
ontology development environments have been already developed. Hozo is similar to
them in that sense, but is different from them in some respects:

1. Clear discrimination among a role-concept (husband role), a role-holder
(husband) and a basic concept (man) is done to treat �Role� properly.

2. Management of the correspondence between a wholeness concept and a
relation concept.

3. A guide system for building an ontology based on task/domain role concept.

We have identified some room to improve Hozo through its extensive use. The
following is the summary of the extension:

• Ontological organization of various role-concepts.

• Augmentation of the axiom definition and the language.

• Gradable support functions according to a user�s level of skill.

• Improvement of Onto-Studio by applying in more practical examples.

References

[Barros 01] Barros, B., Mizoguchi, R., et al.: A Platform for Collaboration Analysis in CSCL:
An ontological approach, Proceedings of AIED01, San Antonio, Texas, May 19-23 2001

[Kitamura 01] Kitamura, Y., Sano, T., Namba, K. and Mizoguchi, R.: A Functional Concept
Ontology and Its Application to Automatic Identification of Functional Structures,
Advanced Engineering Informatics (Artificial Intelligence in Engineering), to appear, 2002.

[Kozaki 00] Kozaki, K., et al: Development of an Environment for Building Ontologies which
is based on a Fundamental Consideration of "Relationship" and "Role":PKAW2000, pp.205-
221, Sydney, Australia, December, 2000

[Guarino 98] Guarino, N.: Some Ontological Principles for Designing Upper Level Lexical
Resources. Proc. of the First International Conference on Lexical Resources and Evaluation,
Granada, Spain, 28-30, May 1998.

[Inaba 00] Inaba, A., Thepchai, S., Ikeda, M., Mizoguchi, R., and Toyoda, J.: An overview of
"Learning Goal Ontology", Proc. of ECAI2000, pp.23-30, Berlin, Germany, 2000

[Jin 99] Jin, L., Chen, W., Hayashi, Y., Ikeda, M., Riichiro Mizoguchi, R., et al. :An Ontology-
Aware Authoring Tool - Functionalstructure and guidance generation -, Proc. of AIED’99

[Mizoguchi 95] Mizoguchi, R., Ikeda, M., Seta, K. et al.: Ontology for Modeling the World
from Problem Solving Perspectives, Proc. of IJCAI-95, pp. 1-12, 1995.

[Mizoguchi 00] Mizoguchi, R., Kozaki, K., Sano, T., and Kitamura, Y.: Construction and
Deployment of a Plant Ontology, 12th International Conference on Knowledge Engineering
and Knowledge Management, Juan-les-Pins, French Riviera, October, 2000.

[Sowa 95] John F. Sowa: Top-level ontological categories, International Journal of Human and
Computer Studies, 43, pp.669-685, 1995

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 219-234, 2002.
 Springer-Verlag Berlin Heidelberg 2002

An Ontology-Driven Approach to Web Site Generation
and Maintenance

Yuangui Lei, Enrico Motta, and John Domingue

Knowledge Media Institute
The Open University

Walton Hall, MK7 6AA
{y.lei, e.motta, j.b.domingue}@open.ac.uk

Abstract. Building and maintaining a data-intensive web site is costly and
time-consuming and a number of approaches have addressed this problem using
a model-based methodology. This paper presents IIPS (Intelligent Information
Presentation System), a system that uses an ontology-driven approach to site
generation and management. IIPS provides a suite of visual tools, which make
it possible to model a data-intensive web site at a conceptual level, using site,
interface and domain ontologies. As a result, the site designer can focus on the
conceptual structure of the target web site and associated resources,
independently of its realization. IIPS also provides explicit mapping
mechanisms, which make it possible to generate quickly site implementations
from the conceptual model. IIPS improves over existing model-based
approaches to web design, by providing knowledge-level support for all aspects
of web design, including site and resource specification, presentation and
domain data.

1 Introduction

As the web is becoming the major computing platform for sharing data, the need to
develop sophisticated data-driven applications to exploit the Internet is increasing in
domains such as knowledge portals, electronic commerce, digital libraries, and
distance learning. Nevertheless, web application development and maintenance
remain costly and time-consuming. To address this problem, many researchers have
proposed the use of model-based methodologies to try and simplify the whole process
of generation and maintenance of data-intensive web applications [1,2,3,4].

These approaches typically separate the specification of the web site from the
domain data. However, most of them, e.g. [1,2], only provide methodological
guidance to define site models, rather than explicit conceptual modelling support.
Moreover they do not support automatic site generation. As a result, developers still
need to do a lot of work to realise site specifications and to integrate these with
domain data. Some approaches do provide knowledge-level support for site
modelling, e.g. WebML [3] and OntoWebber [4], however they fail to model user
interface issues, such as page layouts and graphic user interfaces.

In this paper we describe an Intelligent Information Presentation System (IIPS),
which improves over existing approaches to web site generation and maintenance.

220 Yuangui Lei, Enrico Motta, and John Domingue

IIPS uses an ontology-driven approach to site generation and management: it provides
a suite of visual tools, which make it possible to model a data-intensive web site at a
conceptual level, using site, interface and domain ontologies. The site ontology
models the navigational structure and the compositional structure of a generic data-
intensive web site, the interface ontology models web-based user interfaces and the
domain ontology specifies the data relevant to the site. Thus, the site designer can
focus on the conceptual structure of the target web site and associated resources,
independently of its realisation. IIPS also provides explicit mapping mechanisms,
which make it possible to generate quickly site implementations from the conceptual
model. An important advantage of this approach is that by exploiting the conceptual,
explicitly represented specifications of the web site and the interfaces, IIPS is able to
reason about these, e.g., in order to customise presentations in an intelligent way for
different types of users and devices.

The paper is organized as follows: section 2 presents an overview of the IIPS
system; section 3 describes the IIPS ontologies; section 4 introduces automatic site
generation through ontology mapping; section 5 illustrates some initial ideas about
how IIPS can exploit the ontological specifications to generate smart, customised
interfaces; section 6 discusses the IIPS solution to site maintenance; section 7
describes the initial prototype implementation of IIPS. Finally, sections 8 and 9
compare and contrast IIPS with other relevant approaches and discuss future work.

2 Overview of the IIPS System

Fig. 1 shows the framework of IIPS. As shown in the figure, IIPS accepts a domain
ontology as input, and produces a data-intensive web site. The IIPS approach is based
on the following methods:

• Ontology-driven site generation and maintenance. IIPS defines a set of ontologies
to model data-intensive web sites, and uses a domain ontology to drive the target

Fig. 1. IIPS Framework

IIPS

Domain
Ontology

Site and
Interface

Ontologies

Knowledge
Base

User
Profile

Adaptive
Data-intensive

Web Site

Adaptive
Engine

Site
View Editor

Runtime
System

Data input

Data output
Changing information

Site
Mapper

Site Presentation
Specifications

Site View
Specifications

Site Presentation
Editor

 An Ontology-Driven Approach to Web Site Generation and Maintenance 221

web site generation and maintenance. To create data-intensive web sites with IIPS,
developers only need to provide a domain ontology to describe the domain data
structure, and the system will generate default web site specifications automatically
through mapping. The main advantage of this approach is that developers,
especially domain experts, can focus on developing the domain ontology, checking
the consistency of the domain ontology, and developing the conceptual structure of
the target web site and associated resources.

• Use of declarative site specifications to facilitate tool construction and
maintenance. The declarative nature of a site model offers many potential benefits
over traditional hard-coded site specifications. First, it facilitates the construction
of tools to assist developers at design-time, and end-users at run-time, for the
declarative model provides a common representation which can be reasoned about
[5]. Second, it supports rapid prototyping and iterative development. Developers
can construct prototype systems rapidly based on the default system generated by
mapping. Finally, it allows a measure of tool independence, so that a site could be
reengineered using a different tool set.

• Use of RDF as the underlying knowledge representing language to represent
ontologies, site specifications, and target web sites. Resource Description
Framework (RDF) [6] is a foundation for processing metadata, which provides
interoperability between applications that exchange machine-understandable
information on the Web. RDF schema [7] provides a mechanism to define
particular vocabularies for RDF documents. However, it is not powerful enough to
describe the constraints on and relationships among ontologies. At the moment, we
use RDF schema to represent the basics of the site ontology, the interface ontology
and domain ontologies, and exploit OCML [8] to describe constraints and
relationships. We use RDF statements to describe site specifications and annotate
target web sites. Later we will consider using DAML+OIL [9] or OWL [10] as the
underlying language to represent ontologies.

• Separation of presentations from site contents. IIPS uses a site view specification
to describe the navigational structure, the compositional structure, and contents of
a web site, and uses a presentation specification to describe presentation
instructions, including layouts and visual appearances. This approach separates
presentation from site view specification completely. As a result, one site view can
be rendered according to different presentation instructions, thus creating totally
different presentations.

• Provision of a set of graphic tools to support site generation and management. The
tools suite of IIPS consists of a site mapper to generate default site specifications
automatically; a site editor to allow developers to edit the site views and
presentations manually, and to allow end users to customize site views; a runtime
system to render site specifications to a web site; an adaptive engine to provide
adaptive interfaces to end users; and an ontology editor to allow users to edit and
extend ontologies.

222 Yuangui Lei, Enrico Motta, and John Domingue

3 Modelling of Web Site

3.1 Site Ontology

The site ontology is defined to model the navigational structure and the compositional
structure of a data-intensive web site on the basis of pre-existing site modelling
approaches. It conceptualizes a generic data-intensive web site at an implementation
independent level, and makes use of the user interface ontology to model the user
interfaces of a data-intensive web site. Fig. 2 provides an overview of the site
ontology:

• The class Site models a web site as a logical collection of resources. It has slots
hasResource and hasIndexResource. The slot hasResource specifies resources a
web site contains. The slot hasIndexResource describes the entry point of a web
site that helps users to navigate through.

• The class Resource models web resources such as web pages and Java applets. It
contains a slot component that describes contents of a resource, and a slot
hasMetadata. To model typical resources which appear in data-intensive web sites,
IIPS defines a series of resource primitives, which are shown in table 1.

• The class Component models contents of resources. It consists of slots:
hasSubResource that specifies resources that may appear in a component,
hasSubComponent that describes sub-components, and hasWidget and hasLinkItem
that describe widgets and hyperlink items. IIPS defines five component primitives
to model typical types of contents that can be used to compose resources. Details
are shown in table 1.

• The class Widget models basic interface elements that can present any kind of
information at a conceptual level. It is an abstract class to describe widgets. IIPS
defines three primitives to model abstract widgets as shown in table 1.

• The class LinkItem models contents that have an associated hyperlink. It has three
slots: hasAssociatedResourceURI to specify associated resource, hasParameter to
filter the resource content, and output to present prompt information.

Fig. 2. Overview of the Site Ontology

Widget

hasSubComponent

hasSubResource

Site

Resource

Component

hasIndexResource

hasComponent

Resource

hasLinkItem

MetaData

hasMetaData

hasResource

LinkItem

hasWidget

 An Ontology-Driven Approach to Web Site Generation and Maintenance 223

• The class DataItem describes domain data in the site ontology and the interface
ontology. It has two subclasses: ClassItem and SlotItem. The class ClassItem
describes domain class entities. The class SlotItem models domain properties or
slots.

• The class MetaData models metadata for resources.

Table 1. Primitives of resources, components, and widgets

Class Name Description Slot List

Resource Modelling web resources. • hasComponent
• hasMetaData

IndexResource Serving as an entry point of a web site • hasNavigationComponent
IndexedResource Presenting indexed information about

a set of instances of domain entities
• hasIndexComponent

DatalistResource Presenting detailed information about
a set of instances of domain entities

• hasDataComponent
• hasLinkItem
• hasParameter

Knowledgeacquisition Resource Allowing end users to input facts
about domain entities

• hasKaComponent

SearchResource Allowing end users to make queries • hasSearchComponent
• hasDataComponent

Component Modelling contents of composing
resources

• hasSubResource
• hasSubComponent
• hasWidget

InputComponent
KaComponent Modelling contents to allow users to

input facts about domain entities
• hasClassItem
• hasKaCommand

SearchComponent Modelling contents to allow users to
make queries

• hasClassItem
• hasSearckKey
• hasSearchCommand

OutputComponent

NavigationComponent Modelling contents of presenting
navigation information

• hasLinkitem

IndexComponent Modelling contents of presenting
indexed instances of domain entities

• hasLinkItem
• hasIndexKey

DataComponent Modelling contents of displaying
detailed information about a set of
domain instances

• hasClassItem

Widget Modelling basic interface elements

Input Modelling widgets allowing users to
input facts

• hasSlotItem
• hasDefaultValue
• hasInputType
• hasStyle

Output Describing widgets presenting
information

• hasOutputType
• hasValue

Command Modelling widgets allowing user to
invoke a task

• hasTask

224 Yuangui Lei, Enrico Motta, and John Domingue

3.2 Interface Ontology

Since more and more web sites employ complex graphic user interfaces to facilitate
interactions with end users, it is no longer adequate to focus only on data content and
navigation structure as many approaches do. User interfaces should be modeled to
conceptualize interface design knowledge and provide an explicit interface knowledge
base for interface generation.

The interface ontology in IIPS defines four classes to model web-based user
interfaces: Presentation, Template, Layout, and Container, and a series of mapping
rules to provide presentation guidelines for user interface generation. The
presentation class defines presentations for interface elements. It has a slot
dataResourceURI to specify a resource object that a presentation will work on, a slot
layout and a slot template. Class Layout models ways to construct a presentation.
Class Template is defined to facilitate reusing presentations. It has a sub class
WidgetTemplate to model templates to render conceptual widgets. The Container
class models interface elements which hold other interface elements, such as
windows, forms, dialogs, and panels. The mapping rules define a set of rules for
mapping data types to widgets. For example, Boolean data can be mapped to a check
box, a radio-button, or a text output.

3.3 An Example

To illustrate the usage of IIPS site ontologies to model a data-intensive web site, we
use the web site of the Knowledge Media Institute at the Open University
(http://kmi.open.ac.uk) as a data-intensive web site example. As a site instance, the
KMi web site contains an index page and a list of resources to present information.
Fig. 3 shows a fragment of RDF statements describing the KMi web site (The
namespace prefix ’so’ refers to the namespace of IIPS site ontologies:
xmlns:so=�http://kmi.open.ac.uk/ylei/iips/siteontology/�).

<rdf:Description rdf:about="http://kmi.open.ac.uk">
 <rdf:type rdf:resource="http://kmi.open.ac.uk/ylei/iips/siteontology#Site" />
 <so:IndexResource rdf:resource="http://kmi.open.ac.uk/home-f.cfm"/>
 <so:Resource>
 <rdf:Bag>
 <rdf:li rdf:resource="http://kmi.open.ac.uk/people/members.html"/>
 <rdf:li rdf:resource="http://kmi.open.ac.uk/people/affiliate.html"/>
 </rdf:Bag>
 �
 </so:Resource>
</rdf:Description>

Fig. 3. Specifications describing the KMi web site

 An Ontology-Driven Approach to Web Site Generation and Maintenance 225

To illustrate how to describe web pages presenting information about domain
entities, we use kmi-member as an entity example. Fig. 4(a) shows the screenshot of
the kmi-member web page. This page is made up components to display instantiations

<rdf:Description rdf:about="http://kmi.open.ac.uk/presentationspec/presentation/kmi-member-dataComponent-presentation">
<rdf:type rdf:resource="http://kmi.open.ac.uk/ylei/iips/siteontology#Presentation"/>
<so:Container rdf:resource="http://kmi.open.ac.uk/presentationspec/container/dataContainer" />
<so:DataResourceURI>http://kmi.open.ac.uk/viewspec/components/kmi-member-dataComponent </so:DataResourceURI>
<so:Layout>
 <rdf:Description rdf:about="http://kmi.open.ac.uk/presentationspec/presentation/layout/kmi-member-data-component">
 <rdf:type rdf:resource="http://kmi.open.ac.uk/ylei/iips/siteontology#Layout"/>
 <so:Presentation>
 <rdf:Description rdf:about="http://kmi.open.ac.uk/presentationspec/presentation/kmi-member-name">
 <so:DataResourceURI>http://kmi.open.ac.uk/viewspec/slotentities/kmi-member-name</so:DataResourceURI>
 <so:Template rdf:resource="http://kmi.open.ac.uk/presentationspec/template/larger-blue-text" />
 </rdf:Description>
 </so:Presentation>
 �
 </rdf:Description>
 </so:Layout>
</rdf:Description>

Fig. 4(c). The presentation specification of the data component of kmi-member. The
dataResourceURI property specifies the data component as the resource object that the
presentation will work on

<rdf:Description rdf:about="http://kmi.open.ac.uk/members.htm">
 <rdf:type rdf:resource="http://kmi.open.ac.uk/ylei/iips/siteontology#Resource"/>
 <so:Component rdf:resource="http://kmi.open.ac.uk/viewspec/components/kmi-member-dataComponent"/>
</rdf:Description>

<rdf:Description rdf:about="http://kmi.open.ac.uk/viewspec/components/kmi-member-dataComponent">
 <rdf:type rdf:resource="http://kmi.open.ac.uk/ylei/iips/siteontology#DataComponent"/>
 <so:ClassItem rdf:resource="http://kmi.open.ac.uk/kmi-ontology/kmi-member" />
 <so:Output>
 <rdf:Description rdf:about="http://kmi.open.ac.uk/images/bullet" >
 <so:OutputType>image</so:OutputType>
 <so:Value>http://kmi.open.ac.uk/img/text/b-bullet.gif</so:Value>
 </rdf:Description>
 </so:Output>
 <so:DynamicOutput>
 <rdf:Description rdf:about="http://kmi.open.ac.uk/viewspec/slotentities/kmi-member-name">
 <rdf:type rdf:resource="http://kmi.open.ac.uk/ylei/iips/siteOntology#DynamicOutput"/>
 <so:OutputType>text</so:OutputType>
 <so:SlotItem rdf:resource="http://kmi.open.ac.uk/kmi-ontology/ kmi-member-name" />
 </rdf:Description>
 </so:DynamicOutput>
 �
</rdf:Description>

Fig. 4(b). The site view specification of the kmi-member page

Fig. 4(a). Screenshot of the KMi-member page

226 Yuangui Lei, Enrico Motta, and John Domingue

of the class kmi-member. As shown in fig. 4(b), the site view specification of this
page contains one data component which displays instantiations of the class kmi-
member. The data component is made up of outputs which display prompt messages
for each slot, and dynamic outputs which display the value of slots of each
instantiation of the class kmi-member. The presentation of this page is constructed
from that of the data component. Fig. 4 (c) shows fragments of code appearing in the
site presentation specification of the kmi-member data component.

4 Automatic Site Generation through Ontology Mapping

The idea of using a domain ontology to drive software generation is not new.
Researchers in the knowledge acquisition area have developed several knowledge
acquisition meta-tools, such as DASH [11], ProtØgØ 2000 [12], and Knote [13], which
use a domain ontology to drive the knowledge acquisition tool generation. The major
advantage of this methodology is that developers, especially domain experts, can
specify software tools readily, and that a pre-existing ontology can be used as the
basis for the specifications.

IIPS uses the same methodology in driving data-intensive web site generation.
Unlike approaches mentioned above where tool specification and implementation are
tightly coupled together, IIPS defines a set of comprehensive ontologies to model the
target software � data-intensive web sites explicitly, and conceptualizes a target web
site at a high level without being concerned about the implementation. As a result, the
target web site can be rendered in different ways.

The automatic site generation mainly involves site mapping, which is responsible
for generating site specifications through mapping a domain ontology to the site
ontology. IIPS uses relationships among the classes defined in a domain ontology to
drive the design of the structure and content of the target web site. It makes use of the
following site mapping rules to generate site specifications:
• IIPS can identify the top nodes of the domain ontology, and map them to an

index resource, which serves as the entry point of the target web site.
• Each class, which needs to be instantiated during the run time of the target web

site, is mapped to a series of resources. These resources include a data list
resource which presents instances, an indexed resource which displays index
information about a set of instances, a search resource which contains search-
components to allow users to make a query, and a knowledge-acquisition
resource which enables users to input facts about the class.

• The process of instantiating a knowledge-acquisition component involves
scanning properties (slots) of the given class, and mapping properties to widgets
according to mapping rules defined in the interface ontology. Each slot is mapped
to an input widget to allow users to enter data, and an output widget to present a
prompt message. In addition, command widgets, which are associated with
knowledge acquisition tasks, are needed in the knowledge-acquisition
component.

• The search component instantiation process is similar to the knowledge
acquisition component. The difference lies in its command widget, which is
associated with a search task.

 An Ontology-Driven Approach to Web Site Generation and Maintenance 227

The default site specification generated by ontology mapping contains conceptual
structures and contents. The run-time system of IIPS can create default interfaces and
presentations for them.

Fig. 5 shows a sample ontology to illustrate the automatic site generation. There
are six domain class entities. The class person has sub-classes kmi-member and
affiliate. Fig. 6 shows the default site structure generated by the IIPS site mapper
through ontology mapping.

In this example, the index resource contains five hyperlink items. The general class
person is mapped to a foldable hyperlink item that contains further hyperlinks. Each
of the other classes is mapped to a series of resources, including a data list resource, a

 (b). (a). (c).

Fig. 7. Screenshots of web pages generated by the IIPS prototype system from the sample
ontology. Figure (a) shows the index page. Figure (b), (c) and (d) show the data list page,
the knowledge acquisition page, and search page of class kmi-member

 (d).

root

person

affiliatekmi-
member

project

technology
publication

Fig. 5. Sample Ontology

Has-author: type: person
Has-publication-reference:

Has-name:
Has-job_title:
Has-phone_number:
Has-email_address:
Has-web_address

Has-author: type: person
Has-description:

Has-project_name:
Has-project_leader: type: person
Has-project_member: type: person
Use-technology: type: technology
Has-publications: type: publication
Has-web_address:

Fig. 6. The site structure generated for the sample ontology by site mapping

Link:Publication

Link: person

Link: project
Link:Technology

Link: kmi-member

Link: affiliateIndex
Resource

Data list
Resources

Search Resource

Knowledge
Acquisition
 Resource

228 Yuangui Lei, Enrico Motta, and John Domingue

search resource, and a knowledge acquisition resource. Users can access these
resources through accessing data list resources of each class entity. Fig. 7 shows
screenshots of web pages generated by the IIPS prototype system from the sample
ontology.

5 Intelligent Support for User Interface Generation

The declarative nature of the site specifications gives IIPS a capability to reason about
user interfaces. The intelligent support for user interface generation happens in
following cases:
• Creating different site views for different user groups. General users can only

browse and customize resources restricted to their user groups. The knowledge
acquisition resources are hidden from the site view. Advanced users can browse
and customize pages, and input facts to the knowledge base. The developers and
webmasters have the highest access to the target web site. They can browse and
edit every site view, and create new user groups.

• Customizing structures, contents, and presentations of a web site according to
users� needs. Due to the fact that the domain knowledge base and the site
specifications are declarative, it is easy for the run-time system to exploit
intelligent inference to customize site views. For example, if an end user wants
more information about one kmi-member in the KMi web site, the run-time system
can create a new web page through reasoning about the site view specification and
the domain knowledge base. The new web page contains hyperlinks to all of the
web resources about this person, including his or her home page, kmi-member
page, project pages and publication pages he or she is involved in.

• Adapting user interfaces according to user profiles, which record end users�
stereotypes and preferences. IIPS provides an adaptive engine to achieve this goal.

6 Site Maintenance as Ontology Manipulation

Site maintenance and management is a big issue in the life cycle of a web site. IIPS
addresses this issue in three ways. First, the IIPS approach emphasizes automatic site
generation from a domain ontology because it can relieve developers of developing a
web site from scratch, and help them to focus on the work of developing domain
ontologies. Second, the IIPS approach provides visual facilities to support developers
to edit the site content and presentation manually. Finally, the IIPS approach supports
automatic web site re-engineering after the domain ontology has been changed
without loss of the customization information made by developers during the site
editing process. Because the site specifications are declarative, the automatic site re-
engineering only changes information about domain entities.

In IIPS, site maintenance can be achieved not only at the content level but also at
the site specification level. At the content level, IIPS provides knowledge acquisition
forms to allow end users to make contributions to knowledge bases. At the site
specification level, IIPS provides a site view editor to edit structure and content of a

 An Ontology-Driven Approach to Web Site Generation and Maintenance 229

web site, and a site presentation editor to edit interfaces and presentations. The
purpose of these editors is two-fold. First, they provide facilities for developers to edit
the target web sites. Developers can utilize them to extend the site ontology through
inheriting concepts in the site ontology, e.g. developers can define new types of data
component to specify how the data component looks exactly. Second, they also
support end users in customizing the site views restricted to their group. End users
cannot change the web site, but they can choose information they are interested in and
filter the irrelevant information.

7 Prototyping

Fig. 8 shows the major components of IIPS system. It is made up of three major
components: a knowledge warehouse, a suite of support tools, and a runtime system
to render the site specifications to target web sites.

The knowledge warehouse hosts ontologies, domain knowledge bases, site
specifications, and user profiles. It serves as data repository for data represented in
RDF schema and RDF statements. The support tools provide design-time support as
well as run-time support. The run-time system is responsible for reading the site
specifications, generating target web sites, and invoking the adaptive engine to
provide on-line adaptive interfaces.

7.1 Site Mapper

The Site Mapper is responsible for creating default site specifications through
mapping the domain ontology to the site ontology. It provides facilities for developers
to customize the domain ontology, preview default site views, and build default site
specifications.

Customizing a domain ontology means specifying and refining domain data
structures on the basis of a domain ontology. It involves selecting classes from the
domain hierarchy structure, and selecting slots for each selected class. Customizing a
domain ontology doesn�t mean changing the domain ontology. It will not result in

Fig. 8. Major components of the IIPS prototype system

Support Tools

Site Mapper

Ontology Editor

Site Editor

Adaptive Engine

Run-time
System

Run-time Tool

Data-intensive web site

Knowledge Warehouse

User ProfileDomain Ontology

Site Ontology

Interface Ontology
Knowledge base

Site specifications

230 Yuangui Lei, Enrico Motta, and John Domingue

losing slots for classes. For example, if we only choose the class kmi-member and the
class affiliate, and don�t choose the class person, the class kmi-member and affiliate
will keep all their inherited slots with them, and will not lose any information.

To illustrate the site mapping result clearly, we use the sample ontology shown in
Fig. 5 as a domain ontology to drive the site generation. Fig. 9 shows the screenshot
of the site preview interface. The left frame shows the site view structure, which is
displayed in tree style. Each node represents a resource, the relationship between a
child and a parent is hyperlink. The right frame displays detail information about the
selected resource node, including its declarative contents and preview.

7.2 Ontology Editor

The Ontology Editor provides visual support for developers to edit domain
ontologies. Developers can utilize it to browse and edit pre-existing ontologies, as
well as create new domain ontologies. Fig. 10 shows a screenshot of the ontology
editor. It mainly supports RDF schema [7] format, and also provides mechanisms to
translate ontology representation between RDF schema and OCML [8]. Ontology
files can be saved as both RDF Schema and OCML format. Although the definition of
a class is separated from property definitions, the IIPS ontology editor provides a very
straightforward way to allow users to edit classes and properties together. It provides
a class tree tab to facilitate class editing, and a property tree tab to help users to
concentrate on property definitions. Class editing and property editing are not
separate in the ontology editor. Users can select properties for classes during the
process of editing classes. At the same time, they also can achieve this by selecting
domain classes for a property during the process of editing properties.

Fig. 9. Screenshot of the site preview interface in the site mapper

 An Ontology-Driven Approach to Web Site Generation and Maintenance 231

Besides the site mapper and the ontology editor, we have worked out an initial run-
time system, which is responsible for reading site specifications and creating dynamic
web pages. Fig. 7 shows screenshots of web pages generated by the initial run-time
system.

8 Related Work

The work on IIPS brings efforts from four areas together: data-intensive web site
modelling, user interface modelling, software tool generation from ontologies, and the
application of RDF to web engineering.

Related Work on Data-Intensive Web Site Modelling

Recently, research towards modelling of data-intensive web applications has been
intensified due to the fact that the processes of web application development from
scratch and web application maintenance are inefficient, time-consuming, and costly.
Many modelling approaches have been proposed to tackle this problem [1,2,3,4].
Closest to our approach is the work on WebML [3]. It provides explicit site models,
and supports automatic site generation. It make uses of a structural model to express
domain data structure, a composition model to specify contents to composite a
hypertext, a navigation model, a presentation model to describe the layout and
presentation, and a personalization model to specify the features and personalization
requirements of users and user groups. However, our approach models a web site
much more thoroughly than WebML [3] because it models user interfaces explicitly.
WebML [3] does provide a presentation model to express the layout and graphic
appearance of pages. However, it only concerns the look and feel of web pages. We
argue that the user interface is more than presentation which emphasizes presenting
information rather than user-interface interactions. Furthermore, we emphasize the

Fig. 10. A screenshot of the ontology editor

232 Yuangui Lei, Enrico Motta, and John Domingue

importance of the semantics of the target web site during the site modelling process,
which has not been addressed in WebML [3].

OntoWebber [4] is another site modelling approach similar to IIPS. It is an
ontology-based approach to site management, and uses the RDF-based language
DAML+OIL [9] as the underlying knowledge representation language. However, it
fails to provide explicit mapping mechanisms to map the domain model with the site
model to automate site generation.

Related Work on Interface Modelling

A substantial effort has been made in user interface modelling [5,14,15] to try to
reduce the amount of code that programmers need to produce when creating a user
interface. However, most approaches have failed to become widespread due to the
fact that these approaches tightly couple user interface definition with the user
interface implementation, and thus lack the flexibility to be rendered in different
ways.

UIML [14] and XIML [15] are recent approaches proposed to address the problem
of authoring user interfaces for multiple platforms. These two languages are both
declarative, appliance-independent, and generic. However they do not separate the
application model from the user interface model completely.

XSL [16] addresses this problem very well. It is a language for expressing
stylesheets that describe how to present an XML document. The XSL approach is
domain independent. However, it focuses on the presentation of the source data. That
is to say, it emphasizes presenting information rather than user-interface interactions.
IIPS concerns not only the presentation of the source data, but also user interfaces,
such as interface mapping rules between a data type and a user control object.

Related Work on Software Generation from Ontology

The feasibility of ontology-driven software generation has been demonstrated in the
knowledge acquisition area, where various ontology-driven knowledge acquisition
metatools have been developed [11,12,13]. IIPS distinguishes itself from these tools
in that the target system is completely different. IIPS aims to generate a data-intensive
web site. Unlike the approaches mentioned above, IIPS provides an explicit ontology
to describe the target system and support ontology mapping, and conceptualizes a
target web site at a high level without being concerned with the implementation.
Thus, the IIPS approach is much more generic.

Related Work on Applying RDF to Web Engineering

XWMF [17] aims to create a machine-understandable web sites through exploiting
RDF to model web application and its content. It provides a generic web engineering
schemata and RDF as the basic vocabulary to model a web application. However, it
does not provide a set of explicit models to describe web sites, therefore it is very

 An Ontology-Driven Approach to Web Site Generation and Maintenance 233

different from the IIPS approach, although they address similar goals of creating
machine-understandable web applications.

SEAL [18] and SEAL-II [19] aim to build and manage semantic web portals on the
basis of ontologies. However, they mainly focus on semantic browsing, semantic-
based ranking, semantic querying, and information contribution from end users, rather
than on web site modelling and automatic site generation. They do not provide
explicit site models, or the mapping approach to automatic site generation, and are
thus quite different from IIPS.

RSS [20], which stands for RDF (or Rich) Site Summary, is a lightweight metadata
description and syndication format. It provides a vocabulary to describe a �channel�
consisting of URL-retrievable items. Each item consists of a title, link, and brief
description. It models a web site in a very simple way.

9 Conclusions

In this paper, we have presented IIPS, an intelligent information presentation system
that uses an ontology-driven approach to drive the generation and maintenance
processes of data-intensive web sites. IIPS distinguishes itself from pre-existing data-
intensive web site modelling approaches in several ways. First, it provides
comprehensive ontologies to model data-intensive web sites, with an emphasis on
user interface modelling that has been missing in other approaches. Second, it
supports automatic site generation, as well as providing a suite of visual tools to
support manual management and maintenance. Finally, it provides intelligent support
for user interface generation.

An initial prototype system of IIPS has been completed, including a site mapper,
an ontology editor, and an initial run-time system. Future work will focus on the site
editor to allow developers to edit site views and presentations and allow end users to
customize a web site, and the adaptive engine to provide adaptive user interfaces for
target web sites.

Acknowledgements

We would like to thank Murray Altheim and Arthur Stutt for their insightful
comments on earlier drafts of this paper.

References

1. Franca Garzotto, Paolo Paolini and Daniel Schwabe, HDM--a model-based approach to
hypertext application design, ACM Trans. Inf. Syst. 11, 1 (Jan. 1993), Pages 1 � 26.

2. T. Isakowitz, E.A. Stohr and P. Balasubramaninan, RMM: A Methodology for Structured
Hypermedia Design, Communications of the ACM, August 1995.

3. Stefano Ceri, Piero Fratenali, Aldo Bongio, Web Modelling Language (WebML): a
modelling language for designing Web sites, www9 Conference, Amsterdam, May 2000.

234 Yuangui Lei, Enrico Motta, and John Domingue

4. Yuhui Jin, Stefan Decker, Gio Wiederhold, OntoWebber: Model-Driven Ontology-Based
Web site Management, Semantic Web Workshop, Stanford, California, July 2001.

5. P.Szekely, P.Sukaviriya, P.Castells, J.Muthukumarasamy,and E.Salcher, Declarative
interface models for user interface construction tools: the MASTERMIND approach, In
Proc. EHCI�95, 1995.

6. Resource Description Framework (RDF) Model and Syntax, W3C Proposed
Recommendation, http://www.w3.org/TR/PR-rdf-syntax/.

7. Resource Description Framework (RDF) Schema Specification 1.0, W3C Candidate
Recommendation, http://www.w3.org/TR/rdf-schema/.

8. Motta E., Reusable Components of Knowledge Modelling: Case Studies in Parametric
Design Problem Solving, IOS Press, Amsterdam, 1999.

9. Ian Horrocks, Frank van Harmelen, Peter Patel-Schneider, Tim Berners-Lee, Dan Brickley,
Dan Connolly, Mike Dean, Stefan Decker, Dieter Fensel, Pat Hayes, Jeff Heflin, Jim
Hendler, Ora Lassila, Deb McGuinness, Lynn Andrea Stein, DAML+OIL,
http://www.daml.org/2001/03/daml+oil-index, 2001.

10.Jeff Heflin, Raphael Volz, and Jonathan Dale, Requirements for a Web Ontology Language,
W3C Working Draft, 7 March 2002, http://www.w3.org/TR/2002/WD-webont-req-
20020307/.

11.Henrik Eriksson, Angel R. Puerta, and Mark A. Musen, Generation of Knowledge-
Acquisition Tools from Domain Ontologies, Int. J. Human-Computer Studies (1994) 41,
425-453.

12.William E.Grosso, Henrick Eriksson. Ray W. Fergerson, Johh H. Gennari, Samson W. Tu,
and Mark A. Musen, Knowledge Modelling at the Millennium, In Proc. the 12th
International Workshop on Knowledge Acquisition, Modelling and Management (KAW�99)
Banff, Canada, October 1999, http://smiweb.stanford.edu/pubs/SMI_Abstracts/SMI-1999-
0801.html.

13.Enrico Motta, Simon Buckingham Shum, and John Domingue, Ontology-driven document
enrichment: principles, tools and applications, Int. J. Human-Computer Studies (2000) 52,
1071-1109.

14.Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M. Williams,
Jonathan E. Shuster, UIML: An Appliance-Independent XML User Interface Language,
WWW8 Conference Paper, Toronto Convention Centre, Toronto, Canada, May 11-14, 1999.

15.Angel Puerta and Jacob Eisenstein, XIML: A Common Representation for Interaction Data,
in Proceedings of the 7th international conference on Intelligent user interfaces, pp.
214-215, 2002.

16.Sharon Adler, Anders Berglund, Jeff Caruso, Stephen Deach, Tony Graham,
Paul Grosso, Eduardo Gutentag, Alex Milowski, Scott Parnell,
Jeremy Richman, Steve Zilles, Extensible Stylesheet Language (XSL) Verson 1.0, 2001,
http://www.w3.org/TR/xsl/.

17.Reinhold Klapsing, Gustaf Neumann, Wolfram Conen: Semantics in Web Engineering:
Applying the Resource Description Framework, IEEE MultiMedia Journal, Vol. 8, No. 2,
April-June, 2001.

18.Nenad Stojanovic, Alexander Maedche, Setffen Staab, Rudi Studer, SEAL-A Framework
for Developing SEmantic PortALs, K-Cap 2001 - First International Conference on
Knowledge Capture, Oct. 21-23, 2001, Victoria, B.C., Canada.

19.Hotho, A., Maedche, A., Staab, S., & Studer, R., SEAL-II � the soft spot between richly
structured and unstructured knowledge. Journal of Universal Computer Science, vol. 7, no. 7
(2001), 566-590.

20.Gabe Beged-Dov, Dan Brickley, Rael Dornfest, Ian Davis, Leigh Dodds, Jonhathan
Eisenzopt, David Galbraith, R.V. Guha, Ken MacLeod, Eric Miller, Aaron Swartz, and Eric
van der Vlist, RDF Site Summary (RSS) 1.0, http://groups.yahoo.com/group/rss-
dev/files/specification.html, 2000.

MAFRA — A MApping FRAmework for Distributed
Ontologies

Alexander Maedche1, Boris Motik1, Nuno Silva1,2, and Raphael Volz1

1 Forschungszentrum Informatik at the Univ. Karlsruhe,
D-76131 Karlsruhe, Germany
http://www.fzi.de/WIM

{maedche,motik,silva,volz}@fzi.de
2 ISEP Instituto Superior de Engenharia,
Instituto Politecnico do Porto, Portugal
http://www.dei.isep.ipp.pt

Abstract. Ontologies as means for conceptualizing and structuring domain
knowledge within a community of interest are seen as a key to realize the Seman-
tic Web vision. However, the decentralized nature of the Web makes achieving
this consensus across communities difficult, thus, hampering efficient knowledge
sharing between them. In order to balance the autonomy of each community with
the need for interoperability, mapping mechanisms between distributed ontolo-
gies in the Semantic Web are required. In this paper we present MAFRA, an
interactive, incremental and dynamic framework for mapping distributed ontolo-
gies.

1 Introduction

The current WWW is a great success with respect to the amount of stored documents
and the number of users. However, the ever-increasing amount information on the Web
places a heavy burden of accessing, extracting, interpreting and maintaining informa-
tion on the human users of Web. Tim Berners-Lee, the inventor of the WWW, coined
the vision of Semantic Web, providing means for annotation of Web resources with
machine-processable metadata providing them with background knowledge and mean-
ing (see [2]). Ontologies as means for conceptualizing and structuring domain knowl-
edge are seen as the key to enabling the fulfillment of the Semantic Web vision.

However, the de-centralized nature of the Web makes indeed inevitable that com-
munities will use their own ontologies to describe their data. In this vision, ontolo-
gies are themselves distributed and the key point is the mediation between distributed
data using mappings between ontologies [16]. Thus, complex mappings and reasoning
about those mappings are necessary for comparing and combining ontologies, and for
integrating data described using different ontologies. Existing information integration
systems and approaches (e.g., TSIMMIS [6], Information Manifold [8], Infomaster1,
MOMIS2, Xyleme 3) are “centralized” systems of mediation between users and dis-

1 http://infomaster.stanford.edu/infomaster-info.html
2 http://sparc20.ing.unimo.it/Momis/
3 http://www.xyleme.com

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 235–250, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

236 Alexander Maedche et al.

tributed data sources, which exploit mappings between a single mediated schema and
schemas of data sources. Those mappings are typically modelled as views (over the
mediated schema in the local-as-view approach, or over the sources schemas in the
global-as-view approach) which are expressed using languages having a formal seman-
tics. For scaling up to the Web, the “centralized” approach of mediation is probably not
flexible enough, and distributed systems of mediation are more appropriate.

Building on this idea and on existing work, we introduce MAFRA, an Ontology
MApping FRAmework (MAFRA) for distributed ontologies in the Semantic Web. With-
in MAFRA we provide an approach and conceptual framework that provides a generic
view onto the overall distributed mapping process. In particular, in this paper we focus
on representation and execution aspects of mappings. However, the proposed frame-
work offers support in all parts of the ontology mapping life-cycle.

Organization of this paper. In section 2 we introduce the underlying conceptual ar-
chitecture of MAFRA. In section 3 we focus on mapping representation and present
the current status of our semantic bridging ontology and discuss its features. Section 4
presents the realized mapping implementation within KAON - an ontology and Seman-
tic Web application framework4. Before we conclude a short discussion of related and
future work is given in section 5.

2 Conceptual Framework

An ontology mapping process, as defined in [14], is the set of activities required to
transform instances of a source ontology into instances of a target ontology. By study-
ing the process and analyzing different approaches from the literature we observed a set
of commonalities and assembled them into the MAFRA conceptual framework, out-
lined in Figure 1. The framework consists of five horizontal modules describing the
phases that we consider fundamental and distinct in a mapping process. Four vertical
components run along the entire mapping process, interacting with horizontal modules.

2.1 Horizontal Dimension of MAFRA

Within the horizontal dimension, we identified following five modules:

Lift & Normalization. This module focuses on raising all data to be mapped onto the
same representation level, coping with syntactical, structural and language heterogene-
ity [19]. Both ontologies must be normalized to a uniform representation, in our case
RDF(S), thus eliminating syntax differences and making semantics differences between
the source and the target ontology more apparent [14]. This lift process is not further
elaborated in this paper - we shall simply assume that the source and target ontologies
are already represented in RDF-Schema with their instances in RDF. Also one essential
step of this first phase is normalization. Three distinct ordered tasks are performed in
our approach: (i) tokenization of the entities, (ii) elimination of resulting stop words
and (iii) expansion of acronyms. The result is a list of normalized lexica.

4 http://kaon.semanticweb.org

MAFRA — A MApping FRAmework for Distributed Ontologies 237

Fig. 1. Conceptual Architecture

Similarity. This module establishes similarities between entities from the source and
target ontology, thus, it supports mapping discovery. Several different similarity mea-
sures have been proposed in literature [14, 3, 5, 10, 1].

We adopted a multi-strategy process (similar to [5]), that calculates similarities be-
tween ontology entities using different algorithms. The first strategy focuses on acquir-
ing a lexical similarity between each entity in source entity with each and all entities
in target entity. For that WordNet and an altered Resnik algorithm [15] are used. Sub-
sequently, a next step calculates the so called property similarity, that is responsible to
acquire the similarity between concepts based on their properties, either attributes or
relations. The bottom-up similarity intends to propagate the similarity (or dissimilarity)
from lower parts of the taxonomy to the upper concepts. It uses the property similarity as
input and propagates the values to the top. This similarity gives a good overall view of
similarity between taxonomies. Complementarily, the top-down similarity propagates
similarities from top to bottom, and assumes special relevance when top level concepts
have a higher or lower similarity. A detailed description and an evaluation of our sim-
ilarity measures and the overall discovery module is provided in a companion paper
[17].

Semantic Bridging. Based on the similarities computed in the previously described
phase, the semantic bridging phase is responsible for establishing correspondence be-
tween entities from the source and target ontology. It intends to specify bridges be-
tween entities in a way that each instance represented according to the source ontology
is translated into the most similar instance described according to the target ontology.
This simple principle motivate our approach in semantic bridge specification following
the evidence that RDFS ontologies normally rely and exploit the underlying OO part of

238 Alexander Maedche et al.

RDFS, namely the taxonomic structure in the form of a graph, and in particular cases,
the form of a tree. The semantic bridging phase is divided in five distinct steps:

First, concept bridging chooses according to the similarities found in previous phase,
pairs of entities to be bridged. The same source entity may be part of different bridges.
Two distinct cases may arise: First, the source concept corresponds to either one of the
target concepts. This implies that the source instance will give rise to one instance of
just one of the target concepts. Second, the source concept correspond to many distinct
target concepts, which implies that the source instance will give rise to one instance
of many target concepts. The automatic process tries to find the best choice based on
heuristics and lexical relations. For example, if the target concepts have the source con-
cept as hypernym that tends to show that source instance should be translated to either
one of the target concepts. The antonym relation (extracted from WordNet) may also
be used for confirming of this case. On the other hand if no hypernym relation exist it
tends to correspond to the second case.

Second, the property bridging step is responsible to specify the matching properties
for each concept bridge. As for concepts, a property may be part of several matchings,
which implies the same two cases previously mentioned for concepts. Therefore, the
same strategy may be used in here. It is important to emphasize that properties in our
approach are of two types, distinguishing between attributes and relations. If source
and target properties are of different types the transformation specification information
is required, where the domain expert is asked to supply this information.

Third, the inferencing step focus in endowing the mapping with bridges for concepts
that do not have a specific counterpart target concept. In fact, a source concept c1

s may
not always have a target concept counterpart c1

t . However, if a match exists between
the source concept c0

s (a super concept of c1
s) and c0

t , than an implicit similarity exists
between c1

s and c0
s.

Fig. 2. Inferring best possible bridge

This scenario is depicted in Figure 2. Even if the concept EMPLOYEE has no direct
counterpart in the target ontology, instances of this concept should be translated into

MAFRA — A MApping FRAmework for Distributed Ontologies 239

ACADEMICS instances. This can be automatically inferred because EMPLOYEE is sub
concept of PERSON, which in turn is bridged with ACADEMICS. However this is not
always a straight forward solution because ambiguity arises in some situations. To in-
fer a bridge to PHD STUDENT concept is one of such situations. This concept is sub
concept of two concepts, which means that any instance of PHD STUDENT is also an
instance of both EMPLOYEE and STUDENT. However, such qualification do not exists
in target ontology. In this situations we use available domain knowledge, namely the
exploitation of previous mappings where such concepts were bridged. However, for the
moment this decision is up to the domain expert. Inferred bridges are always sub bridges
of some higher bridge and should not state the target entity. In this example, the process
creates an inferred bridge that relies on between PERSON and ACADEMICS to execute
the translation. This is called encapsulation in the OO paradigm.

Fourth, the refinement step intends to improve quality of bridges between a source
concept and sub concepts of target concepts. In fact this is a complementary procedure
of the similarity phase. Besides this step is optional, it becomes important if a good
mapping quality is necessary.

Fifth, the transformation specification step intends to associate a transformation pro-
cedure to the translation, in a way that source instance may be translated into target
instances. This task may be automatized in some extend, specially in well known situa-
tions, which can be acquired through experience. However this task is fundamentally a
domain expert step. There are two main issues that are extremely dependent on the do-
main expert: (i) the alternative bridge conditions specification arising in concept bridg-
ing and property bridging, and (ii) the specification of mapping between different types
of properties.

Execution. This module actually transforms instances from the source ontology into
target ontology by evaluating the semantic bridges defined earlier. In general two dis-
tinct modes of operation are possible, namely offline (static, one-time transformation)
and online (dynamic, continuous mapping between source and the target) execution. A
description of our offline execution engine is provided in section 4.

Post-processing. The post-processing component takes the results of the execution
module to check and improve the quality of the transformation results. The most chal-
lenging task of post-processing is establishing object identity - recognizing that two
instances represent the same real-world object [7]. The post-processing process is not
further elaborated in this paper.

2.2 Vertical Dimension of MAFRA

The vertical dimension of MAFRA contains modules that interact with horizontal mod-
ules during the overall mapping process. Following four modules have been identified.
However, we will only focus on the GUI component in this paper.

Evolution. This aspect focuses on keeping semantic bridges obtained by the “Semantic
Bridge” module, which must be kept in synchrony with the changes in the source and
target ontologies. We refer the interested reader to [18] where we describe a user-driven
ontology evolution strategy.

240 Alexander Maedche et al.

Cooperative Consensus Building. The cooperative consensus building aspect is respon-
sible for establishing a consensus on semantic bridges between two communities par-
ticipating in the mapping process. This is a requirement as one has to choose frequently
from multiple, alternatively possible mappings .The amount of human involvement re-
quired to achieve consensus may be reduced by automating the mapping process as
much as possible.

Domain Constraints and Background Knowledge. The quality of similarity computa-
tion and semantic bridging may be dramatically improved by introducing background
knowledge and domain constraints, e.g. by using glossaries to help identify synonyms
or by using lexical ontologies, such as WordNet or domain-specific thesauri, to identify
similar concepts.

Graphical User Interface. Mapping is a difficult and time consuming process, which
is not less difficult than building an ontology itself, i.e. deep understanding of both
conceptualizations required on human side, thus extensive graphical support must be
given and it is a separate issue how this can be achieved in an optimal way. The graphical
user interfaces (GUI) is further elaborated in section 4.

3 Semantic Bridging

As mentioned in subsection 2.1, the role of the semantic bridging component is to se-
mantically relate entities from the source and target ontologies. A role of a semantic
bridge is to encapsulate all necessary information to transform instances of one source
ontology entity to instances of one target ontology entity.

3.1 Dimensions of Semantic Bridges

The nature of semantic bridges may be understood by considering different dimensions,
each describing one particular aspect of a semantic bridge. By analyzing ontologies
used on the Semantic Web, we identified following five dimensions of semantic bridges:

– Entity dimension: Semantic bridges may relate the ontology entities (i) concepts
(modeling classes of objects from the real world), (ii) relations (modeling rela-
tionships between objects in the real world), and, (iii) attributes (modeling simple
properties of objects in the real world) and (iv) extensional patterns (modeling the
content of the instances).

– Cardinality dimension: This dimension determines the number of ontology entities
at both sides of the semantic bridge, ranging from 1 : 1 to m : n. However, we have
found that in most cases m : n is not a common requirement, so 1 : n and m : 1
suffice. Even when m : n are encountered, often they may be decomposed into m
1 : n bridges.

– Structural dimension: This dimension reflects the way how elementary bridges may
be combined into more complex bridges. We distinguish between the following
different relations that may hold between bridges:

MAFRA — A MApping FRAmework for Distributed Ontologies 241

• Specialization allows a bridge to reuse definitions from another bridge and
provide additional information (e.g. a bridge relating Employee concepts from
two ontologies may be a specialization of a more general bridge relating Person
concepts),

• Abstraction is a variation of the type of the super-classes. When this attribute
is set, the specified bridge should not be executed independently, but only as
super-class of another.

• Composition relation between to bridges specifies that a bridge is composed
of other bridges,

• Alternatives relation between bridges specifies a set of mutually exclusive
bridges.

– Constraint dimension: The constraint dimension permits to control the execution of
a semantic bridge. It reflects relevant constraints applied during the execution phase
to instances from the source ontology. Constraints act as conditions that must hold
in order the transformation procedures is applied onto the instances of the source
ontology, e.g. the bridge evaluate only if the value of the source instance matches a
certain pattern.

– Transformation dimension: This dimension reflects how instances of the source on-
tology are transformed during the mapping process. Transformations assume dif-
ferent complexity and variety depending on the ontologies being bridged.

3.2 Semantic Bridging Ontology (SBO)

Within our approach four different types of relations between entities, a particular se-
mantic bridge exists. A specification of all available semantic bridges, organized in a
taxonomy, is a semantic bridging ontology (SBO). To actually relate the source and
target ontology, the mapping process creates an instance of SBO containing semantic
bridge instances, each encapsulating all necessary information to transform instances of
one source entity to instances of the target entity. Figure 3 describes the most important
entities of the semantic bridging ontology. We refer to the five, previously described
semantic bridge dimensions:

– Three basic types of entities are considered: Concepts, Relations and Attributes,
– The class SEMANTIC BRIDGE is the most generic bridge, it defines the relations to

source and target entities. It is specialized according to the entity type and according
to cardinality. Though, there are many combinations of entity types and cardinality
bridges that are not explicitly specified, it is important to mention that they can be
easily specialized from more general bridges.

– The class SERVICE represents a class used to reference resources that are responsi-
ble to connect to, or describe transformations. This class is intended to be used to
describe these transformations resources. Because services are normally external
to the execution engine, it is required to describe some fundamental characteris-
tics like name, interface (number and type of arguments) and location. Argument
and its sub classes Arg and ArgArray permits to describes these characteristics in a
simple and direct form.

242 Alexander Maedche et al.

Fig. 3. Bridging Ontology view in UML

– RULE is the general class for constraints and transformation-relevant information,
which provides a relation to the service class.

– The class TRANSFORMATION is mandatory in each semantic bridge except if the
semantic bridge is set as abstract. It uses the inService relation to link to the trans-
formation procedure, and any execution engine and function specific attributes in
order to specify extra requirements;

– The class CONDITION represents the conditions that should be verified in order to
execute the semantic bridge. Condition is operationally similar to transformation in
the sense that it must specify all the extra requirements for the function that test the
conditions. Because any semantic bridge may have a condition, it allows to control
complex transformations according to both the schema and instances data, specially
in combination with SemanticBridgeAlt and the Composition constructs.

– The COMPOSITION modelling primitive identified above is supported by the has-
Bridge relation in the SEMANTICBRIDGE class. It has no cardinality limit nor type
constraint which allows any semantic bridge to aggregate many different bridges.
Those semantic bridges are then called one by one, and processed in the context of
the former.

– The ALTERNATIVE modelling primitive is supported by the SemanticBridgeAlt
class. It groups several mutual exclusive semantic bridges. The execution parser

MAFRA — A MApping FRAmework for Distributed Ontologies 243

checks each of the bridges condition rules and the first bridge which conditions
hold is executed while the others are discarded.

In the following, we will describe how the semantic bridging ontology has been
represented so it may be used within Semantic Web applications.

SBO represented in DAML+OIL. DAML+OIL5 has been choosen to represent the se-
mantic bridge ontology6. DAML+OIL builds on and extends RDF-Schema and pro-
vides a formal semantics for it. One of the goals in specifying the semantic bridge
ontology was to maintain and exploit the existent constructs and minimize extra con-
structs, which would maximize as much as possible the acceptance and understanding
by general Semantic Web tools.

3.3 Example

Let us consider Figure 4 where a small part of two different ontologies are represented.
The ontology on the left side (o1) describes the structure of royal families and associated
individuals. These concepts are combined with events, both individual events (birth date
and death date) and family events (marriages and divorces). The ontology on the right
side (o2), characterizes individuals using a very simple approach. It is mainly restricted
in representing if the individual is either a Man or a Woman. The goal of this example
is to specify a mapping between the source and target ontology, using the developed
semantic bridge ontology). A mapping structure represented according to SBO tends to
arrange bridges in a hierarchical way.

First, the mapping must define the two ontologies being mapped. Additionally, one
may specify top-level semantic bridges which serve as entry points for the translation,
even if there are not mandatory. In this case the translation engine starts executing the
”Individual-Individual” bridge.

<Mapping rdf:ID="mapping">
<relatesSourceOntology rdf:resource="&o1;"/>
<relatesTargetOntology rdf:resource="&o2;"/>
<hasBridge rdf:resource="#Individual-Individual"/>

</Mapping>

Notice that the target ontology intends to create instances of either WOMAN or
MAN, but not of INDIVIDUAL. In object oriented terminology the INDIVIDUAL concept
is said to be abstract. It is therefore required to state that this concept bridge should not
be used to create instances, but serve just as support to sub bridges, like it happens
in object oriented paradigm. SBO uses the abstract property in these circumstances.
If no abstract property is specified or if it is set to FALSE, then the concept bridge is
considered as non-abstract.

It is now necessary to set the alternative between INDIVIDUAL and either WOMAN

or MAN. This situation is specified by a SemanticBridgeAlt. In this case the alternatives
are two ConceptBridge’s: ”Individual-Woman” and ”Individual-Man”. Bridges may be
numerically ordered which can useful if the last bridge has no specified condition. Both
rdf: n like syntax and the one presented are allowed to specify the order.

5 http://www.daml.org/2001/03/daml+oil-index.html
6 The SBO ontology is available online at http://kaon.semanticweb.org/2002/04/SBO.daml

244 Alexander Maedche et al.

Fig. 4. UML representation of two small ontologies

<SemanticBridgeAlt rdf:ID="ManOrWoman">
<hasBridge><Seq ordinal="1"><bridge rdf:resource="#Individual-Woman"/></Seq>
</hasBridge>
<hasBridge><Seq ordinal="2"><bridge rdf:resource="#Individual-Man"/></Seq>
</hasBridge>

</SemanticBridgeAlt>

The alternative ConceptBridge’s are presented next: ”Individual-Woman” and
”Individual-Man”.

<ConceptBridge rdf:ID="Individual-Woman">
<subBridgeOf rdf:resource="#Individual-Individual"/>
<relatesSourceEntity rdf:resource="#Individual"/>
<relatesTargetEntity rdf:resource="#Woman"/>
<whenVerifiedCondition rdf:resource="#isFemale"/>

</ConceptBridge>

<ConceptBridge rdf:ID="Individual-Man">
<subBridgeOf rdf:resource="#Individual-Individual"/>
<relatesSourceEntity rdf:resource="#Individual"/>
<relatesTargetEntity rdf:resource="#Man"/>

</ConceptBridge>

Both bridges rely on the ”Individual-Individual” bridge to translate MAN and
WOMAN inherited attributes from INDIVIDUAL. Hence, both are specified as sub-
bridges of ”Individual-Individual” concept bridge. Additionally, ”Individual-Woman”
concept bridge specifies the whenVerifiedCondition property to ”isFemale”. As re-
marked bellow, this condition is responsible to test if the individual is of feminine sex.
If the condition is verified the bridge is executed. Otherwise, and because the condition
is tested in the context of a SemanticBridgeAlt, the next concept bridge in the alterna-
tive is processed. The next concept bridge in the alternative is ”Individual-Man” which
has no associated condition, and therefore it is unconditionally executed.

Respecting the translation process, consider that an INDIVIDUAL instance is to be
translated. The translation engine seeks for bridges relating INDIVIDUAL to any target

MAFRA — A MApping FRAmework for Distributed Ontologies 245

ontology entity. Three are found, but one of them is abstract and is therefore rejected.
The other two are both defined in the context of a SemanticBridgeAlt. The Seman-
ticBridgeAlt choosing/exclusion process starts. One of the bridges (or eventually none
if none of the associated conditions is verified) is selected. The concept bridge must
then create a target instance which will serve as context for complementary bridges.

Complementary attribute bridges are in this example simple 1:1 attribute bridges,
relating one attribute from o1 to an attribute in the target ontology, through the associ-
ated transformation.

<AttributeBridge rdf:ID="name-name">
<relatesSourceEntity rdf:resource="#name"/>
<relatesTargetEntity rdf:resource="#name"/>
<accordingToTransformation rdf:resource="#copyName"/>

</AttributeBridge>

<Transformation rdf:ID="copyName">
<mapSourceArgument>

<MapArg><from rdf:resource="#name"/><to>sourceString</to></MapArg>
</mapSourceArgument>
<mapTargetArgument>

<MapArg><from>targetString</from><to rdf:resource="#name"/></MapArg>
</mapTargetArgument>
<inService>CopyString</inService>

</Transformation>

Concerning the transformation, it intends to map between the bridge entities and
the transformation service arguments. This mapping specification varies according
to the service be requested, either in type, cardinality and used tags. For example,
the ”copyName” transformation specifies the ”CopyString” service to be called. This
service expects to receive a source argument called ”sourceString” and the output
is named ”targetString”. The transformation maps ”sourceString” with the attribute
”o1:Individual.name” and ”targetString” to the ”o2:Individual.name”. ”title-title” at-
tribute bridge is very similar to the previous and is not be presented.

In contrast, ”marriages” attribute bridges are slightly different from previous ones.
Notice that the source entity is not an attribute but a relation to another concept. Nor-
mally an AttributeBridge would not be correctly applied. However, since this is a very
common mapping pattern the translation engine allows to process the relation as an
attribute. That could eventually be a problem if the translation service expects an at-
tribute. However, the ”CountRelations” service expects a relation which is the case of
”spouseIn” and therefore no problem occurs.

<AttributeBridge rdf:ID="mariages">
<relatesSourceEntity rdf:resource="#spouseIn"/>
<relatesTargetEntity rdf:resource="#noMariages"/>
<accordingToTransformation rdf:resource="#countSpouses"/>

</AttributeBridge>

<Transformation rdf:ID="countSpouses"> <putServiceArgument>
<MapArg><from>relation</from><to rdf:resource="#spouseIn"/></MapArg>

</putServiceArgument>
<mapTargetArgument>

<MapArg><from>count</from><to rdf:resource="#noMariages"/></MapArg>
</mapTargetArgument>
<inService>CountRelations</inService>

</Transformation>

246 Alexander Maedche et al.

<AttributeBridge rdf:ID="birth-birthDate">
<relatesSourceEntity rdf:resource="#birth"/>
<relatesTargetEntity rdf:resource="#birthDate"/>
<accordingToTransformation rdf:resource="#Birth"/>

</AttributeBridge>

<Transformation rdf:ID="Birth">
<putServiceArgument>

<MapArg><from>1</from><to rdf:resource="#birth"/></MapArg>
</putServiceArgument>
<putServiceArgument>

<MapArg><from>2</from><to rdf:resource="#date"/></MapArg>
</putServiceArgument>
<mapTargetArgument>

<MapArg><from>targetString</from><to rdf:resource="#birthDate"/></MapArg>
</mapTargetArgument>
<inService>RoyalDate</inService>

</Transformation>

Finally, the ”isFemale” condition is considered. This condition is responsible to ver-
ify if an instance of an individual is of feminine sex. In this case the pattern refers to
the fact that the value of sex attribute has value ”F”. Normally, the services applied in a
condition return a boolean value. However, this constraint would depend on the trans-
lation engine once it is possible to create a table of correspondences between boolean
types and other types. For example, it would be reasonable to consider a true result if
the service returns a set of entities or false if it return a empty set.

<Condition rdf:ID="isFemale">
<putServiceArgument>

<MapArg><from>1</from><to rdf:resource="#sex"/></MapArg>
</putServiceArgument>
<putServiceArgument>

<MapArg><from>pattern</from><to>F</to></MapArg>
</putServiceArgument>
<inService>CascadeAndMatch</inService>

</Condition>

4 Implementation

MAFRA is currently under development within the KAON Ontology and Semantic
Web Framework7. For the moment we achieved the implementation of four modules of
MAFRA: The automatic similarity discovery module, the semantic bridging represen-
tation, the graphical user interface and the execution engine.

A screen-shot of the user interface for mapping specification is presented in Figure
5. In this example two ontologies have been opened side by side, and in between an
instance of the semantic bridging ontology is created using a simplified user interface.

The developed mapping tool represents the domain expert interface with the simi-
larity and semantic bridging modules, and the possibility to interact within the mapping
process. The user participation is fundamental and must be promoted. We adopted a tree
view similar to the most common ontology editors. The mapping tool defines two tree
views for the ontologies being mapped (in the left and in the right) and a central tree
view representing the mapping. Bridges are manipulated through drag and drop actions.
Entities from ontologies are dragged and dropped in a bridge and are stored either in

7 http://kaon.semanticeweb.org

MAFRA — A MApping FRAmework for Distributed Ontologies 247

Fig. 5. Creating Mappings Using KAON Tools

the source or target entities folder. The same happens when specifying the mappings
between bridges parameters and services arguments. For the moment it is not possible
to edit transformation and condition procedures. They are read/parsed into the interface
through a menu command.

The execution engine has been implemented in Java, exploiting the features of
KAON, and it represents the first step of out efforts in developing a general transla-
tion engine for SBO instances. The execution engine uses a mapping instance, which
is an instantiation of the SBO, and a set of source ontology instances. The transforma-
tion engine parses the mapping into the KAON ontology model and executes it. The
process runs for each concept instance that have an associated concept bridge. The
internal structure of the execution engine resemble very much the semantic bridge on-
tology model. A class is defined for some of the major components of the SBO which
implement the functionally described in section 3:

– The mapping class is responsible to read source instances and call the associated
bridge, if any. However, as described before, a source instance may have multiple
associated bridges which implies the mapping checks it and call the alternative
bridge instead.

– The AlternativeBridge class is responsible to try the execution of each of its com-
posing bridge, one after another until one of them is executed.

– The ConceptBridge class encompasses all the information related to the instance,
and it encodes the necessary functionality to to carry out the task. Mostly, the
ConceptBridge class has four ordered tasks: (i) check if the whenVerifiedCondi-
tion holds; if it holds (ii) create an empty target instance, (iii) call the subBridge’s
bridges (concept and attribute bridge) if some exists, and (iv) call the hasBridge’s
bridges.

248 Alexander Maedche et al.

– Attribute and Relation Bridge, even if conceptually different their functioning is
very similar. The execution context of these bridges is an concept instance. This
instance was previously created and received from the concept bridge. The trans-
formations are executed and the resulting values are associated with the current
instance.

– The Service class is responsible to map the bridge parameters (entities) with the
transformation procedure arguments and to call the procedures.

5 Related Work

Much research has been done in the area of information integration. Existing infor-
mation integration systems and approaches (e.g., TSIMMIS [6], Information Manifold
[8], Infomaster8, MOMIS9, Xyleme 10) are “centralized” systems of mediation between
users and distributed data sources, which exploit mappings between a single mediated
schema and schemas of data sources. Those mappings are typically modeled as views
(over the mediated schema in the local-as-view approach, or over the sources schemas
in the global-as-view approach) which are expressed using languages having a formal
semantics. For scaling up to the Web, the “centralized” approach of mediation is prob-
ably not flexible enough, and distributed systems of mediation are more appropriate.

Furthermore, mapping approaches can mainly be distinguished along the follow-
ing three categories: discovery, [14, 3, 5, 10, 1], mapping representation [9, 1, 11, 13]
and execution [4, 11]. However, none of the proposed solutions has really encompassed
the overall mapping process specially considering the evolution and consensus building
of semantic bridges. Having this in mind, we have introduced the Ontology MApping
FRAmework (MAFRA) as a basis for managing and executing mapping between dis-
tributed ontologies in the Semantic Web. Within MAFRA we provide an approach and
conceptual framework that provides a generic view and figure onto the overall map-
ping process. In this paper we have set a specific focus on the semantic bridging phase
corresponding to the mapping representation category. The approaches which resemble
our approach more closely are [13] and [12]. Basically, our work has been motivated
by the work done in [13], where an ontology has been specified for the translation
between the domain-knowledge-base components and problem-solving-method com-
ponents. The approach that comes nearest to ours has been described in [12]. They
describe an approach for integrating vocabularies including means for mapping discov-
ery and representing mappings with a focus on B2B applications (product catalogues)
has been described. In contrast to our work, the RDFT ontology describes a set of core
bridges to (i) lift XML tags to the RDF model and (ii) to define bridges between RDF(S)
classes and properties and to (iii) translate transformation results back to XML. In the
paper [12] it remains unclear, how execution specific information in the form of our
constraint and transformation dimension is attached to the bridges.

8 http://infomaster.stanford.edu/infomaster-info.html
9 http://sparc20.ing.unimo.it/Momis/

10 http://www.xyleme.com

MAFRA — A MApping FRAmework for Distributed Ontologies 249

6 Conclusion and Future Work

Ontologies may used for achieving a common consensus within a user community about
conceptualizing, structuring and sharing domain knowledge. Based on the application
scenario provided by Ontologging we have motivated that it is unrealistic to assume
that one single ontology for different communities of users is realistic in real-world
applications. We argue that decentralization has been one of the key elements for the
scalability of the World Wide Web and its underlying applications. In order to balance
the autonomy of each community with the need for interoperability, mapping mecha-
nisms between ontologies have been proposed. In this paper we presented the Ontology
Mapping Framework (MAFRA) supporting the interactive, incremental and dynamic
ontology mapping process in the context of the Semantic Web. In this paper a specific
focus has been set on the semantic bridging phase where we have provided a detailed
description of a semantic bridge meta-ontology, that is instantiated when mapping be-
tween two domain ontologies.

In the future much work remains to be done. First, depending on the domain ontolo-
gies, data sources, application scenarios, user participation, capabilities and other fac-
tors further semantic bridges may be necessary. For example, procedural mechanisms
may complement the taxonomy of semantic bridges. Thus, we consider the semantic
bridging ontology as evolving. Second, considering the mapping process as a consen-
sus building process of two communities, we will on the basis of our technological in-
frastructure KAON, perform an experiment how multi-user mapping may be efficiently
supported. Third, we will develop an integrated LIFT tool that allows to lift several
existing data representations including relational databases, XML-Schema, DTDs onto
the same data model. Executing a dynamic mapping process keeping the autonomy of
the different input data will be a challenging task.

Acknowledgements. Research for this paper was financed by European Commission,
IST, project ”Ontologging” (IST-2000-28293) and by Marie Curie Fellowship on Se-
mantic Web Technologies. Special thanks to Gabor Nagypal for fruitful discussions on
defining the semantic bridging ontology and Oliver Fodor for stimulating discussions
on the lift component and cooperative mapping. Thanks to the students Frank West-
erhausen and Zoltan Varady who did the implementation work for the graphical user
interface and the static transformation engine.

References

[1] S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini. Semantic integration of
heterogeneous information sources. In Special Issue on Intelligent Information Integration,
Data & Knowledge Engineering, volume 36, pages 215–249. Elsevier Science B.V., 2001.

[2] T. Berners-Lee. Weaving the Web. Harper, San Francisco, 1999.
[3] W. Cohen. The whirl approach to data integration. IEEE Intelligent Systems, pages 1320–

1324, 1998.
[4] T. Critchlow, M. Ganesh, and R. Musick. Automatic generation of warehouse mediators

using an ontology engine. In Proceedings of the 5 th International Workshop on Knowledge
Representation meets Databases (KRDB’98), 1998.

250 Alexander Maedche et al.

[5] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies
on the semantic web. In Proceedings of the World-Wide Web Conference (WWW-2002),
2002.

[6] J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom.
Information Translation, Mediation, and Mosaic-Based Browsing in the TSIMMIS System.
In Exhibits Program of the Proceedings of the ACM SIGMOD International Conference on
Management of Data, page 483, San Jose, California, June 1995., 1995.

[7] S. Khoshafian and G. Copeland. Object identity. In Proceedings of the 1st ACM OOPSLA
conference, Portland, Oregon, September 1986., 1985.

[8] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying Heterogeneous Informa-
tion Sources Using Source Descriptions. In Proceedings of VLDB-96, 1996, 1996.

[9] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid. In
Proceedings of the 27th International Conferences on Very Large Databases, pages 49–58,
2001.

[10] A. Maedche and S. Staab. Computing Similarities between Ontologies. In Proceedings
of the 13th European Conference on Knowledge Engineering and Knowledge Management
EKAW-2002, Madrid, Spain, 2002.

[11] P. Mitra, G. Wiederhold, and M. Kersten. A graph-oriented model for articulation of ontol-
ogy interdependencies. In Proceedings of Conference on Extending Database Technology
(EDBT 2000). Konstanz, Germany, 2000.

[12] B. Omelayenko. Integrating Vocabularies: Discovering and Representing Vocabulary
Maps. In Proceedings of the First International Semantic Web Conference (ISWC-2002),
Sardinia, Italy, June 9-12, 2002., 2002.

[13] J. Y. Park, J. H. Gennari, and M. A. Musen. Mappings for reuse in knowledge-based
systems. In Technical Report, SMI-97-0697, Stanford University, 1997.

[14] E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching. VLDB
Journal, 10(4):334–350, 2001.

[15] P. Resnik. Semantic similarity in a taxonomy: An information-based measure and its ap-
plication to problems of ambiguity in natural language. Journal of Artificial Intelligence,
11(11):95–130, 1999.

[16] M.C. Rousset. Standardization of a web ontology language. IEEE Intelligent Systems,
March/April 2002, 2002.

[17] N. Silva. Discovering Mappings between Distributed Ontologies. In Internal Report, Uni-
versity of Karlsruhe, July 2002., 2002.

[18] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-Driven Ontology Evolu-
tion. In Proceedings of the 13th European Conference on Knowledge Engineering and
Knowledge Management EKAW-2002, Madrid, Spain, 2002.

[19] P.R.S. Visser, D.M. Jones, T.J.M. Bench-Capon, and M.J.R. Shave. An analysis of ontology
mismatches: Heterogeneity versus interoperability. In AAAI 1997 Spring Symposium on
Ontological Engineering, Stanford CA., USA, pages 164–72, 1997.

Measuring Similarity between Ontologies

Alexander Maedche1 and Steffen Staab2,3

1 FZI - Research Center for Information Technologies at the University of Karlsruhe,
Haid-und-Neu-Str. 10-14, D-76131 Karlsruhe, Germany

http://www.fzi.de/WIM
2 Institute AIFB, Univ. Karlsruhe,

D-76128 Karlsruhe, Germany
http://www.aifb.uni-karlsruhe.de/WBS

3 Ontoprise GmbH,
76131 Karlsruhe, Germany

http://www.ontoprise.de

Abstract. Ontologies now play an important role for many knowledge-intensive
applications for which they provide a source of precisely defined terms. How-
ever, with their wide-spread usage there come problems concerning their prolif-
eration. Ontology engineers or users frequently have a core ontology that they
use, e.g., for browsing or querying data, but they need to extend it with, adapt it
to, or compare it with the large set of other ontologies. For the task of detecting
and retrieving relevant ontologies, one needs means for measuring the similar-
ity between ontologies. We present a set of ontology similarity measures and a
multiple-phase empirical evaluation.

1 Introduction

A core purpose for the use of ontologies is the exchange of data not only at a com-
mon syntactic, but also at a shared semantic level. Especially on the WWW more and
more ontologies are constructed and used, beginning to replace the old-fashioned ways
of exchanging business data via standardized comma-separated formats by standards
that adhere to semantic specifications given through ontologies. Thus, in the near future
more and more ontologies will be made available on the WWW. With this upswing and
beginning widespread usage of ontologies, however, new problems are incurred. Ontol-
ogy engineers or users frequently have a core ontology that they use, e.g., for browsing
or querying data, but they need to extend it with, adapt it to, or compare it with the large
set of other ontologies. For the task of detecting and retrieving relevant ontologies, one
needs means for measuring the similarity between ontologies on a canonical scale (e.g.,
the reals in [0, 1]).

So, how may we measure the similarity of ontologies or of ontology parts? One
could make use of the formal structures of ontologies and try at the unification of on-
tologies or ontology parts (which is essentially subgraph matching). The drawback here
would be that all real-world ontologies that we know of do not only specify its con-
ceptualization by logical structures, but to a large extent also by reference to terms that
are grounded through human natural language use. For instance, modeling that MAN

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 251–263, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

252 Alexander Maedche and Steffen Staab

and WOMAN are subordinates of PERSON suffices for many purposes even without any
further differentiae. Two ontologies that contain these parts agree on their semantics
only to a small extent by formal means, but to a larger extent by reference to common
terminology. Furthermore, missing structures need not be problematic. For instance, if
one ontology comes with concepts referred to by VEHICLE, CAR, SPORTSWAGON and
the other with VEHICLE and SPORTSWAGON only, the semantic exchange of data may
still be rather easy, even though the second ontology lacks the two taxonomic links from
VEHICLE to CAR and to SPORTSWAGON.

Looking at these requirements, we have found a lack of comprehensive methodolog-
ical inventory to measure similarity between real-world ontologies, as well as practical,
reproducable experiences with measuring similarity between ontologies. Firstly, this
paper is about introducing the necessary inventory. We break down the overall task and
propose a set of measures that capture the similarity of ontologies at two different levels,
the lexical and the conceptual. In general our similarity measures describe the extent to
which one ontology specification is covered by the other — and vice versa. Secondly,
this paper is about providing some practical experiences and results with the proposed
measures. Five subjects, four novices and one ontology engineering expert, have mod-
eled ontologies in three different phases about a commonly well-known domain given
some additional background knowledge in form of domain texts. The ontologies gen-
erated by the different subjects then served as input to an empirical evaluation study of
our similarity measuring framework.

In the following, we first prepare the ground for our proposal and our empirical
evaluation study by formally specifying the ontology structure and its semantic we refer
to subsequently. In the two sections thereafter, we propose measures for describing the
similarity of different ontology parts at the lexical and conceptual level. In Section 5,
we describe the empirical evaluation study and the results we achieved there, before we
relate to other research and conclude the paper with an outlook on future challenges.

2 A Two-Layer View of Ontologies

In order to compare two ontologies and measure similarity between them (or between
parts of them), one may consider different semiotic levels. The two levels that we can
focus on (abstracting from an actual application) are: First, at the lexical level we may
investigate how terms are used to convey meanings. Second, at the conceptual level we
may investigate what conceptual relations exist between the terms.1 For this investiga-
tion we define a simple notion of ontology and some auxiliary functions in six steps.

Definition 1 (Concept Language). Our simple concept language is defined starting
from atomic concepts and roles. Concepts are unary predicates and roles are binary
predicates over a domain U , with individuals being the elements of U . Correspondingly,
an interpretation I of the language is a function that assigns to each concept symbol
(taken from the set A) a subset of the domain U , I : A �→2U , to each role symbol
(taken from the set P) a binary relation of U , I : P �→2U×U . Concept terms and role

1 Further studies could look at the pragmatic and the social level and try find out about the
application of terms in concrete applications and social contexts.

Measuring Similarity between Ontologies 253

terms are defined inductively with terminological axioms and using operators. C and
D denote concept terms, R and S denote roles.

Concept Forming Operator
Syntax Semantics
Catom

{
d ∈ UI | Catom atomic, d ∈ I (Catom)

}
C 	 D CI ∩ DI

∀R.C
{
d ∈ UI | ∀e(d, e) ∈ RI ⇒ e ∈ CI}

Role Forming Operators
Syntax Semantics
Ratom

{
(d, e) ∈ UI × UI |Ratom atomic, (d, e) ∈ I (Ratom)

}
R 	 S RI ∩ SI

C × D
{
(d, e) ∈ CI × DI}

Terminological Axioms
Axiom Semantics Axiom Semantics
D

.= C DI = CI D � C DI ⊆ CI

S
.= R SI = RI S � R SI ⊆ RI

Definition 2 (Lexicon). The lexicon consists of a set of terms (lexical entries) for con-
cepts, Lc, and a set of terms for relations, Lr. Their union is the lexicon L := Lc ∪Lr.

Definition 3 (Reference Function). The reference functions F , G, with F : 2L
c �→

2A and G : 2L
s �→2P . F and G link sets of lexical entries2 {Li} ⊂ L to the set of

concepts and relations they refer to, respectively. In general, one lexical entry may refer
to several concepts or relations and one concept or relation may be refered to by several
lexical entries. Their inverses are F−1 and G−1.

We distinguish between terms and concept/relation symbols, because we want to
allow for the explicit expression of ambiguities. For instance, one term like “bank”
may refer to two concept symbols, viz. BANK-1 being a subconcept of FURNITURE

and BANK-2 being a subconcept of COMPANY. Expressing this by disjunction (e.g.,
BANK

.= BANK-1 � BANK-2) would be logically equivalent, but it would conflate two
ontological states, viz. “bank” being an ambiguous natural language term and BANK-1
being a construed symbol for precise logical denotation.

Definition 4 (Core Ontology). A core ontology O is a tuple (A,P ,D,L,F ,G), which
consists of a set of concept symbols A, a set of relation symbols P , a set of statements
D in the concept language defined above, a lexicon L and two reference functions F ,G.

Definition 5 (Concept Hierarchy). The concept hierarchy H is defined by
H := {(C, D)|C, D ∈ A ∧ CI ⊆ DI}

2 The reference functions are defined on sets of lexical entries (instead of single entities) in order
to allow for a more compact description of formulae later on.

254 Alexander Maedche and Steffen Staab

Definition 6 (Domain/Range). Domain (d(R)) and range (r(R)) of a relation R are
defined by {d|∃e(d, e) ∈ RI} and {e|∃d(d, e) ∈ RI}, respectively.

In the following sections we propose and use methods for measuring similarity of
ontologies based on the lexical and the conceptual level of ontologies.

3 Lexical Comparison Level

The edit distance formulated by Levenshtein [5] is a well-established method for weight-
ing the difference between two strings. It measures the minimum number of token in-
sertions, deletions, and substitutions required to transform one string into another using
a dynamic programming algorithm. For example, the edit distance, ed, between the two
lexical entries “TopHotel” and “Top Hotel” equals 1, ed(“TopHotel”, “Top Hotel”) = 1,
because one insertion operation changes the string “TopHotel” into “Top Hotel”.

Based on Levenshtein’s edit distance we propose a lexical similarity measure for
strings, the String Matching (SM), which compares two lexical entries Li, Lj:

SM(Li, Lj) := max
(

0,
min(|Li|, |Lj|) − ed(Li, Lj)

min(|Li|, |Lj |)
)
∈ [0, 1].

SM returns a degree of similarity between 0 and 1, where 1 stands for perfect match
and zero for bad match. It considers the number of changes that must be made to
change one string into the other and weighs the number of these changes against the
length of the shortest string of these two. In our example from above, we compute
SM(“TopHotel”, “Top Hotel”) = 7

8 . In order to provide a summarizing figure for the
lexical level of two sign systems, e.g. for the lexica referring to concepts Lc

1,Lc
2 of two

ontologiesO1,O2, we compare two sets L1,L2 returning the averaged String Matching
SM(L1,L2):

SM(L1,L2) :=
1

|L1|
∑

Li∈L1

max
Lj∈L2

SM(Li, Lj).

SM(L1,L2) is an asymmetric measure that determines the extent to which the lexical
level of a sign system L1 (the target) is covered by the one of a second sign system
L2 (the source). Obviously, SM(L1,L2) may be quite different from SM(L2,L1). E.g.,
when L2 contains all the strings of L1, but also plenty of others, then SM(L1,L2) = 1,
but SM(L2,L1) may approach zero. Compared to the relative number of hits,

RelHit(L1,L2) :=
|L1 ∩ L2|

|L1| ,

SM diminishes the influence of string pseudo-differences in different ontologies, such
as use vs. not-use of underscores or hyphens, use of singular vs. plural, or use of addi-
tional markup characters. Of course, SM may sometimes be deceptive, when two strings
resemble each other though they there is no meaningful relationship between them, e.g.
“power” and “tower”. In our case study, however, we have found that in spite of this
added “noise” SM may be very helpful for proposing good matches of strings.

Measuring Similarity between Ontologies 255

4 Conceptual Comparison Level

At the conceptual level we may compare semantic structures of ontologies O1,O2, that
vary for concepts A1,A2. In our model the conceptual structures are constituted by
H1,H2 and P1,P2.

4.1 Comparing Taxonomies H1, H2

Though there has been a long discussion in the literature about comparing the simi-
larity of two concepts in a common taxonomy (cf. Section 6), we have not found any
discussion about comparing two taxonomies.

We start by determining the extent to which two taxonomies as seen from two par-
ticularly identified concepts compare. More precisely, we assume that we have one
lexical entry L ∈ Lc

1 ∩ Lc
2 that refers via F1 and F2 to two concepts C1, C2 from two

different taxonomies H1,H2. The intensional semantics of C1 (C2) may be seen to be
constituted by the semantic cotopy (SC) of C1 (C2), i.e. all its super- and subconcepts:

SC(Ci,H) := {Cj ∈ A|H(Ci, Cj) ∨H(Cj , Ci)}.
SC is overloaded to process sets of concepts, too.

SC({C1, . . . , Cn},H) :=
⋃

i:=1...n

SC(Ci,H).

The taxonomic overlap (TO) betweenH1 and H2 as seen from the concepts referred
to by L may then be computed by followingF−1

1 and F−1

2 back to the common lexicon.

TO′(L,O1,O2) :=
|F−1

1 (SC(F({L}),H1)) ∩ F−1
2 (SC(F({L}),H2))|

|F−1
1 (SC(F({L}),H1)) ∪ F−1

2 (SC(F({L}),H2))|
Averaging over all lexical entries we may thus compute a semantic similarity for

the two given hierarchies.
In addition, however, we must consider the case where a lexical entry L is in Lc

1,
but not in Lc

2. Then, the simplest assumption is that the L is simply missing from Lc
2,

but when comparing the two hierarchies the optimistic taxonomic approximation is the
one that searches for the maximum overlap given a fictive membership of L to Lc

2 by

TO′′(L,O1,O2) := max
C∈C2

{|F−1
1 (SC(F({L}),H1)) ∩ F−1

2 (SC(C),H2)|
|F−1

1 (SC(F({L}),H1)) ∪ F−1
2 (SC(C),H2)|

}

Given these premises the averaged similarity TO between two taxonomies (H1,H2)
of ontologies (O1,O2) may then be defined by:

TO(O1,O2) :=
1

|Lc
1|

∑
L∈Lc

1

TO(L,O1,O2), with

TO(L,O1,O2) :=

{
TO′(L,O1,O2) if L ∈ Lc

2

TO′′(L,O1,O2) if L �∈ Lc
2

256 Alexander Maedche and Steffen Staab

Example: A partial example for comparing taxonomies is given in Figure 1: The tax-
onomic overlap TO′(“hotel”,H1,H2) is determined byF−1

1 (SC(F({“hotel”}),H1)) =
{“hotel”, “accomodation”} and F−1

2 (SC(F({“hotel”}),H2)) = {“wellness hotel”,
“hotel”} resulting in TO′(“hotel”,H1,H2) = 1

3 as input to TO.

hotel

wellness hotel

accomodation

youth

hostel

city
area

Fig. 1. Two Example Ontologies O1,O2

When we consider the lexical entry “accomodation”, which is only in Lc
1, we com-

pute the taxonomic overlap as follows: We compute for the lexical entry “accomodation”
F−1

1 (SC(F({“accomodation”}),H1)) = {“youth hostel”, “accomodation”, “hotel”}.
The concept referred to by “hotel” in A2 yields the best match resulting in
F−1

2 (SC(F({“hotel”}))) = {“wellness hotel”, “hotel”} and, thus,
TO′′(“accomodation”,H1,H2) = 1

4 .
The reader may note several properties of TO: First, TO is asymmetric. While TO′ is

a symmetrical measure, TO′′ is asymmetric, because depending on coverage it may be
very easy to integrate one taxonomy into another one, but it may be very difficult to do
it the other way around. Second, for ease of presentation of the basic principles we have
given here a shortened definition. The longer version specially considers the (minority
of) cases, where one lexical entry refers to several concepts. The longer version does
not consider the semantic cotopies of all referred concepts for computing TO, but only
those that eventually optimize TO. Third, obviously TO becomes meaningless when Lc

1

and Lc
2 are disjoint. The more Lc

1 and Lc
2 overlap (or are made to overlap, e.g. through

a syntactic merge), the better TO may focus on existing hierarchical structures and not
on optimistic estimations of adding a new lexical entry to Lc

2.

4.2 Comparing Relations P1, P2

At the lexical level a relation R1 is referred to by a lexical entry L1. At the conceptual
level it specifies a pair (C1, D1), C1, D1 ∈ C describing the concept C1 that the relation
belongs to and its range restriction D1.

We determine the accuracy that two relations match, RO (relation overlap), based
on the geometric mean value of how similar their domain and range concepts are. The
geometric mean reflects the intuition that if either domain or range concepts utterly
fail to match, the matching accuracy converges against 0, whereas the arithmetic mean
value might still turn out a value of 0.5.

Measuring Similarity between Ontologies 257

The similarity between two concepts (the concept match CM) may be computed by
considering their semantic cotopy. However, the measures derived from complete co-
topies underestimate the place of concepts in the taxonomy. For instance, the semantic
cotopy of the concept corresponding to “hotel” in L2 (Figure 1) is identical to the se-
mantic cotopy of the one corresponding to “wellness hotel”. Hence, for the purpose of
similarity of concepts (rather than taxonomies), we define the upwards cotopy (UC) as
follows:

UC(Ci,H) := {Cj ∈ A|H(Ci, Cj)}.

Based on the definition of the upwards cotopy (UC) the concept match (CM) is then
defined in analogy to TO′:

CM(C1,O1, C2,O2) :=
|F−1

1 (UC(C1,H1)) ∩ F−1
2 (UC(C2,H2))|

|F−1
1 (UC(C1,H1)) ∪ F−1

2 (UC(C2,H2))|
.

Then RO′ of relations R1, R2 may be defined by:

RO′(R1,O1, R2,O2) :=
√

CM(d(R1),O1, d(R2),O2) · CM(r(R1),O1, r(R2),O1).

In order to take reference by L ∈ Lr
1, L ∈ Lr

2 into account:

RO′′(L,O1,O2) :=
1

|G1({L})|
∑

R1∈G1({L}) max
R2∈G2({L})

{RO′(R1,O1, R2,O2)}

Some lexical entries only refer to relations in P1:

RO′′′(L,O1,O2) :=
1

|G1({L})|
∑

R1∈G1({L})
max

R2∈P2
{RO′(R1,O1, R2,O2)}

Combined we have for L ∈ Lr
1:

RO(L,O1,O2) :=

{
RO′′(L,O1,O2) if L ∈ Lr

2

RO′′′(L,O1,O2) if L �∈ Lr
2

The averaged relation overlap RO is then defined by:

RO(O1,O2) :=
1

|Lr
1|

∑
L∈Lr

1

RO(L,O1,O2).

258 Alexander Maedche and Steffen Staab

Example. We take Figure 1 as an example setting for computing RO. We assume one
relation R1 in O1, referenced by “located at” and specifying the domain and range
corresponding to (“hotel”, “area”). In O2, the same lexical entry may refer to R2, with
domain and range corresponding to (“hotel”, “city”). Computing CM for the concepts
referred to by “hotel” in O1 and O2 results in 1

2 . The CM between the concepts referred
to by “area” in O1 and “city” in O2 also returns 1

2 . Thus, the RO′ for the lexical entry

“located at” boils down to
√

1
2 · 1

2 = 0.5 as input to RO.

The reader may note two major characteristics of RO. First, it depends on the agree-
ment of the lexica and the taxonomies of O1 and O2. Without reasonable agreement,
RO may not reach high values of similarity. Second, RO is also asymmetric reflecting
the coverage of relations of the first by the second ontology.

5 Empirical Evaluation

In this section we present a case study that has been carried out in a seminar on ontology
engineering at our institute. We have pursued two main objectives with our evaluation
study: (i) we wanted to determine the quality of our measures and evaluate them on
actual data, and, (ii), we wanted to investigate and get an intuition about how similar
ontologies about the same domain are that have been modeled by different persons.

5.1 Evaluation Study

The experiment was carried out with four subjects, viz. undergraduates in industrial en-
gineering. The modeling expertise of the subjects was limited. Before actual modeling,
they received 3 hours training in ontology engineering in general and 3 hours in using
our ontology engineering workbench. Furthermore, they were acquainted with the pur-
pose of the ontology, viz. as an ontology for information extraction and semantic search.
Our study required from each of them the building of ontologies in the tourism domain
using their background knowledge and using web pages from a WWW site about touris-
tic offers, e.g. hotels with various attractions or cultural events. Our objective was an
overall cross-comparison of ontologies, but we also wanted to test the appropriateness
of single measures, To avoid error chaining, we therefore performed the evaluation in
three phases (resulting in 4 · 3 = 12 ontologies). Furthermore, an expert ontology engi-
neer (subject 0) modeled a “gold standard” for the task (a 13th ontology).

Phase I: A small top level structure was given to the subjects.3 Based on this top level
and the available knowledge sources, the subjects had to model a complete tourism
domain ontology. To keep the ontologies within comparable ranges, the students were
required to model around 300 concepts and 80 relations.

Phase II: The second phase was geared to produce results for TO, while avoiding the
uncertainties of lexical disagreement. Therefore, the subjects were given 310 lexical en-
tries (for concepts) from the gold standard and the top level structure described before.

3 It contained four concepts referred to by “thing”, “material”, “intangible”, and “situation”.

Measuring Similarity between Ontologies 259

Then everyone of them had to, first, model the taxonomy for concepts referred to by the
310 lexical entries and, second, model about 80 relations.

Phase III: The last phase was defined to control RO in absence of “noise” from dif-
ferent taxonomies and lexica. There the taxonomy (from the gold standard) was given.
It consisted of 310 lexical entries, Lc, and a set of 310 corresponding concepts, A,
taxonomically related by H. The subjects had to model about 80 relations.

5.2 Lexical Comparison Level

The phase I-ontologies described above are used for general cross-comparison, includ-
ing the lexical level. The pairwise string matching (SM, cf. Section 3) of the five lexica
referring to concepts and relations, respectively, returned the results depicted in Table 1.

Results: The results for computing SM(Lc
1,Lc

2) of matching lexical entries referring to
concepts vary between 0.38 and 0.65 with an average of 0.45. Comparing lexical entries
referring to relations SM(Ls

1,Ls
2) results in values between 0.16 and 0.53 with an av-

erage of 0.36. Several typical, though not necessarily good, pairs for which high string
match values were computed are shown in Table 2. RelHit(Lc

1,Lc
2) ranged between 20

to 25%, i.e. this percentage of lexical entries referring to concepts matched exactly. For
lexical entries referring to relations the results were much worse, viz. between 10 to
15%.

Subject

i\j 0 1 2 3 4
0 - 0.51,0.35 0.53,0.21 0.46,0.39 0.5,0.29
1 0.43,0.52 - 0.65,0.43 0.43,0.53 0.39,0.41
2 0.42,0.24 0.54,0.37 - 0.36,0.24 0.4,0.2
3 0.38,0.47 0.43,0.45 0.38,0.28 - 0.38,0.36
4 0.46,0.38 0.41,0.5 0.48,0.16 0.43,0.39 -

Table 1. SM(Lc
i ,Lc

j), SM(Ls
i ,Ls

j) for phase I-ontologies.

Interpretation: Analysing the figures we find that human subjects have a considerable
higher agreement on lexical entries referring to concepts than on ones referring to rela-
tions. Investigating the auxiliary measures we have found that SM values above 0.75 in
general retrieve meaningful matches — in spite of few pitfalls (cf. Table 2).

5.3 Conceptual Comparison Level

At the conceptual level we may compare semantic structures of ontologies O1,O2, that
vary for concepts A1,A2. We use the ontologies of phase I, II, and III for evaluating
our measures introduced in Section 4.

260 Alexander Maedche and Steffen Staab

L1 L2 SM(L1, L2)

Sehenswuerdigkeit Sehenswürdigkeit 0.875
[seesight] [seesight]
Verkehrsmittel Luftverkehrsmittel 0.71
[vehicle] [air vehicle]
Zelt Zeit 0.75
[tent] [time]
Anzahl Betten hat Anzahl Betten 0.77
[number beds] [has number beds]

Table 2. Typical string matches

Results: Table 3 presents the results we have obtained for the phase I-ontologies using
the similarity measures taxonomy overlap (TO) and relation overlap (RO). The reader
may note that these ontologies have been built without any previous assumptions about
the lexica L1 and L2, thus their similarity values are well below those of later phases
where the lexica for concepts were predefined.

Subject

i\j 0 1 2 3 4
0 - 0.33,0.35 0.31,0.25 0.32,0.5 0.29,0.28
1 0.35,0.15 - 0.4,0.41 0.34,0.03 0.28,0.15
2 0.28,0.12 0.36,0.25 - 0.25,0.04 0.24,0.15
3 0.36,0.4 0.31,0.32 0.24,0.04 - 0.26,0.03
4 0.38,0.29 0.31,0.21 0.32,0.2 0.32,0.26 -

Table 3. TO(Oi,Oj), RO(Oi,Oj) for phase I-ontologies.

Table 4 depicts the similarity measures computed for phase II-ontologies. Values for
TO range between 0.47 and 0.87, the average TO over all 20 cross-comparisons results
in 0.56. RO yields values from 0.34 to 0.82 with an average of 0.47.

Subject

i\j 0 1 2 3 4
0 - 0.57,0.5 0.54,0.47 0.54,0.48 0.59,0.39
1 0.57,0.44 - 0.86,0.78 0.48,0.45 0.55,0.35
2 0.54,0.46 0.87,0.82 - 0.46,0.46 0.58,0.35
3 0.54,0.44 0.48,0.5 0.46,0.47 - 0.47,0.34
4 0.58,0.4 0.55,0.45 0.57,0.45 0.47,0.35 -

Table 4. TO(Oi,Oj), RO(Oi,Oj) for phase II-ontologies.

Measuring Similarity between Ontologies 261

Interpretation: The figures indicate that subjects tend to agree or disagree on tax-
onomies irrespective of the amount of material being predefined. In fact, correlation
between TO values of phase I- and phase II- ontologies support this indication, because
correlation is 0.58 — distinctly positive — for the ontologies with and without prede-
fined lexica. Furthermore, we may conjecture that comparison between TO values (in
order to select the best) remains meaningful even with a restricted overlap of lexica.

Results: Table 5 depicts the similarity measures computed for phase III-ontologies,
where only RO has been computed, because the taxonomy was predefined. RO here
ranges between 0.23 and 0.71, the average RO over all 20 cross-comparisons achieving
0.5.

Subject

i\j 0 1 2 3 4
0 - 0.61 0.38 0.51 0.54
1 0.69 - 0.56 0.57 0.55
2 0.4 0.49 - 0.35 0.23
3 0.67 0.71 0.5 - 0.57
4 0.45 0.44 0.3 0.41 -

Table 5. RO(Oi,Oj) for phase III-ontologies.

Interpretation: The correlation of RO values between phases I and II computes to 0.34,
between phases I and III to 0.27, and between phases II and III to 0.16. In general,
higher RO values are reached without a predefined taxonomy — this reflects the obser-
vation that subjects found it easy to use a predefined lexicon, but extremely difficult to
continue modeling given a predefined taxonomy.

Overall, we may conjecture that the engineers’ use of their lexicon correlates rather
strongly with their conceptual model and vice versa: The similarity measures for subject
3 ontologies with subject 4 ontologies result in very low values at the lexical and at
the conceptual level. In contrast, subject 1 ontologies reach high similarity values with
subject 2 ontologies at all levels.

6 Related Work

Similarity measures for ontological structures have been widely researched, e.g. in
cognitive science, databases [9], software engineering[11], and AI (e.g., [8, 1, 4, 3]).
Though this research covers many wide areas and application possibilities, most of it
has restricted its attention to the determination of similarity of lexicon, concepts, and
relations within one ontology.

The nearest to our comparison between two ontologies come [2, 3] and [13]. [2]
introduces several similarity measures in order to locate a new complex concept into
an existing ontology by similarity rather than by logic subsumption. Bisson restricts

262 Alexander Maedche and Steffen Staab

the attention to the conceptual comparison level. In contrast to our work the new con-
cept is described in terms of the existing ontology. Furthermore, he does not distinguish
relations into taxonomic relations and other ones, thus ignoring the semantics of in-
heritance. [13] compute description compatibility in order to answer queries that are
formulated with a conceptual structure that is different from the one of the information
system. In contrast to our approach their measures depend to a very large extent on
a shared ontology that mediates between locally extended ontologies. Their algorithm
also seems less suited to evaluate similarities of sets of lexical entries, taxonomies, and
other relations.

Dieng & Hug [3] compare concept lattices in order to find out about the common
location of two concepts in a merged ontology using several measures taking also ad-
vantage of the lattice. Again, however, their concerns are different from ours as they do
not determine similarities of ontologies.

Research in the area of schema integration has been carried out since the beginning
of the 1980s. Schema comparison analyzes and compares schema in order to determine
correspondences and comes therefore near to our approach. However, their purpose is
the alignment of pairs of tables or concepts [9] and often restricted to string and data
type similarities.

Finally, so-called pathfinder networks [10] began in 1981 as an attempt to develop a
network model for proximity data. They use use multidimensional scaling techniques.
This statistical techniques transforms the concept network relationships into inter-point
distances in a space of minimal dimensionality. In this space different similarity opera-
tions are performed. In contrast to our work, however, pathfinder networks do not focus
on “real-world ontologies” including a lexical layer.

7 Conclusion

We have considered ontologies as two-layered systems, consisting of a lexical and a
conceptual layer. Based on this core ontology model a methodological inventory to
measure similarity between ontologies with each other based on the notions of lex-
icon L, reference functions F ,G and semantic cotopy (SC, UC) has been described.
Then, we have performed a three-phase empirical evaluation study to see how our mea-
sures perform in isolation and in combination. With our investigation we have created
a methodological baseline and collected some empirical experiences.

Our measures may be applied in different application fields. First, we are currently
working on an “ontology search engine” that will use the proposed measures as a basis
retrieving ontologies based a user-defined core ontology that matches against available
ontologies. Classical evaluation measures like precision and recall from the information
retrieval community will serve as input for a quality-based evaluation of the proposed
measures. Second, in [7] we describe how the measures presented in this paper may be
extended for the instance level. Based on these instance-based similarity measures we
provide means for computing a hierarchical clustering of ontology-based instances. Pre-
liminary evaluation studies of applying the instance-based similarity measures within
a clustering algorithm have shown promising results. Third, the measures proposed
within this paper have shown to be very useful for supporting the discovery of mappings

Measuring Similarity between Ontologies 263

between two ontologies (see [6]). Fourth, such applications scenarios will become im-
portant for integrating existing ontologies into an ontology engineering process or for
facilitating collaborative ontology engineering (cf. [12]).

Acknowledgements. Research for this paper was partially funded by the EU IST projects
Bizon (IST-2001-33506) and SWAP (IST-2001-34103).

References

[1] E. Agirre and G. Rigau. Word sense disambiguation using conceptual density. In Proc. of
COLING-96, 1996.

[2] G. Bisson. Learning in FOL with a similarity measure. In Proc. of AAAI-1992, pages
82–87, 1992.

[3] R. Dieng and S. Hug. Comparison of personal ontologies represented through conceptual
graphs. In Proceedings of ECAI 1998, pages 341–345, 1998.

[4] E. Hovy. Combining and standardizing large-scale, practical ontologies for machine trans-
lation and other uses. In Proc. of the First Int. Conf. on Language Resources and Evaluation
(LREC), 1998.

[5] I. V. Levenshtein. Binary Codes capable of correcting deletions, insertions, and reversals.
Cybernetics and Control Theory, 10(8):707–710, 1966.

[6] A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA – A MApping FRamework for
Distributed Ontologies. In Proceedings of the 13th European Conference on Knowledge
Engineering and Knowledge Management EKAW-2002, Madrid, Spain, 2002.

[7] A. Maedche and V. Zacharias. Clustering Ontology-based Metadata in the Semantic Web.
In Proceedings of the Joint Conferences 13th European Conference on Machine Learn-
ing (ECML’02) and 6th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD’02), Springer, LNAI, Finland, Helsinki, 2002.

[8] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application of a metric
on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics, 19(1), 1989.

[9] E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching. VLDB
Journal, 10(4):334–350, 2001.

[10] R. W. Schvanefeldt. Pathfinder Associative Networks: Studies in Knowledge Organization.
Ablex Publishing Corporation, Norwood, New Jersey, 1989.

[11] G. Spanoudakis and P. Constantopoulos. Similarity for analogical software reuse: A com-
putational model. In Proc. of ECAI-1994, pages 18–22, 1994.

[12] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. Ontoedit: Collabora-
tive ontology development for the semantic web. In Proceedings of the 1st International
Semantic Web Conference (ISWC2002), June 9-12th, 2002, Sardinia, Italia, LNCS 2342,
pages 221–235. Springer, 2002.

[13] P. Weinstein and W. Birmingham. Comparing concepts in differentiated ontologies. In
Proc. of KAW-99, 1999.

Ontology-Mediated Business Integration

Borys Omelayenko

Division of Mathematics and Computer Science
Vrije Universiteit, De Boelelaan 1081, 1081hv,

Amsterdam, the Netherlands
borys@cs.vu.nl

Abstract. Traditional database- or XML-mediated business integra-
tion approaches use inexpressive mediating models of database schemas
or XML trees, and a number of validation tasks need to be solved
with ad-hoc programming techniques. We propose an architecture for
an ontology-based business integration service relying on a composite
mediating ontology constructed from several business, a temporal, and
a mapping ontologies. The architecture allows using inference over these
ontologies to perform various validations tasks.

1 The Need for Expressive Mediating Models

Current state-of-the-art business integration services are based on XML-
mediated frameworks that utilize a tree-based model of XML documents and
have to replace database-mediated approaches. XML provides natural means
to represent the part-of hierarchy of labelled data strings that simplifies the
document transformation process. Such an approach is adopted by the leading
business integration toolkits BizTalk1 and CapeStudio.2

Ontologies provide much richer modelling means with classes and properties
organized into is-a hierarchies and enriched with axioms and relations process-
able with inference. They are promised to be the panacea for numerous integra-
tion problems in both traditional and Semantic Web contexts. However, quite
often ontologies are used as simple or structured vocabularies and in this role
they do not provide any substantial benefits comparing to existing techniques,
besides getting some flavor coming with modern terminology.

Constructing a shared domain ontology from scratch is a difficult task suf-
fering the knowledge acquisition bottleneck. However, a number of specific parts
of the business integration domain have been carefully modelled within several
standardization initiatives driving by large consortiums. We used the following
standardized models:

WSDL The Web Service Description Language3 specifying internet interface
to specific company’s ERP systems. Web-services are described in WSDL

1 http://www.BizTalk.org
2 http://www.capeclear.com/products/capestudio
3 http://www.w3.org/TR/wsdl

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 264–269, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Ontology-Mediated Business Integration 265

with Types and Port Types that refer to XML Schemas of the messages
(i.e. documents) and events at which these messages occur.4

PSL Process Specification Language5 ontology defines classes for activities,
timepoints, occurrences of activities, and a number of temporal rela-
tions between them (a timepoint before another timepoint, an object
participates in. an activity at a timepoint, etc.) as well as objects that
possess no temporal properties.

ebXML (Electronic Business with XML6) specifies Collaborations of
companies playing certain Roles in Activities communicating via
BusinessTransactions.

These models describe large pieces of knowledge in the supporting documents,
which need to be explicitly formalized and integrated in a single ontology.

The objective of the mediating service is to produce all the messages, ex-
pected by the companies linked to the service, with attached filled-in XML
documents by requesting and parsing input messages and attached documents.
Straightforwardly, the mediator needs to possess a collection of XSLT [1] scripts
translating the XML documents via a mediating set of documents or a database.
This approach is efficient under the following assumptions:

– Event sequences produced by ERP systems of different companies are similar
with frequent one-to-one correspondences between the pairs of events.

– Each document has a counterpart to be translated to, or there exists well-
specified dependency between the documents.

These two assumptions hamper scalability of the approach and prevent new
companies from participating in the collaborations. One-to-one correspondence
between events or documents occurs not that often. The companies playing dif-
ferent roles within procurement chains produce and expect different documents
at different points in time. It is quite common that an acknowledgement for a
purchase order request is required by one ERP system and not generated by
the other one [2]. And even common documents like product catalogs tend to
represent different compulsory information in addition to the common kernel.

Moreover, each document is not more than a collection of properties of several
domain objects grouped together for a certain specific operation. E.g. a purchase
order does not specify the products, nor the supplier. Instead, it refers to some
property of a product (e.g. description and price, while other properties of the
product, like weight, are available via separate requests) and to some property
of the supplier (e.g. supplier name, skipping its bank information).

The mediation service needs to reconstruct the objects by parsing these ref-
erences and partial information obtained from different documents. Nowadays
4 WSDL also defines instance messages as instances of Types and their binding to

document transmitting protocols that lays outside the focus of present paper. Here
we treat web services as collections of events and XML documents transferred in
accordance to these events.

5 http://www.mel.nist.gov/psl/
6 http://www.ebXML.org

266 Borys Omelayenko

psl:before
wsdl:Event

Me
di
at
in
g

on
to
lo
gy

Company 1

Mapping chain

Mediating service

C
o
m
p
a
n
y
 n

C
o
m
p
a
n
y

2

Event
XML
Schema

Document
conceptual
model

Mediating
domain
ontology

C
o
m
p
a
n
i
e
s

a
r
e

d
e
s
c
r
i
b
e
d

a
s

W
S
D
L

s
e
r

psl:before
wsdl:Event

Me
di
at
in
g

on
to
lo
gy

Company 1

Mapping chain

Mediating service

C
o
m
p
a
n
y
 n

C
o
m
p
a
n
y

2

Event
XML
Schema

Document
conceptual
model

Mediating
domain
ontology

C
o
m
p
a
n
i
e
s

a
r
e

d
e
s
c
r
i
b
e
d

a
s

W
S
D
L

s
e
r

Fig. 1. The architecture of the mediating service. Several companies are repre-
sented as web services and their messages and attached documents are linked
to the mediating service via the mediating ontology. Each link magnified in the
figure as a mapping chain contains models for XML serializations of messages
that are then mapped to their conceptual models, that are in turn mapped to
the mediating ontology

it is done at the mediating databases or XML documents. These models are in-
expressive and contain the data structures with just a few relations and cannot
represent the objects directly. As a result the objects are represented indirectly as
collections of strings. Representing and validating domain relations and axioms
over indirectly presented objects require lots of ad-hoc programming.

We need to reconstruct and explicitly represent domain objects, relations and
axioms to reason about them to perform really scalable and efficient integration.

2 Constructing the Mediating Ontology

The mediating service architecture presented in Figure 1 envisages several com-
panies presented as WSDL-described web services. Each service expects or pro-

Ontology-Mediated Business Integration 267

duces XML documents included into the messages occurring at certain events.
The order of the events is specified according to a temporal ontology as illustrated
with the psl:before relation in the figure.7 The mediating service contains the
mediating domain ontology specifying all the domain objects used by the com-
panies in their documents. Each of the events produced by each of the services is
mapped to the mediating ontology via a mapping chain magnified in the figure.

Each mapping chain includes several conceptual models:

– Mediating domain ontology.
– Conceptual models for the objects as detailed as they are specified at the
XML Schemas for the documents.

– A model for particular XML document serialization (i.e. XML elements and
attributes) needed to link the conceptual models to actual XML serializa-
tions.

The main assumption concerning usability of our approach is that in the
procurement domain the differences between document serializations are much
bigger than between implicit conceptual models of the objects described in the
documents. For example, the cXML and xCBL serializations for a product cat-
alog do not have a single XML tag with the same name, while they still specify
more-or-less the same information (see [3] for some discussion and a sample).

Let us sketch the models used within each mapping chain magnified in the
figure and their inter-relationships.

A model of XML document serialization consists of the classes repre-
senting XML elements, XML attributes, and the values of enumerated of fixed
XML attributes. These are needed, e.g. to specify that attribute id identifies
different objects if being attached to different elements. This ontology specifies
all the knowledge needed to understand the input and fill in the output XML
documents.

All the classes that possess temporal semantics are defined as subclasses of the
classes from the PSL ontology. Then PSL temporal axioms are used to validate
temporal constraints (e.g. specifying that a product should be mentioned in an
invoice psl:before it gets mentioned in a delivery request).

WSDL contains two concepts important for our service: wsdl:Events and
wsdl:Messages. Events naturally possess temporal semantics and are defined
as subclasses of the psl:timepoint class, while messages stand for documents
(psl:objects).

It is not realistic to assume the companies participating in the integration
to provide well-elaborated ontologies for their documents, it is also not realistic
to assume an individual at the mediating company being able to produce and
maintain them.

However, there is a specific XML Schema for the documents attached to each
WSDL message. Well-designed XML Schema contains lots of knowledge about
the objects being described in the document, e.g. most of the part-of relations. It
7 There might exist explicitly specified workflows behind the events. However, we do

not discuss workflow integration in this paper.

268 Borys Omelayenko

is possible to automatically construct a preliminary object’s conceptual model
from XML DTDs or Schemas [4]. Well-defined XML Schemas for documents
form the main source of information for performing conceptual modelling. These
automatically derived models are then slightly updated by the user and aligned
to the temporal and domain ontologies, that require less effort than constructing
them from scratch.

Actual models of the objects described in the documents are created
by the user by placing the classes from the automatically derived models in the
right places in the hierarchy of domain classes from the mediating ontology. By
doing this the user applies the relations and semantics of the domain classes to
the objects mentioned in the documents.

The mediating ontology represents all the objects that can appear dur-
ing the integration process: Partners, Product Descriptions, Vocabularies like
UNSPSC8 product codes. The mediating ontology holds all the domain-specific
and temporal constraints. Physical objects are represented as instances of the
classes of the mediating ontology.

The mediating ontology is not constructed from the scratch but from the
specific conceptual models coming with the documents. The mediator needs
to constantly update the mediating ontology if a new company requires some
specific objects or attributes that haven’t yet been incorporated.

Mapping ontology specifies the constructs needed to map XML models to
specific document models and to the mediating model. We developed the RDFT
ontology [5] based on the CWM (Common Warehouse Modelling) architecture
for a mapping ontology [6]. RDFT contains all the basic primitives connecting
classes and properties (like rdft:Class2Class and rdft:Property2Property
bridges) with some modifications specific to our domain (like rdft:Event2Event
bridges).

In addition to document integration we need to support business collabo-
rations by mapping all the messages supporting all the transactions performed
within a group of companies. Hence, we align ebXML classes standing for doc-
uments, activities, events, transactions, and collaborations to the corresponding
PSL classes.

The language to represent all these conceptual models should be widely
acceptable and allow easy integration with other XML-related standards. We
choose RDF Schema [7], a recent W3C standard to represent the models. RDF
Schema has limited expressive power to be regarded as an ontology language, e.g.
it does not provide any means to represent axioms. We use Prolog to represent
them and to inference over the models. Until now we succeeded to represent
the models in RDF Schemas and the inference tasks in Prolog. We will consider
the upcoming Web ontology language OWL9 as a replacement when it will be
available and there will be a need for that.

8 www.unspsc.org
9 http://www.w3.org/2001/sw/WebOnt/

Ontology-Mediated Business Integration 269

3 Inference Tasks

The main outcome of the above-mentioned models is the emerging ability to
perform inference to solve a number of labor-consuming programming tasks.
Some of these tasks are:

– Checking completeness of the integration, i.e. verifying whether all the values
required in the target documents are mapped via the conceptual models and
compulsory attributes and elements of the source XML documents.

– Checking whether all the source documents needed to construct the target
document can be queried before the target document is required, and the
responses can be collected within acceptable deadlines to produce the target
document in time.

– Checking consistency of the maps, i.e. finding duplicating data transforma-
tion chains.

– Verifying temporal consistency according to the business rules, such as the
time period allocated by a supplier to receive payment confirmation must be
longer than the period allocated by a buyer to issue the payment.

A number of questions remain open: (i) Whether it is realistic to require con-
ceptual modelling for the objects presented in the documents? (ii) Is it possible
to keep the mediating ontology sufficient for instance data transformation and
minimal the same time, and whether it is possible to do it with a high degree
of automation? They should be answered from both theoretical and practical
points of view.

Acknowledgements. The author would like to thank Hans Akkermans,
Dieter Fensel, and Michel Klein for their discussions and comments.

References

[1] Clark, J.: XSL Transformations (XSLT). Technical report, W3C Recommendation,
November 16 (1999)

[2] Bussler, C.: B2B Protocol Standards and their Role in Semantic B2B Integration
Engines. Bulletin of the Technical Committee on Data Engineering 24 (2001) 3–11

[3] Omelayenko, B., Fensel, D.: An Analysis of B2B Catalogue Integration problems:
Content and Document Integration. In: Proceedings of the International Conference
on Enterprise Information Systems (ICEIS-2001), Setubal, Portugal (2001) 945–952

[4] Mello, R., Heuser, C.: A Rule-Based Conversion of a DTD to a Conceptual Schema.
In Kunii, H., Jojodia, S., Solvberg, A., eds.: Conceptual Modeling - ER’2001. Num-
ber 2224 in LNCS, Yokohama, Japan, Springer (2001) 133–148

[5] Omelayenko, B.: RDFT: A Mapping Meta-Ontology for Business Integration.
In: Proceedings of the Workshop on Knowledge Transformation for the Semantic
for the Semantic Web at the 15th European Conference on Artificial Intelligence
(KTSW-2002), Lyon, France (2002) 77–84

[6] CWM: Common Warehouse Model Specification. Technical report, Object Man-
agement Group (2001)

[7] Brickley, D., Guha, R.: Resource Description Framework (RDF) Schema Specifi-
cation 1.0. Technical report, W3C Candidate Recommendation, March 27 (2000)

Representation of Ontologies for Information

Integration

Chantal Reynaud1,2 and Brigitte Safar1

1 University of Paris Sud-CNRS (LRI), INRIA (Futurs),
LRI, Building 490, 91405 Orsay Cedex, France

{cr, safar}@lri.fr
http://www.lri.fr/∼cr

2 University of Paris-X, Nanterre,
200 Avenue de la République, 92001, Nanterre Cedex, France

Abstract. An information integration system provides a uniform query
interface to a collection of autonomous and distributed sources, con-
nected to each other thanks to a global mediated schema, called domain
ontology. The problem addressed in the paper is how to represent such an
ontology into CARIN-ALN , a formalism combining classes and rules. We
focus on the choices for representing classes, properties and constraints
using the characteristics of the formalism. We also propose a method in
two steps for representing a domain ontology in the framework of a me-
diator. The first step is directed by the formalism and the functionalities
of the mediator. The second step is an optimization phase guided by the
way functionalities of the mediator are implemented.

1 Introduction

The rapid growth of information available online has raised the need for devel-
oping information integration systems. An information integration system pro-
vides a uniform query interface to a collection of autonomous and heterogeneous
sources. It frees the users from having to find the relevant information sources,
interact with each source in isolation using a particular interface, and manually
combine data from the multiple sources.

Substantial work has been made in information integration leading to de-
velop systems such as TSIMMIS [5], the Information Manifold [9], Infomaster [3],
or PICSEL [6]. These systems are based on the specification of a single global me-
diated schema describing a domain of interest, called domain ontology, and on
a set of source descriptions expressing how the content of each source available
to the system is related to the domain of interest. Languages used to describe
the ontology, the queries and the contents of the sources are key elements in
all these systems. They need to be as expressive as possible but they also must
be able to efficiently address the reformulation process of a query posed on the
mediated schema into queries against the source schemas. However, in all these
systems, techniques guiding ontology representation have not been considered.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 270–284, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Representation of Ontologies for Information Integration 271

The problem addressed in this paper is how to encode/represent an ontology
into a given formalism combining classes and rules in the framework of the me-
diator PICSEL

1. CARIN-ALN [6] is the formalism that we have used. It provides
the knowledge engineer a framework being both a source of constraints and a
guide for building the ontology. Given this framework, our aim, in this paper, is
to describe the construction process of an ontology. We want to focus on ontol-
ogy representation, distinguishing representation from modelisation. Modelisa-
tion is the identification of knowledge while representation considers knowledge
as already identified and studies the representation formalisms offering the best
tradeoff expressiveness/efficiency. The focus of our work is on the choices for
representing classes, properties and constraints using the characteristics of the
formalism.

The logical formalism CARIN-ALN [10] benefits from combining the expres-
sive powers of datalog rules (function-free Horn rules) and the ALN Description
Logics (DL). Horn rules are a natural representation language and are attractive
because they are a tractable subset of first order logic for which several efficient
inference procedures have been developed. DL are a family of representation
languages that have been designed especially to model rich hierarchies of classes
of objects. The hybrid language, CARIN-ALN , significantly benefits from the ex-
pressive power of the two formalisms while maintaining the decidability of query
answering and providing sound and complete reasoning services. So, limitations
have been imposed for computational reasons on the ontology representation.

The recent explosion of interest in the World Wide Web has fuelled inter-
est in ontologies. In particular, it has been predicted that ontologies, capturing
consensual knowledge and including a vocabulary of terms, with a precised and
formal specification of their meaning, will play a key role in the Semantic Web.
An ontology is a key component to express metadata about web resources and
to enable the processing and sharing of knowledge between programs on the
Web. This has led to new research work to facilitate content description and
semantic interoperability. In particular, the realization of the Semantic Web is
underway with the development of new content-based markup languages such
as OIL [4] or DAML [8] having a well-defined formal semantics, providing ef-
ficient reasoning support and enabling the manipulation of complex taxonomic
and logical relations between entities on the Web. Our contribution is closed to
works in ontologies developped in the Semantic Web area. However, in contrast
to these works, we are interesting in the representation process itself, the lan-
guage being given. Moreover, our work is complementary to work developed in
the Knowledge Engineering area that emphasizes modelling. These works look
for techniques or methods to find the good concepts or the good relations. They
propose methods or techniques to build ontologies from analysis of accessible
corpus (textual [1] [11], semi-structured or structured [7] documents) or reuse
techniques [2]. Such approaches could have been used to build the model of the
ontology that we have to represent.

1
PICSEL is supported by FranceTelecom under contract number 97 1B 378.

272 Chantal Reynaud and Brigitte Safar

The contributions of the work presented in this paper, are twofold. The first
one is to provide guidelines to represent an ontology in CARIN-ALN , a formalism
combining classes and rules, in the framework of a mediator. The second one is to
propose a method for representing a domain ontology in information integration.
Ontology representation is viewed as a two-step process. The first step is guided
by the language and the functionalities of the mediator. The second step, which
aims at refining and optimizing the representation obtained in the first step, is
guided by the way the functionalities of the mediator are implemented.

The paper is organized as follows. In section 2, we present the information
integration problem and describe the mediator approach which is the approach
followed in PICSEL. Section 3 presents the representation languages used. The
two-step representation process of an ontology is described in sections 4 and 5.
We conclude in section 6. The examples in the paper are coming from the tourism
products domain, which is a real case that we have considered, in collaboration
with the Web travel agent Degriftour.

2 Information Integration and Mediator Approach

Information integration provides easy access to multiple, distributed, hetero-
geneous and autonomous information sources that may contain relevant and
complementary information. Indeed, users do not want to handle heterogeneity.
Their aim is to query a multitude of sources as a centralized and homogeneous
system. Thus, specific querying tools over various sources are needed to give
users the illusion that they interrogate a centralized and homogeneous informa-
tion system while preserving the autonomy of each information source. A me-
diator architecture is a solution to design such information integration systems.
We give a description of such architecture in Figure 1.

Information sources underlying a mediator system are autonomous and pre-
existing sources, which were created independently. A domain ontology plays
the role of a single global mediated schema. Descriptions of source contents are
expressed as views over the mediated schema. These source descriptions, also
called mappings because they model the correspondence between the mediated
schema and the schemas of the data sources, play a central role in the query
answering process. Users pose queries in terms of the domain ontology rather
than directly in terms of the source schemas. That way, a user query that is
formulated on a domain ontology is translated by the data integration system
into a set of queries against local schemas using the source descriptions. Then
the queries are executed against the data sources through wrappers in order to
get the answers to the user query.

The existing mediator-based information integration systems can be distin-
guished depending on the type of mappings between the mediated schema and
the schemas of the sources. There are two main approaches for modelling inter-
schemas correspondence:Global As Views (GAV) and Local As Views (LAV).
The GAV approach has been the first one to be proposed and comes from the

Representation of Ontologies for Information Integration 273

Local schema

Data

Local schema

Data

Local schema

Data

Database HTML files XML files

Local schema

Data

Local schema

Data

Local schema

Data

Database HTML files XML files

of source n1 of source n2 of source n3

Engine

Application domain nApplication domain 1

of source 13of source 12

Query

of source 11

Query

and answers

Rewritings
and answers

Wrapper 11 Wrapper 12 Wrapper 1k Wrapper n1 Wrapper n2 Wrapper nl

User’s query : trip (Paris, London, Price, Date)

Description Description Description Description Description Description

Mediated Schema 1 Mediated Schema 2

Fig. 1. Summary of the different kinds of knowledge in the ontology and indi-
cation of the processes which exploit them in shaded areas

Federated Databases world. The mediated schema is defined in function of the
schemas of the sources to integrate, i.e., each relation of the mediated schema
is defined as a view on the relations of the source schemas. In that case, query
rewriting algorithms are very efficient because query reformulation simply con-
sists of replacing each atom of the query by its definition in terms of the rela-
tions of the source schemas. However, it leads to update the mediated schema
whenever any of the sources changes or when new sources are added. The LAV
approach is dual and has opposite advantages and drawbacks. Its consists of de-
scribing the contents of the sources in function of the mediated schema. In such a
case, adding new sources is quite straightforward because each source is defined
independently of each other. However the algorithms to rewrite a domain level
query into a source level query involves testing containment of views, which is
computationnally expensive.

The work described in this paper has been made in the setting of the PICSEL

mediator which follows a LAV approach. It differs from existing mediator systems
by CARIN, the logical formalism usable in the system to express the domain

274 Chantal Reynaud and Brigitte Safar

ontology. This formalism is particular because it is an hybrid representation
language combining description logics and Datalog rules.

3 The Representation Language

We describe below the two components of the formalism used to represent the
domain ontology. We briefly describe also in section 3.3 the view language used
to describe the content of information sources.

3.1 The Terminological Component of CARIN-ALN

This component contains concept definitions and concept inclusions.

– A concept definition is a statement of the form CN := ConceptExpression,
where CN is a concept name and ConceptExpression is a concept expression,
using the ALN DL. Basic concepts are those which do not appear in any
left hand side of a definition. A concept name CN depends on a concept
name CN ′ if CN ′ appears in the definition of CN . We consider only acyclic
concept definitions with no cycle in the concept names dependency relation.

– A concept inclusion C1 � C2 states that every instance of the concept C1

must be an instance of C2, or that C1 is subsumed by C2. Concept inclusions
allowed are of the form: A � ConceptExpression, where A is a basic concept,
and A1 � A2 � ⊥, where A1 and A2 are basic concepts.

ALN contains the DL constructors of conjunction (C1�C2), value restriction
(∀R C) which represents the set of elements in relation by R only with elements
of the concept C, number restrictions (≥ n R) (respectively (≤ n R)), which
represent the set of elements in relation by R with at most, (respectively at
least), n distinct elements, and negation (¬) (restricted to basic concepts only).

3.2 The Deductive Component of CARIN-ALN

The deductive component of a CARIN knowledge base contains:

– A set of rules that are logical sentences of the form p1(X̄1, Ȳ1) ∧ . . . ∧
pn(X̄n, Ȳn) → q(X̄), where X̄ = X̄1 ∪ . . . ∪ X̄n and Ȳ = Ȳ1 ∪ . . . ∪ Ȳn

are variable vectors. These rules allow to define relations q (of any arity) in
function of other predicates p1, p2, ..., pn. The variables of X̄i, distinct from
the variables of Ȳ , are considered to be existentially quantified. The base
relations are those which do not appear in any consequent of rules. Some
base relations, unary relations, are expressions of concepts, others, binary
relations, are expressions of roles in the terminological component.

– A set of integrity constraints: p1(Ȳ1)∧ . . .∧pm(Ȳm) → ⊥, where pi are n-ary
relations.

Representation of Ontologies for Information Integration 275

3.3 The Description of the Sources Content

The content of each information source S is represented with the vocabulary VS

composed of as many local relations vi as domain relations whose instances can
be found in the source S. These local relations are called views. The description
of the content of a source S in terms of its views contains:

– a set Is of logical implications vi(x) → p(x). These implications establish a
link between each view and the domain relation p whose instances can be
found in the source S.

– a set Cs of constraints on the instances of the form: v � C, where C is a
concept expression, or l1(X̄1)∧· · · ∧ ln(X̄n) → ⊥, where each li(X̄i) is either
a view vi(X̄i), either the negation of a view (at most one negation of a view
per constraint).

Example 1 Let S1 be a source providing instances of Hotels located in the Mediter-

ranean:

Is1 : v11(x) → Hotel(x) v12(x, y) → located(x, y)

Cs1 : v11(x) � (∀located InMediterranean)

v12(x, y) ∧ ¬v11(x) → ⊥

4 Representation Directed by the Language

The expressive power of CARIN-ALN is very rich and offers multiple choices for
representing a domain ontology. We give here the solutions that we adopted. Our
strategy was to favour the terminological component, and to use the deductive
part of the formalism only to circonvent its limits. Indeed, the designer is guided
during all the representation process by a classifier which automatically classifies
the concepts in the terminological part considering their definition. The resulting
hierarchy can be visualized. This is a good help and no equivalent reasoning
service can be provided by the deductive component of the language.

4.1 Knowledge Represented in the Terminological Component

Representing a domain ontology means to supply descriptions of object classes
and descriptions of links among classes. In data modeling, each class is defined
through its relations with other classes: classes which generalize it and classes
related through domain-specific properties. Properties are of two kinds. There
are properties that a user would like to precise when querying the system or
when describing the content of a source. There are also properties necessary to
structure and organize the classes between each other. For example, assAccomoda-

tionPlace allows to relate a Lodging to an AccomodationPlace. This link is important
because the choice criteria of users may concern characteristics of the accomoda-
tion place (address, category, equipments) where the lodging is located. Either
specific properties or the set of necessary and sufficient properties that an entity
must satisfy to belong to a class are given.

276 Chantal Reynaud and Brigitte Safar

During the representation phase, classes of objects have been represented
by unary relations, called concepts. Links among classes and properties have
been represented by binary relations, called roles, and with DL constructors of
value restriction (∀) and of number restrictions (≥ , ≤). In DL, a role is not
defined in function of the concepts that are related. One may use assService as
a role for Product, AccomodationPlace or Resort as well. In our work, we chose to
use identical names for roles when the concepts are related with a generaliza-
tion/specialization link and distinct names otherwise to eliminate ambiguities.
In example 2, we have illustrations of various statements. Example 2.a is a defi-
nition of the concept Product which has a unique price, a unique beginning date,
it may have associated amenities or equipments. Example 2.b is the definition of
SportActivity, an activity whose associated nature is a sport. Product and SportAc-

tivity are both defined concepts. Example 2.c is an illustration of the inclusion
of the basic concept CulturalEquipment (not explicitly defined) into the concept
Equipment.

Example 2
a. (Product := (≥ 1 assPrice) � (≤ 1 assPrice) � (∀assPrice Number)

� (≥ 1 assDepDate)� (≤ 1 assDepDate)� (∀assDepDate Date)

� (∀assProdAmenity Amenity) � (∀assProdEquipment Equipment))

b. (SportActivity := Activity � (∀assActivityNature Sport))

c. (CulturalEquipment � Equipment)

For efficiency reasons, CARIN-ALN does not allow existential quantification.
To overcome this lack, we use multiple specialized roles. So, to define that a
FamilialResort is a resort with a nursery and a doctor, two distinct roles assNursery

and assMedicalAssistance have been introduced while the unique assEquipment role
name would have been enough if it would be possible to use it in existencial
sentences: (∃ assEquipment Nursery) and (∃ assEquipment Doctor), where Nursery

and Doctor are two disjoint concepts.
Example 3 (FamilialResort := Resort � (≥ 1 assNursery) � (∀assNursery Nursery) �
(≥ 1 assMedicalAssistance) � (∀assMedicalAssistance Doctor))

The concept hierarchy built by the classifier is a guide to detect anomalies
and then make modifications or to discover concepts having common roles. For
example, the concept Lodging comes from factorizing the common roles of the
concepts Room and Flat. These two concepts inherite roles associated to the
general concept Lodging and they only retain their specific roles.

Moreover, thanks to the inclusion mechanism, a concept can be defined as
a specialization of another one, without additional specification. Multiple view
points can be represented. For example, the concept Boat can be defined as being
both a MeansOfTransport and an AccomodationPlace. That way, whole hierarchies
have been built grouping concepts with no explicit properties. This facility is
used when the name of the concepts is clear enough, not ambiguous and then
sufficient to be understandable by a user.

Not defined concepts (basic concepts) are the only concepts that can appear
in disjunctions. Example 4 specifies that a cultural equipment can not be a sport
equipment.

Representation of Ontologies for Information Integration 277

Example 4 CulturalEquipment � SportEquipment � ⊥
One can also express typing constraints on roles using the constructor of value

restriction. In example 2.a, the restriction (∀assDepDate Date) specifies that the
role assDepDate relates elements of type Product only to elements of type Date.

4.2 The Use of Rules

The use of rules is sometimes a necessity (case 1 to 4) to circonvent the limits
of the terminological part. Sometimes rules allow easy writing (case 5).

– Case 1. To express relations that are neither unary nor binary. The rule R1

defines a return flight as a 4-ary relation R-Flight. A return flight is char-
acterized by a departure city (denoted by the first variable D-City in the
consequent of the rule), a departure date (D-Date1), an arrival city (A-
City), a return date (D-Date2). The possible combinations of a flight to and
back a given destination obey some constraints that are expressed by the
conditions in the antecedent of the rule.
R1 : Flight(f1) ∧ depCity(f1, D-City) ∧ arrCity(f1, A-City) ∧ depDate(f1, D-Date1)

∧ Flight(f2) ∧ depCity(f2, A-City) ∧ arrCity(f2, D-City) ∧ depDate(f2, D-Date2) ∧
prior(D-Date1, D-Date2)

→ R-Flight(D-City, D-Date1, A-City, D-Date2).
– Case2. To build a disjunctive definition of a relationship. The rules R2 and

R3 express that a product for young people (ForYoung) is a product either
with at most one associated service or with cheap services. Such relation can
not be defined in the terminological component because of the absence of
the constructor OR.
R2 : Product (x) ∧ (≤ 1 assServiceProduct) → ForYoung(x)

R3 : Product (x) ∧ assServiceProduct(x,y) ∧ Cheap(y) → ForYoung(x)
– Case 3. To express non exclusive constraints. The value restriction construc-
tor (∀R C) allows to express constraints on the domain of the concepts in
relation with other ones, but theses constraints are exclusive. Then, in the
following definition, “WithMountainSite := Place � (∀practicableSport Mountain-

Sport)” the value restriction says that all practicable sports in a WithMoun-

tainSite are MountainSport. That eliminates Swimming or Tennis. If we want to
represent that we can go skiing or swimming in a WithMountainSite providing
a swimming pool, one must use rules. Practicable sports in a site can be
defined as depending both of physical characteristics of this site (cf. R4 and
R5) and of its sport equipments (cf. R6).
R4: WithMountainSite(l) ∧ MountainSport(s) → practicableSport(l, s).

R5 : WithBeachSite(l) ∧ WaterSport(s) → practicableSport(l, s).

R6: WithSwimmingPoolSite(l) ∧ Swimming(s) → practicableSport(l, s).
– Case 4. To express an inverse relation. In the terminological component,
concept definitions are acyclic and roles are oriented relations. For example,
the role assSite denotes a binary relation, in the terminological component,
between one AccomodationPlace and the Site where it is situated. To define
the inverse relationship, we use a rule (cf. R7).
R7 : AccomodationPlace(r) ∧ assSite(r, l) ∧ Site(l) → beingSituated(l,r).

278 Chantal Reynaud and Brigitte Safar

– Case 5. To express a link corresponding to multiple combined roles in the
terminological part. For example, the rule R8 allows to derive the predicate
assLodgingResort which links directly Lodging to the name of the ski resort
where its AccomodationPlace is situated.
R8 : Lodging(l) ∧ assAccomodationPlace(l,r) ∧ assAccomodationPlaceResort(r, st) ∧
SkiResort(st) ∧ assName(st,n) → assLodgingResort(l,n).

4.3 The Use of Integrity Constraints

Constraints different from disjunctive constraints between basic concepts (not
defined) must be represented as integrity constraints.

• Constraints conveying functional dependencies.
The following constraint expresses that a phone number is specific to a unique

accomodation place.

Example 5 phoneNumber(x1,y) ∧ AccomodationPlace(x1) ∧ phoneNumber(x2,y) ∧
AccomodationPlace(x2) ∧ x1 �= x2 → ⊥
• Typing constraints on predicate arguments

Typing constraints are of the form:
P (X̄) ∧ ¬Ci(xi) → ⊥, with X̄ = (x1, x2, ..., xi, ...xn). They allow to define the
domain of values (set of elements of Ci) of each element xi of the relation P .
Then, according to example 6, the relation assAmenity always establishes a link
with an amenity.

Example 6 assAmenity(x,y) ∧ ¬ Amenity(y) → ⊥
Typing constraints can replace a value restriction in a definition statement. When
a role is used in the definition of several concepts, with the same value restric-
tion (ex: (∀assAmenity Amenity)), a constraint avoids the repetition of the value
restriction in each definition. When the value restrictions are different, the con-
cept that appears in the constraint must be a concept that generalizes all the
restricted concepts. In such case, however, the constraint is not equivalent to the
value restrictions which are more precise. These ones are preserved but the con-
straint is also useful. It will be applied if no more precise restriction is specified
(cf. example 7).

Example 7
(HotelRoom := Room � (∀assAccomodationPlace Hotel))

(BoatCabin := Room � (∀assAccomodationPlace Boat))

The first concept that generalizes both Hotel and Boat is AccomodationPlace. We
can then write the following constraint:

assAccomodationPlace(x,y) ∧ ¬ AccomodationPlace(y) → ⊥.

This constraint will hold each time the assAccomodationPlace role is used in a
concept definition statement with no value restrictions.

Representation of Ontologies for Information Integration 279

• Exclusive constraints between ordinary predicates.
These constraints are of the form: p1(X̄1)∧ ...∧pn(X̄n) → ⊥. They enable to

express semantic constraints relative to the application domain. That way, the
example 8.a says that there is no direct flight between two conflictual countries.
Exclusive constraints are also useful for exception treatments. In example 7,
BoatCabin is defined as a specialization of the concept room and then, inherits all
its properties, in particular its amenities. The constraint in example 8.b states
that Terrace is an exception because it is not an amenity for BoatCabin.

Example 8
a. Country(p1) ∧ Country(p2) ∧ inConflict(p1,p2) ∧ LinkingTransport(t, p1,p2)

∧ NonStopFlight(t) → ⊥
b. BoatCabin(l) ∧ assAmenityRoom(l, p) ∧ Terrace(p) → ⊥

At the end of the first step of the representation process, we obtain an ini-
tial operational version of the ontology composed of about 200 concepts and
300 roles. This ontology adheres to the constraints of the langage and to the
model of the ontology prior built. Its content has been defined during the mod-
elisation phase and enriched in this first representation step according to the
functionalities of the mediator, for which, we ignore, at this step, how they will
be implemented.

5 Expanded and Optimized Representation

The representation that we obtained in precedent section is directly usable as a
support for the interface guiding query expression and, also by the engine to com-
pute query plans. We describe now, how this ontology has then been expanded
and optimized by considering the use of the knowledge in the implemention of
these two functionalities.

5.1 Expansion for Query Expression

The ontology provides the users with all the terms of a domain, elementary
concepts and associated roles, allowing them to express a lot of queries relative
to complex concepts. The objective of the interface is to help to build queries, and
to avoid manipulating the query language. So, the approach consists in providing
predefined queries relative to frequently searched topics (SunnyTrip, ShortBreak,
and so on.) to users. These topics are complex concepts combining elementary
tourism products in the ontology, for example an arrangement by which Transport

and Accomodation can be purchased by a tourist at an-all inclusive price. Each
topic is represented by a predicate defined by a rule (cf. example 9). The body of
the rule is a conjunction of concepts and roles in the terminological component
and, possibly of ordinary predicates defined by rules.

Example 9
InclusiveTour(t) ∧ assLodging(t,l) ∧ Lodging(l) ∧ assAccomodationPlace(l, a) ∧ Accomo-

dationPlace(a) ∧ situatedIn(a, s) ∧ SunnySite(s) → SunnyTrip(t, s)

280 Chantal Reynaud and Brigitte Safar

InclusiveTour, Lodging, AccomodationPlace, SunnySite are concepts.

assLodging, assAccomodationPlace, situatedIn are role names.

As soon as a topic is selected, the interface exploits the body of the rule defining
the corresponding predicate. It proposes to the user to specialize the concepts
included in the body of the rule, using the concept hierarchy, or to introduce
new properties for these concepts, using the associated roles. Each choice affects
automatically the initial query.

Such an approach led to list all the most searched topics and to expand the
initial ontology with corresponding predicates.

5.2 Optimization for Query Rewriting

Computing query plans involves, in a first stage, rewriting user queries in terms
of views on the sources. The rewriting possibilities are: immediate rewriting by
a view, replacing an ordinary predicate by the body of the different rules which
define it, replacing a terminological concept by its definition (and the definition is
recursively replaced until the basic concepts are obtained).Then the engine builds
all possible regroupings of concepts and of roles which can be rewriten by a view.
This last mechanism is costly. In the worst case, query expansion is exponential
in the size of terminological expressions appearing in the query. As a result, the
more the definitions are composed of roles and of value restrictions, the more
the expansion process is costly. As the model of the ontology is very detailed,
the number of roles characterising each concept is very high. Representing all
these roles leads to inefficiency.

Roles are essential when building the ontology because the classifier classifies
a new concept according to its roles. Roles are also very useful for the user
because they can help in understanding the meaning of concepts in the ontology
and support the interface for query expression. On the other hand, roles are not
all useful to compute query plans. So, we decided to optimize the representation
of the ontology, so as to limit the size of the expansions (and then of the number
of possible rewritings).

Concepts on the top of the hierarchy are generic and abstract concepts (Prod-

uct, Site, LeisureActivity, Equipment, Amenity, AccomodationPlace, and so on.). On the
opposite, queries are about very concrete objects. A user does no search an in-
stance of a tourism product but an instance of a Lodging or of a Transport, for
example, with some properties. This way, roles of an abstract concept are used
only because their specializations inherite them. Moreover, all the roles are not
useful to compute query plans. For example, when a user is looking for renting
an apartment in a skiing resort located in Haute-Savoie in France, what is impor-
tant for the engine is to find sources providing instances of such accomodations
with the particularities of being in a skiing resort located in Haute-Savoie. As all
tourism products, apartment rentals have, for example, a price but it is useless
to consider all the roles shared by all tourism products in the rewriting process
in terms of views on the sources.

Our approach is then to use the following heuristics: all the root concepts of
the different hierarchies of the ontology will become not defined concepts in the

Representation of Ontologies for Information Integration 281

optimized ontology, like their son concepts when they only depend on not de-
fined root concepts (initially not defined in the ontology or after the application
of the heuristics). Consequently, the concepts which are sons of root concepts
and which only depend on not defined root concepts, become also not defined.
Their role relate root (generic) concepts in the hierarchy. They correspond to
properties structuring the ontology (example: assAccomodationPlace linking Lodg-

ing to AccomodationPlace). Once the heuristics has been applied, such properties
will not appear any more except in the definitions of specialized concepts.

On the other hand, concept definitions may be very useful for the query
engine when they allow to detect disjunctions between concepts. So, in example
10, the two defined concepts, HotelRoom and GuestHouseRoom, are considered as
disjoint by the engine because the value restrictions in their definitions involved
Hotel and GuestHouse, two concepts defined as being disjoint in the terminology.
In such a case, the role assAccomodationPlace is essential in the two definitions.

Example 10
(HotelRoom := Room � (∀assAccomodationPlace Hotel))

(GuestHouseRoom := Room � (∀assAccomodationPlace GuestHouse))

All these constatations led us to structure in a better way the ontology, with
two objectives: to preserve its whole richness and to maintain the efficiency of
the query engine. Considering that the classifier is not used any more once the
ontology has been built, we chose not to maintain in the ontology the roles
of initially defined concepts, transformed in not defined concepts during the
optimization process and to represent them with typing constraints. They are
always accessible for query expression and for the description of the sources. The
user can access to them. Nevertheless, they are not exploited in the expansion
step any more.

This new representation, which is a simplification of the original one (it is not
equivalent), allows us to obtain a hierarchy in which a lot of concepts have no
definition. They are described by simple inclusion statements. Defined concepts
appear most generally at the bottom of the hierarchy (cf. example 11). Thanks
to this new structuration, the cost of the query plans becomes acceptable.

Example 11 In the new hierarchy, the concepts Product, Lodging, Room have no def-

inition any more and concepts HotelRoom, GuestHouseRoom, BoatCabin are defined as

specialized concepts of Room (cf. example 10).

Room � Lodging � Product

Table 1 summarizes the different categories of knowledge represented in the
ontology and the processes which exploit them (shaded areas in the table). Cur-
rently, this new organization gives good results but additionnal tests are neces-
sary to give a quantitative measure of the benefits. Moreover, the optimization
phase can most likely be improved. This work must be considered as the result
of a first optimization work on an ontology.

282 Chantal Reynaud and Brigitte Safar

Table 1. Summary of the different kinds of knowledge in the ontology and
indication of the processes which exploit them in shaded areas

Query Plan
computing Inter-

faceRepresen-
tation

Structures

Nature of the
represented
knowledge

Rewri-
ting

Verifi-
cation

Concept
definition

Defined
concepts

Concept
inclusion

Basic conceptsTermino-
logical

Compo-
nent

Disjunction
of concepts

Disjunctions
between basic

concepts
Functional

dependencies
Typing

constraints on
predicate

arguments

Integrity
constraint

Semantic
constraints

n-ary relations
(n>2)

Disjunctions

Short cuts of
roles

« Non
exclusives »
constraints

Inverse
relations

Deductive
Compo-

nent

Rules

Predefined
queries

6 Conclusion

In this paper, we described the representation process of an ontology in the set-
ting of a mediator. Two steps have been distinguished. The first one has aimed
at building a first operational version of an ontology according to a model prior
built and also according to constraints inherent to the representation language
CARIN-ALN . We described how this first step has been developped to build an
ontology of a real application domain, the tourism products domain. The second
step uses the current version of the ontology to compute query plans and to
support a user interface. This second step led to refine the representation of the
ontology by adding new predicates useful for the interface and also by reorganiz-
ing the knowledge. Our aim was to preserve the whole richness of the model but
also to obtain an efficient system. An organisation of knowledge based on the
way this knowledge is used in the application has appeared as a good solution.

Representation of Ontologies for Information Integration 283

The representation process, often considered as a simple translation one, appears
here to be a complex process for which few methodological guidelines exist. This
paper must be viewed as a contribution towards such guidelines. We address
them to future ontology designers having to build an ontology for a mediator.
However, in spite of the explicitation and of the description of the process to
represent an ontology in the setting of our project, building an ontology remains
a difficult and very time consuming task. This problem is an important scientific
problem for the development of mediators.
A second contribution of the paper is to illustrate the role of rules in ontology
languages. An important focus in PICSEL was the complexity of the reasoning.
For this reason, we considered a formalism maintaining the decidability of query
answering. The limitations that we have imposed for computational reasons by
using ALN , a rather restricted description logics, has not been an obstacle for
a modeling point of view. Thanks to the expressive power of datalog rules, the
limits of ALN expressions have been overstepped. Moreover, predicates appear-
ing in a consequent of a rule have been very useful for describing the content of
sources or for query expression because they allow easy writing.

Acknowledgments

We would like to thank M.-C. Rousset for many fruitful discussions and F. Goas-
doue who implemented the query engine and has allowed us the optimization of
the ontology.

References

1. Aussenac N., Biebow B. and Sulzman B. Revisiting Ontology Design:A method
Based on Corpus Analysis, In Proceedings of EKAW, 172-188, 2000.

2. Clark P., Thompson J., Holmback H. and Duncan L. Exploiting Thesaurus-Based
Semantic net for Knowledge-Based Search, In Proceedings of AAAI, 988-995, 2000.

3. Duschka O. and Genesereth M. Query planning in Infomaster, In Proceedings of
the ACM Symposium on Applied Computing, San Jose, USA, 1997.

4. Fensel D., Horrocks I. Van Harmele F., Deckers S., Erdmann M. and Klein M.
OIL in a nutshell, In ECAI Workshop Notes - Applications of Ontologies and
Problem-Solving Methods, 4.1 - 4.12, 2000.

5. Garcia-Molina H., Papakonstantinou Y., Quass D., Rajarama A., Sagivy Y., Ull-
man J. and Widom J. The TSIMMIS project: Integration of heterogeneous infor-
mation sources, In Journal Intelligent Information Systems, 8(2), 117-132, 1997.

6. Goasdoue F., Lattes V. and Rousset M.-C. The Use of CARIN Language and Algo-
rithms for Information Integration: the PICSEL Project. In International Journal
of Cooperative Information Systems, Vol. 9, no4, pp. 383-401, 2000.

7. Goasdoue F. and Reynaud C. Modeling Information Sources for Information In-
tegration, In Proceedings of EKAW, 121-138, 1999.

8. Hendler J. and McGuinnes D.L. The DARPA agent markup language, In IEEE
Intelligent Systems, 6(15), 72-73, 2000.

9. Levy A., Rajarama A. and Ordille J. Querying heterogeneous information sources
using source descriptions, In Proceedings of the Int. Conf. On Very Large Data
Bases (VLDB), 251-262, 1996.

284 Chantal Reynaud and Brigitte Safar

10. Levy A. and Rousset M.-C. Combining Horn rules and Description Logics in
CARIN. In Artificial Intelligence, no104, pp. 165-209, 1998.

11. Maedche A. and Staab S. Mining Ontologies from Text, In Proceedings of EKAW,
189-202, 2000.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 285-300, 2002.
 Springer-Verlag Berlin Heidelberg 2002

User-Driven Ontology Evolution Management

Ljiljana Stojanovic1, Alexander Maedche1, Boris Motik1, Nenad Stojanovic2

1 FZI - Research Center for Information Technologies at the University of Karlsruhe,
Haid-und-Neu-Str. 10-14, D-76131 Karlsruhe, Germany

{Ljiljana.Stojanovic,Alexander.Maedche,Boris.Motik}@fzi.de
2 Institute AIFB, University of Karlsruhe,

76128 Karlsruhe, Germany
nst@aifb.uni-karlsruhe.de

Abstract. With rising importance of knowledge interchange, many industrial
and academic applications have adopted ontologies as their conceptual
backbone. However, industrial and academic environments are very dynamic,
thus inducing changes to application requirements. To fulfill these changes,
often the underlying ontology must be evolved as well. As ontologies grow in
size, the complexity of change management increases, thus requiring a well-
structured ontology evolution process. In this paper we identify a possible six-
phase evolution process and focus on providing the user with capabilities to
control and customize it. We introduce the concept of an evolution strategy
encapsulating policy for evolution with respect to user�s requirements.

1 Introduction

With rising importance of knowledge interchange, many industrial and academic
applications have adopted ontologies as their conceptual backbone. However,
business dynamics and changes in the operating environment often give rise to
continuous changes to application requirements, that may be fulfilled only by
changing the underlying ontologies [16]. This is especially true for WWW and
Semantic Web applications [2], that are based on heterogeneous and highly
distributed information resources and therefore need efficient mechanisms to cope
with changes in the environment.

Ontology evolution is the timely adaptation of an ontology to changed business
requirements, to trends in ontology instances and patterns of usage of the ontology-
based application, as well as the consistent management/propagation of these changes
to dependent elements. A modification in one part of the ontology may generate
subtle inconsistencies in other parts of the same ontology, in the ontology-based
instances as well as in depending ontologies and applications [11]. This variety of
causes and consequences of the ontology changes makes ontology evolution a very
complex operation that should be considered as both, an organizational and a
technical process [22]. It requires a careful analysis of the types of the ontology
changes [13] that can trigger evolution as well as the environment in which the whole
ontology evolution process is realized [25].

286 Ljiljana Stojanovic et al.

Although evolution over time is an essential requirement for successful application
of ontologies [6], methods and tools to support this complex task completely are
missing. This level of ontology management is necessary not only for the initial
development [8] and maintenance of ontologies, but is essential during deployment,
when scalability, availability, reliability and performance are absolutely critical [17].

In this paper we analyze ontology evolution requirements and present a novel,
process-oriented approach that fulfils them. We specifically focus on the problem that
the ontology has to remain consistent under complex changes during evolution. As for
some changes there may be several different consistent states of the ontology, we
introduce the notion of an evolution strategy allowing the user to customize the
process according to her needs. Consequently, the user can transfer the ontology in
the desired consistent state. Finally, we substantiate our discussion on ontology
evolution by presenting its current implementation within KAON1 framework.

The paper is organized as follows: Section 2 identifies the requirements for the
ontology evolution and derives an ontology evolution process that fulfils them.
Section 3 explores the complexity of the semantics of change problem and introduces
different evolution strategies that allow user to control and to customize the evolution
process. As a proof of the concept, section 4 contains a short description how
ontology evolution been implemented. After a discussion of related work, concluding
remarks outline some future work.

2 Ontology Evolution Requirements

Based on our experience in building ontologies and using them in several applications
[25], we have formulated the following set of design requirements for ontology
evolution:

• It has to enable resolving the given ontology changes [7] and to ensure the
consistency of the underlying ontology and all dependent artifacts [24];

• It should be supervised allowing the user to manage changes more easily [28];
• It should offer advice to user for continual ontology refinement [19].

The first requirement is an essential one for any ontology evolution approach �
after applying a change to a consistent ontology, the ontology should remain in
consistent state. The second requirement complements the first one by presenting the
user with information needed to control changes and make appropriate decisions. The
last one states that potential changes improving the ontology may be discovered semi-
automatically from ontology-based data and through analysis of user�s behavior.

More careful analysis of these requirements (e.g. the changes have to be captured,
analyzed, applied and validated by the user) implies the necessity to consider the
ontology evolution problem as a composition of several subproblems realized in a
determined sequence. This sequence of activities, resolving ontology changes in a
composite way, is called the ontology evolution process. Consequently, the system,
i.e. software, which copes with the ontology evolution problem has to be process-

1 http://kaon.semanticweb.org

 User-Driven Ontology Evolution Management 287

based, following currently the most popular programming paradigm in the business
software development.

2.1 Resolving Changes While Keeping Consistency

Consistency requirement states that after applying and resolving changes in an
ontology already in a consistent state2, the ontology, its instances and dependent
ontologies/applications must remain in (another) consistent state. This requirement
encompasses two crucial aspects of the ontology evolution: enabling resolution of
changes and maintenance the consistency of the system, and may be realized through
following four phases as shown in Figure 1.

Change Representation. To resolve changes, they have to be identified and
represented in a suitable format [13, 20]. Elementary changes in the ontology are
derived from our ontology definition given in [25] specifying fine-grained changes
that can be performed in the course of ontology evolution. However, this granularity
of ontology evolution changes is not always appropriate. Often, intent of the changes
may be expressed on a higher level. For example, the may need to generate a common
superconcept sc of two concepts c1 and c2. He may bring the ontology into desired
state through successive application of a list of elementary changes, such as
�Add_concept sc�, �Delete_SubConceptOf relation from c1 to its current parent�,
�Add_SubConceptOf relation from c1 to sc�, �Delete_SubConceptOf relation from c2
to its current parent� and �Add_SubConceptOf relation from c2 to sc�. However, this
has significant drawbacks:
• There is an impedance mismatch between the intent of the request and the way

the intent is achieved. It is required to create a superconcept of two concepts, but
one needs to translate this operation into five separate steps, making the whole
process error prone.

• A lot of unnecessary changes may be performed if each change is applied alone.
For example, removing sub-concept-of relation from c1 may introduce changes to
property instantiations that should be reversed when assign sub-concept-of
relation from c1 to sc.

To avoid these drawbacks, it should be possible to express changes on a more
coarse level, with the intent of change directly visible. Composite changes,
representing a group of elementary changes applied together, are shown in the table 1.

Above mentioned changes are represented as instances of an evolution ontology �
a special ontology which explicitly represents semantic information about ontology
entities, changes in the ontology and mechanisms to discover and resolve changes.
Detailed discussion of this ontology is out of scope of this paper and is given in [13].

2 A consistent state of an ontology is the state in which all constraints, which are defined on the

structure and content of an ontology are satisfied. An example of the structural constraints is
the need to define the domain and the range for each relation in the ontology. Content
constraints are related to the axioms in the ontology.

288 Ljiljana Stojanovic et al.

Required
change

Source
ontology

Required
and

derived
changes

Ontology
instances

Applications

Dependent
ontologies

Suggestion for the
changes:
- distributed instances
- dependent ontologies
- dependent applications

Semantics
of change PropagationRepresentation Implementation

Modified
ontology
and local
instances

Request for
the change

Figure 1. Four Elementary Phases of Ontology Evolution Process

Table 1. Composite changes in the ontology

Composite change Description
Merge concepts Replace several concepts with one and aggregate all instances.
Extract subconcepts Split a concept into several subconcepts and distribute properties

among them.
Extract superconcept Create a common superconcept for a set of unrelated concepts and

transfer common properties to it.
Extract related concept Extract related information into a new concept and relate it to the

original concept.
Shallow concept copy Duplicate a concept with all its properties.
Deep concept copy Recursively apply shallow copy to all subconcepts of a concept.
Pull up properties Move properties from a subconcept to a superconcept.
Pull down properties Move properties from a superconcept to a subconcept.
Move properties Move properties from one concept to another concept.
Shallow property copy Duplicate a property with same domain and range.
Deep property copy Recursively apply shallow copy to all subproperties of a property.
Move Instance Moves an instance from one concept to another.

Semantics of Change. Application of an elementary change in the ontology can
induce inconsistencies in other parts of the ontology. We distinguish syntax and
semantic inconsistency. Syntax inconsistency arises when undefined entities at the
ontology or instance level are used or ontology model constraints are invalidated.
Semantic inconsistency arises when meaning of an entity is changed due to changes
performed in the ontology [29].

For example, removal of a concept which is the only element of domain set for
some property results in syntax inconsistency [9]. Resolving that problem is treated as
a request for a new change in the ontology, which can induce new problems that
cause new changes and so on. Therefore, one change can potentially trigger other
changes and so on. If an ontology is large, it may be difficult to fully comprehend the
extent and meaning of each induced change. The task of �semantics of change� phase
is to enable resolution of induced changes in a systematic manner, ensuring
consistency of the whole ontology. To help in better understanding of effects of each
change, this phase should contribute maximum transparency providing detailed

 User-Driven Ontology Evolution Management 289

insight into each change being performed. Some mechanisms used in this phase are
described in the section 3.

In the course of evolution, actual meaning of concepts often shifts to better
represent the structure of the real world. While some shifts of concept meaning are
performed explicitly, a meaning of a concept can sometimes shift implicitly through
changes in other parts of the ontology. For example, consider an ontology describing
a relationship between jaguars and persons. In this ontology the meaning of the
concept Jaguar is clear through the existence of the property eats that links Jaguars
and Persons � it is obvious that concept Jaguar stands for an animal from the feline
family. For any reason one may delete the concept Person, which may result in the
removal of the property eats as well. After the change is performed, the semantics of
concept Jaguar is not clear any more � is it a Jaguar cat or a Jaguar car? These kinds
of ambiguities can be eliminated in several ways. The simplest solution is by
introducing a superconcept Animal before the change is performed. However, if the
ontology is large, such issues may be easily overlooked because it is very hard to keep
the complete ontology structure in mind at once.

This problem can be avoided using a richer description [13] determining semantic
role of ontology entities. By attaching meta-information about e.g. essential properties
of a concept [29], deeper knowledge about concept meaning is provided. Moreover,
semantic ambiguities of ontology entities may be resolved through additional
documentation, such as who is the author of an entity, what is the purpose of
introducing an entity etc. Contrary to meta-information determining the semantic role
of ontology entities, �documentation� meta-information cannot be used for formal
consistency checking.

Change Implementation. In order to avoid performing undesired changes, before
applying a change to the ontology, a list of all implications to the ontology should be
generated and presented to the user [28]. He should be able to comprehend the list and
approve or cancel the change. When the changes are approved, they are performed by
successively resolving changes from the list. If changes are cancelled, the ontology
should remain intact. This is more elaborated in description of implementation in
section 4.

Change Propagation. When the ontology is modified, ontology instances need to be
changed to preserve consistency with the ontology [9]. This can be performed in three
steps. If the instances are on the Web they are collected in the knowledge base [14].
In the second step, modification of instances is performed according to the changes in
the ontology [23]. In the last step �out-of-date� instances on the Web are replaced
with corresponding �up-to-date� instances.

Ontologies often reuse and extend other ontologies. Therefore, an ontology update
might also corrupt ontologies that depend on the modified ontology and consequently,
all artifacts that are based on these ontologies. This problem can be solved by
recursive applying the ontology evolution process on these ontologies.

When an ontology is changed, applications based on the changed ontology may not
work correctly. An ontology evolution system has to recognize which change in the
ontology can affect the functionality of dependent applications [10, 21] and to react

290 Ljiljana Stojanovic et al.

correspondingly. More information about possible problems in this phase and ways
for solving them are given in [24].

2.2 User�s Management of Changes

There are numerous circumstances where it may be desired to reverse the effects of
ontology evolution, to name just a few:

• The ontology engineer may fail to understand the actual effect of the change and
approve the change that shouldn�t be performed.

• It may be desired to change the ontology for experimental purposes.
• When working on an ontology collaboratively, different ontology engineers may

have different ideas about how the ontology should be changed.

In order to enable recovering from these situations, we introduce the validation
phase in the ontology evolution process (see Figure 2). It enables validation of
performed changes and undoing them at user�s request. It is important to note that
reversibility means undoing all effects of some change, which may not be the same as
simply requesting an inverse change manually. For example, if a concept is deleted
from a concept hierarchy, its subconcepts will need to be either deleted as well,
attached to the root concept, or attached to the parent of the deleted concept.
Reversing such a change is not equal to recreating the deleted concept � one needs,
also, to revert the concept hierarchy into original state.

The problem of reversibility is typically solved by creating evolution logs. An
evolution log tracks information about each change in the system, allowing to
reconstruct the sequence of changes leading to current state of the ontology. With
each change evolution logs additionally associate following information [13]:

• Meta-information such as change description, cost of change, time of change,
cause of the change etc.,

• Identity of the change author.

2.3 Continual Improvement

In ontology evolution we may distinguish two types of changes: top-down and
bottom-up, whose generation is part of the �capturing phase� in the ontology
evolution process. Top-down changes are explicit changes, driven, for example, by
top-manager who want to adapt the system to new requirements and can be easily
realized by an ontology evolution system. However, some changes in the domain are
implicit, reflected in the behavior of the system and can be discovered only through
analysis of its behavior. For example, if a customer group doesn�t contain members
for a longer period of time, it may mean that it can be removed. This second type of
change mined from the set of ontology instances are called bottom-up changes.

Another source of bottom-up changes is the structure of the ontology itself [19].
Indeed, the previously described �validation phase� results in an ontology which may
be in a consistent state, but contains some redundant entities or can be better
structured with respect to the domain. For example, multiple users may be working on

 User-Driven Ontology Evolution Management 291

different parts of an ontology without enough communication. They may be deleting
subconcepts of a common concepts at different points in time to fulfill their
immediate needs. As a result, it may happen that only one subconcept is left. Since
classification with only one subclass beats the original purpose of classification, we
consider such ontology to have a suboptimal structure. Moreover, based on heuristics
and/or data mining algorithms [12], suggestions for changes that refine ontology
structure may be induced by analysis of patterns of ontology usage. By tracking when
concept has last been retrieved by a query, it may be possible to discover that some
concepts are out of date and should be deleted or updated. To aid users in detecting
such situations, we investigated the possibilities of applying the self-adaptive systems
principles and proactively make suggestions for ontology refinements � changes to the
ontology with the goal of improving ontology structure, making the ontology easier to
understand and cheaper to modify.

2.4 The Overall Ontology Evolution Process

Complete ontology process derived from our discussion of ontology evolution
requirements is presented in Figure 2. It has a cyclic structure, since validation of
realized changes may (automatically) induce new changes in order to obtain model
consistency or to satisfy users� expectations. The first requirement from section 2 for
ontology consistency results in phases 2 to 5, the second requirement for user
supervision results in phase 6 and the third requirement for continual ontology
refinement results in phase 1.

3 Evolution Strategy

As mentioned, the role of �semantics of change� phase in ontology evolution process
if to figure out which elementary changes need to be performed for one change
request, e.g. deletion of a concept. If this were left to the user, evolution process
would be too error-prone and time consuming � it is unrealistic to expect that humans
will be able to comprehend entire ontology and interdependencies in it [28]. This
requirement is especially hard to fulfill if the rationale behind domain
conceptualization is ambiguous or if the user does not have the experience. There are
many ways to achieve consistency after a change request. For example, when a
concept from the middle of the hierarchy is being deleted, all subconcepts may either
be deleted or reconnected to other concepts. If subconcepts are preserved, then
properties of the deleted concept may be propagated, its instances distributed, etc.
Thus, for each change in the ontology, it is possible to generate different sets of
additional changes, leading to different final consistent states. Most of existing
systems for the ontology development [22] provide only one possibility for realizing a
change and this is usually the simplest one. For example, the deletion of a concept
always causes the deletion of all its subconcepts.

Thus, to resolve a change, the evolution process needs to determine answers at
many resolution points � branch points during change resolution where taking a
different path will produce different results. Each possible answer at each resolution

292 Ljiljana Stojanovic et al.

point is an elementary evolution strategy. Common policy consisting of a set of
elementary evolution strategies, each giving an answer for one resolution point, is an
evolution strategy and is used to customize the ontology evolution process. Thus, an
evolution strategy unambiguously defines the way how elementary changes will be
resolved [3]. Typically a particular evolution strategy is chosen by the user at the start
of the ontology evolution process.

3. Semantics
of change

5. Propagation

6. Validation

4. Implementation

2. Representation

1. Capturing

Business
requirements

Discovering

Figure 2. Ontology Evolution Process

To derive the set of resolution points within an evolution strategy, we started by
considering types of changes that may be applied to an ontology. Next we analyzed
what consequences can each change have on the ontology with respect to its
definition [25] and dependencies between ontology entities. We isolated changes that
can provoke syntax inconsistencies and, consequently, cannot be applied. For
example, �Add_SubConceptOf� change is not allowed if it causes an inheritance
hierarchy cycles. Further, we identified that some changes can generate the need for
subsequent changes, some of them offering different ways of resolution. For each
particular resolution way we defined an elementary evolution strategy. For each
elementary change we defined an algorithm containing resolution points encountered
during change resolution. Each resolution point represents a branching point, and each
elementary evolution strategy represents one possible branch. The choice of exactly
one elementary evolution strategy for each possible resolution point forms an
evolution strategy.

3.1 Evolution Strategy Example

Let us explain our approach through an example of deleting a concept C embedded in
a complex concept hierarchy. In order to keep the ontology in a consistent state,
following resolution points may be observed:

• what to do with orphaned subconcepts of C;
• what to do with properties that subconcepts of C inherit from C�s parents;

 User-Driven Ontology Evolution Management 293

• what to do with all properties whose domain is C;
• what to do with the properties whose range is C;
• what to do with instances of C;
• what to do with instances of other concepts having relations with instances of C.

For each of these resolution points, there is a set of elementary evolution strategies
defining possible options. E.g., in case of the first resolution point, as illustrated in
Figure 3, orphaned subconcepts of C may be:

• connected to the parent concept(s) of C;
• connected to the root concept of the hierarchy;
• deleted as well.

Figure 3. Resolution Points for Deleting Concept C: a) Original ontology; b) Connection to the
parent concept; c) Connection to the root concept; d) Deletion of the subconcepts

Similarly we may elicit remaining elementary strategies for all mentioned
resolution points. The part of the algorithm for deletion of a concept with
corresponding resolution points and available elementary evolution strategies is given
in Figure 4.

3.2 Advanced Evolution Strategies

In real business the choice of how a change (e.g. deletion of a concept) should be
resolved may be based on characteristics of the final state of the ontology (e.g. make
depth of hierarchy as small as possible) or on characteristics of the process for
resolving changes itself (e.g. incur minimal cost of changes).

In order to enable such customization of the ontology evolution process, the user
may choose an advanced evolution strategy. It represents a mechanism to priorities
and arbitrate among different evolution strategies available in a particular situation,
relieving the user of choosing elementary evolution strategies individually.

Advanced evolution strategy automatically combines available elementary
evolution strategies to satisfy user�s criteria. We have identified the following set of
advanced evolution strategies:

• structure-driven strategy � resolves changes according to criteria based on the
structure of the resulting ontology, e.g. the number of levels in concept

294 Ljiljana Stojanovic et al.

hierarchy. This strategy follows the requirements of the real-word ontology-
based applications, e.g. MEDLINE3. MEDLINE requires a weekly update,
usually involving only supplementary concept records. However, concept
hierarchy is updated annually. This kind of changes is performed by keeping the
hierarchy minimal, because it alleviates, according to the authors of MEDLINE,
the understanding of the conceptualization.

• process-driven strategy � resolves changes according to process of changes
itself, for example optimized per cost4 of the process or per a number of steps
involved5. Determining what has to be change and how to change it requires a
deep understanding of how the ontology entities interact one with another. We
cannot expect that the user spends time explaining the reasons for all performed
changes and their ordering. One strategy enabling that the user can easily follow
and understand sequences of the changes is to perform the minimal number of
the updates.

• instance-driven strategy � resolves changes to achieve an explicitly given state
of the instances. This relieves the user of the necessary to newly add or
redistribute the instances, which can be time consuming and error prone task.
An efficient instance-driven evolution strategy should analyze the difference
between the initial and final state of instances and try to achieve final state in the
most efficient manner. The process to achieve that is based on logical inference
[5] and its description is out of scope for this paper.

• frequency-driven strategy � applies the most used or last recently used
evolution strategy.

Delete_Concept(C)
Select Case (what to do with orphaned subconcepts of C)

Case �connected to the parent concept(s) of C�: reconnect_to_parent(C)
Case �connected to the root concept of the hierarchy�: reconnect_to_root(C)
Case �delete subconcepts�: delete_subconcepts(C)

Select Case (what to do with properties of C)
Case �move properties to subconcepts�: move_properties_subconcepts(C)
Case �move properties to superconcepts�: move_properties_superconcepts(C)
Case �delete domain for properties�: delete_domain_properties (C)

Select Case (what to do with inherited properties of C)
Case �move inherited properties to subconcepts�: move_inherited_properties_subconcepts(C)

Select Case (what to do with the properties whose range is C)
Case �delete properties�: delete_property_range(C)
Case �change range to parent�: change_range_parent(C)

�
Resolution points Evolution strategies

Figure 4. Algorithm for Concept Deletion

3 http://www.nlm.nih.gov/pubs/factsheets/medline.html
4 Cost may be defined by the number of instances that must be updated.
5 The application of process-driven evolution with the minimal number of the changes for the

ontology shown in the figure 3a) results in solution (d). Since instances are missing from the
figure, a cost-based evolution strategy cannot be chosen.

 User-Driven Ontology Evolution Management 295

4 Implementation

The Karlsruhe Ontology and Semantic Web framework (KAON) has been developed
at the University of Karlsruhe. It is used as a basis for several ontology-enabled
research and industry projects. It�s primary goal is to establish a platform needed to
apply Semantic Web technologies to e-commerce scenarios, knowledge management,
automatic generation of Web portals, E-Learning etc. The simplified conceptual
architecture of KAON emphasizing points of interest related to ontology evolution is
presented in Figure 5.

 Other User Interface
Applications
and Services

Applications
& Services

KAON Access Interface

KAON-API

Middleware

Data and
Remote Services

OntoMat-SOEP Ontology and
Metadata

Engineering Tool

RDF API

KAON RDF Server

Evolution
Strategy

Reversibility
Services

Evolution
Logging

Persistence, Transactions, Security

Figure 5. Conceptual KAON Architecture with Respect to Ontology Evolution

Roughly, KAON components can be divided into three layers:

• Applications and Services Layer realizes UI applications and provides interfaces
to non-human agents. Among many applications realized, OntoMat-SOEP
provides ontology and metadata engineering capabilities. It realizes many
requirements related to ontology evolution and is described next in more detail.

• KAON API as part of the Middleware Layer is the focal point of KAON
architecture since it realizes the model6 of ontology based applications. The bulk
of requirements related to ontology evolution is realized in this layer and is
described in the next section.

• Data and Remote Services Layer provides data storage facilities. This layer also
realizes concurrency and transactional atomicity of updates. Further elaboration
of this layer is out of scope for this paper.

6 The term model refers to the model component of the Model-View-Controller architectural

pattern.

296 Ljiljana Stojanovic et al.

4.1 Ontology Evolution in KAON API

Before the ontology evolution process is started, a particular evolution strategy must
be selected. Changes to the ontology are performed by assembling elementary and
composite changes into a sequence. However, before the ontology is actually updated,
this sequence is passed to the present evolution strategy to perform the steps described
in section 3 in the �semantics of change� phase, resulting in an extended sequence of
changes. To ensure atomicity of updates, either all or no change from the extended
sequence of changes should succeed, so validity of change sequence is checked before
any updates are actually performed. Transparency is realized by presenting the
extended sequence of changed to the user for approval. To further aid the
understanding of why some changes are performed, the evolution strategy may group
related elementary actions and provide explanations why particular change is
necessary, thus greatly increasing the chances that all side-effects of changes will be
properly understood. After changes are reviewed by the user, they are passed to the
ontology and executed, performing steps from the �change implementation� phase.

It is obvious that for each elementary change there is exactly one inverse change
that, when applied, reverses the effect of the original change. With such infrastructure
in place, it is not hard to realize the reversibility requirement: to reverse the effect of
some extended sequence of changes, a new sequence of inverse changes in reverse
order needs to be created and applied.

As mentioned in section 2, the evolution log needs to associate additional
information with each change. Effectively, the log is treated as an instance of a
special evolution ontology [13] consisting of concepts for each change, making it is
easy to add meta-information to log entries. Structure of the log may be easily
customized by editing the evolution ontology. Evolution logging and reversibility
services are provided as special services of KAON API, allowing different
applications reuse these powerful features. E.g., actions performed in one application
may be easily reverted in another.

4.2 Ontology Evolution in KAON Applications

As mentioned in the previous section, ontology evolution is primarily realized
through KAON API. However, UI applications provide human-computer interaction
for evolution, whose primary role is to present change information in an orderly way,
allowing easy spotting of potential problems. Also, any application that changes the
ontology must realize the reversibility requirement in its user interface as well.
Currently evolution requirements are realized within the OntoMat-SOEP ontology
and metadata engineering tool, as follows:

• As shown in left part of Figure 6, users may set up the desired evolution strategy
which consists of four resolution points. For each resolution point the user must
choose appropriate elementary evolution strategy.

• Before changes are performed, their impact is reported to the user (the right part
of Figure 6). Presentation of changes follows the progressive disclosure
principle: related changes are grouped together and organized in a tree-like
form. The user initially sees only the general description of changes. If he is

 User-Driven Ontology Evolution Management 297

interested in details, he can expand the tree and view complete information. He
may cancel the operation before it is actually performed.

• An unlimited undo-redo function is provided. Although is this function by large
the responsibility of the KAON API, the user interface is responsible for
restoring the visual context after an undo operation.

Figure 6. Ontology Evolution in KAON framework: Evolution Strategy Set-up and Ontology
Evolution User Interface in OntoMat-SOEP

A sample screenshot of OntoMat-SOEP is given in Figure 6. In this scenario, the
user requested to remove Student concept. The evolution strategy decided to push
property studiesAt of that concept to children. By opening a node in the tree, the user
can see what changes will actually be performed. Hence, the change information can
be viewed at different levels of granularity. Similarly, the strategy decided that
children of the concept will be attached to parent of the deleted concept. For each
child a detailed list elementary changes needed to achieve that is presented.

5 Related Work

In the last decade there has been very active research in the area of ontology
engineering. The majority of researches in this area are focused on construction
issues. However, coping with the changes and providing maintenance facilities
require a different approach. We cannot say that there exist commonly agreed

298 Ljiljana Stojanovic et al.

methodologies and guidelines for ontology evolution. Thus, there are very few
approaches investigating the problems of changing in the ontologies.

Heflin [9] points out that ontologies on the Web will need to evolve and he
provides a new formal definition of ontologies for the use in dynamic, distributed
environments. Although good design may prevent many ontological errors, some
errors will not be realized until the ontology is put into use. However, this problem as
well as the problem of the change propagation are not treated in the work of Heflin.
Moreover, the user cannot customize the way of performing the change and the
problem of the identification of the change is not analysed.

In contrast to the ontology evolution that allows access to all data only through the
newest ontology, the ontology versioning allows access to data through different
versions of the ontology. Thus, the ontology evolution can be treated as a part of the
ontology versioning mechanism that is analysed in [11]. Authors provide an overview
of causes and consequences of the changes in the ontology. However, the most
important flaw is the lack of a detailed analysis of the effect of specific changes on
the interpretation of data which is a constituent part of our work.

Oliver et al. [20] discuss the kinds of changes that occur in medical ontologies and
propose the CONCORDIA concept model to cope with these changes. The main
aspects of CONCORDIA are that all concepts have a permanent unique identifier.
Concepts are given a retired status instead of being physically deleted. Moreover
special links are maintained to track the retired parents and children of each concept.
However, this approach is insufficient for managing a change on the Semantic Web
especially while there are no possibilities to control the whole process.

In [16] the author presents the guiding principles for building consistent and
principled ontologies in order to alleviate their creation, the usage and the
maintenance in the distributed environments. Authors analyse the requirements for the
tool environments that enforces consistency. Many of these operational guidelines are
included (and implemented) in our solution.

[29] presents an extended ontology knowledge model that represents semantic
information about concepts explicitly. However, this enriched semantic is not used for
supporting evolution problems, but to describe what is known by agents in a multi-
agent system.

Other research communities also have influenced our work. The problem of
schema evolution and schema versioning support has been extensively studied in
relational and database papers ([1], [21]). In [18] authors discuss the differences that
steam from different knowledge models and different usage paradigms. Moreover,
research in ontology evolution can also benefit from the many years of research in
knowledge-based system evolution [3, 15]. The script-based knowledge evolution
[28] that identifies typical sequences of changes to knowledge base and represents
them in a form of scripts, is similar to our approach. In contrast to the knowledge-
scripts that allow the tool to understand the consequences of each change, we go step
further by allowing the user to control how to complete the overall modification and
by suggesting the changes that could improve the ontology.

 User-Driven Ontology Evolution Management 299

6 Conclusion

In this paper we presented a novel approach for dealing with ontology changes. The
approach is based on a six-phase evolution process, which systematically analyses the
causes and the consequences of the changes and ensures the consistency of the
ontology and depending artifacts after resolving these changes. In order to enable the
user to obtain the ontology most suitable to her needs, we specifically focus on the
possibilities to customize the ontology evolution process. We identify two means to
do that: (i) to enable the user to set up one of predefined or advanced evolution
strategies that are used for resolving the changes and (ii) to suggest the user to
generate some change, implied by the analysis of the structure of the ontology,
ontology instances or user behaviors in the underlying ontology-based applications.

Although our implementation is in an early phase and therefore the real evaluation
is missing, we made some experiments with one of our ontology-based applications,
particular the AIFB portal [25]. Comparison of time needed to resolve �per-hand�
initiated change, shows the real necessity for the methodological support for the
ontology evolution, even for the very experienced ontology engineers. Moreover, the
detailed analysis of the possibility to use our approach in the case of highly-
distributed Web applications, such MEDLINE, shows many benefits of the presented
approach for the large-scale ontologies and motivates further research in that
direction.

References

1. J. Banerjee, W. Kim, H.J. Kim, H. Korth, Semantics and implementation of schema
evolution in object-oriented databases, In proceedings of the Annual Conference on
Management of Data, pp- 211-322, ACM SIGMOD, May 1997.

2. T. Berners-Lee, XML 2000 � Semantic Web talk, 2000,
http//www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html, 2000.

3. P. Breche, M. Wörner, How to remove a class in an ODBS, In ADBS�95, 2nd
International Conference on Application Database, Santa Clara, California, 1995

4. A. Bultman, J. Kuipers and F. van Harmelen, Maintenance of KBS�s by domain
experts: The Holy Grail in Practice, Lecture Notes in AI, IEA/AIE�00, 2000.

5. S. Decker, M. Erdmann, D. Fensel and R. Studer, Ontobroker: Ontology based
access to distributed and semi-structured information, Meersman, R. et al. (Eds.),
Database Semantics: Semantic Issues in Multimedia Systems, pp. 351�369. Kluwer
Academic Publisher, 1999.

6. D. Fensel, Ontologies: Dynamics Networks of Meaning, In Proceedings of the the 1st
Semantic web working symposium, Stanford, CA, USA, July 30th-August 1st, 2001.

7. E. Franconi, F. Grandi, and F. Mandreoli, A semantic approach for schema evolution
and versioning in object-oriented databases, Proc. CL2000, 2000.

8. A. Gomez-Perez, Ontological engineering: A state of the art, Expert Update, 2(3):33-
43, Autumn 1999.

9. J. Heflin, Towards the Semantic Web: Knowledge Representation in a Dynamic,
Distributed Environment, Ph.D. Thesis, University of Maryland, College Park. 2001.

10. W. Hürsch, Maintaining consistency and behaviour of object-oriented systems during
evolution, In Proc. of the ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA '97), Vol.32 No. 10, pp1-21, 1997.

300 Ljiljana Stojanovic et al.

11. M. Klein and D. Fensel, Ontology versioning for the Semantic Web, Proc.
International Semantic Web Working Symposium, USA, July 30 - August 1, 2001.

12. A. Maedche and S. Staab, Ontology Learning for the Semantic Web, IEEE Intelligent
Systems, 16(2), March/April 2001. Special Issue on Semantic Web, 2001.

13. A. Maedche, L. Stojanovic, R. Studer, R. Volz: Managing Multiple Ontologies and
Ontology Evolution in Ontologging, In Proceedings of the Conference on Intelligent
Information Processing, World Computer Congress 2002, Montreal, Canada, 2002.

14. A. Maedche, M. Ehrig, S. Handschuh, L. Stojanovic, R. Volz, Ontology-Focused
Crawling on Documents and Relational Metadata, In Proceedings of the Eleventh
International World Wide Web Conference WWW-2002, (Poster), Hawaii, 2002.

15. T. Menzis, Knowledge maintenance: The state of the art. The Knowledge
Engineering Review, 10(2), 1998.

16. D. McGuinness, Conceptual Modeling for Distributed Ontology Environments, In the
Proceedings of the ICCS 2000, August 14-18, Darmstadt, Germany , 2000.

17. D. McGuinness, R. Fikes, J. Rice, and S. Wilder, An environment for merging and
testing large ontologies, In Proceedings of KR-2000. principle of Knowledge
Representation and Reasoning. Morgan-Kaufman, 2000.

18. N. F. Noy, M. Klein, Ontology Evolution: Not the Same as Schema Evolution, SMI
technical report SMI-2002-0926, 2002.

19. N. F. Noy, D. McGuinness, Ontology Development 101: A Guide to creating your
first Ontology, Stanford Knowledge Systems Laboratory Technical Report KSL-01-
05 and Stanford Medical Informatics Technical Report SMI-2001-0880, March 2001

20. D. E. Oliver, Y. Shahar, M. A. Musen, and E. H. Shortliffe, Representation of change
in controlled medical terminologies, AI in Medicine,15(1):53�76, 1999.

21. J.F. Roddick, A Survey of Schema Versioning Issues for Database Systems,
Information and Software Technology, 37(7):383-393, 1996.

22. S. Staab, H.-P. Schnurr, R. Studer and Y. Sure, Knowledge Processes and
Ontologies, IEEE Intelligent Systems. 16(1), Jan./Feb. 2001. Special Issue on
Knowledge Management, 2001.

23. L. Stojanovic, N. Stojanovic and R. Volz, Migrating data-intensive Web Sites into the
Semantic Web, In Proceedings of the ACM Symposium on Applied Computing SAC,
2002.

24. L. Stojanovic, N. Stojanovic, S. Handschuh, Evolution of the Metadata in the
Ontology-based Knowledge Management Systems, In Proceedings of Experience
Management 2002, Berlin, 2002.

25. N. Stojanovic, A. Maedche, S. Staab, R. Studer and Y. Sure, SEAL � A Framework
for Developing SEmantic PortALs, ACM K-CAP 2001. October, Vancouver, 2001.

26. N. Stojanovic, L. Stojanovic, Searching for the Knowledge in the Semantic Web, The
15th International FLAIRS Conference, Pensacola, Florida, May 14-16, 2002.

27. N. Stojanovic, L. Stojanovic: Evolution in the ontology-based knowledge
management system. In Proceedings of the European Conference on Information
Systems - ECIS 2002, Gdañsk, Poland, 2002.

28. M. Tallis, Y. Gil, Designing Scripts to Guide Users in Modifying Knowledge-based
Systems, AAAI/IAAI 1999: 242-249

29. V.A.M. Tamma, T.J.M Bench-Capon, A conceptual model to facilitate knowledge
sharing in multi-agent systems, In Proceedings of the OAS 2001. Montreal, pp. 69-
76, 2001.

Attribute Meta-properties for Formal

Ontological Analysis

Valentina Tamma and Trevor J.M. Bench Capon

Department of Computer Science, University of Liverpool,
Chadwick Building, Liverpool L69 7ZF, UK,

{valli, tbc}@csc.liv.ac.uk

Abstract. Formal ontological analysis is a methodology that uses ideas
from philosophy in order to guide the process of building ontologies with
a correct and as untangled a structure as possible.
This paper presents an ontology model that aims to facilitate formal
ontological analysis, by providing a set of meta-properties which char-
acterise the behaviour of concept properties in a concept definition, to
provide a richer semantics of the concept. We describe concepts in terms
of their attributes (characterising features) and we also describe the
role played by these features in the concept definition: whether they are
prototypical or exceptional; whether they are permitted to change over
time, and if so, how often this happens; how likely is a concept to show
these features, etc. We show that these meta-properties, besides enrich-
ing concept descriptions, can be used to determine whether the notions
of identity and rigidity hold, thus supporting in part the OntoClean [31]
methodology.

1 Introduction

Many current applications such as e-commerce and the semantic web rely on
the ability of different resources or agents to interoperate with each other and
with users. In some cases, interoperation becomes quite complex, because agents
may have been independently developed, and so the assumption that agents use
the same communication language and the same terminology in a consistent
way cannot be made. When dealing with independently developed agents, their
interoperability with humans and others depends on their ability to understand
each other.

Ontologies are an explicit, formal specification of a shared conceptualisation,
where a ‘conceptualisation’ refers to an abstract model of some phenomenon in
the world by having identified the relevant concepts of that phenomenon. ‘Ex-
plicit’ means that the type of concepts used, and the constraints on their use
are explicitly defined. · ‘Formal’ refers to the fact that the ontology should be
machine-readable. ‘Shared’ reflects the notion that an ontology captures consen-
sual knowledge, that is it is not private to some individual, but accepted by a
group [27]. That is, ontologies provide a formally defined specification of the
meaning of those terms that are used by agents to interoperate.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 301–316, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

302 Valentina Tamma and Trevor J.M. Bench Capon

Agents can differ in their understanding of the world surrounding them, in
their goals, and their capabilities, but they can still interoperate in order to
perform a task, provided they can reach agreement on a shared understanding,
mainly obtained by reconciling the differences. This kind of reconciliation might
be accomplished by merging the ontologies to which the agents refer, that is, by
building a single ontology that is the merged version of the different ontologies,
which often cover similar or overlapping domains [4].

Ontology merging starts with the attempt to find the places in which the
source ontologies overlap [18], that is the coalescence of two semantically identical
terms in different ontologies so that they can be referred to by the same name in
the resulting ontology. This is the only step of the merge process which is relevant
to the scope of this article. The coalescence of terms in diverse ontologies has
to be accomplished despite heterogeneous agent ontologies and heterogeneity
has to be reconciled in order to share knowledge. Defining the different types
of heterogeneity is out of the scope of this article, although we recognise that
it can hinder attempts to coalesce terms, especially when it is the semantics
that is heterogeneous. Ontology or semantic heterogeneity occurs when different
ontological assumptions about overlapping domains are made [30].

The ontologies involved in the merging process, be they heterogeneous or
not, are usually assumed to be either built according to some kind of engineer-
ing methodology, such as Methontology [3], or their ontology taxonomic struc-
tures are validated according to some methodology such as OntoClean [31]. Both
methodologies aim to ensure that the ontology obtained after applying them is
correct, that it does not contain cycles or recursive definitions, and it has a
taxonomic structure that is as untangled as possible.

Methontology and OntoClean are complementary methodologies in that the
former provides the guidelines for building or re engineering ontologies, whereas
the latter can be used either in the validation step (when ontologies are engi-
neered or restructured) or simultaneously with the ontology construction (when
ontologies are built from scratch). These two methodologies are currently un-
dergoing an integration process [2] as part of the activities of the OntoWeb spe-
cial interest group on Enterprise-standards Ontology Environments (SIG’s home
page: http://delicias.dia.fi.upm.es/ontoweb/sig-tools/index.html).

Methodologies to obtain well-built ontologies, however, are not sufficient
to support a semi-automatic coalescence process. In fact we cannot recognise
whether two concepts (that can be heterogeneous) are similar, only on the basis
of the terms denoting them, the relationships with other terms, and their de-
scriptions, but we need to have a full understanding of the concepts. As noted
by McGuinness [17], an explicit representation of the semantics of terms would
be a step towards understanding whether two concepts are similar. It emerges
that the current ontology models are not expressive enough to provide such an
explicit representation. Even when heavyweight ontologies are used (that is, con-
cepts described in terms of attributes, linked by relations, organised into an Is-a
relationship and constrained by axioms), their expressiveness does not allow a
full account of the semantics of the concepts described. The ontology model we

Attribute Meta-properties for Formal Ontological Analysis 303

present in this paper is enriched by attribute meta-properties which account for
the behaviour of attributes in the concept definition.

This paper is organised as follows: Section 2 presents the OntoClean method-
ology and the notions of formal ontological analysis, while Section 3 introduces
our proposal for an ontology model encompassing a set of meta-properties for
attributes which are then discussed in the following subsections. This ontology
model was also presented in [29]: in this paper we do not discuss any implementa-
tion issues and we concentrate on the meta-properties, clarifying the relationship
with the concept meta-properties used in OntoClean and the role attribute meta-
properties play in associating senses to concepts. Section 4 discusses the attribute
meta-properties and relates them with two notions (identity and rigidity) of for-
mal ontological analysis and with roles. Finally, Section 5 draws conclusions.

2 Identity, Unity, Essence, and Dependence and Their
Use in OntoClean

OntoClean [31] is a methodology to perform a formal ontological analysis on tax-
onomies in order to verify which formal meta-properties hold, thus making clear
and explicit the modelling assumptions made while designing the ontologies. The
clarification and explication of the modelling assumptions is a necessary step in
evaluating ontologies, since it permits knowledge engineers to detect and rec-
oncile ontological conflicts that may affect one or more ontologies. Ontological
conflicts may become apparent when two ontologies are compared in order to
coalesce terms, and they reveal cases of ontological heterogeneity. For example,
two well known ontologies 1 (Wordnet [19] and Panglos [11]), present the fol-
lowing conflict: one models Physical Object as subconcept of Amount of matter
wheres the other models Amount of matter as subconcept of Physical object.
This is a case of ontology heterogeneity due to different modelling of the con-
cepts. Such ontological conflicts need to be detected and resolved if terms are to
be coalesced.

OntoClean is firmly based on the philosophical notions of identity, unity,
essence (rigidity), and dependence. The attribute meta-properties we present in
this paper are related to these notions, and we discuss them below.

Identity: Identity is the logical relation of numerical sameness, in which a thing
stands only to itself. Based on the idea that everything is what it is and not
another thing, philosophy has tried for a long time to identify the criteria which
allow a thing to be identified for what it is even when it is cognised in two dif-
ferent forms, by two different descriptions and/or at two different times [32, 9].
This comprises both aspects of finding constitutive criteria (which features a
thing must have in order to be what it is), and of finding re-identification crite-
ria (which features a thing has to have in order to be recognised as itself by a
cognitive agent).
1 Strictly speaking, neither Wordnet nor Panglos are ontologies. However, they are
often used and referred to as ontologies.

304 Valentina Tamma and Trevor J.M. Bench Capon

OntoClean does not make any difference between identity and re-identification,
but we believe that these are distinct, although equally important aspects of
identity. It happens to be the case the fingerprints are unique to individuals.
This means that, in the actual world, fingerprints can serve as re-identification
criteria. But it is possible that everyone had the same fingerprints: in such a
possible world, fingerprints would not provide re-identification criteria. More-
over, fingerprints cannot be used to discover identity across possible worlds, and
cannot be a criterion constitutive of such identity.
Although the problem of identifying what features an entity should have in order
to be what it is and recognised as such has been central to philosophy, it has
not had the same impact in conceptual modelling and more generally AI. The
ability to identify individuals is central to the modelling process; more precisely,
it is not the mere problem of identifying an entity in the world that is central
to the ontological representation of the world, but the ability to re-identify an
entity in all its possible forms, or more formally, re-identification in all possible
worlds. That is, the problem is related to distinguishing a specific instance of a
concept from its siblings on the basis of certain characteristic properties which
are unique and intrinsic to that instance. Intrinsic properties are usually mod-
elled as attributes.
Identity is, of course inherently time dependent, since time gives rise to a partic-
ular system of possible worlds where it is highly likely that the same instance of
a concept exhibits different features This problem is known as identity through
change: an instance of a concept may remain the same while exhibiting differ-
ent properties at different instants of time. Therefore it becomes important to
understand not only which features or properties can change and which cannot
[31], but also, we add, the situations that can trigger such changes.
Identity is an absolute notion (whereas re-identification is not), although we
recognise that applying identity to certain concepts, such as those representing
artifacts, is not always straightforward.

Unity: the notion of unity is often included in a more generalised notion of
identity, although these two notions are different. While identity aims to charac-
terise what is unique for an entity of the world when considered as a whole, the
goal of unity is that of distinguishing the parts of an instance from the rest of
the world by means of a unifying relation that binds them together (not involv-
ing anything else) [31]. For example, the question ‘Is this my car?’ represents a
problem of identity, whereas the question ‘Is the steering wheel part of my car?’
is a problem of unity. Also the notion of unity is affected by the notion of time;
for example, can the parts of an instance be different at different instants of time?

Essence: The notion of essence is strictly related to the notion of necessity
[10]. An essential property is a property that is necessary for an object, that
is, a property that is true in every possible world [15]. Based on the notion of
essence, Guarino and colleagues [8] have introduced the notion of rigidity. A rigid
property is a property that is necessary to all instances in any instant of time,

Attribute Meta-properties for Formal Ontological Analysis 305

that is a property φ such that: 2(∀x, tφ(x, t) → 2∀t′ φ(x, t′)). For this for-
mula, and in the remainder of this paper, we use the modal notions of necessity
2 and possibility � quantified over possible worlds (in Kripke’s semantics [13]),
meaning that the extension of predicates concerns what exists in any possible
world. We use these operators according to the following meanings: 2 φ means
that φ holds in all possible worlds � φ means that φ is possible, i.e. that φ holds
in at least one possible world, which might be accessible from the actual world.
Rigidity strictly depends on the notions of time and modality [29]; this point is
further elaborated in Section 4.2. It is important,however, not to confuse modal
necessity with temporal permanence. Modal necessity means that the property is
true in every possible world. Time is undoubtedly one partition of these worlds,
but temporal permanence means that the property is true in that world (time),
with no information concerning the other possible worlds, and this might happen
by pure chance. For example, fingerprints are temporally permanent, but might
differ in other possible worlds.

Dependence: In OntoClean [31], the notion of dependence is considered related
to concept properties. In this context, dependence permits us to distinguish
between extrinsic and intrinsic properties based on whether they depend on
objects other than the one they are ascribed to or not.

In order to establish which of these meta-properties hold, OntoClean is sup-
ported by a description logic based system that can help knowledge engineers to
assign the meta-properties to concepts and to verify the taxonomic structure on
the grounds of the modelling methodology. In this paper we focus our attention
on the process of assigning the meta-properties. OntoClean guides knowledge en-
gineers in this process by asking them to answer some questions such as “Does
the property carry identity”. Knowledge engineers can answer yes, no or unsure,
in this latter case more specific questions can be asked, such as “Are instances
of the property countable?”.
The OntoClean methodology depends on the knowledge engineer’s understand-
ing of the ontologies being analysed and can thus be problematic if used to
evaluate independently designed ontologies. Moreover, OntoClean does not take
into account the structure of concept definitions, as it does not consider the char-
acteristic features (or attributes) that might have been used to define concepts.
This work proposes an enriched ontology model whose aim is to complement
the OntoClean methodology, by providing an additional way to determine meta-
properties to concepts. In our proposal we describe concepts in terms of their
attributes, which are in turn described not only in terms of their structural fea-
tures (such as range, domain, cardinality etc.), but also in terms of their meta-
properties, which describe the contribution given by the attributes to the concept
definition. We describe the enriched ontology model and the meta-properties for
attributes in the next sections.

306 Valentina Tamma and Trevor J.M. Bench Capon

3 Enriched Ontology Model

The ontology conceptual model 2 we propose comprises concepts, attributes, re-
lations, and instances. We do not consider here axioms. Concepts represent the
entities of the domain and the tasks we want to model in the ontology. Concepts
are described in terms of defining properties, which are represented by associ-
ating an attribute with either a single value or a set of values. Concepts are
organised into an Is-a hierarchy, so that a concept attributes and their values
are inherited by subconcepts. Multiple inheritance is permitted, so attributes
and their values can be inherited from multiple parents. The values associated
with an attribute can be restricted in order to provide a more specific definition
of a concept [14].

Attributes can be described in terms of their structural characteristics, such
as the concepts that they are defining, their allowed values, the type of the val-
ues (string, integer, etc.), and the maximum and minimum values (if attributes
are numeric). Attributes can also be described in term of the following meta-
properties:

– Attribute’s behaviour over time: The meta-properties Mutability, Mutabil-
ity Frequency, Event Mutability and Reversible Mutability provide a better
description of attributes by characterising their behaviour over time, that
is, whether they are allowed to change their value during the concept life-
time (Mutability); and how often the change occurs (Mutability Frequency);
whether the change is reversible (Reversible Mutability); and what triggers
change (Event Mutability);

– Modality: this meta-property is a qualitative description of the degree of
inheritability of a concept property by its subconcepts;

– Prototypes and Exceptions : the meta-properties Prototypical and Exceptional
aim to describe properties that are prototypical for a concept, that is the
properties that obtain for the prototypical (from a cognitive viewpoint, fol-
lowing Rosch [21]) instances of a concept. Exceptions are those properties
which can be ascribed to a concept although being highly unusual;

– Inheritance and Distinction: inherited meta-properties regard those prop-
erties that hold because inherited from an ancestor concept, although they
may be overruled in the more specific concept in order to accommodate in-
heritance with exceptions. Distinguishing properties are those that permit
us to distinguish among siblings of a same concept. In other words a distin-
guishing property φ is a property such that �∃x φ(x) ∧ �∃x ¬φ(x), that is
there is possibly something for which the property φ holds, and there is pos-
sibly something for which the property does not hold, and these are neither
tautological nor vacuous [31]. Distinguishing properties can lead to disjoint
concepts in the ontology’s taxonomic structure.

2 by conceptual model we mean the knowledge engineer’s evolving conception of the
domain knowledge. It is the knowledge that actually determines the construction of
a formal knowledge base. A conceptual model is an intermediate design construct,
a template to begin to constrain and codify human skill, it is neither formal nor
directly executable on a computer [16]

Attribute Meta-properties for Formal Ontological Analysis 307

These meta-properties provide means to distinguish between necessary and suf-
ficient conditions for class membership. Indeed, the modality meta-property and
those describing the behaviour over time permit the identification of essential
(or rigid) properties and necessary properties are those that are essential to all
instances of a concept. Prototypical properties are good candidates to identify
sufficient conditions, as discussed in Section 3.3.

Relations between concepts are supported by the model as are instances.
Finally, the ontology model supports roles. Concepts are also used to represent
roles, which can be thought of describing the part played by a concept in a
context, (a more complete discussion on roles is postponed to Section 4.3). Roles
are described in terms of their context, and the formal role relationship holds,
that is, roles are related to concepts by a ‘Role-of’ relations.

This ontology model has been used to model a medical condition Dissem-
inated Intravascular Coagulation (DIC) [28], whose evolution depends on the
changes over time of its symptoms. This ontology model is proving quite promis-
ing since it permits physicians to fully capture the changes in the attribute values,
how these affect the hierarchy formed by the different types of DIC, and to make
explicit most of the modelling assumptions. However, its use is not restricted to
medical domains.

This ontology model enriches the traditional model proposed initially by
Gruber [6], in that it permits the characterisation of the properties of a concept.
From this viewpoint it should be considered more expressive. The solution of
adding information characterising concept properties is a controversial one. In-
deed, any number of meta-properties could be used to characterise attribute’s
behaviour. Here we focused our attention on those meta-properties that support
formal ontological analysis.
Although we do realise that often it is not true that ‘more is better’, this work
claims that an ontology model which include this type of property characteri-
sation is helpful to deal with ontology heterogeneity problems in two ways. On
the one hand the model complements the set of formal ontological properties
proposed in [31], and can guide in assigning them to concepts in a way which
depends on concept definitions in terms of attributes. This is particularly useful
when knowledge engineers need to assign formal properties to ontologies they
have not designed.

Additionally, this conceptual model for ontologies facilitates a better under-
standing of the concepts’ semantics. Currently ontology merging is performed by
hand based on the expertise of the knowledge engineers and on the ontology doc-
umentation. Even in this case the ontology model we propose can prove useful by
providing a characterisation of the properties, which can help to identify seman-
tically related terms. The following subsections describe all the meta-properties
for attributes except Inheritance and Distinction (which are trivial) in more
detail:

3.1 Behaviour over Time

The meta-properties which model the behaviour of the attributes over time are:

308 Valentina Tamma and Trevor J.M. Bench Capon

– Mutability, which models the liability of a concept property to change. A
property is mutable if it can change during the concept’s lifetime;

– Mutability Frequency, which models the frequency with which a property can
change in a concept description;

– Event Mutability, which models the reasons why a property may change;
– Reversible Mutability, which models reversible changes of the property.

These meta-properties describe the behaviour of fluents over time, where the
term fluent is borrowed from situation calculus to denote a property of the world
that can change over time. Modelling the behaviour of fluents corresponds to
modelling the changes in properties that are permitted in a concept’s description
without changing the essence of the concept.
Fluents are used to characterise time dependency in processes. Hence, here and
in [28] we take the view that changes in concept properties can be modelled as
processes [25].
Describing the behaviour over time also involves distinguishing properties whose
change is reversible from those whose change is irreversible.

Property changes over time are caused either by the natural passage of time or
are triggered by specific event occurrences, and so, they need to be represented
by a suitable temporal framework that permits us to reason with time and
events. In [29] we chose Event Calculus [12] to accommodate the representation
of changes. Event calculus deals with local event and time periods and provides
the ability to reason about change in properties caused by a specific event and
also the ability to reason with incomplete information.

We mentioned above that processes model changes in concept properties
(which correspond to changes in the values associated with attributes). Pro-
cesses can be described in terms of their starting and ending points and of the
changes that happen in between. We can distinguish between continuous and
discrete changes, the former describing incremental changes that take place con-
tinuously while the latter describe changes occurring in discrete steps called
events. Analogously we can define continuous properties as those changing reg-
ularly over time, such as the age of a person, versus discrete properties which
are characterised by an event which causes the property to change. If a property
mutability frequency is regular (that is it changes regularly), then the process is
continuous, if it is volatile the process is discrete, and if it changes once only in
the concept’s lifetime, then the process is considered discrete and the triggering
event is set equal to time-point=T.

Any regular occurrence over time can be, however, expressed in form of an
event, since most of the forms of reasoning for continuous properties require
discrete approximations. Therefore in the ontology model we present here, con-
tinuous properties are thought of as discrete properties where the event triggering
the change in property is the passing of time from the instant t to the instant t′.
Events are always thought of as point events, and we consider durational events
(events which have a duration) as being a collection of point events in which
the property whose mutability is modelled by the set of meta-properties hold as
long as the event lasts.

Attribute Meta-properties for Formal Ontological Analysis 309

3.2 Modality: Weighing the Validity of Attribute Properties

The term modality is used to express the way in which a statement is true or false,
which permits us to establish whether a statement constitutes a necessary truth
and to distinguish necessity from possibility [13]. The term can be extended to
qualitatively measure the way in which a statement is true by trying to estimate
the number of possible worlds in which such a truth holds. This is the view
we take, by denoting the degree of confidence that we can associate with the
property holding in a given world with the meta-property modality. This notion
is analogous to the rankings defined by Goldszmidt and Pearl [5]: Each world is
ranked by a non-negative integer κ representing the degree of surprise associated
with finding such a world (in which the property does not hold).

Here we use the term modality to denote the degree of surprise in finding a
world where the property P holding for a concept C does not hold for one of its
subconcepts C′. The additional semantics encompassed in this meta-property is
important to account for statements that have different degrees of credibility.
Indeed there is a difference in asserting facts such as “Cats are pets” and “All
felines are pets”, the former is generally more believable than the latter, for which
many more counterexamples can be found. The ability to distinguish facts whose
truth holds in more or less possible worlds is important in order to find which
facts are true in every possible world and therefore constitute necessary truth,
which permits us to establish rigidity.

Furthermore, the ability to evaluate the degree of confidence in a property
describing a concept is also related to the problem of reasoning with ontologies
obtained by merging. In such a case, mismatches can arise if a concept inherits
conflicting properties. In order to be able to reason with these conflicts some
assumptions have to be made, concerning on how likely it is that a certain
property holds. In case of conflict the property degree of credibility can be used
to apply some forms of non monotonic reasoning or belief revision. For example,
we could rank the possible alternatives on the grounds of the degree of credibility
following an approach similar to the one presented in [5].

3.3 Prototypes, Exceptions, and Concepts

A full understanding of a concept includes not only the set of properties generally
recognised as describing a typical instance of the concept, but also the known
exceptions. In this way, we partially follow the cognitive view of prototypes and
graded structures, which is also reflected by the information modelled in the
meta-property modality. In this view all cognitive categories show gradients of
membership which describe how well a particular subclass fits people’s idea or
image of the category to which the subclass belong [21]. Prototypes are the
subconcepts which best represent a category, while exceptions are those which
are considered exceptional although still belonging to the category.

Prototypes show all the sufficient conditions for class membership. For exam-
ple, let us consider the biological category mammal : a monotreme (a mammal
who does not give birth to live young) is an example of an exception with respect

310 Valentina Tamma and Trevor J.M. Bench Capon

to the property of giving birth to live young. Prototypes depend on the context;
there is no universal prototype but there are several prototypes depending on
the context, therefore a prototype for the category mammal could be cat if the
context taken is that of animals that can play the role of pets but it is lion if the
assumed context is animals that can play the role of circus animals.

The context is in part determined by the task for which the ontology is built,
even in those cases where the ontology is intended to be task neutral, because
of the interaction problem [1]. Thus, attributes considered prototypical are very
likely to differ in ontologies constructed for different tasks.

The ability to distinguish between prototypes and exceptions helps to deter-
mine which properties are necessary and sufficient conditions for concept mem-
bership. In fact a property which is prototypical and that is also inherited by
all the subconcepts becomes a natural candidate for a necessary condition. Pro-
totypes, therefore, permit the identification of the subconcepts that best fit the
cognitive category represented by the concept in the specific context given by the
ontology. On the other hand, by describing which properties are exceptional, we
provide a better description of the membership criteria in that it permits us to
determine which properties, although rarely holding for that concept, are still
possible properties describing the cognitive category.

Prototypes and exceptions can prove useful in dealing with conflicts arising
from ontology merging. When no specific information is made available about
a concept and it inherits conflicting properties, then we can assume that the
prototypical properties hold for it.

In the ontology model presented above the context can be partially described
by the roles applicable to the concept for which prototypical and exceptional
properties are modelled. Ontologies typically presuppose context and this fea-
ture is a major source of difficulty when merging them, since information about
context is not always made explicit.

4 Discussion

The ontology model presented in previous section could be implemented in any
kind of ontology representation formalisms. In [29] we presented an implementa-
tion of the ontology model above in a frame-based representation formalism, and
so attributes were described by associating values to slots, and their structural
description and meta-properties were modelled by the slot’s facets.

By adding the meta-properties to the ontology model, we provide an explicit
representation of the attributes’ behaviour over time, their prototypicality and
exceptionality, and their degree of applicability to subconcepts. This explicit
representation may be used to support and complement the OntoClean method-
ology [31], in that they can help in determining which meta-properties hold for
concepts, as we will illustrate in the sub-sections of this section.

Furthermore, the enriched ontology model we propose forces knowledge engi-
neers to make ontological commitments, that is the agreement as to the meaning
of the terms used to describe a domain [7] explicit. The extent of knowledge

Attribute Meta-properties for Formal Ontological Analysis 311

shared depends on the extent of the different agents’ ontological commitment
made explicit. Real situations are information-rich events, whose context is so
rich that, as it has been argued by Searle [23], it can never be fully specified.
When dealing with real situations one makes many assumptions about mean-
ing and context [22], and these are rarely formalised. But when dealing with
ontologies these assumptions must be formalised since they are part of the onto-
logical commitments that have to be made explicit. Enriching the semantics of
the attribute descriptions with things such as the behaviour of attributes over
time or how properties are shared by the subconcepts makes some important
assumptions explicit.

The enriched semantics helps to recognise and reconcile cases of ontology
heterogeneity. By adding information on the attributes we are also aiming to
measure the similarity between concepts more precisely and to disambiguate
between concepts that seem similar while they are not. Indeed, two concepts
are to be considered similar if they have similar names, if they are described by
similar attributes and if these attributes show the same behaviour in the concept
description [28].

A possible drawback of enriching the ontology model is that knowledge en-
gineers are required a deeper analysis of a domain. We realise that it makes
the process of building an ontology even more time consuming but we believe
that a more precise ontological characterisation of the domain at least balances
the increased complexity of the task. Indeed, in order to include the attribute
meta-properties to the ontology model, knowledge engineers need to have a full
understanding not only of the concept they are describing, but also of the con-
text in which the concept is used. Arguably, they need such knowledge if they
are to perform the modelling task thoroughly.

The evaluation of the price to pay for this enriched expressiveness and of the
kind of reasoning inferences permitted by this model are strictly dependent on
the domain and the task at hand. We can imagine that the automatic coales-
cence of terms might require more sophisticated inferences whose cost we cannot
evaluate a priori. In some other cases, the simple matching between properties’
charactersiations might help in establishing or ruling out the possiblity of seman-
tic relatedness. For example, if two concepts are described by the same properties
but with different characterisations, this might indicate that the concepts have
been conceptualised differently.

4.1 Identity

The idea of modelling the permitted changes for a property is strictly related
to the philosophical notion of identity. The meta-properties modelling the be-
haviour over time are, thus, relevant for establishing the identity of concepts [31],
since the proposed ontology model addresses the problem of modelling identity
when time is involved, namely identity through change, which is based on the
common sense notion that an individual may remain the same while showing
different properties at different times [10]. The knowledge model we propose
explicitly distinguishes the properties that can change from those which can-

312 Valentina Tamma and Trevor J.M. Bench Capon

not, and describes the changes in properties that an individual can be subjected
to, while still being recognised as an instance of a certain concept. Properties
that do not change over time are those that are good candidates to become
re-identification criteria.

Prototypical and exceptional properties and the modality meta-properties
describing how the property is inherited in the hierarchy can all contribute to
determine what are the necessary and sufficient conditions for class membership.
Necessary and sufficient conditions are ultimately the conditions that permit us
to define the properties constitutive of identity and to distinguish them from
those that permit re-identification.

In order to find suitable identity criteria (which permit to identify a concept),
knowledge engineer should look at essential properties, that is those properties
which hold for an individual in every possible circumstance in which the indi-
vidual exists. It is important to note that essential properties should also be
intrinsic if they are to be used to determine identity.

Also inheritance and distinction contribute to identify identity criteria, in
that identity criteria have to be looked for among the distinguishing properties.

4.2 Essence and Rigidity

Identity through change is also relevant to determine rigidity, which derives from
the notion of essence we defined in Section 2. There we defined a rigid property
as a property that is essential to all its instances.

In [29] and in [28] we have related the notion of rigidity to those of time and
modality; and, by including in our ontology model a meta-property modality
and those concerning the behaviour over time, we can precisely identify rigidity
in the subset of the set of possible worlds. Indeed, since an ontology defines a
vocabulary, we can restrict ourselves to the set of possible worlds which is defined
as the set of maximal descriptions obtainable using the vocabulary defined by
the ontology [20]. By characterising the rigidity of a property in this subset
of possible worlds we aim to provide knowledge engineers the means to reach
a better understanding of the necessary and sufficient conditions for the class
membership. However, this does not mean that the rigidity of a property depends
on any account of whether the property is used to determine class membership
or not. That is, the final aim is to try to separate the properties constitutive
of identity from those that permit re-identification. Under the assumption of
restricting the discourse to this set of possible worlds, rigid properties are those
properties which are inherited by all subconcepts, and thus which have a certain
degree of belief associated with the meta-property modality and that cannot
change in time.

It is important to note that, although in [29] we have modelled this informa-
tion as a facet which can take value in the set {All, Almost all, Most, Possible,
A Few, Almost none, None}, the choice of such a set is totally arbitrary, and it
is intended only as an example of a possible way to represent this meta-property.
Alternatively, knowledge engineers should be able to associate with this meta-
property either a probability value, if they know the probability with which the

Attribute Meta-properties for Formal Ontological Analysis 313

property is inherited by subconcepts, or a degree of belief (such as a κ-value,
as in [5], which depends on an ε whose value can be changed according to the
knowledge available, thus causing the κ function to change), if the probability
function is not available.

4.3 Roles Dependence on Identity and Rigidity

Rigidity is not only central in order to distinguish necessary truth but also to
distinguish roles from concepts.

A definition of role that makes use of the formal meta-properties and includes
also the definition given by Sowa [24] is provided by Guarino and Welty. In
[31] they define a role as: ‘ the properties expressing the part played by one
entity in an event, often exemplifying a particular relationship between two or
more entities. All roles are anti-rigid and dependent... A property φ is said to
be anti-rigid if it is not essential to all its instances, i.e. 2(∀x, tφ(x, t) →
�∃ t′ ¬ φ(x, t′))... A property φ is (externally) dependent on a property ψ if,
for all its instances x, necessarily some instance of ψ must exist, which is not
a part nor a constituent of x, i.e. ∀x2(φ(x) → ∃yψ(y) ∧ ¬P (y, x) ∧ ¬C(y, x))’,
where P (y, x) denotes that y is a part of x while C(y, x) denotes that y is a
constituent of x. In other words a concept is a role if its individuals stand in
relation to other individuals, and they can enter or leave the extension of the
concept without losing their identity. From this definition it emerges that the
ability to recognise whether rigidity holds for some property φ is essential in
order to distinguish whether φ is a role.

Roles may be ‘naturally’ determined when social context is taken into ac-
count, and the social context determines the way in which a role is acquired and
relinquished. For example, the role of President of the country is relinquished
differently depending on the context provided by the country. So, for example,
in Italy the role may be acquired and relinquished only once in the lifetime of an
individual, whereas if the country is the United Sates, the role can be acquired
and relinquished twice, because a president can be re-elected. Social conventions
may also determine that once a role is acquired it cannot be relinquished at all.
For example, the role Priest in a catholic context is relinquished only with the
death of the person playing the role. The ability to distinguish roles gives also a
deeper understanding of the possible contexts in which a concept can be used.
Recognising a role can be equivalent to defining a context, and the notion of
context is the basis on which prototypes and exceptions are defined.

In [26] Steimann compares the different characteristics that have been as-
sociated in the literature with roles. From this comparison it emerges that the
notion of role is inherently temporal, and roles are acquired and relinquished
dependent on either time or a specific event. For example the object person ac-
quires the role teenager if the person is between 13 and 19 years old, whereas
a person becomes student when they enroll for a degree course. Moreover, from
the list of features in [26] it follows that many of the characteristics of roles are
time or event related, such as: an object may acquire and abandon roles dynam-
ically, may play different roles simultaneously, or may play the same role several

314 Valentina Tamma and Trevor J.M. Bench Capon

time, simultaneously, and the sequence in which roles may be acquired and relin-
quished can be subjected to restrictions. Indeed, what distinguishes a role from
a concept, in the modelling process, is that a role holds during a specific span of
time in which some property holds. For example, the role ‘Student’ is applica-
ble only if the property of being registered to a university holds. Therefore, the
meta-properties that model the behaviour over time permits the representation
of the acquisition and relinquishment of a role.

For the aforementioned reasons, ways of representing roles must be supported
by some kind of explicit representation of time and events. Indeed the proposed
model provides a way to model roles as fluents; moreover, by modelling the
reason for which a property change, we provide knowledge engineers the ability
to model the events that constrain the acquisition or the relinquishment of a
role.

5 Conclusions

Sharing ontologies independently developed is a burning issue that needs to
be resolved. This paper presents a set of meta-properties describing concept’s
characteristic features (attributes) that can be used to support both the process
of building correct ontologies (by complementing and supporting the formal
ontological analysis performed by the OntoClean methodology [31]) and the
disambiguation of cases of ontology heterogeneity. Formal ontological analysis
is usually demanding to perform and we believe that the set of meta-properties
for attributes we propose can support knowledge engineers in determining the
meta-properties holding for the concepts by forcing them to make the ontological
commitments explicit.

The meta-properties we propose, namely Mutability, Mutability Frequency,
Reversible Mutability, Event Mutability, Modality, Prototypicality, Exceptional-
ity, Inheritance and Distinction encompass semantic information aiming to char-
acterise the behaviour of properties in the concept description. We have argued
that such a precise characterisation can help to disambiguate among concepts
that only seem similar, and in turn can support mappings across the structure
of multiple shared ontologies that we have devised as alternative to the current
approaches to knowledge sharing. We claim that this characterisation of the con-
cept properties is also very important in order to provide a precise specification
of the semantics of the concepts. Such characterisation is essential if we want
to perform a formal ontological analysis, in which knowledge engineers can pre-
cisely determine which formal tools they can use in order to build an ontology
which has a taxonomy that is clean and not very tangled.

The novelty of this characterisation is that it explicitly represents the be-
haviour of attributes over time by describing the permitted changes in a prop-
erty used to describe a concept. It also explicitly represents the class membership
mechanism by associating with each attribute (represented in a slot) a qualita-
tive quantifier representing how properties are inherited by subconcepts. Finally,
the model does not only describe the prototypical properties holding for a con-

Attribute Meta-properties for Formal Ontological Analysis 315

cept but also the exceptional ones. By providing this explicit characterisation,
we are asking knowledge engineers to make more hidden assumptions explicit,
thus providing a better understanding not only of the domain in general, but
also of the role a concept plays in describing a specific domain.

Acknowledgements

We wish to express our gratitude to Asunción Gómez-Pérez for the many dis-
cussions and valuable comments on the PhD thesis from which this paper is
derived. We have also benefitted from the discussion with Mariano Fernández
López and we would like to thank him for his thought provoking comments. The
PhD presented in this paper was funded by BT plc.

References

[1] T. Bylander and B. Chandrasekaran. Generic tasks in knowledge-based reason-
ing: The right level of abstraction for knowledge acquisition. In B. gaines and
J. Boose, editors, Knowledge acquisition for knowledge bases, volume 1, pages
65–77. Academic Press, London, 1988.

[2] M. Fernández-López, A. Gómez-Pérez, and N. Guarino. The methontology &
ontoClean merge. Technical report, OntoWeb special interest group on Enterprise-
standards Ontology Environments, 2001.

[3] M. Fernández-López, A. Gómez-Pérez, A. Pazos-Sierra, and J. Pazos-Sierra.
Building a chemical ontology using METHONTOLOGY and the ontol-
ogy design environment. IEEE Intelligent Systems and their applications,
January/February:37–46, 1999.

[4] N. Fridman Noy and M.A. Musen. SMART: Automated support for ontology
merging and alignment. In Proceedings of the 12th Workshop on Knowledge
Acquisition, Modeling and Management (KAW), Banff, Alberta, Canada, 1999.
University of Calgary.

[5] M. Goldszmidt and J. Pearl. Qualitative probabilisties for default reasoning, belief
revision, and causal modelling. Artificial Intelligence, 84(1-2):57–112, 1996.

[6] T. R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2):199–220, 1993.

[7] N. Guarino. Formal ontologies and information systems. In N. Guarino, editor,
Proceedings of FOIS’98, Amsterdam, 1998. IOS Press.

[8] N. Guarino, M. Carrara, and P. Giaretta. An ontology of meta-level-categories. In
Principles of Knowledge representation and reasoning: Proceedings of the fourth
international conference (KR94), pages 270–280, San Mateo, CA, 1994. Morgan
Kaufmann.

[9] E. Hirsch. The concept of identity. Oxford University Press, New York, 1982.
[10] I. Kant. Critique of pure reason. St. Martin’s press, New York, 1965. Translation

by N. Kemp Smith from Kritik der reinen Vernunft, 1787.
[11] K. Knight and S. Luk. Building a large knowledge base for machine translation.

In Proceedings of the American Association of Artificial Intelligence Conference,
AAAI-94, Seattle, WA, 1994.

[12] R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4:67–95, 1986.

316 Valentina Tamma and Trevor J.M. Bench Capon

[13] S.A. Kripke. Naming and necessity. Harvard University Press, Cambridge, Mas-
sachusetts, USA, 1980.

[14] O. Lassila and D. McGuinness. The role of frame-based representation on the
semantic web. Electronic Transactions on Artificial Intelligence (ETAI) Journal:
area The Semantic Web, To appear, 2001.

[15] E.J. Lowe. Kinds of being. A study of individuation, identity and the logic of
sortal terms. Basil Blackwell, Oxford, UK, 1989.

[16] G.F. Luger. Artificial intelligence. Structures and strategies for complex problem
solving. Addison Wesley-Pearson Education, Harlow, England, fourth edition,
2002.

[17] D.L. McGuinness. Conceptual modelling for distributed ontology environments.
In B. Ganter and G.W. Mineau, editors, Proceedings of the Eighth International
Conference on Conceptual Structures Logical, Linguistic, and Computational Is-
sues (ICCS 2000), volume LNAI 1867, 2000.

[18] D.L. McGuinness, R.E. Fikes, J. Rice, and S. Wilder. An environment for merging
and testing large ontologies. In A.G. Cohn, F. Giunchiglia, and B. Selman, ed-
itors, Principles of Knowledge Representation and Reasoning. Proceedings of the
seventh international conference (KR’2000), pages 483–493, San Francisco, CA,
2000. Morgan Kaufmann.

[19] G.A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Introduction
to wordnet: An on line lexical database. Technical report, Cognitive Science
Laboratory, Princeton University, 1993.

[20] A. Plantiga. The nature of necessity. Clarendon Library of logic and philosophy.
Clarendon Press, New York, 1989.

[21] E.H. Rosch. Cognitive representations of semantic categories. Journal of Experi-
mental Psychology: General, 104:192–233, 1975.

[22] E.H. Rosch. Reclaiming concepts. Journal of Consciousness Studies, 6(11-12):61–
77, 1999.

[23] J.R. Searle. Intentionality. Cambridge University Press, Cambridge, 1983.
[24] J.F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley, Reading, MA, 1984.
[25] J.F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Brooks Cole Publishing Co., Pacific Grove, CA, 2000.
[26] F. Steimann. On the representation of roles in object-oriented and conceptual

modelling. Data and Knowledge Engineering, 35:83–106, 2000.
[27] R. Studer, V.R. Benjamins, and D. Fensel. Knowledge engineering, principles and

methods. Data and Knowledge Engineering, 25(1-2):161–197, 1998.
[28] V. Tamma. An ontology model supporting multiple ontologies for knowledge shar-

ing. PhD thesis, University of Liverpool, 2002.
[29] V.A.M. Tamma and T.J.M. Bench-Capon. An enriched knowledge model for

formal ontological analysis. In C. Welty and B. Smith, editors, Proceedings of the
international conference on formal ontology and information systems (FOIS’01),
New York, 2001. ACM press.

[30] P.R.S. Visser, D.M. Jones, T.J.M. Bench-Capon, and M.J.R. Shave. Assessing
heterogeneity by classifying ontology mismatches. In N. Guarino, editor, Formal
Ontology in Information Systems. Proceedings FOIS’98, Trento, Italy, pages 148–
182. IOS Press, 1998.

[31] C. Welty and N. Guarino. Supporting ontological analysis of taxonomical rela-
tionships. Data and knowledge engineering, 39(1):51–74, 2001.

[32] D. Wiggins. Identity and Spatio-Temporal continuity. Basil Blackwell, Oxford,
1967.

Managing Reference: Ensuring Referential

Integrity of Ontologies for the Semantic Web

Harith Alani, Srinandan Dasmahapatra, Nicholas Gibbins, Hugh Glaser,
Steve Harris, Yannis Kalfoglou, Kieron O’Hara, and Nigel Shadbolt�

Intelligence, Agents and Multimedia Group (IAM),
Department of Electronics and Computer Science,

University of Southampton,
Southampton SO17 1BJ,

UK
{ha,sd,nmg,hg,swh,y.kalfoglou,kmo,nrs}@ecs.soton.ac.uk

Abstract. The diversity and distributed nature of the resources avail-
able in the semantic web poses significant challenges when these are
used to help automatically build an ontology. One persistent and perva-
sive problem is that of the resolution or elimination of coreference that
arises when more than one identifier is used to refer to the same resource.
Tackling this problem is crucial for the referential integrity, and subse-
quently the quality of results, of any ontology-based knowledge service.
We have built a coreference management service to be used alongside the
population and maintenance of an ontology. An ontology based knowl-
edge service that identifies communities of practice (CoPs) is also used
to maintain the heuristics used in the coreference management system.
This approach is currently being applied in a large scale experiment har-
vesting resources from various UK computer science departments with
the aim of building a large, generic web-accessible ontology.

1 Introduction

In the context of the Semantic Web ([5]), ontologies are a key technology, provid-
ing formalisms in which to express metaknowledge about content and resources.
Such formalisms will facilitate the knowledge-based enrichment or annotation
of such content and resources. This in turn will allow reasoning over annota-
tions. Reasoning will permit the presentation of content and resources to the
users that need them, when they need them. This will facilitate the provision of
a range of intelligent Web services ([21]). These services could include, for in-
stance, content-based discovery of knowledge sources, natural language querying,
or e-marketplaces.

As these services become increasingly prevalent, ontologies will become more
important, and ubiquitous. They will increase in scale, and the issue of ontol-
ogy engineering will become evermore important, as distributed teams (some of

� The names of the authors appear in alphabetical order.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 317–334, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

318 Harith Alani et al.

whose members will not be experienced in knowledge representation) begin to
put them together. Furthermore, we would expect to see the increasing preva-
lence of ontology merging, where a single ontology is created from the union of
two or more ontologies. For example, an interdisciplinary ontology may be cre-
ated from merging ontologies covering the different disciplines, or a topic-specific
ontology may be made usable by merging it with a large general purpose ontol-
ogy. Finally, such resources carry maintenance costs, particularly in fast evolving
domains; the merging of new bodies of information with the old ontology must
become more or less routine if ontologies’ shelf-lives are to be of acceptable
length.

It has been suggested [11] that ontology development lifecycle management
policies need to be understood in this context. Thus merging, and other asso-
ciated tasks such as documenting the rationale for the particular design and
structure of an ontology or configuration management, need to be written ex-
plicitly into lifecycles. In other words, ontology builders should start from the
assumption that their work will be merged with that of others and in various
ways reused.

However, merging ontologies carries with it obvious risks. The fact that on-
tologies can be expected to have a distributed etiology implies that the coor-
dination of ontology development will be hard, even with the use of the life-
cycle policies suggested in [11] or the benefits of any emerging web/ontology
standards. In particular, the uses of terms cannot be expected to be consistent
across merged ontologies. Indeed, intra-ontological context can cause reference
problems. [20] reports such difficulties in e-commerce ontologies: “systematic
treatment was required . . . to separate terms like steamers under clothing ap-
pliances from steamers under kitchen appliances.” The problem is made more
acute in ontologies since the standard techniques for coreference resolution from
computational linguistics are deprived of the cues they require to work in the
context of ontology structure merging [4].

As part of the Advanced Knowledge Technologies project [2], we have de-
veloped an ontology for experimental use, including merging of a number of
databases and other resources in the field of computer science. The problem of
maintaining referential integrity was an immediate challenge, and the domain
has provided us with an opportunity to investigate the issue. A combination of
approaches to maintaining referential integrity has been used, in a series of steps
starting from general defeasible heuristics for initial disambiguation, through to
the application of advanced heuristic services to refine the picture.

We will propose a systematic protocol to assess and flag potential mismatches
between semantic intent and encoded content that might affect the reliability of
the system. In this paper, we shall focus our attention on the problem of multiple
identifiers for the same referent represented in a populated ontology.

We can only assume that our methodology cannot but be circular — we can
only rely on the knowledge-based system, in particular the populated ontology
itself, to inform us of indicators of referential profligacy. Our procedure will start
with the most local features of the representation — the actual realisation of the

Managing Reference 319

identifier in terms of characters — and move to more global features of how
the classes to which instances belong are related. At each step we shall identify
a hypothetical relation that the instances might satisfy and cluster the set of
individuals by this relation. We then apply the less local information from the
ontology in order to further fine-grain the clusters. At each stage, the grain-size
of the referential cohorts can be tuned depending on the nature of the decision
processes that such a choice might affect.

Obviously the issue of referential ambiguity and integrity is not a new one,
and we review a variety of approaches in section 2. Section 3 discusses our own
approach in detail, setting out methods for ontology population (section 3.1),
clustering candidate sets of coreferences (section 3.2), and the application of
general and more knowledge-based heuristics (section 3.3). The experimental
investigation and validation of our approach is discussed in section 4.

2 Work and Issues Related to Referential Integrity

2.1 Referential Integrity and Coreference

The problem of reference has been recognised for centuries — indeed much un-
derstanding of classical texts depends on knowing whether two names denote
the same person. Thus the great Roman orator, statesman, and man of letters,
born in Arpinum, Latium in 143BC is known as Cicero but in much writing
he is referred to as Tully. Classical texts are full of references to people who
just happen to share the same name and often the same occupation. Thus there
are two individuals Marcus Porcius Cato one a great grandson to the other and
both of whom were Roman statesmen and writers. Despite conventions arising
to distinguish between them ’Cato the Elder’ also known as ’Cato the Censor’ is
still a source of potential referential confusion with ’the Younger Cato of Utica’.
These examples have not just fueled an industry in the philosophy of language
but illustrate the perennial problem of ensuring that expressions refer to the
appropriate objects.

Referential integrity is the database-related practice of ensuring implied re-
lationships are enforced, thereby protecting users from the consequences of their
own non-omniscience; we have taken the term, in the context of ontologies, to
mean the managing of reference so that the domain is sufficiently understood to
allow reasoning about underlying objects to go ahead unhindered by referential
confusions.

We have already mentioned the difficulty of different areas in the same on-
tology providing different contexts for class names to be repeated (steamers).
It is obvious that merging ontologies will increase opportunities for clashes as
the authors will be ignorant of each others’ work and naming conventions. The
problem is not restricted to naming; relations will throw up the same confusions.
For example, if Boose is the author of a book published by Springer in 1999, and
Gaines is the author of a book published by Springer in 1999, is it the same
book?

320 Harith Alani et al.

There are a number of related issues here, but we will focus on the problem
of coreference. Coreference is the problem that arises when two names refer to
the same thing: IJHCS and Int.J.Hum.Comp.Studs; Shadbolt, nigel shadbolt and
Shadbotl. Heuristics and memories of previous confusions will be of value, but
would need to be very sensitive — for instance, it may be that the system takes
Shadbotl to be an orthographic variant of Shadbolt, whereas it may actually be
referring to an obscure Aztec god.

This is a particular problem for the semantic web. Firstly coreference, while
not introducing the arguably greater error of conflating two different individuals,
will still lead to a lack of efficiency and ability to draw the full set of conclusions
if unnoticed; a serious problem if ontologies are to be the workhorses of the Web.

Secondly, coreference must be expected to be endemic on the Semantic Web.
Entities (resources) are referred to by Uniform Resource Identifiers (URIs; [28]),
human-readable strings. These URIs are names, which denote a set of equivalent
instances of a resource – mirrored webpages, for example (this redundancy pro-
vides a degree of robustness to a distributed system such as the Semantic Web).
Semantic Web resources are not necessarily digital artifacts like web pages which
can be retrieved by resolving the URI which names that resource; URIs can also
denote resources which are physical entities, such as people or organisations.
Languages such as the Resource Description Framework (RDF) ([18] are then
used to make statements about the resources denoted by these URIs.

While the semantics of the URIs used as names by the Semantic Web require
that identical names must refer to the same entity, they do not require that those
names be unique. So URIs should not suffer the Cato problem but will frequently
face the Cicero=Tully dilemma. Consequently, two data sources on the Semantic
Web may contain statements which refer to the same resource, but by different
URIs. As URIs need not denote digital objects, it is not always possible to resolve
them and determine if two URIs are coreferent by comparing the objects that
they denote. In fact, it is current common practice for Semantic Web agents to
treat URIs as opaque symbols and to ignore any retrieval semantics which might
otherwise be associated with them (for example, the structure of an http URI
gives the necessary means for an agent to be able to retrieve the object indicated
by that URI).

Because the names used by one agent need not be used by another, it may not
be possible to directly combine knowledge from different agents, and so knowl-
edge from one agent must be transformed into a form based on the names used
by a different agent. The cost of performing inference across the knowledge of
more than one agent must now also include the cost of identifying any coreferent
names and subsequently rewriting them in a common form.

Another issue is that of anonymous resources: these are the RDF equivalent
of using an existentially quantified variable. Anonymity can be treated as a form
of name scoping, in which an agent maintains a local scope for the names it
uses in order to avoid collisions with the names used by other agents. When a
reasoning service needs to use information from a source which does not exter-
nally publish the identifiers it uses, it typically makes the assumption that all

Managing Reference 321

existentially quantified variables refer to different entities. In RDF, this is ac-
complished by assigning a unique generated identifier or genid to each occurrence
of an anonymous resource. In doing so, the RDF processor has transformed a
source which has attempted to avoid the issue of name uniqueness (by not using
names) into one which is guaranteed to use a different unique name to denote an
anonymous resource each time one is mentioned. Thus the web is full of potential
referential conundrums.

2.2 Traditional Knowledge-Based Systems

As we have noted, the problems that we have set out above as relating to the
semantic web are hardly new. The general response in artificial intelligence, for
example in the area of knowledge-based systems, is to use a unique name as-
sumption [25], whereby there is a 1-1 correspondence between names and domain
objects. This is a simplifying assumption that vastly reduces computational com-
plexity, rendering the issue of coreference trivial.

However, this simplifying assumption ignores the problems of scale that the
semantic web and the giant datasets that it is intended to handle will throw up.
Even a reasonably-sized KBS would have a small cohort of builders, generally not
distributed over space, and so the effort of ensuring the unique name assump-
tion holds is minute compared to any attempt to enforce it over the virtual,
geographical and temporal range of the web.

Hence it is unlikely that the AI solution to coreference identification prob-
lems, neat though it is, will export. This was reflected in the decision not to
introduce the unique name assumption into the DAML+OIL language that is
intended to represent ontologies on the web. Instead roundabout locutions such
as the daml:sameIndividualAs and daml:equivalentTo relations have been
introduced into the language.

2.3 Databases

Similar problems also crop up in database research, for example with the merging
of relational and object-oriented databases, or with varying formats from differ-
ent vendors. If a table contains two instances of John Smith, then the question
arises whether these are two John Smiths or one. In an OOD, each Smith (if two
there be) would have his own object identity, but in a relational database the
problem is generally addressed by adding object identifiers (OIDs) dynamically;
generating these can cause difficulties, such as hotspots in the DB caused by
repeated calls for OIDs that result in timeouts, and create requirements such as
the need to have a flexible enough design not to be dependent on any particular
storage medium. Alternatively, large Universally Unique Identifiers (UUIDs) can
be created, at some cost of space. Problems such as coreference can be elimi-
nated by using UUIDs behind the scenes to, in effect, reinstate the unique names
assumption. However, this device does not remove the need to check that coref-
erence has been eliminated after all. Jagadish and Qian ([15])review a variety of

322 Harith Alani et al.

tradeoffs between the approaches taken to these and other referential problems
in object-oriented and relational databases.

In database technologies the merging of databases often relies on a mediation
layer between the heterogeneous structures. There are different approaches to
creating this extra layer. One method is to create a common data model, but
for the reasons already reviewed such an approach would be impractical over
the global expanse of the semantic web. Another would be to specify matching
rules translating directly between source and target; this again is likely to be
impractical for very large resources because this type of approach, as noted, in
effect leave it up to the user to spot instances of coreference.

Another possibility is the use of query languages and mediators that can
answer questions about an information source, generally based on a relational
algebra and calculus ([7]). Such languages can either take the form of direct ex-
tensions to relational formalisms [9], or define operators similar to functions in
Frame Programming Languages ([13]). For example, Abiteboul and Kanellakis
([1]) use OIDs as powerful primitives for the database query language IQL; OIDs
are used to represent data structures, to manipulate sets and to express com-
putable queries. Jagadish and Qian ([15]) on the other hand integrate declarative
global specifications of constraints, including referential integrity, into an OOD,
to attempt to allow both efficiency of representation and localised processing for
specific applications.

The difficulty, as ever, is to produce referential integrity without too much
of a burden on the user. The problem is arguably more acute in the semantic
web world, as ontologies are generally more complex and larger than database
schemas. Moreover, database approaches to the problem of ensuring referential
integrity when merging or addressing multiple resources still tend to be domi-
nated by syntactic rather than semantic considerations ([12]).

2.4 Resource Merging Tools and Techniques

There has been a good deal of research into explicit tools and techniques for on-
tology merging. Interesting approaches include, among others, Ontomorph, Chi-
maera, and PROMPT. OntoMorph ([6]) provides two mechanisms for translating
different forms of symbolically represented knowledge: “(a) syntactic rewriting
via pattern-directed rewrite rules that allow concise specification of sentence-
level transformations based on pattern-matching, and (b) semantic rewriting
which modulates syntactic rewriting via (partial) semantic models and logical
inference supported by an integrated knowledge representation system.” Onto-
Morph can be viewed as a set of rewrite rules coupled with heuristics and a
description logic classifier to check subsumption dependencies. Chimaera ([20]),
based on Ontolingua ([10]), offers support to the user by diagnosing areas of the
source ontologies where coverage or correctness may be affected by a lack of refer-
ential integrity, based on heuristics such as similarities of class names. Currently
the only relations reported that Chimaera has supported are subclass/superclass
relations, and the set of heuristics is fairly limited, but even so experiments have
shown that, despite the restricted palette, it has a wide range of application.

Managing Reference 323

As it turns out, the merging of individuals, the main focus of this paper, is not
currently supported, but that is flagged in future work.

PROMPT ([12]) has a broader ambition, to provide the user with support
— recall that both OntoMorph and Chimaera are diagnostic tools which leave
the decision as to what to do up to the user. The potential size of ontologies
entails that reducing the amount of input that the user has to produce, whether
creative or routine, is essential, and the AKT approach follows that line (section
3). PROMPT supports a propose-and-revise cycle of actions. It first creates an
initial list of matches between the source ontologies, like Chimaera, based on class
names. It then suggests a remedial operation (the user can override this or specify
his own operation in an editing environment), and then PROMPT can perform
the selected/defined operation, execute additional changes consistent with the
operation, and determine a new set of conflicts (suggesting more solutions to
start the cycle once again).

In each of these cases, we should note that the heuristics in use are not par-
ticularly sophisticated, and yet are shown by experiments to be effective ([20],
[12]); this indicates that our own set of initial heuristics is likely to make a real
difference to large ontologies (section 3.2). Moreover, we also use the ontology’s
structure itself to determine potential referential problems at a later step (sec-
tion 3.3). The systems currently in existence actually rely quite heavily on the
user’s input; it is likely that as ontologies become more ubiquitous more of these
operations will have to be automated. The research problem will be improving
the trade-off between accuracy and the conservation of human resources.

Our own approach resembles in spirit approaches that facilitate semantic
interoperability of heterogeneous resources (e.g. legacy software components)
by extracting metadata from the components themselves or user assumptions
([14], [31]). Extracting the information implicit in the resources themselves, and
providing explicit models of their mutual constraints, is the key to understanding
the interoperability constraints.

3 A Stepwise Process in Identifying Coreferences

To tackle the problem of identifying coreferences, we devised a stepwise process
which begins by populating the ontology with instances and ends with coref-
erences detection. In essence, this relies on the simple idea that references are
first deemed to be similar enough to be considered co-referent by using different
indicators of similarity, and a final decision process to integrate these measures
of similarity. The process is illustrated in figure 1. Step 1 on the left-hand side
is the ontology population step. This task is (semi-) automatic and described in
section 3.1 below. The centre of the figure demonstrates step 2 which produces
two sets of clusters of potential instance duplicates1. The string-based clusters
are created using soft string similarity measures, while the generic clusters are

1 For the sake of clarity we use the term duplicates when we refer to coreferences in
this step as this is more commonly used when dealing with database-like structures.

324 Harith Alani et al.

produced by applying a set of generic heuristics. Step 2 is described in more
detail in section 3.2.

The third step in our approach makes use of the notion of communities of
practice (COPs)where the connections between the instances clustered in previ-
ous steps are analysed. The degree of overlap between the connection trends is
used as a duplication indicator. More about this step in section 3.3.

Community of Practice
Techniques

gazetteers

string similarity
measures

ONTOCOPI

ontology

Step 2 Step 3Step 1

ontologies

the Web

databases

instance names

string−based

generic

ontology−based

ontology
population

and type

duplications
report

network analysis

instance
information

clustering

clustering

Generic Heuristics
PotentialDuplicates

Clustering of

knowledge
base

clusters
instance

Fig. 1. A stepwise process for identifying coreferences.

3.1 Populating the Ontology

In this section we present the procedure for the initial population of the ontology
from structured sources such as legacy databases. This process consists of four
parts: a) mapping entity types to classes and attributes and relationships to their
equivalent properties in the ontology (a discussion of this is beyond the scope of
this paper; we encourage the reader to consult [24] for a review of approaches)
b) assigning identifiers to strong entities, c) assigning identifiers to weak entities
and d) constructing the resulting expressions.

A strong entity is one which possesses a primary key which uniquely identifies
it, and so one to which we can assign a unique identifier without introducing

Managing Reference 325

coreference problems. We construct such identifiers by concatenating the name
of the table which holds the entity set and the values of the attributes that
constitute the primary key, and appending them to the identifier that denotes
the database. We have no such uniqueness guarantees for weak entities, which
do not possess a primary key, and so we generate a different identifier (a genid)
for each weak entity that we encounter. We choose this approach over that
of referring to weak entities by anonymous means (such as RDF’s anonymous
resource mechanism) because the later steps in our process need identifiers to
be able to refer to coreferents.

Finally, we construct an description for each entity (both strong and weak) in
a straightforward way by collecting together their attribute values and relations
and rewriting them using corresponding properties from the ontology that were
identified in the mapping stage.

3.2 Clustering Duplicates and Applying Heuristics

Before we proceed to describe the clustering methods we use and how they in-
form our heuristics we briefly discuss approaches that have been common in the
Semantic Web community when faced with coreference (or duplicate) identifica-
tion. There have been two broadly defined tasks: (a) identification of coreferent
names, and (b) elimination of such coreference by rewriting statements from
one or more sources such that any names which occur in those statements are
replaced by the equivalent names used in another source, if such exist. One ap-
proach to the problem of identifying coreferences, the Semantic Web community
argues, would be to create a centralised service by which data sources can pro-
vide a mapping from their names to those used by another source, but this has
two key problems: consistency and latency issues involved in the maintenance
of such a dictionary, and the inability to establish equivalence of anonymous
resources by the simple fact that anonymous resources have no name.

A quite different approach is to use an ontology to guide the design of heuris-
tic rules that will be used to identify coreferences or duplicates. For example, if
two data sources declare that two resources with different URIs that represent
people have the same social security number, and it is known from the ontology
that a social security number can only be used by one person, it can be deduced
that the two URIs refer to the same person. The social security number property
of a person is an identifying property which has a uniqueness constraint such that
distinct resources must have different values for that property2. A rule that uses
an identifying property to infer that two URIs are coreferential is sound because
of this uniqueness constraint.

However, this approach requires knowledge of the domain to specify which
property is the identifying one. In addition, these might be comparatively rare
and searching for them in an unfamiliar ontology is time consuming and error
prone. To tackle this, we adopt a more generic view of using the underlying

2 In DAML terms, identifying properties are subclasses of either
daml:UnambiguousProperty or daml:UniqueProperty.

326 Harith Alani et al.

ontological structures as a basis for defining the heuristic rules. To design these
heuristics though, we need to cluster the ontology into sets of potential dupli-
cates. It is to this process that we now turn.

We shall define a set of relations Ii ⊆ N ×N by some procedures indexed by
i to induce a clustering of N , i.e. we may define a set of subsets of N , wherein
names are pairwise related by Ii within each of the subsets. We shall refer to
this process as parallel clustering, where for each class defined in the ontology,
we identify pairs of instances of the class that are similar based on two different
criteria. In one we rely on the information encoded in the ontology which we
assign to the instances as tuples of attribute-value pairs, thus identifying an
instance with the values of all its attributes. In the other we assume that the
name given to the instance may be sufficient for its identification3.

The first clustering method indiscriminately takes all the information in the
ontology and for each instance n of a class as input, producing a set of instances
of the same class that are related to it, as determined by some procedure indexed
by i. Here i could include a thresholding criterion based on the method used for
clustering and the degree of slack required of knowledge processes downstream.
It is this indifference to the preferential semantics of the attributes that prompts
us to call this branch of the parallel clustering “generic” which is reflected in
the superscript on I. However, there do exist such generic procedures to be re-
written in terms of rules, like decision trees ([23]), which can be used to ascribe
semantics to the clusters that are hidden by our protocol.

We use this clustering method to inform the design of our generic heuristics.
For example, a person instance in an underlying academic ontology might also
have attributes such as telephone number, postal address, project membership
and papers published. These are then used alongside email address mentioned
above in the rule for identifying properties and we use the thresholding criterion
to identify duplicates. In doing so, we make this procedure (almost) domain-
independent as no knowledge of the underlying ontology is required upfront.
Domain knowledge is only introduced in the thresholding criterion that the en-
gineer is invited to apply to the generic protocol applied to any ontology.

The second clustering method groups elements using a different relational
criterion. In the first instance, this is a simple string-matching criterion, using a
dynamic programming algorithm (for example, [29]) to align name strings rela-
tive to each other. For instance, we could have two strings n and n′ to be related
nIin

′ by procedure indexed by i which determines how far the strings have to
be in terms of the Levenstein string-edit distance (the sum of insertions, dele-
tions and substitutions) [19] 4. This string-based matching can be supplemented

3 This assumption is akin to Kripke’s arguments for names as rigid designators ([17]),
identifying the same referent in all possible worlds. In this case, the possible worlds
are distinguished by values of the attributes.

4 The use of edit-string distances for strings of 4-letter nucleotide alphabets is common
in bioinformatics, in which case the intended “semantics” lies in the identification of
the corresponding amino-acid sequences.

Managing Reference 327

by a domain-dependent gazetteer for identifying common variants of names of
objects.

The intuition behind using this two-fold clustering is the observation that
due to legacy issues in populating ontologies, there might be no overlap between
the attribute values of the same individual represented in the knowledge base.

We now have two sets of clusters each of which can now be explored by meth-
ods that heavily draw upon the information in the knowledge base to suggest
reasons to the user/engineer as to why identifiers may have a common referent.
The task of the steps outlined thus far has been to reduce the computational
load of these more computationally intensive processes. These methods though,
are not foolproof. Since we treat the underlying ontology as a “black box” we
might get an overlap below the threshold criterion defined for identifying dupli-
cates but still the objects are duplicates because the attributes that don’t match
are contextually equivalent. That is, the attributes do not match and cannot be
detected with the clustering methods described here, but the context in which
these attributes are defined and the way their objects are connected to each
other might reveal potential duplicates. In particular, preliminary experiments
with this service has thrown up possible guidelines for ontology population that
will carry over much more of the context of knowledge capture to aid this pro-
cess of determining reference. To further explore this dimension in searching for
duplicates we need a mechanism which will allow us to reason about the context
in which an object and its attributes are defined, and more crucially, how these
are connected. Such a mechanism is described in the following section and is
based on the notion of communities of practice.

3.3 Using Communities of Practice to Check for Duplicates

In this section, we shall use the relationships registered in the ontology to spec-
ify the appropriate relations by which we can either further refine the set of
potentially coreferent identifiers, or at least to register the names in the knowl-
edge base with the appropriate relational tags. The procedures adopted can be
distinguished from those in section 3.2 in two ways. First, we can look at the
classes and relationships that are specific to the domain under consideration
and use domain knowledge to structure further analyses. Secondly, we consider
the extension of the relationships by composing relationships R, R′ between in-
stances represented in the ontology. We compose n1Rn and nR′n2 to define
n1R

∗
nn2 where R∗

n is a combined relation indexed by the intermediate object n
(transitivity is not taken for granted).

ONTOCOPI is an Ontology-based Community of Practice Identifier ([3]),
which applies Ontology-based Network Analysis ([3],[22]) to locate the commu-
nity of practice (CoP) of a given instance. CoPs are informal groups of individuals
sharing an interest, task, or a problem ([30]). Here we use ONTOCOPI to pro-
duce CoPs for the instances in a given set of potential duplicates N

(p)s
k (see 3.2)

obtained by the gazetteer and string-based clustering performed on the class of
People. For each element from the set of people we define the CoP of person n as

328 Harith Alani et al.

the set of people who share a sufficient amount of indirect shared information.
This was formulated and described in [22] as a natural number indexed map
from the set of people in the ontology to its power set (the set of its subsets, the
set of CoPs) obtained by evaluating a graph-traversal algorithm with paths of
K edges, each of which is a graphical representation of relations in the ontology.

The degree of overlap between the CoPs can be calculated as a measure of
their similarity. If the similarity of two sets is higher than a given threshold (CoP
similarity measure) then the two instances in question are regarded as duplicates
and are assumed to be the same individual.

The approach of CoP comparison to locate duplication is bound to fail in
certain cases. For example, if there are two people with the same surname, and
same attributes and similar values for these attributes, that is happen to work
in the same environment, on the same projects, and in the same teams, then the
two people will have highly overlapping CoPs in which case they will most likely
be considered identical. A tactic to help avoid these situations is to assemble sets
of heuristics that check for functionally discriminating attributes. In the domain
of academic institutions illustrated here one would be if both these names appear
as authors on the same paper, which would then set them apart.5 However, these
heuristics might have only limited coverage. For example, in the data set we were
considering we did not find any such cases among our 13000 instances. Another
more problematic situation is when two people instances are actual duplicates,
but are hard to identify by our approach due to the lack of sufficient knowledge
about one or both instance, e.g. a person’s instance with only a name and title.
However, one might say that such instances offer little of value for knowledge
services.

The CoPs calculated by ONTOCOPI are generic in the sense that all ontology
relationships can be taken into account regardless of their type. This reduces the
method to yet another clustering tool when divested of its people and activity-
related semantics. Relationships can be selected and weighted as required to put
more emphasis on certain relationships while reducing the effect of others. This
is desirable if certain relationships are known to lead to coreference identification
more than others. For example co-authorship and project membership could be
regarded as stronger indications of possible duplication than conference atten-
dance and department membership. The analyses presented here have focused
on people as the main class of interest in managing coreference. When viewed
as a clustering technique relying on general network enalysis, this method is no
less applicable in domains where the objects of interest our duplicate instances
of projects, papers, journals, etc.

5 From the mid-eighties, the area of physics called conformal field theory had a number
of such instances – A. B. and Al. B. Zamolodchikov and to a less frequent extent
V. S. and Vl. S. Dotsenko from the Landau Institute in Moscow and E. and H.
Verlinde from Utrecht would have a number of coincident values for these slots.

Managing Reference 329

3.4 Example

We applied the approach described in this paper on a small set of of People
instances in our ontology to identify duplicates, using the a threshold of 80% for
all measures. The generic clustering technique compared the attribute values of
all instances and found no similarities because the selected instances either had
very few attribute values to compare, or the values were different, which resulted
in very low generic measure values, and therefore no clusters were created.

Fig. 2. ONTOCOPI in action: Communities of Practice for three instances: (a)
N.R.Shadbolt (b) NR.Shadbolt (c) N.Shadbolt.

The String Similarity Measure create two small clusters. The first cluster con-
tained the three person instances N.R.Shadbolt, NR.Shadbolt, and N.Shadbolt,
with (11/12) ∗ 100% = 91.6% and (10/12) ∗ 100 = 83% string similarity of the
second and third string respectively relative to the first6, while the second cluster
contained A.Brown and P.Brown with a string similarity of 85%.

The final stage is to compare the CoPs of the instances in each cluster.
The CoPs in figure 2 were computed in ONTOCOPI for the three instances
of Shadbolt in the first cluster using the automatic relation setting and a link
threshold of 4 (i.e. looking for paths of 4 edges or fewer). The left column in
the figure shows the name of the instance, the column in the middle displays
the system’s generated unique ID, and the right column displays the CoP values
as calculated by ONTOCOPI. Only the first 20 entries in each CoP will be
considered. It can be seen that there are only 3 instances in CoP (a) that are
not in (b), and 3 in (b) that are not in (a). The similarity of the two CoPs can
be measured as (34/40) ∗ 100% = 85%, and 90% is the similarity of (a) to (c).
Because these COP-similarity values are above or equal to the 80% threshold set
earlier, the three Shadbolt instances in question will be regarded as duplicates.
6 String Similarity = 1- the ratio of the Levenstein string distance and the total string

length.

330 Harith Alani et al.

Fig. 3. ONTOCOPI in action: Communities of Practice for two instances: (a)
A.Brown and (b) P.Brown.

If the similarity between CoPs is low, then no duplication will be reported.
Figure 3 presents the output of ONTOCOPI for the two Browns in the second
cluster. After calculating the CoPs of both instances, no overlap was found, and
hence the two Browns will be regarded as names of different people.

4 Experimental Deployment

The work reported in this paper is part of the UK funded Advanced Knowledge
Technologies (AKT) Interdisciplinary Research Collaboration (IRC)). This is a
six year programme of research begun in October 2000 between five UK Uni-
versities - Aberdeen, Edinburgh, Sheffield, the OU and Southampton. One of
the goals of the project is to demonstrate the sorts of knowledge intensive tech-
nologies that might be deployed on the web to support knowledge management.
A number of broad problem opportunity areas have been identified as offering
contexts in which to demonstrate these technologies. Unsurprisingly one of these
was the use of our own methods to help organise and facilitate the knowledge
management practices within our own IRC.

Given the central role our IRC was advocating for ontologies within the se-
mantic web the decision was taken to build a reference ontology for the AKT
project. This has evolved over the past 18 months and there is now a sustained
effort to populate it with instances from the participating parts of all five of the
partner sites. It was agreed that Southampton would be the first site to populate
the reference ontology and much of the work reported in this paper arose out
of that effort. During the first phase of ontology instantiation something in the
order of 18000 instances were included. The primary objects of interest in the
AKT ontology include people, publications, projects, research interests meet-
ing events. A phase of automatic coreference management reduced this number
by around 6000. The more knowledge intensive phase exploiting communities

Managing Reference 331

of practice eliminates another less quantitatively substantial but nevertheless
important set of duplicates - those relating to personnel with large publication
outputs.

We quickly recognised that there was a need for services that were constantly
running to check for changes in the entities held in our various resources - for
example our publications database, a database of personnel, and the projects
announced and described in particular areas of the Departmental intranet. The
question was how far could these methods scale and would some of our services
become even more useful if applied to larger instantiated ontologies.

The aim is to populate the AKT reference ontology with instances from each
partner site. Since each site has very different resources that hold the information
we are interested in we have adopted two main harvesting strategies. The first
develops extraction scripts for each site to extract content of the type required for
the reference ontology. Often, as might be expected, these are PERL scripts and
varieties of relational database query templates. The second approach uses the
maintained web sites of each partner as the primary resource. A visual scripting
language tool DOME has been developed [27] that is trained on the prototypical
page structure of the various partners’ web pages. Thus each site has a set of
pages that describe or enumerates its staff. Although the structure and format
is different for each site it is a relatively straightforward process to train DOME
to extract the content and realise it as canonical RDF that maps directly to our
ontology.

The daily updates provided by these scripts are already being published on
our AKT intranet. The design and implmentation of this referential integrity
acrchitecture has allowed us to specify the protocols by which harvesting of data
is conducted, which allows a more controlled management of the knowledge
repository. We are exploring the scalability of this service.

Our reference ontology can serve not just for the Departments involved in
AKT but also the wider UK Computer Science community. There are already
bodies in existence that would very much like to have available via a set of anno-
tated web pages the sort of information that our ontology embodies. Examples
include current UK computer science faculty, declared areas of research inter-
est, or currently active projects etc. This real time harvesting supplemented by
an ontology reference checking service may provide a much better snapshot of
actual reality than the mandraulic process currently in operation where Depart-
ments are asked to submit this same information in a variety of formats for all
sorts of purposes. If a community ontology has perceived value one can enter a
virtuous spiral where the community begins to use it as the reference model to
help annotate their own content making subsequent harvesting easier.

The other advantage of the large scale deployment we hope to see and will
certainly have for the AKT partners is the provision of a variety of other knowl-
edge services that use these populated ontologies. An obvious example is to
extend the COP analysis across various partner sites to see what sorts of inter
institutional COPs emerge. This helps us understand the research landscape and
the current and shifting patterns of cooperation and intellectual influence [3].

332 Harith Alani et al.

5 Conclusions

We have described a methodology for helping with the management of referential
integrity and applied to medium scale ontologies. We advocated a mixture of
statistical, string based and AI methods involving human mediation only at the
point of key decisions regarding the collapse or otherwise of referential duplicates.
Populating ontologies of a reasonable size is required if we are to run many of
the knowledge services imagined in the vision being advocated for the Semantic
Web.

Automatic methods that harvest content from the web with respect to any
reference ontology are bound to be promiscuous, potentially generating thou-
sands of duplicates in only medium sized contexts. It is important that automatic
methods of the sort described here perform much of the initial pruning. There-
after, we advocate the use of knowledge intensive methods to present analyses
to help effect decisions about whether to collapse or keep entities distinct.

There are assumptions that some may question in this work. One is the extent
to which reference ontologies will be useful at all. In previous work some of the
authors have presented a system, APECKS, developed by Tennison [26] where
the emphasis was on the collaborative construction of ontologies and in which
the expectation was that the class structures and attributes of the ontologies
themselves were the objects of debate. APECKS takes a different line to most
ontology servers, in that it is designed for use by domain experts, possibly in
the absence of a knowledge engineer, and its aim is to foster and support debate
about domain ontologies. To that end, it does not enforce ideals of consistency
or correctness, and instead allows different conceptualisations of a domain to
coexist. Under this view the ontologies would be rather different between users
and maintaining different ontologies for different users could be as important
as using agreed common reference ontologies across users. However, the issue of
populating these idiosyncratic ontologies with instances still arises. Indeed the
problem of referential integrity becomes one that literally has to be re-run for
each variant.

The content of real value in an ontology that is built and maintained by
an organisation or community are objects such as people, projects, products,
processes and publications. These objects are typically comprised of many at-
tributes and relations. They may be described from multiple perspectives in
different resources on the web. It is important to determine whether these ob-
jects are distinct or the same. We think that the methods outlined here are well
suited to supporting the increasingly complex detective work of establishing ref-
erential identity. We have detailed how we hope to demonstrate the utility of
these services in a community wide knowledge harvesting and publication activ-
ity mediated via a reference ontology.

Acknowledgements

This work is supported under the Advanced Knowledge Technologies (AKT) In-
terdisciplinary Research Collaboration (IRC), which is sponsored by the UK En-

Managing Reference 333

gineering and Physical Sciences Research Council under grant number
GR/N15764/01. The AKT IRC comprises the Universities of Aberdeen, Ed-
inburgh, Sheffield, Southampton and the Open University. The views and con-
clusions contained herein are those of the authors and should not be intepreted
as necessarily representing official policies or endorsements, either expressed or
implied, of the EPSRC or any other member of the AKT IRC.

References

1. S. Abiteboul and P. Kanellakis. Object identity as a query primitive. In Proceed-
ings of the International Conference on Management of Data, ACM SIGMOD,
Portland, OR, USA, 1989.

2. AKT. The akt manifesto. Technical report, 2001.
http://www.aktors.org/publications/Manifesto.doc

3. H. Alani, K. O’Hara, and N. Shadbolt. ONTOCOPI: Methods and tools for iden-
tifying communities of practice. In Proceedings of the 2002 IFIP World Computer
Congress, Montreal, Canada, August 2002.

4. A. Bagga. Evaluation of coreferences and coreference resolution systems. In Pro-
ceedings of the First Language Resource and Evaluation Conference, may 1998.

5. T. Berners-Lee, HendlerJ., and O. Lassila. The semantic web. Scientific American,
may 2001.

6. H. Chalupksy. OntoMorph: A Translation System for Symbolic Knowledge. In
Proceedings of the 17th International Conference on Knowledge Representation
and Reasoning (KR-2000), Colorado, USA, April 2000.

7. E.F. Codd. Relational completeness of data base sublanguages. In RustinR., editor,
Database Systems. Prentice-Hall, 1972.

8. DARPA. DARPA Agent Markup Langugage. Technical report, DARPA, mar 2001.

9. U. Dayal. Queries and views in an object-oriented data model. In R. Hull, R. Mor-
rison, and D. Stemple, editors, Database Programming Languages: Proceedings of
the 2nd International Workshop. Morgan Kaufmann, 1989.

10. A. Farquhar, R. Fikes, W. Pratt, and J. Rice. The Ontolingua Server: a Tool
for Collaborative Ontology Construction. In proceedings of the 10th Knowledge
Acquisition Workshop, KAW’96,Banff,Canada, November 1996. Also available as
KSL-TR-96-26.

11. M. Fernandez-Lopez, A. Gomez-Perez, and M-D. Rojas-Amaya. Ontology’s crossed
life cycles. In Proceedings of the 12th International Conference on Knowledge En-
gineering and Knowledge Management (EKAW’00), Juan-les-Pins, France, pages
65–79. Springer, 2000.

12. N. Fridman-Noy and M. Musen. PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment. In Proceedings of the 17th National Conference
on Artificial Intelligence, (AAAI’00), Austin, TX, USA, July 2000.

13. G. Gardarin, F. Machuca, and P. Pucheral. Ofl: A functional execution model for
object query languages. In N.J. Carey and A.S. Schneider, editors, Proceedings of
the 1995 ACM SIGMOD International Conference on Management of Data, San
Jose, California, USA, pages 59–70. ACM Press, may 1995.

14. S. Heiler, R.J. Miller, and V. Vintrone. Using metadata to address problems of
semantic interoperability in large object systems. In Proceedings of the First IEEE
Metadata Conference, Silver Spring, Maryland, USA, 1996.

334 Harith Alani et al.

15. H. Jagadish and X. Qian. Integrity maintenance in an object-oriented database. In
Proceedings of the 18th International Conference on Very Large Databases, Van-
couver, Canada, pages 469–481, August 1992.

16. G. Kappel and M. Schrefl. Local referential integrity. In Proceedings of the Inter-
national Conference on Conceptual Modeling / the Entity Relationship Approach,
pages 41–61, 1992.

17. S.A. Kripke. Naming and Necessity. Oxford: BasilBlackwell, 1980.
18. O. Lassila and R. Swick. Resource Description Framework(RDF) Model and Syn-

tax Specification. W3c recommendation, W3C, feb 1999.
19. V.I. Levenstein. Binary codes capable of correcting deletions, insertions and rever-

sals. Cybernetics Control Theory, 10:707–710, 1966.
20. D. McGuinness, R. Fikes, J. Rice, and S. Wilder. An Environment for Merging

and Testing Large Ontologies. In Proceedings of the 17th International Conference
on Principles of Knowledge Representation and Reasoning (KR-2000), Colorado,
USA, April 2000.

21. E. Motta, S. Buckingham-Shum, and J. Domingue. Ontology-driven document
enrichment: principles, tools and applications. International Journal of Human-
Computer Studies, (52):1071–1109, 2000.

22. K. O’Hara, H. Alani, and N. Shadbolt. Identifying Communities of Practice:
Analysing Ontologies as Networks to Support Community Recognition. In Pro-
ceedings of the 2002 IFIP World Computer Congress, Montreal, Canada, August
2002.

23. J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
24. A. Rahm and A. Bernstein. A survey of approaches to automatic schema matching.
The Very Large Databases Journal, 10(4):334–350, 2001.

25. R. Reiter. Equality and domain closure in first order data bases. Journal of the
Association of Computing Machinery, 27:235–249, 1980.

26. J. Tennison, K. O’Hara and N. Shadbolt APECKS: Using and Evaluating a Tool
for Ontology Construction with Internal and External KA Support. International
Journal of Human-Computer Studies, In Press

27. T. Leonard and H. Glaser Large scale acquisition and maintenance from the web
without source access Workshop 4, Knowledge Markup and Semantic Annotation,
K-CAP 2001

28. Sollins,K. and Masinter,L. Functional Requirements for Uniform Resource Names.
RFC 1737.

29. R.A. Wagner and M.J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21:168–173, 1974.

30. E. Wenger. Communities of Practice: The Key to Knowledge Strategy. Cambridge
University Press, 1998.

31. I-Y. Yao, K-T. Ko, R. Neches, and R. MacGregor. Semantic interoperability script-
ing and measurements. In Proceedings of the Working Conference on Complex and
Dynamic Systems Architecture, Brisbane, Australia, 2001.

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 335-351, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Alice: Assisting Online Shoppers through Ontologies
and Novel Interface Metaphors

John Domingue1, Maria Martins1*, Jaicheng Tan1, Arthur Stutt1, and
Helgi Pertusson2**

1The Knowledge Media Institute
The Open University, Milton Keynes, UK

Tel: +44 1908 655014, Fax: -3169
{J.B.Domingue, J.Tan, A.Stutt}@open.ac.uk

http://kmi.open.ac.uk/
2Innn Inc., Laugavegur 26, 101 Reykjavik, Iceland

http://www.innn.com/

Abstract. In this paper we describe some results of the Alice project. Alice is
an ontology based e-commerce project which aims to support online users in
the task of shopping. Ontologies describing customers, products, typical
shopping tasks and the external context form the basis for the Alice
architecture. We also exploit two novel interface metaphors originally
developed for navigating databases: the Guides metaphor and Dynamic
Queries. The Guides metaphor was developed at Apple to reduce the cognitive
load on learners navigating a large hypermedia database. Within Alice we use
the Guides metaphor to allow online shoppers to classify themselves. We
discuss the link between Alice Guides and Kozinet�s notion of e-tribes or
Virtual Communities of Consumption. Our second interface metaphor Dynamic
Queries (coupled with Starfield displays) allow users to very quickly find
relevant items by displaying the results of queries, posed via specialised slider
widgets, within 100 milliseconds. We have constructed a tool, Quiver, which
constructs Dynamic Query interfaces on-the-fly as the result of queries to
knowledge models stored on the Alice server.

Introduction

Currently shopping on the internet is not always a pleasant experience. Navigating
websites with thousands of products by browsing virtual aisles or by keyword search
is time consuming and often frustrating. Each aisle will typically contain hundreds of
items that are hard to differentiate. The shopper has to rely on a product�s name and
sometimes on a small accompanying picture. Neither of which are particularly
descriptive. Keyword searches over generic product types (e.g. flour) will often return
hundreds of irrelevant items (e.g. wholemeal flour bread). Online shopping websites

* Current contact details: Business School, The University of Gloucestershire, Cheltenham, UK
Email: mmartins@glos.ac.uk
** Current contact details: cTarget Inc., Brautarholt 1, 105 Reykjavik, Iceland.
Email: hp@ctarget.com

336 John Domingue et al.

also contain a lot of irrelevant information related to new types of products or reduced
items.

Contrast the above with the local �corner shop� which was prevalent in villages in
England in the 1950s. Of course there are a variety of differences between a corner
shop and an online shopping site. These include the fact that one is physical and the
other virtual. Also corner shops sometimes have a better layout. Nether the less we
believe that one of the key differences to the customer�s shopping experience was due
to the fact that the shop had a human agent, the shopkeeper, who used his or her
knowledge to personalise the interaction. Typically, the shopkeeper would know
which products were currently in stock and products that could easily be obtained.
Additionally, the shopkeeper understood the relationships between the products, for
example, when one product could be substituted for another (out of stock product), or
how one product complemented another (e.g. a particular cheese and wine
combination). Regular customers would also benefit from the fact that their personal
tastes and preferences, their current situation (e.g. number of dependents), and their
previous purchases were known to the shopkeeper. The shopkeeper was also able to
relate desired products to the local context including the surrounding geography and
community and the resident culture and events.

The overall goal of the Alice project is to make the experience of online shopping
seem more like visiting a local corner shop than browsing or searching long lists. In
the rest of this paper we will describe some of the results of the project structured in
the following fashion. In the next section of the paper we describe the Alice approach.
We then illustrate the approach through a short scenario. The subsequent two sections
describe the architecture of the system and an interface for detecting the patterns of
behaviour of online customers. Finally, a discussion section, linking the Alice
approach to a notion of e-tribes, is followed by some conclusions.

Approach

The Alice framework is based on the use of ontologies for representing knowledge
related to online shopping. An ontology [13] is an explicit representation of a view of
a domain of discourse (a conceptualisation) usually composed of a set of concepts and
relationships. Over the last few years the use of ontologies has become relatively
popular, for example a web search for ontology will now return more that 64,000 web
pages [14]. Moreover, ontologies are widely deployed within the knowledge
acquisition and modelling communities, have been successfully used in a variety of
web based applications (e.g. [7]) and form one of the cornerstones of the semantic
web [3]. Within Alice we use five ontologies to create a personalised online shopping
experience. The five ontologies are:
• Products � this ontology describes the main attributes of products, for example,

how a product is used, its components, complementary products and a product�s
geographic origin.

• Shopping Tasks � this ontology represents typical shopping tasks, for example a
monthly shop for household essentials and shopping for an evening meal.

• External Context � appropriate items from the local context are described within
this ontology. For example, relevant local social events, groups, and small
businesses.

Alice: Assisting Online Shoppers through Ontologies and Novel Interface Metaphors 337

• Customer � this ontology represents the main attributes of a customer including his
or her shopping and browsing histories.

• Alice Media � this ontology maps between the other four ontologies and relevant
web resources.

The first four ontologies to a greater or lesser degree reflect the four categories of
knowledge used by a local corner shopkeeper. Our definition of a product borrows
from the product ontology available on the ontolingua server. Specifically, we use the
relations list-price, has-model-number and has-special-discount.

In contrast with the other four ontologies, modelling customers within a formal
representation is particularly problematic. This is for a number of reasons. Firstly,
there is no definitive knowledge source for classifying customers� according to their
shopping behaviour. There exist many competing marketing and economic models of
consumer behaviour, but none of these give a �foolproof� account of why and when
humans purchase goods. Second, a customers� behaviour will vary depending on his
or her current situation, for example, buying a single urgently needed item vs. buying
goods for a week, or having a personal cash flow problem until the next salary
payment. Major life events, such as having a baby, will also dramatically affect
behaviour.

Determining a customer�s current state is also non trivial. Two options are to infer
the customer�s state from their interactions or to explicitly ask the customer. The
former option is prone to error because the individual user interactions - selecting
hyperlinks or options from menus � contains little informational content. Whilst
accurate the latter option has to be carefully applied because customers are, in
general, unwilling to spend significant amounts of time on any task that does not have
an immediate benefit.

An additional factor linked to the above is that it is imperative that any online
system only offers pertinent advice. Offering a customer advice based on an incorrect
model would result in the system being quickly discarded.

Fig. 1. A screen snapshot of the Guides system (taken from http://www.abbedon.com/
project/guides.html with permission (copyright 1990 Apple Computer)). The first three Guides
above explain early American history from the perspective of: a native American, a female
settler, and a frontiersman. The last icon represents the system Guide who gave overview
information.

338 John Domingue et al.

Our approach within the Alice project has been to use the Guides metaphor [8, 18,
26] as a mechanism to allow customers to classifying themselves. Guides were
produced at Apple in the late 1980s as an interface for an educational hypermedia
database depicting early American history. The Guides who were characters drawn
from this period, delivered stories from specific viewpoints. Each story consisted of a
series of video clips. A screen snapshot of the Guides system can be seen in Fig. 1.
Four Guides are shown at the top of the screen. The first three deliver stories on early
American history from the viewpoint of a native American, a female settler and a
frontiersman. The icon on the far right represents the system Guide who delivered
overview information.

Within Alice we decided to use the Guides metaphor to enable customers to state
their shopping preferences. We shall give an overview of our implementation using a
short scenario.

A Scenario

Fig. 2. A screen snapshot of the Alice Guides interface. The left panel contains a standard
navigation bar as found in most online supermarkets. The products are shown in the large pane
in the centre of the browser. The Guides interface is shown in the bottom panel. The customer
is browsing a selection of pastas and the Organic Guide is indicating that it would like to start a
dialogue by blinking red.

In the following scenario an online shopper is looking to buy some pasta within a
fictional �Alice Supermarket�. A screen snapshot from the shopper�s web browser is

Alice: Assisting Online Shoppers through Ontologies and Novel Interface Metaphors 339

shown in Fig. 2. The navigation menu on the left and the product display area in the
centre of the window are similar to those found in most online supermarkets. The
Alice Guides interface is contained in the panel at the bottom. The shopper has
selected five Guides to go shopping with:

Party Guide � this Guide assumes that the task for the session is to buy
products for a party. The Guide prompts with related offers (e.g. the free
loan of wine glasses), recipes and local services (e.g. marquee hire).

Matchmaker Guide � this Guide matches products that are purchased to
similar or complementary products. For example, it would match pasta
with bottled pesto sauce.

Missing Items Guide � we have found that shoppers will sometimes forget
to select the �Add to Basket� button and consequently fail to purchase a
desired product. When the customer goes to the checkout this Guide
collects a list of items that the customer browsed in detail but did not add
to his or her basket.

Organic Guide � when appropriate this Guide recommends organic
versions of goods that are being viewed.

Money Saver Guide � this Guide informs the shopper of any offers or
promotional items which are related to the currently viewed item.

Fig. 3. A screen snapshot just after the Organic Guide has displayed the cheapest organic pasta.

340 John Domingue et al.

In Fig. 2 the shopper is browsing the pasta section of the online store. The Organic
Guide indicates that it has something to contribute by blinking red a number of times
(the Guide�s normal colour is blue). The shopper is free to ignore the Guide and to
carry on browsing but she elects to see what the Guide has to say and selects the
Organic Guide icon. The Organic Guide offers the cheapest organic pasta. The
shopper agrees and the display changes to Fig. 3. Note that hundreds of potential
items (a well known online store we checked has over a hundred different pastas)
have been narrowed to one in precisely two mouse clicks. The shopper decides to buy
2 packets.

The key design feature of the Alice Guides is that the customer selects them. This
means that they reflect the customer�s own perspective of themselves (e.g. rich,
ethical) and therefore the customer will be tolerant of any inappropriate suggestions
made. Also, depending on the current situation the customer can chose to temporarily
ignore certain Guides, for example, the Money Saver Guide when shopping for a
specific luxurious item.

The Alice Architecture

Fig. 4. The Alice Architecture.

Alice: Assisting Online Shoppers through Ontologies and Novel Interface Metaphors 341

The Alice architecture is composed of a server and several specific clients. One of the
overriding goals when conceiving the system was that it should be easy to incorporate
into an existing online infrastructure. Consequently, the Alice server was designed to
sit alongside an existing web server. The architecture is shown in Fig. 4. The Alice
server contains a library of ontologies implemented in OCML [22]. OCML, which
can be conceived as an �Operational Ontolingua� has been used in over a dozen
knowledge management and knowledge modelling projects within our lab (e.g. [23]).
Knowledge modelling in OCML is supported by a library of reusable definitions,
which is structured according to the basic categories of the OCML modelling
framework: task, method, domain and application [22]. The library also relies on a
number of base ontologies, which provide definitions for basic modelling concepts,
such as numbers, sets, relations, tasks, methods, and roles. Export mechanisms exist
from OCML to Ontolingua [13], XML [34], RDF [33], and GXL [15].

The ontologies are split into three levels: retail, retail sector and client. At the retail
level there are the five ontologies described earlier. Each of these five ontologies
contain definitions which are applicable across the whole retail industry. Below is the
retail sector level where definitions applicable to specific retail sectors are stored. For
example, for childrens� toys important attributes would be age-range and educational
value.

The client level knowledge models represent specific companies. These models
would contain mappings from the generic Alice models to the existing corporate
resources. For example, to the company�s database schemas. The client specific
models are also used to link to the client web server via the Alice Client Plugin
module. This module communicates with the Alice Plugin Interface via a set of HTTP
like messages. The server responds with a message that is either plain text, HTML, a
list or a set of attribute value pairs. The number and type of messages is set by an
XML based configuration file. An implementation of the plugin module exists in PHP
and future implementations are planned for Java, Perl and active server pages.

The customer�s interactions with the web based interface are sent via the Alice
Plugin Interface to a customer history. The customer history is used in two ways.
Firstly, the products browsed and purchased are asserted as facts within the
company�s specific knowledge model and are used to trigger a customer�s Guides.
The customer history is also used by a module which clusters the history according to
customer and product attributes. The results are fed through to a manager�s interface
allowing a company�s sales and marketing departments to discover new relationships
between products and new clusters of customer behaviour. When appropriate new
knowledge gleaned from the results of clustering will be used to create new Guides.
This module is under construction and will be based on an unsupervised clustering
technique [4].

The knowledge models are created and maintained using WebOnto [6]. In addition
to its use in over a dozen projects within our lab WebOnto has been available as a
public service since autumn 1999. The public library contains over a hundred models
and has just over 150 registered users. In a comparative evaluation of several
knowledge modelling tools WebOnto was evaluated very favourably, in particular
being judged as the most user-friendly and as the one requiring the shortest learning
curve [11].

342 John Domingue et al.

(def-guide-trigger (amount-trigger party-guide)
"Check that the customer buys the required amount of food
for a party"

 (current-customer ?customer)
 (user-name ?customer ?user-name)
 (has-profile ?customer ?profile)
 (has-history ?customer ?customer-history)
 (party-number-of-guests ?profile ?n)
 (last-item-bought ?customer-history ?item)
 (item-name ?item ?item-name)
 (amount-too-low ?item ?n)
 :action
 (low-amount-for-party ?user-name ?item-name ?n))

Fig. 5. The definition of an amount trigger for the party Guide.

The Guide module contains the server part of the Guide system which is
implemented on top of the OCML forward chaining system. Guides have a set of
associated triggers and actions. Triggers enable a Guide to be activated when certain
conditions occur. The definition of a trigger contains a set of clauses and an action.
When the clauses match the contents of the current knowledge base the action is
invoked. An example trigger, amount-trigger, for the party Guide is shown in
Fig. 5. Amount-trigger invokes the low-amount-for-party action if the
customer buys insufficient quantity of a product to satisfy the specified number of
guests at a party. Actions provide a high level mechanism for defining how a Guide
will interact with a customer.

The Guide Applet sits within the supermarket�s existing online shopping interface.
Communication between the Guide server and the Guide applet is via a CORBA
interface. The main types of messages defined including logging in, and adding,
removing and alerting Guides. The underlying infrastructures for the server and client,
Xanalys LispWorks� and Java v.1.4, and have inbuilt CORBA interfaces.

The Manager�s Interface

Once the Alice system has been installed within a company managers will need to
analyse customers� browsing and shopping behaviours in order to identify new types
of products and customer characteristics. These characteristics may then lead to
changes to the website including the design and creation of new Guides. From a
marketing perspective, following the Pareto rule of 80-20, the overall goal of any
analysis is to determine the significant attributes with respect to the 20% of customers
who purchase the 80% of products. For example, 16% of US beer drinkers account
for 88% of annual consumption [17].

Within Alice we have created a visual query tool, Quiver, to support the analysis of
shopping behaviour through the Alice ontologies. Quiver couples Dynamic Query and
Starfield like interfaces [1, 30] to our ontology server. Dynamic queries and starfield
displays were developed within the Human Computer Interaction Lab at the
University of Maryland in the early 1990s. A number of control widgets � sliders,
checkboxes and buttons � generate queries in real time to a database. The results of
each query is presented in a specialised two dimensional graphical display, termed a

Alice: Assisting Online Shoppers through Ontologies and Novel Interface Metaphors 343

starfield display, within 100 milliseconds. The tight coupling of the widgets
generating database queries to the graphical display enables users to quickly navigate
large data stores. Quiver, creates a two dimensional graphical display and coupled
sliders from a query to a knowledge model held on the Alice server.

Fig. 6. An annotated screen snapshot of the Quiver slider for the variable �alcohol�. The slider
filters the graphical display area to only show those items whose alcohol rating is between 260
and 417.

Fig. 7. A screen snapshot of Quiver displaying items from a beer knowledge base. The full
query which generated this snapshot is shown in Fig. 8.

344 John Domingue et al.

We shall now describe Quiver through a mini scenario. Imagine that a manager
responsible for the marketing of wines and spirits has decided to investigate the
possible influences on the sales of bottled beer over the last week. In particular, she
wants to explore the relationships between:

! The number of bottles of beer sold over the last week,
! The number of mentions for a beer within related newsgroups,
! The beer producer,
! The retail price for the beer,
! The amount of advertising expenditure, and
! The beer�s alcohol rating.

Assuming that the above is stored within a knowledge model on the Alice server
then the manager can use Quiver to explore the above relationships. A screen
snapshot of the Quiver interface shown is in Fig. 7. This was created in the following
way. First the manager selected the query function SetOfAll, the ontology
alice-beer-kb and specified the query variables (?p ?n ?c ?pr ?a ?al)
using the Query Options panel (b). Then using the Variable Labels panel (d) new
names (purchases, newsgroups, company, price, advertising and alcohol) were given
to the variables. The query was then entered into Query Command panel (c). The
display then took on the appearance of the screen snapshot in Fig. 7. The manager
wanted to see if the number of purchases of medium to low alcohol beer was linked to
high advertising expenditure. She set the sliders in the Display Filters panel (f) to
reflect her interests.

Let us now examine the Quiver interface shown in Fig. 7 in more detail. The large
pane on the left, (a), contains a graphical display. Each icon in this display represents
an item returned from a query. The other panels have the following functionalities:

(b) Query Options � this panel enables the manager to set the query function, the
target ontology and the query variables to display.

(c) Query Command � the command is entered in OCML syntax in this panel.
(d) Variable Labels � using this panel the manager can attach arbitrary labels to

the variables specified in the Query Options panel.
(e) Display Settings � this panel is used to specify which variables correspond to

the horizontal and vertical axes and to the icon colour.
(f) Display Filters � the sliders generated for each variable specified in the Query

Options panel are shown in this panel.
(g) Item Details � when an icon within the graphical display is selected detailed

information about the item is displayed in this window.

The display in Fig. 7 is a result of the query shown in Fig. 8 posed directly in
OCML. Additionally, queries can also be created using our visual query tool Lois [7].

Specific sets of items can be quickly homed in on using Quiver�s set of sliders. A
detailed view of a slider is shown in Fig. 6. As a slider is dragged horizontally the
items within the graphical display are instantaneously updated. Changing the width of
a slider - using the slider�s range adjusters - changes the range of data covered.

Alice: Assisting Online Shoppers through Ontologies and Novel Interface Metaphors 345

(setofall '(?p ?n ?c ?pr ?a ?al)
 '(and (alice-beer ?x) (has-number-purchased ?x ?p)
 (has-newsgroup-interest ?x ?n)
 (has-price-in-pence ?x ?pr)
 (has-company-name ?x ?c)
 (has-advertising-expenditure ?x ?a)
 (has-alcoholic-rating ?x ?al)))

Fig. 8. The OCML query which generated the display shown in Fig. 7.

Discussion

The Guides metaphor was created to resolve the tension between providing flexible
routes through a hypermedia database and not placing an undue cognitive load on the
user by offering a large selection of links. Although each Guide provided a fixed path
through the database, flexibility was still supported through the choice of Guides.

Within the Alice framework Guides provide a mechanism for customers to classify
themselves. The first time a customer logs onto an Alice enhanced shopping site she
will be assigned a number of Guides by default. When the shopper feels the need she
will be able to add or delete her current Guides. Because it is the customer who says
�this is who I am� they will feel an ownership of their characterisation and
consequently be more tolerant of any mismatches between their preferences and the
recommended products.

We envisage that Guides will be designed by a company�s sales department and
broadly fall into the categories of knowledge that we stated our corner shopkeeper
would use, namely, customer, products, shopping tasks and external context.

Guides in Alice form a bridge between the formal knowledge models and the
individual user. We also want to argue that Alice Guides can help in the formation
and support of online communities.

According to Rheingold, the Web encourages the growth of virtual communities of
various kinds [28]. Rheingold�s perspective has been the subject of a great deal of
criticism on philosophical and political grounds. Although Rheingold attempts to
answer these criticisms in a new chapter in the latest edition of his book, there are still
critics such as Dreyfus [10]. Dreyfus suggests that Rheingold�s electronic agora is in
fact �dangerously distopian� since its participants can remain anonymous and are not
exposed to the real-world risk associated with the vulnerabilities of embodiment.
Despite these criticisms there is no doubt that such communities do exist.
Furthermore, the communities of interest to e-commerce are less open to the sorts of
philosophical criticisms deployed by Dreyfus and others�real-world risk and the
inability to make public commitments are largely irrelevant to a community centred
around an interest in communicating, say, about the music of Bob Dylan.

While many e-commerce sites attempt to foster virtual communities through, for
example, their facilities for the publication of consumer reviews of products, their
approach is half-hearted at best since they remain attached to a form of marketing
which is directed at the individual consumer. Kozinets [17] calls this database
marketing, and suggests that the marketer (or e-store) bases efforts to influence

346 John Domingue et al.

consumer behaviour on the incorrect assumption of a one-way relationship between
active seller and passive buyer. Of the two main forms of personalization (see below)
contented-based filtering is the most individualistic with information technology
being used essentially to track and make inferences about what consumers have
purchased in the past. Although collaborative filtering tries to make inferences about
what is relevant for a particular consumer based on some measure of similarity with
other consumers it remains essentially oriented to individuals. Indeed, the choice of
the term personalization suggests an individualistic approach to the relationship
between seller and buyer.

Another approach is possible and may be more relevant to virtual communities.
Kozinets [17] defines Virtual Communities of Consumption as �affiliative groups
whose online interactions are based upon shared enthusiasm for, and knowledge of, a
specific consumption activity or related group of activities� (p. 254). He mentions
Barbie doll collectors, X-Files fans and wine lovers. Kozinets stresses that the
consumption of a particular product is only part of what is important to members of
these groups. Of equal importance is knowledge of various kinds, for example,
knowledge about a product and its context, knowledge of a community�s cultural
norms and knowledge of its specialized language. In addition the identity of the
community member may be more or less defined in terms of the consumption of the
particular cultural or commercial product. According to Kozinets types of group
members can be defined in terms of two axes: the degree of self-centrality of the
consumption activity and the degree of social ties to a community. From this
perspective devotees (who identify closely with the product but less so with the
group) and insiders (who identify strongly with both) are most significant to the
marketer. Thus it is not only important to determine the community that a consumer
belongs to, it is also important to determine the correct type of community member.
Kozinets mentions three characteristics of community-based as opposed to
individualistic consumers: (1) they are more proactive; (2) they are more influenced
by the community they belong to; and (3) they can provide valuable, multi-faceted
information to marketers. He concludes that marketers �must provide community
members with the raw materials they need to construct a meaningful community� (p.
264).

While in the long run, some hybrid of individualistic and community based
marketing will prove to be more attractive to many e-commerce sites, we have
emphasized the latter in the Alice project. If we take each of Kozinets� three points in
turn we can indicate to what extent Alice can (or could in future) comply with them:

Consumers are proactive. In Alice we provide a default set of Guides but allow
the consumer to select their own. Their selection reflects their self-assessment of
themselves as consumers or in Kozinets� terms as members of particular e-tribes.
While many of the Guides act as critics of or assistants with the consumer�s
interaction with Alice (e.g., Matchmaker, Missing Item) others can be seen as system
components knowledgeable about the characteristics of particular communities (e.g.,
Organic, Money Saver). For instance, the Organic Guides allow consumers to express
the activist tendencies associated with these communities. In future versions of the
system we might include more awareness of meta-categories of community member
such as devotee and insider. We might also provide the means for communication
between consumers and stores, for example, in the form of a complaints procedure.
More also needs to be done to allow community members to creatively review and

Alice: Assisting Online Shoppers through Ontologies and Novel Interface Metaphors 347

criticize products, policies and marketing strategies perhaps through some form of
Web log. In addition, since Alice is part of the Semantic Web, intelligent,
ontologically-guided searches could be instigated for additional consumer reviews,
buying Guides and so on.

Consumers are communal. As well as the community-oriented Guides discussed
above Guides could also be used as an interface for building communities. A future
version of our Guides will be linked to an instant messaging server such as Jabber
[20]. A �Seek Soulmates� Guide would attempt to establish chat or email sessions
with other online customers who employ a similar set of Guides. In addition, the
Quiver tool could be adapted to identify, visualize and provide the means of
contacting individuals both for managers and other consumers. While many
consumers would find such a tool overly sophisticated, the kind of technology-savvy
community member identified by Rheingold would have little trouble. As we have
said we also intend to use clustering to �notice� new communities and create new
(community) Guides based on these. By so doing we would go a long way towards
the provision of raw materials for constructing communities demanded by Kozinets.

Community-based consumers provide valuable information to marketers. In
addition to the usual information about products bought, items viewed and ratings
given to products, the e-tribe aware e-store should be able to derive what Kozinets
calls a �cultural profile� of its consumers. According to Kozinets this would lead to a
more detailed picture of the interests of the community (or, indeed, communities) the
consumer belongs to, which could be used to assess �interconnections between
seemingly disparate forms of consumption� and to see where �consumers are
focussing their attention� (p. 260). He singles out insiders and devotees as important
here. While Alice does not currently provide such a facility for marketers, the Quiver
tool coupled with customer histories and clustering might form the basis for a more
multi-faceted approach to understanding consumers in the future. We might also
extend the learning abilities of Guides (so that they could track the individuals they
interact with and learn from them) and create a new tier of system component which
can notice significant patterns in the combination of Guides employed.

Related Work

The Alice Guides are a particular approach to personalization. Jakob Nielsen defines
personalization as:

��to serve up individualized pages to the user based on some form of
model of that user�s needs.� [24]

Other approaches to personalization include content based and collaborative
filtering. Content-based filtering recommends items based on their similarity to what
the customer has bought in the past. An example of this approach is the Intelligent
Personalised TV Guides [5].

Collaborative filtering makes recommendations based on the preferences of
customers from the same group. Users are compared based on how similar their
ratings are, and they are recommended items favoured by other people with similar

348 John Domingue et al.

interests. A well known example of collaborative filtering is www.amazon.com.
ALEXA (http://www.alexa.com) is a web browser that recommends related links
based in part on other people�s web surfing habits.

The main problem in some types of business is the lack of information about
customers� habits. Customers do not want to fill forms about themselves, unless they
can clearly see the advantage of doing so (for instance, credit card companies often
offer a prize draw for filling in a survey). Thus, it is difficult to fully understand their
shopping behaviour. An alternative approach is to use Knowledge Discovery and
Data Mining techniques on retailer�s databases [1, 16]. In Alice, we intend to use an
unsupervised clustering technique based on [4], to cluster customers according to
their buying patterns (i.e. their shopping baskets). Alice will then extract rules
encoding the consumption patterns. A similar approach was adopted by Lawrence, et.
al [19] to identify groups of shoppers with similar spending histories.

Stereotypes [29] assume that facts about people are not statistically independent.
This suggests that facts can be clustered into groups that frequently co-occur. Thus, a
user model built with stereotypes adds a whole cluster of user facts at once, as soon as
some evidence that is known to be a predictor of the cluster is observed. Therefore, it
might be possible to make predictions about the behaviour of users on the basis of an
amount of evidence � which can be acquired before an action is performed. The role
of these predictions is to provide a basis for an action until specific knowledge
becomes available.

Let us now examine initiatives related to the development of shareable product
data. ISO 10303 (STEP) is an International Standard for product data representation
and exchange which has existed since 1994. The development of STEP was initiated
and is still driven by industry�s need for technologies that enable application systems
to exchange and share data about technical products. A STEP model is not however
the same as an ontology - STEP definitions tend to be semantically weak. An
overview of the problems in precisely capturing semantics within STEP models are
discussed in [21].

A five level hierarchical categorisation of products is contained in the United
Nation Standard Products and Services Codes (UN/SPSC) taxonomy. This structure
however has no attributes. The Universal Content Extended Classification (UCEC) is
an extension of UN/SPSC, developed by ContentEurope.com S.A. and now managed
by The Electronic Commerce Code Management Association (ECCMA), has over
12,000 categories of products but again there are no attributes. A classification of a
number of content standards including a number of product and e-business standards
can be found at [9]

Although, visualization is considered relatively important by the ontology and e-
commerce community (visualization is stated as a key issue for a proposed Internet
Services Operating System [27] from the OntoWeb industrial applications special
interest group), the number of visualization systems targeted at ontology based tools
are relatively few. The most popular visualization used for browsing ontologies is the
folder based tree views supplied as part of Java. A notable exception is Jambalaya
[32], an application of the SHRIMP visualization framework [31] to view knowledge
models in Protégé [25].

Alice: Assisting Online Shoppers through Ontologies and Novel Interface Metaphors 349

Conclusions

Alice is an example of a semantic web [3] e-commerce application. One of the main
problems that the semantic web aims to solve is that of information overload. By
indexing web resources with a formal representation items of interest can be found
from their semantics. Although a lot of work is under way in creating the semantic
web (see for example, [12]) most of this work focuses on infrastructure issues. Within
the Alice project we have focused on how interface metaphors can augment semantic
web technology to aid in user interaction within an e-commerce context. In this paper
we have described two metaphors that we currently use: Dynamic Queries and
Guides.

Quiver couples knowledge modelling technology to highly interactive navigation
mechanisms through its on-the-fly dynamic query interface generation. Combining
the strengths of ontology based queries and dynamic queries will benefit both
knowledge engineers developing knowledge systems and end users looking for
relationships in large volumes of data. Moreover, we expect that as the semantic web
grows tools like Quiver that can present semantic data in a form that non computer
specialists can understand will become ubiquitous.

The Alice Guides form a bridge between online communities of users and
semantically enriched web resources. We believe that a community-based approach to
marketing coupled with tribalized Guides begin to provide an online approximation of
the old style community shop which we mentioned in our introduction. It is
paradoxical that this particular type of store may be disappearing from the real world
just as it is beginning to materialize in cyberspace.

Acknowledgements

This work was sponsored by INNN (www.innn.com) and by the Advanced
Knowledge Technologies (AKT) project. AKT is an Interdisciplinary Research
Collaboration (IRC), which is sponsored by the UK Engineering and Physical
Sciences Research Council under grant number GR/N15764/01. The AKT IRC
comprises the Universities of Aberdeen, Edinburgh, Sheffield, Southampton and The
Open University.

The Alice graphic design work was carried out by Harriett Cornish.
The authors are grateful to feedback received on versions of this paper from Simon

Buckingham Shum, Marc Eisenstadt and Paul Mulholland.

Reference

1. Agrawal, R., Mannila, H., Srikant., R., Toivonen, H. and Verkamo, A. I. (1996). Fast
discovery of association rules. In Fayyad, U. et al. Eds. Advances in Knowledge Discovery
and Data Mining. MIT Press, Cambridge.

350 John Domingue et al.

2. Ahlberg, C., Williamson, C., and Shneiderman, B., (1992) Dynamic queries for
information exploration: An implementation and evaluation, Proceedings of ACM CHI�92:
Human Factors in Computing Systems, pp. 619-626.

3. Berners-Lee T., Hendler J., and Lassila O. (2001) The Semantic Web, Scientific American,
May, 2001.

4. Cheeseman, P. and Stutz, J. (1996) Bayesian Classification (AutoClass): Theory and
Results. In Fayyad, M. et al. (editors), Advances in knowledge discovery and data mining.
MIT Press.

5. Cotter, P. and Smyth, B. (2001) PTV: Intelligent Personalised TV Guides. Smart Media
Institute, Dep. of Computer Science, University College Dublin (available at
http://www.ptv.ie).

6. Domingue, J. (1998) Tadzebao and WebOnto: Discussing, Browsing, and Editing
Ontologies on the Web. In B. Gaines and M. Musen (editors), Proceedings of the 11th
Knowledge Acquisition for Knowledge-Based Systems Workshop, April 18th-23th, Banff,
Canada, (available at http://kmi.open.ac.uk/people/domingue/banff98-
paper/domingue.html).

7. Domingue, J. and Motta, E. (2000) Planet-Onto: From News Publishing to Integrated
Knowledge Management Support. IEEE Intelligent Systems Special Issue on �Knowledge
Management and Knowledge Distribution over the Internet�, pp. 26-32, May/June, 2000.

8. Don, A., Oren, T. and Laurel, B. (1991) Guides 3.0, Proceedings of ACM CHI�91
Conference, New Orleans, LA, April 27th-May 2nd, pp. 44-448.

9. Martin Dörr, Nicola Guarino, Mariano Fernández López, Ellen Schulten Milena Stefanova,
Austin Tate. State of the Art in Content Standards. OntoWeb (available at
http://www.ontoweb.org/download/deliverables/D3.1.pdf.)

10. Dreyfus, H. L. (2001) On the Internet. Routledge: London.
11. Duineveld, A., Stoter, R., Weiden, M., Kenepa, B., and Benjamins, V. R. (200)

Wondertools? A comparative study of ontological engineering tools. International Journal
of Human Computer Studies, 52(5), pp. 1111-1133.

12. Fensel D. and Musen, M. (2001) Special Issue on The Semantic Web. IEEE Intelligent
Systems, March/April, 16(2).

13. Gruber, T. R. (1993) A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2).

14. Gruninger, M. and Lee, J. (2002) Ontology Applications and Design. Communications of
the ACM Vol. 45, No. 2, pp. 39-41 February, 2002.

15. Holt, R., Schürr, A., Sim, S. E., and Winter, A. (2001) GXL (1.0) Document Type
Definition, Dagstuhl Edition, February 14, 2001, (available at http://www.gupro.de/GXL/).

16. Jain, A.K.; M.N.Murty; P.J.Flynn. Data Clustering: A Review. ACM Computing Surveys,
Vol. 31, N.3, 1999.

17. Kozinets, R. V. (1999) E-Tribalized marketing?: The Strategic Implications of Virtual
Communities of Consumption. European Management Journal, 17(3), pp. 252-264.

18. Laurel, B., Oren, T. and Don, A. (1990) Issues in Multimedia Interface Design: Media
Integration and Interface Agents, CHI '90 Conference Proceedings, Seattle, WA, pp. 133-
139, April 1-5, 1990.

19. Lawrence, R. D., Almasi, G. S., Kotlyar, V., Viveros, M. S., and Duri, S. S. (2001)
Personalization of Supermarket product recommendations. Data Mining and Knowledge
Discovery, 5, pp. 11-32.

20. Lee, S. and Smelser, T. (2002) Jabber Programming, Hungry Minds.
21. Metzger, F. (1996) The Challenge of Capturing the Semantics of STEP Data Models

Precisely, Workshop on Product Knowledge Sharing for Integrated Enterprises, held in
conjunction with the First International Conference on Practical Aspects of Knowledge
Management, October 30-31, Basel, Switzerland, (available at
http://www.ladseb.pd.cnr.it/infor/Ontology/BaselPapers/Metzger.pdf).

22. Motta, E. (1999) Reusable Components for Knowledge Models. IOS Press, Amsterdam.

Alice: Assisting Online Shoppers through Ontologies and Novel Interface Metaphors 351

23. Motta, E., Buckingham Shum, S. and Domingue, J. (2001) Ontology-Driven Document
Enrichment: Principles, Tools and Applications. International Journal of Human Computer
Studies, 52(5), pp. 1071-1109, 2000.

24. Nielsen, J. (1998) Personalization is Over-rated. Alertbox, October 4, 1998, (available at
www.useit.com/alertbox/981004.html).

25. Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W. and Musen, M. A.
(2001) Creating Semantic Web Contents with Protege-2000. IEEE Intelligent Systems
16(2) pp. 60-71, 2001.

26. Oren, T., Salomon, G., Kreitman, K., and Don, A. (1990) Guides: Characterizing the
Interface. In Laurel, B. cd., The Art of Human-Computer Interface Design, Reading, MA
Addison-Wesley, pp. 367-381.

27. Persidis, A. (2001) The Working Group on Web Services Integration White Paper, ONT-
SIG4-WG2-P1, June 20, 2001 (available at
http://www.cs.vu.nl/~maksym/sig4/papers/SIG4_wp.doc).

28. Rheingold, H. (2000) The Virtual Community: Homesteading on the Electronic Frontier.
Revised edition. MIT Press: Cambridge, MA.

29. Rich, E. (1985) Stereotypes and User Modeling. In User�s model in Dialog Systems Kobsa,
A. and W. Wahlster (eds.). Spring-Verlag.

30. Shneiderman, B. (1994) Dynamic queries for visual information seeking, IEEE Software
11, 6 pp. 70-77.

31. Storey, M.-A. D., Fracchia, F.D. and Müller, H. A. (1999) Customizing A Fisheye View
Algorithm to Preserve the Mental Map. Journal of Visual Languages and Computing, 10,
pp. 245-267, 1999.

32. Storey, M.-A. D., Musen, M. A., Silva, J., Best, C., Ernst, N., Fergerson, R. W. and Noy, F.
(2001) Jambalaya: Interactive visualization to enhance ontology authoring and knowledge
acquisition in Protégé Workshop on Interactive Tools for Knowledge Capture, held in
conjunction with KCAP�01, The First International Conference on Knowledge Capture.
Victoria, British Columbia, Canada, October 21-23, 2001.

33. W3C. (1999) Resource Description Framework, (RDF) Model and Syntax Specification,
W3C Recommendation 22 February 1999 (available at http://www.w3.org/TR/REC-rdf-
syntax/).

34. W3C (2000) Extensible Markup Language (XML) 1.0 (Second Edition), October, 2000,
(available at http://www.w3.org/TR/2000/REC-xml-20001006).

Acquiring Configuration Knowledge Bases in the
Semantic Web Using UML

Alexander Felfernig1, Gerhard Friedrich1, Dietmar Jannach1, Markus Stumptner2, and
Markus Zanker1

1 Institut für Wirtschaftsinformatik und Anwendungssysteme, Produktionsinformatik,
Universitätsstrasse 65-67, A-9020 Klagenfurt, Austria,

{felfernig,friedrich,jannach,zanker}@ifit.uni-klu.ac.at
2 University of South Australia, Advanced Computing Research Centre,

5095 Mawson Lakes (Adelaide), SA, Australia
mst@cs.unisa.edu.au.

Abstract. The Semantic Web will provide the conceptual infrastructure to al-
low new forms of business application integration. This paper outlines our ap-
proach for integrating Web-based sales systems for highly complex customizable
products and services (configuration systems) making use of descriptive repre-
sentation formalisms of the Semantic Web. The evolving trend towards highly
specialized solution providers cooperatively offering configurable products and
services to their customers requires the extension of current (standalone) config-
uration technology with capabilities of knowledge sharing and distributed config-
uration problem solving. On the one hand, a standardized representation language
is needed in order to tackle the challenges imposed by heterogeneous represen-
tation formalisms of state-of-the-art configuration environments (e.g. description
logic or predicate logic based configurators), on the other hand it is important
to integrate the development and maintenance of configuration systems into in-
dustrial software development processes. We show how to support both goals
by demonstrating the applicability of the Unified Modeling Language (UML)
for configuration knowledge acquisition and by providing a set of rules for trans-
forming UML models into configuration knowledge bases specified by languages
such as OIL or DAML+OIL which represent the foundation for potential future
description standards for Web services.

1 Introduction

There is an increasing demand for applications providing solutions for configuration
tasks in various domains (e.g. telecommunications industry, automotive industry, or
financial services) resulting in a set of corresponding configurator implementations (e.g.
[2, 11, 13, 22]). Informally, configuration can be seen as a special kind of design activity
[16], where the configured product is built from a predefined set of component types
and attributes, which are composed conforming to a set of corresponding constraints.

Triggered by the trend towards highly specialized solution providers cooperatively
offering configurable products and services, joint configuration by a set of business
partners is becoming a key application of knowledge-based configuration systems. The

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 352–357, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Acquiring Configuration Knowledge Bases in the Semantic Web Using UML 353

configuration of virtual private networks (VPNs) [9] or the configuration of enterprise
network solutions are application examples for distributed configuration processes. In
the EC-funded research project CAWICOMS1 the paradigm of Web services is adopted
to accomplish this form of business application integration [8]. In order to realize a
dynamic matchmaking between service requestors and service providers, configura-
tion services are represented as Web services describing the capabilities of potentially
cooperating configuration systems. Currently developed declarative languages (e.g.,
DAML-S2) for semantically describing the capabilities of a Web-service are based on
DAML+OIL, that is why we show how the concepts needed for describing configura-
tion knowledge can be represented using semantic markup languages such as OIL [10]
or DAML+OIL [20].
The Unified Modeling Language (UML) [15] is a widely adopted modeling language
in industrial software development. Based on our experience in building configuration
knowledge bases using UML [5], we show how to effectively support the construc-
tion of Semantic Web configuration knowledge bases using UML as a knowledge ac-
quisition frontend. The approach presented in this paper enhances the application of
Software Engineering techniques to knowledge-based systems by providing a UML-
based knowledge acquisition frontend for configuration systems. Vice versa, reasoning
support for Semantic Web ontology languages can be exploited for checking the consis-
tency of UML configuration models. The resulting configuration knowledge bases en-
able knowledge interchange between heterogenous configuration environments as well
as distributed configuration problem solving in different supply chain settings.
The paper is organized as follows. In Section 2 we discuss the representative concepts
for configuration knowledge bases and in Section 3 we give a description logic based
definition of a configuration task as basis for the translation of UML configuration mod-
els into a corresponding OIL-based representation.

2 Configuration Knowledge Representation

Knowledge-based configuration systems build on a configuration model, that represents
the generic product structure. The representations concepts for modeling generic prod-
uct structures are defined in the de facto standard configuration ontologies [5, 18] that
are based on Ontolingua [12] and represent a synthesis of resource-based [13], function-
based, connection-based [14], and structure-based [19] configuration approaches:

– Component types. Component types represent the basic building blocks a final
product can be built of. They are characterized by attributes.

– Generalization hierarchies. Component types with a similar structure are arranged
in generalization hierarchies.

– Part-whole relationships. Part-whole relationships between component types state
the range of subparts an aggregate consists of.

1 CAWICOMS is the acronym for Customer-Adaptive Web Interface for the Configuration of
products and services with Multiple Suppliers (EC-funded project IST-1999-10688).

2 See http://www.daml.org/services for reference.

354 Alexander Felfernig et al.

– Compatibilities and requirements. Some types of components must not be used
together within the same configuration, i.e. they are incompatible. In other cases,
the existence of one component of a specific type requires the existence of another
specific component within the configuration.

– Resource constraints. Parts of a configuration task can be seen as a resource bal-
ancing task, where some of the component types produce some resources and others
are consumers.

– Port connections. In some cases the product topology - i.e., exactly how the com-
ponents are interconnected - is of interest in the final configuration. The concept of
a port is used for this purpose.

– Constraints. The basic structure of the product is modeled using the aforemen-
tioned modeling concepts. In addition, constraints which are related to technical
restrictions and economic factors can be expressed on the product model.

In the Knowledge Acquisition Workbench of the CAWICOMS Project graphical repre-
sentation concepts of the Unified Modeling Language (UML) [15] are used to allow the
domain expert acquiring and maintaining the configuration models. In order to allow
the refinement of the basic meta-model with domain-specific modeling concepts, UML
provides the concept of profiles - the configuration domain specific modeling concepts
are the constituting elements of a UML configuration profile which can be used for
building configuration models.
UML profiles can be compared with ontologies discussed in the AI literature. UML
stereotypes are used to further classify UML meta-model elements (e.g. classes, as-
sociations, dependencies). Stereotypes are the basic means to define domain-specific
modeling concepts for profiles (e.g. for the configuration profile).

3 Translation of UML Configuration Models into OIL

In the following we give a description logic based definition of a configuration task [6]
and present some example rules to automatically translate UML configuration models
into a corresponding OIL representation. The definition is based on a schema S=(CN ,
RN , IN) of disjoint sets of names for concepts, roles, and individuals [3], where RN
is a disjunctive union of roles and features.

Definition 1 (Configuration task): In general we assume a configuration task is de-
scribed by a triple (DD, SRS, CLANG). DD represents the domain description of
the configurable product and SRS specifies the particular system requirements defin-
ing an individual configuration task instance. CLANG comprises a set of concepts
CConfig ⊆ CN and a set of roles RConfig ⊆ RN which serve as a configuration lan-
guage for the description of actual configurations. A configuration knowledge base KB
= DD ∪ SRS is constituted of sentences in a description language.2

In addition we require that roles in CLANG are defined over the domains given in
CConfig , i.e. range(Ri) = CDom and dom(Ri) = CDom must hold for each role
Ri ∈ RConfig , where CDom

.=
⊔

Ci∈Cconfig
Ci. We impose this restriction in order

Acquiring Configuration Knowledge Bases in the Semantic Web Using UML 355

to assure that a configuration result only contains individuals and relations with corre-
sponding definitions in CConfig and RConfig .

Based on this definition, a corresponding configuration result (solution) is defined as
follows [6], where the semantics of description terms are given using an interpretation
I = 〈∆I , (·)I〉, where ∆I is a domain of values and (·)I is a mapping from concept
descriptions to subsets of ∆I and from role descriptions to sets of 2-tuples over ∆I .

Definition 2 (Valid configuration): Let I = 〈∆I , (·)I〉 be a model of a config-
uration knowledge base KB, CLANG = Cconfig ∪ Rconfig a configuration lan-
guage, and CONF = COMPS ∪ ROLES a description of a configuration. COMPS
is a set of tuples 〈Ci, INDIVSCi 〉 for every Ci ∈ Cconfig , where INDIVSCi =
{ci1, . . . , cini} = CI

i is the set of individuals of concept Ci. These individuals identify
components in an actual configuration. ROLES is a set of tuples 〈Rj , TUPLESRj 〉 for
every Rj ∈ Rconfig where TUPLESRj = {〈rj1, sj1〉, . . . , 〈rjmj , sjmj 〉} = RI

j is the
set of tuples of role Rj defining the relation of components in an actual configuration.2

The automatic derivation of an OIL-based configuration knowledge base requires a
clear definition of the semantics of the used UML modeling concepts. The semantics of
UML configuration models are given by a set of corresponding translation rules. The
resulting knowledge base restricts the set of possible configurations, i.e. enumerates the
possible instance models which strictly correspond to the UML class diagram defining
the product structure. For obvious space restrictions only the translation rule for part-
whole relationships is shown:
Part-whole relationships are important model properties in the configuration domain.
In [1, 17, 18] it is pointed out that part-whole relationships have quite variable semantics
depending on the regarded application domain. In most configuration environments, a
part-whole relationship is described by the two basic roles partof and haspart. In the
following these two basic roles are introduced. Multiplicities used to describe a part-
whole relationship denote how many parts the aggregate can consist of and between
how many aggregates a part can be shared if the aggregation is non-composite.

Rule (Part-whole relationships): Let w and p be component types in a graphical UML
representation, where p is a part of w and ubp is the upper bound, lbp the lower bound
of the multiplicity of the part, and ubw is the upper bound, lbw the lower bound of the
multiplicity of the whole. Furthermore let w-of-p and p-of-w denote the names of the
roles of the part-whole relationship between w and p, where w-of-p denotes the role
connecting the part with the whole and p-of-w denotes the role connecting the whole
with the part, i.e., p-of-w haspart, w-of-p Partofmode, where Partofmode ∈
{partofcomposite, partofshared}. The roles partofcomposite and partofshared are as-
sumed to be disjoint, where partofcomposite partof and partofshared partof .
DD is extended with

class-def p.

class-def w.

slot-def w-of-p subslot-of Partofmode inverse p-of-w domain p range w.

356 Alexander Felfernig et al.

slot-def p-of-w subslot-of haspart inverse w-of-p domain w range p.
p: slot-constraint w-of-p min-cardinality lbw w.
p: slot-constraint w-of-p max-cardinality ubw w.
w: slot-constraint p-of-w min-cardinality lbp p.
w: slot-constraint p-of-w max-cardinality ubp p. 2

Remark: The semantics of shared part-whole relationships (partofshared partof)
are defined by simply restricting the upper bound and the lower bound of the corre-
sponding roles. In addition the following restriction must hold for each concept using
partof relationships:
(((slot-constraint partofcomposite cardinality 1 top) and (slot-constraint partofshared

cardinality 0 top)) or (slot-constraint partofcomposite cardinality 0 top)).
This restriction denotes the fact that a component which is connected to a whole via

composite relationship must not be connected to any other component.2

For further details, an example and the complete set of translation rules see the long
version of this paper [7].

4 Conclusions

The application of the modeling concepts presented in this paper has its limits when
building configuration knowledge bases - in some domains there exist complex con-
straints that do not have an intuitive graphical representation. Happily, (with some mi-
nor restrictions discussed in [6]) we are able to represent such constraints using lan-
guages such as OIL or DAML+OIL. UML itself has an integrated constraint language
(Object Constraint Language - OCL [21]) which allows the formulation of constraints
on object structures. The translation of OCL constraints into representations of Seman-
tic Web ontology languages is the subject of future work, a translation into a predicate
logic based representation of a configuration problem has already been discussed in [4].
The current version of our prototype workbench supports the generation of OIL-based
configuration knowledge bases from UML models which are built using the modeling
concepts presented in this paper, i.e. concepts for designing the product structure and
concepts for defining basic constraints (e.g. requires) on the product structure.

References

[1] A. Artale, E. Franconi, N. Guarino, and L. Pazzi. Part-Whole Relations in Object-Centered
Systems: An Overview. Data & Knowledge Engineering, 20(3):347–383, 1996.

[2] V.E. Barker, D.E. O’Connor, J.D. Bachant, and E. Soloway. Expert systems for configura-
tion at Digital: XCON and beyond. Communications of the ACM, 32(3):298–318, 1989.

[3] A. Borgida. On the relative expressive power of description logics and predicate calculus.
Artificial Intelligence, 82:353–367, 1996.

[4] A. Felfernig, G. Friedrich, and D. Jannach. Generating product configuration knowledge
bases from precise domain extended UML models. In Proceedings of the 12th Interna-
tional Conference on Software Engineering and Knowledge Engineering (SEKE’2000),
pages 284–293, Chicago, USA, 2000.

Acquiring Configuration Knowledge Bases in the Semantic Web Using UML 357

[5] A. Felfernig, G. Friedrich, and D. Jannach. UML as domain specific language for the
construction of knowledge-based configuration systems. International Journal of Software
Engineering and Knowledge Engineering (IJSEKE), 10(4):449–469, 2000.

[6] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, and M. Zanker. A Joint Foundation
for Configuration in the Semantic Web. Proceedings of the Workshop on Configuration
(ECAI’2002), 2001.

[7] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, and M. Zanker. Transforming UML
domain descriptions into Configuration Knowledge Bases for the Semantic Web. Lyon,
France, 2002.

[8] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. Semantic Configuration Web Ser-
vices in the CAWICOMS Project. Sardinia, Italy, 2002.

[9] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. Web-based Configuration of Vir-
tual Private Networks with Multiple Suppliers. Cambridge, UK, 2002. Kluwer Academic
Publisher.

[10] D. Fensel, F. vanHarmelen, I. Horrocks, D. McGuinness, and P.F. Patel-Schneider. OIL:
An Ontology Infrastructure for the Semantic Web. IEEE Intelligent Systems, 16(2):38–45,
2001.

[11] G. Fleischanderl, G. Friedrich, A. Haselböck, H. Schreiner, and M. Stumptner. Config-
uring Large Systems Using Generative Constraint Satisfaction. IEEE Intelligent Systems,
13(4):59–68, 1998.

[12] T. Gruber. Ontolingua: A mechanism to support portable ontologies. Technical Report KSL
91-66, 1992.

[13] E.W. Jüngst M. Heinrich. A resource-based paradigm for the configuring of technical
systems from modular components. In Proceedings of the 7th IEEE Conference on AI
applciations (CAIA), pages 257–264, Miami, FL, USA, 1991.

[14] S. Mittal and F. Frayman. Towards a Generic Model of Configuration Tasks. In Proceedings
11th International Joint Conf. on Artificial Intelligence, pages 1395–1401, Detroit, MI,
1989.

[15] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Man-
ual. Addison-Wesley, 1998.

[16] D. Sabin and R. Weigel. Product Configuration Frameworks - A Survey. In B. Faltings and
E. Freuder, editors, IEEE Intelligent Systems, Special Issue on Configuration, volume 13,
pages 50–58. IEEE, 1998.

[17] U. Sattler. Description Logics for the Representation of Aggregated Objects. In Pro-
ceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000), pages
239–243, Berlin, Germany, 2000.

[18] T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen. Towards a General Ontology of
Configuration. AI Engineering Design Analysis and Manufacturing Journal, Special Issue:
Configuration Design, 12(4):357–372, 1998.

[19] M. Stumptner. An overview of knowledge-based configuration. AI Communications, 10(2),
June, 1997.

[20] F. vanHarmelen, P.F. Patel-Schneider, and I. Horrocks. A Model-Theoretic Semantics for
DAML+OIL. www.daml.org, March 2001.

[21] J. Warmer and A. Kleppe. The Object Constraint Language - Precise Modeling with UML.
Addison Wesley Object Technology Series, 1999.

[22] J.R. Wright, E. Weixelbaum, G.T. Vesonder, K.E. Brown, S.R. Palmer, J.I. Berman, and
H.H. Moore. A Knowledge-Based Configurator that supports Sales, Engineering, and Man-
ufacturing at AT&T Network Systems. AI Magazine, 14(3):69–80, 1993.

S-CREAM — Semi-automatic CREAtion of

Metadata

Siegfried Handschuh1, Steffen Staab1, and Fabio Ciravegna2

1 AIFB, University of Karlsruhe
{sha,sst}@aifb.uni-karlsruhe.de,

http://www.aifb.uni-karlsruhe.de/WBS
2 Department of Computer Science , University of Sheffield,

F.Ciravegna@dcs.shef.ac.uk,
http://www.dcs.shef.ac.uk/∼fabio

Abstract. Richly interlinked, machine-understandable data constitute
the basis for the Semantic Web. We provide a framework, S-CREAM,
that allows for creation of metadata and is trainable for a specific domain.
Annotating web documents is one of the major techniques for creat-
ing metadata on the web. The implementation of S-CREAM, OntoMat-
Annotizer supports now the semi-automatic annotation of web pages.
This semi-automatic annotation is based on the information extraction
component Amilcare. OntoMat-Annotizer extract with the help of Amil-
care knowledge structure from web pages through the use of knowledge
extraction rules. These rules are the result of a learning-cycle based on
already annotated pages.

1 Introduction

The Semantic Web builds on metadata describing the contents of Web pages. In
particular, the Semantic Web requires relational metadata, i.e. metadata that
describe how resource descriptions instantiate class definitions and how they are
semantically interlinked by properties. To support the construction of relational
metadata, we have provided an annotation [14] and authoring [15] framework
(CREAM — manually CREAting Metadata) and a tool (OntoMat-Annotizer)
that implements this framework. Nevertheless, providing plenty of relational
metadata by annotation, i.e. conceptual mark-up of text passages, remained a
laborious task.

Though there existed the high-level idea that wrappers and information ex-
traction components could be used to facilitate the work [8, 14], a full-fledged
integration that dealt with all the conceptual difficulties was still lacking. There-
fore, we have developed S-CREAM (Semi-automatic CREAtion of Metadata),
an annotation framework that integrates a learnable information extraction com-
ponent (viz. Amilcare [1]).

Amilcare is a system that learns information extraction rules from manually
marked-up input. S-CREAM aligns conceptual markup, which defines relational
metadata, (such as provided through OntoMat-Annotizer) with semantic and
indicative tagging (such as produced by Amilcare).

A. Gómez-Pérez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 358–372, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

S-CREAM — Semi-automatic CREAtion of Metadata 359

There two major type of problems that we had to solve for this purpose:

1. When comparing the desired relational metadata from manual markup and
the semantic tagging provided by information extraction systems, one rec-
ognizes that the output of this type of systems is underspecified for the
purpose of the Semantic Web. In particular, the nesting of relationships
between different types of concept instances is undefined and, hence, more
comprehensive graph structures may not be produced (further elaboration
in Section 4). In order to overcome this problem, we introduce a new pro-
cessing component, viz. a lightweight module for discourse representation
(Section 5).

2. Semantic tags do not correspond one-to-one to the conceptual description
(Section 5 and 6).
– Semantic tags may have to be turned into various conceptual markup,
e.g., as concept instances, attribute instances, or relationship instances.

– For successful learning, Amilcare sometimes needs further indicative tags
(e.g., syntactic tags) that do not correspond to any entity in a given
ontology, but that may only be exploited within the learning cycle.

In the remainder of the paper, we will first describe the existing frameworks,
viz. CREAM (Section 2) and Amilcare (3). Second, we will focus on the integra-
tion problems (Section 4–5). Third, we will describe a usage scenario (Section 6).
Eventually, we will discuss related works and conclude.

2 CREAM/OntoMat-Annotizer

CREAM is an annotation and authoring framework suited for the easy and
comfortable creation of relational metadata. OntoMat-Annotizer is its concrete
implementation. Before we sketch some of the capabilities of CREAM/OntoMat-
Annotizer, we first describe its assumptions on its output representation and
some terminology we use subsequently.

We elaborate the terminology here because many of the terms that are used
with regard to metadata creation tools carry several, ambiguous connotations
that imply conceptually important differences:

– Ontology: An ontology is a formal, explicit specification of a shared con-
ceptualization of a domain of interest [13]. In our case it is constituted by
statements expressing definitions of DAML+OIL classes and properties [11].

– Annotations: An annotation in our context is a set of instantiations at-
tached to an HTML document. We distinguish (i) instantiations of DAML+
OIL classes, (ii) instantiated properties from one class instance to a datatype
instance — henceforth called attribute instance (of the class instance), and
(iii) instantiated properties from one class instance to another class instance
— henceforth called relationship instance.

360 Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna

Class instances have unique URIs, e.g. like ’urn:rdf:936694d5ca907974-
ea16565de20c997a-0’.1 They frequently come with attribute instances, such
as a human-readable label like ‘Dobbertin’.

– Metadata: Metadata are data about data. In our context the annotations
are metadata about the HTML documents.

– Relational Metadata: We use the term relational metadata to denote the
annotations that contain relationship instances.
Often, the term “annotation” is used to mean something like “private or
shared note”, “comment” or “Dublin Core metadata”. This alternative mean-
ing of annotation may be emulated in our approach by modelling these notes
with attribute instances. For instance, a comment note “I like this paper”
would be related to the URL of the paper via an attribute instance ‘has-
Comment’.
In contrast, relational metadata also contain statements like: The hotel “Zwei
Linden” is located in the city “Dobbertin”., i.e. relational metadata contain
relationships between class instances rather than only textual notes.

Figure 1 illustrates our use of the terms “ontology”, “annotation” and “re-
lational metadata”. It depicts some part of a tourism ontology.2 Furthermore
it shows the homepage of the Hotel ”Zwei Linden”(http://www.all-in-all.de/
english/1142.htm) annotated in RDF. For the hotel there is a instances denoted
by corresponding URI (urn:rdf:947794d5ca907974ea16565de21c998a-0). In addi-
tion, there is a relationship instance between the hotel and the city (Table 1(a))).

3 Amilcare

Amilcare is a tool for adaptive Information Extraction from text (IE) designed
for supporting active annotation of documents for KnowledgeManagement (KM).
It performs IE by enriching texts with XML annotations, i.e. the system marks
the extracted information with XML annotations. The only knowledge required
for porting Amilcare to new applications or domains is the ability of manually
annotating the information to be extracted in a training corpus. No knowledge
of Human Language technology is necessary. Adaptation starts with the defini-
tion of a tagset for annotation. Then users have to manually annotate a corpus
for training the learner. As will be later explained in detail, OntoMat-Annotizer
may be also used as the annotation interface to annotate texts in a user friendly
manner. OntoMat-Annotizer provides user annotations as XML tags to train
the learner. Amilcare’s learner induces rules that are able to reproduce the text
annotation.

Amilcare can work in two modes: training, used to adapt to a new applica-
tion, and extraction, used to actually annotate texts.

1 In the OntoMat-Annotizer implementation we create the URIs with the createUni-
queResource method of the RDF-API

2 currently only available in German at
http://ontobroker.semanticweb.org/ontos/compontos/tourism I1.daml

S-CREAM — Semi-automatic CREAtion of Metadata 361

s = rdfs:subClassOf

t = rdf:type

r = rdfs:range

d = rdfs:domain

L = rdfs:Literal

Zwei Linden

Zwei Linden
single room1double room1

Dobbertin 038736/42472

rate1rate2

25,66 EUR46,02 EUR43,46

name
has_roomhas_room

located_at phone
has_ratehas_rate

price currency
currency

price price

t

Ontology

Metadata

Document

Thing

accommodation
Region

CityHotel

Room

SingleRoom

DoubleRooms

s

s
s

s
s

s

has_room

price currency

located_at

name
d

L

L L

d

r
d

r

Rate

has_rate

r

d

d d

Fig. 1. Annotation example

362 Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna

In both modes, Amilcare first of all preprocesses texts using Annie, the
shallow IE system included in the Gate package ([21], www.gate.ac.uk). An-
nie performs text tokenization (segmenting texts into words), sentence splitting
(identifying sentences) part of speech tagging (lexical disambiguation), gazetteer
lookup (dictionary lookup) and named entity recognition (recognition of people
and organization names, dates, etc.).

When operating in training mode, Amilcare induces rules for information
extraction. The learner is based on (LP)2, a covering algorithm for supervised
learning of IE rules based on Lazy-NLP [1] [3]. This is a wrapper induction
methodology [18] that, unlike other wrapper induction approaches, uses linguis-
tic information in the rule generalization process. The learner starts inducing
wrapper-like rules that make no use of linguistic information, where rules are
sets of conjunctive conditions on adjacent words. Then the linguistic information
provided by Annie is used in order to generalize rules: conditions on words are
substituted with conditions on the linguistic information (e.g. condition match-
ing either the lexical category, or the class provided by the gazetteer, etc. [3]).
All the generalizations are tested in parallel by using a variant of the AQ algo-
rithm [22] and the best k generalizations are kept for IE. The idea is that the
linguistic-based generalization is used only when the use of NLP information is
reliable or effective. The measure of reliability here is not linguistic correctness
(immeasurable by incompetent users), but effectiveness in extracting informa-
tion using linguistic information as opposed to using shallower approaches. Lazy
NLP-based learners learn which is the best strategy for each information/context
separately. For example they may decide that using the result of a part of speech
tagger is the best strategy for recognizing the location in holiday advertisements,
but not to spot the hotel address. This strategy is quite effective for analyzing
documents with mixed genres, quite a common situation in web documents [2].

The learner induces two types of rules: tagging rules and correction rules.
A tagging rule is composed of a left hand side, containing a pattern of condi-
tions on a connected sequence of words, and a right hand side that is an action
inserting an XML tag in the texts. Each rule inserts a single XML tag, e.g.
<hotel>. This makes the approach different from many adaptive IE algorithms,
whose rules recognize whole pieces of information (i.e. they insert both <hotel>
and </hotel>, or even multi slots. Correction rules shift misplaced annotations
(inserted by tagging rules) to the correct position. They are learnt from the mis-
takes made in attempting to re-annotate the training corpus using the induced
tagging rules. Correction rules are identical to tagging rules, but (1) their pat-
terns match also the tags inserted by the tagging rules and (2) their actions shift
misplaced tags rather than adding new ones. The output of the training phase
is a collection of rules for IE that are associated to the specific scenario.

When working in extraction mode, Amilcare receives as input a (collection
of) text(s) with the associated scenario (including the rules induced during the
training phase). It preprocesses the text(s) by using Annie and then it applies
its rules and returns the original text with the added annotations (Table 1(b)).
The Gate annotation schema is used for annotation [21].

S-CREAM — Semi-automatic CREAtion of Metadata 363

Amilcare is designed to accommodate the needs of different user types. While
naive users can build new applications without delving into the complexity of
Human Language Technology, IE experts are provided with a number of facilities
for tuning the final application. Induced rules can be inspected, monitored and
edited to obtain some additional accuracy, if needed. The interface also allows
balancing precision (P) and recall (R). The system is run on an annotated unseen
corpus and users are presented with statistics on accuracy, together with details
on correct matches and mistakes (using the MUCscorer [7] and an internal tool).
Retuning the P&R balance does not generally require major retraining. Facilities
for inspecting the effect of different P&R balances are provided. Although the
current interface for balancing P&R is designed for IE experts, we have plans
for enabling also naive users [4].

4 Synthesizing S-CREAM

In order to synthesize S-CREAM out of the existing frameworks CREAM and
Amilcare, we consider their core processes in terms of input and output, as
well as the process of the yet undefined S-CREAM. Figure 2 surveys the three
processes.

The first process is indicated by a circled M. It is manual annotation and
authoring of metadata, which turns a document into relational metadata that
corresponds to the given ontology (as sketched in Section 2 and described in
detail in [15]) For instance, an annotator may use OntoMat-Annotizer to describe
that on the homepage of hotel “Zwei Linden” (cf. Figure 1) the relationships
listed in Table 1(a) show up.

Document
tagged

Output

DR

IE

Hotel

City

Hotel

City

M

A1 A2 A3

region

City Hotel

accommodation

Thing

located_at

Zwei LindenDobbertin

located_at

Fig. 2. Two Ways to the Target: Manual and Automatic Annotation

The second process is indicated by a circled A1. It is information extraction,
e.g. provided by Amilcare [1], which digests a document and produces either a
XML tagged document or a list of XML tagged text snippets (cf. Table 1(b)).

364 Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna

Table 1. Comparison of Output: Manual OntoMat-Annotizer versus Amilcare

Zwei Linden instOf Hotel
Zwei Linden is located at Dobbertin
Dobbertin instOf City
Zwei Linden has room single room 1
single room 1 instOf Single Room
single room 1 has rate rate2
rate2 instOf Rate
rate2price 25,66
rate2currency EUR
Zwei Linden has room double room 3
double room 3 instOf Double Room
double room 3 has rate rate4
rate4 instOf Rate
rate4price 43,46
rate4price 46,02
rate4currency EUR
. . .

(a) OntoMat-Annotizer

<hotel>Zwei Linden</hotel>

<city>Dobbertin</city>

<singleroom>Single room</singleroom>

<price>25,66</price>
<currency>EUR</currency>

<doubleroom>Double room</doubleroom>

<lowerprice>43,46</lowerprice>
<upperprice>46,02</upperprice>
<currency>EUR</currency>
...

(b) Amilcare

The obvious questions that come up at this point are: Is the result of Ta-
ble 1(b) equivalent to the one in Table 1(a)? How can Table 1(b) be turned into
the result of Table 1(a)? The latter is a requirement for the Semantic Web.

The “Semantic Web answer” to this is: The difference between Table 1(a)
and Table 1(b) is analogous to the difference between an RDF structure and
a very particular serialization of data in XML. This means that assuming a
very particular serialization of information on Web pages, the Amilcare tags can
be specified so precisely3 that indeed Table 1(b) can be rather easily mapped
into Table 1(a). The only requirement may be a very precise specification of
tags, e.g. “43,46” may need to be tagged as <lowerprice-of-doublebedroom-of-
hotel>43,46</lowerprice-of-doubleroom-of-hotel> in order to cope with its re-
lation to a doubleroom of a hotel.

The “Natural Language Analysis answer” to the above questions is: Learnable
information extraction approaches like Amilcare do not have an explicit discourse
model for relating tagged entities — at least for now. Their implicit discourse
model is that each tag corresponds to a place in a template4 and every document
(or document analogon) corresponds to exactly one template. This is fine as long
as the discourse structures in the text are simple enough to be mapped into the
template and from the template into the target RDF structure.

In practice, however, the assumption that the underlying graph structures/
discourse structures are quite similar, often does not hold. Then the direct map-

3 We abstract here from the problem of correctly tagging a piece of text.
4 A template is like a single tuple in an unnormalized relational database table, where

all or several entries may have null values.

S-CREAM — Semi-automatic CREAtion of Metadata 365

ping from XML tagged output to target RDF structure becomes awkward and
difficult to do.

The third process given in Figure 2 is indicated by the composition of A1,
A2 and A3. It bridges from the tagged output of the information extraction
system to the target graph structures via an explicit discourse representation.
Our discourse representation is based on a very lightweight version of Centering
[12, 23] and explained in the next section.

5 Discourse Representation (DR)

The principal task of discourse representation is to describe coherence between
different sentences. The core idea is that during the interpretation of a text (or,
more general, a document), there is always a logical description (e.g., a RDF(S)
graph) of the content that has been read so far. The current sentence updates
this logical description by:

1. Introducing new discourse referents: I.e. introducing new entities. E.g.,
finding the term ‘Hotel & Inn “Zwei Linden” ’(cf. Figure 1) to denote a new
object .

2. Resolving anaphora: I.e. describing denotational equivalence between dif-
ferent entities in the text. E.g. ‘Hotel & Inn “Zwei Linden” ’ and ‘Country
inn’ refers to the same object.

3. Establishing new logical relationships: I.e. relating the two objects re-
ferred to by ‘Hotel & Inn “Zwei Linden” ’ and ‘Dobbertin’ via locatedAt.

The problem with information extraction output is that it is not clear what
constitutes a new discourse entity. Though information extraction may provide
some typing (e.g. <city>Dobbertin</city>), it does not describe whether this
constitutes an attribute value (of another entity) or an entity of its own. Nei-
ther do information extraction systems like Amilcare treat coherence between
different pieces of tagged text.

Grosz & Sidner [12] devised centering as a theory of text structures that
separate text into segments that are coherent to each other. The principal idea
of the centering model is to express fixed constraints as well as “soft” rules
which guide the reference resolution process. The fixed constraints denote what
objects are available at all for resolving anaphora and establishing new logical
inter-sentential relationships, while soft rules give a preference ordering to these
possible antecedents. The main data structure of the centering model is a list
of forward-looking centers, Cf (Uk) for each utterance Uk. The forward-looking
centers Cf (Uk) constitutes a ranked list of what is available and what is preferred
for resolving anaphora and for establishing new logical relationships with previous
sentences.

The centering model allows for relating a given entity in utterance Uk to
one of the forward-looking centers, Cf (Uk−1). For instance, when reading “The
chef of the restaurant” in Figure 1 the centering model allows relationships with
“Country inn”, but not with “Dobbertin”.

366 Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna

The drawback of the centering model is that, first, it has only been devised for
full text and not for semi-structured text such as appears in Figure 1 and, second,
it often needs more syntactic information than shallow information extraction
can provide.

Therefore, we use only an extremely lightweight, “degraded” version of center-
ing, where we formulate the rules on an ad hoc basis as needed by the annotation
task. The underlying ideas of the degrading are that S-CREAM is intended to
work in restricted, though adaptable, domains. It is not even necessary to have
a complete model, because we analyze only a very small part of the text. For in-
stance, we analyze only the part about hotels with rooms, prices, addresses and
hotel facilities. Note that thereby, hotel facilities are found in full texts rather
than tables and not every type of hotel facility is known beforehand.

We specify the discourse model by logical rules, the effects of which we illus-
trate in the following paragraphs. Thereby, we use the same inferencing mecha-
nisms that we have already exploited for supporting annotation [15], viz. Onto-
broker [5].

As our baseline model, we assume the “single template strategy”, viz. only
one type of tag, e.g. <hotel>, is determined to really introduce a new discourse
referent. Every other pair of tag name and tag value is attached to this entity
as an attribute filled by the tag value. E.g. “Zwei Linden” is recognized as an
instance of Hotel, every other entity (like “Dobbertin”, etc.) is attached to this
instance resulting in a very shallow discourse representation by logical facts illus-
trated in Table 2(a).5 This is probably the shallowest discourse representation
possible at all, because it does not include ordering constraints or other soft
constraints. However, it is already adequate to map some of the relations in
the discourse namespace (“dr:”) to relations in the target space, thus resulting
in Table 2(b). However, given this restricted tag set, not every relation can be
detected.

For more complex models, we may also include ordering information (e.g.
simply by augmenting the discourse representation tuples given in Table 2 by
numbers; this may be modelled as 4-arity predicates in F-Logic used by Onto-
broker) and a set of rules that maps the discourse representation into the target
structure integrating

– rules to only attach instances where they are allowed to become attached
(e.g., prices are only attached where they are allowed)

– rules to attach tag values to the nearest preceding, conceptually possible
entity (thus, prices for single and double room may be distinguished without
further ado).

– rules to create a new complex object when two simple ones are adjacent,
e.g., to create a rate when it founds adjacent number and currencies

The centering model describes preferences between competing rules. Further
information that could be included is, e.g., adjacency information, etc. Thus, one

5 Results have been selected to be comparable with Table 1.

S-CREAM — Semi-automatic CREAtion of Metadata 367

Table 2. Template Strategy

Zwei Linden dr:instOf Hotel Zwei Linden instOf Hotel
Zwei Linden dr:city Dobbertin Zwei Linden is located at Dobbertin

Dobbertin instOf City
Zwei Linden dr:single room single room Zwei Linden has room single room1

single room1 instOf Single Room
Zwei Linden dr:price 25,66
Zwei Linden dr:currency EUR
Zwei Linden dr:double room double room Zwei Linden has room double room1

double room1 instOf Double Room
Zwei Linden dr:price 43,46
Zwei Linden dr:price 46,02
Zwei Linden dr:currency EUR

(a) Discourse Representation (b) Simple Target Graph Structure

may produce Table 1(a) out of the discourse representation from a numbered
Table 2(a).

The strategy that we follow here is to make simple things simple and complex
tasks possible. The experienced user will be able to handcraft logical rules in
order to define the discourse model to his needs. The standard user, will only
exploit the simple template strategy. When the resulting graph structures are
simple enough to allow for the latter strategy and a simple mapping, the mapping
can also be defined by directly aligning relevant concepts and relations by drag
and drop, while in the general case one must write logical rules.

6 Usage Scenario

This section describe a usage scenario. The first step is the project definition.
A domain ontology can be the basis for the annotation of different types of
documents. Likewise a certain kind of documents can be annotated in reference
to different ontologies. Therefore a project defines the combination of a domain
ontology (e.g. about tourism) with a certain text type (e.g. hotel homepages).
Further the user have do define which part of the ontology is relevant for the
learning task, e.g. which attributes of the several concepts will be used for tagging
the corpus. The mapping of the Ontology to the Amilcare tags works as follows:

– concepts: concepts are mapped by the name of the concept, e.g. the concept
with the name ”Hotel” results in a <hotel> tag.

– inheritance: the concepts of the ontology represents a hierarchical structure.
To emulate the different levels of conceptualization OntoMat-Annotizer al-
lows to map a concept in multiple tags, e.g. the concept ”Hotel” in <com-
pany>, <accommodation>, and <hotel>.

– attributes: The mapping of attributes to tags is a tradeoff between an spe-
cific and a general naming. The specific naming ease the mapping to the

368 Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna

ontology concepts but at the same time it results in more complex extrac-
tion rules. These rules are less general and less robust. For example a specific
naming of the attribute ”phone” would result in tags like <hotel phone>,
<room phone>, and <person phone> in comparison to the general tag
<phone>. Therefore the user have to decide for every attribute the ade-
quate accuracy of the naming, because it influences the learning results.

After the definition of the project parameters one needs a corpus, a set of
certain type of documents, e.g. hotel homepages.

If there exist already enough annotated documents in the web the user can
perform a crawl with OntoMat-Annotizer and collect the necessary documents.
The crawl can be limited here to documents which are annotated with the desired
ontology. If necessary the ontology sub-set and the mapping to the Amilcare tags
must be re-adjusted according to the existing annotations in the crawled docu-
ments. Afterwards the desired type of document must be checked still manually.

If there are no annotated documents, one can produce the necessary cor-
pus with OntoMat-Annotizer themselves. The user have to collect and annotate
documents of a certain type by the sub-set of the ontology that is chosen in the
project definition phase. The document are annotated by OntoMat-Annotizer
with RDF facts. These facts are linked by an XPointer description to the an-
notated text part. Because Amilcare needs as a corpus XML tagged files, these
RDF annotations will be transformed into corresponding XML tags according
to the mapping done in the project definition. Only these tags are used to train.
Other Tags like HTML tags will be used as contextual information.

The learning phase is executed by Amilcare, which is embedded as a plugin
into OntoMat-Annotizer. Amilcare processes each document of the corpus and
generates extraction rules as described in section 3. After the training Amilcare
stores the annotation rules in a certain file which belongs to the project.

Now it is possible to use the induced rules for semi-automatic annotation.
Based on the rules the Amilcare plugin produces XML annotation results (cf.
A1 in Figure 2). Here a mapping (A2) is done from OntoMat-Annotizer from the
flat markup to the conceptual markup in order to create new RDF facts (A3).
These mapping is undertaken by the discourse representation (cf. section 5).

These mapping results in several automatic generated proposals for the RDF
annotation of the document. The user can interact with these annotation pro-
posals in three different ways of automation: (i) a highlighting of the annotation
candidates or (ii) interactive suggestion of each annotation or (iii) a first full
automatic annotation of the document and a later refinement by the user.

highlighting mode: The user opens a document he would like to annotate in
the OntoMat-Annotizer document editor. Then the highlighting mode marks all
annotation candidates by a colored underline. The user can decide on his own if
he uses this hint for an annotation or not.

interactive mode: This mode is for the individual document processing. The
interactive suggestion is a step-by-step process. Every possible annotation can-

S-CREAM — Semi-automatic CREAtion of Metadata 369

didate is suggested to the user and he can refuse, accept or change the suggestion
in a dialog window.

automatic mode: The fully automatic approach is useful if there is a bunch of
documents that needs to be annotated, so it can be done in batch mode. All
selected documents are annotated automatically.

7 Related Work

S-CREAM can be compared along fourth dimensions: First, it is a framework
for mark-up in the Semantic Web. Second, it may be considered as a particular
knowledge acquisition framework vaguely similar to Protégé-2000[9]. Third, it is
certainly an annotation framework, though with a different focus than ones like
Annotea [17]. Fourth, it produces semantic mark-up with support of information
extraction.

7.1 Knowledge Markup in the Semantic Web

We know of three major systems that intensively use knowledge markup in the
Semantic Web, viz. SHOE [16], Ontobroker [5] and WebKB [20]. All three of
them rely on knowledge in HTML pages. They all start with providing manual
mark-up by editors. However, our experiences (cf. [8]) have shown that text-
editing knowledge mark-up yields extremely poor results, viz. syntactic mistakes,
improper references, and all the problems sketched in the scenario section.

The approaches from this line of research that are closest to S-CREAM is
the SHOE Knowledge Annotator6 and the WebKB annotation tool.

The SHOE Knowledge Annotator is a Java program that allows users to
mark-up webpages with the SHOE ontology. The SHOE system [19] defines
additional tags that can be embedded in the body of HTML pages. The SHOE
Knowledge Annotator is rather a little helper (like our earlier OntoPad [10], [5])
than a full fledged annotation environment.

WebKB uses conceptual graphs for representing the semantic content of Web
documents. It embeds conceptual graph statements into HTML pages. Essen-
tially they offer a Web-based template like interface like knowledge acquisition
frameworks described next.

7.2 Comparison with Knowledge Acquisition Frameworks

The S-CREAM framework allows for creating class and property instances to
populate HTML pages. Thus it has a target roughly similar to the instance ac-
quisition phase in the Protégé-2000 framework [9] (the latter needs to be distin-
guished from the ontology editing capabilities of Protégé). The obvious difference
between S-CREAM and Protégé is that the latter does not (and has not intended

6 http://www.cs.umd.edu/projects/plus/SHOE/KnowledgeAnnotator.html

370 Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna

to) support the particular Web setting, viz. managing and displaying Web pages
— not to mention Web page authoring. From Protégé we have adopted the prin-
ciple of a meta ontology that allows to distinguish between different ways that
classes and properties are treated.

7.3 Comparison with Annotation Frameworks

There are a number of — even commercial — annotation tools like ThirdVoice7,
Yawas [6], CritLink [25] and Annotea (Amaya) [17]. These tools all share the idea
of creating a kind of user comment about Web pages. The term “annotation”
in these frameworks is understood as a remark to an existing document. For
instance, a user of these tools might attach a note like ”A really nice hotel!”
to the name “Zwei Linden” on the Web page. In S-CREAM we would design
a corresponding ontology that would allow to type the comment (an unlinked
fact) “A really nice hotel” into an attribute instance belonging to an instance of
the class comment with a unique XPointer at “Zwei Linden”.

Annotea actually goes one step further. It allows to rely on an RDF schema
as a kind of template that is filled by the annotator. For instance, Annotea
users may use a schema for Dublin Core and fill the author-slot of a particular
document with a name. This annotation, however, is again restricted to attribute
instances. The user may also decide to use complex RDF descriptions instead of
simple strings for filling such a template. However, no further help is provided
by Amaya for syntactically correct statements with proper references.

7.4 Semantic Markup with Support from Information Extraction

The only other system we know that produce semantic markup with support
from information extraction is the annotation tool cited in [24]. It uses informa-
tion extraction components (Marmot, Badger and Crystal) from the University
of Massachusetts at Amherst (UMass). It allows the semi-automatic population
of an ontology with metadata. We assume that this approach is more laborious
than to use Amilcare for information extraction, e.g. they had to define their
own verbs, nouns and abbreviations in order to apply Marmot for a domain.
Also, they have not dealt with relational metadata or authoring concerns so far.

8 Conclusion

CREAM is a comprehensive framework for creating annotations, relational meta-
data in particular — the foundation of the future Semantic Web. The new ver-
sion of S-CREAM presented here supports metadata creation with the help of
information extraction in addition to all the other nice features of CREAM, like
comprises inference services, crawler, document management system, ontology
guidance/fact browser, document editors/viewers, and a meta ontology.

7 http://www.thirdvoice.com

S-CREAM — Semi-automatic CREAtion of Metadata 371

OntoMat is the reference implementation of the S-CREAM framework. It is
Java-based and provides a plugin interface for extensions for further advance-
ments, e.g. collaborative metadata creation or integrated ontology editing and
evolution. The plugin interface has already been used by third parties, e.g. for
creating annotation for Microsoft WordTM documents. Along similar lines, we
are now investigating how different tools may be brought together, e.g. to allow
for the creation of relational metadata in PDF, SVG, or SMIL with OntoMat.

References

[1] Fabio Ciravegna. Adaptive Information Extraction from Text by Rule Induction
and Generalisation. In Proceedings of the 17th International Joint Conference on
Artificial Intelligence (IJCAI)e, Seattle, Usa, August 2001.

[2] Fabio Ciravegna. Challenges in Information Extraction from Text for Knowl-
edge Management. IEEE Intelligent Systems and Their Applications, 16(6):88–90,
2001.

[3] Fabio Ciravegna. (LP)2, an Adaptive Algorithm for Information Extraction from
Web-related Texts. In Proceedings of the IJCAI-2001 Workshop on Adaptive
Text Extraction and Mining held in conjunction with 17th International Joint
Conference on Artificial Intelligence (IJCAI), Seattle, Usa, August 2001.

[4] Fabio Ciravegna and Daniela Petrelli. User Involvement in Adaptive Informa-
tion Extraction: Position Paper. In Proceedings of the IJCAI-2001 Workshop on
Adaptive Text Extraction and Mining held in conjunction with 17th International
Joint Conference on Artificial Intelligence (IJCAI), Seattle, Usa, August 2001.

[5] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based
Access to Distributed and Semi-Structured Information. In R. Meersman et al.,
editors, Database Semantics: Semantic Issues in Multimedia Systems, pages 351–
369. Kluwer Academic Publisher, 1999.

[6] L. Denoue and L. Vignollet. An annotation tool for Web browsers and its ap-
plications to information retrieval. In In Proceedings of RIAO2000, Paris, April
2000. http://www.univ-savoie.fr/labos/syscom/Laurent.Denoue/riao2000.doc.

[7] Aaron Douthat. The message understanding conference scoring software user’s
manual. In 7th Message Understanding Conference Proceedings, MUC-7, 1998.
http://www.itl.nist.gov/iaui/894.02/related projects/muc/.

[8] M. Erdmann, A. Maedche, H.-P. Schnurr, and Steffen Staab. From Manual to
Semi-automatic Semantic Annotation: About Ontology-based Text Annotation
Tools. In P. Buitelaar & K. Hasida (eds). Proceedings of the COLING 2000
Workshop on Semantic Annotation and Intelligent Content, Luxembourg, August
2000.

[9] H. Eriksson, R. Fergerson, Y. Shahar, and M. Musen. Automatic generation of on-
tology editors. In Proceedings of the 12th Banff Knowledge Acquisition Workshop,
Banff, Alberta, Canada, 1999.

[10] D. Fensel, J. Angele, S. Decker, M. Erdmann, H.-P. Schnurr, S. Staab, R. Studer,
and Andreas Witt. On2broker: Semantic-based access to information sources at
the WWW. In In Proceedings of the World Conference on the WWW and Internet
(WebNet 99), Honolulu, Hawaii, USA, 1999.

[11] Reference description of the DAML+OIL (March 2001) ontology markup lan-
guage, March 2001. http://www.daml.org/2001/03/reference.html.

372 Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna

[12] B. J. Grosz and C. L. Sidner. Attention, intentions, and the structure of discourse.
Computational Linguistics, 12(3):175204, 1986.

[13] T. R. Gruber. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 6(2):199–221, 1993.

[14] S. Handschuh, S. Staab, and A. Maedche. CREAM — Creating relational meta-
data with a component-based, ontology driven framework. In In Proceedings of
K-Cap 2001, Victoria, BC, Canada, October 2001.

[15] Siegfried Handschuh and Steffen Staab. Authoring and Annotation of Web Pages
in CREAM. In Proceeding of the WWW2002 - Eleventh International World Wide
Web Conferenceb (to appear), Hawaii, USA, May 2002.

[16] J. Heflin and J. Hendler. Searching the Web with SHOE. In Artificial Intelligence
for Web Search. Papers from the AAAI Workshop. WS-00-01, pages 35–40. AAAI
Press, 2000.

[17] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea: An Open
RDF Infrastructure for Shared Web Annotations. In Proc. of the WWW10 Inter-
national Conference. Hong Kong, 2001.

[18] Nicholas Kushmerick. Wrapper induction for information extraction. In Proceed-
ings of the 15th International Joint Conference on Artificial Intelligence (IJCAI),
1997.

[19] S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based Web Agents. In
Proceedings of First International Conference on Autonomous Agents, 1997.

[20] P. Martin and P. Eklund. Embedding Knowledge in Web Documents. In Pro-
ceedings of the 8th Int. World Wide Web Conf. (WWW‘8), Toronto, May 1999,
pages 1403–1419. Elsevier Science B.V., 1999.

[21] Diana Maynard, Valentin Tablan, Hamish Cunningham, Cristian Ursu, Horacio
Saggion, Kalina Bontcheva, and Yorick Wilks. Architectural Elements of Lan-
guage Engineering Robustness. Journal of Natural Language Engineering – Special
Issue on Robust Methods in Analysis of Natural Language Data, 2002. forthcom-
ing.

[22] R.S. Mickalski, I. Mozetic, J. Hong, and H. Lavrack. The multi purpose incremen-
tal learning system AQ15 and its testing application to three medical domains. In
Proceedings of the 5th National Conference on Artificial Intelligence, Philadelphia,
USA, 1986.

[23] M. Strube and U. Hahn. Functional Centering — Grounding Referential Coher-
ence in Information Structure. Computational Linguistics, 25(3):309–344, 1999.

[24] M. Vargas-Vera, E. Motta, J. Domingue, S. Buckingham Shum, and M. Lanzoni.
Knowledge Extraction by using an Ontology-based Annotation Tool. In K-CAP
2001 workshop on Knowledge Markup and Semantic Annotation, Victoria, BC,
Canada, October 2001.

[25] Ka-Ping Yee. CritLink: Better Hyperlinks for the WWW, 1998.
http://crit.org/˜ping/ht98.html.

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 373-378, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Tracking Changes in RDF(S) Repositories

Damyan Ognyanov, Atanas Kiryakov

 OntoText Lab, Sirma AI EOOD, 38A Chr. Botev blvd, 1000 Sofia, Bulgaria
{damyan, naso}@sirma.bg

Abstract. The real-world knowledge management applications require features
such as versioning and fine-grained access control. Each of them raises the issue
of tracking the changes in a knowledge base. Important part of the research
presented is the definition of a formal model for tracking changes in graph-
based data models. It was used in the ontology middleware module developed
under the On-To-Knowledge project as an extension of the Sesame RDF(S)
repository. This paper is further development of the results reported in [5].

1. Introduction

The following features are considered critical for development, management,
maintenance, and use of middle-size and big knowledge bases:

• Versioning (tracking changes) of knowledge bases;

• Access control (security) system;

• Meta-information for knowledge bases.

These three aspects are tightly interrelated among each other as depicted on the
following scheme. The dependencies are explained in the corresponding sections.

Knowledge
Control System

Meta-
Information

Access
Control

Tracking
Changes

Sto
re

as
Trac

k by
Filtered and

preserved by

Current User Info.

Change Investigation

374 Damyan Ognyanov and Atanas Kiryakov

The composition of the three functions above represents a Knowledge Control System
(KCS) that provides the knowledge engineers with the same level of control and
manageability of the knowledge in the process of its development and maintenance as
the source control systems (such as CVS) provide for the software. From the
perspective of the end-user applications, KCS can be seen as equivalent to the
database security, change tracking and auditing systems. Our KCS is carefully
designed to support these two distinct use cases.

The work presented here was carried as part of the On-To-Knowledge project. The
design and implementation of the change tracking within the ontology middleware
module presented here is an extension of the Sesame architecture (see [1]). Earlier
stage of this research is presented in bigger details in [5] where the reader can find
more about the Access control system (security), which is out of the scope of this
paper.

In the rest of this introductory section we define better the scope of our research
and the terminology used. Section 2 is dedicated to the model and principles for
tracking changes in RDF(S) repositories. The implementation approach of is
presented in Section 3. A short conclusion follows in the last section.

1.1. Ontologies Vs. Knowledge Bases

A number of justifications in the terminology are necessary. An almost trivial but
very important question is �What the KM tools support: ontologies, data, knowledge,
or knowledge bases?� Due to the lack of space we are no going in to comment this
basic notions here. A simple and correct answer is �All of this�. The ontology
middleware module extends the Sesame RDF(S) repository that affects the
management of both ontologies and instance data in a pretty much unified fashion.

For the purpose of compliance with Sesame, here the term repository is used to
denote a compact body of knowledge that could be used, manipulated, and referred as
a whole. Such may contain (or host) both ontological assertions and instance data.

1.2. Versioning Vs. Tracking Changes

The problem for tracking changes within a knowledge base is addressed in this
section. It is important to clarify that higher-level evaluation or classification of the
updates (considering, for instance, different sorts of compatibility between two states
or between a new ontology and old instance data) is beyond the scope of this work.
Those are studied and discussed in depth in [2], sub-section 2.2. The tracking of the
changes in the knowledge (as discussed here) provides the necessary basis for further
analysis. In summary, the approach taken can be shortly characterized as �versioning
of RDF on a structural level in the spirit of the software source control systems�.

1.3. Related Work

Here we will shortly comment several studies related to versioning of a complex data
objects. Although some of the sources discuss similar problems there is not one

 Tracking Changes in RDF(S) Repositories 375

addressing ontology evolution and version management in a fashion allowing
granularity down to the level of statements (or similar constructs) and capturing of the
interactive changes in knowledge repositories such as assertions and retractions.

Database schema evolution and the tasks related to keeping schema and data
consistent to each other can be recognized as a very similar problem. A detailed and
pretty formal study on this problem can be found in [3, 4] � it presents an approach
allowing the different sorts of modifications of the schema to be expressed within
suitable description logic.

2. Versioning Model for RDF(S) Repositories

A model for tracking of changes, versioning, and meta-information for RDF(S)
repositories is proposed, i.e. (i) the knowledge representation paradigm supported is
RDF(S) and (ii) what is being tracked are repositories � independently from the fact if
they contain ontologies, instance data, or both. The decision to support tracking of
changes, versioning, and meta-information for RDF(S) repositories has a number of
consequences and requires more decisions to be taken. The most important principles
are presented in the next paragraphs.

VPR1: The RDF statement is the smallest directly manageable piece of knowledge.

Each repository, formally speaking, is a set of RDF statements (i.e. triples) � these are
the smallest separately manageable pieces of knowledge. There exist arguments that
the resources and the literals are the smallest entities � it is true, however they cannot
be manipulated independently � they always appear as a part of a triple. To
summarize, there is no way to add, remove, or update (the description of) a resource
without also changing some statements, while the opposite does not hold.

VPR2: An RDF statement cannot be changed � it can only be added and removed.

As far as the statements are nothing more than triples, changing one of the
constituents, just converts it into another triple. It is because there is nothing else but
the constituents to determine the identity of the triple, which is an abstract entity
being fully defined by them. Let us take for instance the statement ST1=<A, PR1,
B> and suppose B is a resource, i.e. an URI of resource. Then ST1 is nothing more but
a triple of the URIs of A, PR1, and B � if one of those get changed it will be already
pointing to a different resource that may or may not have something in common with
the first one. For example, if the URI of A was http://x.y.z/o1#A and it get
changed to http://x.y.z/o1#C then the statement ST2=<C,PR1,B> will be a
completely different statement.

Further, if the resource pointed by an URI gets changed two cases could be
distinguished:

• The resource is changed but its meta-description in RDF is not. Such changes are
outside the scope of the problem for tracking changes in formally represented
knowledge, and particularly in RDF(S) repositories.

• The description of the resource is changed � it can happen iff a statement including
this resource get changed, i.e. added or removed. In such case, there is another

376 Damyan Ognyanov and Atanas Kiryakov

statement affected, but the one that just bears the URI of the same resource does
not.

There could be an argument, that when the object of a triple is a literal and it gets
changed, this is still the same triple. However, if there is for instance statement
<A,R,”abc”> and it changes to <A,R,”cba”>, the graph representation shows that
it is just a different arc because the new literal is a new node and there could be other
statements (say, <B,P,”abc”>) still connected to the old one.
As a consequence here comes the next princple:

VPR3: The two basic types of updates in a repository are addition and removal of a
statement

In other words, those are the events that necessarily have to be tracked by a tracking
system. It is obvious that more event types such as replacement or simultaneous
addition of a number of statements may also be considered as relevant for an RDF(S)
repository change tracking system. However, those can all be seen as composite
events that can be modeled via sequences of additions and removals. As far as there is
no doubt that the solution proposed should allow for tracking of composite events
(say, via post-processing of the sequence of the simple ones), we are not going to
enumerate or specify them here.

VPR4: Each update turns the repository into a new state

Formally, a state of the repository is determined by the set of statements that are
explicitly asserted. As far as each update is changing the set of statements, it is also
turning the repository into another state. A tracking system should be able to address
and manage all the states of a repository.

2.1. History, Passing through Equivalent States

The history of changes in the repository could be defined as sequence of states, as
well, as a sequence of updates. It has to be mentioned that in the history, there could
be a number of equivalent states. It is just a question of perspective do we consider
those as one and the same state or as equivalent ones. Both perspectives bear some
advantages for some applications. We accepted that there could be equivalent states in
the history of a repository, but they are still managed as distinct entities.

R PA “abc” B

“cba”

R

 Tracking Changes in RDF(S) Repositories 377

2.2. Versions Are Labeled States of the Repository

Some of the states of the repository could be pointed out as versions. Such could be
any state, without any formal criteria and requirements � it completely depends on the
user�s or application�s needs and desires. Once defined to be a version, the state
becomes a first class entity for which additional knowledge could be supported.

3. Implementation Approach

For each repository, there is an update counter (UC) � an integer variable that
increases its value each time when the repository is updated. Let us call each separate
value of the UC update identifier, UID. Then for each statement in the repository the
UIDs when it was added and removed are known � these values determine the
�lifetime� of the statement. It is also the case that each state of the repository is
identified by the corresponding UID. For each state it is straightforward to find the set
of statements that determine it � those that were �alive� at the UID of the state being
examined.

The approach could be demonstrated with the sample repository KB1 and its
�history�. The repository is represented as a graph where the lifetime of the
statements is given separated with semicolons after the property names. The history is
presented via events in format: UID:nn {add|remove} <subj, pred, obj>

History:
UID:1 add <A, r1, B>
UID:2 add <E, r1, D>
UID:3 add <E, r3, B>
UID:4 add <D, r3, A>
UID:5 add <C, r2, D>
UID:6 add <A, r2, E>
UID:7 add <C, r2, E>
UID:8 remove <A, r2, E>
UID:9 add <B, r2, C>
UID:10 remove <E, r3, B>
UID:11 remove <B, r2, C>
UID:12 remove <C, r2, E>
UID:13 remove <C, r2, D>
UID:14 remove <E, r1, D>
UID:15 remove <A, r1, B>
UID:16 remove <D, r3, A>

Here follow two �snapshots� of states of the repository respectively for UIDs 2 and 8

 A B
r1:1-15

r2:6-8

 C
r2:5-13

r3:4-16

 D

r1:2-14

 E

r3:3-10

r2:7-12
r2:9-11

Repository KB1

378 Damyan Ognyanov and Atanas Kiryakov

It is an interesting question how we handle in the above model, multiple additions and
removals of one and the same statement, which in a sense periodically appears and
disappears form the repository. We undertake the approach to consider them as
separate statements, because of reasons similar to those presented for the support of
distinguishable equivalent statements.

4. Conclusion and Future Work

The ontology middleware, part of which is the tracking changes module presented
still have to prove itself in real-world applications. At this stage it is work in progress
inspired by the methodology, tools, and case studies of the On-To-Knowledge project.

References

 1. Jeen Broekstra, Arjohn Kampman. Sesame: A generic Architecture for Storing and
Querying RDF and RDF Schema.Deliverable 9, On-To-Knowledge project, October 2001.
http://www.ontoknowledge.org/downl/del10.pdf

 2. Ying Ding, Dieter Fensel, Michel Klein, Borys Omelayenko. Ontology management:
survey, requirements and directions. Deliverable 4, On-To-Knowledge project, June 2001.
http://www.ontoknowledge.org/downl/del4.pdf

 3. Enrico Franconi, Fabio Grandi, Federica Mandreoli. Schema Evolution and Versioning: a
Logical and Computational Characterization. In "Database schema evolution and meta-
modeling" - Ninth International Workshop on Foundations of Models and Languages for
Data and Objects, Schloss Dagstuhl, Germany, Sept.18-21, 2000. LNCS 2065, pp 85-99

 4. Enrico Franconi, Fabio Grandi, Federica Mandreoli. A Semantic Approach for Schema
Evolution and Versioning of OODB. Proceedings of the 2000 International Workshop on
Description Logics (DL2000), Aachen, Germany, August 17-19, 2000. pp 99-112

 5. Atanas Kiryakov, Kiril Iv. Simov, Damyan Ognyanov. Ontology Middleware: Analysis and
Design. Deliverable 38, On-To-Knowledge project, March 2002.

 6. W3C; Ora Lassila, Ralph R. Swick, eds. Resource Description Framework (RDF) Model
and Syntax Specification. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

 A B
r1

 Cr2

r3

 D

r1

 E

r3

r2

KB1, State UID:8

 A B
r1

 D

r1

 E

KB1, State UID:2

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 379-391, 2002.
 Springer-Verlag Berlin Heidelberg 2002

MnM: Ontology Driven Semi-automatic and Automatic
Support for Semantic Markup

Maria Vargas-Vera1, Enrico Motta 1, John Domingue 1, Mattia Lanzoni 1,
Arthur Stutt 1, and Fabio Ciravegna 2

1
 Knowledge Media Institute

The Open University
Walton Hall, Milton Keynes, MK7 6AA, UK

{m.vargas-vera; e.motta; j.b.domingue; m.lanzoni;
a.stutt}@open.ac.uk

2 Department of Computer Science,
University of Sheffield

Regent Court, 211PortobelloStreet,
Sheffield S1 4DP, UK

f.ciravegna@dcs.shef.ac.uk

Abstract. An important precondition for realizing the goal of a semantic web is
the ability to annotate web resources with semantic information. In order to
carry out this task, users need appropriate representation languages, ontologies,
and support tools. In this paper we present MnM, an annotation tool which pro-
vides both automated and semi-automated support for annotating web pages
with semantic contents. MnM integrates a web browser with an ontology editor
and provides open APIs to link to ontology servers and for integrating informa-
tion extraction tools. MnM can be seen as an early example of the next genera-
tion of ontology editors, being web-based, oriented to semantic markup and
providing mechanisms for large-scale automatic markup of web pages.

1 Introduction

An important pre-condition for realizing the goal of the semantic web is the ability to
annotate web resources with semantic information. In order to carry out this task,
users need appropriate knowledge representation languages, ontologies, and support
tools. The knowledge representation language provides the semantic interlingua for
expressing knowledge precisely. RDF ([14], [20]) and RDFS [2] provide the basic
framework for expressing metadata on the web, while current developments in web-
based knowledge representation, such as DAML+OIL (reference description of the
daml+oil can be found at http://www.daml.org/2001/03/reference.html) and the lan-
guage that will be proposed by the WebOnt group (http://www.w3.org), are building
on the RDF base framework to provide more sophisticated knowledge representation
support. Ontologies [12] provide the mechanism to support interoperability at a con-
ceptual level. In a nutshell, the idea of interoperating agents able to exchange infor-
mation and carrying out complex problem solving on the web is based on the assump-

380 Maria Vargas-Vera et al.

tion that these agents will share common, explicitly defined, generic conceptualiza-
tions. These are typically models of a particular area, such as product catalogues, or
taxonomies of medical conditions, although ontologies can also be used to support the
specification of reasoning services ([23], [25], [11]), thus allowing not only �static�
interoperability through shared domain conceptualizations, but also �dynamic�
interoperability through the explicit publication of competence specifications, which
can be reasoned about to determine whether a particular web service is appropriate
for a particular task.

Ontologies and representation languages provide the basic semantic tools to con-
struct the semantic web. Obviously a lot more is needed; in particular, tool support is
needed to facilitate the development of semantic resources, given a particular ontology
and representation language. This problem is not a new one, knowledge engineers
early on realized that one of the main obstacles to the development of intelligent,
knowledge-based systems was the so-called knowledge acquisition bottleneck [10]. In
a nutshell, the problem is how to acquire and represent knowledge, so that this knowl-
edge can be effectively used by a reasoning system. Although the problem is not a new
one, the context provided by the semantic web introduces new aspects to the problem,
with respect to the nature of the knowledge and the type of users.

Nature of the knowledge. Traditional knowledge acquisition was concerned with
knowledge for problem solving. Semantic markup will primarily focus on ontology
population, a far easier knowledge acquisition task.

Type of users. Knowledge-based systems are normally written by skilled knowl-
edge engineers. On the web, it is likely that semantic marking up will become a com-
mon activity, carried out by content providers who are not necessarily skilled knowl-
edge engineers. This means that more emphasis will have to be put on facilitating
semantic markup by �ordinary� web users (people who are neither experts in language
technologies nor ’power knowledge engineers’). In particular, automated knowledge
extraction technologies are likely to play an ever increasing important role, as a cru-
cial technology to tackle the semantic web version of the knowledge acquisition bot-
tleneck.

In this paper we present MnM, an annotation tool which provides both automated
and semi-automated support for marking up web pages with semantic contents. MnM
integrates a web browser with an ontology editor and provides open APIs to link to
ontology servers and for integrating information extraction tools. MnM can be seen as
an early example of the next generation of ontology editors, being web-based, oriented
to semantic markup and providing mechanisms for large-scale automatic markup of
web pages.

The rest of the paper is organized as follows: in the next section we will show the
process model underlying the design of the tool. Section 3 will show an example of
the tool in use. Finally sections 4 and 5 discuss related work and re-state the main
tenets and results from our research.

MnM: Ontology Driven Semi-automatic and Automatic Support for Semantic Markup 381

2 Process Model

Within this work we have focused on creating a generic process model for developing
semantically enriched web content. The component tools which are used in MnM are
ontology servers, Information Extraction (IE) tools and augmented web browsers.
During our initial work in this area we found that either the existing tools did not di-
rectly support the creation of semantic web content or the mapping between the tasks
to be carried out and the toolset was non-trivial. Hence, within MnM, we adopted a
generic process model, which can be easily understood by web developers who are
not necessarily expert ontology engineers or human language technology experts.

Another key feature of our process model is that it is generic with respect to the
specific ontology server and IE technologies used.

There are five main activities supported by MnM:
• Browse. A specific set of knowledge components is chosen from a library of

knowledge models on an ontology server.
• Markup. The chosen set of knowledge components is selected to form the ba-

sis of an IE mechanism. A corpus of documents are manually marked up.
• Learn. A learning algorithm is run over the marked up corpus to learn the

extraction rules.
• Test. The IE mechanism is run over a test corpus to assess its precision and

recall measures.
• Extract. An IE mechanism is selected and run over a set of documents

We will now provide more details of each of the above activities in turn.

Browse
In this activity the user browses a library of knowledge models which sit on a web
based ontology server. The user can see an overview of the existing models and can
select which one to focus on (i.e., which ontology to use to initiate the markup proc-
ess). Within a selected ontology the user can browse the existing items - for example
the classes. Items within an ontology can be selected as the starting point for selecting
an IE mechanism. More specifically, the selected class forms the basis for a template
which will eventually be matched against a corpus of documents and instantiated in
the extraction activity.

Mark-Up
The activity of semantic tagging refers to the activity of annotating text documents
(written in plain ASCII or HTML) with a set of tags defined in the ontology, in par-
ticular we work with a hand-crafted KMi ontology (ontology describing the knowl-
edge Media Institute- KMi).
MnM provides means to browse the event hierarchy (defined in the KMi ontology).
In this hierarchy each event is a class and the annotation component extracts the set of
possible tags from the slots defined in each class.
Once a class has been selected a training corpus of manually marked up pages needs
to be created. Here the user views appropriate documents within MnM�s built-in web
browser and annotates segments of text using the tags based on the class�s slot as
given in the ontology (i.e., ontology driven mark-up). As the text is selected MnM
inserts the relevant SGML/XML tags into the document.

382 Maria Vargas-Vera et al.

Learning
MnM integrates web browsing, ontology browsing and IE development. It does not
have a built-in IE tool but provides a plug-in interface which allows the integration of
IE tools easily.

In a previous version of our MnM we integrated Marmot, Badger and Crystal from
the University of Massachusetts [26] and our own NLP components (i.e., OCML
preprocessor). A full description of this version can be found in ([28], [29]). However,
in this paper we will concentrate on the recent integration work that we have carried
out with Amilcare, a tool for adaptive information extraction [3].

Amilcare is designed to support active annotation of documents. It performs IE by
enriching texts with XML annotations. To use Amilcare in a new domain the user
simply has to manually annotate a training set of documents. No knowledge of Natu-
ral Language Technologies is necessary.

Amilcare is designed to accommodate the needs of different user types. While na-
ïve users can build new applications without delving into the complexity of Human
Language Technology, IE experts are provided with a number of facilities for tuning
the final application. Induced rules can be inspected, monitored and edited to obtain
some additional accuracy, if required. The interface also allows precision (P) and
recall (R) to be balanced. The system can be run on an annotated unseen corpus and
users are presented with statistics on accuracy, together with details on correct
matches and mistakes. Retuning the P&R balance does not generally require major
retraining, facilities for inspecting the effect of different P&R balances are provided.
Although the current interface for balancing P&R is designed for IE experts, a future
version will provide support for naïve users [6].

At the start of the learning phase Amilcare preprocesses texts using Annie, the
shallow IE system included in the Gate package ([22], www.gate.ac.uk). Annie per-
forms text tokenization (segmenting texts into words), sentence splitting (identifying
sentences) part of speech tagging (lexical disambiguation), gazetteer lookup (diction-
ary lookup), named entity recognition (recognition of people and organization names,
dates, etc.). Amilcare then induces rules for information extraction. The learning
system is based on LP2, a covering algorithm for supervised learning of IE rules based
on Lazy-NLP ([3], [4]). This is a wrapper induction methodology [19] that, unlike
other wrapper induction approaches, uses linguistic information in the rule generaliza-
tion process. The learning system starts inducing wrapper-like rules that make no use
of linguistic information, where rules are sets of conjunctive conditions on adjacent
words. Then the linguistic information provided by Annie is used in order to create
generalized rules: conditions on words are substituted with conditions on the linguistic
information (e.g. condition matching on either the lexical category, or the class pro-
vided by the gazetteer, etc. Examples of rules and deep description of the (LP2) algo-
rithm can be found in [4].

All the generalizations are tested in parallel by using a variant of the AQ algorithm
[24] and the best -generalizations are kept for IE. The idea is that the linguistic-based
generalization is deployed only when the use of NLP information is reliable or effec-
tive. The measure of reliability here is not linguistic correctness, but effectiveness in
extracting information using linguistic information as opposed to using shallower
approaches. Lazy NLP-based systems learn which is the best strategy for each infor-
mation/context separately. For example they may decide that using the result of a part

MnM: Ontology Driven Semi-automatic and Automatic Support for Semantic Markup 383

of speech tagger is the best strategy for recognizing the speaker in seminar announce-
ments, but not to spot the seminar location. This strategy is quite effective for analyz-
ing documents with mixed genres, a common situation in web documents [5].

The learning system induces two types of rules: tagging rules and correction rules.
A tagging rule is composed of a left hand side, containing a pattern of conditions on a
connected sequence of words, and a right hand side that is an action inserting an XML
tag in the texts. Correction rules shift misplaced annotations (inserted by tagging
rules) to the correct position. These are learnt from the errors found whilst attempting
to re-annotate the training corpus using the induced tagging rules.

Correction rules are identical to tagging rules, but (1) their patterns also match the
tags inserted by the tagging rules and (2) their actions shift misplaced tags rather than
adding new ones. The output of the training phase is a collection of rules for IE that
are associated with the specific scenario (domain).

Amilcare has been tested on Italian and English but it is easily extendible to cover
other languages. It requires to connect a preprocessor for the target language (such as
Annie is) including at least a tokenizer and possibly a part of speech tagger and mor-
phological analyzer.

Testing
MnM provides two mechanisms for selecting a test corpus and distinguish this from a
training corpora. The user can manually select training and test corpora and these can
be in the form of local files or on the web. In addition, it is also possible to simply
select a corpus (either locally or on the web) and let the system create test and training
corpora randomly.

Extraction
After the training phase Amilcare has a library of induced rules which can be used to
extract information from texts.
When working in extraction mode, Amilcare receives as input a (collection of) text(s)
with the associated scenario � scenario is the set of tags that the user will insert in the
training corpora- (including the rules induced during the training phase). It preproc-
esses the text(s) by using Annie and then it applies its rules and returns the original
text with the added annotations. The Gate annotation schema is used for annotation
[22]. Annotation schemas provides means to define types of annotations in Gate. Gate
uses the XML schema language supported by W3C for these definitions. However,
Gate version 2 supports annotations in SGML/XML.

Once that is done the information extracted is presented to the user for approval.
Then the extracted information is sent to the ontology server which will populate the
selected ontology.

During the population step the IE mechanism fills predefined slots associated with
an extraction template. Each template consists of slots of a particular class as defined
in the selected ontology, for instance, the class visiting-a-place-or-people has the slots:
visitor, place, etc. More detail about the population phase is given in the following
section.

Our goal is to automatically fill as many slots as possible. However, some of the
slots may still require manual intervention. There are several reasons for this problem:

384 Maria Vargas-Vera et al.

• there is information that is not contained in the text,
• none of the rules from our IE libraries match with the sentence that might pro-

vide the information (incomplete set of rules). This means that the learning
phase needs to be tuned.

The extracted information is also validated using the ontology. This is possible be-
cause each slot in each class of the ontology has a type associated with it. Therefore,
extracted information which does not match the type definition of the slot in the on-
tology can be highlighted as incorrect.

Currently our system had been trained using an archive of 200 stories that we had
collected in KMi. The training phase was performed using typical examples of stories
belonging to each of the different type of events defined in the ontology. We obtained
precision 95% and recall 90% using Amilcare on KMi stories.

3 Example

We will now explain the process model we described earlier by walking through a
specific extraction example. The domain of our example is a web based news letter,
KMi Planet [8], that has been running in our lab for five years. The Planet front page,
individual story and archive views are generated automatically from stories which are
submitted by email or through a web based form. Over the years we have extended
Planet to include semantic retrieval, smart layout and personalization services ([9],
[17]). Whilst we were happy with the functionality that these services provided we
were concerned that the knowledge base was maintained by hand. We have therefore
selected this domain to apply MnM. Figure 1 shows the KMi Planet front page.

The Planet services are implemented within the akt-kmi-planet-kb knowledge
base/model which sits on our public knowledge model server (at
http://webonto.open.ac.uk - see [7] for a description). This knowledge base builds on a
dozen ontologies describing domains such as our lab, events, organisations and tech-
nologies.

Figures 2-5 show a user setting up an IE mechanism for extracting Planet stories
about visits to KMi. In figure 2 we can see that MnM consists of three main windows.
The window on the right is an augmented web browser. The windows on the left form
a mini ontology browser: the top window displaying a high level view and the bottom
window displaying detailed structure. Figures 2 and 3 show the initial steps in creating
the visit story IE mechanism. In figure 2 the user is looking at a portion of the 200
stories in the story archive. The left top panel shows all the knowledge models on the
server (shown in the left panel). The user selects akt-kmi-planet-kb and notes from the
documentation that it implements the latest Planet knowledge services. Opening akt-
kmi-planet-kb displays all of the classes within the knowledge base � note that the ma-
jority of the classes are inherited from the ontologies used by akt-kmi-planet-kb.

Figure 3 shows the class �visiting-a-place-or-people�� from the event hierarchy
within the akt-kmi-planet-kb. The names of the slots are used in the markup phase dur-
ing the annotation process.

MnM: Ontology Driven Semi-automatic and Automatic Support for Semantic Markup 385

Fig. 1. A screen snapshot of the KMi Planet front page

Fig. 2. A screen snapshot showing a user browsing the library of knowledge models held on the
WebOnto server

386 Maria Vargas-Vera et al.

The user now enters a markup phase. In figure 4 the user has selected the story
�Bletchley Park Trust Director visits KMi� to mark up. He/She adds an entry to mark
Christine Large as the visitor with the following simple steps:

• selects the slot visitor,
• highlights the text �Christine Large� and
• presses the �Insert� button.

Fig. 3. A screen snapshot showing the class visiting-a-place-or-people in the event hierarchy

The SGML tags <vapop_visitor> and </vapop_visitor> are inserted into the page. The
name of the tag ��vapop_visitor�� stands for ��visiting-a-place-or-people�� (vapop)
class and ��visitor�� is the selected slot in the class vapop. The user continues to mark
up a number of visit stories in a similar fashion before moving into the learn phase.
The marked up stories are stored in a directory (c:\AKTProject\TestCorpus\visiting\)
on the local machine.

It is possible to reuse annotated stories. This might be important if we want to use
the training set for a different extraction purpose (i.e., we might want to add/remove
tags).

The user initiates the learning phase of the IE mechanism to produce rules for visit
stories by specifying the location of the corpus of marked up visit stories (held in
c:\AKTProject\TestCorpus\visiting\) and selecting the �Learn� button. This causes
Amilcare to start up � the Amilcare status window can be seen in figure 4. At this
stage Amilcare learns rules for the event �visiting-a-place-or-people�.

MnM: Ontology Driven Semi-automatic and Automatic Support for Semantic Markup 387

Fig. 4. A screen snapshot showing a marked up KMi Planet story and Amilcare

During the extraction phase the user selects a set of rules and the input set of docu-
ments. The input set can either be a directory on the local disk or a URL pointing to a
directory of documents. In our example the user has selected a local directory con-
taining a set of planet stories. In figure 5 below Amilcare has finished extracting in-
stances from the input set and the user is checking the created instances. In the top left
panel the user has selected the third extracted item. The bottom left panel shows the
instance slot values extracted and the web browser on the right shows the source KMi
Planet story with the matched text segments highlighted. This view enables the user to
quickly determine if the extracted data is correct.

4 Related Work

A number of annotation tools for producing semantic markup exist. The most inter-
esting of these are Annotea [16]; SHOE Knowledge Annotator [15]; the COHSE an-
notator [1]; AeroDAML [18]; and, OntoMat, a tool being developed using the
CREAM annotation framework [13]. A commercial version of OntoMat is available as
OntoAnnotate (http://www.ontoprise.de/com/co_produ_tool2.htm).

Annotea provides RDF-based markup but it does not support information extrac-
tion nor is it linked to an ontology server. It does, however, have an annotation server
which makes annotations publicly available. SHOE Knowledge Annotator allows
users to mark up pages in SHOE guided by ontologies available locally or via a URL.

388 Maria Vargas-Vera et al.

Fig. 5. A screen snapshot showing the result of the extraction phase

These marked up pages can be reasoned about by SHOE-aware tools such as SHOE
Search. The COHSE annotator uses an ontology server to mark up pages in
DAML+OIL. The results can be saved as RDF. AeroDAML is available as a web
page. The user simply enters a URL and the system automatically returns DAML
annotations on a web page using a predefined ontology based on WordNet.

Of the systems listed above, OntoMat is closest to MnM both in spirit and in func-
tionality. Both can provide some form of automated extraction. However, while MnM
makes it possible to access ontology servers through APIs, such as OKBC, and also to
access ontologies specified in a markup format, such as RDF and DAML+OIL, On-
toMat only provides the latter functionality. In contrast with OntoMat, MnM can han-
dle multiple ontologies at the same time, which makes it very easy to switch from one
to another, and also allows inherited definitions to be displayed for ontology editing
and browsing. On the other hand, OntoMat can store pages annotated in DAML+OIL
using OntoBroker as an annotation server. It also provides crawlers which can search
the Web for marked up pages for addition to its internal knowledge base.

While both MnM and OntoMat are very similar they illustrate a slight difference of
emphasis in providing tools for the Semantic Web. While OntoMat adopts the phi-
losophy that the markup which indicates the knowledge content of a web resources
should be included as part of that resource, MnM�s annotations are stored both as
markup on a page and as items in a knowledge base held on the WebOnto combined
ontology and knowledge base server.

MnM: Ontology Driven Semi-automatic and Automatic Support for Semantic Markup 389

5 Conclusions

In this paper we have described MnM, an ontology-based annotation tool which pro-
vides both automated and semi-automated support for annotating web pages with
semantic contents. The first prototype of the system has now been completed and
tested with both Amilcare and the UMass set of tools. The early results are encour-
aging in terms of the quality and robustness of our current implementation, however,
there is clearly a lot more work needed to make this technology easy to use for our
target user base (people who are neither experts in language technologies nor ’power
knowledge engineers’). In particular, all the activities associated with automated
markup tend to be very sensitive to the quality of markup and to the appropriateness of
the chosen corpora. Amilcare already attempts to address some of these issues through
its adaptive mechanisms, however, more work is needed in this area. In addition, we
also plan to do more work on the user interface, in particular with respect to the inte-
gration of markup, ontology browsing and the ’semantic navigation’ of web pages.
Currently, ontology and web browsing are integrated with respect to contents annota-
tion, but ontologies do not inform the web browsing component of MnM directly.
Our vision for the semantic web is one in which new forms of ’conceptual navigation’
will emerge, where association between resources will be semantic as well as hyper-
textual. We plan to experiment with these ideas and extend the interface of MnM to
support novel, markup-driven forms of web browsing, as well as the standard HTML
based ones.

Acknowledgements

This work was funded by the Advanced Knowledge Technologies (AKT) Interdisci-
plinary Research Collaboration (IRC), which is sponsored by the UK Engineering and
Physical Sciences Research Council under grant number GR/N15764/01. The AKT
IRC comprises the Universities of Aberdeen, Edinburgh, Sheffield, Southampton and
the Open University. The authors would like to thank Maruf Hasan and Simon
Buckingham Shum for their invaluable help in reviewing the first draft of this paper.

References

1. S. Bechhofer and C. Goble: Towards Annotation Using DAML+OIL. First International
Conference on Knowledge Capture (K-CAP 2001). Workshop on Semantic Markup and
Annotation. Victoria, B.C., Canada. October 2001.

2. D. Brickley, and R. Guha: Resource Description Framework(RDF) Schema Specification
1.0. Candidate recommendation, World Wide Web Consortium, 2000. URL:
http://www.w3.org/TR/2000/CR-rdf-schema-20000327.

3. F. Ciravegna: Adaptive Information Extraction from Text by Rule Induction and Generali-
sation, Proc. of 17th International Joint Conference on Artificial Intelligence (IJCAI
2001) , Seattle, August 2001.

390 Maria Vargas-Vera et al.

4. F. Ciravegna: LP2 an Adaptive Algorithm for Information Extraction from Web-related
Texts. Proc. of the IJCAI-2001 Workshop on Adaptive Text Extraction and Mining held in
conjunction with the 17th International Conference on Artificial Intelligence (IJCAI-01),
August, 2001.

5. F. Ciravegna: Challenges in Information Extraction from Text for Knowledge Management
in IEEE Intelligent Systems and Their Applications, November 2001, (Trend and Contro-
versies).

6. F. Ciravegna and D. Petrelli: User Involvement in Adaptive Information Extraction: Posi-
tion Paper in Proceedings of the IJCAI-2001 Workshop on Adaptive Text Extraction and
Mining held in conjunction with the 17th International Conference on Artificial Intelligence
(IJCAI-01), August, 2001.

7. J. Domingue: Tadzebao and WebOnto: Discussing, Browsing, and Editing Ontologies on
the Web. Proceedings of the 11th Banff Knowledge Acquisition Workshop, Banff, Alberta,
Canada, April 18-23, 1998.

8. J. Domingue and P. Scott: KMi Planet: A Web Based News Server. Asia Pacific Computer
Human Interaction Conference (APCHI�98), Shonan Village Center, Hayama-machi, Kana-
gawa, Japan, 15-17 July, 1998.

9. J. Domingue and E. Motta: Planet-Onto: From News Publishing to Integrated Knowledge
Management Support. IEEE Intelligent Systems Special Issue on "Knowledge Management
and Knowledge Distribution over the Internet", May/June, 2000, pp. 26-32. (ISSN 1094-
7167).

10. E. A. Feigenbaum: The art of artificial intelligence 1: Themes and case studies of knowl
edge engineering. Technical report, Pub. no. STAN-SC-77-621, Stanford University, De-
partment of Computer Science, 1977.

11. D. Fensel. and E. Motta: Structured Development of Problem Solving Methods. Transac-
tions on Knowledge and Data Engineering 13(6):9131-932, 2001.

12. T. R. Gruber: A Translation Approach to Portable Ontology Specifications.Knowledge
Adquisition 5(2), 199-220, 1993.

13. S. Handschuh and S. Staab and A. Maedche: CREAM- Creating relational metadata with
a component-based, ontology-driven annotation framework. First International Conference
on Knowledge Capture (K-CAP 2001), Victoria B.C., October 2001.

14. P. Hayes: RDF Model Theory, W3C Working Draft, February 2002 URL:
http://www.w3.org/TR/rdf-mt/.

15. J. Heflin and J. Hendler: A Portrait of the Semantic Web in Action. IEEE Intelligent Sys-
tems, 16(2), 2001.

16. J. Kahan and M. Koivunen and E. Prud�Hommeaux and R. Swick: Annotea: Open RDF
Infrastructure for Shared Web Annotations. In Proc. of the WWW10 International Confer-
ence. Hong Kong, 2001.

17. Y. Kalfoglou and J. Domingue and E. Motta.and M. Vargas-Vera and S. Buckingham
Shum: MyPlanet: an ontology-driven Web based personalised news service. Proceedings of
the IJCAI’01 workshop on Ontologies and Information Sharing, Seattle, WA, USA 2001.

18. P. Kogut and W. Holmes: AeroDAML: Applying Information Extraction to Generate
DAML Annotations from Web Pages. First International Conference on Knowledge Capture
(K-CAP 2001). Workshop on Knowledge Markup and Semantic Annotation, Victoria, B.C.,
Canada, October 2001.

19. N. Kushmerick and D. Weld and R. Doorenbos: Wrapper induction for information ex-
traction, Proc. of 15th International Conference on Artificial Intelligence, IJCAI-97.

20. O. Lassila and R. Swick: Resource Description Framework (RDF): Model and Syntax
Specification. Recommendation, World Wide Web Consortium, 1999. URL:
http://www.w3.org/TR/REC-rdf-syntax/.

21. E. Riloff: An Empirical Study of Automated Dictionary Construction for Information
Extraction in Three Domains. The AI Journal, 85, 101-134, 1996.

MnM: Ontology Driven Semi-automatic and Automatic Support for Semantic Markup 391

22. D. Maynard and V. Tablan and H. Cunningham and C. Ursu and O. Saggion and K.
Bontcheva and Y. Wilks: Architectural Elements of Language Engineering Robustness.
Journal of Natural Language Engineering � Special Issue on Robust Methods in Analysis of
Natural Language Data ,forthcoming, 2002.

23. S. McIlraith and T. C. Son.and H. Zeng: Semantic Web Services, IEEE Intelligent
 Systems, Special Issue on the Semantic Web, Volume 16, No. 2, pp. 46-53,
 March/April, 2001.
24. R. S. Mickalski and I. Mozetic and J. Hong and H. Lavrack: The multi purpose incremental

learning system AQ15 and its testing application to three medical domains’, in Proceedings
of the 5th National Conference on Artificial Intelligence, Philadelphia. Morgan Kaufmann
publisher, 1986.

25. E. Motta: Reusable Components for Knowledge Models. IOS Press, Amsterdam, 1999.
26. E. Riloff: An Empirical Study of Automated Dictionary Construction for Information

Extraction in Three Domains. The AI Journal, 85, 101-134, 1996.
27. S. Staab and A. Mädche and S. Handschuh: An Annotation Framework for the Semantic

Web. In: S. Ishizaki (ed.), Proc. of The First International Workshop on MultiMedia Anno-
tation. January, 30 - 31, 2001. Tokyo, Japan.

28. M. Vargas-Vera and J. Domingue and Y. Kalfoglou and E. Motta and S. Buckingham-
Shum: Template-driven information extraction for populating ontologies. Proc of the
IJCAI'01 Workshop on Ontology Learning, Seattle, WA, USA 2001.

29. M. Vargas-Vera and E. Motta and J. Domingue and S. Buckingham Shum and M. Lan-
zoni: Knowledge Extraction by using an Ontology-bases Annotation Tool. First Interna-
tional Conference on Knowledge Capture (K-CAP 2001). Workshop on Knowledge Markup
and Semantic Annotation , Victoria B.C., Canada, October 2001.

A. Gómez-PØrez and V.R. Benjamins (Eds.): EKAW 2002, LNAI 2473, pp. 392-400, 2002.
 Springer-Verlag Berlin Heidelberg 2002

New Tools for the Semantic Web

Jennifer Golbeck, Michael Grove, Bijan Parsia,
Adtiya Kalyanpur, and James Hendler

Maryland Information and Network Dynamics Laboratory
University of Maryland, College Park
College Park, Maryland, 20742, USA

golbeck@cs.umd.edu, mhgrove@wam.umd.edu, bparsia@email.unc.edu,
aditkal@yahoo.com, hendler@cs.umd.edu

http://www.mindswap.org

Abstract. The Semantic Web will allow for significantly more machine-
readable content to be available on the World Wide Web. Getting this content
onto the web, and using it once it is there, requires new �metaphors� for
working with Semantic Web data. In this paper, we describe the �Semantic
Web Portal� an approach to using Semantic Web content, and some (open
source) tools that we are developing to make it a reality.

1 Introduction

The Semantic Web [1,2] is based on making machine-readable content available on
the World Wide Web, and designing the appropriate technologies to harness it.
Currently, a number of tools developed for traditional artificial intelligence work are
being adopted to the Semantic Web. Examples include tools such as ProtØgØ-2000[7]
and OILEd [6], which are used for creating ontologies, OntoEdit [10], used for
marking up web pages with information from external ontologies, and Chimera [8],
which can be used to find errors in ontologies. These tools all work with Semantic
Web languages such as RDFS [3] and DAML+OIL[4], and are able to create
ontologies and web pages containing semantic markup.

However, these tools are primarily the products of traditional AI research which have
been transitioned to use on the World Wide Web. As such, they are very powerful
tools, but only focus on some parts of the �lifecycle� of Semantic Web information.
The Semantic Web Agents Projects at the Maryland Information and Network
Dynamics Laboratory (MIND SWAP; http://www.mindswap.org) has been
developing a set of tools aimed at creating an integrated system for authoring,
searching, and browsing the Semantic Web. These tools are motivated by the idea of
a �Semantic Web Portal� which provides a mechanism for tying together many
Semantic Web components. In this paper, we first describe the idea of a Semantic
Web Portal, and then describe some of the tools we are developing to make this vision
a reality. These tools are available for download at the MIND SWAP web page.

 New Tools for the Semantic Web 393

2 The Goal � A Semantic Web Portal

A particular focus of our group is the creation of Semantic Web Portal technology
that will motivate researchers and students in many areas to add semantic markup to
documents, images and data. Authors will be able to link their evolving web resources
to terms from multiple ontologies (or to define terms that extend the ontological
coverage). As these links are added, queries are made to various web back-ends that
contain similar pointers from other documents, databases, image archives, etc. The
results are displayed to the user, allowing a constant, dynamical web portal to be
created. This portal contains pointers to documents that are on similar topics,
databases that can answer queries about conceptually related science, and images and
other multimedia resources.

For example, if a scientist authoring a paper or web page uses a particular term from
an online ontology, the semantic web portal will return other sources with similar
markup. This includes links to related photos she can use in her documents, to
database queries that can show recent results, and to other documents she might want
to cite or link to. By providing useful information and resources, users will be
encouraged to mark up their documents so that they make take advantage of the
portal.

What allows this system to work more fully is the integration of the markup process
with the portal. The portal provides the most advantage to users while they are
creating their own semantic web documents. Thus, not only does the portal provide
information, but also it is able to create more links based on the user. If she chooses to
link to certain terms provided by the portal, a semantic link is created between the two
documents.

Research being done at MIND SWAP to implement such a system includes the
development of inference engines that can find relationships between entities that are
not explicitly stated, the development of backend �triple stores� that can integrate
database and knowledge-base processing, and the development of presentation
technologies that can present the information in the portals in a way that is
appropriate to the needs of the specific user. In addition, we are developing several
tools to make it easier to develop Semantic Web content from existing web sources.
In the next section, we discuss some tools being developed in MIND SWAP aimed at
the eventual creation of a Semantic Web Portal system.

3 Tools at MIND SWAP

MIND SWAP has developed two tools for generating DAML and RDF from
formatted documents: ConvertToRDF which works with delimited files, and the Web
Scraper which looks at formatted HTML pages. For generating content from scratch,
there are two more tools. The RDF Editor provides a variety of features to aide users
in creating RDF in tandem with HTML documents. The RDF Instance Creator (RIC)
provides a simple interface for creating RDF for other media, such as pictures.

394 Jennifer Golbeck et al.

Finally, the PARKA ontology manager works with triples to provide a fast interface
for searching and finding relationships among data.

3.1 RDF Editor

The RDF editor (Fig. 1) provides users with the ability to create Semantic Web
markup, using information from multiple ontologies, while they simultaneously create
HTML documents. The aim of this software is as follows:
• To provide the user with a flexible environment in which he can create his web

page without markup hindrances;
• To allow the user to semantically classify his data set for annotation and generate

markup with minimal knowledge of RDF terms and syntax.;
• To provide a reference to existing ontologies on the Internet in order to use more

precise references in his own web page/text;
• To ensure accurate and complete RDF markup with scope to make modifications

easily.
• To allow extension to ontological concepts by the user, thus creating new

ontological content [5].

To achieve these ends, the application has three functional parts.

1. HTML Editor with Preview Browser � This is a standard WYSIWYG editor for
creating and deploying web pages. Users can write some HTML from scratch, or
use the editor to add images and create content in a more natural way.

2. Ontology Browser - A particularly innovative feature of the RDF Editor is that it
encourages users to work with multiple ontologies. Many existing tools allow
users to create their own ontologies for use in RDF documents. This tool
encourages users to work with and extend pre-existing ontologies, exploiting the
distributed nature of the Semantic Web.

This interface allows the user to browse through existing ontologies on the
Internet with the aim of finding relevant terms and properties. The default
starting page is the DAML Ontology web site (http://www.daml.org/ontologies)
from where the user could issue search queries using Class/Property names as
keys. Once the appropriate ontology has been located, the user can add it to the
local database, and the properties of the ontology are automatically added to the
Local Ontology Information where it can be managed.

3. Semantic Data Trees � This part of the interface is what allows users to classify
the data semantically into one of four basic elements: Class, Object, Property and
Value.

As an interface to the Semantic Web Portal, the RDF Editor is ideal. As users select
classes from ontologies, the portal can return results to them in a separate window.
The fetched data is then immediately available for reference or incorporation to the

 New Tools for the Semantic Web 395

current document. When the user publishes their document, the portal can include all
of the new references in its knowledge base.

Fig 1. The RDF Editor Interface

3.2 RDF Instance Creator

The RDF Instance Creator (RIC), shown in Fig. 2, is a tool designed to ease the
process of creating markup, particularly for non-text sources. RIC allows the user to
generate RDF simply by filling a series of forms, thus freeing the user from needing
to know RDF while still providing all the benefits that it has to offer.

RIC can use any valid ontology that is currently accessible through the Internet. After
importing an ontology, the user is presented with a list of available classes from
which they can create objects. When defining an object, its properties appear in the
workspace. This provides a simple form interface where the user enters data for each
of the object�s properties. Some error checking is also built in. For example, a field
has an integer range, the user cannot enter "3.2" or "two."

Using a tool like RIC to markup media that is not text based is particularly useful.
Resources that cannot be described, let alone searched, in the current web framework
suddenly become available and accessible to users who may be interested in them.

396 Jennifer Golbeck et al.

Fig. 2. The RDF Instance Creator

3.3 Scraper

Some web pages have regular structure with labeled fields, lists and tables. Often, an
analyst can map these structures to an ontology and write a program to translate a
portion of the web page into the semantic markup language. The RDF Web Scraper
(Fig. 3) is a tool that helps users specify how to extract RDF markup from these kinds
of web pages.

Users analyze the HTML in a page and create a wrapper that describes how the tag
structure relates to the contents. The scraper parses the page based on the wrapper,
and generates a table of data. The user can then indicate ontological specifications for
each column of the table and generate the corresponding RDF.

This application has the ability to take information from between tags as well as from
within them. This allows users to scrape the URI�s of images or links and mark them
up. For example, if a faculty list html document contains pictures of each faculty
member, the scraper can grab the URI�s of those pictures and include markup that
indicates who is pictured in the image.

 New Tools for the Semantic Web 397

Fig. 3. The Screen Scraper

3.4 ConvertToRDF

ConvertToRDF is a tool that takes delimited data, from spreadsheets such as
Microsoft Excel or from databases, and generates markup based on the column
headers.

Consider this small table of data describing a race:

By creating a simple mapping of column headings to ontological terms (from an
ontology about running, in this case), this tool will generate the required headers as
well as formatted RDF for each row:

<runner rdf:ID="The_Tortoise">
 <finishingPlace>1</finishingPlace>
 <age>84</age>
 <home>Shelton RI</home>
 <gunTime>3:24:03</gunTime>
 <runnerName>The Tortoise</runnerName>
</runner>

Name Place Time Age Hometown

The Tortoise 1 3:24:03 84 Shelton RI

The Hare 2 3:24:05 18 Bunnyville PA

398 Jennifer Golbeck et al.

<runner rdf:ID="The_Hare">
 <finishingPlace>2</finishingPlace>
 <age>18</age>
 <home>Bunnyville</home>
 <gunTime>3:24:05</gunTime>
 <runnerName>The Hare</runnerName>
</runner>

While the Scraper described in section 3.3 can handle well--formatted HTML, it only
handles tag based parsing. This tool works with formats in which one is more likely to
find significant stores of data, and makes it easy to generate large files of RDF
markup.

3.5 Parka-DB�

The other systems described in this paper have been front-end tools for users
generating content. The Parka-DB ontology management system [10], originally
developed at our University of Maryland lab in the 1990�s, is now being used as a
backend tool for much of our semantic web research.

Parka allows the user to define a frame-based knowledge base with class, subclass,
and property links used to encode the ontology. Property values can themselves be
frames, or alternatively can be string, numeric values, or specialized data structures
(used primarily in the implementation). The Parka language allows exceptions, in the
form of multiple-inheritance, and provides extremely efficient (and efficiently
parallelizable) algorithms for performing inheritance using a true inferential-distance-
ordering calculation.

Parka can effectively compute recognition, and handle extremely complex ‘‘structure
matching’’ queries -- a class of conjunctive queries relating a set of variable and
constraints and unifying these against the larger KB. One of the key features of Parka
is that it can efficiently handle its inferencing on KB’s containing millions of
assertions. Parka uses DBMS technologies to support inferencing and data
management.

The structure of the Parka system meshes nicely with the triple structure of DAML
and RDF. RDF instances are easily converted into Parka assertions and loaded into
the database. At that point, it is possible to extract information about relationships
within the data that would not be accessible otherwise. Parka�s inferencing
mechanisms are then used to take advantage of the ontological information defined in
DAML.

4 Conclusion

The Semantic Web requires new tools that can be used in new ways. One important
use will be the semantic web portal, allowing people to dynamically create and use

 New Tools for the Semantic Web 399

Semantic Web information. Building such an application will need a number of new
technologies, and we describe some tools aimed at providing this basis. Thus, the
tools described in this paper are examples of some of the basic technologies that are
needed to create this new portal technology. These include tools for generating
Semantic Web instances from structured sources (ConvertToRDF) and from HTML
pages (RDF Screen Scraper), a tool for creating marked up pages (RDF Editor) easily,
a tool for creating instance data easily, especially for non-text sources (RIC) and a
back-end ontology management tool (Parka-DB).

Downloads of the open source versions of all of these tools can be found on the
MIND SWAP website -- http://www.mindswap.org.

Acknowledgements

This work was supported in part by grants from DARPA, the Air Force Research
Laboratory, and the Navy Warfare Development Command. The Maryland
Information and Network Dynamics Laboratory is supported by Industrial Affiliates
including Fujitsu Laboratories of America, Lockheed Martin, and the Aerospace
Corporation.

The programs described in this paper are available from the Maryland Information
and Dynamics Laboratory, Semantic Web Agents Project (MIND SWAP) at
http://www.mindswap.org.

References

1. Berners-Lee, T. and M. Fischetti, Weaving the Web: The Original Design and Ultimate
Destiny of the World Wide Web by its Inventor, Harper, San Francisco, 1999.

2. Berners-Lee, T., Hendler, J. and Lassila, O. �The Semantic Web,� Scientific American,
May, 2001

3. Brickley, D and R.V. Guha, �Resource Description Framework (RDF) Model and Syntax
Specification�, W3C Recommendation submitted 22 February 1999,
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ (current May 2002).

4. Connolly, D, van Harmelen, F., Horrocks, I, McGuinness, D., Patel-Schneider, P., and
Stein, L. DAML+OIL (March 2001) Reference Description, W3C Note 18 December
2001 (http://www.w3.org/TR/daml+oil-reference).

5. Hendler, Jim, �Agents and the Semantic Web,� IEEE Intelligent Systems. March/April
2001 (Vol. 16, 2).

6. Horrocks, I. Et al � OilED, available on the WWW at http://img.cs.man.ac.uk/oil/

7. M. A. Musen, R. W. Fergerson, W. E. Grosso, N. F. Noy, M. Crubezy, & J. H. Gennari.
�Component-Based Support for Building Knowledge-Acquisition Systems�. In

400 Jennifer Golbeck et al.

Conference on Intelligent Information Processing (IIP 2000) of the International
Federation for Information Processing World Computer Congress (WCC 2000), Beijing,
2000.

8. McGuinness, D. "Conceptual Modeling for Distributed Ontology Environments."
Proceedings of the Eighth International Conference on Conceptual Structures Logical,
Linguistic, and Computational Issues (ICCS 2000). Darmstadt, Germany. August 14-18,
2000.

9. K. Stoffel, M. Taylor, J. Hendler. �Efficient Management of Very Large Ontologies.� In
Proceedings of American Association for Artificial Intelligence Conference (AAAI-97),
AAAI/MIT Press 1997.

10. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, D.Wenke. OntoEdit: �Collaborative
Ontology Development for the Semantic Web.� In Proceedings of the 1st International
Semantic Web Conference - ISWC2002, Springer, LNCS.

Author Index

Aitken, Stuart 108
Alani, Harith 317
Alfonseca, Enrique 1
Anjewierden, Anjo 65

Bachimont, Bruno 114
Balser, Michael 49
Bandini, Stefania 8
Bench Capon, Trevor J.M. 301
Benjamins, V. Richard 80
Beydoun, Ghassan 14
Blasco, Juan 80
BlÆzquez, Mercedes 80

Casella dos Santos, Mariana 154
Casillas, Joaquín 80
Ceusters, Werner 154
Ciravegna, Fabio 122, 358, 379
Compton, Paul 43
Contreras, Jesœs 80
Corcho, Óscar 138
Curtis, Jon 108

Dasmahapatra, Srinandan 317
Dingli, Alexiei 122
Dodero, Juan Manuel 80
Domingue, John 219, 335, 379

Falkman, Göran 96
Felfernig, Alexander 352
Fensel, Dieter 197
FernÆndez-López, Mariano 138
Flett, Alan 154
Friedrich, Gerhard 352

Gaag, Linda C. van der 21
Gangemi, Aldo 166
García, Juli 80
Gibbins, Nicholas 317
Gil, Yolanda 27, 37
Glaser, Hugh 317
Golbeck, Jennifer 392
Gómez-PØrez, Asunción 138
Grove, Michael 392
Guarino, Nicola 166

Hahn, Udo 182
Handschuh, Siegfried 358
Harmelen, Frank van 49
Harris, Steve 317
Helsper, Eveline M. 21
Hendler, James 392
Hoog, Robert de 65

Ikeda, Mitsuru 213
Isaac, Antoine 114

Jannach, Dietmar 352

Kalfoglou, Yannis 317
Kalyanpur, Adtiya 392
Kim, Mihye 43
Kiryakov, Atanas 197, 373
Kitamura, Yoshinobu 213
Klein, Michel 197
Kozaki, Kouji 213

Lanzoni, Mattia 379
Lei, Yuangui 219
López Cobo, JosØ Manuel 80

Maedche, Alexander 235, 251, 285
Manandhar, Suresh 1
Manzoni, Sara 8
Marcos, Mar 49
Martins, Maria 335
Masolo, Claudio 166
MatØ, JosØ Luis 102
Mizoguchi, Riichiro 213
Motik, Boris 235, 285
Motta, Enrico 219, 379

Ognyanov, Damyan 197, 373
O�Hara, Kieron 317
Oltramari, Alessandro 166
Omelayenko, Borys 264
Otto, Blanca de 80

Paradela, Luis Felipe 102
Parsia, Bijan 392
Pazos, Juan 102

402 Author Index

Pertusson, Helgi 335
Petrelli, Daniela 122

Ratnakar, Varun 27, 37
Reynaud, Chantal 270
Rodríguez-Patón, Alfonso 102

Safar, Brigitte 270
Sartori, Fabio 8
Schneider, Luc 166
Schulz, Stefan 182
Shadbolt, Nigel 317
Shostak, Irina 65
Silva, AndrØs 102
Silva, Nuno 235
Staab, Steffen 251, 358
Stojanovic, Ljiljana 285

Stojanovic, Nenad 285
Stumptner, Markus 352
Stutt, Arthur 335, 379

Tamma, Valentina 301
Tan, Jaicheng 335
Teije, Annette ten 49
Torgersson, Olof 96
Troncy, Raphaёl 114

Vargas-Vera, Maria 379
Vicente, Óscar 138
Volz, Raphael 235

Wilks, Yorick 122

Zanker, Markus 352

	Front matter
	Knowledge Engineering and Knowledge Management
	Preface
	Conference Organization
	EKAW 2002 Sponsors

	Chapter 1
	Introduction
	Related Work

	Algorithm
	Similarity Metrics
	Combining the Similarity Measures

	Experiments and Results
	Conclusions

	Chapter 2
	Introduction
	Acquisition and Representation of Knowledge about Geometric Features of Tracks
	Acquisition and Representation of Knowledge about Weather and Track Conditions
	Concluding Remarks

	Chapter 3
	1. Introduction
	2. Constructing Class Hierarchies with NRDR
	3. Accommodating NRDR Features in an Object Orient Model
	3.1. NRDR Class Hierarchies in an OO System

	4. NRDR in Domain of AC Installation
	5. Discussion and Conclusion
	References

	Chapter 4
	Introduction
	The Oesophagus Network
	The Set-Up of Knowledge Acquisition
	Modelling Issues
	Causality as a Guiding Principle
	Correlations
	Indirect Relations
	The Trade-Off between Richness and Efficiency

	Conclusions

	Chapter 5
	1 Introduction
	2 Creating a Knowledge Base
	3 Overview of IKRAFT
	4 Using IKRAFT
	5 Discussion
	6 Conclusions
	References

	Chapter 6
	1 Introduction
	2 A Vocabulary to Help Users Annotate Information Analysis
	3 TRELLIS: Capturing Information Analysis and Decision Making
	4 Discussion
	References

	Chapter 7
	1 Introduction
	2 Method
	2.1 Annotation Support
	2.2 Browsing and Searching Support
	3 Evaluation
	4 Discussion
	References

	Chapter 8
	Introduction
	The Jaundice Protocol
	Modelling the Jaundice Protocol in Asbru
	Asbru: A Knowledge Representation Language for Protocols
	Asbru Model of Jaundice Protocol
	Benefits of Asbru Modelling: Detection of Protocol Anomalies
	Experiences and Difficulties

	Formalising the Jaundice Protocol in KIV
	KIV
	KIV Formalisation of Jaundice Protocol
	Experiences and Difficulties

	Conclusions

	Chapter 9
	Introduction
	Factors Driving the Design of the Tools
	Knowledge Management Has an ``Object''
	Nature of the Knowledge Management Relevant Business Model
	Practical Requirements for Tool Support

	Architecture
	Model Entry Tools
	Business Model Entry Tool
	Intervention and Event Entry Tools

	Simulation and Validation
	Simulation
	Validation and Tuning

	Conclusions

	Chapter 10
	1 Introduction
	2 The Approach: A Knowledge Market
	2.1 Demand and Offer of Competencies
	2.2 The Market Mechanism – Matchmaking
	2.3 Beneficiaries of the Market
	3 The Software Program
	3.1 Architecture and Principles
	3.2 Profile-Based Permissions
	3.3 User Interface
	4 Practical Experience
	5 Discussion and Conclusions
	References

	Chapter 11
	Introduction
	The MedView Approach
	A Formal Foundation
	Everyday Tools
	Declarative Model
	Visualization of Knowledge

	Knowledge Organization
	Fundamental Knowledge Structures
	Additional Knowledge Structures

	Knowledge Acquisition
	Formalizing Data
	Entering Data

	Knowledge Application
	Generation of Summaries
	Knowledge Exploration and Analysis
	Knowledge Sharing

	Discussion

	Chapter 12
	1. Introduction
	2. MEGICO
	PHASE I. Identification of the Institution and Its Culture: A. Structural Elements
	B. Functional and Representative Elements
	PHASE II. Praxiologics: A. Structural Elements
	B. Functional and Representative Elements
	PHASE III. Implementation or Replacement, Testing and Maintenance: A. Structural Elements
	B. Functional and Representative Elements
	3. Results and Conclusions
	Acknowledgements
	References

	Chapter 13
	Introduction
	The RKF Tools and Ontology
	The Process Theory: An Extension of Scripts
	Participants in Processes
	Conditions in Processes
	Repetition in Processes

	Related Work
	Conclusions

	Chapter 14
	Introduction
	Which Methodology for Building Ontologies?
	A Work Still in Progress
	Requirements for a Methodology Focusing on Natural Language

	Methodology
	First Step: Semantic Normalization
	Second Step: Knowledge Formalization
	Third Step: Towards a Computational Ontology
	Implementing the Methodology: The DOE Editor

	Conclusion and Future Work

	Chapter 15
	Introduction
	Towards a New Interaction Model
	User-System Interaction
	Coping with Intrusiveness
	Coping with Timeliness
	Adaptive IE in Amilcare
	The Melita Framework
	Suggesting Annotations
	Balancing Proactivity
	An Experiment on IE’s Effectiveness

	Chapter 16
	1 Introduction
	2 WebODE's Knowledge Model
	3 WebODE’s Architecture
	3.1 Database Tier
	3.2 Business Logic Tier
	4 WebODE Ontology Development Services
	4.1 Ontology Edition Service
	4.2 WAB: WebODE Axiom Builder Service
	4.3 WebODE's Inference Engine Service
	4.4 WebODE Interoperability Services
	4.5 WebODE's Ontology Documentation Service
	5 WebODE Middleware Services
	6 Conclusions
	Acknowledgements
	References

	Chapter 17
	Introduction
	Modelling Processes
	Novel Refinement
	Integrative Refinement
	Reflective Refinement

	Ontology Management Processes and Technologies
	Modelling Editor
	Modeller Support and Guidance

	Future Work: Intelligent Automated Support
	OntoClean
	Axiomatization

	Conclusions

	Chapter 18
	1 Introduction
	2 The DOLCE Upper Ontology
	2.1 Enduring and Perduring Entities
	2.2 DOLCE’s Top Categories
	3 Ontological Problems in WordNet
	4 Mapping WordNet into DOLCE
	4.1 Aggregates, Objects, and Features
	4.2 Abstracts and Qualities
	4.3 Occurences
	5	Conclusions
	6	Acknowledgements
	References

	Chapter 19
	Introduction
	Reasoning Along Part-Whole Hierarchies
	Knowledge Import and Refinement
	Discussion and Conclusions

	Chapter 20
	The Web Needs Change Management for Ontologies
	Characteristics of a Version Relation
	Ontology Identification on the Web
	Identity of Ontologies
	Identification on the Web
	Baseline of an Identification Method

	OntoView: Support for Ontology Versioning
	Comparing Ontologies
	Types of Change
	Detecting Changes
	Rules for Changes
	Specifying the Conceptual Implication of Changes

	Discussion
	Summary and Conclusion

	Chapter 21
	Introduction
	A Consideration of “Role” and “Relation”
	What Is a Role? : Basic Concept, Role Concept, and Role Holder
	Dependency Analysis of Role-Concepts
	Relation Concept and Wholeness Concept
	Hozo
	Implementation and Application
	Conclusion and Future Work
	References

	Chapter 22
	1 Introduction
	2 Overview of the IIPS System
	3 Modelling of Web Site
	3.1 Site Ontology
	3.2 Interface Ontology
	3.3 An Example
	4 Automatic Site Generation through Ontology Mapping
	5 Intelligent Support for User Interface Generation
	6 Site Maintenance as Ontology Manipulation
	7 Prototyping
	7.1 Site Mapper
	7.2 Ontology Editor
	8 Related Work
	9 Conclusions
	Acknowledgements
	References

	Chapter 23
	Introduction
	Conceptual Framework
	Horizontal Dimension of MAFRA
	Vertical Dimension of MAFRA

	Semantic Bridging
	Dimensions of Semantic Bridges
	Semantic Bridging Ontology (SBO)
	Example

	Implementation
	Related Work
	Conclusion and Future Work

	Chapter 24
	Introduction
	A Two-Layer View of Ontologies
	Lexical Comparison Level
	Conceptual Comparison Level
	Comparing Taxonomies ${cal H}_1, {cal H}_2$
	Comparing Relations ${cal P}_1, {cal P}_2$

	Empirical Evaluation
	Evaluation Study
	Lexical Comparison Level
	Conceptual Comparison Level

	Related Work
	Conclusion

	Chapter 25
	The Need for Expressive Mediating Models
	Constructing the Mediating Ontology
	Inference Tasks

	Chapter 26
	Introduction
	Information Integration and Mediator Approach
	The Representation Language
	The Terminological Component of {relax fontsize {7}{8}selectfont CARIN}-$@mathcal {ALN}$
	The Deductive Component of {relax fontsize {7}{8}selectfont CARIN}-$@mathcal {ALN}$
	The Description of the Sources Content

	Representation Directed by the Language
	Knowledge Represented in the Terminological Component
	The Use of Rules
	The Use of Integrity Constraints

	Expanded and Optimized Representation
	Expansion for Query Expression
	Optimization for Query Rewriting

	Conclusion

	Chapter 27
	1 Introduction
	2 Ontology Evolution Requirements
	2.1 Resolving Changes While Keeping Consistency
	2.2 User’s Management of Changes
	2.3 Continual Improvement
	2.4 The Overall Ontology Evolution Process
	3 Evolution Strategy
	3.1 Evolution Strategy Example
	3.2 Advanced Evolution Strategies
	4 Implementation
	4.1 Ontology Evolution in KAON API
	4.2 Ontology Evolution in KAON Applications
	5 Related Work
	6 Conclusion
	References

	Chapter 28
	Introduction
	Identity, Unity, Essence, and Dependence and Their Use in OntoClean
	Enriched Ontology Model
	Behaviour over Time
	Modality: Weighing the Validity of Attribute Properties
	Prototypes, Exceptions, and Concepts

	Discussion
	Identity
	Essence and Rigidity
	Roles Dependence on Identity and Rigidity

	Conclusions

	Chapter 29
	Introduction
	Work and Issues Related to Referential Integrity
	Referential Integrity and Coreference
	Traditional Knowledge-Based Systems
	Databases
	Resource Merging Tools and Techniques

	A Stepwise Process in Identifying Coreferences
	Populating the Ontology
	Clustering Duplicates and Applying Heuristics
	Using Communities of Practice to Check for Duplicates
	Example

	Experimental Deployment
	Conclusions

	Chapter 30
	Introduction
	Approach
	A Scenario
	The Alice Architecture
	The Manager’s Interface
	Discussion
	Related Work
	Conclusions
	Acknowledgements
	Reference

	Chapter 31
	Introduction
	Configuration Knowledge Representation
	Translation of UML Configuration Models into OIL
	Conclusions

	Chapter 32
	Introduction
	CREAM/OntoMat-Annotizer
	Amilcare
	Synthesizing S-CREAM
	Discourse Representation (DR)
	Usage Scenario
	Related Work
	Knowledge Markup in the Semantic Web
	Comparison with Knowledge Acquisition Frameworks
	Comparison with Annotation Frameworks
	Semantic Markup with Support from Information Extraction

	Conclusion

	Chapter 33
	Introduction
	Ontologies Vs. Knowledge Bases
	Versioning Vs. Tracking Changes
	Related Work
	Versioning Model for RDF(S) Repositories
	History, Passing through Equivalent States
	Versions Are Labeled States of the Repository
	Implementation Approach
	Conclusion and Future Work
	References

	Chapter 34
	Introduction
	Process Model
	Example
	Related Work
	Conclusions
	Acknowledgements
	References

	Chapter 35
	1 Introduction
	2 The Goal – A Semantic Web Portal
	3 Tools at MIND SWAP
	3.1 RDF Editor
	3.2 RDF Instance Creator
	3.3 Scraper
	3.4 ConvertToRDF
	3.5 Parka-DB™

	4 Conclusion
	Acknowledgements
	References

	Back matter
	Author Index

