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Preface

The term hidden Markov model (HMM) is more familiar in the speech signal
processing community and communication systems but recently it is gaining
acceptance in finance, economics and management science. The term HMM
is frequently restricted to models with states and measurements in a discrete
set and in discrete time. However, there is no reason why these restrictions
cannot be relaxed, and so one can extend the modelling in continuous time
and include observations with continuous range. The theory of HMM deals
with estimation, which involves signal filtering, model parameter identifica-
tion, state estimation, signal smoothing, and signal prediction; and control,
which refers to selecting actions which effect the signal-generating system in
such a way as to achieve certain control objectives. In the HMM implementa-
tion, reference probability methods are employed. This is a set of procedures
designed in the reformulation of the original estimation and control task in a
fictitious world so that well-known results for identically and independent dis-
tributed random variables can be applied. Then the results are reinterpreted
back to the real world with the original probability measure.

To get a better understanding of an HMM, consider a message sequence
Xk(k = 1, 2, . . .) consisting of 0’s and 1’s depicted in Figure 1. Then, possibly
the binary signal X (a Markov chain) is transmitted on a noisy communica-
tions channel such as a radio channel and the additive noise is illustrated in
Figure 2. When the signal is detected at the receiver, we obtain some resultant
Yk. What we get therefore after combining Figures 1 and 2 is a binary Markov
chain hidden in noise given in Figure 3.

Essentially, the goal is to develop optimal estimation algorithms for HMMs
to filter out the random noise in the best possible way. HMM filtering theory,
therefore, discusses the optimal recursive estimation of a noisy signal given a
sequence of observations. In electrical engineering for example, one is inter-
ested to determine the charge Q(t), at time t at a fixed point in an electric
circuit. However, due to error in the measurement of Q(s), (s < t) one cannot
really measure Q(s), but rather just a noisy version of it. The objective is to
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Fig. 1. Markov Chain

Fig. 2. Noise

Fig. 3. Noisy Observations Y (k)

“filter” the noise out of our observations. In a similar manner, we might ask
whether financial data, interest rates, asset price processes, exchange rates,
commodity prices, etc. contain information about latent variables. If so, how
might their behaviour in general and in particular their dynamics be esti-
mated?

The use of HMMs is also motivated by significant empirical evidence from the
literature that favours and endorses Markov-switching models in the study
of many macroeconomic variables. This provides more flexibility to financial
models and incorporates stochastic volatility in a simple way. Earlier devel-
opment in this area during the late 80’s within the time series context was
pioneered by James Hamilton, amongst others, in a work that proposed to
have the unobserved regime follow a Markov process. Indeed, examples of
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many models in which the shift of regimes is governed by a discrete or con-
tinuous time Markov chain abound in finance and economics in the areas of
business cycles, stock prices, foreign exchange, interest rates and option valua-
tion. The rationale behind the regime-switching framework is that the market
may switch from time to time between, say, a “quiet” (stable low volatility)
state and a “turbulent” (unstable high volatility) state. In general the Markov
chain states can refer to any number of conceivable “state of the economy”.

Within the HMM set-up and related modelling structures, this monograph of-
fers a collection of papers dealing with the theory and empirical investigations
probing the particular aspects of dynamic financial and economic modelling
outlined above. The main themes in this collection include pricing, risk man-
agement, model calibration and parameter estimation.

This volume opens with two papers devoted to term structure of interest rates.
In ‘An exact solution of the term structure of interest rate under regime-
switching risk’, Shu Wu and Yong Zeng derive a closed-form solution to the
term structure under an essentially affine-type model using log-linear approx-
imation. It is shown that the market price of regime-switching risk affects the
long-end of the yield curve and hence this is a significant component of the
term premium for long-term bonds. Then Robert Elliott and Craig Wilson in
‘The term structure of interest rates in a hidden Markov setting’, develop an
interest rate model whereby the stochastic nature of volatility and mean re-
version is introduced in a simple and tractable way. Zero-coupon bond price is
calculated. Empirical work using non-linear regression model illustrates that
a 3-state Markov chain is able to explain considerably the dynamics of the
yield rate data.

The theme of HMM regime-switching-based models continue with Tak Kuen
Siu’s paper that demonstrates the interplay of methodologies in finance and
actuarial science to successfully price insurance products with recent inno-
vations. In ‘On Fair valuation of participating life insurance policies with
regime switching’, he employs a regime-switching Esscher transform to value
insurance policies with embedded exotic features. The valuation is performed
within the basic geometric Brownian motion model but whose drift and volatil-
ity parameters are modulated by a hidden Markov model. Under the same
market framework, Robert Elliott and Anatoliy Swishchuk investigate the
valuation of options and variance swaps.

Two contributions then tackle the measurement and management of financial
risks. In ‘Smoothed parameter estimation for a hidden Markov model of credit
quality’, Malgorzata Korolkiewicz and Robert Elliott propose a model for the
evolution of companies’ credit rating using a hidden Markov chain in discrete
time. Smooth estimates for the state of the Markov chain and auxiliary pa-
rameters are also obtained. Kim Bong Siu and Hailang Yang, in ‘Expected
shortfall under a model with market and credit risks’, present an integrated
model that handle both credit and market risks. Two approaches in calcu-
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lating VaR and ES are given: recursive equations and Monte Carlo methods.
A weak Markov chain model is also outlined in their attempt to take into
account the dependency of risks.

This is followed by papers on the filtering of HMM via change of probability
measures. The development of general filters for the state, occupation time
and total number of jumps of a weak Markov chain is examined by Shangzhen
Luo and Allanus Tsoi in their article ‘Filtering of hidden weak Markov chain-
discrete range observations’. Weak Markov chains may be suitable in mod-
elling financial and economic processes that exhibit some form of memory.
The study of future demands and inventory level via a discrete HMM in dis-
crete time is the focus of Lakhdar Aggoun’s paper ‘Filtering of a partially
observed inventory system’. The recursive estimation of the joint distribution
of the level of stock and actual demand together with the re-estimation of
model parameters is highlighted.

The monograph culminates with two papers that explore a thought-provoking
hypothesis and challenging questions in economics. Emilio Russo, Fabio Spag-
nolo and Rogemar S Mamon, in ‘An empirical investigation of the unbi-
ased forward exchange rate hypothesis in a regime-switching market’, use
a Markov chain to describe structural change brought about by the inter-
vention of central banks and other changes in the monetary policies as well
as test the validity of the unbiased forward exchange rate hypothesis using
US dollar/UK sterling pound exchange rate data. Abdul Abiad put forward
the use of Markov regime-switching model to identify and characterise cur-
rency crisis periods. In ‘Early warning systems (EWS) for currency crises:
A regime-switching approach’, he provides empirical support that a regime-
switching model outperforms standard EWS in signaling crises and reducing
false alarms. Country-by-country analyses of data for the period 1972-1999
from five Asian countries (Indonesia, Korea, Malaysia, the Philippines and
Thailand), all of which experienced currency crises, were conducted.

We hope that this monograph will provide more insights to the financial re-
search community and open avenues for more interesting problems. Specifi-
cally, it is our hope that this volume will raise more stimulating questions for
further discussions in our concerted effort to build dynamic models that could
incorporate the important stylised features of a financial market and capture
better the significant factors of an economy.

Rogemar S. Mamon (University of Western Ontario)
Robert J. Elliott (University of Calgary)
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Summary. Regime-switching risk has been recently studied in an general equilib-
rium setting and empirically documented as an significant factor in bond premium.
In this paper we apply no arbitrage approach to derive an exact solution of the term
structure of interest rates in an essentially-affine-type model under regime-switching
risk.

Key words: Term structure model, regime-switching risk, marked point
process, affine diffusion

1.1 Introduction

Much documented empirical evidence implies that the aggregate economy has
recurrent shifts between distinct regimes of the business cycle (e.g Hamil-
ton [17], and Diebold and Rudebusch [10]). These results have motivated the
recent studies of the impact of regime shifts on the entire yield curve us-
ing dynamic term structure models. A common approach is to incorporate
Markov-switching (or hidden Markov chains) into the stochastic processes of
the pricing kernel and/or state variables. Indeed the regime-dependence offers
greater econometric flexibilities in empirical models of the term structure such
as Bansal and Zhou [1]. However, as pointed out by Dai and Singleton [8], the
risk of regime shifts is not priced in many of these models, and hence it does
not contribute independently to bond risk premiums.

Without pricing the risk of regime shifts, the previous studies have essen-
tially treated the regime shifts as an idiosyncratic risk that can be diversified
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away by bond investors. However, Bansal and Zhou [1] and Wu and Zeng [22]
empirically showed that regimes are intimately related to the business cycle,
suggesting a close link between the regime shift and aggregate uncertainties.

Extending the aforementioned strand of literature, Wu and Zeng [22] develop
a dynamic term structure model under the systematic risk of regime shifts
in a general equilibrium setting similar to Cox, Ingersoll and Ross [5] [6]
(henceforth CIR). The model implies that bond risk premiums include two
components under regime shifts: (i) a regime-dependent risk premium due
to diffusion risk as in the previous studies, and (ii) a regime-switching risk
premium that depends on the covariations between the discrete changes in
marginal utility and bond prices across different regimes. This new component
of the term premiums is associated with the systematic risk of recurrent shifts
in bond prices (or interest rates) due to regime changes and is an important
factor that affects bond returns. Furthermore, we also obtain a closed-form
solution of the term structure of interest rates under an affine-type model
using the log-linear approximation similar to that in Bansal and Zhou [1]. The
model is estimated using the Efficient Method of Moments applied to monthly
data on 6-month treasury bills and 5-year treasury bonds from 1964 to 2000.
We find that the market price of regime-switching risk is highly significant
and affects mostly the long-end of the yield curve. The regime-switching risk,
as expected, accounts for a significant portion of the term premiums for long-
term bond.

A drawback in Wu and Zeng [22] is that in an affine-type model, the closed-
form solution of the yield curve is obtained under log-linear approximation3.
In this paper, using no-arbitrage approach, we derive an exact solution of the
term structure of interest rates in a more general essentially-affine-type model
under regime-switching risk.

In the standard affine models (such as Duffie and Kan [13] and Dai and Sin-
gleton [7]), the market price of diffusion risk is proportional to the volatility
of the state variable. Such a structure guarantees that the models satisfy a re-
quirement of no-arbitrage; risk compensation goes to zero as risk goes to zero.
However, as Duffee [12] points out, this structure limits the variation of the
compensations that investors anticipate to obtain when encountering a risk.
More precisely, since the compensation is bounded below by zero, it cannot
change sign over time. Duffee [12] argues that this is the main reason why
the completely affine models fails at forecasting. He suggests a broarder class
of essentially affine models to break the tight link between risk compensation
and interest rate volatility. These more general models are shown to have
better forecasting ability than the standard affine models. In this paper, we

3 Due to the nature of log-linear approximation, we conjecture that the error bound
should be in the order of r2. Wu and Zeng [23] derived the closed-form for the
multi-factor affine models with both jump and regime-switching risks using log-
linear approximation.
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introduce regime shifts into the class of essentially-affine models. Our model
with exact solution presented here should prove useful in forecasting future
yields.

To the best of our knowledge, three other papers also presented exact solutions
for regime switching term structure models. Two of them are continuous-time
models: one is Landen [19] and the other is Dai and Singleton [8]. Landen
[19] focused on the case under risk-neutral probability measure, she did not
mention anything about the market price of regime switching risk. Dai and
Singleton [8] surveyed the theoretical specification of dynamic term structure
models. Moreover, they proposed a Gaussian affine-type model with regime-
switching risk and constant volatility within each regime. In our model, we
allow for stochastic volatilities in each regime and the diffusion risk is in an
essentially affine form. The third one is Dai, Singleton and Yang [9]. They
develop and empirically implement a discrete-time Gaussian dynamic term
structure model with priced factor and regime-shift risks.

The rest of the paper is organized as follows. Section 2 presents a simpler
expressive form of regime-shifting using marked point process (or random
measure) approach. Section 3 develops a framework for the term structure
of interest rates with regime-switching risk using the no arbitrage approach.
Section 4 specifies an essentially-affine-type model with regime switching risk
and derives an exact solution. Section 5 concludes with some future research
topics.

1.2 A new representation for modeling regime shift

In the literature of interest rate term structure, there are three approaches
to model regime shifting process. The first approach is the Hidden Markov
Model, summarized in the book of Elliott et al. [15], and its application to the
term structure can be found in Elliott and Mamon [16]. The second approach
is the Conditional Markov Chain, discussed in Yin and Zhang [24], and its
applications to the term structure are in Bielecki and Rutkowski ([2],[3]). The
third approach is the Marked Point Process or the Random Measure approach
as in Landen [19]. Due to its notational simplicity, here, we follow the third
approach but propose a new and simpler representation. In Landen [19], the
mark space is a product space of regime E = {(i, j) : i ∈ {1, ..., N}, j ∈
{1, 2, ..., N}, i �= j}, including all possible regime switchings. Below, we sim-
plify the mark space to the space of regime only and consequently simplify the
corresponding random measure as well as the equation for s(t) or st, which is
defined as the most recent regime.

There are two steps to obtain the simple expression for s(t).

Step 1: We define a random counting measure. Let the mark space U =
{1, 2, ..., N} be all possible regimes with the power σ-algebra, and u be a
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generic point in U . Let A be a subset of U . Let m(t, A) counts the cumulative
number of entering a regime that belongs to A during the time interval (0, t].
For example, m(t, {u}) counts the cumulative number of entering regime u
during (0, t]. Note that m is a random counting measure. Let η be the usual
counting measure on U . Then, η has the following two properties: for A ∈
U , η(A) =

∫
IAη(u) (i.e. η(A) counts the number of elements in A) and∫

A
f(u)η(u) =

∑
u∈A f(u).

A marked point process or a random measure is uniquely characterized by
its stochastic intensity kernel4. Let x(t) denote a state variable to be defined
later. Then, the stochastic intensity kernel of m(t, ·) can be defined as

γm(dt, du) = h
(
u;x(t−), s(t−)

)
η(du)dt, (1.1)

where h(u;x(t−), s(t−)) is the conditional regime-shift (from regime s(t−) to
u) intensity at time t (we assume h(u;x(t−), s(t−)) is bounded). Heuristically,
γm(dt, du)dt can be thought of as the conditional probability of shifting from
regime s(t−) to regime u during [t, t + dt) given x(t−) and s(t−). Then,
γm(t, A), the compensator of m(t, A), can be written as

γm(t, A) =
∫ t

0

∫

A

h
(
u; x(τ−), s(τ−)

)
η(du)dτ

=
∑

u∈A

∫ t

0

h
(
u; x(τ−), s(τ−)

)
dτ.

Step 2: We are in the position to present the integral and differential forms
for the evolution of regime, s(t), using the random measure defined above.
First, the integral form is

s(t) = s(0) +
∫

[0,t]×U

(
u − s(τ−)

)
m(dτ, du). (1.2)

Note that m(dτ, du) is zero most of the time and only becomes one at regime-
switching time ti with u = s(ti), the new regime at time ti. Observe that the
above expression is but a telescoping sum: s(t) = s(0)+

∑
ti<t(s(ti)− s(ti−1).

Second, the differential form is

ds(t) =
∫

U

(
u − s(t−)

)
m(dt, du). (1.3)

To see the above differential equation is valid, assuming that there is a regime-
switching from s(t−) to u which occurs at time t, then s(t) − s(t−) = (u −
s(t−)) implying s(t) = u.

These two forms are crucial in the following two sections.
4 See Last and Brandt [20] for detailed discussion of marked point process, stochas-

tic intensity kernel and related results.
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1.3 The model

1.3.1 Two state variables

We assume that there are two state variables. One describes the regime change,
s(t) or st, which stands for the most recent regime. As described in Section 2,
st follows (1.2) or (1.3). The other state variables, xt, is described by a diffusion

dxt = μ(xt, st)dt + σ(xt, st)dWt (1.4)

where the drift term and the diffusion term are in general time-varying and
regime-dependent, and Wt is a standard Brownian motion.

The instantaneous short-term interest rt is a linear function of xt given st,
i.e.,

rt = ψ0(st) + ψ1xt (1.5)

where ψ0(st) is a constant depending on regime but ψ1 is not. When ψ1 is
also regime-dependent, we cannot obtain an exact solution.

1.3.2 Pricing kernel

Under certain technical conditions, the absence of arbitrage is sufficient for
the existence of the pricing kernel (see Harrison and Kreps [18]). We further
specify the pricing kernel Mt as

dMt

Mt−
= − rt−dt − λD(xt, st)dWt

−
∫

U

λS(u; xt, st−)
[
m(dt, du) − γm(dt, du)

] (1.6)

where λD(xt, st) is the market price of diffusion risk, which is also regime-
dependent; and λS(u; xt−, st−) is the market price of regime-switching (from
regime st− to regime u) risk given xt and st−.

Note that the explicit solution for Mt can be obtained by Doleans-Dade ex-
ponential formula (Protter [21]) as the following:

Mt =
(
e−
∫ t
0 rτ dτ

) (
e−
∫ t
0 λD(xτ ,sτ )dW (τ)− 1

2

∫ t
0 λ2

D(xτ ,sτ )dτ
)
×

(
e
∫ t
0

∫
U

λS(u;sτ−,sτ−)γm(dτ,du)+
∫ t
0

∫
U

log(1−λS(u;xτ−,sτ−))m(dτ,du)
)

.
(1.7)

1.3.3 The risk-neutral probability measure

The specifications above complete the model for the term structure of interest
rates, which can be solved by a change to the risk-neutral probability measure.
We first obtain the following two lemmas. The first lemma characterizes the
equivalent martingale measure under which the interest rate term structure
is determined. The second lemma specifies the dynamics of the short rate and
the regime under the equivalent martingale measure.
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Lemma 1. For fixed T > 0, the equivalent martingale measure Q is defined
by the Radon-Nikodym derivative

dQ

dP
=

ξT

ξ0

where for t ∈ [0, T ]

ξt =
(
e−
∫ t
0 λD(xτ ,sτ )dW (τ)− 1

2

∫ t
0 λ2

D(xτ ,sτ )dτ
)
×

(
e
∫ t
0

∫
U

λS(u;xτ ,sτ−)γm(dτ,du)+
∫ t
0

∫
U

log(1−λS(u;xτ ,sτ−))m(dτ,du)
) (1.8)

provided λD, λS and h in m(t, A) are all bounded in [0, T ].

Proof. Obviously, ξt > 0 for all 0 ≤ t ≤ T . By Doleans-Dade exponential
formula, ξt can be written in stochastic differential equation form as

dξt

ξt
= −λD(xt, st)dWt −

∫

U

λS(u; xt, st−)
[
m(dt, du) − γm(dt, du)

]
. (1.9)

Since Wt and m(t, A) − γm(t, A) are martingales under P , ξt is a local mar-
tingale.

Since ξt is a P-local martingale and ξ0 = 1, it suffices to show that E([ξ]t) < ∞
to obtain E(ξt) = 1 for all t, because ξ becomes a martingale if E([ξ]t) < ∞
for all t, where [ξ]t is the quadratic variation process of ξ. Let

Kt = −
∫ t

0

λD(xτ , sτ )dWτ −
∫ t

0

∫

U

λS(u; xτ , sτ−)[m(dt, du) − γm(dτ, du)]

By assumption, we suppose that |λD(xt, st)| ≤ CD for all xt and st, and
|λS(u; xt, st−)| ≤ CS and h(u; xt, st−) ≤ Ch for all u, xt and st−. Using the
properties of quadratic variation for semimartingales (see Section 2.6 of Prot-
ter [21]), we have

[K]t =
∫ t

0

λ2
D(xτ , sτ )dτ +

∫ t

0

∫

U

λ2
S(u; xτ , sτ−)m(dτ, du).

Observe that for t ≤ T ,
∫ t

0

λ2
D(xτ , sτ )dτ ≤ C2

D T

and
0 <

∑

u

λ2
S(u; xt, st−)h(u; xt, st−) ≤ N C2

S Ch.

Then,
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E([ξ]t) = E

∫ t

0

ξ2
τ−d[K]τ

= E

{∫ t

0

ξ2
τ−λ2

D(xτ , sτ )dτ +
∫ t

0

ξ2
τ−

∫

U

λ2
S(u; xτ , sτ−)m(dτ, du)

}

≤ E

{

C2
D

∫ t

0

ξ2
τdτ +

∫ t

0

ξ2
τ−

∫

U

λ2
S(u; xτ , sτ−)m(dτ, du)

}

≤ E

{

C2
D

∫ t

0

ξ2
τdτ +

∫ t

0

ξ2
τ−

∫

U

λ2
S(u; xτ , sτ−)γm(dτ, du)

}

≤ E

{

C2
D

∫ t

0

ξτ−dτ +
∫ t

0

ξ2
τ−

∫

U

λ2
S(u; xτ , sτ−)h(u; xτ , sτ−)η(du)dτ

}

≤ E

{

C2
D

∫ t

0

ξτ−dτ +
∫ t

0

ξ2
τ−
∑

u

λ2
S(u; xτ , sτ−)h(u; xτ , sτ−)dτ

}

≤ E

{

C2
D

∫ t

0

ξ2
τdτ + N C2

S Ch

∫ t

0

ξ2
τ−dτ

}

≤ C∗
∫ t

0

E(ξ2
τ )dτ

(1.10)

for C∗ = max(C2
D, N C2

S Ch). By the same boundedness and from the direct
calculation of expected values under normal and Poissons, we obtain

E(ξ2
t ) < C∗∗

for some constant C∗∗. This implies E
(
[ξt]
)

< ∞ for all t and hence, ξt is a
martingale. �

Lemma 2. Under the risk-neutral probability measure Q, the dynamics of
state variables, xt and st, are given by the stochastic differential equations

dxt = μ̃(xt, st)dt + σ(xt, st)dW̃t (1.11)

and
dst =

∫

U

(u − st−)m̃(dt, du) (1.12)

where μ̃(xt, st) = μ(xt, st) − σ(xt, st−)λD(xt, st); W̃t is a standard Brownian
motion under Q; m̃(t, A), the corresponding marked point process of m(t, A)
under Q, has the intensity matrix H̃(u;xt−, st−) = {h̃(u;xt−, st−)} =
{h(u; xt−, st−) (1 − λS(u; xt−, st−))}. The compensator of m̃(t, A) under Q
becomes

γm̃(dt, du) =
(
1 − λS(u; xt−, st−)

)
γm(dt, du) = h̃(u;xt−, st−)η(du)dt,

Proof. Applying Girsanov’s theorem on the change of measure for Brownian
motion, we have W̃t = Wt −

∫ t

0
λD(xτ , sτ )dτ is a standard Brownian motion

under Q. This allows us to obtain μ̃(xt, st) = μ(xt, st) − σ(xt, st)λD(xt, st).
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Since the marked point process, μ(t, A), is actually a collection of N(N − 1)
conditional Poisson processes, by applying Girsanov’s theorem on conditional
Poisson process (for example, see Theorems T2 and T3 in Chapter 6 of Bre-
maud [4]), the conditional Poisson process with intensity, h(u; xt, st−), under
P, becomes the one with intensity, h(u;xt, st−)(1 − λS(u; xt, st−)) under Q.
The result follows. �

1.3.4 The term structure of interest rates

Let {Ft}t≥0 be the natural filtration generated by W and m(t, ·). In the
absence of arbitrage, the price at time t− of a default-free pure discount bond
that matures at T , P (t−, T ), can be obtained as,

P (t−, T ) = EQ
t−

(
e−
∫ T
t

rτ dτ
)

= EQ
{

e−
∫ T
t

rτ dτ
∣
∣Ft

}
= EQ

{
e−
∫ T
t

rτ dτ
∣
∣xt, st−

}

(1.13)

with the boundary condition P (T−, T ) = P (T, T ) = 1 and the last equality
comes from the Markov property of (xt, st).

Therefore, we can let P (t−, T ) = F (t−, xt, st−, T ) = F (t−, x, s, T ) where
x = xt− and s = st−. The following proposition gives the partial differential
equation characterizing the bond price.

Proposition 1. The price of the default-free pure discount bond F (t−, x, s, T )
defined in (1.13) satisfies the following partial differential equation

∂F

∂t
+ μ̃(x, s)

∂F

∂x
+

1
2
σ2(x, s)

∂2F

∂x2
+
∫

U

ΔSF h̃(u; x, s)η(du) = rF (1.14)

with the boundary condition F (T−, x, s, T ) = F (T, x, s, T ) = 1 and ΔSF =
F (t, x, u, T ) − F (t−, x, s, T ).

Proof. This basically comes from the Feynman-Kac’s formula. Or, intuitively,
the above result is obtained by applying Ito’s formula for semimartingale
(Protter [21]) under measure Q to F (t, x, s, T )

dF =
(∂F

∂t
+ ũ

∂F

∂x
+

1
2
σ2 ∂2F

∂x2

)
dt + σ

∂F

∂x
dW̃t

+
[
F (t, xt, st, T ) − F (t−, xt−, st−, T )

]
.

(1.15)

Since x(t) is continuous, the last termm in (1.15) can be expressed as
∫

U

ΔSF m̃(dt, du).

Note that the above term can be made as a martingale by subtracting its own
compensator, which is added back to the dt term. Note that γm̃(dt, du) =
h̃(u; x(t−), s(t−))η(du)dt. Therefore F (t−, x, s, T ) satisfies the equation
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dF =
{∂F

∂t
+ ũ

∂F

∂x
+

1
2
σ2 ∂2F

∂x2
+
∫

U

ΔSF h̃(u; x, s)η(du)
}

dt

+ σ
∂F

∂x
dW̃t +

∫

U

ΔsF
[
m̃(dt, du) − γm̃(dt, du)

]
.

(1.16)

Since no arbitrage implies that the instantaneous expected returns of all assets
should be equal to the short-term interest rate under the risk-neutral measure,
equation (1.14) follows by matching the coefficient of the dt term in (1.16) with
that of rF . �

1.4 A tractable specification with exact solution

In general equation (1.14) does not admit a closed-form solution for the bond
price. In this section, we consider a tractable specification: an affine term
structure of interest rates with regime-switching and regime-switching risk.

1.4.1 Affine regime-switching models

The works of Duffie and Kan [13] and Dai and Singleton [7], among others,
provide detailed discussions of completely affine term structure models un-
der diffusions. Duffie, Pan and Singleton [14] deal with general asset pricing
models under affine jump-diffusions. Duffee [12] presents a class of essentially-
affine models and Duarte [11] introduced semi-affine models. Both Bansal and
Zhou [1] and Landen [19] use affine structure for their regime-switching mod-
els. Following this literature, we make the following parametric assumptions

Assumption 1 The diffusion components of xt, as well as those in the
Markov switching process st all have an affine structure. In particular,

1. μ(xt, st) = a0(st) + a1(st)xt,

2. σ(xt, st) =
√

σ0(st) + σ1xt,

3. h(u;xt, st−) = exp{h0(u; st−) + h1(u; st−)xt},

4. λD(xt, st) = λ0(st)+λ1xt+a1(st)xt√
σ0(st)+σ1xt

,

5. 1 − λS(u; xt, st−) = eθ(u;s(t−))

h(u;xt,st−) .

Assumptions 1 - 3 are related to the two state processes. For the diffusion
state process, we assume that the drift term and the volatility term are all
affine functions of xt with regime-dependent coefficients. Then x(t) becomes

dx =
(
a0(s) + a1(s)x

)
dt +

√
σ0(s) + σ1 x dWt. (1.17)
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We further assume that the log intensity of regime shifts is an affine function of
the short term rate xt. This assumption ensures the positivity of the intensity
function and also allows the transition probability to be time-varying.5

Assumptions 4 and 5 deal with the market prices of risk. In the completely
affine models, the market price of diffusion risk is proportional to the volatility
of the state variable xt. Such a structure guarantees that the models satisfy
a requirement of no-arbitrage, that is, risk compensation goes to zero as risk
goes to zero. However, since variances are nonnegative, this structure limits
the variation of the compensations that investors anticipate to obtain when
encountering a risk. More precisely, since the compensation is bounded below
by zero, it cannot change sign over time. This restriction, however, is relaxed
in the essentially affine models of Duffee [12].

Following this literature, we also assume that the market price of the diffusion
risk is in the form of essentially affine, but we extend to the case with regime-
switching with small twists. Specifically, we assume the diffusion risk is a
sum of regime-dependent linear combination of xt and non-regime-dependent
scaler of xt divided by the diffusion coefficient. For the market price of regime-
switching risk, we assume a regime-switching dependent constant divided by
the intensity of regime switching. We choose these forms of market prices
because we may obtain a closed-form solution to the bond prices.

Under these parameterizations of the market prices of risk, the state process xt

and the Markov chain st preserve the affine structure. In particular, under the
risk-neutral measure Q the drift term μ̃(s, r), and the log of regime-switching
intensity h̃(u;x, s) are affine functions of the state x with regime-dependent
coefficients. Precisely, under the risk-neutral measure Q,

dx =
(
a0(s) + a1(s)x

)
dt +

√
σ0(s) + σ1 x dW̃t −

[
λ0(s) + λ1x + a1(s)x

]
dt

=
[
a0(s) − λ0(s) − λ1 x

]
dt +

√
σ0(s) + σ1 x dW̃t.

So, the coefficient
μ̃(x, s) = a0(s) − λ0(s) − λ1 x

and σ(x, s) remain the same and

h̃(u;x, s(t−)) = eθ(u;s(t−)).

Then, we can solve for the term structure of interest rates and obtain the
closed-form solution as follows:

Theorem 2. Under Assumption 1, the price at time t of a risk-free pure
discount bond with maturity τ is given by f(s(t−), x(t), τ) = eA(τ,st)+B(τ)xt

and the τ -period interest rate is given by R(t−, τ) = −A(τ, st−)/τ−B(τ)xt/τ .
5 A more general specification is to allow duration-dependence as well. However a

closed-form solution for the yield curve may not be attainable.
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With s = s(t−), A(τ, s) and B(τ) are determined by the ordinary differential
equations

− ∂B(τ)
∂τ

− λ1B(τ) +
1
2
σ1B

2(τ) = ψ1 (1.18)

and

− ∂A(τ, s)
∂τ

+
[
a0(s) − λ0(s)

]
B(τ) +

1
2
σ0(s)B2(τ)

+
∫

U

[
eΔSA(τ,s) − 1

]
eθ(u;s)η(du) = ψ0(s)

(1.19)

with boundary conditions A(0, s) = 0 and B(0) = 0, where ΔSA = A(τ, u) −
A(τ, s).

Proof. Without loss of generality, let the price at time t− of a pure discount
bond that will mature at T be given by

F
(
t−, s(t−), x(t), T

)
= f
(
s(t−), x(t), τ

)
= eA(τ,s(t−))+B(τ)x(t)

where τ = T − t and A(0, s) = 0, B(0, s) = 0.

The basic idea is to calculate the derivatives of the above bond price F ,
substitute them in equation(1.14), and match the coefficients of x.

Observe that

∂F

∂τ
= F

(
− ∂A(τ, s)

∂τ
− ∂B(τ)

∂τ
x
)
,

∂F

∂x
= FB(τ),

∂2F

∂x2
= FB2(τ),

h̃
(
u; x(t), s(t−)

)
= h
(
u; x(t), s(t−)

)(
1 − λS(u; x(t), s(t−))

)
= eθ(u;s(t−)),

FS = F (eΔSA − 1)

where ΔSA = A(τ, u) − A(τ, s), and recall that

r = ψ0(s) + ψ1x.

With some simplifications and letting s = s(t−), Proposition 1 then implies

ψ0(s) + ψ1x = −∂A(τ, s)
∂τ

− ∂B(τ)
∂τ

x +
[
a0(s) − λ0(s) − λ1 x

]
B(τ)

+
1
2
[
σ0(s) + σ1x

]
B2(τ) +

∫

U

(
eΔSA − 1

)
eθ(u;s)η(du)

(1.20)

Then, Theorem 2 follows by matching the coefficients of x on both sides of
the above equation. �
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The above model extends the existing literature on the term structure of in-
terest rates under regime shifts in several ways. While Landen [19] provided
an exact solution to the yield curve only under risk-neutral probability mea-
sure, there was no mention of the market price of regime-switching risk. The
survey paper of Dai and Singleton [8] proposed a Gaussian affine-type model
with regime-switching risk and constant volatility within each regime. In our
model, we allow for stochastic volatilities in each regime and our diffusion
risk is in an essentially-affine form. In the case of Bansal and Zhou [1], the
risk of regime shifts is not priced either, and they had to rely on log-linear
approximation to obtain closed-form solution for bond pricing.

Finally, we examine the expected excess return on a long term bond over the
short rate implied by our model.

Corollary 1. Under the assumptions of Theorem 2, the expected excess return
on a long term bond over the short rate is given by

Et

(
dft

ft−

)

− rtdt =
[
λ0(s) + λ1x + a1(s)x

]
B(τ)dt

+
∫

U

(
eΔSA − 1

) (
eh0(u;s)+h1(u;s)x − eθ(u;s)

)
η(du)dt.

(1.21)

Proof. Similary, let the price at time t− of a pure discount bond that will
mature at T be given by

F
(
t−, s(t−), x(t), T

)
= f
(
s(t−), x(t), τ

)
= eA(τ,s(t−))+B(τ)x(t)

where τ = T − t and A(0, s) = 0, B(0, s) = 0.

Applying Itô’s formula to F (t−, s(t−), x(t), T ) under the physical measure P,
we obtain the following equation similar to (1.16):

dF =
{∂F

∂t
+ u

∂F

∂x
+

1
2
σ2 ∂2F

∂x2
+ +

∫

U

ΔSF h(u; x, s)η(du)
}

dt

+ σ
∂F

∂x
dWt +

∫

U

ΔsF
[
m(dt, du) − γm(dt, du)

]
.

(1.22)

Applying Proposition 1, we wish to make the coefficient of the dt term equal
to rF by subtracting and adding terms. Using Lemma 2, noting the last two
terms are martingales, and taking conditional expectation with some simpli-
fications, we obtain

Et

(
dF

F

)

− rtdt = σ(x, s)λD(x, s)
∂F

∂x
/Fdt

+
∫

U

ΔSF

F
h(u; x, s) λS(u; x, s)η(du)dt.

(1.23)

With simplifications, Assumption 1 implies that the above equation becomes
equation (1.21). �
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The first term on the right hand side of equation (1.21) is interpreted as
the diffusion risk premium in the literature, and the second term can be
analogously defined as the regime-switching risk premium. The equation shows
that introducing the dependence of the market prices of diffusion on st adds
more flexibility to the specification of the risk premium. Bansal and Zhou [1]
points out that it is mainly this feature of the regime-switching model that
provides improved goodness-of-fit over the existing term structure models. On
the other hand, (1.21) also shows that if the term structure exhibits significant
difference across regimes (ΔsA �= 0), there is an additional source of risk due
to regime shifts and it should also be priced (eh0(u;s)+h1(u;s)x − eθ(u;s)) in the
term structure model. Introducing the regime switching risk not only can add
more flexibilities to the specification of time-varying bond risk premiums, but
also can be potentially important in understanding the bond risk premia over
different holding periods.

1.5 Conclusions

This paper first presents a new marked point process representation of regime
change using a random measure. We apply this new representation to specify
a term structure model of interest rate with regime-switching risk. We derive
an exact solution for the yield curve in an essentially-affine specification.

With this exact solution, we can further estimate the model by the efficient
method of moments as in Wu and Zeng [22] and quantify the regime-switching
risk and its impact on yield curves. Other important topics that can be ex-
plored further include the implications and impacts of regime-switching risk
on bond derivatives, and on investors’ optimal portfolio choice problem. Also,
more studies are needed on the empirical evidence of regime-switching risk in
interest rates. These topics are left for future research.
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Summary. We describe an interest rate model in which randomness in the short-
term interest rate is partially due to a Markov chain. We model randomness through
the volatility and mean-reverting level as well as through the interest rate directly.
The short- term interest rate is modeled in a risk-neutral setting as a continuous
process in continuous time. This allows the valuation of interest rate derivatives
using the martingale approach. In particular, a solution is found for the value of
a zero-coupon bond. This leads to a non-linear regression model for the yield to
maturity, which is used to filter the state of the unobservable Markov chain.

Key words: Interest rate modeling, term structure, filtering, Markov chain

2.1 Introduction

Current models of the short-term interest rate often involve treating the
short rate as a diffusion or jump diffusion process in which the drift term
involves exponential decay toward some value. The basic models of this type
are Vasiček [10] and Cox, Ingersoll and Ross [2], where the distinction between
these two interest rate models rests with the diffusion term. The drift term,
(of both models), tends to cause the short rate process to decay exponentially
towards a constant level. This feature is responsible for the mean-reverting
property exhibited by these processes.

An extension to these models has come in the form of allowing the drift to
incorporate exponential decay toward a manifold, rather than a constant. This
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is known as the Hull and White [7] model, and it allows the short rate process
the tendency to follow the initial term structure of interest rates. This is
an important extension, because with a judicious choice of the manifold, the
initial term structure predicted by the model can exactly match the existing
term structure, and because of this feature, models of this class are called
no arbitrage models. In general, this cannot be done with a constant mean-
reverting level, and such models are often called equilibrium models, since
they generate stationary interest rate processes. Although there are many
other extensions to the basic models—incorporating stochastic volatility, non-
linear drift (so decay is no longer exponential), and jumps, for example—the
Hull-White extension is the most applicable to the bond pricing component
of our study.

The Hull-White model has many advantages: it possesses a closed-form so-
lution for the price of zero-coupon bonds, as well as for call options on such
bonds, and it can also be calibrated to fit the initial yield curve exactly. How-
ever, one of the disadvantages of the model is that, because there is only one
factor of randomness, it only allows parallel shifts in the yield curve through
time. Bonds of all maturities are necessarily perfectly correlated with each
other. This approach cannot explain the common phenomenon of yield curve
twists. This motivates the need to incorporate an additional factor of random-
ness into the basic model.

The Hull-White model is described under the risk-neutral probability by the
stochastic differential equation

drt = a(t){r̄(t) − rt} dt + σ(t)rρ
t dwt,

where rt represents the short-term, continuously compounded interest rate,
and {wt} is a Brownian motion under the risk-neutral probability. The para-
meter ρ takes one of the two values 0 or 1/2, depending on whether it extends
the Vasiček or Cox-Ingersoll-Ross model. The parameter functions a(t), r̄(t),
and σ(t) extend the basic models, in which these parameters are just con-
stants. The randomness in this model comes from the Brownian motion, and
for the extended Vasiček model when ρ = 0, it can be interpreted as adding
white noise to the short rate. For the extended Cox-Ingersoll-Ross model the
noise is multiplicative, but it is still applied directly to the short rate process.

The main problem with this model is in the way it handles the cyclical nature
of interest rates. A time series of interest rates tends to appear cyclical because
the supply and demand for money is closely related to income growth, which
fluctuates with the business cycle. This has implications for real (adjusted
for inflation) interest rates. For example, at a business cycle peak short-term
rates should be rising and at a trough rates should be falling. This also has
implications for the slope of the term structure—it should be steeper at a
peak and flatter at a trough. Roma and Torous [9] find that this property of
real interest rates cannot be explained by a simple additive noise type model,
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such as Vasiček. The Hull-White extension can provide a correction for this
problem to a degree, but since the parameter functions are deterministic, it
implies that the business cycle effects are known with certainty, which does not
allow for the possible variation in length and intensity from what is expected.
In addition, when the central bank targets a constant rate of inflation, this
fluctuation is transferred to nominal interest rates, so the same characteristics
could apply to them.

We approach this problem by modeling the mean-reverting level directly as
a random process, and have the short rate chase the mean-reverting level in
a linear drift type model. This is similar to the model proposed by Balduzzi,
Das, and Foresi [1], except instead of a diffusion process, here the mean-
reverting level is assumed to follow a finite-state, continuous-time Markov
chain. The switching of the Markov chain to different levels produces a cyclical
pattern in the short rate that is consistent with the above effect, and the
randomness inherent in the Markov chain prevents the business cycle lengths
and intensities from being completely predictable.

The remainder of this paper is organized as follows. Section 2.2 discusses the
model, including details about the Markov chain, the short-term interest rate,
and the term-structure model. Section 2.3 outlines how the model is imple-
mented and Section 2.4 provides the results of implementing it and discusses
some implications. Finally Section 2.5 concludes.

2.2 The Model

In this section we construct the model of the short-term interest rate. This
model will be used to derive prices for bonds.

We begin by describing the probability space, denoted by (Ω,F , P ), that is
used to model randomness in this framework. We assume that P is a risk-
neutral probability measure, whose existence can be assured by an absence of
arbitrage in the underlying economy. Furthermore, we assume that the σ-field
over Ω, F , is complete and large enough to support the increasing filtration
of sub-σ-fields {Ft} associated with the Markov chain and Brownian motion
described below.

2.2.1 The Markov chain

A stochastic process, {Xt} satisfies the Markov property (with respect to
probability P and filtration {Ft}) if

P{Xs+t ∈ B|Fs} = P{Xs+t ∈ B|Xs}

for all s, t ≥ 0 and all Borel sets, B. If such a stochastic process takes values
in a countable set, it is called a Markov chain.
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For our purposes, we consider a Markov chain generated by a transition rate
matrix Q. Here Q is an N × N conservative Q-matrix with non-negative off-
diagonal entries and rows that sum to zero. In general, Q could change with
time, but for simplicity and without any direction about how it should change
we assume that Q is constant or homogeneous in time.

A transition function for a Markov chain relates the probability of changing
from one state to another within a certain time, and the transition matrix is
constructed so that each entry is a transition function

Pij(s, t) = P{Xs+t = j|Xs = i}.

The transition matrix P for a Markov chain can be generated by the transition
rate matrix Q through the forward Kolmogorov equation

∂P(s, t)
∂t

= P(s, t)Q(s + t).

Since Q is homogeneous, the general solution to the forward Kolmogorov
equation is P(s, t) = C(s)eQt and since P(s, 0) = I, the identity matrix,
the constant must also be the identity matrix, C(s) = I. From this we can
conclude that the transition functions are independent of the starting time s,
the transition matrix is the matrix exponential of Q

P(t) = eQt,

and the forward Kolmogorov integral equation is

P(t) = I +
∫ t

0

P(u)Q du.

Without loss of generality, we assume that the Markov chain is right con-
tinuous and it takes values from the set of canonical unit vectors of RN ,
{e1, ..., eN}, where ei is the vector with 1 in the ith entry and 0 elsewhere. To
make this clear we will denote the Markov chain by {xt}. In this case we have
E[xt] = P(t)Tx0, which is the probability distribution for the Markov chain
and where � denotes the transpose of a vector. More generally we have

E[xs+t|xs] = P(t)Txs.

Putting this together with the forward Kolmogorov equation gives

E[xs+t|xs] = xs +
∫ t

0

QTP(u)Txs du.

It follows directly from this that the stochastic process

mt = xt − x0 −
∫ t

0

QTxu du



2 The Term Structure of Interest Rates in a Hidden Markov Setting 19

is a square-integrable, right-continuous, zero-mean martingale. Therefore,
{xt} is a semi-martingale

xt = x0 +
∫ t

0

QTxu du + mt.

(This derivation is adapted from Elliott [4].)

There are a number of other benefits that arise from associating states of
the Markov chain with unit vectors. First note that the inner product of the
Markov chain at any time is always equal to 1

xT
t xt = 1,

the inner product between 1, the vector with 1 in each entry, and the Markov
chain is also always 1

1Txt = 1,

and the outer product of the Markov chain is the diagonal matrix of the
Markov chain

xtxT
t = diag[xt].

Furthermore, any real-valued function of the Markov chain has a linear rep-
resentation

f(xt) = fTxt

where fi = f(ei) and any vector-valued function of the Markov chain also has
a linear representation

f(xt) = FTxt

where Fij = fj(ei). Finally, notice that iterated multiples of the Markov chain
have the following idempotency property

(fTxt)xt = diag[f ]xt.

The linear representations are also useful for describing the dynamics of cer-
tain stochastic processes. Consider the stochastic process {ft} where ft =
FT

t xt, and Ft is continuous and adapted to {Ft}. Then applying Itô’s in-
tegration by parts for general semi-martingales allows the semi-martingale
decomposition

ft = f0 +
∫ t

0

FT
uQTxu du +

∫ t

0

{dFT
uxu} +

∫ t

0

FT
u dmu.

For the special case where FT
u commutes with QT and dFT

u = GT
uFT

u du, the
semi-martingale representation can be written as

ft = f0 +
∫ t

0

{Q + Gu}Tfu du +
∫ t

0

FT
u dmu.
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The following particular example arises in the context of bond pricing. Con-
sider the processes ft = exp(

∫ t

0
gT

uxu du), where {gt} is adapted, and Ft = ftI.
Clearly {Ft} is continuous, adapted, and it commutes with any N × N ma-
trix. Furthermore, dFt = FtGt dt, where Gt = gT

t xtI, so the dynamics of
ft = FT

t xt have the above semi-martingale form. Moreover, GT
t ft = diag[gt]ft,

so we have the semi-martingale representation

ft = f0 +
∫ t

0

{Q + diag[gu]}Tfu du +
∫ t

0

FT
u dmu.

If gt and ft are independent, (for example if gt is deterministic), then we
can find E[ft] by solving a homogeneous linear system of ordinary differential
equations. Since we can equivalently write ft = ftxt, we have ft = 1Tft, and
therefore E[ft] = 1TE[ft].

2.2.2 The short-term interest rate

We now consider the model for the short-term interest rate. The short rate
dynamics are defined through a stochastic differential equation, so a priori we
require that a Brownian motion denoted {wt} exists for our probability space
and filtration. In fact, since Brownian motion is a martingale, it is straight
forward to show by taking Ft = wtI above that if it exists, it must be uncor-
related with the Markov chain. However, we require that the Markov chain
and Brownian motion be independent, so we will assume that this stronger
condition is satisfied. In this case, by defining {Fx

t } to be the filtration gen-
erated by the Markov chain, {wt} is still a Brownian motion with respect to
the larger filtration {Ft ∨ Fx

T } for fixed T .

Following Naik and Lee [8], we model the short rate dynamics denoted {rt}
using the equation

drt = a(r̄t − rt) dt + σt dwt. (2.1)

This model suggests that the short rate is expected to decay exponentially
toward the level r̄t at the rate a, but it is subjected to additive noise modulated
by the volatility σt. The level and volatility parameters are permitted to switch
from time to time according to the state of the Markov chain, so we have

r̄t = r̄Txt and σt = σTxt.

For simplicity and estimation purposes, we take the parameters to be con-
stant, but the analysis follows identically if these are functions of time. This
specification has two benefits over the basic models of Vasiček [10] and Hull
and White [7]. It allows a better fit to the term structure and it has the po-
tential to resolve the difficulty with accurately estimating the mean r eversion
rate a.

The solution to the SDE in (2.1) is
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rt =
1
At

{

r0 +
∫ t

0

Auar̄u du +
∫ t

0

Auσu dwu

}

(2.2)

where
At = e

∫ t
0 a du.

The more general version of (2.2) is

rt =
1
At

{

Asrs +
∫ t

s

Auar̄u du +
∫ t

s

Auσu dwu

}

for s ≤ t

From this, we can see that conditional on the information Fx
t , rt is normally

distributed. Furthermore, by changing the order of integration we have
∫ t

0

ru du = r0

∫ t

0

A0

As
ds +

∫ t

0

(∫ t

u

Au

As
ds

)

ar̄u du +
∫ t

0

(∫ t

u

Au

As
ds

)

σu dwu.

Again, conditional on Fx
t ,
∫ t

0
ru du has a normal distribution with mean and

variance

E

[∫ t

0

ru du

∣
∣
∣
∣ F

x
t

]

= r0

∫ t

0

A0

As
ds +

∫ t

0

(∫ t

u

Au

As
ds

)

ar̄u du

var
[∫ t

0

ru du

∣
∣
∣
∣ F

x
t

]

=
∫ t

0

(∫ t

u

Au

As
ds

)2

σ2
u du.

2.2.3 The zero-coupon bond value

Since we are working under the risk-neutral probability, the value of a zero-
coupon bond maturing in t years is

B(t) = E

[

exp
(

−
∫ t

0

ru du

)]

.

We determine this expectation in two stages, by first conditioning on the σ-
field Fx

t . Because the integral is conditionally normal, it is straightforward to
get the conditional expectation

E

[

exp
(

−
∫ t

0

ru du

) ∣
∣
∣
∣ F

x
t

]

= exp
{

1
2

∫ t

0

(∫ t

u

Au

As
ds

)2

σ2
u du

− r0

∫ t

0

A0

As
ds −

∫ t

0

(∫ t

u

Au

As
ds

)

ar̄u du

}

= exp
(

−r0

∫ t

0

A0

As
ds

)

exp
{∫ t

0

{
1
2

(∫ t

u

Au

As
ds

)2

σ2−
(∫ t

u

Au

As
ds

)

ar̄
}T

xu du

}

(2.3)

where the first term in equation (2.3) is deterministic. Therefore, we find the
zero-coupon bond price by taking the expected value of the second term.



22 Robert J. Elliott and Craig A. Wilson

This is similar to the situation described at the end of Subsection 2.2.1. How-
ever, in this case the integrand is also a function of t. To deal with this, we
fix a maturity time T and define a function

gu =
1
2

(∫ T

u

Au

As
ds

)2

σ2 −
(∫ T

u

Au

As
ds

)

ar̄.

This quantity is deterministic and with a constant rate of mean reversion a
we get ∫ T

u

Au

As
ds =

1 − e−a(T−u)

a
.

Carrying on with the previous notation ft and ft, we find the expectation
E[ft] by solving the homogeneous linear ordinary differential equation

y′(t) =
{
Q + diag[gt]

}T
y(t). (2.4)

Calling the fundamental matrix in equation (2.4) Φ(t) and noting that the
initial value is f0 = x0, we write E[ft] = Φ(t)x0 and E[ft] = 1TΦ(t)x0.
Evaluating this at t = T gives the value of a zero-coupon bond maturing at
time T

B(T ) = exp
(

−r0

∫ T

0

A0

As
ds

)

1TΦ(T )x0.

This is fine when the Markov chain is observable, but in our case we consider
the Markov chain hidden. This means that the above bond value is still based
on a conditional expectation given Fx

0 , and taking expected value requires
replacing x0 with E[x0] = x̄0. In other words, because the Markov chain is
hidden, we must base our decisions on the probability distribution of its states.
The continuously compounded yield to maturity of such a bond is

R(T ) =
r0

T

∫ T

0

A0

As
ds −

ln
(
1TΦ(T )x̄0

)

T
. (2.5)

2.3 Implementation

We implement this model using 7 years of monthly US term structure data
from January 1999 to December 2005. The dataset was obtained from the
Fama risk-free rate and Fama-Bliss discount structure files of the CRSP data-
base. This data provides continuously compounded yield to maturity on 1-
month, 3-month, 6-month, and 1-year US T-bills, and it constructs continu-
ously compounded yield to maturity on hypothetical zero-coupon US treasury
bonds with maturities ranging annually from 2 to 5 years. This gives eight
different maturities observed over 84 months for a total of 672 observations.
A quick scan of the data revealed that the July 2003 observation of the six-
month yield was erroneously recorded as zero, so we drop this observation
leaving a total of 671 remaining observations.
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The theoretical yield to maturity (2.5) derived in Subsection 2.2.2 provides a
natural non-linear regression model to apply to this data. Writing

α(T ) =
1
T

∫ T

0

A0

As
ds =

1 − e−aT

aT

and Rt(T ) for the theoretical yield to maturity on a zero-coupon bond at time
t that matures T years from then at time t + T we get

Rt(T ) = α(T )rt −
ln
{
1TΦ(T )x̄t

}

T
.

It is tempting to formulate the second term as a linear function of x̄t; however,
we cannot do this since x̄t is not a unit vector as xt is. Denoting the observed
data as yt,T where T represents the maturity and t represents the date, leads
to the regression equation

yt,T = Rt(T ) + εt,T .

We assume that the residuals {εt,T } are independent with mean 0 and variance
η2. This approach involves minimizing the sum of squared errors or residuals
between the predicted theoretical yield and the actual yield observed in the
data. Since the theoretical yield is not dynamic in the sense that it does not
depend on lagged observations, the parameter estimators are weakly consis-
tent provided the residuals have finite variance η2 < ∞, which we will assume
to be the case. For details on this see Davidson and MacKinnon [3].

There are three main difficulties we face in implementing the model using
non-linear regression. First, in order to solve the differential equation we need
the dimension of the Markov chain’s state space. Expanding the state space
can only reduce the sum of squared residuals because a model with a smaller
state space can be considered a nested restriction of a more general model.
The restriction could come in the form of requiring both mean-reverting level
and volatility values to be equal in two particular states. Because of this, it is
impossible to use non-linear regression to estimate the proper dimension of the
Markov chain state space. To find an appropriate dimension, an F test could
be used to determine when the improvement from increasing the dimension is
no longer significant. Therefore, we need to fix the dimension of the Markov
chain’s state space before running the regression.

The next difficulty involves solving the differential equation. Since the coef-
ficient matrix depends on time t, the fundamental solution matrix does not
have a well-known closed form such as an exponential matrix. Therefore we
solve the differential equation numerically. We do this by approximating the
differential equation with the following difference equation

Φ
(
(n + 1)Δt

)
=
{
I +
(
Q + diag[gnΔt]

)
Δt
}T

Φ(nΔt).
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The solution uses n = 1000 intervals for each maturity, so Δt = T/1000. This
provides a degree of accuracy of at least five significant digits for each element
of the fundamental matrix Φ(T ) for all maturities up to T = 5 years.

The final problem we face deals with the initial values for the short-term
interest rate and the Markov chain, rt and x̄t. Neither of these is provided by
the data source CRSP. Since the Markov chain is unobservable, there is no
hope of finding data elsewhere to use for its initial value at any date. Therefore
we must estimate the initial probability distributions for the Markov chain at
each date. This is a classic filtering problem and one way to approach it is to
use a discrete version of the short rate dynamics

Δrt = a(r̄Txt − rt)Δt + σTxtΔwt

and monthly observations of the short-term interest rate for the desired pe-
riod January 1991 to December 2005. An extension of the filtering techniques
described in Elliott [5] can be applied to such a problem to get maximum like-
lihood estimates of the Markov chain state probabilities. Unfortunately, this
also requires observation of the short-term interest rate, but more importantly
it requires that the Markov chain transition probabilities be the same under
the true measure, which is used by the filtering procedure and the risk-neutral
measure, which is needed for the term-structure model.

A simpler filtering approach can be devised for our situation. We can simply
treat the initial Markov chain state probabilities at each date as unknown pa-
rameters in our non-linear regression. Then the parameter estimates produce
a filter for the state of the Markov chain and this automatically ensures that
from the perspective of minimizing the sum of squared errors for the series
of term structures the optimal filter is used. Unfortunately, since the Markov
chain state probabilities do not enter the regression equation linearly, this op-
timal filter cannot be expressed analytically, so the values must be obtained
numerically.

Turning our attention back to the initial short-term interest rate at each date,
we again have two alternatives. We can use a proxy for the short rate such as
the Federal Funds overnight rate, or we can filter values for the initial short
rate at each date using our non-linear regression model and the term structure
data. Naturally this latter approach uses up many more degrees of freedom by
requiring 180 additional estimates. On the other hand, the filtering approach
will choose these values optimally. Since the initial interest rate does enter the
theoretical yield formula linearly, the optimal value is found to be

r∗t =

∑
T

{
yt,T + ln{1TΦ(T )x̄t}

T

}
α(T )

∑
T α(T )2

.

These optimal values may differ substantially from the proxy values. One
reason for this difference may have to do with the institutional features of the
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US banking system that increase demand and thus price for treasury securities
beyond an optimal competitive level. In any case, an F test can be used
to determine whether the model is significantly hindered by considering the
more parsimonious restricted model with the initial short rate proxied by the
Federal Funds overnight rate. Next we look at the results from implementing
the model.

2.4 Results

In this section we present the results from implementing the term structure
model in several situations. Table 2.1 provides the main parameter estimates

N = 1 N = 3

Fed Fund Free Est. Fed Fund Free Est.

a 0.238872 0.203953 a 0.628730 0.670303
r̄ 0.059517 0.068345 r̄1 0.669713 0.355563
σ 0.000114 0.000114 r̄2 –0.07240 –0.10679
std err 0.004691 0.003095 r̄3 –0.71369 –0.12026
Ffed 11.31533 σ1 0.024351 0.023138

N = 2 σ2 0.024041 0.023241
a 0.404457 0.575902 σ3 0.000187 0.000187
r̄1 0.275108 0.105218 Q12 0.040939 0.030791
r̄2 –0.24453 –0.01730 Q13 5.723191 1.423016
σ1 0.000185 0.000185 Q21 0.181682 0.229825
σ2 0.000611 0.000611 Q23 0.287840 0.207573
Q12 0.307727 0.214106 Q31 8.428256 1.270089
Q21 0.680756 0.366236 Q32 0.042292 0.027953
std err 0.002164 0.001370 std err 0.001335 0.000674
Ffed 11.33442 Ffed 18.02795
Fmc 30.46332 29.60259 Fmc 12.31672 19.53060

Table 2.1. Parameter Estimates

a, r̄, and σ, the standard error, and F statistics for various restrictions. The
standard error is calculated in the usual way as the square root of the sum of
squared errors (SSE) divided by the difference between the number of obser-
vations and the number of parameters, std err = SSE/(n−k). The F statistic
is also calculated in the usual way as

F =
SSE(restricted) − SSE(full)

SSE(full)
× n − k

r
,

where r is the number of restricted parameters. Of course this statistic only has
an F distribution with r and n− k degrees of freedom in the linear case with
linear restrictions and independent normally distributed residuals. However,
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the test is still useful for our situation since even with violations of linearity
and normality the F distribution is approached asymptotically provided the
parameter estimators are consistent, as they are for our model. In this case
it is sometimes called a pseudo-F test. We consider a total of six scenarios:
The Markov chain state space has 1, 2, or 3 dimensions and the short-term
interest rate is proxied by the Federal Funds overnight rate or it is allowed to
be freely estimated at each date by the regression.

The first thing to notice is that all of the F statistics in Table 2.1 are highly
significant, having p-values of virtually zero in every case. This implies that all
of the restrictions should be rejected, and the fullest model, which has a three
dimensional state space and freely estimated initial short rate values at each
date, is the best model even when the penalty for its unparsimoniousness is
applied in the form of reduced degrees of freedom in the full model. A similar
picture evolves when we look at each standard error. This statistic estimates
the standard deviation of the residuals and also accounts for the degrees of
freedom in the model. We see that the standard error is steadily reduced as
more parameters enter the model.

We now turn our attention to the parameter estimates themselves. The rate
of mean reversion, a, does behave as our intuition suggests it should. As we al-
low greater flexibility in the mean-reverting level, the rate at which this level
is approached should increase. This is because with a fixed mean-reverting
level, the rate of reversion will have to accommodate instances when the data
diverges from the average. With a flexible mean-reverting level, these diver-
gences can actually be considered instances of convergence to the more flexible
level. From Table 2.1, we see that as we allow our Markov chain to have more
states, the rate of mean reversion does increase.

On the other hand, estimates of the mean-reverting level, r̄, are less economi-
cally intuitive. In the degenerate case, the level is quite reasonable at around
6.0 or 6.8%. However, when the Markov chain is allowed to switch between
distinct states, the mean-reverting level tends to switch between unreasonably
high and low values. When the short-term interest rate is restricted to be the
Federal Funds rate, the mean-reverting level ranges between –24.4 and 27.5%
for a two-state chain and –71.4 and 67.0% for a three-state chain. This is
especially troubling when the high rate of mean reversion is also considered.
We can see that restricting the initial short rate causes some of this problem,
since when this constraint is relaxed, the mean-reverting levels become more
reasonable. In particular, the two-state case switches between –1.7 and 10.5%,
but the three-state case is still between –12.0 and 35.6%.

The volatility parameter, σ, turns out to be quite unimportant when the model
is applied to the term structure data. For the degenerate case when the Markov
chain has only one state, a 1% confidence interval is 0 ≤ σ ≤ 0.030851. In fact,
the sum of squared errors does not change perceptibly when the volatility is
restricted to be σ = 0, and the p-value is virtually 1. A similar comment applies
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to the other cases, even in states one and two of the three state case, where
the volatility is estimated to be somewhat larger, it is still not significantly
different from zero. An explanation for this can be seen quite clearly in the
degenerate case, which is Vasiček’s [10] model. In this case the term structure
equation can be written as

Rt(T ) = α(T )rt + R∞{1 − α(T )} +
σ2T

4a
α(T )2,

where α(T ) is given previously and R∞ = r̄ − 0.5(σ/a)2, (see also Elliott and
Kopp [6]). From this we can see that σ enters the formula through (σ/a)2

and σ2/a and with a small optimal volatility relative to the mean reversion
rate, both of these quantities are small and likely to have little impact on the
predicted yield to maturity. Although we do not have a closed-form solution
for the more general cases, a similar reasoning may apply.

The entries of the transition rate matrix Qij can be interpreted as the rate at
which the Markov chain is switching from state i to state j. It is perhaps easier
to interpret these values if we convert them to monthly transition probabilities.
We do this by calculating the exponential matrices P = eQt, with t taken to
be one month (i.e. 1/12 of a year). The four cases with the number of states
being two or three and the short-term interest rate being restricted or not are
given as follows:

N = 2 N = 3

Fed Fund
[

0.975384 0.024616
0.054456 0.945544

]
⎡

⎣
0.717509 0.003359 0.279132
0.018137 0.961695 0.020168
0.411041 0.003423 0.585536

⎤

⎦

Free Est.
[

0.982582 0.017418
0.029793 0.970207

]
⎡

⎣
0.891514 0.002504 0.105982
0.018582 0.964250 0.017168
0.094595 0.002296 0.903109

⎤

⎦

The i, j elements of these matrices represent the transition probabilities of
going from state i to state j next month. From this, we can see that there is
a fairly low probability of switching for either of the N = 2 cases, and a low
probability of switching out of state 2 for the N = 3 cases, but there is a fairly
high probability of switching from state 1 to 3 and from 3 to 1, especially for
the restricted case when these probabilities are 27.9 and 41.1% respectively.
Another informative quantity we can find is the steady state or limiting prob-
abilities for each state. These limiting probabilities can be interpreted as the
proportion of time spent in each state in the limit as time becomes large. It is
easy to show that these transition matrices are associated with irreducible and
ergodic Markov chains, so the limiting probabilities correspond to stationary
probabilities, which satisfy the equations PTπ = π and 1Tπ = 1. These steady
state probabilities are given as follows (transposed as row vectors):
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N = 2 N = 3
Fed Fund

[
0.688688 0.311312

] [
0.546683 0.081187 0.372130

]

Free Est.
[
0.631069 0.368931

] [
0.442306 0.062766 0.494928

]

The last set of estimates for us to consider are the estimated Markov chain
state probabilities and the estimated initial short-term interest rates. Rather
than reporting these values in a tabular format, we present them graphically
in Figure 2.1. We present the estimates for the three-state Markov chain. The
top panel shows a graph of the probabilities for states 1, 2, and 3 through
time, the middle panel shows a graph of the estimated short rate and the
Federal Funds rate through time, and the lower panel shows a graph of the
yields to maturity of the various zero-coupon bonds through time. The time
scale of the graphs is matched to help draw inferences regarding how these
three components are related to each other.

First we notice that the Markov chain state probabilities seem to behave as
expected. Since according to Table 2.1, state 1 and state 3 are associated with
a high and low mean-reverting level respectively, we expect the probability of
being in state 1 to be higher and the probability of being in state 3 to be lower
when rates are rising (and vice versa when rates are falling). This is generally
observed when we compare the first and second panels. During 2002, we see
the probability of state 2 rising and the probability of state 3 falling. Both
of these states are associated with low mean-reverting levels, and therefore
they should both correspond to falling interest rates as they do. However,
state 3 has a much lower mean-reverting level than state 2, so state 2 should
be associated with interest rates falling at a slower rate, which is consistent
with what we observe between 2002 and 2004. As rates begin to rise again in
2004 and 2005, state 1 reasserts itself as the most likely state.

The second panel also allows us to compare the Federal Funds interest rate
with the short rate filtered by the model. In general, they seem to agree quite
well, although the filtered rate is usually slightly lower. Recall that this was
also observed about the short maturity T-bills. There are a few substantial
departures in 1999, 2000, and 2001, which likely account for most of the
increase in sum of squared errors when we restrict the short-term interest
rate. Indeed, when allowed to be freely estimated, the short rate is seen to
follow the 1-month T-bill very closely.

The third panel graphs the data. We can see that this period is associated
with a number of interesting phenomena. There are times when the interest
rates are rising and the spread or slope of the yield curve is also increasing.
The yield curve becomes very flat at the end of 2000 and beginning of 2001.
The more common situation occurs when rates are falling but the spread is
widening in 2001 and also the other common situation with rising rates and
decreasing spread also occurs in 2004 and 2005. The most interesting feature
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Fig. 2.1. State Probabilities and Initial Short-Term Interest Rate Estimates
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occurs at the end of 2001 when the yield curve begins to twist with longer-term
rates rising and short-term rates still falling. This is the time when a model
with only one risk factor such as our degenerate case has the most difficulty
in describing term structure dynamics, and this might explain why allowing
the Markov chain as second factor of randomness to enter makes such a vast
improvement in the models ability to explain this data.

2.5 Conclusion

We outline a methodology to incorporate a stochastic volatility and mean-
reverting level into the short-term interest rate dynamics by using a Markov
chain. We then show how to calculate the value of a zero-coupon bond. Using
recent yield to maturity data, we estimate the model using a non-linear regres-
sion technique, and we find that the model makes a significant improvement
in explaining the data over the basic model that excludes the Markov chain.
Furthermore, we find that a three-state Markov chain makes a significant im-
provement over the two-state case. These improvements remain significant
even when the initial short-rate is chosen optimally at each date, rather than
being constrained to take values that proxy this rate such as the Federal Funds
overnight rate. This suggests that models based on two-state regime switching
may benefit from our more general N -state model construction.
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On Fair Valuation of Participating Life
Insurance Policies With Regime Switching
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Summary. We consider the valuation of participating life insurance policies using
a regime-switching Esscher transform developed in Elliott, Chan and Siu (2005)
when the market values of the reference asset are driven by a Markov-modulated
geometric Brownian motion (GBM). We employ the Markov-modulated GBM driven
by a continuous-time hidden Markov chain model to describe the impact of the
switching behavior of the states of economy on the price dynamics of the reference
asset. We also explore the change of measures technique to reduce the dimension of
the valuation problem.

Key words: Participating policies; hidden Markov chain model; regime-
switching Esscher transform.

3.1 Introduction

In recent years, participating life insurance products become more and more
important in the finance and insurance markets due to their lower risk but
provide comparable returns relative to other equity-index products. They are
investment plans with associated life insurance benefits, a specified benchmark
return, a guarantee of an annual minimum rate of return and a specified rule
of the distribution of annual excess investment return above the guaranteed
return. The policyholder has to pay a lump sum deposit to the insurer to ini-
tialize the contract. The insurer plays the role of a fund manager to manage
and invest the funds in a specified reference portfolio. A major feature of these
investment plans is the sharing of profits from an investment portfolio between
the policyholders and the insurer. Typically, the insurer employs a specified
rule of surplus distribution, namely, the reversionary bonus, to credit interest
at or above a specified guaranteed rate to the policyholders every period, say
per annum. If the surplus of the fund is positive at the maturity of the policy,
the policyholders can also receive a terminal bonus. In the case that the insurer
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defaults at the maturity of the policy, the policyholders can only receive the
outstanding assets. Grosen and Jørgensen [15] and Ballotta, Haberman and
Wang [4] provided a comprehensive discussion on different contractual fea-
tures of participating policies. Since there is a growing trend of using the
market-based and fair valuation accountancy standards internationally for
the implementation of risk management practice for participating policies, it
is of practical importance and relevance to develop appropriate models for the
valuation of these policies.

The pioneering work by Wilkie [22] introduced the use of the modern option
pricing theory to investigate the embedded options in bonuses on with-profits
life-insurance policies. Grosen and Jørgensen [15] developed a flexible contin-
gent claims model to incorporate the minimum rate guarantee, bonus distri-
bution and surrender risk. Priel, Putyatin and Nassar [20] incorporated the
path dependence associated with the rule of the bonus distribution in their
contingent claims model and adopted similarity transformations of variables
to reduce the dimension of the problem. Bacinello ([1],[2]) adopted binomial
schemes for computing the numerical solutions of the fair valuation problem
of participating policies with various contractual features. Ballotta, Haber-
man and Wang [4] developed a valuation method for participating policies to
incorporate reversionary bonus, terminal bonus and default option. Willder
[23] adopted the modern option pricing approach for investigating the effects
of various bonus strategies in unitized with-profit policies. Chu and Kwok
[7] constructed a contingent claims model for participating policies that can
incorporate rate guarrantee, bonuses and default risk.

In this paper, we consider the valuation of participating life insurance poli-
cies with bonus distributions and rate guarantees when the market values of
the reference asset are driven by a Markov-modulated Geometric Brownian
Motion (GBM). The switching behavior for the states of an economy can be
attributed by the structural changes in economic conditions, political climates
and business cycles, etc. Many life insurance products are relatively long dated
and there can be substantial fluctuations in economic variables over a very
long period of time. It is of practical importance and relevance to incorpo-
rate the switching behavior of the states of the economy for the valuation of
participating policies. The market described by the Markov-modulated GBM
model is incomplete, and, hence there are more than one equivalent mar-
tingale measures. The pioneering work by Gerber and Shiu [14] provided a
pertinent solution to the option pricing problem in an incomplete market by
using Esscher transform, a time-honored tool in actuarial science introduced
by Esscher [10]. Here, we employ a modified version of the Esscher transform,
namely, a regime-switching Esscher transform introduced in Elliott, Chan and
Siu [9], to determine an equivalent martingale measure. This paper is outlined
as follows.

Section 3.2 presents the fair valuation model for the partipating policies and a
regime switching partial differential equation (PDE) for the valuation. Section
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3.3 considers the problem of reducing the dimension of the regime-switching
PDE using a change of probability measures. The final section suggests some
potential topics for further investigation.

3.2 The model dynamics

We consider a financial model consisting of a risk-free money market account
and a reference risky asset. We suppose that the market values of the reference
asset are driven by a GBM with the drift and the volatility depending on the
states of a continuous-time hidden Markov chain model. The states of the
continuous-time hidden Markov chain model represents different states of an
economy. We assume that the market is frictionless and that the mortality
risk and surrender option are absent. We further impose certain assumptions
on the rule of bonus distribution in our valuation model. In the sequel, we
introduce the set-up of our model.

First, we fix a complete probability space (Ω,F ,P), where P is the real-world
probability measure. Let T denote the time index set [0, T ]. Let {Wt}t∈T
denote a standard Brownian motion on (Ω,F ,P) with respect to the P-
augmentation of its natural filtration FW := {FW

t }t∈T . The states of an
economy augmented by a continuous-time Markov Chain process {Xt}t∈T on
(Ω,F ,P) with a finite state space S := (s1, s2 . . . , sN ). Without loss of gener-
ality, we can identify the state space of the process {Xt}t∈T to be a finite set
of unit vectors {e1, e2, . . . , eN}, where ei = (0, . . . , 1, . . . , 0)∗ ∈ RN , where ∗ is
a transpose of a vector. We suppose that the processes {Xt}t∈T and {Wt}t∈T
are independent.

Write Q(t) for the generator or Q-matrix [qij(t)]i,j=1,2,...,N . Then, from Elliott,
Aggoun and Moore [8], we have the following semi-martingale representation
theorem for the process {Xt}t∈T :

Xt = X0 +
∫ t

0

Q(s)Xsds + Mt . (3.1)

Here {Mt}t∈T is an RN -valued martingale increment process with respect to
the filtration generated by {Xt}t∈T .

Let {r(t,Xt)}t∈T be the instantaneous market interest rate of a money market
account, which depends on the state of the economy described by {Xt}t∈T ;
that is,

r(t,Xt) = 〈r,Xt〉 , t ∈ T , (3.2)

where r := (r1, r2, . . . , rN )∗ with ri > 0 for each i = 1, 2, . . . , N and 〈·, ·〉
denotes the inner product in the space RN . For notational simplicity, we
write rt for r(t,Xt).
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In this case, the dynamics of the price process {Bt}t∈T for the bank account
is described by:

dBt = rtBtdt , B0 = 1 . (3.3)

Now, we assume that the expected growth rate {μt}t∈T and the volatility
{σt}t∈T of the market values of the asset also depend on {Xt}t∈T and are
described by:

μt := μ(t,Xt) = 〈μ, Xt〉 , σt := σ(t,Xt) = 〈σ, Xt〉 , (3.4)

where μ := (μ1, μ2, . . . , μN ) and σ := (σ1, σ2 . . . , σN ) with σi > 0 for each
i = 1, 2, . . . , N .

Then, the market values of the asset {At}t∈T are governed by the Markov-
modulated GBM with dynamics

dAt = μtAtdt + σtAtdWt . (3.5)

Let Rt denote the book value of the policy reserve and Dt the bonus reserve,
at time t ∈ T . Then, At = Rt + Dt, for each t ∈ T . Note that R(0) := αA(0),
α ∈ (0, 1], and R(0) is interpreted as the single initial premium paid by the
policyholder for acquiring the contract and α is the cost allocation parameter.

Write cR(A, R) for the interest rate credited to the policy reserve. Then,
cR(A, R) is given by:

dRt = cR(A, R)Rtdt . (3.6)

In practice, the specification of cR(A, R) depends on the rule of bonus distri-
bution, which is decided by the management level of an insurance company.
There is no consensus on a unified rule for the specification of cR(A, R). Typi-
cally, an insurer distributes to his/her policyholder a certain proportion, say δ,
of the excess of the ratio of bonus reserve Dt to the policy reserve Rt over the
target ratio β, which is a long-term constant specified by the management. The
proportional constant δ is called the reversionary bonus distribution rate and
it is assumed that δ ∈ (0, 1]. For the crediting scheme of interest rate, it is also
assumed that there is a specified guarantee rate rg for the minimum interest
rate credited to the policyholder’s account. This means that cR(A, R) ≥ rg.
Grosen and Jørgensen [15], Prieul et al. [20] and Chu and Kwok [7] adopted
different specifications for the interest rate crediting scheme. Here, we adopt
the interest rate crediting scheme used in Chu and Kwok [7], which is

cR(At, Rt) = max
(

rg, ln
(

At

Rt

)

− β

)

. (3.7)

It must be noted that the rate cR(At, Rt) is credited to the policy holder’s
account and depends on both β and rg.
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We adopt a martingale approach based on the Esscher transform to determine
the fair value of a participating policy. Bacinello [1] pioneered the use of the
martingale approach for the valuation of participating policies. The fair price
of the participating policy is expressed as the expectation of the discounted
payoff of the policy under the risk-neutral equivalent martingale measure Q,
under which the process of the discounted prices of any security is a martingale
(see Harrison and Kreps [16]). Ballotta [3] employed the constant-parameter
Esscher transform to determine an equivalent martingale pricing measure in
an incomplete market described by the jump-diffusion process. In the sequel,
we describe the use of the regime-switching Esscher transform for determining
an equivalent martingale measure.

Let Yt denote the logarithmic return ln(At/A0) from the asset over the time
duration [0, t]. Write {FX

t }t∈T and {FY
t }t∈T for the P-augmentation of the

natural filtrations generated by {Xt}t∈T and {Yt}t∈T , respectively. For each
t ∈ T , we define Gt as the σ-algebra FX

t ∨ FY
t . Let θ(t,Xt) be the regime-

switching Esscher parameter, which depends on Xt. θ(t,Xt) can be written
as follows:

θ(t,Xt) = 〈θ,Xt〉 =
N∑

i=1

θi 〈Xt, ei〉 , (3.8)

where θ := (θ1, θ2, . . . , θN )∗ ∈ RN . We write θt for θ(t,Xt).

Then, as in Elliott, Chan and Siu [9], the regime-switching Esscher transform
Qθ equivalent to P on Gt is defined by

dQθ

dP

∣
∣
∣
∣
Gt

=
exp
( ∫ t

0
θsdYs

)

EP

[
exp
( ∫ t

0
θsdYs

) ∣
∣
∣ FX

t

] , t ∈ T . (3.9)

The Radon-Nikodym derivative of the regime-switching Esscher transform is
given by (see Elliott, Chan and Siu, [9]):

dQθ

dP

∣
∣
∣
∣
Gt

= exp
(∫ t

0

θsσsdWs −
1
2

∫ t

0

θ2
sσ2

sds

)

. (3.10)

Write {θ̃t}t∈T for a family of risk-neutral regime-switching Esscher parame-
ters. By the fundamental theorem of asset pricing (see Harrison and Kreps
[16], Harrison and Pliska ([17],[18])), the absence of arbitrage opportunities
is “essentially” equivalent to the existence of an equivalent martingale mea-
sure under which the discounted stock price process is a martingale. Here, the
martingale condition is given by considering an enlarged filtration as follows:

A0 = EQθ̃

[
exp
(
−
∫ t

0

rsds
)
At

∣
∣
∣ FX

t

]
, for any t ∈ T . (3.11)
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As in Elliott, Chan and Siu [9], we can determine θ̃t uniquely from the mar-
tingale condition:

θ̃t =
rt − μt

σ2
t

= −λt

σt
=

N∑

i=1

(

− λi

σi

)

〈Xt, ei〉 , t ∈ T , (3.12)

where λt := μt−rt

σt
is the market price of risk or unit risk premium of the

reference asset at time t; λi := μi−ri

σi
, for each i = 1, 2, . . . , N .

Let G̃t denote the enlarged σ-field FX
T ∨FY

t , for any t ∈ T . From the martingale
condition, the Radon-Nikodym derivative of the risk-neutral regime switching
Esscher measure Qθ̃ is given by:

dQθ̃

dP

∣
∣
∣
∣
Gt

= exp
[ ∫ t

0

(
rs − μs

σs

)

dWs −
1
2

∫ t

0

(
rs − μs

σs

)2

ds

]

. (3.13)

By Girsanov’s theorem, the process W̃t = Wt +
∫ t

0
( rs−μs

σs
)ds is a standard

Brownian motion with respect to {G̃t}t∈T under Qθ̃. Hence, the market values
of the asset under Qθ̃ can be written as

dAt = rtAtdt + σtAtdW̃t . (3.14)

Suppose V (A, R, X, t) denotes the value of the participating policy at time t.
The terminal payoff of the participating policy V (A, R, X, T ) on the policy
maturity date T , when XT = X, is given by:

V (A, R, X, T ) =

⎧
⎪⎨

⎪⎩

AT if AT < RT

RT if RT ≤ AT ≤ RT

α

RT + γP1T if AT > RT

α

(3.15)

where γ is the terminal bonus distribution rate and P1T := max(αAT −RT , 0)
is the terminal bonus option.

Let P2T := max(RT −AT , 0), where P2T represents the terminal default option
on the policy maturity date T . Then, it can be shown that the terminal payoff
V (A, R, X, T ) can be written in the following form:

V (A, R, X, T ) = RT + γP1T − P2T . (3.16)

Suppose the trajectory of the hidden process X from time 0 to time T is given
in advance. Then, the fair value of the participating policy V (A, R, t | G̃t) at
time t is given by

V (A, R, t | G̃t) = EQθ̃

[
exp
(
−
∫ T

t

rsds
)
V (A, R, X, T )

∣
∣
∣ G̃t

]
. (3.17)
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The pricing result can be justified by minimizing the relative entropy of an
equivalent martingale measure and the real-world probability P (see Miyahara
[19] and Elliott, Chan and Siu [9]).

Note that

RT = Rt exp
(∫ T

t

cR(As, Rs)ds

)

= Rt exp
[ ∫ T

t

max
(

rg, ln
(

As

Rs

)

− β

)

ds

]

. (3.18)

Since one cannot determine which of ln(As

Rs
) − β or rg is greater when the

regime Xs is fixed, it is difficult, if not impossible, to write the fair value of
the participating policy in closed form as some sort of expectation using the
joint probability density function or characteristic function of the occupation
times of the Markov chain X model. In this case, the PDE approach can
provide a convenient way to evaluate the fair value of the participating policy.

For determining the value of the participating policy, we consider an additional
state variable Rt, which is a path integral of the process A. Now, if At = A,
Rt = R and Xt = X are given at time t, the value of the participating policy
V (A, R, X, t) at time t is given by:

V (A, R, X, t)

= EQθ̃

[

exp
(

−
∫ T

t

rsds

)

V (A, R, X, T )
∣
∣
∣
∣ At = A, Rt = R, Xt = X

]

. (3.19)

Write Ṽ (A, R, X, t) for exp(−
∫ t

0
rsds)V (A, R, X, t). Since Rt is a path in-

tegral of At and At is a Markov process given that the trajectory of X is
known, (At, Rt) is a two-dimensional Markov process given the known trajec-
tory of X. Due to the fact that X is also a Markov process, (At, Rt, Xt) is
a three-dimensional Markov process with respect to the enlarged information
set Gt, where Gt = σ{Au, Xu|u ∈ [0, t]}. Then, by the Markov property of
(At, Rt, Xt),

Ṽ (A, R, X, t) = EQθ̃

[

exp
(

−
∫ T

0

rsds

)

V (A, R, X, T )
∣
∣
∣
∣ Gt

]

. (3.20)

Hence, Ṽ (A, R, X, t) is a Gt-martingale under Qθ̃.

Let Ṽ(A, R, t) denote the N -dimensional vector
(
Ṽ (A, R, e1, t), . . . , Ṽ (A, R, eN , t)

)
.

Then, Ṽ (A, R, X, t) =
〈
Ṽ(A, R, t), Xt

〉
.

Write cR(u) for cR(Au, Ru). Then, by applying Itô’s differentiation rule to
Ṽ (A, R, X, t),
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Ṽ (A, R, X, t) = Ṽ (A, R, X, 0) +
∫ t

0

(
∂Ṽ

∂u
+ ruAu

∂Ṽ

∂A
+

1
2
σ2

uA2
u

∂2Ṽ

∂A2

+cR(u)Ru
∂Ṽ

∂R

)

du +
∫ t

0

∂Ṽ

∂A
σuAudWu +

∫ t

0

〈
Ṽ, dXu

〉
,

(3.21)

and dXt = Q(t)Xtdt + dMt.

Since Ṽ (A, R, X, t) is a Gt-martingale under Qθ̃, all terms with bounded vari-
ation must be identical to zero. Hence, we obtain the PDE for the discounted
fair value Ṽ (A, R, X, t):

∂Ṽ

∂t
+ rtAt

∂Ṽ

∂A
+

1
2
σ2

t A2
t

∂2Ṽ

∂A2
+ cR(t)Rt

∂Ṽ

∂R
+
〈
Ṽ, QX

〉
= 0 . (3.22)

Let V(A, R, t) denote the N -dimensional vector
(
V (A, R, e1, t), . . . , V (A, R, eN , t)

)
.

Define the partial differential operator LA,R,X as follows:

LA,R,X(V, t) = −rtV +
∂V

∂t
+ rtAt

∂V

∂A
+

1
2
σ2

t A2
t

∂2V

∂A2
+ cR(t)Rt

∂V

∂R
. (3.23)

Then, as in Buffington and Elliott ([5],[6]), V (A, R, X, t) satisfies the PDE

LA,R,X(V, t) + 〈V, QX〉 = 0 , (3.24)

with the terminal condition

V (A, R, X, T ) = RT + γ max(αAT − RT , 0) − max(RT − AT , 0) . (3.25)

3.3 Dimension reduction to regime-switching PDE

Chu and Kwok [7] adopted the method of similarity transformations to reduce
the dimension of the PDE for the valuation of a participating policy without
switching regimes. Here, we use a change of probability measures to reduce
the dimension of the regime-switching PDE in the last section. The regime-
switching PDE derived from the change of measures depends on two state
variables including a new observable state variable and the state of the econ-
omy. When there is no regime switching, the PDE derived from the change of
measures resembles to the one obtained from the method of similarity trans-
formations by Chu and Kwok [7]. By employing the method in Buffington
and Elliott ([5],[6]), we further simplify the problem by writing the regime-
switching PDE as a system of coupled PDEs without switching regimes.
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First, we define a new observable state variable Z := ln
(

A
R

)
and a function

U(Z, X, t) := V (A, R, X, t)/R. We assume that

cZ(Z) = cR(A, R), VZ(Z, X, T ) =
V (A, R, X, T )

RT
. (3.26)

Note that the terminal condition can be written as

VZ(Z, X, T ) = 1 + γ max(αeZT − 1, 0) − max(1 − eZT , 0) . (3.27)

By Itô’s lemma, the dynamics of the new state variable Z under P are given
by

dZt =
(

μt − cZ(Zt) −
1
2
σ2

t

)

dt + σtdWt . (3.28)

Now, we define a Qθ̃-martingale with respect to Gt as

ξ(t) = exp
(

−
∫ t

0

rsds

)
At

A0
. (3.29)

Under Qθ̃, the dynamics of At are given by

At = A0 exp
[ ∫ t

0

(

rs −
1
2
σ2

s

)

ds +
∫ t

0

σsdWs

]

. (3.30)

Hence,

ξ(t) = exp
(

−
∫ t

0

1
2
σ2

sds +
∫ t

0

σsdWs

)

. (3.31)

Then, we define a new equivalent measure Q̂ as

dQ̂

dQθ̃

∣
∣
∣
∣
Gt

= ξ(t) , t ∈ T . (3.32)

By Girsanov’s theorem, the process

Ŵt := W̃t −
∫ t

0

σsds , (3.33)

is a standard Brownian motion under Q̂ with respect to Gt.

Under Q̂, the dynamics of A can be represented by

dAt = (rt + σ2
t )Atdt + σtAtdŴt . (3.34)

Therefore, under Q̂, the dynamics of Zt are given by
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dZt =
(

rt +
1
2
σ2

t − cZ(Zt)
)

dt + σtdŴt . (3.35)

By Bayes’ rule,

Ṽ (A, R, X, t) = EQθ̃

[

exp
(

−
∫ T

0

rsds

)

V (A, R, X, T )
∣
∣
∣
∣ Gt

]

= EQ̂

[
ξ(t)
ξ(T )

exp
(

−
∫ T

0

rsds

)

V (A, R, X, T )
∣
∣
∣
∣ Gt

]

= exp
(

−
∫ t

0

rsds

)

AtEQ̂

[(
RT

AT

)
V (A, R, X, T )

RT

∣
∣
∣
∣ Gt

]

= exp
(

−
∫ t

0

rsds

)

AtEQ̂

(
e−ZT VZ(Z, X, T )

∣
∣ Gt

)
. (3.36)

Write ṼZ(Z, X, t) for EQ̂(e−ZT VZ(Z, X, T )|Gt). Then, ṼZ(Z, X, t) is a Q̂-
martingale with respect to Gt. It is worth mentioning that all asset prices
are Q̂-martingale with respect to Gt when discounted by the asset market
value A. In this case, all asset prices are measured in units of A. We call the
market value A of the asset a numeráire. Consequently, changing the measure
from Qθ̃ to Q̂ is equivalent to the change of numeráire from the price process
of the money market account B to the price process of the reference asset A.

Let ṼZ(Z, t) denote the N -dimensional vector (ṼZ(Z, e1, t), . . . , ṼZ(Z, eN , t)).
Then, ṼZ(Z, X, t) =

〈
ṼZ(Z, t), Xt

〉
. Again, by applying Itô’s differentiation

rule to ṼZ(Z, X, t) we obtain

ṼZ(Z, X, t) = ṼZ(Z, X, 0) (3.37)

+
∫ t

0

[
∂ṼZ

∂u
+
(

ru +
1
2
σ2

u − cZ(Zu)
)

∂ṼZ

∂Z
+

1
2
σ2

u

∂2ṼZ

∂Z2

]

du

+
∫ t

0

∂ṼZ

∂Z
σudŴu +

∫ t

0

〈
ṼZ, dXu

〉
, (3.38)

and dXt = Q(t)Xtdt + dMt.

Note that ṼZ(Z, X, t) is a Gt-martingale under Q̂ and all terms with bounded
variation must be identical to zero. Hence, we get the following PDE with one
observable state variable Z for ṼZ(Z, X, t):

∂ṼZ

∂t
+
(

rt +
1
2
σ2

t − cZ(Zt)
)

∂ṼZ

∂Z
+

1
2
σ2

t

∂2ṼZ

∂Z2
+
〈
ṼZ, Xt

〉
= 0 . (3.39)

Notice that

U(Z, X, t) = eZt ṼZ(Z, X, t) , (3.40)
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so that

∂ṼZ

∂t
= e−Zt

∂U

∂t
,

∂ṼZ

∂Z
= e−Zt

(
∂U

∂Z
− U

)

,

∂2ṼZ

∂Z2
= e−Zt

(
∂2U

∂Z2
− 2

∂U

∂Z
+ U

)

.

(3.41)

Define the partial differential operator LZ,X as follows:

LZ,X(U, t) =
∂U

∂t
+
(

rt −
1
2
σ2

t − cZ(Zt)
)

∂U

∂Z

+
1
2
σ2

t

∂2U

∂Z2
−
(
rt − cZ(Zt)

)
U . (3.42)

Then, the process U satisfies the PDE

LZ,X(U, t) + 〈U,Xt〉 = 0 , (3.43)

with the auxillary condition

U(Z, X, T ) = 1 + γ max(αeZT − 1, 0) − max(1 − eZT , 0) . (3.44)

Following Buffington and Elliott ([5],[6]), we reduce the above regime-switching
PDE to a system of N coupled PDEs without regime switching with Xt =
e1, e2, . . . , eN . First, we suppose that Xt = ei (i = 1, 2, . . . , N). Then,

rt = 〈r,Xt〉 = 〈r, ei〉 = ri ,

σt = 〈σ, Xt〉 = 〈σ, ei〉 = σi . (3.45)

Let Ui := U(Z, ei, t), for i = 1, 2 . . . , N . Write U for (U1, U2, . . . , UN ). Define
the following partial differential operator LZ,ei , for i = 1, 2, . . . , N :

LZ,ei(Ui, t) =
∂Ui

∂t
+
(

ri −
1
2
σ2

i − cZ(Zt)
)

∂Ui

∂Z

+
1
2
σ2

i

∂2Ui

∂Z2
−
(
ri − cZ(Zt)

)
Ui . (3.46)

Then, the N -dimensional vector U satisfies the following system of N coupled
PDEs without regime switching:

LZ,ei(Ui, t) + 〈U, Aei〉 = 0 , (3.47)

with the auxillary condition

U(Z, ei, T ) = 1 + γ max(αeZT − 1, 0) − max(1 − eZT , 0) . (3.48)
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3.4 Further investigation

For further investigation, one may consider the valuation of with-profits insur-
ance products when the market values of the reference portfolio are governed
by other types of regime-switching models, such as the Markov-modulated
Lévy processes. It is interesting to explore the use of other techniques for
choosing an equivalent martingale measure in the literature, such as mini-
mizing the quadratic utility by Föllmer and Sondermann [11], Föllmer and
Schweizer [12] and Schweizer [21] and the quantile-based hedging by Föllmer
and Leukert [13], etc., for the valuation of with-profits insurance products
under the Markov-modulated diffusion processes and other specifications of
the market values of the reference portfolio.
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Summary. A Markov-modulated market consists of a riskless asset or bond, B,
and a risky asset or stock, S, whose dynamics depend on Markov process x. We
study the pricing of options and variance swaps in such markets. Using the martin-
gale characterization of Markov processes, we note the incompleteness of Markov-
modulated markets and find the minimal martingale measure. Black-Scholes for-
mulae for Markov-modulated markets with or without jumps are derived. Perfect
hedging in a Markov-modulated Brownian and a fractional Brownian market is not
possible as the market is incomplete. Following the idea proposed by Föllmer and
Sondermann [13] and Föllmer and Schweizer [12]) we look for the strategy which
locally minimizes the risk. The residual risk processes are determined in these sit-
uations. Variance swaps for stochastic volatility driven by Markov process are also
studied.

Key words: Markov-modulated markets with jumps, option pricing, vari-
ance swaps, minimal martingale measure

4.1 Introduction

Consider a standard probability space (Ω,F, Ft, P ) with a right-continuous,
complete filtration Ft and probability P.

A Brownian (B, S)-security market will consist of a riskless asset, (bond or
bank account) B = {Bt, t ≥ 0}, and risky asset, (stock or share), S = {St, t ≥
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0} whose dynamics are given by the two equations:
{

dBt = rBt, B0 > 0, r > 0,

dSt = St(μdt + σdwt), S0 > 0, σ > 0, μ ∈ R.
(4.1)

Here r denotes the instanteneous interest rate, μ the appreciation rate, σ the
volatility and w = {wt, t ≥ 0} is an Ft-Brownian motion on (Ω,F, Ft, P ).
Ewt = 0, Ew2

t = t, where E is an expectation with respect to the measure
P. It is well-known that this market has no arbitrage and is complete (see
Elliott and Kopp [9]).

However, even in the Brownian motion framework, there is an arbitrage op-
portunity if Stratonovich integration is used in the definition of self-financing
portfolios. Consider an example, due to Rogers [26] and Shiryaev [27]. Let
Bt = ert and St = ert+wt represent the bond price and stock price, respec-
tively, at time t. Then (Bt, St), with ·dwt denoting the Stratonovich differen-
tial, constitutes a Black-Scholes market, namely:

{
dBt = rBtdt

dSt = St(rdt + ·dwt).
(4.2)

Consider the portfolio πt = (βt, γt), where
{

βt = 1 − e2wt ,

γt = 2(ewt − 1).
(4.3)

Then using (4.2) the value at time t of this portfolio is

Xπ
t = βtBt + γtSt = ert[ewt − 1]2.

From (4.2) and (4.3) it is easy to check that

dXπ
t = βtdBt + γt · dSt.

Thus, πt is self-financing if one replaces the Itô integral by the Stratonovich
integral in the definition of self-financing. Also, Xπ

0 = 0, Xπ
t ≥ 0 for t > 0,

and EXπ
t > 0 for t > 0, and so there is arbitrage in this model.

Remark 1. It is well-known, that if Itô integrals are used in (4.1) there is no
arbitrage. Such markets are also complete (see Elliott & Kopp [9]).

Remark 2. Note that if the Stratonovich integral is used in the definition of
self-financing portfolios of a Brownian market with jumps then there is arbi-
trage.
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A Markov-modulated Brownian (B, S)-security market consists of a riskless
asset, (a bond or bank account), B, and risky asset, (a stock or share), S,
which satisfy the following system of two equations:

{
dBt = r(xt)Bt, B0 > 0, r(x) > 0,

dSt = St(μ(xt)dt + σ(xt)dwt), S0 > 0, σ(x) > 0, μ(x) ∈ R.
(4.4)

Here r(x) is an interest rate, μ(x) is an appreciation rate, σ(x) is a volatility.
They are bounded continuous functions on a locally compact metric space
X, the state space of a continuous-time Markov process x = {xt, t ≥ 0},
x0 = x. As before, w is a Brownian motion independent of x, and the second
stochastic differential equation is an Itô equation.

The main goal of this paper is to study model (4.4), including such models
with jumps.

The paper is organized as follows. Literature review is provided in Section
4.2. Using the martingale characterization of Markov processes (Section 4.3),
we state the incompleteness of Markov-modulated Brownian (B, S)-security
markets (4.4) without, (Section 4.4), and with, (Section 4.5), jumps and de-
termine the minimal martingale measure. The Black-Scholes formulae for
Markov-modulated Brownian (B, S)-security markets (4.4) without, (Subsec-
tion 4.4.2), and with jumps, (Subsection 4.5.2), are derived.

Perfect hedging in a Markov-modulated Brownian and Brownian fractional
(B, S)-security market, (without and with jumps), is not possible since we
have an incomplete market. Following the idea proposed by Föllmer & Son-
dermann [13] and Föllmer & Schweizer [12] we look for the strategy which
locally minimizes the risk. The residual risk processes are derived for all these
schemes.

Variance swaps when the stochastic volatility is driven by Markov process are
also studied (Section 5). An example of variance swaps where the stochastic
volatility is driven by a two-state continuous Markov chain is discussed in
Section 5.3.

A Feynmann-Kac’s formula for the general Markov-modulated Process
(ys(t), xs(t))t≥s (Appendix A.1) and a formula for the option price fT (ST )
for the market when there is also a compound geometric Poisson process
(Appendix A.2) are presented in the Appendix.

4.2 Literature review

Black and Scholes [2] obtained the option pricing formula for the Brownian
market. Merton [23] extended the result to the case where the the stock returns
are discontinuous. Cox and Ross [4] valued options for alternative stochastic
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processes. Oldfield, Rogalski and Jarrow [25] considered autoregressive jump
process for common stock returns. Harrison and Pliska [18] introduced and
studied arbitrage and completeness of Brownian market. Föllmer and Son-
dermann [13] introduced and studied locally minimizing risk strategies. Aase
[1] obtained option pricing formula when the security price is a combina-
tion of an Itô process and a random point process. Hamilton [17] introduced
Markov switching into the econometric mainstream. Föllmer and Schwiezer
[12] studied hedging under incomplete information using the minimal martin-
gale measure. Elliott and Föllmer’s paper [10] studies an optional stochastic
integrals which are the sum of a predictable stochastic integral of a martin-
gale and an orthogonal martingale, and their applications in finance. Di Masi,
Platen and Runggaldier [5] considered the hedging of options under discrete
observations of assets with stochastic volatility in a discrete time framework.
Di Masi, Kabanov and Runggaldier [6] obtained option pricing formula for
stochastic volatility driven by a Markov chain in continuous time. Hofmann,
Platen and Schweizer [19] studied option pricing under incompleteness and
with stochastic volatility. Swishchuk [32] obtained an option pricing formula
for a model with stochastic volatility driven by a semi-Markov process. Gray
[14] combined GARCH effects with Markov switching. Griego and Swishchuk
[15] obtained the Black-Scholes formula for a market in a Markov random
environment. Elliott and Swishchuk [7] studied option pricing formulae and
swaps for Markov-modulated Brownian and fractional Brownian Markets with
jumps. The jumps in the dynamics of stock prices have been considered, in
particular, by Merton [23] and Aase [1]. In the paper by Elliott, Chan and Siu,
[8], the authors consider the option pricing problem when the risky underly-
ing assets are driven by a Markov-modulated geometric Brownian motion. It
was shown that the martingale measure pricing measure chosen by a regime
switching Esscher transform is the minimal entropy martingale measure with
respect to the relative entropy. Variance and volatility swaps for financial
markets with stochastic volatility that follow Heston model have been studied
in Swishchuk [29] and variance swaps for financial markets with stochastic
volatilites with delay have been studied in Swishchuk [28].

4.3 Martingale characterization of Markov processes

Let xt be a homogeneous continuous-time Markov process in a locally compact
phase space of states X with infinitesimal operator Q and suppose x0 = x.

Lemma 1. Let f ∈ Domain(Q). Then the process

mf
t := f(xt) −

∫ t

0

Qf(xs))ds (4.5)

is a martingale with respect to the filtration F ∗
t := σ{xs; 0 ≤ s ≤ t}.
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Proof. Since xt is a Markov process, mf
t is adapted to the filtration F ∗

t . For
0 ≤ s ≤ t ≤ T we have

mf
t − mf

s = f(xt) − f(xs) −
∫ t

s

Qf(xu)du. (4.6)

We note that
E
[
f(xt) | F ∗

t

]
= E

[
f(xt) | xs

]

since xt is a Markov process. If Ttf(xs) := Ex[f(xt) | xs] (we note that
Ttf(x) = E[f(xt) | x0 = x] := Ex[f(xt)]) then

Ttf(xs) = f(xs) +
∫ t

s

E
[
Qf(xu) | F ∗

s

]
du = f(xs) +

∫ t

s

TsQf(xu)du. (4.7)

Hence, taking into account equation (7), we obtain

E
[
mf

t − mf
s | Fs

]
= E

[
f(xt) | Fs

]
− f(xs) − E

[ ∫ t

0

Qf(xu)du
∣
∣
∣ Fs

]

= Ttf(xs) − f(xs) −
∫ t

s

TuQf(xu)du

= 0,

(4.8)

and so mf
t is an Ft-martingale. �

Let us calculate the quadratic variation of the martingale mf
t .

Lemma 2. Let Q be such that if f ∈ Domain(Q), then f2 ∈ Domain(Q).
The quadratic variation < mf

t > of the martingale mf
t in (4.5) is equal to

〈mf
t 〉 =

∫ t

0

[
Qf2(xs) − 2f(xs)Qf(xs)

]
ds. (4.9)

Proof. We note that

(mf
t )2 = f2(xt) − 2f(xt)

∫ t

0

Qf(xs)ds +
(∫ t

0

Qf(xs)ds
)2

= f2(xt) − 2mf
t

∫ t

0

Qf(xs)ds −
(∫ t

0

Qf(xs)ds
)2

.

(4.10)

Furthermore,
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d
[
2mf

t

∫ t

0

Qf(xs)ds +
(∫ t

0

Qf(xs)ds
)2]

= 2
∫ t

0

Qf(xs)dsdmf
t + 2Qf(xt)dtmf

t

+ 2Qf(xt)dt

∫ t

0

Qf(xs)ds

= 2
(∫ t

0

Qf(xs)ds
)
dmf

t + 2f(xt)Qf(xt)dt

− 2Qf(xt)dt

∫ t

0

Qf(xs)ds + 2Qf(xt)dt

∫ t

0

Qf(xs)ds

= 2f(xt)Qf(xt)dt + 2
(∫ t

0

Qf(xs)ds
)
dmf

t .

(4.11)

Hence, from equations (10) - (11) we have

(mf
t )2 = f2(xt) − 2f(xt)Qf(xt)dt − 2

(∫ t

0

Qf(xs)ds
)
dmf

t

= f2(xt) −
∫ t

0

Qf2(xs)ds − 2
(∫ t

0

Qf(xs)ds
)
dmf

t

+
∫ t

0

[
Qf2(xs) − 2f(xs)Qf(xs)

]
ds.

(4.12)

Since f2 ∈ Domain(Q), then f2(xt)−
∫ t

0
Qf2(xs)ds is a martingale, and mf

t is
also martingale. Then, 2

∫ t

0
(
∫ s

0
Qf(xu)du)dmf

s is a martingale too. Therefore,
(mf

t )2 −
∫ t

0
[Qf2(xs) − 2f(xs)Qf(xs)]ds is a martingale, so

〈mf
t 〉 =

∫ t

0

[
Qf2(xs) − 2f(xs)Qf(xs)

]
ds. (4.13)

�

Lemma 3. Suppose the following condition (Novikov’s condition) is satisfied

EP exp
{

1
2

∫ t

0

[
Qf2(xs) − 2f(xs)Qf(xs)

]
ds

}

< +∞, ∀f2 ∈ Domain(Q).

Then EP ef
t = 1, where

ef
t := emf

t − 1
2 〈m

f
t 〉, (4.14)

and ef
t in (14) is a P -martingale (Doléans-Dade martingale).
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4.4 Pricing options for Markov-modulated security
markets

4.4.1 Incompleteness of Markov-modulated Brownian security
markets

A standard market is described by the following system of price processes
{

dBt = rBtdt, B0 > 0,

dSt = St(μdt + σdwt), S0 > 0.
(4.15)

Here B is the riskless asset, (bond), with an interest rate r > 0, and S is the
risky asset, (stock), with appreciation rate μ and volatility σ. The process w
is the standard one-dimensional Brownian motion.

Suppose now that the parameters r ≡ r(x), μ ≡ μ(x) and σ ≡ σ(x) depend on
some parameter x and these functions are continuous and bounded, r(x) > 0
and σ(x) > 0, ∀x ∈ X. Furthermore, assume that x varies as a Markov process
xt. The dynamics of B and S are:

{
dBt = r(xt)Btdt, B0 > 0,

dSt = St(μ(xt)dt + σ(xt)dwt), S0 > 0,
(4.16)

The Markov process xt is thus an additional source of randomness. The process
(Bt, St) is called a Markov modulated Brownian market.

Let πt := (βt, γt) be a portfolio (strategy) at time t, which is Ft-measurable,
and Xπ

t := βBt + γtSt be a capital (or wealth process) at time t, 0 ≤ t ≤ T.

The following definitions can be found in Musiela and Rutkowski [24].

Definition 1. Strategy πt is called self-financing if Btdβt + Stdγt = 0.

Definition 2. A self-financing strategy π generates an arbitrage opportunity
if P (Xπ

0 = 0) = 1, and P (V π
T ≥ 0) = 1 and P (V π

T > 0) > 0.

Definition 3. The market is arbitrage-free if there are no arbitrage opportu-
nities in the class of self-financing strategies.

Definition 4. A European contingent claim V which settles at time T is an
arbitrary FT -measurable random variable.

Definition 5. A replicating strategy for the cintingent claim V, which settles
at time T, is a self-financing startegy π such that Xπ

T = V.

Definition 6. A claim V is attainable if it admits at least one replicating
strategy.
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Definition 7. The market is complete if every claim V is attainable. Other-
wise, it is incomplete.

Definition 8. The measure P ∗ is called a martingale measure, if it is equiv-
alent to P and such that the discounted capital Mt := Xt

Bt
is P ∗-martingale,

that is, M0 = EP∗
(MT ).

We note that arbitrage-free market is complete if and only if there exists a
unique martingale measure (Harrison and Pliska [18]).

Define the following process

ηt := e
∫ t
0 [(r(xs)−μ(xs))/σ(xs)]dws− 1

2

∫ t
0 [(r(xs)−μ(xs))/σ(xs)]2ds (4.17)

and measure P̂
dP̂

dP

∣
∣
∣
FT

= ηT . (4.18)

Theorem 1. Suppose the Markov process xt is independent of wt and the
following two conditions (Novikov’s conditions) are satisfied:

EP

{

exp
1
2

∫ t

0

[(r(xs) − μ(xs))/σ(xs)]2ds

}

< +∞ (4.19)

and

EP̂ exp
{

1
2

∫ t

0

[Qf2(xs) − 2f(xs)Qf(xs)]ds

}

< +∞, ∀f2 ∈ Domain(Q),

(4.20)
where P̂ is defined in (4.18).

Then the Markov-modulated security market is incomplete.

Proof. We shall prove that there are two distinct equivalent martingale mea-
sures, and hence, that the (B, S)-security market is incomplete.

From the Novikov’s condition (4.19) it follows that EP ηT = 1, where ηT is
defined in (4.17). Also, from the Novikov’s condition (4.20) it follows that

EP̂ Ef
T = 1, where Ef

T is defined in (4.14). We note, that by conditions (4.19)

and (4.20) the processes ηt in (4.19) and Ef
t in (4.14) are P -martingale and

P̂ -martingale, respectively. It is not difficult to see that P̂ is a probability
measure, since

P̂ (Ω) =
∫

Ω

dP̂ =
∫

Ω

ηT dP = EP ηT = 1.

By Girsanov’s theorem the process
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ŵt := wt −
∫ t

0

[(
r(xs) − μ(xs)

)
/σ(xs)

]
ds

is a P̂ -Wiener process, where P̂ is defined in (4.18).

Write
Mt :=

St

Bt
,

where Bt and St are defined in (4.16).

Then, by the Itô formula Mt satisfies the equation

Mt = M0 +
∫ t

0

σ(xu)Su

Bu
dŵu, (4.21)

so that the process Mt is a P̂ -martingale.

Define the measure P̃ through

dP̃

dP

∣
∣
∣
FT

= ηT Ef
T , (4.22)

where Ef
T are defined in (4.14) and ηT in (4.17). It is not difficult to see that

P̃ is a probability measure. Indeed, from Lemma 3 and condition (4.20) it
follows that

P̃ (Ω) =
∫

Ω

dP̃ =
∫

Ω

ηT Ef
T dP =

∫

Ω

Ef
T dP̂ = EP̂ Ef

T = 1.

It is easy to see that Mt in (4.21) is also P̃ -martingale, that follows from
Lemma 13.10, p. 190 (see Elliott [11]). Therefore, we have two distinct equiv-
alent martingale measures, namely, P̂ and P̃ in (4.18) and (4.22), respectively.
Hence, the Markov-modulated security market is incomplete.

4.4.2 The Black-Scholes formula for pricing options in a
Markov-modulated Brownian market

Consider the price of a European contingent claim X at time T. If X is
attainable, the price of X at time t is given by any equivalent martingale
measure (e.g. P̃ or P̂ ) and

Ct = BtE
P̂ [XB−1

T | Ft].

Ct is also called the no-arbitrage price.

We note that if X is not attainable, the risk-minimizing hedge price can be
used.

Definition 9. Two martingales are said to be strongly orthogonal if their
product follows a martingale.



54 Robert J. Elliott and Anatoliy V. Swishchuk

Definition 10. A martingale measure P ∗ for discounted capital is called a
minimal martingale measure associated with P if any local P -martingale
strongly orthogonal (under P ) to each local martingale M remains a local
martingale under P ∗.

Lemma 4. The measure P̂ in (4.18) is the minimal martingale measure as-
sociated with P.

Proof. Suppose wt and xt are Ft-adapted. If Nt is an L2-P local martingale,
then by the Kunita-Watanabe representation (see Elliott [11], Elliott and
Föllmer [10], Musiela and Rutkowski [24], Kallianpur and Karandikar [21])

Nt = N0 +
∫ t

0

βudwu +
∫ t

0

β′
udmf

u + zt,

for any function f ∈ Domain(Q), where 〈wt, zt〉 = 〈mf
t , zt〉 = 0. Let N be

strongly orthogonal to
∫ t

0
σu(xu)dwu. Then we have

0 =
〈
N,

∫ t

0

σ(xu)dwu

〉
=
〈
N0 +

∫ t

0

βudwu +
∫ t

0

β′
udmf

u + zt,

∫ t

0

σ(xu)dwu

〉

=
〈
N0,

∫ t

0

σ(xu)dwu

〉
+
〈∫ t

0

βudwu,

∫ t

0

σ(xu)dwu

〉

+
〈∫ t

0

β′
udmf

t ,

∫ t

0

σ(xu)dwu

〉
+
〈
zt,

∫ t

0

σ(xu)dwu

〉

=
∫ t

0

βuσ(xu)du.

Hence, βu = 0 a.e. for all u ∈ [0, T ], as σ(x) > 0. Therefore,

d(Ntηt) = Ntdηt + ηtdNt + d〈N, η〉t
= Ntdηt + ηtdNt

+ d
〈
N0 +

∫
βudwu

+
∫

β′
udmf

u + zt,

∫ [(
r(xu) − μ(xu)

)
/σ(xu)

]
dwu

〉

t

= Ntdηt + ηtdNt + d
〈∫

βudwu,

∫ [(
r(xu) − μ(xu)

)
/σ(xu)

]
dwu

〉

t

= Ntdηt + ηtdNt + βtγtdt

= Ntdηt + ηtdNt,

where ηt is defined in (4.17), and

γt :=
(
r(xt) − μ(xt)

)
/σ(xt).

This means that Ntηt is local P -martingale. Hence, Nt is a local P̂ -martingale,
and, finally, P̂ is the minimal martingale measure.
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Theorem 2. Let X := fT (ST ) be a European contingent claim settled at time
T (not necessarily attainable). Then the risk-minimizing hedge price is

Ct(x, S) = BtE
P̂
x

[
fT (ST )B−1

T | Ft

]
. (4.23)

Proof. By Lemma 4, P̂ is the unique minimal equivalent martingale measure.
We note that the backward Cauchy problem for Ct(x, S) is given by

⎧
⎨

⎩

∂C

∂t
+ L(x)C − r(x)C + QC = 0

CT (x, S) = fT (S)

where f(S) is a bounded continuous function on R+ and L(x) is the differential
operator

L(x) = r(x) · s · d

ds
+

1
2
σ2(x) · s2 · d2

ds2
,

having the solution

Ct(x, S) = EP̂
x

[
f(ST−t) exp

(
−
∫ T

t

r(xt(ν))dν
)]

.

The theorem follows directly from Theorem 6 in the Appendix with r(t, x, y) ≡
−r(x), for all t ≥ 0 and y ∈ R. Thus, the risk-minimizing hedge price is given
by (4.23).

Corollary 1. In particular, for the European call options fT (y) = f(y) =
(y − K)+, we have

C0(x, S) =
∫

CBS

(
(z/T )1/2, T, S

)
F x

T (dz), (4.24)

where CBS(σ̂, T, S), S := S0, is the Black-Scholes price for the call option
with volatility σ̂, i. e.,

CBS(σ̂, T, S) = SΦ(d+) − Ke−rT Φ(d−), (4.25)

where

d± =
[

ln
S

K
+ rT ± σ̂2T

2

]

/σ̂
√

T , (4.26)

and F x
t is a distribution of a random variable

Zx
t =

∫ t

0

σ2(xu) du. (4.27)

Proof. For a standard European call option with the cost function fT (S) =
(ST − K)+, the option price CT (x, S) is defined by the formula
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CT (x, S) = EP̂
x

[

(S(T ) − K)+ exp
(
−
∫ T

0

r(xν)dν
)
]

where

S(T ) = S0 exp
(∫ T

0

r(xs)ds
)

exp
(∫ T

0

σ(xs)dWs −
1
2
σ2(xs)ds

)

S = S0.

The formula for CT (x, S) is obtained from Theorem 2 by letting fT (S) =
(ST −K)+. The value CT (x, S) can be calculated in some cases more simply.
For example, letting r(x) = r for all x ∈ X, it follows from above that

CT (x, S) = EP̂
x

[
max(ST − K, 0)

]
,

where

S(T ) = S0e
rT exp

(∫ T

0

σ(xs)dWs −
1
2
σ2(xs)ds

)
.

We note that the function

Ct(x, S) = EP̂
x [f(ST−t)]

is the solution of the boundary value problem
⎧
⎨

⎩

∂C

∂t
+ rS

∂C

∂S
+

1
2
σ2(x)s2 ∂2C

∂s2
− rC + QC = 0

CT (x, S) = f(S)

where dSt = rStdt + σ(xt)Stdŵ(t), S0 = S.

Let F x
T be the distribution of the random variable Zx

T ≡
∫ T

0
σ2(xs)ds. Then,

from the above it follows that

C0(x, S) = EP̂
x

[
f(ST )

]
=
∫ (∫

f(y)y−1ψ
(
z, ln

y

s
+

1
2
z
)
dy

)

F x
T (dz)

where ψ(z, ν) = (2πz)−1/2 exp
(

ν2

2z

)
.

In particular, for f(s) = (s − K)+, we have for all x ∈ E,

C0(x, S) =
∫

CBS
T

(( z

T

)1/2

, T, S

)

F x
T (dz)

where CBS
T (σ, T, S) is a Black-Scholes value for a European call option with

volatility σ, expiration date T and interest rate r. �
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Remark 3. Perfect hedging in Markov-modulated Brownian (B, S)-security
market is not posssible since we have an incomplete market. Following the
idea proposed by Föllmer and Sondermann [13] and Föllmer and Schweizer
[12] we look for the strategy locally minimizing the risk. The strategy π∗ is lo-
cally risk-minimizing, if for any H-admissible (XT = H, where XT is a capital
at time T ) strategy π and any t

Rt(π∗) ≤ Rt(π),

where the residual risk is defined as follows

Rt(π) := EP̂
x

(
[CT (π) − Ct(π)]2/Ft

)
,

and

Ct(π) := Xt(π) −
∫ t

0

βudSu,

βt is the number of stocks at time t, EP̂
x is the expectation with respect to

measure P̂ conditionally x0 = x.

It may be shown (see Swishchuk [32]) that the residual risk process can be
expressed as

Rt(π∗) = EP̂
x

(∫ T

t

[
Qu2(r, Sr, xr) − 2u(r, Sr, xr)Qu(r, Sr, xr)

]
dr
∣
∣
∣ Ft

)
,

where the function u satisfies the following boundary value problem
⎧
⎨

⎩
ut(t, S, x) + rSuS(t, S, x) +

1
2
σ2(x) · S2 · uSS(t, S, x) + Qu(t, S, x) = 0

u(T, S, x) = f(S).

In particular the residual risk at time t = 0 is equal to

R0(π∗) = EP̂
x

(∫ T

0

[
Qu2(r, Sr, xr) − 2u(r, Sr, xr)Qu(r, Sr, xr)

]
ds
)
,

where the operator Q is an infinitesimal operator of the process xt.

Remark 4. Let X = {1, 2}, and ν(t) be a counting jump process for xt. Then
the distribution F x

t of random variable Zx
T may be expressed in explicit form

Z1
T =

∫ T

0

[
σ2(4.1)I(xt = 1) + σ2(4.2)I(xt = 2)

]
dt

= a · T + b · JT ,

where
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JT =
∫ T

0

(−1)ν(t) dt

a =
1
2
(σ2(4.1) + σ2(4.2)),

b =
1
2
(σ2(4.1) − σ2(4.2)).

The formula for the distribution of JT may be found in Di Masi et al [6] and
contains modified first order Bessel functions.

4.5 Pricing options for Markov-modulated Brownian
markets with jumps

4.5.1 Incompleteness of Markov-modulated Brownian
(B, S)-security markets with jumps

Suppose we have a Markov-modulated Brownian (B, S)-security market (4.16)
on the interval [τk, τk+1). Assume that at the moment τk we have the jump
in St. That is,

Sτk
− Sτk− = Sτk

uk, (4.28)

where uk, k ≥ 1, are independent identically distributed random variables
with values in (−1,+∞) with distribution function H(dy). The moments τk

are the moments of jumps for the Poisson process Nt with intensity λ > 0.
We suppose that τk, uk, are independent on xt and wt, k ≥ 1.

Denote Ft the σ-algebra generated by the random variable wt, Nt, and
uj1{j≤Nt} for j ≥ 1, where 1A = 1, if ω ∈ A, and 1A = 0, if ω �∈ A.

It can be shown that wt is a standard Brownian motion with respect to Ft.
Nt is a process adapted to this filtration and Nt − Ns is independent of the
σ-algebra Ft for all t > s.

Taking into account (4.17) and (4.28) we obtain

St = S0

( Nt∏

j=1

(1 + uj)
)
e
∫ t
0 [μ(xs))−σ2(xs)/2]ds+

∫ t
0 [σ(xs)]dws (4.29)

with the convention that
∏0

j=1 = 1. We note that St in (4.29) may be written
down in the following form

St = S0e
∫ t
0 [μ(xs))−σ2(xs)/2]ds+

∫ t
0 [σ(xs)]dws+

∫ t
0

∫+∞
−1 ln(1+y)ν(dy,ds), (4.30)

where ν(A, t) is a random point measure equal to the number of jumps that
the process Nt makes before time t with values in the Borel set A ⊂ R. With
this, we have another source of randomness (besides the Brownian motion wt

and Markov process xt) for the (B, S)-security market.
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Theorem 3. The (B, S)-security market with jumps consisting of the stock
in (4.30) and bond in (4.16) is incomplete under the conditions in (4.19) and
(4.20).

Proof. Let

η∗
t := e

∫ t
0 [(r(xs)−μ(xs))/σ(xs)]dws− 1

2

∫ t
0 [(r(xs)−μ(xs))/σ(xs)]2ds

Nt∏

k=1

h(uk), (4.31)

where h(y) is a such function that
⎧
⎪⎪⎨

⎪⎪⎩

∫

R

h(y)H(dy) = 1, and
∫

R

yh(y)H(dy) = 0,

(4.32)

where H(dy) is a distribution on (−1, +∞), with respect to (uk; k ≥ 1). We
note, that (λ,H(dy)) is a (P, Ft)-local quadratic variation of the compound
Poisson process

∑Nt

k=1 uk independent of wt.

Let P ∗ be a measure such that

dP ∗

dP

∣
∣
∣
FT

= η∗
T , (4.33)

where η∗
t is defined in (4.31). Than P ∗ is a probability measure by the same

arguments as in Theorem 1 (we note that
∏Nt

k=1 h(uk) is independent of wt

and mf
t ). By Girsanov’s theorem the process

w∗
t := wt −

∫ t

0

γsds,

is a P ∗-Wiener process, where P ∗ is defined in (4.33), and

γs :=
(
r(xs) − μ(xs)

)
/σ(xs).

Let
M∗

t :=
St

Bt
,

where St and Bt are defined in (4.30) and (4.16), respectively. Then, by Itô’s
formula M∗

t satisfies the equation

M∗
t = M∗

0 +
∫ t

0

σ(xu)Su

Bu
dw∗

u

and the process M∗
t is a P ∗-martingale. Introduce the measure P̄ via

dP̄

dP

∣
∣
∣
FT

= η∗
T ef

T , (4.34)
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where ef
T and η∗

T are defined in (4.14) and (4.31), respectively. We note, that
P̄ is a probability measure by the same arguments as in Theorem 1, Section
3.1 (we note that

∏Nt

k=1 h(uk) is independent of wt and mf
t ). It is easy to see

that M∗
t is also P̄ -martingale, that follows from Lemma 13.10, p. 190 (see

Elliott [11]).

Therefore, we have two distinct equivalent martingale measure namely, P̄ and
P ∗ in (4.33) and (4.34), respectively.

Hence, the (B, S)-security market with jumps is incomplete and Theorem 3
is proved. �

4.5.2 Black-Scholes formula for pricing options in
Markov-modulated Brownian (B, S)-security market with jumps

Using the reasonings in establishing (4.23)-(4.24) we obtain the following re-
sults for the Markov-modulated (B, S)-security market with jumps (see The-
orem 7, Appendix).

Theorem 4. If X is attainable, the price of X at time t is given, under any
equivalent martingale measure (e.g. P ∗ or P̄ ),

Ct(x, S) = BtE
P̄
[
XB−1

T

∣
∣Ft

]
,

and Ct is called the no-arbitrage price.

If X is not attainable, we have the risk-minimizing hedge price, and P ∗ in
(4.33) is the minimal martingale measure associated with P, which can be
proved by the same arguments as in Lemma 4 using the fact that

∏Nt

k=1 h(uk)
is independent of wt and mf

t ). Then the risk-minimizing hedge price is

Ct(x, S) = BtE
P∗[

XB−1
T

∣
∣Ft

]
.

Corollary 2. If r(x) ≡ r, ∀x ∈ X, then the price CT (x, S) of contingent
claim fT (ST ) is calculated by the formula

CT (x, S) = e−rT
+∞∑

k=0

exp{−λT}(λT )k

k!

×
∫ +∞

−1

. . .

∫ +∞

−1

(∫ (∫
f(y)y−1

× ψ
(
z, ln

y

S
∏k

i=1(1 + yi)
+ rT + 2−1z

)
dy
)
F x

T (dz)
)

× H∗(dy1) × . . . × H∗(dyk),

(4.35)

where H∗(dy) = h(y)H(dy), and ψ(z, v) := (2πz)−2−1
exp{−v2

2z}.
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Proof. This follows from the representation of St, formulae (A7)-(A10) (see
Appendix) and iterations on function fT (ST ), taking into account a distribu-
tion of Zx

T . �

We note that the function CT (x, S) = EP∗
[fT (ST−t)] is the solution of the

Cauchy problem:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂C

∂t
+ rS

∂C

∂S
+ 2−1σ2(x)S2 × ∂2C

∂S2
− rC

+ λ

∫ +∞

−1

(C(t, S(1 + y)) − C(t, x))h(y)H(dy) + QC = 0,

C(T, S) = fT (S).

In the case of X := fT (ST ) = (ST −K)+, where K is a strike price, inserting
the function fT (ST ) = (ST − K)+ in the expression above (see Corollary 2)
we obtain the following result.

Corollary 3. Let F x
T be a distribution of random variable Zx

T :=
∫ T

0
σ2(x(s))

ds. Also, let fT (ST ) = (ST − K)+, and r(x) ≡ r. Then from Theorem 4 and
formula (4.35), where CBS

T (σ, T, S) is the Black-Scholes value for European
call option it follows that the price CT (x, S) of contingent claim has the form

C0(x, S) =
+∞∑

k=0

exp{−λT}(λT )k

k!

×
∫ +∞

−1

...

∫ +∞

−1

∫
CBS

(( z

T

)2−1

, T, S

k∏

i=1

(1 + yi)
)
F x

T (dz)

× H∗(dy1) × ... × H∗(dyk),
(4.36)

where function CBS(σ̂, T, S) is a Black-Scholes value for European call option
(see (4.25)-(4.26)), F x

t is a distribution of a random variable (see (4.27))

Zx
t =

∫ t

0

σ2(xr) dr,

and H∗(dy) := h(y)H(dy), where h(y) is defined in (4.32).

Remark 5. Perfect hedging in Markov-modulated Brownian (B, S)-security
market with jumps is not posssible since we have an incomplete market. We
look for the locally minimizing the risk strategy.

The residual risk process (see Remark 3) is expressed in the following way
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Rt(π∗) = EP∗

x

(∫ T

t

[
Qu2(r, Sr, xr) − 2u(r, Sr, xr)Qu(r, Sr, xr)

]
dr
∣
∣
∣ Ft

)
,

where the function u satisfies the following boundary value problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut(t, S, x) + rSuS(t, S, x) +
1
2
σ2(x) · S2 · uSS(t, S, x)

+ λ

∫ +∞

−1

[u(t, S(1 + v), x) − u(t, S, x)]H∗(dv)

− ru + Qu(t, S, x) = 0
u(T, S, x) = f(S).

In particular the residual risk at the moment t = 0 is equal to

R0(π∗) = EP∗

x

(∫ T

0

[
Qu2(r, Sr, xr) − 2u(r, Sr, xr)Qu(r, Sr, xr)

]
ds
)
,

where the operator Q is infinitesimal operator of the process xt.

4.6 Pricing of Variancev swaps for stochastic volatility
driven by Markov process

4.6.1 Stochastic volatility driven by Markov process

Let xt be a Markov process in measurable phase space X with generator Q.
The stock price St satisfies the stochastic differential eqution

dSt = St

(
r(xt)dt + σ(xt)dwt)

)

with the volatility σ := σ(xt) depending on the process xt, which is indepen-
dent of the standard Wiener process wt.

A variance swap is a forward contract on an annualized variance, the square
of the realized volatility. Its payoff at expiration is equal to

N(σ2
R(x) − Kvar),

where σ2
R(x) is the realized stock variance (quoted in annual terms) over the

life of the contract,

σ2
R(x) :=

1
T

∫ T

0

σ2(xs)ds,

Kvar is the delivery price for variance, and N is the notional amount of the
swap in dollars per annualized volatility point squared. The holder of a vari-
ance swap at expiration receives N dollars for every point by which the stock’s
realized variance σ2

R(x) has exceeded the variance delivery price Kvar.
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4.6.2 Pricing of variance swaps for stochastic volatility driven by
Markov process

Pricing a variance forward contract or swap is no different from valuing any
other derivative security. The value of a forward contract F on future realized
variance with strike price Kvar is the expected present value of the future
payoff in the risk-neutral world. That is,

P (x) = E
{
e−rT

(
σ2

R(x) − Kvar

)}
,

where r is the risk-free discount rate corresponding to the expiration date T,
and E denotes the expectation.

Let us show how we can calculate EV (x), where V (x) := σ2
R(x). For this we

need to calculate Eσ2(xt).

We note (see Section 2, Lemma 1) that for σ(x) ∈ Domain(Q) the following
process

mσ
t := σ(xt) −

∫ t

0

Qσ(xs))ds

is a zero-mean martingale with respect to the filtration Ft := σ{xs; 0 ≤ s ≤ t}.

The quadratic variation of the martingale mf
t by Lemma 2 is equal to

〈mσ
t 〉 =

∫ t

0

[
Qσ2(xs) − 2σ(xs)Qσ(xs)

]
ds, σ2(x) ∈ Domain(Q). (4.37)

Since σ(xs) satisfies the stochastic differential equation

dσ(xt) = Qσ(xt)dt + dmσ
t

we obtain from Itô’s formula (see Elliott and Kopp [9]) the stochastic differ-
ential equation for σ2(xt) given by

dσ2(xt) = 2σ(xt)dmσ
t + 2σ(xs)Qσ(xs)dt + d〈mσ

t 〉, (4.38)

where 〈mσ
t 〉 is defined in (4.37). Substituting (4.37) into (4.38) and taking the

expectation of both parts in (4.38) we have

Eσ2(xt) = σ2(x) +
∫ t

0

QEσ2(xs)ds.

Solving the above equation we get

Eσ2(xt) = etQσ2(x).

Finally, we obtain

EV (x) =
1
T

∫ T

0

etQσ2(x)dt.

We therefore obtain the following result.
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Theorem 5. The value of a variance swap for Markov stochastic volatility
σ(xt) is

P (x) = e−rT
( 1

T

∫ T

0

etQσ2(x)dt − Kvar

)
. (4.39)

4.6.3 Example of variance swap for stochastic volatility driven by
two-state continuous Markov chain

Let Q be a generator of two-state continuous time Markov chain, i.e.,

Q =
(

q11 q12

q21 q22

)

and

P (t) =
(

p11(t) p12(t)
p21(t) p22(t)

)

be a Markov transition function. Thus,

P (t) = etQ.

In this case, the variance takes two values: σ2(4.1) and σ2(4.2).

From formula (4.39) it follows that the value of a variance swap in this case
is equal to

P (i) = e−rT
( 1

T

∫ T

0

[
pi1(s)σ2(4.1) + pi2(s)σ2(4.2)

]
ds − Kvar

)
(4.40)

for i = 1, 2.

It is apparent that the value of varinace swap depends on the initial state of
Markov chain.

We note, that if a Markov chain is stationary with ergodic distribution (p1, p2),
then the value of variance swap is

P = p1P (4.1) + p2P (4.2),

where P (i), i = 1, 2, are defined in (4.40).

A Some auxiliary results

A.1 A Feynmann-Kac formula for the Markov-modulated process
(ys(t), xs(t))t≥s

Let {xs(t), t ≥ s} be a Markov process with state space X and infinitesimal
matrix Q and with xs(s) = x ∈ X, and let {ys(t), t ≥ s} be the following
process given by the equation
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ys(t) = y +
∫ t

s

μ
(
ν, xs(ν), ys(ν)

)
dν +

∫ t

s

σ
(
ν, xs(ν), ys(ν)

)
dW (ν)

where ys(s) = y.

Also, let Lt be the differential operator

Lt = μ(t, x, y)
d

dy
+

1
2
σ2(t, x, y)

d2

dy2

where the functions μ and σ are real-valued continuous and satisfy a Lipschitz
condition.

The following theorem presents a Feynman-Kac formula for the Markov-
modulated process (ys(t), xs(t))t≥s. See also Griego and Swishchuk, [15].

Theorem 6. Let r(t, x, y) be a bounded continuous function and consider a
backward Cauchy problem for the function u(t, x, y):

∂u

∂t
+ Ltu + r(t, x, y)u + Qu = 0

u(T, x, y) = ϕ(x, y)
(A1)

where ϕ is a bounded continuous function X × R. Then the Cauchy (A1)
problem has the solution

u(t, x, y) = Et,x,y

[
ϕ
(
xt(T ), yt(T )

)
· exp

(∫ T

t

r
(
ν, xt(ν), yt(ν)

)
dν
)]

. (A2)

Here, Et,x,y is the integral with respect to the measure Pt,x,y(·) = P (·|(xt(t),
yt(t)) = (x, y)).

Proof. Let 0 ≤ s < t ≤ T and consider the process

ζ(t) ≡ u
(
t, xs(t), ys(t)

)
· exp

(∫ t

s

r
(
ν, xs(ν), ys(ν)

)
dν
)
. (A3)

We note that ζ(t) is an F t
s -martingale where F t

s ≡ σ(W (ν), xs(ν) : s ≤ ν ≤ t)
with respect to Ps,x,y. We note that Ft := F t

0 .

Thus, we have
Es,x,y

[
ζ(u) − ζ(t)

∣
∣ F t

s

]
= 0. (A4)

From (A3) and (A4) it follows that

Es,x,y

[
ζ(T )

]
= Es,x,y

[
ζ(s)
]
.

But, taking into account (A1) we have
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Es,x,y

[
ζ(T )

]
= Es,x,y

[
u
(
T, xs(T ), ys(T )

)
· exp

(∫ t

s

r(ν, xs(ν), ys(ν))dν
)]

= Es,x,y

[
ϕ
(
xs(T ), ys(T )

)
· exp

(∫ t

s

r(ν, xs(ν), ys(ν))dν
)]

(A5)

and
Es,x,y

[
ζ(s)
]

= Es,x,y

[
u
(
s, xs(s), ys(s)

)]
= u(s, x, y). (A6)

Hence, from (A5) and (A6) we can conclude that

u(s, x, y) = Es,x,y

[
ϕ
(
xs(T ), ys(T )

)
· exp

(∫ T

s

r
(
ν, xs(ν), ys(ν)

)
dν
)]

. (A7)

Remark 6. Representation (A2) follows from (A7) with s = t. Theorem 6 is
proved. �

A.2 Formula for the option price fT (ST ) for the market combined
Markov-modulated (B, S)-security market and compound
geometric Poisson process (see Section 4.4.2)

Theorem 7. The price C0(x, S) of contingent claim fT (ST ) at time zero with
expiry date T has the form

C0(x, s) = EP∗
[
fT (ST ) exp

{
−
∫ T

0

r(x(s))ds
}]

,

where P ∗ is risk-neutral measure in (4.33).

Proof. From Itô’s formula it follows that St under the risk-neutral world is
the solution of equation

dSt = r
(
x(s)

)
Stdt + σ

(
x(t)
)
Stdw∗

t + St

∫ +∞

−1

yν(dt, dy),

and ν(dt, dy) is a random measure, which equals the number of jumps of
the Poisson process N(t) with values in dy up to the moment dt. Hence,
(λ,H(dy)) (see Section 4.1) is a local characteristic of measure ν(dt, dy) and
ν̃(dt, dy) := ν(dt, dy) − λH(dy) is a local martingale.

We note that the following Cauchy problem

∂C

∂t
+ r(x)S

∂C

∂S
+ 2−1σ2(x)S2 ∂2C

∂S2
− r(x)C

+ λ

∫ +∞

−1

(C(t, S(1 + y)) − C(t, x))h(y)H(dy) + QC = 0,

CT (x, S) = fT (S),
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has the solution

Ct(, x, S) = EP∗
[
fT (ST−t exp

{
−
∫ T

t

r(x(s))ds
}]

,

which follows from the Black-Scholes equation for the Markov-modulated
(B, S)-market (see Section 4.1) and Theorem 6, Appendix A.1. �
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Summary. We consider a hidden Markov model of credit quality. We assume that
the credit rating evolution can be described by a Markov chain but that we do
not observe this Markov chain directly. Rather, it is hidden in “noisy” observations
represented by the posted credit ratings. The model is formulated in discrete time
with a Markov chain observed in martingale noise. We derive smoothed estimates
for the state of the Markov chain governing the evolution of the credit rating process
and the parameters of the model.

Key words: Hidden Markov model, smoothing, credit quality

5.1 Introduction

Spectacular growth in the market for credit derivatives in recent years has
highlighted the importance of understanding credit quality. Credit ratings
published in a timely manner by rating agencies are an invaluable source of
credit risk information and Markov chain models have been used to describe
their dynamics. The pioneering work in the direction of using Markov chain
models, not only to describe the dynamics of a firm’s credit rating but also
to value credit derivatives, was done by Jarrow and Turnbull [6], and Jarrow,
Lando and Turnbull [7].

Markov-type models assume that the credit rating process has no memory of
its prior behaviour, i.e. that prior rating changes should have no predictive
power for the direction of future rating changes. However, there exist empiri-
cal studies that suggest the contrary – the credit rating process seems to have
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memory. Two empirical studies of Moody’s ratings, Carty and Fons [1], and
Carty and Lieberman [2], found in particular that a firm upgraded (down-
graded) was more likely to be subsequently upgraded (downgraded). More
recently, Lando and Skodeberg [9] reported evidence of non-Markov effects
for downgrades in a data set of Standard and Poor’s ratings. We therefore
consider a hidden Markov model of credit quality, where we assume that the
credit rating evolution can be described by a Markov chain but we do not ob-
serve this Markov chain directly. Rather, it is hidden in “noisy” observations
represented by the posted credit ratings.

Hidden Markov models, when Markov chains are observed in Gaussian noise,
have been subject to extensive studies. See for example the book by Elliott,
Aggoun and Moore [5] and references contained therein. Here we consider a
discrete time model with a Markov chain observed in martingale noise. We
derive smoothed estimates for the state of the Markov chain governing the
evolution of the credit rating process and the parameters of the model.

The paper is organised as follows. Section 5.2 gives the dynamics of the Markov
chain and observations. The reference probability measure is introduced in
Section 5.3 and the forward filter in Section 5.4. Forward estimates for the
processes needed to estimate the parameters of the model are obtained in
Section 5.5. Finally, smoothed estimates and updating formulae are derived
in Section 5.6.

5.2 Dynamics of the Markov chain and observations

We suppose that the signal process, the “true” credit quality, is a Markov chain
which we do not observe directly. Rather, it is hidden in noisy observations
represented by posted credit ratings.

Formally, a discrete-time, finite-state, time homogeneous Markov chain is a
stochastic process {Xk} with the state space S = {1, 2, . . . , N} and a transi-
tion matrix A = (aji)1≤i,j≤N . Without loss of generality we can assume that
S = {e1, e2, . . . , eN}, where ei = (0, . . . , 0, 1, 0, . . . , 0)T ∈ R

N . Suppose that
X is defined on the probability space (Ω,F , P ) and write aji = P (Xk+1 =
ej |Fk) = P (Xk+1 = ej |Xk = ei). Write Fk = σ{X0, X1, . . . , Xk} for the σ-
field containing all the information about the process X up to and including
time k. Then, as shown in [5] and [8], E[Xk+1|Xk] = AXk and the semi-
martingale representation of the chain X is

Xk+1 = AXk + Vk+1, k = 0, 1, . . . ,

where Vk+1 is a martingale increment with E[Vk+1|Fk] = 0 ∈ R
N .

Suppose we do not observe X directly. Rather, we observe a process Y such
that
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Yk = c(Xk, ωk), k = 0, 1, . . . ,

where c is a function with values in a finite set and {ωk} is a sequence of
independent identically distributed (IID) random variables independent of
X. Suppose the range of c consists of M points which are identified with unit
vectors {f1, f2, . . . , fM}, fj = (0, . . . , 0, 1, 0, . . . , 0) ∈ R

M .

Write cji = P (Yk = fj |Xk = ei), 1 ≤ i ≤ N, 1 ≤ j ≤ M . Then, E[Yk|Xk] =
CXk, where C = (cji)1≤i,j≤M with cji ≥ 0 and

∑M
j=1 cji = 1. Also, the

semimartingale representation of the process Y is

Yk = CXk + Wk, k = 0, 1, . . . ,

where W is a martingale increment with E[Wk|Gk−1 ∨{Xk}] = 0 ∈ R
M . Note

that we are assuming zero delay between Xk and its observation Yk.

5.3 Reference probability

Consider a probability measure P̄ on (Ω,F) such that under P̄ , X is still a
Markov chain with transition matrix A but {Yk} is a sequence of IID uniform
variables independent of X. Suppose C = (cji), 1 ≤ i ≤ N, 1 ≤ j ≤ M , is a
matrix with cji ≥ 0, and

∑M
j=1 cji = 1.

Define λ̄l = M
∑M

j=1〈CXl, fj〉〈Yl, fj〉 and Λ̄k =
∏k

l=1 λ̄l. Given filtrations

Fk = σ{X0, X1, . . . , Xk},
Yk = σ{Y0, Y1, . . . , Yk}

and Gk = σ{X0, . . . , Xk, Y0, . . . , Yk},

define a new probability measure P by putting dP
dP̄

∣
∣
Gk

= Λ̄k. Then, as shown
in [8], under P , X remains a Markov chain with transition matrix A and
P (Yk = fj |Xk = ei) = cji.

Note. P represents the “real world” probability measure. However, measure
P̄ is easier to work with since under P̄ , {Yk} is IID uniform and independent
of X.

5.4 Recursive filter

Suppose we observe Y0, . . . , Yk, and we wish to estimate X0, . . . , Xk. The best
(mean-square) estimate of Xk given Yk = σ{Y0, . . . , Yk} is E[Xk|Yk] ∈ R

N .
However, P̄ is a much easier measure under which to work. Using Bayes’
theorem, we have
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E
[
Xk

∣
∣ Yk

]
=

Ē
[
Λ̄kXk

∣
∣ Yk

]

Ē
[
Λ̄k

∣
∣ Yk

] .

Write qk := Ē[Λ̄kXk|Yk] ∈ R
N ; qk is then an unnormalized conditional ex-

pectation of Xk given the observations Yk. The dynamics of qk are as follows:

qk+1 = Ē
[
Λ̄k+1Xk+1

∣
∣ Yk+1

]

= Ē
[
Λ̄k(M

M∑

j=1

〈CXk+1, fj〉〈Yk+1, fj〉)Xk+1

∣
∣
∣ Yk+1

]

=
N∑

i=1

Ē
[
Λ̄k(M

M∑

j=1

cji〈Yk+1, fj〉)〈Xk+1, ei〉ei

∣
∣
∣ Yk+1

]

=
N∑

i=1

Ē
[
Λ̄k〈Xk+1, ei〉

∣
∣
∣ Yk+1

](
M

M∑

j=1

cji〈Yk+1, fj〉
)
ei

=
N∑

i=1

〈Ē
[
Λ̄k(AXk + Vk+1)

∣
∣ Yk+1

]
, ei〉
(
M

M∑

j=1

cji〈Yk+1, fj〉
)
ei

=
N∑

i=1

〈AĒ
[
Λ̄kXk

∣
∣ Yk

]
, ei〉
(
M

M∑

j=1

cji〈Yk+1, fj〉
)
ei

=
N∑

i=1

〈Aqk, ei〉
(
M

M∑

j=1

cji〈Yk+1, fj〉
)
ei

= B(Yk+1)Aqk,

where B(Yk+1) is a diagonal matrix with entries M
∑M

j=1 cji〈Yk+1, fj〉.

Remark 1. Note that Ē[Λ̄k | Yk] = 〈qk,1〉, where 1 = (1, . . . , 1)′ ∈ R
N .

5.5 Parameter estimates

To estimate parameters of the model, matrices A and C, we need estimates
of the following processes:

J ij
k =

k∑

n=1

〈Xn−1, ei〉〈Xn, ej〉, 1 ≤ i, j ≤ N,

Oi
k =

k∑

n=1

〈Xn−1, ei〉, 1 ≤ i ≤ N,

T ij
k =

k∑

n=0

〈Xn, ei〉〈Yn, fj〉, 1 ≤ i ≤ N, 1 ≤ j ≤ M.
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The above processes are interpreted as follows:
J ij

k – the number of jumps of X from state ei to state ej up to time k.
Oi

k – the amount of time the chain has spent in state ei up to time k − 1.
T ij

k – the amount of time process X has spent in state ei when process Y
was in state fj up to time k.

Remark 2. Note that
∑N

j=1 J ij
k = Oi

k and
∑M

j=1 T ij
k = Oi

k+1.

Consider first the jump process {J ij
k }. We wish to estimate J ij

k given the ob-
servations Y0, . . . , Yk. Using Bayes’ theorem, the best (mean-square) estimate
is

E
[
J ij

k

∣
∣ Yk

]
=

Ē
[
Λ̄kJ ij

k

∣
∣ Yk

]

Ē
[
Λ̄k

∣
∣ Yk

] :=
σ(J ij)k

〈qk,1〉 .

We wish to know how σ(J ij)k is updated as time passes by and new infor-
mation arrives. However, there does not exist a recursion formula for σ(J ij)k.
Instead, we consider a vector process σ(J ijX)k := Ē[Λ̄kJ ij

k Xk|Yk] for which
recursive formulae can be derived. We then readily obtain the quantity of in-
terest, namely σ(J ij)k, since σ(J ij)k = 〈σ(J ijX)k,1〉. We have the following
result:

Lemma 1.

σ(J ijX)k+1 = B(Yk+1)Aσ(J ijX)k +
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈qk, ei〉ajiej .

Proof. See the Appendix. �

Similarly, we consider the best (mean square) estimates of Oi
k and T ij

k given
Yk:

E
[
Oi

k

∣
∣ Yk

]
=

Ē
[
Λ̄kOi

k

∣
∣ Yk

]

Ē
[
Λ̄k

∣
∣ Yk

] :=
σ(Oi)k

〈qk,1〉 ,

E
[
T ij

k

∣
∣ Yk

]
=

Ē
[
Λ̄kT ij

k

∣
∣ Yk

]

Ē
[
Λ̄k

∣
∣ Yk

] :=
σ(T ij)k

〈qk,1〉 .

Recursive formulae for the processes σ(OiX)k := Ē[Λ̄kOi
kXk | Yk] and

σ(T ijX)k := Ē[Λ̄kT ij
k Xk|Yk] are as follows:

Lemma 2.

σ(OiX)k+1 = B(Yk+1)Aσ(OiX)k + 〈qk, ei〉B(Yk+1)Aei,

σ(T ijX)k+1 = B(Yk+1)Aσ(T ijX)k + Mcji〈Yk+1, fj〉〈Aqk, ei〉ei.

Proof. See the Appendix. �
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Note that σ(Oi)k = 〈σ(OiX)k,1〉 and σ(T ij)k = 〈σ(T ijX)k,1〉.

Remark 3. Define O1i
k :=

∑M
j=1 T ij

k = Oi
k+1. Then,

σ(O1iX)k+1 = σ(OiX)k+1 +
(
M

M∑

s=1

csi〈Yk, fs〉
)
〈Aqk−1, ei〉ei

= B(Yk+1)Aσ(OiX)k + 〈Aqk, ei〉B(Yk+1)Aei

+
(
M

M∑

s=1

csi〈Yk, fs〉
)
〈Aqk−1, ei〉ei

and

σ(O1i)k = σ(Oi)k +
(
M

M∑

s=1

csi〈Yk+1, fs〉
)
〈Aqk, ei〉.

Proof. See the Appendix. �

Our model is determined by parameters We want to determine a new set
of parameters θ = {aji, 1 ≤ i, j ≤ N ; cji, 1 ≤ i ≤ N, 1 ≤ j ≤ M}, aji ≥
0,
∑N

j=1 aji = 1, cji ≥ 0,
∑M

j=1 cji = 1}. We want to determine a new set
of parameters θ̂ = {âji, 1 ≤ i, j ≤ N ; ĉji, 1 ≤ i ≤ N, 1 ≤ j ≤ M} given the
arrival of new information, which requires maximum likelihood estimation. We
proceed by using the so-called EM (Expectation Maximization) algorithm.

Suppose {Pθ, θ ∈ Θ} is a family of probability measures on a measurable
space (Ω,F). Suppose also that there is another σ-field Y ⊂ F . The likelihood
function for computing an estimate of θ based on information given in Y is

L(θ) = E0

[

log
dPθ

dP0

∣
∣
∣
∣ Y
]

.

The maximum likelihood estimate (MLE) of θ is then

θ̂ ∈ arg max
θ∈Θ

L(θ).

However, MLE is hard to compute. The expectation maximization (EM) al-
gorithm provides an alternative approximate method

Step 1: Set p = 0 and choose θ̂0.
Step 2: (E-step) Set θ∗ = θ̂p and compute

Q(θ, θ∗) = Eθ∗

[
log

dPθ

dPθ∗

∣
∣
∣ Y
]
.

Step 3: (M-step) Find
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θ̂p+1 ∈ arg max
θ∈Θ

Q(θ, θ∗).

Step 4: Replace p by p + 1 and repeat from Step 2 until a stopping criterion
is satisfied.

As shown in [8], in our case the EM algorithm produces estimates of model
parameters as follows. Given the observations up to time k, {Y0, Y1, . . . , Yk},
and given the parameter set θ = {aji, 1 ≤ i, j ≤ N ; cji, 1 ≤ i ≤ N, 1 ≤ j ≤
M}, the EM estimates âji are given by

âji =
σ(J ij)k

σ(Oi)k
.

Similarly, the EM estimates ĉji are given by

ĉji =
σ(T ij)k

σ(Oi)k +
(
M
∑M

s=1 csi〈Yk, fs〉
)
〈Aqk−1, ei〉

.

5.6 Smoothed estimates

Suppose 0 ≤ k ≤ T and we are given the information Y0,T = σ{Y0, Y1, . . . , YT }.
We wish to estimate Xk given Y0,T . From Bayes’ Theorem,

E
[
Xk

∣
∣ Y0,T

]
=

Ē
[
Λ̄0,T Xk

∣
∣ Y0,T

]

Ē
[
Λ̄0,T

∣
∣ Y0,T

] ,

where Λ̄0,T =
∏T

k=0 λ̄k, λ̄k = M
∑M

j=1〈CXk, fj〉〈Yk, fj〉. As in Remark 1, the
denominator is

Ē[Λ̄0,T | Y0,T ] = 〈qT ,1〉,

where qT = Ē[Λ̄0,T XT | Y0,T ] and 1 = (1, 1, . . . , 1)′ ∈ R
N . Now,

Ē
[
Λ̄0,T Xk

∣
∣ Y0,T

]
= Ē

[
Λ̄0,kΛ̄k+1,T Xk

∣
∣ Y0,T

]

= Ē
[
Λ̄0,kXkĒ

[
Λ̄k+1,T

∣
∣ Y0,T ∨ Fk

] ∣
∣ Y0,T

]
,

where Λ̄k+1,T =
∏T

l=k+1 λ̄l. Consider Ē[Λ̄k+1,T | Y0,T ∨ Fk], which equals
Ē[Λ̄k+1,T |Y0,T ∨ Xk] using the Markov property. Write vk = (v1

k, . . . , vN
k )′,

where vi
k := Ē[Λ̄k+1,T | Y0,T ∨ {Xk = ei}].

Lemma 3. v satisfies the backwards dynamics, dual to q, of the form

vk = A′B(Yk+1)vk+1.

Proof. See the Appendix. �
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Lemma 4. vT = (1, . . . , 1)′ ∈ R
N .

Proof. See the Appendix. �
Remark 4. Since vT = 1, we have vk = A′B(Yk+1)A′B(Yk+2) · · ·A′B(YT )1.

Theorem 1. The unnormalized smoothed estimate is

Ē[Λ̄0,T Xk | Y0,T ] = diag (qk · v′k).

Proof. See the Appendix. �

It follows that

E[Xk | Y0,T ] =
diag (qk · v′

k)
〈qT ,1〉 .

Hence, to estimate E[Xk | Y0,T ] we need only know the dynamics of q and v,
which are, respectively:

qk = B(Yk)AB(Yk−1)A · · ·B(Y0)Aq0,

where q0 is the initial distribution for X0, and

vk = A′B(Yk+1)A′B(Yk+2) · · ·A′B(YT ) · 1.

Given observations Y0,T = σ{Y0, Y1, . . . , YT }, we are interested in the smooth-
ed estimates of the number of jumps, the occupation time and the time spent.

Consider first the smoothed estimate E[J ij
k Xk | Y0,T ]. Using Bayes’ theorem,

E
[
J ij

k Xk

∣
∣ Y0,T

]
=

Ē
[
Λ̄0,T J ij

k Xk

∣
∣ Y0,T

]

Ē
[
Λ̄0,T

∣
∣ Y0,T

] .

The numerator is Ē[Λ̄0,kJ ij
k XkΛ̄k+1,T | Y0,T ]. Consider the l-th component:

Ē
[
Λ̄0,kJ ij

k XkΛ̄k+1,T 〈Xk, el〉
∣
∣ Y0,T

]

= Ē
[
Λ̄0,kJ ij

k XkĒ
[
Λ̄k+1,T

∣
∣ Y0,T ∨ {Xk = el}

]
〈Xk, el〉

∣
∣ Y0,T

]

= Ē
[
Λ̄0,kJ ij

k Xkvl
k〈Xk, el〉

∣
∣ Y0,T

]

= Ē
[
Λ̄0,kJ ij

k Xk〈Xk, el〉
∣
∣ Y0,T

]
vl

k.

Then,

Ē
[
Λ̄0,T J ij

k Xk

∣
∣ Y0,T

]
=

N∑

l=1

Ē
[
Λ̄0,kJ ij

k 〈Xk, el〉el

∣
∣ Y0,T

]
vl

k

=
N∑

l=1

Ē
[
Λ̄0,kJ ij

k 〈Xk, el〉
∣
∣ Y0,T

]
vl

kel

=
N∑

l=1

〈Ē
[
Λ̄0,kJ ij

k Xk

∣
∣ Y0,T

]
, el〉vl

kel.
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Recall σ(J ijX)k = Ē[Λ̄kJ ij
k Xk | Yk]. We then have

Ē
[
Λ̄0,T J ij

k Xk

∣
∣ Y0,T

]
=

N∑

l=1

〈σ(J ijX)k, el〉vl
kel

=
N∑

l=1

σ(J ijX)l
kvl

kel

= diag (σ(J ijX)k · vl
k).

Therefore, 1′ diag (σ(J ijX)k · vl
k) = 〈σ(J ijX)k, vk〉 = Ē[Λ̄0,T J ij

k | Y0,T ] is the
unnormalized, smoothed estimate of J ij

k given Y0,T .

Given observations Y0,T = σ{Y0, Y1, . . . , YT }, we are interested in σ(J ij)T .

Theorem 2.

σ(J ij)T = aji

T∑

k=1

〈qk−1, ei〉〈vk, ej〉
(
M

M∑

s=1

csj〈Yk, fs〉
)
.

Proof. See the Appendix. �

Corollary 1.

σ(Oi)T =
T∑

k=1

〈qk−1, ei〉〈vk−1, ei〉

Proof. See the Appendix. �

Remark 5. Again by Bayes’ Theorem,

E
[
T ij

k Xk

∣
∣ Y0,T

]
=

Ē
[
Λ̄0,T T ij

k Xk

∣
∣ Y0,T

]

Ē
[
Λ̄0,T

∣
∣ Y0,T

] .

As before, 1′ diag ((T ijX)k · v′
k) = Ē[Λ̄0,T T ij

k | Y0,T ] = 〈σ(T ijX)k, vk〉.

Theorem 3.

σ(T ij)T =
T∑

k=1

Mcji〈Yk, fj〉〈Aqk−1, ei〉〈vk, ei〉.

Proof. See the Appendix. �

Corollary 2.

σ(O1i)T =
T∑

k=1

(
M

M∑

s=1

csi〈Yk, fs〉
)
〈vk, ei〉〈Aqk−1, ei〉.
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Proof. See the Appendix. �

Write Vk+1,T = A′B(Yk+1) · · ·A′B(YT ) so that

vk = vk,T , where

vk,T = Vk+1,T · 1.

Note that the methods to update smoothed estimates above have required
recalculation of all backward estimates v. Following [4], we now note results
that provide for more efficient computations.

Lemma 5. vk,T+1 = Vk+1,T+11, where Vk+1,T+1 = Vk+1,T A′B(YT+1).

From Theorem 2,

σ(J ij)T = aji

T∑

k=1

(
M

M∑

s=1

csj〈Yk, fs〉
)
〈qk−1, ei〉〈vk, ej〉

= aji

T∑

k=1

(
M

M∑

s=1

csj〈Yk, fs〉
)
〈qk−1, ei〉e′jvk

= aji

T∑

k=1

(
M

M∑

s=1

csj〈Yk, fs〉
)
〈qk−1, ei〉e′jA′B(Yk+1) · · ·A′B(YT )1

= Γ ′
T 1,

where Γ ′
T = aji

∑T
k=1

(
M
∑M

s=1csj〈Yk, fs〉
)
〈qk−1, ei〉e′jA′B(Yk+1) · · ·A′B(YT ).

Lemma 6.

Γ ′
T+1 = Γ ′

T A′B(YT+1) + aji

(
M

M∑

s=1

csj〈YT+1, fs〉
)
〈qT , ei〉e′j .

Proof. See the Appendix. �

Corollary 3. σ(Oi)T = K ′
T 1, where

K ′
T =

T∑

k=1

〈qk−1, ei〉e′iA′B(Yk) · · ·A′B(YT ).

Then,
K ′

T+1 = K ′
T A′B(YT+1) + 〈qT , ei〉e′i.
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From Theorem 3 we have

σ(T ij)T =
T∑

k=1

Mcji〈Yk, fj〉〈Aqk−1, ei〉〈vk, ei〉

=
T∑

k=1

Mcji〈Yk, fj〉〈Aqk−1, ei〉e′ivk

=
T∑

k=1

Mcji〈Yk, fj〉〈Aqk−1, ei〉e′iA′B(Yk+1) · · ·A′B(YT )1

= H ′
T 1,

where H ′
T =

∑T
k=1 Mcji〈Yk, fj〉〈Aqk−1, ei〉e′iA′B(Yk+1) · · ·A′B(YT ).

Lemma 7.

H ′
T+1 = H ′

T A′B(YT+1)1 + Mcji〈YT+1, fj〉〈AqT , ei〉e′i.

Proof. See the Appendix. �

Corollary 4. In particular, σ(O1i)T = Δ′
T 1, where

Δ′
T =

T∑

k=1

〈Aqk−1, ei〉(M
M∑

s=1

csi〈Yk, fs〉)e′iA′B(Yk+1) · · ·A′B(YT ).

Then, Δ′
T+1 = Δ′

T A′B(YT+1) + 〈AqT , ei〉
(
M
∑M

s=1〈YT , fs〉
)
e′i.
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A Appendix

Proof of Lemma 1

σ(J ijX)k+1 = Ē
[
Λ̄k+1J

ij
k+1Xk+1

∣
∣ Yk+1

]

= Ē
[
Λ̄kλ̄k+1(J

ij
k + 〈Xk, ei〉〈Xk+1, ej〉)Xk+1

∣
∣ Yk+1

]

= Ē
[
Λ̄kλ̄k+1J

ij
k Xk+1

∣
∣ Yk+1

]

+ Ē
[
Λ̄kλ̄k+1〈Xk, ei〉〈Xk+1, ej〉Xk+1

∣
∣ Yk+1

]
.

Now,

Ē
[
Λ̄kλ̄k+1J

ij
k Xk+1

∣
∣ Yk+1

]

= Ē
[
Λ̄k

(
M

M∑

s=1

〈CXk+1, fs〉〈Yk+1, fs〉
)
J ij

k Xk+1

∣
∣
∣ Yk+1

]

=
N∑

r=1

Ē
[
Λ̄k

(
M

M∑

s=1

csr〈Yk+1, fs〉
)
〈Xk+1, er〉J ij

k er

∣
∣
∣ Yk+1

]

=
N∑

r=1

Ē
[
Λ̄k〈Xk+1, er〉J ij

k

∣
∣ Yk+1

](
M

M∑

s=1

csr〈Yk+1, fs〉
)
er

=
N∑

r=1

Ē
[
Λ̄k〈AXk, er〉J ij

k

∣
∣ Yk+1

](
M

M∑

s=1

csr〈Yk+1, fs〉
)
er

+
N∑

r=1

Ē
[
Λ̄k〈Vk+1, er〉J ij

k

∣
∣ Yk+1

](
M

M∑

s=1

csr〈Yk+1, fs〉
)
er

=
N∑

r=1

〈Ē
[
Λ̄kJ ij

k AXk

∣
∣ Yk+1

]
, er〉
(
M

M∑

s=1

csr〈Yk+1, fs〉
)
er

=
N∑

r=1

〈AĒ
[
Λ̄kJ ij

k Xk

∣
∣ Yk

]
, er〉
(
M

M∑

s=1

csr〈Yk+1, fs〉
)
er

=
N∑

r=1

〈Aσ(J ijX)k, er〉
(
M

M∑

s=1

csr〈Yk+1, fs〉
)
er

= B(Yk+1)Aσ(J ijX)k.

Also,
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Ē
[
Λ̄kλ̄k+1〈Xk, ei〉〈Xk+1, ej〉Xk+1

∣
∣ Yk+1

]
=

= Ē
[
Λ̄k

(
M

M∑

s=1

〈CXk+1, fs〉〈Yk+1, fs〉
)
〈Xk, ei〉〈Xk+1, ej〉Xk+1

∣
∣
∣ Yk+1

]

= Ē
[
Λ̄k

(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈Xk, ei〉〈Xk+1, ej〉ej

∣
∣
∣ Yk+1

]

= Ē
[
Λ̄k

(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈Xk, ei〉〈AXk, ej〉ej

∣
∣
∣ Yk+1

]

+ Ē
[
Λ̄k

(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈Xk, ei〉〈Vk+1, ej〉ej

∣
∣
∣ Yk+1

]

=
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
Ē
[
Λ̄k〈Xk, ei〉〈AXk, ej〉

∣
∣
∣ Yk+1

]
ej

+
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
Ē
[
Λ̄k〈Xk, ei〉〈Vk+1, ej〉

∣
∣ Yk+1

]
ej

=
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
Ē
[
Λ̄k〈Xk, ei〉aji

∣
∣ Yk+1

]
ej

=
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈Ē
[
Λ̄kXk

∣
∣ Yk+1

]
, ei〉ajiej

=
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈Ē
[
Λ̄kXk

∣
∣ Yk

]
, ei〉ajiej

=
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈qk, ei〉ajiej .

Therefore,

σ(J ijX)k+1 = B(Yk+1)Aσ(J ijX)k +
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈qk, ei〉ajiej ,

as required. �
Proof of Lemma 2

σ(OiX)k+1 = Ē
[
Λ̄k+1O

i
k+1Xk+1

∣
∣ Yk+1

]

= Ē
[
Λ̄kλ̄k+1(Oi

k + 〈Xk, ei〉)Xk+1

∣
∣ Yk+1

]

= Ē
[
Λ̄kλ̄k+1O

i
kXk+1

∣
∣ Yk+1

]
+ Ē

[
Λ̄kλ̄k+1〈Xk, ei〉Xk+1

∣
∣ Yk+1

]
.

Now,
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Ē
[
Λ̄kλ̄k+1O

i
kXk+1

∣
∣ Yk+1

]

= Ē
[
Λ̄k

(
M

M∑

j=1

〈CXk+1, fj〉〈Yk+1, fj〉
)
Oi

kXk+1

∣
∣
∣ Yk+1

]

=
N∑

r=1

Ē
[
Λ̄k

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
〈Xk+1, er〉Oi

ker

∣
∣
∣ Yk+1

]
er

=
N∑

r=1

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
Ē
[
Λ̄k〈Xk+1, er〉Oi

k

∣
∣ Yk+1

]
er

=
N∑

r=1

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
〈Ē
[
Λ̄kAXkOi

k

∣
∣ Yk+1

]
, er〉er

+
N∑

r=1

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
〈Ē
[
Λ̄kOi

kVk+1

∣
∣ Yk+1

]
, er〉er

=
N∑

r=1

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
〈AĒ

[
Λ̄kOi

kXk

∣
∣ Yk

]
, er〉er

=
N∑

r=1

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
〈Aσ(OiX)k, er〉er

= B(Yk+1)Aσ(OiX)k.

Also,
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Ē
[
Λ̄kλ̄k+1〈Xk, ei〉Xk+1

∣
∣ Yk+1

]

= Ē
[
Λ̄k

(
M

M∑

j=1

〈CXk+1, fj〉〈Yk+1, fj〉
)
〈Xk, ei〉Xk+1

∣
∣
∣ Yk+1

]

=
N∑

r=1

Ē
[
Λ̄k

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
〈Xk+1, er〉〈Xk, ei〉er

∣
∣
∣ Yk+1

]

=
N∑

r=1

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
Ē
[
Λ̄k〈Xk+1, er〉〈Xk, ei〉

∣
∣ Yk+1

]
er

=
N∑

r=1

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
Ē
[
Λ̄k〈AXk, er〉〈Xk, ei〉

∣
∣ Yk+1

]
er

+
N∑

r=1

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
Ē
[
Λ̄k〈Vk+1, er〉〈Xk, ei〉

∣
∣ Yk+1

]
er

=
N∑

r=1

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
Ē
[
Λ̄kari〈Xk, ei〉

∣
∣ Yk+1

]
er

=
N∑

r=1

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
Ē
[
Λ̄k〈Xk, ei〉

∣
∣ Yk+1

]
arier

=
N∑

r=1

(
M

M∑

j=1

cjr〈Yk+1, fj〉
)
〈qk, ei〉arier

= 〈qk, ei〉B(Yk+1)Aei.

We follow the same procedure to obtain the recursion for the dynamics of the
vector process σ(T ijX)k. �
Proof of Remark 5.2.

σ(O1iX)k+1 = Ē
[
Λ̄k+1O1i

k+1Xk+1

∣
∣ Yk+1

]
= Ē

[
Λ̄k+1O

i
k+2Xk+1

∣
∣ Yk+1

]

= Ē
[
Λ̄k+1(Oi

k+1 + 〈Xk+1, ei〉)Xk+1

∣
∣ Yk+1

]

= Ē
[
Λ̄k+1O

i
k+1Xk+1

∣
∣Yk+1

]
+ Ē

[
Λ̄k+1〈Xk+1, ei〉Xk+1

∣
∣ Yk+1

]

= σ(OiX)k+1 + Ē
[
Λ̄k+1〈Xk+1, ei〉Xk+1

∣
∣ Yk+1

]
.

Now,
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Ē
[
Λ̄k+1〈Xk+1, ei〉Xk+1

∣
∣ Yk+1

]
=

= Ē
[
Λ̄k

(
M

M∑

s=1

〈CXk+1, fs〉〈Yk+1, fs〉
)
〈Xk+1, ei〉Xk+1

∣
∣
∣ Yk+1

]

= Ē
[
Λ̄k

(
M

M∑

s=1

〈CXk+1, fs〉〈Yk+1, fs〉
)
〈Xk+1, ei〉ei

∣
∣
∣ Yk+1

]

= Ē
[
Λ̄k

(
M

M∑

s=1

〈CXk+1, fs〉〈Yk+1, fs〉
)
〈AXk + Vk+1, ei〉ei

∣
∣
∣ Yk+1

]

= Ē
[
Λ̄k

(
M

M∑

s=1

〈CXk+1, fs〉〈Yk+1, fs〉
)
〈AXk, ei〉ei

∣
∣
∣ Yk+1

]

+ Ē
[
Λ̄k

(
M

M∑

s=1

〈CXk+1, fs〉〈Yk+1, fs〉
)
〈Vk+1, ei〉ei

∣
∣
∣ Yk+1

]

=
(
M

M∑

s=1

〈CXk+1, fs〉〈Yk+1, fs〉
)
Ē
[
Λ̄k〈AXk, ei〉ei

∣
∣ Yk+1

]

=
(
M

M∑

s=1

〈CXk+1, fs〉〈Yk+1, fs〉
)
〈AĒ

[
Λ̄kXk

∣
∣ Yk+1

]
, ei〉ei

=
(
M

M∑

s=1

〈CXk+1, fs〉〈Yk+1, fs〉
)
〈Aqk, ei〉ei.

The result follows. �
Proof of Lemma 3

vi
k = Ē

[
Λ̄k+1,T

∣
∣ Y0,T ∨ {Xk = ei}

]

= Ē
[
Λ̄k+2,T λ̄k+1

∣
∣ Y0,T ∨ {Xk = ei}

]

= Ē
[
Λ̄k+2,T

(
M

M∑

j=1

〈CXk+1, fj〉〈Yk+1, fj〉
) ∣
∣
∣ Y0,T ∨ {Xk = ei}

]

=
N∑

l=1

Ē
[
Λ̄k+2,T

(
M

M∑

j=1

cjl〈Yk+1, fj〉)〈Xk+1, el〉
∣
∣
∣ Y0,T ∨ {Xk = ei}

]

=
N∑

l=1

Ē
[
Λ̄k+2,T 〈Xk+1, el〉

∣
∣ Y0,T ∨ {Xk = ei}

](
M

M∑

j=1

cjl〈Yk+1, fj〉
)
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=
M∑

l=1

Ē
[
〈Xk+1, el〉

× Ē
[
Λ̄k+2,T

∣
∣ Y0,T ∨ {Xk = ei} ∨ {Xk = el}

] ∣
∣ Y0,T ∨ {Xk = ei}

]

×
(
M

M∑

j=1

cjl〈Yk+1, fj〉
)

=
N∑

l=1

Ē
[
〈Xk+1, el〉vl

k+1

∣
∣ Y0,T ∨ {Xk = ei}

](
M

M∑

j=1

cjl〈Yk+1, fj〉
)

=
N∑

l=1

Ē
[
〈Xk+1, el〉

∣
∣ Y0,T ∨ {Xk = ei}

]
vl

k+1

(
M

M∑

j=1

cjl〈Yk+1, fj〉
)

=
N∑

l=1

Ē
[
〈AXk + Vk+1, el〉

∣
∣ Y0,T ∨ {Xk = ei}

]
vl

k+1

(
M

M∑

j=1

cjl〈Yk+1, fj〉
)

=
N∑

l=1

Ē
[
〈AXk, el〉

∣
∣ Y0,T ∨ {Xk = ei}

]
vl

k+1

(
M

M∑

j=1

cjl〈Yk+1, fj〉
)

+
N∑

l=1

Ē
[
〈Vk+1, el〉

∣
∣ Y0,T ∨ {Xk = ei}

]
vl

k+1

(
M

M∑

j=1

cjl〈Yk+1, fj〉
)

=
N∑

l=1

P̄
(
Xk+1 = el

∣
∣ Y0,T ∨ {Xk = ei}

)
vl

k+1

(
M

M∑

j=1

cjl〈Yk+1, fj〉
)

+
N∑

l=1

〈Ē
[
Vk+1

∣
∣ Y0,T ∨ {Xk = ei}

]
, el〉vl

k+1

(
M

M∑

j=1

cjl〈Yk+1, fj〉
)

=
N∑

l=1

P̄
(
Xk+1 = el

∣
∣ Xk = ei

)
vl

k+1

(
M

M∑

j=1

cjl〈Yk+1, fj〉
)

+
N∑

l=1

〈Ē
[
Vk+1

∣
∣ Xk = ei

]
, el〉vl

k+1

(
M

M∑

j=1

cjl〈Yk+1, fj〉
)

=
N∑

l=1

aliv
l
k+1

(
M

M∑

j=1

cjl〈Yk+1, fj〉
)

+
N∑

l=1

〈Ē
[
Ē[Vk+1 | Fk]

∣
∣ Xk = ei

]
, el〉vl

k+1

(
M

M∑

j=1

cjl〈Yk+1, fj〉
)

=
N∑

l=1

aliv
l
k+1

(
M

M∑

j=1

cjl〈Yk+1, fj〉
)
.
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It follows that vk = A′B(Yk+1)vk+1, as required. �
Proof of Lemma 4

Consider the j-th component of vT−1:

vj
T−1 = Ē

[
Λ̄T,T

∣
∣ Y0,T ∨ {XT−1 = ej}

]
= Ē

[
λ̄T

∣
∣ Y0,T ∨ {XT−1 = ej}

]

= Ē
[
M

M∑

l=1

〈CXT , fl〉〈YT , fl〉
∣
∣
∣ Y0,T ∨ {XT−1 = ej}

]

= M
M∑

j=1

Ē
[
〈CXT , fl〉

∣
∣ Y0,T ∨ {XT−1 = ej}

]
〈YT , fl〉

= M

M∑

j=1

Ē
[ N∑

i=1

cli〈XT , ei〉
∣
∣
∣ Y0,T ∨ {XT−1 = ej}

]
〈YT , fl〉

=
N∑

i=1

Ē
[
〈XT , ei〉

∣
∣ Y0,T ∨ {XT−1 = ej}

](
M

M∑

l=1

cli〈YT , fl〉
)

=
N∑

i=1

Ē
[
〈XT , ei〉

∣
∣ {XT−1 = ej}

](
M

M∑

l=1

cli〈YT , fl〉
)

=
N∑

i=1

P̄
(
XT = ei

∣
∣ XT−1 = ej

)(
M

M∑

l=1

cli〈YT , fl〉
)

=
N∑

i=1

aij

(
M

M∑

l=1

cli〈YT , fl〉
)
.

It follows that vT−1 = A′B(YT )1. �
Proof of Theorem 1

Ē
[
Λ̄0,T Xk

∣
∣ Y0,T

]
=

N∑

i=1

Ē
[
Λ̄0,T 〈Xk, ei〉Xk

∣
∣ Y0,T

]

=
N∑

i=1

Ē
[
Λ̄0,T 〈Xk, ei〉

∣
∣ Y0,T

]
ei.

Consider the i-th component:

Ē
[
Λ̄0,T 〈Xk, ei〉

∣
∣ Y0,T

]
= Ē

[
Λ̄0,kΛ̄k+1,T 〈Xk, ei〉

∣
∣ Y0,T

]

= Ē
[
Λ̄0,kĒ

[
Λ̄k+1,T

∣
∣ Y0,T ∨ {Xk = ei}

]
〈Xk, ei〉

∣
∣ Y0,T

]

= Ē
[
Λ̄0,kvi

k〈Xk, ei〉
∣
∣ Y0,T

]

= Ē
[
Λ̄0,k〈Xk, ei〉

∣
∣ Y0,T

]
vi

k

= 〈Ē
[
Λ̄0,kXk

∣
∣ Y0,T

]
, ei〉vi

k

= qi
kvi

k,
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where qi
k := 〈Ē[Λ̄kXk | Yk], ei〉.

Therefore, Ē[Λ̄0,T Xk | Y0,T ] =
∑N

i=1 qi
kvi

kei = diag (qk · v′
k). �

Proof of Theorem 2

〈σ(J ijX)k+1, vk+1〉 =

= 〈B(Yk+1)Aσ(J ijX)k +
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈qk, ei〉ajiej , vk+1〉

= 〈B(Yk+1)Aσ(J ijX)k, vk+1〉 +
〈(

M

M∑

s=1

csj〈Yk+1, fs〉
)
〈qk, ei〉ajiej , vk+1

〉

= 〈B(Yk+1)Aσ(J ijX)k, vk+1〉 +
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈qk, ei〉aji〈vk+1, ej〉

= 〈σ(J ijX)k, A′B(Yk+1)vk+1〉 +
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈qk, ei〉〈vk+1, ej〉aji

= 〈σ(J ijX)k, vk〉 +
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈qk, ei〉〈vk+1, ej〉aji.

That is,

〈σ(J ijX)k+1, vk+1〉 − 〈σ(J ijX)k, vk〉

=
(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈qk, ei〉〈vk+1, ej〉aji.

Since J ij
0 = 0 and vT = 1,

T−1∑

k=0

[
〈σ(J ijX)k+1, vk+1〉− 〈σ(J ijX)k, vk〉

]
= 〈σ(J ijX)T , vT 〉− 〈σ(J ijX)0, v0〉

= 〈σ(J ijX)T , vT 〉 = 〈σ(J ijX)T ,1〉 = σ(J ij)T .

Hence,

σ(J ij)T =
T−1∑

k=0

aji

(
M

M∑

s=1

csj〈Yk+1, fs〉
)
〈qk, ei〉〈vk+1, ej〉

=
T∑

k=1

aji

(
M

M∑

s=1

csj〈Yk, fs〉
)
〈qk−1, ei〉〈vk, ej〉. �

Proof of Corollary 1
Since σ(Oi)T =

∑N
j=1 σ(J ij)T , we have
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σ(Oi)T =
N∑

j=1

σ(J ij)T =
N∑

j=1

aji

T∑

k=1

〈qk−1, ei〉〈vk, ej〉
(
M

M∑

s=1

csj〈Yk, fs〉
)

=
T∑

k=1

〈qk−1, ei〉
N∑

j=1

aji〈vk, ej〉
(
M

M∑

s=1

csj〈Yk, fs〉
)

=
T∑

k=1

〈qk−1, ei〉
N∑

j=1

vj
kaji

(
M

M∑

s=1

csj〈Yk, fs〉
)

=
T∑

k=1

〈qk−1, ei〉〈A′B(Yk+1)vk, ei〉

=
T∑

k=1

〈qk−1, ei〉〈vk−1, ei〉. �

Proof of Theorem 3

〈σ(T ijX)k+1, vk+1〉 =

= 〈B(Yk+1)Aσ(T ijX)k + Mcji〈Yk+1, fj〉〈Aqk, ei〉ei, vk+1〉
(by Theorem 2.3)

= 〈B(Yk+1)Aσ(T ijX)k, vk+1〉 + 〈Mcji〈Yk+1, fj〉〈Aqk, ei〉ei, vk+1〉
= 〈B(Yk+1)Aσ(T ijX)k, vk+1〉 + Mcji〈Yk+1, fj〉〈Aqk, ei〉〈vk+1, ei〉
= 〈σ(T ijX)k, A′B(Yk+1)vk+1〉 + Mcji〈Yk+1, fj〉〈Aqk, ei〉〈vk+1, ei〉
= 〈σ(T ijX)k, vk〉 + Mcji〈Yk+1, fj〉〈Aqk, ei〉〈vk+1, ei〉.

That is,

〈σ(T ijX)k+1, vk+1〉 − 〈σ(T ijX)k, vk〉 = Mcji〈Yk+1, fj〉〈Aqk, ei〉〈vk+1, ej〉.

Since T ij
0 = 0 and vT = 1,

T−1∑

k=0

[〈σ(T ijX)k+1, vk+1〉− 〈σ(T ijX)k, vk〉] = 〈σ(T ijX)T , vT 〉− 〈σ(T ijX)0, v0〉

= 〈σ(T ijX)T , vT 〉 = 〈σ(T ijX)T , 1〉 = σ(T ij)T .

Hence,

σ(T ij)T =
T−1∑

k=0

Mcji〈Yk+1, fj〉〈Aqk, ei〉〈vk+1, ei〉

=
T∑

k=1

Mcji〈Yk, fj〉〈Aqk−1, ei〉〈vk, ei〉. �
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Proof of Corollary 2
Since

σ(O1i)T =
M∑

j=1

σ(T ij)T ,

we have

σ(O1i)T =
M∑

j=1

σ(T ij)T =
M∑

j=1

T∑

k=1

Mcji〈Yk, fj〉〈Aqk−1, ei〉〈vk, ei〉

=
T∑

k=1

〈vk, ei〉〈Aqk−1, ei〉
(
M

M∑

j=1

cji〈Yk, fj〉
)
. �

Proof of Lemma 6

σ(J ij)T+1 = aji

T+1∑

k=1

(
M

M∑

s=1

csj〈Yk, fs〉
)
〈qk−1, ei〉e′j

× A′B(Yk+1) · · ·A′B(YT )A′B(YT+1)1

= aji

T∑

k=1

(
M

M∑

s=1

csj〈Yk, fs〉
)
〈qk−1, ei〉e′jA′B(Yk+1) · · ·A′B(YT )1

+ aji

(
M

M∑

s=1

csj〈YT+1, fs〉
)
〈qT , ei〉e′j1

= Γ ′
T A′B(YT+1) + aji

(
M

M∑

s=1

csj〈YT+1, fs〉
)
〈qT , ei〉e′j

= Γ ′
T+11.

The result follows. �
Proof of Lemma 7

σ(T ij)T+1 =
T+1∑

k=1

Mcji〈Yk, fj〉〈Aqk−1, ei〉e′iA′B(Yk+1) · · ·A′B(YT )A′B(YT+1)1

=
T∑

k=1

Mcji〈Yk, fj〉〈Aqk−1, ei〉e′iA′B(Yk+1) · · ·A′B(YT )A′B(YT+1)1

+ Mcji〈YT+1, fj〉〈AqT , ei〉e′i1
= H ′

T A′B(YT+1)1 + Mcji〈YT+1, fj〉〈AqT , ei〉e′i1
= H ′

T+11.

The result follows. �
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Expected Shortfall Under a Model With
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Summary. Value-at-Risk (VaR), due to its simplicity and ease of interpretability,
has become a popular risk measure in finance nowadays. However, recent research
find that VaR is not a coherent risk measure and cannot incorporate the loss beyond
VaR or tail risk. This chapter considers expected shortfall (ES) as an alternative
risk measure. We consider a portfolio subject to both market and credit risks. We
model the credit rating using a Markov chain. Thus our model can be treated as
a Markovian regime-switching model. We also propose a weak Markov chain model
which can take into account the dependency of the risks. Expressions for VaR, ES
and numerical results are presented to illustrate the proposed ideas.

Key words: Value at Risk, expected shortfall, market risk, credit risk, credit
ranking, Markov chain, weak Markov chain, coherent risk measure.

6.1 Introduction

It has been an aim for a long time in finance to have an appropriate measure
for the risk of an investment portfolio. VaR, being simple to interpret, has
become more popular in risk management subjects. VaR is generally defined
as the possible maximum loss over a given holding period within a pre-defined
confidence level (Yamai and Yoshiba, [11]). Artzner et al. [4] defines VaR at 1-
α confidence level mathematically as the lower 100 α percentile of the portfolio
return distribution:

V aRα(X) = − inf{x|P [X ≤ x] > α}

Risk managers and regulators have put a lot of efforts on VaR in the early years
because of the promise it holds for improving risk management. International
bank regulators have also agreed to allow local banks to adopt VaR models to
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calculate regulatory capital. Although VaR provides fund managers a quick
and readily accessible value on their portfolio risk, critics on VaR grew with
its popular uses. The main criticism include:

a) VaR is not a coherent risk measure under certain situation, owing to its
non sub-additivity.

b) VaR ignores the tail risk, since it disregards the tail distribution beyond
its value.

c) The use of VaR allows construction of proxies portfolios having low VaR
which resulted from a trade-off of heavy tail loss.

d) Information given by VaR may misled rational investors who wish to max-
imize expected utility. In particular, employing VaR as the only risk mea-
sure is more likely to construct perverse position that would result a larger
loss beyond VaR level.

The concept of coherence for a risk measure is introduced by Artzner et al. [3].
They present four desirable properties of risk measures and regarded those risk
measures satisfying all four properties as coherent. These four properties are
(i) Translation Invariance (ii) Sub-Additivity (iii) Positive Homogeneity and
(iv) Monotonicity. All of them have their own practical interpretation.

In view of VaR’s deficiency, a coherent risk measure named Expected Shortfall
(also called ‘conditional VaR’, ‘means excess loss’, ‘beyond VaR’ or ‘tail VaR’)
is suggested by Artzner et al. [3] to complement VaR, which aims at measuring
the risk of losses beyond VaR. It is defined as the conditional expectation of
loss given that this loss is beyond the VaR.

Suppose X is a random variable denoting the loss of a given portfolio and
V aRα(X) is the VaR of the portfolio at the 100(1−α)% confidence level (i.e.
the upper 100α percentile of the loss distribution), then

ESα(X) = E[−X| − X ≥ V aRα(X)] (6.1)

Here we assume that the loss distribution is continuous. If it is discrete, the
definition of ES needs to be modified a little in order to make it a coherent
risk measure, see Yamai and Yoshiba [11].

A number of comparative analyses on ES and VaR have been carried out by
many researchers. See for example, Acerbi et al. [1], Acerbi and Tasche [2],
Rockafeller and Uryasev [9], Tasche [10], Yamai and Yoshiba ([11], [12], [13],
[14]). The advantages of ES over VaR include:

i) ES is sub-additive and therefore coherent.
ii) ES reflects the loss beyond VaR level and less likely to suggest perverse

portfolio construction.
iii) ES reduces credit concentration.
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iv) Adopting ES as a risk management tool is more conservative as more
economic capital is required although the capital calculated is hard to
interpret with respect to firms’ default probability and does not necessarily
correspond to the capital needed to maintain the firms’ default probability
below some specific level.

It is also known that under the assumption of normal return distribution with
mean 0, expected shortfall provides equivalent risk management information
to that of VaR since they are scalar multiple of each other.

Recently the finance community has shown great interests about credit risks.
Jarrow et al. [6] propose the use of Markov chain model to incorporate the
firms’ credit rating in debt valuation. Based on this idea, Kijima and Ko-
moribayashi [7] made some further studies while Arvanitis et al. [5] and Yang
([15], [16]) built credit spread models and ruin theory models, respectively.

In this chapter, we follow the idea in Yang [15] to present a model for measur-
ing market and credit risks. In order to take into account the dependency of
the credit risk, we propose to use a weak Markov chain rather than a Markov
chain to model transition probabilities between credit states.

Let It be a time-homogeneous weak Markov chain of order r, r ≥ 1, with finite
state space N = (1, 2, ..., k) representing k different credit states for t ≥ r−1.
If i0, i1, . . . , in+1 ∈ N , then we have

P [In+1 = in+1|I0 = i0, I1 = i1, ..., In−1 = in−1, In = in]
= [In+1 = in+1|In−r+1 = in−r+1, ..., In−1 = in−1, In = in] (6.2)

Expression (6.2) tells us that the probability of moving to state in+1 given
full histories of credit states is equivalent to the transition probability given
only past r periods of histories.

Suppose the Markov chain is time-homogeneous. Then we can write

P [In+1 = in+1|In−r+1 = in−r+1, ..., In−1 = in−1, In = in]
= qin−r+1in−r+2...in−1inin+1

where in−r+1, in−r+2, . . . , in+1 ∈ N . We can construct the kr × k transition
matrix ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q11...111 q11...112 . . . q11...11(k−1) q11...11k

q11...121 q11...122 . . . q11...12(k−1) q11...12k

...
...

...
...

q11...1k1 q11...1k2 . . . q11...1k(k−1) q11...1kk

q11...211 q11...212 . . . q11...21(k−1) q11...21k

...
...

...
...

q11...2k1 q11...2k2 . . . q11...2k(k−1) q11...2kk

...
...

...
...

qkk...kk1 qkk...kk2 . . . qkk...kk(k−1) qkk...kkk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.3)
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The objective of Yang [15] is to build a model that pools both market risks and
credit risks together. Therefore, he first models credit risk ratings by a Markov
chain, then constructs a surplus process as a function of portfolio returns,
credit ratings and time. In addition, recursive equations for VaR calculations
are obtained. For various portfolio returns assumption like normal distribution
and shifted t-distribution, numerical illustrations are also provided.

In the next section, we will use the setup of Yang [15] and discuss the ES.
We will present some numerical results to illustrate the ideas. In section 6.3,
weak Markov chain will be used to model the credit ranking change. The final
section summarizes the chapter.

6.2 Markov regime-switching model

In this section, we will apply the Markov chain model to represent the credit
rating dynamics. We obtain the estimated credit rating transition probabilities
based on historical data from available sources. In particular, the transition
matrix is obtained by using the matrix given in JP Morgan [8] and conditional
on the non-default states.

Let It be a time-homogeneous Markov chain with finite state space N =
(1, 2, ..., 7) representing 7 different credit states (non-default).

From (6.2) and (6.3), we have the transition probability for r = 1

P [In+1 = in+1|I0 = i0, I1 = i1, ..., In−1 = in−1, In = in]
= [In+1 = in+1|In = in] = qinin+1 (6.4)

and the transition matrix of 7 × 7 is given by

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

q11 q12 . . . q16 q17

q21 q22 . . . q26 q27

...
...

...
...

q61 q62 . . . q66 q67

q71 q72 . . . q76 q77

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

.9081 .0833 .0068 .0006 .0012 .0000 .0000

.0070 .9065 .0779 .0064 .0006 .0014 .0002

.0009 .0227 .9111 .0552 .0074 .0026 .0001

.0002 .0033 .0596 .8709 .0531 .0117 .0012

.0003 .0014 .0068 .0781 .8140 .0893 .0101

.0000 .0012 .0025 .0045 .0684 .8805 .0429

.0027 .0000 .0028 .0162 .0296 .1401 .8086

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(6.5)
where for i = (1, 2, ..., 7),

∑7
j=1 qij = 1.

In this study, we adopt the notion from JP Morgan [8] in which various credit
ratings were grouped into 7 categories. We regard state 1 as the highest credit
class which correspond to Moody’s Aaa or S&P’s AAA while state 7 as the
lowest, corresponding to Moody’s Caa or S&P’s CCC grade. With this setup,
we can define the credit state dependent surplus process.
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Ut = u +
t∑

m=1

XIm−1
m = u + ΔYt, (6.6)

where u is the initial surplus of the firm, Xi
m is the return in the mth time

interval given that the firm’s credit rating is of class i. δYt refers to the ag-
gregated return over entire time period. We assume that Xi

m, i = 1, 2, ..., k,
m = 1, 2, ... are independent random variables. We further assume that for
any fixed i = 1, 2..., k, ΔXi

m, (m = 1, 2, ..., ) are identically distributed and
ΔXi, ...,ΔXk are independent but not necessary follow the same distribution.
Therefore, the portfolio return of a firm in each time interval depends only on
the credit state at the start of each period but not on other random variables
in the model.

For the surplus process defined in (6.6), let T = inf{n; Un ≤ 0} be the default
time of the firm. It is obvious that T is a stopping time. Then, we define the
n-period (100-α)% VaR, if default does not occur before n, as

P{ΔYn ≤ −y, T ≥ n|I0 = i0, U0 = u} = P{ΔXi0
1 + · · · + ΔXIn−1

n ≤ −y,

ΔXi0
1 > −u, . . . , ΔXi0

1 + · · · + ΔX
In−2
n−1 > −u} = α%. (6.7)

Denote the probability of equation (6.7) as di0
n (u, y), then we can calculate

this in a recursive manner:

For n ≥ 2,

di0
n (u, y) = P{ΔXi0

1 + · · · + ΔXIn−1
n ≤ −y,

ΔXi0
1 > −u, . . . , ΔXi0

1 + · · · + ΔX
In−2
n−1 > −u}

=
k∑

i=1

qi0i

∫ ∞

−u

P{ΔXi
2 + · · · + ΔXIn−1

n ≤ −(y + x),

ΔXi
2 > −(u + x), . . . , ΔXi

2 + · · · + ΔX
In−2
n−1 > −(u + x)}f i0(x)dx

=
k∑

i=1

qi0i

∫ ∞

−u

di
n−1(u + x, y + x)f i0(x)dx,

where f i0(x) is the density function of ΔXi0
1 ,

di0
1 (u, y) = P{ΔXi0

1 ≤ −y}

and
di0
2 (u, y) = P{ΔXi0

1 + ΔXI1
2 ≤ −y,ΔXi0

1 > −u}.

Note that it is possible that the VaR value, y, is larger than u. In this case, we
say that the portfolio is very risky and some kind reconstruction of the firm’s
portfolio is required. In the case of default occurring before time n, practically
it does not make much sense to calculate the VaR or ES for time period n.
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For expected shortfall, let FΔYn(−y|I0 = i0) denote the distribution of ΔYn

given T0 = i0, we have

FΔYn(−y|I0 = i0) = P{ΔYn ≤ −y | I0 = i0}
= P{ΔXi0

1 + · · · + ΔXIn−1
n ≤ −y}

=
k∑

i=1

qi0i

∫ ∞

−∞
P{ΔXi

2 + · · · + ΔXIn−1
n ≤ −(y + x)}f i0(x)dx

=
k∑

i=1

qi0i

∫ ∞

−∞
FΔYn−1(−(y + x) | I0 = i0)f i0(x)dx.

Therefore, the expected shortfall is given by:

ES = E
[
− ΔYn

∣
∣ΔYn ≤ −V aR

]

= −
∫ −V aR

−∞ y · fΔYn(y|I0 = i0)dy

α
, (6.8)

where fΔYn(y|I0 = i0) is the density function of ΔYn given T0 = i0.

An alternative way of calculating the VaR and the expected shortfall is to use
Monte Carlo simulation. Monte Carlo method is a standard numerical tool in
finance nowadays. In the following, we give an example to illustrate the idea.
We use a shifted gamma distribution as the portfolio change distribution and
conduct some numerical studies. We assume that the transition matrix for the
credit risk rankings is given by (6.5) and the model parameters in the gamma
distribution are set to reflect the credit risk and market risk. The density
function of gamma distribution is

f(x) =
(x/θ)βe−(x/θ)

xΓ (β)
.

We assume that XIm=i ∼ (Ga(αi, θi)− 4). Larger values of α are selected for
the better credit states to reflect its relatively low tail risk, as well as a better
return prospect resulted from a relative low credit costs. Smaller values of α
are used for lower credit states to reflect the high credit risk. For simplicity,
we fix θ = 1. The values of parameter α are presented in Table 6.1 below.

Initial Credit State 1 2 3 4 5 6 7

α 7 6 5 4 3 2 1

Table 6.1. Parameters used for Gamma distribution return scenario

In Table 6.2 below, the initial credit state, estimated values, standard devia-
tion and confidence intervals of VaR and ES are shown for α = 1% and n = 3,
and Table 6.3 shows the numerical results for α = 5% and n = 3.
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Initial Credit State Risk Measure Value S.D. 95% CI

1 VaR 2.2269 0.1630 (1.9074, 2.5464)
ES 4.0599 0.1918 (3.6839, 4.4358)

2 VaR 4.4014 0.1380 (4.1308, 4.6719)
ES 6.1309 0.1531 (5.8308, 6.4311)

3 VaR 5.8705 0.1122 (5.6507, 6.0903)
ES 7.0690 0.1294 (6.8154, 7.3226)

4 VaR 7.7040 0.0966 (7.5146, 7.8934)
ES 8.6067 0.1032 (8.4044, 8.8091)

5 VaR 9.5340 0.0701 (9.3967, 9.6713)
ES 10.1315 0.0678 (9.9986, 10.2645)

6 VaR 10.5606 0.0461 (10.4702, 10.6509)
ES 10.9233 0.0460 (10.8332, 11.0134)

7 VaR 11.4469 0.0204 (11.4070, 11.4869)
ES 11.5950 0.0189 (11.5580, 11.6320)

Table 6.2. Simulated VaR and ES with α = 1% and n = 3

Initial Credit State Risk Measure Value S.D. 95% CI

1 VaR -0.8778 0.0777 (-1.0302, -0.7254)
ES 1.0371 0.0896 (0.8615, 1.2127)

2 VaR 1.5097 0.0711 (1.3704, 1.6491)
ES 3.2981 0.0738 (3.1535, 3.4428)

3 VaR 3.5607 0.0616 (3.4400, 3.6814)
ES 4.9771 0.0687 (4.8424, 5.1118)

4 VaR 5.7474 0.0557 (5.6383, 5.8565)
ES 6.9356 0.0.0598 (6.8184, 7.0528)

5 VaR 8.0399 0.0451 (7.9515, 8.1284)
ES 8.9426 0.0448 (8.8547, 9.0304)

6 VaR 9.5806 0.0322 (9.5175, 9.6437)
ES 10.1723 0.0321 (10.1094, 10.2352)

7 VaR 10.9434 0.0185 (10.9072, 10.9796)
ES 11.2482 0.0156 (11.2175, 11.2788)

Table 6.3. Simulated VaR and ES with α = 5% and n = 3
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The numerical results in Tables 6.2 and 6.3 are consistent with our intuition
and the definitions of VaR and expected shortfall. The numerical results show
that ES is always larger than the corresponding VaR. The values of VaR and
ES for α = 1% are larger than those corresponding VaR and ES for α = 5%.
In case the ES is larger than u, that means the firm has to do something with
its portfolio.

6.3 Weak Markov-regime switching model

In this section, we construct a model of market and credit risks with credit
transition being described by a weak Markov chain. As we know dependent
structure is a common phenomenon in finance and is difficult to deal with. To
demonstrate the idea, we only use a second order weak Markov chain here.
That is, we assume r = 2 in (6.3).

As in section 6.2, we would attempt to formulate the surplus process with
second-order Markov regime-switching instead of the first order. By referring
to Yang’s (2000, 2003) model, we can define an analogous surplus process as

Ut = u +
t∑

m=1

ΔXIm−2Im−1
m = u + ΔYt

Again, let T be the default time (i.e. T = inf{t; Ut ≤ 0}), U0 = u be the
initial surplus and further assume that I0 = i0 and I−1 = i−1 are known
credit ratings in current and last periods respectively, then we can obtain an
iterative formula in computing n-period VaR by considering

P{ΔYn ≤ −y, T ≥ n | I0 = i0, I−1 = i−1, U0 = u} = α. (6.9)

The derivation of a recursive formula in the calculation of VaR is similar to
that in section 6.2. Furthermore, if we treat

{(1, 2), (1, 3), · · · , (1, k), (2, 1), · · · , (2, k), · · · , (k, 1), · · · (k, k)}

as the state space, then we can construct a new Markov chain from the weak
Markov chain. After constructing the new Markov chain, mathematically, the
problem reduces to that in section 6.2; the only difference is that the state
space of the new Markov chain has k×k states. Therefore we can also calculate
the VaR by using the formulas in section 6.2.

Similar to equation (6.8), we have the following expression for the expected
shortfall.

ES = E
[
− ΔYn

∣
∣ΔYn ≤ −V aR

]

= −
∫ −V aR

−∞ y · fΔYn

(
y
∣
∣ I−1 = i−1, I0 = i0

)
dy

α
.
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Again, fΔYn(y | I−1 = i−1, I0 = i0) is the density function of ΔYn given I−1 =
i−1 and I0 = i0, and can be obtained either by a similar recursive formula
to that in section 6.2 or, by restructuring the larger state space and reducing
the second-order Markov chain to a first-order one, then use the formula in
section 6.2.

6.4 Concluding remarks

In this chapter, we have presented a model which can incorporate both mar-
ket and credit risks. Our model can also deal with some kind of dependency
structure of the credit risk. We provide two ways of calculating the VaR and
ES; one is by using the recursive equations developed in this chapter and
the other is through the use of standard Monte Carlo method. Both meth-
ods are computationally intensive However, with today’s powerful computer,
hopefully this will not be a big hurdle.

The risk measures for portfolio with both market and credit risks are prac-
tically important and theoretically interesting. This chapter provides simple
models that both handle these risks.
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Summary. In this paper we consider a hidden discrete time finite state process
X whose behavior at the present time t depends on its behavior at the previous k
time steps, which is a generalization of the usual hidden finite state Markov chain,
in which k equals to one. We consider the case when the range space of our obser-
vations is finite. We present filtering equations for certain functionals of the chain
and perform related error analysis.

Key words: Hidden weak Markov chain, filtering, smoothing, EM algorithm,
parameter reestimation.

7.1 Introduction

Stochastic filtering of a hidden Markov chain constitutes a large volume of
literature. See for example, the survey paper [11] by Ephraim and Merhav,
which discusses both the theoretical and applied aspect of this topic. If we
associate the state space of the Markov chain, which represents the signal, as
well as that of the observations, with the Euclidean standard unit vectors in
some finite dimensional Euclidean spaces R

m and R
n, then it turns out that

the calculations involved are quite simplified. This has been the approach by
Elliott et. al. [5]. In the past few years some applications of hidden Markov
modeling in financial problems have appeared (e.g.,[6],[7] by Elliott et. al.).
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However, there have been conclusions that a quite significant number of fi-
nancial entities, which, when being modeled by stochastic evolution equations,
possess memories. This phenomenon is also called the Joseph effect (see [2] by
Cutland, Kopp and Willinger). Therefore, if we want to estimate some func-
tionals of those financial entities which cannot be observed directly, through
stochastic filtering techniques, then we have to develop some adequate filter-
ing theory for the case when the signals possess memories. This is the main
motivation of writing this paper. Here we consider a discrete time finite state
chain X, whose behavior at the present time t depends on its behavior in the
most recent k time steps. See the definition in Section 2. We call such a process
a weak Markov chain of (memory)order k. This should not be confused with
the usual definition of the order of a Markov chain, which corresponds to the
dimension of the state space. This kind of weak Markov chain has been dealt
with by Wang [22], but it has not been that popular.

One possible way to construct filtering equations for the weak Markov chain
which represents the signal is to Markovianize the weak chain to turn it to an
ordinary Markov chain, and then apply the classical methods to the Marko-
vianized chain. We are assuming that the transition probabilities of our chain
to be independent of time. That is, the chain is homogeneous with respect to
the time parameter. If the dimension of the state space of our original weak
chain (Xn) is N , and if we denote our Markovianized chain by (Yn), then we
have

Yn = (Xn−d+1, . . . , Xn),

where d > 1 is the memory order of (Xn). Consequently, the dimension of
the transition matrix of (Yn) would become Nd × Nd. On the other hand, if
we employ our proposed method in this paper with the help of our function
α given in Proposition 2.1, part (iii) in Section 4, we only need to consider
a transition matrix with dimension N × Nd. Therefore, from the numerical
computational point of view, our approach would be more efficient than the
method of Markovianizing the original chain (Xn), especially when the mem-
ory order d and the dimension of the state space N are very large.

The traditional methodology for the dynamical system approach of deriving
filtering, smoothing and prediction recursive equations for functionals of a
hidden Markov chain with finite state space and of finite dimension N is to
assume the state space of the chain to consist of the N canonical unit vectors
e1, e2, . . . , eN , where ei is the unit vector with the value 1 in the ith co-ordinate
and 0 elsewhere. The procedures and calculations involved rely heavily on this
assumption. (cf. Elliott et al. [5]) In the case of our weak Markov chain with
memory order d > 1, if we simply perform the Markovianization, that is, if
we simply consider the new Markov chain (Yn) given by

Yn = (Xn−d+1, . . . , Xn),
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then the set of possible values which Yn assume would no longer have the
form of the canonical unit vectors. As a result, we will still need to construct
a mapping like α given on page 3 to turn the Yn’s into canonical unit vectors
before we can perform calculations in the traditional way. Hence the method-
ology we present in this paper possesses more advantage than the method of
simply Markovianizing the weak Markov chain.

The paper is organized as follows Section 2 presents with the basic defini-
tions, settings, and preliminary results of our filtering problem. In Section 3
we consider the issue on measure change. We give a general un normalized
recursive filter in Section 4. The proofs of most of the theorems, propositions
and lemmas stated in Section 2, 3 and 4 are direct generalizations of those
described in references [5], [9] and [10]. Therefore we just state these theorems,
propositions and lemmas and refer the readers to these references. In Section
5 we give filter estimates for the states of the process, the number of jumps
from one particular state to another specified state in a certain fixed time
interval, and occupation times. Finally we consider parameter re-estimation
in Section 6 and error analysis for our filters in Section 7. The paper ends
with a Conclusion Section.

7.2 Basic Settings

We suppose all random variables are defined on a probability space (Ω,F , P ).
We say that X = {Xn}n≥0 is a weak Markov chain of (memory) order k,
k ≥ 1, with finite state space SX if for n ≥ k − 1, x0, ..., xn, xn+1 ∈ SX , we
have

P (Xn+1 = xn+1|X0 = x0, X1 = x1, ..., Xn−1 = xn−1, Xn = xn)
= P (Xn+1 = xn+1|Xn−k+1 = xn−k+1, ..., Xn−1 = xn−1, Xn = xn).

(7.1)

Throughout this paper, in order to avoid unnecessary complicated notation,
we simply consider a weak Markov chain of order 2. The results in this paper
can readily be extended to weak Markov chains of order k, for k ≥ 1. See also
the concluding remark in the last section. From now on {Xk}k≥0 is a weak
Markov chain of order 2 and with state space SX = {e1, e2, ..., eN} ⊂ R

N

which is the collection of N -dimension standard unit vectors (see [5]).

Thus we have, for k ≥ 1,

P (Xk+1 = xk+1 |X0 = x0, X1 = x1, ..., Xk−1 = xk−1, Xk = xk)
= P (Xk+1 = xk+1 |Xk−1 = xk−1, Xk = xk).

(7.2)

Assume that the chain is homogeneous, so that we can write

P (Xk+1 = ei | Xk = ej , Xk−1 = el) = aijl,

where i, j, l ∈ {1, 2, ..., N}. Then we have the N × N2 transition matrix
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A =

⎛

⎜
⎜
⎝

a111 a112 ... a11N ... a1N1 a1N2 ... a1NN

a211 a212 ... a21N ... a2N1 a2N2 ... a2NN

... ...
aN11 aN12 ... aN1N ... aNN1 aNN2 ... aNNN

⎞

⎟
⎟
⎠ .

Suppose {Tk}k≥1 is a sequence of observations of the form

Tk+1 = c(Xk, ωk+1),

where {ωk}k≥1 is an independent identically distributed (IID) sequence of
noise which is independent of {Xk}k≥0, and c(·, ·) is a deterministic Borel
measurable function. Assume that the observations take values in the set ST =
{f1, f2, ..., fM} ⊂ R

M which is the collection of M -dimensional standard unit
vectors. Write Fk := σ(X0, X1, ..., Xk), Gk := σ(X0, X1, ..., Xk, T1, ..., Tk), and
Yk := σ(T0, T1, ..., Tk).

Proposition 1.

(i) P (Xk+1 = xk+1 | X0 = x0, ..., Xk = xk, T1 = t1, ..., Tk = tk)
= P (Xk+1 = xk+1 | Xk−1 = xk−1, Xk = xk) for k ≥ 1;

(ii) P (Tk+1 = tk+1 | X0 = x0, ..., Xk = xk, T1 = t1, ..., Tk = tk)
= P (Tk+1 = tk+1 | Xk = xk) for k ≥ 0;

(iii) E(Xk+1 | Gk) = Aα

(
Xk

Xk−1

)

= E(Xk+1 | Xk, Xk−1) for k ≥ 1;

(iv) E(Tk+1 | Gk) = CXk = E(Tk+1 | Xk) for k ≥ 0.

where α is a map defined by: α

(
er

es

)

= ers with ers := (0, . . . , 0, 1, 0, . . . , 0)′ ∈

R
N2

, for 1 ≤ r, s ≤ N , where 1 is at the ((r − 1)N + s)th position, and the
prime ′ denotes the transpose. The matrix C above is

C =

⎛

⎜
⎜
⎝

c11 c12 ... c1N

c21 c22 ... c2N

...
cM1 cM2 ... cMN

⎞

⎟
⎟
⎠ ,

where cij = P (Tk+1 = fi|Xk = ej), 1 ≤ j ≤ N, 1 ≤ i ≤ M . The matrix
C is called the state to observation transition matrix.

Proof. By the weak Markov property and because of the independence of
{ωk}∞k=1 and X, we obtain (i). By independence we also obtain (ii). Part (iii)
follows from part (i) and from the property of the conditional expectation
operator. Part (iv) follows from part (ii).
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Next define

Vk+1 := Xk+1 − Aα

(
Xk

Xk−1

)

, k ≥ 1;

Wk+1 := Tk+1 − CXk, k ≥ 0.

We note from Proposition 1 part (iii) that {Vk+1} is a sequence of martin-
gale increments with respect to the filtration {Gk}, so that is the dynamic
representation for the weak Markov Chain X

Xk+1 = Aα

(
Xk

Xk−1

)

+ Vk+1, k ≥ 1. (7.3)

Next we state the following lemma:

Lemma 1. For k ≥ 1,

(i) Vk+1V
′
k+1 = diag(Aα

(
Xk

Xk−1

)

) + diag(Vk+1) − Adiag(α
(

Xk

Xk−1

)

)A′

− Aα

(
Xk

Xk−1

)

V ′
k+1 − Vk+1(Aα

(
Xk

Xk−1

)

)′;

(ii) < Vk+1 >: = E(Vk+1V
′
k+1 | Fk);

= E(Vk+1V
′
k+1 | Xk, Xk−1)

= diag(Aα

(
Xk

Xk−1

)

) − Adiag(α
(

Xk

Xk−1

)

)A′.

Proof. See [5].

7.3 Change of Measure

Write T i
k := 〈Tk, fi〉, ck+1 = E(Tk+1 | Gk) = CXk. Hence ci

k+1 := 〈ck+1, fi〉(=
〈CXk, fi〉 =

∑

j

cij〈Xk, ej〉 = Π
j
c
〈Xk,ej〉
ij ), for 1 ≤ i ≤ M and 1 ≤ j ≤ N . Define

λl =
M∏

i=1

(
1

Mci
l

)T i
l

, Λk =
k∏

l=1

λl,

where l, k ∈ N. Note that λl =
M∑

i=1

T i
l

Mci
l

. Consequently, we have
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Lemma 2.
E(λk+1 | Gk) = 1. (7.4)

Now define a new probability measure P̄ on
(
Ω,

∞∨

l=1

Gl

)
by:

dP̄

dP

∣
∣
∣
∣
Gk

= Λk.

The existence of P̄ follows from the Kolmogorov’s extension theorem.

Theorem 1. (Conditional Bayes’ Theorem)Given a probability space
(Ω,F , P ), and G ⊆ F is a sub-σ-field. Suppose that P̄ is another probability
measure which is abslolutely continuous with respect to P and with Radon-

Nikodym derivative
dP̄

dP
= Λ. Then for any integrable F-measurable r.v. φ,

Ē(φ | G) =
E(Λφ | G)
E(Λ | G)

.

Consequently we have

Lemma 3. If {φk} is a G = {Gk} adapted integrable sequence of r.v.’s, then

Ē(φk | Yk) =
E(Λkφk | Yk)
E(Λk | Yk)

.

In addition, we have the following (see [5])

Lemma 4. P̄ (T j
k+1 = 1 | Gk) = 1

M , so that under P̄ , Tk+1 is independent
of Gk and {Tk}, and is an IID. sequence of uniformly distributed random

variables, with P̄ (Tk = fj) =
1
M

, for 1 ≤ j ≤ M and ∀k ∈ N.

More generally, we have E(T j
k+1 | Gk, Xk+1) = cj

k+1. Also we have P̄ (T j
k+1 =

1|Gk, Xk+1) = 1
M which implies that Tk+1 is independent of Gk and Xk+1.

Moreover, we have the following theorem:

Theorem 2. Ē(Xk+1 | Gk) = E(Xk+1 | Gk) = Aα

(
Xk

Xk−1

)

.
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For the proof see reference [5].

Next we consider a reverse measure change, starting with a probability mea-

sure P̄ on (Ω,
∞∨

l=1

Gl) equipped with the following:

1. The process X is a finite-state weak Markov chain with transition matrix
A and has dynamics given by (7.3);
2. {Tk}∞k=1 is a sequence of IID. random variables and P̄ (T i

k+1 = 1|Gk, Xk+1) =
1
M

.

Suppose C = (cji),1 ≤ j ≤ M , 1 ≤ i ≤ N ;
M∑

j=1

cji = 1, cji ≥ 0. Construct P

from P̄ by setting

λ̄l =
M∏

i=1

(Mci
l)

T i
l , Λ̄k =

k∏

l=1

λ̄l,

where l, k ∈ N and ci
l = 〈CXl−1, fi〉.

As in the previous case, we have Ē(λ̄k+1 | Gk) = 1.
In addition, we can show that Ē(λ̄k+1 | Gk, Xk+1) = 1. The Radon-Nikodym
derivative is defined by

dP

dP̄

∣
∣
∣
∣
Gk

= Λ̄k.

Consequently, that we have the following two lemmas:

Lemma 5. E(Xk+1 | Gk) = Ē(Xk+1 | Gk) = Aα

(
Xk

Xk−1

)

.

Lemma 6. E(Tk+1|Gk) = CXk.

7.4 A general unnormalized recursive filter

Notation 7.4.1 For any process {Hk}, k ∈ N, we write

γk(Hk) := Ē(Λ̄kHk | Yk), Ĥk = E(Hk | Yk).

By Bayes’ theorem, we have

Ĥk = E(Hk | Yk) =
Ē(Λ̄kHk | Yk)
Ē(Λ̄k | Yk)

=
γk(Hk)
γk(1)

.

For 1 ≤ l ≤ N , write

cl(Tk+1) = M

M∏

i=1

c
T i

k+1
il .
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Proposition 2. For any random variable H, we have

Ē(Λ̄k+1H | Yk+1) =
∑

l

cl(Tk+1)Ē(Λ̄kH〈Xk, el〉 | Yk+1).

The proof is similar to the one given in reference [5].

Proposition 3. For every Lk ∈ σ(Gk,Yk+1), Ē(LkVk+1|Gk,Yk+1) = 0, so
that

Ē(LkVk+1|Yk+1) = Ē(Ē(LkVk+1|Gk,Yk+1)|Yk+1) = 0 .

Next we note that 〈α
(

Xk

Xk−1

)

, els〉 = 〈Xk, er〉〈Xk−1, es〉.

Write

qk(els) = Ē
(
Λ̄k〈α

(
Xk

Xk−1

)

, els〉
∣
∣
∣ Yk

)

= Ē(Λ̄k〈Xk, el〉〈Xk−1, es〉 | Yk)

and
q′k(er) = Ē(Λ̄k〈Xk, er〉 | Yk).

where 1 ≤ l, s, r,≤ N , k ∈ N, els = α

(
el

es

)

. Denote

pk(er) = E(〈Xk, er〉 | Yk).

Then the following result is immediate.

Theorem 3.
∑

s
qk(els) = q′k(el) ; pk(er) =

∑

s
qk(ers)

∑

r,s
qk(ers)

.

Definition 1. From now on, we assume

Hk+1 :=
k+1∑

l=1

(αl + 〈βl, Vl〉 + 〈δl, Tl〉),

Then we have the following recursive form of {Hk}:

Hk+1 = Hk + αk+1 + 〈βk+1, Vk+1〉 + 〈δk+1, Tk+1〉,

where αl is one dimension, βl is N -dimension, δl is M -dimension and they
are Gl−1-measurable.
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Notation 7.4.2 For any G-adapted process φk,k ∈ N, write

γm,k(φm) = Ē
(
Λ̄kφmα

(
Xk

Xk−1

) ∣
∣
∣ Yk

)
,

γl,s
m,k(φm) = 〈γm,k(φm), els〉 = Ē

(
Λ̄kφm

〈
α

(
Xk

Xk−1

)

, els

〉 ∣
∣
∣Yk

)
.

As in [5], we have:

Theorem 4.

γls
k+1,k+1(Hk+1) = cs(Tk+1)

∑

v

alsv

[
γsv

k,k(Hk + αk+1 + βl
k+1 − 〈βk+1, a.sv〉)

+〈γsv
k,k(δk+1), Tk+1〉

]
,

where a.sv = Aesv.

7.5 Estimation of states, transitions and occupation
times

7.5.1 State estimation

Take Hk+1 = Hk = ... = H0 = 1, αl = 0, βl = 0, δl = 0, and by Theorem 4,
we have the following recursive equation for {qk},

γls
k+1,k+1(1) =qk+1(els)

=cs(Tk+1)
∑

v

alsvqk(esv). (7.5)

Take Hk+1 = Hk = ... = Hn =< Xn, ep > for k + 1 > n. Then αl = 0, βl = 0,
δl = 0 for k + 1 ≥ l > n. By applying Theorem 4 we obtain the following
smoother:

γls
k+1,k+1(〈Xn, ep〉) = cs(Tk+1)

∑

v

alsvγsv
n,k(〈Xn, ep〉).

7.5.2 Estimators for the number of jumps

The number of jumps from state (er, es) to et up to time k is given by
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J trs
k =

k∑

l=2

〈Xl, et〉〈Xl−1, er〉〈Xl−2, es〉

= J trs
k−1 + 〈Xk, et〉〈Xk−1, er〉〈Xk−2, es〉

= J trs
k−1 +

〈
Aα

(
Xk−1

Xk−2

)

, et

〉
〈Xk−1, er〉〈Xk−2, es〉

+〈Vk, et〉〈Xk−1, er〉〈Xk−2, es〉
= J trs

k−1 + atrs〈Xk−1, er〉〈Xk−2, es〉
+〈Vk, et〉〈Xk−1, er〉〈Xk−2, es〉.

Take Hk+1 = J trs
k+1, so that αl = atrs〈Xl−1, er〉〈Xl−2, es〉, βl = et〈Xl−1, er〉 ×

〈Xl−2, es〉, and δl = 0. Thus

γlm
k+1,k+1(J trs

k+1)

= cm(Tk+1)
∑

v

almvγ
mv
k,k

[
J trs

k + 〈Xk, er〉〈Xk−1, es〉

×(atrs + σtl − atmv)
]

= cm(Tk+1)
∑

v

almvγ
mv
k,k (J trs

k ) + cm(Tk+1)almsσmrσltqk(ems),

where σij =

{
1, if i = j;
0, if i �= j.

Now take Hk+1 = Hk = ... = Hn = J trs
n , where k + 1 > n, so that αl = 0,

βl = 0, and δl = 0 for k + 1 ≥ l > n.
Then we get

γlm
n,k+1(J trs

n ) = cm(Tk+1)
∑

v

almvγsv
n,k(J trs

n ).

7.5.3 Estimators for 1-state occupation times

The number of occupations up to time k where the chain X was in state er

is given by

Or
k =

k∑

l=1

〈Xl−1, er〉.

Take Hk+1 = Or
k+1, αl = 〈Xl−1, er〉, βl = 0, δl = 0. Then the filter equation

is given by

γlm
k+1,k+1(Or

k+1) = cm(Tk+1)
∑

v

almv

(
γmv

k,k (Or
k) + γmv

k,k (〈Xk, er〉)
)

= cm(Tk+1)
∑

v

almv

(
γmv

k,k (Or
k) + σmrqk(emv)

)
.



7 Hidden Weak Markov Chain 111

Let Hk+1 = Hk = ... = Hn = Or
n for k + 1 > n, so that αl = 0, βl = 0, δl = 0

for k + 1 ≥ l > n. Then we obtain the smoother

γlm
n,k+1(Or

n) = cm(Tk+1)
∑

v

almvγlm
n,k(Or

n).

7.5.4 Estimators for 2-state occupation times

The number of occupations up to time k where the weak Markov chain X was
in state (er, es) is given by

Ors
k =

k∑

l=2

〈Xl−1, er〉〈Xl−2, es〉.

Take Hk = Ors
k , αl = 〈Xl−1, er〉〈Xl−2, es〉, βl = 0, δl = 0, so that

γlm
k+1,k+1(Ors

k+1)

= cm(Tk+1)
∑

v

almv

(
γmv

k,k (Ors
k ) + γmv

k,k (〈Xk, er〉〈Xk−1, es〉)
)

= cm(Tk+1)
∑

v

almv

(
γmv

k,k (Ors
k ) + cm(Tk+1)almsσmrqk(ems)

)
.

Now take Hk+1 = Hk = ... = Hn = Ors
n for k > n, αl = 0, βl = 0, δl = 0 for

k + 1 ≥ l > n. Thus we obtain the smoother

γlm
n,k+1(Ors

n ) = cm(Tk+1)
∑

v

almvγlm
n,k(Ors

n ).

7.5.5 Estimators for state to observation transitions

We consider a process of the form

T rs
k =

k∑

l=1

〈Xl−1, er〉〈Tl, fs〉,

where 1 ≤ r ≤ N and 1 ≤ s ≤ M .
Take Hk+1 = T rs

k+1, H0 = 0, αl = 0, βl = 0, δl = 〈Xl−1, er〉fs, then

γlm
k+1,k+1(T rs

k+1)

= cm(Tk+1)
∑

v

almv

(
γmv

k,k (T rs
k ) + 〈γmv

k,k (〈Xk, er〉fs), Tk+1〉
)

= cm(Tk+1)
∑

v

almv

(
γmv

k,k (T rs
k ) + T s

k+1σmrqk(emv)
)
.
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Let Hk+1 = Hk = ... = Hn = T rs
n for k +1 > n, so that αl = 0, βl = 0, δl = 0

for k + 1 ≥ l > n. Thus

γlm
n,k+1(T rs

n ) = cm(Tk+1)
∑

v

almvγ
mv
n,k(T rs

n ).

Remark 1. ∑

l,m

γlm
k+1,k+1(Hk+1) = γk+1(Hk+1),

Remark 2. Some of the recursive filters contain the term qk, but qk itself has
the recursive filter given by (7.5). Thus we can calculate qk recursively first,
then obtain other estimates from the respective recursive filters.

7.6 Parameter re-estimations

In this section we assume that the parameters {ajik} and {cji} are unknown.
We employ the method of Expectation-Maximization (EM) algorithm and the
filters developed in previous sections to estimate the parameters recursively.
The Expectation-Maximization (EM) algorithm is as follows. See Baum and
Petrie [3] and Dembo and Zeitouni [4]

Step 1. Set p = 0 and choose θ̂0;
Step 2. (E-step) Set θ∗ = θ̂p and compute Q(·, θ∗), where

Q(θ, θ∗) = Eθ∗

(

log
dPθ

dPθ∗

∣
∣
∣
∣ Y
)

;

Step 3. (M-step) Find θ̂p+1 ∈ arg max
θ∈Θ

Q(θ, θ∗);

Step 4. Replace p by p + 1 and repeat beginning with step 2 until a stopping
criterion is satisfied.

The sequence {θ̂p, p ≤ 0} thus generated is nondecreasing and by Jensen’s
inequality:

logL(θ̂p+1) − logL(θ̂p) ≥ Q(θ̂p+1, θ̂p),

where L(θ) = E0(dPθ

dP0
|Y) and Q(θ̂p+1, θ̂p) is non-negative by the selection of

θ̂p+1. The quantities Q(θ, θ∗) are called the conditional pseudo-log-likelihoods.

Consider the parameter space θ := (ajik, 1 ≤ j, i, k ≤ N, cji, 1 ≤ j ≤ M, 1 ≤
i ≤ N), and the space of estimators θ̂ := (âjik, 1 ≤ j, i, k ≤ N, ĉji, 1 ≤ j ≤
M, 1 ≤ i ≤ N).
In order to estimate the entries of the transition matrix A, we consider the
likelihood ratio:
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ΛA
k =

k∏

l=2

N∏

r,s,t=1

(
âtrs

atrs

)〈Xl,et〉〈Xl−1,er〉〈Xl−2,es〉
,

and set dPθ̂

dPθ

∣
∣
Fk

= ΛA
k . Then we have the next lemma, which shows that under

Pθ̂, X has transition matrix (âtrs).

Lemma 7. Under the probability measure Pθ̂, assuming Xk = er and Xk−1 =
es, then Eθ̂(〈Xk+1, et〉|Fk) = âtrs.

Proof.

Eθ̂

(
〈Xk+1, et〉

∣
∣Fk

)
=

=
E
(
〈Xk+1, et〉ΛA

k+1

∣
∣Fk)

E(ΛA
k+1 | Fk

)

=
E
(
〈Xk+1, et〉

∏
r′,s′,t′

(
ât′r′s′
at′r′s′

)〈Xk+1,et′ 〉〈Xk,er′ 〉〈Xk−1,es′ 〉 ∣∣
∣ Fk

)

E
(∏

r′,s′,t′

(
ât′r′s′
at′r′s′

)〈Xk+1,et′ 〉〈Xk,er′ 〉〈Xk−1,es′ 〉 ∣∣
∣ Fk

)

=
E
(
〈Xk+1, et〉 âtrs

atrs

∣
∣
∣Fk

)

E
(∑

t′〈Xk+1, et′〉 ât′rs

at′rs

∣
∣
∣ Fk

)

=
âtrs

atrs
E
(
〈Xk+1, et〉

∣
∣Fk

)

ât′rs

at′rs
E
(∑

t′〈Xk+1, et′〉
∣
∣Fk

)

=
âtrs

atrs
atrs

∑
t′

ât′rs

at′rs
at′rs

=
âtrs∑
t′ ât′rs

= âtrs.

Now recall that for any process φk, k ∈ N, φ̂k = E(φk|Yk) denotes expectation
taken under the probability measure Pθ.

Theorem 5. The new estimate of âtrs, given the observations up to time k,
is given by

âtrs =
Ĵ trs

k

Ôrs
k

=
γk(J trs

k )
γk(Ors

k )
,

where the expectation γk is taken with respect to Pθ.
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Proof. Consider the log-likelihood ratio:

log ΛA
k =

∑

r,s,t

k∑

l=2

〈Xl, et〉〈Xl−1, er〉〈Xl−2, es〉
(
log âtrs(k) − log atrs

)

=
∑

r,s,t

J trs
k log âtrs + R(a),

where R(a) does not involve (âtrs). Then

E(log ΛA
k | Yk) =

∑

r,s,t

Ĵ trs
k log âtrs + R̂(a).

Next we note that
∑

t
âtrs = 1,

∑

t,r,s
Ôrs

k âtrs = k − 1, and
∑

t,r,s
Ĵ trs

k = k − 1. The

conditional pseudo-log-likelihood with Lagrange multiplier λ is given by

LA(â, λ) =
∑

t,r,s

Ĵ rs
k log âtrs + R̂(a) + λ

(∑

t,r,s

Ôrs
k âtrs − k + 1

)
.

Differentiate with respect to λ and âtrs, and then equate the derivatives to 0
to obtain

1
âtrs

Ĵ trs
k + λÔrs

k = 0,
∑

t,r,s

Ôrs
k âtrs = k − 1

which give λ = −1. Thus

âtrs =
Ĵ trs

k

Ôrs
k

=
γk(J trs

k )
γk(Ors

k )
,

which maximizes the conditional pseudo-log-likelihood LA(â, λ).

Next we consider the convergence property of the EM algorithm. Suppose that
θp := {âp

trs, 1 ≤ t, r, s ≤ N} is a set of parameter estimates after iterating the
EM algorithm p times with the given observations up to time k, where p ≥ 0.
We then have the following convergence theorem:

Theorem 6. L(θp) converges monotonically to some random variable L∗ in
(Ω,Yk, Pθ0) and any limit point θ∗ of {θp} is a stationary point of L(θ), i.e.
L(θ∗) = L∗.

Proof. First note that

L(θp) = E0

( k∏

l=2

N∏

r,s,t=1

( âp
trs

a0
trs

)〈Xl,et〉〈Xl−1,er〉〈Xl−2,es〉 ∣∣
∣ Yk

)
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which is bounded above by

E0

( k∏

l=2

N∏

r,s,t=1

(
a0

trs

)−〈Xl,et〉〈Xl−1,er〉〈Xl−2,es〉
∣
∣
∣ Yk

)
,

and {L(θp)} is increasing and converges to some random variable L∗ in
(Ω,Yk, Pθ0). Since the function L(θ) is continous in θ, therefore any limit
point θ∗ of {θp} satisfies L(θ∗) = L∗.

Next consider the entries csr of the state to observation transition matrix C.
To replace the parameters θ = {csr, 1 ≤ s ≤ M, 1 ≤ r ≤ N} by θ̂ = {ĉsr, 1 ≤
s ≤ M, 1 ≤ r ≤ N}, we perform a reverse change of measure to construct Pθ̂
by setting

dPθ̂

dP̄

∣
∣
∣
Gk

= Λĉ
k,

where Λĉ
k =

k∏

l=1

λĉ
l , λĉ

l =
M∏

s=1
(Mĉs

l )
T s

l with l, k ∈ N, ĉs
l = 〈ĈXl−1, fs〉, and

Ĉ = (ĉsr) is a state to observation transition matrix. Similar to Lemma 6 we
have the following.

Lemma 8. Under the probability measure Pθ̂, Eθ̂(Tk+1|Gk) = ĈXk.

It shows that under Pθ̂, the state to observation transition matrix is Ĉ. Notice

that ĉs
l =

N∑

r=1
ĉsr〈Xl−1, er〉 =

N∏

r=1
ĉ
〈Xl−1,er〉
sr , hence the likelihood function has

the form:

ΛC
k : =

dPθ̂

dP

∣
∣
∣
Gk

=
dPθ̂

dP̄

dP̄

dP

∣
∣
∣
Gk

= Λĉ
kΛk

=
k∏

l=1

N∏

r=1

M∏

s=1

( ĉsr

csr

)〈Xl−1,er〉〈Tl,fs〉
.

Since
M∑

s=1

ĉsr = 1;
k∑

l=1

N∑

r=1

M∑

s=1

〈Xk, er〉ĉsr = k;
N∑

r=1

M∑

s=1

Ôr
k ĉsr = k

and
N∑

r=1

M∑

s=1

T rs
k = k,

thus
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E(log ΛC
k | Yk) =

N∑

r=1

M∑

s=1

T̂ rs
k log ĉsr + R̂(c),

where R̂(c) does not involve (ĉsr). With the Lagrange multiplier λ, we obtain
the conditional pseudo-log-likelihood:

LC(ĉ, λ) =
N∑

r=1

M∑

s=1

T̂ rs
k logĉsr + R̂(c) + λ

( N∑

r=1

M∑

s=1

Ôr
k ĉsr − k

)
.

Differentiate with respect to λ and ĉsr, and equate the derivatives to 0, we
obtain the maximum conditional pseudo-log-likelihood estimates ĉsr given as

ĉsr =
T̂ rs

k

Ôr
k

=
γk(T rs

k )
γk(Or

k)
.

If θp := {ĉp
rs, 1 ≤ r ≤ M, 1 ≤ s ≤ N} denotes the set of parameter estimates

after iterating the EM algorithm p times with the given observations up to
time k, where p ≥ 0, we obtain the following convergence theorem:

Theorem 7. L(θp) converges monotonely to some r.v. L∗ in (Ω,Yk, Pθ0) and
any limit point θ∗ of {θp} is a stationary point of L(θ), i.e. L(θ∗) = L∗.

7.7 Error analysis

In this section we give recursive estimates of the conditional mean square
errors resulted from our filters obtained in the previous sections. First note
that

E
[
(Hk+1 − Ĥk+1)2

∣
∣Yk+1

]
= E

(
H2

k+1

∣
∣Yk+1

)
− Ĥ2

k+1,

Thus it remains to compute E(H2
k+1|Yk+1) and hence obtain the conditional

variance.

Consider Hk+1 when βk+1 = 0, so that Hk+1 = Hk + αk+1 + 〈δk+1, Vk+1〉,
and

H2
k+1 = H2

k + (2Hk + αk+1)αk+1 + 〈2(Hk + αk+1)δk+1, Tk+1〉
+〈δk+1, Tk+1〉2.

By a proof similar to that of Theorem 4, we obtain

γls
k+1,k+1(〈δk+1, Tk+1〉2) = γls

k+1,k+1(T
′
k+1δk+1δ

′
k+1Tk+1)

= T ′
k+1γ

ls
k+1,k+1(δk+1δ

′
k+1)Tk+1.
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Thus we have the recursive formula

γls
k+1,k+1(H

2
k+1) =cs(Tk+1)

∑

v

alsv

[
γsv

k,k(H2
k + αk+1(2Hk + αk+1))

+ 〈γs,v
k,k(2(Hk + αk+1)δk+1), Tk+1〉

+ T ′
k+1γ

ls
k+1,k+1(δk+1δ

′
k+1)Tk+1

]
.

(7.6)

Finally we consider the conditional covariance matrix of the error resulting
from our state estimates. Denote the conditional covariance matrix of Xk

given Yk by Σk and the ijth element of Σk by σk
ij , i.e. Σk = (σk

ij), where

1 ≤ i, j ≤ N . Since Xk =
N

Σ
r=1

〈Xk, er〉er, we have

σk
ij = E

[
(〈Xk, ei〉 − E(〈Xk, ei〉 | Yk))(〈Xk, ej〉 − E(〈Xk, ej〉 | Yk)

∣
∣Yk]

= E
(
〈Xk, ei〉〈Xk, ej〉

∣
∣Yk

)
− E

(
〈Xk, ei〉

∣
∣Yk)E(〈Xk, ej〉

∣
∣Yk),

Hence

σk
ij =

{
pk(ei) − p2

k(ei) if i = j

−pk(ei)pk(ej) if i �= j
.

Thus we can calculate the conditional covariance recursively since the pk’s
can be computed recursively.

7.8 Conclusion

In this paper, we studied a hidden weak Markov model with discrete time,
finite state and observation space. We developed a general recursive filter
which covers the case of state, occupation time, and total number of jumps
from one state to another state filter estimates. We then provided an EM
algorithm to re-estimate the parameters of our model. For simplicity and
without loss of generality, we considered the case of memory order 2. For the
general case, when we have a weak Markov chain of order k > 2, one way of
expressing the k-step transition matrix A would be

⎛

⎜
⎜
⎝

a11...11 a11..12 ... a11...1N ... a1N1...11 ... a1N...NN

a21...11 a21..12 ... a21...1N ... a2N1...11 ... a2N...NN

... ...
aN1...11 aN1..12 ... aN1...1N ... aNN1...11 ... aNN...NN

⎞

⎟
⎟
⎠

which is an N × Nk matrix. The sub-index of a(·) has the form i1j1j2...jk

where i1 corresponds to the row number and j1j2...jk is a string of k numbers
in {1, 2, ..., N} which corresponds to the column numbers. As a consequence,
all the equations will be adjusted accordingly. For example, when k = 3, the
transition matrix A is given by
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⎛

⎜
⎜
⎝

a1111 a1112 ... a111N ... a1N11 ... a1NNN

a2111 a2112 ... a211N ... a2N11 ... a2NNN

... ...
aN111 aN112 ... aN11N ... aNN11 ... aNNNN

⎞

⎟
⎟
⎠

which is a N × N3 matrix, and part (iii) of Proposition 1 becomes

E(Xk+1 | Gk) = Aα

⎛

⎝
Xk

Xk−1

Xk−2

⎞

⎠ = E(Xk+1 |Xk, Xk−1, Xk−2)

where α

⎛

⎝
er

es

et

⎞

⎠ = (0...0 1 0...0)′ ∈ R
N3

, for 1 ≤ r, s, t ≤ N , where 1 is at

((r − 1)N2 + (s − 1)N + t)th position.
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Filtering of a Partially Observed Inventory
System

Lakhdar Aggoun
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Summary. The vast majority of work done on inventory system is based on the
critical assumption of fully observed inventory level dynamics and demands. Modern
technology, like the internet, offers a tremendous number of opportunities to busi-
nesses to collect imperfect but useful information on potential customers which helps
them planning efficiently to meet future demands. For instance visits to commercial
web sites provides the management of a business of a source of partial information
on future demands. On the other hand it is often the case that it is not economically
viable to fully observe the dynamics of inventory levels and only partial informa-
tion is accessible to the management. In this article, using hidden Markov model
techniques we estimate the inventory level as well as future demands of partially
observed inventory system. The parameters of the model are updated via the EM
algorithm.

Key words: Filtering, Markov chains, change of measure, inventory model.

8.1 Introduction

Modern technology, like the internet, offers a tremendous number of oppor-
tunities to businesses to collect useful information which helps them planning
efficiently to meet future demands. Visits to commercial web sites constitute
a source of partial information on future demands of the commodities (or
services) offered by companies. Warnings by e-mail (or by some other means
such as mobile phone short message service) of customers on change in the
price of a commodity provide a source of potential sales.

Another way of acquiring partial information on future demands is provided
by a company that uses sales representatives to market its products. Each
contact of a sales representative with a customer yields a potential demand.
Sometimes sales representatives prepare sales vouchers as means for quoting
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the customers showing willingness to buy. Since it usually takes some time
for a potential sale to be materialized, the collection of sales representatives’
information as to the number of customers interested in a product (such as
the number of outstanding sales vouchers) can generate an indication about
the future sales of that product [21].

Treharne and Sox [22] discuss a non-stationary demand situation where the
demand is partially observed. They model the demand as a composite-state,
partially observed Markov decision process.

Another example is provided by DeCroix and Mookerjee [14] who consider a
periodic review problem in which there is an option of purchasing demand
information at the beginning of each period. They consider two levels of de-
mand information: Perfect information allows the decision maker to know the
exact demand of the coming period, whereas the imperfect one identifies a
particular posterior demand distribution.

Karaesmen, Buzacott, and Dallery [17] consider a capacitated problem under
partial information on demand and stochastic lead times. They model the
problem via a discrete time make-to-stock queue.

Many factors contribute to make inventories hard to be fully observed by
the management. Among these factors are thefts, shoplifting, damaged or
misplaced items, low production yield processes [23], perished items [20] etc.

An earlier literature review on partially observed systems can be found in
Monahan [19]. Since then, there have not been much research activities in the
study of partially observed inventories.

Bensousan et al. [8, 9, 10, 11, 12], Treharne and Sox [22] study partially
observed demands in the context of discrete time optimal control. In their
studies, the demand is Markov-modulated but the underlying demand state
is unobserved. Another example of a Markov modulated model is discussed
in Beyer et al. [13].

Models discussing filtering and parameter estimation are considered by Ag-
goun et al. [1, 2, 3, 4].

In this article we consider a discrete-time, discrete state inventory model where
the demand is a partially observed finite state process modulated by a Markov
chain which is part of the information available at the beginning of each period.
These two processes, in turn modulate a replenishment process. In other words
the amount to be ordered and stocked to satisfy the (estimated) demand
which must be met, say in the next period, relies on the partial information
on futures sales collected and made available in the current period. For the
sake of simplicity and to be dealing with only finite state processes, we assume
that information does not accumulate without bound. That is, information on
potential sales from earlier periods is discarded.
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The paper’s objective is to estimate recursively the joint distribution of the
level of stock and the actual demand as well as to re-estimate the model pa-
rameters. This article is divided into six sections and is organized as follows.
In §2 we define the model. In §3 we describe the reference probability method
used in computing our filters. In §4 and §5 we derive filters for various quan-
tities of interest. The parameters of the model are re-estimated via the EM
algorithm in §6.

8.2 Model description

All processes are initially defined on a probability space (Ω,G, P ). Our model
consists of the following components.

1. The observed number of potential demands available at the beginning of
period n is an L-state discrete-time Markov process Y = {Yk, 1 ≤ k}.
We use the canonical representation of a Markov chain (see [5, 16]). So,
without loss of generality we take the state space for Y to be the set
L = {e1, e2, . . . , eL}, whose elements ei are column vectors with unity in
the ith position and zero elsewhere. The essential point of this canonical
representation of a Markov chain, is that the state dynamics can be written
down in the form

Yn = AYn−1 + Vn. (8.1)

Here V is a (P, σ{Y1, Y2, . . . , Yn})-martingale increment and A ∈ R
L×L

is a matrix of state transition probabilities such that P (Yn = j | Yn−1 =
i) Δ= aji.

2. The actual (unobserved) demand process D is a finite-state process with
N states {d1, . . . , dN}. Without loss of generality, we identify the state
space {d1, . . . , dN} with the sets of standard unit vectors {f1, f2, . . . , fN}
of R

N . We shall assume that

P (Dn = fm | D1, . . . , Dn−1, Y0, Y1, . . . , Yn−1) = P (Dn = fm | Dn−1, Yn−1).

Write
bm�i = P (Dn = fm | Dn−1 = f�, Yn−1 = ei)

and B = {bm�i}, m, � = 1, . . . , N ; i = 1, . . . , L. Therefore
N∑

m=1

bm�i = 1

and we have the semimartingale representation

Dn = BDn−1 ⊗ Yn−1 + Wn. (8.2)

Here Wn is a sequence of martingale increments. For (column) vectors
x ∈ R

L, y ∈ R
N their tensor or Kronecker product x ⊗ y is the vector

xy′ ∈ R
LN .
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3. Let the demand which was met at the beginning of the n-th period ( or by
the end of the (n−1)-th period) be denoted by Dn−1. We assume here that
for n ≥ 1, Dn is a Poisson random variable with mean λn(Xn−1, Yn−1).
Here Xn is the inventory level at the beginning of the n-th period (see the
dynamics in (8.4).

4. A replenishment process U such that for n ≥ 1, Un is a nonnegative
integer-valued random variable with finite-support probability distribu-
tion:
P (Un = u | Dk, Uk, Yk, Dk, Xk, k ≤ n − 1) = φn(u,Xn−1, Yn−1, Dn−1).

5. Each item in the stock at the beginning of the n-th period is assumed to
be perished (damaged, stolen etc.) with probability (1−α) independently
of the other items, where 0 < α < 1 or is intact with probability α.

We shall be using the Binomial thining operator “ ◦ ” which is well-known
in Time Series Analysis [6], [18]. This operator is defined as follows.

For any nonnegative integer-valued random variable X and α ∈ (0, 1),

α ◦ X =
X∑

j=1

Yj , (8.3)

where Y1, Y2, . . . is a sequence of independent, identically distributed (IID)
random variables independent of X, such that P (Yj = 1) = 1 − P (Yj =
0) = α. Now let Xn be an integer-valued random variable representing
the number of items in stock at the beginning of period n in the inventory
with dynamics

Xn = α ◦ Xn−1 + Un−1 − Dn−1, (8.4)

with X0 constant (integer) or its distribution known. If Xn−1 is negative
then α ◦ Xn−1 = 0. Note that a negative Xn is interpreted as shortage.

Write the following complete filtration Yn = σ{Dk, Uk, Yk, k ≤ n},Gn =
σ{Dk, Uk, Yk, Dk, Xk, k ≤ n}.

8.3 Reference probability

In our context, the objective of the method of reference probability is to choose
a measure P , on the measurable space (Ω,F), under which

(i) Process D is a sequence of IID random variables uniformly distributed

on the set {f1, f2, . . . , fN}, that is P (Dn | Gn−1) =
1
N

.

(ii) Process Y is a sequence of IID random variables uniformly distributed

on the set {e1, e2, . . . , eL}, that is P (Yn = ej | Gn−1) =
1
L

.

(iii) Process U is a sequence of IID random variables with some suitable
positive distribution ψ.
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Further, under the measure P , the dynamics for X are unchanged.

The probability measure P is referred to as the ‘real world’ measure, that is,
under this measure

P

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yn = AYn−1 + Vn,

Dn = BDn−1 ⊗ Yn−1 + Wn,

P (Dn = d | Gn−1) =
1
d!

λd
ne−λn ,

Process U is such that for n ≥ 1, Un is a nonnegative integer-valued
random variable with finite-support distribution such that
P (Un = u | Gn−1) = φn(u,Xn−1, Yn−1, Dn−1).

(8.5)

Definition 1. Denote by Γ = {γk, 0 ≤ k} the stochastic process whose value
at k is given by

Γn =
n∏

k=0

γk, (8.6)

where γ0 = 1 and

γk =
L∏

i=1

(
λDk

k (Xk−1, i)e−λk(Xk−1,i)+1
)〈Yk−1,ei〉 L∏

i,j=1

(Laji)〈Yk,ej〉〈Yk−1,ei〉

N∏

m,�=1

L∏

i=1

(Nbm�i)〈Dk,fm〉〈Dk−1,f�〉〈Yk−1,ei〉

N∏

�=1

L∏

i=1

(φk(Uk, Xk−1, i, �)
ψ(Uk)

)〈Yk−1,ei〉〈Dk−1,f�〉
.

(8.7)

We define the ‘real world’ measure P in terms of P , by setting
dP

dP

∣
∣
∣
∣
Gn

Δ= Γn.

The existence of P follows from the Kolmogorov Extension Theorem.

8.4 Filtering

Write

E
[
〈Dn, fv〉I(Xn = x)

∣
∣
∣ Yn

]
=

E
[
Γn〈Dn, fv〉I(Xn = x)

∣
∣
∣ Yn

]

E
[
Γn

∣
∣
∣ Yn

]

and
E
[
Γn〈Dn, fv〉I(Xn = x)

∣
∣
∣ Yn

]
= ρn(v, x).
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Theorem 1. Denote by ρ0(v, x), the initial probability distribution of (D0,
X0). The unnormalised probability ρn(v, x), satisfies the recursion

ρn(v, x) =
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
N∑

�=1

L∑

i=1

bv�i〈Yn−1, ei〉
∑

z≥x−Un−1+Dn−1

Bin(z, α, x − Un−1 + Dn−1)λDn
n (z, i, �)e−λn(z,i)+1 φk(Un, z, i, �)

ψ(Un)
ρn−1(�, z),

where
Bin(z, α, x − Un−1 + Dn−1)

=
(

z

x − Un−1 + Dn−1

)

(α)x−Un−1+Dn−1(1 − α)z−x+Un−1−Dn−1 .

Proof. In view of (8.7), (8.6) and the independence assumptions under P
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ρn(v, x) =
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉E

[

Γn−1〈Dn, fv〉

×
N∏

m,�=1

L∏

i=1

(Nbm�i)〈Dn,fm〉〈Dn−1,f�〉〈Yn−1,ei〉λDn
n (Xn−1, i)e−λn(Xn−1,i)+1

× I(Xn = x)
N∏

�=1

L∏

i=1

(φn(Un, Xn−1, i, �)
ψ(Un)

)〈Yn−1,ei〉〈Dn−1,f�〉
∣
∣
∣
∣Yn

]

=
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
N∑

�=1

L∑

i=1

bv�i〈Yn−1, ei〉
1

ψ(Un)

× E
[
Γn−1φk(Un, Xn−1, i, �)〈Dn−1, f�〉λDn

n (Xn−1, i)e−λn(Xn−1,i)+1

× I(α ◦ Xn−1 + Un−1 − Dn−1 = x)
∣
∣
∣ Yn

]

=
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
N∑

�=1

L∑

i=1

bv�i〈Yn−1, ei〉
1

ψ(Un)

× E
[
Γn−1φk(Un, Xn−1, i, �)〈Dn−1, f�〉λDn

n (Xn−1, i)e−λn(Xn−1,i)+1

× I(α ◦ Xn−1 = x − Un−1 + Dn−1)
∣
∣
∣ Yn−1

]

=
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
N∑

�=1

L∑

i=1

bv�i〈Yn−1, ei〉
∑

z≥x−Un−1+Dn−1

× Bin(z, α, x − Un−1 + Dn−1)λDn
n (z, i)e−λn(z,i,�)+1

× φk(Un, z, i, �)
ψ(Un)

E
[
Γn−1〈Dn−1, f�〉I(Xn−1 = z)

∣
∣
∣ Yn−1

]

=
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
N∑

�=1

L∑

i=1

bv�i〈Yn−1, ei〉
∑

z≥x−Un−1+Dn−1

× Bin(z, α, x − Un−1 + Dn−1)λDn
n (z, i, �)e−λn(z,i)+1

× φk(Un, z, i, �)
ψ(Un)

ρn−1(�, z).

Here
Bin(z, α, x − Un−1 + Dn−1)

=
(

z

x − Un−1 + Dn−1

)

(α)x−Un−1+Dn−1(1 − α)z−x+Un−1−Dn−1 .

Remark 1. The method we develop to estimate the parameters of the model, is
based upon the filter for process D and estimating a set of quantities derived
from it. These quantities and others of interest are listed below.
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1. T
(j,i)
n , a discrete time counting process for the transitions ei → ej of the

(observed) Markov chain Y , where i �= j,

T
(j,i)
n =

n∑

k=1

〈Yk−1, ei〉〈Yk, ej〉. (8.8)

2. J i
n, the cumulative sojourn time spent by the Markov chain Y in state ei,

J
i
n =

n∑

k=1

〈Y k
k−1, ei〉. (8.9)

3. Gm�i
n , the number of times the process D jumps from state f� to state fm

while the Markov chain Y is in state ei.

Gm�i
n =

n∑

k=1

〈Dk−1, f�〉〈Dk, fm〉〈Yk−1, ei〉. (8.10)

4. S �i
n , the number of times the process D is in state f� while the Markov

chain Y is in state ei.

S �i
n =

n∑

k=1

〈Dk−1, f�〉〈Yk−1, ei〉. (8.11)

8.5 Filters for Gm�i
n , and S �i

n

Rather than directly estimating the quantities, Gm�i
n , and S �i

n recursive forms
can be found by estimating the related product-quantities, Gm�i

n DnI(Xn =
x) ∈ R

N , etc. The outputs of these filters can then be manipulated to mar-
ginalise out the processes X and D, resulting in filtered estimates of the
quantities of primary interest.
Write

qn(Gm�i
n DnI(Xn = x))

�
= E

[
ΓnGm�i

n DnI(Xn = x) | Yn

]
and

qn(S �i
n DnI(Xn = x))

�
= E

[
ΓnS �i

n Dn | Yn

]
.

Theorem 2. The processes defined above are computed recursively by the dy-
namics
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qn(Gm�i
n DnI(Xn = x))

=
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉

×
N∑

l,t=1

L∑

i=1

btli〈Yn−1, ei〉
∑

z≥x−Un−1+Dn−1

Bin(z, α, x − Un−1 + Dn−1)

× λDn
n (z, i, l)e−λn(z,i,l)+1 φn(Un, z, i, l)

ψ(Un)
〈
qn−1(Gm�i

n−1Dn−1I(Xn−1 = z)), fl

〉
ft

+
L∏

j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
L∑

i=1

bm�i〈Yn−1, ei〉
∑

z≥x−Un−1+Dn−1

Bin(z, α, x − Un−1 + Dn−1)

× λDn
n (z, i, �)e−λn(z,i,�)+1 φn(Un, z, i, �)

ψ(Un)
ρn−1(�, z)fm.

qn

(
S �i

n DnI(Xn = x)
)

=
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉

×
N∑

l,t=1

L∑

i=1

btli〈Yn−1, ei〉
∑

z≥x−Un−1+Dn−1

Bin(z, α, x − Un−1 + Dn−1)

× λDn
n (z, i, l)e−λn(z,i,l)+1 φn(Un, z, i, l)

ψ(Un)

×
〈
qn−1

(
S �i

n−1Dn−1I(Xn−1 = z)
)
, fl

〉
ft +

L∏

j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉

×
N∑

t=1

L∑

i=1

bt�i〈Yn−1, ei〉
∑

z≥x−Un−1+Dn−1

Bin(z, α, x − Un−1 + Dn−1)

× λDn
n (z, i, �)e−λn(z,i,�)+1 φn(Un, z, i, �)

ψ(Un)
ρn−1(�, z)ft.

Proof. We provide only the proof for qn(Gm�i
n DnI(Xn = x)).

First note that Gm�i
n = Gm�i

n−1 + 〈Dn−1, f�〉〈Dn, fm〉〈Yn−1, ei〉. Therefore
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qn(Gm�i
n DnI(Xn = x))

= E
[
ΓnGm�i

n−1DnI(Xn = x)
∣
∣ Yn

]

+ 〈Yn−1, ei〉E
[
Γn〈Dn−1, f�〉〈Dn, fm〉DnI(Xn = x)

∣
∣ Yn

]

=
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
N∑

l,t=1

L∑

i=1

btli〈Yn−1, ei〉
∑

z≥x−Un−1+Dn−1

× Bin(z, α, x − Un−1 + Dn−1)λDn
n (z, i, l)e−λn(z,i,l)+1 φn(Un, z, i, l)

ψ(Un)

× E
[〈

Γn−1G
m�i
n−1Dn−1I(Xn−1 = z), fl

〉 ∣∣
∣ Yn−1

]
ft +

L∏

i=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉

×
L∑

i=1

bm�i〈Yn−1, ei〉
∑

z≥x−Un−1+Dn−1

Bin(z, α, x − Un−1 + Dn−1)

× λDn
n (z, i, �)e−λn(z,i,�)+1 φn(Un, z, i, �)

ψ(Un)

× E
[
Γn−1〈Dn−1, f�〉I(Xn−1 = z)

∣
∣
∣ Yn−1

]
f�

=
L∏

i,j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
N∑

l,t=1

L∑

i=1

btli〈Yn−1, ei〉
∑

z≥x−Un−1+Dn−1

× Bin(z, α, x − Un−1 + Dn−1)

× λDn
n (z, i, l)e−λn(z,i,l)+1 φn(Un, z, i, l)

ψ(Un)
〈
qn−1

(
Gm�i

n−1Dn−1I(Xn−1 = z)
)
, fl

〉
ft

+
L∏

j=1

(Laji)〈Yn,ej〉〈Yn−1,ei〉
L∑

i=1

bm�i〈Yn−1, ei〉
∑

z≥x−Un−1+Dn−1

× Bin(z, α, x − Un−1 + Dn−1)

× λDn
n (z, i, �)e−λn(z,i,�)+1 φn(Un, z, i, �)

ψ(Un)
ρn−1(�, z)fm.

Remark 2. The filter recursions given above provide updates to estimate prod-
uct processes, each involving processes D and X. What we would like to do, is
manipulate these filters so as to remove the dependence upon these processes.
This manipulation is routine.
∑

x

〈qn(Gm�i
n DnI(Xn = x)),1〉 =

∑

x

〈E
[
ΓnGm�i

n DnI(Xn = x) | Yn

]
,1〉

=
∑

x

E
[
ΓnGm�i

n I(Xn = x)〈Dn,1〉 | Yn

]

= E
[
ΓnGm�i

n

∑

x

I(Xn = x) | Yn

]
= qn(Gm�i

n ).
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It follows that

qn(Gm�i
n ) =

∑

x

〈qn(Gm�i
n DnI(Xn = x)),1〉. (8.12)

8.6 Parameter re-estimation

In this section, using the EM algorithm [7, 15, 24], the parameters of the
model can be estimated.

Our model is determined by the set of parameters

θ := (aji, 1 ≤ i, j ≤ L, bm�i, 1 ≤ m, � ≤ N)

which we update to the new set

θ̂ =
(
âji(n), 1 ≤ i, j ≤ L, b̂m�i(n), 1 ≤ m, � ≤ N

)
.

The following theorem is established using the techniques in either [5] or [16].

Theorem 3. The new estimates of the parameters of the model given the
observations up to time n are given, when defined, by

âsr(n) =
Trs

n

Jr
n

, (8.13)

b̂m�i(n) =
qn(Gm�i

n )
qn(S �i

n )
. (8.14)

where the processes Trs
n and Jr

n are defined by (8.8) and (8.9) respectively and
qn(Gm�i

n ) and qn(S �i
n ) are given by the recursions in Theorem 2 and Remark

2.

References

1. Aggoun, L., Benkherouf, L. and L. Tadj (1997). “A hidden Markov model for an
inventory system with perishable items”. Journal of Applied Mathematics and
Stochastic Analysis, 10(4): 423–430.

2. Aggoun, L., Benkherouf, L. and L. Tadj (2000). “A stochastic jump inventory
model with deteriorating items”. Stochastic Analysis and Application, 18(1):
1–10.

3. Aggoun, L. and L. Benkherouf (2002). “M-ary detection of Markov modulated
Poisson processes in inventory models”. Journal of Applied Mathematics and
Computation, 132: 315-324.

4. Aggoun, L., Benkherouf, L. and A. Benmerzouga (2002). “Recursive estimation
of inventory quality classes using sampling”. Journal of Applied Mathematics
and Decisions Sciences, 7(4): 249–263.



132 Lakhdar Aggoun

5. Aggoun, L., and R.J. Elliott (2004). Measure Theory and Filtering: Introduction
and Applications, Cambridge University Press, Cambridge, UK.

6. Al-Osh, M.N and A.A Alzaid (1987). “First order integer-valued autoregressive
(INAR(1)) process”. Journal of Time Series Analysis, 8: 261-275.

7. Baum, L.E. and T. Petrie (1966). “Statistical inference for probabilistic func-
tions of finite state Markov chains”. Annals of the Institute of Statistical Math-
ematics, 37: 1554-1563.
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9. Alain, B., Çakanyildirim, M. and S. P. Sethi (2005). “Optimal ordering poli-
cies for inventory problems with dynamic information delays”. Working Paper,
School of Management, University of Texas at Dallas, TX.
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9.1 Introduction

Exchange rates are important variables in financial economics as they are
essential inputs in the valuation of financial securities in the currency mar-
ket. The economic and political mechanisms that generate exchange rates’
changes over time and consequently the parameters or even the structure of
the exchange rate model itself, may change as the economic and political
environment changes. This kind of structural change was involved, for exam-
ple, in the mechanism that generates the exchange rates under the European
Monetary System (EMS). In fact, under the rules of the Exchange Rate Mech-
anism, central banks might intervene in currency markets to keep exchange
rate within a target zone of pre-specified width. When it was believed that
there would be a realignment in the near future, the exchange rates might be-
come very volatile. When it seemed to be unlikely that a realignment would
take place in the near future, however, there was expectation for different con-
ditional distributions of the exchange rates. These different types of regimes
were considered to give a motivation for the use of a regime-switching model
and to characterise EMS exchange rates.

Modelling the conditional distribution of exchange rates as a regime-switching
process is motivated by the occurrence of changes in monetary policy rules.
For example, in the EMS target zone setting the economic motivation to use
a regime-switching model was based on central bank policy regimes.

In the EMS situation, the dynamics of exchange rates were different from
periods during which there was pressure on the weak currency and it was
defended against speculative attack to periods during which the exchange
rate bands were credible. The key difference between the US system and Eu-
ropean system was the frequency of switches amongst regimes. In the US,
regimes usually were long-lived and consequently regime switches were infre-
quent whilst in the EMS switches amongst regimes were quite frequent. In
particular, episodes of extreme volatility speculative attack regime, where the
weak currency was defended by the central bank, did not tend to last long.
In this regime, a speculative attack or a change in the fundamentals drove
the exchange rate towards the weak edge of the target zone. The central bank
of the depreciating currency might intervene in foreign exchange markets or
raise interest rates to drive the exchange rate back towards the center of the
target zone. Sometimes, central banks were successful in averting the currency
crisis but, sometimes they were not, so a realignment might occur. Clearly, as
the US regime tended to be more long-lived than the EMS regime that was
more volatile, the number of switches amongst regimes was likely to be larger
for EMS exchange rates than US rates.

In the literature, many models have Markov regime switching to describe
the behaviour of economic variables subject to structural changes, both in
stationary environments (see Kim and Nelson [32] for further details) and
nonstationary ones (see Hall et al. (1997), Paap and van Dijk [38], Psaradakis
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et al. [39] amongst others). Statistical inference for these models is likelihood-
based exploiting the fact that the maximum likelihood estimator is consistent.

Many researchers devoted their efforts studying the expectation hypothesis
for interest and exchange rates in the context of Markov switching models.
For example, in the related area of interest rate theory, Hamilton [28], Lewis
[35], Driffill [11], Sola and Driffill [40], Evans and Lewis[17], [18], Evans [16],
Gray [25], and Ang and Bekaert [1] investigated whether structural breaks
can account for the rejection of the expectation hypothesis, assuming that
the stochastic process which generates the short term interest rates is subject
to Markov regime shifts.

Even though there is a consensus that US interest rates are best described
as processes that are subject to changes in regime, the results concerning the
empirical validity of the expectation hypothesis are far from conclusive, with
many studies reporting evidence which is not consistent with the predictions
of the expectation theory. Several authors noted that the explanatory power
of the expectation hypothesis of the term structure tends to be greater outside
the United States. Hardouvelis [30] examined the behaviour of three-month
and ten-year rates in the G-7 countries and found that the expectation hy-
pothesis works particularly well for all the countries but the United States.
Further evidence suggests that it is more difficult to reject the expectation
hypothesis using non-US data as Gerlach and Smets [23] provided.

Considerable instability of term structure regressions is also documented by
Dahlquist and Jonsson (1995), who supplied evidence that the expectation
hypothesis can be rejected for periods in which foreign exchange market were
calm.

In this paper we present an econometric model which allows for the presence of
a Markov regime-switching behaviour of exchange rate series. In section 2 we
analyse the stylised features and the statistical properties of foreign exchange
rate. We concentrate our attention on spot and forward US-dollar/UK-pound
exchange rate series. In section 3 we provide a theoretical survey concerning
the stationarity property of the series whilst in section 4 we discuss cointegra-
tion and use an error correction model to test if the spot and forward exchange
rate series are well modelled by the UFER. In section 5 we consider a simple
Hamilton model to capture the changes in regime governed by a Markov chain
dynamics and identify the turning point of the US-dollar/UK-pound spot and
forward time series. Finally, in section 6 we give some concluding remarks.

9.2 Stylised features and statistical properties of foreign
exchange rates

The purpose of this section is to analyse the so-called stylised features of the
exchange rate time series, that is to examine the empirical regularities which
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are commonly found in the exchange rates dynamics. In fact, there is a number
of well known (and less well known) stylised features about the empirical
behaviour of exchange rates and not all of them are considered in empirical
and theoretical economic research (see de Vries [7] for further details). Most
of the series may contain a stochastic trend and the natural consequence
of this fact is that these series do not have time-invariant movements and
are therefore nonstationary. The nonstationary property of the series is also
evident from the behaviour of the series themselves that seem to meander.
This implies that any shock to a series displays a high degree of persistence
and the volatility of many series is not constant over time5. Sometimes, some
time series share movements that are common to other time series so it is
possible to relate the series with each other. This is what happens when we
consider the spot and the forward exchange rate time series.

We focus our analysis principally on monthly US-dollar/UK-pound exchange
rate series by studying its behaviour and by providing a statistical treatment
of its stylised features. Then, a Markov regime-switching model is used to test
if such model is able to capture very well the behaviour of the considered
exchange rate series.

It is worth noting that many empirical studies, concerning the behaviour of
exchange rates, have appeared in the last thirty years. Amongst the many
relevant works are the study of Mussa [37] showing the empirical regularities
in the behaviour of exchange rates, followed by the work of Levich [34] that
explains the price behaviour of related rates, and that of Frenkel and Meese
[21] on the variability of the exchange rates. A comprehensive analysis of the
econometrics of exchange rates are also provided in Taylor [42], Diebold [10],
and Baillie and McMahon [2].

We investigate the relationship between spot and forward rates and the im-
plication of this relationship on testing the UFER hypothesis. There is an
enormous literature on testing whether the forward exchange rate is an unbi-
ased predictor of future spot exchange rate. As in the approach proposed by
Cornell [5] Levich [33] and Frenkel (1980), we base our analysis on the regres-
sion of the logarithm of the future spot rate, st+1, and the logarithm of the
current forward rate, ft. Then, related to the studies of Bilson [4], Fama [19],
and Froot and Frenkel [22], we concentrate on the regression of the change in
the logarithm spot rate, Δst+1, on the forward premium, ft − st. To conduct
these analyses, we consider two variables of interest: spot and forward foreign
exchange rates. The spot rate, which is the exchange rate quoted for immedi-
ate delivery of the currency of the buyer, is seen as the best variable that can
help us analyse trade-related problems. The spot exchange rate is the variable
that clears the market for exports and imports. The forward rate, which is
the guaranteed price agreed today at which the buyer will take delivery of

5 Generally, periods of low volatility are followed by periods in which the volatility
is relatively high.
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currency at some future periods, is very well related to the spot rate as we
shall show.

Our analysis is based on spot, displayed in Figure 9.1 and forward displayed in
Figure 9.2, monthly foreign exchange rates US-dollar/UK-pound during the
period October 1983-January 2005. The exchange rates seem to go through
periods of appreciation and then depreciation as we can see from their plots.
Both the US-dollar/UK-pound spot rates graph and the forward rates one,
may be divided in two well separated subperiods. The first period, charac-
terised by a higher variance until 1993, is then followed by a second period
characterised by a lower variance whilst the mean level is similar in the two
subperiods.

Fig. 9.1. Plot of US-dollar/UK-pound spot exchange rates during the period Oc-
tober 1983-January 2005

The summary statistics of the entire set of data are given in Table 9.1. We
use spot and forward nominal exchange rate to calculate the statistics of the
series. From Table 9.1, it is apparent that the spot and forward series have
characteristics that are very similar to each other. Hence, we can explain, for
example, the spot series by using the forward series and vice-versa. In fact,
there are many theoretical and empirical works that focus on the analysis
of the UFER hypothesis, which asserts that the forward exchange rate is an
unbiased predictor of the future spot exchange rate.

Returning to the observations related to the series’ behaviour, the first step
is to divide the spot and forward historical series in two or more subperi-
ods to check if in the subperiods there is a change in mean and variance
that imply a change in the behaviour of the exchange rates. We choose only
two different subperiods since there is no evidence of other well distinguished
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Fig. 9.2. Plot of US-dollar/UK-pound forward exchange rates during the period
October 1983-January 2005

Statistics Spot Forward

Mean 1.593557 1.590145
Median 1.591250 1.586950
Maximum 1.970000 1.960400
Minimum 1.084000 1.079100
Standard Deviation 0.159323 0.158029
Skewness -0.078759 -0.104196
Kurtosis 3.453549 3.479265
Number of observations 256 256

Table 9.1. Summary statistics for spot and forward US-dollar/UK-pound exchange
rates 1983-2005

subperiods. For US-dollar/UK-pound series the first subperiod is considered
from October-1983 to December-1993 whilst the second is considered from
January-1994 to January-2005. Tables 9.2 and 9.3 give the descriptive sta-
tistics for spot and forward series in the two specified subperiods. In the
US-dollar/UK-pound subperiods we note a similar mean level, that changes
from 1.595042 to 1.592184 in the spot series whilst from 1.589986 to 1.590292
in the forward one; however, the standard deviation of the first subperiod is al-
most two times the standard deviation of the second subperiod for both spot
and forward series. Thus, the two subperiods are characterised by a strong
change in variance. These observations give support to the presence of two
well separated regimes and of the fact that there is an evident change in the
behaviour of the exchange rates from one subperiod to another. One of them is
characterised by a higher level of variance whilst the other is characterised by
a lower level of variance. This justifies the use of a regime-switching Markov
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Statistics Spot Forward

Mean 1.595042 1.589986
Median 1.590000 1.585400
Maximum 1.970000 1.960400
Minimum 1.084000 1.079100
Standard Deviation 0.200074 0.198361
Skewness -0.225703 -0.233914
Kurtosis 2.566956 2.580891
Number of observations 123 123

Table 9.2. Summary statistics for the US-dollar/UK-pound exchange rate series
(October 1983-December 1993)

Statistics Spot Forward

Mean 1.592184 1.590292
Median 1.592500 1.587500
Maximum 1.944050 1.940200
Minimum 1.400700 1.398400
Standard Deviation 0.109709 0.108984
Skewness 0.710399 0.697703
Kurtosis 3.656456 3.648736
Number of observations 133 133

Table 9.3. Summary statistics for the US-dollar/UK-pound exchange rate series
(January 1994-January 2005)

model to capture this type of behaviour in the exchange rates series. But first,
we focus our attention on the characteristics of the two series by testing the
stationarity or nonstationarity of the spot and forward series.

9.3 Stationary and nonstationary time series

Time series may be stationary, trend stationary or nonstationary. A stationary
time series has a constant mean, a constant variance and the autocovariance
results to be independent of time. Stationarity is one of the more desirable
properties in standard econometric theory as, without stationarity, it is not
possible to obtain consistent estimators for the considered time series. Plotting
the series against time is a quick way to check if a series is stationary. If the
graph crosses the mean many times, this signals that the series in question is
stationary. Conversely, if the graph shows the opposite situation, this indicates
persistent trends away from the mean of the series. A trend stationary series
is a series whose mean grows around a fixed trend. It means that a trend-
stationary series tends to evolve around an upward sloping curve without
big swings away from that curve. The concept of nonstationary time series is
strictly related to the concept of unit root. A unit root process is characterised
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by an infinite variance and will only cross the mean of the sample somewhat
infrequently. Furthermore, it displays very long positive or negative strays
away from the sample mean. A process that has a unit root is also called
integrated of order one, denoted by I(1). On the other hand, a stationary
process is integrated of order zero, denoted by I(0).

There are important differences between stationary and nonstationary time
series. Stationary series are characterised by shocks that vanish over time
and the series revert to their long run mean level. Consequently, a long term
forecast converges to the unconditional mean of the series. Furthermore, sta-
tionary series exhibit mean reversion in that they fluctuate around a constant
long-run mean, give a finite variance that is time-invariant and have a theo-
retical autocorrelogram that diminishes as lag length increases. On the other
hand, nonstationary series have mean and variance that are time-dependent;
thus, they are identified by the lack of a long-run mean to which the series
return. A sample correlogram could be used to detect for the presence of unit
root but it is qualitative and would be an imprecise approach to use in testing
the null hypothesis of a unit root. Consider the first-order process

yt = ayt−1 + εt.

Dickey and Fuller [8], [9] developed a procedure to test for the presence of a
unit root for the process above. Their methodology is based on the genera-
tion of thousands of random walk sequences and for each one of them they
estimate the value of a. Although most of these calculated values are near to
unity, some would be further from unity than others. By using this procedure,
Dickey and Fuller found critical values to test for unit roots. Stationarity ne-
cessitates the condition |a| < 1. Thus, if the estimated value of a is close to
1, we should be concerned about nonstationarity. If we define a′ = a − 1, the
equivalent stationarity condition is −2 < a′ < 0. The Dickey-Fuller test may
be conducted to check that the estimated value of a′ is greater than -2. The
procedure that Dickey and Fuller used to determine their critical values, is typ-
ical of that found in modern time series analysis and is related to the fact that
hypothesis tests, concerning the coefficients of nonstationary variables, cannot
be conducted by using the standard t-test or F -test. The distributions of the
appropriate test statistics are not in analytic forms and cannot be evaluated
analytically. The evaluation of these non-standard distributions may easily be
carried out using a Monte-Carlo simulation. We use the Dickey-Fuller (DF)
test to look for evidence of the presence of a unit root.

Let st be the logarithm of spot exchange rate value at time t. We define the
first difference as

Δst = st − st−1.

Guided by the methodology of Dickey and Fuller [8], we consider three dif-
ferent regression equations that can be used to test for the presence of a unit
root. For spot series these are
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Δst = αst−1 + εt,
Δst = c + αst−1 + εt,

Δst = c + αst−1 + bt + εt.
(9.1)

The regression equations in (9.1) may easily be defined also for the logarithm
of forward exchange rate, ft, at time t. The difference between the three
regressions concerns the presence of the deterministic terms c and bt. The
first is a pure random walk model, the second adds an intercept whilst the
third adds both an intercept and a linear time trend. The parameter of interest
in all the regression equations is α. If |α| = 0 there is evidence of the presence
of a unit root. The test involves each equation above by using the ordinary
least squares (OLS) method in order to obtain the estimated value of α and
associated standard error. The comparison between the resulting t-statistics
and the appropriate value reported in the Dickey-Fuller tables allows us to
determine whether to accept or reject the null hypothesis |α| = 0. We can
conduct the same type of analysis by replacing (9.1) by the autoregressive
process as we can find in the augmented Dickey-Fuller test (ADF). According
to this methodology, we can model the first difference of the logarithm of spot
and forward series through the equation

Δst = c + αst−1 + βΔst−1 + γΔst−2 + δΔst−3 + εΔst−4 + ... + εt, (9.2)

where c is a constant whilst α, β, γ, δ and ε are the coefficients associated with
the past data and εt is white noise. In equation (9.2) the coefficient of interest
is α; if |α| = 0 the equations are entirely in first differences and, consequently,
it has a unit root.

The Dickey-Fuller test assumes that the errors are independent and have a
constant variance. This raises the important issue that we do not know the true
data-generating process. We cannot estimate properly α and its standard error
unless all the autoregressive terms are included in the estimating equation.
Since the true order of the autoregressive process is unknown, for both spot
and forward exchange rate, the problem now is to select the appropriate lag
length. Including too many lags reduces the power of the test to reject the null
of a unit root since the increased number of lags necessitates the estimation
of additional parameters and a loss of degree of freedom. In contrast, too
few lags will not appropriately capture the error process so that α and its
standard error cannot be estimated correctly. We start with a relatively long
lag length and then we decrease the lag length by considering the t-test value.
The process is repeated until the lag is significantly different from zero. We
definitively choose 4 lags to proceed with our analysis, as they are necessary
to have no correlation in the residuals.

Table 9.4 illustrates the value of the ADF-test for our exchange rate series
data. We consider the regression equation in (9.2) without considering a linear
time trend. Comparison of the resulting ADF test statistics with the critical
values supplied by Dickey and Fuller shows that there is evidence that the
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logarithm series of spot and forward exchange rates US-dollar/UK-pound are
significantly nonstationary at 90%, 95% and 99% level.

ADF Test Statistics Critical Value Level Critical Value

Spot -2.403479 -3.4580 1%

Forward -2.411600

-2.8731 5%

-2.5729 10%

Table 9.4. Unit root test results for US-dollar/UK-pound spot and forward ex-
change rates

9.4 Cointegration and the unbiased forward exchange
rate (UFER) hypothesis

Given the nonstationarity of the considered spot and forward exchange rate
series, it is possible that a linear combination of integrated variables is sta-
tionary. Such variables are said to be cointegrated. Zivot [43] gave additional
discussion and details of the concept of cointegration within the context of
forward and spot exchange rate regressions.

Cointegration was a terminology introduced by Engle and Granger [15]. We
present their formal analysis following Enders [12]. Suppose to consider a set
of economic variables in long-run equilibrium when

β1x1t + β2x2t + ... + βnxnt = 0.

If we let β and xt denote the columns vectors of the equilibrium constants
(β1, β2, ..., βn) and of the variables (x1t, x2t, ..., xnt) respectively, the system
is in long-run equilibrium if β

′
xt = 0, where β

′
denotes the transpose of the

vector β. The deviation from long-run equilibrium, called equilibrium error,
is et so that et = β

′
xt. Engle and Granger (1987) provided the following

definition of cointegration: the components of the vector xt = (x1t, x2t, ..., xnt)
are said to be cointegrated of order (d, b), denoted x ∼ CI(d, b), if

• all components of xt are integrated of order d;
• there exists a vector β = (β1, β2, ..., βn) such that the linear combination

βxt = β1x1t +β2x2t + ...+βnxnt is integrated of order (d−b), where b > 0.
The vector β is called a cointegrating vector.

According to the definition provided by Engle and Granger [15], cointegration
refers to a linear combination of nonstationary variables but it is quite pos-
sible that a non-linear combination may exist amongst integrated variables.
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Then, all variables must be integrated of the same order. Of course, this does
not imply that all similar integrated variables are cointegrated. As a matter
of fact, a set of I(d) variables is usually not cointegrated. Such a lack of coin-
tegration implies no long-run equilibrium amongst the variables, so that they
can wander arbitrarily far from each other. If the variables are integrated of
different orders, they cannot be cointegrated.

Engle and Granger [15] proposed a test that determines whether or not two
I(1) variables are cointegrated of order CI(1, 1). To explain this testing pro-
cedure for cointegration, consider two variables yt and zt integrated of order
1, I(1), and the following steps are carried out.

Step 1. Pretest the two variables for their order of integration. A DF-test
(or an ADF-test) may be used to test for the order of integration. By
definition, cointegration necessitates that the variables be integrated of
the same order. If the variables are integrated of different order, we can
conclude that they are not cointegrated.

Step 2. Estimate the long-run equilibrium relationship. If the results provided
in Step 1 indicate that the two variables are I(1), the next step is to
estimate the long-run equilibrium relationship in the form

yt = α + βzt + et. (9.3)

In order to determine if the variables are cointegrated, we have to con-
sider the residual sequence of the long-run equilibrium relationship. Let
êt denote the series of the estimated residuals of the long-run relationship

êt = yt − α̂ − β̂zt,

where α̂ and β̂ are the estimated values of the parameters α and β in
(9.3). If this last series is stationary, yt and zt are cointegrated of order
(1,1), symbolically CI(1, 1). It is convenient to perform a DF-test on these
residuals to determine their order of integration and consequently to find
out if they are stationary. Consider the autoregression of the residuals

Δêt = a1êt−1 + εt. (9.4)

The parameter of interest is a1. If we cannot reject the null hypothesis
|a1| = 0, we can conclude that the residuals series contains a unit root
and, consequently, yt and zt are not cointegrated. Conversely, the rejec-
tion of the null hypothesis |a1| = 0 implies that the residual sequence is
stationary, and given that both yt and zt are I(1), we can conclude that
yt and zt are cointegrated of order (1,1). If the residuals in (9.4) do not
appear to be white noise, an ADF-test may be used. Suppose the series εt

of (9.4) exhibits serial correlation. Instead of considering (9.4), estimate
the autoregression

Δêt = a1êt−1 +
n∑

i=1

ai+1Δêt−i + εt.
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Again, if we can reject the hypothesis | a1 |= 0, we conclude that the
residual sequence is stationary and yt and zt are CI(1, 1).

The relationship between cointegration and the UFER hypothesis has been
discussed by many authors starting with Hakkio and Rush [26]. Engel [13]
provided a survey of this literature. The UFER is one form of the efficient
market hypotheses and asserts that the forward price of an asset should equal
the expected value of that asset’s spot price in the future. Related to this is the
fact that forward exchange market efficiency requires the one-period forward
exchange rate equal the expectation of the spot rate in the next period. If ft

represents the logarithm of the one-period price of forward foreign exchange
rate at time t and st is the logarithm of the spot foreign exchange rate at the
same time, the UFER hypothesis asserts that, under rational expectation and
risk neutrality, it must be the case that

Et[st+1] = ft,

where Et[·] is the expectation conditional on information available at time
t. If this relationship fails, speculators can expect to make a pure profit of
their trades in the foreign exchange market. If the agents’ expectations are
rational, the forecast error for the spot rate at time t + 1 is characterised by
zero conditional mean, so that

st+1 − Et[st+1] = εt+1,

where εt+1 is a random variable called rational expectation forecast error with
Et[εt+1] = 0. Combining the last two equations yields

st+1 = ft + εt+1. (9.5)

Two different regression equations have been used to test the UFER. The first
is the level regression

st+1 = a0 + a1ft + εt+1. (9.6)

The null hypothesis that UFER is true imposes the restrictions a0 = 0, a1 = 1
and Et[εt+1] = 0. Since the unit root test gives evidence that spot and forward
exchange rates are both integrated of order one, I(1), the UFER hypothesis
requires that st+1 and ft must be cointegrated with cointegrating vector (1,-1)
and that the stationary cointegrating residuals, εt+1, satisfy Et[εt+1] = 0. It
means that there should be a linear combination of nonstationary spot and
forward exchange rates that is stationary.

Meese and Singleton [36] and Isard [31] provided an explanation of the fact
that, since st and ft have unit roots, the level equation (9.6) is not a valid
regression equation because of the spurious regression problem described by
Granger and Newbold (1974). In fact, the spurious regression presents a t-
statistic that appears to be significant but the results are without any eco-
nomic meaning (see Granger and Newbold [24]).
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The second regression equation used to test the UFER hypothesis is the dif-
ference equation

Δst+1 = α + β(ft − st) + εt+1. (9.7)

In fact, the aim behind cointegration is the detection and analysis of long-
run relationships amongst time series variables. Given that spot and forward
time series appear to be nonstationary they often require differencing to be
trasformed into stationary. The problem with differencing, however, is that
this may remove relevant long-run information. The cointegration analysis
provides a way of retaining both short-run and long-run information. As spot
and forward exchange rate series are both I(1), to have all variables in the
regression integrated of the same order for equation (9.7), the forward pre-
mium ft − st should be I(0) or, equivalently, ft and st should be cointegrated
of order (1,-1). At first, we use an error correction model (ECM) to test if the
spot and forward exchange rate series are well modelled by using the UFER
hypothesis. By subtracting st from both sides of (9.5), we have

Δst+1 = ft − st + εt+1.

The ECM is thus defined exactly as the difference equation (9.7) and the null
hypothesis that UFER is true, imposes the restrictions α = 0, β = 1 and
Et[εt+1] = 0.

The first step is to test if the two considered series Δst and ft−st are station-
ary. We use again an ADF test. The results are presented in Table 9.5. The

ADF Test Statistics Critical Value Level Critical Value

Δst -14.95459 -3.4577 1%

ft − st -9.011005

-2.8730 5%

-2.5728 10%

Table 9.5. ADF-test results for US-dollar/UK-pound series

series are stationary at confidence levels of 90%, 95% and 99% and present a
high ADF test statistic in absolute value with respect to the critical values.

We are now in a position to consider the ECM to test the UFER hypothesis.
This means that we want to test the hypothesis α = 0 and β = 1. We use
the Wald test for this purpose. According to our analysis and to the results
presented in Tables 9.6 and 9.7, the Wald test results to a rejection of the
UFER hypothesis for US-dollar/UK-pound series. We note that when the
UFER hypothesis is rejected, the typical estimate of β, β̂, is significatively
negative. This result is often referred to as the forward discount anomaly or
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forward discount bias but the principal reason why β̂ is negative, is due to
the unaccounted regime shifts in modelling the behaviour of the considered
exchange rate series. All these observations led us to consider a Markov regime-
switching model to capture the shifts of the US-dollar/UK-pound exchange
rate series (see Driffill [11], Zivot [43], Spagnolo, Psaradakis and Sola [41]).

Spagnolo, Psaradakis and Sola [41] offered a possible explanation for the em-
pirical evidence of the rejection of the UFER hypothesis. In particular, they
exploited an implication of the consumption capital asset pricing model under
structural changes in consumption to reconcile this empirical evidence with
general equilibrium models. The motivation for this approach relies on the
empirical finding that consumption dynamics can be characterised by models
that allow for structural changes that are driven by a Markov process. When
combined with the hypothesis of time-varying risk-premium, such dynamic
behaviour for consumption implies that the risk-premium itself is subject to
Markov changes in regime. The presence of a Markov switching risk-premium
further leads the authors to use a model for the spot rate and the forward
premium whose parameters switch stochastically amongst regimes.

Dependent variable Δst+1

Coefficients Value Std. Err.

α̂ -0.002731 0.002598

β̂ -1.714253 0.842843

Table 9.6. ECM estimations for US-dollar/UK-pound series

Null hypothesis: α = 0; β = 1

Statistics Test Value Probability

F-statistic 6.389142 0.001963
Chi-square 12.77828 0.001680

Table 9.7. Wald test results for US-dollar/UK-pound series

9.5 Evidence from exchange rate market via a Markov
regime-switching model

The results obtained in the previous sections may be explained by consider-
ing a Markov regime-switching model to capture the presence of the evident
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change in variance that affects the considered historical data. We consider a
simple Hamilton model to capture the changes in regime by using the Markov’s
hypothesis to identify the turning point of the US-dollar/UK-pound spot and
forward time series.

As in Hamilton’s work [29], we consider a two-state economy where the un-
conditional mean and variance are the only two parameters that can identify
a change in regime. The idea is to apply this model to explain the behaviour
of the exchange rate series and we argue that an explanation for the results
presented above may lie with the forward premium ft − st subject to discrete
Markov shifts. To investigate this possibility, we first investigate the property
of the series ft − st, as we have done in the previous sections. In fact, any
Markov-type nonlinearities in the forward premium are likely to be reflected
in the dynamic behaviour of the first difference spot series, Δst+1.

In this section we consider a system with two regimes where the regime iden-
tification variable, denoted by Xt, may only assume two possible values, 0 or
1. We suppose that the transition between two regimes follows a first-order
Markov process. Moreover, let p denote the probability P [Xt = 0 | Xt−1 = 0]
whilst q denote the probability P [Xt = 1 | Xt−1 = 1]. We choose the under-
lying model as the ECM defined by the equation

Δst+1 = α + [β0 + (β1 − β0)Xt](ft − st) + [σ0 + (σ1 − σ0)Xt]εt+1, (9.8)

where σi, for i = 0, 1, identifies the standard deviation of the two regimes.
Furthermore, we consider a regime-switching Markov model that allows both
the parameter β and σ to switch between two values according to a time-
homogeneous Markov transition process. By using the Hamilton’s proce-
dure (1989), we forecast the forward premium series ft − st of the ex-
change rate US-dollar/UK-pound series. This is obtained through an opti-
mal inference concerning the current state given the past value of the series
(ft−1 − st−1), (ft−2 − st−2), ... . This first step is provided by the Hamilton
[28],[29] non-linear filter according to which it is possible to infer the historical
sequence of states Xt by considering the observed sequence of data ft−st. All
the parameters involved in the analysis are estimated by maximum likelihood.
The sample likelihood function is given as a byproduct of the filter. It is then
maximised numerically with respect to all the parameters and subject to the
constraint that p and q lie in the open unit interval. The second step is to use
the outcome of the filter to generate future forecasts of the series ft − st.

As illustrated in the previous sections, the variance of the US-dollar/UK-
pound series seems to switch between regimes evident from a significant dif-
ference between different subperiods. Thus, in light of all these observations,
we proceed to model the first difference in the spot series st under the as-
sumption that the forward premium ft − st is subject to Markov changes in
regime. In (9.8) the UFER hypothesis is equivalent to the specifications α = 0
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and βi = 1, i = 0, 1. We employ the recursive algorithm described in Hamilton
[29] to estimate and test Markov switching model in (9.8), where the error
term εt+1 and the Markov chain Xt are not observed.

Tables 9.8, 9.9 and 9.10 provide the results of the analysis conducted on the
market data on US-dollar/UK-pound exchange rate series. These results are
obtained by using the software Gauss together with the Hamilton’s [29] filter.
We note that the estimated transition probabilities p and q are near unity.

Parameters Value Standard error

p 0.8696 0.0834
q 0.9624 0.0226
α -0.0018 0.0022
β0 -2.4094 0.7940
σ0 0.0227 0.0017
σ1 0.0472 0.0066

Table 9.8. Regime-switching model parameter estimates for the US-dollar/UK-
pound series

Q-statistics Probability

Q(1) 0.6088 0.4352
Q(6) 1.3796 0.9671
Q(12) 7.6624 0.8109

Table 9.9. Box-Pierce Q-statistics on standardised residuals for the US-dollar/UK-
pound series

Q-statistics Probability

Q2(1) 0.0628 0.8021
Q2(6) 7.8230 0.2514
Q2(12) 10.4208 0.5791

Table 9.10. Box-Pierce Q-statistics on squared standardised residuals for the US-
dollar/UK-pound series

This suggests that the Markov chain driving the changes in regime is highly
persistent, so if the system is in either of the two regimes, it is likely to remain
in that regime for a long time. Furthermore, the two regimes are distinct, with
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the standard deviation of exchange rate changes being two times higher in one
regime than the other6. Table 9.8 confirms that for the considered series there
is evidence of two well-specified regimes. The first regime is characterised by
a negative high level of the parameter β0 that has a value of -2.4094 whilst
the second regime is characterised by a positive value of 0.5585 for the β1

parameter. In accordance to the theory, we note further that the levels of
standard deviation in the two regimes are significantly different. In particular,
the standard deviation associated with regime 0 is 0.0227 whilst the standard
deviation associated with regime 1 is 0.0472. In our analysis we use a constant
intercept model. By considering different values for the intercept, our analysis
does not give evidence of significant different results. Finally, the resulting Q-
statistics, based on standardised residuals and squared standardised residuals,
provide evidence of the absence of autocorrelation amongst residuals. All these
observations allow us to identify two different regimes and motivate the use of
a regime-switching Markov model to capture the behaviour of the series that
switches from one regime to another.

Plot of the estimated filtered probabilities, in Figure 9.3, shows evidence of
two distinct regimes. The first regime corresponds to the first subperiod, from
October 1983 to December 1993, covering until the 123rd observation. The
second regime is identified by the second part of the graph, from January
1994 to January 2005, where we observe a new behaviour in the exchange rate
US-dollar/UK-pound series. During the periods under examination, there are
several changes in regime. For example, the filter allocates a high probability
for state Xt = 1 in the first subperiod of the early 1990s, specifically up to
roughly the 100th observation. This is probably caused by the UK’s exit from
the ERM following disruption on the financial markets.

The economic motivation for the presence of two distinct regimes, the first
until 1993 and the second beginning after 1993, is related to the international
monetary relations that have exhibited cycles during the last half century.
Examples of these cycles are represented by the breakdown of the Bretton
Woods regime in early 1970s or the conflicts over world reflation7 that were
resolved at the Bonn summit in 1978. But, what has a direct influence on the
exchange behaviour of the US-dollar against the UK-pound is the recession
and the consequent recovery that happens during 1990s. In fact, the US econ-
omy experienced a recession in 1991 and a slow recovery in 1992 with only
a delayed response in the market. It was only in January 1993 that the US
economy was beginning to recover whilst those of Europe and Japan lagged
behind; this poised for export-led growth at the expense of the US current
account position. Another important turning point is represented by the de-
cision of EU, in the 1990s, to form a monetary union that could represent a
6 This is consistent with the long-swings in the dollar reported by Engel and Hamil-

ton [14] and Bekaert and Hodrick [3].
7 This refers to the intentional reversal of deflation through a monetary action of

a government.
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Fig. 9.3. Plot of filtered probabilities (upper half) and (ft−st) graph (lower half) for
the logarithm of US-dollar/UK-pound exchange rate series for all the 256 available
monthly data

counterweight to United States and its dollar in the international monetary
system. This initiation leads to a situation in which European states have
more power and are less susceptible to pressure from the United States for
policy change and to fluctuations in the US dollar. Thus, over the long-run,
the structure of the system of the exchange rates could respond to the policy
behaviour of the dominant state. As noted previously an evidence of a regime
change in the behaviour of US-dollar/UK-pound series leads to a situation
that happened in 1993.

To summarise, our analysis has been based on a theoretical econometric model
which allows for the presence of a Markov regime-switching behaviour of ex-
change rate series. Under these conditions, the forward premium itself is sub-
ject to changes in regime. As a consequence, a model for the spot rate and
forward premium is characterised by parameters that depend on the state of
economy and explanatory variables that are correlated with the disturbances.
We have provided evidence that a regime-switching Markov model is able to
capture the changes in regime present in the exchange rate behaviour of the
data studied in this paper.
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9.6 Concluding remarks

The use of a regime-switching model to characterise the behaviour of exchange
rate is justified by the on-going changes that may happen in the economic and
political environment. This modelling framework is intimately connected with
the Hamilton’s Markov model that capture the changes in regime of a financial
time series. The idea is to consider a discrete-time Markov process to model
the switches in regime. Although the model here is initially based on two
regimes, this can be extended to more than two regimes.

Preliminary analysis of the statistical features of the data series clearly signi-
fies the success of employing a regime-switching model. Furthermore, the Wald
test that results in a rejection of UFER hypothesis for the US-dollar/UK-
pound series, provides evidence of unaccounted regime shifts in modelling the
behaviour of the considered exchange rate series. This justifies further the
use of a Markov regime-switching model in capturing better the shifts of the
series.

A possible future direction of this work is related to currency option. A regime-
switching Markov model may be introduced to capture the fluctuations of the
underlying exchange rates in currency options. In fact, if a sudden movement
happens and it cannot be forecasted, the option price is directly affected by
this movement of the exchange rate. A regime-switching Markov model may be
able to capture better this type of movements that are evidenced by changes
amongst regimes.
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Summary. Previous early warning systems (EWS) for currency crises have relied
on models that require a priori dating of crises. This paper proposes an alterna-
tive EWS, based on a Markov-switching model, which identifies and characterizes
crisis periods endogenously; this also allows the model to utilize information con-
tained in exchange rate dynamics. The model is estimated on data from 1972–1999
for the Asian crisis countries, taking a country-by-country approach. The model
outperforms standard EWSs, both in signaling crises and reducing false alarms.
Two lessons emerge. First, accounting for the dynamics of exchange rates is im-
portant. Second, different indicators matter for different countries, suggesting that
the assumption of parameter constancy underlying panel estimates of EWSs may
contribute to poor performance.

Key words: Currency crisis, early warning system, regime switching, Markov
switching

10.1 Introduction

A succession of currency crisis episodes in the 1990s led to a proliferation
of theoretical and empirical papers on the factors that brought about these
crises. Several papers have also focused on the issue of anticipation–devising
early warning systems that give policymakers and market participants warning
that a crisis is likely to occur. Two approaches to constructing early warn-
ing systems have become standard: limited dependent variable probit/logit
models and the indicators approach of Kaminsky, Lizondo and Reinhart [31],
henceforth KLR. Berg et al. [4] assess the performance of these models, and
find that they have outperformed alternative measures of vulnerability such
as bond spreads and credit ratings. However, while these models are able to
anticipate some crises, they also generate many false alarms.
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There are several well-known methodological issues associated with the exist-
ing early warning models. Perhaps the most significant is that they require an
a priori dating of crisis episodes before they can be estimated. The most com-
mon procedure for doing so is by taking changes in exchange rates, reserves
and/or interest rates, choosing weights for each and combining them into an
index of speculative pressure, specifying a sample-dependent threshold, and
identifying crises based on whether or not the index exceeds the threshold. But
as is evident from the survey of 26 recent empirical studies of currency crises
in Section 10.2 below, this simple procedure has been applied in a multitude
of ways, resulting in different periods being identified as crises1.

The threshold procedure provides a set of crisis dates, but raises even more
problems. First, the choice of the crisis-identification threshold is arbitrary.
A selected sampling of thresholds used in the literature include the threshold
of 1.5 × σ (where σ is the sample standard deviation) used in Aziz et al. [2],
1.645 × σ in Caramazza et al. [5], 1.75 × σ in Kamin et al. [29], 2.5 × σ in
Edison [11], and 3 × σ in KLR. Different choices of threshold will obviously
result in different crisis dates and different estimated coefficients. Moreover,
the threshold is sometimes treated as a free parameter and chosen so that the
fit of the model is maximized (Kamin et al.[29]), or so that a set percentage,
say 5 percent, of all observations are crises (Caramazza et. al.[5]).

Second, the sample-dependent nature of the threshold definition implies that
future data can affect the identification of past crises. Thus one can observe
cases of disappearing crises, as documented by Edison [11]. Since the thresh-
old is defined in terms of the sample standard deviation, the occurrence of a
new, relatively large crisis such as the Asian crisis results in previously identi-
fied crises no longer being identified as such. Edison notes that the threshold
methodology identifies five crises in Malaysia using pre-1997 data, but these
all disappear and only one crisis is identified (the 1997 crisis itself), when data
up to 1999 are included in the sample.

Third, many of these studies make ad hoc adjustments to the binary crisis
variable that may introduce artificial serial correlation. One common proce-
dure is the use of “exclusion windows”, which omits any crises identified by
the threshold method if they follow a previous crisis within a certain window
of time. As is the case with the threshold level, the width of the exclusion
window is arbitrary, and has been chosen to be anywhere from one quarter
(Eichengreen, Rose and Wyplosz [12]) to as long as 18 months (Aziz et al. [2])
and even 3 years (Frankel and Rose [16], using annual data). The motivation
for using exclusion windows is to eliminate identifying speculative pressure
episodes as new crises if they are just a continuation of a previous one. But
in doing so, one eliminates any information the sample contains regarding

1 For example, Kamin et al. [29] compare their identified crisis dates with those
identified by KLR and find that only 61 percent of crisis dates were commonly
identified.
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crisis duration. More seriously, it introduces artificial serial correlation in the
dependent variable that few studies account for. The estimated probit/logit
models implicitly assume independence across observations t. But using an
exclusion window means that Ct = 1 ⇒ Pr(Ct+j = 1) = 0 for j = 1, 2, . . . , J ,
where J is the width of the exclusion window2.

Finally, information is lost when transforming a continuous variable into a
binary variable. In particular, potentially useful information on the dynamics
of the dependent variable is discarded. The critique regarding information
loss can also be made regarding the treatment of the indicators in the KLR
approach, where the explanatory variables themselves are transformed into
binary signals.

Given these problems, is there an alternative approach? This paper proposes
an EWS methodology, based on a Markov-switching model with time-varying
transition probabilities, that can address these issues. First, the model does
not require a priori dating of crisis episodes; instead, identification and charac-
terization of crisis periods are part of the models output, estimated simultane-
ously with the crisis forecast probabilities in a maximum likelihood framework.
One thus avoids the pitfalls associated with the threshold dating procedure
described above. Additionally, by exploiting information in the dynamics of
the dependent variable itself, the model is better able to send warning that a
significant exchange rate adjustment is likely.

The assumptions that underlie a Markov-switching model are both concise and
intuitive. The first assumption is that there are two states, tranquil periods
and speculative attack periods. But we do not directly observe these states;
that is, this binary “crisis” variable is latent. This brings us to our second
assumption: there are directly observable variables whose behavior changes
depending on the value of the crisis variable. Most obviously, the behavior of
exchange rates is different during periods of speculative pressure than dur-
ing tranquil periods3. In particular, we expect much greater exchange rate
volatility as well as higher average depreciations during speculative attacks.
Finally, we assume that given the current state–tranquil or crisis–there is a
certain probability of staying in the same state, or moving to the other state.
In our model, the probability of moving from the tranquil state to the crisis
state depends on the strength or weakness of a countrys fundamentals.

Several studies have used Markov-switching models in developing theoretical
models of speculative attacks. Jeanne and Masson [28] and Fratzscher [17]

2 Another procedure that introduces artificial serial correlation, used by KLR and
Berg and Pattillo [3] among others, is the practice of setting the dependent vari-
able equal to one in the 24 months preceding crises identified using the threshold
method. The rationale behind the procedure is to improve model fit for variables
that exhibit abnormal behavior in the periods leading up to a crisis.

3 One can substitute the speculative pressure index for the exchange rate if unsuc-
cessful speculative attacks are also of interest; see Section 10.4 below.
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develop currency crisis models with multiple equilibria and use a Markov-
switching variable to model switches between these equilibria. In both cases,
however, the probability of switching from one equilibrium to another is con-
stant. In contrast, the model in this paper allows switches from the optimistic,
no-attack equilibrium to the pessimistic, speculative attack equilibrium to be
a function of various indicators.

Two other papers have used Markov-switching with time-varying probabilities
to empirically model currency crises. Cerra and Saxena [7] use a Markov-
switching model to look at the 1997 Indonesian crisis, and investigate whether
the crisis was due to domestic factors, monsoonal factors, or pure contagion
from neighboring countries. Their model differs from the one explored here,
mainly because the only variable that affects the time-varying probability in
their model is a measure of contagion, based on exchange market pressure
in neighboring countries. Fundamentals in their model only affect the mean
of the exchange rate. In contrast, our view is that domestic and external
fundamentals affect the probability of a crisis occurring, and hence should
enter into the time-varying probability equation rather than affecting only
the level of the exchange rate.

The most closely related work is by Martinez-Peria [35], who also estimates
a Markov-switching model with time-varying probabilities to model specula-
tive attacks on the European Monetary System (EMS), using data from 1979
to 1993. That paper evaluated the ability of the Markov-switching model
to identify crisis episodes4, and assessed the degree to which five variables–
domestic credit growth, the import-export ratio, the unemployment rate, the
fiscal deficit and interest rates–determined crisis vulnerability in the EMS.
We extend this work and focus primarily on the use of the model as an early-
warning system. First of all, we begin by looking at a wider set of twenty-two
early warning indicators. In addition to the standard macroeconomic indica-
tors used in other early warning systems, we also explore indicators relating
to the characteristics of capital flows, and those relating to financial sector
soundness. Second, the predictive ability of the model is assessed both in-
sample and out-of-sample. Finally, the Martinez-Peria study assumed that
the parameters of the model are uniform across countries, and pooled the
data to get parameter estimates. This is probably an innocuous assumption
for the set of advanced economies in her study, which are broadly similar.
But for developing countries, such an assumption might not hold. If a country
is relatively more open or has less capital controls than other countries, for
example, the coefficients on measures of external imbalance may be larger. In

4 In this regard, the results are positive: Martinez-Peria finds that the Markov-
switching model is able to identify all the crisis episodes identified by the methods
used by Eichengreen, Rose and Wyplosz [12], but also identifies 25 additional crisis
episodes. She then finds evidence in news reports and central bank releases that
21 of these 25 periods were indeed speculative attacks.
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this paper, the model is estimated separately for each of the five Asian crisis
countries (Indonesia, Korea, Malaysia, the Philippines and Thailand).

With the usual caveat that all early warning systems are far from perfect and
serve only to synthesize information and supplement more in-depth country
knowledge, the model does a good job of anticipating crises. It correctly antici-
pates two-thirds of crisis periods in sample, and just as important, sends much
fewer false alarms than existing models. In the January 2000–July 2001 out-
of-sample period, no warning signals are sent for three of the countries (Korea,
Thailand and Indonesia), but vulnerabilities were signaled for Malaysia and
the Philippines in mid-2001, mainly due to a decline in competitiveness and
a slowdown in exports.

This chapter is organized as follows. Section 10.2 describes the Markov-
switching model with time-varying probabilities in detail. The data used in
the estimation is described in Section 10.3, while Section 10.4 presents the es-
timation results and a country-by-country analysis. Section 10.5 assesses the
models predictive ability both in-sample and out-of-sample, and Section 10.6
concludes.

10.2 A Markov-switching approach to early warning
systems

Regime-switching models have long been a tool available to empirical econo-
mists, with early work on these models going back to Quandt [36], Goldfeld
and Quandt [19], and Hamilton [22]. Applications have only become com-
mon in the last decade, however, with the advent of greater computing power.
Markov-switching models with constant transition probabilities have been ap-
plied to interest rates (Hamilton [20]), the behavior of GNP (Hamilton [21]),
stock returns (Cecchetti, Lam and Mark [6]), and floating exchange rates (En-
gel and Hamilton [13])5. One serious limitation of the earlier Markov-switching
models, however, was the restriction of constant transition probabilities. The
baseline model was thus extended to allow for time-varying transition prob-
abilities, by Lee [33] and Diebold, Weinbach and Lee [10] and used to model
long swings in the dollar-pound rate, as well as by Filardo [15], [14] to analyze
business cycle phases.

As mentioned in the introduction, there are two primary motivations for using
Markov-switching model with time-varying probabilities in modeling specula-
tive attacks. First, one can avoid the many ad hoc assumptions required in the
standard models. Even if, as many of the studies claim, their results are robust
to these ad hoc assumptions, we believe there is virtue in simplicity. Second,
using exchange rates or the index of speculative pressure directly avoids the
5 A comprehensive review of the applications of Markov-switching models in econo-

metrics can be found in Kim and Nelson [32].
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loss of information that results when these variables are transformed into a
binary crisis dummy variable. In particular, exchange rate dynamics may it-
self be informative about the likelihood of a large speculative attack. A small
increase in volatility (e.g., from a widening of an exchange rate band) or small
devaluations in the span of a few months might foreshadow a coming currency
crisis, but this information remains unutilized (and in fact is erased by the
threshold dating process) in the standard approaches. As we will see below,
even small changes in exchange rate behavior are utilized in a regime-switching
framework as signs of increasing speculative pressure.

There are three disadvantages in using Markov-switching models. The first
is computational; Markov-switching models with time-varying probabilities
are still not part of the standard econometric software packages. But this
drawback has become minor, as more researchers use the methodology and
make their code available, and since software programs such as EViews now
allow the creation of general log likelihood objects6. A second drawback is the
difficulty in testing Markov-switching models against the null of no switch-
ing, as one encounters problems with unidentified nuisance parameters (the
coefficient parameters in the transition probability matrix), as well as with
a singular information matrix. Various tests have been suggested, including
Davies [8], [9], Hansen [26], [27], Hamilton [24], Garcia [18] and Mariano and
Gong [34] for testing a constant transition probability model against a null
of no switching. For the time-varying transition probability case, one can do
a sequential test: first, test the constant transition probability model against
a null of no switching, and then test the time-varying transition probability
model against a constant transition probability model. Note that testing the
significance of individual coefficient estimates, as well as testing the overall
model against a null of constant switching, can easily be done using standard
t-statistics and likelihood ratio tests. The third drawback is that the likeli-
hood surface can have several local maxima and is sometimes ill-behaved. The
model may fail to converge when too many explanatory variables are included,
and t-statistics may be sensitive to the choice of step size, since derivatives are
calculated numerically. Thus, a judicious choice of start-up values and step
size in the maximum likelihood estimation is important.

Model Specification and Estimation

The latent variable in the model follows a first-order, two-state Markov chain
{st}T

t=1, where st = 1 denotes a crisis state and st = 0 denotes a tranquil state.
Although st is not directly observable, the behavior of our dependent variable
yt–which can be either the nominal exchange rate change or the speculative
pressure index–is dependent on st as follows:

yt|st
IID∼ N

(
μst , σ

2
st

)
(10.1)

6 The EViews code and the dataset used for estimating the models in this paper
are available from the author upon request.
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so that both the mean and variance of yt can shift with the regime7. The
density of yt conditional on st is then

f(yt|st) =
1√

2πσst

exp
(
−(yt − μst)

2

2σ2
st

)

(10.2)

for st = 0, 1.

The latent regime-switching variable st evolves according to the transition
probability matrix Pt

State 0 State 1

State 0

State 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pt
00 pt

01 = (1 − pt
00)

Pr(st = 0 | st−1 = 0, xt−1) Pr(st = 1 | st−1 = 0, xt−1)
= F (xt−1β0) = 1 − F (xt−1β0)

pt
10 = (1 − pt

11) pt
11

Pr(st = 0 | st−1 = 1, xt−1) Pr(st = 1 | st−1 = 1, xt−1)
= F (xt−1β1) = 1 − F (xt−1β1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10.3)
where pt

ij is the probability of going from state i in period t − 1 to state j
in period t, and F is a cumulative distribution function, most typically the
logistic or the normal c.d.f. The elements of the k×1 vector xt−1 are the early
warning indicators that can affect the transition probabilities.

One final quantity needed to complete the model is the start-up value p1
1 =

Pr(s1 = 1), which gives the unconditional probability of being in state 1
at time 1. As Diebold, Weinbach and Lee [10] note, the treatment of this
quantity depends on whether xt is stationary or not. If xt is stationary, then
p1
1 is simply the long-run probability that s1 = 1, which in turn would be a

function of (β0, β1). If xt is nonstationary, then p1
1 is an additional parameter

that must be estimated. In practice, for a long enough time series this value
has a negligible effect on the likelihood function, and whether one calculates
it as a function of (β0, β1), estimates it as a separate parameter, or just sets
it at a constant value makes little difference.

The estimation procedure we use is direct maximization of the likelihood,
where the likelihood function is calculated using the iteration described in
Hamilton [23, pp. 692-93]. Using information available up to time t, we can
construct Pr(st = j | Ωt; θ), the conditional (filtered) probability that the t-th
observation was generated by regime j, for j = 1, 2, . . . , N , where N is the
number of states (in this paper, N = 2). Collect these conditional probabilities
into an (N × 1) vector ξ̂t|t.

7 An autoregressive process for yt can be assumed as well, and the autoregressive
parameters can switch from one regime to another, if desired. The assumption of
normality can also be relaxed.
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One can also form forecasts using the conditional (forecast) probability of be-
ing in regime j at time t + 1, given information up to time t: Pr(st+1 = j |
Ωt; θ), for j = 1, 2, . . . , N . Collect these forecast probabilities in an (N × 1)
vector ξ̂t+1|t. Lastly, let ηt denote the (N × 1) vector whose j-th element
is the conditional density of yt in equation (10.2). These filtered and fore-
cast probabilities are calculated for each date t by iterating on the following
equations:

ξ̂t|t =
ξ̂t|t−1 ◦ ηt

1′
(
ξ̂t|t−1 ◦ ηt

) (10.4)

ξ̂t+1|t = P′
t+1ξ̂t|t (10.5)

where Pt is the (N ×N) transition probability matrix going from period t−1
to period t, described in equation (10.3), and ◦ denotes element-by-element
multiplication. Equation (10.4) calculates Pr(st = j | Ωt; θ) as the ratio of the
joint distribution f(yt, st = j | Ωt; θ) to the marginal distribution f(yt | Ωt; θ),
the latter being obtained by summing the former over the states 1, 2, . . . , N .
Equation (10.5) implies that once we have our best guess as to what state we
are in today, we just pre-multiply by the transpose of the transition probability
matrix P to obtain the forecast probabilities of being in various states in the
next period.

Given an initial value for the parameters, θ, and for ξ̂1|0, which in our model
is just [1 − p1

1, p
1
1], we can then iterate on (10.4) and (10.5) to obtain values

of ξ̂t|t and ξ̂t+1|t for t = 1, 2, . . . , T . The log likelihood function L(θ) can be
computed from these as

L(θ) =
T∑

t=1

log f (yt | Xt, Yt−1; θ) (10.6)

where
f (yt | Xt, Yt−1; θ) = 1′

(
ξ̂t|t ◦ ηt

)
(10.7)

One can then evaluate this at different values of θ to find the maximum
likelihood estimate.

10.3 Data description and transformation

The model is estimated using monthly data from January 1972 to Decem-
ber 1999 for the five Asian crisis countries: Indonesia, Korea, Malaysia, the
Philippines and Thailand. The dependent variable in our model is the month-
to-month percentage change in the nominal exchange rate. Nothing precludes
the use of the speculative pressure index as the dependent variable, if one
is interested in unsuccessful speculative attacks as well. Another alternative
to using the index of speculative pressure, which avoids the need to weigh
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the various components, is described in Abiad [1]. That paper adds reserve
changes and interest rate changes as dependent variables, in addition to ex-
change rate changes, but rather than combining the three variables into a
weighted average, the variables are stacked into a 3×1 vector whose distribu-
tion is dependent on the Markov-switching crisis variable st. The main finding
is that adding reserve and interest rate changes to the model does not help
identify any additional crisis episodes not already picked up by the univariate
model based on exchange rates alone.

We explore a broad set of twenty-two early warning indicators, which are
listed in Table 10.1. The indicators can be classified into three categories. The
first group includes standard measures of macroeconomic imbalance. There are
three measures of external imbalance: deviations of the real exchange rate from
a Hodrick-Prescott trend8, the current account balance relative to GDP, and
the growth rate of exports. There are three measures of the adequacy of central
bank reserves: the level and the growth rate of M2/reserves, and the growth
rate of reserves. We also look at credit expansion, as measured by growth
rate of real domestic credit. Two measures of real economic activity are used–
the growth rate of industrial production and real GDP growth interpolated
from quarterly data. Some crises have been preceded by the bursting of an
asset market bubble, usually in the equities market or the property market, so
we include the six-month change in the countrys stock market index as well.
Finally, we include the real interest rate.

The second category of indicators relate to capital flows. The first indicator
in this group is the 3-month LIBOR, which has been a primary determinant
of the level of capital flows to emerging markets. A second indicator captures
the idea that large capital inflows usually fuel a lending boom; one measure
of this lending boom, first used by Sachs, Tornell and Velasco [37], is the
growth in the ratio of bank assets to GDP. The three other indicators in this
category focus on the composition of capital flows: the level of short-term debt
to reserves, the stock of non-FDI investment (measured as a cumulation of
flows) relative to GDP, and the ratio of cumulative portfolio inflows to total
cumulative inflows.

The final category includes indicators of financial fragility. Kaminsky and
Reinhart [30] noted that currency crises and banking crises tend to occur
together, and that based on their sample of 20 countries over the period
1970–1995, problems in the banking sector typically precede a currency crisis.
The first indicator of financial sector soundness we use is a rough measure of
capital adequacy, the ratio of bank reserves to bank assets. A second indicator
is central bank credit to banks, relative to total banking liabilities; an increase
central bank credit may indicate financial weakness, if its purpose is to prop
up or bail out weak banks. The ratio of bank deposits to M2 indicates the
relative confidence that households and businesses have in the banking system,

8 Alternative methods of detrending produce similar results.
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with a low ratio indicating a lack of confidence; we include both the level
and the growth rate of this ratio. Finally, we look at both the level and the
growth rate of the loan-deposit ratio. A high and/or rising loans-to-deposits
ratio may indicate increased banking system fragility, with an inadequate
level of liquidity to respond to shocks. It should also be noted that one of the
macroeconomic indicators, the real interest rate, is also frequently used as an
indicator of financial sector soundness, as high real interest rates often lead
to an increase in nonperforming loans9.

Given the large number of indicators, a general-to-specific procedure was used
to pare down the set and identify the final model. For each country, the model
was run using each of the twenty-two early warning indicators, one at a time10.
The coefficient estimates from these regressions can be found in Table 10.2.
The coefficients on the indicators correspond to the parameter β0 that enters
into pt

00, the probability of remaining in the tranquil state. All the variables
are transformed such that an increase in the variable lowers the probability
of remaining in the tranquil state, so that negative coefficient estimate is
“correct”.

Examining the results of Table 10.2 more closely, we see that the real overval-
uation indicator is correctly signed and significant across all five countries. In
fact, it is the only indicator that is uniformly correctly signed and significant.
Four other variables–the level and growth rate of M2/reserves, the growth
rate of real GDP, and the LIBOR–are correctly signed in all cases, but are
only occasionally significant. All the other indicators have coefficient estimates
that have correct signs and/or are significant for some countries, but not for
others. Which brings us to another important point: indicator performance
clearly varies widely from country to country. An assumption of parameter
equality across countries, underlying EWS model estimates, which are based
on a panel of countries, may lead to incorrect results, and may contribute to
poor predictive performance.

The set of indicators for each country was then narrowed based on which
coefficient estimates were correctly signed. Desire to monitor a wider set of
indicators suggested against eliminating correctly signed coefficients whose

9 Nonperforming loan ratios were also considered but were unavailable for most
countries for a long enough period. Evidence for the Philippines, however, indi-
cates that NPL ratios are a lagging rather than a leading indicator; the NPL ratio
actually declined from about 8 percent in 1990 to about 4 percent just before the
Asian crisis, and only started increasing substantially in late 1997 and in 1998.

10 The hill-climbing method using in maximum likelihood estimation will converge
very slowly if the various indicators are of very different magnitudes, since a step-
size that is fine enough for the small variables will move very slowly for the large
ones. To aid in estimation we rescale each variable to be zero mean and unit
variance. An alternative transformation, used by KLR and Berg and Pattillo, is
to use percentiles.
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t-statistics were not significant at the 5 percent level11. The moderate corre-
lation among the early warning indicators also suggested that the t-statistics
may be misleading. In addition, a likelihood-ratio test of the joint significance
of the explanatory variables showed them to be significant.

How high must forecast probabilities rise to be warranted as significant? It
has been standard practice in the early-warning systems literature to map a
models forecast probability into a binary “alarm signal” by determining some
cutoff probability, and letting the signal equal 1 if the forecast probability rose
above this threshold, and 0 otherwise12. An assessment of predictive ability is
then conducted by computing the number of crises the model signal correctly
calls (by sending an alarm within a particular window, usually 24 months
before the actual crisis occurrence), and the number of false alarms the model
sends.

In this context, it should be noted that forecast probabilities between com-
peting early warning systems are not directly comparable; in particular, one
should adjust for the time horizon the model is using. Most of the early warn-
ing systems in the literature focus on relatively long-horizon forecasting, with
horizons of 12 or 24 months being the norm. The regime-switching model we
use here, on the other hand, estimates one-month ahead forecasts. To make
forecast probabilities from different models comparable, the forecast horizons
must be matched, and the most straightforward way to do this would be to
transform the short-horizon forecast into a long-horizon equivalent, using:

Pr(crisis over next n months) = 1 − Pr(no crisis over next n months)
= 1 − (Pr(no crisis over next 1 month))n

= 1 − (1 − Pr(crisis over next 1 month))n

(10.8)

Of course, this transformation is made under the assumption that the fun-
damentals that determine the crisis probability neither worsen nor improve.
If the former, then the n-month crisis probability will be higher; if the lat-
ter, then the crisis probability will be lower13. As an example, a 10 percent
11 The more conventional procedure of keeping only correctly signed and statistically

significant variables results in only one indicator (real overvaluation) remaining
for Indonesia, Korea and Malaysia, and only two indicators remaining for the
Philippines (real overvaluation and M2/reserves) and Thailand (real overvalua-
tion and real GDP growth).

12 Although originally applied to individual indicators by Kaminsky, Lizondo and
Reinhart [31], this methodology has since been used on the overall model by
several studies, most notably Berg et al. [3], to evaluate the model’s performance,
as well as to compare competing early warning systems.

13 Alternatively, one can construct projected time paths for the early warning in-
dicators, and use these to calculate an n-month crisis probability. The accuracy
will, of course, depend on the reliability of the projected time paths.
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probability of a crisis over one month would be equivalent, ceteris paribus, to
a three-month crisis probability of 1 − (0.90)3 = 27 percent, and a one-year
crisis probability of 1 − (0.90)12 = 72 percent.

10.4 Estimation results

The final model estimates for the five countries can be found in Table 10.3.
For all five countries, State 0 is identified as a low-mean, low-volatility regime
while State 1 is a high-mean, high-volatility regime. Average volatility, as
measured by the standard deviation, is very low in the tranquil state–less
than 1 percent per month in all five countries–while average volatility dur-
ing crisis periods is quite large, with the highest crisis volatilities estimated
for Indonesia, at 29 percent per month. In fact, volatility seems to be the
primary distinguishing characteristic between tranquil and crisis periods, as
σ1 is significantly different from σ0 in all cases. The average depreciation in
tranquil periods is effectively zero (less than a quarter percent per month) in
all countries, while in crisis periods it ranges from 2.1 percent per month in
Thailand, to 12.6 percent per month in Indonesia, but the standard errors are
large enough so that one cannot reject equality of μ1 and μ0. The coefficients
on the indicators in the time-varying probabilities are all correctly signed, but
as noted earlier, they are insignificant in most cases. This might be due to
correlations among the indicator variables; in fact, likelihood-ratio tests for
the joint significance of the indicators are significant for all countries except
Malaysia, where the test of joint significance is marginally insignificant, with
a p-value of 0.16. We now turn to a country-by-country analysis.

10.4.1 Indonesia

In the estimated model for Indonesia (Table 10.3), six indicators are used–
real overvaluation, export growth, the level of M2/reserves, reserve growth,
central bank credit to the banking sector, and growth of the M2/deposits ra-
tio. There are five speculative pressure episodes in Indonesia in our 1972-1999
sample (Table 10.4)–a devaluation of 50 percent in November 1978, currency
volatility in late 1982 that culminated in a 38 percent devaluation in April
1983, moderate volatility and a 5 percent depreciation in mid-1984, a 44 per-
cent devaluation in September 1986, and the Asian crisis which began in July
1997 with a 6 percent decline in the rupiah. Figure 10.1 plots these crisis
dates, along with 12-month forecast probabilities and alarm signals based on
a 50-percent cutoff. Alarm signals are sent at least once in the 12 months
preceding four of the five crisis episodes, with the only uncalled crisis being
the smallest one, the 5 percent depreciation in mid-1984. However, the Asian
crisis was not well-signaled for Indonesia; an alarm was generated only in one
month (October 1996), and reflected increased currency volatility during that
period. The forecast probabilities do increase steadily, to 45 percent in June
1997, but stay below the signaling threshold of 50 percent.
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10.4.2 Korea

The indicators that enter the final model for Korea are real overvaluation, the
current account to GDP ratio, the level of M2/reserves, industrial production
growth, stock market performance, and the share of portfolio flows in total
capital flows (Table 10.3). Three crisis periods are included in the sample
(Table 10.5)–a 20 percent devaluation in January 1980, a depreciation of 7
percent in September-November of the same year (which was likely a contin-
uation of earlier speculative pressure), and the Asian crisis (Figure 10.2).14

Interestingly, the model already identifies March 1997, when the won depreci-
ated by 4 percent, as a period of speculative pressure. In terms of predicting
these episodes, the model does not anticipate the January 1980 depreciation;
however, after the initial devaluation it continues to send signals in antici-
pation of further speculative pressure, which did occur later that year. With
regard to the Asian crisis, the Korean model illustrates the gains from letting
an EWS model use information available in the exchange rate behavior. There
was already a moderate increase in the wons volatility even before the Asian
crisis, beginning as early as the middle of 1996, when the won depreciated by
3 percent. As a result of this increased volatility–and combined with Korea’s
weakening external position, a decline in the stock market and the high share
of portfolio flows–the model begins signaling in February 1997.

10.4.3 Malaysia

The final model for Malaysia contains six indicators–real overvaluation, do-
mestic credit growth, real GDP growth, the real interest rate, the LIBOR, and
the ratio of M2 to deposits. Relative to the four other countries, Malaysia’s
exchange rate regime was much less of a peg and more of a dirty float. Thus,
unlike other countries which experienced rarer but sharper devaluations, the
speculative pressure episodes in Malaysia are protracted periods characterized
by increased volatility and a slow deterioration of the exchange rate. Thus,
instead of identifying the individual spikes, we group them into four periods
which are described in Table 10.6.

The model is able to anticipate three of Malaysia’s four speculative pres-
sure periods (Figure 10.3). Analyzing the individual indicators that enter the
model, one finds that the rise in world interest rates contributed to the specu-
lative pressure that occurred in the late 1970s and early 1980s; overvaluation,
high real interest rates and a slowdown in real growth contributed to the 1985-
1986 depreciation; and overvaluation and a domestic credit boom increased
vulnerability in the run-up to the Asian crisis.

14 Current account data for Korea only begins in 1977; hence two earlier devaluations
of 14 percent in June 1971 and 21 percent in December 1974 are not covered. The
small number of crises and the closeness of the fit in Figure 2 raise the concern
that the model may be overfitting the data in the Korean case.
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Episodes Iden-
tified

Description Signaled/Anticipated by Model?

November 1978 Devaluation of 50 per-
cent

Yes, from February-September 1978

October 1982-
April 1983

Currency volatility; de-
valuation of 38 percent
in April 1983

Yes, from August 1982 to September
1983 (sporadic signals)

August-
September
1984

Devaluation of 4 1/2
percent over three
months

No

September
1986

Devaluation of 44 per-
cent

Yes, from February 1985 to June 1986

July 1997 on-
wards

Asian Crisis Yes, but only one month (October
1996) due to increased volatility in the
rupiah; probabilities rise from 22 per-
cent in November 1996 to 45 percent in
June 1997, but do not cross 50 percent
signal threshold

Table 10.4. Speculative Pressure Episodes and Alarm Signals in Indonesia

Episodes Iden-
tified

Description Signaled/Anticipated by Model?

January 1980 Devaluation of 20 percent No
October 1980 Depreciation of 7 percent

over three months
Yes, from January-May 1980 (i.e.,
more volatility was expected after
January depreciation)

March 1997;
and October
1997 onwards

Asian Crisis (October 1997
onwards), but model also de-
tects increased volatility in
early 1997 and already iden-
tifies March depreciation (4
percent) as speculative pres-
sure period

Yes, but only from February 1997
onwards

Table 10.5. Speculative Pressure Episodes and Alarm Signals in Korea

10.4.4 The Philippines

The six indicators that enter into the Philippine model are real overvaluation,
export growth, both the level and the growth rate of M2/reserves, indus-
trial production growth, and the growth rate of deposits/M2. The model was
estimated from 1982 onwards, since data on industrial production growth is
unavailable before 1982. The model identifies three protracted periods of spec-
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Fig. 10.1. Indonesia: Crisis Dates, Forecast Probabilities and Alarm Signals

Episodes Identified Description Signaled/Anticipated by
Model?

October 1978-June
1982

Volatility; 12 percent deprecia-
tion over the period

Yes, from November
1977

January 1985-
March 1986

Depreciation of 15 percent Yes, from August 1984

December 1992-
January 1994

Depreciation of 9 percent No

July 1997 onwards Asian Crisis Yes, from January 1997

Table 10.6. Speculative Pressure Episodes and Alarm Signals in Malaysia
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Fig. 10.2. Korea: Crisis Dates, Forecast Probabilities and Alarm Signals

ulative pressure (Table 10.7).15 The first is from August 1982 to April 1986,
when a financial crisis and political turmoil resulted in high exchange rate
volatility and a 140 percent depreciation over the period. The second is from
June 1988, a period of moderate volatility where the peso depreciated by 34
percent. The third period is the Asian crisis, which began for the Philippines
with a 10 percent depreciation in July 1997.

The model for the Philippines is able to anticipate these three crisis periods
(Figure 10.4). Analyzing the individual indicators, one finds that different
factors were behind each crisis. A slowdown in both exports and industrial
production played some role in triggering the crisis in the early 1980s, but a
rise in both the level and growth rate of M2/reserves, as well as a sharp fall
in the deposits/M2 ratio (an indicator of the banking crisis that occurred),
played a role in prolonging the crisis. Reserve adequacy, as measured by both
the level and growth rate of M2/reserves, also increased vulnerability in the

15 Note that the period in the early to mid 1990s, when the peso was allowed to
float more freely, was omitted so as not to be identified as a crisis period.



174 Abdul Abiad

Fig. 10.3. Malaysia: Crisis Dates, Forecast Probabilities and Alarm Signals

Episodes Identified Description Signaled/Anticipated by
Model?

August 1982-April
1986

Depreciation of 140 percent; high
volatility (s.d. 7 percent)

Yes, from January 1982

June 1988-
November 1990

Depreciation of 34 percent; mod-
erate volatility (s.d. 2 percent)

Yes, from December
1987

July 1997 onwards Asian Crisis Yes, from May 1996

Table 10.7. Speculative Pressure Episodes and Alarm Signals in the Philippines

late 1980s, which culminated in 17 percent depreciation in the latter half of
1990, during the Gulf War. Finally, weakening competitiveness that began
in late 1996–resulting from the appreciation of the yen against the dollar,
to which the peso was pegged–increased the Philippines vulnerability, and
resulted in the depreciation of the peso following the float of the Thai baht in
July 1997.
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Fig. 10.4. Philippines: Crisis Dates, Forecast Probabilities and Alarm Signals

10.4.5 Thailand

The final model for Thailand includes the following indicators: real overval-
uation, the level of M2/reserves, reserve growth, real GDP growth, the real
interest rate, and the share of non-FDI capital flows in total flows. There are
three crisis periods in the sample, a 10 percent depreciation in 1981, a 19
percent depreciation between November 1984-December 1985, and the Asian
crisis which began in Thailand in July 1997 (Table 10.8).

Episodes Identified Description Signaled/Anticipated by Model?

July 1981 Devaluation of 10 percent Yes, but only two months ahead
(May 1981)

November 1984–
December 1985

Depreciation of 19 percent Yes, in December 1983–January
1984 and from July 1984

July 1997 onwards Asian Crisis Yes, from December 1996

Table 10.8. Speculative Pressure Episodes and Alarm Signals in Thailand
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All three crisis periods are anticipated, as can be seen in Figure 10.5. However,
signals are sent only two months prior to the July 1981 devaluation. Better
warning is provided for the latter crisis episodes. Real overvaluation seems
to have played some role in all three crises. Reserve inadequacy, as measured
by the level of M2/reserves, also played a role in the 1980s episodes, but not
in the Asian crisis. Based on the model, three factors seem to have played a
role in increasing Thailands vulnerability to crisis in 1997–a loss of external
competitiveness, a slowdown in the real economy, and an increasing proportion
of non-FDI flows in total capital flows.

10.5 Forecast assessment

We now perform a more rigorous evaluation of the predictive performance of
the model, both in-sample and out-of-sample. Table 10.9 contains in sample
goodness-of-fit tables for each country model, as well as overall for all five
countries. Each 2 × 2 matrix shows the number of correctly called tranquil
and crisis periods, as well as the number of false alarms and the number of
missed signals. We summarize this information further in Table 10.10, which
also provides goodness-of-fit measures for five other models evaluated in Berg
and Pattillo [3], henceforth BP. The comparison is only meant to be indicative,
as the Markov-switching model differs from the five other models in several
important ways, beyond just the differences in model specification. First, the
identified crisis dates are different. Second, the forecast horizons are not the
same–the models reviewed by BP all use a forecast horizon of 24 months,
as opposed to the 12-month forecast horizon used here. Third, the data un-
derlying the estimates, and the transformations applied to them, are similar
but not identical. Finally, the models in this paper are estimated country-by-
country, whereas all five BP models were estimated on a panel of countries, a
point we return to below.

We see that Markov-switching model correctly calls 81 percent of observations.
This is slightly lower than the 82-85 percent performance of the standard
models in BP, when they use a 50 percent cutoff probability. However, the
high predictive performance in those models is driven mostly by their ability
to call tranquil periods correctly; they correctly classify 98-100 percent of
tranquil periods, as opposed to 89 percent in the Markov-switching model.
But in terms of correctly called crises, the Markov-switching model performs
much better, calling 65 percent of pre-crisis periods correctly–that is, sending
signals in 65 percent of the months where a crisis ensued within a years time.
The standard models, in contrast, only call 7-19 percent of pre-crisis months
correctly. The poorer performance is probably due in part to the longer 24-
month forecast horizon they aim for, and also because the 50 percent signaling
threshold is too high for those models. BP also report goodness-of-fit for the
standard models when the cut-off is lowered to 25 percent, which we replicate
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Fig. 10.5. Thailand: Crisis Dates, Forecast Probabilities and Alarm Signals

the bottom half of Table 10.10. The lower signaling threshold increases the
number of correctly called pre-crisis periods–now the models correctly send
signals in 41-48 percent of pre-crisis periods–but this comes at the expense of
a much higher fraction of false alarms. With the lower threshold, false alarms
account for 57-65 percent of total alarms, i.e., almost two out of every three
signals are false alarms.

Although the Markov-switching specification probably accounts for part of
the improved performance, it is also possible that a substantial portion of the
improved performance is due to the fact that the standard models estimate
the data using a panel of countries, and assuming that the coefficients are
uniform across countries. As we saw in Section 10.5, indicators that matter
for crises in one country may not even be pointing in the right direction during
crises in another country.

What are the out-of-sample predictions of the country Markov-switching mod-
els? The models were estimated using data up to the end of 1999. An attempt
to estimate the model up to end-1996, to see whether the Asian crisis was
forecastable using the model, was not possible in this case, mainly because
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Crisis within 12 mos. No crisis within 12 mos.

Overall Signal 270 102
Non-signal 147 812

Indonesia Signal 38 18
Non-signal 47 221

Korea Signal 26 4
Non-signal 29 205

Malaysia Signal 77 29
Non-signal 48 121

Philippines Signal 83 40
Non-signal 2 79

Thailand Signal 46 11
Non-signal 21 186

Table 10.9. Forecast Assessment

the model was estimated country-by-country; eliminating the Asian crisis not
only removes the most informative episode in the sample, but also results
in overfitting and/or nonconvergence of the maximum likelihood algorithm.
Hence the only alternative is to look at model forecasts beyond the end of
1999. Admittedly, the hold-out sample from January 2000–July 2001 is rela-
tively small, and moreover, none of the five countries had a crisis during this
period. But it is still an informative exercise to see what kinds of probabilities
and signals the country models send.

The forecast probabilities and alarm signals for the out-of-sample period of
January 2000–July 2001 can be seen in Figures 10.1–10.5. For three of the
countries–Indonesia, Korea and Thailand–no alarm signals are sent during
the period. There was still a moderate probability (about 20 percent) of a
crisis in Indonesia through much of 2000, but vulnerabilities (at least those
measured by the indicators in the model) have dropped since then. Thailand
has shown lower susceptibility to a crisis, and Korea even less so.

In contrast, the models for Malaysia and the Philippines did signal some vul-
nerability in the out-of-sample period, although only for a few months. Crisis
probabilities in Malaysia were actually dropping toward the end of the estima-
tion period (1999) and were low through most of 2000, but started increasing
in the last quarter of 2000 and accelerating in 2001 up until July 2001, the last
available data point. In fact, probabilities were high enough that the model
began sending signals in May 2001. What was driving this increase in vulner-
ability? An analysis of the indicators entering the Malaysian model identifies
several weaknesses. First, there was a steady decline in competitiveness, as
measured by the real exchange rate, through 2000 and 2001. 16 Second, there

16 This was also evident in another indicator that does not enter into the Malaysian
model, export growth.
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was a slowdown in the real economy. And third, there was a sharp rise in real
domestic credit growth.

The Philippines also showed some weaknesses in the out-of-sample period,
according to the model. Crisis probabilities were actually low in 2000, but the
model starts indicating moderate vulnerabilities beginning the second quarter
of 2001. A spike in the crisis probability led to a signal in June 2001, but prob-
abilities decreased in July, the last data point. There was one primary factor
behind the increased vulnerability in the Philippines: a weakened external
position, seen most clearly in rapidly contracting exports. Over the January
2000–July 2001 out-of-sample period, then, signals were sent for only 4 out of
95 months: May-July 2001 for Malaysia, and June 2001 for the Philippines,
and these reflected vulnerabilities due to external weaknesses present in these
two countries at that time.

10.6 Conclusions

There is a general consensus among economists that early warning systems,
no matter how sophisticated, will not be able to forecast crises with a high
degree of accuracy. Even economists who construct such models are aware
of this, and see these models as no more than useful supplements to more
informed country analyses, and as a means of summarizing information in an
unbiased, objective manner. Nevertheless, increased emphasis on crisis preven-
tion (as opposed to crisis resolution) means that policymakers need to utilize
all the tools available for assessing countries vulnerabilities, and to improve
these tools when possible. This paper hopes to assist in this effort, first by
surveying the recent empirical literature on currency crises, and by analyz-
ing an alternative EWS approach that addresses some of the shortcomings of
existing models.

The survey of 30 selected empirical studies written since 1998 is meant to
increase awareness of the various econometric approaches to early warning
systems that have been developed, so that practitioners have at their dis-
posal a larger set of tools in assessing vulnerability. Many of the proposed
approaches look promising, and virtually all report some improvement over
the standard probit/logit and indicators models. However, many of the stud-
ies do not perform rigorous evaluations of performance. Adoption of standard
evaluation procedures–including goodness-of-fit tables and measures, accuracy
scores, and out-of-sample testing–will help potential users gauge how useful
these models really are. Furthermore, it is difficult to assess relative perfor-
mance across models, given differences in the datasets used and in the sample
of countries studied. A true “horse race” among competing models–where each
specification is estimated using the same data and sample of countries–will
help resolve this issue.
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But even in-sample and out-of-sample tests are only indicative; the true test
of these models is in operationalizing them. In this regard, an additional mea-
sure of a models usefulness is simplicity of application. Early warning systems
should be easy to replicate and estimate. That is, there should be minimal
reliance on ad hoc assumptions, the data should come from published sources,
and one should ideally be able to estimate the model using standard software
packages or with programming code provided by the authors. If these con-
ditions are satisfied, then it should be possible to monitor these models in
real-time at low cost.

In addition to surveying the recent literature on early warning systems, this
paper also contributes to it by suggesting an alternative EWS approach based
on a Markov-switching model with time-varying transition probabilities. The
model does an adequate job of anticipating crises. It correctly anticipates
two-thirds of crisis periods in sample (compared to about 50 percent for the
standard models), and just as important, sends a much smaller proportion of
false alarms. In the January 2000–July 2001 out-of-sample period, no warning
signals are sent for three of the five countries studied (Korea, Thailand and
Indonesia), but vulnerabilities were signaled for Malaysia and the Philippines
in mid-2001, mainly due to a decline in competitiveness and a slowdown in
exports.

Beyond the performance of the Markov-switching model itself, there are some
lessons that apply to the construction of early warning systems in general.
First, accounting for dynamics is important. There is useful information in
both the level and the volatility of the exchange rate itself that existing mod-
els have ignored. More specifically, some crises have been preceded by a series
of smaller depreciations, by a widening of an exchange rate band, and/or an
increase in the volatility of exchange rates, and this has not been utilized in
existing models. Second, although there are some indicators which are com-
mon across countries in their predictive ability (with the real exchange rate
being the most uniformly successful), the country-by-country analysis in this
paper shows that the performance of individual indicators varies greatly across
countries, so that different sets of variables are relevant for different countries.
In this light, the one-size-fits-all, panel data approach used in estimating most
early warning systems might be one of the causes for their only moderate suc-
cess. The performance of early warning systems, regardless of the econometric
specification chosen, might be improved markedly by taking more care in ver-
ifying that the countries used in the estimation possess similar characteristics,
or failing that, by estimating the models on a country-by-country basis.

The model presented here is only the simplest variant of what can be done
in a Markov-switching EWS. Most obviously, those with a better knowledge
of each country can estimate these models using a more informed selection
of indicators. Given the role that politics and political stability have played
in triggering or exacerbating several crises, most notably Indonesia in 1997,
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the use of socio-political variables could be explored. In light of increased fi-
nancial globalization, other external factors in addition to world interest rates
might be considered, such as global equity market volatility or the spread on
high-yield bonds. Regarding the specification itself, one can extend the model
in several directions. First, because the focus was on crisis anticipation, the
early warning indicators in the current model only affected the probability of
moving from a tranquil to a crisis state. But one could let these same indica-
tors (or a different set of indicators) also affect the probability of getting out
of a crisis. Second, the current model has only two states: a tranquil state,
and a speculative pressure state whose main characteristic is high exchange
rate volatility. One could extend the model to allow for three (or more) states,
where the three states might correspond to tranquil periods, periods of de-
preciation pressure and periods of appreciation pressure. Finally, the issue of
modeling contagion across countries within the context of a Markov-switching
EWS awaits further investigation.
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