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Dedication

On November 16, 2005, our friend and colleague, Perwez Shahabuddin, died
tragically. Perwez was a renowned researcher whose contributions will have
a lasting impact. He was also a caring and dedicated teacher. As one of his
students said, “. . . he was the definition of a good professor”. Perwez had a
gentle nature and an infectious laugh that we remember with fondness.

We dedicate this Handbook to his memory.

Shane G. Henderson
Barry L. Nelson
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Chapter 1

Stochastic Computer Simulation

Shane G. Henderson
School of Operations Research and Industrial Engineering, Cornell University, USA
E-mail: sgh9@cornell.edu

Barry L. Nelson
Department of Industrial Engineering and Management Sciences, Northwestern University,
USA
E-mail: nelsonb@northwestern.edu

Abstract

We introduce the topic of this book, explain what we mean by stochastic computer
simulation and provide examples of application areas. We motivate the remaining
chapters in the book through two in-depth examples. These examples also help clarify
several concepts and techniques that are pervasive in simulation theory and practice.

1 Scope of the Handbook

What is “stochastic computer simulation?” Perhaps the most common ex-
ample in everyday life is an electronic game, such as Solitaire or Yahtzee, that
depends on a source of randomness to imitate shuffling cards, rolling dice,
etc. The fidelity of the electronic game, which is a simulation of the physical
game, depends on a faithful imitation of the physical source of randomness.
The electronic game is useless (and no fun) otherwise. Of course, an electronic
game usually needs a game player. If you replace the player by an algorithm
that plays the game, and you compare different algorithms by playing many
sessions of the game, then you have a pretty good representation of what sto-
chastic computer simulation is and how it is used in operations research and
the management sciences.

This book is a collection of chapters on key issues in the design and analysis of
computer simulation experiments on models of stochastic systems. The chapters
are tightly focused and written by experts in each area. For the purposes of this
volume, “stochastic computer simulation” (henceforth just “stochastic simu-
lation”) refers to the analysis of stochastic processes through the generation

1
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2 S.G. Henderson and B.L. Nelson

of sample paths (realizations) of the processes. We restrict attention to design
and analysis issues, and do not address the equally important problems of rep-
resentations (modeling) and execution (see, for instance, Fishwick, 1995). In
broad terms, the goal of this volume is to survey the concepts, principles, tools
and techniques that underlie the theory and practice of stochastic simulation
design and analysis, emphasizing ideas and methods that are likely to remain
an intrinsic part of the foundation of the field for the foreseeable future. The
chapters provide an up-to-date reference for both the simulation researcher
and the advanced simulation user, but they do not constitute an introductory
level “how to” guide. (See, instead, Banks (1998), Banks et al. (2004), Law
and Kelton (2000) or Fishman (2001). The latter book is at a slightly more
advanced level than the others.)

Computer scientists, financial analysts, industrial engineers, management
scientists, operations researchers and many other professionals use stochastic
simulation to design, understand and improve communications, financial, man-
ufacturing, logistics and service systems. A theme that runs throughout these
diverse applications is the need to evaluate system performance in the face
of uncertainty, including uncertainty in user load, interest rates, demand for
product, availability of goods, cost of transportation and equipment failures.
Much like the electronic game designer, stochastic simulation users develop
models that (they hope) faithfully represent the sources of uncertainty in the
systems that they simulate. Unlike the game designer, the simulation user also
needs to design the simulation experiment – decide what cases to simulate, and
how much simulation to do – and analyze the results.

Later in this chapter we provide two examples of the types of problems that
are solved by stochastic simulation. The examples motivate and provide con-
text for the remaining chapters in the book. We do not attempt – either in this
chapter or in the remainder of the book – to cover the wide range of applica-
tions of simulation. A few important application areas are listed below.

Financial engineering/quantitative finance: The classical problem in this area is
valuing a derivative, which is a financial instrument whose value depends
on an underlying asset such as a stock or bond. Uncertainty in the value
of the asset over time makes simulation a natural tool. Other problems in
this vein include estimating the value-at-risk of a portfolio and designing
hedging strategies to mitigate risk. See, for instance, Glasserman (2004).

Computer performance modeling: From the micro (chip) level to the macro
(network) level, computer systems are subject to unpredictable loads and
unexpected failures. Stochastic simulation is a key tool for designing and
tuning computer systems, including establishing expected response times
from a storage device, evaluating protocols for web servers, and testing the
execution of real-time control instructions. See, for instance, Jain (1991).

Service industries: Service industries include call/contact centers, an applica-
tion in which simulation has been used to design staffing and call-routing
policies. Service applications emphasize delivering a specified level of ser-
vice with a high probability; such issues arise in food delivery, financial
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services, telecommunications and order fulfillment, for instance, and sim-
ulation helps to ensure quality service in the face of uncertainty.

Manufacturing: Stochastic simulation has seen extensive use in manufacturing
applications. A few representative contributions include evaluation of pro-
duction scheduling algorithms; work-center design and layout; estimation
of cycle time-throughput curves; and evaluation of equipment replacement
and maintenance policies.

Military: Military applications include life-cycle management of defense sys-
tems; combat and munitions logistics; crisis communications evaluation;
and modeling network architectures for command and control.

Transportation and logistics: Simulation has been used to evaluate the effec-
tiveness of Internet and cell-phone-based traveler information services; to
perform benefits analyses for regional Intelligent Transportation Systems;
and to design public transportation systems for the elderly and disabled.
When the transportation system is part of a supply chain, simulation may
be used to determine replenishment policies for manufacturers, distribu-
tion centers and retailers, or to estimate the impact of demand uncertainty
on supplier inventories.

The Proceedings of the annual Winter Simulation Conference is an out-
standing source of applications and success stories from these and other
areas. The Proceedings from 1997 through the present can be found at
http://www.wintersim.org.

The focus of this volume is narrow, by necessity, because the label “com-
puter simulation” is attached to a number of activities that do not fall under
the umbrella of “generating sample paths of stochastic processes”. For in-
stance, there is a vast literature on, and countless applications of, simulation
of dynamic systems that are represented by differential and partial differential
equations. Such systems may be stochastic, but the approach is to numerically
integrate the system of equations through time to determine levels, probabili-
ties, moments etc., rather than generating sample paths and averaging across
repetitions as we do. Systems dynamics (see Sterman, 2000) is a popular ap-
proach for developing and analyzing differential equation models, and there
is a substantial intersection between applications of systems dynamics and ap-
plications of stochastic simulation in operations research and the management
sciences.

Although closely related, we do not consider issues that arise in person-in-
the-loop simulations that are used for, among other things, training of per-
sonnel and evaluation of supervisory systems prior to insertion in the field.
A key feature of stochastic simulation is that the source of randomness is un-
der the control of the experimenter, which is not the case when a person is
incorporated into the experiment. We also do not cover any type of computer
animation, up to and including virtual reality, although this is certainly a kind
of computer simulation. Stochastic simulation is sometimes a driving process
for computer-generated animation, however. Nor do we consider the impor-
tant area of parallel and distributed simulation; see Fujimoto (1999).

http://www.wintersim.org
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The next section introduces the key concepts we do cover via two examples.

2 Key concepts in stochastic simulation

There are a number of key simulation-related concepts that feature through-
out this volume. The goal of this section is to introduce and explain those
concepts through the use of two examples, and to link them to subsequent
chapters. The reader familiar with stochastic simulation may still find it use-
ful to briefly peruse this section to avoid potential confusion associated with
slightly different uses of terminology. In preparing this section we have occa-
sionally relied quite heavily on Nelson (2002, Chapter 4).

Discrete-event systems dominate simulation applications and so it is impor-
tant to gain an understanding of simulation concepts related to such models.
The processing-network example described in Section 2.1 is a special case.
Many of the concepts introduced with this model extend to simulations of a
broader class of models. The stochastic activity network example described in
Section 2.2 reinforces some of the concepts introduced with the processing-
network example, and brings out several new ones.

2.1 A processing network problem

A manufacturing system processes two classes of jobs with two processing
stations (machines). Class 1 jobs are high-value jobs that need to be com-
pleted quickly. Class 2 jobs are of lower value, and while these jobs should
be processed quickly, greater delays can be tolerated than with Class 1 jobs.
Accordingly, the processing system has been set up as in Figure 1. Station 1
processes only Class 1 jobs. Station 2 is capable of processing both Class 1 and
Class 2 jobs, so that it can assist Station 1 to complete the processing of Class 1
jobs. This network was first introduced and analyzed in Harrison (1996) and
since then has become a standard example in the study of multiclass process-
ing networks.

A policy is a strategy describing how the two stations coordinate their efforts
in processing the incoming jobs. A key question is what policy should be used
to ensure that Class 1 jobs are delayed for as short a period of time as possible,
while ensuring that Class 2 jobs are also completed in a reasonable amount
of time. A natural policy one might consider is for Station 1 to process jobs
whenever they are available, and for Station 2 to give nonpreemptive priority
to Class 1 jobs over Class 2 jobs. One might ask how this policy performs.
It turns out that there is a rather surprising answer to this question. We will
explain how simulation can be used both to develop an understanding of this
system, and to explore a range of operating policies. To perform simulations of
the model, we need to further specify its structure and decide how and what to
simulate.
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Fig. 1. Processing network.

A common approach for specifying simulation models is the process-
interaction view. In this approach, one specifies the various entities that interact
with a system and describes the processes they follow. In our example the
entities are jobs of Class 1 and Class 2. Class 1 jobs arrive according to a cer-
tain arrival process and potentially wait in a queue of Class 1 jobs. Once they
reach the head of the queue, they are served by either Station 1 or Station 2,
whichever becomes available first. If both are available then they are served
by Station 1. After service, Class 1 jobs depart the system. Class 2 jobs arrive
according to a certain arrival process, potentially wait in a queue of Class 2
jobs, and then are served by Station 2 once the queue of Class 1 jobs is empty
and Station 2 is available. They then depart the system.

This very natural description of the model helps to explain the popularity of
the process-interaction view. Of course, the description of the model is incom-
plete, since we have not specified the arrival and service processes. Suppose
that the times between arrivals of Class 1 jobs are i.i.d. random variables with
distribution function FA1. Suppose that, independent of Class 1 arrivals, the se-
quence of Class 2 interarrival times, the sequence of service times at Station 1,
and the sequence of service times at Station 2 are mutually independent i.i.d.
sequences of random variables with interevent distribution functions FA2, FS1
and FS2, respectively. Notice that Class 1 jobs and Class 2 jobs have the same
service time distribution function FS2 at Station 2.

The sequence of interarrival times of Class 1 jobs is known as a stationary
arrival process because all of the interarrival times have the same distribution.
This is often a reasonable assumption in manufacturing models where con-
siderable effort is exercised by managers to maintain a smooth flow of work
through the system. However, in service systems where “jobs” are, in fact,
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people, this assumption is often violated. Customer arrivals often exhibit signif-
icant “time-of-day” effects where arrivals are more frequent at certain times of
the day. Such an arrival process is called “nonstationary”, since the distribution
of the time between customer arrivals can vary. Chapter 6 describes methods
for modeling and simulating nonstationary processes. For now we maintain our
assumption that the arrival and service processes consist of i.i.d. sequences of
random variables.

The process-interaction view is one example of a world view, which is a gen-
eral approach for specifying models for the purposes of simulation; see, e.g.,
Banks et al. (2004) and Law and Kelton (2000). The event-scheduling world
view is another world view that closely mirrors the algorithm underlying most
simulation software. We now give an event-scheduling view of the model that
is couched in a discussion of how to simulate the model.

The key quantity to track is the vector X = (X1�X2� J2) consisting of the
number of Class 1 and Class 2 jobs in the system, and the class of the job in
service at Station 2. If no job is in service at Station 2 then we set J2 = 0. The
vector X is known as the system state and it takes on values in the state space

{0� 1� � � �} × {0� 1� � � �} × {0� 1� 2}�
The state is modified by events which are arrivals of Class 1 or Class 2 jobs, and
service completions at Station 1 or Station 2. These events occur at discrete
epochs (points in time), and between event epochs the system state remains
constant. Associated with each event is a clock that indicates the time that
event is next scheduled to occur. The next event to occur is the one with the
smallest clock reading. The simulation jumps immediately to the time of that
event and then updates the system state and event clocks accordingly. For ex-
ample, at the time of a Class 1 arrival, we first increment X1 and schedule the
next Class 1 arrival by generating a sample value from FA1. Furthermore, if
Station 1 is available, we start service on the job by setting the clock for service
completion at Station 1 to the current time plus a sample from the distribu-
tion FS1. If Station 1 is not available and Station 2 is, then we set J2 = 1 and
set the clock for a service completion at Station 2 to the current time plus a
sample from FS2.

At the time of any service-completion event we follow the logic dictated by
the policy to determine which events to schedule next. For example, suppose
that Station 2 completes a job of Class 2 (so that J2 = 2). We then decrement
X2 and set J2 to be either 0, 1 or 2 according to whether there are no jobs of
either class waiting, there are Class 1 jobs waiting, or there are no Class 1 jobs
waiting and one or more Class 2 jobs waiting. In the second or third case, the
clock associated with service completions at Station 2 is set to the current time
plus a sample from the distribution FS2. When no job is in service at a station,
there should be no service-completion event scheduled at that station. In that
case we set the clock reading for the event to ∞. It then plays no role in the
simulation until a job enters service at that station, at which time the clock is

http://dx.doi.org/10.1016/S0927-0507(06)13006-6
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reset. All that is needed now to set the simulation in motion is a specification
of the initial system state and event-clock settings.

Notice that we need to be able to generate samples from a given distrib-
ution. This problem is almost invariably solved in two steps. In the first step
we generate a sequence of numbers that mimics many of the properties of an
i.i.d. sequence U = (U(n): n � 0) of uniformly distributed random numbers
on (0� 1); see Chapter 3. We then generate the desired samples assuming the
existence of the sequence U using a variety of methods. See the remaining
Chapters 4–7 in Part II.

The event-scheduling view of the model is perhaps not as intuitive as the
process-interaction view. As noted in Nelson (2002, Section 4.7) the event-
scheduling approach “. . . defines system events by describing what happens to
the system as it encounters entities. The process view of stochastic processes im-
plies system events by describing what happens to an entity as it encounters the
system”. A modeler is often able to visualize the progress of an entity through
a system, and so the process-interaction view can be more intuitive than the
event-scheduling world view.

The event-scheduling view is very similar to the algorithm used to simu-
late our model in most discrete-event simulation software. The discrete-event
simulation algorithm for a general model can be approximately described as
follows.

1. Initialization: Set the simulation clock T to 0. Choose the initial system
state X and event clock readings {Ci} say.

2. Let T = mini Ci be advanced to the time of the next event and let I be
the index of the clock reading that achieves this minimum.

3. Execute the logic associated with event I, including updating the system
state X and event clocks {Ci}.

4. Go to Step 2.

Notice that even this simple description of the algorithm embodies several
key issues.

• The system is tracked through a system state and clocks indicating the
time at which events of different types are scheduled to occur.

• The simulation proceeds from event epoch to event epoch, rather than
continuously in time.

• At event epochs the system state and clocks are updated, and any new
events are scheduled by generating samples from appropriate distribu-
tions.

Our description of discrete-event simulation is somewhat specialized and
imprecise, since to give a more general and precise definition would take us too
far afield. The interested reader can find more general and precise descriptions
in, for example, Shedler (1993), Glynn (1989) and Haas (1999).

The interarrival and service time sequences defined thus far are all input
stochastic processes, in that they are specified by the simulation user. The logic

http://dx.doi.org/10.1016/S0927-0507(06)13004-2
http://dx.doi.org/10.1016/S0927-0507(06)13004-2 10.1016/S0927-0507(06)13005-4
10.1016/S0927-0507(06)13006-6 10.1016/S0927-0507(06)13007-8
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of the simulation model combines these input stochastic processes to form out-
put stochastic processes. Output processes then shed light on the behavior of
the system under study. Even for the simple model given above there are a
host of stochastic processes one might consider. There are three processes that
deserve special attention.

• Let T(0) = 0 and let T(n) denote the time of the nth event epoch,
n � 1. This value can be read from the simulation clock T just after
Step 2 of the algorithm is completed. We call (T(n): n � 0) the event-
epoch process.

• Let X(0) be the initial system state, and let X(n) be the system state
immediately after the nth event epoch. Notice thatX(n) is the value of
the system state immediately after Step 3 of the algorithm is completed.
We call (X(n): n � 0) the state-change process.

• Let Y(t) denote the state of the system at simulated-time t, and let
(Y(t): t � 0) be the state process. We can recover this process from
the event-epoch and state-change processes via Y(t) = X(n), where
n is chosen so that T(n) � t < T(n+ 1).

The state process gives a continuous view of the system state with time. In
our problem we are also very interested in the waiting times in queue of the
two classes of jobs. In particular, we might also be interested in the stochastic
process (W1(n): n � 1), where W1(n) is the waiting time in queue of the nth
Class 1 job to arrive to the system. It is difficult to construct this stochastic
process from the event-epoch and state-change processes. Perhaps the easiest
way to do this is to “tag” each Class 1 job as it arrives with the (simulated) time
of its arrival. When the job enters service one can then subtract the job’s arrival
time from the current simulated time to give the waiting time in the queue. It is
therefore straightforward to recover the waiting time sequence. These sorts of
calculations are usually performed automatically by discrete-event simulation
software.

Many other stochastic processes can be constructed in a similar fashion. The
point behind constructing such stochastic processes is to enable the estimation
of various performance measures that describe some aspect of the simulated
system. A performance measure is essentially a summary statistic related to
one or more of the stochastic processes described above. The choice of per-
formance measure is invariably related to the questions one has in mind when
a simulation model is built. In our example it makes sense to use measures
related to the waiting times of jobs, but there are many possible performance
measures. For example, we may be interested in any or all of the following.

PM1. For some fixed t > 0 let

�Y1(t) = 1
t

∫ t

0
Y1(s) ds

be the average number of Class 1 jobs in the system over the first t units of
simulated time, where Y1(s) is the number of Class 1 jobs in the system
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at time s. Notice that �Y1(t) is a random variable that depends on the
generated sample path. The first performance measure is E�Y1(t).

PM2. For some fixed n � 1 let

�W1(n) = 1
n

n∑
i=1

W1(i)

be the mean waiting time in queue of the first n Class 1 jobs to arrive to
the system. The second performance measure is E�W1(n) for some fixed n.

PM3. Instead of expected values, we may wish to compute a tail probability
such as Pr(�W1(n) > 10).

PM4. The pth quantile of a random variable Z can be defined as inf{z:
Pr(Z � z) � p}. We may wish to compute the pth quantile of �Y1(t) for
some fixed p.

These are all examples of finite-horizon performance measures. An alterna-
tive term that is often used is terminating-simulation performance measures.
The distinguishing feature of such measures is that they are related to the dis-
tribution of a sample path of finite, but possibly random, length. For example,
PM1 requires one to simulate for a fixed length of simulated time, while PM2
requires one to simulate for an amount of simulated time that will vary from
sample path to sample path. Both are finite-horizon performance measures.
Both PM1 and PM2 are expected values of a particular random variable. One
might also be interested in the distributions of these random variables beyond
the mean. Both PM3 and PM4 provide such information.

Chapter 8 discusses how to estimate performance measures. Perhaps the
most straightforward method is the replication method, which works as follows.
We have previously described a “recipe” for generating a sample path over a
finite interval. If this recipe is repeated n independent times, then one obtains
n i.i.d. observations of the sample path. The replication method combines these
i.i.d. observations to estimate the performance measure of interest. For exam-
ple, if �Y1(t; i) is the value of �Y1(t) on the ith replication, then one can estimate
E�Y1(t) via the sample average

(1)
1
n

n∑
i=1

�Y1(t; i)�

It is important to distinguish between within-replication data and across-
replication data in the replication method. Each sample path that is simulated
consists of within-replication data. These data are often dependent. For exam-
ple, the number of Class 1 jobs in queue at time 1 and at time 2 are dependent,
so that �Y1(t; i) is a continuous-time average of a series of dependent obser-
vations for any fixed i. On the other hand, across-replication data consists of
values from different replications. For example, if, as above, the replications
are simulated independently, then �Y1(t; i) is independent of �Y1(t; j) for any

http://dx.doi.org/10.1016/S0927-0507(06)13008-X
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i �= j, so that the (sample) average (1) is an average of independent observa-
tions.

The performance measures PM1–PM4 are all finite-horizon performance
measures. One might also be interested in infinite-horizon performance mea-
sures. These are performance measures that depend on the distribution of a
sample path that, in principle, is simulated over the entire interval [0�∞). One
such performance measure is expected discounted performance.

PM5. For our example this might take the form

E
∫ ∞

0
e−δsY1(s) ds�

where δ > 0 is a discount factor.

Although there is no need to specify a time horizon t for this perfor-
mance measure, one must specify the discount factor δ. Estimating PM5 is
not straightforward, since it depends on an infinite time horizon. Nevertheless,
methods exist for estimating it.

All of the performance measures mentioned so far depend on the initial
condition of the simulation. In other words, PM1–PM5 typically depend on
the state and clock readings at time 0. While such performance measures are
appropriate for many applications, there are some settings where they are not
appropriate. For example, in some communication network applications, even
a few seconds is a very long time in terms of network evolution. On such time
scales, discounting may seem inappropriate, and the initial condition often
plays essentially no role. In such settings, one may wish to turn to steady-state
performance measures.

PM6. Suppose that

�Y1(t) = 1
t

∫ t

0
Y1(s) ds→ α

as t → ∞ almost surely, where α is a deterministic constant that is the
same regardless of the initial condition of the simulation.

The constant α can be interpreted as the long-run average number of Class 1
jobs in the system. The steady-state estimation problem is the problem of esti-
mating α. As with PM5, estimation of α poses several challenges to the simula-
tion user. Methods have been developed to address those challenges, and are
discussed in Chapters 13, 14, 15 and 16.

The term “steady-state” has been somewhat abused in this definition. The
steady-state simulation problem as defined above would perhaps be better
named the “time-average estimation problem”, since the problem as stated in-
volves estimating the limiting value of a time average. However, this definition
is more easily stated than a more traditional definition involving steady-state
distributions of stochastic processes. Furthermore, under certain conditions,
limits of time averages like α above and the expected values of steady-state

http://dx.doi.org/10.1016/S0927-0507(06)13013-3
http://dx.doi.org/10.1016/S0927-0507(06)13013-3 10.1016/S0927-0507(06)13014-5
10.1016/S0927-0507(06)13015-7 10.1016/S0927-0507(06)13016-9
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distributions coincide. For our example those conditions are roughly as fol-
lows: The stations are capable of keeping up with the incoming work, the input
processes are stationary in the sense that they do not change with time, and
there are no peculiarities of the input processes that lead to periodic behavior.
Under these conditions it is reasonable to expect that the distribution of the
number of Class 1 jobs in the system Y1(t) at time t will depend less and less
on t as t increases. Notice that the system state itself will continue to evolve
in a random fashion, but the distribution of the system state will tend to settle
down. Our definition of the steady-state estimation problem avoids the need
to make some of these assumptions, which helps to explain our preference for
it. See Wolff (1989) for more on this issue.

One of the key challenges in the estimation of any performance measure is
error estimation. The term error refers to the difference between a determinis-
tic quantity and an estimate of that quantity constructed through simulation. In
simulation applications error estimation usually takes the form of a confidence
interval for a performance measure. Consider PM1, for example, where we
wish to compute the deterministic quantity E�Y1(t) for some fixed t. Assuming
that �Y1(t) has a finite variance, the central limit theorem applies, and ensures
that the sample average (1) is approximately normally distributed for large n.
This limit theorem then allows one to report a confidence interval for E�Y1(t)
and hence to get a sense of the error in the estimator. This form of error is
often called estimation error to distinguish it from modeling error as discussed
below. See Chapters 2, 8 and 9, and Part V for further details on evaluating
and controlling error.

A common misconception is to confuse error with risk. Continuing with
PM1, suppose that the decision maker is worried about excessive queue lengths
in the period [0� t]. The summary performance measure E�Y1(t) gives some
idea of the magnitude one might expect of �Y1(t), and so it offers some infor-
mation on the potential risk involved. A 95% confidence interval for E�Y1(t)
might be reported as (Z − H�Z + H) or Z ± H, where Z is the midpoint
and H is the halfwidth. This confidence interval is sometimes misinterpreted
to mean that 95% of the time the random variable �Y1(t) will lie in the in-
terval (Z − H�Z + H). To see why this must be false, notice that the confi-
dence interval width can be made arbitrarily small by increasing the number
of simulation replications. The confidence interval will still be a 95% con-
fidence interval, but now will be of the form Z′ ± H ′, where the interval
(Z′ − H ′� Z′ + H ′) ⊂ (Z − H�Z + H) with high probability. So the level
of confidence 95% has everything to do with estimation error, and nothing to
do with risk.

A measure of risk for this example may instead be related to the distribu-
tion of �Y1(t). For example, one might estimate the Pr(�Y1(t) ∈ (y�� yu)), the
probability that the (random) average number of Class 1 jobs lies in the de-
terministic interval (y�� yu). This probability can be estimated by simulation,
and a confidence interval generated to give some idea of the accuracy of the

http://dx.doi.org/10.1016/S0927-0507(06)13002-9
http://dx.doi.org/10.1016/S0927-0507(06)13002-9 10.1016/S0927-0507(06)13008-X
10.1016/S0927-0507(06)13009-1
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estimate of the probability. For further discussion of these and related points
see Chapters 9 and 14.

We are finally in a position to conduct a simulation of our model. For our
specific implementation the interarrival times of Class 1 jobs are exponentially
distributed with mean 110 seconds, as are the interarrival times of Class 2 jobs.
The processing times at Station 1 are deterministic and equal to 100 seconds,
as are the processing times at Station 2. We start the system off empty, with
arrival clocks sampled from their respective distributions. We estimate E�Y1(t)
and E�Y2(t), where �Y2(t) is the average number of Class 2 jobs in the system, up
to time t = 500 hours. We performed 20 replications, where each replication
consisted of running the model for 500 hours.

The 95% confidence interval for E�Y1(t) was 0�9 ± 0�3, so that the aver-
age number of Class 1 jobs in the system was around 1! This looks like ab-
solutely wonderful performance. Unfortunately, the 95% confidence interval
for E�Y2(t) was 33 ± 4, so that Class 2 jobs fared rather poorly. On a hunch we
also ran the model for 20 replications of t = 2000 hours each. The confidence
interval for E�Y1(t) remained around 1, but the confidence interval for E�Y2(t)
was 108 ± 12. The mean number of Class 2 jobs increased by approximately
four times when we ran the simulation for four times as long. This suggests
that the queue of Class 2 jobs is growing as the simulation proceeds. In other
words, the system is unstable.

When such behavior is observed, one typically assumes that there is not
enough service capacity to keep up with incoming work. But if Class 1 jobs
were never routed to Station 2, then we would have two separate single-server
queues where the mean interarrival time (110) is greater than the mean service
time (100). Such queues are known to be stable. So there is, indeed, enough
service capacity. It is just that our priority policy at Station 2 is not a good one.

To diagnose the trouble we explore further. A look at the utilizations of the
stations shows that Station 1 is utilized approximately 65% of the time, while
Station 2 is utilized 100% of the time. This suggests that Station 1 is being
starved of work while Station 2 is overloaded. If one watches an animation
of the system (a standard feature in most graphical simulation software), one
immediately sees the trouble. When a Class 1 job arrives and Station 1 is busy,
the job moves to Station 2 if it can be served immediately. Otherwise it waits
in Queue 1. Then, when Station 1 completes its current job, there is often no
new Class 1 job to work on. So Station 1 has to wait until the next Class 1 job
arrives, and so it is often idle. Meanwhile, Station 2 continues to help out with
Class 1 jobs, even when the queue of Class 2 jobs gets long.

There are several ways to modify the policy to improve performance. There
is a great deal of theory (see, e.g., Harrison, 1996; Bell and Williams, 1999;
Meyn, 2001, 2003) that suggests that a policy that is close to the best that one
can do is to instead have Station 2 work on Class 1 jobs only when there are at
least x Class 1 jobs in the queue, where x is a decision variable that needs to be
chosen. If x is large, then Station 2 will only assist Station 1 when the backlog
of Class 1 jobs is large. In this case it is highly unlikely that Station 1 will be

http://dx.doi.org/10.1016/S0927-0507(06)13009-1
http://dx.doi.org/10.1016/S0927-0507(06)13009-1 10.1016/S0927-0507(06)13014-5
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left with no jobs to process. Indeed, if we take x = 5 then we get confidence
intervals for E�Y1(t) and E�Y2(t) given by 2�4 ± 0�2 and 8 ± 2, where t is again
chosen to be 500 hours and we performed 20 replications. This is far more
reasonable! In this setting, x is known as a safety stock. Notice that if x is too
large, then we can end up with long waiting times for Class 1 jobs which is
undesirable. On the other hand, if x is too small, then the system cannot keep
up with the arrival of Class 2 jobs.

So an important question is how to choose the integer x. Suppose we adopt
the position that we want to minimize 5E�Y1(t) + E�Y2(t). The multiplier 5
is chosen to reflect the importance of completing Class 1 jobs quickly. This
is an example of a discrete-optimization problem where the objective func-
tion is estimated via simulation. Such problems are the subject of Chapters
20 and 21. Of course, we can only get estimates of the objective function, and
so with a finite amount of simulation effort we can never be certain that the
reported optimal value of x is indeed optimal. Chapter 17 discusses the ques-
tion of how to report a solution as optimal with a given level of confidence. See
Henderson et al. (2003) for more on the safety stock selection problem.

One needs to interpret confidence levels or, more generally, error estimates,
with care. An error estimate is a statement about the statistical properties of
the model that was implemented. As such it is a statement about estimation
error. Recall that estimation error is the difference between the true value of a
performance measure for the simulation model and the estimate of that value
resulting from running the simulation model. We can typically make estimation
error very small by running the simulation for a long time. It is important to be
aware that a small estimation error is no guarantee that the simulation results
closely mirror reality.

To see why, notice that the implemented model typically contains a number
of simplifications of the underlying system that is being studied. (This under-
lying system could either be extant, i.e., currently existing, or conceptual, i.e.,
proposed but not yet existing. We do not distinguish between these two cases.)
For example, in our network model we may have ignored a small variation in
the interarrival distribution depending on the time of day, or there may be
an operator that is required to set the processing in motion before a job can
begin service that we have not modeled. Even if the model is a complete rep-
resentation of reality, the estimation of parameters of distributions (e.g., the
mean interarrival time of jobs) can introduce modeling error. The difference
between the value of a performance measure for the actual system (whether
extant or conceptual) and the value of the same performance measure for the
corresponding simulation model is known as modeling error. One can simulta-
neously have small estimation error yet large modeling error.

The sum of these two sources of error gives the difference between true
system performance and the estimate of performance based on the simula-
tion model. One can often control estimation error by increasing simulation
lengths. It is typically much more difficult to get a sense of modeling error.
One way is to perform sensitivity analyses of the model, but there are also

http://dx.doi.org/10.1016/S0927-0507(06)13020-0
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other methods. The modeling error/estimation error issue is further explored
in Chapters 9 and 14.

2.2 A stochastic activity network problem

Consider a set of nodes N and arcs A such that (N �A) defines a directed,
acyclic network with a single source node a ∈ N and sink node z ∈ N . Fig-
ure 2 is an illustration. Associated with each arc i ∈ A is a random variable
Xi representing the “length” or “duration” of the arc. Here the arcs represent
tasks to be completed in a project, and the nodes represent milestones along
the way. Let P be the set of all distinct paths (sequences of arcs) from a to z.
In the illustration P = {(1� 4� 6)� (1� 3� 5� 6)� (2� 5� 6)}. There are at least two
problems that can be associated with the network (N �A):
Stochastic longest route problem: If all inbound tasks to each node must com-

plete before any outbound tasks can begin, then the time to complete the
project is

(2)Y = max
P∈P

|P|�
where

|P| =
∑
i∈P

Xi

is the duration of the path P , so that Y is simply the duration of the longest
path. The random variables

(3)Cj = I
(|Pj| = Y

)
� Pj ∈ P�

indicate which path (or paths) are the longest (most critical). Here, I(·) is
the indicator function that is 1 if its argument is true and 0 otherwise.

Stochastic shortest route problem: If the paths P represent a collection of al-
ternative approaches to the project, then the shortest route is of interest.
When all approaches will be attempted simultaneously,

Y = min
P∈P

|P|
is the time to complete the project. If only a single alternative will be

Fig. 2. Stochastic activity network.
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chosen, then

Cj = I
(|Pj| = Y

)
is an indicator of whether path Pj is the shortest (optimal) path.

In this section we consider the stochastic longest route problem and focus
on the completion time Y . The random variable Y is easier to simulate than
the dynamic stochastic process of Section 2.1, since the following algorithm will
suffice:

(1) Generate a random sample Xi for all i ∈ A.
(2) Set Y = maxP∈P |P|.
Notice that the concept of time does not play a central role here as it did

in Section 2.1; in fact, the simulation is merely an algorithm for realizing the
random variable Y . Simulations of this type are sometimes called Monte Carlo
simulations, although the term is also used for any simulation that involves ran-
dom sampling. Placing this problem within the framework of Section 2.1, the
stochastic longest route problem is a terminating simulation, and Y represents
finite-horizon performance. Therefore, the performance measures PM2–PM4
are still relevant:

PM2. EY is the expected value of the time to complete the project.
PM3. Pr{Y > t} is the probability that the project duration exceeds some

threshold.
PM4. For given probability p, yp = inf{y: Pr(Y � y) � p} is the pth

quantile of project completion, a completion date that can be achieved
with probability p.

Let X = (X1�X2� � � � �Xk) be the random vector of all task durations, with
joint cumulative distribution function FX. Then we can write

(4)FY (t) ≡ Pr{Y � t} =
∫

x:|P|�t�P∈P
dFX(x)�

If we could compute FY then, in theory, we could also compute EY and yp.
However, even in simple networks this can be a difficult calculation, and it is
essentially impossible if the network is large and the joint distribution of X
is complex. As a result, simulation becomes competitive because PM2–PM4
can all be estimated by the replication method. For instance, if we repeat the
simulation algorithm n times to produce i.i.d. samples of project completion
time Y1� Y2� � � � � Yn, then the natural estimator for EY is

(5)
1
n

n∑
i=1

Yi�

the natural estimator of Pr{Y > t} is

(6)
1
n

n∑
i=1

I(Yi > t)
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and the natural estimator of yp is

(7)Y(
np�)�
where Y(1) � Y(2) � · · · � Y(n) are the order statistics (sorted values) of the
sample.

If the network is large and has many paths, or t and p are extreme, then
the estimation error associated with (5)–(7) may be unacceptably large unless
n is very big. Part IV describes techniques for reducing the estimation error
of the natural estimators without a corresponding increase in computational
effort (larger n) or analyst effort (since every minute spent figuring out a more
efficient estimator could be spent simulating).

Consider EY . Because (5) is an unbiased estimator, its mean squared error
is

MSE

(
1
n

n∑
i=1

Yi

)
= Bias2

(
1
n

n∑
i=1

Yi

)
+ Var

(
1
n

n∑
i=1

Yi

)

(8)= Var(Y)
n

�

Reducing this MSE is the goal of Chapters 10–12, and it is important to con-
sider MSE because some efficiency improvement techniques reduce variance
at the cost of introducing some bias. Efficiency improvement often requires
that the analyst exploit knowledge beyond the minimum required to build the
simulation. For instance, in the network of Figure 2 there is no need to sim-
ulate X6 if the goal is to estimate EY : The EX6 can simply be added to the
time to reach the penultimate node and a source of variance in the estimator
disappears. Rarely is efficiency improvement this easy. Notice, however, that
the expected duration of each path Pj ∈ P is computable since

E
(∑
i∈Pj

Xi

)
=
∑
i∈Pj

EXi�

The actual durations of the paths with the longest expected durations will
be correlated – perhaps strongly correlated if there are a few dominant paths –
with the project duration Y . A more general efficiency improvement method,
called control variates (see Chapter 10), can exploit the correlation between a
random variable whose expected value is known and a random variable whose
expected value we want to estimate to reduce estimator variance.

In the classical stochastic longest route problem X1�X2� � � � �Xk are inde-
pendent, but this certainly need not be the case in practice. If the duration of
several tasks are affected by weather (as might occur in a construction project),
then particularly bad or good weather might influence several tasks, making
their durations dependent. One reason that independence is often assumed
is that characterizing and simulating a joint distribution, especially when the
marginal distributions are from distinct families, is difficult. For instance, spec-
ifying the marginal distributions and correlations among X1�X2� � � � �Xk does

http://dx.doi.org/10.1016/S0927-0507(06)13010-8
http://dx.doi.org/10.1016/S0927-0507(06)13010-8 10.1016/S0927-0507(06)13011-X
10.1016/S0927-0507(06)13012-1
http://dx.doi.org/10.1016/S0927-0507(06)13010-8
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not, in general, uniquely define their joint distribution. Chapter 5 takes up this
problem. Notice that dependence across the activity durations Xi does not in-
terfere with the application of control variates described above, since only the
expected path duration is required. On the other hand, the joint distribution
could be critical to the definition of a path-based control variate for estimating
Pr{Y > t}.

Up to this point we have treated the network (N �A) as fixed. But it may be
that, by spending some money, the duration of the project can be shortened.
As a simple example, suppose that all of the task durations are exponentially
distributed with nominal means μ1� μ2� � � � � μk, respectively, and that μi can
be reduced to mi at a cost of $ci per unit reduction. If a total budget of $b
is available, how should it be spent? We now think of the project duration
as a random function of the mean durations mi, say Y(m1�m2� � � � �mk). (It
is random because we have only specified the means of the task durations.
The actual task durations are still random.) One way to formulate the decision
problem is

min E
[
Y(m1�m2� � � � �mk)

]
subject to:

k∑
i=1

ci(μi −mi) � b

(9)0 � mi � μi� i = 1� 2� � � � � k�

This is an example of optimization via simulation, covered in Part VI, and
specifically continuous-decision-variable optimization. Chapter 18 describes
methods for selecting and fitting a tractable metamodel that represents, say,
E[Y(m1�m2� � � � �mk)] as a function of the decision variables. Chapter 19
reviews techniques for estimating gradient search directions for continuous-
decision-variable optimization. In both approaches the need to handle high-
dimensional (large k) problems and sampling variability is central.

3 Organization of the Handbook

The remainder of this volume is organized into parts that contain several
chapters each. Part I, including this chapter and the next, provides fundamen-
tal background that will be helpful when reading the more specialized chapters
that follow. Part II covers random-number generation, random-variate gener-
ation, and issues related to the implementation of each. The two chapters in
Part III lay the foundation for evaluating system performance via simulation
from both a frequentist and Bayesian statistical perspective. Using the mate-
rial in Part III as the foundation, Part IV describes methods for improving
the computational and statistical efficiency of performance estimation, while
Part V addresses the need to evaluate and control whatever estimation error

http://dx.doi.org/10.1016/S0927-0507(06)13005-4
http://dx.doi.org/10.1016/S0927-0507(06)13018-2
http://dx.doi.org/10.1016/S0927-0507(06)13019-4
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remains. Finally, Part VI tackles the goal of optimizing the performance of a
simulated system with respect to controllable decision variables.
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Abstract

This chapter surveys certain mathematical results and techniques that are pervasive in
the analysis of stochastic simulation. The concepts are introduced through the study
of a simple model of ambulance operation to ensure clarity, concreteness and cohe-
sion.

1 Introduction

Stochastic simulation (henceforth just “simulation”) is a tremendously
broad subject that draws from diverse mathematical fields including, but cer-
tainly not limited to, applied probability, statistics, number theory, and mathe-
matical programming. One of the goals of this handbook is to survey stochastic
simulation, communicating the key concepts, techniques and results that serve
as a foundation for the field. This chapter contributes to that goal by surveying
a collection of mathematical techniques and results that pervade simulation
analysis.

Given the breadth of the field of simulation, it is necessary to focus the
discussion somewhat. This chapter describes a set of mathematical tools and
techniques that can be used to explore the estimation of performance mea-
sures in both the terminating and steady-state simulation context. The focus
throughout is on large-sample properties of estimators, i.e., those properties of
estimators that persist when simulation runlengths become large. Any practical
simulation study works with a finite simulation runlength and so may not reach
the regime where large-sample properties emerge. It is therefore of great prac-
tical importance to consider the small-sample properties of estimators as well.
We do not do so here, since to do so would enlarge the scope beyond what is
manageable in a single chapter.

A refined statement of the goal of this chapter is then to survey a subset of
mathematical techniques and results that are useful in understanding the large-
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sample behavior of estimators of performance measures. It would be very easy
to provide a smorgasbord of such results, but such a chapter would read like
a dictionary. Therefore, many of the results are applied to a simple model of
ambulance operation that serves to unify the discussion and hopefully make it
more interesting.

This chapter is an outgrowth of Henderson (2000) and Henderson (2001),
in which there were 2 main topics. First, in the terminating simulation con-
text, performance measures were rigorously defined through the strong law of
large numbers for i.i.d. random variables. The performance of estimators of
these performance measures was studied via the central limit theorem. Vari-
ants of these results were used to study performance measures that, instead
of being expectations of random variables, were functions of expectations of
random variables. Second, in the steady-state context, performance measures
were rigorously defined and analyzed by appealing to asymptotic results for
general state-space Markov chains. Lyapunov conditions were used to provide
sufficient conditions under which the asymptotic results hold.

All of the performance measures described in Henderson (2000) take the
form of an expectation of a random variable, or a differentiable function of
a finite number of expectations. Such performance measures are particularly
useful when the goal is to compare many different stochastic systems, as they
provide a concrete basis for the comparison. If instead the goal is to enhance
one’s understanding of a single stochastic system, then it is often more useful to
analyze the distribution of certain random variables, perhaps through density
estimation techniques. This was the focus of Henderson (2001). This chapter
combines elements of both of those papers, with a leaning toward density esti-
mation.

In Section 2 we review some approaches to performance-measure estima-
tion in a particularly transparent context, namely that of estimating the density
of the completion time in a stochastic activity network. The analysis in this sec-
tion requires the use of the strong law of large numbers (SLLN) and central
limit theorem (CLT). We also review the continuous mapping theorem and
converging together lemma.

Section 3 sets the stage for the remainder of the chapter by introducing a
simple model of ambulance operation. In Section 4 we specialize this model to
the terminating simulation context. Even the definition of certain performance
measures leads to the use of some interesting techniques and results.

In Section 5 we modify the ambulance model slightly to obtain a steady-
state simulation. To rigorously define performance measures for this model,
it is necessary to define an appropriate stochastic process with which to work.
A great deal is known about the class of Markov processes evolving on general
(not necessarily countable) state spaces, and so a general state space Markov
chain is defined. To ensure that long-run averages exist, it is necessary to show
that this chain is, in a certain sense, positive recurrent.

A very practical approach to establishing that a Markov chain is positive
recurrent is to use Lyapunov functions, and this approach is the central math-
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ematical tool illustrated in Section 5. We use Lyapunov theory to show that
certain Markov chains are positive recurrent, that our performance measures
are well defined, and that certain estimators are consistent and satisfy central
limit theorems. An important consideration in the steady-state context is that
of initialization bias. We also use Lyapunov theory to characterize this bias.
Sometimes a natural choice of Lyapunov function does not work, at least at
first sight. Section 5 concludes with a discussion of one approach to dealing
with such problems that is especially applicable to queueing examples.

The underlying theme of Section 5 is that Lyapunov functions provide an
enormously powerful and easily applied (at least relative to many other meth-
ods) approach to establishing results that underlie steady-state simulation
methodology. It is fair to say that Lyapunov functions have not been broadly
applied in simulation analysis. It is far more common, for example, to see re-
sults based on mixing hypotheses for stationary processes. But such hypotheses
are difficult to verify in practice, which helps to explain the attention devoted
to Lyapunov techniques in this chapter.

Throughout the chapter results are rigorously quoted and references given
for the proofs. To simplify the exposition it is often the case that results are
quoted using stronger hypotheses than are strictly necessary, but tighter hy-
potheses can be found in the references provided.

Notation is occasionally reused from section to section, but is consistently
applied within each section.

2 Static simulation: Activity networks

Our running example in this section will be that of a stochastic activity
network (SAN), as introduced in Chapter 1. A SAN is a directed graph that
represents some set of activities that, taken together, can represent some
project/undertaking. Each arc in the graph represents a task that needs to be
completed, and the (random) length of an arc represents the time required to
complete the associated task. Nodes are used to indicate the precedence rela-
tionships between tasks. The time required to complete the project is indicated
by the longest path between the designated “source” and “sink” nodes.

Example 1. The stochastic activity network in Figure 1 is adapted from
Avramidis and Wilson (1996). Nodes a and i are the source and sink nodes
respectively. The arcs are labeled for easy identification. For simplicity we as-
sume that the task durations associated with each arc are independent of one
another.

Let Y be the (random) network completion time, i.e., the longest path from
node a to node i. We are interested in computing both EY (assuming it is finite)
and the distribution of Y . We first consider EY .

http://dx.doi.org/10.1016/S0927-0507(06)13001-7
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Fig. 1. A stochastic activity network.

As noted in Chapter 1, it is easy to estimate EY . One simply generates i.i.d.
replicates Y1� Y2� � � � � Yn of Y , and then forms the sample average

�Yn = 1
n

n∑
j=1

Yj�

The strong law of large numbers ensures that the estimator �Yn is a strongly
consistent estimator of EY . (An estimator is strongly consistent if it converges
almost surely to the appropriate value. It is consistent if it converges in proba-
bility to the appropriate value. In simulation we don’t usually concern ourselves
with the distinction between these two concepts since it is impossible to distin-
guish between the types of convergence based on a finite runlength. However,
the difference is important in establishing the validity of sequential stopping
(Glynn and Whitt, 1992), and there may be other contexts where the differ-
ence plays a role.)

Theorem 1 (SLLN). If X1�X2� � � � is an i.i.d. sequence of random variables with
E|X1| <∞, then

∑n
i=1Xi

n
→ EX1 a.s.

as n→∞.

For a proof, see Billingsley (1986, p. 290).

http://dx.doi.org/10.1016/S0927-0507(06)13001-7
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To apply this result we need to ensure that EY1 < ∞. Let Ti be a random
variable giving the completion time for task i. Let A be the set of all arcs. Then

(1)Y �
∑
i∈A

Ti�

so that a simple sufficient condition for the strong law to hold is that all task
durations have finite mean.

Under this condition we know that the estimator �Yn converges almost surely
to EY as n → ∞. But how accurate is it for a finite value of n? The central
limit theorem (CLT) provides an answer to this question.

Theorem 2 (CLT). If X1�X2� � � � is an i.i.d. sequence of random variables with
EX2

1 <∞, then

√
n

(
1
n

n∑
i=1

Xi − EX1

)
⇒ σN(0� 1)

as n → ∞, where σ2 = varX1, “⇒” denotes convergence in distribution and
N(0� 1) denotes a normal random variable with mean 0 and variance 1.

For a proof, see Billingsley (1986, p. 367).
To apply the CLT we need EY 2

1 < ∞. From (1) this follows if ET 2
i < ∞

for all i. If EY 2
1 < ∞, then the CLT basically establishes that the error in the

estimator �Yn is asymptotically normally distributed with mean 0 and variance
s2/n, where s2 = varY1, and this is the basis for obtaining confidence intervals
for EY . In particular, an approximate 95% confidence interval for EY1 is given
by

(2)�Yn ± 1�96
s√
n
�

Of course, s2 must invariably be estimated. The usual estimator is the sample
variance

s2
n =

1
n− 1

n∑
j=1

(Yj − �Yn)2�

The confidence interval that is reported is the same as (2) with s replaced by
its sample counterpart sn. But is the modified confidence interval then valid?

If EY 2
1 < ∞, then the SLLN implies that s2

n → s2 as n → ∞ a.s. Hence,
from Billingsley (1986, Exercise 29.4) we have that

(3)
(
n1/2(�Yn − EY)

s2
n

)
�⇒

(
sN(0� 1)

s2

)
�



24 S.G. Henderson

The joint convergence in (3) is a direct result of the fact that s2 is a de-
terministic constant. In general, marginal convergence does not imply joint
convergence.

The natural tool to apply at this point is the continuous mapping theorem.
For a function h : R

d → R, let Dh denote its set of discontinuities (in R
d).

Theorem 3 (Continuous Mapping Theorem). Let (Xn: n � 1) be a sequence
of R

d-valued random variables with Xn ⇒ X as n → ∞ and let h : R
d → R. If

P(X ∈ Dh) = 0, then h(Xn)⇒ h(X) as n→∞.

For a proof, see Billingsley (1986, p. 391).
Define h(x� y) = x/y1/2, and then apply the continuous mapping theorem

to (3), to obtain

(4)
n1/2(�Yn − EY1)

sn
⇒ N(0� 1)

as n → ∞ when s2 > 0, and so the confidence interval procedure outlined
above is indeed valid.

The argument leading to (4) is commonly known as a converging together
argument. It is based on the converging together lemma, sometimes known as
Slutsky’s theorem, which is a direct corollary of the continuous mapping theo-
rem. We have essentially supplied a proof of this result in the argument above.

Corollary 4 (Converging Together Lemma). If Xn ⇒ X, Un ⇒ u and Vn ⇒ v

as n→∞, where X ∈ R
d, and u and v are constants, then

UnXn + Vn �⇒ uX + v

as n→∞.

Let us now see how these same tools can be used to estimate another perfor-
mance measure. Recall that we are interested in the distribution of Y beyond
its mean. One way to represent the distribution is through a density function.
So when does Y have a density?

Before answering this question, we first need to understand what we mean
when we say that a random variable has a density. The standard definition is
based on the Radon–Nikodym theorem; see Billingsley (1986, pp. 434, 443).

Definition 1. We say that a real-valued random variable X has a density if
P(X ∈ A) = 0 for all Lebesgue-measurable sets A with Lebesgue measure 0.
This is equivalent to saying that there exists a nonnegative function f (a density
function) with the property that for all x ∈ R,

F(x) ≡ P(X � x) =
∫ x

−∞
f (y) dy�
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The first part of this definition may not be as familiar as the second part.
Heuristically speaking,X has a density if the probability thatX takes on values
in “insignificant” sets is 0. The second part of the definition is perhaps more
familiar. We will use the 2 definitions interchangeably in what follows. The
proof of the following result demonstrates the use of the definitions.

Proposition 5. Consider a SAN with a finite number of arcs/tasks, where the indi-
vidual task durations are independent. Suppose that every path from the source to
the sink contains an arc for which the corresponding task duration has a density.
Then the time to complete the project has a density.

Proof. Let P be a path from the source to the sink. The length L of the path P
is the sum of the times required to traverse each arc in the path. At least one
of these times has a density, and since the task durations are independent, it
follows that L has a density. Let m < ∞ denote the number of such paths
from the source to the sink, and let L1� � � � � Lm denote the times required to
traverse each path. Then Y = max{L1� � � � � Lm}.

Now, the maximum of 2 random variables, X1 and X2 say, that have den-
sities, also has a density. To see why, let A denote an arbitrary (measurable)
subset of the real line, and let Z = max{X1�X2}. Then

P(Z ∈ A) � P
({X1 ∈ A} ∪ {X2 ∈ A}

)
� P(X1 ∈ A)+ P(X2 ∈ A)�

where the first inequality follows since Z ∈ A implies that at least one of X1
and X2 must be in A, and the second is Boole’s inequality. Now, we know that
X1 and X2 have densities, so if the Lebesgue measure of A is 0, then

P(X1 ∈ A) = P(X2 ∈ A) = 0�

Hence P(Z ∈ A) = 0 and so, by Definition 1, Z has a density.
We can now apply this result inductively to Y = max{L1� � � � � Lm} to con-

clude that Y has a density. �

Applying this result to Example 1, we see that the network completion
time Y will have a density if T11 and T13, the completion times for tasks
11 and 13, have densities. But then, how can we estimate this density?

In general, density estimation is difficult. However, the special structure in
this problem allows us to use a simple device. The look-ahead density estima-
tors developed by Henderson and Glynn (2001) are easily analyzed, and have
excellent statistical properties. The mathematics of look-ahead density esti-
mation are intimately related to those of gradient estimation via conditional
Monte Carlo. See Chapter 19 for more on conditional Monte Carlo and gradi-
ent estimation, and Fu and Hu (1997) for a comprehensive account.

Let Lf and Lh be the lengths of the longest paths from the source node
to nodes f and h respectively. Recall that T11, T13 denote the (random) task

http://dx.doi.org/10.1016/S0927-0507(06)13019-4
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durations for tasks 11 and 13. Let F11, F13 be the corresponding distribution
functions which we assume to be continuously differentiable, and let f11, f13
be the corresponding derivatives (and therefore densities). Then

P(Y � t)

= E P(Y � t|Lf �Lh)
= E P(T11 � t − Lf � T13 � t − Lh|Lf �Lh)

(5)= E
[
P(T11 � t − Lf |Lf �Lh)P(T13 � t − Lh|Lf �Lh)

]
= E

[
F11(t − Lf )F13(t − Lh)

]

(6)= E
∫ t

−∞
d

dx
{
F11(x− Lf )F13(x− Lh)

}
dx

= E
∫ t

−∞
{
F11(x− Lf )f13(x− Lh)+ f11(x− Lf )F13(x− Lh)

}
dx

(7)

=
∫ t

−∞
E
{
F11(x− Lf )f13(x− Lh)+ f11(x− Lf )F13(x− Lh)

}
dx�

Equality (5) follows since all of the task durations are independent, (6) is just
the fundamental theorem of calculus and (7) follows since the integrand is
nonnegative.

Thus, we can conclude that Y has a density f say, where

(8)f (x) = E
[
F11(x− Lf )f13(x− Lh)+ f11(x− Lf )F13(x− Lh)

]
�

(See Avramidis and Wilson, 1996, Section 4.1, for a related discussion.)
The expression (8) has an intuitive interpretation. The first term in (8) is

related to the probability that the longest path from the source to the sink
through node f has length at most x and at the same time, the longest path
from the source to the sink through node h is exactly of length x. The second
term can be interpreted similarly.

The expression (8) immediately suggests a density estimator for f . We gen-
erate i.i.d. replicates Lf (i), Lh(i) for i = 1� � � � � n, and estimate f (x) by

fn(x) = 1
n

n∑
i=1

Γ (i;x)�

where

Γ (i;x) = F11
(
x− Lf (i)

)
f13
(
x− Lh(i)

)
+ f11

(
x− Lf (i)

)
F13
(
x− Lh(i)

)
�

Applying the SLLN, we see that fn(x) → f (x) a.s., for all x for which (8) is
finite. The set of values x for which this does not hold has Lebesgue measure 0,
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and so the convergence of fn to f occurs for almost all x. This is all that can be
expected, because densities are only defined up to a set of Lebesgue measure 0.

We can apply the CLT to report confidence intervals for f (x) exactly as in
the case of estimating EY if E[Γ 2(1;x)] <∞.

To this point we have established pointwise consistency of the estimator fn
of f . One typically estimates the density to get a sense of what the entire density
looks like, and not just the density at a point. To this end, we might attempt to
establish global measures of convergence such as uniform (in x) convergence.
To do so here would carry us too far afield. See Henderson and Glynn (2001)
for such results for look-ahead density estimation in the Markov chain context.

The look-ahead density estimator described above has very appealing and
easily-derived asymptotic properties. These attractive properties are a result of
carefully investigating the model to identify exploitable properties. One might
ask if this somewhat specialized density estimation technique can be comple-
mented by a more general-purpose approach that does not require as much
tailoring to specific applications. The field of nonparametric functional estima-
tion encompasses several such approaches; see, e.g., Prakasa Rao (1983). Wand
and Jones (1995) is a very readable introduction to the field of kernel density
estimation, which is also discussed in Chapter 8. We will not go into this area in
any detail because the mathematical techniques used to analyze kernel density
estimators are beyond the scope of this chapter.

This section has introduced several mathematical techniques that are re-
peatedly used in simulation analysis. The SLLN and CLT need no introduction.
The continuous mapping theorem and converging together lemma are not as
well known, but are also ubiquitous in simulation analysis. Conditional Monte
Carlo can also be viewed as a variance reduction technique; see Chapter 10.

3 A model of ambulance operations

We now describe a very simple model that will serve as a vehicle for the
concepts to follow. The purpose of the example is simplicity, and certainly not
realism, although with a few straightforward extensions, the model could be
considered to be quite practical.

Suppose that a single ambulance serves calls in a square region. By translat-
ing and rescaling units, we may assume that the square is centered at the origin,
with lower left-hand corner at (−1/2�−1/2) and upper right-hand corner at
(1/2� 1/2). The combined hospital/ambulance base is located at the origin.

Calls arrive (in time) according to a homogeneous Poisson process with
rate λ calls per hour. The location of a call is independent of the arrival process,
and uniformly distributed over the square. To serve a call, the ambulance trav-
els at unit speed in a Manhattan fashion (i.e., at any given time, movement is
restricted to lie only in the x direction or the y direction) from its present lo-
cation to the location of the call. For definiteness we assume that travel in the
y direction is completed before travel in the x direction. A random amount of

http://dx.doi.org/10.1016/S0927-0507(06)13008-X
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time, independent of all else, is then spent at the scene treating the patient and
successive scene times are i.i.d. For definiteness we assume that scene times are
gamma distributed (see Law and Kelton, 2000, p. 301, for details on this dis-
tribution). After the scene time is complete, and independent of all else, with
probability p the ambulance is required to transport and admit the patient to
the hospital. Hospital admission occurs instantaneously once the ambulance
reaches the hospital. If the patient does not require transport to the hospital
then the ambulance is immediately freed for other work. It then returns to the
hospital/base. If a call requires service before the free ambulance reaches the
base, then the ambulance responds to the call from its current location.

4 Finite-horizon performance

In this section, we assume that the ambulance only receives calls from (say)
7 a.m. until 11 p.m. each day. At 11 p.m., the ambulance completes the call
that it is currently serving (if any) and returns to base. We will further assume
that if the ambulance is engaged with a call when another call is received, then
some outside agency, such as another emergency service, handles the other
call. Finally, we assume that the random variables associated with each day are
independent of those for all other days.

We will be primarily concerned with two performance measures.

α The long-run fraction of calls attended by the ambulance.
r The conditional density of the response time to a call given that the am-

bulance attends the call.

The utilization, or fraction of time that the ambulance is busy, is also of
interest but the performance measures α and r are sufficient for our purposes.

We first consider α, the long-run fraction of calls attended by the ambu-
lance. Let Ni denote the total number of calls received on day i, and for
j = 1� � � � �Ni, let Aij be 1 if the ambulance is available when the jth call
arrives on day i and 0 otherwise. Then the number of calls Ai attended by the
ambulance on day i is

∑Ni
j=1Aij . After n days, the fraction of calls attended by

the ambulance is given by

(9)
∑n

i=1Ai∑n
i=1 Ni

�

Dividing both the numerator and denominator of (9) by n, and applying the
SLLN separately to both the numerator and denominator, we see that

∑n
i=1Ai∑n
i=1 Ni

→ α = EA1

EN1
a.s.
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as n→∞. But EN1 = 16λ, so we can estimate α by

αn = 1
n

n∑
i=1

Ai

16λ
�

The SLLN establishes that αn is a consistent estimator of α, and the CLT allows
us to construct confidence intervals for α based on αn.

Notice that α is defined as EA1/EN1 and not as E(A1/N1). The latter quan-
tity is not really defined, since P(N1 = 0) > 0. Even if we were to defineA1/N1
to be, say, 1 on the event N1 = 0, the latter quantity is not our desired perfor-
mance measure. Observe that Ai/Ni (E(A1/N1)) gives the actual (expected)
fraction of calls on day i that are attended by the ambulance. This expected
fraction weights days equally, irrespective of the number of calls received. In
contrast, the quantity EA1/EN1 weights days by the number of calls that are
received on the day, and should be preferred.

We now develop a look-ahead density estimator for r, the conditional den-
sity of the response time given that the ambulance responds to a call. But first
let us understand exactly what the density r represents. Let Rij be the response
time for the jth call on day i when the ambulance responds to the call (Aij = 1)
and let Rij = −1 if the ambulance does not respond to the jth call (Aij = 0).
For t > 0 define

R(t) = lim
n→∞

∑n
i=1
∑Ni

j=1AijI(Rij � t)∑n
i=1 Ai

(10)=
E
∑N1

j=1A1jI(R1j � t)

EA1

to be the long-run fraction of calls answered by the ambulance with response
time less than or equal to t. The maximum distance the ambulance can drive
is 2 units from one corner of the square to the opposite corner, so all response
times are bounded by 2, and consequently R(t) is 1 for all t � 2. We define
r(·) to be the derivative of R(·) on (0� 2). Of course, we have not yet estab-
lished that R(·) is differentiable. In the process of establishing this fact we will
also arrive at a look-ahead estimator for r. In essence we are again applying
conditional Monte Carlo which, in this setting, is called filtering (Glasserman,
1993).

Consider the numerator R(t)EA1 of (10). We can write

R(t)EA1 = E
∞∑
j=1

I(j � N1)A1jI(R1j � t)

(11)=
∞∑
j=1

E
[
I(j � N1)A1jI(R1j � t)

]
�
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where (11) follows since the summands are nonnegative. For i � 1 and j =
1� � � � �Ni, let Bij (Cij) denote the vector location of the ambulance (new call)
at the time at which the jth call on day i is received. Let d(b� c) denote the
time required for the ambulance to travel from location b to location c. Also,
let

(12)g(t� b) = P
(
d(b�C) � t

)
be the probability that the travel time for the ambulance from location b to
the random call location C is less than or equal to t. Observe that on the event
Aij = 1 (the ambulance answers the jth call on day i),

P(Rij � t|Aij� Bij) = g(t� Bij)�

So we see that

E
[
I(j � N1)A1jI(R1j � t)

]
= E

{
E
[
I(j � N1)A1jI(R1j � t)|A1j� B1j

]}
(13)= E

{
I(j � N1)A1jg(t� B1j)

}
�

The final step (13) requires some care, but we omit the details.
Combining (13) with (11) we find that

(14)R(t) =
E
∑N1

j=1A1jg(t� B1j)

EA1
�

We now wish to differentiate both sides of (14). For each fixed b, g(·� b) is
continuously differentiable in t with bounded derivative. To see why, notice
that g(t� b) is the area of the intersection of the unit square with a diamond
(recall that the ambulance travels in Manhattan fashion) centered at b with
“radius” t; see Figure 2. For each fixed b this is a piecewise quadratic with
continuous derivative at the breakpoints. So define

(15)f (t� b) = ∂g(t� b)

∂t
�

For each fixed b, f (t� b) is piecewise linear and continuous in t, as discussed in
the caption of Figure 2.

We now see that

r(t) = d
dt

E
∑N1

j=1A1jg(t� B1j)

EA1

(16)=
E d

dt
∑N1

j=1A1jg(t� B1j)

EA1

=
E
∑N1

j=1A1j
d
dt g(t� B1j)

EA1
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Fig. 2. Each diamond represents the set of points that are a fixed L1 distance from the point b. The
value f (t� b) is proportional, for each fixed t, to the length of the (solid) line segments of the appropriate
diamond that fall within the unit square. The value g(t� b) gives the area of the intersection of the unit
square with the appropriate diamond, and can also be viewed as an integral of f . Since f is continuous

and piecewise linear, it follows that g is continuously differentiable and piecewise quadratic.

=
E
∑N1

j=1A1jf (t� B1j)

EA1

(17)= EY1(t)

EA1
�

where

Yi(t) �
Ni∑
j=1

Aijf (t� Bij)�

Of course, we need to justify the interchange of expectation and derivative
in (16). We use the following result, which is stated in Glasserman (1991, p. 15)
and proved in Dieudonné (1960, Section 8.5).

Theorem 6 (Generalized Mean-Value Theorem). Let h be a continuous real-
valued function on the closed interval [a� b] which is differentiable everywhere
except possibly on a set D of at most countably many points. Then for all x and
x+ δ in [a� b],

∣∣∣∣h(x+ δ)− h(x)

δ

∣∣∣∣ � sup
y∈[a�b]\D

∣∣h′(y)∣∣�
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To justify (16) notice that g(t� B1j), when viewed as a function of t, is con-
tinuously differentiable with derivative f (t� B1j). Now, 0 � f (·� ·) � 2. Hence
the generalized mean value theorem together with the dominated convergence
theorem allow us to conclude that

E
d
dt

N1∑
j=1

A1jg(t� B1j)

= E lim
δ→0

∑N1
j=1A1jg(t + δ�B1j)−∑N1

j=1A1jg(t� B1j)

δ

= lim
δ→0

E

∑N1
j=1A1jg(t + δ�B1j)−∑N1

j=1A1jg(t� B1j)

δ

= d
dt

E
N1∑
j=1

A1jg(t� B1j)�

and the justification is complete.
Hence, the expression (17) rigorously defines r(t). We now also have a

means for estimating r(t) using the estimator

rn(t) =
∑n

i=1 Yi(t)∑n
i=1 Ai

�

So how can we assess the accuracy of the estimator rn(t)? Certainly, the
standard central limit theorem cannot be applied, because rn(t) is a ratio of
sample means of i.i.d. observations. We first consider a strongly related ques-
tion, and then return to the problem at hand.

Suppose thatX1�X2� � � � is an i.i.d. sequence of random variables with finite
mean μ = EX1. Let �Xn = n−1∑n

i=1 Xi denote the sample mean. If the real-
valued function h is continuous at μ, it follows that h(�Xn) → h(μ) a.s. as
n→∞. So how does the error h(�Xn)− h(μ) behave, for large n? For large n,�Xn will be very close to μ, and so the asymptotic behavior of the error should
depend only on the local behavior of h near μ. Indeed, if h is appropriately
differentiable, then Taylor’s theorem implies that

h(�Xn)− h(μ) ≈ h′(μ)(�Xn − μ)�

and so if X1 has finite variance, then

n1/2(h(�Xn)− h(μ)
) ≈ h′(μ)n1/2(�Xn − μ)

⇒ ηN(0� 1)

as n→∞, where η2 = h′(μ)2 varX1.
This argument can be made rigorous and generalized to higher dimensions

to obtain the following result, sometimes referred to as the delta method.
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Theorem 7. Suppose that (Xn: n � 1) is an i.i.d. sequence of R
d-valued ran-

dom variables with E‖X1‖2
2 < ∞. Let μ = EX1 denote the mean vector and

Λ = covX1 denote the covariance matrix. Let �Xn denote the sample mean of
X1� � � � �Xn. If h : R

d → R is continuously differentiable in a neighborhood of μ
with nonzero gradient g = ∇h(μ) at μ, then

n1/2(h(�Xn)− h(μ)
)⇒ σN(0� 1)

as n→∞, where σ2 = g�Λg.

For a proof, see Serfling (1980, p. 122).
To apply this result in our context, let

Xi =
(
Yi(t)�Ai

)
�

and define h(y� a) = y/a. Theorem 7 then implies that

n1/2(rn(t)− r(t)
)⇒ σ(t)N(0� 1)�

where

σ2(t) = E(Y1(t)− r(t)A1)
2

(EA1)2 �

Using the SLLN, one can show that σ2(t) can be consistently estimated by

s2
n(t) =

n−1∑n
i=1(Yi(t)− rn(t)Ai)

2

(n−1∑n
i=1Ai)2 �

and the same continuous mapping argument discussed earlier establishes that

rn(t)± 1�96sn(t)√
n

is an approximate 95% confidence interval for r(t).
The estimator rn(t), being a ratio estimator, is biased. Taylor’s theorem can

be used to examine this bias. Reverting to our one-dimensional digression for
the moment, Taylor’s theorem implies that

h(�Xn)− h(μ) ≈ h′(μ)(�Xn − μ)+ 1
2
h′′(μ)(�Xn − μ)2�

Taking expectations, we find that

Eh(�Xn)− h(μ) ≈ 1
2
h′′(μ)varX1

n
�

i.e., we have an explicit expression for the asymptotic bias. This argument can
be made rigorous and generalized to higher dimensions.
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Theorem 8. Suppose that (Xn: n � 1) is an i.i.d. sequence of R
d-valued random

variables with E‖X1‖4
2 < ∞. Let μ = EX1 denote the mean and Λ = covX1

denote the covariance matrix. Let �Xn denote the sample mean of X1� � � � �Xn. If
h : R

d → R is such that h(�Xn) is bounded for all n with probability 1, and twice
continuously differentiable in a neighborhood of μ, then

n
(
Eh(�Xn)− h(μ)

)→ 1
2

d∑
i�j=1

∇2h(μ)ijΛij

as n→∞.

The proof is a slight modification of Glynn and Heidelberger (1990, Theo-
rem 7).

One of the hypotheses of Theorem 8 is that h(�Xn) is bounded for all n a.s.
This regularity condition is used in the proof to show that a certain sequence
of random variables is uniformly integrable, so that one can pass expectations
through to the limit. We did not need this condition in Theorem 7 because
that result is about convergence of distributions and not about convergence
of expectations. The boundedness condition can be replaced by less-stringent
conditions like moment conditions.

We would like to apply Theorem 8 to the estimator rn(t). To that end, de-
fine h(y� a) = y/a. The only condition that is not obviously satisfied is the one
that requires that h(�Xn) be bounded for all n with probability 1. But the func-
tion f is bounded by 2, and so h(�Xn(t)) = rn(t) is also bounded by 2. We have
therefore established that the bias in the estimator rn(t) is of the order n−1.

It is reasonable to ask whether this bias is sufficient to noticeably affect
the performance of the confidence intervals produced earlier for a given run-
length n. Recall that the widths of the confidence intervals are of the or-
der n−1/2. Thus, the bias decreases at a (much) faster asymptotic rate than
the width of the confidence intervals, and so when runlengths are sufficiently
large it is reasonable to neglect bias.

In this section we used the delta method, which is very well known and sees a
great deal of use. It has been applied in, for example, the regenerative method
of steady-state simulation analysis, e.g., Shedler (1987), quantifying the impact
of input uncertainty on simulation outputs, e.g., Cheng and Holland (1998)
and in analyzing transformation-based simulation metamodels (Irizarry et al.,
2003). We also used conditional Monte Carlo to enable the taking of deriva-
tives.

5 Steady-state simulation

We now turn to useful mathematical techniques and results for steady-state
simulation analysis. To this end we modify the assumptions of the previous
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section on the dynamics of the ambulance model. In addition to the assump-
tions given in Section 3, we assume that the ambulance operates 24 hours a
day, 7 days a week. Furthermore, calls that arrive while the ambulance is busy
are queued and answered in first-in first-out order. (The assumption that calls
queue is not needed to create an interesting steady-state model. We introduce
it to allow a nontrivial discussion about stability.) Once the current call is com-
plete, either at the hospital if the patient required hospitalization or at the
scene of the call if not, the ambulance then responds to the next call if any.
(Recall that a call is completed either at the scene, with probability 1 − p, or
when the ambulance drops the patient off at the hospital, with probability p.)
If the patient does not require hospitalization and no calls are queued, then the
ambulance returns to the hospital/ambulance base, but can respond to newly-
arriving calls before it reaches the hospital/ambulance base.

We are still interested in ambulance utilization and the distribution of re-
sponse times. But the ambulance now handles all incoming calls, and so the
fraction of calls answered by the ambulance is no longer relevant. Our perfor-
mance measures are the following.

ρ The long-run utilization of the ambulance, i.e., the percentage of time
that the ambulance is occupied with a call. The ambulance is not consid-
ered to be occupied when returning to the hospital/base without a patient.

r The long-run density of the response time to a call.

Notice that ρ is a deterministic constant, while r is a density function.
In the previous section we attempted to rigorously define the suggested per-

formance measures, and also to derive asymptotic results that lay at the heart
of confidence interval methodology for estimating them. We will proceed in a
similar fashion in this section. Both performance measures involve the term
“long-run”. In order that such long-run measures exist, it is first necessary that
the ambulance model be stable, in the sense that calls do not “pile up” in-
definitely. In order to be able to make statements about the stability, or lack
thereof, of the model it is first necessary to define an appropriate stochastic
process from which our performance measures can be derived. Statements
about the stability of the model really relate to the stability of the stochastic
process.

There are typically a host of stochastic processes that may be defined from
the elements of a simulation. The choice of stochastic process depends partly
on the performance measures. Given that our measures are related to response
time, it is natural to consider a stochastic process that yields information on
response times. Furthermore, for mathematical convenience, it is often helpful
to ensure that one’s stochastic process is Markov.

For n � 1, let Tn denote the time at which the nth call is received, and
define T0 = 0. For n � 1, let Wn be the residual workload of the ambulance at
time Tn+, i.e., just after the nth call is received. By residual workload at some
time t, we mean the amount of time required for the ambulance to complete
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any current call, along with calls that might also be queued at time t. We assume
that the ambulance is idle at the hospital at time T0 = 0, so that W0 = 0.

Unfortunately, (Wn: n � 0) is not a Markov process, because the response
time for a future call, and hence the workload, depends on the location of
the ambulance when the ambulance clears the previous workload. (Here, the
ambulance may clear the previous workload either at the location of a call
if hospitalization is unnecessary, or at the hospital/base if hospitalization is
necessary.) So if we also keep track of the location βn = (βn(1)� βn(2)) of the
ambulance at the instant at which the workload Wn is first cleared, then the
resulting process Z = (Zn: n � 0) is Markov, where Zn = (Wn�βn).

The process Z is a general state space Markov chain, and evolves on the
state space

S = [0�∞)× [−1
2 �

1
2

]2
�

The first step in ensuring that our long-run performance measures are defined
is to establish that Z exhibits some form of positive recurrence. One way to
achieve this is to verify that the chain Z satisfies the following condition, which
will be explained shortly.

To avoid confusion between general results and those for our particular
model, we will state general results in terms of a Markov chain X = (Xn:
n � 0) evolving on a state space S .

The First Lyapunov Condition (FLC). There exists a nonempty B ⊆ S , posi-
tive scalars a < 1, b and δ, an integer m � 1, a probability distribution ϕ
on S , and a function V :S → [1�∞) such that

(1) P(Xm ∈ ·|X0 = z) � δϕ(·) for all z ∈ B, and
(2) E(V (X1)|X0 = z) � aV (z)+ bI(z ∈ B) for all z ∈ S .

The FLC (sometimes called a Foster–Lyapunov condition) is a stronger
Lyapunov condition than we really require, but it simplifies the presentation.
The function V is called a Lyapunov (think of energy) function. The second re-
quirement basically states that when the chain X lies outside of the set B, the
energy in the system tends to decrease, and when the chain lies inside B, the
energy in the system cannot become too big on the next step. This condition
implies that the set B gets hit infinitely often. Of course, if one takes B = S , the
entire state space, then this requirement is trivially satisfied. The first condition
is needed to ensure that the set B is not too “big”.

In any case, the point is that if a chain X satisfies the FLC, then X is appro-
priately positive recurrent, and in particular has a unique stationary probability
distribution. In fact, the FLC is essentially equivalent to a strong form of er-
godicity. It is therefore reasonable (but nonstandard) to define a chain as being
appropriately ergodic if the FLC holds.

Definition 2. We say that a discrete time Markov chain X is V -uniformly er-
godic if it satisfies the Lyapunov condition and is aperiodic.
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The aperiodicity condition is not strictly necessary for much of what fol-
lows, but we impose it to be consistent with the term “ergodic”. For more on
V -uniform ergodicity and its relationship to the FLC see Meyn and Tweedie
(1993, Chapter 16).

Does our chain Z satisfy the FLC? The answer is yes, and it is instructive
to go through a proof. However, on a first reading one may skip the following
development up to the statement of Proposition 9 without loss of continuity.

For many systems, the function V may be taken to be eγv, where v is some
measure of the work in the system. In fact, as we now show, one may take
V (w� b) = eγw for some yet to be determined constant γ > 0.

Consider what happens on a single transition of the chain Z starting from
the point Zn = (w� b), where n � 0. The workload decreases at unit rate, at
least until it hits 0, until the arrival of the next call over an interval of length
τn+1 = Tn+1 − Tn. At time Tn+1 a new call arrives at location Cn+1 and adds
some work to the workload. In particular, there will be some travel time ηn+1
to the scene of the call, some timeUn+1 spent at the scene, and then potentially
some travel time ξn+1 to transport the patient to the hospital. If the patient
requires transport to the hospital then βn+1 = (0� 0), which is the location of
the hospital. If not, then βn+1 = Cn+1, which is the location of the call, and
ξn+1 = 0. If hospitalization is not necessary and no calls are queued when
the ambulance completes service at the scene, then the ambulance returns to
the hospital/base, but this travel time is not counted as workload because the
ambulance is free to respond to a new call, albeit not necessarily from the
hospital/base.

So for n � 0, the new workload Wn+1 is given by Wn+1 = [Wn − τn+1]+ +
Qn+1, where [x]+ = max{x� 0}, and Qn = ηn + Un + ξn. Recall that we as-
sume that the scene times (Un: n � 1) are i.i.d. gamma-distributed random
variables, and are independent of all other quantities. We assume that the call
location sequence (Cn: n � 1) is i.i.d. and independent of all other quantities.

Equipped with this Lindley-type recursion for the workload, we can now
attempt to identify conditions under which the Lyapunov condition will hold.
We use the fact that Q1 � 3 + U1 because η1 � 2 and ξ1 � 1 (recall that
the ambulance travels distances as measured by the Manhattan metric). If z =
(w� b), then E[V (Z1)|Z0 = z] is given by

Eeγ([w−τ1]++Q1) � E
[
eγ[w−τ1]+eγ(3+U1)

]
= Eeγ[w−τ1]+ Eeγ(3+U1)

�
[
Eeγ(w−τ1) + P(w − τ1 < 0)

]
Eeγ(3+U1)

(18)= eγw
[
Ee−γτ1 + e−(λ+γ)w

]
Eeγ(3+U1)

(19)= eγw
[

1 + λ+ γ

λ
e−(λ+γ)w

]
Eeγ(3+U1−τ1)

(20)= V (z)

[
1 + λ+ γ

λ
e−(λ+γ)w

]
φ(γ)�
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where φ is the moment generating function of 3+U1 − τ1. Equation (18) uses
the fact that P(τ1 > w) = e−λw, while (19) follows since Ee−γτ1 = λ/(λ + γ)
(when γ > −λ).

Since EetU1 is finite in a neighborhood of 0, i.e.,U1 has a moment generating
function defined near 0, we have that φ(0) = 1, and

φ′(0) = E(U1 + 3 − τ1)�

So if EU1 + 3 < Eτ1, then φ′(0) < 0, and so φ(t) < 1 for t > 0 in some
neighborhood of 0. So fix γ > 0 so that φ(γ) < 1.

Now, there is some K > 0 such that if w > K, then

(21)
[

1 + λ+ γ

λ
e−(λ+γ)w

]
φ(γ) < 1�

Furthermore, for w � K, we have that

(22)E
[
V (Z1)|Z0 = z

]
� Eeγ(K+3+U1) <∞�

Thus, if we take B = [0�K] × [−1
2 �

1
2 ]2, then it follows from (20)–(22) that the

second requirement in the FLC is met.
It remains to check the first requirement. Suppose that Zn = (w� b) ∈ B

so that the current workload w � K. If the time τn+1 till the next call is large
enough, then irrespective of whether the nth patient requires transport to the
hospital or not, the ambulance will have reached the hospital and be available
to respond to a new call by the time the (n+1)st call arrives. So if τn+1 > K+1,
the (n + 1)st call will be served immediately by the ambulance from the base.
In fact, the chain regenerates at such times. Let

δ = P(τ1 > K + 1) = e−λ(K+1)

and ϕ denote the distribution of Z1 = (W1� B1) assuming that just before time
T1 the ambulance is free and located at the hospital. Then we have that for all
z ∈ B,

P(z� ·) � δϕ(·)�
and the first requirement in the FLC is satisfied.

We have established that Z satisfies the FLC. It is straightforward to show
that Z is aperiodic, and so we arrive at the following result.

Proposition 9. If EU1+3 < Eτ1, then the chainZ is V -uniformly ergodic, where
V (w� b) = eγw for some γ > 0.

The stability condition

EU1 + 3 < Eτ1

has an appealing interpretation. The left-hand side of the inequality gives an
upper bound on the expected amount of work (travel time to the scene + time
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at the scene + travel time from the scene to the hospital) brought in by an
arriving call. We require this to be smaller than the expected amount of time
that the ambulance has available between calls to deal with the work. This
condition can be weakened by being more careful about defining how much
work each call brings to the system, but this is not something that we will pursue
further.

The main point is that Proposition 9 gives easily-verifiable conditions under
which the system is stable. While it may have appeared somewhat difficult to
verify the Lyapunov condition, the argument used is actually quite straightfor-
ward once one picks an appropriate function V . The difficult part (in general),
and the part where one’s insight into the underlying process plays a key role, is
in choosing an appropriate V . Thankfully, we will see that the payoff from veri-
fying the Lyapunov condition is certainly worth the effort. Based on this result,
we can now define our performance measures rigorously, and also construct
estimators that are consistent and satisfy central limit theorems.

As in Section 4, the rigorous definition of our performance measures is
based on the strong law of large numbers. For simplicity, we state this theorem
under stronger hypotheses than are really necessary. Let Eν denote expecta-
tion for the path space of a Markov chain with initial distribution ν.

Theorem 10 (MCSLLN). LetX be a V -uniformly ergodic Markov chain on state
space S with stationary probability distribution π. Let h :S → R be a real-valued
function on S . If π|h| = Eπ |h(X0)| =

∫
S |h(x)|π(dx) <∞, then

1
n

n−1∑
i=0

h(Xi)→ πh a.s.

as n→∞.

For a proof, see Meyn and Tweedie (1993, Theorem 17.0.1).
Assuming V -uniform ergodicity we see that if h is bounded, then the

MCSLLN holds. This will be sufficient for our purposes in this section. How-
ever, sometimes one is also interested in unbounded h. So long as |h(z)| �
cV (z) for some c > 0 and all z, then π|h| <∞; see Meyn and Tweedie (1993,
Theorem 14.3.7).

We turn now to the performance measure ρ, the long-run utilization of
the ambulance. The actual utilization of the ambulance over the time inter-
val [0� Tn), i.e., up until the time of the nth arrival is

(23)
n−1∑n−1

i=0 min{Wi� τi+1}
n−1∑n

i=1 τi
�

Now, the SLLN for i.i.d. random variables implies that the denominator con-
verges to λ−1. We would like to apply the MCSLLN to the numerator, but it is
not yet in an appropriate form. There are several ways to proceed here. One
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way is to enlarge the state space of the chain, and we will demonstrate this
method shortly in analyzing the density r. Another approach is to apply filter-
ing; see Glasserman (1993), which can be viewed as a variant of conditional
Monte Carlo. We have that

E min{w� τ1} = wP(τ1 > w)+ Eτ1I(τ1 � w)

= λ−1(1 − e−λw
)
�

and so we replace (23) by

(24)ρn = 1
n

n−1∑
i=0

(
1 − e−λWi

)
�

Notice that ρn is in exactly the form that we need to apply the MCSLLN, with
h(w� b) = 1 − e−λw which is bounded, and so we find that

ρn → ρ a.s.

as n → ∞. This then is a rigorous definition of ρ, and also a proof that the
estimator ρn is strongly consistent.

Let us turn now to r, the steady-state density of the response time to a call.
For n � 0, the response timeLn+1 to the call arriving at time Tn+1 is the sum of
the workload [Wn− τn+1]+ just before the arrival of the call and the time ηn+1
for the ambulance to travel to the location of the new call. The travel time to
the new call is given by the distance d(Bn+1� Cn+1) between the call location
Cn+1 and the location Bn+1 of the ambulance at the time when the ambulance
responds to the (n + 1)st call. Now, Bn+1 = βn if the (n + 1)st call arrives
before the previous workload is cleared, i.e., Wn � τn+1. If Wn < τn+1 then
the new call arrives after the ambulance completes the previous workload, so
the ambulance may be on its way to the hospital, or at the hospital, when the
(n+1)st call arrives. In any case, the locationBn+1 is a deterministic function of
Zn = (Wn�βn) and τn+1. So the response time Ln+1 depends not only on Zn,
but also on τn+1 and Cn+1.

This dependence of the response time on additional quantities beyond those
in the state space of our chain causes some difficulties in our analysis. We could
again apply filtering, but let us consider an alternative approach. We expand
the state space of the Markov chain so that it is “sufficiently rich” to supply all
of the needed information.

Define Z̃ = (Z̃n: n � 0) where, for n � 0, Z̃n = (Wn�βn� τn+1� Cn+1).
Using techniques that are very similar to those used for the chain Z, we can
show that Z̃ is a Ṽ -uniformly ergodic chain on the state space

S̃ = [0�∞)× [−1
2 �

1
2

]2 × [0�∞)× [−1
2 �

1
2

]2
�

where

Ṽ (w� b� t� c) = eγ[w−t]+
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for some γ > 0.
To define the density r we first define the corresponding distribution func-

tion R, and then differentiate.
Recall that for n � 0, the response time is given by

Ln+1 = [Wn − τn+1]+ + d(Bn+1� Cn+1)�

Consider the empirical response time distribution function based on the first
n response times

1
n

n∑
i=1

I(Li � ·)�

Notice that I(Li � t) is a deterministic and bounded function of Z̃i−1, so we
can apply the MCSLLN to assert that

1
n

n∑
i=1

I(Li � t)→ R(t)

as n→∞ a.s., for any fixed t, where

R(t) = Eπ̃I(L1 � t)�

Here π̃ refers to the stationary distribution of Z̃.
It is not yet clear how to obtain an expression for the density r, since the

indicator functions that we used to define R are not differentiable. We need
to perform some sort of smoothing. We again use conditional Monte Carlo.
Notice that

R(t) = Eπ̃I(L1 � t)

= Eπ̃Pπ̃
([W0 − τ1]+ + d(B1� C1) � t|W0� β0� τ1

)
= Eπ̃Pπ̃

(
d(B1� C1) � t − [W0 − τ1]+|W0� β0� τ1

)
= Eπ̃g

(
t − [W0 − τ1]+� B1

)
�

where the function g(·� ·) was introduced in (12). (Here we extend the defin-
ition so that g(t� b) = 0 for t < 0.) Notice that B1 can be determined from
W0� β0 and τ1. So we can estimate R(t) using

Rn(t) = 1
n

n−1∑
i=0

g
(
t − [Wi − τi+1]+� Bi+1

)
�

and again the MCSLLN shows that Rn(t) → R(t) as n → ∞ a.s., for each
fixed t.
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We can now define r, via

r(t) = d
dt
R(t)

= d
dt

Eπ̃g
(
t − [W0 − τ1]+� B1

)

(25)= Eπ̃
d
dt
g
(
t − [W0 − τ1]+� B1

)
(26)= Eπ̃f

(
t − [W0 − τ1]+� B1

)
�

where f (·� ·) was defined in (15). Of course, we need to justify the interchange
of derivative and expectation in (25). This is virtually identical to the justifica-
tion given for the interchange (16), and so we omit the details.

Equation (26) defines r, and immediately suggests an estimator for r(t)
given by

rn(t) = R′n(t) =
1
n

n−1∑
i=0

f
(
t − [Wi − τi+1]+� Bi+1

)
�

The MCSLLN shows that rn(t)→ r(t) as n→∞ a.s. for each fixed t. Hence,
we have rigorously defined the density r, and established that it can be consis-
tently estimated by rn.

We now turn to the error in the estimators. As before, error can be assessed
through confidence intervals derived from a central limit theorem. In great
generality, the error n−1∑n−1

i=0 h(Xi) − πh is approximately normally distrib-
uted with mean 0 and variance σ2/n, exactly as in the i.i.d. case. The difference
here is that we are averaging dependent random variables rather than indepen-
dent ones, and this difference is exhibited through the variance constant which
now includes covariance terms in addition to the variance (under π) of h(X0).

For simplicity we state the Markov chain central limit theorem under
stronger conditions than are strictly necessary.

Theorem 11 (MCCLT). Suppose that the chain X is V -uniformly ergodic. Then,
for any function h :S → R with h2(z) � cV (z) for some c > 0 and all z,

√
n

(
1
n

n−1∑
i=0

h(Xi)− πh

)
⇒ σN(0� 1)�

where π is the stationary probability distribution of X, and

(27)σ2 = varπ
[
h(X0)

]+ 2
∞∑
k=1

covπ
[
h(X0)� h(Xk)

]
�

For a proof, see Meyn and Tweedie (1993, Theorem 17.0.1).
We immediately obtain the following result.
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Proposition 12. Under the conditions of Proposition 9,
√
n(ρn − ρ)⇒ σρN(0� 1)

as n→∞, for an appropriately defined constant σ2
ρ. In addition, for all t > 0,

√
n
(
rn(t)− r(t)

)⇒ σ(t)N(0� 1)

as n→∞, for an appropriately defined constant σ2(t).

Thus, just as in the terminating simulation case, the error in the estimators
ρn and rn(t) is approximately normally distributed with mean 0 and variance
on the order of n−1.

Proposition 12 serves as a foundation for constructing confidence inter-
vals for our performance measures. One approach is to estimate the variance
constants directly using the regenerative method (see Chapter 16), which is
certainly easily applied to our example. But the method of batch means is,
at least currently, more widely applicable and so we instead consider this ap-
proach. See Chapter 15 for a more extensive discussion of the method of batch
means.

Suppose that we have a sample path X0�X1� � � � �Xn−1. Divide this sample
path into l batches each of size m, where for convenience we assume that n =
ml, so that the kth batch consists of observations X(k−1)m� � � � �Xkm−1. (We
use “l” for the number of batches instead of the traditional “b” since we have
already used “b” to describe ambulance locations.) Now, for k = 1� � � � � l, let
Mk be the sample mean over the kth batch, i.e.,

Mk = 1
m

km−1∑
i=(k−1)m

h(Xi)�

and let �Ml denote the sample mean of the l batch means M1� � � � �Ml. Finally,
let

s2
l =

1
l − 1

l∑
k=1

(Mk − �Ml)
2

denote the sample variance of the Mk’s. The method of batch means provides
a confidence interval for πh of the form �Ml ± tsl/

√
l, for some constant t, and

relies on the assumption that for large n, ( �Ml − πh)/(sl/
√
l ) is approximately

t-distributed, with l − 1 degrees of freedom.
The MCCLT above suggests that as n → ∞ with l, the number of batches,

held fixed, all of the batch means are asymptotically normally distributed with
mean πh and variance lσ2/n. If each of the batch means are also asymptoti-
cally independent, then a standard result (e.g., Rice, 1988, p. 173) shows that
the above confidence interval methodology is valid.

http://dx.doi.org/10.1016/S0927-0507(06)13016-9
http://dx.doi.org/10.1016/S0927-0507(06)13015-7
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A sufficient condition that supplies both the asymptotic normality and as-
ymptotic independence is that the chain X satisfy a functional central limit
theorem; see Schruben (1983) and Glynn and Iglehart (1990), from which
much of the following discussion is adapted.

Definition 3. Let X be a Markov chain on state space S , and let h :S → R.
For 0 � t � 1, let

�Xn(t) = n−1
�(n−1)t�∑
k=0

h(Xk)

and set

ζn(t) = n1/2(�Xn(t)− κt
)

for some constant κ. We say that X satisfies a functional central limit theorem
(FCLT) if there exists a ξ > 0 such that ζn ⇒ ξB as n→∞, where B denotes
a standard Brownian motion.

Observe that if X satisfies an FCLT, then the jth batch mean Mj can be
expressed as

Mj = l

[
�Xn

(
j

l

)
− �Xn

(
j − 1
l

)]

= κ+ n−1/2l

[
ζn

(
j

l

)
− ζn

(
j − 1
l

)]
�

Since the increments of Brownian motion are independent and normally dis-
tributed, the FCLT then implies that the Mj ’s are asymptotically independent
and normally distributed with mean κ and variance lξ2/n. Thus, under an
FCLT assumption, the batch means confidence interval methodology outlined
above is asymptotically valid as n→∞ with l fixed.

So when can we be sure that X satisfies an FCLT? One sufficient condition
is the following result.

Theorem 13. Suppose that X is V -uniformly ergodic and h2(z) � cV (z) for all
z and some c > 0. If the constant σ2 defined in (27) above is positive, then X
satisfies a functional central limit theorem with κ = πh and ξ2 = σ2.

For a proof, see Meyn and Tweedie (1993, Theorems 17.4.4, 17.5.3).
Notice that we have already established that the conditions of Theorem 13

hold for our estimators. Thus, we immediately arrive at the conclusion that the
method of batch means yields asymptotically valid confidence intervals when
used in conjunction with our estimators. In fact, an FCLT is sufficient to ensure
that any standardized time series method (batch means with a fixed number of
batches is one such method) is asymptotically valid (Schruben, 1983).
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As in the terminating simulation case, the performance of confidence inter-
val procedures may be negatively impacted by bias. The bias depends on the
initial distribution, μ say, of the chain. The bias in the estimator ρn is Eμρn−ρ,
with a similar expression for the bias in rn(t) for each t > 0.

We give the appropriate calculations for ρ, as those for r are similar. Let
h(w� b) = 1 − e−λw. Using a standard technique (e.g., Glynn, 1995), we see
that the bias in ρn under initial distribution μ is

Eμ
1
n

n−1∑
i=0

[
h(Zi)− πh

]

= 1
n

∞∑
i=0

[
Eμh(Zi)− πh

]− 1
n

∞∑
i=n

[
Eμh(Zi)− πh

]

= ν

n
+ o
(
n−1)�

where

ν =
∞∑
i=0

[
Eμh(Zi)− πh

]

provided that

(28)
∞∑
i=0

∣∣Eμh(Zi)− πh
∣∣ <∞�

So the bias in the estimator ρn will be of the order n−1 if (28) holds. This result
holds in great generality.

Theorem 14. Suppose thatX is V-uniformly ergodic. Let π be the stationary prob-
ability distribution of X. If |h(z)| � cV (z) for all z and some c < ∞, and
μV <∞, then

∞∑
i=0

∣∣Eμh(Xi)− πh
∣∣ <∞

and

Eμ
1
n

n−1∑
i=0

h(Xi)− πh = ν

n
+ O

(
qn
)

as n→∞, where q < 1 and

ν =
∞∑
i=0

[
Eμh(Xi)− πh

]
�
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This result is a straightforward consequence of Meyn and Tweedie (1993,
Theorem 16.0.1).

We can conclude from Theorem 14 that if the initial conditions are chosen
appropriately (e.g., if Z̃0 is chosen to be deterministic), then the bias of our
estimators is of the order n−1.

Recall that the batch meansM1� � � � �Ml are asymptotically normally distrib-
uted with variance lχ2/n. Their standard deviation is therefore of the order
n−1/2, and so the width of the batch means confidence interval is also of the
order n−1/2. The bias in the estimators is of the order n−1, and so it follows
that bias will not play a role for large runlengths.

5.1 Multiple ambulances

Sometimes a good choice of Lyapunov function immediately presents it-
self. In other cases the choice is not so clear, and the process of finding a
good function becomes more of an art than a science. Here we consider the
case where multiple ambulances operate in the unit square from potentially
different bases. We will again look for a good choice of Lyapunov function.
Some natural choices do not work, at least at first sight. However, one of those
choices does work if we use an extension of the FLC.

Suppose now that we have � identical ambulances where ambulance i oper-
ates out of a base located at the point di ∈ [−1/2� 1/2]2, i = 1� � � � � �. Some
ambulances may operate from the same base, in which case some of the dis
take the same value. The dynamics of the system are as follows. Calls are an-
swered in first-in first-out order. When a call is received, a dispatcher assigns
the call to the closest available ambulance. If no ambulances are available, then
the first one that becomes available is selected. Ties are broken through ran-
dom uniform selection. This dispatching policy does not necessarily minimize
response times because the selected ambulance may be far from the call, and a
closer ambulance that will soon be free might get to the call sooner. The details
of exactly which ambulance is selected are not too important from our stand-
point, so long as a sensible rule is used that spreads the workload among the
available ambulances.

After traveling to the call location, the ambulance spends some time at the
scene after which, with probability p, the patient is transported to the hospital,
which is again at the point (0� 0). In this case, after reaching the hospital the
patient is instantaneously dropped off and the ambulance is freed for other
work, typically returning to its base. If the patient does not require hospital-
ization, then after the scene time is complete the ambulance is freed for other
work, again typically returning to its base. We allow redirection, where the am-
bulance may be redirected to a new call before it reaches its base.

A natural Markov chain that models this process is Z = (Zn: n � 0), where
Zn = (Wn(i)� βn(i): i = 1� � � � � �). Here Wn(i) gives the workload for ambu-
lance i associated with all calls that have been received up to, and including,
call n. Notice that the workload will be associated with only a subset of the first
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n calls since there are multiple ambulances. The vector βn(i) ∈ [−1/2� 1/2]2
gives the location in the unit square where ambulance i will be located when
the workload Wn(i) is first cleared. This is the hospital if its last patient is hos-
pitalized, and the location of its last call if not.

Under what conditions is the chain stable? Consider the work associated
with a single call. The ambulance first needs to travel to the call from its cur-
rent location, taking at most 2 time units. It then tends to the patient at the
scene, taking, on average, EU time units. It may then transport the patient to
the hospital, taking at most 1 time unit. Therefore, a bound on the expected
amount of work brought in by each call is again 3 + EU . Since there are � am-
bulances we expect that the system will be stable if

3 + EU < �Eτ�

where τ is a random variable representing the time between calls. To verify this
belief we can appeal to the FLC.

As already mentioned, the FLC is actually stronger than required to estab-
lish stability. For example, we have seen that it is also useful for proving that
certain steady-state expectations are finite. A “tighter” condition is the follow-
ing one.

The Second Lyapunov Condition (SLC). There exists a nonempty B ⊆ S , pos-
itive scalars ε, b and δ, an integer m � 1, a probability distribution ϕ on S ,
and a function V :S → [0�∞) such that

(1) P(Xm ∈ ·|X0 = z) � δϕ(·) for all z ∈ B, and
(2) E(V (X1)|X0 = z) � V (z)− ε+ bI(z ∈ B) for all z ∈ S .

The only change in this definition from the previous one is requirement (2).
Here the nonnegative function V again represents energy, and requirement (2)
states that the energy tends to decrease when the chain is outside the set B.
If the Markov chain satisfies the SLC, then it is again positive recurrent in a
certain precise sense; see Meyn and Tweedie (1993, Theorem 13.0.1).

The FLC implies the SLC. To see why, notice that if the chain satisfies re-
quirement (2) of the FLC, then

E
(
V (X1)|X0 = z

)
� aV (z)+ bI(z ∈ B)
= V (z)− (1 − a)V (z)+ bI(z ∈ B)
� V (z)− (1 − a)+ bI(z ∈ B)�

where the final inequality follows since V (z) � 1 in the FLC.
So now let us turn to finding a function V that satisfies the SLC for the

multiple-ambulance case.
First consider requirement (1). Suppose the workloads w(i), i = 1� � � � � �,

are all at most K, say. If τ1 > K + 2, then when the next call is received,
all of the ambulances will be at their bases. Therefore, when τ1 > K + 2,
Z1 has a certain distribution ϕ and is independent of Z0. (In fact, the chain
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regenerates at such times.) Now τ1 is exponentially distributed, and therefore
P(τ1 > K + 2) > 0. Hence, requirement (1) of the SLC is satisfied when
B = {z: w(i) � K} for any K > 0 where z = (w(i)� β(i): 1 � i � �).

Next we turn to requirement (2). It is natural to try V (z) = w(1) + · · · +
w(�), the sum of the workloads of the ambulances. Consider what happens on
a single step of the Markov chain. Let Di be the index of the ambulance that
responds to the ith call, and Qi denote the time required for this ambulance
to travel to the scene, treat the patient at the scene and, if necessary, transport
the patient to the hospital. Then

E
[
V (Z1)|Z0 = z

] = E
�∑
i=1

([
w(i)− τ1

]+ +Q1I(D1 = i)
)

(29)= EQ1 +
�∑
i=1

E
[
w(i)− τ1

]+
�

If all of the w(i)s are large, then E[w(i)− τ1]+ ≈ w(i)− Eτ1 for each i. So
then

E
[
V (Z1)|Z0 = z

]− V (z) ≈ EQ1 − �Eτ1

which is negative under our conjectured stability condition as desired. But
when one or more of thew(i)s is “small”, this heuristic argument breaks down.
In fact, what can happen in this case is that the overall workload as measured
by V increases! The problem is that while the overall work in the system may
be high, the work is not evenly shared by the ambulances, and so some may be
idle when they are greatly needed.

Perhaps we chose a poor Lyapunov function V ? An alternative is V (z) =
maxi w(i), the maximum workload of an ambulance. One finds that it works
well when one of the workloads is large and the rest are small, but it fails when
all of the workloads are large and roughly equal.

Both of our choices of Lyapunov function have failed. However, both can be
made to work. We will show how with our first choice, the sum of the workloads
of the ambulances. In order to gain some insight it is helpful to consider the
drift of the Markov chain. To visualize this consider the case � = 2, so there
are only 2 ambulances. Consider the workloads of the ambulances as a point
in the plane, and compute the expected change in workload levels in a single
transition as a vector. This can be visualized as in Figure 3. The drift arrows
have been normalized to ensure that they do not cross, to ensure that the figure
remains uncluttered. The diagonal lines represent lines of constant workload.

Notice that away from the boundary where both workloads are large, the
drift is toward lower workload, as desired. But near the boundaries, the drift
is toward higher workload, at least for a short time. This plot suggests that the
one-step drift of the sum of the workloads is negative “away from the bound-
ary”, but not so near the boundary. It also suggests that if we are near the
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Fig. 3. The workload drift.

boundary, we should wait for a few transitions to see negative drift. The appro-
priate concept here is “state-dependent drift”. A state-dependent version of
the SLC (Meyn and Tweedie, 1993, Theorem 19.1.2) is also sufficient to ensure
stability, and can be stated as follows.

The Third Lyapunov Condition (TLC). There exists a nonempty B ⊆ S , posi-
tive scalars ε, b and δ, an integer m � 1, a probability distribution ϕ on S ,
and a function V :S → [0�∞) such that

(1) P(Xm ∈ ·|X0 = z) � δϕ(·) for all z ∈ B, and
(2) E(V (Xn(z))|X0 = z) � V (z)− n(z)ε+ bI(z ∈ B) for some integer

n(z) � 1, for all z ∈ S .

We are now in a position to state and prove a stability result. (The proof
given here is more involved than I would prefer, and so is deferred to the
Appendix. There may be a simpler proof but I could not find it.)

Proposition 15. Suppose that EQ1 < 2Eτ1. Then V satisfies the TLC, and so the
two-ambulance model is stable.

So under a natural condition the two-ambulance model is stable. The proof
uses the TLC, which is a state-dependent generalization of the SLC. There is
also a state-dependent version of the FLC that allows us to prove that certain
expectations are finite (Meyn and Tweedie, 1993, Theorem 19.1.3), but space
reasons prevent us from discussing that further.
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In this section we have tried to demonstrate the power of Lyapunov func-
tion methods in simulation analysis. There is some art involved in finding a
Lyapunov function and proving that it works, but the benefits are great from
a theoretical point of view. These techniques have been used in, for example,
establishing asymptotic properties of gradient estimators (Glynn and L’Ecuyer,
1995), proving that standardized time series procedures are valid in discrete-
event simulation (Haas, 1999), analyzing stochastic approximation algorithms
(Bhatnagar et al., 2001), showing that certain variance reduction methods are
valid in Markov chain simulations (Henderson and Glynn, 2002; Henderson
and Meyn, 2003), and establishing moment conditions used to establish con-
sistency of quantile estimators in Markov chain simulations (Henderson and
Glynn, 2004).
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Appendix Proof of Proposition 15

We showed above that if B = {z: w(i) � K}, where z = (w(i)� β(i): i =
1� 2) and K > 0 is arbitrary, then requirement (1) of the TLC was satisfied. It
remains to establish requirement (2).

First consider the case where EQ1 < Eτ1. Let ε1 > 0 be such that EQ1 <
Eτ1−ε1. Now, [x−τ1]+−x→−τ1 a.s. as x→∞. Furthermore, |[x−τ1]+−
x| = min(τ1� x)

+ � τ1 and Eτ1 < ∞. Therefore, by dominated convergence,
there exists an x∗ > 0 such that E[x− τ1]+ − x � −Eτ1 + ε1 for x > x∗. Take
K = x∗. Then for z /∈ B, at least one of w(1) and w(2) exceeds K. Suppose,
without loss of generality, that w(1) > K. From (29),

E
[
V (Z1)|Z0 = z

]− V (z)

= EQ1 +
2∑
i=1

(
E
[
w(i)− τ1

]+ −w(i)
)

� EQ1 + (−Eτ1 + ε1)+
(
E
[
w(2)− τ1

]+ −w(2)
)

� EQ1 − Eτ1 + ε

which is the required negative drift for requirement (2) of the TLC.
So now suppose that Eτ1 � EQ1 < 2Eτ1. Let τ′i = τi ∧K2 for some K2 > 0

chosen so that Eτ′1 < EQ1 < 2Eτ′1. Suppose that we replace the interarrival
times τi by their truncated versions τ′i for all i. If we show that the system with
truncated interarrival times has negative drift, then so does the system with the
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untruncated interarrival times. So let us now assume that τi � K2 < ∞ and
Eτ1 < EQ1 < 2Eτ1 for all i.

Let B be of the form specified above. We will specify the constant K > K2
soon. Fix z /∈ B and assume, without loss of generality, that w(1) > K. If
w(2) > K2 then the one-step drift is exactly EQ1 − 2Eτ1 < 0 as required,
since τ1 � K2. So assume that w(2) � K2, so that it is “near the boundary”.
The remainder of the proof is essentially a formalization of the following ob-
servation about the dynamics of the chain. For K large enough, and as long as
the incoming jobs do not require a huge amount of work, all of the incoming
work will be assigned to the second ambulance for some time. The workload
of the second ambulance will increase, and after a while it will be far enough
from the boundary that its mean drift will be EQ1 − Eτ1 > 0 on each step.
Meanwhile, the workload of the first ambulance decreases at rate Eτ1, so that
the overall workload decreases once the workload of the second ambulance
is large enough. This will then supply the needed negative drift. Our last few
definitions will appear somewhat cryptic, but hopefully their choice will make
more sense shortly. Select k � 1 so that k(EQ1 − 2Eτ1) + C < 0, where the
constant C does not depend on z, and will be specified below. Choose K3 > 0
so that

k
[
EQ1 − Eτ1

(
1 + P(Q1 � K3)

k
)]+ C < 0�

Finally, choose K large enough that K − kK2 > K2 + kK3. We now show that
after k transitions, the expected change in workload is negative.

Over the first k transitions, the total inflow of work isQ1+· · ·+Qk. Further-
more, the workload of ambulance 1 is so large that it decreases by τ1+· · ·+τk.
It may also increase if some of the Qis are very large. Let E be the event that
Qi � K3 for all i = 1� � � � � k, and let Ec denote its complement. The event E
occurs if the first k jobs are all not too large. On the event E , the first k jobs are
all assigned to the second ambulance, and so the second ambulance’s workload
follows a Lindley recursion, as described next.

LetYi denote the waiting time in the queue (not counting service) for the ith
job in a single-server queue with interarrival times (τj: j � 1) and service times
(Qj: j � 1). Then Y1 = [w(2)− τ1]+ and for i � 1, Yi+1 = [Yi +Qi − τi+1]+.
For i � 2 define Si = ∑i

j=2(Qj−1 − τj). Then (Asmussen, 2003, p. 94), for
i � 2,

Yi = Si − min{−Y1� S2� S3� � � � � Si}�
So we can now write

V (Zk)− V (z)

(30)� −
k∑
i=1

τi + I
(
Ec
) k∑
i=1

Qi +
(
Wk(2)− w(2)

)
I(E)�
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The last term in (30) can be written as[
Yk +Qk −w(2)

]
I(E)

= [Sk − min{−Y1� S2� S3� � � � � Sk} +Qk −w(2)
]
I(E)

= I(E)
k∑
i=1

Qi − I(E)
k∑
i=2

τi −w(2)I(E)

− I(E)min{−Y1� S2� S3� � � � � Sk}

(31)

� I(E)
k∑
i=1

Qi − I(E)
k∑
i=2

τi − I(E)min{−Y1� S2� S3� � � � � Sk}�

From (30) and (31) we see that

E
[
V (Zk)|Z0 = z

]− V (z)

� −kEτ1 + kEQ1

− EI(E)
k∑
i=2

τi − E
[
I(E)min{−Y1� S2� S3� � � � � Sk}|Z0 = z

]

= k(EQ1 − Eτ1)− P(Q1 � K3)
k(k− 1)Eτ1

− E
[
I(E)min{−Y1� S2� S3� � � � � Sk}|Z0 = z

]
� k

(
EQ1 − Eτ1

(
1 + P(Q1 � K3)

k
))+ Eτ1

− E
[
min{−Y1� S2� S3� � � �}|Z0 = z

]
�

But Y1 � w(2) � K2, and so

E
[
V (Zk)|Z0 = z

]− V (z)

� k
(
EQ1 − Eτ1

(
1 + P(Q1 � K3)

k
))+ C < 0�

where

C = Eτ1 − E min{−K2� S2� S3� � � � }
does not depend on z. The constantC is finite since the random walk S2� S3� � � �
has positive drift and the incrementsQi−τi+1 have bounded negative part; see
Asmussen (2003, p. 270). We have shown that after k steps the drift is negative,
and this establishes Condition 2 as required.
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Abstract

This chapter covers the basic design principles and methods for uniform random
number generators used in simulation. We also briefly mention the connections be-
tween these methods and those used to construct highly-uniform point sets for quasi-
Monte Carlo integration. The emphasis is on the methods based on linear recurrences
modulo a large integer, or modulo 2. This reflects the fact that their mathematical
structure is much better understood than other types of generators, and that most
generators used in simulation have that form. We discuss the main requirements for
a good generator, theoretical figures of merit for certain classes of linear-type gener-
ators, implementation issues, nonlinear generators, and statistical testing.

1 Introduction

A reliable (pseudo)random number generator (RNG) is a basic and essential
ingredient for any stochastic simulation. The mathematical theory underlying
simulation methods is built over the elegant concepts of probability space and
random variable. However, since the exact implementation of these concepts
on conventional computers seems impossible, random variables and other ran-
dom objects are simulated by deterministic algorithms. The aim of these algo-
rithms is to produce sequences of numbers or objects whose behavior is hard to
distinguish from that of their “truly random” counterparts, at least for the ap-
plication of interest. The details of these requirements may differ depending
on the context. For the (Monte Carlo) simulation methods discussed in this
handbook, the main goal is to reproduce the statistical properties on which
these methods are based, so that the estimators of interest behave as expected.
For gaming machines and cryptology, observing the sequence of output values
for some time should provide no practical advantage for predicting the forth-
coming numbers better than by just guessing at random.
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Random variate generation for simulation can be decomposed in two steps:

(1) generating imitations of independent and identically distributed (i.i.d.)
random variables having the uniform distribution over the interval
(0� 1) and

(2) applying transformations to these i.i.d. U(0� 1) random variates to gen-
erate (or imitate) random variates and random vectors from arbitrary
distributions.

Step (2) is examined in Chapters 4 and 5. This chapter is devoted to algo-
rithms used for Step (1).

In Section 2 we give a definition and the main requirements of a good uni-
form RNG. In Section 3 we cover RNGs defined by a linear recurrence modulo
a large integer m. We examine their lattice structure, quality criteria, and im-
plementation techniques. In Section 4 we provide a similar coverage for RNGs
based on linear recurrences modulo 2 and examine the relationships between
these two types of constructions. One example is given in each of these two
sections. Nonlinear RNGs are briefly mentioned in Section 5. In Section 6 we
discuss empirical statistical testing of RNGs. Additional textbooks and tutorial-
like references on uniform RNGs include Knuth (1998), L’Ecuyer (1994, 1998),
Niederreiter (1992) and Tezuka (1995).

2 Uniform random number generators

2.1 Generators based on a deterministic recurrence

RNGs used for simulation are almost always based on deterministic algo-
rithms that fit the following framework (L’Ecuyer, 1994): an RNG is a structure
(S� μ� f�U� g) where S is a finite set of states (the state space),μ is a probability
distribution on S used to select the initial state (or seed) s0, f :S → S is the
transition function, U is the output space and g :S → U is the output function.
In what follows, we assume that U = (0� 1). The state of the RNG evolves
according to the recurrence si = f (si−1), for i � 1, and the output at step i
is ui = g(si) ∈ U . The output values u0� u1� u2� � � � are the so-called random
numbers produced by the RNG.

Because the state space S is finite, there are necessarily finite integers l � 0
and j > 0 such that sl+j = sl. Then, for all i � l, one has si+j = si and
ui+j = ui, because both f and g are deterministic. This means that the state
and output sequences are eventually periodic. The smallest positive j for which
this happens is called the period length of the RNG, and is denoted by ρ. When
l = 0, the sequence is said to be purely periodic. Obviously, the period length ρ
cannot exceed |S|, the cardinality of the state space. Good RNGs are designed
so that their period length ρ is not far from that upper bound. For general re-
currences, ρmay depend on the seed s0, but good RNGs are normally designed
so that ρ is the same for all admissible seeds.
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In practice, it is important that the output be strictly between 0 and 1, be-
cause the transformations that generate nonuniform variates sometimes take
infinite values whenU is 0 or 1. For example, an exponential random variateX
with mean 1 is usually generated via X = − ln(1 − U) and this gives X = ∞
whenU = 1. All good implementations never produce 0 or 1. However, for the
mathematical analysis of RNGs, we often assume that the output space is [0� 1)
(i.e., 0 is admissible), because this simplifies the analysis considerably without
making a significant difference in the mathematical structure of the generator.

2.2 Quality criteria

What are the most important quality criteria to be considered when de-
signing an RNG? An extremely long period is essential, to make sure that
no wrap-around over the cycle can occur. The length of the period must be
guaranteed by a mathematical proof. The RNG must also be efficient (run
fast and use little memory), repeatable (able to reproduce exactly the same
sequence as many times as we want) and portable (work the same way in differ-
ent software/hardware environments). The availability of efficient jump-ahead
methods that can quickly compute si+ν given si, for any large ν and any i, is
also very useful, because it permits one to partition the RNG sequence into
long disjoint streams and substreams of random numbers, to create an arbi-
trary number of virtual generators from a single RNG (Law and Kelton, 2000;
L’Ecuyer et al., 2002a). These virtual generators can be used on parallel proces-
sors or to support different sources of randomness in a large simulation model,
for example (see Chapter 7 for further discussion).

It is important to realize, however, that these elementary properties are far
from sufficient. As a simple illustration, consider an RNG with state space S =
{0� � � � � 210000 − 1}, transition function si+1 = f (si) = (si + 1)mod 210000 and
ui = g(si) = si/210000. This RNG has the huge period length 210000 and enjoys
all the nice properties described in the preceding paragraph, but it is certainly
not imitating “randomness”. The analysis outlined in the following paragraphs,
although admittedly heuristic, goes a little deeper.

A sequence of real-valued random variables u0� u1� u2� � � � are i.i.d. U(0� 1)
if and only if for all integers i � 0 and t > 0, the vector ui�t = (ui� � � � � ui+t−1)
is uniformly distributed over the t-dimensional unit hypercube (0� 1)t . Of
course, this cannot hold for algorithmic RNGs because any vector of t suc-
cessive values produced by the generator must belong to

Ψt =
{
(u0� � � � � ut−1) | s0 ∈ S

}
�

which is the finite set of all vectors of t successive output values that can be
produced, from all possible initial states. We interpret Ψt as a multiset, which
means that the vectors are counted as many times as they appear, and the
cardinality of Ψt is exactly equal to that of S .

http://dx.doi.org/10.1016/S0927-0507(06)13007-8
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Suppose that the seed s0 is selected randomly, uniformly over S . Then, the
vector u0�t has the uniform distribution over the finite set Ψt . And if the se-
quence is purely periodic for all s0, ui�t = (ui� � � � � ui+t−1) is also uniformly
distributed over Ψt for all i � 0. Since the goal is to approximate the uniform
distribution over the unit hypercube (0� 1)t , it becomes clear that the set Ψt
should provide a good uniform coverage of this hypercube. In other words,
Ψt acts as an approximation of the theoretical sample space (0� 1)t from which
the vectors of successive output values are supposed to be drawn randomly.
The vectors are generated uniformly overΨt rather than over (0� 1)t . To design
good-quality RNGs, we must therefore have practical and effective methods
for measuring the uniformity of the corresponding sets Ψt , even when they
have huge cardinalities. It is true that to have a long period, we need a large
state space S . However, a much more important reason for requesting a large
number of states is to have a larger set Ψt , which can be used to obtain a better
coverage of the unit hypercube [0� 1)t .

More generally, we may also want to measure the uniformity of sets of the
form

ΨI =
{
(ui1� � � � � uit ) | s0 ∈ S

}
�

where I = {i1� � � � � it} is a fixed set of nonnegative integers such that 0 � i1 <
· · · < it . As a special case, for I = {0� � � � � t − 1}, we recover Ψt = ΨI .

The uniformity of ΨI is typically assessed by measuring the discrepancy
between the empirical distribution of its points and the uniform distribu-
tion over (0� 1)t (Hellekalek and Larcher, 1998; L’Ecuyer and Lemieux, 2002;
Niederreiter, 1992). Discrepancy measures are equivalent to goodness-of-fit
test statistics for the multivariate uniform distribution. They can be defined in
many ways. The choice of a specific definition typically depends on the mathe-
matical structure of the RNG (different measures are used for different types
of RNGs), the reason being that we must be able to compute these uniformity
measures quickly even when S is very large. This excludes any method that re-
quires explicit generation of the sequence over its entire period. The selected
discrepancy measure is usually computed for each set I in some predefined
class J , these values are weighted or normalized by factors that depend on I,
and the worst-case (or average) over J is adopted as a figure of merit used
to rank RNGs. The choice of J and of the weights are arbitrary. Typically,
J would contain sets I such that t and it − i1 are rather small. Concrete exam-
ples of figures of merit are given later on, for specific types of RNGs.

Generating a random s0 uniformly over S can be implemented (approx-
imately) by using a physical device. However, for most practical simulation
applications and robust RNGs, just picking an arbitrary s0 would suffice.

2.3 Links with highly-uniform point sets for quasi-Monte Carlo integration

Point sets Ψt that are highly uniform in the t-dimensional unit hypercube
are also used for purposes other than imitating randomness. Another major
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application is quasi-Monte Carlo (QMC) integration, where the integral of a
function f over [0� 1)t is approximated by the average of f over the full point
set Ψt (see Chapter 12). Usually, the point set Ψt is randomized in a way that
(1) each individual point has the uniform distribution over [0� 1)t , so the value
of f at that (random) point is an unbiased estimator of the integral, and (2) the
high uniformity of the point set as a whole is preserved. Under certain condi-
tions, this reduces the variance of the average (which is an unbiased estimator
of the integral) by inducing a negative correlation between the different evalu-
ations of f .

The point sets used for QMC can actually be constructed in pretty much the
same way as RNGs. Their uniformity can also be assessed by the same criteria.
In fact, many of the criteria mentioned near the end of the previous subsection
were originally introduced for QMC point sets. One general class of construc-
tion methods simply consists in selecting an RNG based on a recurrence over
a small set of states S and adopting the corresponding point set Ψt . We call it a
recurrence-based point set. In principle, any of the RNG construction methods
discussed in the forthcoming sections could be used to define the recurrence.
However, since the size of S must be kept small, all the techniques whose aim
is to obtain efficient implementations of long-period generators become irrele-
vant. So recurrence-based point sets are usually defined via quite simple linear
recurrences using modular arithmetic. Two primary examples are the Korobov
lattice rules and the recurrences defined via linear feedback shift registers (see
Sections 3 and 4). These methods turn out to be special cases of the two main
classes of QMC point set construction techniques: lattice rules and digital nets
(see Chapter 12).

2.4 Statistical testing

Good RNGs are designed based on mathematical analysis of their proper-
ties, then implemented and submitted to batteries of empirical statistical tests.
These tests try to detect empirical evidence against the null hypothesis H0: “the
ui are realizations of i.i.d. U(0� 1) random variables”. A test can be defined by
any function T that maps a sequence u0� u1� � � � in (0� 1) to a real number X,
and for which a good approximation is available for the distribution of the ran-
dom variable X under H0. For the test to be implementable, X must depend
on only a finite (but perhaps random) number of ui’s. Passing many tests may
improve one’s confidence in the RNG, but never guarantees that the RNG is
foolproof for all kinds of simulations.

It is impossible to build an RNG that passes all statistical tests. Consider, for
example, the class of all tests that examine the first (most significant) b bits of
n successive output values, u0� � � � � un−1, and return a binary value X ∈ {0� 1}.
Select α ∈ (0� 1) so that α2nb is an integer and let Tn�b�α be the tests in this
class that return X = 1 for exactly α2nb of the 2nb possible output sequences.
The sequence is said to fail the test when X = 1. The set Tn�b�α is the set of
all statistical tests of (exact) level α. The number of tests in this set is equal to

http://dx.doi.org/10.1016/S0927-0507(06)13012-1
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the number of ways of choosing α2nb distinct objects among 2nb. The chosen
objects are the sequences that fail the test. For any given output sequence, the
number of tests in Tn�b�α that return 1 for this sequence is equal to the number
of ways of choosing the other α2nb − 1 sequences that also fail the test. This
is the number of ways of choosing α2nb − 1 distinct objects among 2nb − 1.
In other words, every output sequence fails exactly the same number of tests!
This result, pointed out by Leeb (1995), should not be surprising. Viewed from
a different angle, it is a restatement of the well-known fact that under H0,
each of the 2nb possible sequences has the same probability of occurring, so
one may argue that none should be considered more random than any other
(Knuth, 1998).

This viewpoint leads to a dead end. For statistical testing of RNG sequences
to be meaningful, all tests should not be considered on equal footing. So which
ones are more important? Any answer is certainly tainted with its share of arbi-
trariness. However, for large values of n, the number of tests is huge and all but
a tiny fraction are too complicated even to be implemented. So we may say that
bad RNGs are those that fail simple tests, whereas good RNGs fail only com-
plicated tests that are hard to find and run. This common-sense compromise
has been generally adopted in one way or another.

Experience shows that RNGs with very long periods, good structure of their
set Ψt , and based on recurrences that are not too simplistic, pass most rea-
sonable tests, whereas RNGs with short periods or bad structures are usually
easy to crack by standard statistical tests. For sensitive applications, it is a good
idea, whenever possible, to apply statistical tests designed in close relation with
the random variable of interest (e.g., based on a simplification of the stochastic
model being simulated, and for which the theoretical distribution can be com-
puted). Further discussion of statistical testing for RNGs is given in Section 6.

3 Linear recurrences modulo m

3.1 The multiple recursive generator

The most widely used class of RNGs is based on the general linear recur-
rence

(1)xi = (a1xi−1 + · · · + akxi−k)modm�

where m and k are positive integers called the modulus and the order, and the
coefficients a1� � � � � ak are in Zm, interpreted as the set {0� � � � �m−1} on which
all operations are performed with reduction modulo m. The state at step i is
si = xi = (xi−k+1� � � � � xi)

T (where “T” means “transposed”). When m is a
prime number, the finite ring Zm is a finite field and it is possible to choose the
coefficients aj so that the period length reaches ρ = mk−1, the largest possible
value (Knuth, 1998). This maximal period length is achieved if and only if the
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characteristic polynomial of the recurrence, P(z) = zk − a1z
k−1 − · · · − ak, is

a primitive polynomial over Zm, i.e., if and only if the smallest positive integer
ν such that (zν modP(z))modm = 1 (interpreted as a constant polynomial)
is ν = mk − 1. Knuth (1998) explains how to verify this for a given P(z). For
k > 1, for P(z) to be a primitive polynomial, it is necessary that ak and at least
another coefficient aj be nonzero. Finding primitive polynomials of this form
is generally easy and they yield the simplified recurrence

(2)xn = (arxn−r + akxn−k)modm�

A multiple recursive generator (MRG) uses (1) with a large value of m and
defines the output as ui = xi/m. For k = 1, this is the classical linear con-
gruential generator (LCG), which was the standard in most simulation software
products and textbooks until a few years ago, usually with m = 231 − 1. These
LCGs have too short a period (ρ is at most m − 1) and too coarse a structure
of their point set Ψt to be used as reliable RNGs (see Section 6). They should
simply be discarded. On the other hand, small LCGs can be used to construct
QMC point sets which are a special case of lattice rules (see Chapter 12).

In practice, the output function of MRGs is modified slightly to make sure
that ui never takes the value 0 or 1; e.g., one may define ui = (xi+1)/(m+1),
or ui = xi/(m + 1) if xi > 0 and ui = m/(m + 1) otherwise. To simplify
the theoretical analysis, here we follow the usual convention of assuming that
ui = xi/m (in which case ui does take the value 0 occasionally).

3.2 The lattice structure

Let ei denote the ith unit vector in k dimensions, with a 1 in position i and 0’s
elsewhere. Denote by xi�0� xi�1� xi�2� � � � the values of x0� x1� x2� � � � produced
by the recurrence (1) when the initial state x0 is ei. An arbitrary initial state
x0 = (z1� � � � � zk)

T can be written as the linear combination z1e1 + · · · + zkek
and the corresponding sequence is a linear combination of the sequences
(xi�0� xi�1� � � �), with reduction of the coordinates modulo m. Conversely, any
such linear combination reduced modulo m is a sequence that can be obtained
from some initial state x0 ∈ S = Z

k
m. If we divide everything by m we find that

for the MRG, for each t � 1, Ψt = Lt ∩ [0� 1)t , where

Lt =
{

v =
t∑
i=1

zivi
∣∣∣ zi ∈ Z

}

is a t-dimensional lattice in R
t , with basis

v1 = (1� 0� � � � � 0� x1�k� � � � � x1�t−1)
T

m
�

���

vk = (0� 0� � � � � 1� xk�k� � � � � xk�t−1)
T

m
�

http://dx.doi.org/10.1016/S0927-0507(06)13012-1
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vk+1 = (0� 0� � � � � 0� 1� � � � � 0)T�

���

vt = (0� 0� � � � � 0� 0� � � � � 1)T�

For t � k, Lt contains all vectors whose coordinates are multiples of 1/m. For
t > k, it contains a fraction mk−t of those vectors.

This lattice structure implies that the points of Ψt are distributed according
to a regular pattern, in equidistant parallel hyperplanes. Graphical illustrations
of this lattice structure can be found in several papers and books; e.g., Gentle
(2003), Knuth (1998), Law and Kelton (2000) and L’Ecuyer (1998). Define the
dual lattice to Lt as

L∗t =
{
h ∈ R

t : hTv ∈ Z for all v ∈ Lt
}
�

Each h ∈ L∗t is a normal vector that defines a family of equidistant parallel hy-
perplanes, at distance 1/‖h‖2 apart (where ‖ · ‖2 denotes the Euclidean norm),
and these hyperplanes cover all the points of Lt unless h is an integer multi-
ple of some other vector h′ ∈ L∗t . Therefore, if �t is the Euclidean length of a
shortest nonzero vector h in L∗t , then there is a family of hyperplanes at dis-
tance 1/�t apart that cover all the points of Lt . A small �t means that there are
thick slices of empty space between the hyperplanes and we want to avoid that.
A large �t means a better (more uniform) coverage of the unit hypercube by
the point set Ψt . Computing the value of 1/�t is often called the spectral test
(Fishman, 1996; Knuth, 1998).

The lattice property holds as well for the point sets ΨI formed by values at
arbitrary lags defined by a fixed set of indices I = {i1� � � � � it}. One has ΨI =
LI ∩ [0� 1)t for some lattice LI , and the largest distance between successive
hyperplanes for a family of hyperplanes that cover all the points of LI is 1/�I ,
where �I is the Euclidean length of a shortest nonzero vector in L∗I , the dual
lattice to LI .

The lattice LI and its dual can be constructed as explained in L’Ecuyer
and Couture (1997). Finding the shortest nonzero vector in a lattice with ba-
sis v1� � � � � vt can be formulated as an integer programming problem with a
quadratic objective function

Minimize ‖v‖2
2 =

t∑
i=1

t∑
j=1

zivT
i vjzj

subject to z1� � � � � zt integers and not all zero. This problem can be solved by a
branch-and-bound algorithm (Fincke and Pohst, 1985; L’Ecuyer and Couture,
1997; Tezuka, 1995).

For any given dimension t and mk points per unit of volume, there is an
absolute upper bound on the best possible value of �I (Conway and Sloane,
1999; Knuth, 1998; L’Ecuyer, 1999b). Let �∗t (mk) denote such an upper bound.
To define a figure of merit that takes into account several sets I, in different
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numbers of dimensions, it is common practice to divide �I by an upper bound,
to obtain a standardized value between 0 and 1, and then take the worst case
over a given class J of sets I. This gives a figure of merit of the form

(3)MJ = min
I∈J

�I

�∗|I|(mk)
�

A value of MJ too close to zero means that LI has a bad lattice structure for
at least one of the selected sets I. We want a value as close to 1 as possible.
Computer searches for good MRGs with respect to this criterion have been re-
ported by L’Ecuyer et al. (1993), L’Ecuyer and Andres (1997), L’Ecuyer (1999a),
for example. In most cases, J was simply the sets of the form I = {1� � � � � t}
for t � t1, where t1 was an arbitrary integer ranging from 8 to 45. L’Ecuyer and
Lemieux (2000) also consider the small-dimensional sets I with indices not too
far apart. They suggest taking J = {{0� 1� � � � � i}: i < t1} ∪ {{i1� i2}: 0 = i1 <
i2 < t2} ∪ · · · ∪ {{i1� � � � � id}: 0 = i1 < · · · < id < td} for some positive integers
d, t1� � � � � td. We could also take a weighted average instead of the minimum in
the definition of MJ .

An important observation is that for t > k, the t-dimensional vector
h = (−ak� � � � �−a1� 1� 0� � � � � 0)T always belongs to L∗t , because for any vector
v ∈ Lt , the first k+ 1 coordinates of mv must satisfy the recurrence (1), which
implies that (−ak� � � � �−a1� 1� 0� � � � � 0)v must be an integer. Therefore, one
always has �2

t � ‖h‖2
2 = 1 + a2

1 + · · · + a2
k. Likewise, if I contains 0 and all

indices j such that ak−j �= 0, then �2
I � 1+a2

1 + · · ·+a2
k (L’Ecuyer, 1997). This

means that the sum of squares of the coefficients aj must be large if we want to
have any chance that the lattice structure be good.

Constructing MRGs with only two nonzero coefficients and taking these
coefficients small has been a very popular idea, because this makes the im-
plementation easier and faster (Deng and Lin, 2000; Knuth, 1998). However,
the MRGs thus obtained have a bad structure. As a worst-case illustration,
consider the widely-available additive or subtractive lagged-Fibonacci genera-
tor, based on the recurrence (1) where the two coefficients ar and ak are both
equal to ±1. In this case, whenever I contains {0� k − r� k}, one has �2

I � 3,
so the distance between the hyperplanes is at least 1/

√
3. In particular, for

I = {0� k − r� k}, all the points of ΨI (aside from the zero vector) are con-
tained in only two planes! This type of structure can have a dramatic effect on
certain simulation problems and is a good reason for staying away from these
lagged-Fibonacci generators, regardless of their parameters.

A similar problem occurs for the “fast MRG” proposed by Deng and Lin
(2000), based on the recurrence

xi = (−xi−1 + axi−k)modm = ((m− 1)xi−1 + axi−k
)

modm�

with a2 < m. If a is small, the bound �2
I � 1+a2 implies a bad lattice structure

for I = {0� k − 1� k}. A more detailed analysis by L’Ecuyer and Touzin (2004)
shows that this type of generator cannot have a good lattice structure even if
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the condition a2 < m is removed. Another special case proposed by Deng and
Xu (2003) has the form

(4)xi = a(xi−j2 + · · · + xi−jt )modm�

In this case, for I = {0� k − jt−1� � � � � k − j2� k}, the vectors (1� a� � � � � a) and
(a∗� 1� � � � � 1) both belong to the dual lattice L∗I , where a∗ is the multiplicative
inverse of a modulo m. So neither a nor a∗ should be small.

To get around this structural problem when I contains certain sets of indices,
Lüscher (1994) and Knuth (1998) recommend skipping some of the output
values to break up the bad vectors. For the lagged-Fibonacci generator, for ex-
ample, one can output k successive values produced by the recurrence, then
skip the next d values, output the next k, skip the next d, and so on. A large
value of d (e.g., d = 5k or more) may get rid of the bad structure, but slows
down the generator. See Wegenkittl and Matsumoto (1999) for further discus-
sion.

We saw that the point set Ψt of an LCG or MRG is the intersection of some
special lattice Lt with the unit hypercube, where Lt contains all corners of the
hypercube. A lattice rule is a QMC integration method defined by selecting an
arbitrary lattice Lt with this property, and using its intersection with the unit
hypercube as a QMC point set. The uniformity of lattice rules can be measured
by the spectral test in the same way as MRGs (see Chapter 12).

3.3 MRG implementation techniques

The modulus m is often taken as a large prime number close to the largest
integer directly representable on the computer (e.g., equal or near 231 − 1 for
32-bit computers). Since each xi−j can be as large asm−1, one must be careful
in computing the right-hand side of (1) because the product ajxi−j is typically
not representable as an ordinary integer. Various techniques for computing this
product modulo m are discussed and compared by Fishman (1996), L’Ecuyer
and Côté (1991), L’Ecuyer (1999a) and L’Ecuyer and Simard (1999). Note that
if aj = m− a′j > 0, using aj is equivalent to using the negative coefficient −a′j ,
which is sometimes more convenient from the implementation viewpoint. In
what follows, we assume that aj can be either positive or negative.

One approach is to perform the arithmetic modulo m in 64-bit (double pre-
cision) floating-point arithmetic (L’Ecuyer, 1999a). Under this representation,
assuming that the usual IEEE floating-point standard is respected, all posi-
tive integers up to 253 are represented exactly. Then, if each coefficient aj is
selected to satisfy |aj|(m− 1) � 253, the product |aj|xi−j will always be repre-
sented exactly and zj = |aj|xi−j modm can be computed by the instructions

y = |aj|xi−j� zj = y −m
⌊ y
m

⌋
�

Similarly, if (|a1| + · · · + |ak|)(m− 1) � 253, a1xi−1 + · · · + akxi−k will always
be represented exactly.

http://dx.doi.org/10.1016/S0927-0507(06)13012-1


Ch. 3. Uniform Random Number Generation 65

A second technique, called approximate factoring (L’Ecuyer and Côté, 1991),
uses only the integer representation and works under the condition that
|aj| = i or |aj| = �m/i� for some integer i <

√
m. One precomputes qj =

�m/|aj|� and rj = mmod |aj|. Then, zj = |aj|xi−j modm can be computed by

y =
⌊xi−j
qj

⌋
� z = |aj|(xi−j − yqj)− yrj�

if z < 0 then zj = z +m else zj = z�

All quantities involved in these computations are integers between −m and m,
so no overflow can occur if m can be represented as an ordinary integer (e.g.,
m < 231 on a 32-bit computer).

The powers-of-two decomposition approach selects coefficients aj that can
be written as a sum or difference of a small number of powers of 2 (L’Ecuyer
and Simard, 1999; L’Ecuyer and Touzin, 2000; Wu, 1997). For example, one
may take aj = ±2q ± 2r and m = 2e − h for some positive integers q, r, e
and h. To compute y = 2qxmodm, decompose x = z0 + 2e−qz1 (where z0 =
xmod 2e−q) and observe that

y = 2q
(
z0 + 2e−qz1

)
mod

(
2e − h

) = (2qz0 + hz1
)

mod
(
2e − h

)
�

Suppose now that

(5)h < 2q and h
(
2q − (h+ 1)2−e+q

)
< m�

Then 2qz0 < m and hz1 < m, so y can be computed by shifts, masks, addi-
tions, subtractions, and a single multiplication by h. Intermediate results never
exceed 2m − 1. Things simplify further if q = 0 or q = 1 or h = 1. For h = 1,
y is obtained simply by swapping the blocks of bits z0 and z1 (Wu, 1997). It has
been pointed out by L’Ecuyer and Simard (1999) that LCGs with parameters
of the form m = 2e − 1 and a = ±2q ± 2r have bad statistical properties be-
cause the recurrence does not “mix the bits” well enough. However, good and
fast MRGs can be obtained via the power-of-two decomposition method, as
explained in L’Ecuyer and Touzin (2000).

Another interesting idea for improving efficiency is to take all nonzero coef-
ficients aj equal to the same constant a (Deng and Xu, 2003; Marsaglia, 1996).
Then, computing the right-hand side of (1) requires a single multiplication.
Deng and Xu (2003) provide specific parameter sets and concrete implemen-
tations for MRGs of this type, for primem near 231, and k = 102, 120 and 1511.

One may be tempted to takem equal to a power of two, saym = 2e, because
computing the products and sums modulo m is then much easier: it suffices to
keep the e least significant bits of the results. However, taking a power-of-
two modulus has very important disadvantages in terms of the quality of the
RNG (L’Ecuyer, 1990, 1998). In particular, the least significant bits have very
short periodicity and the period length of the recurrence (1) cannot exceed
(2k − 1)2e−1 if k > 1, and 2e−2 if k = 1 and e � 4. The maximal period length
achievable with k = 7 and m = 231, for example, is more than 2180 times
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smaller than the maximal period length achievable with k = 7 andm = 231−1
(a prime number).

3.4 Combined MRGs and LCGs

The conditions that make MRG implementations run faster (e.g., only two
nonzero coefficients both close to zero) are generally in conflict with those re-
quired for having a good lattice structure and statistical robustness. Combined
MRGs provide one solution to this problem. Consider J distinct MRGs evolv-
ing in parallel, based on the recurrences

(6)xj�i = (aj�1xj�i−1 + · · · + aj�kxj�i−k)modmj

where aj�k �= 0, for j = 1� � � � � J. Let δ1� � � � � δJ be arbitrary integers,

(7)zi = (δ1x1�i + · · · + δJxJ�i)modm1� ui = zi
m1

�

and

(8)wi =
(δ1x1�i

m1
+ · · · + δJxJ�i

mJ

)
mod 1�

This defines two RNGs, with output sequences {ui� i � 0} and {wi� i � 0}.
Suppose that the mj are pairwise relatively prime, that δj and mj have no

common factor for each j, and that each recurrence (6) is purely periodic with
period length ρj . Let m = m1 · · ·mJ and let ρ be the least common multiple
of ρ1� � � � � ρJ . Under these conditions, the following results have been proved
by L’Ecuyer and Tezuka (1991) and L’Ecuyer (1996a): (a) the sequence (8) is
exactly equivalent to the output sequence of an MRG with (composite) mod-
ulus m and coefficients aj that can be computed explicitly as explained in
L’Ecuyer (1996a); (b) the two sequences in (7) and (8) have period length ρ;
and (c) if both sequences have the same initial state, then ui = wi + εi where
maxi�0 |εi| can be bounded explicitly by a constant ε which is very small when
the mj are close to each other.

Thus, these combined MRGs can be viewed as practical ways of implement-
ing an MRG with a large m and several large nonzero coefficients. The idea
is to cleverly select the components so that: (1) each one is easy to implement
efficiently (e.g., has only two small nonzero coefficients) and (2) the MRG that
corresponds to the combination has a good lattice structure. If eachmj is prime
and if each component j has maximal period length ρj = mk

j − 1, then each
ρj is even and ρ cannot exceed ρ1 · · ·ρJ/2J−1. Tables of good parameters for
combined MRGs of different sizes that reach this upper bound are given in
L’Ecuyer (1999a) and L’Ecuyer and Touzin (2000), together with C implemen-
tations.
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3.5 Jumping ahead

The recurrence (1) can be written in matrix form as

xi = Axi−1 modm =

⎛
⎜⎜⎝

0 1 · · · 0
���

� � �
���

0 0 · · · 1
ak ak−1 · · · a1

⎞
⎟⎟⎠ xi−1 modm�

To jump ahead directly from xi to xi+ν, for an arbitrary integer ν, it suffices to
exploit the relationship

xi+ν = Aνxi modm = (Aν modm
)
xi modm�

If this is to be done several times for the same ν, the matrix Aν modm can be
precomputed once for all. For a large ν, this can be done in O(log2 ν) matrix
multiplications via a standard divide-and-conquer algorithm (Knuth, 1998):

Aν modm =
{ (

Aν/2 modm
)(

Aν/2 modm
)

modm if ν is even�

A
(
Aν−1 modm

)
modm if ν is odd�

3.6 Linear recurrences with carry

The basic idea here is to add a carry to the linear recurrence (1). The general
form of this RNG, called multiply-with-carry (MWC), can be written as

(9)xi = (a1xi−1 + · · · + akxi−k + ci−1)dmod b�

(10)ci =
⌊a0xi + a1xi−1 + · · · + akxi−k + ci−1

b

⌋
�

(11)ui =
∞∑
�=1

xi−�+1b
−��

where b is a positive integer (e.g., a power of two), a0� � � � � ak are arbitrary in-
tegers such that a0 is relatively prime to b, and d is the multiplicative inverse
of −a0 modulo b. The state at step i is si = (xi−k+1� � � � � xi� ci)

T. In practice,
the sum in (11) is truncated to a few terms (it could be a single term if b is
large), but the theoretical analysis is much easier for the infinite sum. These
types of recurrences were introduced by Marsaglia and Zaman (1991) to ob-
tain a large period even when m is a power of two (this may allow a faster
implementation). They were studied and generalized by Couture and L’Ecuyer
(1994, 1997), Goresky and Klapper (2003) and Tezuka et al. (1994).

Definem =∑k
�=0 a�b

� and let a be the inverse of b in arithmetic modulom,
assuming for now that m > 0. A major result proved in Couture and L’Ecuyer
(1997), Goresky and Klapper (2003) and Tezuka et al. (1994) is that if the ini-
tial states agree, the output sequence {ui� i � 0} is exactly the same as that
produced by the LCG with modulus m and multiplier a. Therefore, the MWC
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can be seen as a clever way of implementing an LCG with very large modu-
lus. It has been shown by Couture and L’Ecuyer (1997) that the value of �t for
this LCG satisfies �2

t � a2
0 + · · · + a2

k for t � k, which means that the lattice
structure will be bad unless the sum of squares of coefficients aj is large.

In the original proposals of Marsaglia and Zaman (1991), called add-with-
carry and subtract-with-borrow, one has −a0 = ±ar = ±ak = 1 for some r < k
and the other coefficients aj are zero, so �2

t � 3 for t � k and the generator
has essentially the same structural defect as the additive lagged-Fibonacci gen-
erator. In the version studied by Couture and L’Ecuyer (1997), it was assumed
that −a0 = d = 1. Then, the period length cannot exceed (m − 1)/2 if b is
a power of two. A concrete implementation was given in that paper. Goresky
and Klapper (2003) pointed out that the maximal period length of ρ = m − 1
can be achieved by allowing a more general a0. They provided specific para-
meters that give a maximal period for b ranging from 221 to 235 and ρ up to
approximately 22521.

3.7 Computer searches for good parameters and an example

When searching for specific instances of MRGs with good parameters, one
would usually impose constraints on the parameters k, m and aj ’s (for each
component in the case of a combined generator). These constraints are based
on implementation efficiency considerations. One of the constraints might be
that the MRG (or each component) has maximal period length. The con-
straints determine a set of feasible solutions in parameter space. A figure of
merit measuring the uniformity of the MRG point set, such as MJ in (3) for
some set J , is also selected. Then, an “intelligent” random search algorithm
(that usually employs several heuristics) is used to find a feasible solution with
the largest possible figure of merit. Such computer searches can take days of
CPU time, because checking for maximal period and computing the figure of
merit is generally very demanding computationally. Nevertheless, unless the
constraints are too restrictive, it is typically easy to find good parameter sets
by random search, because there is usually a large number of nearly optimal
solutions.

As a concrete illustration, consider the combined generator MRG32k3a pro-
posed in L’Ecuyer (1999a). It has J = 2 components of order k = 3 defined
as in (6), with m1 = 232 − 209, a11 = 0, a12 = 1403580, a13 = −810728,
m2 = 232 − 22853, a21 = 527612, a22 = 0, a23 = −1370589. The combination
is defined by zi = (x1�i − x2�i) mod m1 and the MRG that corresponds to this
combination has order k = 3, modulus m = m1m2 = 18446645023178547541
and multipliers a1 = 18169668471252892557, a2 = 3186860506199273833 and
a3 = 8738613264398222622. Its period length is (m3

1 − 1)(m3
2 − 1)/2 ≈ 2191.

This generator was found by a computer search with a computing budget
of a few days of CPU time, as follows. The values of J, k, m1 and m2 were
fixed. These values ofm1 andm2 have special properties explained in L’Ecuyer
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(1999a), which make the maximal period length conditions easier to verify.
The constraints a11 = a22 = 0 and (|aj�0| + |aj�1| + |aj�2|)(mj − 1) < 253 were
also imposed to make sure that the recurrence of each component was easily
implementable in floating-point arithmetic. The figure of merit (to maximize)
was MJ with J = {{0� � � � � i}: i < 32} (i.e., the worst-case standardized spec-
tral test value in up to 32 dimensions). The retained generator (given above)
hasMJ = 0�6336. We later verified thatMJ = 0�6225 if we go up to 45 dimen-
sions instead of 32. Computer codes that implement this particular generator
in several languages (such as C, C++, Java) are available from the author’s
web page. It is also implemented in many commercial simulation packages such
as Arena, Automod, Witness, etc.

4 Generators based on recurrences modulo 2

4.1 A general framework

It is certainly a good idea to exploit the fact that computers work in binary
arithmetic by designing RNGs defined directly in terms of bit strings and se-
quences. This is the idea underlying the following framework. Let F2 denote
the finite field with two elements, 0 and 1, in which the operations are equiv-
alent to addition and multiplication modulo 2. Consider the RNG defined by
the following matrix linear recurrence over F2:

(12)xi = Axi−1�

(13)yi = Bxi�

(14)ui =
w∑
�=1

yi��−12−� = yi�0yi�1yi�2 · · · �

where xi = (xi�0� � � � � xi�k−1)
T ∈ F

k
2 is the k-bit state vector at step i, yi =

(yi�0� � � � � yi�w−1)
T ∈ F

w
2 is the w-bit output vector at step i, k and w are positive

integers, A is a k× k transition matrix with elements in F2, B is a w × k output
transformation matrix with elements in F2, and ui ∈ [0� 1) is the output at step i.
All operations in (12) and (13) are performed in F2.

Let

P(z) = det(A − zI) = zk − α1z
k−1 − · · · − αk−1z − αk

be the characteristic polynomial of A, where I is the identity matrix and each
αj is in F2. For any sequence of xi’s that satisfies (12), for each j, the sequence
{xi�j� i � 0} obeys the linear recurrence

(15)xi�j = (α1xi−1�j + · · · + αkxi−k�j)mod 2

(L’Ecuyer, 1994; Niederreiter, 1992). The sequences {yi�j� i � 0}, for 0 � j < w,
also obey the same recurrence (although they may also follow recurrences of
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shorter order in certain situations, depending on B). We assume that αk = 1,
so that the recurrence (15) has order k and is purely periodic. Its period length
is 2k − 1 (i.e., maximal) if and only if P(z) is a primitive polynomial over F2
(Knuth, 1998; Niederreiter, 1992).

To jump ahead directly from xi to xi+ν with this type of generator, it suffices
to precompute the matrix Aν (in F2) and then multiply xi by this matrix. How-
ever, this multiplication could becomes unacceptably time consuming when
k exceeds a few hundreds.

Several popular classes of RNGs fit this framework as special cases, by ap-
propriate choices of the matrices A and B. This includes the Tausworthe or
LFSR, polynomial LCG, GFSR, twisted GFSR, Mersenne twister, multiple re-
cursive matrix generators, and combinations of these (L’Ecuyer and Panneton,
2002; Matsumoto and Nishimura, 1998; Niederreiter, 1995; Tezuka, 1995). We
detail some of them after discussing how to measure their uniformity. The
point setsΨt produced by these RNGs generally contain 2k points and turn out
to be instances of digital nets, which form a large class of construction methods
for QMC point sets (Chapter 12). This means that any of these RNG im-
plementation methods can be employed to construct recurrence-based QMC
point sets, by taking a small value of k.

4.2 Measures of equidistribution

The uniformity of point sets ΨI produced by RNGs based on linear recur-
rences over F2 is usually assessed by measures of equidistribution defined as
follows (L’Ecuyer, 1996b, 2004a; L’Ecuyer and Panneton, 2002; Tezuka, 1995).
For an arbitrary vector q = (q1� � � � � qt) of nonnegative integers, partition the
unit hypercube [0� 1)t into 2qj intervals of the same length along axis j, for
each j. This determines a partition of [0� 1)t into 2q1+···+qt rectangular boxes
of the same size and shape. We call this partition the q-equidissection of the
unit hypercube.

For some index set I = {i1� � � � � it}, if ΨI has 2k points, we say that ΨI is
q-equidistributed in base 2 if there are exactly 2q points in each box of the
q-equidissection, where k − q = q1 + · · · + qt . This means that among the
2k points (xj1� � � � � xjt ) of ΨI , if we consider the first q1 bits of xj1 , the first
q2 bits of xj2 , � � � , and the first qt bits of xjt , each of the 2k−q possibilities
occurs exactly the same number of times. This is possible only if q � k.

The q-equidistribution of ΨI depends only on the first qj bits of xij for 1 �
j � t, for the points (xi1� � � � � xit ) that belong to ΨI . The vector of these q1 +
· · · + qt = k− q bits can always be expressed as a linear function of the k bits
of the initial state x0, i.e., as Mqx0 for some (k − q) × k binary matrix Mq,
and it is easily seen that ΨI is q-equidistributed if and only if Mq has full rank
k− q. This provides a simple way of checking equidistribution (Fushimi, 1983;
L’Ecuyer, 1996b; Tezuka, 1995).

If ΨI is (�� � � � � �)-equidistributed for some � � 1, it is called t-distributed
with � bits of accuracy, or (t� �)-equidistributed (L’Ecuyer, 1996b). The largest

http://dx.doi.org/10.1016/S0927-0507(06)13012-1
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value of � for which this holds is called the resolution of the set ΨI and is
denoted by �I . This value has the upper bound �∗t = min(�k/t�� w). The res-
olution gap of ΨI is defined as δI = �∗t − �I . In the same vein as for MRGs,
a worst-case figure of merit can be defined here by

ΔJ = max
I∈J

δI�

where J is a preselected class of index sets I.
The point set ΨI is a (q� k� t)-net in base 2, often called a (t�m� s)-net in the

context of QMC methods, where a different notation is used (Niederreiter,
1992), if it is (q1� � � � � qt)-equidistributed in base 2 for all nonnegative inte-
gers q1� � � � � qt summing to k − q. We call the smallest such q the q-value
of ΨI . The smaller it is, the better. One candidate for a figure of merit
could be the q-value of Ψt for some large t. This measure is frequently used
for QMC point sets, for which k is small (Hellekalek and Larcher, 1998;
Niederreiter, 1992). However, when k− q is large, i.e., for long-period gener-
ators having good equidistribution, it is extremely difficult to compute because
there are too many vectors q for which equidistribution needs to be checked. In
practice, for RNGs, one must settle for figures of merit that involve a smaller
number of equidissections.

If δI = 0 for all sets I of the form I = {0� � � � � t − 1}, for 1 � t � k, the
RNG is said to be maximally equidistributed or asymptotically random for the
word size w (L’Ecuyer, 1996b; Tezuka, 1995; Tootill et al., 1973). This prop-
erty ensures perfect equidistribution of all sets Ψt , for any partition of the unit
hypercube into subcubes of equal sizes, as long as � � w and the number of
subcubes does not exceed the number of points in Ψt . Large-period maximally
equidistributed generators, together with their implementations, can be found
in L’Ecuyer (1999c), L’Ecuyer and Panneton (2002) and Panneton and L’Ecuyer
(2004), for example.

4.3 Lattice structure in spaces of polynomials and formal series

The RNGs defined via (12)–(14) do not have a lattice structure in the real
space like MRGs, but they do have a lattice structure in a space of formal se-
ries, as explained in Couture and L’Ecuyer (2000), L’Ecuyer (2004a), Lemieux
and L’Ecuyer (2003) and Tezuka (1995). The real space R is replaced by the
space L2 of formal power series with coefficients in F2, of the form

∑∞
�=ω x�z−�

for some integer ω. In that setting, the lattices have the form

Lt =
{

v(z) =
t∑
j=1

hj(z)vj(z) such that each hj(z) ∈ F2[z]
}
�

where F2[z] is the ring of polynomials with coefficients in F2, and the basis
vectors vj(z) are in L

t
2. The elements of the dual lattice L∗

t are the vectors h(z)
in L

t
2 whose scalar product with any vector of Lt is a polynomial in F2[z].
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In one setting that applies for instance to LFSR generators, we define the
mapping ϕ : L2 → R by

ϕ

( ∞∑
�=ω

x�z
−�
)
=

∞∑
�=ω

x�2−�

and it turns out that the point set Ψt produced by the generator is equal to
ϕ(Lt) ∩ [0� 1)t for some lattice Lt . The general case is covered by defining
the lattice in a different way (adopting the resolutionwise lattice) as explained
in Couture and L’Ecuyer (2000). Moreover, the equidistribution properties
examined in Section 4.2 can be expressed in terms of lengths of shortest vec-
tors in the dual lattice, with appropriate definitions of the length (or norm).
Much of the theory and algorithms developed for lattices in the real space
can be adapted to these new types of lattices (Couture and L’Ecuyer, 2000;
L’Ecuyer, 2004a; Lemieux and L’Ecuyer, 2003; Panneton, 2004; Tezuka, 1995).

4.4 The LFSR generator

Linear feedback shift register (LFSR) (or Tausworthe) generators (L’Ecuyer,
1996b; Tausworthe, 1965; Tezuka, 1995) are a special case of (12)–(14) with
A = As0 (in F2) for some positive integer s, where

(16)A0 =

⎛
⎜⎜⎝

1
� � �

1
ak ak−1 � � � a1

⎞
⎟⎟⎠ �

a1� � � � � ak are in F2, ak = 1, and all blank entries in the matrix are zeros. We
take w � k and the matrix B contains the first w lines of the k × k identity
matrix. The RNG thus obtained can be defined equivalently by

(17)xi = a1xi−1 + · · · + akxi−k mod 2�

(18)ui =
w∑
�=1

xis+�−12−��

where xis+�−1 = xi��−1. Here, P(z) is not the characteristic polynomial of the
recurrence (17), but the characteristic polynomial of the matrix As0. The choice
of s has an important impact on the quality of the generator. A common special
case is when a single aj is nonzero in addition to ak; then P(z) is a trinomial
and we say that we have a trinomial-based LFSR generator. These generators
are known to have important statistical deficiencies (Matsumoto and Kurita,
1996; Tezuka, 1995) but they can be used as components of combined RNGs
(see Section 4.6).

LFSR generators can be expressed as LCGs in a space of polynomials
(L’Ecuyer, 1994; Tezuka and L’Ecuyer, 1991; Tezuka, 1995). With this represen-
tation, their lattice structure as discussed in Section 4.3 follows immediately.
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4.5 The GFSR and twisted GFSR

Here we take A as the pq× pq matrix

A =

⎛
⎜⎜⎜⎜⎝

Ip S
Ip

Ip
� � �

Ip

⎞
⎟⎟⎟⎟⎠

for some positive integers p and q, where Ip is the p × p identity matrix, S is
a p × p matrix, and the matrix Ip on the first line is in columns (r − 1)p + 1
to rp for some positive integer r. Often, w = p and B contains the first w lines
of the pq × pq identity matrix. If S is also the identity matrix, the generator
thus obtained is the trinomial-based generalized feedback shift register (GFSR),
for which xi is obtained by a bitwise exclusive-or of xi−r and xi−q. This gives
a very fast RNG, but its period length cannot exceed 2q − 1, because each bit
of xi follows the same binary recurrence of order k = q, with characteristic
polynomial P(z) = zq − zq−r − 1.

More generally, we can define xi as the bitwise exclusive-or of xi−r1�
xi−r2� � � � � xi−rd , where rd = q, so that each bit of xi follows a recurrence
in F2 whose characteristic polynomial P(z) has d + 1 nonzero terms. How-
ever, the period length is still bounded by 2q − 1, whereas considering the
pq-bit state, we should rather expect a period length close to 2pq. This was
the main motivation for the twisted GFSR (TGFSR) generator. In the orig-
inal version introduced by Matsumoto and Kurita (1992), w = p and the
matrix S is defined as the transpose of A0 in (16), with k replaced by p. The
characteristic polynomial of A is then P(z) = PS(z

q + zm), where PS(z) =
zp − apz

p−1 − · · · − a1 is the characteristic polynomial of S, and its degree
is k = pq. If the parameters are selected so that P(z) is primitive over F2,
then the TGFSR has period length 2k − 1. Tezuka (1994) pointed out im-
portant weaknesses of the original TGFSR and Matsumoto and Kurita (1994)
proposed an improved version that uses a well-chosen matrix B whose lines dif-
fer from those of the identity. The operations implemented by this matrix are
called tempering and their purpose is to improve the uniformity of the points
produced by the RNG. The Mersenne twister (Matsumoto and Nishimura, 1998;
Nishimura, 2000) is a variant of the TGFSR where k is slightly less than pq
and can be a prime number. A specific instance proposed by Matsumoto and
Nishimura (1998) is fast, robust, has the huge period length of 219937 − 1, and
has become quite popular.

In the multiple recursive matrix method of Niederreiter (1995), the first row
of p × p matrices in A contains arbitrary matrices. However, a fast imple-
mentation is possible only when these matrices are sparse and have a special
structure.
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4.6 Combined linear generators over F2

Many of the best generators based on linear recurrences over F2 are con-
structed by combining the output of two or more RNGs having a simple struc-
ture. The idea is the same as for MRGs: select simple components that can
run fast but such that their combination has a more complicated structure and
highly-uniform sets ΨI for the sets I considered important.

Consider J distinct recurrences of the form (12)–(13), where the jth recur-
rence has parameters (k�w�A�B) = (kj�w�Aj�Bj) and state xj�i at step i, for
j = 1� � � � � J. The output of the combined generator at step i is defined by

yi = B1x1�i ⊕ · · · ⊕ BJxJ�i�

ui =
w∑
�=1

yi��−12−��

where ⊕ denotes the bitwise exclusive-or operation. One can show (Tezuka,
1995) that the period length ρ of this combined generator is the least common
multiple of the period lengths ρj of its components. Moreover, this combined
generator is equivalent to the generator (12)–(14) with k = k1 + · · · + kJ ,
A = diag(A1� � � � �AJ) and B = (B1� � � � �BJ).

With this method, by selecting the parameters carefully, the combination
of LFSR generators with characteristic polynomials P1(z)� � � � � PJ(z) gives
yet another LFSR with characteristic polynomial P(z) = P1(z) · · ·PJ(z)
and period length equal to the product of the period lengths of the compo-
nents (L’Ecuyer, 1996b; Tezuka and L’Ecuyer, 1991; Tezuka, 1995; Wang and
Compagner, 1993). Tables and fast implementations of maximally equidistrib-
uted combined LFSR generators are given in L’Ecuyer (1999c).

The TGFSR and Mersenne twister generators proposed in Matsumoto and
Kurita (1994), Matsumoto and Nishimura (1998), and Nishimura (2000) can-
not be maximally equidistributed. L’Ecuyer and Panneton (2002), on the other
hand, have constructed concrete examples of maximally equidistributed com-
bined TGFSR generators, with period lengths near 2466 and 21250. These gen-
erators have the additional property that the resolution gaps δI are zero for a
class of small sets I with indices not too far apart.

4.7 An example

Consider the combined generator with J = 4 LFSR components whose re-
currences (17) have the following characteristic polynomials: P1(z) = z31 −
z6 − 1, P2(z) = z29 − z2 − 1, P3(z) = z28 − z13 − 1, and P4(z) =
z25 − z3 − 1, and whose values of s in (18) are s1 = 18, s2 = 2, s3 = 7
and s4 = 13, respectively. The corresponding combined LFSR generator
has a characteristic polynomial P(z) = P1(z)P2(z)P3(z)P4(z) of degree 113,
with 58 coefficients equal to 0 and 55 equal to 1, and its period length is
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(231 − 1)(229 − 1)(228 − 1)(225 − 1) ≈ 2113. This combined generator is also
maximally equidistributed (as defined in Section 4.2). An implementation in
C is given in L’Ecuyer (1999c), under the name of lfsr113. This generator
is faster than MRG32k3a: it needs approximately 30 seconds to produce 109

(one billion) uniform random numbers on a 2.8 GHz Athlon-based computer,
compared to approximately 100 seconds for MRG32k3a.

Its parameters were selected as follows. The degrees of the characteristic
polynomials Pj(z) were fixed at k1 = 31, k2 = 29, k3 = 28 and k4 = 25,
and these polynomials were required to be primitive trinomials of the form
Pj(z) = zkj − zqj − 1 with 0 < 2qj < kj and with step size sj satisfying
0 < sj � kj − qj < kj � w = 32 and gcd(sj� 2kj − 1) = 1. Components that
satisfy these conditions have maximal period length 2kj − 1 and can be imple-
mented efficiently as described in L’Ecuyer (1996b). These values of kj were
selected so that the period lengths 2kj −1 of the components have no common
factor, which implies that the period length of the combined generator is their
product. An exhaustive search was performed to find all parameter values that
satisfy these conditions; there are approximately 3.28 million. Among them,
there are 4744 for which the combined generator is maximally equidistributed
and also collision-free (which means that when the number of points does not
exceed the number of boxes in the equidissection, there is never more than one
point in a box). The lfsr113 generator given above is one of them.

5 Nonlinear RNGs

The linear RNGs discussed so far have point sets Ψt with a very regular
structure. To get away from this regularity, one can either use a nonlinear
transition function f , or keep the transition function linear but use a nonlin-
ear output function g. Several types of nonlinear RNGs have been proposed
over the years; see, e.g., Blum et al. (1986), Eichenauer-Herrmann (1995),
Eichenauer-Herrmann et al. (1998), Hellekalek and Wegenkittl (2003), Knuth
(1998), L’Ecuyer (1994), L’Ecuyer and Granger-Piché (2003) and Niederreiter
and Shparlinski (2002). Their nonlinear mappings are defined in various ways
by multiplicative inversion in a finite field, quadratic and cubic functions in the
finite ring of integers modulom, and other more complicated transformations.
Many of them have output sequences that tend to behave much like U(0� 1)
sequences even over their entire period length, in contrast with “good” lin-
ear RNGs, whose point sets Ψt are much more regular than typical random
points. In most cases, on the other hand, their statistical properties can be ana-
lyzed only empirically or via asymptotic theoretical results. They are generally
slower than the linear ones.

Various ways of combining RNGs also give rise to nonlinear RNGs whose
output sequence shows less regularity; see, e.g., Fishman (1996), Gentle (2003),
Knuth (1998), Law and Kelton (2000), L’Ecuyer (1994) and Marsaglia (1985),
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and other references given there. This includes shuffling the output sequence
of one generator using another one (or the same one), alternating between
several streams, or just adding them in different ways. It is important to
understand that to assess the quality of the combined generator, one must
analyze the mathematical structure of the combined generator itself rather
than the structure of its components (L’Ecuyer, 1996b, 1996a; L’Ecuyer and
Granger-Piché, 2003; Tezuka, 1995). Otherwise, these combination techniques
are heuristics which often improve the uniformity (empirically), but can also
make it worse.

6 Empirical statistical tests

A statistical test for RNGs can be defined by any random variable X whose
distribution under H0 can be well approximated. When X takes the value x,
we define the right and left p-values of the test by

pR = P[X � x|H0] and pL = P[X � x|H0]�
When testing RNGs, there is no need to prespecify the level of the test. If either
of the right or left p-value is extremely close to zero, e.g., less than 10−15, then
it is clear that H0 (and the RNG) must be rejected. When a suspicious p-value
is obtained, e.g., near 10−2 or 10−3, one can just repeat this particular test a
few more times, perhaps with a larger sample size. Almost always, things will
then clarify.

Statistical tests are defined by partitioning the possible realizations of
(u0� � � � � uτ−1) into a finite number of subsets (where the integer τ can be ran-
dom or deterministic), computing the probability pj of each subset j under H0,
and measuring the discrepancy between these probabilities and empirical fre-
quencies from realizations simulated by the RNG.

A simple and natural way of doing that is to take τ = t (a constant)
and cut the interval [0� 1) into d equal segments for some positive inte-
ger d, to partition the hypercube [0� 1)t into k = dt subcubes of vol-
ume 1/k. We then generate n points ui = (uti� � � � � uti+t−1) ∈ [0� 1)t , for
i = 0� � � � � n − 1, and count the number Nj of points falling in subcube j,
for j = 0� � � � � k − 1. Any measure of distance (or divergence) between the
numbers Nj and their expectations n/k can define a test statistic X. The
tests thus defined are generally called serial tests of uniformity (Knuth, 1998;
L’Ecuyer et al., 2002b). They can be sparse (if n/k� 1), or dense (if n/k� 1),
or something in between. There are also overlapping versions, where the points
are defined by ui = (ui� � � � � ui+t−1) for i = 0� � � � � n− 1.

For further details, specific instances of serial tests, and other empirical tests
commonly applied to RNGs (based, e.g., on close pairs of points among in
the space, random walks on the real line or over the integers, the linear com-
plexity of a binary output sequence, the simulation of dice or poker hands,
etc.), we refer the reader to (Knuth, 1998; L’Ecuyer and Hellekalek, 1998;
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L’Ecuyer and Simard, 2001; L’Ecuyer, 2001; L’Ecuyer et al., 2002b; L’Ecuyer and
Simard, 2002; Marsaglia, 1985; Rukhin et al., 2001; Vattulainen et al., 1995).

When testing RNGs, there is no specific alternative hypothesis to H0. Dif-
ferent tests are needed to detect different types of departures from H0. Test
suites for RNGs include a selection of tests, with predetermined parame-
ters and sample sizes. The best known are DIEHARD (Marsaglia, 1996) and
the NIST test suite (Rukhin et al., 2001). The library TestU01 (L’Ecuyer and
Simard, 2002) implements a large selection of tests in the C language and pro-
vides a variety of test suites, some designed for U(0� 1) output sequences and
others for strings of bits.

7 Conclusion, future work and open issues

The ultimate goal of RNG design is to obtain a fast algorithm or device
whose output cannot be distinguished in any way from a realization of an
infinite sequence of i.i.d. uniform random variables. This requirement is equiv-
alent to passing all possible statistical tests of uniformity and independence. It
seems that this can only be achieved through a physical device based on quan-
tum physics. Using this type of device for simulation has several drawbacks,
one of them being that the sequence cannot be reproduced without storing it.

RNGs based on linear recurrences and output transformations, on the other
hand, are known to fail statistical tests of linear complexity (for obvious rea-
sons), even when their period length is huge. This seems to have no impact
for the great majority of relevant discrete-event simulation applications, but it
would nevertheless be good to have efficient alternative nonlinear RNGs that
also pass these linear complexity tests. Work in that direction has been initiated
in L’Ecuyer and Granger-Piché (2003), for instance. In fact, what is needed is
a collection of RNGs having different types of structures, different sizes of
their state space, for both 32-bit and 64-bit computers, perhaps some faster
and some slower but more robust, and where each RNG can provide multiple
streams of random numbers as in L’Ecuyer et al. (2002a) (see also Chapter 7).
It should also be easy and simple to replace the pseudorandom numbers by
(possibly randomized) quasirandom numbers in a simulation.

Work is currently in progress to develop generators with huge period lengths
(e.g., near 220000 or more) as well as faster generators based on linear recur-
rences modulo 2 and good equidistribution properties. The huge-period gener-
ators are not necessarily the way to go because they require a large amount of
memory and managing multiple streams involves much more overhead than for
the smaller generators. Their huge periods may also hide rather long bad sub-
sequences, due to the fact that the transition function typically modifies only
a small part of their state at each step. For example Panneton and L’Ecuyer
(2006) have shown that if the Mersenne twister proposed by Matsumoto and
Nishimura (1998) is initialized to a state that contains almost only zeros, then

http://dx.doi.org/10.1016/S0927-0507(06)13007-8
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the fraction of zeros in the state tends to remain very large for several thousand
steps. These issues require further study.

Poor (or plain bad) generators can still be found in popular commercial
statistical and simulation software, spreadsheets, etc. Do not trust the de-
fault RNGs available in these products: many of them are quite unreliable
(L’Ecuyer, 2001). Vendors should be pressured to change this state of affairs.
Each year, several new RNGs are proposed in the scientific literature or over
the Internet. Many of them are based on very little theoretical analysis. An im-
portant task of RNG experts is to study these proposals carefully to shed light
on their potential weaknesses. This is an area where negative results are often
as important to publish as the positive ones.
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Abstract

This chapter provides a survey of the main methods in nonuniform random variate
generation, and highlights recent research on the subject. Classical paradigms such
as inversion, rejection, guide tables, and transformations are reviewed. We provide
information on the expected time complexity of various algorithms, before address-
ing modern topics such as indirectly specified distributions, random processes, and
Markov chain methods.

1 The main paradigms

The purpose of this chapter is to review the main methods for generat-
ing random variables, vectors and processes. Classical workhorses such as the
inversion method, the rejection method and table methods are reviewed in
Section 1. In Section 2 we discuss the expected time complexity of various algo-
rithms, and give a few examples of the design of generators that are uniformly
fast over entire families of distributions. In Section 3 we develop a few univer-
sal generators, such as generators for all log concave distributions on the real
line. Section 4 deals with random variate generation when distributions are
indirectly specified, e.g., via Fourier coefficients, characteristic functions, the
moments, the moment generating function, distributional identities, infinite
series or Kolmogorov measures. Random processes are briefly touched upon
in Section 5. Finally, the latest developments in Markov chain methods are dis-
cussed in Section 6. Some of this work grew from Devroye (1986a), and we are
carefully documenting work that was done since 1986. More recent references
can be found in the book by Hörmann et al. (2004).

Nonuniform random variate generation is concerned with the generation of
random variables with certain distributions. Such random variables are often
discrete, taking values in a countable set, or absolutely continuous, and thus
described by a density. The methods used for generating them depend upon
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the computational model one is working with, and upon the demands on the
part of the output.

For example, in a RAM (random access memory) model, one accepts that
real numbers can be stored and operated upon (compared, added, multiplied,
and so forth) in one time unit. Furthermore, this model assumes that a source
capable of producing an i.i.d. (independent identically distributed) sequence of
uniform[0� 1] random variables is available. This model is of course unrealistic,
but designing random variate generators based on it has several advantages:
first of all, it allows one to disconnect the theory of nonuniform random vari-
ate generation from that of uniform random variate generation, and secondly,
it permits one to plan for the future, as more powerful computers will be
developed that permit ever better approximations of the model. Algorithms
designed under finite approximation limitations will have to be redesigned
when the next generation of computers arrives.

For the generation of discrete or integer-valued random variables, which in-
cludes the vast area of the generation of random combinatorial structures, one
can adhere to a clean model, the pure bit model, in which each bit operation
takes one time unit, and storage can be reported in terms of bits. Typically, one
now assumes that an i.i.d. sequence of independent perfect bits is available.
In this model, an elegant information-theoretic theory can be derived. For ex-
ample, Knuth and Yao (1976) showed that to generate a random integer X
described by the probability distribution

P{X = n} = pn� n � 1�

any method must use an expected number of bits greater than the binary en-
tropy of the distribution,

∑
n

pn log2
1
pn
�

They also showed how to construct tree-based generators that can be imple-
mented as finite or infinite automata to come within three bits of this lower
bound for any distribution. While this theory is elegant and theoretically im-
portant, it is somewhat impractical to have to worry about the individual bits
in the binary expansions of the pn’s, so that we will, even for discrete distrib-
utions, consider only the RAM model. Noteworthy is that attempts have been
made (see, e.g., Flajolet and Saheb, 1986) to extend the pure bit model to ob-
tain approximate algorithms for random variables with densities.

1.1 The inversion method

For a univariate random variable, the inversion method is theoretically ap-
plicable: given the distribution function F , and its inverse F inv, we generate a
random variate X with that distribution as F inv(U), where U is a uniform[0� 1]
random variable. This is the method of choice when the inverse is readily
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Table 1.
Some densities with distribution functions that are explicitly invertible

Name Density Distribution function Random variate

Exponential e−x, x > 0 1 − e−x log(1/U)
Weibull(a), a > 0 axa−1e−xa , x > 0 1 − e−xa (log(1/U))1/a

Gumbel e−xe−e−x e−e−x − log log(1/U)
Logistic 1/(2 + ex + e−x) 1/(1 + e−x) − log((1 −U)/U)

Cauchy 1/(π(1 + x2)) 1/2 + (1/π) arctanx tan(πU)
Pareto(a), a > 0 a/xa+1, x > 1 1 − 1/xa 1/U1/a

computable. For example, a standard exponential random variable (which has
density e−x� x > 0), can be generated as log(1/U). Table 1 gives some further
examples.

The fact that there is a monotone relationship between U and X has
interesting benefits in the area of coupling and variance reduction. In simu-
lation, one sometimes requires two random variates from the same distribu-
tion that are maximally anti-correlated. This can be achieved by generating
the pair (F inv(U)� F inv(1 − U)). In coupling, one has two distribution func-
tions F and G and a pair of (possibly dependent) random variates (X�Y)
with these marginal distribution functions is needed so that some appro-
priate metric measuring distance between them is minimized. For exam-
ple, the Wasserstein metric d2(F�G) is the minimal value over all couplings
of (X�Y) of

√
E{(X − Y)2}. That minimal coupling occurs when (X�Y) =

(F inv(U)�Ginv(U)) (see, e.g., Rachev, 1991). Finally, if we wish to simulate the
maximum M of n i.i.d. random variables, each distributed as X = F inv(U),
then noting that the maximum of n i.i.d. uniform[0� 1] random variables is dis-
tributed as U1/n, we see that M can be simulated as F inv(U1/n).

1.2 Simple transformations

We call a simple transformation one that uses functions and operators that
are routinely available in standard libraries, such as the trigonometric, expo-
nential and logarithmic functions. For example, the inverse of the normal and
stable distribution functions cannot be computed using simple transformations
of one uniform random variate. For future reference, the standard normal den-
sity is given by exp(−x2/2)/

√
2π. However, the next step is to look at simple

transformations of k uniform[0� 1] random variates, where k is either a small
fixed integer or a random integer with a small mean. It is remarkable that one
can obtain the normal and indeed all stable distributions using simple transfor-
mations with k = 2. In the Box–Müller method (Box and Müller, 1958) a pair
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of independent standard normal random variates is obtained by setting

(X�Y) =
(√

2 log
1
U1

cos(2πU2)�

√
2 log

1
U1

sin(2πU2)

)
�

where U1, U2 are independent uniform[0� 1] random variates. For the compu-
tational perfectionists, we note that the random cosine can be avoided: just
generate a random point in the unit circle by rejection from the enclosing
square (more about that later), and then normalize it so that it is of unit length.
Its first component is distributed as a random cosine.

There are many other examples that involve the use of a random cosine, and
for this reason, they are called polar methods. We recall that the beta(a� b)
density is

xa−1(1 − x)b−1

B(a� b)
� 0 � x � 1�

where B(a� b) = �(a)�(b)/�(a + b). A symmetric beta(a� a) random variate
may be generated as (Ulrich, 1984)

1
2

(
1 +

√
1 −U

2/(2a−1)
1 cos(2πU2)

)
�

where a � 1/2. Devroye (1996) provided a recipe valid for all a > 0,

1
2

(
1 + S√

1 + 1/((U−1/a
1 − 1) cos2(2πU2))

)
�

where S is a random sign. Perhaps the most striking result of this kind is due to
Bailey (1994), who showed that√

a
(
U
−2/a
1 − 1

)
cos(2πU2)

has the Student t density (invented by William S. Gosset in 1908) with parame-
ter a > 0,

1√
aB(a/2� 1/2)(1 + x2/a)(a+1)/2 � x ∈ R�

Until Bailey’s paper, only rather inconvenient rejection methods were available
for the t density.

There are many random variables that can be represented as ψ(U)Eα,
where ψ is a function, U is uniform[0� 1], α is a real number and E is an in-
dependent exponential random variable. These lead to simple algorithms for a
host of useful yet tricky distributions. A random variable Sα�β with character-
istic function

ϕ(t) = exp
(
−|t|α − iπβ(α− 2 1α>1) sign(t)

2

)
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is said to be stable with parameters α ∈ (0� 2] and |β| � 1. Its parameter α
determines the size of its tail. Using integral representations of distribution
functions, Kanter (1975) showed that for α < 1, Sα�1 is distributed as

ψ(U)E1−1/α�

where

ψ(u) =
(

sin(απu)

sin(πu)

)1/α(sin((1 − α)πu)

sin(απu)

)(1−α)/α
�

For general α, β, Chambers et al. (1976) showed that it suffices to generate it
as

ψ

(
U − 1

2

)
E1−1/α�

where

ψ(u) =
(

cos(π((α− 1)u+ αθ)/2)
cos(πu/2)

)1/α( sin(πα(u+ θ)/2)
cos(π((α− 1)u+ αθ)/2)

)
�

Zolotarev (1959, 1966, 1981, 1986) has additional representations and a thor-
ough discussion on these families of distributions. The paper by Devroye
(1990) contains other examples with k = 3, including

Sα�0E
1/α�

which has the so-called Linnik distribution (Linnik, 1962) with characteristic
function

ϕ(t) = 1
1 + |t|α � 0 < α � 2�

See also Kotz and Ostrovskii (1996). It also shows that

Sα�1E
1/α

has the Mittag–Leffler distribution with characteristic function

ϕ(t) = 1
1 + (−it)α

� 0 < α � 1�

Despite these successes, some distributions seem hard to treat with any
k-simple transformation. For example, to date, we do not know how to gen-
erate a gamma random variate (i.e., a variate with density xa−1e−x/�(a)
on (0�∞)) with arbitrary parameter a > 0 using only a fixed finite number k
of uniform random variates and simple transformations.
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1.3 Simple methods for multivariate distributions

For random vectors (X1� � � � �Xd), the inversion method proceeds by peel-
ing off the dimensions. That is, we first generate Xd from its marginal dis-
tribution, then Xd−1 given Xd, using a conditional distribution, and so forth.
There is of course no reason to employ conditioning in that rigid manner. For
example, if a distribution has a density that is a function of

∑
i x

2
i only, then

it is advantageous to find the marginal of
∑

i X
2
i , generate a random variate

from this marginal distribution, and then generate a random variate uniformly
distributed on the surface of the ball with the given random radius. And to gen-
erate a uniformly distributed point on the surface of the unit ball, just generate
d i.i.d. standard normal random variatesX1� � � � �Xd, and normalize the length
to one.

Sometimes, one wishes to generate random vectors with a certain depen-
dence structure. This can be captured by various measures of correlation. For
a survey of random variate generators in this vein, see Devroye (1986a). An in-
teresting new area of research is related to the development of generators with
a given copula structure. The copula of two uniform[0� 1] random variables
X and Y is given by the joint distribution function

C(x� y) = P{X � x�Y � y}�
We say that two arbitrary continuous random variables X and Y (with distri-
bution functions F and G, respectively) have the copula structure given by C
if F(X) and G(Y) (which are both uniform[0� 1]) have joint distribution func-
tionC. Thus, we need methods for generating random vectors with distribution
function C. Various interesting families of copulas and some seedlings of al-
gorithms, are given in Nelsen’s (1999) book and in Chapter 5 of the present
volume.

1.4 Inversion for integer-valued random variables

For integer-valued random variables with P{X = n} = pn, n � 0, the inver-
sion method is always applicable:

X ← 0
generate U uniform[0� 1]
S← p0 (S holds the partial sums of the pn’s)
while U > S do
X ← X + 1, S← S + pX

return X.
The expected number of steps here is E{X + 1}. Improvements are possible
by using data structures that permit one to invert more quickly. When there
are only a finite number of values, a binary search tree may help. Here the
leaves correspond to various outcomes for X, and the internal nodes are there
to guide the search by comparing U with appropriately picked thresholds. If

http://dx.doi.org/10.1016/S0927-0507(06)13005-4
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the cost of setting up this tree is warranted, then one could always permute the
leaves to make this into a Huffman tree for the weights pn (Huffman, 1952),
which insures that the expected time to find a leaf is not more than one plus
the binary entropy,

∑
n

pn log2
1
pn
�

In any case, this value does not exceed log2 N , where N is the number of pos-
sible values X can take.

Another way of organizing this is to store an array with the partial sums
p1� p1 + p2� � � � � p1 + · · · + pN = 1, and to search for the interval in which
U falls by binary search, which would take O(log2N) time. As mentioned
above, the Huffman tree is optimal, and thus better, but requires more work
to set up.

1.5 Guide tables

Hash tables, or guide tables (Chen and Asau, 1974), have been used to ac-
celerate the inversion even further. Given the size of the universe N , we create
a hash table with N entries, and store in the ith entry the value of X if U were
i/N , 0 � i < N . ThenU gets “hashed” to Z = �NU�. Then return to the table
of partial sums and start the search at p1 + · · · +pZ . It is easy to show that the
expected time, table set-up excluded, is bounded by a constant uniformly over
all distributions on N values. The table can be constructed in O(N) time.

Walker (1974, 1977) showed that one can construct in time O(N) a table
(qi� ri), 1 � i � N , such that the following method works: pick a uniform
integer Z from 1� 2� � � � �N . Generate a uniform[0� 1] random variate U . If
U � qZ , then return Z, else return rZ . The values ri are called the aliases, and
the method is now known as the alias method. If a distribution is fixed once
and for all, and N is such that the storage of the table is of no concern, then
the alias method is difficult to beat.

1.6 Mixture methods

Densities that can be written as mixtures∑
n

pnfn(x)�

with nonnegative weights pn summing to one, are trivially dealt with by first
generating a random index Z with discrete distribution {pn}, and then gener-
ating a random variate with density fZ . They do, therefore, not require any
special treatment.

Sometimes, we have more intricate mixtures, when, e.g.,

f (x) = E
{
gZ(x)

}
�



90 L. Devroye

where Z is a random variable and gZ is a density in which Z is a parameter.
Clearly, it suffices to generate Z first and then to generate a random variate
from gZ . The textbook example here is N/

√
Ga, where N is standard nor-

mal, and Ga is a gamma random variable with parameter a, independent of N .
The ratio has the Student t distribution with parameter a. Other examples
relevant for further on areU/V , a ratio of two i.i.d. uniform[0� 1] random vari-
ates, which has density (1/2)min(1� 1/x2), andUV , which has density log(1/x)
on (0� 1]. Gamma random variates of parameter less than one are often cum-
bersome, but we know thatGa

L= U1/aGa+1 where the notation is as above and
all variates are independent on the right. Finally, a Cauchy random variate can
be obtained as N1/N2, the ratio of two independent standard normal random
variates.

Mixtures are also useful in discrete settings. For example, the negative bino-
mial distribution (the number of failures before the nth success) with parame-
ters (n� p), n � 1, p ∈ (0� 1), is given by the probabilities

pk =
(
n+ k− 1

k

)
(1 − p)kpn� k � 0�

One can check that this can be generated as a Poisson(Y) random variate
where Y in turn is (1 − p)/p times a gamma(n) random variate. A special
case is the geometric(p) distribution, which is negative binomial(1� p). Here,
though, it is better to use the inversion method which can be made explicit by
the truncation operator: it suffices to take

�log1−p U��
where U is uniform[0� 1].
1.7 The rejection method

Von Neumann (1951) proposed the rejection method, which uses the notion
of a dominating measure. Let X have density f on R

d. Let g be another den-
sity with the property that for some finite constant c � 1, called the rejection
constant,

f (x) � cg(x)� x ∈ R
d�

For any nonnegative integrable function h on R
d, define the body of h as

Bh = {(x� y): x ∈ R
d� 0 � y � h(x)}. Note that if (X�Y) is uniformly distrib-

uted on Bh, then X has density proportional to h. Vice versa, if X has density
proportional to h, then (X�Uh(X)), where U is uniform[0� 1] and indepen-
dent of X, is uniformly distributed on Bh. These facts can be used to show the
validity of the rejection method:

repeat
generate U uniformly on [0� 1]
generate X with density g
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until Ucg(X) � f (X)
return X.

The expected number of iterations before halting is c, so the rejection constant
must be kept small. This method requires some analytic work, notably to deter-
mine c, but one attractive feature is that we only need the ratio f (x)/(cg(x)),
and thus, cumbersome normalization constants often cancel out.

1.8 Rejection: a simple example

The rejection principle also applies in the discrete setting, so a few examples
follow to illustrate its use in all settings. We begin with the standard normal
density. The start is an inequality such as

e−x2/2 � eα
2/2−α|x|�

The area under the dominating curve is eα
2/2 × 2/α, which is minimized for

α = 1. Generating a random variate with the Laplace density e−|x| can be
done either as SE, where S is a random sign andE is exponential, or asE1−E2,
a difference of two independent exponential random variables. The rejection
algorithm thus reads:

repeat
generate U uniformly on [0� 1]
generate X with the Laplace density

until Ue1/2−|X| � e−X2/2

return X.
However, taking logarithms in the last condition, and noting that log(1/U)

is exponential, we can tighten the code using a random sign S and two inde-
pendent exponentials, E1, E2:

generate a random sign S
repeat

generate E1, E2
until 2E2 > (E1 − 1)2

return X ← SE1.
It is easy to verify that the rejection constant (the expected number of itera-
tions) is

√
2e/π ≈ 1�35.

1.9 Rejection: a more advanced example

Assume that f is a monotonically decreasing density on [0� 1], and define
M = f (0). We could apply rejection with M as a bound:

repeat
generate U uniformly on [0� 1]
generate X uniformly on [0� 1]

until UM � f (X)
return X.
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The expected number of iterations is M . However, the algorithm does not
make any use of the monotonicity. As we know that f (x) � min(M� 1/x),
and the integral of the upper bound (or the rejection constant) is 1 + logM ,
we can exponentially speed up the performance by basing our rejection on the
latter bound. It is a simple exercise to show that the indefinite integral of the
upper bound is

{
Mx� 0 � x � 1

M �

1 + log(Mx)� 1
M � x � 1�

A random variate can easily be generated by inversion of a uniform[0� 1] ran-
dom variate U : if U � 1/(1 + logM), return (1 + logM)U/M , else return
(1/M) exp((1 + logM)U − 1). Thus, we have the improved algorithm:

repeat
generate U , V independently and uniformly on [0� 1]
set W = V (1 + logM)
if W � 1 then set X ← W/M

else set X ← exp(W U − 1)/M
until U min(M� 1/X) � f (X)
return X.

It is possible to beat even this either by spending more time setting up (a one-
time cost) or by using additional information on the density. In the former
case, partition [0� 1] into k equal intervals, and invest once in the calcula-
tion of f (i/k), 0 � i < k. Then the histogram function of height f (i/k) on
[i/k� (i+ 1)/k) dominates f and can be used for rejection purposes. This re-
quires the bin probabilities pi = f (i/k)/

∑k−1
j=0 f (j/k). Rejection can proceed

as follows:
repeat

generate U , V independently and uniformly on [0� 1]
generate Z on {0� 1� � � � � k− 1} according to the probabilities {pi}
set X = (Z + V )/k

until Uf(Z/k) � f (X)
return X.

Here the area under the dominating curve is at most one plus the area sand-
wiched between f and it. By shifting that area over to the left, bin by bin, one
can bound it further by 1+M/k. Thus, we can adjust k to reduce the rejection
constant at will. For example, a good choice would be k = 
M�. The expected
time per variate would be O(1) if we can generate the random integer Z in
time O(1). This can be done, but only at the expense of the set-up of a table
of size k (see above). In one shot situations, this is a prohibitive expense. In
Devroye (1986a), methods based on partitioning the density in slabs are called
strip methods. Early papers in this direction include Ahrens and Dieter (1989),
Ahrens (1993, 1995), Marsaglia and Tsang (1984) and Marsaglia et al. (1964).
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Assume next that we also know the mean μ of f . Then, even dropping the
requirement that f be supported on [0� 1], we have

μ =
∫ ∞

0
yf (y) dy � f (x)

∫ x

0
y dy = f (x)

x2

2
�

Hence,

f (x) � min
(
M�

2μ
x2

)
�

The integral of the upper bound from 0 to x is⎧⎨
⎩
Mx� 0 � x <

√
2 μ
M �

2
√

2μM − 2μ
x � x �

√
2 μ
M �

The area under the upper bound is therefore 2
√

2μM . To generate a random
variate with density proportional to the upper bound, we can proceed in vari-
ous ways, but it is easy to check that

√
2μ/MU1/U2 fits the bill, where U1, U2

are independent uniform[0� 1] random variables. Thus, we summarize:
repeat

generate U , V , W independently and uniformly on [0� 1]
set X = √2μ/MV /W

until UM min(1� (W /V )2) � f (X)
return X.

This example illustrates the development of universal generators, valid for
large classes of densities, as a function of just a few parameters. The reader
will be able to generalize the above example to unimodal densities with known
rth moment about the mode. The example given above applies with trivial
modifications to all unimodal densities, and the expected time is bounded by
a constant times

√
f (m)E{|X −m|}, where m is the mode. For example, the

gamma density with parameter a � 1 has mean a, and mode at a − 1, with
f (a − 1) � C/

√
a for some constant C, and E{|X − (a − 1)|} � C ′√a for

another constant C ′. Thus, the expected time taken by our universal algorithm
takes expected time bounded by a constant, uniformly over a � 1. We say that
the algorithm is uniformly fast over this class of densities.

1.10 The alternating series method

To apply the rejection method, we do not really need to know the ratio
f (x)/(cg(x)) exactly. It suffices that we have an approximation φn(x) that
tends, as n → ∞, to f (x)/(cg(x)), and for which we know a monotone er-
ror bound εn(x) ↓ 0. In that case, we let n increase until for the first time,
either

U � φn(X)− εn(X)
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(in which case we accept X) or

U � φn(X)+ εn(X)

(in which case we reject X). Equivalently, we have computable bounds ξn(x)
and ψn(x) with the property that ξn(x) ↑ f (x)/(cg(x)) and ψn(x) ↓
f (x)/(cg(x)) as n → ∞. This approach is useful when the precise compu-
tation of f is impossible, e.g., when f is known as infinite series or when f can
never be computed exactly using only finitely many resources. It was first devel-
oped for the Kolmogorov–Smirnov limit distribution in Devroye (1981a). For
another use of this idea, see Keane and O’Brien’s Bernoulli (1994) factory:

repeat
generate U uniformly on [0� 1]
generate X with density g
set n = 0
repeat n← n+ 1 until U � ξn(X) or U � ψn(X)

until U � ξn(X)
return X.

The expected number of iterations in the outer loop is still c, as in the re-
jection method. However, to take the inner loop into account, let N be the
largest index n attained in the inner loop. Note that N > t implies that
U ∈ [ξt(X)�ψt(X)]. Thus,

E{N|X} =
∞∑
t=0

P{N > t|X} �
∞∑
t=0

(
ψt(X)− ξt(X)

)
�

Unconditioning,

E{N} �
∞∑
t=0

E
{
ψt(X)− ξt(X)

}
�

To be finite, this requires a rate of decrease in the approximation error that is
at least 1/t. One must also take into account that the computation of ξt and ψt
may also grow with t. The bound above is indicative of the expected complexity
only when, say, ξt can be computed from ξt−1 in one time unit.

We cannot stress strongly enough how important the alternating series
method is, as it frees us from having to compute f exactly. It is indeed the
key to the solution of a host of difficult nonuniform random variate generation
problems.

2 Uniformly bounded times

If F is a class of distributions, it is useful to have generators for which
the expected time is uniformly bounded over F . In the case of the rejection
method, this often (but not always, see, e.g., the alternating series method)
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means bounding the rejection constant uniformly. For example, pre-1970 pa-
pers routinely recommended generating gamma(k) random variables as a sum
of k independent exponentials, and generating a binomial(n� p) random vari-
ate as a sum of n independent Bernoulli(p) random variables. Even today,
many may still simulate a sum of n i.i.d. random variables by generating all n
of them and summing. So, whether F is the class of all gamma distributions,
all binomial distributions, or all sums of distributions with a fixed density f , the
idea of a uniformly bounded time is important, and has, in fact, given new life
to the area of nonuniform random variate generation. In this section, we briefly
survey some key classes F , and provide some references to good generators.

Many methods in the literature are rejection methods in disguise. For ex-
ample, for real-valued random variates, the ratio of uniforms method is based
upon the use of bounding curves of the form

min
(
A�

B

x2

)
�

The area under the bounding curve is 4
√
AB, and a random variate with den-

sity proportional to it can be generated as
√
B/ASU/V , where S is a random

sign, and U , V are independent uniform[0� 1] random variates. The method is
best applied after shifting the mode or mean of the density f to the origin. One
could for example use

A = sup
x
f (x)� B = sup

x
x2f (x)�

In many cases, such as for mode-centered normals, gamma, beta, and Student
t distributions, the rejection constant 4

√
AB is uniformly bounded over all or

a large part of the parameter space. Discretized versions of it can be used for
the Poisson, binomial and hypergeometric distributions.

Uniformly fast generators have been obtained for all major parametric fam-
ilies. Interesting contributions include the gamma generators of Cheng (1977),
Le Minh (1988), Marsaglia (1977), Ahrens and Dieter (1982), Cheng and
Feast (1979, 1980), Schmeiser and Lal (1980), Ahrens et al. (1983) and Best
(1983), the beta generators of Ahrens and Dieter (1974), Zechner and Stad-
lober (1993), Best (1978a, 1978b) and Schmeiser and Babu (1980), the bino-
mial methods of Stadlober (1988, 1989), Ahrens and Dieter (1980), Hörmann
(1993a) and Kachitvichyanukul and Schmeiser (1988, 1989), the hypergeomet-
ric generators of Stadlober (1988, 1990), and the code for Poisson variates
by Ahrens and Dieter (1980, 1991), Devroye (1981c) and Hörmann (1993b).
Some of these algorithms are described in Devroye (1986a), where some addi-
tional uniformly fast methods can be found.

All the distributions mentioned above are log-concave, and it is thus no sur-
prise that we can find uniformly fast generators. The emphasis in most papers
is on the details, to squeeze the last millisecond out of each piece of code.
To conclude this section, we will just describe a recent gamma generator, due
to Marsaglia and Tsang (2001). It uses almost-exact inversion. Its derivation
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is unlike anything in the present survey, and shows the careful planning that
goes into the design of a nearly perfect generator. The idea is to consider a
monotone transformation h(x), and to note that if X has density

eg(x) def= h(x)a−1e−h(x)h′(x)
�(a)

�

then Y = h(X) has the gamma(a) density. If g(x) is close to c−x2/2 for some
constant c, then a rejection method from a normal density can be developed.
The choice suggested by Marsaglia and Tsang is

h(x) = d(1 + cx)3� −1
c
< x <∞�

with d = a− 1/3, c = 1/
√

9d. In that case, simple computations show that

g(x) = 3d log(1 + cx)− d(1 + cx)3 + d + C� −1
c
< x <∞�

for some constant C. Define w(x) = −x2/2 − g(x). Note that w′(x) =
−x− 3dc/(1 + cx)+ 3dc(1+ cx)2, w′′(x) = −1+ 3dc2/(1 + cx)2 + 6dc2(1+
cx), w′′′(x) = −6dc3/(1 + cx)3 + 6dc3. The third derivative is zero at
(1 + cx)3 = 1, or x = 0. Thus, w′′ reaches a minimum there, which is
−1 + 9dc2 = 0. Therefore, by Taylor’s series expansion and the fact that
w(0) = −C, w′(0) = 0, we have w(x) � C. Hence,

eg(x) � eC−x2/2

and the rejection method immediately yields the following:
d← a− 1/3
c← 1/

√
9d

repeat
generate E exponential
generate X normal
Y ← d(1 + cX)3

until −X2/2 − E � d log(Y)− Y + d
return Y .

We picked d so that
∫

eg−C is nearly maximal. By the transformation y = d(1+
cx)3 and by Stirling’s approximation, as d→∞,∫ ∞

−1/c
eg(x)−C dx =

∫ ∞

0

yd−2/3ed−y

3cdd+1/3
dy = �(d + 1/3)ed

3cdd+1/3

∼ (1 + 1/3d)d+1/3
√

2π

3ce1/3
√
d + 1/3

∼
√

18πd

3
√
d + 1/3

∼ √
2π�

Using
∫

e−x2/2 dx = √
2π, we note that the asymptotic (as a → ∞) rejec-

tion constant is 1: we have a perfect fit! Marsaglia and Tsang recommend the
method only for a � 1. For additional speed, a squeeze step (or quick accep-
tance step) may be added.
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3 Universal generators

It is quite important to develop generators that work well for entire fami-
lies of distributions. An example of such development is the generator for log
concave densities given in Devroye (1984c), that is, densities for which log f
is concave. On the real line, this has several consequences: these distributions
are unimodal and have sub-exponential tails. Among the log concave densi-
ties, we find the normal densities, the gamma family with parameter a � 1,
the Weibull family with parameter a � 1, the beta family with both parameters
greater than or equal to 1, the exponential power distribution with parameter
greater than or equal to 1 (the density being proportional to exp(−|x|a)), the
Gumbel or double exponential distribution (kk exp(−kx − ke−x)/(k − 1)! is
the density, k � 1 is the parameter), the generalized inverse Gaussian distrib-
ution, the logistic distribution, Perks’ distribution (with density proportional to
1/(ex+e−x+a), a > −2), the hyperbolic secant distribution (with distribution
function (2/π) arctan(ex)), and Kummer’s distribution (for a definition, see
Devroye, 1984a). Also, we should consider simple nonlinear transformations of
other random variables. Examples include arctanX withX Pearson IV, log |X|
(X being Student t for all parameters), logX (for X gamma, all parameters),
logX (for X log-normal), logX (for X Pareto), log(X/(1 −X)) (for all beta
variates X) and logX (for X beta(a� b) for all a > 0, b � 1).

In its most primitive version, assuming one knows that a mode occurs at m,
we consider the generation problem for the normalized random variable Y =
f (m)(X −m). One may obtain X as m + Y/f(m). The new random variable
has a mode at 0 of value 1. Call its density g. Devroye (1984c) showed that

g(y) � min
(
1� e1−|y|)�

The integral of the upper bound is precisely 4. Thus, the rejection constant
will be 4, uniformly over this vast class of densities. A random variable with
density proportional to the upper bound is generated by first flipping a perfect
coin. If it is heads, then generate (1 + E)S, where E is exponential, and S is
another perfect coin. Otherwise generate US, where U is uniform[0� 1] and
independent of S. The algorithm is as follows:

repeat
generate U (a uniform on [0� 1]), E (exponential) and S (a fair random

bit)
generate a random sign S′
if S = 0 then Y ← 1 + E

else Y ← V , V uniform[0� 1]
set Y ← YS′

until U min(1� e1−|Y |) � g(Y)
return Y .

Various improvements can be found in the original paper. In adaptive rejec-
tion sampling, Gilks and Wild (1992) bound the density adaptively from above
and below by a number of exponential pieces, to reduce the integral under the
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bounding curve. If we denote the log concave density by f , and if f ′ is available,
then for all x, log-concavity implies that

log f (y) � log f (x)+ (y − x)
f ′(x)
f (x)

� y ∈ R�

This is equivalent to

f (y) � f (x)e(y−x)f ′(x)/f (x)� y ∈ R�

Assume that we have already computed f at k points. Then we can construct
k + 1 exponential pieces (with breakpoints at those k points) that bound the
density from above, and in fact, sampling from the piecewise exponential dom-
inating curve is easily carried out by inversion. The integral under a piece
anchored at x and spanning [x� x+ δ) is

f 2(x)(eδf
′(x)/f (x) − 1)
f ′(x)

�

Gilks and Wild also bound f from below. Assume that y ∈ [x� x′], where x and
x′ are two of those anchor points. Then

log
(
f (y)

)
� log

(
f (x)

)+ y − x

x′ − x

(
log
(
f (x′)

)− log
(
f (x)

))
�

The lower bound can be used to avoid the evaluation of f most of the time
when accepting or rejecting. It is only when f is actually computed that a new
point is added to the collection to increase the number of exponential pieces.

Hörmann (1995) shows that it is best to add two exponential tails that
touch g at the places where g(x) = 1/e, assuming that the derivative of g
is available. In that case, the area under the bounding curve is reduced to
e/(e − 1) ≈ 1�582. Hörmann and Derflinger (1994) and Hörmann (1994, 1995)
(see also Leydold, 2000a, 2000b, 2001; Hörmann et al., 2004) define the notion
of Tc-concavity, related to the concavity of −1/(f (x))c , where 0 < c < 1. For
example, the Student t distribution of parameter greater than or equal to 1 is
T1/2-concave. Similar universal methods related to the one above are devel-
oped by them. Rejection is done from a curve with polynomial tails, and the
rejection constant is (1− (1− c)1/c−1)−1. The notion of T -convexity proposed
by Evans and Swartz (1996, 2000) is useful for unbounded densities.

Discrete distributions are called log concave if for all n,

p2
n � pn−1pn+1�

Some examples are shown in Table 2. Others not shown here included the
Pólya–Eggenberger distribution (see Johnson and Kotz, 1969) and the hyper-
Poisson distribution. For all discrete log-concave distributions having a mode
at m, we have (Devroye, 1987a)

pm+k � pm min
(
1� e1−pm|k|)� all k�
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Table 2.
Some important discrete distributions and their parameter ranges

Name Probability vector pk Parameter(s)

Binomial(n�p)
(
n
k

)
pk(1 − p)n−k, 0 � k � n n � 1, 0 � p � 1

Poisson(λ) λke−λ/k!, k � 0 λ > 0

Negative binomial(n�p)
(
n+ k− 1
n− 1

)
(1 − p)kpn, k � 0 n � 1, 0 � p � 1

Geometric(p) p(1 − p)k, k � 0 0 � p � 1
Logarithmic series(p) pk/(k! log(1/(1 − p))), k � 1 0 < p < 1

Hypergeometric(b�w� n)

(w
k

)( b
n−k

)
(w+b
n

) , 0 � k � min(w� n) n � 1, b � 0, w � 0

Mimicking the development for densities, we may use rejection from a curve
that is flat in the middle, and has two exponential tails. After taking care of
rounding to the nearest integer, we obtain the following code, in which the
expected number of iterations before halting is 4+pm � 5 for all distributions
in the family:

compute w← 1 + pm/2 (once)
repeat

generate U , V , W uniformly on [0� 1], and let S be a random sign
if U � w/(1 + w) then Y ← V w/pm

else Y ← (w − logV )/pm
X ← S round(Y)

until W min(1� ew−pmY ) � pm+X/pm
return m+X.

We can tighten the rejection constant further to 2 + pm for log concave distri-
butions that are monotonically decreasing. The disadvantage in the code is the
requirement that pm must be computed.

The development for log-concave distributions can be aped for other
classes. For example, the adaptive rejection method of Gilks and Wild can
be used for unimodal densities with known mode m. One just needs to replace
the exponential upper and lower bounds by histograms. This is covered in an
exercise in Devroye (1986a). General algorithms are known for all Lipschitz
densities with known bounds on the Lipschitz constant C and variance σ2, and
all unimodal densities with mode at m, and variance bounded by σ2, to give
two examples (see Devroye, 1984b, 1986a).

4 Indirect problems

A certain amount of work is devoted to indirect problems, in which dis-
tributions are not described by their density, distribution function or discrete
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probability vector. A partial list follows, with brief descriptions on how the so-
lutions may be constructed.

4.1 Characteristic functions

If the characteristic function

ϕ(t) = E
{
eitX}

is known in black box format, very little can be done in a universal manner. In
particular cases, we may have enough information to be able to deduce that a
density exists and that it is bounded in a certain way. For example, from the
inversion formula

f (x) = 1
2π

∫
ϕ(t)e−itx dt�

we deduce the bounds

sup
x
f (x) � M

def= 1
2π

∫ ∣∣ϕ(t)∣∣ dt
and

sup
x
x2f (x) � M ′ def= 1

2π

∫ ∣∣ϕ′′(t)∣∣ dt�
Thus, we have

f (x) � min
(
M�

M ′

x2

)
�

a bound that is easily dealt with by rejection. In principle, then rejection can
be used, with f (x) approximated at will by integral approximations based on
the inversion integral. This method requires bounds on the integral approxi-
mation, and these depend in turn on the smoothness of ϕ. Explicit bounds on
some smoothness parameters must be available. There are descriptions and
worked out examples in Devroye (1981b, 1986b, 1988). Devroye (1988) uses
this method to simulate the sum Sn of n i.i.d. random variables with common
characteristic function ϕ in expected time not depending upon n, as Sn has
characteristic function ϕn.

Pólya showed that any convex function ϕ on the positive halfline that de-
creases from 1 to 0 is the characteristic function of a symmetric random vari-
able if we extend it to the real line by setting ϕ(−t) = ϕ(t). These distributions
correspond to random variables distributed as Y/Z, where Y and Z are inde-
pendent, Y has the de la Vallée–Poussin density

1
2π

(
sin(x/2)
x/2

)2
� x ∈ R
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(for which random variate generation by rejection is trivial), and Z has distri-
bution function on the positive halfline given by 1 − ϕ(t)+ tϕ′(t). See Dugué
and Girault (1955) for this property and Devroye (1984a) for its implications
in random variate generation. Note that we have made a space warp from the
complex to the real domain. This has unexpected corollaries. For example, if
E1, E2 are independent exponential random variables, U is a uniform[0� 1]
random variable and α ∈ (0� 1], then Y/Z with

Z = (E1 + E21U<α)1/α

is symmetric stable of parameter (α), with characteristic function e−|t|α . The
Linnik–Laha distribution (Laha, 1961) with parameter α ∈ (0� 1] is described
by

ϕ(t) = 1
1 + |t|α �

Here Y/Z with

Z =
(
α+ 1 −

√
(α+ 1)2 − 4αU

2U
− 1
)1/α

has the desired distribution.

4.2 Fourier coefficients

Assume that the density f , suitably scaled and translated, is supported
on [−π�π]. Then the Fourier coefficients are given by

ak = E
{

cos(kX)
π

}
� bk = E

{
sin(kX)

π

}
� k � 0�

They uniquely describe the distribution. If the series absolutely converges,∑
k

|ak| + |bk| <∞�

then the following trigonometric series is absolutely and uniformly convergent
to f ,

f (x) = a0

2
+

∞∑
k=1

(
ak cos(kx)+ bk sin(kx)

)
�

If we only use terms with index up to n, then the error made is not more than

Rn+1 =
∞∑

k=n+1

√
a2
k + b2

k�

If we know bounds on Rn, then one can use rejection with an alternating series
method to generate random variates (Devroye, 1989).
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A particularly simple situation occurs when only the cosine coefficients are
nonzero, as occurs for symmetric distributions. Assume furthermore that the
Fourier cosine series coefficients ak are convex and ak ↓ 0 as k → ∞. Even
without absolute convergence, the Fourier cosine series converges, and can in
fact be rewritten as follows:

f (x) =
∞∑
k=0

π(k+ 1)Δ2akKk(x)�

where Δ2ak = ak+2 − 2ak+1 + ak (a positive number, by convexity) and

Kk(x) = 1
2π(k+ 1)

(
sin((k+ 1)x/2)

sin(x/2)

)2
� |x| � π�

is the Fejer kernel. As Kk(x) � min((k + 1)/4�π/(2(k + 1)x2)), random
variates from it can be generated in expected time uniformly bounded in k
by rejection. Thus, the following simple algorithm does the job:

generate U uniformly on [0� 1]
Z ← 0, S← πΔ2a0.
while U > S do
Z ← Z + 1.
S← S + π(Z + 1)Δ2aZ

generate X with Fejer density KZ
return X.

4.3 The moments are known

Let μn denote the nth moment of a random variable X. One could ask to
generate a random variate when for each n, μn is computable (in a black box).
Again, this is a nearly impossible problem to solve, unless additional informa-
tion is available. For one thing, there may not be a unique solution. A sufficient
condition that guarantees the uniqueness is Carleman’s condition

∞∑
n=0

|μ2n|−1/(2n) = ∞

(see Akhiezer, 1965). Sufficient conditions in terms of a density f exist, such as
Krein’s condition∫ − log(f (x))

1 + x2 dx = ∞�

combined with Lin’s condition, applicable to symmetric and differentiable den-
sities, which states that x|f ′(x)|/f (x) ↑ ∞ as x→ ∞ (Lin, 1997; Krein, 1944;
Stoyanov, 2000). Whenever the distribution is of compact support, the mo-
ments determine the distribution. In fact, there are various ways for recon-
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structing the density from the moments. An example is provided by the series

f (x) =
∞∑
k=0

akφj(x)� |x| � 1�

where φk is the Legendre polynomial of degree k and ak is a linear function
of all moments up to the kth. The series truncated at index n has an error not
exceeding

Cr
∫ |f (r+1)|

(1 − x2)1/4nr−1/2 �

where r is an integer and Cr is a constant depending upon r only (Jackson,
1930). Rejection with dominating curve of the form C ′/(1− x2)1/4 (a symmet-
ric beta) and with the alternating series method can thus lead to a generator
(Devroye, 1989).

The situation is much more interesting when X is supported on the positive
integers. Let

Mr = E
{
X(X − 1) · · · (X − r + 1)

}
denote the rth factorial moment. Then approximate pj = P{X = j} by

pnj = 1
j!

n∑
i=0

(−1)i
Mj+i
i! �

Note that pnj � pj for n even, pnj � pj for n odd, and pnj → pj as n → ∞
provided that E{(1 + u)X} < ∞ for some u > 0. Under this condition, an
alternating series rejection method can be implemented, with a dominating
curve suggested by the crude bound

pj � min
(

1�
μr

jr

)
�

In fact, we may even attempt inversion, as the partial sums p0 + p1 + · · · + pj
are available with any desired accuracy: it suffices to increase n until we are
absolutely sure in which interval a given uniform random variate U lies. For
more details, see Devroye (1991).

4.4 The moment generating function

For random variables on the positive integers, as in the previous section, we
may have knowledge of the moment generating function

k(s) = p0 + p1s + p2s
2 + · · · = E

{
sX
}
�

Here we have trivially

pj � k(s)

sj
�



104 L. Devroye

where s > 0 can be picked at will. Approximations for pj can be constructed
based on differences of higher orders. For example, if we take t > 0 arbitrary,
then we can define

pnj =
∑j

i=0(−1)j−i
( j
i

)
k(it)

j!tj
and note that

0 � pnj − pj � 1
(1 − jt)j+1 − 1�

This is sufficient to apply the alternating series method (Devroye, 1991).

4.5 An infinite series

Some densities are known as infinite series. Examples include the theta dis-
tribution (Rényi and Szekeres, 1967) with distribution function

F(x) =
∞∑

j=−∞

(
1 − 2j2x2)e−j2x2 = 4π5/2

x3

∞∑
j=1

j2e−π2j2/x2
� x > 0�

and the Kolmogorov–Smirnov distribution (Feller, 1948) with distribution
function

F(x) = 1 − 2
∞∑
j=1

(−1)je−2j2x2
� x > 0�

In the examples above, it is relatively straightforward to find tight bounding
curves, and to apply the alternating series method (Devroye, 1981a, 1997).

4.6 Hazard rates

Let X be a positive random variable with density f and distribution func-
tion F . Then the hazard rate, the probability of instantaneous death given that
one is still alive, is given by

h(x) = f (x)

1 − F(x)
�

Assume that one is given h (note that h � 0 must integrate to ∞). Then f can
be recovered as follows:

f (x) = h(x) exp
{
−
∫ x

0
h(y) dy

}
�

This may pose a problem for random variate generation. Various algorithms
for simulation in the presence of hazard rates are surveyed by Devroye (1986c),
the most useful among which is the thinning method of Lewis and Shedler
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(1979): assume that h � g, where g is another hazard rate. If 0 < Y1 <
Y2 < · · · is a nonhomogeneous Poisson point process with rate function g, and
U1�U2� � � � is a sequence of independent uniform[0� 1] random variables, inde-
pendent of the Yi’s, and if i is the smallest index for which Uig(Yi) � f (Yi),
then X = Yi has hazard rate h.

This is not a circular argument if we know how to generate a nonhomoge-
neous Poisson point process with rate function g. Define the cumulative rate
function G(x) = ∫ x0 g(y) dy. Let E1� E2� � � � be i.i.d. exponential random vari-
ables with partial sums Si =∑i

j=1 Ej . Then the sequence Yi = Ginv(Si), i � 1,
is a nonhomogeneous Poisson point process with rate g. Thus, the thinning
method is a Poisson process version of the rejection method.

If h(0) is finite, and X has the given hazard rate, then for a DHR (decreas-
ing hazard rate) distribution, we can use g = h(0). In that case, the expected
number of iterations before halting is E{h(0)X}. However, we can dynamically
thin (Devroye, 1986c) by lowering g as values h(Yi) trickle in. In that case, the
expected time is finite when X has a finite logarithmic moment, and in any
case, it is not more than 4 +√24 E{h(0)X}.
4.7 A distributional identity

The theory of fixed points and contractions can be used to derive many limit
laws in probability (see, e.g., Rösler and Rüschendorf, 2001). These often are
described as distributional identities known to have a unique solution. For ex-
ample, the identity

X
L= W (X + 1)�

where W is a fixed random variable on [0� 1] and X � 0, sometimes has a
unique solution for X. By iterating the identity, we see that if the solution
exists, it can be represented as

X
L= W1 +W1W2 +W1W2W3 + · · · �

where theWi’s are i.i.d. These are known as perpetuities (Vervaat, 1979; Goldie
and Grübel, 1996). Some more work in the complex domain can help out: for
example, when W = U1/α, where U is uniform[0� 1] and α > 0 leads to the
characteristic function

ϕ(t) = exp
{
α

∫ 1

0

eitx − 1
x

dx
}
�

For the particular case α = 1, we have Dickman’s distribution (Dickman,
1930), which is the limit law of

1
n

n∑
i=1

iZi�
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where Zi is Bernoulli(1/i). None of the three representations above (infinite
series, Fourier transform, limit of a discrete sum) gives a satisfactory path to an
exact algorithm (although approximations are trivial). The solution in Devroye
(2001) uses the characteristic function representation in an alternating series
method, after first determining explicit bounds on the density of f that can
be used in the rejection method. A simpler approach to this particular distri-
butional identity is still lacking, and a good exact solution for distributional
identities in general is sorely needed.

Consider distributional identities of the form

X
L= f1(U)X + f2(U)X

′ + f3(U)�

where the fi’s are known functions, U is a uniform random variate and X, X ′
are i.i.d. and independent of U . Exact generation here is approached by dis-
cretization in Devroye and Neininger (2002): suitably discretize the distribu-
tions of fi(U), and apply the map n times, starting with arbitrary values (say,
zero) for X, X ′. If Xn is the random variable thus obtained, and Fn is its
distribution function, note that Fn can be calculated as a sum, due to the dis-
cretization. Some theoretical work is needed (which involves parameters of
the fi’s) to obtain inequalities of the type∣∣∣∣Fn(x+ δ)− Fn(x)

δ
− f (x)

∣∣∣∣ � Rn(x)�

where Rn(x) is explicitly known and can be made as small as desired by appro-
priate choice of all the parameters (the discretization, δ and n). This suffices
to apply the alternating series method, yet again. Devroye et al. (2000) use this
method to generate random variates from the limit distribution for the quick-
sort complexity. Fill (1998) has another way of doing perfect sampling which
can be used for some simple distributional identities.

4.8 Kolmogorov and Lévy measures

Infinitely divisible distributions (Sato, 2000) have several representations.
One of them is Kolmogorov’s canonical representation for the logarithm of
the characteristic function

logϕ(t) = ict +
∫

eitx − 1 − itx
x2 dK(x)�

whereK(−∞) = 0,K ↑, andK(∞)−K(−∞) = σ2. Thus,K can be viewed as
some sort of measure. When K puts mass σ2 at the origin, then we obtain the
normal distribution. WhenK puts mass λ at 1, then the Poisson(λ) distribution
is obtained. However, in general, we only have representations as integrals. For
example, with c = 1,K(x) = min(x2/2� 1/2) on the positive halfline, we obtain
Dickman’s distribution,

logϕ(t) =
∫ 1

0

eitx − 1
x

dx�
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Bondesson (1982) presents approximations when one is given the mea-
sure K. Basically, if K is approximated by n point masses each of total
weight σ2/n, then the characteristic function can be written as a product,
where each term in the product, assuming c = 0, is of the form

exp
{
α
(
eitβ − 1 − itβ

)}
for fixed values of α and β. This is the characteristic function of β(X − α)
where X is Poisson(α). Thus, approximations consist of sums of such random
variables. However, if the true distribution has a density, such discrete approx-
imations are not acceptable.

5 Random processes

A random process Xt , t ∈ R
d, cannot be produced using a finite amount of

resources, as the domain of the index is uncountable. So, it is customary to say
that we can generate a random process exactly if for any k, and for any set of
indices t1� � � � � tk, we can generate the random vector (Xt1� � � � �Xtk) exactly.
Often, these points are nicely spaced out. In many processes, we have particu-
larly elegant independence properties. For example, for all Lévy processes and
setting d = 1, we have X0 = 0, Xt1�Xt2 −Xt1� � � � �Xtk −Xtk−1 independent,
and furthermore, less important to us, the distribution of Xs+t − Xs depends
upon t only and we have continuity: P{|Xs+t − Xs| > ε} → 0 as t ↓ 0 for
all ε > 0. With that independence alone, we can thus generate each piece in-
dependently. When k is large, to protect against a proliferation of errors, it
is wise to use a dyadic strategy: first generate the process at tk/2, then at tk/4
and t3k/4, and so on. The dyadic trick requires that we know the distribution of
Xs+u −Xs conditional on Xs+t −Xs for all 0 � u � t.

An example suffices to drive home this point. In Brownian motion (S(t)�
t � 0) (a Lévy process), we have differences Xs+t − Xs that are distributed
as
√
tN , where N is a standard normal random variable. Furthermore, setting

u = t/2, we see that

Xs+t −Xs = (Xs+t −Xs+u)+ (Xs+u −Xs)

is a sum of two independent normal random variables with variances t/2 each.
Conditional on Xs+t −Xs, Xs+u −Xs thus is distributed as

Xs+t −Xs

2
+
√
t

2
N�

Therefore, the dyadic trick applies beautifully. In the same manner, one can
simulate the Brownian bridge on [0� 1], B(t) = S(t) − tS(1). For the first sys-
tematic examples of the use of this splitting trick, see Caflisch et al. (1997) and
Fox (1999).

In a more advanced example, consider a gamma process S(t), where S(t) is
distributed as a gamma random variable with parameter αt. This is not a Lévy
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process, but rather a monotonically increasing process. We have the following
recursive property: given S(t), S(t/2)/S(t) is distributed as a symmetric beta
with parameter αt/2. This allows one to apply the dyadic trick.

Perhaps the most basic of all processes is the Poisson point process. These
processes are completely described by an increasing sequence of occurrences
0 < X1 < X2� · · · . In a homogeneous point process of density λ, the inter-
occurrence distances are i.i.d. and distributed as exponentials of mean 1/λ.
In a nonhomogenoeous Poisson point process of density λ(t), a nonnegative
function, the integrals

∫ Xi+1
Xi

λ(t) dt are i.i.d. exponential. If Λ(t) = ∫ t0 λ(t) dt,
then it is easy to see thatXi+1−Xi is distributed asΛinv(Λ(Xi)+E)−Xi, where
E is exponential. We already discussed sampling by thinning (rejection) for this
process elsewhere. This process view also yields a simple but not uniformly
fast generator for the Poisson distribution: if E1� E2� � � � are i.i.d. exponential
random variables, and X is the smallest integer such that

X+1∑
i=1

Ei > λ�

then X is Poisson(λ), as we are just counting the number of occurrences of
a unit density homogeneous Poisson point process in the interval [0� λ]. By
noting that an exponential is distributed as the logarithm of one over a uniform,
we see that we may equivalently generate i.i.d. uniform[0� 1] random variables
U1�U2� � � � and let X be the smallest integer such that

X+1∏
i=1

Ui < e−λ�

This is the so-called product method for Poisson random variates.

6 Markov chain methodology

We say that we generate X by the Markov chain method if we can generate
a Markov chain Xn, n � 1, with the property that

lim
n→∞P{Xn � z} = P{X∞ � z}�

at all z at which the function P{X∞ � z} is continuous (here � is to be taken
componentwise). We write Xn

L→ X∞, and say that Xn converges in distribu-
tion to X∞. This is a weak notion, as Xn may be discrete and X∞ continuous.
For example, we may partition R

d into a grid of cells of sides 1/n1/(2d), and let
pu be the probability content of cell u. Let Xn be the midpoint of cell u, where
cell u is selected with probability pu. A simple exercise shows that Xn

L→ X∞
for any distribution of X∞. Yet, Xn is discrete, and X∞ may have any type of
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distribution. One needs of course a way of computing the pu’s. For this, knowl-
edge of the distribution function F of X∞ at each point suffices as pu can be
written as a finite linear combination of the values of F at the vertices of the
cell u. If Xn needs to have a density, one can define Xn as a uniform vari-
ate over the cell u, picked as above. In the latter case, if X∞ has any density,
we have a stronger kind of convergence, namely convergence in total varia-
tion (see below), by virtue of the Lebesgue density theorem (Wheeden and
Zygmund, 1977; Devroye, 1987b). A good general reference for this section is
Häggström (2002).

The paradigm described in the previous paragraph is a special case of what
one could call the limit law method. Many processes, such as averages, maxima
and so forth, have asymptotic distributions that are severely restricted (e.g.,
averages of independent random variables have a stable limit law). Markov
chains can easily be molded to nearly all distributions we can imagine, hence
the emphasis on them as a tool.

In the exact Markov chain method, we can use properties of the Markov
chain to generate a random variate XT , where XT

L= X∞, where we recall
that L= denotes “is distributed as”. There are a certain number of tricks that
one can use to define a computable stopping time T . The first one was the so-
called coupling from the past method of Propp and Wilson (1996), which has
been shown to work well for discrete Markov chains, especially for the gener-
ation of random combinatorial objects. For general continuous distributions,
a sufficiently general construction of stopping times is still lacking.

6.1 The Metropolis–Hastings chain

The Metropolis–Hastings chain (Metropolis et al., 1953; Hastings, 1970) can
be used for the generation of a random variate with an arbitrary density, pro-
vided that some care is taken in its choice of Markov transition probabilities.
It requires transition probabilities q(x� y) representing the density of Y on
[0� 1]d given X = x. Thus, for every fixed x ∈ [0� 1]d, q(x� y) is a valid den-
sity in y from which we can generate random variates at will. The following
algorithm produces a chain on random variates {Xn� n � 1}, which we call the
Metropolis–Hastings chain:

set X ← x ∈ [0� 1]d
repeat

generate U uniformly on [0� 1]
generate Y with density q(X� ·) on [0� 1]d
if U < f(Y)q(Y�X)

f (X)q(X�Y) then X ← Y .
The limit distribution of Xn is not necessarily a distribution with density f .

For example, if d = 1, and q(x� y) = 2 1(x�y)∈B, where B = [0� 1/2]2∪[1/2� 1]2,
then if x < 1/2 is the starting point, regardless of what f is, Xn < 1/2 for
all n, and thus, universal convergence is excluded. A sufficient condition for
convergence is that for every x� y ∈ [0� 1]d, q(x� y) > 0. Here X∞ is a random
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variable with density f and � is to be taken componentwise in R
d. In particular,

in the absence of any information on f , we may well just take q(x� y) = 1 for
all x� y. We then obtain the following simple version of the chain:

set X ← x ∈ [0� 1]d.
repeat

generate U uniformly on [0� 1]
generate Y uniformly on [0� 1]d
if U < f(Y)/f (X) then X ← Y .

We would have obtained the same algorithm if we had the symmetry con-
dition q(x� y) = q(y� x), so we call this the symmetric Metropolis–Hastings
chain. The algorithm that uses a uniform Y thus produces a sequence of X’s
that are selected from among uniforms. In this sense, they are “pure” and
amenable to theoretical analysis. In the subsection below, we recall a lower
bound for such pure methods.

6.2 The independence sampler

Tierney (1994) proposed q(x� y) ≡ q(y) for all x� y. The independence sam-
pler thus reads:

set X ← x ∈ [0� 1]d
repeat

generate U uniformly on [0� 1]
generate Y with density q on [0� 1]d
if U < f(Y)q(X)

f (X)q(Y) then X ← Y .
If q = f , then no rejection takes place, and this algorithm produces an i.i.d.
sequence of random variates with density f . Otherwise, if q > 0 there is con-
vergence (in total variation, see below), and even geometric convergence at the
rate 1− infx q(x)/f (x) (Liu, 1996). One thus should try and match q as well as
possible to f .

6.3 The discrete Metropolis chain

The chains given above all remain valid if the state space is finite, provided
that the density f (x) and conditional density q(x� y) are replaced by a station-
ary probability πx and a transition probability p(x� y) (summing to one with
respect to y). In the discrete case, there is an important special case. A graph
model for the uniform generation of random objects is the following. Let each
node in the finite graph (V �E) correspond to an object. Create a connected
graph by joining nodes that are near. For example, if a node represents an n-bit
vector, then connect it to all nodes at Hamming distance one. The degree δ(x)
of a node x is its number of neighbors, and N(x) is the set of its neighbors. Set

q(x� y) = 1y∈N(x)
δ(x)

�
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If we wish to have a uniform stationary vector, that is, each node x has asymp-
totic probability 1/|V |, then the Metropolis–Hastings chain method reduces to
this:

set X ← x ∈ V
repeat

generate Y uniformly in N(X)
generate U uniformly on [0� 1]
if U < δ(X)/δ(Y) then X ← Y .

If the degrees are the same, then we always accept. Note also that we have
a uniform limit only if the graph thus obtained is aperiodic, which in this case
is equivalent to asking that it is not bipartite.

In some situations, there is a positive energy functionH(x) of the variable x,
and the desired asymptotic density is

f (x) = Ce−H(x)�

whereC is a normalization constant. As an example, consider x is an n-bit pixel
vector for an image, where H(x) takes into account occurrences of patterns in
the image. We select q(x� y) as above by defining neighborhoods for all x. As
x is a bit vector, neighborhoods can be selected based on Hamming distance,
and in that case, q(x� y) = q(y� x) for all x, y. The symmetric Metropolis–
Hastings chain then applies (in a discrete version) and we have:

set X ← x ∈ V
repeat

generate U uniformly on [0� 1]
generate Y uniformly in N(X)
if U < exp(H(X)−H(Y)) then X ← Y .

For further discussion and examples see Besag (1986), Geman and Geman
(1984) and Geman and McClure (1985).

6.4 Letac’s lower bound

Generating a random variate with density f on the real line can always
be done by generating a random variate with some density g on [0� 1] via
a monotone transformation. Thus, restricting oneself to [0� 1] is reasonable
and universal. Assume thus that our random variate X is supported on [0� 1].
Letac (1975) showed that any generator which outputs X ← UT , where T is
a stopping time and U1�U2� � � � is an i.i.d. sequence of uniform[0� 1] random
variables must satisfy

E{T } � sup
x
f (x)�

Applying a simple rejection method with the bound supx f (x) requires a num-
ber of iterations equal to supx f (x), and is thus optimal. (In fact, two uniforms
are consumed per iteration, but there are methods of recirculating the second
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uniform.) Since some of the symmetric Metropolis–Hastings chains and inde-
pendence samplers are covered by Letac’s model, we note that even if they
were stopped at some stopping time T tuned to return an exact random vari-
ate at that point, Letac’s bound indicates that they cannot do better than the
rejection method. There are two caveats though: firstly, the rejection method
requires knowledge of supx f (x); secondly, for the Markov chains, we do not
know when to stop, and thus have only an approximation. Thus, for fair com-
parisons, we need lower bounds in terms of approximation errors.

6.5 Rate of convergence

The rate of convergence can be measured by the total variation distance

Vn=def sup
A

∣∣P{Xn ∈ A} − P{X∞ ∈ A}∣∣�
where A ranges over all Borel sets of R

d, and X∞ is the limit law for Xn. Note
Scheffé’s identity (Scheffé, 1947)

Vn = 1
2

∫ ∣∣fn(x)− f (x)
∣∣ dx�

where fn is the density ofXn (with the above continuous versions of the chains,
started at X0, we know that Xn has a density for n > 0).

Under additional restrictions on q, e.g.,

inf
x

inf
y

q(x� y)

f (x)
> 0�

we know that Vn � exp(−ρn) for some ρ > 0 (Holden, 1998; Jarner and
Hansen, 1998). For more on total variation convergence of Markov chains,
see Meyn and Tweedie (1993). Gilks et al. (1995) introduce another method
worthy of consideration, the adaptive rejection Metropolis sampler.

6.6 The Metropolis random walk

The Metropolis random walk is the Metropolis chain obtained by setting

q(x� y) = q(y� x) = g(y − x)

where g is symmetric about 0. On the real line, we could take, e.g., g(u) =
(1/2)e−|u|. The algorithm thus becomes:

set X ← x ∈ R
d

repeat
generate U uniformly on [0� 1]
generate Z with density g
set Y ← X + Z
if U < f(Y)/f (X) then X ← Y .

If g has support over all of R
d, then the Metropolis random walk converges.
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6.7 The Gibbs sampler

Among Markov chains that do not use rejection, we cite the Gibbs sampler
(Geman and Geman, 1984; Gelfand and Smith, 1990) which uses the following
method to generate Xn+1 given Xn = (Xn�1� � � � �Xn�d): first generate

Xn+1�1 ∼ f (·|Xn�2� � � � �Xn�d)�

Then generate

Xn+1�2 ∼ f (·|Xn+1�1�Xn�3� � � � �Xn�d)�

and continue on until

Xn+1�d ∼ f (·|Xn+1�1� � � � �Xn+1�d−1)�

Under certain mixing conditions, satisfied if each conditional density is sup-
ported on all of the real line, this chain converges. Of course, one needs to
be able to generate from all the (d − 1)-dimensional conditional densities. It
is also possible to group variables and generate random vectors at each step,
holding all the components not involved in the random vector fixed.

6.8 Universal generators

A universal generator for densities generates a random variate X with den-
sity f without any a priori knowledge about f . The existence of such a gen-
erator is discussed in this section. It is noteworthy that a universal discrete
generator (where X is supported on the positive integers) is easily obtained by
inversion (see above). In fact, given any distribution function F on the reals, an
approximate inversion method can be obtained by constructing a convergent
iterative solution of U = F(X), where U is uniform[0� 1]. For example, binary
search could be employed.

Assume that we can compute f as in a black box, and that X is supported
on [0� 1]d (see the previous section for a discussion of this assumption). We
recall that if (X�Y) is uniformly distributed on the set A = {(x� y): x ∈
[0� 1]d� 0 � y � f (x)}, then X has density f . Thus, the purpose is to generate
a uniform random vector on A. This can be achieved by the Gibbs sampler,
starting from any x ∈ [0� 1]d:

set X ← x ∈ [0� 1]d
repeat

generate U uniformly on [0� 1]
set Y ← Uf(X)
repeat

generate X uniformly on [0� 1]d
until f (X) � Y .

This algorithm is also known as the slice sampler (Swendsen and Wang, 1987;
Besag and Green, 1993). In the first step of each iteration, given X, Y is
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produced with the conditional distribution required, that is, the uniform dis-
tribution on [0� f (X)]. Given Y , a new X is generated uniformly on the part
of [0� 1]d that is tucked under the curve of f . We chose to do this by rejection,
because nothing is known about f . If some information is known about f , se-
rious accelerations are possible. For example, if f is monotone decreasing on
[0� 1], binary search may be used to reduce the search region rapidly. If f is
strictly unimodal, then a slight adaptation of binary search may help. To illus-
trate the latter point for d = 1, assume that both f and f inv are available in
black box format, and that f is supported on the real line. Then the following
algorithm always converges, where f� and fr denote the left and right solutions
of f (x) = Y :

set X ← x ∈ R

repeat
generate U uniformly on [0� 1]
set Y ← Uf(X)
generate X uniformly on [f�(Y)� fr(Y)].

Note that normalization or multiplicative constants in f and f inv can be
dropped altogether.

In any case, convergence theorems for the Gibbs sampler imply that
the rejection Markov chain given above produces a sequence of vectors
{(Xn�Yn)� n � 1}, with the property that (Xn�Yn) tends in total variation
to (X�Y), a random vector with the uniform distribution on A. Therefore,
Xn tends in total variation to X, which has density f . It is thus a universal, but
approximate, method.

There are stumbling blocks if one wishes to obtain an exact universal
method. One which requires the knowledge of the tail function

T(t) =
∫
x:f (x)>t

f (x) dx� t > 0�

can easily be constructed. We consider the density in slabs of size one and
generate a uniform random vector inA slab-wise. Definepn = T(n+1)−T(n),
n � 0, and note that

∑
n pn = 1. Selection of a random slab can be done by

inversion on the fly – it does not require storage of the pn’s. Thus, a simple
mixture and rejection algorithm would do this:

generate Z � 0 with probability distribution (p0� p1� p2� � � �)
repeat

generate (X�Y) uniformly on [0� 1]d × [0� 1]
until Z + Y � f (X)
return X.

6.9 Coupling from the past

Asmussen et al. (1992) and Propp and Wilson (1996) shocked the simulation
world by announcing a way of simulating a finite discrete time ergodic Markov
chain that produces an output with the stationary distribution. Their method is
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called perfect sampling, or CFTP, coupling from the past. We shall denote the
unique stationary probability vector by (π1� � � � � πn), where n is the number of
states. We reserve t for the time index.

Let ωt denote a random element at time t, governing transitions from all
states. That is,Xt+1, the state at time t+1, is a function ϕ(Xt�ωt), and indeed,
we know and design ϕ and ωt such that the transition probabilities

P{Xt+1 = y|Xt = x} = q(x� y)�

for all x, y, as prescribed. The random elements ωt form an independent
sequence in t. Interestingly, the transitions at time t may be coupled. For ex-
ample, if the Markov chain is a random walk on a cycle graph, then ωt may
just flip a fair coin. If it comes up heads, then all transitions are to the left, and
if comes up tails, all transitions are to the right. The coupling is thus up to the
designer. In the CFTP method, the sequence ωt is fixed once and for all, but
we need to generate only a finite number of them, luckily, to run the algorithm.

Pick a positive integer T . A basic run of length T consists of n Markov
chains, each fired up from a different state for T time units, starting at time−T
until time 0, using the random elements ωt , −T � t < 0. This yields
n runs Xt(i), 1 � i � n (i denotes the starting point), −T � t � 0, with
X−T (i) = i. Observe that if two runs collide at a given time t, then they will
remain together forever. If X0(i) is the same for all i, then all runs have col-
lided. In that case, Propp and Wilson showed that X0(·) has the stationary
distribution. If there is no agreement among the X0(i)’s, then replace T by 2T
and repeat, always doubling the horizon until all X0(i)’s agree. Return the
first X0(·) for which agreement was observed.

It is interesting that coupling in the future does not work. We cannot simply
start the n chains X0(i) = i and let T be the first time when they coalesce,
because there are no guarantees that XT(·) has the stationary distribution. To
see this, consider a directed cycle with n vertices, in which state 1 is the only
state with a loop (occurring with probability ε > 0). Coalescence can only take
place at this state, so XT(·) = 1, no matter what. Yet, the limiting distribution
is roughly uniform over the states when ε > 0 is small.

The effort needed may be prohibitive, as the time until agreement in a well
designed coupling is roughly related to the mixing time of a Markov chain,
so that n times the mixing time provides a rough bound of the computational
complexity. Luckily, we have the freedom to design the random elements in
such a manner that coalescence can be checked without doing n runs. For ex-
ample, for a random walk on the chain graph with n vertices, where a loop is
added (with probability 1/2) at each state to make the Markov chain aperiodic,
we design the ωt such that no two paths ever cross. Then coalescence can be
checked by following the chains started at states 1 and n only. The coupling
in ωt is as follows: draw a uniform integer from {−2�−1� 1� 2}. If it is −2, then
all transitions are to the left, except the transition from state 1, which stays. If
it is 2, then all transitions are to the right, except the transition from state n,
which stays. If it is −1, then all states stay, except state n, which takes a step to
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the left. If it is 1, then all states stay, except state 1, which takes a step to the
right. As the number of steps until the two extreme runs meet is of the order
of n2, the expected complexity is also of that order. For more on the basics of
random walks on graphs and mixing times for Markov chains, see Aldous and
Fill (2004).

If the state space is countably infinite or uncountable (say, R
d), then special

constructions are needed to make sure that we only have to run finitely many
chains, see, e.g., Green and Murdoch (1999), Wilson (2000), Murdoch (2000)
or Mira et al. (2001). Most solutions assume the existence of a known dominat-
ing density g, with f � cg for a constant c, with random samples from g needed
to move ahead. The resulting algorithms are still inferior to the corresponding
rejection method, so further research is needed in this direction.

6.10 Further research

If one accepts approximations with density fn of the density f , where n is the
computational complexity of the approximation, then a study must be made
that compares

∫ |fn−f | among various methods. For example, fn could be the
nth iterate in the slice sampler, while a competitor could be gn, the density in
the approximate rejection method, which (incorrectly) uses rejection from n
(so that gn is proportional to min(f� n), and

∫ |gn − f | = 2
∫
(f − n)+). Both

methods have similar complexities (linear in n), but a broad comparison of
the total variation errors is still lacking. In fact, the rejection method could
be made adaptive: whenever an X is generated for which f (X) > n, then
replace n by f (X) and continue.

Simple exact simulation methods that are based upon iterative non-
Markovian schemes could be of interest. Can coupling from the past be ex-
tended and simplified?
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Abstract

Representing uncertainty in a simulation study is referred to as input modeling,
and is often characterized as selecting probability distributions to represent the in-
put processes. This is a simple task when the input processes can be represented as
sequences of independent random variables with identical distributions. However,
dependent and multivariate input processes occur naturally in many service, commu-
nications, and manufacturing systems. This chapter focuses on the development of
multivariate input models which incorporate the interactions and interdependencies
among the inputs for the stochastic simulation of such systems.

1 Introduction

An important step in the design of stochastic simulation is input modeling,
which refers to modeling the uncertainty in the input environment of the sys-
tem being studied. Input modeling is often thought of as limited to selecting ap-
propriate univariate probability distributions to represent the primitive inputs
of a simulation, and this would indeed be true if the relevant input processes
could be represented as independent sequences of identically distributed ran-
dom variables. When such univariate models are appropriate, a number of
generation procedures and tools that support automated input modeling are
available; Chapter 4 provides a good overview.

Often, however, univariate models fail to adequately capture the effect of
dependencies between input processes that occur naturally in different forms
in many service, communications, and manufacturing systems; Melamed et al.
(1992) and Ware et al. (1998) give good examples. The ability to capture these
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dependencies is crucial because inaccurate input models often lead to per-
formance estimates that are seriously in error. This is illustrated powerfully
in a straightforward example provided by Livny et al. (1993), who examine
the impact of autocorrelated interarrival times on the mean waiting time of
a single-server queue. They simulate an M/M/1 queue process with indepen-
dent sequences of exponential interarrival and service times and observe that
the estimated mean waiting time changes dramatically with the introduction of
autocorrelation in the interarrival process, showing increases by a factor of two
orders of magnitude when the autocorrelation is set high. This shows that the
independence assumption could lead to very poor estimates of performance
measures in the presence of dependence. It is thus imperative to develop sim-
ulation input models that incorporate dependence. Our goal here is to present
a coherent narrative of the central principles that underlie many promising
methods available for constructing dependent input models.

We consider models that can be broadly classified into two groups. The
first group produces a sequence of independent samples of a random vector
X = (X1�X2� � � � �Xd)

′, which is a finite collection of d random components.
Each component is a real-valued random variable and is associated with a uni-
variate distribution function called its marginal distribution. We associate with
the random vector a probability distribution function, called its joint distribu-
tion function, in the space #d. This joint distribution completely defines the
stochastic (and hence dependence) properties of X. The second group of input
models we consider in this chapter captures dependence that arises between
subsequent samples of a sequence. Sequences of samples are frequently in-
dexed over time and stochastic processes that exhibit this temporal dependence
are called time series. In this chapter, we use the term time series to denote a se-
quence of random variables {Xt; t � 1} indexed by a discrete set t = 1� 2� � � � .
For example, the month-to-month order quantities for a product placed by a
customer can be considered as a univariate time series. The time-series process
is a stochastic process with a probability distribution on the space of all possi-
ble path realizations. Such a probability distribution completely describes the
dependence properties of the stochastic process {Xt; t � 1}. However, almost
all statistical and engineering applications specify and analyze time series in
terms of the probability distributions of the individual random elements Xt

and the autocorrelation structure of the sequence, which (refer to Section 4.2)
is a measure that tries to capture temporal dependencies in sufficient detail.

Simulation input modeling literature focuses on random vectors and time
series as separate cases, although the underlying concepts are often similar.
We maintain this distinction while describing the methods, but strive to present
them as different avatars of the same central concept. A recent unifying work
(Biller and Nelson, 2003) represents random vector and time series as special
cases of the more general framework of multivariate time series. This denotes
a time series where the elements Xt are finite d-dimensional random vectors
with distributions in #d, and thus represent input processes where dependence
exists both over time and among the components of the input process. For ex-
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ample, a distributor has several warehouses and each places monthly orders for
a product. The month-to-month dependence still exists, but there may also be
dependence between the orders from different warehouses in the same month
if they are able to share inventory or supply the same customers.

A multivariate input modeling procedure can be judged good or effective
based on a number of criteria that can be grouped into two main categories,
those that judge its modeling capabilities and the effectiveness of its sampling
procedures respectively. Any model needs to perform well in both.

From the modeling point of view, a method should firstly be able to repre-
sent a broad class of real-life situations. For example, a procedure that models
random vectors to have multivariate- or joint-normal distributions may not be
appropriate in situations where the true input process is known to be either
multi-modal, nonsymmetric, skewed or heavy-tailed. The goal of representing
a wide variety of situations is best achieved when the procedure works directly
with a complete characterization of the input process, which would be the joint
distribution in the case of random vectors and in the more general case of a
multivariate time series a probability distribution on the space of all possible
#d sample path realizations of the process. Some random vector modeling pro-
cedures indeed work on this principle (Section 2) or with a more modest aim
of modeling the random vector as a member of an appropriately chosen family
of joint distributions (Section 3).

Modeling by matching the joint distribution, though sound from a model-
ing power point of view, can be quite restrictive in practice. This is primarily
due to the quantity and quality of information needed to adequately fit a joint
distribution to the situation at hand. The information needed could be data or
expert opinion to estimate the true joint distribution function or the parame-
ters of a chosen model distribution function. In light of this difficulty, most of
the focus in input-modeling research has been on the development of meth-
ods that match only certain key properties of the input process (Section 4),
mainly its marginal distributions and an aptly chosen dependence measure.
This approach is not completely general, but one can be reasonably certain
that the chosen properties capture the effect of dependence to a satisfactory
degree in the model. Moreover, these models are presumably easier to con-
struct from data since either fewer parameters need to be estimated or the
estimates needed are easily obtained from available data.

From a sampling point of view, the sampling schema associated with a pro-
cedure should be easy to implement on a computer and fast in generating
samples. Thus, it should avoid complex, computationally intensive function
evaluations, which might be needed in many of the approaches in Sections
2 and 3.

One should additionally be able to easily validate the success of a procedure
in representing input dependencies once a sample of data is generated. This
statistical model validation is an important aspect of the input model devel-
opment but it will not be covered here; texts such as Law and Kelton (2000)
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provide a detailed discussion of issues such as goodness of the fit and valida-
tion.

The methods discussed in this chapter are presented in descending order
of control we have on the stochastic description of the multivariate input
processes. In Sections 2 and 3 this discussion is essentially centered around
random vector processes and their joint distributions. Much of the time series
modeling literature focuses on processes that are partially specified with dis-
tributions for individual elements and autocorrelations. These methods have
much in common with random vector methods that work with similar partial
specifications and are therefore discussed in a unified manner in Section 4. We
conclude with promising areas for input modeling research in Section 5.

2 Constructing full joint distributions

The joint (or multivariate) cumulative distribution function (c.d.f.) of a
d-dimensional random vector X = (X1�X2� � � � �Xd)

′ is a nondecreasing
d-dimensional real-valued function F that takes values in [0� 1] and is right-
continuous in each argument. The joint distribution function completely char-
acterizes the stochastic behavior of X. Random vector X is said to have a
joint (or multivariate) probability density function (p.d.f.) f , if a nonnegative,
integrable function f exists such that

F(x) =
∫ x1

−∞

∫ x2

−∞
· · ·
∫ xd

−∞
f (u1� u2� � � � � ud) du1 du2 · · · dud�

In this section, we present different approaches that construct input mod-
els with fully specified joint c.d.f.’s or p.d.f.’s. Although these methods are
typically used for constructing random vectors and generating data from the
pre-specified joint cumulative distribution functions, they can be applied to
time-series processes of fixed lengths as well.

Some methods assume that such a joint distribution is explicitly given (Sec-
tions 2.1 and 2.3) while some assume that it is available in a special form
(Section 2.2). These requirements entail knowledge of a multidimensional
function, which can be a major drawback especially if the dimensions involved
are large. Other methods reviewed (Sections 2.4 and 2.5) take the alternative
approach of obtaining nonparametric estimations of the joint distribution from
available historical data. In particular, Bézier curves (Section 2.4) allow the in-
clusion of various types of expert opinions into the model development using
visualization tools, while kernel density estimators (Section 2.5) provide a gen-
eralization and improvement over histograms.

2.1 Acceptance/rejection method

The acceptance/rejection method has been used extensively for generating
univariate data, but its impact on multivariate data generation has been muted.
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This is partly due to the relatively limited attention researchers have paid to
multivariate generation, but also because significant practical difficulties exist
in the implementation of the method.

The acceptance/rejection principle has a long history; Marsaglia and Bray
(1964) is an early reference. To generate random vector X from a multivariate
joint density function f (·), first a joint density h(x) is selected such that ch(x)
dominates f (x), i.e., ch(x) � f (x), for any x in the domainD of the function f ,
where c is some positive constant. A random vector sample generated from
h(x) is then accepted as a sample from f (x) with probability f (x)/[ch(x)]. It
is straightforward to show that this procedure generates vector samples with
density f ; a proof of this result is available in Appendix 8A of Law and Kelton
(2000).

Two important challenges arise in implementing this method: finding a dom-
inating density h which is easy to sample, and computing the constant c =
supx∈D f(x)/h(x). If D is bounded, then one can choose the multivariate uni-
form density function as the dominating h. Otherwise, a reasonable choice is
to let h be the joint distribution of independent random variables with the
same marginals as those of f . However, for these choices of h, the constant c
(which also represents the expected number of h-samples needed to obtain
an f -sample, and hence the average time needed to generate one f -sample)
increases rapidly as the dimension increases. A more complicated h might
be more efficient, but constructing h, generating data from h and comput-
ing c may be more difficult and expensive. Gilks and Wild (1992), Hörmann
(1995) and Leydold (1998) suggest the transformed-density-rejection method
to construct a dominating function, in which one uses a monotonic function
to transform f into a concave function, takes the minimum of several tangent
hyper-planes, and then transforms it back into the original scale.

The choice of the dominating function h is by no means a trivial one, and
one needs to exercise great care. Lack of a codified procedure to obtain effi-
ciently sampled dominating functions makes this method unappealing even in
cases of moderate dimensional random vectors.

2.2 Conditional distributions

These methods factorize the joint distribution into a set of conditional and
marginal distributions that easily yields samples with the desired joint distri-
butional properties. The key idea is to reduce the problem of generating a
d-dimensional random vector into a series of smaller multivariate, and often
d univariate, generation problems. Thus, these methods can utilize the vast
body of techniques available for univariate generation problems.

There are a large number of ways in which joint distributions can be speci-
fied in terms of conditional and marginal distributions, and such a specification
can arise naturally in many systems through its dynamics. Gelman and Speed
(1993) provide a discussion of the combinations of marginal and conditional
distributions that ensure the existence of a (unique) joint distribution. We shall
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outline two such approaches that we feel are attractive from a random vector
generation point of view.

The first approach (Rosenblatt, 1952) factorizes the joint density function
f (x) of the d-dimensional random vector X = (X1�X2� � � � �Xd)

′ into a mar-
ginal and (d − 1) conditional distributions as follows:

(1)f (x) = fX1(x1)

d∏
m=2

fXm|X1�����Xm−1(xm|x1� � � � � xm−1)�

where fX1 is the marginal density of the first componentX1 and fXm|X1�����Xm−1
is the conditional density of the mth component Xm, given the first m − 1
components X1� � � � �Xm−1. Any such set of conditional distributions always
defines a valid joint distribution via (1). Notice that as long as the structure
of the factorization remains the same, the order of the conditioning has no
impact on the resulting input model: the first factor on the right-hand side of
the factorization might as well correspond to the dth component.

Using the factorization (1), random vector X can be sampled by first gen-
erating X1 = x1 from the marginal distribution fX1 of X1, then generating
X2 = x2 from the conditional distribution of X2 given X1 = x1, fX2|X1 , and so
forth through the d components. Despite its simple logic, this method may be
difficult to apply as conditional distributions are not easy to derive except for
some special cases. Such easily factored multivariate distributions include the
multivariate normal (Tong, 1990), the Cauchy and the Burr (Johnson and Kotz,
1972). In cases where the joint distribution is not known, the conditional dis-
tributions have to be obtained either from an estimate of the joint distribution
or estimated directly.

Another class of conditional distribution based methods that has drawn
some academic interest in recent years can be of potential interest to the
simulation practitioner. Arnold et al. (2001) provide a good survey of this
approach, where the joint distribution is specified in terms of the condi-
tional distribution of the mth component given all the other components
X1� � � � �Xm−1�Xm+1� � � � �Xd, m = 1� � � � � d. We denote the associated con-
ditional distribution by Fm|−m(xm|x1� � � � � xm−1� xm+1� � � � � xd). The sample
generation procedure is simple. The (n+ 1)st sample xn+1 is obtained using xn

of the previous step as follows:

(i) xn+1
1 is sampled from F1|−1(·|xn2� � � � � xnd).

(ii) For m = 2� � � � � d − 1, xn+1
m is sampled from Fm|−m(·|xn+1

1 � � � � � xn+1
m−1�

xnm+1� � � � � x
n
d).

(iii) xn+1
d is sampled from Fd|−d(·|xn+1

1 � � � � � xn+1
d−1).

This procedure is known as the Gibbs sampling technique (Geman and
Geman, 1984) and is primarily driven by the theory of Markov chains. Un-
der fairly reasonable conditions, the joint distribution of the sample points xn,
n � 1, can be shown to converge to a limiting stationary joint distribution



Ch. 5. Multivariate Input Processes 129

geometrically fast (under a certain norm). This limiting distribution is unique
if all of the conditional distributions have the same support (i.e., the subset
over which the functions are nonzero in #). However, the convergence to a
limiting distribution is not guaranteed for any arbitrary set of conditional dis-
tributions, unlike the earlier approach, where the factorization (1) ensures the
correct joint distribution produced. Gelman and Speed (1993) discuss suffi-
cient conditions for the convergence in the bivariate case. Although compatible
conditional distributions can be chosen with relative ease in lower dimensions,
this problem will likely become intractable in higher dimensions.

Independent of the approach used, it gets harder to derive the conditional
distributions from a joint distribution as the dimension of the input process
increases. Additionally, conditional distributions are hard to understand in
higher dimensions; therefore using expert opinion in the context of these meth-
ods with increasing dimensions will be difficult. These issues limit the usage
of this method in higher dimensional random vector sampling beyond special
cases where the conditional distributions arise naturally.

2.3 Method of copulas

The distinguishing feature of the method of this section is its use of a family
of distributions called copulas. A copula may be thought of in two equivalent
ways: as a function that maps points in the unit hypercube in #d to values in
the unit interval or as a multivariate joint distribution function with standard
uniform marginal distributions. Sklar (1959) shows that every joint distribution
H with marginals Fi, i = 1� � � � � d, can be written as

(2)H(x1� x2� � � � � xd) = C
(
F1(x1)� F2(x2)� � � � � Fd(xd)

)
�

where C is a copula that is uniquely defined if the marginals Fi are continuous,
and is unique to an equivalence class in the case of discrete marginals. In ei-
ther case, C can be interpreted as the dependence structure ofH. Thus, we can
transform the problem of estimating the joint distribution from a given data set
to that of estimating a function in the unit hypercube. The copula can be deter-
mined empirically or can belong to an appropriately chosen parametric family.
However, the central issue of estimating a function in d variates remains, and
hence these methods can very often be haunted by the curse of dimensionality.

The main advantage of a copula is that it remains invariant under strictly
increasing transformations of its component variables, simplifying the random
vector generation. To sample a random vector X = (X1�X2� � � � �Xd)

′ with
joint distribution H as defined in (2), we first generate a multivariate uniform
vector U = (U1�U2� � � � � Ud)

′ from copula C and then set the random vec-
tor X to be (F−1

1 (U1)� � � � � F
−1
d (Ud))

′, where F−1
i (u) = inf{x: Fi(x) � u} is

the generalized inverse of Fi. Thus, copulas provide an easy method to model
and generate random vectors when the modeler believes that the dependence
between the components of the random vector can be expressed independently
of the marginal distributions. Later in Sections 4.3.2 and 4.3.3, we shall discuss
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the methods that use copulas with a special structure as a base for a fast sam-
pling procedure that match partial specifications of random vectors.

Normal copulas are commonly used in the literature for summarizing the
dependence structure of a random vector since one can calibrate them to yield
pre-specified pair-wise product-moment or rank correlations (Section 4.1); see
Clemen and Reilly (1999) for an example. This kind of dependence modeling is
also becoming increasingly popular in cases where linear correlation falls short
of capturing complex interactions and interdependencies among the model in-
puts. Further, numerous other parametric families of copulas can be coupled
with arbitrary marginal distributions without worries about consistency. Joe
(1997) and Nelsen (1999) provide a survey of some extensively studied para-
metric families of copulas.

2.4 Bézier distributions

This subsection presents a graphical, interactive technique for modeling
simulation input processes whose distributions are based on Bézier curves used
extensively in computer graphics to approximate smooth functions on bounded
intervals. The distinguishing feature of this type of modeling is that since low
dimensional Bézier curves can be easily visually modified, various types of
expert opinions can be incorporated into the model development using visu-
alization tools. Wagner and Wilson (1995, 1996) develop such tools for the
univariate and bivariate cases and show that these are quite effective, espe-
cially when few historical data points are available from the existing system.
This method is limited to the estimation of continuous joint distributions with
bounded support.

We present the key idea behind the construction of Bézier distributions con-
sidering the simplest case of representing a univariate, independent process
with a marginal distribution denoted by F . To estimate the Bézier approxima-
tion F̂ for the true distribution function F , we first define a Bézier curve in two
dimensions via the parametric bivariate function

P(t) = [Px1(t;n� x1)� Px2(t;n� x2)
]

=
n∑
i=0

Bn�i(t)pi�

where t ∈ [0� 1], x1 = (x10� x11� � � � � x1n)
′, x2 = (x20� x21� � � � � x2n)

′ and
{pi = (x1i� x2i)

′; i = 0� 1� � � � � n} are n + 1 bivariate control points. The
control points can be thought of as magnets attracting the curve P to them-
selves. The attraction is quantified in terms of the Bernstein polynomials
{Bn�i(t); i = 0� 1� � � � � n} (Farin, 1990). The attraction from the ith control
point is the strongest at i/n, where Bn�i(t) attains its maximum value. The
curve passes through pi if Bn�i = 1, which is true for the endpoints p0 and pn.
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We can now define the Bézier approximation F̂ for F via the curve P as

x(t) = Px1(t;n� x1) =
n∑
i=0

Bn�i(t)x1i�

F̂
[
x(t)

] = Px2(t;n� x2) =
n∑
i=0

Bn�i(t)x2i

for all t ∈ [0� 1]. Further, the density function estimate f̂ is given parametrically
for x(t) as

f̂
[
x(t)

] =
∑n−1

i=0 Bn−1�i(t) x1i∑n−1
i=0 Bn−1�i(t) x2i

for all t ∈ [0� 1], where  xji = xj(i+1)−xji for i = 0� 1� � � � � n− 1 and j = 1� 2.
It is straightforward to generate a Bézier random variate with this density via
inversion. After a uniformly distributed random number u ∈ [0� 1] is obtained,
the equality Px2(tu;n� x2) = u is solved for tu ∈ [0� 1] and the random variate
x is set to Px1(tu;n� x1).

Wagner and Wilson (1995) provide two approaches for obtaining the Bézier
density estimate f̂ when the functional form of the true distribution is not
known. The first approach finds a Bézier approximation whose distributional
properties match expert opinion using a visualization software. This software
allows the user to choose appropriate control points, and then makes sure
that f̂ satisfies the density validity conditions. The second approach is used
when historical data are available. An empirical distribution Fn can be con-
structed from the data sample and one can then minimize the distance between
Fn and F̂ in any functional distance norm subject to the constraints that F̂ has
the extreme values 0 and 1, and that f̂ , the density function defined above, is
nonnegative.

The extension of the key idea to the characterization of the multivariate case
is straightforward. The parametric function P in d + 1 dimensions,

P(t) = [Px1(t;n� x1)� Px2(t;n� x2)� � � � �

Pxd (t;n� xd)� Pxd+1(t;n� xd+1)
]
�

is used to derive a d-dimensional joint distribution function and the density
function estimate can again be obtained in several ways. However, parameter
estimation would become increasingly difficult. Using visualization tools be-
comes noticeably harder even in the bivariate case (Wagner and Wilson, 1996)
and can be ruled out in higher dimensions. Wagner and Wilson (1996) suggest
some simple easily solvable optimization formulations to obtain a proper fit
in the bivariate case. These can be extended to higher dimensions, but care
must be given to the formulation to ensure feasibility and computational ease.
Nevertheless, to the best of our knowledge, the extension of these methods to
higher-dimensional generation has not been tried and it deserves attention.
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2.5 Kernel density estimation

These methods estimate joint densities using kernel density estimates. They
are also well suited for efficient multivariate generation in cases where the ker-
nel estimators are carefully chosen. We note that generating random variates
from a density estimate by using kernel estimates is the same as the smoothed
bootstrap, the subject of Chapter 14.

The literature credits Rosenblatt (1956) for proposing this method and
Parzen (1962) for providing an early framework. We refer the reader to
Devroye and Györfi (1985) and Silverman (1982) for a good introduction.
These methods do not seem to be very popular in the simulation input mod-
eling literature, and this is perhaps due to the fact that selecting the right
parameters to obtain good estimates of joint distributions with these methods
can increasingly be an art. Some recent attention to these methods, however,
suggest that they have the potential to perform very well for problems with
moderate dimensions.

The kernel density estimate of an unknown d-dimensional joint density
function f is obtained from an observed d-dimensional data sample of size n
by averaging an appropriately scaled noise density centered around each of the
data points. (Although we refer here to density estimates, this procedure can
be applied to estimate c.d.f.’s using kernel distributions.) The noise is chosen to
be a multivariate random vector whose d-variate probability density function
is called the kernel, denoted by KH and defined as

KH(x) = |H|−1/2K
(
H−1/2x

)
�

where H is a symmetric positive definite d × d matrix called the bandwidth
matrix. The density function K is assumed to be symmetric around the origin,
and we shall henceforth consider this condition to be a part of the definition of
the kernel density function. In its most general form, the d-dimensional kernel
density estimator is (Deheuvels, 1977)

f̂n(x;H) = 1
n

n∑
i=1

KH(x − Xi)�

This probability density function is the equiprobable mixture of n noise distrib-
utions, each centered around one of the data points. Sampling from this density
estimate is achieved by resampling from the original n data points, each being
equally likely, and then adding some noise to the selected data point in the
form of a sample from the scaled kernel KH associated with it. Notice that
the generation procedure does not need an explicit calculation of the kernel
density estimate.

Under certain conditions on the bandwidth parameter H and the target
p.d.f. f , the kernel density estimate f̂n converges asymptotically to the true
density in the integrated mean squared error sense as n grows. Thus, the gen-
eration procedure produces samples asymptotically consistent with f , and the
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kernel density and the bandwidth parameters that minimize the integrated
mean squared error is the best choice for the given n-sized sample. However,
the selection of such a pair has its challenges in practice. In the univariate case,
where the minimization problem has been analytically solved (Wand and Jones,
1995), it is often better from a generation-effort perspective to choose a near-
optimal kernel that is straightforward to sample. Although the literature sees a
lot of attention paid to this issue there is no generally accepted procedure for
specifying the bandwith and kernel parameters. We refer the reader to Wand
and Jones (1995) for a good overview and Silverman (1982) for quick-and-
dirty estimates of these parameters. These estimates can be far from optimal
for many distributions. In such a case, Hörmann et al. (2001) suggest the use of
the normal kernel together with a variance-correction algorithm. It is based on
the fact that fitting a multivariate normal distribution is optimal if the unknown
distribution is normal (with |H| → ∞), and naive resampling is optimal if the
unknown distribution is not continuous (with |H| = 0). In other cases, it would
intuitively seem that intermediate values of |H| lead to a better approximation
of the unknown distribution. So, even if the guess of |H| is far from optimal,
it is still very likely that it is better than using naive resampling or fitting the
normal distribution for most continuous distributions.

Although the asymptotic approximation properties of the kernel density es-
timation procedure are theoretically well understood as compared to many
other density estimation procedures, the problem of selecting an efficient pair
of kernel density and bandwidth parameters in the d-dimensional case remains
to be addressed. Preliminary evidence indicates that the method performs sat-
isfactorily in moderate dimensional input processes.

3 Parametric families of joint distributions

As underscored in the previous section, the quantity and the quality of ex-
pert opinion or data needed to satisfactorily model a multivariate input process
with a fully specified joint distribution might turn the input model develop-
ment into a formidable task even in moderate dimensions. A classical approach
around this problem is to assume a parameterized form for the unknown joint
distribution and then determine the parameter values based on any available
expert opinion or historical data. However, many of the standard distributions
available in literature are insufficient for Monte Carlo applications. Johnson
(1987) provides a comprehensive list of these insufficiencies, where he notes
that often these families are insufficiently flexible and require formidable com-
putational power to fit and generate samples. These limitations should not be
viewed as grounds to abandon these specific distributions entirely, and clearly
ample opportunity exists to make significant contributions to this approach.

Many of the parametric families of the multivariate distributions are tied
directly to the multivariate normal distribution, which has played a dominant
role in both theoretical and applied statistics since the time of Laplace. The
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normal curve cannot provide adequate representation for many of the input
processes encountered in practice, and there exists a significant body of work
exploring reasonable departures from the multivariate normal distribution. For
example, (elliptically) symmetric distributions generalize the symmetric form of
the multivariate normal distribution to distributions that possess (elliptically)
symmetric contours, while maintaining the advantage of being easy to sample.
Fang et al. (1990), Joe (1997) and Johnson (1987) provide a good introduction
to the properties of symmetric distributions.

The constraint that the underlying joint distributions possess symmetric
contours is also found to be quite restrictive in practice. A class of distri-
butions called the systems of skew frequency curves has been developed to
overcome the limitation of the multivariate normal distribution in represent-
ing skewed processes. Recall that the probability density function of a mul-
tivariate normal random variable is completely determined by the first two
moments; therefore, it is not possible to have a skewness factor that could have
an impact on the shape of the distributions. The systems of skew frequency
curves are constructed from a multivariate normal random vector by applying
component-wise transformations and include the t-distribution, the exponen-
tial power distribution, and the log-normal distribution. Similar distributions
in common use are the Pearson-type distributions proposed by Pearson (1895)
and Charlier (1906), and those proposed by Edgeworth (1898), who uses trans-
formations which can be represented by polynomials.

In the last few years, a translation system developed by Johnson (1949a)
has been one of the most popular flexible system of distributions used in
simulation applications (e.g., see Stanfield et al., 1996; Mirka et al., 2000;
Biller and Nelson, 2003). Johnson (1987) is a good source of information on
many members of the so-called Johnson translation system. We start with the
univariate system, for which a random variable X is defined by a cumulative
distribution function of the form

(3)F(X) = Φ

{
γ + δg

[
X − ξ

λ

]}
�

where γ and δ are shape parameters, ξ is a location parameter, λ is a scale
parameter, Φ is the standard univariate normal distribution function and g(·)
is one of the following transformations:

(4)g(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log(y) for the SL (log-normal) family�

log
(
y +√y2 + 1

)
for the SU (unbounded) family�

log
( y

1−y
)

for the SB (bounded) family�

y for the SN (normal) family�

There is a unique family (choice of g) for each feasible combination of the
skewness and the kurtosis that determine the parameters γ and δ. Any mean
and (positive) variance can be attained by a g in (4) by manipulating the pa-
rameters λ and ξ. Within each family, a distribution is completely specified by
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the values of the parameters [γ� δ� λ� ξ] and the range of X depends on the
family of interest. A detailed illustration for the shapes of the Johnson-type
probability density functions can be found in Johnson (1987).

The multivariate version of this system is obtained by using the following
d-dimensional normalizing translation (Johnson, 1949b):

(5)Z = γ + δg
[
λ−1(X − ξ)] ∼ Nd(0��Z)�

where Z is a d-dimensional normal random variable with mean 0 and a d×d co-
variance matrix �Z, γ = (γ1� γ2� � � � � γd)

′, ξ = (ξ1� ξ2� � � � � ξd)
′ are the d-di-

mensional vectors of shape and location parameters, δ = diag(δ1� δ2� � � � � δd)
and λ = diag(λ1� λ2� � � � � λd) are the diagonal matrices whose entries are the
shape and scale parameters and the transformation g(·) is defined as

g
[
(y1� y2� � � � � yd)

] = [g1(y1)� g2(y2)� � � � � gd(yd)
]
�

where gi(yi), i = 1� 2� � � � � d, are defined as in (4). This characterization en-
sures that the marginal distribution of each Xi is a univariate Johnson distrib-
ution.

Modeling using the Johnson family of distributions can be advantageous
since they have the ability to represent any set of (finite) first four moments.
Moreover, simulation output performance measures are other insensitive to
the specific input distribution chosen when enough moments of the distribution
are correctly captured. Examples include diffusion approximations and many
queuing applications (Burman, 1981). Moreover, the Johnson translation sys-
tem represents a wide variety of unimodal and bimodal distributional shapes,
though shapes with three or more nodes cannot be represented. Further, it
allows for the marginal distributions to be different, while most parametric
families require that they be from the same family.

The distributions of the Johnson translation system are easy to sample using
the normalizing translation defined in (5) once the covariance matrix�Z of the
multivariate normal random variable Z, and the marginal distribution parame-
ters g, γ , δ, λ and ξ are given. Estimating these distribution parameters from
available data can however pose significant challenges. The marginal parame-
ters can be estimated from the corresponding univariate marginal information
(DeBrota et al. (1988) provide an efficient numerical procedure), but esti-
mating the normal covariance matrix �Z, for instance from the covariance
matrix �X of the Johnson random variable X, can be tricky. If �Z were being
estimated from �X, then Theorems 1 and 2 in Cario and Nelson (1997) show
that under mild conditions on the marginals the input correlation �X(i� j) is a
continuous nondecreasing function of the base correlation �Z(i� j) and does
not depend on the other base correlations. This suggests that a straightforward
numerical search procedure should yield the correct�Z for the given �X. Such
a procedure might however not always produce positive semidefinite estimates
for �Z (Ghosh and Henderson, 2002a), a necessary (and sufficient) condition
for a matrix to be a multivariate normal covariance matrix.
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Stanfield et al. (1996) suggest a Johnson-type marginal-based data-genera-
tion procedure that does not need to determine the covariance matrix of the
multivariate normal random vector. To generate data for a random vector to
match mean μX and covariance matrix �X, the authors first define a random
vector Y whose components are independent standardized Johnson variates,
i.e., E(Yi) = 0 and Var(Yi) = 1 and Cov(Yi�Yj) = 0 for i� j = 1� 2� � � � � d.
Let LX = �

1/2
X correspond to the lower triangular Cholesky-decomposition

factor of the covariance matrix �X and σX be a diagonal matrix whose en-
tries are the standard deviations of the components of X. Then, random vector
X = μX + σXLXY has desired mean μX and covariance matrix �X. Further,
Stanfield et al. (1996) give expressions that relate the skewness and kurtosis
values of X to those of Y. Thus, one can start with the right parameter val-
ues for Y to obtain the desired first four moments in X. The computational
effort needed in finding the right parameters is relatively little. Hence, it is
an attractive generation method for obtaining samples with given mean and
covariance matrix. However, their approach has some limitations. First, since
the marginals do not in general survive the transformation from Y to X, the
exact expressions and properties of the form of the joint c.d.f. and marginal
distributions of X are not clear. Second, they note that although any given
skewness factor can be achieved for the standardized Johnson components Yi,
i = 1� 2� � � � � d, not all possible values of the kurtosis can be achieved. More-
over, the order in which the component parameters are determined can affect
the kurtosis determination problem.

Flexible families of distributions are, of course, not limited to the John-
son translation system. Johnson et al. (1997) and Kotz et al. (2000) are good
sources for multivariate discrete distributions and multivariate continuous dis-
tributions, respectively. Other distributions that have been given particular
attention in the literature include Tukey’s g and h transformations (Johnson,
1987), the multivariate Pearson (Parrish, 1990), and the four-parameter fam-
ilies designed explicitly for use in simulation experiments by Ramberg and
Schmeiser (1974) and Schmeiser and Deutsch (1977). The last two families
of distributions are particularly easy to use, but the one-to-one relationship
between the distribution parameters and the moments is lost. They also fall
short in capturing distributional characteristics such as bimodality and heavy
tails.

4 Constructing partially specified joint distributions

So far, we have discussed the methods that work either with completely
specified c.d.f.’s or with estimates picked from special parametric families of
distributions. We have seen that both approaches can face severe practical lim-
itations. In this section, we discuss the construction of input models that match
partial specifications of the input process. Here, the input process is commonly
specified in terms of marginal distributions of its components and a measure
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of dependence. An argument in support of modeling using only marginals and
a measure of dependence relates to the use of diffusion approximations for
modeling stochastic systems. In many cases the limiting diffusions depend only
on the first two moments of the input distributions. Performance measures
in many queuing applications (Burman, 1981) can be insensitive to moments
higher than the second. Therefore, there is some insensitivity in performance
measures computed from these models to the exact form of the input distrib-
utions. In general then, if this form of insensitivity is present in a model, then
the approach discussed here is quite reasonable.

The methods of this section aim, rather successfully, for efficient input
model development (model fitting and variate generation) in higher dimen-
sions in return for a compromise on the modeling front. The hope is that a
proper specification can capture the essence of the dependence between the
components while sparing the practitioner the often arduous task of trying to
estimate the full joint distribution. However, partial characterization may not
necessarily uniquely or even correctly specify a joint distribution, and more
than one, or sometimes no, joint distribution can be defined that satisfy the
desired characterization. We consider a partial specification as feasible if a mul-
tivariate process (or equivalently a probability distribution in the appropriate
space), which has the specified properties, exists. The methods presented in
this section should ideally be guaranteed to work with any feasible partial spec-
ification.

The most commonly specified dependence measure quantifies linear cor-
relation between the components, as correlation matrices for random vectors
and a series of correlation matrices called the correlogram for time series. Sec-
tion 4.1 reviews some relevant properties of correlation and other measures
of dependence used in the simulation input model development. Time series
modeling literature focuses primarily on processes that are partially specified
with distributions for individual elements and autocorrelations. Therefore, we
provide a brief overview of basic time series notations and some important
models in Section 4.2. In the remainder of the section, we present key ap-
proaches that model and generate input processes (random vectors and time
series) specified with almost any set of arbitrary marginal distributions and cor-
relation matrices.

4.1 Measures of dependence

Most of the dependence measures we discuss in this section are pair-wise
measures, in that they are used to quantify the dependence between pairs of
components. We refer the reader to Nelsen (1999) for a complete treatment of
other dependence measures.

The most widely used and understood measure in engineering applications
is the product-moment covariance. The (i� j)th product-moment covariance be-
tween random variables Xi and Xj (whose variances are necessarily finite) is
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defined as

Cov(Xi�Xj) = E
[
(Xi − μi)(Xj − μj)

]
for 1 � i � j � d�

where E(Xi) = μi and E(Xj) = μj . A related measure is the product-moment
correlation (the sample analog is called the Pearson correlation) of Xi and Xj ,
defined as

(6)ρ(i� j) = Cor(Xi�Xj) = Cov(Xi�Xj)

σiσj
�

where Var(Xi) = σ2
i and Var(Xj) = σ2

j . Correlation values, limited to be
in a subset of [−1� 1], are preferred over covariances because of their inde-
pendence from scale parameters of the marginal distributions of Xi and Xj .
We shall discuss correlations in the sequel, but each measure can be recov-
ered from the other given the marginal distributions and hence can be treated
equivalently.

Product-moment correlation is a measure of linear dependence between two
components, in that it takes on the maximum magnitude of 1 if and only if a
linear relationship exists between the components. This can be a modeling lim-
itation, and can be especially disadvantageous in cases where strong nonlinear
dependencies exist since the product-moment correlation value fails to register
this.

Some efficient procedures try to incorporate additional dependence infor-
mation beyond correlations. The algorithm developed by Schmeiser and Lal
(1982) is worth mentioning here: it models and constructs bivariate gamma
processes using specified correlations, and can also incorporate regression
curves of the form E[X1|X2 = x2] and E[X2|X1 = x1]. Unfortunately, this
algorithm relies heavily on the properties of the gamma random variables, and
a generalization to other marginal distributions is not obvious.

The correlations (covariances) between the components of a random vec-
tor X are collectively represented by the correlation (covariance) matrix. The
(i� j)th element of this matrix represents the correlation between components
Xi and Xj . By definition, the correlation matrix of any random vector is sym-
metric, positive semidefinite, and has unit diagonal elements. We refer the
reader to Ghosh and Henderson (2002a) for a discussion on the implications of
the positive semidefiniteness of a correlation matrix. Biller and Nelson (2005)
establish similar requirements for correlograms of time-series processes. How-
ever, positive semidefiniteness is not sufficient to guarantee feasibility of a
marginal and covariance (or correlation) matrix specification. The marginal
distributions also play a crucial role in determining the feasibility of correlation
matrices for random vectors and correlograms for multivariate time series. As
an example, consider a bivariate input process with a standard exponential and
a standard uniform as marginals. The magnitude of correlation between them
cannot exceed 0�866. Indeed, a correlation value of 1 would imply a linear re-
lationship between the two, which clearly cannot be the case. In general then,
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the set of feasible correlation matrices is a strict subset of the set of correlation
matrices.

The definition of the product-moment correlation in (6) implies that it is
defined only when the variances of the components of the input process are
finite. Thus, it is not an appropriate measure of dependence for very heavy-
tailed inputs. A dependence measure that avoids this pitfall is the Spearman
rank correlation (see Jong-Dev, 1984), defined as

(7)r(i� j) = E[Fi(Xi)Fj(Xj)] − E[Fi(Xi)]E[Fj(Xj)]√
Var(Fi(Xi))Var(Fj(Xj))

�

(The transform Fi(Xi) is called the probability integral transform of Xi.) The
random variables Fi(Xi) and Fj(Xj) are bounded within [0� 1] and hence rank
correlations always exist.

In an early work on rank correlations, Hotelling and Pabst (1936), citing
previous work by Karl Pearson, show that for jointly normal random variables,
the product-moment correlation ρ is related to the rank correlation r by

(8)ρ = 2 sin
(π

6
r
)
�

The main advantage of rank correlations over product-moment correlations is
that they are invariant under transformations of the input random variables. As
an example, consider two log-normal random variables denoted byX1 andX2.
The rank correlation between log(X1) and log(X2) is the same as the rank
correlation between X1 and X2. Thus, the use of the rank correlation provides
a natural way to separate the characterization of the individual marginal dis-
tributions from that of the dependence among the variables, simplifying the
sample generation. A random vector X = (X1�X2� � � � �Xd)

′ with marginals
Fi, i = 1� 2� � � � � d, and rank correlation matrix �X can be sampled by first gen-
erating a random vector U = (U1�U2� � � � � Ud)

′ with uniform marginals and
the same rank correlation matrix �X, and then applying the inverse probability
transform to each variate individually: Xi = F−1

i (Ui) for i = 1� 2� � � � � d.
Nelsen (1999) describes other monotonic-transformation-invariant mea-

sures of dependence that have been used in various applications. For example,
the orthant probability measures the probability that both variables are above
or both below their medians. It is alternatively called the median deviation
concordance probability. It is invariant to monotonic transformations of the
variates. For the bivariate normal distribution with correlation ρ, this proba-
bility is 1/2+ sin−1(ρ)/π (Stuart and Ord, 1987). Another example of a widely
known monotonic-transformation-invariant measure is Kendall’s τ and is typi-
cally defined using independent and identically distributed random vectors, say
(X1� Y1) and (X2� Y2). It is defined as the probability of concordance minus
the probability of discordance

τ(X�Y) = P
[
(X1 −X2)(Y1 − Y2) > 0

]
− P
[
(X1 −X2)(Y1 − Y2) < 0

]
�
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Clearly, concordance between two random variables arises if large values of
one variable occur with the large values of the other and small values occur
with small values of the other. Both the orthant probability and Kendall’s τ
have been studied for the special case of uniform marginals and their extension
to more general cases remains an open area of interest.

4.2 Multivariate time series

Statistical time series analysis literature focuses attention chiefly on studying
models that specify marginal distributions for individual elements and model
the dependence within the series in terms of the correlogram, which is a system
of lag-indexed product-moment correlations of the sequence. Assuming the
stochastic process is stationary, the correlogram can be defined to be the set of
correlations of the form �X(h) = Cor(Xt �Xt+h), h � 1. Here, �X(h) might
correspond to a scalar or a matrix depending on whether the {Xt; t � 1} is
a univariate or a multivariate time-series process.

The classical model in the multivariate time-series literature is the d × 1
vector linear process given by

(9)Xt =
∞∑
i=0

ψiYt−i� t � 1�

The series {ψi; i � 1} is a sequence of d×d matrices such that
∑∞

i=0‖ ψi ‖<∞,
where ‖ · ‖ denotes the usual eigenvalue norm, and {Yt; t = 0�±1�±2� � � �}
is a sequence of independent and identically distributed d-dimensional white
noise vectors with mean zero and covariance matrix �Y such that

E[Yt] = 0(d×1) and E
[
YtY′t+h

] =
{
�Y if h = 0�
0(d×d) otherwise�

Hannan (1970) shows that if the Xt ’s are Gaussian with mean zero and
have an absolutely continuous spectrum, then there exists a sequence of in-
dependent and identically distributed normal mean-zero random vectors Yt ,
t = 0�±1�±2� � � � , and a sequence of matrices {ψi; i � 0}, such that the
processes Xt and

∑∞
i=0ψiYt−i are stochastically equal. Furthermore, if the

Yt ’s are Gaussian, then so are the Xt ’s in (9). If we choose a d × d matrix
ψ for which

∑∞
i=0 ‖ ψi ‖<∞ holds and set ψi = ψi for i � 0, then Xt sim-

plifies to a stationary first-order vector autoregressive process that is written as
Xt = ψXt−1+Yt . This process is very well suited to modeling multivariate time
series with normal marginal distributions. We refer the reader to Lütkepohl
(1993) for a comprehensive review of the distributional properties of the mul-
tivariate autoregressive time-series processes.

However, there are many physical situations in which the marginals of
the time-series input processes are nonnormal. If the input process is non-
Gaussian, then the decomposition in (9) may not exist and the statistical in-
ference procedures developed for processes satisfying (9) do not apply. Over
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the past decade, a considerable amount of research effort has been devoted to
develop models of time series with exponential, gamma, geometric, or general
discrete marginal distributions. We refer the reader to Lewis et al. (1989) and
Block et al. (1990) for example work on univariate and bivariate autoregressive
moving-average models with gamma marginals and exponential and geomet-
ric marginals, respectively. The primary shortcoming of the approach taken to
construct these input processes is that a different model is required for each
marginal distribution of interest and the sample paths of these processes, while
adhering to the desired marginal distribution and autocorrelation structure,
sometimes have unexpected features. In the succeeding subsection, we discuss
a more general approach for modeling nonnormal time series.

4.3 Transformation-based methods

The methods covered in this section are in essence an extension of the
transformation-based univariate generation procedure of Chapter 4, where
any arbitrary distribution F is sampled using the inverse transformation of
the uniform random variable U(0� 1], F−1(U). This procedure works because
the random variable F−1(U) has the cumulative distribution function F , and
is extensively used since univariate uniform variables are very easily gener-
ated. The key idea remains the same in the multivariate setting, where we
apply component-wise inverse marginal transformations to a base multivari-
ate process with U(0� 1] marginal distributions. Consider the generic case of
modeling a d-variate stationary time series {Xt; t � 1} whose component time
series {Xi�t; i = 1� 2� � � � � d� t � 1} has a marginal distribution denoted by Fi.
For i = 1� 2� � � � � d, we let {Ui�t; t � 1} be the ith component of the d-variate
time-series process {Ut; t � 1} with uniform marginals. We obtain the ith time
series via the transformation

(10)Xi�t = F−1
i (Ui�t)�

In the remainder of the section, we shall refer to the time series {Ut; t � 1} as
the base process.

Two important issues need to be addressed: the construction of the base
process Ut has to enable fast and efficient sampling and the dependence struc-
ture of the base process has to achieve the desired dependence structure of the
input process. Both of these issues are tackled in different ways by the methods
we shall discuss below. In Section 4.3.1, we present methods that construct the
uniform base process by using transformations of a multivariate process with
normal marginals. They can be used in the context of random vectors as well as
times series, and can match both product-moment and rank correlation specifi-
cations. Section 4.3.2 presents a method for modeling uniform random vectors
using chessboard copulas, while the method in Section 4.3.3 uses vine copulas.
These copula construction procedures are typically used to match rank corre-
lation specifications. Finally, Section 4.3.4 presents transform-expand-sample
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univariate time series processes whose base process is a sequence of autocor-
related uniforms generated in an autoregressive manner.

4.3.1 ARTA, NORTA and VARTA processes
The Autoregressive-To-Anything (ARTA) process, developed by Cario and

Nelson (1996), defines a univariate time series with uniform marginals on (0� 1]
via the transformation Ut = Φ(Zt), where the base process {Zt; t � 1} is
a stationary, standard, Gaussian autoregressive process of order p with the
representation

Zt =
p∑
h=1

αhZt−h + Yt� t = p+ 1� p+ 2� � � � �

The αh, h = 1� � � � � p, are fixed autoregressive coefficients that uniquely deter-
mine the autocorrelation structure of the base process, ρZ(h), h = 1� � � � � p,
and Yt , t = p + 1� p + 2� � � � , are independent and identically distributed
Gaussian random variables with mean zero and variance σ2

Y . The univariate
time series {Xt; t � 1} is obtained via the transformation

(11)Xt = F−1(Ut) = F−1[Φ(Zt)]
which ensures that Xt has distribution F . Therefore, the central problem is
to select the autocorrelation structure, ρZ(h), h = 1� � � � � p, for the base
process Zt that gives the desired autocorrelation structure, ρX(h), h =
1� � � � � p, for the input process Xt . It is easily shown that the value of the lag-h
base correlation ρZ(h) depends only on the corresponding input correlation
ρX(h). The correlation structure determination step is thus equivalent to solv-
ing p independent correlation-matching problems.

A general, and related, method for obtaining random vectors with arbi-
trary marginal distributions and correlation matrix is described by Cario and
Nelson (1997). It can be considered as broadening the ARTA process beyond
a common marginal distribution. The central idea is to transform a standard
multivariate normal vector into the desired random vector, which is referred
as having a Normal-To-Anything (NORTA) distribution. Specifically, we let

(12)X = [F−1
1

(
Φ(Z1)

)
� F−1

2

(
Φ(Z2)

)
� � � � � F−1

d

(
Φ(Zd)

)]′
�

where the base vector Z = (Z1� � � � � Zd)
′ is a standard multivariate normal

vector with correlation matrix �Z and F1� F2� � � � � Fd are the desired marginal
distributions. The base process setup problem then boils down to finding the
base correlation matrix �Z for Z that transforms to the desired correlation
matrix �X for X. As in the earlier case, each �Z(i� j) depends only on the cor-
responding component �X(i� j), and hence a total of d(d − 1)/2 independent
correlation-matching problems have to be solved.

Recently, Biller and Nelson (2003) have pulled together the theory behind
ARTA and NORTA processes and extended it to multivariate time series. They
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construct the Vector-Autoregressive-To-Anything (VARTA) process, which is
a stationary, d-variate, vector time series {Xt; t � 1}, by taking the inverse
transformation of a standardized Gaussian vector autoregressive process of
order p

Zt =
p∑
h=1

αhZt−h + Yt � t = p+ 1� p+ 2� � � � �

where the αi, i = 1� 2� � � � � p, are fixed d × d autoregressive coefficient ma-
trices and {Yt; t � p + 1} is a sequence of independent and identically dis-
tributed d-variate multivariate normal random vectors with mean zero and a
d×d covariance matrix �Y chosen as �Z(0)−∑p

h=1 αh�
′
Z(h). This selection

of Yt ensures that each Zi�t is marginally standard normal. For a fully specified
VARTA process, there are pd2 + d(d − 1)/2 individual correlation matching
problems to solve. Note that if d = 1, then the VARTA process reduces to an
ARTA process; and if d > 1, but p = 0, the VARTA process corresponds to a
NORTA vector.

The setup problem central to the ARTA, NORTA and VARTA processes
is to solve correlation-matching problems of the form c(ρZ) = ρX for ρZ ,
where c is a complex nonlinear function that requires the evaluation of dou-
ble integrals. For the VARTA process, we can express input product-moment
correlation ρX(i� j� h) = Cor[Xi�t�Xj�t+h] as

Cor
[
F−1
i

[
Φ(Zi�t)

]
� F−1

j

[
Φ(Zj�t+h)

]]

=
(∫ ∞

−∞

∫ ∞

−∞
F−1
i

[
Φ(zi�t)

]
F−1
j

[
Φ(zj�t+h)

]

×ϑρZ(i�j�h)

(
zi�t � zj�t+h

)
dzi�t dzj�t+h − μiμj

)
(σiσj)

−1

(13)= cijh
[
ρZ(i� j� h)

]
�

where μi and σ2
i are the mean and the variance of the ith component of

the input process and ϑρZ(i�j�h) is the standard bivariate normal probability
density function with correlation ρZ(i� j� h). Clearly, ρX(i� j� h) depends only
on ρZ(i� j� h). The function cijh(ρ) is nondecreasing, lies on the origin for
ρ = 0 and satisfies |cijh(ρ)| � |ρ| for any ρ ∈ [−1� 1] (Lancaster, 1957). More-
over, under mild conditions on the marginal distributions Fi and Fj , the func-
tion cijh is continuous (see Theorems 3.4 and 3.5 in Cario and Nelson, 1996;
Biller and Nelson, 2003). Similar relations hold between the rank correla-
tion rX of the input process and the product-moment correlation ρZ of the
base normal process.

The correlation-matching problems (13) can be solved analytically, nu-
merically or using a simulation-based approach. It is possible to find the
base dependence ρZ(i� j� h) values analytically only in special cases, e.g.,
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if the marginal distributions Fi are uniform on (0� 1], then the product-
moment (and rank) correlation matching problem (13) reduces to ρX(i� j� h) =
(6/π) sin−1[ρZ(i� j� h)/2] (Kruskal, 1958). The astute reader will notice that
this is the inverse of the relation in (8).

The idea behind the numerical approach is to take some initial base corre-
lations, transform them into the implied correlations for the specified pair of
marginals (using a numerical integration technique), and then employ a nu-
merical root-finding method until we find a base correlation that approximates
the desired correlation within a pre-specified level of accuracy. The properties
of the function cijh ensure that a numerical search finds a value for the base
correlation ρZ(i� j� h) efficiently. Both Cario and Nelson (1998) and Biller and
Nelson (2003) provide such a numerical search method. The efficiency of the
numerical search methods varies with the marginals and the ρX values: when
the integrands are smooth, the numerical approach is very efficient, and may
be inaccurate otherwise. Specialized numerical integration tricks might be re-
quired to overcome problematic situations.

The simulation-based approach can be used in cases where the form of the
marginal distributions makes numerical evaluations of (13) prohibitively ex-
pensive. Equation (13) can be evaluated using sampling techniques as follows:
A sample of pairs of bivariate standard normal random variates with correla-
tion ϕZ(i� j� h) are generated. Each pair is then transformed via (11) into sam-
ples with the desired marginals, and the sample correlation estimate ϕX(i� j� h)
is obtained from these transformed pairs. The key idea is that if ϕX(i� j� h) is
sufficiently close to the desired input correlation ρX(i� j� h), then the base cor-
relation ϕZ(i� j� h) is a good approximation to the base correlation ρZ(i� j� h)
that solves the correlation-matching problem cijh(ρZ(i� j� h)) = ρX(i� j� h).
After a number of such sampling evaluations of (13), stochastic root finding
algorithms are applied to search for the correlation of interest within a prede-
termined precision. This approach is very general and is a sensible alternative
when the dimension of the problem is moderate and a diverse collection of
marginal distributions have to be considered.

Throughout the previous discussion, we have assumed that a multivariate
process exists with marginal distributions Fi, for i = 1� 2� � � � � d, and an au-
tocorrelation structure characterized by �X(h), h = 0� 1� � � � � p. We need to
exercise some care here because not all combinations of Fi, i = 1� 2� � � � � d, and
�X(h), h = 0� 1� � � � � p, are feasible, as discussed in Section 4.1. Any multivari-
ate process constructed by the transformation (11) or (12) from a base normal
process with an appropriately chosen positive semidefinite base autocorrela-
tion structure�Z(h) is automatically assured to be feasible. Unfortunately, the
converse does not necessarily hold; that is, there exist sets of marginals with a
feasible autocorrelation structure that cannot be represented by the VARTA
transformation. This problem occurs because �Z(h) corresponding to a given
feasible �X(h) structure is not positive semidefinite. This problem was postu-
lated for the random vector case in Li and Hammond (1975) and was proved to
exist in Ghosh and Henderson (2002a). Ghosh and Henderson (2002b) report
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that, in the case of random vectors, the failure of the transformation-based
methods is relatively rare in moderate dimensions and that the method fails
when the correlations lie either on the boundary or in close proximity to the
set of correlations achievable for the specified marginals of the process. They
note, however, that the problem does become increasingly evident as the di-
mension increases.

If, after solving the correlation-matching problems, the estimate for the base
correlations�Z is not positive definite, then the procedures proposed by Lurie
and Goldberg (1998) and by Ghosh and Henderson (2002a) can be applied
to find a symmetric, positive definite approximation of the base correlation
matrix. The hope is that a multivariate process constructed in this manner will
have a correlation structure close to the desired one, since the function cijh
defined by (13) is known to be continuous under fairly general conditions.

4.3.2 Chessboard distributions
Ghosh and Henderson (2002a) study a class of copulas that they call chess-

board distributions to model a random vector with uniform marginals given the
correlation matrix. These distributions are closest in nature to the piecewise-
uniform copulas developed by Mackenzie (1994). The construction of a chess-
board distribution starts with the division of the d-dimensional unit hypercube
into a grid of equally sized cells with sides of length 1/n, where parameter n is
said to index the level of discretization. The joint density of this copula is de-
fined to be constant over each cell. Thus, the density over cell C(j1� � � � � jd),
ji = 1� 2� � � � � n for each i = 1� � � � � d, is defined as f (x) = ndq(j), where
j = (j1� � � � � jd) and q(j) is the probability that the random vector takes values
in the cell C(j). Ghosh and Henderson (2002a) find the values of the q(j)s that
match a given correlation matrix by solving a linear program. They addition-
ally impose conditions on the values of the q(j)s to ensure that f is a d-variate
density function.

After appropriate q(j) values are determined, the data-generation proce-
dure works as follows: an index vector j = (j1� � � � � jd) is generated from
the discrete distribution represented by the q(j)s, and then the random vec-
tor sample is chosen uniformly from the chosen cell C(j). Efficient algorithms
are available to sample from the discrete distribution q, e.g., the alias method
that is developed by Walker (1977) and discussed in detail in Law and Kelton
(2000).

This correlation-matching procedure was first introduced in Ghosh and
Henderson (2002a) to study feasibility of correlation matrices for any arbi-
trary set of marginals. They show that this procedure matches almost any (in
a precise sense) feasible correlation matrix. The framework is advantageous
because one can impose additional constraints on the joint distribution (Ghosh
and Henderson, 2001). Thus, it gives the user a degree of control over the joint
distribution.

Chessboard copulas can be used to sample random vectors with specified
arbitrary continuous marginals and rank correlation matrices via the transfor-
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mation (10). This approach can be extended to match arbitrary marginals with
a specified product-moment correlation matrix (Ghosh, 2004).

However, this modeling technique suffers significant limitations. The chess-
board distributions tend to be sparse in nature as the fraction of cells with
positive valued q(j)s gets smaller with increasing dimensions. Moreover, the
size of the linear programs (indexed by the discretization parameter n) that
are solved to match a given correlation matrix can be very large. Ghosh (2004)
develops bounds on the required discretization level n. Nevertheless, the chess-
board distributions can be of significant help in modeling random vectors of
low to moderate dimensions, and are especially attractive since the constructed
joint distributions can be controlled.

4.3.3 Vine copula method
An alternative copula-based input model has recently been suggested by

Cooke and his co-authors (Kurowicka and Cooke, 2002; Bedford and Cooke,
2002). This method is founded on Bayesian statistics literature and utilizes
graph theoretic concepts. It generates copula samples quickly and efficiently,
and can be used as a base for a fast sampling procedure that matches a set of
arbitrary marginals and a rank correlation matrix.

To define a d-variate copula, the first step is to construct a graph structure
called a vine on the d components. A vine is a nested set of spanning trees
where the edges of tree j are the nodes of tree j + 1, starting with a tree on
a graph with the d components as nodes. The number of nested trees is then
d − 2. A regular vine on the d components is a vine in which two edges in tree
j are joined by an edge in j + 1 only if they share a common node in the jth
tree for j = 1� 2� � � � � d − 2. There are thus a total of d(d − 1)/2 edges in a
regular vine.

Each edge is associated with a conditional rank correlation that takes val-
ues from the [−1� 1] interval. A conditional rank correlation r[Xi�Xj|S] is
defined to be the rank correlation between the conditioned random variables
Xi|S and Xj|S, where S is a collection of other components. The set S of con-
ditioning components is determined in a systematic manner (Cooke, 1997) and
grows as we go deeper into the vine, with the edge of the (d−2)nd single-edge
tree associated with a conditional rank correlation r[XuXv|{Xi� i �= u or v}],
for some u and v.

Cooke (1997) provides a method to sample from the vine. A bivariate cop-
ula is associated with each edge of the vine, and has a correlation equal to
the conditional correlation value associated with the edge. Sampling starts
with d independent uniform samples and proceeds by traversing the vine in
a specific order and applying successive inversions of the conditional distribu-
tions derived from the bivariate copulas of each edge. Cooke (1997) associates
minimum information copulas (see Meeuwissen and Bedford (1997) for a def-
inition) with the vine edges and shows that the joint distribution of the random
vector generated by this procedure is unique and possesses certain favorable
properties.
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Bedford and Cooke (2002) associate another class of bivariate copulas, the
elliptical copulas, with the edges of the vine and their conditional correlations.
This case has the advantage that the conditional correlations of the edges
can now be related by a set of recursive equations to the set of correlations
induced between the components of the random vector generated by the vine-
traversing procedure. This implies that a set of conditional rank correlations of
a regular vine can be derived for any desired correlation matrix, and thus the
method can be used to match a given d× d rank correlation matrix to uniform
marginals. Additionally, conditional distributions of elliptical copulas can be
derived in explicit form and are very easy to invert. Thus vine-based sampling,
which involves applying d(d − 1)/2 of these inverses to d independent uni-
form variates, is fast and efficient. Kurowicka and Cooke (2002) show that this
procedure can match any feasible correlation matrix with uniform marginals
in the trivariate case. The method can come very close to achieving any feasi-
ble correlation matrix in higher dimensions (Cooke, 2003). However, it is not
known whether they can achieve all feasible correlation matrices in dimensions
greater than three.

4.3.4 TES processes
The Transform-Expand-Sample (TES) process, developed by Melamed

(1991), generates a univariate time series with general marginals using as base
process a sequence of autocorrelated uniforms generated in an autoregressive
manner. Arbitrary marginals are obtained via a transformation similar to (10).
TES processes play a significant role in univariate time series modeling and ap-
proach the generality of the ARTA process in generating stationary univariate
time-series processes. Unfortunately, extensions to random vector and multi-
variate time-series processes are not available.

The TES processUt can attain the full range of feasible lag-one autocorrela-
tions for a given marginal distribution, and is defined via processesU+

t andU−
t

that are defined as follows:

U+
t =

{
U+

0 � t = 0�〈
U+
t−1 + Vt

〉
� t = 1� 2� � � � �

U−
t =

{
U+
t � t is even�

1 −U+
t � t is odd�

where the random variables U+
0 and Vt , t � 1, have (0� 1]-uniform distribu-

tions, Vt is independent of {U+
0 � V1� � � � � Vt−1}, and the notation 〈x〉 denotes

modulo-1 arithmetic. The process U+
t covers the positive lag-one range, while

the process U−
t covers the negative lag-one range and is defined in terms of

the U+
t process. The autocorrelation structure depends only on the distribu-

tion of Vt and can be manipulated by modifying the distribution of Vt without
changing the marginal distribution of Ut . However, altering the distribution of
Vt typically changes the autocorrelations of the process at all lags, but the user
has no control over this behavior.
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A disadvantage of the TES process is that extreme jumps may appear in the
sample path due to the modulo-1 arithmetic. For example, Ut−1 can be very
close to 1 when Ut is very close to 0. A stitching transformation, Sξ(Ut) pa-
rameterized by ξ ∈ [0� 1], mitigates this effect. The process {Sξ(Ut); t � 1}
still has (0� 1]-uniform marginals, but no longer has extreme jumps. Unfortu-
nately, stitching does not preserve the autocorrelation structure and the change
cannot be expressed as a simple function of ξ. The distribution of Vt has to
be modified until the autocorrelations of the constructed process match the
pre-specified values. This forms one of the main challenges of using the TES
process, and the ARTA process is perhaps a better option when the objective
is to construct a time-series input process with pre-specified marginal distrib-
ution and autocorrelations through lag p. An ARTA process can be fitted to
the desired set of p � 1 autocorrelations without user intervention, for any
marginal distribution, and has smoother sample paths.

4.4 Mixture methods

Mixture methods sample random vectors with arbitrary marginals and a
desired correlation matrix by probabilistically mixing samples from joint dis-
tributions with pre-determined correlation matrices. While this approach has
been utilized with various configurations of pre-determined matrices, Hill and
Reilly (1994) present what is perhaps the most elegant version.

Let�X = [ρij](d×d) be the correlation matrix desired for a d-variate random
vector X with marginals Fi, i = 1� 2� � � � � d. Let ρ

ij
and ρ̄ij be the minimum and

maximum correlations attainable between Xi and Xj . Whitt (1976) shows that
these values are obtained when the bivariate vector (Xi�Xj) is generated as
(Fi(U)� Fj(1 − U)) and (Fi(U)� Fj(U)), respectively, where U is a uniform
random variable between 0 and 1. Hill and Reilly (1994) define an extremal
distribution as a joint distribution that has ρij = ρ̄ij or ρij = ρ

ij
for every

i < j � d. Associate a (d(d − 1)/2)-vector δ with each extremal distribution,
where δij takes value 1 if ρij = ρ̄ij and 0 otherwise. Hill and Reilly (1994) note
that knowledge about any d − 1 components of δ determines the rest of the
vector. This comes from the result quoted earlier from Whitt (1976). Hence,
there are potentially 2d−1 extremal correlation matrices for a d-dimensional X.

Define �0 to be the zero-correlation matrix that corresponds to a random
vector with uncorrelated components, and let ��, � = 1� 2� � � � � 2d−1, be the
extremal correlation matrices. Hill and Reilly’s method tries to match a de-
sired correlation matrix �X to a point in the convex hull of the set {��; � =
0� 1� � � � � 2d−1}. The problem, formally, is to determine a set of composition
probabilities λ�, � = 0� 1� � � � � 2d−1, that satisfy

(14)
2d−1∑
�=0

λ�
[
δ�ijρ̄ij +

(
1 − δ�ij

)
ρ
ij

] = ρij� ∀i < j� i� j = 1� � � � � d�
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(15)
2d−1∑
�=0

λ� = 1�

(16)λ� � 0� � = 0� � � � � 2d−1�

where δij is as defined earlier. Once the λ� values are determined, the con-
structed joint distribution (a probabilistic mixture of the extremal distributions
and the independent distribution) can be sampled by first generating an index
� from the discrete distribution {λ�; � = 0� � � � � 2d−1} and then producing a
sample from the distribution that corresponds to the chosen index.

In many cases, there are an infinite number of solutions to the Equations
(14)–(16). Hill and Reilly (1994) suggest formulating and solving a linear
program with an appropriate objective function with Equations (14)–(16) as
constraints to select a composite probability density function with desirable
characteristics. Additional constraints might also be included; for instance, the
frequency of sampling independent random vectors can be minimized by set-
ting λ0 = 0.

This approach suffers some major drawbacks. Extremal distributions have a
distinctive structure; for instance, in the d-uniform random vector case, each
extremal distribution places the entire mass uniformly on a chosen diagonal
of the #d-unit hypercube. Thus, this mixing procedure constructs distribu-
tions that can be quite unnatural to the environment being modeled. The
correlation-matching problem defined via (14)–(16) grows exponentially with
dimension, which makes the linear programs harder to solve in higher dimen-
sions. The composition finding problem might also have no solution for some
feasible correlation matrices. This happens when the set of all feasible cor-
relation matrices for a given set of marginals does not lie within the convex
polytope defined by (14)–(16). Ghosh and Henderson (2002a) give an example
where this occurs. In light of these difficulties, this method is better suited for
low dimensional random vectors.

5 Conclusion

A message the reader would consistently get from this chapter is that mul-
tivariate input process modeling is far from being a complete discipline. It is,
if anything, a frontier of research in input modeling methodology that awaits
conquering. Interesting problems which promise both methodological content
as well as practical impact abound.

In terms of developing methods that purport to handle the true joint dis-
tribution of random vector input processes or approximations to it, much of
the focus has been on developing parametric approximation approaches or on
methods that exploit specific properties of these distribution functions. How-
ever, nonparametric approximation methods can have a significant impact and
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need to be explored more. For instance, a broad and deeply researched lit-
erature on procedures like kernel density estimation await our attention and
adaptation.

We see that much of the focus has been on constructing methods that match
partially specified multivariate processes. The majority of these methods han-
dle dependence in terms of linear correlations in conjunction with marginal
distributions. This approach has several limitations. First, most of the available
methods are not guaranteed to work for all feasible correlation and marginals
specifications. This effect is muted in lower dimensions, but can pose signifi-
cant challenges as the dimension of the input process grows. Thus, there is a
need for methods that can demonstrably work for any given feasible combina-
tion. Second, since correlations are single-valued linear dependence measures,
they can miss much of the more complex interactions between various compo-
nents of a multivariate process. Therefore, there is a clear need for models that
capture more dependence information than do linear correlations. The ability
to control the distribution of the generated multivariate process, for instance in
the form of simple constraints on the joint distribution function, is desirable.
We believe this objective of capturing more complex interactions and inter-
dependencies will get an increasing impetus once more guidance along these
lines become available from practitioners.

The presentation in this chapter has mostly focused on the modeling and
variate-generation aspect of the input model development for stochastic simu-
lation. Another important aspect of the simulation input model development is
fitting models to historical data. Although it is common practice to assume that
the desired marginal distributions and dependence structure are given in the
current input modeling research, it is critically important to develop methods
for fitting input models when only raw data generated by an unknown process
are available. Recently, Biller and Nelson (2005) propose an automatic and
statistically valid algorithm to fit stochastic models to dependent univariate
time series for simulation. Development of similar methods for multivariate
time-series input processes promises to be a very interesting research area.
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Arrival Processes, Random Lifetimes and
Random Objects

Lawrence M. Leemis
Department of Mathematics, The College of William & Mary, USA

Abstract

This chapter considers (1) the modeling, estimation, and generation of arrival
processes, (2) the generation of random lifetimes, and (3) the generation of random
objects. Accurate modeling of arrival processes is critical for the development of valid
discrete-event simulation models. Although the generation of random lifetimes is typ-
ically applied to reliability and survival analysis in a simulation setting, their use is
widespread in other disciplines as well. The generation of “random objects” will be
applied here to generating combinatorial objects (e.g., combinations and permuta-
tions), matrices, and polynomials. The wider literature on generating random objects
is much more diverse, including generating random card shuffles, generating random
colors, generating random geometric objects, and generating random spawning trees.

1 Arrival processes

Most discrete-event simulation models have stochastic elements that mimic
the probabilistic nature of the system under consideration. The focus in this
section is on the modeling and generation of arrival processes. Stochastic mod-
els for arrival processes could be used to model the arrival times of customers
to a queue, the arrival times of jobs to a job shop, the arrival times of demands
in an inventory system, the arrival times of bills to Congress, or the arrival
times of failures to a repairable machine. These stochastic models generalize
to model events that occur over time or space. A close match between the
arrival process model and the true underlying probabilistic mechanism associ-
ated with arrivals to the system of interest is required for successful simulation
input modeling. The general question considered here is how to model an ar-
rival process in a discrete-event simulation. It is typically the case that a data
set of arrival times has been collected on the system of interest. We begin by
introducing probabilistic models for an arrival process, which are special cases
of what are known as “point processes”, where “events” occur at points in time.
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A special case of a point process is a “counting process”, where event occur-
rences increment a counter.

1.1 Counting processes

A continuous-time, discrete-state stochastic process is often characterized
by the counting function {N(t)� t � 0} which represents the total number of
“events” that occur by time t (Ross, 2003). In a simulation setting, these events
may be arrivals to a store, the births of babies, or machine failures. A counting
process satisfies the following properties:

(1) N(t) � 0,
(2) N(t) is integer-valued,
(3) if s < t, then N(s) � N(t), and
(4) for s < t, N(t)−N(s) is the number of events in (s� t].
Two important properties associated with some counting processes are in-

dependent increments and stationarity. A counting process has independent
increments if the number of events that occur in mutually exclusive time inter-
vals are independent. A counting process is stationary if the distribution of the
number of events that occur in any time interval depends only on the length
of the interval. Thus, the stationarity property should only apply to counting
processes with a constant rate of occurrence of events.

Counting processes can be used in modeling events as diverse as earthquake
occurrences (Schoenberg, 2003), customer arrival times to an electronics store
(White, 1999), and failure times of a repairable system (Nelson, 2003).

We establish some additional notation at this point which will be used in
some results and process generation algorithms that follow. Let X1�X2� � � �
represent the times between events in a counting process. Let Tn = X1+X2+
· · · +Xn be the time of the nth event. With these basic definitions in place, we
now define the Poisson process, which is the most fundamental of the counting
processes.

1.2 Poisson processes

A Poisson process is a special type of counting process that is a fundamental
base case for defining many other types of counting processes.

Definition (Ross, 2003). The counting process {N(t)� t � 0} is said to be a
Poisson process with rate λ, λ > 0, if

(1) N(0) = 0,
(2) the process has independent increments, and
(3) the number of events in any interval of length t is Poisson distributed

with mean λt.
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The single parameter λ controls the rate at which events occur over time.
Since λ is a constant, a Poisson process is often referred to as a homogeneous
Poisson process. The third condition is equivalent to

P
(
N(t + s)−N(s) = n

) = (λt)n exp(−λt)
n! � n = 0� 1� 2� � � � �

and the stationarity property follows from it.
Although there are many results that follow from the definition of a Poisson

process, three are detailed in this paragraph that have applications in discrete-
event simulation. Proofs are given in any introductory stochastic processes
textbook. First, given that n events occur in a given time interval (s� t], the
event times have the same distribution as the order statistics associated with
n independent observations drawn from a uniform distribution on (s� t]. Sec-
ond, the times between events in a Poisson process are independent and
identically distributed exponential random variables with probability density
function f (x) = λ exp(−λx), for x > 0. Since the mode of the exponential
distribution is 0, a realization of a Poisson process typically exhibits significant
clustering of events. Since the sum of n independent and identically distributed
exponential(λ) random variables is Erlang(λ� n), Tn has a cumulative distrib-
ution function that can be expressed as a summation

FTn(t) = 1 −
n−1∑
k=0

(λt)k

k! e−λt� t > 0�

Third, analogous to the central limit theorem, which shows that the sum of
arbitrarily distributed random variables is asymptotically normal, the super-
position of renewal processes converges asymptotically to a Poisson process
(Whitt, 2002, p. 318).

The mathematical tractability associated with the Poisson process makes it
a popular model. It is the base case for queueing theory (e.g., the M/M/1
queue as defined in Gross and Harris, 1985) and reliability theory (e.g., the
models for repairable systems described in Meeker and Escobar, 1998). Its
rather restrictive assumptions, however, limit its applicability. For this reason,
we consider variants of the Poisson process which can be useful for modeling
more complex arrival processes.

1.3 Variants of Poisson processes

There are many variants of the Poisson process which would be appropriate
for modeling arrivals in a discrete-event simulation model. We outline several
of these models in this section. These variants are typically formulated by gen-
eralizing an assumption or a property of the Poisson process. Details can be
found, for example, in Resnick (1992) or Nelson (2002).
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Renewal processes
A renewal process is a generalization of a Poisson process. Recall that in

a Poisson process, the interarrival times X1�X2� � � � , are i.i.d. exponential(λ)
random variables. In a renewal process, the interarrival times are independent
and identically distributed random variables from any distribution with posi-
tive support. One useful classification of renewal processes (Cox and Isham,
1980) concerns the coefficient of variation σ/μ of the distribution of the
times between failures. This classification divides renewal processes into un-
derdispersed and overdispersed processes. A renewal process is underdispersed
(overdispersed) if the coefficient of variation of the distribution of the times
between failures is less than (greater than) 1. An extreme case of an under-
dispersed process is when the coefficient of variation is 0 (i.e., deterministic
interarrival times), which yields a deterministic renewal process. The under-
dispersed process is much more regular in its event times. In the case of a
repairable system with underdispersed failure times, for example, it is easier
to determine when it is appropriate to replace an item in order to avoid ex-
periencing a failure. There is extreme clustering of events, on the other hand,
in the case of an overdispersed renewal process, and replacement policies are
less effective.

Alternating renewal processes
An alternating renewal process is a generalization of a renewal process that

is often used to model the failure and repair times of a repairable item. Let
X1�X2� � � � be i.i.d. random variables with positive support and cumulative dis-
tribution function FX(x) that represent the times to failure of a repairable
item. Let R1� R2� � � � be i.i.d. random variables with positive support and cu-
mulative distribution function FR(r) that represent the times to repair of a
repairable item. Care must be taken to assure that X1�X2� � � � are indeed
identically distributed, i.e., the item is neither improving nor deteriorating. As-
suming that the alternating renewal process begins at time 0 with the item
functioning, then

• X1 is the time of the first failure,
• X1 + R1 is the time of the first repair,
• X1 + R1 +X2 is the time of the second failure,
• X1 + R1 +X2 + R2 is the time of the second repair, etc.

Thus the times between events for an alternating renewal process alternate
between two distributions, each with positive support.

Nonhomogeneous Poisson processes
A nonhomogeneous Poisson process is also a generalization of a Poisson

process which allows for an arrival rate λ(t) (known as the intensity function)
that can vary with time.
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Definition (Ross, 2003). The counting process {N(t)� t � 0} is said to be a
nonhomogeneous Poisson process (NHPP) with intensity function λ(t), t � 0,
if

(1) N(0) = 0,
(2) the process has independent increments,
(3) P(N(t + h)−N(t) � 2) = o(h), and
(4) P(N(t + h)−N(t) = 1) = λ(t)h+ o(h),

where a function f (·) is said to be o(h) if limh→0 f (h)/h = 0.

An NHPP is often appropriate for modeling a series of events that occur
over time in a nonstationary fashion. Two common application areas are the
modeling of arrivals to a waiting line (queueing theory) and the failure times
of a repairable system (reliability theory) with negligible repair times. The cu-
mulative intensity function

Λ(t) =
∫ t

0
λ(τ) dτ� t > 0�

gives the expected number of events by time t, i.e., Λ(t) = E[N(t)]. The prob-
ability of exactly n events occurring in the interval (a� b] is given by

[∫ ba λ(t) dt]n exp{−∫ ba λ(t) dt}
n!

for n = 0� 1� � � � (Çinlar, 1975).

Other variants
Other variants of a Poisson process have been proposed. For brevity, we

outline three such variants. Details are given in Resnick (1992). Mixed Poisson
processes can be formulated in terms of an NHPP with cumulative intensity
function Λ(t) and a random variable L with positive support. The associated
counting process N(LΛ(t)) is a mixed Poisson process. Transforming the time
scale with the random variable L results in a process that does not, in general,
have independent increments. Ross (2003, p. 328) provides an illustration from
the insurance industry where L models the claim rate (which varies from one
policyholder to the next) and Λ(t) is linear. Doubly stochastic Poisson processes
generalize the notion of transforming the time scale by embedding a stochastic
process within another stochastic process. The random variableL from a mixed
Poisson process is replaced with a stochastic process with nondecreasing paths.
Markov modulated Poisson processes are also a special case of doubly stochas-
tic processes. Compound Poisson processes are formulated with a homogeneous
or nonhomogeneous Poisson process and a sequence of i.i.d. random variables
D1�D2� � � � . The function

C(t) =
{∑N(t)

i=1 Di� if N(t) > 0�
0� otherwise�
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defines a process that increases by D1�D2� � � � at each event time. This would
be an appropriate model for an automobile insurance company whose claims
occur according to a Poisson process with claim values D1�D2� � � � , and C(t)
models the total claim amounts that have occurred by time t. Similarly, if
D1�D2� � � � are i.i.d. random variables with support on the nonnegative inte-
gers, then a compound Poisson process can be used to model batch arrivals.

1.4 Estimation

Poisson, renewal and alternating renewal processes
Poisson, renewal and alternating renewal processes all have independent

interarrival times, which simplifies the estimation process. Let x1� x2� � � � � xn
denote independent observations collected on an interarrival time of interest
from the “target” arrival process. The term target refers to the population ar-
rival process that we want to estimate and simulate. These values have been
assumed to be continuous in the models considered thus far. One simple trace-
driven input model for variate generation would be to repeatedly select one of
the data values with probability 1/n, just as in the discrete case. This corre-
sponds to an “empirical” c.d.f.

F̂(x) = M(x)

n
� x = xi� i = 1� 2� � � � � n�

where M(x) is the number of data values that are less than or equal to x.
One problem with this estimator is that only the data values will be generated
in an associated variate generation algorithm. The interpolation problem can
be overcome by filling the n − 1 “gaps” created by the n data values, with a
piecewise-linear empirical c.d.f. These n − 1 gaps can each have a linear c.d.f.
that rises 1/(n− 1) between each of the sorted data values x(1)� x(2)� � � � � x(n).
The piecewise-linear empirical c.d.f. is

F̂(x) = i− 1
n− 1

+ x− x(i)
(n− 1)(x(i+1) − x(i))

� x(i) � x < x(i+1)�

for i = 1� 2� � � � � n − 1. Details concerning this model are given in Law and
Kelton (2000, pp. 326 and 470) and a slight variant is presented in Banks et al.
(2005, p. 281).

In the parametric case, the maximum likelihood estimation technique is gen-
erally used to estimate parameters due to its desirable statistical properties. If
θ = (θ1� θ2� � � � � θq)

′ is a vector of unknown parameters associated with the in-
terarrival density f , then the maximum likelihood estimator (MLE) maximizes
the likelihood function

L(θ) =
n∏
i=1

f (xi)�

Statistical properties of MLEs are given in Casella and Berger (2002). Details
concerning selecting the appropriate parametric distribution(s) (in the renewal
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and alternating renewal cases), estimating parameters, and assessing goodness-
of-fit are given in Law and Kelton (2000).

Nonhomogeneous Poisson processes
This subsection describes two nonparametric (trace-driven) procedures and

two parametric procedures for estimating the intensity function λ(t) or, equiv-
alently, the cumulative intensity functionΛ(t) = ∫ t0 λ(τ) dτ from k realizations
sampled from a target NHPP. The first nonparametric procedure can be used
on “count” or “interval” data. The second nonparametric procedure is appro-
priate for “raw” data. In each of the procedures, we find point estimates and
interval estimates for the cumulative intensity function.

First consider finding an estimate for the intensity function when only count
data are available. The intensity function λ(t) or cumulative intensity function
Λ(t) is to be estimated on (0� S], where S is a known constant. The inter-
val (0� S] may represent the time a system allows arrivals (e.g., 9:00 a.m. to
5:00 p.m. at a bank) or one period of a cycle (e.g., one day at an emergency
room). There are k representative realizations collected on the target process
on (0� S].

For systems with high arrival rates (e.g., busy call centers or web sites),
there is often so much data that counts of events that occur during time subin-
tervals are available, rather than the raw event times. Although this is less
preferable that having the raw data, it is still possible to construct an estimate
of the intensity function and generate variates for a discrete-event simula-
tion model. The time interval (0� S] can be partitioned into m subintervals
(a0� a1]� (a1� a2]� � � � � (am−1� am], where a0 = 0 and am = S. The subintervals
do not necessarily have equal widths. Let n1� n2� � � � � nm be the total number
of observed events in the subintervals over the k realizations.

To simplify the estimation process, assume that the target NHPP has an
intensity function λ(t) that is piecewise constant on each subinterval of the
partition (a0� a1]� (a1� a2]� � � � � (am−1� am]. Since the average intensity func-
tion on the interval (ai−1� ai] is the rate per unit time of the events that occur
on that interval, the maximum likelihood estimator is the average number of
events that occurred on the interval, normalized for the length of the interval
(Law and Kelton, 2000, pp. 390–393; Leemis, 2004)

λ̂(t) = ni
k(ai − ai−1)

� ai−1 < t � ai�

for i = 1� 2� � � � �m. Since the intensity estimator is piecewise constant, the
associated cumulative intensity function estimator is a continuous, piecewise-
linear function on (0� S]

Λ̂(t) =
∫ t

0
λ̂(τ) dτ =

(
i−1∑
j=1

nj

k

)
+ ni(t − ai−1)

k(ai − ai−1)
� ai−1 < t � ai�
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for i = 1� 2� � � � �m. (If there are no events observed on interval i, i.e., ni = 0,
then the intensity function estimate is zero on interval i and the cumulative
intensity function estimate is constant on interval i.) This estimator passes
through the points (ai�

∑i
j=1 nj/k) for i = 1� 2� � � � �m. Asymptotic proper-

ties of this estimator in the case of equal-width subintervals are considered by
Henderson (2003). Variate generation via inversion is straightforward.

It is important to assess the precision of the point estimator, which is de-
veloped thus far, which is typically done via confidence intervals. Based on the
fact that the number of events by time t has a Poisson(Λ(t)) distribution, an
approximate, two-sided (1 − α)100% confidence interval for Λ(t) is

Λ̂(t)− zα/2

√
Λ̂(t)

k
< Λ(t) < Λ̂(t)+ zα/2

√
Λ̂(t)

k

for 0 < t � S, where zα/2 is the 1 − α/2 fractile of the standard normal dis-
tribution. The interval is always asymptotically exact at the endpoints, but only
asymptotically exact for all t in (0� S] when the target intensity function λ(t) is
piecewise constant over each subinterval (ai−1� ai] in the arbitrary partition of
(0� S]. In most applications, this assumption is not satisfied.

Now consider the case where raw event times are available for the k realiza-
tions collected on (0� S]. The meaning of ni now changes from the count data
case. We now let ni, i = 1� 2� � � � � k, be the number of observations in the ith
realization, n =∑k

i=1 ni, and let t(1)� t(2)� � � � � t(n) be the order statistics of the
superposition of the event times in the k realizations, t(0) = 0 and t(n+1) = S.

The standard step-function estimator for the cumulative intensity function
Λ(t) takes upward steps of height 1/k only at the event times in the superpo-
sition of the k realizations collected from the target process. This means that a
variate generation algorithm will produce realizations that only contain event
times that are equal to the ones that were collected in one of the k realizations.
This is known as the “interpolation” problem, which can be overcome by using
a piecewise-linear cumulative intensity function estimator.

There are n + 1 “gaps” on (0� S] created by the superposition t(1)� t(2)�

� � � � t(n). Setting Λ̂(S) = n/k yields a process where the expected number of
events by time S is the average number of events in k realizations, since Λ(S)
is the expected number of events by time S. The piecewise-linear cumulative
intensity function estimate rises by n/[(n + 1)k] at each event time in the su-
perposition. Thus the piecewise-linear estimator of the cumulative intensity
function between the time values in the superposition is

Λ̂(t) = in

(n+ 1)k
+
[

n(t − t(i))

(n+ 1)k(t(i+1) − t(i))

]
� t(i) < t � t(i+1)�

for i = 0� 1� 2� � � � � n. This estimator passes through the points (t(i)� in/(n +
1)k), for i = 1� 2� � � � � n + 1. This estimator was developed in Leemis (1991)
and extended to nonoverlapping intervals in Arkin and Leemis (2000).
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A (1 − α)100% asymptotically exact (as k → ∞) confidence interval for
Λ(t) is given by

Λ̂(t)− zα/2

√
Λ̂(t)

k
< Λ(t) < Λ̂(t)+ zα/2

√
Λ̂(t)

k

for 0 < t � S, where zα/2 is the 1− α/2 fractile of the standard normal distrib-
ution.

The estimation procedure given here is nonparametric and does not require
any arbitrary decisions (e.g., parameter values) from the modeler. The fact
that each of the piecewise segments rises the same height can be exploited to
create an efficient variate generation algorithm via inversion. As n increases,
the amount of memory required increases, but the amount of execution time
required to generate a realization depends only on the ratio n/k, the average
number of events per realization. Thus, collecting more realizations (resulting
in narrower confidence intervals) increases the amount of memory required,
but does not impact the expected execution time for generating a realization.

To summarize, this piecewise-linear cumulative intensity function estimator
with raw data is in some sense ideal in that

• it uses raw data which avoids the loss of accuracy imposed by breaking
(0� S] into arbitrary time subintervals,

• the point and interval estimates ofΛ(t) are closed form and easily com-
puted,

• the point estimate of Λ(t) is consistent, i.e., limk→∞ Λ̂(t) = Λ(t) with
probability 1, which is proved using the strong law of large numbers,

• the interval estimate of Λ(t) is asymptotically exact as k → ∞, which
is proved using the central limit theorem and Slutsky’s theorem, and

• the variate generation algorithm which can be used to simulate a
realization from Λ̂(t) is efficient, monotone, and synchronized (see
Chapter 4 for definitions of these terms).

One downside over a parametric approach is that the variate generation al-
gorithm is storage intensive, since all arrival times collected must be stored in
memory.

We now shift to the parametric modeling of NHPPs. Maximum likelihood
can again be used for estimating the parameters in a parametric NHPP model.
The likelihood function for estimating the vector of unknown parameters θ =
(θ1� θ2� � � � � θq)

′ from a single realization of event times t1� t2� � � � � tn drawn
from an NHPP with intensity λ(t) on (0� S] is

L(θ) =
[

n∏
i=1

λ(ti)

]
exp
[
−
∫ S

0
λ(t) dt

]
�

Maximum likelihood estimators can be determined by maximizing L(θ) or its
logarithm with respect to the q unknown parameters. Asymptotically exact

http://dx.doi.org/10.1016/S0927-0507(06)13004-2


164 L.M. Leemis

confidence regions for the unknown parameters can be found via the likeli-
hood ratio statistic.

Because of the additive property of the intensity function for multiple real-
izations, the likelihood function for the case of k realizations is

L(θ) =
[

n∏
i=1

kλ(ti)

]
exp
[
−
∫ S

0
kλ(t) dt

]
�

Example. There are many potential parametric models for nonhomogeneous
Poisson processes. Consider a power law process, where the intensity function
is

λ(t) = baata−1� t > 0�

for shape parameter a > 0 and scale parameter b > 0. The analysis for other
intensity functions is similar. This intensity function can assume monotone in-
creasing and monotone decreasing shapes. Thus, the likelihood function for
k realizations is

L(b� a) = knbnaane−k(bS)a
n∏
i=1

ta−1
i �

The log-likelihood function is

logL(b� a) = n log(ka)+ na log b− k(bS)a + (a− 1)
n∑
i=1

log ti�

Differentiating with respect to a and b and equating to zero yields

∂ logL(b� a)
∂a

= n log b+ n

a
+

n∑
i=1

log ti − k(bS)a log(bS) = 0

and

∂ logL(b� a)
∂b

= an

b
− kSaaba−1 = 0�

These equations can be solved in closed form. The analytic expressions for
b and a are:

â = n

n log S −∑n
i=1 log ti

�

b̂ = 1
S

(n
k

)1/a
�

It is oftentimes the case that a standard parametric model such as a power
law process is unable to adequately describe the intensity function. When this
is the case, the EPTMP (exponential-polynomial-trigonometric function with
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multiple periodicities) model, originally given by Lee et al. (1991) and gener-
alized by Kuhl et al. (1997) with intensity function

λ(t) = exp

[
m∑
i=0

αit
i +

p∑
j=1

γj sin(ωjt +φj)

]
� t > 0�

can also model a nonmonotonic intensity function. The exp function forces the
intensity function to be positive, the first summation models a polynomial trend
and the second summation models sinusoidal periodicities in the intensity. The
cyclic portion of the model has been used in discrete-event simulation applica-
tions to model storm times in the Arctic Sea (Lee et al., 1991) and arrivals of
livers for transplantation by donors (Pritsker et al., 1995). Goodness-of-fit tests
associated with the fitted models are given in Rigdon and Basu (2000).

1.5 Process generation

The algorithms presented in this section generate a sequence of event times
(in our setting they are typically the arrival times in a discrete-event simulation
model) on the time interval (0� S], where S is a real, fixed constant. If the next-
event approach is taken for placing events onto the calendar in a discrete-event
simulation model, then these algorithms should be modified so that they take
the current event time as an argument and return the next event time. All
processes are assumed to begin at time 0. The event times that are generated
by the counting process are denoted by T1� T2� � � � , and random numbers (i.e.,
U(0� 1) random variables) are denoted by U or U1�U2� � � � . If just T0 = 0 is
returned, then no arrivals were observed on (0� S]. Indentation is used in the
algorithms to indicate nesting.

Poisson processes
Since the times between arrivals in a Poisson process are i.i.d. exponential(λ)

random variables, the following algorithm generates the arrival times of a Pois-
son process on (0� S].

T0 ← 0
i← 0
while Ti � S
i← i+ 1
generate Ui ∼ U(0� 1)
Ti ← Ti−1 − log(1 −Ui)/λ

return T1� T2� � � � � Ti−1

Renewal processes
Arrivals in a renewal process are generated in a similar fashion to a Poisson

process. Let FX(x) denote the cumulative distribution function of the interar-
rival timesX1�X2� � � � in a renewal process. The following algorithm generates
the arrival times on (0� S].
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T0 ← 0
i← 0
while Ti � S
i← i+ 1
generate Ui ∼ U(0� 1)
Ti ← Ti−1 + F−1

X (Ui)
return T1� T2� � � � � Ti−1

Alternating renewal processes
Arrivals in an alternating renewal process are generated in a similar fashion

to a renewal process, but the interarrival time must alternate between FX(x),
the cumulative distribution function of the times to failure X1�X2� � � � and
FR(r), the cumulative distribution function of the times to repair R1� R2� � � � .
The following algorithm generates the arrival times on (0� S].

T0 ← 0
i← 0
j ← 0
while Ti � S
i← i+ 1
generate Ui ∼ U(0� 1)
if j = 0
Ti ← Ti−1 + F−1

X (Ui)
j ← j + 1

else
Ti ← Ti−1 + F−1

R (Ui)
j ← j − 1

return T1� T2� � � � � Ti−1

Nonhomogeneous Poisson process
Arrivals can be generated for use in discrete-event simulation as Λ−1(E1)�

Λ−1(E2)� � � � , where E1� E2� � � � are the event times in a unit Poisson process
(Çinlar, 1975). This technique is often referred to as “inversion” and is imple-
mented below.

T0 ← 0
E0 ← 0
i← 0
while Ti � S
i← i+ 1
generate Ui ∼ U(0� 1)
Ei ← Ei−1 − log(1 −Ui)
Ti ← Λ−1(Ei)

return T1� T2� � � � � Ti−1
The inversion algorithm is ideal when Λ(t) can be inverted analytically, al-
though it also applies when Λ(t) needs to be inverted numerically. There may
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be occasions when the numerical inversion of Λ(t) is so onerous that the thin-
ning algorithm devised by Lewis and Shedler (1979) and given below may be
preferable. This algorithm assumes that the modeler has determined a majoriz-
ing value λ∗ that satisfies λ∗ � λ(t) for all t > 0.

T0 ← 0
i← 0
while Ti � S
t ← Ti
repeat

generate U ∼ U(0� 1)
t ← t − log(1 −U)/λ∗
generate U ∼ U(0� λ∗)

until U � λ(t)
i← i+ 1
Ti ← t

return T1� T2� � � � � Ti−1
The majorizing value λ∗ can be generalized to a majorizing function λ∗(t)
to decrease the CPU time by minimizing the probability of “rejection” in the
repeat–until loop.

All of the arrival process models given in this section are elementary. More
complex models are considered in Nelson et al. (1995).

2 Generating random lifetimes

This section concerns algorithms for generating continuous, positive ran-
dom variables, referred to here as “lifetimes”. Although the main two applica-
tions areas are reliability (e.g., a machine or product lifetime, see, for example,
Meeker and Escobar, 1998) and survival analysis (e.g., patient survival time
after an organ transplant, see, for example, Lawless, 2003), their use is wide-
spread in other disciplines (e.g., sociological applications as in Allison, 1984).
The discussion here is limited to generating continuous, as opposed to discrete
or mixed distributions, due to their pervasiveness in the reliability and survival
analysis literature.

2.1 Hazard-based methods

There are three hazard-based methods for generating lifetimes which par-
allel the associated density-based methods that were introduced in Chapter 4:
(1) the inverse cumulative hazard function technique, an inversion technique
that parallels the inverse-c.d.f. technique, (2) competing risks, a linear combi-
nation technique that parallels composition, and (3) thinning, a majorization
technique that parallels acceptance/rejection.

http://dx.doi.org/10.1016/S0927-0507(06)13004-2
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Definitions
Consider a positive, continuous random variable T , referred to here as a

“lifetime”. We briefly introduce four functions, each of which completely de-
scribes the distribution of T : the survivor function, the probability density
function, the hazard function, and the cumulative hazard function.

The survivor function, also known as the reliability function and comple-
mentary c.d.f., is defined by

S(t) = P(T � t)� t > 0�

a nonincreasing function of t satisfying S(0) = 1 and limt→∞ S(t) = 0. The
survivor function is important in the study of systems of components since it
is the appropriate argument in the structure function to determine system re-
liability (Meeker and Escobar, 1998). Notice that S(t) is the fraction of the
population that survives to time t, as well as the probability that a single item
survives to time t. For continuous random variables, S(t) = 1 − F(t), where
F(t) = P(T � t) is the c.d.f.

When the survivor function is differentiable,

f (t) = −S′(t)� t � 0�

is the associated p.d.f. For any interval (a� b), where a < b,

P(a � T � b) =
∫ b

a
f (t) dt�

The hazard function, also known as the rate function, failure rate and force
of mortality, can be defined by

h(t) = f (t)

S(t)
� t � 0�

The hazard function is popular in reliability because it has the intuitive inter-
pretation as the amount of risk associated with an item that has survived to
time t. The hazard function is mathematically equivalent to the intensity func-
tion for a nonhomogeneous Poisson process, and the failure time corresponds
to the first event time in the process. Competing risks models are easily formu-
lated in terms of h(t), as shown subsequently.

The cumulative hazard function can be defined by

H(t) =
∫ t

0
h(τ) dτ� t � 0�

Any one of the four functions that describes the distribution of T can be used
to determine the others, e.g., H(t) = − log S(t).

We now introduce the three hazard-based lifetime variate generation algo-
rithms: the inverse cumulative hazard function technique, competing risks, and
thinning. Random numbers are denoted by U and the associated random life-
times are denoted by T .
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Inverse cumulative hazard function technique
If T is a random lifetime with cumulative hazard function H, then H(T) is

an exponential random variable with a mean of one. This result, which is an
extension of the probability integral transformation, is the basis for the inverse
cumulative hazard function technique. Therefore,

generate U ∼ U(0� 1)
T ← H−1(− log(1 −U))
return T

generates a single random lifetime T . This algorithm is easiest to implement
when H can be inverted in closed form. This algorithm is monotone and syn-
chronized. Although the sense of the monotonicity is reversed, 1 − U can be
replaced with U in order to save a subtraction.

Competing risks
Competing risks (David and Moeschberger, 1978) is a linear combination

technique that is analogous to the density-based composition method. The
composition method is viable when the p.d.f. can be written as the convex com-
bination of k density functions

f (t) =
k∑
j=1

pjfj(t)� t � 0�

where
∑k

j=1 pj = 1. The competing risks technique applies when the hazard
function can be written as the sum of hazard functions, each corresponding to
a “cause” of failure

h(t) =
k∑
j=1

hj(t)� t � 0�

where hj(t) is the hazard function associated with cause j of failure acting in a
population. The minimum of the lifetimes from each of these risks corresponds
to the system lifetime. Competing risks is most commonly used to analyze a
series system of k components, but it can also be used in actuarial applications
with k causes of failure. The competing risks model is also used for modeling
competing failure modes for components that have multiple failure modes.
The algorithm to generate a lifetime T is

for j from 1 to k
generate Tj ∼ hj(t)

T ← min{T1� T2� � � � � Tk}
return T

The T1� T2� � � � � Tk values can be generated by any of the standard random
variate generation algorithms.
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Thinning
The third class of techniques for generating random lifetimes is majorization

techniques. The density-based acceptance/rejection technique uses a majoriz-
ing function f ∗(t) that satisfies f ∗(t) � f (t) for all t � 0. Likewise thinning,
which was originally suggested by Lewis and Shedler (1979) for generating the
event times in a nonhomogeneous Poisson process, can be adapted to produce
a single lifetime by returning only the first event time generated. A majorizing
hazard function h∗(t) must be found that satisfies h∗(t) � h(t) for all t � 0.
The algorithm is

T ← 0
repeat

generate Y from h∗(t) given Y > T
T ← T + Y
generate S ∼ U(0� h∗(T))

until S � h(T)
return T

Generating Y in the loop can be performed by inversion or any other method.
The name thinning comes from the fact that T can make several steps, each of
length Y , that are thinned out before the loop condition is satisfied.

2.2 Survival models involving covariates

The accelerated life and proportional hazards lifetime models can account
for the effects of covariates on a random lifetime (Cox and Oakes, 1984). Vari-
ate generation for these models is a straightforward extension of the basic
methods for generating random lifetimes. Variate generation algorithms for
Monte Carlo simulation of nonhomogeneous Poisson processes are a simple
extension of the inverse cumulative hazard function technique.

The effect of covariates (explanatory variables) on survival often compli-
cates the analysis of a set of lifetime data. In a medical setting, these covariates
are usually patient characteristics such as age, gender, or blood pressure. In
reliability, these covariates are exogenous variables such as the turning speed
of a machine tool or the stress applied to a component that affect the lifetime
of an item. We use the generic term item here to represent a manufactured
product or organism whose survival time is of interest. Two common models to
incorporate the effect of the covariates on lifetimes are the accelerated life and
Cox proportional hazards models.

The q × 1 vector z contains covariates associated with a particular item.
The covariates are linked to the lifetime by the function ψ(z), which satisfies
ψ(0) = 1 and ψ(z) � 0 for all z. A popular choice is the log linear form
ψ(z) = exp(β′z), where β is a q× 1 vector of regression coefficients.

Accelerated life model
The cumulative hazard function for T in the accelerated life model is

H(t) = H0
(
tψ(z)

)
�
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whereH0 is a baseline cumulative hazard function. When z = 0,H(t) = H0(t).
In this model, the covariates accelerate (ψ(z) > 1) or decelerate (ψ(z) < 1)
the rate that the item moves through time.

Proportional hazards model
The cumulative hazard function for T in the proportional hazards model is

H(t) = ψ(z)H0(t)�

In this model, the covariates increase (ψ(z) > 1) or decrease (ψ(z) < 1) the
hazard function associated with the lifetime of the item by the factor ψ(z) for
all values of t. This model is known in medicine as the “Cox model” and is a
standard model for evaluating the effect of covariates on survival. We do not
explicitly consider the estimation of the regression coefficients β here since
the focus is on random lifetime generation. Cox and Oakes (1984) and others
give the details associated with estimation of β and most modern statistical
packages estimate these coefficients using built-in numerical methods.

Lifetime generation
All of the algorithms for variate generation for these models are based on

the fact that H(T) is exponentially distributed with a mean of one. Therefore,
equating the cumulative hazard function to − log(1−U), where U ∼ U(0� 1),
and solving for t yields the appropriate generation technique (Leemis, 1987).

In the accelerated life model, since time is being expanded or contracted by
a factor ψ(z), variates are generated by

T ← H−1
0 (− log(1 −U))

ψ(z)
�

In the proportional hazards model, equating − log(1 − U) to H(t) yields the
variate generation formula

T ← H−1
0

(− log(1 −U)

ψ(z)

)
�

In addition to generating individual lifetimes, these variate generation tech-
niques can be applied to point processes. A renewal process, for example, with
time between events having a cumulative hazard function H(t), can be sim-
ulated by using the appropriate generation formula for the two cases shown
above. These variate generation formulas must be modified, however, to gen-
erate variates from an NHPP.

In an NHPP, the hazard function, h(t), is analogous to the intensity function
λ(t), which governs the rate at which events occur. To determine the appro-
priate method for generating variates from an NHPP model which involves
covariates, assume that the last event in a point process has occurred at time a.
The cumulative hazard function for the time of the next event, conditioned on
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Table 1.
Lifetime generation in regression survival models

Renewal NHPP

Accelerated life T ← a+H−1
0 (− log(U))/ψ(z) T ← H−1

0 (H0(aψ(z))− log(U))/ψ(z)
Proportional hazards T ← a+H−1

0 (− log(U)/ψ(z)) T ← H−1
0 (H0(a)− log(U)/ψ(z))

survival to time a, is

HT |T>a(t) = H(t)−H(a)� t � a�

In the accelerated life model, where H(t) = H0(tψ(z)), the time of the next
event is generated by

T ← H−1
0 (H0(aψ(z))− log(1 −U))

ψ(z)
�

Equating the conditional cumulative hazard function to − log(1−U), the time
of the next event in the proportional hazards case is generated by

T ← H−1
0

(
H0(a)− log(1 −U)

ψ(z)

)
�

Table 1 summarizes the variate generation algorithms for the accelerated life
and proportional hazards models (the last event occurred at time a). The 1−U
has been replaced with U in this table to save a subtraction, although the sense
of the monotonicity is reversed.

The renewal and NHPP algorithms are equivalent when a = 0 (since a re-
newal process is equivalent to an NHPP restarted at zero after each event),
the accelerated life and proportional hazards models are equivalent when
ψ(z) = 1, and all four cases are equivalent when H0(t) = λt (the exponential
baseline case) because of the memoryless property associated with the expo-
nential distribution.

3 Generating random objects

The notion of a random “object” is quite general. We therefore limit our
discussion to (1) combinatorial objects, (2) matrices, and (3) polynomials.
The wider literature on generating random objects is rather diverse, ranging
from a monograph on shuffling playing cards (Morris, 1998), to generating
random colors, to generating random geometric objects, to generating ran-
dom spawning trees (Fishman, 1996, p. 379), to generating random sequences
(Knuth, 1998), to generating Markov chains (Gilks et al., 1996; Ross, 2003;
Metropolis et al., 1953; Hastings, 1970).
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3.1 Combinatorial objects

A combinatorial object is an object which can be placed into a one-to-one
correspondence with a finite set of integers. These objects can be used for
a variety of purposes (e.g., entries in a matrix, coefficients of a polynomial).
The algorithms given in the subsections below are from Nijenhuis and Wilf
(1978), Wilf (1989) and Devroye (1986). These authors also include algorithms
for generating all combinatorial objects in lexicographic order, as opposed to
generating one random combinatorial object, which is the emphasis here. We
consider only random subsets, combinations, and permutations here. Algo-
rithms for generating other combinatorial objects (e.g., a random composition
of n into k parts or a random partition of an integer n) are also considered by
these authors.

Generating a random subset of {1� 2� � � � � n}
Generating a random subset of the first n positive integers is straight-

forward since the inclusion or exclusion of each element in the subset is a
Bernoulli(1/2) random variable. Thus if ai = 0 if i is excluded from the subset
and ai = 1 if i is included in the subset, the following O(n) algorithm generates
the a1� a2� � � � � an values.

for i from 1 to n
generate U ∼ U(0� 1)
ai ← �2U�

return a1� a2� � � � � ak
In this fashion, each of the 2n subsets is generated with probability 1/2n.

Generating a random combination of k integers from {1� 2� � � � � n}
The naive algorithm for generating a random combination of k integers

drawn from {1� 2� � � � � n} is to repeatedly generate random integers between
1 and n, discarding those that have been generated previously. This inefficient
O(k2) algorithm which generates the combination in an unsorted order can
be improved on by the following O(k) algorithm which uses exactly k mem-
ory locations a1� a2� � � � � ak for storing the combination and produces sorted
output.

c1 ← k
c2 ← n
k0 ← 0
i← 1
while c1 > 0

generate U ∼ U(0� 1)
if U � c1/c2
c1 ← c1 − 1
k0 ← k0 + 1
ak0 ← i

c2 ← c2 − 1
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i← i+ 1
return a1� a2� � � � � ak

This algorithm progressively chooses each element with the appropriate prob-
ability (c1/c2) based on the number of elements remaining in the combination
and the number remaining in the selection pool, terminating when the kth el-
ement is selected for inclusion in the combination. In this fashion, each of the(n
k

)
combinations is generated with probability 1/

(n
k

)
.

Generating a random permutation of {1� 2� � � � � n}
There are exactly n! permutations of the integers {1� 2� � � � � n}. An algorithm

that generates each of these permutations with probability 1/n! is referred to as
a random shuffle. If n = 52, for example, a random shuffle algorithm generates
one of the permutations of an ordinary deck of playing cards. The intuitive way
to generate a random shuffle of {1� 2� � � � � n} is to (1) select an integer from
{1� 2� � � � � n}, (2) select an integer from {1� 2� � � � � n} less the integer selected
in the previous step, etc. The following O(n) algorithm does just that while
leaving the elements of {1� 2� � � � � n} in place. Prior to executing the algorithm,
the first n integers should be stored (in any order) in a1� a2� � � � � an.

for i from 1 to n
generate U ∼ U(0� 1)
j ← �(n− i+ 1)U� + i
t ← aj
aj ← ai
ai ← t

return a1� a2� � � � � an
The j ← �(n − i + 1)U� + i step is used to generate a random subscript that
is equally likely among i� i + 1� � � � � n. The three steps that follow are used to
swap ai and aj .

This completes the discussion of algorithms for the generation of three
fundamental combinatorial objects: subsets, combinations, and permutations.
Other sampling schemes (e.g., sampling with replacement) or other combina-
torial objects (e.g., a random partition of an integer) are considered by the
authors cited at the beginning of this subsection.

3.2 Random matrices

A random matrix is an n×m array of entries that are random variables. Gen-
erating random matrices is a topic without a well-organized theory. Carmeli
(1983), Deift (2000) and Mehta (2004), for example, emphasize applications
of random matrices in quantum mechanics where, for example, the energy lev-
els of a system are given by the eigenvalues of a Hermitian operator called the
Hamiltonian. When the complex entries are random variables, the associated
eigenvalues are also random. Rather than attempt to create a hierarchy for
random matrices (e.g., the meaning of a random positive definite matrix), we
focus on three examples that illustrate the wide variety of questions that can



Ch. 6. Arrival Processes, Random Lifetimes and Random Objects 175

be posed concerning random matrices: (1) the generation of a particular type
of matrix known as a “correlation matrix”, (2) the distribution of the number
of real eigenvalues associated with a matrix of independent standard normal
random variables, and (3) the distribution of the determinant of an M-matrix
with U(0� 1) entries.

Generating correlation matrices
A correlation matrix is a symmetric, positive semidefinite matrix with 1’s

on the diagonal. The (i� j)th element of such a matrix gives the correlation
between the ith and jth elements of a random vector. Marsaglia and Olkin
(1984) consider the generation of random correlation matrices under the fol-
lowing three scenarios: (1) random correlation matrices with a given mean,
(2) random correlation matrices of the form TT ′, and (3) random correlation
matrices with given eigenvalues. We consider the first case.

Let C be a given correlation matrix and X be a random symmetric matrix
with zeros on the diagonal and random variables with means of zero for the
off-diagonal elements. The matrix C +X is a random correlation matrix with
expected value C if and only if the eigenvalues of C+X are nonnegative. Thus
X is a perturbation of C that can be used to generate the random correlation
matrix C + X under the appropriate restrictions on X. This setting provides
a variety of methods for generating random correlation matrices. Here is one
such algorithm:

Set up: Compute λ, the smallest eigenvalue of the n× n matrix C.
Marginal: Generate the upper-triangular elements of X from a radially sym-

metric distribution in (or on) the unit n(n− 1)/2-sphere. Letting xij = xji
for i �= j, the matrix C + λX/

√
2 is a random correlation matrix with ex-

pected value C.

Example. Consider the generation of a random correlation matrix when n = 3.
One way to generate the random elements of the perturbation matrix X is to
generate values on the surface of the unit sphere. Using the transformation
from spherical coordinates to rectangular coordinates:

x12 = ρ sinφ cos θ� x13 = ρ sinφ sin θ� x23 = ρ cosφ�

where θ ∼ U(0� 2π), φ ∼ U(0�π) and ρ = 1. Using the third random num-
ber stream, a perturbation matrix X can be generated in S-Plus (S-Plus is a
registered trademark of Insightful Corporation) with the statements:

set.seed(3)
x <- matrix(0, 3, 3)
theta <- runif(1, 0, 2 * pi)
phi <- runif(1, 0, pi)
x[1, 2] <- sin(phi) * cos(theta)
x[1, 3] <- sin(phi) * sin(theta)
x[2, 3] <- cos(phi)
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x[2, 1] <- x[1, 2]
x[3, 1] <- x[1, 3]
x[3, 2] <- x[2, 3]

yielding

X =
[ 0�0000000 −0�3956487 −0�8461130
−0�3956487 0�0000000 0�3571483
−0�8461130 0�3571483 0�0000000

]
�

The associated random correlation matrix is thus C + λX/
√

2.

Ghosh and Henderson (2003) give another method for generating correla-
tion matrices.

Number of real eigenvalues
Some random matrices have analytic results that may preclude the need

for simulation. This paragraph outlines one such case. An n × n matrix with
independent standard normal entries, for example, has an expected number of
real eigenvalues En given by Edelman et al. (1994):

En =
{

1 +√
2
∑(n−1)/2

k=1
(4k−3)!!
(4k−2)!! � n odd�√

2
∑n/2−1

k=0
(4k−1)!!
(4k)!! � n even�

where the double factorial (also known as the semifactorial) notation is defined
by

n!! =
{

1 × 3 × 5 × · · · × n� n odd�
2 × 4 × 6 × · · · × n� n even�

The authors also show that En asymptotically converges to
√

2n/π as n → ∞
and that the distribution of the value of a real normalized eigenvalue (the
eigenvalue divided by

√
n ) of such a matrix converges in distribution to a

U(−1� 1) distribution. Other distributions for the entries of the matrix or cor-
related entries would likely require Monte Carlo simulation to determine the
expected number of real eigenvalues or the distribution of a real normalized
eigenvalue.

Example. The analytic result indicates that the expected number of real eigen-
values of a 3 × 3 matrix of independent standard normal random variables is
E3 = 1+√2/2 ∼= 1�71. The following Monte Carlo simulation S-Plus code ver-
ifies the analytic result (it yields an estimated expected number of real eigen-
values as 1.738, 1.698 and 1.676 for random number streams 3, 4 and 5, which
corresponds to an approximate 95% confidence interval of 1�63 < E3 < 1�78
based on the assumption of normal sampling) and can easily be modified for
other independent or dependent matrix entries where no analytic result ex-
ists.
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set.seed(3)
total.real <- 0
for (i in 1:1000) {
x <- matrix(rnorm(9), 3, 3)
total.real <- total.real

+ sum(Im(eigen(x)values) == 0)
}
total.real / 1000

Determinant of an M-matrix
Finally, we consider the following question: if the elements of a 3 × 3 real

matrix are independent random numbers with positive diagonal elements and
negative off-diagonal elements, what is the probability that the matrix has a
positive determinant? That is, find the probability that∣∣∣∣∣

+u11 −u12 −u13
−u21 +u22 −u23
−u31 −u32 +u33

∣∣∣∣∣ > 0�

where the uij ’s are independent random numbers. This question is rather vex-
ing analytically due to the appearance of some of the random numbers multiple
times in the determinant. This question is of interest to matrix theorists as
it is an example of a probability that cannot be calculated easily. A positive
determinant in this case is equivalent to the matrix being of a special type
called an M-matrix (Horn and Johnson, 1990). A positive determinant in a ma-
trix with this particular sign pattern (positive diagonal elements and negative
off-diagonal elements) corresponds to having all three 2 × 2 principal minors
(determinants of sub-matrices determined by deleting the same numbered row
and column) being positive.

The implementation of the Monte Carlo simulation to estimate the proba-
bility of a positive determinant is straightforward. Random matrices are gen-
erated in a loop, counting the number of these matrices that have a positive
determinant and returning the ratio of the count of the matrices that have a
positive determinant to the number of replications. In order to estimate the
probability with some precision, it is reasonable to make one long run. For the
linear congruential generator g(x) = axmodm with a = 48271, m = 231 − 1,
and a seed of x0 = 123456789 (see Chapter 3), and 200�000�000 replica-
tions, the program returns an estimated probability of a positive determinant
as 0�050203. Two other simulation runs with different random number gen-
erators indicate that only three digits are reasonable to report: the estimated
probability of a positive determinant is 0�0502.

3.3 Random polynomials

Like random matrices, the diversity of questions that can be asked con-
cerning random polynomials is also very large. Edelman and Kostlan (1995),

http://dx.doi.org/10.1016/S0927-0507(06)13003-0
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for example, use elementary geometric arguments to show that the expected
number of real zeros En of a degree n polynomial with independent standard
normal coefficients is given by the expression

En = 4
π

∫ 1

0

√√√√ 1

(1 − t2)
2 −

(n+ 1)2t2n

(1 − t2n+2)
2 dt�

The authors show that for a seemingly minor variation in this problem (the
independent, normally distributed coefficients have means 0 and variance

(n
i

)
for the ith coefficient), then the random polynomial has En = √

n expected
real zeros. They also extend these results for arbitrary and multivariate normal
distributions.

Example. The Monte Carlo simulation S-Plus code below verifies that E2 =√
2 ∼= 1�41421 for quadratic equations, and can be modified to accommodate

more general random coefficients of the polynomial. The program below re-
turns 1�41394, 1�40886 and 1�41636 as estimates for the expected number of
real roots for random number streams 3, 4 and 5, resulting in an approximate
95% confidence interval of 1�40 < E2 < 1�42 based on the assumption of
normal sampling, which verifies the theoretical result

set.seed(3)
num.roots <- 0
for (i in 1:100000) {
aa <- rnorm(1, 0, 1)
bb <- rnorm(1, 0, sqrt(2))
cc <- rnorm(1, 0, 1)
if (bb ˆ 2 - 4 * aa * cc > 0)
num.roots <- num.roots + 2

}
num.roots / 100000
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Chapter 7

Implementing Representations of Uncertainty

W. David Kelton
Department of Quantitative Analysis and Operations Management,
University of Cincinnati, USA
E-mail: david.kelton@uc.edu

Abstract

Chapters 3–6 discussed generating the basic random numbers that drive a stochas-
tic simulation, as well as algorithms to convert them into realizations of random input
structures like random variables, random vectors, and stochastic processes. Still, there
could be different ways to implement such methods and algorithms in a given simula-
tion model, and the choices made can affect the nature and quality of the output. Of
particular interest is precisely how the basic random numbers being generated might
be used to generate the random input structures for the model. This chapter dis-
cusses these and related issues and suggests how implementation might best proceed,
not only in particular simulation models but also in simulation software.

1 Introduction

The preceding chapters in Part II of this volume (Chapters 3–6) discussed
details of generating the basic random numbers at the root of stochastic sim-
ulations, and the ensuing methods for generating the various kinds of random
structures (variates, multivariate input processes, arrival processes, random
lifetimes, and other objects) that are used directly to drive the simulation.

The purpose of this (very) short chapter is merely to raise some issues, and
suggest some potential resolutions to them, for precisely how such generation
might best be implemented in the context of a large and complex simulation,
especially in terms of the low-level assignment of specific sequences of random
numbers to generating the various random structures listed above. You might
want to read this if you are a simulation analyst interested in effecting some of
these ideas (software permitting), or if you are a simulation-software developer
considering implementing some of this in your products, either as defaults or
as user-controlled options, to help your customers do a better job with their
simulation studies.
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The implementation of random-number generation for various random
structures matters for reasons of both validity of the output (i.e., accuracy),
as well as for its precision:

• Validity. If, as is quite possible (if not almost certain), sequences of
random numbers are re-used in an uncontrolled or inappropriate way
(most likely unknowingly), the simulation’s very validity can be threat-
ened. The reason is that many variate- and process-generation schemes
rely on independent draws from the underlying random-number gener-
ator (as discussed in Chapters 4–6), and if care is not taken to eliminate
the possibility of uncontrolled overlapping or re-using sequences of
random numbers, these variate- and process-generation methods can
become invalid – and hence the simulation’s results could also be in-
valid.

• Precision. You could easily lose an opportunity to improve your sim-
ulation’s efficiency (either computational or statistical, which can be
viewed as the same thing) if you pass up what might be some relatively
easy (maybe even automatic, as described in Section 5) steps involving
intelligent re-use of random numbers. Now the preceding bullet point
railed against re-use of random numbers, claiming that doing so could
invalidate your simulation, and now it’s being suggested that doing so
can improve it (while not harming its validity). The difference is that
now what’s being considered is controlled and intelligent re-use, as op-
posed to uncontrolled or even unconscious re-use. A more detailed
treatment of the probability and statistics behind this possibility, with
an example, is in Section 4.

Section 2 discusses how the underlying random-number generator might
be set up in terms of accessing and using it. Section 3 considers how such a
random-number-generator structure might be exploited to organize and con-
trol how input variates, vectors, processes, and other objects are generated in
the interest of improving the simulation’s efficiency and thus value. In Sec-
tion 4 an application of these ideas, to inducing desirable correlation to re-
duce simulation-output variance, is described along with an example. Finally,
Section 5 offers some (personal) opinions about how these ideas might be
implemented in high-level simulation-modeling software, which would help
everyone simulate better.

Some of this material (and additional related issues, such as robust and au-
tomated integration into software of both input modeling and output analysis)
appeared in Kelton (2001).

2 Random-number generation

Use of a modern, statistically valid and long-period random-number gen-
erator is absolutely critical to any simulation study (see Chapter 3 for a full

http://dx.doi.org/10.1016/S0927-0507(06)13004-2
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treatment of this topic). Somewhat alarmingly, we now have a severe mismatch
between computer-hardware capabilities and the characteristics of some older
random-number generators still in common use.

First and foremost, random-number generators must be of high statistical
quality, and produce a stream of numbers that behave as though they were
independent and uniformly distributed on the unit interval, even when scru-
tinized closely for these properties by powerful structural and statistical tests.
Given the speed of computers several decades ago, generators were developed
at that time that were adequate to “fool” these tests up to the discriminatory
power of the day. One aspect of this is the cycle length (or period) p of a gen-
erator, which is the number of random numbers before the generator repeats
itself (as all algorithmic generators eventually will). Starting from some fixed
deterministic initialization, the complete sequence of generated random num-
bers would be u1� u2� � � � � up and that is all, since up+1 = u1� up+2 = u2� � � � ,
and in general ukp+i = ui for k ∈ {1� 2� � � �}. In the 1950s, 1960s, and 1970s,
generators with cycle length p around 231 (on the order of 109) were devel-
oped; this cycle length resulted from the word length of fixed-point integers
in computers at that time. These were adequate for many years, and were
in wide use. Unfortunately, they are still in wide use even though computer
speeds have increased to the point that any garden-variety PC can completely
exhaust this cycle in just a few minutes! At that point the stream cycles and
produces exactly the same “random” numbers in exactly the same order, with
obvious potentially deadly implications for the integrity of simulations’ results.
This dirty little software scandal (including simulation software) is one that few
users (or software developers) seem to be aware of, or even seem to care about.
But it is easily avoidable. People now have developed and coded algorithms for
extremely long-period generators, with cycle lengths p on the order of 1057 or
more, which display superb statistical behavior; see Chapter 3 for a general
discussion, or L’Ecuyer et al. (2002) for a specific example with downloadable
code. Their cycle lengths will continue to be “long”, even under Moore’s “law”,
for a few centuries to come. And their speed is comparable to the poor little
old generators from decades ago. It is hard to think of any excuse at all for not
implementing these kinds of generators immediately, especially in commercial
simulation software.

Another highly desirable aspect of random-number generators is the ability
to specify separate streams of the generator, which are really just (long) con-
tiguous subsegments of the entire cycle, and to make these readily available,
perhaps via on-the-fly object-oriented instantiation as opposed to storing static
seed vectors to initiate each stream. With s streams of length l each (sl = p),
we could re-index the generated random numbers as uji being the ith random
number in stream j, for i ∈ {1� 2� � � � � l} and j ∈ {1� 2� � � � � s}. These streams
can be further subdivided into substreams, and so on, for multidimensional
indexing (ujki is the ith random number from substream k within stream j)
and assignment of separate and independent chunks of random numbers to
separate activities in the simulation; the importance of this is really in vari-
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ance reduction via correlation induction, as discussed in Section 4, as well as in
Banks et al. (2005, Chapter 12) and Law and Kelton (2000, Chapter 11). The
specific generator in L’Ecuyer et al. (2002) provides a very large number of very
long streams and substreams (i.e., two-dimensional indexing).

As an example of the utility of such multidimensional stream and substream
indexing, you could assign a stream (first index j) to generating, say, service
times of a class of parts at a workcenter, and within that stream you would
(automatically, one would hope) move to the next substream (second index k)
for each new replication of the simulation run. The importance of moving to a
new substream with each replication is that, in comparing alternate scenarios
of the model (e.g., change some input parameters or model logic), different
scenarios will in general consume different numbers of random numbers for
this purpose in a replication, and moving to the next substream for the next
replication will ensure that in replications k subsequent to the first, the same
random numbers will still be used for the same purpose; see the discussion of
random-number synchronization in Section 4, Banks et al. (2005, Chapter 12),
or Law and Kelton (2000, Chapter 11). Another way to ensure synchronization
throughout multi-replication comparative runs, without substreams, would be
to advance all stream numbers at the beginning of each replication after the
first by the number of streams being used; with the astronomical number of
streams that should be available, there would be no worries about running out
of streams. It is easy to imagine the need for stream indexing of dimension
higher than two in order to ensure synchronization in more complex projects
involving designed experiments or comparing and ranking multiple scenarios
(see Chapter 17) – ujkdi is the ith random number for the jth source of ran-
domness during the kth replication of design point d in a designed simulation
experiment.

Obviously, being able to do this reliably and generally requires extremely
long-period underlying generators, which, as pointed out, now exist. And
we also have easy and fast methods to create and reference such multi-
dimensional streams (and the length of even the substreams is astronomically
long so there are no worries about exhausting or overlapping them); see, for
example L’Ecuyer et al. (2002) for a package based on a generator with cycle
length 1057, streams and substreams (i.e., two-dimensional indexing), as well
as downloadable code for implementation.

3 Random-structure generation

With multidimensional stream indexing based on a high-quality, long-period
underlying random-number generator, it then becomes possible (ideally, auto-
matic) to assign separate streams of random numbers to separate points in the
model where uncertainty in the input is required. As mentioned, the reason for
doing so is to ensure, so far as possible given the structure of the model(s), that
in simulation studies comparing alternate scenarios of a general base model,
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the same random numbers are used for the same purposes across the scenar-
ios, to maintain the best synchronization and thus improve the performance of
correlation-induced variance-reduction techniques (see Section 4).

Though precisely how this is done will always have some dependence on the
model, there are generally two approaches, by faucets and by body art:

• Faucets. Identify the activities in the model where uncertainty is an in-
put. Examples include interarrival times between successive customers,
their service times at different stations, their priorities, and points at
which probabilistic branching occurs. Assign a separate stream in the
random-number generator to each. This is then like having a sepa-
rate faucet at each such point, pouring out random numbers from a
separate reservoir. True, the reservoirs are finite, but with the right un-
derlying random-number generator broken appropriately into streams
and substreams, etc., you do not need to worry about draining any
reservoirs during your lifetime.

• Body art. Identify all the uncertain things that might happen to an
entity (like a customer in a queueing model) during its life in the
model, and write them on the entity when it is born; these are some-
times called attributes of the entity. Examples would include service
times, pre-ordained probabilistic branching decisions, and the number
of clones made if there is downstream copying of the entity. Use nonin-
delible ink to allow for possible reassignment of these attributes during
the entity’s life.

Neither faucets nor body art provides the universal or uniformly best way to
go, since, as mentioned, particular model logic might render one or the other
difficult or impossible (or meaningless).

It seems that body art would, in general, provide the best and strongest
synchronization, since it is more in keeping with the principle that, for all sce-
narios, we want the “same” customers showing up at the same times (by the
“same” customers we mean that they are identical in terms of exogenous traits
like service requirements, arrival times, branching decisions, etc.). However,
it also makes the entities bloated (thus consuming more memory) in terms of
their having to drag around all these attributes when most are not needed until
later (maybe some will never be needed).

Faucets are easy to implement (maybe they should be automatic in the soft-
ware, which would automatically increment the stream/faucet index every time
the modeler puts a source of randomness into the model), and in general pro-
vide a level of synchronization that is certainly better than nothing. However,
given the vagaries of what might happen in a simulation (e.g., branching de-
cisions), they would not appear necessarily to provide the “same-customer”
level of synchronization that might be achieved by body art, but this is model-
dependent (see the example in Section 4).

Another aspect of how simulations are actually coded (or how the simula-
tion software being used was coded) that can affect the level of synchronization
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is the method by which random variates (and vectors and processes) are gener-
ated, if there is a choice; this was discussed in Chapters 4–6 and many specific
methods and references are in Banks et al. (2005, Chapter 8) and Law and
Kelton (2000, Chapter 8). The opinion here is that inversion of the cumulative
distribution function (or of a process analogue of it, such as the cumulative
rate function for generating realizations of a nonstationary Poisson process, as
in Çinlar, 1975) is preferable since:

• the number of random numbers consumed per variate (or vector) is
fixed, thus making it easier to ensure synchronization,

• the sign and strength of the correlation between the basic random num-
bers and the objects realized is protected, and

• it generally uses the fewest number of random numbers (though this
is the least important reason since in most complex dynamic systems
simulation random-number generation accounts for only a small pro-
portion of the overall execution time).

Now inversion is not universally applicable via simple closed-form formulas,
but in some such cases a numerical method to effect the inversion is available
and might be considered in order to realize the benefits above. True, this carries
a computation-time penalty, but that might be justified by efficiency gains in
the statistical sense (and thus ultimately in the computational sense as well if a
specific level of precision in the output is sought). This is a consideration that
might be brought to bear on that part of simulation-software design concerned
with generation of random structures for input to a user’s model.

4 Application to variance reduction

As mentioned above, one of the main applications and benefits of careful
implementation of random-structure generation is in variance reduction. By
taking a little care in allocation of random-number streams in the simulation
model, it is often possible to achieve better output precision without additional
computational effort.

Though not the only variance-reduction technique, one of the most acces-
sible and widely used is common random numbers (CRN), also called corre-
lated sampling or matched pairs. It applies not when simulating a single system
configuration, but rather when comparing two (or more) alternative configu-
rations, or scenarios, and uses the same random numbers to drive all scenarios,
though care must be taken to do so wisely in order to get the most benefit.

One motivation for CRN is common sense – to compare alternative sce-
narios it seems best to subject them to the same “external” conditions. This
way, any observed output differences could be more reliably attributed to dif-
ferences in the scenarios rather than to the different external conditions that
happened to occur in the runs, since such external differences are minimized.

http://dx.doi.org/10.1016/S0927-0507(06)13004-2
http://dx.doi.org/10.1016/S0927-0507(06)13004-2 10.1016/S0927-0507(06)13005-4
10.1016/S0927-0507(06)13006-6
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This common sense is backed up by basic probability. If YA and YB are out-
put responses from scenarios A and B, we might seek to estimate the expected
difference E(YA − YB) between the scenarios from simulation output data by
YA − YB. One measure of the quality of this estimator, in terms of precision,
is Var(YA − YB) = Var(YA) + Var(YB)− 2 Cov(YA� YB). If the covariance is
zero, as would happen if the runs were independent, we get a higher variance
than if we could make this covariance positive, as we would anticipate if the
external conditions were controlled to be mostly the same across the simula-
tions of A and B (barring pathological model behavior, we would expect that,
say, heavy customer demands would cause A and B to respond in the same
direction). Of course, this thinking goes through with multiple replications
on a replication-by-replication basis, and the variance reduction propagates
through to the sample means. One way to try to induce such positive covari-
ance in comparative simulations is CRN.

For instance, a facility receives blank parts and processes them. About a
fourth of the blank parts need repair before processing. There are currently
two separate external sources; from each source, parts arrive one at a time with
interarrival times that are exponentially distributed with mean one minute.
There is a single repair person, with repair times’ being exponential with mean
1.6 minutes. There are two processing operators, both “fed” by a single queue,
with processing times’ being exponential with mean 0.8 minute. All queues are
first-come, first-served, and all probabilistic inputs (interarrival times, service
times, and whether a part needs repair) are independent. The simulation starts
empty and idle and runs for 24 hours. From 50 replications, a 95% confidence
interval for the expected time in system of parts is 3�99± 0�19 minutes, and for
the expected number of parts present is 8�00 ± 0�40.

Under consideration is taking on a third but smaller source of blank parts,
with interarrival times’ being exponential with mean five minutes, but oth-
erwise the same in terms of service times and proportion that need repair.
Adding this to the model and replicating 50 times, 95% confidence inter-
vals on expected time in system and expected number of parts present are
6�79 ± 0�60 minutes and 15�01 ± 1�39 parts. It is hardly surprising that both
went up, but it would have been hard to quantify by how much without a sim-
ulation.

How should we make statistically valid statements about the changes in the
model responses? For example, are the changes statistically significant? One
way is to pair up the results, replication by replication, subtract, and compute a
confidence interval on the expected difference (assuming normal-theory sta-
tistics are valid, this is the paired t method discussed in any basic statistics
book). Subtracting in the direction (original model)–(second model), we get
95% confidence intervals of −2�80 ± 0�59 minutes for the difference between
expected times in system, and −7�00 ± 1�35 for the difference between ex-
pected numbers of parts present; since neither confidence interval contains
zero, the differences are statistically significant.
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Exactly what random numbers were used (or should have been used) in
the comparison? We just ignored the whole issue above and used the default
stream for everything in both scenarios, initialized at the same point. Thus,
the results from the two scenarios arose from the same sequence of random
numbers (the lengths of the sequences were very likely different, but there was
substantial overlap) so are not independent, though fortunately the paired t
method is still valid in this case. This is probably how the vast majority of sim-
ulation comparisons are done, so the same random numbers are in fact used,
but not in a controlled way – call this the default approach. (We did, however,
advance to the next substream for each new replication in both scenarios, as
discussed in Section 2, so the random numbers started off the same way in each
replication.)

To see if the default approach got us any variance reduction, we reran
the comparison, again with 50 replications per scenario, using one stream for
everything in A, and a different stream throughout B (and both different from
the one used in the default comparison). Again, substreams were advanced
for each replication. The 95% confidence intervals on the differences were
−2�49 ± 0�47 minutes for time in system and −6�33 ± 1�11 for mean number
of parts present, which appear to be of about the same precision as in the de-
fault approach. Indeed, a formal F test for equality of variances (on which
the confidence-interval half-lengths are based) failed to find a statistically sig-
nificant difference. So if default CRN achieved any variance reduction at all
it was vanishingly small since there was no attempt to synchronize random-
number use, even though essentially the same random numbers were used
across A and B.

We next synchronized the comparison by faucets, assigning separate streams
to each of the random inputs (one for each arrival source, one for the repair
decision, one for repair times, and one for processing times), and using the
same stream assignments for both A and B. Substreams, as discussed in Sec-
tion 2, were used to maintain synchronization in replications subsequent to
the first. From 50 replications, the confidence intervals on the differences were
−2�32 ± 0�29 minutes for time in system and −5�99 ± 0�70 for mean number
of parts present, both noticeably tighter than the default and independent ap-
proaches, indicating that faucets produced enough commonality in the external
conditions to sharpen the comparison. Formally, the F test for equality of vari-
ances, in comparison with both the default and independent approaches was
highly significant, confirming that synchronizing by faucets did reduce variance.
Structurally, though, in this model faucets do not perfectly synchronize the re-
pair decision on a part-by-part basis; this decision is made after parts arrive,
and in scenario B additional parts are mixed into the incoming flow yet the se-
quence of repair decisions is the same. Thus, parts from the original two inputs
are not all getting the same repair decisions they got in scenario A.

So finally we synchronized by body art, using separate streams to pre-assign
as attributes to each part upon its arrival whether it needs repair, its repair
time (which was ignored 3/4 of the time), and its processing time; the input
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processes used still separate streams, and the same streams were used for these
assignments in A and B (all streams here were different from those used above,
so all these experiments are independent). From 50 replications this yielded
the tightest confidence intervals of all, −2�33 ± 0�25 minutes for time in sys-
tem and −5�98 ± 0�59 for mean number of parts present. However, an F test
for equality of variances did not signal a statistically significant difference in
comparison with faucets synchronization; even though body art makes more
intuitive sense for this model than do faucets (due to the repair decision, as
described at the end of the preceding paragraph), the impact of body art vs.
faucets is evidently minor.

There is no guarantee that CRN will always induce the desired positive co-
variance and attendant variance reduction, and “backfiring” counterexamples
can be constructed (see Wright and Ramsay, 1979) where CRN induces neg-
ative covariance and thus increases the variance in the comparison. However,
it is generally believed that such examples are rare and basically pathological,
so that CRN, especially with care taken to synchronize random-number use as
appropriate to the model and scenarios, is usually effective, though just how
effective is generally model-dependent.

As mentioned, CRN is but one of several variance-reduction techniques that
rely, in one way or another, on using and re-using random numbers in a con-
trolled manner to induce correlation. Other methods such as antithetic variates
and control variates are discussed in, for example, Bratley et al. (1987, Chap-
ter 2) or Law and Kelton (2000, Chapter 11).

5 Conclusions and suggestions

This is an area where it is relatively easy to do a good job, so it is hard to
think of justifications for not doing this well. If it were difficult, say, to use
a good underlying random-number generator or to ensure reasonably effec-
tive synchronization for variance reduction, then it would be understandable
(though still incorrect, or at least inefficient) if people avoided doing so.

So simulation analysts should take a little care up front in their projects
(and maybe ask the right questions of their software vendors). A little effort
here will repay substantial dividends later in terms of accuracy and precision
of the output, and thus in terms of the quality of conclusions and decisions as
well.

And simulation-software vendors have a responsibility to ensure that they
are doing at least the basics right. An opinion about what constitutes “the ba-
sics” is (approximately in decreasing order of importance):

1. If you are still using an old random-number generator of period on the
order of 231, replace it immediately with one of the more recent gener-
ators with (much) longer period and (much) better statistical properties.
If you are worried about your users’ getting upset about suddenly getting
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different results from their old models, then they (and maybe you) are in
denial about the fundamental fact of randomness in simulation output.

2. Provide very widely spaced streams in the random-number generator,
such that the user can specify the stream to be used. By the way, the
old de facto standard of spacing seeds 100,000 random numbers apart is
no longer even close to adequate. Use the literature on random-number
generators (see Chapter 3) to choose the seeds or seeding method (and
the generator itself).

3. Within the streams, provide very widely spaced substreams (that need not
be user-addressable) to which each new replication of the simulation is
advanced automatically, as discussed in Section 2. The spacing between
consecutive substreams (and thus streams) should be (and can be) so
large that many years of computing would be required to exhaust them.
And the number of streams and substreams should be (and can be) so
large that no simulation project could ever use them up.

4. As a default (that could be overridden by a savvy user with a very good
reason), move to the next random-number stream every time the user
specifies generation of a random object in the model. For instance, every
place in the model where generation from a standard univariate proba-
bility distribution is called for, there will be a unique stream assigned to
it. This would automatically implement synchronization by faucets as de-
scribed in Section 2. Do not worry about having enough streams, because
the underlying random-number generator and the stream/substream
structure ensure that no human can build a model that will use them
all up.

5. Include support for modeling (estimating) and generating from nonsta-
tionary Poisson processes. Almost 25 years of personal experience sug-
gests that these are present in many real systems (even in student projects
of limited scope and complexity) and flattening them out, even to the
correct aggregate mean rate, does serious damage to such models’ va-
lidity – imagine an urban-freeway simulation with twice-daily rush hours
flattened to a mean that includes 3AM. Recent work on this includes
Kuhl et al. (2006) and Leemis (2004).

While the wish list above contains only items that can be implemented right
now, there is at least one other modeling capability that would seem to be
worth considering, though maybe having it fully automated is not, at present,
realistic. Current practice for specifying input probability distributions (or,
more generally, input random objects) goes something like this: collect data
from the field, fit a distribution to those data using software that comes with
the modeling package or separate third-party software, translate the results
into the correct syntax for your modeling package, and then type or paste it
into your model wherever it belongs. While the syntax-translation part of this
sequence is commonly automated, the rest is not – but maybe it could be. The
result would be not only streamlining of this process, but also automatic updat-
ing as things change and the field data begin to look different. The modeling
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software could establish dynamic links between the places in the model where
these input-process distributions are needed and the fitting software, and in-
deed back to the files containing the raw field data themselves, thus making
the whole fitting process transparent to the user (and rendering the fitting soft-
ware invisible). The user would tell the simulation model where the data set is
on some input feature, and it would automatically link to the fitting software,
analyze the data, and give the results back to the simulation model. Clearly,
there would have to be some kind of escape from this automation should prob-
lems arise during the fitting phase (e.g., none of the “standard” probability
distributions provides an adequate fit to the data), though use of empirical dis-
tributions, as suggested by Bratley et al. (1987) could provide something of an
automated escape in the case of simple univariate input distributions. This kind
of dynamic integration is now common in office-suite software (e.g., updated
spreadsheet data automatically update a chart in a word-processing document
or presentation or web page), and it could be common in simulation software
as well, but would require better integration of activities within simulation soft-
ware than we now have.

In summary, there are a few nitty-gritty, low-level items almost down at the
programming level that should be attended to in order to promote simulation-
model building that is more robustly accurate, as well as possibly considerably
more efficient. At present, the burden for most of this falls on the user (at
least to check that the modeling software is doing things right), but much of
this burden could be shifted to software designers to enhance their products’
value, even if somewhat unseen to most users.
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Abstract

A fundamental goal of a discrete-event simulation experiment is the computation of
point and confidence interval estimators for various performance measures, such as
means and quantiles. Data generated during a single simulation run are sample paths
from serially correlated stochastic processes. This chapter presents various forms of
point estimators for means and quantiles, and shows how the user can account for the
dependencies in within-run data towards the computation of valid confidence inter-
vals. Finally, this chapter reviews methods for estimating a density function using a
random sample.

1 Introduction

The ultimate goal of discrete-event simulations is the computation of point
estimators and confidence intervals (CIs) for a variety of system performance
measures. Towards this goal simulations use the generated data during event
times to compute finite-sample time averages or sample averages as approxi-
mations to unknown means. There are two types of simulations, finite-horizon
ones and steady-state ones. The first type is concerned with performance mea-
sures evaluated over a specific time window, such as the mean cost incurred by
an inventory policy during a month. On the other hand, a steady-state simula-
tion studies the long-term behavior of the system of interest. A performance
measure of a system is called a steady-state parameter if it is a characteristic of
the equilibrium distribution of an output process. An example is the simulation
of a continuously operating communication system where the objective is the
computation of the mean delay of a data packet. Regardless of their type, sim-
ulations produce within-run data that are correlated, making the application
of “standard” statistical techniques nontrivial.

In finite-horizon simulations systems start at a pre-determined state, and the
primary issue is the number of independent replications (or runs) that need to
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be made to compute estimators with a pre-specified precision. This issue can be
addressed by standard statistical techniques, as we will illustrate in Section 5.
On the other hand, steady-state simulations often require substantial statistical
expertise. The most notable issues related to steady-state simulations are:

• Choosing the initial state for the system; the effect of this choice lessens
as the run length increases.

• Choosing a warm-up interval that elapses before data collection can
begin. The objective is to reduce the impact of the initial conditions on
the finite-sample averages.

• Choosing a run length (time interval length or number of observations
to be collected) to yield estimators that meet certain precision criteria.

• Choosing between a long run and several short runs – not a simple
issue by any means.

Virtually all commercial software packages contain efficient routines for the
recursive computation of finite-sample averages. For instance, they compute
estimates for mean queue lengths, mean entity delays in queues, and server
utilizations. However, they typically provide limited guidance for performing
“sound” statistical analysis. The main reason is the difficulty in automating
these analyses and the (often justifiable) desire of analysts to look at the final
results without “wasting time” with the intricacies of the underlying statistical
methodologies. This collective attitude ends up misguiding analysts and man-
agers with regard to the usefulness of the simulation’s estimates. The afore-
mentioned issues are discussed in a variety of texts, e.g., Fishman (2001) and
Law and Kelton (2000). This chapter formalizes them within a single theme
and serves as a guide for several forthcoming chapters that address them in
more detail.

In addition to point and interval estimates, users are often interested in esti-
mating the density functions (or cumulative distribution functions) of random
variables generated by a computer simulation. Several simulation packages
can generate histograms, but such plots are often “poor” estimates of the
unknown density function because their shape depends heavily on the cho-
sen origin and the bin width. Although the statistical literature contains many
state-of-the-art density estimation techniques, such as those based on kernel
functions, the simulation literature (in particular texts) barely mentions such
techniques, and only within the context of independent input data. This chap-
ter aims to close the gap between the statistical and simulation literatures by
reviewing univariate kernel density estimators based on independent samples
and sample paths of stationary dependent processes.

Section 2 lists notation and reviews basic concepts from probability theory
and statistics. Section 3 uses a simple queueing system to illustrate the prop-
erties of estimators based on sample averages and time averages. Section 4
reviews issues related to dependencies in stochastic processes and sets the
stage for the methods described in Chapter 15. Section 5 applies concepts from
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Section 2 to single measurements from independent replications. Section 6 dis-
cusses modern kernel density estimators.

2 Background

This section reviews tools needed to establish asymptotic (as the sample
size increases) properties of estimators and to obtain confidence intervals. Let
X�X1�X2� � � � be random variables (RVs) from a common probability space
(Ω�F� P), where Ω is the sample space, F is a σ-field of events and P is the
probability measure. Recall that an RV on (Ω�F� P) is a real-valued function
X = X(ω) such that for each x ∈ R, the set {ω: X(ω) � x} is an event. The
cumulative distribution function (CDF) of X is FX(x) = P(X � x), x ∈ R.
Lp is the space of RVs X with E(|X|p) <∞.

We say that

Xn → X

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

almost surely (w.p.1) if Pr
(
Xn(ω)→ X(ω)

as n→∞) = 1�
in probability if limn→∞ Pr

(|Xn −X| � ε
) = 1

∀ε > 0�
in distribution if limn→∞ FXn(x) = FX(x)

at all continuity points x of FX�
in Lp�p � 1� if limn→∞ E

[|Xn −X|p] = 0�

The respective notations for these modes are
a.s.−→,

p−→,
d−→ and

Lp−→. Conver-
gence in L1 (L2) is also called convergence in mean (quadratic mean). Among
the first three modes, almost sure convergence is the strongest while conver-
gence in distribution is the weakest (and easiest to establish). For additional
details and related results, see Chapter 5 of Karr (1993).

Now suppose that the RVs X1�X2� � � � are from some distribution with an
unknown parameter θ and the objective is to estimate a quantity δ that is a
function of θ, say δ := g(θ). For fixed n, let δn = δn(X1� � � � �Xn) be an esti-
mator of δ. The bias of δn is defined as Bias(δn) := E(δn) − δ, and the mean
squared error of δn is MSE(δn) := E[(δn − δ)2] = Bias2(δn) + Var(δn). If
E(δn) = δ, then δn is said to be unbiased. Furthermore, δn is said to be a con-
sistent (respectively, strongly consistent) estimator of δ if δn

p−→ δ (respectively,
δn

a.s.−→ δ). If δn is unbiased for each n and Var(δn)→ 0 as n→∞, then δn is
also consistent. This is a direct implication of Chebyshev’s inequality (Karr,
1993, p. 122): Pr(|δn − δ| � ε) � E[(δn − δ)2]/ε2 = Var(δn)/ε2.

The remainder of this section illustrates the aforementioned concepts with a
few classical results. Suppose that X1�X2� � � � are independent and identically
distributed (IID) RVs with finite mean μ. The sample mean �Xn := 1

n

∑n
i=1 Xi

is an unbiased estimator of μ because E(�Xn) = μ. �Xn is also a strongly consis-
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tent estimator of μ by the strong law of large numbers (Karr, 1993, pp. 188–189),

�Xn
a.s.−→ μ as n→∞�

If σ2
X := Var(X1) ∈ (0�∞), the central limit theorem (CLT) (see Karr, 1993,

p. 174) states that

�Xn − μ

σX/
√
n

d−→ N(0� 1) as n→∞�

where N(0� 1) is a standard normal RV. The CLT remains valid when the typi-
cally unknown variance σ2

X is replaced by its unbiased and consistent estimator
S2
n(X) := 1

n−1
∑n

i=1(Xi − �Xn)
2, the sample variance of the Xi. Therefore, for

sufficiently large n,

(1)pn�1−α := Pr
( |�Xn − μ|
Sn(X)/

√
n

� z1−α/2
)
≈ 1 − α�

where zβ denotes the β-quantile of the standard normal distribution. Solving
the inequality in the middle of (1) for μ, one has the well-known approximate
(two-sided) 1 − α CI for μ,

(2)�Xn ± z1−α/2
Sn(X)√

n
�

We call pn�1−α the “coverage probability” of the CI (2). One interprets this CI
as follows: Suppose that a large number of independent trials are performed;
in each trial, n observations are collected and a CI for μ is computed using (2).
As the number of trials grows, the proportion of CIs that contain μ approaches
1 − α.

The number of observations n required for pn�1−α ≈ 1 − α depends on
the symmetry of the distribution of Xi. The more skewed (asymmetric) the
density/probability function of Xi, the larger n required. To reduce potential
undercoverage problems (pn�1−α < 1 − α) for small n, one may replace the
normal quantile z1−α/2 by the larger quantile tn−1�1−α/2 of Student’s tn−1 dis-
tribution with n− 1 degrees of freedom. This choice for degrees of freedom is
due to the fact that for IID normally distributed Xi,

�Xn − μ

Sn(X)/
√
n
∼ tn−1�

where the notation X ∼ Y is used to indicate that the RVs X and Y have the
same distribution.

3 Sample averages and time averages

Simulation output data are realizations (or sample paths) of stochastic
processes. A stochastic process is a probabilistic model of a system that evolves
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randomly. Let X := {Xt� t ∈ T } be a stochastic process with state space S and
time set T . Each Xt is a random element in S: a measurable mapping from
an underlying probability space (Ω�F� P) to the measurable space (S� E) (all
functions herein will be measurable). Typically, the state space S is a count-
able set, the real line R, or a subset of a Euclidean space or a metric space; and
T = R or R+ for continuous-time processes and T = Z or Z+ for discrete-time
processes. We use the following simple system to illustrate the main concepts
associated with data collection and analysis.

The notation GI/G/c denotes a queueing system with c parallel servers
and a single queue with unlimited buffer. The times between successive job
arrivals are IID RVs, say {Ai� i � 1} with finite mean E(A) := 1/λ and vari-
ance. The service times are also IID RVs, say {Si� i � 1} with finite mean
E(S) := 1/ω (λ < cω for stability) and variance, and are independent of the
arrival process. Let Xt denote the number of units in the system at time t, let
Bt denote the number of busy servers at time t, and let Wi denote the time the
ith job spends in the system. The system is formally described by the stochastic
process Yt = (Xt�R

1
t � � � � � R

c
t ), where Rjt is the remaining service time for the

unit served at server j at time t. Suppose that the rule for assigning customers
to servers is such that the process {Yt� t � 0} is regenerative over a sequence of
epochs {τn} (see Chapter 16). A typical rule is to send an arrival to an arbitrary
idle server or to the lowest numbered idle server. If the system empties out with
a reasonable frequency, it is natural to let τn be the nth time an arrival finds
the system empty. Below we consider two data collection mechanisms often
encountered in practice.

Scheme I. Suppose data collection starts at some time s � 0 and ends at time
s + τ (τ > 0). This approach is convenient for continuous-time sample paths.
The time-average

(3)�X(s� s + τ) = 1
τ

∫ s+τ

s
Xt dt

estimates the mean number of units in the system during the time interval
[s� s + τ], while the time-average

(4)�B(s� s + τ) = 1
τ

∫ s+τ

s
Bt dt

estimates the (mean) number of busy servers during [s� s + τ].
The processes {Xt} and {Bt} have limiting distributions with finite means,

denoted by L and ν := λ/ω (see Serfozo, 1999). We study the properties of
the estimators (3) and (4) by first fixing τ. One can show that as s→∞,

�X(s� s + τ)− L
d−→ ξ(τ) and �B(s� s + τ)− ν

d−→ ζ(τ)�

where ξ(τ) and ζ(τ) are RVs with zero mean and distribution that is indepen-
dent of the system state at time s. Furthermore, as τ → ∞, ξ(τ) and ζ(τ)

http://dx.doi.org/10.1016/S0927-0507(06)13016-9
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converge in distribution (and hence in probability) to zero so that

(5)�X(s� s + τ)
d−→ L and �B(s� s + τ)

d−→ ν as s� τ→∞�

Now, under some additional mild assumptions (e.g., E(A4) < ∞ and
E(S4) <∞), one can show that for fixed s there exist finite constants
σ2(X) > 0 and σ2(B) > 0 so that, as τ→∞,

√
τ
[�X(s� s + τ)− L

] d−→ N
(
0� σ2(X)

)
and

√
τ
[�B(s� s + τ)− ν

] d−→ N
(
0� σ2(B)

)
�

The last two properties allow the user to compute CIs for the respective steady-
state means L and ν.

The estimation of measures other than means is also possible. For instance,
the time average

1
τ

∫ s+τ

s
1{Bt � r} dt

is an estimator for the probability that at least r servers are busy during the
time window [s� s + τ].

Scheme II. Data collection starts when unit m departs and ends when unit
m+n (n � 1) departs. Denote the respective departure times by Tm and Tm+n.
Then the mean time a job spends in the system during the interval [Tm� Tm+n]
can be estimated by the sample average

(6)�W (Tm� Tm+n) = 1
n

m+n∑
j=m+1

Wj�

This estimator has properties analogous to the properties of the estimator �X(s�
s + τ). Specifically, as m is held constant and n → ∞, �W (Tm� Tm+n)

a.s.−→ W ,
where W = L/λ by Little’s law; see Stidham (1974) and Serfozo (1999, Chap-
ter 5). As with Scheme I, usually there exists a finite constant σ2(W ) > 0 so
that, as n→∞,

√
n
[�W (Tm� Tm+n)−W

] d−→ N
(
0� σ2(W )

)
�

Remark 1. Sample averages can be collected under Scheme I, but have ran-
dom denominators. For instance, letNt be the numbers of departures by time t.
The sample average

(7)�W (s� s + τ) = 1
Ns+τ −Ns

Ns+τ∑
j=Ns+1

Wj
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estimates the mean time a job that completed service in [s� s + τ] spent in the
system. Since the denominator of Equation (7) is an RV, the derivation of the
limiting properties of the estimator �W (s� s + τ) requires extra care, but they
are similar to the limiting properties of its counterpart in Equation (6).

Finally, parallel properties hold for the estimator of the mean number of
jobs in the system

�X(Tm� Tm+n) = 1
Tm+n − Tm

∫ Tm+n

Tm

Xt dt

computed under Scheme II.

4 Stationary processes

The scope of many simulation studies is the estimation of limiting measures
associated with stochastic processes. This section starts with some common
structural assumptions that allow us to study the impact of the dependence
within a stochastic process and proceeds with limit theorems. This section con-
tains a synopsis of material from Alexopoulos et al. (2006) and Durrett (2005).

One way to describe a stochastic process is to specify the joint distribution
of Xt1�Xt2� � � � �Xtn for each set of times t1 < t2 < · · · < tn and each n. This
approach is typically too complicated to be attempted in practice. A simpler
approach relies on the specification of the first and second moment functions
of the process. These functions are the mean function μt := E[Xt] and the
autocovariance function

Ct1�t2 := Cov[Xt1�Xt2]� t1 � t2�

Notice that Ct1�t2 = Ct2�t1 . The variance function is then given by σ2
t :=

Var(Xt) = Ct�t and the autocorrelation function is defined as

ρt1�t2 :=
Ct1�t2
σt1σt2

� t1 � t2�

(Strict) Stationarity. The stochastic processX is stationary if, for any t1� � � � � tk,
t ∈ T ,

(Xt1+t � � � � �Xtk+t)
d= (Xt1� � � � �Xtk)�

where “ d=” denotes equality in distribution. This says that the distribution of
the process with the time origin shifted to t is equal to that of X. In other
words, θtX d= X for any t ∈ T , where {θt� t ∈ T } is the family of time-shift
transformations defined by θtx = (xs+t � s ∈ T). An immediate result is that
the joint distribution of Xt1�Xt2� � � � �Xtk depends only on the distances be-
tween t1� t2� � � � � tk.
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Weak stationarity. The processX is said to be weakly stationary if its mean and
variance functions are constant and its autocovariance function satisfies

Cov[Xs�Xs+t] = Ct� s � 0� t � 0�

that is, it depends only on the lag t. If the process X is Gaussian whence all
finite-dimensional distributions are multivariate normal, then weak stationar-
ity implies stationarity.

Ergodicity. A stationary process X is ergodic if P{X ∈ A} = 0 or 1, for each
A ∈ E that is time-shift invariant: {X ∈ A} = {θtX ∈ A}, t ∈ T . This prop-
erty is important for steady-state simulations because it allows the estimation
of limiting performance measures based on a single realization (sample path)
of the process X. Examples are stationary Markov chains and stationary func-
tionals of a stationary, ergodic process.

Example 1 (The M/M/1 queueing system). This is a special case of the
GI/G/c system with one server and exponentially distributed interarrival and
service times. The ratio ν = λ/ω is the traffic intensity or (long-run) server
utilization. Suppose that the service discipline is first-come, first-served. Let
Di be the delay time in queue of the ith customer and assume that the system
starts empty. Since D1 = 0, we have E(D1) = 0. However, the first (i = 1) of
the following recursive equations (Lindley, 1952)

(8)Di+1 = max{Di + Si −Ai+1� 0}� i � 1�

implies Pr(D2 > 0) = Pr(S1 > A2) = λ/(λ + ω) > 0; hence E(D2) > 0.
Therefore the delay process {Di� i � 1} is not stationary. Using queueing the-
ory (Gross and Harris, 1998, Chapter 2), one has

(9)lim
i→∞

Pr(Di � x) = 1 − ν + ν
(
1 − e−(ω−λ)x

)
� x � 0�

μ = lim
i→∞

E(Di) = ν

(1 − ν)ω
and lim

i→∞
Var(Di) = ν(2 − ν)

ω2(1 − ν)2 �

Equation (9) suggests that the delay process becomes asymptotically station-
ary. Indeed, if D1 has the distribution on the right-hand side of (9), Equa-
tion (8) implies (after some work) that all Di have the same distribution and
the delay process is stationary.

The autocorrelation function of the delay process {Di} is given by
(Blomqvist, 1967)

ρj = (1 − ν)3(1 + ν)

(2 − ν)ν3

×
∞∑

k=j+3

[
ν

(ν + 2)2

]k (2k− 3)!
k!(k− 2)!(k− j − 1)(k− j − 2)
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for j = 0� 1� � � � . This function is monotone decreasing with a very long tail
that increases as the server utilization ν increases (for instance, ρ200 ≈ 0�30
when ν = 0�9). This makes the M/M/1 system a good test bed for evaluating
simulation methodologies.

Example 2 (Moving average process). A well-studied stationary sequence is
the moving average process of order q (often abbreviated to MA(q))

Xi = β0Zi + β1Zi−1 + · · · + βqZi−q� i � 0�

where the coefficients βi are constants and {Zi� i ∈ Z} is an IID random se-
quence with mean zero and finite variance σ2

Z . MA processes have applications
in several areas, particularly econometrics (Chatfield, 1989).

Clearly,

E(Xi) = 0� Var(Xi) = σ2
Z

q∑
i=0

β2
i

while some algebra yields the autocovariace function

Cj =
{
σ2
Z

∑q−j
i=0 βiβi+j for j = 0� 1� � � � � q�

0 for j > q�

which “cuts off” at lag q.

4.1 Impact of dependence

Although this topic will be the subject of Chapter 15, we will give a brief
introduction of the main issues. Suppose one observes the portion X1� � � � �Xn

of a discrete-time stationary process for the purpose of estimating the mean
μ := E(X1). Clearly, �Xn is an unbiased estimator of μ while some algebra
yields

(10)Var(�Xn) = σ2
X

n

[
1 + 2

n−1∑
j=1

(
1 − j

n

)
ρj

]
:= σ2

X

n
(1 + γn)�

In order for �Xn to be a consistent estimator of μ, we require that
limn→∞ Var(�Xn) = 0. The last condition holds if limn→∞ nVar(�Xn) < ∞
or, equivalently,

(11)lim
n→∞γn <∞�

The condition limj→∞ Cj = 0 is necessary for (11) but not sufficient. A neces-
sary and sufficient condition is

(12)
∞∑

j=−∞
|Cj| <∞�

http://dx.doi.org/10.1016/S0927-0507(06)13015-7
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In simple terms, the covariance betweenXi andXi+j must dissipate sufficiently
fast for the summation in (12) to remain bounded. If condition (12) holds, we
call

(13)σ2 :=
∞∑

j=−∞
Cj

the variance parameter of the process X.
Under the assumption that �Xn is approximately normally distributed (which

is reasonable for sufficiently large n), the construction of a CI for μ requires
the derivation of an estimator for Var(�Xn). Based on the practice for IID data,
one might be inclined to estimate Var(�Xn) by S2

n(X)/n. Is this wise? After
some algebra one can establish the following formula:

E
[
S2
n(X)

n

]
= σ2

X

n

[
1 − 2

n− 1

n−1∑
j=1

(
1 − j

n

)
ρj

]

(14)= n/(1 + γn)− 1
n− 1

Var(�Xn)�

For processes that are positively correlated (i.e., ρi > 0 ∀i), Equation (14)
implies that E[S2

n(X)/n] � Var(�Xn). Hence the CI in (2) can exhibit severe
undercoverage.

4.2 Ergodic and central limit theorems for stationary sequences

The strong law of large numbers and the CLT for sums of IID random vari-
ables have analogues for partial sums of stationary sequences. Our discussion
of these will involve the notion of ergodicity. The following ergodic theorem is
in Durrett (2005).

Theorem 1 (Ergodic theorem: von Neumann, Birkhoff). Suppose that {Xi} is a
stationary, ergodic sequence of random variables with E(|X1|) <∞. Then

(15)�Xn
a�s�−→ μ as n→∞�

Moreover, if E(|X1|p) <∞ for p � 1, then

(16)�Xn
Lp−→ μ as n→∞�

These w.p.1 and Lp limit properties also hold for stationary processes that
are not ergodic; the E(X1) is just replaced by the conditional expectation ofX1
with respect to the σ-field of invariant events. The ergodic theorem also holds
for averages of continuous-time processes, in which case

1
t

∫ t

0
Xs ds

a.s.−→ E(X0) as t →∞�
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There are several functional central limit theorems for stationary processes
under various assumptions. Two prominent ones are as follows (Durrett, 2005).
Suppose that {Xi� i ∈ Z} is a stationary, ergodic sequence of random vari-
ables with mean μ and finite variance. The assumption that the process has
an infinite past is natural and is justified since a one-sided process with time
set Z+ can be extended by (by Kolmogorov’s extension theorem) to a two-sided
process.

Define the partial sums Sn = ∑n
i=1(Xi − μ), and consider the related sto-

chastic process

n−1/2S(nt) = n−1/2
�nt�∑
i=1

(Xi − μ)� t ∈ R+�

Here {n−1/2S(n·)� n � 1} is a sequence of random elements in the Skorohod
space D(R+) of real-valued functions on R+ that are right-continuous with
left-hand limits. We use “�⇒” to denote weak convergence of random ele-
ments in this space.

Theorem 2. In addition to the assumptions above, suppose that

(17)
∞∑
n=1

[
E
(
ξ2
n

)]1/2
<∞�

where ξn = E[X0−μ|Xk−μ: k � −n]. Then the series (13) converges absolutely
and

n1/2S(n·) �⇒ σW�

where {W(t)� t � 0} denotes a standard Brownian motion process.

The following is another functional central limit theorem with a stronger
assumption. This uses the notion that the sequence X is φ-mixing if there are
ϕj ↓ 0 such that, for each j � 1,

∣∣Pr(A ∩ B)− Pr(A)Pr(B)
∣∣ � φj Pr(A)� A ∈ F i−∞� B ∈ F∞

i+j�

where F j
i , i � j, denotes the σ-field generated by Xi�Xi+1� � � � �Xj .

Theorem 3. The assertion of Theorem 2 is true if assumption (17) is replaced by
the assumption that X is φ-mixing and

∑∞
n=1φ

1/2
n <∞.

Assuming σ > 0, Theorems 2 and 3 imply

(18)
�Xn − μ

σ/
√
n

d−→ N(0� 1) as n→∞�
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Equation (18) can be used to obtain an asymptotically (as n → ∞) CI for μ.
The estimation of σ2 is the main topic of Chapter 15.

Before we proceed, we present an even stronger property to be revisited in
Section 6.7. The processX is strongly α-mixing if there are αj ↓ 0 such that, for
each j � 1,

∣∣Pr(A ∩ B)− Pr(A)Pr(B)
∣∣ � αj� A ∈ F i−∞� B ∈ F∞

i+j�

Since αj � φj , a φ-mixing process is also strongly mixing. Informally, mixing
means that events in the distant future are approximately independent of those
in the past. For details see Billingsley (1968) and Rosenblatt (1956).

Remark 2. Contrary to popular belief, many stochastic processes encountered
in simulation output analysis are not φ-mixing. Examples are autoregressive
processes, regenerative processes (see Chapter 16) with regenerations not oc-
curring uniformly fast over the state space, and virtually all open queueing
networks. However, positive recurrent regenerative processes are strongly mix-
ing. For details, see Glynn and Iglehart (1985).

Example 3 (Gaussian first-order autoregressive process). Another well-known
stationary process is the autoregressive process of order one, denoted by
AR(1), and often called the Markov process in the time series literature,

Xi = μ+ ρ(Xi−1 − μ)+ Zi� i � 1�

where |ρ| < 1, X0 ∼ N(μ� 1), and the Zi are IID N(0� 1 − ρ2).
The autocorrelation function of this process ρj = ρj , j � 0, is monotone

decreasing if ρ > 0 with a tail that becomes longer as ρ increases, and exhibits
damped harmonic behavior around the zero axis if ρ < 0. Applying Equa-
tion (10) one has

nVar(�Xn) = 1 + 2
n−1∑
j=1

(
1 − j

n

)
ρj −→ 1 + ρ

1 − ρ
as n→∞�

Hence �Xn is a consistent estimator of the mean μ = E(Xi) and σ2 =
(1 + ρ)/(1 − ρ). This process does not possess the φ-mixing property, but the
CLT (18) holds by Theorem 2.

5 Analyzing data from independent replications

Suppose that a simulation run yields n output observations, sayX1� � � � �Xn.
Let Y = f (X1� � � � �Xn) be a measurable function, and assume that the objec-
tive of the study is the estimation of μ := E(Y). For instance, if Xi is the time
spent in system by customer i, then f (X1� � � � �Xn) could be the average time

http://dx.doi.org/10.1016/S0927-0507(06)13015-7
http://dx.doi.org/10.1016/S0927-0507(06)13016-9
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in system experienced by the first n customers or the maximum time in system.
By definition, Y is an unbiased estimator for μ.

To bypass the impact of the autocorrelations, one can run k independent
replications of the system simulation. Each replication starts in the same state
and uses a portion of the random number stream that is different from the
portions used to run the other replications. Assume that replication i produces
the output dataXi�1�Xi�2� � � � �Xi�n andYi = f (Xi�1�Xi�2� � � � �Xi�n). Since the
RVs Yi are IID, their sample mean �Yk is also an unbiased estimator of μ, and
their sample variance S2

k(Y) is an unbiased estimator of Var(Y). If, in addition,
k is sufficiently large, an approximate 1 − α CI for μ is

(19)�Yk ± tk−1�1−α/2
Sk(Y)√

k
�

Denote the half-width of the interval (19) by δ(k� α) = tk−1�1−α/2Sk(Y)/
√
k.

5.1 Sequential estimation

Suppose that one wishes to estimate μ within a tolerance ±d, where d is
user-specified. More formally, one would like to make k runs so that

(20)Pr(�Yk − d � μ � �Yk + d) � 1 − α�

where α ∈ (0� 1). The sequential procedure of Chow and Robbins (1965) (see
also Nadas, 1969) is to run one replication at a time and stop at run k∗ such
that

(21)k∗ = min

[
k: k � 2� δ(k� α) �

√
k

k− 1
d2 −

t2k−1�α/2

k(k− 1)

]
�

The stopping rule (21) is based on the limiting result

(22)lim
d→0

Pr(�Yk∗ − d � μ � �Yk∗ + d) = 1 − α�

Equation (22) indicates that as the tolerance d decreases, the probability that
the interval �Yk∗ ± d contains μ converges to 1− α. Notice that as k increases,
the right-hand side of the last inequality in (21) approaches d.

Now suppose that Y1� Y2� � � � are normally distributed. Starr (1966) showed
that the choice

k∗ = min
[
k: k � 3� k odd� δ(k� α) � d

]
yields

Pr(�Yk∗ − d � μ � �Yk∗ + d) �
{

0�928 if α = 0�05�
0�985 if α = 0�01�

The last inequalities indicate little loss in the confidence level for arbitrary d.
Based on Starr’s result and Equation (22), we recommend the simpler and
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more intuitive stopping rule that starts with at least 5 runs,

k∗ = min
[
k: k � 5� δ(k� α) � d

]
�

Often, the t quantile is replaced by the normal quantile z1−α/2.
An alternative two-stage approach for computing a CI for μ with half-width

at most d works as follows: The first stage uses k0 replications to compute a
variance estimate S2

k0
(Y) and a CI with half-width δ(k0� α). Assume that the

estimate S2
k0
(Y) does not change significantly as k0 increases. If δ(k0� α) � d,

the procedure terminates. Otherwise, an estimate of the total number of repli-
cations required to obtain a half-width of at most d is computed from

k̂ = min
[
k: k � k0�

tk0−1�1−α/2Sk0(Y)√
k

� d

]

= max
{
k0�

⌈ t2k0−1�1−α/2Sk0(Y)
2

d2

⌉}
�

where 
·� is the ceiling function. The efficacy of this method depends on the
closeness of S2

k0
(Y) to the unknown Var(Y). If S2

k0
(Y) underestimates Var(Y),

then k̂ will be smaller than actually needed. Conversely, if S2
k0
(Y) overesti-

mates Var(Y), then unnecessary replications will have to be made.
Alexopoulos and Seila (1998) studied the performance of the sequential and

two-stage methods by a set of experiments concerning the throughput of an
M/M/1 system. Based on their experiments, the sequential procedure with an
initial sample of at least 5 replications appears to outperform the two-stage
procedure as: (a) the resulting CI half-width is always less than or equal to
the target value; (b) the variation in the final sample sizes and CI half-widths
is substantially smaller; and (c) the CIs had estimated coverage close to the
nominal probability.

An alternative problem is the computation of an estimate for μ with relative
error |�Yk − μ|/|μ| � c, where c is a positive constant. Formally, one requests

Pr
( |�Yk − μ|

|μ| � c

)
� 1 − α�

Let c′ = c/(1 + c) and assume that we perform one replication at a time
until the relative half-width δ(k� α)/|�Yk| � c′. Since δ(k� α)/|�Yk| estimates
the actual relative error, we have

1 − α ≈ Pr
( |�Yk − μ|

|�Yk|
� δ(k� α)

|�Yk|
)

� Pr
(|�Yk − μ| � c′|�Yk|

)
= Pr

(|�Yk − μ| � c′|�Yk − μ+ μ|)
� Pr

(|�Yk − μ| � c′|�Yk − μ| + c′|μ|)
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= Pr
[
(1 − c′)|�Yk − μ| � c′|μ|]

= Pr
( |�Yk − μ|

|μ| � c′

1 − c′

)

= Pr
( |�Yk − μ|

|μ| � c

)
�

Based on these observations, one can use the following stopping rule:

(23)k∗ = min
[
k: k � k0�

δ(k� α)

|�Yk|
� c′

]
�

Law et al. (1981) showed that when c is close to 0, the coverage of the CI
�Yk ± δ(k� α) can be arbitrarily close to 1 − α. They recommend that rule (23)
be used with c � 0�15 and k0 � 10.

5.2 Quantile estimation

The method of replications can also be used to implement nonparametric
methods for estimating performance measures other than means. For example,
letY be the total cost incurred by an inventory system during a month. Suppose
we wish to estimate the p-quantile yp = F−1

Y (p) := inf{y ∈ R: FY (y) � p},
0 < p < 1, of Y . If the cumulative distribution function (CDF) FY (·) is con-
tinuous and strictly monotone, then yp is the unique solution to the equation
FY (y) = p.

Let Y1� � � � � Yk be a random sample from a continuous CDF FY obtained
by performing k independent replications, and let Y(1) < Y(2) < · · · < Y(k)
be the order statistics corresponding to the Yi’s (without loss of generality we
assume that the Yi are distinct). Then a point estimator for yp is

ŷp =
{
Y(kp)� if kp is integer�
Y(�kp+1�)� otherwise�

where �·� is the floor function.
To compute a 1−α CI for yp, one identifies indices i < j such that Pr(Y(i) <

yp < Y(j)) � 1−α. Then (Y(i)� Y(j)) is the required interval. The event Y(i) <
yp < Y(j) has the binomial probability

Pr(Y(i) < yp < Y(j)) =
j−1∑
�=i

(
k
�

)
p�(1 − p)k−�

≈ $

(
j − 1 − kp√
kp(1 − p)

)
−$

(
i− 1 − kp√
kp(1 − p)

)
�

where the normal approximation is recommended for kp � 5 (Hogg and
Craig, 1995). Since several index pairs can satisfy the last inequality, one would
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choose a symmetric range of indices. In this case, the indices would be

i = ⌊kp+ 0�5 − z1−α/2
√
kp(1 − p)

⌋
and

j = ⌈kp− 0�5 + z1−α/2
√
kp(1 − p)

⌉
�

(The last expressions involve continuity corrections.) It should be noted that
quantile estimation is usually more difficult than estimation of the mean be-
cause point estimates for quantiles are biased and substantially larger sample
sizes are required to obtain reasonably tight CIs. These problems are much
more severe for more extreme quantiles, i.e., for p close to 0 or 1. Exceptions
are heavy-tailed distributions (Gross et al., 2002). An introduction to nonpara-
metric interval estimation methods is given in Hogg and Craig (1995).

5.3 Using independent replications to estimate steady-state measures

The method of independent replications can also be used for estimating
the steady-state mean μ of an output process. Unfortunately, most simulations
start at an initial state that is either fixed (e.g., the empty and idle state in
a queueing system) or is randomly chosen from a distribution other than the
steady-state one. As a result, the processX goes through an initial phase before
reaching steady state. How can one deal with the initial transient phase? The
simulation folklore suggests that, to bypass trouble arising from this portion
of a run, the experimenter should simply allow the simulation to “warm up”
before retaining data. Then the question is, how much truncation (deletion) on
every replication is enough to produce unbiased, low-variance point estimators
and valid CIs?

Suppose that the output data form a discrete-time process. Several heuris-
tic methods try to identify an appropriate index � and then truncate the first
� observations. For instance, Welch (1983) gives a graphical truncation method
that has met some success; see Alexopoulos and Seila (1998) or Law and Kel-
ton (2000) for a description and illustrative examples. A host of other heuristic
methods are somewhat naive and ill-suited for use in practical problems, and
so will not be discussed here. References for various statistics-based tests are
listed in Alexopoulos and Seila (1998) and Law and Kelton (2000); they too
are not completely trustworthy in some situations, and so we will dispense with
any additional details for now. For these and other reasons, Alexopoulos and
Seila (1998) state that it is difficult and problematic to select a proper trun-
cation index, especially for congested queueing systems with slowly decreasing
autocorrelation functions.

Since the initial conditions induce a systematic error that has a more-
pronounced impact when multiple independent replications start at the same
state, it is of interest to see what happens if we indeed incorporate a truncation
strategy into the CI for the steady-state mean μ. Assuming that one still uses
k independent replications with n observations per replication (after trunca-
tion) to compute a CI for μ, the replicate means are Yi(�) = n−1∑�+n

j=�+1Xi�j ,
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i = 1� 2� � � � � k, the point estimator for μ is

μ̂R = �Yk(�) = 1
k

k∑
i=1

Yi(�)�

and the estimator for the variance parameter σ2 is

σ̂2
R = nS2

k

(
Y(�)

) = n

k− 1

k∑
i=1

[
Yi(�)− �Yk(�)

]2
�

Glynn and Heidelberger (1991) study truncation schemes for processes whose
bias satisfies the condition

(24)
∞∑
j=1

∣∣E(Xj)− μ
∣∣ <∞�

They propose rules for choosing the truncation index � so that the replicate
truncated mean �Yk(�) satisfies a central limit theorem. Two cases that satisfy
condition (24) are E(Xj)−μ = O(1/jr), for some constant r > 1, and E(Xj)−
μ = O(βj), for some constant β ∈ [0� 1). The “big-oh” notation O(h(u))
denotes a function g(u) for which there exist constants c and u0 such that
|g(u)| � c|h(u)| for all u � u0.

Fishman (2001) considers the common practice of fixing the replication
length � + n (after a truncation index has been identified) and increasing the
number of replications. Theorem 4 describes conditions for assuring proper
coverage for the resulting CI. Assumptions (F.1)–(F.3), which feed into The-
orem 4 as sufficient conditions, are satisfied by a variety of processes en-
countered in simulation output analysis, e.g., the AR(1) process, irreducible
aperiodic finite-state-space Markov chains, and irreducible finite-state-space
Markov processes. S0 denotes the (possibly random) initial state of the under-
lying system.

(F.1) There exists a constant β ∈ [0� 1) such that for any initial state s0,

μj(s0) := E(Xj|S0 = s0) = μ+ O
(
βj
)

as j →∞�

This implies that E(Y1(�)|S0 = s0) = μ + O(β�/n) as � → ∞ and
n→∞.

(F.2) For each s0 and n, there is a constant σ2
n ∈ (0�∞) such that

σ2
n(�; s0) := nVar

(
Y1(�)|S0 = s0

)

(25)= σ2
n + O

(
β�

n

)
as �→∞ and n→∞�

Equation (25) implies σ2
n(�; s0)→ σ2

n as �→∞, independently of s0.
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(F.3) There is a constant σ2 ∈ (0�∞) such that

σ2
n = σ2 + O

(
1
n

)
as n→∞�

Hence for all s0 and �, σ2
n(�; s0)→ σ2, as n→∞.

Theorem 4 (Fishman, 2001, Section 6.4). If assumptions (F.1)–(F.3) hold, n is
fixed, and �/ ln(k)→∞ as k→∞ and �→∞, then

�Yk(�)− μ

Sk(Y(�))/
√
k

d−→ N(0� 1)�

We see that the CI for μ will be of the form

�Yk(�)± t1−α/2�k−1
Sk(Y(�))√

k
�

Further, if one fixes the number of observations n retained during a replication
and attempts to compute a narrower CI by making more runs k, the theorem
says that we can achieve the nominal coverage 1 − α by forcing the truncation
index � to grow faster than the logarithm of k. This requirement is hard to im-
plement in practice as the user has to consider three parameters (n, k and �).
This “systematic error” due to the initial transient is not as pertinent to the
methods presented in Chapter 15 (e.g., the batch means method and the stan-
dardized time series method) and Chapter 16 (the regenerative method).

We finish this discussion by pointing out that Fishman (2001) and Glynn
and Heidelberger (1991) give several additional sufficient conditions among n,
k and � that yield a central limit theorem for the grand replicate mean �Yk(�).
For additional results and experiments related to this issue, see Alexopoulos
and Goldsman (2004).

6 Density estimation

The probability density function is a fundamental concept in probability and
statistics. Suppose that we possess a finite univariate sample, say X1� � � � �Xn

from an unknown density function f . Density estimation refers to the construc-
tion of an estimate of f using the observed data. In simulation experiments this
need arises in input data analysis, in analysis of data from independent repli-
cations, and in the estimation of the marginal density function of a stationary
process. We start with estimators for IID data; the case that has received most
attention.

If one assumes that the data come from a parametric distribution, then
the parameters can be estimated by “standard” methods, such as the method
of maximum likelihood, and the goodness-of-fit can be assessed by a battery
of tests (e.g., the omnibus chi-square test, the Kolmogorov–Smirnov test and

http://dx.doi.org/10.1016/S0927-0507(06)13015-7
http://dx.doi.org/10.1016/S0927-0507(06)13016-9
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the Anderson–Darling test). Unfortunately, this approach is quite restrictive
because the commonly-used parametric families have unimodal density func-
tions. Below we give a brief introduction to nonparametric methods for esti-
mating the unknown density. In this case, we will allow the data themselves to
guide the estimation of f . For a thorough treatment of this subject, we refer the
eager reader to Härdle (1991), Silverman (1986), and many references therein.
Multivariate density estimation is treated thoroughly by Scott (1992).

6.1 Histograms

The oldest and most commonly-used density estimator is the histogram.
Given an origin x0 and a bin width h, the bins are the intervals [x0 + �h� x0 +
(�+ 1)h), for � = 0�±1�±2� � � � . Notice that the leftmost interval can be open
and the rightmost interval can be closed. The histogram is then defined by

f̂H(x) = 1
nh
(number of Xi in the same bin as x)� x ∈ R�

The choice of the bin width h controls the smoothness of the histogram. Un-
fortunately, the choice of the origin and the bin width can have a severe impact
on the histogram. Clearly, more robust methods are required. We start with
the naive estimator, and proceed with various state-of-the-art estimators.

6.2 The naive estimator

By definition, the density function of an absolutely continuous random vari-
able X obeys

f (x) = lim
h→0

1
2h

Pr(x− h < X < x+ h)� x ∈ R�

For given h, we can approximate the Pr(x − h < X < x + h) by the fraction
of the sample that falls in the interval (x− h� x+ h). Then the naive estimator
of f is

(26)f̂N(x) = 1
2nh

[
number of Xi in (x− h� x+ h)

]
� x ∈ R�

Notice that the naive estimator is neither continuous nor differentiable – it has
jumps at the points Xi ± h and has zero derivative everywhere else.

To motivate the estimators in the following subsections, we write (26) as

f̂N(x) = 1
n

n∑
i=1

1
h
w

(
x−Xi

h

)
�

where the weight function,

(27)w(x) =
{

1
2 � if |x| < 1�
0� otherwise�

is the uniform density in the interval (−1� 1).
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6.3 The kernel estimator

The naive estimator in Equations (26) and (27) can be generalized by re-
placing the uniform weight by a kernel function K(·) obeying

(28)

∫ ∞

−∞
K(x) dx = 1� sup

x

∣∣K(x)∣∣ <∞� and lim|x|→∞
∣∣xK(x)∣∣ = 0�

Most often, the kernel K is an even and symmetric density, e.g., the normal
density. The general form of the kernel estimators is

(29)f̂K(x) = 1
n

n∑
i=1

1
h
K

(
x−Xi

h

)
� x ∈ R�

and h is frequently called the smoothing parameter or the bandwidth. The ker-
nel estimator inherits the properties of the kernel related to continuity and
differentiability: if the kernel K is nonnegative (i.e., a density function), then
f̂K is also a probability density function as it integrates to one.

Clearly, the kernel estimator is the sum of “bumps” K{(x − Xi)/h}/(nh)
placed at the observations Xi. Although the function K determines the shape
of the bumps, the bandwidth h affects the smoothness of the estimator. If h is
chosen too small, the estimate becomes overly spurious. A few of the most
common kernels are listed in Table 1 (1(·) is the indicator function).

6.4 Bandwidth selection

Although the bandwidth h plays an important role, there are no firm rules
for selecting it. A common approach relies on the minimization of the inte-
grated MSE of the kernel estimator f̂K , namely,

IMSE(h) =
∫ ∞

−∞
E
[(
f̂K(x;h)− f (x)

)2] dx�

Assuming that the kernel is a symmetric density and that the density f has
continuous derivatives of all orders needed (Silverman, 1986, Section 3.3), the

Table 1.
Common kernels

Name K(x)

Triangular (1 − |x|)1(|x| < 1)

Epanechnikov 3
4 (1 − x2)1(|x| < 1)

Gaussian 1√
2π

exp(−x2/2)

Quartic 15
16 (1 − x2)21(|x| < 1)

Triweight 35
32 (1 − x2)31(|x| < 1)

Cosine π
4 cos(πx/2)1(|x| < 1)
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IMSE is asymptotically (as n → ∞) approximated by the asymptotic mean
integrated squared error (AMISE)

(30)AMISE(h) = R(K)

nh
+ h4R(f ′′)κ4

4
�

where R(f ′′) = ∫∞
−∞[f ′′(x)2] dx is the roughness of f ′′ and κ2 = ∫∞

−∞ x2 ×
K(x) dx. (If the kernel is a symmetric density, then κ2 is the variance of K.)
Expression (30) quantifies the effects of the bandwidth h: the first term (from
the integrated variance) is large when h is too small, whereas the second term
(from the integrated squared bias) is large when h is too large.

The minimizer of AMISE(h), namely

(31)hAMISE =
[

R(K)

nR(f ′′)κ4

]1/5
�

depends on the unknown quantity R(f ′′) but offers a couple of interesting sug-
gestions. First, the optimal bandwidth will approach zero as the sample size
increases, but at a very slow rate. Second, small bandwidths will be required
for rapidly varying densities f . Silverman (1986), Section 6.1.5, and Jones et
al. (1996) review a variety of bandwidth selection methods, in particular, the
method of Sheather and Jones (1991). An older simple rule is given in Sec-
tion 3.4.1 of Silverman (1986):

(32)h = 1�06 min
{
Sn(X)�R/1�3

}
n−1/5�

where R is their inter-quartile range (difference between the 75 and 25 per-
centiles).

Remark 3. Epanechnikov’s kernel from Table 1 is optimal as it minimizes
AMISE(hAMISE); see Bartlett (1963) and Epanechnikov (1969).

Remark 4. On top of conditions (28), assume that
∫∞
−∞ uK(u) du = 0. Then

the mean of f̂K is
∫ ∞

−∞
xf̂K(x) dx = 1

n

n∑
i=1

∫ ∞

−∞
1
h
xK

(
x−Xi

h

)
dx

(using the transformation u = (x−Xi)/h)

= 1
n

n∑
i=1

∫ ∞

−∞
(Xi + uh)K(u) du

= 1
n

n∑
i=1

Xi

∫ ∞

−∞
K(u) du+ 1

n

n∑
i=1

h

∫ ∞

−∞
uK(u) du

= 1
n

n∑
i=1

Xi�
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the sample mean of the data. Notice that the last expression is not the mean
E[f̂K(x)].

Working similarly, one can show that the second moment of f̂K(x) can be
written as

∫ ∞

−∞
x2f̂K(x) dx = 1

n

n∑
i=1

X2
i + h2κ2�

Hence the variance of the density f̂K is

1
n

n∑
i=1

(Xi − �Xn)
2 + h2κ2�

which is the sample second central moment of the data inflated by the term
h2κ2.

Example 4. Table 2 contains 100 interarrival times from two customer classes
into a system. Unfortunately, the data collector failed to record the proper
class type; as a result, we cannot “separate” the data into the respective sets
and proceed with each set.

Figure 1 displays density estimates based on the Gaussian kernel and band-
widths h equal to 6.258 and 2, respectively, in conjunction with a histogram
based on a bin width of 10. The first value of h is based on Equation (32).
The estimates were computed using MATLAB. Although both kernel density
curves capture the bimodality of the data, the estimate based on h = 2 is very
“jagged”.

6.5 The variable kernel estimator

A potential problem arises when the kernel estimator is applied to data from
long-tailed distributions: since the bandwidth h is fixed across the range of the

Table 2.
Interarrival times from 2 customer classes

11�97 2�04 12�02 2�81 11�45 8�19 1�05 7�35 13�42 2�28
24�22 14�44 17�42 21�47 38�53 41�06 29�89 20�40 44�11 38�31
13�48 1�49 1�67 10�44 29�79 9�21 1�88 2�94 6�07 3�49
25�43 21�05 30�31 37�41 78�71 19�95 42�67 31�26 30�55 19�09
14�49 2�10 6�36 15�36 8�17 6�75 4�37 6�98 3�83 17�30
36�61 27�80 31�72 69�06 20�34 36�21 44�65 52�72 12�83 21�00

5�12 17�86 17�76 13�16 4�31 5�92 36�88 3�53 10�53 5�05
22�22 40�69 37�38 32�02 32�71 17�28 16�13 20�45 38�72 24�35

2�04 8�63 4�10 8�26 4�86 7�68 11�93 14�31 1�02 10�11
19�57 14�07 12�95 21�64 19�52 18�02 29�37 15�33 21�12 23�35
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Fig. 1. Density estimates for the data set in Table 2 based on Gaussian kernels with bandwidths
h = 6�258 (obtained from (32)) and h = 2. ( histogram; Gaussian kernel (h = 6�258);

Gaussian kernel (h = 2).)

data, there is a tendency for spurious “noise” at the tails of the estimate due to
the local sparsity of the data. This problem can be addressed as follows.

Let k be a positive integer, and define di�k to be the distance from Xi to the
kth closest observation among the set of remaining data. The variable kernel
estimator with bandwidth h is defined by

(33)f̂VK(x) = 1
n

n∑
i=1

1
hdi�k

K

(
x−Xi

hdi�k

)
� x ∈ R�

Since the window width of the kernel placed at the point Xi is proportional
to di�k, the observations in sparse regions will be associated with flatter kernels.
As expected, for fixed k, the overall degree of smoothness in the estimate f̂VK
will depend on the choice of h. A typical choice of k is k ≈ √

n.
Again, if K is a density, then f̂VK will also be a density that inherits the

continuity and differentiability properties of K.

6.6 Bounded domains

Often, the natural support of a density is an interval bounded on one or
both sides. An example, is the density of the interarrival times in Example 4.
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In this case, the estimated density should also be zero outside the support of
the unknown density. Silverman (1986) discussed this issue and a variety of
ways to address it. We discuss a singe approach for the case where X is a non-
negative variable. The method starts by augmenting the original set of data
by adding their reflections with respect to zero; the new data set becomes
{±X1�±X2� � � � �±Xn}. If f̃K is a kernel estimate constructed based on the
augmented set of data, then a natural estimate based on the original data set
is the “folded” estimate

f̂K(x) =
{

2f̃K(x) for x � 0�
0 for x < 0�

6.7 Density estimation for stationary processes

Kernel estimation for dependent stationary processes has received increas-
ing interest during the last two decades. As we mentioned in the Introduction,
the main objective is the estimation of the marginal density of a stationary
process.

The literature considers two classes of estimators. The first class includes
nonrecursive estimators of the form

fn(x) = 1
n

n∑
i=1

Kn(x−Xi)�

where the Kn(·) are kernel functions and the bandwidth for each n is part
of Kn. (In what follows we replace the subscript “K” by “n” to denote the
sample size.) Asymptotic properties of such estimators (e.g., convergence in
mean, quadratic means and normality) are studied in Rosenblatt (1970) for
Markov processes, and in Masry (1983), Robinson (1983, 1986) for strongly
mixing processes.

Below we focus on estimators of the form

(34)f̂n(x) = 1
n

n∑
i=1

1
hi
K

(
x−Xi

hi

)
� x ∈ R�

where {hi} is a bandwidth sequence. The estimators (34) are attractive because
they can be computed recursively by

f̂n(x) = n− 1
n

f̂n−1(x)+ 1
nhn

K

(
x−Xn

hn

)
�

Further we review results from Masry (1986). The reader is also pointed to
Masry (1989), Masry and Györfi (1987), Györfi and Masry (1990), and several
other references therein, for additional properties and alternative estimators.
Clearly, the asymptotic results for the stationary processes generalize results
for IID processes.
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We will assume that the bandwidth sequence satisfies limn→∞ hn = 0 and
limn→∞ nhn = ∞. A popular choice is

(35)hn = hn−λ� 0 < λ < 1�

a generalization of (32).
Theorem 5 shows that the estimator (34) is asymptotically (as n → ∞)

unbiased at each continuity point of f and displays the finite-sample bias. The
“little-oh” notation o(h(n)) denotes a function g(n) such that g(n)/h(n)→ 0
as n→∞.

Theorem 5 (Masry, 1986). Suppose that the kernel K satisfies conditions (28),
and let x be a continuity point of f . Then

E
[
f̂n(x)

]→ f (x) as n→∞�

Suppose in addition that f is r + 1 times continuously differentiable at the
point x, supu |f (r+1)(u)| <∞, and

∫ ∞

−∞
|u|j∣∣K(u)∣∣ du <∞ for j = 1� � � � � r + 1�

Also assume that there are finite constants β� such that, as n→∞,

1
n

n∑
i=1

(
hi
hn

)�
→ β� for � = 1� � � � � r + 1�

Then

(36)

E
[
f̂n(x)

] = f (x)+ (1 + o(1)
) r∑
�=1

c�β�(−hn)�
�! f (�)(x)+ O

(
h(r+1)
n

)
�

where

c� =
∫ ∞

−∞
u�K(u) du for � = 1� � � � � r�

Remark 5. If K is an even function, then c� = 0 when � is odd. For r � 2
in Theorem 5, the dominant term in the right-hand side of Equation (36) is
c2β2f

(2)(x)/2 so that the bias of f̂n(x) decreases at the rate h2
n. Also the band-

width sequence in Equation (35) yields

β� = 1
1 − λ�

if 0 < λ� < 1�

Theorem 6 establishes the rate of convergence of the variance of f̂n(x) to zero
and the rate at which the covariance between values of f̂n at distinct points
approaches zero.
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Theorem 6 (Masry, 1986). Suppose that:

(a) The joint probability density f (x� y; j) of the RVs Xi and Xi+j exists and
satisfies

∣∣f (x� y; j)− f (x)f (y)
∣∣ � M for all (x� y) and j � 1�

where M is a finite constant.
(b) {Xj} is strongly α-mixing with

∞∑
j=1

α
p
j <∞ for some p ∈

(
0�

1
2

)
�

(c) The kernel K satisfies conditions (28).
(d) The bandwidth sequence satisfies

1
n

n∑
i=1

(
hn

hi

)r
→ θr <∞ as n→∞�

for r ∈ [1� 2), where θr are constants.

Then at all continuity points of f ,

(37)lim
n→∞nhn Var

[
f̂n(x)

] = θ1f (x)

∫ ∞

−∞
K2(u) du

and

lim
n→∞nhn Cov

[
f̂n(x)� f̂n(y)

] = 0 for x �= y�

Remark 6. The asymptotic variance expression (37) coincides with the expres-
sion obtained by Parzen (1962) for independent samples. Additional terms due
to the serial dependencies are listed in the proof of Theorem 3 of Masry (1986).

Remark 7. If f is three times continuously differentiable (r = 2 in Theorem 5)
and K is an even function (e.g., a density), we have

Bias
[
f̂n(x)

] ≈ c2β2f
(2)(x)

2
h2
n

and

Var
[
f̂n(x)

] ≈ θ1f (x)
∫∞
−∞K2(u) du

nhn
�

One can show that the bandwidth that minimizes the mean squared error
MSE[f̂n(x)] is hn = hn−1/5 and the convergence rate of MSE[f̂n(x)] to zero
is n−4/5. Further, β2 = 5/3 and θ1 = 5/6.
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We finish our discussion with the asymptotic normality of the recursive esti-
mators. The following theorem is similar to Theorem 8 of Masry (1986).

Theorem 7. Assume that the conditions of Theorem 6 hold. Also assume
that there exist a constant γ ∈ (0� 1) and a sequence {mn} of integers with
limn→∞mn = 0 such that limn→∞ nh

3−2γ
n = 0, mn = o(n1/2h

3/2−γ
n ), and

√
n

hn

∞∑
j=mn

α
1−γ
j → 0 as n→∞�

Then at each continuity point of f with f (x) > 0,

(38)
f̂n(x)− E[f̂n(x)]

σf /
√
nhn

d−→ N(0� 1) as n→∞�

where

σ2
f = θ1f (x)

∫ ∞

−∞
K2(u) du�

Equation (38) is not convenient for computing confidence intervals for f (x)
because it does not involve the actual error f̂n(x) − f (x). To overcome this
problem we write

(39)
f̂n(x)− E[f̂n(x)]

σf /
√
nhn

= f̂n(x)− f (x)

σf /
√
nhn

− E[f̂n(x)] − f (x)

σf /
√
nhn

�

Under the conditions in Remark 7, we have Bias[f̂n(x)] = O(h2
n). Hence if

{hn} is such that limn→∞ nh5
n = 0, the last term in Equation (39) converges to

zero and Slutsky’s theorem (Karr, 1993, Theorem 5.20), implies

(40)
f̂n(x)− f (x)

σf /
√
nhn

d−→ N(0� 1) as n→∞�

Equation (40) yields the following approximate 1 − α CI for f (x):

f̂n(x)± z1−α2

σ̂f√
nhn

�

where

σ̂f =
[
θ1f̂n(x)

∫ ∞

−∞
K2(u) du

]1/2

is an estimator for σf .
Notice that the condition nh5

n → 0 is not satisfied by Silverman’s rule
in Equation (32) or by the bandwidth sequence in Remark 7 that minimizes
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MSE[f̂n(x)]. Equations (38) and (40) reveal that the rate of the pointwise con-
vergence of the recursive kernel estimator f̂n(x) to the normal distribution is
(nhn)

−1/2 or n−(1−λ)/2 for bandwidth sequences of the form hn = hn−λ, with
1/5 < λ < 1 used to obtain Equation (40). Such rates are significantly slower
that the usual rate of n−1/2 for point estimators for means, but typical for ker-
nel estimators.

Remark 8. For Markov chains (not necessarily discrete-time ones) one can
obtain the convergence rate of n−1/2 by means of the “look-ahead” density
estimation method of Henderson and Glynn (2001).

Example 5. Consider anM/G/1 queueing system where units arrive according
to a Poisson process with a mean interarrival time E(A) = 10 and experience
service times from the distribution with density function

g(x) = 0�75
(

1
4
xe−x/2

)
+ 0�75

(
1

19!x
19e−x

)
�

This model is applicable when the units are classified into two types, 1 and 2,
with respective probabilities 0.75 and 0.25; type 1 units require service times
from the gamma distribution with shape parameter 2 and scale parameter 2;
and type 2 units require service times from the gamma distribution with shape
parameter 20 and scale parameter 1. In other words, the service time distrib-
ution is a mixture of two gamma distributions with modes of 2 and 19. Since
the mean service time is E(S) = 0�75(4)+ 0�25(20) = 8, the traffic intensity is
ν = 8/10 < 1 and the system is stable.

The objective of this experiment is the estimation of the density of the
time a unit spends in the system (flow time) in steady state. The substantial
distance between the modes of the gamma distributions associated with the
service times causes the steady-state density of the flow times to be bimodal.
We made a single run starting with the empty and idle state and collected 7000
observations. To reduce the effect of the transient phase, we discarded the
first 5000 observations and computed the density estimates in Figure 2 using
the remaining 2000 observations. The data and the estimates were generated
using MATLAB. The kernel estimate is based on the Gaussian kernel with
bandwidth 10n−1/5 whereas the histogram is based on a bin width of 5. Both
estimates clearly indicate the bimodal nature of the steady-state density of the
flow times.

7 Summary

This chapter served as a “precursor” to several forthcoming chapters. Its
scope was the introduction of the reader to the statistical issues involved in
simulation experiments. We started with a review of probabilistic and statistical
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Fig. 2. Kernel estimate for the limiting distribution of the system flow time in an M/G/1 system. (
histogram; Gaussian kernel.)

concepts that suffice for analyzing data from finite-horizon simulations. Then
we laid out the issues related to steady-state simulations. Since these issues are
multi-faceted and challenging, we reviewed the basic concepts from stochastic
processes and a few limit theorems that are required to carry out the necessary
statistical analyses.

We proceeded with a review of a research area that has received little at-
tention in the simulation domain, density estimation. Within this subject, we
started with a review of techniques for IID data and concluded with a recent
results related to data from stationary sequences. Since this subject will not re-
ceive further consideration in this volume, we encourage the eager reader to
study the literature.

We finish with a couple of observations. First, kernel density estimators con-
verge to the respective densities with rates that are significantly lower than the
usual rate of n−1/2 for point estimators for means (an exception is the esti-
mator in Henderson and Glynn, 2001). Second, a problem that has received
little or no attention in the literature is the generation of realizations from ker-
nel density estimators (or the respective CDFs). This is an important issue as
the efficient generation of random variates is a paramount issue in simulation
experiments.
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Chapter 9

Subjective Probability and Bayesian Methodology

Stephen E. Chick
INSEAD, Technology Management Area,
Boulevard de Constance, 77300 Fontainebleau, France
E-mail: stephen.chick@insead.edu

Abstract

Subjective probability and Bayesian methods provide a unified approach to handle
not only randomness from stochastic sample-paths, but also uncertainty about in-
put parameters and response metamodels. The chapter surveys some basic concepts,
principles and techniques useful for a subjective Bayesian approach to uncertainty
analysis, data collection plans to reduce input uncertainty, response surface modeling,
and expected value-of-information approaches to experimental designs for selection
procedures. Some differences from the classical technique are identified.

Introduction

If simulation is defined to be the analysis of stochastic processes through the
generation of sample paths of the process, then Bayesian and subjective prob-
ability methods apply in several ways for the modeling, design and analysis of
simulation experiments. By Bayesian methods, we refer here to parameter in-
ference through repeated observations of data with Bayes’ rule. Examples in
simulation are input parameter inference using field data or the inference of
metamodel parameters from simulation replications. The Bayesian approach
entails postulating a ‘prior probability’ model that describes a modeler’s initial
uncertainty about parameters, a likelihood function that describes the dis-
tribution of data, given that a parameter holds a specific value, and Bayes’
rule, which provides a coherent method of updating beliefs about uncertainty
when data becomes available. By subjective probability, we refer to probabil-
ity assessments for all unknown quantities, including parameters that can be
inferred with Bayes’ rule, as well as unknown quantities for which parame-
ters cannot be inferred from repeated sampling of data (e.g., one-shot deals
like the total potential market size for a particular new product from a sim-
ulated manufacturing facility). By frequentist, we mean methods based on
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sampling statistics from repeated observations, such as maximum likelihood
(MLE) methods to fit input parameters, or ranking and selection procedures
that provide worst-case probability of correct selection guarantees based on
repeated applications of the procedure. The chapter describes applications of
Bayesian and subjective probability methods in simulation, and identifies some
ways that the Bayesian approach differs from the frequentist approach that un-
derlies much of simulation theory.

In the simulation community, Glynn (1986) first suggested Bayesian applica-
tions of uncertainty analysis for statistical input parameter uncertainty. In that
paper, the traditional role of estimating α = h(E[Y ]) is extended to account
for statistical input parameter uncertainty, so α(θ) = h(E[Y |θ]) depends upon
unknown parameters with distribution p(θ) that can be updated with data
from the modeled system. Three questions he poses are: (i) how to estimate
the distribution of α(Θ) induced by the random variable Θ, (ii) how to esti-
mate the mean E[α(Θ)], and (iii) estimation of credible sets, e.g., finding a, b
so the probability Pr(α(Θ) ∈ [a� b]) equals a pre-specified value, like 0.95.
Chick (1997) provided a review of the few works to that date that applied
Bayesian ideas to simulation, then suggested a broader range of application
areas than uncertainty analysis, including ranking and selection, response sur-
face modeling, and experimental design.

The basic goal is to understand how uncertainty and decision variables affect
system performance, so that better decisions can be made. The premise in this
chapter is that representing all uncertainty with probability can aid decision-
makers that face uncertainty. Stochastic uncertainty, the randomness in simu-
lation models that occurs even if all parameters are known, is already widely
modeled with probability. The subjective Bayesian approach also models in-
put parameter and response surface uncertainty with probability distributions,
a practice that has been less common in stochastic process simulation.

Probabilistic models for uncertainty are increasingly employed for at least
three reasons. One, doing so allows the modeler to quantify how parameter
uncertainty influences the performance of a simulated system. Parameters of
models of real systems are rarely known with certainty. The Bayesian approach
for uncertainty analysis overcomes some limitations of the classical approach
for parameter and model selection (Chick, 2001; Barton and Schruben, 2001;
Draper, 1995). Two, simulation experiments can be designed to run more ef-
ficiently (Chick and Inoue, 2001a; Santner et al., 2003). And three, Bayesian
and subjective probability methods are not new but are increasingly imple-
mented due to the development of improved computing power and Markov
chain Monte Carlo (MCMC) methods (Gilks et al., 1996).

This chapter describes the subjective Bayesian formulation for simulation.
Section 1 presents the basics of subjective probability and Bayesian statistics
in the context of quantifying uncertainty about one statistical input parame-
ter. Section 2 summarizes the main ideas and techniques for addressing three
main challenges in implementing Bayesian inference: maximization, integra-
tion, and sampling variates from posterior distributions. Section 3 addresses
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input distribution selection when multiple candidate distributions exist. Sec-
tion 4 presents a joint formulation for input and output modeling, and reviews
applications for data collection to reduce input uncertainty in a way that re-
duces output uncertainty, and for response surface modeling and simulation
experiments to reduce response surface uncertainty. Section 5 describes ap-
plications of Bayesian expected value of information methods for efficiently
selecting the best of a finite set of simulated alternatives.

Simulation research with Bayesian methods has grown rapidly since the
mid to late 1990s. A partial reference list is Chen and Schmeiser (1995),
Chen (1996), Scott (1996), Nelson et al. (1997), Chen et al. (1999), Cheng
(1999), Lee and Glynn (1999), Andradóttir and Bier (2000), Chick and Inoue
(2001a, 2001b), Chick (2001), Cheng and Currie (2003), Steckley and Hen-
derson (2003), Chick et al. (2003), Zouaoui and Wilson (2003, 2004), Ng and
Chick (2004), as well as applications to insurance, finance, waterway safety,
civil engineering and other areas described in the Winter Simulation Confer-
ence Proceedings. Work on deterministic simulation with potentially important
implications for stochastic simulation includes O’Hagan et al. (1999), Kennedy
and O’Hagan (2001), Craig et al. (2001), Santner et al. (2003). Excellent ref-
erences for subjective probability and Bayesian statistics in general, not just in
simulation, include Lindley (1972), Berger (1985), Bernardo and Smith (1994),
with special mention for de Finetti (1990), Savage (1972) and de Groot (1970).

1 Main concepts

A stochastic simulation is modeled as a deterministic function of several
inputs,

(1)Yr = g(θp�θe�θc;Ur)�

where Yr is the output of the rth replication. The vector of statistical in-
put parameters θp = (θ1� θ2� � � � � θnp) describes np sources of randomness
whose values can be inferred from field data. For example, θ1 may be a two-
dimensional parameter for log-normally distributed service times, and θ2 may
be defect probabilities inferable from factory data. Environmental parameters
θe are beyond the control of a decision maker, and no data is available for in-
ference. Examples are the total potential market size for a new product, the
general economic climate for a high-level model, or the actual climate for a
production process influenced by temperature or humidity. The vector θc rep-
resents all control parameters (decision variables) under direct control of the
decision maker, such as production capacity, supply chain operating proce-
dures, scheduling policies, and the number of servers at each node in a service
system.

Random output Yr for replication r can be generated even for the same
inputs (θcr�θpr�θer) by sampling different portions of a random number
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Fig. 1. Simulation takes multiple types of inputs and metamodels predict outputs for unsimulated in-
put values.

stream ur , to obtain random variates xrij (the jth simulated variate using in-
put parameter θi during replication r), as in the top row of Figure 1. We use
upper case for random variables, lower case for realizations, and bold-face to
emphasize that a quantity is a vector. We may suppress the r, as in Xij , to de-
scribe data collected from the actual system being simulated. That data would
be used to infer the parameters of the statistical distributions to describe the
system.

One reason a simulation experiment may be run is to estimate the func-
tion g(·) because its exact form is not known. Metamodels can be used to
predict the output of a simulation model (or the simulated system) when a
full simulation takes a long time to run. Section 4 describes some Bayesian
methods to describe uncertainty about the parameters ψ of a metamodel.

A subjective probabilist represents all uncertain quantities with probability
distributions. Uncertainty about statistical input parameters and environmen-
tal parameters are described as random quantities by the subjective Bayesian
framework; we use a prior distribution π(θp�θe) for the random quantity
(�p��e). The specification of prior distributions and Bayesian inference with
data are discussed in Section 1.1. Loss functions and the expected value of
information follow in Section 1.2, with uncertainty analysis in Section 1.3.

1.1 Bayesian modeling

An important simulation design issue is the selection of appropriate input
distributions to characterize the stochastic behavior of the modeled system (see
Chapter 6). Failure to select appropriate input distributions can result in mis-
leading simulation output, and therefore poor system design decisions. This
section reviews basic ideas and important theorems for inferring statistical pa-
rameters θp from data with the Bayesian formalism. To simplify the discussion,
we focus on selecting a single statistical parameter θ for a given, fixed candidate
model for input into a computer simulation. A candidate model could be, for
example, a Bernoulli distribution. We therefore drop the extra subscripts from
Equation (1) in this subsection. The subscripts are needed in later sections.

http://dx.doi.org/10.1016/S0927-0507(06)13006-6
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Section 3 explores multiple candidate models for a given source of random-
ness.

For a Bayesian, the idea of exchangeability is preferred to the idea of inde-
pendent and identically distributed (i.i.d.) random variables. Exchangeability
is weaker than the i.i.d. assumption and plays a role in specifying probability
models. Let XN = (X1�X2� � � � �XN) be a generic vector of random vari-
ables on an outcome space Ω. A probability p on Ω is exchangeable if it
is invariant with respect to permutations of the coordinates (e.g., p(xn) =
p(x1� x2� � � � � xn) = p(xh1� xh2� � � � � xhn) for permutations h on {1� 2� � � � � n}
for arbitrary n � N).

Simulation is often concerned with conceptually infinite (N → ∞) ex-
changeable sequences, e.g., no conceptual bound on the number of data
observations or simulation replications. A key theorem (de Finetti, 1990;
Bernardo and Smith, 1994) for infinite exchangeable sequences of Bernoulli
random variables says that outcomes are conditionally independent, given the
limiting fraction of heads,� = limN→∞

∑N
i=1 Xi/N , with some mixture distri-

bution π(θ),

(2)lim
N→∞

p(xn) =
∫ { n∏

i=1

f (xi|θ)
}

dπ(θ)�

where p(xi|θ) = f (xi|θ) = θxi(1 − θ)1−xi is viewed as a conditional proba-
bility when considered as a function of xi and as a likelihood when written as
a function of θ. A mixture written in the form of Equation (2) for an arbitrary
parameter θ, distribution π(θ) and likelihood model f is called a de Finetti-
type representation. The notation anticipates the convention of writing a prior
distribution as π(·), representing the a priori belief that the parameter takes on
a given value. Equation (2) is the basis for inference of statistical input para-
meter θ from data xn = (x1� � � � � xn) via Bayes’ rule,

(3)p(θ|xn) = π(θ)p(xn|θ)
p(xn)

= π(θ)
∏n
i=1 f (xi|θ)∫

p(xn|θ) dπ(θ)
�

The first equality of Equation (3) is Bayes’ rule and applies in general. The
second equality follows from conditional independence. The posterior proba-
bility p(θ|xn) of θ given xn, summarizes uncertainty about θ via the likelihood
model, the prior distribution and the data xn.

Bayesian methods require probability distributions to quantify initial uncer-
tainty before data is observed. The selection of a prior distribution is contro-
versial. Bruno de Finetti (1990) argues that a prior distribution is a subjective
expression of uncertainty, and that You (yes, You) may justifiably specify a
different distribution than I, since we may have different beliefs about the like-
lihood of a given event. Savage (1972) suggests a process for eliciting a prior
distribution from a modeler through the evaluation of ‘fair bets’ (as opposed to
limiting frequencies). Kahneman et al. (1982) illustrate potential pitfalls with
eliciting probability judgments and present techniques to counter them. While



230 S.E. Chick

this may seem ‘too subjective’ and open to biases (Edwards, 1984), the ability
to include prior information provides important flexibility and can be consid-
ered an advantage of the approach. Frequentist methods apply only with data,
and problems remain (e.g., see Section 3).

To avoid the impression of subjectivity, several ‘automated’ mechanisms
have nonetheless been proposed to support the selection of a prior distribu-
tion. When a lot of data is available, the likelihood function is the dominant
term in Bayes’ rule, rather than the prior distribution, so these methods may
be helpful. The first approach is to obtain a prior distribution for a parameter
through an indifference judgment. For example, for the unknown probability θ
of a Bernoulli outcome, this would give a uniform[0� 1] distribution, the prior
probability model used by Laplace (1812) to assess his prior probability that the
sun would come up tomorrow. That approach is coordinate dependent (e.g. in-
difference over θ or log θ).

Jeffreys (1946) suggested π(θ) ∝ |H(θ)|1/2 dθ, where H is the expected
information in one observation,

(4)H(θ) = E
[
−∂

2 logp(X|θ)
∂θ2

∣∣∣∣
θ

]
�

because it has the attractive property of being invariant with respect to coordi-
nate changes in θ. It is ‘uniform’ with respect to the natural metric induced by
the likelihood function (Kass, 1989). Jeffreys’ prior for Bernoulli sampling is a
beta(1/2� 1/2) distribution. For some models, Jeffreys’ prior is improper (does
not integrate to one), but may be useful if the data results in a proper posterior
after Bayes’ rule is formally applied.

A third approach that is mathematically convenient is to assume a conjugate
prior distribution, meaning that the posterior distribution has the same func-
tional form as the prior distribution. For Bernoulli(θ) sampling, the beta(α�β)
distribution with probability density function (p.d.f.) f (θ) ∝ θα−1(1 − θ)β−1

is a conjugate prior. If data xn is observed, with sn = ∑n
i=1 xi, then the pos-

terior p.d.f. is f (θ|xn) ∝ θα+sn−1(1 − θ)β+n−sn−1, a beta(α + sn� β + n − sn)
distribution. Conjugate prior distributions exist for all members of the reg-
ular exponential family (Bernardo and Smith, 1994), which includes the ex-
ponential, normal, gamma, log-normal, Wishart, Bernoulli, geometric and
Poisson distributions, and linear regression models with normally distributed
error, among others. The uniform[0� 1] distribution is in the conjugate fam-
ily for Bernoulli sampling – it is a beta(1� 1) distribution. Prior distributions
selected in this way are often selected to be as noninformative as possible,
meaning that probability is spread ‘evenly’ over the space of parameters. Al-
though ‘evenly’ is subjectively defined, heuristics are available for members
of the regular exponential family, whose likelihood function can be written
p(x|θ) = a(x)h0(θ) exp[∑d

j=1 cjφj(θ)hj(x)] for some a(·), h0(·), cj , φj(·),
hj(·). The conjugate prior is p(θ) = [K(t)]−1[h0(θ)]n0 exp[∑d

j=1 cjφj(θ)tj],
where t = (t1� t2� � � � � td) is a hyperparameter. The posterior distribution given
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n conditionally independent data points then has parameters n0 + n and the
sum of t and the sufficient statistics (Bernardo and Smith, 1994). The para-
meter n0 is therefore interpreted by some to be the ‘strength’ of the prior,
measured in terms of the number of samples. In that case, evenly spreading
probability can be taken to mean selecting n0 close to 0, while insuring that the
prior is still proper.

Jaynes (1983) suggests a fourth approach that is common in image and sig-
nal processing: maximum entropy methods define ‘diffuse’ priors with respect
to a background measure, subject to moment constraints on the parameters.
Berger (1994) and Kass and Wasserman (1996) comment further on default
prior distributions and sensitivity analysis with respect to them.

Probability modeling is inherently subjective – even so-called ‘objective’ meth-
ods require the subjective specification of a likelihood model. One standard
Bayesian practice is to use a slightly informative conjugate distribution for the un-
known mean, by choosing it to be proper but diffuse (Gilks et al., 1996). For
example, the conjugate prior for an unknown mean of a normal distribution is
also a normal distribution. A diffuse prior would be Normal(0� σ2

big) for some

large σ2
big. Conjugate prior distributions are mathematically convenient, but

care is still required with their use, as with any statistical analysis, Bayesian or
otherwise.

Classical asymptotic theorems (laws of large numbers, LLN; central limit
theorems, CLT; e.g., Billingsley, 1986) have Bayesian interpretations when con-
sidered to be conditional on the mean and standard deviation of an infinite
exchangeable sequence. A Bayesian extension of the LLN allows for a sample
average to converge to an ‘unknown’ mean (random variable) rather than to a
‘true’ mean.

Theorem 1 (Bayesian LLN). Let Xi be an exchangeable sequence of random
variables, and let �Xn and �Ym be the averages of n and m of the Xi, respectively. If
Var[X1] <∞, then the probability that

|�Xn − �Ym| > ε

may be made arbitrarily small by taking n and m sufficiently large (de Finetti,
1990, p. 216).

Although the mode of a posterior distribution may not be the true mean, an
asymptotic normality property holds for posterior distributions of parameters.

Theorem 2 (Posterior normality). For each n, let pn(·) be the posterior p.d.f. of
the d-dimensional parameter θn given xn = (x1� � � � � xn), let θ̃n be its mode, and
define the d × d Bayesian observed information matrix Σ−1

n by

(5)Σ−1
n = −L′′n(θ̃n)� where L′′n(ϑ) =

∂2 logpn(θ|xn)
∂θ2

∣∣∣∣
θ=ϑ

�
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Then φn = Σ
−1/2
n (θn − θ̃n) converges in distribution to a standard (multivari-

ate) normal random variable, if 3 technical conditions hold: (c1) Steepness:
limn→∞ σ̄2

n → 0, where σ̄2
n is the largest eigenvalue of Σn, (c2) Smoothness: Let

Bδ(θ̃n) = {ϑ: |ϑ− θ̃n| < δ}. For any ε > 0, there exists N and δ > 0 such that,
for any n > N and ϑ ∈ Bδ(θ̃n), the derivatives in Equation (5) exist and satisfy
I−A(ε) � L′′n(ϑ){L′′n(θ̃n)}−1 � I+A(ε), where I is a d×d identity matrix and
A(ε) is a d × d symmetric positive semidefinite matrix whose largest eigenvalue
tends to 0 as ε → 0, (c3) Concentration: For any δ,

∫
Bδ(θ̃n)

pn(θ) dθ → 1 as
n→∞. (Bernardo and Smith, 1994, Proposition 5.14.)

Theorem 2 asserts that uncertainty about the value of the unknown parame-
ter value can be approximated asymptotically with a normal distribution. The
Bayesian observed information Σ−1

n is a measure of precision of the poste-
rior distribution of θ, and behaves asymptotically like the frequentist observed
information (which ignores the prior distribution) under rather general con-
ditions, but the interpretation differs somewhat. The classical analog of The-
orem 2 asserts that the MLE is asymptotically normally distributed about a
‘true’ parameter θ0 (Law and Kelton, 2000), rather than describing uncertainty
about θ. The mode θ̃n is often called a MAP (maximum a posteriori probabil-
ity) estimator. Conditions (c1) and (c2) basically insure that the posterior mode
is asymptotically shaped like a normal distribution, and (c3) insures that prob-
ability outside a neighborhood of θ̃n is negligible. Bernardo and Smith (1994)
also discuss alternate conditions.

The above results apply to conceptually infinite exchangeable sequences
that can be used to infer statistical parameters, θp. Environmental parame-
ters θe do not have such sequences to help inference, but the subjective proba-
bility methods of de Finetti (1990), Savage (1972), Kahneman et al. (1982) still
apply for assessing prior distributions. Exchangeability is relevant if a finite
exchangeable sequence exists to help inference for θe.

Here are facts that link finite and infinite exchangeable sequences that are
not used further in this paper, but are useful for further subjective probabil-
ity work. One, exchangeability is weaker than even conditional independence
for finite sequences. For example, let Ω = {0� 1}N model N = 3 Bernoulli
outcomes, and let θN = ∑

i=1Xi/N . The subjective probability assessment
p((1� 0� 0)) = p((0� 1� 0)) = p((0� 0� 1)) = 1/3 is an exchangeable Bernoulli
model, but not independent, because X1 +X2 +X3 = 1. Similarly, X1 and X2
are not conditionally independent, given θN = 1/3. (This model is an atyp-
ical subjective assessment for coin flips, but matches well the ‘hide a coin
under a shell’ game.) Two, suppose that each of the finite set of alternatives
θN ∈ {0/N� 1/N� � � � � (N − 1)/N� 1} is judged equally likely for each N ,
then limN→∞ p(θN) converges in distribution to Laplace’s (1812) continu-
ous uniform[0� 1] prior distribution for θ = limN→∞ θN . Three, de Finetti
(1990) derives Equation (2) as a consequence of having a conceptually in-
finite exchangeable sequence of Bernoulli outcomes, as opposed to directly
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assuming conditional independence. Four, judgments stronger than exchange-
ability, such as invariance to sums or to an �p-norm, may be required to jus-
tify de Finetti-type representations for other random variables (Barlow and
Mendel, 1992; Chick and Mendel, 1998).

1.2 Loss and value of information

The fact that input uncertainty is described by probability distributions al-
lows the modeler to (1) assess the expected value of information (EVI) of ad-
ditional data collection and (2) to perform an uncertainty analysis. The EVI is
useful in experimental design. It measures the value of resolving uncertainty
with respect to a loss function L(d�ω) that describes the loss when a deci-
sion d is chosen and the state of nature isω. Experiments can bring information
about ω, so the expected improvement in the loss given by the experiment is a
Bayesian experimental design criterion.

The value of information idea directly leads to the selection procedures
in Section 5. A simplified version of that problem adapted from de Groot
(1970, Sections 11.8–11.9) illustrates the key concepts. Suppose we must de-
cide whether or not the unknown mean W of a normal distribution is smaller
(decision d = 1) or larger (d = 2) than w0. Assume the variance σ2 is known.
Conditionally independent samples Xn = (X1�X2� � � � �Xn), with p(Xi) ∼
Normal(w� σ2) given W = w, can be used to infer the value of the mean. The
decision maker designs a sampling experiment (chooses n) to balance the cost
of sampling, cn, and the expected penalty if the wrong answer is chosen. Here
the penalty for incorrect selection is the opportunity cost L(d�w), the differ-
ence between the actual value of w and w0 when the wrong answer is selected,
and 0 if the right answer is selected. Hence,

L(1� w) =
{

0 if w � w0�
w − w0 if w > w0�

and

L(2� w) =
{
w0 −w if w � w0�
0 if w > w0�

Since the mean is not known exactly, there is a potential penalty for incor-
rectly specifying whetherW is smaller or larger thanw0. We model uncertainty
about W with a Normal(μ� 1/τ) prior distribution, which is conjugate for nor-
mal sampling with an unknown mean and known variance (de Groot, 1970).
Here τ is the precision in our uncertainty about W . Observing Xn = xn would
reduce the uncertainty and result in the posterior distribution

p(w|xn) ∼ Normal
(
z� τ−1

n

)
�

where

z = posterior mean of W = E[W |xn] = τμ+ nx̄n/σ
2

τ + n/σ2
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and
τn = posterior precision of W = τ + n/σ2�

The variance τ−1
n equals the posterior variance approximation Σn in Equa-

tion (5) because Σn is based on a normal distribution approximation.
The posterior mean z influences the decision, but it depends upon n, which

must be selected before Xn is observed. We therefore need the predictive dis-
tribution p(z) of the posterior mean Z = E[W |Xn] = (τμ + n�Xn/σ

2)/τn to
see how n samples influence the decision d. The conditional distribution of �Xn

given w is Normal(w� σ2/n). Mixing over the prior distribution of W implies
that the predictive distribution for Z is Normal(μ� τ−1

z ), where

(6)τz = τ
τ + n/σ2

n/σ2 �

The variance τ−1
z of Z is 0 as n→ 0 (no new information). If n→∞ (perfect

information about w), then Var[Z] → τ−1, the prior variance of W .
The experimental design that minimizes risk (the cost of sampling plus ex-

pected losses due to a potentially incorrect decision) is the n that minimizes a
nested expectation, the inner expectation corresponding to the expected loss
after Xn = xn is observed, the outer expectation averaging over Xn.

(7)ρ(n) = cn+ E
[
E
[
L
(
d(Xn)�W

)|Xn
]]
�

A general technique for determining E[L(d(Xn)�W )|Xn] is to obtain an aux-
iliary loss function L∗ that has the same optimal decision, but simplifies the
loss function by making the loss of one of the decisions equal to 0. Adding
a function of w does not change the optimal decision (de Groot, 1970). Set
L∗(d�w) = L(d�w) − L∗(1� w), which is 0 if d = 1 and is w0 − w if d = 2.
Then

(8)E
[
L∗(d(Xn)�W

)|Xn
] =

{
0 if d(Xn) = 1�
w0 − Z if d(Xn) = 2�

The decision that minimizes the loss in Equation (8) is to assert d(Xn) = 2
(‘bigger’) if the posterior mean exceeds the threshold, Z > w0, and to assert
d(Xn) = 1 (‘smaller’) if Z � w0.

The expectation over the outcomes of this experiment can be determined
with well-known tables because the decision depends upon Xn only through Z,
andZ has a normal distribution. Defineφ(·) andΦ(·) to be the p.d.f. and c.d.f.
of a standard normal random variable, respectively. The expected loss can be
determined from the standard normal loss functionΨ [s] = ∫∞s (t−s)φ(t) dt =
φ(s)−s(1−Φ(s)) for expected lost sales in the newsvendor problem if demand
is normally distributed (e.g., Nahmias, 2000, p. 262, standardized loss).

E
[
E
[
L∗(d(Xn)�W

)|Xn
]] = −

∫ ∞

w0

(z −w0)p(z|Xn) dz

= −τ−1/2
z Ψ

[
τ

1/2
z (w0 − μ)

]
�
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The expected loss of the original loss function is recovered by adding back
E[L(1�W )], using the prior distribution of W for the expectation.

E
[
E
[
L
(
d(Xn)�W

)|Xn
]]

(9)= τ−1/2Ψ
[
τ1/2(w0 − μ)

]− τ
−1/2
z Ψ

[
τ

1/2
z (w0 − μ)

]
�

The EVI for m samples is the difference between Equation (9) when n → 0
and when n = m (τz depends on n). If w0 > μ, the EVI simplifies to
τ
−1/2
z Ψ [τ1/2

z (w0−μ)]. Combine Equation (9) with Equations (6) and (7), note
that dΨ/ds = Φ(s)− 1 and dτz/dn = −τ2σ2/n2, and take the derivative with
respect to n (relaxing the integer assumption) to obtain an optimality condition
for the sample size.

∂ρ

∂n
= 1

2
τ
−3/2
z φ

[
τ

1/2
z (w0 − μ)

]−τ2σ2

n2 + c = 0�

For diminishing costs c→ 0, the sample size is large. Since τz → τ as n→∞,
the optimal sample size n is approximately

(10)n∗ =
(
τ1/2σ2φ[τ1/2(w0 − μ)]

2c

)1/2
�

This argument illustrates the basic ideas of loss functions, and the use of pre-
dictive distributions for future samples to infer the EVI of sampling. The tech-
nique of adding functions of the unknowns can be useful to simplify the derivation
of the optimal solution. Asymptotic approximations are a further tool to identify
criteria-based sampling plans. Extensions of this basic argument justify the value
of information based selection procedures of Section 5.1 and Chick and Inoue
(2001a, 2001b, 2002).

An alternate mechanism to approximate the effect of information on pa-
rameter uncertainty is based on a thought experiment for the posterior prob-
abilities of parameters. For members of the regular exponential family, the
asymptotic variance approximation Σn in Equation (5) simplifies to the form
H−1(θ)/(n0 + n), where H is the expected information from one observa-
tion (Equation (4)), when a canonical conjugate prior distribution is used
(Bernardo and Smith, 1994). To approximate the effect of collecting m ad-
ditional samples on the parameter uncertainty, one could presume that the
posterior distribution changes from Normal(θ̃n� Σn) to

(11)Normal
(
θ̃n� Σn

n0 + n

n0 + n+m

)
�

This transformation reflects an appropriate scaling of the posterior precision,
and the idea is used in a frequentist context for estimating how many replica-
tions are required to achieve a confidence interval of a given size (Law and
Kelton, 2000). Chen (1996) uses this type of approximation for the Bayesian
posterior distribution of the unknown means of several simulated systems in
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order to motivate a class of ranking and selection procedures called the OCBA
(optimal computing budget allocation). Ng and Chick (2001, 2006) use the idea
to plan experiments to reduce input uncertainty in a way that reduces output
uncertainty.

1.3 Uncertainty analysis

The fact that uncertainty about inputs is described with probability dis-
tributions allows a modeler to engage in uncertainty analysis, in addition to
sensitivity analysis. A sensitivity analysis tests how the mean simulation out-
put depends upon one or more input parameters as that parameter is varied
(estimating E[g(θ)|E] as a function of θ, given all information E). Uncertainty
analysis entails propagating input parameter uncertainty about Θ through to
uncertainty about outputs Y . Even if a simulation has no random number
stream, a distribution on unknown inputs means that the output is random.

An unbiased estimator of the mean output E[Y |E] with both stochastic
(from u) and systemic (or parameter) uncertainty accounted for is obtained
from the Bayesian model average (BMA) in Figure 2, which averages over
random inputs sampling according to the distribution p(θ|E) (Draper, 1995;
Chick, 2001). Zouaoui and Wilson (2003) explore the relative magnitude of
stochastic and systemic uncertainty with variations on the BMA, and discuss
how to update the estimate should new data become available (so the algo-
rithm need not be rerun from scratch). Importance sampling (cf. Chapter 11)
techniques can re-weight estimates accordingly (with likelihood ratio deter-
mined as the ratio of the ‘new’ posterior divided by the ‘old’ distribution).
Andradóttir and Glynn (2004) examine the estimation of E[Y |E] when there
may be bias in the estimates of Y given θ, when quasi-random sequences
are used in place of the pseudo-random sequences assumed by Figure 2, or
when numerical techniques like Simpson’s rule are employed to select values
of θ. Another goal is to estimate the distribution of the conditional expecta-
tion E[Y |Θ�E]. When Y is a deterministic function of Θ, then naive Monte
Carlo simulation can be used with traditional kernel estimation techniques to
assess the distribution of Y(Θ). When the simulation is stochastic (depends
on u), then E[Y |θ� E] is imperfectly estimated for any given θ. Given several
technical conditions (e.g., univariate continuous-valued θ, monotonic mean re-

for r = 1� � � � � R replications
sample parameter θr from p(θ|E)
for i = 1� 2� � � � � n

generate simulation output yri given input θr
end loop

end loop
Estimate E[Y |E] with ȳ =∑R

r=1
1
R

∑n
i=1 yri/n.

Fig. 2. Bayesian model average (BMA).

http://dx.doi.org/10.1016/S0927-0507(06)13011-X
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sponse), Steckley and Henderson (2003) derive asymptotically optimal ways of
selecting by cleverly selecting r and n in Figure 2 to produce a kernel density
estimator based on the output. Their work builds upon Lee and Glynn (1999),
which estimated the distribution function of E[Y |Θ� E] for discrete θ.

2 Computational issues

Three basic computational issues for implementing a Bayesian analysis are
maximization (e.g., find the MLE θ̂, or MAP θ̃ estimators for a posterior distri-
bution); integration, either to find a marginal distribution (e.g., find p(θ1|xn)
from p(θ1� θ2|xn)) or constant of proportionality for a posterior distribution
(e.g., find c−1 = ∫ f (xn|θ) dπ(θ)); and simulation (e.g., sample from p(θ|xn)
in order to estimate E[g(θ)|xn]). Techniques to address these issues are de-
scribed in a variety of sources (e.g., Naylor and Smith, 1982; Evans and Swartz,
1995; Tanner, 1996; Gilks et al., 1996; The Mathworks, 2002).

For maximization, a number of methods are available including gradient-
based methods (e.g., Newton–Raphson), gradient-free methods (e.g., Nelder–
Mead), and simulation-based methods. The expectation–maximization (EM)
algorithm is a technique for finding the MAP or MLE when there is miss-
ing data or nuisance parameters are to be integrated out (e.g., the MAP of
p(θ1|xn) when it is ‘messy’ but p(θ1� θ2|xn) is easier to manipulate).

For integration, five general techniques apply (Evans and Swartz, 1995)
when analytical results (e.g., conjugate priors) are not available: quadrature,
asymptotic methods, Markov chain methods, importance sampling, adaptive
importance sampling. Quadrature is useful when the number of dimensions is
not too large. The Laplace method is an interesting asymptotic approximation
for integrals

∫
g(θ)f (θ|xn) dπ(θ). The Laplace method applies even if f (θ|xn)

is only a likelihood when the constant of proportionality for the posterior is un-
known, and can work well for integrating out nuisance parameters if regularity
conditions hold. The method is based on asymptotic normality approximations
like those used for Equation (5), and therefore require a large n. Another ef-
fective technique for approximating the density p(θ1|xn) (not just the MLE
or MAP) when it is ‘messy’ but p(θ1|θ2� xn) and p(θ2|θ1� xn) are easy to ma-
nipulate is data augmentation, often called the IP algorithm (for imputation,
posterior algorithm). The IP algorithm is a nice alternative to other kernel
estimation methods, and is closely related to the Markov chain Monte Carlo
(MCMC) methods mentioned further. Importance sampling (IS) remains one
of the more powerful methods for efficient integration. See Chapter 11.

For simulation of variates, classical methods for generating independent
variates from posterior distributions may apply (see Chapter 4). Posterior dis-
tributions are often known only up to a constant of proportionality (the numerator
of Bayes’ rule is easy to write, but the denominator may be hard to compute).
It is therefore important to have a method to simulate variates for arbitrary func-
tions proportional to posterior distributions. MCMC is the most important of those

http://dx.doi.org/10.1016/S0927-0507(06)13011-X
http://dx.doi.org/10.1016/S0927-0507(06)13004-2
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methods at present. MCMC constructs a Markov chain whose stationary dis-
tribution is the desired posterior distribution (Chapter 4, this volume; Gilks
et al., 1996). The ARMS (adaptive rejection Metropolis sampler) combines
adaptive rejection sampling, which is useful for log-concave posterior distribu-
tions, together with an MCMC-type Metropolis step to handle nonlog-concave
distributions (Gilks et al., 1995). States of a chain constructed with MCMC
techniques can be sampled for input into the BMA of Figure 2. Samples and
estimators based on MCMC need evaluation to assure reasonable convergence
for estimators and faithfulness to the posterior distribution.

Figure 3 illustrates a qualitative feel for some of the approximation tech-
niques for a gene linkage model (Tanner, 1996) that has a parameter θ ∈ [0� 1].
A spreadsheet implementation of the EM algorithm identified the MAP θ̃. The
asymptotic normal approximation of Theorem 2 provides a reasonable esti-
mate of the mode and variance of the true posterior distribution, but does not
model skewness well, particularly if θ̃ is near the boundary or if few data points
are available. Data augmentation results in a smoother kernel estimator than
the empirical histogram estimator usually studied with MCMC methods. The
MCMC estimator could be smoothed like the data augmentation to provide
a much more accurate representation (Gilks et al., 1996) with an additional
computational cost for smoothing.

For simple examples a spreadsheet is fine, but more powerful tools are
needed in general to implement Bayesian inference. The BUGS and
WinBUGS packages implement Gibbs sampling and some Metropolis sam-

Fig. 3. Different approximations for the posterior p.d.f.

http://dx.doi.org/10.1016/S0927-0507(06)13004-2
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pling, and are available on the WWW (Spiegelhalter et al., 1996). BOA, for
Bayesian output analysis (Smith, 2004), is a set of MCMC diagnostic tools for
convergence and data analysis that functions with the R or S-PLUS statisti-
cal packages. Gauss and Matlab are also commonly used to program MCMC
methods.

At present, it is possible to input randomized input parameters to some com-
mercial discrete-event simulation packages to implement the BMA algorithm
of Figure 2, but interfaces are not yet fully user friendly. A user-friendly tool
to implement the BMA and other uncertainty analysis needs in commercial
discrete-event simulation packages would be helpful. Uncertainty analysis for
other Monte Carlo applications has been available as a spreadsheet tool for
some time (e.g., Winston, 2000).

3 Input distribution and model selection

Selecting an input distribution to model a sequence of random quantities
X1�X2� � � � is often more complicated than inferring a parameter of a sin-
gle parametric distribution, as described in Section 1. There is often a finite
number q of candidate distributions proposed to model a given source of ran-
domness, with continuous parameters θm = (ϑm1� � � � � ϑmdm), where dm is
the dimension of θm, for m = 1� � � � � q. For example, service times might be
modeled by exponential, log-normal or gamma distributions (q = 3). Denote
by p(x|m�θm) the probability density function (p.d.f.) for X, given m and θm.

The classical approach in simulation (Law and Kelton, 2000) for input se-
lection is to (a) find the MLE of each parameter, (b) perform a goodness-
of-fit test, and (c) pick the ‘best’ fitting candidate distribution and input the
MLE into the simulation. The Bayesian approach addresses some contro-
versial aspects of the classical approach. Critiques of classical techniques in
general include: goodness-of-fit and P-value criteria are difficult to inter-
pret and inconclusive at best, and misleading at worst (Berger and Pericchi,
1996); use of a single distribution and parameter underestimates the uncer-
tainty in the distribution’s functional form and parameter (Draper, 1995);
with few data points, few candidate distributions are rejected, and with many
data points, all distributions are rejected (Raftery, 1995); there is no coher-
ent method for selecting among nonrejected distributions; and classical tech-
niques can reject the a posteriori most probable distribution (Lindley, 1957;
Berger and Delampady, 1987). In the simulation context, input uncertainty can
make standard confidence intervals for the mean output almost meaningless if the
classical approach is employed (Chick, 2001; Barton and Schruben, 2001).

A Bayesian approach is no different than the approach in Section 1, except
that a prior probability distribution needs to be placed on the model/parameter
combination, π(M = m�θm), a mixed discrete-continuous model. If data xn
becomes available, the BMA then requires sampling from the joint posterior
p(m� θm|xn). This can be accomplished by composition, sampling the input
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model then the parameter with p(m|xn)p(θm|m� xn). While improper, nonin-
formative prior distributions can formally be used when there is a single candidate
model and enough data makes the posterior proper, this cannot be done when
there are multiple candidate distributions. The reason is that

p(M = m|xn) =
∫
p(xn|θm�m)π(θm|m)π(M = m) dθm∑q
i=1

∫
p(xn|θi� i)π(θi|i)π(M = i) dθi

can be changed at will by changing an improper prior π(θm|M) to an equally
valid improper prior cπ(θm|M) for an arbitrary constant c. Proper (and there-
fore informative) prior distributions π(θm|M = m) are needed for each m
in order to make Bayes’ rule well defined. Chick (2001) implements the BMA
with this model selection for discrete-event simulations, and suggests a method
for assessing π(θm|M = m) based on moment methods. O’Hagan (1995),
Berger and Pericchi (1996) proposed automated prior distribution selection
techniques for the model selection problem that use variations on the theme
of using part of the data with a noninformative prior.

Chick (2001) illustrated Bayesian input modeling in a stochastic simula-
tion context when q > 1, and suggested a method-of-moments approach for
assessing prior distributions for the unknown parameters of each candidate
distribution. Zouaoui and Wilson (2004) noted a decoupling of stochastic un-
certainty from two types of structural uncertainty (about candidate models and
their parameters) under special conditions, and provided a variance reduction
for the BMA and numerical analysis. Richardson and Green (1997) and Cheng
and Currie (2003) present techniques for the nonregular case when a candidate
itself is a mixture distribution (e.g., a mixture of 2 or 3 normal distributions).

Selecting models according to p(M|E) is consistent in that if one of the en-
tertained models is actually the true model, then the true model is selected if
enough data is observed and some regularity conditions hold. When the true
model is not among those being considered, Bayesian model selection chooses
the model that is closest to the true model in terms of Kullback–Leibler diver-
gence (Berk, 1966; Bernardo and Smith, 1994; Dmochowski, 1999).

4 Joint input–output models

Simulation is interested in both stochastic uncertainty, or randomness that
occurs when all model parameters are known, and structural uncertainty, or
uncertainty about model inputs when a real system is being simulated. This
section describes an input–output model that quantifies the uncertainty in sim-
ulation outputs due to input uncertainty, data collection plans for reducing
input uncertainty in a way that effectively reduces output uncertainty, mecha-
nisms to select computer inputs to improve estimates of the system response,
and mechanisms to help infer probability distributions for input parameters,
given information about output parameters (the inverse problem).
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Recall Figure 1. It is impossible to simulate all possible values of continuous
input parameters in finite time on a finite number of computers. Metamod-
els describe the value of g at untested input values (see Chapter 18). This is
useful when the simulation model requires extensive computation. Metamodel
parameters ψ = (φ1� φ2� � � � � φnm) may include regression coefficients, or pa-
rameters of a Gaussian random function (GRF) model of the mean response
(Cressie, 1993; Santner et al., 2003; van Beers and Kleijnen, 2003). Since the
metamodel parameters are unknown, they are described as a random vari-
able. The metamodel is

(12)Y = g(�p��e�θc;U�)�

This formulation allows for Y to be predicted for unsimulated values of
θ = (θp�θe�θc) via the response model and . Field data from a modeled
system can be used (1) to infer the input parameters θc , along the lines of Sec-
tions 1 and 3, or (2) to understand the distribution of the outputs Y . Output
from multiple simulation runs are used to infer . This formulation gener-
alizes several previous models that focused on g(θp�u) (Cheng and Holland,
1997), or nonstochastic models that do not model randomness from u (Santner
et al., 2003). The model of Chick (1997) differed in that simulation output was
not considered to be exchangeable with a real system’s output (a calibration
issue).

4.1 Bayesian metamodeling

Here we discuss inference for the normal linear model and Gaussian ran-
dom function (GRF) metamodels. The normal linear model is

Y =
p∑
�=1

g�(θ)β� + Z(θ;U) = gT(θ)β+ Z(θ;U)

for known regression functions g1� � � � � gp, unknown regression coefficients β,
and independent zero-mean random noise Z(·) with sampling variance σ2. If
σ2 does not depend upon θ, then the conjugate prior is an inverse gamma
distribution for σ2 and a conditionally normal distribution for β given σ2,
if all factors are active (Bernardo and Smith, 1994). George and McCulloch
(1996) and Cheng (1999) discuss techniques for estimating which factors are
active with what probability. Ng and Chick (2004) describe an entropy-based
experimental design criterion to identify which factors are active and reduce
parameter uncertainty simultaneously.

If the gi represent the individual dimensions of the unknown parameters
(θp�θe), the β� are gradients with respect to the inputs. If further the model
has only statistical input parameters θp for which data can be collected (but
not parameters θe for which no data is available), Ng and Chick (2001) and

http://dx.doi.org/10.1016/S0927-0507(06)13018-2
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Zouaoui and Wilson (2003) indicated that output uncertainty can be decoupled
asymptotically or under special conditions.

Vtot = Var[�Y |E] ≈ stochastic + structural uncertainty

≈ σ̂2
0
m

+
βTĤ−1

θp
β

n
�

where σ̂2
0 is the estimate of the variance from m replications, the MLE θ̂p

and estimate Ĥ−1
θp

of the information in one observation are based on n data
points, and technical conditions hold (e.g., those for Theorem 2). This adapted
a frequentist result of Cheng and Holland (1997). Ng and Chick (2001) ap-
plied the result to uncertainty due to multiple input parameters, to provide
sampling plans to collect further data (e.g., for arrival rates or for service time
distributions) to reduce input parameter uncertainty in a way that optimally
reduces output uncertainty in some sense. Ng and Chick (2006) extended that
analysis by accounting for uncertainty in β as well, providing analytical results
for members of the exponential family of distributions, and giving a numerical
analysis.

Figure 4 summarizes qualitatively how ignoring input parameter uncertainty
can significantly degrade confidence interval (CI) coverage. The experiment
involved simulating the parameter estimation process for several simulation in-
put parameters, inputting those parameters into a simulation, then generating
a nominal 95% CI (see Ng and Chick, 2006, for details). The values at B = 0 in
all graphs represent the CI coverage and mean half width if no additional data
is collected after that first round of simulation. The top row of graphs gives
the empirical coverage and half width if the CI is based on the estimated vari-
ance Vtot involving both stochastic and structural uncertainty. The bottom row
is based on computing the CI by inputting only the MLE of the input parame-
ters into the simulation, and using only stochastic uncertainty Vstoch = σ̂2

0/m to
estimate the variance of the estimator. The values at B > 0 describe how the
coverage would change if additional data for the several different input para-
meters were collected in an optimal way. Optimal here is defined by collecting
data for the different parameters in a way that minimizes Vtot if the effect of ad-
ditional samples is presumed to reduce Vtot as in Equation (11). There is a slight
degradation in coverage, perhaps due to the fact that the simulation model
was nonlinear and the approximation for Vtot is based on a local linear approx-
imation. The bigger story from this example is that ignoring input parameter
uncertainty can lead to almost meaningless CI statements if the mean of the
simulated response is a nonlinear function of the input parameters. The effect
is worse with fewer data points to estimate parameters. To date, much simula-
tion research seeks analytical results for stochastic models, or mechanisms to
reduce the variance of estimators due to stochastic noise. Those results need to
be complemented with an understanding of how performance depends on input
uncertainty, and methods to reduce input uncertainty to effectively reduce output
uncertainty. Bayesian tools can help.
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Fig. 4. Empirical coverage for a nominal 95% CI is poor if parameter uncertainty is ignored.

GRFs are well-known response models in deterministic simulations, par-
ticularly in geostatistics (Cressie, 1993; Santner et al., 2003), but are less well
known in stochastic simulation. GRFs provide flexibility that the linear model
does not, and are useful when g takes a long time to compute. The GRF for an
unknown nonstochastic g (no random number stream u) is

(13)Y(θ) =
p∑
�=1

g�(θ)β� + Z(θ) = gT(θ)β+ Z(θ)

for known regression functions g1� � � � � gp of R
d, and unknown regression co-

efficients β. The zero-mean random second-order processZ(θ) is such that for
any distinct inputs θ1� � � � �θm, the vector (Y1� � � � � Ym) has a multivariate nor-
mal distribution, conditional onβ. GRFs are determined by their mean gT(θ)β
and (auto)covariance function C∗(θ1�θ2) = Cov(Y(θ1)� Y(θ2)), defined in-
dependent of β. It is common to assume strong stationarity ((Y1� � � � � Ym) and
(Y1+h� � � � � Ym+h) have the same distribution), so C∗(θ1�θ2) = C(θ1−θ2).

Inference for g(θ) at values of θr+1 not yet input to a simulation model
is more flexible than linear regression via the correlation function R(h) =
C(h)/C(0) for h ∈ R

d. See Santner et al. (2003) for examples. Kriging, a geo-
statistics term, is a best linear unbiased prediction (BLUP) for g(θr+1). An
assessment of the uncertainty in g(θr+1) can be used as an experimental de-
sign technique to choose inputs to reduce response uncertainty (Santner et al.,
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2003). Example usage of GRFs includes input selection for efficient response
surface estimation; percentile estimation; and model calibration (Sacks et al.,
1989; O’Hagan et al., 1999; Kennedy and O’Hagan, 2001; Santner et al., 2003;
Oakley, 2004). Stochastic observations can be modeled by assuming a mea-
surement error, giving a so-called ‘nugget effect’ (Santner et al., 2003). Van
Beers and Kleijnen (2003) found that a special case of Equation (13) was a
useful metamodel of a stochastic process simulation. GRFs provide an effective
mechanism for reducing the computational effort to get a good response estimate
by selecting simulation inputs on areas where the mean response has the greatest
uncertainty. More work is needed for GRFs in the stochastic simulation context.

4.2 Inference of input parameters from output information

Uncertainty analysis examines the distribution of g(θc��p��e;U) induced
by the distribution of (�p��e) (whether g depends upon U or is determin-
istic). The question of calibration is whether the realization or distribution of
(�p��e) can be inferred from data or probability assessments about Y .

For example, the arrival rate λ and service rate μ of an M/M/c queue are
inputs to a simulation model. If they are unknown, their distribution can be
inferred from field data. The distribution of λ, μ induces a distribution on
system outputs, such as the average queue content �Q, and the ‘clock speed’
as measured by the autocorrelation of the queue occupancy process. The in-
verse problem is whether inputs λ and μ can be inferred from observation on
the outputs such as the queue occupancy at discrete times Q(τ1)� � � � �Q(τn).
McGrath et al. (1987), McGrath and Singpurwalla (1987), Armero and Ba-
yarri (1997) comment on the potential to infer input parameters for queues
from outputs, but mostly evaluate the expected value of information for infer-
ring λ, μ from interarrival and service time data, along with potentially one
observation Q(τ1). The problem is hard because the likelihood function in-
volves transient state transition probabilities, which are complicated for many
stochastic processes. Larson (1990) describes frequentist inference with incom-
plete arrival time data, but using transactional data on arrivals and departures.

For epidemic models, O’Neill (2002) provides a review of tools and tech-
niques. Chick et al. (2003) illustrate the inference of epidemic model (input)
parameters from (output) data on disease incidence and germ contamination
by estimating the likelihood model for outputs, given inputs, using approxi-
mations of the stationary distribution to help assess the likelihood function.
Kennedy and O’Hagan (2001) provide a GRF model to infer (θp�θe) given
observations of Y(θc) to help calibrate input parameters given output obser-
vations, assuming a nonstochastic response function g and that output data
can be observed with random error. Also see Craig et al. (2001). Part of the
problem of inferring input parameters from outputs arises from allowing the
computer output to be an imperfect model of reality (e.g., with bias modeled
as a Gaussian random field). The joint input–output model of Chick (1997) did
not allow for the inference of input parameters from system outputs because
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it considered input models to be adequate for representing reality, but did not
consider the outputs of the model to be exchangeable with the correspond-
ing observations from the real system. The reason is that the lack of detail in
computer models may not reflect the reality of the actual system. The joint
input–output model augmented with an explicit bias metamodel helps quan-
tify model validation concerns. The bias term accounts for the potential that
model output might not be perfectly exchangeable with computer model out-
put, conditional upon the values of the input parameters matching the values
of the corresponding parameters in the real system.

Kraan and Bedford (2003) assess subjective prior distributions for inputs
to a nonstochastic g that best induces a desired distribution for the outputs,
in the sense of Kullback–Leibler divergence, even without data for Bayesian
inference.

5 Ranking and selection

This section compares and contrasts frequentist and Bayesian approaches
to ranking and selection. The objective of ranking and selection is to select the
best of a finite number k of systems, where best is defined in terms of the ex-
pected performance of a system (e.g. Chapter 17). In the notation of Section 4,
θc assumes one of a discrete set of values indexed by i ∈ {1� 2� � � � � k}, and the
goal is to identify the system i that maximizes wi = E[g(θci��p��e;U)]. The
means are inferred from observing simulation replications

(14)Yir = wi(θc�θp�θe)+ σi(θc�θp�θe)z(θc�θp�θe;Uri)

for i = 1� 2� � � � � k, r = 1� 2� � � � , where the function g is rewritten in terms
of the mean wi, standard deviation σi, and a zero-mean unit-variance noise z.
The usual formulation of the problem does not explicitly specify a dependence
upon (�p��e), so we leave those parameters implicit in this section, and the
response from different systems is not related with a metamodel ψ (although
continuous optimization problems may use ψ, see Chapter 18).

Both two-stage and sequential procedures are possible. In a two-stage pro-
cedure, a first stage consisting of r0 replications for each system are run, initial
estimates of (w�σ) are obtained in order to determine how many more sam-
ples to collect for each system, and then a second stage collects the samples and
selects a system based on all output. Sequential procedures repeatedly allocate
samples in a series of consecutive stages.

Different approaches to ranking and selection use different criteria for al-
locating samples and for measuring the quality of a selection. Frequentist
approaches, like indifference zone (IZ) methods, provide correct selection
guarantees over repeated applications of a selection procedure (see Chap-
ter 17). Bayesian approaches, like the value of information procedures (VIP,
Chick and Inoue, 2001a), and optimal computing budget allocation (OCBA,

http://dx.doi.org/10.1016/S0927-0507(06)13017-0
http://dx.doi.org/10.1016/S0927-0507(06)13018-2
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Chen, 1996), use posterior distributions to quantify the evidence for correct
selection. These approaches are described and distinguished below.

Typical assumptions common to all three approaches are that the means
and variances of the output of each system may differ, and that the output
is independent and normally distributed, conditional on wi and σ2

i , for i =
1� � � � � k,

{Yij : j = 1� 2� � � �} i.i.d.∼ Normal
(
wi� σ

2
i

)
�

Although the normality assumption is not always applicable, it is often possi-
ble to batch a large number of outputs so that independence and normality is
approximately satisfied (we return to correlated output in Section 5.3). It will
be easier at times to refer to the precision λi = 1/σ2

i instead of the variance.
Set w = (w1� � � � � wk) and λ = (λ1� � � � � λk). Let w[1] � w[2] � · · · � w[k]
be the ordered means. In practice, the ordering [·] is unknown, and the best
system, system [k], is to be identified with simulation. A problem instance
(‘configuration’) is denoted by χ = (w�σ 2). Let ri be the number of simu-
lation replications for system i run so far. Let ȳi = ∑ri

j=1 yij/ri be the sam-
ple mean and σ̂2

i = ∑ri
j=1(yij − ȳi)

2/(ri − 1) be the sample variance. Let
ȳ(1) � ȳ(2) � · · · � ȳ(k) be the ordering of the sample means based on all
replications seen so far. Equality occurs with probability 0 in contexts of inter-
est here. The quantities ri, ȳi, σ̂2

i and (i) may change as more replications are
observed.

Because output is random, correct selection cannot be guaranteed with
probability 1 with a finite number of replications. A correct selection occurs
when the selected system, system D, is the best system [k]. Selection is based
on a procedure’s estimates ŵi of wi, for i = 1� � � � � k, after all replications are
observed. Usually overall sample means are the estimates, ŵi = ȳi, and the
system with the best sample mean is selected as best, D = (k), although some
procedures may vary due to screening (Goldsman et al., 2002) or weighted
samples (Dudewicz and Dalal, 1975).

The commonality between the three approaches stops there, and the differ-
ences now begin. The IZ (Chapter 17) approach seeks to guarantee a bound
for the evidence for correct selection, with respect to repeated applications of
the procedure to a given problem instance, for all problem instances within a
specified class. For normally distributed output, the most widely-used criterion
is a lower bound P∗ for the probability of correct selection (Bechhofer et al.,
1995), subject to the indifference zone constraint that the best system be at
least a pre-specified amount δ∗ > 0 better than the others. Formally, the prob-
ability of correct selection (PCSIZ) is the probability that the system selected as
best (system D) is the system with the highest mean (system [k]), conditional
on the problem instance. The probability is with respect to the simulation out-
put Yij from the procedure (the realizations yij determine D).

(15)PCSIZ(χ)
def= Pr

(
wD = w[k]|w�σ 2)�

http://dx.doi.org/10.1016/S0927-0507(06)13017-0
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The validity of an IZ procedure comes from proving statements like

PCSIZ(χ) � P∗ for all χ = (w�σ 2) such that w[k] � w[k−1] + δ∗�
(16)

See Bechhofer et al. (1995) for other examples of the IZ approach with other
distributions and indifference-zone structures. Early IZ procedures were sta-
tistically conservative in the sense of requiring many replications. More recent
work with screening or sequential IZ procedures reduces the number of repli-
cations (Nelson et al., 2001; Goldsman et al., 2002).

Bayesian procedures model the evidence for correct selection with the pos-
terior distribution of the unknown means and variances, given the data seen so
far from a single application of the procedure. The basic Bayesian formulation
is developed before the differences between the VIP and OCBA approaches
are described. Given all output E seen so far for a single application of a pro-
cedure, the posterior probability of correct selection is

(17)PCSBayes = Pr(WD = W[k]|E)
(18)= 1 − E

[
L0−1(D�W)|E]�

where the 0–1 loss function L0–1(D�w) equals 1 if wD = w[k] and 0 oth-
erwise. The expectation is taken over the decision, D, and the posterior
distribution of the unknown means and variances. Assuming a noninforma-
tive prior distribution for the unknown mean and variance, the posterior
marginal distribution for the unknown means Wi given r > 3 samples is
St(ȳi� ri/σ̂2

i � υi), a shifted Student t distribution with mean ȳi, degrees of
freedom υi = ri − 1, and variance (σ̂2

i /ri)υi/(υi − 2) (de Groot, 1970;
Chick and Inoue, 2001a).

A comparison of Equations (15) and (17) emphasizes the difference be-
tween the PCS based on frequentist methods and Bayesian methods. Frequen-
tist methods provide worst-case bounds for PCSIZ(χ) subject to constraints
on χ, and PCSIZ(χ) is estimated by counting the fraction of correct selections
from repeated applications of the procedure. Bayesian methods provide a mea-
sure of evidence for correct selection given the data seen in a single application
of a procedure. Equation (18) emphasizes the link to the Bayesian decision-
theoretic methods in Section 1.2. That link can be extended by generalizing
the opportunity cost to the selection context here, Loc(D�w) = w[k] − wD.
The loss is 0 when the best system is selected, and is the difference between
the best and the selected system otherwise. This is an alternate measure of ev-
idence for correct selection that makes more sense than PCS when simulation
output represents financial value. The posterior expectation of the opportunity
cost of a potentially incorrect selection is

(19)EOCBayes = E
[
Loc(D�W)|E] = E[W[k] −WD|E]�

The frequentist EOCIZ(χ) = E[w[k] −WD|w�σ 2] differs by having the expec-
tation taken only over randomized D for a given χ. This formalism is sufficient
to describe the basic ideas behind the VIP and OCBA selection procedures.
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5.1 Value of information procedures (VIPs)

Value of Information Procedures (VIPs) allocate additional samples in or-
der to improve the expected value of information (EVI) of those samples with
respect to a loss function. Chick and Inoue (2001a) provide four procedures.
Both two-stage and sequential procedures are given for both the 0–1 loss func-
tion and opportunity cost. The EVI of additional samples are measured using
the predictive distribution of additional output, along with the expected loss
from Equations (18) or (19), with ideas paralleling those in Section 1.2.

After the first stage of sampling of ri = r0 replications per system in a
VIP, the posterior distribution of the unknown mean and variance of each
system is used as a prior distribution for the second stage. If noninformative
prior distributions are used for the unknown mean and variance, the unknown
means have a t distribution as described after Equation (18). The goal is to
determine the second-stage allocation r′ = (r′1� r

′
2� � � � � r

′
k)

T that minimizes
the expected loss to a decision maker after all replications have been run. Let
xr′i = (xi�r0+1� � � � � xi�r0+r′i ) denote the second-stage output for system i, let
xr′ = (xr′1� � � � � xr′k) denote all second-stage output, and let D(xr′) be the sys-
tem with the highest overall sample mean after both stages. Given xr′ and a loss
function L, the expected loss is E[L(D(xr′)�W)|xr′ ]. Since r′ is chosen before
the second stage, we take the expectation with respect to the predictive distri-
bution of Xr′ . Let c = (c1� � � � � ck) be the cost per replication of each system.
The total cost of replications plus the expected loss for selecting the system
with the best overall sample mean is (cf. Equation (7))

(20)ρ∗(r′) def= cr′ + E
[
E
[
L
(
D(Xr′)�W

)|Xr′
]]
�

If there is a computing budget constraint (e.g., for CPU time), samples are
allocated to solve the following optimization problem:

min
r′
ρ∗
(
r′
)

s.t. cr′ = B�

(21)r′i � 0 for i = 1� � � � � k�

Gupta and Miescke (1994) solved a special case of Problem (21). If k = 2 and
c1 = c2, the optimal second-stage allocation minimizes the absolute difference
of the posterior precision for the mean of each system, regardless of whether
the 0–1 loss or opportunity cost is used. For the opportunity cost, k � 2, c1 =
· · · = ck = 1, and known precision, Gupta and Miescke (1996) provide an
optimal allocation if B = 1.

Those special cases are not sufficient to address the complexity of problems
found in simulation, and approximations are required to obtain readily com-
putable allocations. Chick and Inoue (2001a) derived asymptotically optimal
allocations that minimize a bound on the expected loss in Equation (20), a for-
mulation that allows for unequal, unknown variances, different sampling costs,
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and a balance between sampling costs and the EVI of the samples. The bound
is obtained by examining the k− 1 pairwise comparisons between the system with
the highest first-stage sample mean and each other system. The asymptotic ap-
proximation is like that for Equation (10). If k = 2, the bound is tight for
the opportunity cost but is loose for the 0–1 loss due to an extra asymptotic
approximation. Sequential procedures require one more approximation, as the
number of replications of each system may be different after a given stage.
This means that the EVI requires assessing the difference Wi −Wj of t distrib-
uted random variables with different degrees of freedom (the Behrens–Fisher
problem). The Welch (1938) approximation can be used to approximate the
EVI and expected loss in Equation (21) (Chick and Inoue, 2001a). The result-
ing EOC (expected opportunity cost) and PCS VIPs minimize the following
measures of incorrect selection:

EOCBonf =
∑
i �=D

E
[
max{0�Wi −WD}|E

]
�

1 − PCSBonf =
∑
i �=D

Pr
({Wi � WD}|E

)
�

5.2 OCBA procedures

The third approach is the optimal computing budget allocation (OCBA)
(Chen, 1996). The OCBA is based on several approximations, including the
thought experiment in Equation (11) that approximates how additional repli-
cations would affect uncertainty about each Wi. Samples are allocated sequen-
tially in a greedy manner to maximize an approximation to PCSBayes at each
stage. The approximations made by the original OCBA essentially assume that
(a) the system with the best sample mean based on replications seen so far is
to be selected, (b) a normal distribution can approximate uncertainty about
each Wi, and (c) the effect of an additional small number of replications r′ be-
yond the ri done so far for system i, but none for the other systems, changes
the uncertainty about the means to

p(W̃i) ∼ Normal
(
ȳi�

σ̂2
i

ri + r′

)
�

p(W̃j) ∼ Normal
(
ȳj�

σ̂2
j

rj

)
for j �= i�

This induces an estimated approximate probability of correct selection that ap-
proximates the probability of correct selection with respect to p(W̃) and
Slepian’s inequality (Chapter 17).

(22)EAPCSi =
∏

j: j �=(k)
Pr
({W̃: W̃j < W̃(k)}|E

)
�

http://dx.doi.org/10.1016/S0927-0507(06)13017-0
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A small number r′ of replications are allocated at each stage to the q systems
with the largest EAPCSi − PCSSlep, where the posterior evidence for correct
selection is approximated with Slepian’s inequality,

PCSSlep =
∏

j: j �=(k)
Pr
({W: Wj < W(k)}|E

)
�

and using the Welch approximation for the differences Wj −W(k). Chen et al.
(2006, references therein) explored several variations on this theme, including
varying r′ and q; and the use of either normal or t distributions for Wi.

5.3 Comments

Surprisingly few papers to date compare representatives from each of the
IZ, VIP and OCBA approaches. Chick and Inoue (2001a) found that VIPs
compared favorably with the Combined Procedure of Nelson et al. (2001),
when PCSIZ was measured against the average number of replications per sys-
tem. Inoue et al. (1999) compared the VIP, OCBA and modified versions of the
IZ procedure of Rinott (1978). Both two-stage and sequential VIPs performed
well empirically over a broad class of problems. The VIP based on opportunity
cost fared best with respect to several performance criteria. The VIP based on
the 0–1 loss performed slightly less well than the opportunity cost procedure,
even with respect to PCSIZ, because of an extra approximation in its derivation.
The fully sequential OCBA was also empirically very effective. The OCBA per-
formed less well when run as a two-stage procedure, rather than sequentially,
or when the values of r′ and q were large (Inoue et al., 1999).

Branke et al. (2005) evaluate a variety of procedures, and introduce new
‘stopping rules’ for the VIP and OCBA procedures. The sequential stopping
rule S samples τ replications per stage of sampling (after the first) until a fixed
sampling budget is exhausted. That rule was used by Inoue et al. (1999). The
new EOC stopping rule samples τ replications per stage (after the first) un-
til a Bonferroni-like bound for the EOC is reached (EOCBonf � β∗ for some
user-specified β∗). Other stopping rules, such as for PCSSlep are implemented
similarly. Figure 5 gives a typical result that compares VIPs and OCBA proce-
dures endowed with these stopping rules (τ = 1), and a version of a leading
sequential IZ procedure, KN++ (Goldsman et al., 2002), adapted for inde-
pendent output. As the number of replications or target posterior EOC values
are changed for VIP and OCBA procedures, a different average number of
replications and evidence for correct selection are observed. The curves are
dependent upon the specific problem instance, which in this case is a single
problem instance with evenly spaced means and a common variance, but some
observations can be made.

In the top graphs of Figure 5, lower curves mean that more evidence per
correct selection is obtained per average number of replications. For KN++,
δ∗ was fixed to certain levels equal to, less than, and greater than the true
difference in means between the best and second best (0.5 in this case), and
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Fig. 5. Estimated evidence for correct selection as a function of the average number of replications per
stage (top row), and relationship of parameter target versus empirical result (bottom row), for several
selection procedures (k = 10 systems, w1 − wi = (i − 1)/2; σ2

i = 1 for i = 1� 2� � � � � k, with r0 = 5,
estimates based on 105 macroreplications).

the PCS goal P∗ was varied to obtain similar curves. The S stopping rule
allows a practitioner to completely control the number of replications. Pro-
cedure KN++ improves efficiency here by allowing a procedure to stop early
if the evidence for correct selection is high early, or to continue sampling if
more information is needed. The Bayesian VIP and OCBA procedures simi-
larly can adapt the amount of sampling as a function of the posterior evidence
for correct selection so far (here measured with EOCBonf), but improved upon
KN++ here due to more flexibility as to which systems get sampled. The
bottom graphs in Figure 5 show the relationship between the targeted and
empirically observed evidence for correct selection. The diagonal represents
perfect calibration. The OCBA and VIP are slightly conservative (below the
line), meaning that the observed PCSIZ and EOCIZ for this problem instance
is somewhat ‘better’ than the corresponding Bayesian target levels. The graphs
for KN++ are straight, but may significantly underdeliver or overdeliver rel-
ative to the desired PCSIZ depending upon whether δ∗ is selected to be larger,
similar to, or smaller than the difference in means between the top two systems.
A small δ∗ results in excessive sampling for a given target P∗. For KN++, the
desired PCS and empirical PCSIZ tracked each other better for slippage con-
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figurations (all nonbest systems have the same mean) when δ∗ was exactly the
difference between the best and second best. Branke et al. (2005) provide a
more thorough analysis and empirical study.

Common random numbers (CRN) can be used to sharpen contrasts across
systems in two stage procedures. To date, the IZ approach provides more
choices for procedures that accommodate CRN than the Bayesian approach.
Kim and Nelson (2001) describe recent progress for IZ procedures with CRN.
Chick and Inoue (2001b) present two-stage VIP procedures that handle CRN
for both the opportunity cost and 0–1 loss functions. The procedures allow for
simulating only a subset of systems during a second stage, but are not sequen-
tial. Because of correlation across systems, information is gained about the
systems not simulated during the second stage using missing data techniques.
Fu et al. (2004) examine CRN for the OCBA with sequential sampling.

CRN is typically implemented by using the same random number genera-
tors ur to synchronize the stochastic uncertainty between simulated systems,
so that the outputs Yri and Yrj are positively correlated for replication r of
systems i and j. When there is also input uncertainty, so that (�p��e) are de-
scribed with probability rather than assumed to be a fixed input value, a second
method for inducing CRN exists. Common values of (θpr�θer) are used for the
rth simulation of each system. This can be useful for sharpening contrasts for
systems even when input uncertainty is modeled.

Cross-fertilization between the approaches is also possible. Chick and Wu
(2005) applied the opportunity cost idea from the VIP approach to the IZ
framework to develop a two-stage procedure with a frequentist expected op-
portunity cost bound. The net effect is to replace the two parameters P∗, δ∗
of the IZ approach with a single parameter Δ, the maximum acceptable ex-
pected opportunity cost, so that the frequentist expected opportunity cost
E[w[k] − wD|χ = (w�σ 2)] � Δ for all problem instances χ (not just those
in an indifference zone).

6 Discussion and future directions

Bayesian methods apply to simulation experiments in a variety of ways,
including uncertainty analysis, ranking and selection, input distribution mod-
eling, response surface modeling, and experimental design. One main theme
is to represent all uncertainty with probability distributions, to update prob-
ability using Bayes’ rule, and to use the expected value of information as a
technique to make sampling decisions (e.g., the opportunity cost and 0–1 loss
functions for selection procedures, or the Kullback–Leibler divergence for pa-
rameter estimation for linear response models). The other main theme is to use
simulation to efficiently estimate quantities of interest for a Bayesian analysis.
Asymptotic approximations are often helpful when exact optimal solutions are
difficult to obtain. Research opportunities include:
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• Input modeling and uncertainty analysis: kernel estimation for condi-
tional means, with variability due to input uncertainty; improved mod-
eling of prior distributions for statistical input parameters to obtain
better models of uncertainty for simulation outputs (e.g., the conjugate
prior distributions for parameters of an M/M/1 queue result in the
absence of moments for quantities like the stationary average queue
length, even conditioning on stability), including results for the cali-
bration/inverse problem.

• Response modeling: extending the Gaussian random function work in
the world of stochastic simulation; sampling plans for input parameter
inference to optimally reduce output uncertainty, including nonasymp-
totic results, to help understand what data is most important to collect
to infer the value of inputs for simulations.

• Ranking and selection: VIP procedures based on nonasymptotic EVI
allocations for samples; analytical or empirical work to evaluate the IZ,
VIP and OCBA approaches.

• Experimental designs: Estimating quantiles or other nonexpected
value goals; nonGaussian output for ranking and selection and GRFs.

• Computational methods: improvements in MCMC and other sampling
methods for posterior distributions.
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A Hilbert Space Approach to Variance Reduction

Roberto Szechtman
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Abstract

In this chapter we explain variance reduction techniques from the Hilbert space
standpoint, in the terminating simulation context. We use projection ideas to explain
how variance is reduced, and to link different variance reduction techniques. Our fo-
cus is on the methods of control variates, conditional Monte Carlo, weighted Monte
Carlo, stratification, and Latin hypercube sampling.

1 Introduction

The goal of this chapter is to describe variance reduction techniques from
a Hilbert space perspective in the terminating simulation setting, with the fo-
cal point lying on the method of control variates. Several variance reduction
techniques have an intuitive geometric interpretation in the Hilbert space set-
ting, and it is often possible to obtain rather deep probabilistic results with
relatively little effort by framing the relevant mathematical objects in an ap-
propriate Hilbert space. The procedure employed to reach most results in this
context consists of three stages:

1. Find a pertinent space endowed with an inner product.
2. Apply Hilbert space results toward a desired conclusion.
3. Translate the conclusions back into probabilistic language.

The key geometric idea used in Stage 2 is that of “projection”: Given an
element y in a Hilbert space H and a subset M of the Hilbert space, it holds
under mild conditions that there exists a unique element in M that is closest
to y. The characterization of this element depends on the space H determined
by Stage 1, on y, and on M; in essence it is found by dropping a perpendicular
from y to M .

The Hilbert space explanation of control variates, and to a somewhat lesser
extent that of conditional Monte Carlo, is closely related to that of other vari-
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ance reduction techniques; in this chapter we bridge these connections when-
ever they arise. From the projection perspective, it is often possible to link
variance reduction techniques for which the relevant Hilbert space H and ele-
ment y ∈ H are the same. The articulation is done by judiciously choosing the
subset M for each particular technique.

We do not attempt to provide a comprehensive survey of control variates or
of the other techniques covered in this chapter. As to control variates, several
publications furnish a broader picture; see, for example, Lavenberg and Welch
(1981), Lavenberg et al. (1982), Wilson (1984), Rubinstein and Marcus (1985),
Venkatraman and Wilson (1986), Law and Kelton (2000), Nelson (1990), Loh
(1995) and Glasserman (2004). For additional material on other variance re-
duction techniques examined here, refer to the items in the References section
and to references therein.

This chapter is organized as follows: Section 2 is an overview of control
variates. In Section 3 we review Hilbert space theory and present several ex-
amples that serve as a foundation for the rest of the chapter. Section 4 is about
control variates in Hilbert space. The focus of Section 5 is on the method of
conditional Monte Carlo, and on combinations of conditional Monte Carlo
with control variates. Section 6 describes how control variates and conditional
Monte Carlo can reduce variance cooperatively. The subject of Section 7 is the
method of weighted Monte Carlo. In Sections 8 and 9 we describe stratifica-
tion techniques and Latin hypercube sampling, respectively. The last section
presents an application of the techniques we investigate. As stated above, the
focus of this chapter is in interpreting and connecting various variance reduc-
tion techniques in a Hilbert space framework.

2 Problem formulation and basic results

We study efficiency improvement techniques for the computation of an un-
known scalar parameter α that can be represented as α = EY , where Y is
a random variable called the response variable, in the terminating simula-
tion setting. Given n independent and identically distributed (i.i.d.) replicates
Y1� � � � � Yn of Y produced by the simulation experiment, the standard estima-
tor for α is the sample mean

�Y = 1
n

n∑
k=1

Yk�

The method of control variates (CVs) arises when the simulationist has avail-
able a random column vector X = (X1� � � � �Xd) ∈ R

d, called the control, such
that X is jointly distributed with Y , EX = μx is known, and it is possible to
obtain i.i.d. replicates (Y1�X1)� � � � � (Yn�Xn) of (Y�X) as a simulation output.
Under these conditions, the CV estimator is defined by

(1)ŶCV(λ) = �Y − λT(�X − μx)�
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where λ = (λ1� � � � � λd) ∈ R
d is the vector of control variates coefficients; “T”

denotes transpose, vectors are defined as columns, and vectors and matrices
are written in bold.

The following holds throughout this chapter:

Assumption 1. E(Y 2 +∑d
i=1 X

2
i ) < ∞ and the covariance of (Y�X), defined

by

� =
(
σ2
y �yx

�xy �xx

)
�

is nonsingular.

The first part of Assumption 1 is satisfied in most settings of practical inter-
est. Furthermore, when � is singular it is often possible to make it nonsingular
by reducing the number of controls X; see the last paragraph of Example 5.

Naturally, λ is chosen to minimize Var ŶCV(λ), which is the same as

(2)minimizing σ2
y − 2λT�xy + λT�xxλ�

The first- and second-order optimality conditions for this problem imply that
there exists a unique optimal solution given by

(3)λ∗ = �−1
xx �xy �

With this choice of λ = λ∗ the CV estimator variance is

(4)Var ŶCV
(
λ∗
) = Var �Y (1 − R2

yx
)
�

where

R2
yx =

�yx�
−1
xx �xy

σ2
y

is the square of the multiple correlation coefficient between Y and X. CVs
reduce variance because 0 � R2

yx � 1 implies Var ŶCV � Var �Y in (4). The
central limit theorem (CLT) for ŶCV asserts that, under Assumption 1,

n1/2(ŶCV
(
λ∗
)− α

)⇒ N
(
0� σ2

CV
)
�

where σ2
CV = σ2

y (1 − R2
yx), “⇒” denotes convergence in distribution and

N(0� σ2) is a zero-mean Normal random variable with variance σ2.
In general, however, the covariance structure of the random vector (Y�X)

may not be fully known prior to the simulation. This difficulty can be over-
come by using the available samples to estimate the unknown components
of �, which can then be used to estimate λ∗. Let λn be an estimator of λ∗
and suppose that λn ⇒ λ∗ as n→∞. Then, under Assumption 1,

(5)n1/2(ŶCV(λn)− α
)⇒ N

(
0� σ2

CV
)
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as n → ∞; see Glynn and Szechtman (2002) for details. Equation (5) means
that estimating λ∗ causes no loss of efficiency as n→∞, if λn ⇒ λ.

Thus far we have only considered linear control variates of the form �Y −
λT(�X − μx). In some applications, however, the relationship between the re-
sponse and the CVs is nonlinear, examples of which are: �Y exp(λT(�X − μx)),�Y �X/μx, and �Yμx/�X. In order to have a general representation of CVs
we introduce a function f : R

d+1 → R that is continuous at (y�μx) with
f (y�μx) = y. This property ensures that f (�Y��X)→ α a.s. if (�Y��X)→ (α�μx)
a.s., so we only consider such functions.

The limiting behavior of f (�Y��X) is characterized in Glynn and Whitt (1989,
Theorem 9) under the assumption that the i.i.d. sequence {(Yn�Xn): n � 1}
satisfies the CLT

√
n((�Y��X)− (α�μx))⇒ N(0��), and that f is continuously

differentiable in a neighborhood of (α�μx) with first partial derivatives not all
zero at (α�μx). Then

(6)
√
n
(
f (�Y��X)− α

)⇒ N
(
0� σ2

f

)

as n→∞, where σ2
f is given by

(7)σ2
f = σ2

y + 2∇xf (α�μx)
T�xy +∇xf (α�μx)

T�xx∇xf (α�μx)�

and ∇xf (y� x) ∈ R
d is the vector with ith component ∂f/∂xi(y� x).

The asymptotic variance σ2
f is minimized, according to Equation (2) with

∇xf (α�μx) in lieu of λ, by selecting f ∗ such that ∇xf
∗(α�μx) = −�−1

xx �xy

in (7); that is, σ2
f ∗ = σ2

y (1 − R2
yx). In other words, nonlinear CVs have at best

the same asymptotic efficiency as ŶCV(λ
∗). Notice, however, that for small

sample sizes it could happen that nonlinear CVs achieve more (or less) vari-
ance reduction than linear CVs.

The argument commonly used to prove this type of result is known as the
Delta method; see Chapter 2 or, for a more detailed treatment, Serfling (1980,
p. 122). The reason why

√
n(f (�Y��X)−α) converges in distribution to a normal

random variable is that f is linear in a neighborhood of (α�μx) because f is
differentiable there, and a linear function of a normal random variable is again
normal.

To conclude this section, for simplicity let the dimension d = 1 and suppose
that only an approximation of μx, say γ = μx + ε for some scalar ε, is known.
This is the setting of biased control variates (BCV). The BCV estimator is
given by

ŶBCV(λ) = �Y − λ(�X − γ)�

The bias of ŶBCV(λ) is λε, and the mean-squared error is

E
(
ŶBCV(λ)− α

)2 = Var �Y + λ2 E(�X − γ)2 − 2λCov(�Y� �X)�

http://dx.doi.org/10.1016/S0927-0507(06)13002-9
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Mean-squared error is minimized by

(8)λn = Cov(�Y� �X)
E(�X − γ)2

and

E
(
ŶBCV(λn)− α

)2 = Var �Y
(

1 − Cov(�Y� �X)2

Var �Y E(�X − γ)2

)
�

which is (4) when ε = 0; see Schmeiser et al. (2001) for more details on BCVs.

3 Hilbert spaces

We present basic ideas about Hilbert spaces, mainly drawn from Kreyszig
(1978), Bollobas (1990), Zimmer (1990), Williams (1991) and Billingsley
(1995). We encourage the reader to consult those references for proofs, and
for additional material. We illustrate the concepts with a series of examples
that serve as foundational material for the rest of the chapter.

An inner product space is a vector space V with an inner product 〈x� y〉
defined on it. An inner product on V is a mapping of V × V into R such that
for all vectors x� y� z and scalars α�β we have

(i) 〈αx+ βy� z〉 = α〈x� z〉 + β〈y� z〉;
(ii) 〈x� x〉 � 0, with equality if and only if x = 0;

(iii) 〈x� y〉 = 〈y� x〉.
An inner product defines a norm on X given by

(9)‖x‖ = √〈x� x〉�
A Hilbert space H is a complete inner product space, complete meaning that
every Cauchy sequence in H has a limit in H.

The next three examples present the Hilbert spaces that will be employed
throughout this chapter.

Example 1. Let (Ω�F�P) be a probability space and

L2(Ω�F�P) =
{
Y ∈ (Ω�F�P): EY 2 =

∫
Ω
Y(ω)2 dP(ω) <∞

}

the space of square-integrable random variables defined on (Ω�F�P). For
X�Y ∈ L2(Ω�F�P), the inner product is defined by

(10)〈X�Y 〉 = E(XY) =
∫
Ω
X(ω)Y(ω) dP(ω)�
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and the norm is given by

(11)‖Y‖ =
√

EY 2 =
(∫

Ω
Y(ω)2 dP(ω)

)1/2

�

by (9). It can be easily verified that the inner product defined by (10) has prop-
erties (i), (ii) and (iii). The space L2(Ω�F�P) is complete under this norm
(Billingsley, 1995, p. 243). Note that

(12)VarY = ‖Y − EY‖2�

Example 2. The space R
n is the set of vectors x = (x1� � � � � xn) in R

n, and can
be made into a Hilbert space by defining the inner product for x� y ∈ R

n as

(13)〈x� y〉 =
n∑
j=1

xjyj�

The norm induced by (13) is

‖x‖ = √〈x� x〉 =
(

n∑
j=1

x2
j

)1/2

�

The space R
n is complete under this norm (Bollobas, 1990, p. 133).

Example 3. Consider independent random variablesXi with distribution func-
tion Fi(xi), 1 � i � d, and define F(x) = ∏d

i=1 Fi(xi) for x = (x1� � � � � xd).
Write X = (X1� � � � �Xd) and let f : R

d → R be a Borel-measurable function in
L2(dF), the space of square integrable functions with respect to F . This space
can be made into a Hilbert space by defining the inner product

(14)〈f� g〉 =
∫
f (x)g(x) dF(x)�

for any f� g ∈ L2(dF). The norm induced by (14) is

‖f‖ =
(∫

f (x)2 dF(x)
)1/2

�

and L2(dF) is complete under this norm (Billingsley, 1995, p. 243).

The notion of orthogonality among elements lies at the heart of Hilbert
space theory, and extends the notion of perpendicularity in Euclidean space.
Two elements x, y are orthogonal if

〈x� y〉 = 0�

From here, there is just one step to the Pythagorean theorem:
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Result 1 (Pythagorean theorem, Kreyszig, 1978). If x1� � � � � xn are pairwise or-
thogonal vectors of an inner product space V then

(15)

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
2

=
n∑
i=1

‖xi‖2�

Let us write

x⊥ = {y ∈ V : 〈x� y〉 = 0
}

for the set of orthogonal vectors to x ∈ V , and

S⊥ = {y ∈ V : 〈x� y〉 = 0� ∀x ∈ S}
for S ⊂ V . Finally, a set (x1� � � � � xn) of elements in V is orthogonal if all its
elements are pairwise orthogonal.

We often work with a subspace S of a Hilbert space H defined on X, by
which we mean a vector subspace of X with the inner product restricted to
S × S. It is important to know when S is complete, and therefore a Hilbert
space. It is easy to prove that S is complete if and only if S is closed in H.

Consider a nonempty subset M of an inner product space V . Central to the
concepts discussed in this chapter is to know when, given a point y in V , there
exists a unique point x ∈M that minimizes the distance from y toM , where the
distance from y to M is defined to be d(y�M) = infv∈M ‖y− v‖. The following
result provides an answer to this problem.

Result 2 (Projection theorem, Kreyszig, 1978). Let M be a complete subspace
of an inner product space V , and let y ∈ V be fixed. Then there exists a unique
x = x(y) ∈M such that

d(y�M) = ‖y − x‖�
Furthermore, every y ∈ V has a unique representation of the form

y = x+ z�

where x ∈M and z ∈M⊥. Then

(16)〈x� y − x〉 = 〈x� z〉 = 0�

The second part of Result 2 implies that if M is a complete subspace of an
inner product space V , then there exists a function PM :V → M defined by
PMy = x. We call PM the orthogonal projection of V onto M , see Figure 1.

Among the properties that the projection functional enjoys are:

(a) PMx = x, for all x ∈M;
(b) PMz = 0, for all z ∈M⊥;
(c) ‖I − PM‖ � 1.
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Fig. 1. Orthogonal projection.

Applying Result 2 to Examples 1–3 leads to several variance reduction tech-
niques in the Hilbert space setting. The following example forms the basis for
the method of conditional Monte Carlo.

Example 4. In the setting of Example 1, consider a sub-σ-algebra G of F . The
set of square integrable random variables defined on L2(Ω�G�P) is a complete
subspace of L2(Ω�F�P). Therefore, for Y ∈ L2(Ω�F�P) fixed, there exists
an element Z ∈ L2(Ω�G�P) that is the closest point to Y in L2(Ω�G�P) and
for which

(17)〈Y − Z�W 〉 = 0�

forW ∈ L2(Ω�G�P) arbitrary. ChoosingW = IB,B ∈ G, Equation (17) shows
that Z is the conditional expectation of Y given G, Z = E(Y |G). We also can
write PGY = E(Y |G); see Williams (1991) for more details.

Observe that Equation (17) and the Pythagorean theorem imply that

(18)‖Y‖2 = ‖Y − Z‖2 + ‖Z‖2�

Using Equation (12), centering Y so that EY = 0, we have that Equation (18)
is the variance decomposition formula (Law and Kelton, 2000)

(19)VarY = E Var(Y |G)+ Var E(Y |G)�
where Var(Y |G) = E(Y 2|G)− (E(Y |G))2.

We continue with an example with a view toward control variates.

Example 5. For elements X1� � � � �Xd ∈ L2(Ω�F�P) with zero mean (oth-
erwise re-define Xi := Xi − EXi), define M = {Z ∈ L2(Ω�F�P): Z =∑d

i=1 βiXi� for all βi ∈ R� i = 1� � � � � d}. For Y ∈ L2(Ω�F�P), Result 2 then
guarantees the existence of constants β∗1 = β∗1(Y)� � � � � β

∗
d = β∗d(Y) such that

PM(Y − EY) =
d∑
i=1

β∗i Xi and
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(20)(I − PM)(Y − EY) = (Y − EY)−
d∑
i=1

β∗i Xi�

If Y − EY ∈ M , using property (a) of the projection operator we obtain (I −
PM)(Y − EY) = 0, so that

(21)Var

(
Y −

d∑
i=1

β∗i Xi

)
= 0�

If the elementsX1� � � � �Xd form an orthogonal set, applying Equation (15) we
have

∥∥(I − PM)(Y − EY)
∥∥2 = ‖Y − EY‖2 − ∥∥PM(Y − EY)

∥∥2

= ‖Y − EY‖2 −
d∑
i=1

β∗2
i ‖Xi‖2�

so that

(22)Var

(
Y −

d∑
i=1

β∗i Xi

)
= VarY −

d∑
i=1

β∗2
i VarXi�

When the elements X1� � � � �Xd are not mutually orthogonal but linearly in-
dependent, the Gram–Schmidt process (Billingsley, 1995, p. 249) yields an
orthogonal set with the same span as X1� � � � �Xd. In case the Xi’s are linearly
dependent, at least oneXi can be expressed as a linear combination of the oth-
ers, and eliminated from the set X1� � � � �Xd. By noticing that Cov(Xi�Xj) =
〈Xi�Xj〉 we gather thatX1� � � � �Xd are linearly independent if and only if their
covariance matrix is nonsingular, and X1� � � � �Xd are mutually orthogonal if
and only if their covariance matrix has all its entries equal to zero except for
positive numbers on the diagonal.

We can extend Example 5 to the setting of biased control variates.

Example 6. Let X ∈ L2(Ω�F�P), and M = {Z ∈ L2(Ω�F�P): Z = β(X −
γ)�∀β ∈ R}, γ �= EX. Fix an element Y ∈ L2(Ω�F�P) and let α = EY .
Project Y − α on M:

PM(Y − α) = β∗(X − γ) and

(I − PM)(Y − α) = Y − α− β∗(X − γ)�

for some β∗ = β∗(Y) ∈ R. As in the last example we have
∥∥(I − PM)(Y − α)

∥∥2 = ‖Y − α‖2 − ∥∥PM(Y − α)
∥∥2
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and, since 〈(I − PM)(Y − α)�X − γ〉 = 0, it follows that

β∗ = 〈Y − α�X − γ〉
‖X − γ‖2 �

The Pythagorean theorem applied to the denominator in the last equation
yields

(23)‖X − γ‖2 = ‖X − EX‖2 + ‖EX − γ‖2�

which is known as the bias-variance decomposition formula.

The following example is geared to the method of control variates when the
optimal control coefficient is estimated from the sample data.

Example 7. Let x = (x1� � � � � xn) and y = (y1� � � � � yn) be elements of R
n

(cf. Example 2), and define S = {z ∈ R
n: z = βx� ∀β ∈ R}. By Result 2 we

have

PSy = βnx and (I − PS)y = y − βnx�

for some βn = βn(y). Because 〈y − βnx� x〉 = 0, for ‖x‖ > 0,

βn = 〈x� y〉
‖x‖2 �

We now set the stage for the method of Latin hypercube sampling.

Example 8. Building on Example 3, let M = {h ∈ L2(dF): h(x) =∑d
i=1 hi(xi)} be the subspace of L2(dF) spanned by the linear combinations of

univariate functions h1� � � � � hd. Because M is complete, appealing to Result 2
establishes the existence of an element h∗ = h∗(f ) ∈M , h∗(x) =∑d

i=1 h
∗
i (xi),

such that ‖f −h∗‖ = infh∈M ‖f −h‖ for f ∈ L2(dF) fixed, and of a projection
operator PM : PMf = h∗. Similarly, for Mi = {h ∈ L2(dF): h(x) = hi(xi)},
1 � i � d, there exists g∗i = g∗i (f ) ∈ Mi : ‖f − g∗i ‖ = infh∈Mi

‖f − h‖
and a projection Pi: Pif = g∗i . To complete the picture, define the subspace
M0 = {β ∈ R: |β| < ∞} which induces the projection P0: P0f = g∗0, for
g∗0: ‖f − g∗0‖ = infβ∈M0 ‖f − β‖. We now have:

• Let Fi = σ({R × R × · · · × R × B × R × · · · × R :B ∈ B}), where
B is the Borel σ-field, and let F0 be the trivial σ-algebra {∅�R}. For
each Pi, we know that 〈f − Pif� h〉 = 0 for any h ∈ Mi; choosing
h(x) = hi(xi) = IB(xi), B ∈ B, shows that Pif = E(f (X)|Fi) for
1 � i � d, and P0f = E(f (X)|F0) = Ef (X).

• Suppose P0f = 0. Then (I − PM)f ∈ M⊥
i implies g∗i = Pif =

PiPMf = h∗i , which results in

(24)PM =
d∑
i=1

Pi and PMf =
d∑
i=1

E
(
f (X)|Fi

)
�
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For general P0f �= 0, (24) becomes

PM = P0 +
d∑
i=1

(Pi − P0) and

(25)PMf = Ef (X)+
d∑
i=1

(
E
(
f (X)|Fi

)− Ef (X)
)
�

The next result, a variant of Result 2, will be useful when we consider the
method of weighted Monte Carlo.

Result 3 (Kreyszig, 1978). Suppose M �= ∅ is a closed convex subset of a Hilbert
space H. Then, for x ∈ H fixed, x1 = PM(x) is the (unique) closest point in M to
x if and only if

(26)〈x− x1� y − x1〉 � 0 ∀y ∈M�

Later in the chapter we will deal with sequences of projections, say (Pn),
defined on a Hilbert space H that are monotone increasing in that

‖Pix‖ � ‖Pi+1x‖ for i = 1� 2� � � � �

and x ∈ H arbitrary. Using the completeness of H it can be shown that (Pn)
converges in the following sense:

Result 4 (Kreyszig, 1978). Let (Pn) be a monotone increasing sequence of pro-
jections Pn defined on a Hilbert space H. Then, for any x ∈ H,

‖Pnx− Px‖ → 0�

and the limit operator P is a projection on H.

An immediate application of this result is the following example.

Example 9. Suppose that (Fn) is an increasing sequence F1 ⊆ F2 ⊆ · · · ⊆ F∞
of σ-algebras such that F∞ = σ(

⋃∞
n=1 Fn). Then associated with every

L2(Ω�Fn�P) there exists a projection Pn :L2(Ω�F�P) → L2(Ω�Fn�P),
and the sequence of projections (Pn) is monotone increasing. Let P∞ be the
projection that results from applying Result 4: ‖PnW − P∞W ‖ → 0 for any
W ∈ L2(Ω�F�P), F∞ ⊆ F . Because (I − P∞)W ∈ L2(Ω�Fn�P)⊥, we have

(27)
∫
B
W dP =

∫
B
P∞W dP

for any B ∈ Fn. A standard π–λ argument (Durrett, 1996, p. 263) shows
that (27) holds for B ∈ F∞ arbitrary; that is, P∞W = E(W |F∞). The con-
clusion is

(28)
∥∥E(W |F∞)− E(W |Fn)

∥∥→ 0
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as n→∞.

We will appeal to Example 9 when dealing with stratification techniques.
A variation of the last example is

Example 10. Suppose that X is random variable with known and finite mo-
ments EXi� i = 1� 2� � � � . Define a sequence of complete subspaces (Md) of
L2(Ω�σ(X)�P) by

Md =
{
Z ∈ L2(Ω�σ(X)�P):

Z =
d∑
i=1

βi
(
Xi − EXi

)
� ∀βi ∈ R� 1 � i � d

}

for d = 1� 2� � � � . Clearly M1 ⊆ M2 ⊆ · · · ⊆ M∞, where M∞ = ⋃∞
i=1Mi.

Associated with each Md there is, by Result 2, a projection operator Pd with
range on Md such that, for W ∈ L2(Ω�F�P), σ(X) ⊆ F , with EW = 0,

(29)PdW =
d∑
i=1

β∗i
(
Xi − EXi

)

for some constantsβ∗i = β∗i (W )� 1 � i � d, possibly dependent on d (although
this is not apparent from the notation). Because the sequence of operators
(Pd) is (clearly) monotone increasing, Result 4 ensures the existence of a pro-
jection P∞ in L2(Ω�σ(X)�P) that satisfies

(30)‖P∞W − PdW ‖ → 0

as d → ∞. Proceeding like in the last example it follows that P∞W =
E(W |X), for W ∈ L2(Ω�F�P) arbitrary. In other words,

(31)

∥∥∥∥∥E(W |X)−
d∑
i=1

β∗i
(
Xi − EXi

)∥∥∥∥∥→ 0

as d→∞, by Equations (29) and (30).

We will use the last example in Section 6 to show how conditional Monte
Carlo and control variates reduce variance cooperatively.

The rest of the chapter is devoted to provide an interpretation of this sec-
tion’s examples in terms of variance reduction techniques. We start with the
method of control variates.
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4 A Hilbert space approach to control variates

We build on the sequence of examples from the previous section; Glynn and
Szechtman (2002) is a relevant reference for the issues discussed in this section.

Consider the setting of Example 5: X1� � � � �Xd are zero-mean square in-
tegrable random variables with nonsingular covariance matrix �xx (although
this was not needed in Example 5), and defined on the same probability space
as the response Y , EY 2 < ∞. The goal is to estimate α = EY by averag-
ing n i.i.d. replicates of Y −∑d

i=1 λiXi to obtain ŶCV(λ) as in Equation (1).
Clearly, Var ŶCV(λ) = (1/n)Var(Y −∑d

i=1 λiXi).
From Example 5, ŶCV(λ

∗) is the remainder from projecting Y on M;
as M “grows” the norm of the remainder decreases. Also, because the scalars
λ∗1� � � � � λ

∗
d that minimize Var(Y −∑d

i=1 λiXi) are also the numbers that result
from projecting Y into M , from Result 2 and Equation (16) we know that

〈
Y −

d∑
i=1

λ∗i Xi� Z

〉
= 0 ∀Z ∈M�

In particular,

(32)

〈
Y −

d∑
i=1

λ∗i Xi� λ
∗
kXk

〉
= 0 for k = 1� � � � � d�

Therefore, since Cov(Y�Xj) = 〈Y�Xj〉 and Cov(Xi�Xj) = 〈Xi�Xj〉 for 1 �
i� j � d,

λ∗i =
(
�−1

xx �xy
)
i

for i = 1� � � � � d�

in concordance with Equation (3). When X1� � � � �Xd is an orthogonal set,
Equation (32) yields

(33)λ∗i =
〈Y�Xi〉
〈Xi�Xi〉 =

Cov(Y�Xi)

VarXi
� i = 1� � � � � d�

We re-interpret the results from Examples 5–7 in the CV context:

(a) Var ŶCV(λ
∗) � Var �Y because

Var

(
Y −

d∑
i=1

λ∗i Xi

)

= ∥∥(I − PM)(Y − EY)
∥∥2 by Equation (20)

� ‖I − PM‖2‖Y − EY‖2

� VarY�

by using the projection operator properties of the last section.
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(b) If Y can be expressed as a linear combination of X1� � � � �Xd, then
Var(Y −∑d

i=1 λiXi) = 0 for some λ1� � � � � λd; this is Equation (21).
(c) If the controls X1� � � � �Xd are mutually orthogonal, then

Var

(
Y −

d∑
i=1

λiXi

)
= VarY −

d∑
i=1

Cov(Y�Xi)
2

VarXi

= VarY

(
1 −

d∑
i=1

ρ2
yxi

)
�

by Equations (22) and (33), where ρyxi is the correlation coefficient be-
tween Y and Xi, i = 1� � � � � d.

(d) With biased control variates in mind, apply Example 6 to the elements
(�Y − α) and (�X − γ) to get the optimal BCV coefficient

λn = Cov(�Y� �X)
E(�X − γ)2

�

as expected from (8). That is, BCVs as presented in Section 2 arise from
taking the remainder of the projection of �Y − α on the span of �X − γ.
Because of (23) we have

Var ŶCV
(
λ∗
)

� MSE ŶBCV(λn)�

(e) Consider the setting of Example 7: There exists a zero-mean control
variate X ∈ R, and the output of the simulation are the sample points
y = (y1� � � � � yn) and x = (x1� � � � � xn). Let ỹ = (y1− ȳ� � � � � yn− ȳ), and
define the estimator

ŶCV(λn) = 1
n

n∑
j=1

(yj − λnxj)�

where λn = 〈x� ỹ〉/‖x‖2. From Example 7 we know that λn arises from
projecting ỹ on the span of x: PS ỹ = λnx. Now, the sample variance is

1
n

n∑
j=1

(
yj − λnxj − ŶCV(λn)

)2

= 1
n

∥∥(I − PS)ỹ
∥∥2 − (ŶCV(λn)− ȳ

)2

= 1
n

(‖ỹ‖2 − λ2
n‖x‖2)+ O

(
n−1)

= 1
n
‖ỹ‖2(1 − ρ2

ỹ�x

)+ O
(
n−1)�
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where ρỹ�x = 〈x� ỹ〉/‖x‖‖ỹ‖, which makes precise the variance reduction
achieved by projecting ỹ on the span of x relative to the crude estimator
sample variance ‖ỹ‖2/n.

Finally, we remark that there is no impediment in extending items (a)–(e)
to the multi-response setting, where Y is a random vector.

5 Conditional Monte Carlo in Hilbert space

In this section we address the method of conditional Monte Carlo, paying
special attention to its connection with control variates; we follow Avramidis
and Wilson (1996) and Loh (1995).

Suppose Y ∈ L2(Ω�F�P) and that we wish to compute α = EY . Let
X ∈ L2(Ω�F�P) be such that E(Y |X) can be analytically or numerically com-
puted. Then

ŶCMC = 1
n

n∑
j=1

E(Y |Xi)

is an unbiased estimator of α, where the E(Y |Xi) are found by first obtaining
i.i.d. samples Xi and then computing E(Y |Xi). We call ŶCMC the conditional
Monte Carlo (CMC) estimator of α; remember that according to Example 4,
ŶCMC results by projecting Y on L2(Ω�σ(X)�P). The variability of ŶCMC is
given by

Var ŶCMC = 1
n

Var E(Y |X)�

with Equation (19) implying that Var ŶCMC � Var �Y . Specifically, CMC elimi-
nates the E Var(Y |X) term from the variance of Y .

Sampling from Y − λ(Y − E(Y |X)) also provides an unbiased estimator
of α for any λ ∈ R. By Equation (3),

λ∗ = 〈Y� (I − Pσ(X))Y 〉
‖(I − Pσ(X))Y‖2

= 〈Pσ(X)Y + (I − Pσ(X))Y� (I − Pσ(X))Y 〉
‖(I − Pσ(X))Y‖2

(34)= 1�

This shows that CMC is optimal from a CV perspective. Avramidis and Wilson
(1996) and Loh (1995) generalize this approach: LetZ be a zero-mean random
variable in L2(Ω�F�P) and X a random variable in L2(Ω�F�P) for which
both E(Y |X) and E(Z|X) can be determined. Then sampling from

(35)Y − λ1
(
Y − E(Y |X))− λ2 E(Z|X)− λ3Z
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can be used to form the standard means based estimator for α, for all
λ1� λ2� λ3 ∈ R. Repeating the logic leading to (34) we obtain

λ∗1 = 1� λ∗2 =
Cov(E(Y |X)�E(Z|X))

Var E(Z|X) and λ∗3 = 0�

The conclusion is that

Var
(

E(Y |X)− Cov(E(Y |X)�E(Z|X))
Var E(Z|X) E(Z|X)

)

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

VarY�
Var E(Y |X)�
Var
(
Y − Cov(Y�Z)

VarZ Z
)
�

Var
(
Y − Cov(Y�E(Z|X))

Var E(Z|X) E(Z|X))�
Var
(
E(Y |X)− Cov(E(Y |X)�Z)

VarZ Z
)
�

In particular, Loh (1995) considers the case of Z = X almost surely in (35),
and Avramidis and Wilson (1996) fix λ1 = 1 and λ3 = 0 in (35). From the
norm perspective,

∥∥E(Y |X)− α− λ∗2 E(Z|X)∥∥2

= ‖Y − α‖2 − ∥∥Y − E(Y |X)∥∥2 − ∥∥λ∗2 E(Z|X)∥∥2

makes precise the variance eliminated when sampling from E(Y |X) −
λ∗2 E(Z|X).

6 Control variates and conditional Monte Carlo from
a Hilbert space perspective

We now discuss how CMC and CV can be combined to reduce variance
cooperatively; the results of this section appear in Loh (1995) and Glynn and
Szechtman (2002).

Suppose the setting of Example 10: There exists a random variable X ∈
L2(Ω�F�P) such that the moments EXi are known with E|X|i < ∞ for all
i = 1� 2� � � � . Given a random variable Y ∈ L2(Ω�F�P), the goal is to find
α = EY by running a Monte Carlo simulation that uses the knowledge about
the moments of X to increase simulation efficiency. Suppose we can sample
from either

(a) E(Y |X)−∑d
i=1 λ

∗
i

(
Xi − EXi

)
or

(b) Y −∑d
i=1 λ

∗
i

(
Xi − EXi

)
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to form the standard estimator for α, where the λ∗i are determined by applying
Equation (3) on E(Y |X) and on the controls (X1 − EX1� � � � �Xd − EXd).
From the developments of Example 10 it is a short step to:

(a) Take W = E(Y |X)− α in Equation (31), consequently

(36)Var

(
E(Y |X)−

d∑
i=1

λ∗i
(
Xi − EXi

))→ 0

as d→∞.
(b) The triangle inequality and W = Y − α in Equation (31) result in

(37)Var

(
Y −

d∑
i=1

λ∗i
(
Xi − EXi

))→ E Var(Y |X)

as d→∞.

The interpretation of (a) is that CV and CMC reduce variance concurrently:
E(Y |X) eliminates the E Var(Y |X) part of VarY , while

∑d
i=1 λ

∗
i (X

i − EXi)

asymptotically cancels Var E(Y |X). The effect of
∑d

i=1 λ
∗
i (X

i − EXi) in
part (b) is to asymptotically eliminate the variance component due to E(Y |X)
when using E(Y |X) in the simulation is not possible.

7 Weighted Monte Carlo

In this section we consider the asymptotic behavior of weighted Monte
Carlo (WMC) estimators, for a large class of objective functions. We rely on
Glasserman and Yu (2005) and Glasserman (2004), which make precise the
connection between WMC and CVs for separable convex objective functions.
Initial results, under weaker assumptions and just for one class of objectives
were obtained in Szechtman and Glynn (2001) and in Glynn and Szechtman
(2002). Applications of weighted estimators to model calibration in the fi-
nance context are presented in Avellaneda et al. (2001) and in Avellaneda and
Gamba (2000).

Consider the standard CV setting: (Y1�X1)� � � � � (Yn�Xn) are i.i.d. samples
of jointly distributed random elements (Y�X) ∈ (R�Rd) with nonsingular co-
variance matrix � and, without loss of generality, EX = 0 componentwise. The
goal is to compute α = EY by Monte Carlo simulation, using information
about the means EX to reduce estimator variance. Let f : R → R be a strictly
convex and continuously differentiable function and suppose that the weights
w∗

1�n� � � � � w
∗
n�n,

(38)minimize
n∑
k=1

f (wk�n)
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(39)subject to
1
n

n∑
k=1

wk�n = 1�

(40)
1
n

n∑
k=1

wk�nXk = 0�

Then, the WMC estimator of α takes the form

ŶWMC = 1
n

n∑
k=1

w∗
k�nYk�

The following observations review some key properties of WMC: The weight
applied to each replication i is w∗

i�n/n, rather than the weight 1/n used to form
the sample mean �Y . A feasible set of weights is one that makes ŶWMC unbi-
ased (cf. constraint (39)), and that forces the weighted average of the control
samples to match their known mean (cf. constraint (40)). For every n suffi-
ciently large 0 (= EX) belongs to the convex hull of the replicates X1� � � � �Xn,
and therefore the constraint set is nonempty. The objective function in (38),
being strictly convex, ensures uniqueness of the optimal solution if the opti-
mal solution is finite. If wk�n � 0� 1 � k � n, were additional constraints,
a feasible set of weights w1�n� � � � � wn�n would determine a probability mass
function (1/n)

∑n
k=1 δXk(·)wk�n, where δx(z) = 1 if z = x and is equal

to zero otherwise. However, as discussed in Hesterberg and Nelson (1998),
P(wk�n < 0) = o(n−p) uniformly in 1 � k � n if E(‖X‖p) <∞ indicates that
the nonnegativity constraints are asymptotically not binding; see Szechtman
and Glynn (2001) for an example of this scenario.

There are different f ’s depending on the application setting. For exam-
ple: f (w) = − logw results in maximizing empirical likelihood; discussed in
Szechtman and Glynn (2001). The function f (w) = −w logw yields an entropy
maximization objective; this is the subject of Avellaneda and Gamba (2000)
and Avellaneda et al. (2001). The important case of f (w) = w2 is considered
next, the optimization problem being to

minimize
n∑
k=1

w2
k�n

(41)subject to
1
n

n∑
k=1

wk�n = 1�

1
n

n∑
k=1

wk�nXk = 0�

Solving the optimization problem yields (Glasserman and Yu, 2005) optimal
weights given by

(42)w∗
k�n = 1 −�X TM−1(Xk −�X) for k = 1� � � � � n�



Ch. 10. A Hilbert Space Approach to Variance Reduction 277

where M ∈ R
d×d is the matrix with elements Mi�j = (1/n)

∑n
k=1(Xi�k −�X)(Xj�k − �X); M−1 exists for all n large enough because M → �xx a.s. com-

ponentwise. Rearranging terms immediately gives

(43)
1
n

n∑
k=1

w∗
k�nYk = ŶCV(λn)�

with the benefit that the optimal weights do not depend on the Yk, which
makes this approach advantageous when using CVs for quantile estimation;
see Hesterberg and Nelson (1998) for details.

Regarding Hilbert spaces, consider the space R
n (cf. Example 2) and the set

A(n) =
{

w(n) = (w1�n� � � � � wn�n) ∈ R
n:

1
n

n∑
k=1

wk�n = 1 and
1
n

n∑
k=1

wk�nXk = 0

}
�

It can be verified that A(n) meets the conditions of Result 3 for every n suf-
ficiently large, and consequently it is fair to ask: What element in A(n) is
closest to 1(n) = (1� � � � � 1) ∈ R

n? That is, which element w∗(n) = (w∗
1�n� � � � �

w∗
n�n) ∈ R

n

minimizes
∥∥1(n)− w(n)

∥∥
subject to w(n) ∈ A(n)?

This problem yields the same solution as problem (41); doing simple algebra it
is easy to verify that w∗(n) with components as in Equation (42) satisfies condi-
tion (26). The conclusion is that w∗(n) is the closest point in A(n) to 1(n), the
vector of crude sample weights. Would this Hilbert space approach to WMC
work with f ’s that are not quadratic? Yes, as long as the metric induced by the
inner product meets the defining properties of a metric.

The main result concerning WMC and CV, proved in Glasserman and Yu
(2005) under certain conditions on X, Y , f , and the Lagrange multipliers asso-
ciated with constraints (39) and (40), is that

ŶWMC = ŶCV + Op
(
n−1)

and
√
n
(
ŶWMC − α

)⇒ N
(
0� σ2

WMC
)

as n→∞ where

σ2
WMC = σ2

CV�

and Op(an) stands for a sequence of random variables (ξn: n � 1) such that
for all ε > 0 and some constant δ, P(|ξn| � anδ) < ε. The last result provides
support to the statement that ŶWMC and ŶCV are asymptotically identical.
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8 Stratification techniques

In this section we discuss stratification methods emphasizing the connection
with the Hilbert space and CVs ideas already developed. Refer to Fishman
(1996), Glasserman et al. (1999) and Glynn and Szechtman (2002) for more
details.

Suppose that we wish to compute α = EY , for some random variable Y ∈
L2(Ω�F�P). Let X ∈ L2(Ω�F�P). The method of stratification arises when
there is a collection of disjoint sets (“strata”) (Ai: 1 � i � d) in the range of
X such that P(X ∈ ⋃d

i=1 Ai) = 1 and P(X ∈ Ai) = pi is known for every 1 �
i � d. Then, assuming that one can obtain i.i.d. replicates (Yi�k: 1 � k � ni)
from P(Y ∈ ·|X ∈ Ai), 1 � i � d, the estimator of α given by

(44)
d∑
i=1

pi
ni

ni∑
k=1

Yi�k

is unbiased, where ni is the number of replicates sampled from P(Y ∈ ·|X ∈
Ai).

For a total number of replications n = ∑d
i=1 ni, proportional stratification

allocates ni = npi samples to strata Ai� 1 � i � d, where for simplicity we
assume that the npi are integers. The estimator of Equation (44) is then called
the proportional stratification (PS) estimator

ŶPS = 1
n

d∑
i=1

npi∑
k=1

Yi�k�

with variance given by

Var ŶPS = 1
n

d∑
i=1

pi Var(Y |Z = i)

(45)= 1
n

E Var(Y |Z)�

where the random variable Z =∑d
i=1 iI(X ∈ Ai).

One implication of Equation (45) is that if Y is not constant inside each
strata, then Var ŶPS > 0, so that proportional stratification does not elim-
inate the variability of Y inside strata, but rather the variability of E(Y |Z)
across strata. In addition, Equation (45), jointly with the variance decompo-
sition formula (19), quantifies the per-replication variance reduction achieved
by proportional stratification: E Var(Y |Z) = VarY − Var E(Y |Z). Observe
that although PS is relatively simple to implement, it does not provide the op-
timal sample allocation ni per strata; see Glasserman (2004, p. 217) for more
details.
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From a CV perspective, PS acts like applying E(Y |Z) − α as a CV on Y ;
ŶPS achieves the same variance reduction as that obtained by averaging i.i.d.
replications of Y − (E(Y |Z) − α). Of course, sampling from the distribution
of Y − (E(Y |Z)− α) is impractical because α is unknown.

Regarding Hilbert spaces, Equation (45) is simply

(46)nVar ŶPS =
∥∥(I − Pσ(Z))Y

∥∥2
�

In addition, ŶPS satisfies the following CLT:

n1/2(ŶPS − α
)⇒ N

(
0� σ2

PS
)

as n→∞�

where σ2
PS = E Var(Y |Z), which enables the construction of asymptotically

valid confidence intervals for α.
Post-stratification offers an alternative to proportional stratification when

sampling from P(Y ∈ ·|X ∈ Ai) is not possible, but when it is possible to
sample from the distribution of (X�Y). Specifically, we construct the unbiased
estimator

ŶpST =
d∑
i=1

pi

∑n
k=1 YkI(Xk ∈ Ai)∑n
j=1 I(Xj ∈ Ai)

�

Using the Delta method (cf. Section 2) it is easy to prove a CLT for ŶpST

n1/2(ŶpST − α
)⇒ N

(
0� σ2

pST
)

as n → ∞, where σ2
pST = E Var(Y |Z). However, for every stratum we know

a priori that EI(X ∈ Ai) = pi, which suggests the use of the vector (I(X ∈
Ai)−pi: 1 � i � d) as a control. More specifically, an unbiased CV estimator
is given by

ŶCV(λ) = 1
n

n∑
j=1

(
Yj −

d∑
i=1

λi
(
I(Xj ∈ Ai)− pi

))
�

Using Equation (3), the optimal coefficients λ∗i , 1 � i � d, are immediately
found to be

λ∗i = E(Y |Z = i) for 1 � i � d�

That is,

ŶCV
(
λ∗
) = 1

n

n∑
j=1

(
Yj −

(
E(Y |Zj)− α

))
�

and

Var ŶCV
(
λ∗
) = 1

n
E Var(Y |Z)�
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Therefore, n(Var ŶCV(λ
∗) − Var ŶpST) → 0 as n → ∞. With a little more

effort, it can be shown that

n1/2(ŶpST − ŶCV
(
λ∗
))⇒ 0

as n → ∞. In other words, ŶpST and ŶCV(λ
∗) have the same distribution up

to an error of order op(n−1/2) as n→∞, where op(an) denotes a sequence of
random variables (ξn: n � 1) such that a−1

n ξn ⇒ 0 as n→∞.
Given the strata (Ai: 1 � i � d), it is always possible to find finer strata

that further reduce estimator variance. In the case of proportional stratifica-
tion, suppose that it is possible to split each stratum Ai into integer ni = npi
strata (Ai�k: 1 � k � ni) such that P(X ∈ Ai�k) = 1/n; i.e., the bivariate ran-
dom vector Vn =∑d

i=1
∑ni

k=1(i� k)I(X ∈ Ai�k) is uniformly distributed on the
lattice {(i� k): 1 � i � d� 1 � k � ni}. Assume in addition that it is possible to
sample from P(Y ∈ ·|X ∈ Ai�k). Then the refined proportional stratification
(rST) estimator is

ŶrST = 1
n

d∑
i=1

npi∑
k=1

Yi�k�

where the Yi�k are sampled from P(Y ∈ ·|X ∈ Ai�k). Proceeding as in (45), we
arrive at

Var ŶrST = 1
n

E Var(Y |Vn)�
The fact that ‖E(Y |Vn)−EY‖2 = ‖E(Y |Vn)−E(Y |Z)‖2 +‖E(Y |Z)−EY‖2

shows that Var E(Y |Vn) � Var E(Y |Z), and therefore,

Var ŶrST � Var ŶPS�

With regards to Example 9, the conditions leading to Equation (28) apply, so
that as n→∞,

Var
(
E(Y |X)− E(Y |Vn)

)→ 0

and

Var
(
Y − E(Y |Vn)

)→ E Var(Y |X)�
In particular, nVar ŶrST → E Var(Y |X). This result should come as no sur-
prise because as n grows we get to know the full distribution of X, not unlike
the setting of Equations (36) and (37): rST presumes knowledge of an in-
creasing sequence of σ-algebras that converge to σ(X), whereas in Equations
(36) and (37) we have information about the full sequence of moments of X.

As to control variates, rST produces the same estimator variance as the stan-
dard CV estimator formed by i.i.d. sampling fromY−(E(Y |X)−α) as n→∞.
Similar to (46), we can write nVar ŶrST → ‖(I−Pσ(X))Y‖2 as n→∞. Finally,
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the CLT satisfied by ŶrST is

n1/2(ŶrST − α
)⇒ N

(
0� σ2

rST
)

as n→∞, where σ2
rST = E Var(Y |X).

To conclude this section, we mention the link between post-stratification and
WMC. Write

(47)w∗
k�n =

d∑
i=1

piI(Xk ∈ Ai)∑n
j=1 I(Xj ∈ Ai)

for 1 � k � n, then the WMC estimator ŶWMC =∑n
k=1w

∗
k�nYk equals ŶpST.

It can be confirmed that the weights given in Equation (47) are the solu-
tion of the optimization problem with objective function min

∑n
k=1w

2
k�n and

constraints
∑n

k=1wk�nI(Xk ∈ Ai) = pi� 1 � i � d, and
∑n

k=1wk�n = 1. In-
terpreting at face value, w∗n with elements as in (47) is the closest point in the
set determined by the constraints to the vector consisting of n ones.

9 Latin hypercube sampling

We now discuss the method of Latin hypercube sampling (LHS) from a
Hilbert space and CV perspective. McKay et al. (1979), Stein (1987), Owen
(1992) and Loh (1996) are standard references for LHS. We rely on Mathé
(2000), which gives a good account of LHS from a Hilbert space point of view.
Avramidis and Wilson (1996) is also a valuable reference for the issues we con-
sider.

Suppose the setting of Examples 3 and 8: We have mutually independent
random variables X1� � � � �Xd, each with known distribution function Fi, and
the goal is to compute

α = Ef (X) =
∫
f (x) dF(x)

via simulation, where f : R
d → R is a square integrable function with respect

to F(x) =∏n
d=1 Fi(xi), x = (x1� � � � � xd) and X = (X1� � � � �Xd).

LHS generates samples of X as follows:

(i) Tile [0� 1)d into nd hypercubes Δl1�����ld =
∏d
i=1[ li−1

n � lin ), li = 1� � � � � n,
i = 1� � � � � d, each of volume n−d.

(ii) Generate d uniform independent permutations (π1(·)� � � � � πd(·)) of
{1� � � � � n}.

(iii) Use the output of (ii) to choose n hypercubes from (i): Δπ1(k)�����πd(k)

for the kth tile, k = 1� � � � � n.
(iv) Uniformly select a point from within each Δπ1(k)�����πd(k), and gener-

ate Xi�k by inverting Fi at that point.
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Notice that (i)–(iv) are

(48)Xi�k = F−1
i

(
πi(k)− 1 +Ui(k)

n

)
� 1 � i � d and 1 � k � n�

where the Ui(k) are i.i.d. uniform on [0� 1]. The LHS estimator is the aver-
age of the n samples f (Xk), each Xk = (X1�k� � � � �Xd�k) obtained according
to (48)

ŶLHS = 1
n

n∑
k=1

f (Xk)�

As in refined stratification, given a sample size n, LHS assigns one sample to
each strata Ai�k given by

Ai�k =
[
F−1
i

(
k− 1
n

)
� F−1

i

(
k

n

))
� 1 � i � d� 1 � k � n�

with the sample uniformly distributed within the strata. Where refined pro-
portional stratification applied to a particular Xi asymptotically eliminates the
variance due to E(f (X)|Fi) (cf. Example 8 for the definition of Fi) along just
one dimension i, LHS asymptotically eliminates Var

∑d
i=1 E(f (X)|Fi) at the

same rate used by rST used to eliminate only Var E(f (X)|Fi).
Figure 2 illustrates LHS with d = 2, n = 4. Each dot in the lower left square

is a sample from (πi(k) − 1 + Ui(k))/n. The position of each dot within a
square is uniformly distributed according to theUi(k); the permutations πi(k)
ensure that there is just one dot per row and per column. The lower right re-
gion depicts F1 and the four equiprobable strata for X1, with one sample point
F−1

1 ((π1(k)− 1 +U1(k))/n) per strata A1�k; the final output are the samples
X1�1� � � � �X1�4. In the upper left F2 is pictured with the axes inverted; it has
the same explanation as that of F1, with the final output being the samples
X2�1� � � � �X2�4.

Stein (1987) demonstrates that when f ∈ L2(dF),

(49)Var ŶLHS = 1
n

Var

(
f (X)−

d∑
i=1

E
(
f (X)|Fi

))+ o
(
n−1)

as n → ∞, which makes precise the variance reduction achieved by LHS, up
to order o(n−1).

The CLT satisfied by ŶLHS, proved in Owen (1992) under the condition that
f (F−1(·)) is bounded on [0� 1]d is

(50)n1/2(ŶLHS − α
)⇒ N

(
0� σ2

LHS
)

as n→∞, where

σ2
LHS = Var

(
f (X)−

d∑
i=1

E
(
f (X)|Fi

))
�
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Fig. 2. Latin hypercube sampling.

Equation (50) provides theoretical support for the construction of a valid con-
fidence interval for α, whose width depends on σLHS. This term is generally not
known prior to the simulation, nor easily estimated from the simulation data.
Section 3 of Owen (1992) deals with the estimation of σ2

LHS from LHS data,
and shows how to use the LHS samples to find an estimator for σ2

LHS which is
within n−1/2 in probability of σ2

LHS as n → ∞. This permits the formation of
an asymptotically valid confidence interval for α.

As to standard Monte Carlo, Owen (1997) proves that LHS is no less effi-
cient because

Var ŶLHS � Var f (X)
n− 1

for all n � 2 and d � 2. In other words, even if the variance eliminated by
LHS, Var

∑d
i=1 E(f (X)|Fi), is small, LHS with n samples is no less efficient
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than standard Monte Carlo with n−1 replications. Of course, the only measure
of efficiency in this argument is variance, a more complete analysis would take
into account the computational cost of generating sample variates.

Example 8 leads into the Hilbert interpretation of LHS. In particular, Equa-
tions (25) and (49) imply

lim
n→∞nVar ŶLHS = Var

(
f (X)−

d∑
i=1

E
(
f (X)|Fl

))

(51)= ∥∥(I − PM)f
∥∥2
�

That is, LHS takes the remainder from projecting f on the subspace M de-
termined by the span of the linear combinations of univariate functions. Using
the last equation, LHS eliminates variance because

Var f (X) = ∥∥(I − P0)f
∥∥2

= ∥∥PM(I − P0)f
∥∥2 + ∥∥(I − PM)(I − P0)f

∥∥2

�
∥∥(I − PM)(I − P0)f

∥∥2

= ∥∥(I − PM)f
∥∥2
�

where

∥∥PM(I − P0)f
∥∥2 =

d∑
i=1

∥∥Pi(I − P0)f
∥∥2 =

d∑
i=1

Var E
(
f (X)|Fi

)

is the variance eliminated by LHS. If f ∈ M , then Equation (51) also shows
that nVar ŶLHS → 0 as n→∞; in other words, LHS asymptotically eliminates
all the variance of f if f is a sum of univariate functions.

Much more can be said about Var f (X). Suppose for simplicity that the
Xi are Uniform[0� 1] random variables, so that α = ∫ 1

0 f (x) dx. Let u ⊆
{1� 2� � � � � d} and define dx−u = ∏

j /∈u dxj . Then, if f is square integrable,
there is a unique recursion

(52)fu(x) =
∫
f (x) dx−u −

∑
v⊂u

fv(x)

with the property that
∫ 1

0 fu(x) dxj = 0 for every j ∈ u and

f (x) =
∑

u⊆{1�2�����d}
fu(x);

see, for example, Jiang (2003) for a proof. Recursion (52) actually is the Gram–
Schmidt process, and it splits f into 2d orthogonal components such that∫

fu(x)fv(x) dx = 0
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for u �= v, and

(53)σ2 =
∑
|u|>0

σ2
u�

where σ2 = ∫ (f (x)−α)2 dx is the variance of f (X) and σ2
u =

∫
f 2
u(x) dx is the

variance of fu(X). The conclusion in this context is that LHS eliminates the
variance of the fu for all u with |u| = 1. The setting of this paragraph is known
as functional ANOVA; see Chapter 13 for more details on this topic.

Considering control variates, we can say that the estimator formed by aver-
aging i.i.d. replicates of f (X)−∑d

i=1(E(f (X)|Fi)−α) has the same asymptotic
variance as ŶLHS. Moreover, given a zero-mean control variate h(X), h a de-
terministic function, obtain n Latin hypercube samples of X using (48), and
form the combined LHS + CV estimator

ŶLHS+CV(λ) = 1
n

n∑
k=1

(
f (Xk)− λh(Xk)

)
�

Then, n(Var ŶLHS+CV(λ)−Var ŶLHS)→ 0 for any control of the type h(X) =∑d
i=1 hi(Xi) because h ∈ M and property (a) of the projection operator to-

gether imply (I − PM)(f − λh) = (I − PM)f for all λ ∈ R. Using Equations
(4) and (49),

Var ŶLHS+CV
(
λ∗
) = Var ŶLHS

(
1 − ρ2)�

where ρ2 is the square of the correlation coefficient between

f (X)−
d∑
i=1

E
(
f (X)|Fi

)
and h(X)−

d∑
i=1

E
(
h(X)|Fi

)
�

In other words, a good CV for f (X) in the LHS context is one that maxi-
mizes the absolute value of the correlation coefficient of its nonadditive part
with the nonadditive part of f (X). Notice that λ∗ is the optimal CV coef-
ficient associated with the response f (X) − ∑d

i=1 E(f (X)|Fi) and the CV
h(X)−∑d

i=1 E(h(X)|Fi); refer to Owen (1992) for the estimation of λ∗ from
sample data.

Additional guidance for effective CVs in the LHS setting is provided by (53):
Choose a CV with nonadditive part that is highly correlated with fu’s, |u| > 1,
that have σ2

u large.
As regards weighted Monte Carlo, consider using LHS to generate repli-

cates X1� � � � �Xn, and the optimization problem

minimize
n∑
k=1

w2
k�n

http://dx.doi.org/10.1016/S0927-0507(06)13013-3
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(54)subject to
n∑
k=1

wk�n = 1�

n∑
k=1

wk�nI(Xi�k ∈ Ai�j) = 1
n

for i = 1� � � � � d and j = 1� � � � � n�

Clearly w∗
k�n = 1/n, k = 1� � � � � n, is feasible for (54), and it is also optimal by

the developments of Section 7, so that the WMC estimator
∑n

k=1w
∗
k�nf (Xk)

coincides with ŶLHS for every n � 1. For d = 1, problem (54) furnishes a
WMC estimator that equals ŶrST; in other words, for d = 1 LHS yields the
same variance reduction as rST in the limit as n→∞.

10 A numerical example

In this section we present a numerical example that supports many of the re-
sults discussed in the chapter. Consider the stochastic activity network (SAN)
of Loh (1995) depicted in Figure 3 (see also the SAN discussion in Chapter 1)
with arcs X1, X2, X3, X4, X5 that are independent random variables that rep-
resent activity durations. The problem of numerically computing the expected
duration of the shortest path that leads from the source node a to the sink
node z involves estimating α = EY , where Y = min{X1 +X2�X1 +X3 +X5�
X4 +X5}. For the purposes of this example, we assume that the Xi’s are expo-
nentially distributed with parameters μ1 = 1�1, μ2 = 2�7, μ3 = 1�1, μ4 = 2�5,
μ5 = 1�2.

Given an inner sample size n, we wish to appraise the variability of:

• The crude Monte Carlo estimator �Y .
• The control variates estimator ŶCV(λn), using the first moments of the
Xi’s as control variates.

• The conditional Monte Carlo estimator ŶCMC. Because the durations
of the three paths that lead from a to z are conditionally indepen-
dent givenX1 andX5, E(Y |X1�X5) can be found analytically; see Loh
(1995, p. 103).

• The weighted Monte Carlo estimator ŶWMC, with f (w) = − logw in
Equation (38).

• The stratification estimator ŶrST, where we stratify on X1.
• The Latin hypercube estimator ŶLHS applied to X1� � � � �X5.

In order to compare the variance of these estimators, we repeat m = 1000
times the simulation to obtain �Y(m)� � � � � ŶLHS(m) by averaging �Y� � � � � ŶLHS
over m. The (sample) standard deviations of these six estimators are s(m� n),
sCV(m� n), sCMC(m� n), sWMC(m� n), srST(m� n) and sLHS(m� n).

The results are summarized in Table 1. As expected, sCV(m� n) ≈ sWMC(m�
n), and sLHS(m� n) < srST(m� n) for each n. Notice that srST(m� n) and

http://dx.doi.org/10.1016/S0927-0507(06)13001-7
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Fig. 3. Stochastic activity network.

Table 1.
SAN numerical example

Parameter Sample size n

100 1000 10000

s(m� n) 0�0529 0�0162 0�0053
sCV(m� n) 0�0392 0�0112 0�0036
sCMC(m� n) 0�0328 0�0102 0�0033
sWMC(m� n) 0�0395 0�0116 0�0038
srST(m� n) 0�0456 0�0144 0�0044
sLHS(m� n) 0�03 0�0093 0�0030

sLHS(m� n) behave like a constant divided by n1/2 for each n, which indicates
that rST and LHS achieve their variance reduction potential by n = 100.

11 Conclusions

We presented various variance reduction techniques for terminating simula-
tions in the Hilbert space setting, establishing connections with CV, CMC and
WMC whenever possible. It is the geometric interpretation of Result 2 that
makes this approach especially tractable.

There are, however, several topics missing from our coverage where Hilbert
space theory might yield valuable insights. Consider for instance the case of
variance reduction techniques for steady-state simulations that have a suitable
martingale representation; see, for example, Henderson and Glynn (2002). It is
well known that square integrable martingale differences have a simple inter-
pretation in the Hilbert space framework, which suggests that it might be pos-
sible to obtain additional insights when dealing with such techniques. Another
area of interest is the Hilbert space formulation of CVs in the multi-response
setting, where Y is a random vector; see Rubinstein and Marcus (1985) for
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relevant results. The combination of importance sampling (cf. Chapter 12)
with CVs also can be studied in the Hilbert space setting; see, for example,
Hesterberg (1995) and Owen and Zhou (1999).
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Abstract

In this chapter we review some of the recent developments for efficient estimation of
rare-events, most of which involve application of importance sampling techniques to
achieve variance reduction. The zero-variance importance sampling measure is well
known and in many cases has a simple representation. Though not implementable, it
proves useful in selecting good and implementable importance sampling changes of
measure that are in some sense close to it and thus provides a unifying framework
for such selections. Specifically, we consider rare events associated with: (1) multi-
dimensional light-tailed random walks, (2) with certain events involving heavy-tailed
random variables and (3) queues and queueing networks. In addition, we review
the recent literature on development of adaptive importance sampling techniques to
quickly estimate common performance measures associated with finite-state Markov
chains. We also discuss the application of rare-event simulation techniques to prob-
lems in financial engineering. The discussion in this chapter is nonmeasure theoretic
and kept sufficiently simple that the key ideas are accessible to beginners. References
are provided for more advanced treatments.

1 Introduction

Rare-event simulation involves estimating extremely small but important
probabilities. Such probabilities are of importance in various applications: In
modern packet-switched telecommunications networks, in order to reduce de-
lay variation in carrying real-time video traffic, the buffers within the switches
are of limited size. This creates the possibility of packet loss if the buffers over-
flow. These switches are modeled as queueing systems and it is important to
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estimate the extremely small loss probabilities in such queueing systems (see,
e.g., Chang et al., 1994; Heidelberger, 1995). Managers of portfolios of loans
need to maintain reserves to protect against rare events involving large losses
due to multiple loan defaults. Thus, accurate measurement of the probability
of large losses is of utmost importance to them (see, e.g., Glasserman and Li,
2005). In insurance settings, the overall wealth of the insurance company is
modeled as a stochastic process. This incorporates the incoming wealth due
to insurance premiums and outgoing wealth due to claims. Here the perfor-
mance measures involving rare events include the probability of ruin in a given
time frame or the probability of eventual ruin (see, e.g., Asmussen, 1985, 1989,
2000). In physical systems designed for a high degree of reliability, the system
failure is a rare event. In such cases the related performance measures of inter-
est include the mean time to failure, and the fraction of time the system is down
or the ‘system unavailability’ (see, e.g., Goyal et al., 1992). In many problems
in polymer statistics, population dynamics and percolation, statistical physicists
need to estimate probabilities of order 10−50 or rarer, often to verify conjec-
tured asymptotics of certain survival probabilities (see, e.g., Grassberger, 2002;
Grassberger and Nadler, 2000).

Importance sampling is a Monte Carlo simulation variance reduction tech-
nique that has achieved dramatic results in estimating performance measures
associated with certain rare events (see, e.g., Glynn and Iglehart, 1989, for an
introduction). It involves simulating the system under a change of measure
that accentuates paths to the rare-event and then unbiasing the resultant out-
put from the generated path by weighing it with the ‘likelihood ratio’ (roughly,
the ratio of the original measure and the new measure associated with the gen-
erated path). In this chapter we primarily highlight the successes achieved by
this technique for estimating rare-event probabilities in a variety of stochastic
systems.

We refer the reader to Heidelberger (1995) and Asmussen and Rubinstein
(1995) for earlier surveys on rare-event simulation. In this chapter we sup-
plement these surveys by focusing on the more recent developments1. These
include a brief review of the literature on estimating rare events related to mul-
tidimensional light-tailed random walks (roughly speaking, light-tailed random
variables are those whose tail distribution function decays at an exponential
rate or faster, while for heavy-tailed random variables it decays at a slower
rate, e.g., polynomially). These are important as many mathematical models of
interest involve a complex interplay of constituent random walks, and the way
rare events happen in random walks settings provides insights for the same in
more complex models.

1 The authors confess to the lack of comprehensiveness and the unavoidable bias towards their research
in this survey. This is due to the usual reasons: Familiarity with this material and the desire to present
the authors viewpoint on the subject.
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We also briefly review the growing literature on adaptive importance sam-
pling techniques for estimating rare events and other performance measures
associated with Markov chains. Traditionally, a large part of rare-event sim-
ulation literature has focused on implementing static importance sampling
techniques. (By static importance sampling we mean that a fixed change of
measure is used throughout the simulation, while adaptive importance sam-
pling involves updating and learning an improved change of measure based
on the simulated sample paths.) Here, the change of measure is selected that
emphasizes the most likely paths to the rare event. In many cases large devi-
ations theory is useful in identifying such paths (for an introduction see, e.g.,
Dembo and Zeitouni, 1998; Shwartz and Weiss, 1995). Unfortunately, one can
prove the effectiveness of such static importance sampling distributions only in
special and often simple cases. There also exists a substantial literature high-
lighting cases where static importance sampling distributions with intuitively
desirable properties lead to large, and even infinite, variance. In view of this,
adaptive importance sampling techniques are particularly exciting as at least
in the finite state Markov chain settings, they appear to be quite effective in
solving a large class of problems.

Heidelberger (1995) provides an excellent review of reliability and queueing
systems. In this chapter, we restrict our discussion to only a few recent devel-
opments in queueing systems.

A significant portion of our discussion focuses on the probability that a
Markov process observed at a hitting time to a set lies in a rare subset. Many
commonly encountered problems in rare-event simulation literature are cap-
tured in this framework. The importance sampling zero-variance estimator of
small probabilities is well known, but unimplementable as it involves a pri-
ori knowledge of the probability of interest. Importantly, in this framework,
the Markov process remains Markov under the zero-variance change of mea-
sure (although explicitly determining it remains at least as hard as determining
the original probability of interest). This Markov representation is useful as it
allows us to view the process of selecting a good importance sampling distribu-
tion from a class of easily implementable ones as identifying a distribution that
is in some sense closest to the zero-variance measure. In the setting of stochas-
tic processes involving random walks this often amounts to selecting a suitable
exponentially twisted distribution.

We also review importance sampling techniques for rare events involving
heavy-tailed random variables. This has proved to be a challenging problem
in rare-event simulation and except for the simplest of cases, the important
problems remain unsolved.

In addition, we review a growing literature on application of rare-event sim-
ulation techniques in financial engineering settings. These focus on efficiently
estimating value-at-risk in a portfolio of investments and the probability of
large losses due to credit risk in a portfolio of loans.
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The following example2 is useful in demonstrating the problem of rare-event
simulation and the essential idea of importance sampling for beginners.

1.1 An illustrative example

Consider the problem of determining the probability that eighty or more
heads are observed in one hundred independent tosses of a fair coin.

Although this is easily determined analytically by noting that the number
of heads is binomially distributed (the probability equals 5�58 × 10−10), this
example is useful in demonstrating the problem of rare-event simulation and
in giving a flavor of some solution methodologies. Through simulation, this
probability may be estimated by conducting repeated experiments or trials of
one hundred independent fair coin tosses using a random number generator.
An experiment is said to be a success and its output is set to one if eighty or
more heads are observed. Otherwise the output is set to zero. Due to the law
of large numbers, an average of the outputs over a large number of indepen-
dent trials gives a consistent estimate of the probability. Note that on average
1�8 × 109 trials are needed to observe one success. It is reasonable to expect
that a few orders of magnitude higher number of trials are needed before the
simulation estimate becomes somewhat reliable (to get a 95% confidence level
of width ±5% of the probability value about 2�75 × 1012 trials are needed).
This huge computational effort needed to generate a large number of trials to
reliably estimate small probabilities via ‘naive’ simulation is the basic problem
of rare-event simulation.

Importance sampling involves changing the probability dynamics of the sys-
tem so that each trial gives a success with a high probability. Then, instead of
setting the output to one every time a success is observed, the output is unbi-
ased by setting it equal to the likelihood ratio of the trial or the ratio of the
original probability of observing this trial with the new probability of observing
the trial. The output is again set to zero if the trial does not result in a success.
In the coin tossing example, suppose under the new measure the trials remain
independent and the probability of heads is set to p > 1/2. Suppose that in a
trial m heads are observed for m � 80. The output is then set to the likelihood
ratio which equals

(1)
(1/2)m(1/2)100−m

pm(1 − p)100−m �

It can be shown (see Section 2) that the average of many outputs again gives
an unbiased estimator of the probability. The key issue in importance sampling
is to select the new probability dynamics (e.g., p) so that the resultant output
is smooth, i.e., its variance is small so that a small number of trials are needed

2 This example and some of the discussion appeared in Juneja (2003).
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to get a reliable estimate. Finding such a probability can be a difficult task
requiring sophisticated analysis. A wrong selection may even lead to increase
in variance compared to naive simulation.

In the coin tossing example, this variance reduction may be attained by
keeping p large so that success of a trial becomes more frequent. However, if
p is very close to one, the likelihood ratio on trials can have a large amount
of variability. To see this, consider the extreme case when p ≈ 1. In this
case, in a trial where the number of heads equals 100, the likelihood ratio
is ≈ 0�5100 whereas when the number of heads equals 80, the likelihood ratio
is ≈ 0�5100/(1 − p)20, i.e., orders of magnitude higher. Hence, the variance of
the resulting estimate is large. An in-depth analysis of this problem in Section 4
(in a general setting) shows that p = 0�8 gives an estimator of the proba-
bility with an enormous amount of variance reduction compared to the naive
simulation estimator. Whereas trials of order 1012 are required under naive
simulation to reliably estimate this probability, only a few thousand trials un-
der importance sampling withp = 0�8 give the same reliability. More precisely,
for p = 0�8, it can be easily numerically computed that only 7,932 trials are
needed to get a 95% confidence level of width ±5% of the probability value,
while interestingly, for p = 0�99, 3�69×1022 trials are needed for this accuracy.

Under the zero-variance probability measure, the output from each experi-
ment is constant and equals the probability of interest (this is discussed further
in Sections 2 and 3). Interestingly, in this example, the zero-variance measure
has the property that the probability of heads after n tosses is a function of m,
the number of heads observed in n tosses. Let pn�m denote this probability.
Let P(n�m) denote the probability of observing at least m heads in n tosses
under the original probability measure. Note that P(100� 80) denotes our orig-
inal problem. Then, it can be seen that (see Section 3.2)

pn�m = 1
2

P(100 − n− 1� 80 −m− 1)
P(100 − n� 80 −m)

�

Numerically, it can be seen that p50�40 = 0�806, p50�35 = 0�902 and p50�45 =
0�712, suggesting that p = 0�8 mentioned earlier is close to the probabilities
corresponding to the zero variance measure.

The structure of this chapter is as follows: In Section 2 we introduce the
rare-event simulation framework and importance sampling in the abstract set-
ting. We also discuss the zero-variance estimator and common measures of
effectiveness of more implementable estimators. This discussion is special-
ized to a Markovian framework in Section 3. In this section we also discuss
examples showing how common diverse applications fit this framework. In
Section 4 we discuss effective importance sampling techniques for some rare
events associated with multidimensional random walks. Adaptive importance
sampling methods are discussed in Section 5. In Section 6 we discuss some re-
cent developments in queueing systems. Heavy-tailed simulation is described
in Section 7. In Section 8 we give examples of specific rare-event simulation
problems in the financial engineering area and discuss the approaches that
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have been used. Sections 7 and 8 may be read independently of the rest of the
paper as long as one has the basic background that is described in Section 2.

2 Rare-event simulation and importance sampling

2.1 Naive simulation

Consider a sample space Ω with a probability measure P. Our interest is
in estimating the probability P(E) of a rare event E ⊂ Ω. Let I(E) denote
the indicator function of the event E , i.e., it equals 1 along outcomes belong-
ing to E and equals zero otherwise. Let γ denote the probability P(E). This
may be estimated via naive simulation by generating independent samples
(I1(E)� I2(E)� � � � � In(E)) of I(E) via simulation and taking the average

1
n

n∑
i=1

Ii(E)

as an estimator of γ. Let γ̂n(P) denote this estimator. The law of large numbers
ensures that γ̂n(P)→ γ almost surely (a.s.) as n→∞.

However, as we argued in the introduction, since γ is small, most samples
of I(E) would be zero, while rarely a sample equaling one would be observed.
Thus, n would have to be quite large to estimate γ reliably. The central limit
theorem proves useful in developing a confidence interval (CI) for the estimate
and may be used to determine the n necessary for accurate estimation. To this
end, let σ2

P(X) denote the variance of any random variable X simulated under
the probability P. Then, for large n, an approximate (1 − α)100% CI for γ is
given by

γ̂n(P)± zα/2
σP(I(E))√

n
�

where zx is the number satisfying the relation P(N(0� 1) � zx) = x. Here,
N(0� 1) denotes a normally distributed random variable with mean zero and
variance one (note that σ2

P(I(E)) = γ(1 − γ), and since γ̂n(P) → γ a.s.,
σ2

P(I(E)) may be estimated by γ̂n(P)(1 − γ̂n(P)) to give an approximate
(1 − α)100% CI for γ).

Thus, n may be chosen so that the width of the CI, i.e., 2zα/2
√
γ(1 − γ)/n is

sufficiently small. More appropriately, n should be chosen so that the width of
the CI relative to the quantity γ being estimated is small. For example, a con-
fidence interval width of order 10−6 is not small in terms of giving an accurate
estimate of γ if γ is of order 10−8 or less. On the other hand, it provides an
excellent estimate if γ is of order 10−4 or more.

Thus, n is chosen so that 2zα/2
√
(1 − γ)/(γn) is sufficiently small, say

within 5% (again, in practice, γ is replaced by its estimator γ̂n(P), to approxi-
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mately select the correct n). This implies that as γ→ 0, n→∞ to obtain a rea-
sonable level of relative accuracy. In particular, if γ decreases at an exponential
rate with respect to some system parameter b (e.g., γ ≈ exp(−θb), θ > 0; this
may be the case for queues with light tailed service distribution where the prob-
ability of exceeding a threshold b in a busy cycle decreases at an exponential
rate with b) then the computational effort n increases at an exponential rate
with b to maintain a fixed level of relative accuracy. Thus, naive simulation
becomes an infeasible proposition for sufficiently rare events.

2.2 Importance sampling

Now we discuss how importance sampling may be useful in reducing the
variance of the simulation estimate and hence reducing the computational ef-
fort required to achieve a fixed degree of relative accuracy. Consider another
distribution P∗ with the property that P∗(A) > 0 whenever P(A) > 0 for
A ⊂ E . Then,

P(E) = EP
(
I(E)

)

=
∫
I(E) dP =

∫
I(E) dP

dP∗
dP∗

(2)=
∫
I(E)L dP∗ = EP∗

(
LI(E)

)
�

where the random variable L = dP
dP∗ denotes the Radon–Nikodym deriva-

tive (see, e.g., Royden, 1984) of the probability measure P with respect to P∗
and is referred to as the likelihood ratio. When the state space Ω is finite or
countable, L(ω) = P(ω)/P∗(ω) for each ω ∈ Ω such that P∗(ω) > 0 and
(2) equals

∑
ω∈E L(ω)P∗(ω) (see Section 3 for examples illustrating the form

of the likelihood ratio in simple Markovian settings). This suggests the follow-
ing alternative importance sampling simulation procedure for estimating γ:
Generate n independent samples (I1(E)� L1)� (I2(E)� L2)� � � � � (In(E)� Ln) of
(I(E)� L) using P∗. Then

(3)γ̂n
(
P∗
) = 1

n

n∑
i=1

Ii(E)Li

provides an unbiased estimator of γ.
Consider the estimator of γ in (3). Again the central limit theorem may

be used to construct confidence intervals for γ. The relative width of the confi-
dence interval is proportional to σP∗(LI(E))/(γ

√
n ). The ratio of the standard

deviation of an estimate to its mean is defined as the relative error. Thus, the
larger the relative error of LI(E) under P∗, the larger the sample size needed
to achieve a fixed relative width of the confidence interval. In particular, the
aim of importance sampling is to find a P∗ that minimizes this relative error, or
equivalently, the variance of the output LI(E).
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In practice, the simulation effort required to generate a sample under im-
portance sampling is typically higher compared to naive simulation, thus the
ratio of the variances does not tell the complete story. Therefore, the compar-
ison of two estimators should be based not on the variances of each estimator,
but on the product of the variance and the expected computational effort re-
quired to generate samples to form the estimator (see, e.g., Glynn and Whitt,
1992). Fortunately, in many cases the variance reduction achieved through im-
portance sampling is so high that even if there is some increase in effort to
generate a single sample, the total computational effort compared to naive
simulation is still orders of magnitude less for achieving the same accuracy
(see, e.g., Chang et al., 1994; Heidelberger, 1995).

Also note that in practice, the variance of the estimator is also estimated
from the generated output and hence needs to be stable. Thus, the desirable
P∗ also has a well behaved fourth moment of the estimator (see, e.g., Sadowsky,
1996; Juneja and Shahabuddin, 2002, for further discussion on this).

2.3 Zero-variance measure

Note that an estimator has zero variance if every independent sample gener-
ated always equals a constant. In such a case in every simulation run we observe
I(E) = 1 and L = γ. Thus, for A ⊂ E ,

(4)P∗(A) = P(A)
γ

and P∗(A) = 0 for A ⊂ Ec (for any set H, Hc denotes its complement). The
zero-variance measure is typically unimplementable as it involves knowledge
of γ, the quantity that we are hoping to estimate through simulation. Nonethe-
less, this measure proves a useful guide in selecting a good implementable
importance sampling distribution in many cases. In particular, it suggests that
under a good change of measure, the most likely paths to the rare set should be
given larger probability compared to the less likely ones and that the relative
proportions of the probabilities assigned to the paths to the rare set should be
similar to the corresponding proportions under the original measure.

Also note that the zero-variance measure is simply the conditional measure
under the original probability conditioned on the occurrence of E , i.e., (4) is
equivalent to the fact that

P∗(A) = P(A ∩ E)
P(E) = P(A|E)

for all events A ∈ Ω.

2.4 Characterizing good importance sampling distributions

Intuitively, one expects that a change of measure that emphasizes the most
likely paths to the rare event (assigns high probability to them) is a good one,
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as then the indicator function I(E) is one with significant probability and the
likelihood ratio is small along these paths as its denominator is assigned a
large value. However, even a P∗ that has such intuitively desirable properties
may lead to large and even infinite variance in practice, because on a small
set in E the likelihood ratio may take large values, leading to a blow-up in
the second moment and the variance of the estimator (see Glasserman and
Kou, 1995; Glasserman and Wang, 1997; Andradottir et al., 1995; Juneja and
Shahabuddin, 2001; Randhawa and Juneja, 2004). Thus, it is imperative to
closely study the characteristics of good importance sampling distributions. We
now discuss the different criteria for evaluating good importance sampling dis-
tributions and develop some guidelines for such selections. For this purpose
we need a more concrete framework to discuss rare-event simulation.

Consider a sequence of rare events (Eb: b � 1) and associated probabilities
γb = P(Eb) indexed by a rarity parameter b such that γb → 0 as b → ∞.
For example, in a stable single server queue setting, if Eb denotes the event
that the queue length hits level b in a busy cycle, then we may consider the
sequence γb = P(Eb) as b→∞ (in the reliability set-up this discussion may be
modified by replacing b with ε, the maximum of failure rates, and considering
the sequence of probabilities γε as ε→ 0).

Now consider a sequence of random variables (Zb: b � 1) such that each
Zb is an unbiased estimator of γb under the probability P∗ (this probability
measure may depend upon b). The sequence of estimators (Zb: b � 1) is said
to possess the bounded relative error property if

lim sup
b→∞

σP∗(Zb)

γb
<∞�

It is easy to see that if the sequence of estimators possesses the bounded rela-
tive error property, then the number of samples, n, needed to guarantee a fixed
relative accuracy remains bounded no matter how small the probability is, i.e.,
the computational effort is bounded in n for all b.

Example 1. Suppose we need to find γb = P(Eb) for large b through impor-
tance sampling as discussed earlier. Let Zb = L(b)I(Eb) denote the impor-
tance sampling estimator of γb under P∗, where L(b) denotes the associated
likelihood ratio (see (2)). Further suppose that under P∗:

(1) P∗(Eb) � β > 0 for all b.
(2) For each b, the likelihood ratio is constant over sample paths belonging

to Eb. Let kb denote its constant value.

Then, it is easy to see that the estimators (Zb: b � 1) have bounded rel-
ative error. To see this, note that γb = EP∗(L(b)I(Eb)) = kbP∗(Eb) and
EP∗(L(b)2I(Eb)) = k2

bP∗(Eb). Recall that

σ2
P∗(Zb) = EP∗

(
L(b)2I(Eb)

)− EP∗
(
L(b)I(Eb)

)2
�



300 S. Juneja and P. Shahabuddin

Then

σP∗(Zb)

γb
�
√

EP∗(L(b)2I(Eb))
γb

� 1√
β
�

The two conditions in Example 1 provide useful insights in finding a good
importance sampling distribution, although typically it is difficult to find an im-
plementable P∗ that has constant likelihood ratios along sample paths to the
rare set (Example 8 discusses one such case). Often one finds a distribution
such that the likelihood ratios are almost constant (see, e.g., Siegmund, 1976;
Sadowsky, 1991; Sadowsky and Szpankowski, 1995; Juneja, 2001, and the dis-
cussion in Section 4). In such and more general cases, it may be difficult to find
a P∗ that has bounded relative error and we often settle for estimators that
are efficient on a ‘logarithmic scale’. These are referred to in the literature as
asymptotically optimal or asymptotically efficient. Notable exceptions where P∗
with bounded relative error are known include rare-event probabilities asso-
ciated with certain reliability systems (see, e.g., Shahabuddin, 1994) and level
crossing probabilities (see, e.g., Asmussen and Rubinstein, 1995). To under-
stand the notion of asymptotic optimality, note that since σ2

P∗(Zb) � 0 and
γb = EP∗(Zb), it follows that

EP∗
(
Z2
b

)
� γ2

b�

and hence log(EP∗(Z2
b)) � 2 log(γb). Since log(γb) < 0, it follows that

log(EP∗(Z2
b))

log(γb)
� 2

for all b and for all P∗. The sequence of estimators are said to be asymptotically
optimal if the above relation holds as an equality in the limit as b → ∞. For
example, suppose that γb = P1(b) exp(−cb) and EP∗(Z2

b) = P2(b) exp(−2cb)
where c > 0, and P1(·) and P2(·) are any two polynomial functions of b (of
course, P2(b) � P1(b)

2). The measure P∗ may be asymptotically optimal, al-
though we may not have bounded relative error.

2.4.1 Uniformly bounded likelihood ratios
In many settings, one can identify a change of measure where the associated

likelihood ratio is uniformly bounded along paths to the rare set E (the sub-
script b is dropped as we again focus on a single set) by a small constant k < 1,
i.e.,

LI(E) � kI(E)�
This turns out to be a desirable trait. Note that EP∗(L2I(E)) = EP(LI(E)).
Thus,

(5)
σ2

P∗(L(I(E))
σ2

P(I(E))
= EP(L(I(E))− γ2

γ − γ2 � kγ − γ2

γ − γ2 � k�
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Thus, guaranteed variance reduction by at least a factor of k is achieved.
Often, a parameterized family of importance sampling distributions can be
identified so that the likelihood ratio associated with each distribution in this
family is uniformly bounded along paths to the rare set by a constant that may
depend on the distribution. Then, a good importance sampling distribution
from this family may be selected as the one with the minimum uniform bound.
For instance, in the example considered in Section 1.1, it can be seen that the
likelihood ratio in (1) is upper bounded by

(1/2)100

p80(1 − p)20

for each p � 1/2 when the experiment is a success, i.e., the number of heads
n is greater than or equal to 80 (also see Section 4). Note that this bound is
minimized for p = 0�8.

In some cases, we may be able to partition the rare event of interest E into
disjoint sets E1� � � � � EJ such that there exist probability measures (P∗j : j � J)

such that the likelihood ratio L(j) corresponding to each probability measure
P∗j satisfies the relation

L(j) � kj

for a constant kj � 1 on the set Ej (although, the likelihood ratio may be
unbounded on other sets). One option then may be to estimate each P(Ej)
separately using the appropriate change of measure. Sadowsky and Bucklew
(1990) propose that a convex combination of these measures may work in esti-
mating P(E). To see this, let (pj: j � J) denote positive numbers that sum to
one, and consider the measure

P∗(·) =
∑
j�J

pjP∗j (·)�

It is easy to see that the likelihood ratio of P w.r.t. P∗, then equals

1∑
j�J pj/L(j)

� max
j�J

kj

pj
�

so that if the right-hand side is smaller than 1 (which is the case, e.g., if pj is
proportional to kj and

∑
j�J kj < 1) guaranteed variance reduction may be

achieved.
In some cases, under the proposed change of measure, the uniform upper

bound on the likelihood ratio is achieved on a substantial part of the rare set
and through analysis it is shown that the remaining set has very small prob-
ability, so that even large likelihood ratios on this set contribute little to the
variance of the estimator (see, e.g., Juneja and Shahabuddin, 2002). This re-
maining set may be asymptotically negligible so that outputs from it may be
ignored (see, e.g., Boots and Shahabuddin, 2001) introducing an asymptoti-
cally negligible bias.
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3 Rare-event simulation in a Markovian framework

We now specialize our discussion to certain rare events associated with dis-
crete time Markov processes. This framework captures many commonly stud-
ied rare events in the literature including those discussed in Sections 4–7.

Consider a Markov process (Si: i � 0) where each Si takes values in space S
(e.g., S = #d). Often, in rare-event simulation we want to determine the small
probability of an event E determined by the Markov process observed up to a
stopping time T , i.e., (S0� S1� � � � � ST ). A random variable (r.v.) T is a stopping
time w.r.t. the stochastic process (Si: i � 0) if for any nonnegative integer n,
whether {T = n} occurs or not can be completely determined by observing
(S0� S1� S2� � � � � Sn). In many cases we may be interested in the probability of
a more specialized event E = {ST ∈ R}, where R ⊂ S and T denotes the
hitting time to a ‘terminal’ set T , R ⊂ T , i.e., T = inf{n: Sn ∈ T }. In many
cases, the rare-event probability of interest may be reduced to P(ST ∈ R)
through state-space augmentation; the latter representation has the advantage
that the zero-variance estimator is Markov for this probability. Also, as we
discuss in Examples 5 and 6, in a common application, the stopping time under
consideration is infinite with large probability and our interest is in estimating
P(T <∞).

Example 2. The coin tossing example discussed in the introduction fits this
framework by setting T = 100 and letting (Xi: i � 1) be a sequence of i.i.d.
random variables where each Xi equals one with probability 0.5 and zero with
probability 0.5. Here, E = {∑100

i=1 Xi � 80}. Alternatively, let Sn denote the
vector (

∑n
i=1Xi� n). Let T denote the event {(x� 100): x � 0}, T = inf{n: Sn ∈

T } and let R = {(x� 100): x � 80}. Then the probability of interest equals
P(ST ∈ R).

Note that a similar representation may be obtained more generally for the
case where (Xi: i � 1) is a sequence of generally distributed i.i.d. random
variables, and our interest is in estimating the probability P(Sn/n ∈ R) for R
that does not include EXi in its closure.

Example 3. The problem of estimating the small probability that the queue
length in a stable M/M/1 queue hits a large threshold b in a busy cycle (a busy
cycle is the stochastic process between the two consecutive times that an arrival
to the system finds it empty), fits this framework as follows: Let λ denote the
arrival rate to the queue and let μ denote the service rate. Let p = λ/(λ+μ).
Let Si denote the queue length after the ith state change (due to an ar-
rival or a departure). Clearly (Sn: n � 0) is a Markov process. To denote
that the busy cycle starts with one customer we set S0 = 1. If Si > 0, then
Si+1 = Si + 1 with probability p and Si+1 = Si − 1 with probability 1 − p. Let
T = inf{n: Sn = b or Sn = 0}. Then R = {b} and the probability of interest
equals P(ST ∈ R).
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Example 4. The problem of estimating the small probability that the queue
length in a stable GI/GI/1 queue hits a large threshold b in a busy cycle is
important from an applications viewpoint. For instance, Chang et al. (1994)
and Heidelberger (1995) discuss how techniques for efficient estimation of
this probability may be used to efficiently estimate the steady state probabil-
ity of buffer overflow in finite-buffer single queues. This probability also fits
in our framework, although we need to keep in mind that the queue length
process observed at state change instants is no longer Markov and additional
variables are needed to ensure the Markov property. Here, we assume that
the arrivals and the departures do not occur in batches of two or more. Let
(Qi: i � 0) denote the queue-length process observed just before the time
of state change (due to arrivals or departures). Let Ji equal 1 if the ith state
change is due to an arrival. Let it equal 0, if it is due to a departure. Let
Ri denote the remaining service time of the customer in service if Ji = 1 and
Qi > 0. Let it denote the remaining interarrival time if Ji = 0. Let it equal
zero if Ji = 1 and Qi = 0. Then, setting Si = (Qi� Ji� Ri), it is easy to see that
(Si: i � 0) is a Markov process. Let T = inf{n: (Qi� Ji) = (b� 1) or (Qi� Ji) =
(1� 0)}. Then R = {(b� 1� x): x � 0} and the probability of interest equals
P(ST ∈ R).

Example 5. Another problem of importance concerning small probabilities
in a GI/GI/1 queue setting with first-come-first-serve scheduling rule in-
volves estimation of the probability of large delays in the queue in steady
state. Suppose that the zeroth customer arrives to an empty queue and that
(A0�A1�A2� � � �) denotes a sequence of i.i.d. nonnegative r.v.’s where An de-
notes the interarrival time between customer n and n + 1. Similarly, let
(B0� B1� � � �) denote the i.i.d. sequence of service times in the queue so that
the service of customer n is denoted by Bn. Let Wn denote the waiting time
of customer n in the queue. Then W0 = 0. The well-known Lindley recursion
follows:

Wn+1 = max(Wn + Bn −An� 0)

for n � 0 (see, e.g., Asmussen, 2003). We assume that E(Bn) < E(An), so that
the queue is stable and the steady state waiting time distribution exists. Let
Yn = Bn −An. Then, since W0 = 0, it follows that

Wn+1 = max(0� Yn� Yn + Yn−1� � � � � Yn + Yn−1 + · · · + Y0)�

Since the sequence (Yi: i � 0) is i.i.d., the right-hand side has the same distri-
bution as

max(0� Y0� Y0 + Y1� � � � � Y0 + Y1 + · · · + Yn)�

In particular, the steady-state delay probability P(W∞ > u) equals P(∃n:∑n
i=0 Yi > u). Let Sn = ∑n

i=0 Yi denote the associated random walk with
a negative drift. Let T = inf{n: Sn > u} so that T is a stopping time w.r.t.
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(Si: i � 0). Then P(W∞ > u) equals P(T < ∞). The latter probability is
referred to as the level-crossing probability of a random walk. Again, we need
to generate (S0� S1� � � � � ST ) to determine whether the event {T < ∞} occurs
or not. However, we now have an additional complexity that P(T = ∞) > 0
and hence generating (S0� S1� � � � � ST ) may no longer be feasible. Importance
sampling resolves this by simulating under a suitable change of measure P∗
under which the random walk has a positive drift so that P∗(T = ∞) = 0
(see Siegmund, 1976). This is also discussed in Section 4 in a multidimensional
setting when the Xi’s have a light-tailed distribution.

Example 6. The problem of estimating ruin probabilities in the insurance
sector also fits this framework as follows: Suppose that an insurance com-
pany accumulates premiums at a deterministic rate p. Further suppose that
the claim interarrival times are an i.i.d. sequence of r.v.’s (A1�A2� � � �). Let
N(t) = sup{n:

∑n
i=1 Ai � t} denote the number of claims that have arrived

by time t. Also, assume that the claim sizes are again another i.i.d. sequence
of r.v.’s (B1� B2� � � �) independent of the interarrival times (these may be mod-
eled using light or heavy-tailed distributions). Let the initial reserves of the
company be denoted by u. In such a model, the wealth of the company at time
t is denoted by

W (t) = u+ pt −
N(t)∑
i=1

Bi�

The probability of eventual ruin therefore equals P(inft W (t) � 0). Note that
a ruin can occur only at the times of claim arrivals. The wealth at the time of
arrival of claim n equals

W

(
n∑
i=1

Ai

)
= u+ p

n∑
i=1

Ai −
n∑
i=1

Bi�

Let Yi = Bi − pAi and Sn = ∑n
i=1 Yi. The probability of eventual ruin then

equals P(maxn Sn > u) or equivalently P(T <∞), where T = inf{n: Sn > u}.
Hence, the discussion at the end of Example 5 applies here as well.

Example 7 (Highly reliable Markovian systems). These reliability systems have
components that fail and repair in a Markovian manner, i.e., they have ex-
ponentially distributed failure and repair times. High reliability is achieved
due to the highly reliable nature of the individual components comprising
the system. Complex system interdependencies may be easily modeled in the
Markov framework. These interdependencies may include failure propagation,
i.e., failure of one component with certain probability leads to failure of other
components. They may also include other features such as different modes of
component failure, repair and operational dependencies, component switch-
over times, etc. See, e.g., Goyal and Lavenberg (1987) and Goyal et al. (1992)
for further discussion on such modeling complexities.
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A mathematical model for such a system may be built as follows: Suppose
that the system has d distinct component-types. Each component type i has
mi identical components for functional and spare requirements. Let λi and μi
denote the failure and repair rate, respectively, for each of these components.
The fact that each component is highly reliable is modeled by letting λi =
Θ(εri)3 for ri � 1, and letting μi = Θ(1). The system is then analyzed as
ε→ 0.

Let (Y(t): t � 0) be a continuous time Markov chain (CTMC) of this sys-
tem, where Y(t) = (Y1(t)� Y2(t)� � � � � Yd(t)�R(t)). Here, each Yi(t) denotes
the number of failed components of type i at time t. The vector R(t) con-
tains all configurational information required to make (Y(t): t � 0) a Markov
process. For example, it may contain information regarding the order in which
the repairs occur, the failure mode of each component, etc. Let A denote the
state when all components are ‘up’ (let it also denote the set containing this
state). Let R denote the set of states deemed as failed states. This may be a
rare set for small values of ε. The probability that the system starting from
state A, hits the set R before returning to A is important for these highly reli-
able systems as this is critical to efficient estimation of performance measures
such as system unavailability and mean time to failure. Let (Si: i � 0) denote
the discrete time Markov chain (DTMC) embedded in (Y(t): t � 0). For esti-
mating this probability, the DTMC may be simulated instead of the CTMC as
both give identical results. Set S0 = A. Then, the process (S1� � � � � ST ) may be
observed where T = inf{n � 1: Sn ∈ T }, where T = A ∪R. The set E equals
{ST ∈ R}.

In this chapter we do not pursue highly reliable systems further. Instead we
refer the reader to Heidelberger (1995) and Nakayama et al. (2001) for surveys
on this topic.

3.1 Importance sampling in a Markovian framework

Let Pn denote the probability P restricted to the events associated with
(S0� S1� � � � � Sn) for n = 1� 2� � � � . Then

γ := P(E) =
∑
n

Pn(En)�

where En = E ∩ {T = n}. Consider another distribution P∗ and let P∗n denote
its restriction to the events associated with (S0� S1� � � � � Sn) for n = 1� 2� � � � .
Suppose that for each n, P∗n(An) > 0 whenever Pn(An) > 0 for An ⊂ En.

3 A nonnegative function f (ε) is said to be O(εr) for r � 0 if there exists a positive constantK such that
f (ε) � Kεr for all ε sufficiently small. It is said to be Θ(εr) for r � 0 if there exist positive constants
K1 and K2 (K1 < K2), such that K1ε

r � f (ε) � K2ε
r for all ε sufficiently small.
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Then, proceeding as in (2),

P(E) =
∑
n

∫
En
Ln dP∗n�

where Ln = dPn
dP∗n . For example, if the sequence (S0� S1� � � � � Sn) has a density

function fn(·) for each n under P (f ∗n (·) under P∗) such that f ∗n (x0� x1� � � � �
xn) > 0 whenever fn(x0� x1� � � � � xn) > 0, then

(6)Ln(S0� S1� � � � � Sn) = fn(S0� S1� � � � � Sn)

f ∗n (S0� S1� � � � � Sn)

for each n a.s.
Thus, γ = EP∗(LT I(E)) where EP∗ is an expectation operator under the

probability P∗. To further clarify the discussion, we illustrate the form of the
likelihood ratio for Examples 3 and 4.

Example 8. In Example 3, suppose the queue is simulated under a probability
P∗ under which it is again an M/M/1 queue with arrival rate λ∗ and service
rate μ∗. Let p∗ = λ∗/(λ∗ + μ∗). Consider a sample path (S0� S1� � � � � ST ) that
belongs to E , i.e., {ST ∈ R}. Let NA denote the number of arrivals and NS de-
note the number of service completions up to time T along this sample path.
Thus, NA = b +NS − 1 where b denotes the buffer size. The likelihood ratio
LT along this path therefore equals

(
p

p∗

)NA( 1 − p

1 − p∗

)NS
�

In the case λ < μ, it can be seen that λ∗ = μ and μ∗ = λ achieves the
two conditions discussed in Example 1 (with kb = (λ/μ)b−1) and hence the
associated importance sampling distribution has the bounded relative error
property.

Example 9. In Example 4, let f (·) and g(·) denote the p.d.f. of the interarrival
times and the service times, respectively under the probability P. Let P∗ be
another probability under which the queue remains a GI/GI/1 queue with
the new p.d.f.’s for interarrival and service times denoted by f ∗(·) and g∗(·),
respectively. Consider a sample path (S0� S1� � � � � ST ) that belongs to E , i.e.,
{QT = b}. LetNA denote the number of arrivals andNB denote the number of
service initiations up to time T along this sample path. Let (A1�A2� � � � �ANA)
denote the NA interarrival times generated and let (B1� B2� � � � � BNB) denote
the NB service times generated along this sample path. The likelihood ratio
LT along this path therefore equals

NA∏
i=1

f (Ai)

f ∗(Ai)

NB∏
i=1

g(Bi)

g∗(Bi)
�
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Thus, from the simulation viewpoint the computation of the likelihood ratio in
Markovian settings is straightforward and may be done iteratively as follows:
Before generation of a sample path of (S0� S1� � � � � ST ) under the new proba-
bility, the likelihood ratio may be initialized to 1. Then, it may be updated at
each transition by multiplying it with the ratio of the original probability den-
sity function of the newly generated sample(s) at that transition and the new
probability density function of this sample(s). The probability density function
may be replaced by the probability values when discrete random variables are
involved.

3.2 Zero-variance measure in Markovian settings

For probabilities such as P(ST ∈ R), the zero-variance measure has a
Markovian representation. For E = {ST ∈ R}, let Px(E) denote the proba-
bility of this event, conditioned on S0 = x. Recall that T = inf{n: Sn ∈ T }.
For simplicity suppose that the state space S of the Markov chain is finite (the
following discussion is easily extended to more general state spaces) and let
P = (pxy : x� y ∈ S) denote the associated transition matrix. In this setting,

Px(E) =
∑
y∈R

pxy +
∑

y∈S−T
pxyPy(E)�

Thus, p∗xy = pxy/Px(E) for y ∈ R and p∗xy = pxyPy(E)/Px(E) for y ∈ S − T
is a valid transition probability. It is easy to check that in this case

LT =
pS0�S1pS1�S2 � � � pST−1�ST

p∗S0�S1
p∗S1�S2

� � � p∗ST−1�ST

equals PS0(E) a.s., i.e., the associated P∗ is the zero-variance measure. The
problem again is that determining p∗xy requires knowledge of Px(E) for all
x ∈ S .

Consider the probability P(Sn/n � a), where Sn =∑i�n Xi, the (Xi: i � 0)
are i.i.d. r.v.’s taking values in #, and a > EXi. From the above discussion and
using the associated augmented Markov chain discussed at the end of Exam-
ple 2, it can be seen that the zero-variance measure conditioned on the event
that Sm = sm < na, m < n, has transition probabilities

p∗m�sm(y) = P(Xm+1 = y)
P(Sn � na|Sm+1 = sm + y)

P(Sn � na|Sm = sm)
�

More generally,

P∗(Xm+1 ∈ dy|Sm = sm)

(7)= P(Xm+1 ∈ dy)
P(Sn−m−1 � na− sm − y)

P(Sn−m � na− sm)
�

Such an explicit representation of the zero-variance measure proves useful in
adaptive algorithms where one adaptively learns the zero-variance measure
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(see Section 5). This representation is also useful in developing simpler im-
plementable importance sampling distributions that are in an asymptotic sense
close to this measure (see Section 3.3).

3.3 Exponentially twisted distributions

Again consider the probability P(Sn/n � a). Let Ψ(·) denote the log-
moment generating function of Xi, i.e., Ψ(θ) = log E(exp(θXi)). Let Θ =
{θ :Ψ(θ) <∞}. Suppose that Θo (for any set H, Ho denotes its interior) con-
tains the origin, so that Xi has a light-tailed distribution. For θ ∈ Θo, consider
the probability Pθ under which the (Xi: i � 1) are i.i.d. and

Pθ(Xi ∈ dy) = exp
(
θy −Ψ(θ)

)
P(Xi ∈ dy)�

This is referred to as the probability obtained by exponentially twisting the
original probability by θ. We now show that the distribution of Xm+1 con-
ditioned on Sm = sm under the zero-variance measure for the probability
P(Sn/n � a) (shown in (7)) converges asymptotically (as n→∞) to a suitable
exponentially twisted distribution independent of sm, thus motivating the use
of such distributions for importance sampling of constituent r.v.’s in random
walks in complex stochastic processes.

Suppose that θa ∈ Θo solves the equation Ψ ′(θ) = a. In that case, when the
distribution of Xi is nonlattice, the following exact asymptotic is well known
(see Bahadur and Rao, 1960; Dembo and Zeitouni, 1998):

(8)P
(
Sn

n
� a+ k

n
+ o
(

1
n

))
∼ c√

n
exp
[−n(θaa−Ψ(θa)

)− θak
]
�

where c = 1/(
√

2πΨ ′′(θa)θa) (an ∼ bn means that an/bn → 1 as n→∞) and
k is a constant. Usually, the exact asymptotic is developed for P(Sn/n � a).
The minor generalization in (8) is discussed, e.g., in Borkar et al. (2004). This
exact asymptotic may be inaccurate if n is not large enough especially for cer-
tain sufficiently ‘nonnormal’ distributions ofXi. In such cases, simulation using
importance sampling may be a desirable option to get accurate estimates.

Using (8) in (7) as n→∞, for a fixed m, it can be easily seen that

lim
n→∞P∗(Xm+1 ∈ dy|Sm = sm) = P(Xm+1 ∈ dy) exp

(
θay −Ψ(θa)

)
�

i.e., asymptotically the zero-variance measure converges to Pθa . This sug-
gests that Pθa may be a good importance sampling distribution to estimate
P(Sn/n � a) for large n. We discuss this further in Section 4. Also, it is easily
seen through differentiation that the mean of Xi under Pθ equals Ψ ′(θ). In
particular, under Pθa , the mean of Xi equals a, so that {Sn/n � a} is no longer
a rare event.
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4 Large deviations of multidimensional random walks

In this section we focus on efficient estimation techniques for two rare-event
probabilities associated with multidimensional random walks, namely: (1) the
probability that the random walk observed after a large time period n, lies in
a rare set; (2) the probability that the random walk ever hits a rare set. We
provide a heuristic justification for the large deviations asymptotic in the two
cases and identify the asymptotically optimal changes of measures. We note
that the ideas discussed earlier greatly simplify the process of identifying a
good change of measure. These include restricting the search for the change
of measure to those obtained by exponentially twisting the original measure,
selecting those that have constant (or almost constant) likelihood ratios along
paths to the rare set, or selecting those whose likelihood ratios along such paths
have the smallest uniform bound.

4.1 Random walk in a rare set

Consider the probability P(Sn/n ∈ R), where Sn = ∑n
i=1 Xi, the Xi’s

are i.i.d. and each Xi is a random column vector taking values in #d. Thus,
Xi = (Xi1� � � � �Xid)

T where the superscript “T” denotes the transpose op-
eration. The set R ⊂ #d and its closure does not include EXi. The essential
ideas for this discussion are taken from Sadowsky and Bucklew (1990) (also see
Sadowsky, 1996) where this problem is studied in a more general framework.
We refer the reader to these references for rigorous analysis, while the discus-
sion here is limited to illustrating the key intuitive ideas in a simple setting.

For simplicity suppose that the log moment generating function,

Ψ(θ) = log E
(
exp
(
θTX

))
�

exists for each column vector θ ∈ #d. This is true, e.g., when Xi is bounded or
has a multivariate Gaussian distribution. Further suppose thatXi is nondegen-
erate, i.e., it is not a.s. constant in any dimension. Define the associated rate
function

J(α) = sup
θ

(
θTα−Ψ(θ)

)

for α ∈ #d. Note that for each θ, θTα−Ψ(θ) is a convex function of α, hence,
J(·) being a supremum of convex functions, is again convex. It can be shown
that it is strictly convex in the interior J o, where

J = {α: J(α) <∞}�
From large deviations theory (see, e.g., Dembo and Zeitouni, 1998), we see
that

(9)P
(
Sn

n
≈ a

)
≈ exp

(−nJ(a))�
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Here, Sn/n ≈ a may be taken to be the event that Sn/n lies in a small ball of
radius ε centered at a. The relation (9) becomes an equality when an appro-
priate O(ε) term is added to J(a) in the exponent in the right-hand side. It is
instructive to heuristically see this result. Note that

P
(
Sn

n
≈ a

)
=
∫
x≈na

dFn(x)�

where Fn(·) denotes the distribution function (d.f.) of Sn (obtained by convo-
lution of the d.f. of Xi n times). Let Fθ(·) denote the d.f. obtained by exponen-
tially twisting F(·) by θ, i.e.,

dFθ(x) = exp
(
θTx−Ψ(θ)

)
dF(x)�

It follows (heuristically speaking) that

(10)P
(
Sn

n
≈ a

)
≈ exp

[−n(θTa−Ψ(θ)
)]

Pθ

(
Sn

n
≈ a

)
�

where Pθ denotes the probability induced by Fθ(·). Since the left-hand side
is independent of θ, for large n it is plausible that the θ which maximizes
Pθ(Sn/n ≈ a), also maximizes θTa− Ψ(θ). Clearly, for large n, Pθ(Sn/n ≈ a)
is maximized by θ̃a such that Eθ̃a

Xi = a, so that by the law of large numbers
this probability tends to 1 as n → ∞ (Eθ denotes the expectation under the
measure Pθ). Indeed

θa = arg max
θ

(
θTa−Ψ(θ)

)
�

uniquely satisfies the relation EθaXi = a. To see this note that θa is the solution
to ∇Ψ(θ) = a (it can be shown that such a θa uniquely exists for each a ∈ J o).
Also via differentiation, it is easily checked that for each θ,

EθXi = ∇Ψ(θ)�
In particular, J(a) = θT

aa−Ψ(θa) and (9) follows from (10).
For any setH, let �H denote its closure. Define the rate function of the set R,

J(R) = inf
α∈R J(α)�

For R that is sufficiently ‘nice’ so that �R = �Ro (e.g., in two dimensions R does
not contain any isolated points or lines) and R ∩ J o �= ∅ so that there exist
open intervals in R that can be reached with positive probability, the following
large deviations relation holds

(11)lim
n→∞

1
n

log P
(
Sn

n
∈ R

)
= −J(R)�

Note that there exists a point a∗ on the boundary of �R such that J(a∗) = J(R).
Such an a∗ is referred to as a minimum rate point. Intuitively, (11) may be seen
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quite easily when R is compact. Loosely speaking, the lower bound follows
since, P(Sn/n ∈ R) � P(Sn/n ≈ a∗) (where, in this special case, Sn/n ≈ a
may be interpreted as the event that Sn/n lies in the intersection of R and a
small ball of radius ε centered at a). Now if one thinks of R as covered by a
finite number m(ε) balls of radius ε centered at (a∗� a2� � � � � am(ε)), then

P
(
Sn

n
∈ R

)
� P

(
Sn

n
≈ a∗

)
+
m(ε)∑
i=2

P
(
Sn

n
≈ ai

)

(≈)
� m(ε) exp

(−nJ(a∗)) = m(ε) exp
(−nJ(R))

and thus (11) may be expected.
Recall that from zero-variance estimation considerations, the new change

of measure should assign high probability to the neighborhood of a∗. This is
achieved by selecting Fθa∗ (·) as the IS distribution (since Eθa∗ (Xi) = a∗). How-
ever, this may cause problems if the corresponding likelihood ratio

Ln = exp
(−n(θT

a∗x−Ψ(θa∗)
))

becomes large for some x ∈ R, i.e., some points are assigned insufficient prob-
ability under Fθa∗ (·).

If all x ∈ R have the property that

(12)θT
a∗x � θT

a∗a
∗�

then the likelihood ratio for all x ∈ R is uniformly bounded by

exp
(−n(θT

a∗a
∗ −Ψ(θa∗)

)) = exp
(−nJ(R))�

Hence P(Sn/n ∈ R) = Eθa∗ (LnI(R)) � exp(−nJ(R)) and Eθa∗ (L
2
nI(R)) �

exp(−2nJ(R)) so that asymptotic optimality of Fθa∗ (·) follows.
The relation (12) motivates the definition of a dominating point (see Ney,

1983; Sadowsky and Bucklew, 1990). A minimum rate point a∗ is a dominating
point of the set R if

R ⊂ H
(
a∗
) = {x: θT

a∗x � θT
a∗a

∗}�
Recall that

J(a) = θT
aa−Ψ(θa)

for a ∈ J o. Thus, differentiating with respect to a component-wise and noting
that θa∗ = ∇Ψ(θa∗) it follows that ∇J(a∗) = θa∗ . Hence ∇J(a∗) is orthogonal
to the plane θT

a∗x = θT
a∗a

∗. In particular, this plane is tangential to the level
set {x: J(x) = J(a∗)}. Clearly, if R is a convex set, we have R ⊂ H(a∗). Of
course, as Figure 1 indicates, this is by no means necessary. Figure 2 illustrates
the case where R is not a subset of H(a∗). Even, in this case, Fθa∗ (·) may be
asymptotically optimal if the region in R where the likelihood ratio is large
has sufficiently small probability. Fortunately, in this more general setting, in
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Fig. 1. Set with a dominating point a∗.

Fig. 2. Set with a minimum rate point a∗ which is not a dominating point. Two points (a∗� a2) are
required to cover R with H(a∗) and H(a2). Note that J(a2) > J(a∗) so that a2 is not a minimum rate

point.

Sadowsky and Bucklew (1990), sufficient conditions for asymptotic optimality
are proposed that cover far more general sets R. These conditions require ex-
istence of points (a1� � � � � am) ⊂ J o ∩ �R such that �R ⊂ ⋃m

i=1 H(ai). Then
for any positive numbers (pi: i � m) such that

∑
i�m pi = 1, the distribu-

tion F∗(·) =∑i�m piFθai (·) asymptotically optimally estimates P(Sn/n ∈ R).
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Note that from an implementation viewpoint, generating Sn from the distri-
bution F∗ corresponds to generating a r.v. k from the discrete distribution
(p1� � � � � pm) and then generating (X1� � � � �Xn) using the distribution Fθak
to independently generate each of the Xi’s.

The fact that F∗ is indeed a good importance sampling distribution is easy
to see as the corresponding likelihood ratio (F w.r.t. F∗) equals

1∑
i�m pi exp[n(θT

ai
x)+Ψ(θai)]

�
exp[−n(θT

ai
x)−Ψ(θai)]
pi

� exp[−nJ(ai)]
pi

�

where the upper bound holds for any choice of i. This in turn is upper bounded
by

exp[−nJ(a∗)]
mini pi

�

For large n, this is a uniform upper bound assuring guaranteed variance reduc-
tion. It follows that

lim
n→∞

1
n

log EP∗L
2I(R) � −2J(R)

assuring asymptotic optimality of P∗.

4.2 Probability of hitting a rare set

Let Tδ = inf{n: δSn ∈ R}. We now discuss efficient estimation techniques
for the probability P(Tδ < ∞) as δ ↓ 0. This problem generalizes the level
crossing probability in the one-dimensional setting discussed by Siegmund
(1976) and Asmussen (1989). Lehtonen and Nyrhinen (1992a, 1992b) consid-
ered the level crossing problem for Markov-additive processes. (Recall that
Examples 5 and 6 also consider this.) Collamore (2002) considered the prob-
lem for Markov-additive processes in general state spaces. Again, we illustrate
some of the key ideas for using importance sampling for this probability in the
simple framework of Sn being a sum of i.i.d. random variables taking values in
#d, when �Ro = �R.

Note that the central tendency of the random walk Sn is along the ray λEXi

for λ � 0. We further assume that EXi does not equal zero and that R is
disjoint with this ray, in the sense that

R ∩ {λx: λ > 0� x ≈ EXi} = ∅�
where x ≈ EXi means that x lies in a ball of radius ε > 0 centered at EXi,
for some ε. Thus, P(Tδ < ∞) is a rare event as δ ↓ 0. Figure 3 graphically
illustrates this problem.
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Fig. 3. Estimating the probability that the random walk hits the rare set.

First we heuristically arrive at the large deviations approximation for P(Tδ <
∞) (see Collamore, 1996, for a rigorous analysis). Let

Tδ(a) = inf{n: δSn ≈ a}�
where again δSn ≈ a may be taken to be the event that δSn lies in a small ball
of radius ε centered at a.

Again, under importance sampling suppose that each Xi is generated using
the twisted distribution Fθ. Then the likelihood ratio along {Tδ(a) < ∞} up
till time Tδ(a) equals (approximately)

exp
[
−θTa

δ
+ Tδ(a)Ψ(θ)

]
�

Suppose that θ is restricted to the set {θ: Ψ(θ) = 0}. This ensures that the
likelihood ratio is almost constant. Thus, for such a θ we may write

P
(
Tδ(a) <∞) ≈ exp

[
−θTa

δ

]
Pθ
(
Tδ(a) <∞)�

Again, the left-hand side is independent of θ so that θ̃ that maximizes
Pθ(Tδ(a) < ∞) as δ → 0 should also maximize θTa subject to Ψ(θ) = 0.
Intuitively, one expects such a θ̃ to have the property that the ray λEθ̃(Xi)
for λ � 0 intersects a, so that the central tendency of the random walk under
Fθ̃ is towards a. This may also be seen from the first-order conditions for the
relaxed concave programming problem: Maximize θTa subject to Ψ(θ) � 0.
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(It can be seen that the solution to the relaxed problem θa also satisfies the
original constraint Ψ(θ) = 0.) These amount to the existence of a scalar λ > 0
such that

∇Ψ(θa) = λa

(see, e.g., Luenberger, 1984).
We now heuristically argue that Pθa(Tδ(a) <∞)→ 1 as δ→ 0. Under Pθa ,

from the central limit theorem,

Sn ≈ nEθaXi +
√
nN(0� C)�

where EθaXi = λa denotes its drift and C denotes the covariance matrix of the
components of Xi. In particular,

δS� 1
λδ � ≈ a+

√
δ

λ
N(0� C)

and this converges to a as δ→ 0 suggesting that Pθa(Tδ(a) <∞)→ 1.
Thus heuristically,

P
(
Tδ(a) <∞) ≈ exp

[
−θT

a

a

δ

]

and

P
(
Tδ(R) <∞) ≈ exp

[
−H(R)

δ

]
�

where

H(R) = inf
a∈R θ

T
aa = inf

a∈R sup
(θ:Ψ(θ)=0)

θTa�

Specifically, the following result may be derived

(13)lim
δ→0

δ log P
(
Tδ(R) <∞) = −H(R)

(see Collamore, 1996). Suppose that there exists an a∗ ∈ �R such that H(R) =
θT
a∗a

∗. It is easy to see that such an a∗ must be an exposed point, i.e., the ray
{va∗: 0 � v < 1} does not touch any point of R. Furthermore, suppose that

R ⊂ H
(
a∗
)  = {x: θT

a∗x � θT
a∗a

∗}�
Then, the likelihood ratio of F w.r.t. Fθa∗ up till time Tδ(R) equals

exp
(−θT

a∗STδ(R)
)

� exp
(
−θT

a∗
a∗

δ

)
�

Thus, we observe guaranteed variance reduction while simulating under Fθa∗
(note that Pθa∗ (Tδ(R) <∞)→ 1 as δ→ 0). In addition, it follows that

lim
δ→0

δ log EL2
Tδ(R)I

(
Tδ(R) <∞) � −2H(R)�
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The above holds as an equality in light of (13), proving that Fθa∗ ensures as-
ymptotic optimality.

Again, as in the previous subsection, suppose thatR is not a subset ofH(a∗),
and there exist points (a1� � � � � am) ⊂ �R (a∗ = a1) such that �R ⊂⋃m

i=1 H(ai).
Then, for any positive numbers (pi: i � m) such that

∑
i�m pi = 1,

the distribution F∗(·) = ∑
i�m piFθai (·) asymptotically optimally estimates

P(Tδ(R) <∞).

5 Adaptive importance sampling techniques

In this section we restrict our basic Markov process (Si: i � 0) to a finite
state space S . We associate a one-step transition reward g(x� y) � 0 with each
transition (x� y) ∈ S2 and generalize our performance measure to that of esti-
mating the expected cumulative reward until termination (when a terminal set
of states T is hit) starting from any state x ∈ S − T , i.e., estimating

(14)J∗(x) = Ex

[
T−1∑
k=0

g(Sk� Sk+1)

]
�

where the subscript x denotes that S0 = x, and T = inf{n: Sn ∈ T }. Set
J∗(x) = 0 for x ∈ T . Note that if g(x� y) = I(y ∈ R) with R ⊆ T , then J∗(x)
equals the probability Px(ST ∈ R).

We refer to the expected cumulative reward from any state as the value
function evaluated at that state (this conforms with the terminology used in
Markov decision process theory where the framework considered is partic-
ularly common; see, e.g., Bertsekas and Tsitsiklis, 1996). Note that by ex-
ploiting the regenerative structure of the Markov chain, the problem of es-
timating steady state measures can also be reduced to that of estimating
cumulative reward until regeneration starting from the regenerative state (see,
e.g., Fishman, 2001). Similarly, the problem of estimating the expected total
discounted reward can be modeled as a cumulative reward until absorption
problem after simple modifications (see, e.g., Bertsekas and Tsitsiklis, 1996;
Ahamed et al., 2006).

For estimating (J∗(x): x ∈ T ), the expression for the zero-variance change
of measure is also well known, but involves knowing a priori these value func-
tions (see Booth, 1985; Kollman et al., 1999; Desai and Glynn, 2001). Three
substantially different adaptive importance sampling techniques have been
proposed in the literature that iteratively attempt to learn this zero-variance
change of measure and the associated value functions. These are: (i) the
Adaptive Monte Carlo (AMC) method proposed in Kollman et al. (1999)
(our terminology is adapted from Ahamed et al., 2006), (ii) the Cross En-
tropy (CE) method proposed in De Boer et al. (2000) and De Boer (2001)
(also see Rubinstein, 1997, 1999) and (iii) the Adaptive Stochastic Approxima-
tion (ASA) based method proposed in Ahamed et al. (2006). We briefly review
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these methods. We refer the reader to Ahamed et al. (2006) for a compari-
son of the three methods on a small Jackson network example (this example is
known to be difficult to efficiently simulate via static importance sampling).

Borkar et al. (2004) consider the problem of simulation-based estimation
of performance measures for a Markov chain conditioned on a rare event.
The conditional law depends on the solution of a multiplicative Poisson equa-
tion. They propose an adaptive two-time scale stochastic approximation based
scheme for learning this solution. This solution is also important in estimating
rare-event probabilities associated with queues and random walks involving
Markov additive processes as in many such settings the static optimal im-
portance sampling change of measure is known and is determined by solving
an appropriate multiplicative Poisson equation (see, e.g., Chang et al., 1994;
Beck et al., 1999). We also include a brief review of their scheme in this sec-
tion.

5.1 The zero-variance measure

Let P = (pxy : x� y ∈ S) denote the transition matrix of the Markov chain
and let P denote the probability measure induced by P and an appropriate
initial distribution that will be clear from the context. We assume that T is
reachable from all interior states I  = S − T , i.e., there exists a path of positive
probability connecting every state in I to T . Thus T is an a.s. finite stopping
time for all initial values of S0. Consider another probability measure P′ with a
transition matrix P ′ = (p′xy : x� y ∈ S), such that for all x ∈ I� y ∈ S , p′xy = 0
implies pxy = 0. Let E′ denote the corresponding expectation operator. Then
J∗(x) may be re-expressed as

(15)J∗(x) = E′
x

[(
T−1∑
n=0

g(Sn� Sn+1)

)
L(S0� S1� � � � � ST )

]
�

where

L(S0� S1� � � � � ST ) =
T−1∏
n=0

pSn�Sn+1

p′Sn�Sn+1

�

Noting that E′
x[g(Sn� Sn+1)L(S0� S1� � � � � Sn+1)I(T > n)] equals

E′
x

[
g(Sn� Sn+1)L(S0� S1� � � � � ST )I(T > n)

]
�

it may be easily seen that J∗(x) equals

E′
x

[(
T−1∑
n=0

g(Sn� Sn+1)L(S0� S1� � � � � Sn+1)

)]
�

In this framework as well, the static zero-variance change of measure P∗ (with
corresponding transition matrix P∗) exists and the process (Si: i � 0) remains
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a Markov chain under this change of measure. Specifically, consider the tran-
sition probabilities

p∗xy =
pxy(g(x� y)+ J∗(y))∑
y∈S pxy(g(x� y)+ J∗(y))

= pxy(g(x� y)+ J∗(y))
J∗(x)

for x ∈ I and y ∈ S .
Then it can be shown that K = ∑T−1

n=0 g(Sn� Sn+1)L(S0� S1� � � � � Sn+1)
equals J∗(S0) a.s., where

L(S0� S1� � � � � Sn+1) =
n∏

m=0

pSm�Sm+1

p∗Sm�Sm+1

=
n∏

m=0

J∗(Sm)
g(Sm� Sm+1)+ J∗(Sm+1)

(see Booth, 1985; Kollman et al., 1999; Desai and Glynn, 2001). We show this
via induction. First consider T = 1. Then

K = g(S0� S1)
J∗(S0)

g(S0� S1)+ J∗(S1)
�

Since J∗(S1) = J∗(ST ) = 0, the result follows. Now suppose that the result is
correct for all paths of length less than or equal to n. Suppose that T = n+ 1.
Then, K equals

g(S0� S1)
J∗(S0)

g(S0� S1)+ J∗(S1)

+ J∗(S0)

g(S0� S1)+ J∗(S1)

(
T−1∑
m=1

g(Sm� Sm+1)

)

×
m∏
j=1

J∗(Sj)
g(Sj� Sj+1)+ J∗(Sj+1)

�

By the induction hypothesis,
∑T−1

m=1 g(Sm� Sm+1)
∏m
j=1

J∗(Sj)
g(Sj�Sj+1)+J∗(Sj+1)

equals
J∗(S1) and the result follows.

Adaptive importance sampling techniques described in the following sub-
sections attempt to learn this change of measure via simulation using an it-
erative scheme that updates the change of measure (while also updating the
value function) so that eventually it converges to the zero-variance change of
measure.

5.2 The adaptive Monte Carlo method

We describe here the basic AMC algorithm and refer the reader to Kollman
et al. (1999) and Desai and Glynn (2001) for detailed analysis and further en-
hancements.

The AMC algorithm proceeds iteratively as follows: Initially make a rea-
sonable guess J(0) > 0 for J∗, where J(0) = (J(0)(x): x ∈ I) and
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J∗ = (J∗(x): x ∈ I). Suppose that J(n) = (J(n)(x): x ∈ I) denotes the best
guess of the solution J∗ at an iteration n (since J∗(x) = 0 for x ∈ T , we also
have J(n)(x) = 0 for such x for all n). This J(n) is used to construct a new
importance sampling change of measure that will then drive the sampling in
the next iteration. The transition probabilities P(n) = (p(n)xy : x ∈ I� y ∈ S)
associated with J(n) are given as

(16)p(n)xy = pxy(g(x� y)+ J(n)(y))∑
y∈S pxy(g(x� y)+ J(n)(y))

�

Then for each state x ∈ S , the Markov chain is simulated until time T using
the transition matrix P(n) and the simulation output is adjusted by using the
appropriate likelihood ratio. The average of many, say r, such independent
samples gives a new estimate J(n+1)(x). This is repeated independently for
all x ∈ I and the resultant estimates of (J(n+1)(x): x ∈ I) determine the
transition matrix P(n+1) used in the next iteration. Since at any iteration, i.i.d.
samples are generated, an approximate confidence interval can be constructed
in the usual way (see, e.g., Fishman, 2001) and this may be used in a stopping
rule.

Kollman et al. (1999) prove the remarkable result that if r in the algorithm
is chosen to be sufficiently large, then there exists a θ > 0 such that

exp(θn)
∥∥J(n) − J∗

∥∥→ 0�

a.s. for some norm in #|I|.
The proof involves showing the two broad steps:

• For any ε > 0, P(‖J(n) − J∗‖ < ε infinitely often) equals 1.
• Given that ‖J(0) − J∗‖ < ε there exists a 0 � c < 1 and a positive

constant ν such that the conditional probability

P
(∥∥J(n) − J∗

∥∥ < cn
∥∥J(0) − J∗

∥∥� ∀n|∥∥J(0) − J∗
∥∥ < ε

)
� ν�

which makes the result easier to fathom.

5.3 The cross-entropy method

The Cross Entropy (CE) method was originally proposed in Rubinstein
(1997) and Rubinstein (1999). See De Boer et al. (2005) for a tutorial. The
essential idea is to select an importance sampling distribution from a specified
set of probability distributions that minimizes the Kullback–Leibler distance
from the zero-variance change of measure. To illustrate this idea, again con-
sider the problem of estimating the rare-event probability P(E) for E ⊂ Ω. To
simplify the description suppose thatΩ consists of a finite or countable number
of elements (the discussion carries through more generally in a straightforward
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manner). Recall that P∗ such that

(17)P∗(ω) = I(E)
P(E)P(ω)

is a zero-variance estimator for P(E).
The CE method considers a class of distributions (Pν: ν ∈ N ) where P is

absolutely continuous w.r.t. Pν on the set E for all ν. This class is chosen so
that it is easy to generate samples of I(E) under distributions in this class.
Among this class, the CE method suggests that a distribution that minimizes
the Kullback–Leibler distance from the zero variance change of measure be
selected. The Kullback–Leibler distance of distribution P1 from distribution P2
equals

∑
ω∈Ω

log
[

P2(ω)

P1(ω)

]
P2(ω)

(note that this equals zero iff P1 = P2 a.s.). Thus, we search for a Pν that
minimizes

∑
ω∈Ω

log
[

P∗(ω)
Pν(ω)

]
P∗(ω)�

where P∗ corresponds to the zero-variance change of measure. From (17) and
the fact that

∑
ω∈Ω log[P∗(ω)]P∗(ω) is a constant, this can be seen to be equiv-

alent to finding

(18)arg max
ν∈N

∑
ω∈E

log
[
Pν(ω)

]
P(ω)�

Let P̃ be another distribution such that P is absolutely continuous w.r.t. it.
Let L̃(ω) = P(ω)

P̃(ω)
. Then solving (18) is equivalent to finding

arg max
ν∈N

∑
ω∈E

log
[
Pν(ω)

]
L̃(ω)P̃(ω)

(19)= arg max
ν∈N

Ẽ log(Pν)L̃I(E)�

Rubinstein (1997, 1999) (also see Rubinstein and Kroese, 2004) propose
to approximately solve this iteratively by replacing the expectation by the ob-
served sample average as follows: Select an initial ν0 ∈ N in iteration 0.
Suppose that νn ∈ N is selected at iteration n. Generate i.i.d. samples
(ω1� � � � � ωm) using Pνn , let Lν(ω) = P(ω)

Pν(ω)
and select νn+1 as the

(20)arg max
ν∈N

1
m

m∑
i=1

log
(
Pν(ωi)

)
Lνn(ωi)I(ωi ∈ E)�
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The advantage in this approach is that often it is easy to explicitly identify Pνn .
Often the rare event considered corresponds to an event {f (X) > x}, where
X is a random vector, and f (·) is a function such that the event {f (X) > x}
becomes rarer as x → ∞. In such settings Rubinstein (1999) also proposes
that the level x be set to a small value initially so that the event {f (X) > x}
is not rare under the original probability. The iterations start with the original
measure. Iteratively, as the probability measure is updated, this level may also
be adaptively increased to its correct value.

In De Boer et al. (2000) and De Boer (2001) a more specialized Markov
chain than the framework described in the beginning of this section is con-
sidered. They consider T = A ∪ R (A and R are disjoint) and g(x� y) =
I(y ∈ R), so that J∗(x) equals the probability that starting from state x, R is
visited before A. The set A corresponds to an attractor set, i.e., a set visited
frequently by the Markov chain, and R corresponds to a rare set. Specifi-
cally, they consider a stable Jackson queueing network with a common buffer
shared by all queues. The set A corresponds to the single state where all the
queues are empty and R corresponds to the set of states where the buffer
is full. The probability of interest is the probability that starting from a sin-
gle arrival to an empty network, the buffer becomes full before the network
re-empties (let E denote this event). Such probabilities are important in de-
termining the steady state loss probabilities in networks with common finite
buffer (see Parekh and Walrand, 1989; Heidelberger, 1995).

In this setting, under the CE algorithm, De Boer et al. (2000) and De Boer
(2001) consider the search space that includes all probability measures under
which the stochastic process remains a Markov chain so that P is absolutely
continuous w.r.t. them. The resultant CE algorithm is iterative.

Initial transition probabilities are selected so that the rare event is no longer
rare under these probabilities. Suppose that at iteration n the transition prob-
abilities of the importance sampling distribution are P(n) = (p(n)xy : x ∈ I�
y ∈ S). Using these transition probabilities a large number of paths are gener-
ated that originate from the attractor set of states and terminate when either
the attractor or the rare set is hit. Let k denote the number of paths gener-
ated. Let Ii(E) denote the indicator function of path i that takes value one if
the rare set is hit and zero otherwise. The new p(n+1)

xy corresponding to the
optimal solution to (20) is shown in De Boer (2001) to equal the ratio

(21)
∑k

i=1 LiNxy(i)Ii(E)∑k
i=1 LiNx(i)Ii(E)

�

where Nxy(i) denotes the number of transitions from state x to state y and
Nx(i) denotes the total number of transitions from state x along the gener-
ated path i, Li denotes the likelihood ratio of the path i, i.e., the ratio of the
original probability of the path (corresponding to transition matrix P) and the
new probability of the path (corresponding to transition matrix P(n)). It is easy
to see that as k→∞, the probabilities converge to the transition probabilities
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of the zero-variance change of measure (interestingly, this is not true if k is
fixed and n increases to infinity).

The problem with the algorithm above is that when the state space is large,
for many transitions (x� y),Nxy(i)may be zero for all i � k. For such cases, the
references above propose a number of modifications that exploit the fact that
queues in Jackson networks behave like reflected random walks. Thus, con-
sider the set of states where a subset of queues is nonempty in a network. For all
these states, the probabilistic jump structure is independent of the state. This
allows for clever state aggregation techniques proposed in the references above
for updating the transition probabilities in each iteration of the CE method.

5.4 The adaptive stochastic approximation based algorithm

We now discuss the adaptive stochastic approximation algorithm proposed
in Ahamed et al. (2006). It involves generating a trajectory via simulation
where at each transition along the generated trajectory the estimate of the
value function of the state visited is updated, and along with this at every tran-
sition the change of measure used to generate the trajectory is also updated. It
is shown that as the number of transitions increases to infinity, the estimate of
the value function converges to the true value and the transition probabilities
of the Markov chain converge to the zero-variance change of measure.

Now we describe the algorithm precisely. Let (an(x): n � 0� x ∈ I)
denote a sequence of nonnegative step-sizes that satisfy the conditions∑∞

n=1 an(x) = ∞ and
∑∞

n=1 a
2
n(x) < ∞, a.s. for each x ∈ I . Each an(x)

may depend upon the history of the algorithm until iteration n. This algorithm
involves generating a path via simulation as follows:

• Select an arbitrary state s0 ∈ I . A reasonable positive initial guess
(J(0)(x): x ∈ I) for (J∗(x): x ∈ I) is made. Similarly, the initial
transition probabilities (p(0)xy : x ∈ I� y ∈ S) are selected (e.g., these
may equal the original transition probabilities). These probabilities are
used to generate the next state s1 in the simulation.

• At transition n, state sn+1 is generated using (p(n)xy : x ∈ I� y ∈ S). The
updated values (J(n+1)(x): x ∈ I) and (p(n+1)

xy : x ∈ I� y ∈ S) are
determined as follows:

J(n+1)(sn)

= (1 − an(sn)
)
J(n)(sn)

(22)+ an(sn)
(
g(sn� sn+1)+ J(n)(sn+1)

)(psnsn+1

p(n)snsn+1

)

and J(n+1)(x) = J(n)(x) for x �= sn. Also, let

(23)p̃(n+1)
snsn+1

= psnsn+1

(
g(sn� sn+1)+ J(n+1)(sn+1)

J(n+1)(sn)

)
�
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This is normalized by settingp(n+1)
sny = (p̃

(n+1)
sny )/(

∑
z∈S p̃

(n+1)
snz ) for all y

(here p̃(n+1)
snz = p(n)snz for all z �= sn+1). Again for x �= sn, p(n+1)

xy = p(n)xy
for all y.

• If sn+1 ∈ T , the simulation is resumed by selecting sn+2 in I accord-
ing to a probability distribution μ with the property that the Markov
chain with transition probabilities that are the same as the original
for all transitions from states in I and transition probabilities that
are identically given by μ for transitions out of T , is irreducible. In
that case (J(n+2)(x): x ∈ I) and (p(n+2)

xy : x ∈ I� y ∈ S) are set to
(J(n+1)(x): x ∈ I) and (p(n+1)

xy : x ∈ I� y ∈ S).
Ahamed et al. (2006) show that the algorithm above has the standard

Robbins–Monro stochastic approximation form

Jn+1 = (1 − an)J
n + an

(
HJn +wn

)
�

where each Jn ∈ #|I|, H is a mapping #|I| → #|I|, wn take values in
#|I| and are zero mean random vectors (see Kushner and Yin, 1997), and
an are the step sizes. Under mild regularity conditions the mapping H can
be seen to be a contraction under a suitable norm with a unique fixed point
J∗ = (J∗(x): x ∈ I) for any set of transition probabilities used to generate
transitions (as long as the requirement of absolute continuity is met). Fur-
ther, it can be shown that the second moment of wn conditioned on the history
of the algorithm up till time n − 1 is well behaved as required for conver-
gence of the Robbins–Monro algorithm. From this it becomes easy to show
that J(n) → J∗ and P(n) → P∗. If, each step size an is set equal to a constant
a > 0, then it is further shown that lim supn→∞ E[‖J(n) − J∗‖2] = O(a) and
lim supn→∞ E[‖P(n) − P∗‖2] = O(a).

Ahamed et al. (2006) report that empirically on representative examples,
the ASA algorithm performs better than the AMC and the CE algorithm in es-
timating rare event probabilities when the state spaces involved become large
or even moderately large. They further empirically show that for large state
spaces, it may perform better than numerical procedures such as value itera-
tion in developing estimates within a reasonable degree of accuracy.

5.5 Multiplicative Poisson equation and conditional measures

Many asymptotically optimal static importance sampling techniques often
involve solving a complex set of equations to determine a provably effective
static importance sampling distribution (see, e.g., Heidelberger, 1995). This
could become particularly difficult when the underlying variables are Markov
chains or more general Markov additive processes (see, e.g., Chang et al., 1994;
Beck et al., 1999). We illustrate this through an example. Again, consider an
irreducible Markov chain (Si: i � 0) on a large finite state space S with tran-
sition probabilities (p(x� y): x� y ∈ S). Let g :S → R. Let E[·] denote the
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expectation under the associated invariant measure (i.e., steady-state measure)
and let α > E[g(Sn)]. Now consider the problem of estimating the probabil-
ity

(24)Px

(
1
n

n−1∑
i=0

g(Si) � α

)

for large values of n, where the subscript x denotes the condition S0 = x
(note that this generalizes the i.i.d. case considered in Section 3.1). For such
a probability, the static asymptotically optimal importance sampling measure
(as n → ∞) is well known (see, e.g., Bucklew, 1990). Under it, the transition
probabilities are given by (pζ

∗
(x� y): x� y ∈ S) where

pζ(x� y) = eζg(x)p(x� y)Vζ(y)
ρζVζ(x)

�

where (Vζ(x): x ∈ S) (resp., ρζ) are the Perron–Frobenius eigenvector (resp.,
eigenvalue) of the positive operator

(25)f (·)→ eζg(·)
∑
y

p(·� y)f (y)�

i.e., they solve the multiplicative Poisson equation

(26)Vζ(x) = eζg(x)

ρζ

∑
y

p(x� y)Vζ(y)� x ∈ S�

for ζ > 0 and

ζ∗  = arg max
ζ�0

(
ζα− log(ρζ)

)
�

It can further be shown that log(ρζ) is convex and that

(27)ζ∗ = arg max
(
ζα− log(ρζ)

)

so that α = ρ′
ζ∗
ρζ∗ (the superscript “′” denotes the derivative). Furthermore, let

Eζ[·] denote the expectation under the invariant measure associated with tran-

sition probabilities (pζxy : x� y ∈ S). Then
ρ′ζ
ρζ

= Eζ[g(Sn)] (see, e.g., Bucklew,
1990).

Kontoyiannis and Meyn (2003) develop exact asymptotics for the probabil-
ity (24) that again requires the knowledge of (Vζ∗(x): x ∈ S) and ρζ∗ . Borkar
et al. (2004) use these exact asymptotics and observe the following asymptotic
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conditional law

lim
n→∞P

(
Sm = sm

∣∣∣Sk = sk� 0 � k < m�
1
n

n−1∑
i=0

g(Si) � α

)

→ pζ
∗
(sm−1� sm)�

(The discussion in Section 3.3 can be generalized to include the probability
in (24). The left-hand side above can be associated with the zero-variance mea-
sure that is shown to be asymptotically similar to the exponentially twisted
distribution in the right-hand side.) Thus, the knowledge of these transition
probabilities is useful in evaluating performance measures conditioned on
occurrence of certain rare events, e.g., expected behavior of one queue con-
ditioned on abnormal behavior of another queue in a Markovian finite state
space network.

As mentioned earlier, in queueing set-ups when the constituent input or
service processes are modeled as Markov additive processes (see, e.g., Chang
et al., 1994; Beck et al., 1999) related Perron–Frobenius eigenvectors and
eigenvalues need to be determined. Thus, the adaptive methodology discussed
below becomes useful in such settings as well.

Evaluating (Vζ∗(x): x ∈ S) and ρζ∗ is especially difficult when the state
space S is large. A deterministic iterative method to do this may involve first
fixing ζ and evaluating ρζ and ρ′ζ (by re-evaluating the eigenvalue at a per-
turbed value of ζ). Borkar and Meyn (2002) develop deterministic numerical
iterative schemes to solve this (however, such numerical schemes may not be
computationally viable when large state spaces are involved). Once ρζ and ρ′ζ
have been ascertained, ζ may be varied by adding to it a suitable step-size times

α− ρ′ζ
ρζ

, the gradient of (27).
Borkar et al. (2004) develop an adaptive scheme (outlined below) that em-

ulates this using stochastic observations. The adaptive scheme is based on
a single simulation run of (Si: i � 0). Fix a distinguished state s0 ∈ S . Let
{a(n)}, {b(n)} be positive scalar sequences satisfying∑

n

a(n) =
∑
n

b(n) = ∞�

(28)
∑
n

(
a(n)2 + b(n)2) <∞�

b(n)

a(n)
→ 0�

These serve as step-sizes or ‘learning parameters’ for the iterative scheme. At
each iteration n of the algorithm,

(1) simulate a transition from Sn = sn to Sn+1 = sn+1 (say) according to the
current ‘guess’ of the transition probability pζ

∗
(sn� ·) given by

(29)pn(sn� y)
 = eζng(sn)

Vn(sn)Vn(s0)
p(sn� y)Vn(y)�
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normalized suitably to render it a probability vector, and
(2) update current guesses for (Vζ∗(sn)� ζ∗), denoted by (Vn(sn)� ζn), ac-

cording to the iterative scheme that sets Vn+1(sn) to equal

(30)

Vn(sn)+ a(n)

(
eζng(sn)

Vn(s0)
Vn(sn+1)

(
p(sn� sn+1)

pn(sn� sn+1)

)
− Vn(sn)

)
�

and

(31)ζn+1 = ζn + b(n)
(
α− g(sn+1)

)
�

Note that the two iterations proceed on different time-scales as b(n) =
o(a(n)) so that from the viewpoint of (30), ζn is more-or-less a constant func-
tion of n, while from the viewpoint of (31), (30) has reached the equilibrium
associated with ζn.

The iteration (30) is motivated by the following considerations: To solve the
equation

(32)Vζ(x) = eζg(x)

ρζ

∑
y

p(x� y)Vζ(y)� x ∈ S�

the following ‘value iteration’ scheme has been justified in Borkar and Meyn
(2002) and Borkar (2002)

V n+1(x) = eζg(x)

V n(s0)

∑
y

p(x� y)V n(y)� x ∈ S�

The conditional average on the right-hand side may be replaced by an actual
evaluation at a simulated transition, i.e., by

eζg(x)

V n(s0)
V n(y)

when Sn = x and Sn+1 = y. However, since this transition is conducted un-
der the probability pn(x� y), the sample is unbiased by multiplying it by the
likelihood ratio

p(x� y)

pn(x� y)
�

Then the averaging property of stochastic approximation is used to get (30)
with ζn ≡ ζ. The iteration (31) corresponds to the stochastic gradient scheme
applied to solve (27). In Borkar et al. (2004) convergence conditions of this
algorithm are also discussed.

5.6 Brief review of adaptive schemes in other contexts

In a recent work Dupuis and Wang (2004) show that an adaptive impor-
tance sampling scheme can be devised to asymptotically optimally estimate
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P(Sn/n ∈ R) for general sets R (recall that static importance sampling tech-
niques for this probability were discussed in Section 3.1). Under this scheme
each Xi is generated using a probability distribution that depends on the pre-
viously generated sum

∑i−1
j=1Xi (although, they do not learn the associated

zero-variance measure).
Stochastic-approximation based adaptive approaches to importance sam-

pling in the specific context of option pricing have been developed in Vázquez-
Abad and Dufresne (1998), Su and Fu (2000, 2002). These take a ‘stochastic-
gradient’ based approach using an approximate gradient search. They search
for an optimal importance sampling change of measure from among a class
of change of measures that is easy to implement. However this class does not
include the zero-variance change of measure.

We conclude this section by noting that development of adaptive importance
sampling techniques is an exciting, evolving area of research as many problems
that were difficult to efficiently solve under naive Monte Carlo simulation or
under static importance sampling can be efficiently solved under adaptive im-
portance sampling techniques. The existing work on adaptive techniques has
focused primarily on learning the zero-variance change of measure in discrete
time discrete state Markov chains. Further research is needed to generalize
this to continuous state spaces (see Bolia et al., 2004, for initial attempts in this
direction for pricing American options).

6 Queueing systems

Heidelberger (1995) provides a survey of the literature on queueing systems.
In this section we briefly mention some recent developments and review the
earlier ones to motivate these. As discussed in Section 5, the recent research
in adaptive importance sampling techniques shows great promise for estima-
tion of rare-event probabilities associated with queues and queueing networks
modeled as finite state Markov chains with relatively small state space. How-
ever, as the following discussion indicates, this problem remains open for a
large variety of rare events associated with queueing networks when large state
spaces or non-Markovian distributions are involved.

6.1 Single queues

Szechtman and Glynn (2002) develop large deviations asymptotics and as-
ymptotically optimal importance sampling techniques for the probability of
large queue lengths at a fixed time t for GI/GI/∞ systems in heavy traffic, i.e.,
when the arrival rates are large. Kroese and Nicola (1999) and Juneja (2001)
develop asymptotically optimal importance sampling techniques for estimation
of buffer overflow probabilities for queues subject to server breakdowns.
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6.2 Queueing networks

The key issue in rare-event estimation is illustrated by viewing rare events
associated with suitably scaled queueing networks. For example, consider a
Jackson network having K queues. Let Q(t) = (Q1(t)� � � � �QK(t)) for t � 0
denote the vector of the queue-length process. Consider the scaled process
Q̃n(t) = (1/n)Q(nt). Note that in a stable Jackson network Q̃n(t) converges
to zero for any t as n→ ∞. Significant large deviations literature has focused
on identifying the most likely paths along which the process (Q̃n(t): t � 0)
hits a set not containing the origin in the nonnegative orthant #K+ (see, e.g.,
Ignatiouk-Robert, 2000; Ignatyuk et al., 1994). In particular, it is shown that
the most likely paths to such rare events are piece-wise linear. Avram et al.
(2001) show this in the setting of semimartingale reflected Brownian motion,
which typically provides a good approximation for heavily loaded queueing
networks.

This is illustrated via a simple two queue tandem Jackson network exam-
ple, with arrival rate to the first queue equal to λ and service rates at the first
and second queues equal to μ1 and μ2, respectively, such that λ < μ1 < μ2.
From the analysis in Ignatyuk et al. (1994) specialized to this network it can
be inferred that, for the scaled network, the most likely path to reach the state
(x1� x2), x1 � 0, x2 > 0, from the origin involves two piece-wise linear paths.
Along the first path, the arrival rate to queue 1 equals μ1, the service rate
at queue 1 equals λ and the service rate at queue 2 remains the same at μ2.
Queue 1 builds up along this path until it reaches the level

μ2 − μ1

μ2 − λ
x2 + x1�

Thereafter, along the second path, the arrival rate to queue 1 equals μ1, the
service rate at queue 1 equals μ2 and the service rate at queue 2 equals λ,
so that now queue 1 empties as queue 2 builds up until the state (x1� x2) is
reached. This can also be inferred from the fact that starting from an empty
network, the most likely paths to the rare event associated with queue lengths
in Jackson networks correspond to the most likely path (in reverse direction)
followed by the reversed Jackson network starting from the rare set until it
empties; see Frater et al. (1991), Anantharam et al. (1990) and Heidelberger
(1995). Figure 4 shows these paths for x1 = 0. (Figure 4 also shows the case
when μ1 > μ2, where there is a single path leading to (0� x2) along which
the arrival rate equals μ2, the service rate at the second queue equals λ, and
the service rate at queue 1 remains unchanged.) This suggests that a change
of measure should emphasize these two piecewise linear paths to efficiently
estimate the buffer overflow probability in the second queue. More generally,
this suggests that in general Jackson and other networks, a change of measure
that is appropriately piecewise constant ought to be used. However, no such
successful implementation has so far been designed. The problem is that in
importance sampling it is not sufficient that the new measure emphasizes the
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Fig. 4. The most likely paths along which the second queue builds up to level x2 in a scaled two queue
tandem Jackson network when μ1 < μ2 and when μ1 > μ2.

most likely paths to the rare event. It must not significantly reduce the original
probability for any path to the rare event (to avoid build-up of the square of
the likelihood ratio that can potentially blow up the second moment of the
estimate).

The existing literature has focused primarily on two types of rare events.
The first type focuses on estimating the probability that starting from an empty
Jackson network, the total network population exceeds a given threshold be-
fore the network re-empties. For such a probability, when there exists a unique
bottleneck queue, the most likely path to the rare event is linear and corre-
sponds to this queue building up (this queue is unstable while the others remain
stable along the most likely paths). Based on heuristic arguments using insights
from large deviations theory Parekh and Walrand (1989) present a nonlinear
program whose solution identifies these most likely paths (they consider gen-
eralized Jackson networks) and the associated importance sampling change
of measure to simulate the queueing network. For Jackson networks Frater
et al. (1991) obtain an explicit solution to this nonlinear program leading to
an explicit form for this change of measure. However, for the simple two-node
tandem Jackson network Glasserman and Kou (1995) show that this change
of measure does not give good simulation results when the service rates at the
two queues are close to each other. In a two-node Jackson network Randhawa
and Juneja (2004) show that if feedback is allowed, then for certain traffic pa-
rameters the suggested change of measure leads to an estimator with infinite
variance. They also discuss how the sensitivity of the second moment under im-
portance sampling may be dampened by combining importance sampling with
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temporal difference control variates. Frater (1993) illustrate the difficulties as-
sociated with the case where the service rates in queues of the networks are
close to each other.

The second type of rare-event probability in queueing network settings
was considered by Chang et al. (1994) (also see Beck et al., 1999; L’Ecuyer
and Champoux, 2001; Kroese and Nicola, 2002). They consider a special
class of queueing networks referred to as in-tree networks. These in-tree
networks are feed-forward networks (with no feedback). They consist of a
‘target’ queue at the root and other ‘feeder’ queues which are like leafs of
a tree feeding the target queue at the root. They focus on estimating the
probability that the buffer at the target queue overflows during its busy pe-
riod (a busy period of the target queue is initiated when an arrival to it
finds it empty, and it ends when subsequently the target queue re-empties).
The remaining network is assumed to have the steady-state distribution at
the instants of busy period initiation. The problem of efficient estimation of
this probability is closely related to the problem of estimating the steady-
state loss probability, i.e., the fraction of customers lost due to buffer over-
flow at the target queue in the steady-state (see, e.g., Chang et al., 1994;
Heidelberger, 1995). They propose a change of measure that typically gives
a large amount of variance reduction compared to naive simulation. Based on
empirical observations they further suggest that the proposed change of mea-
sure is asymptotically optimal or near optimal when the queue-lengths at the
feeder queues are assumed to be bounded at the initiation of a busy period of
the target queue.

Juneja and Nicola (2005) consider this second type of rare-event probabil-
ity in a more general setting that allows probabilistic routing with feedback.
They generalize the change of measure proposed by Chang et al. (1994) to
these settings (however, their analysis is restricted to Jackson networks). Here,
they prove the asymptotic optimality of the proposed change of measure when
the queue lengths at the feeder queues are assumed to be bounded at the
initiation of a busy period of the target queue. Under the condition that the
service rates at each feeder queue exceed a specified threshold, they prove
that the proposed change of measure is asymptotically optimal, even when the
feeder queue-lengths have steady state distributions at the instants of initia-
tion of target queue busy periods. The condition on the feeder queue service
rates ensures the large deviations path along which the target queue builds up
has a single linear component. For example, in the simple two-queue tandem
Jackson network example discussed earlier, the second queue builds up along
a single linear path when μ1 > μ2.

7 Heavy-tailed simulations

A recent area of research is investigating rare-event simulation techniques
when the random variables in the stochastic system are heavy-tailed. For the
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purposes of this paper we may define heavy-tailed to mean that the moment
generating function of the distribution is infinite for any positive value of the
argument. One important consequence of this is that the framework of expo-
nential twisting that is used widely in the light-tailed area can no longer be
used here. Also, as explained later, the manner in which rare events occur is
very different in the light-tailed and the heavy-tailed settings.

Work in this area began with the problem of simulating tail probabilities of
a sum of n i.i.d., nonnegative, heavy-tailed random variables, where n is ei-
ther fixed or random. In the latter case n is denoted by N which is assumed to
be independent of the i.i.d. random sequence. Estimation of tail probabilities
of some simple functions (instead of just sums) of a fixed number of random
variables that appear in the financial engineering setting and PERT (Project
Evaluation and Review Technique) setting have also been developed recently.
In this section we focus on fixed and geometric sums, and deal with the finan-
cial engineering setting in Section 8; for the PERT setting the reader is referred
to Juneja et al. (2005). Recently, advances have been made in efficiently esti-
mating level crossing probabilities of random walks. Recall that application of
these probabilities include queueing and insurance settings (as discussed in Ex-
amples 5 and 6). We briefly review these developments later in this section.

The case of geometric N has applications in estimating the probability of
large steady-state delays in the M/GI/1 queue with heavy-tailed service times,
or equivalently the probability of ultimate ruin in the insurance risk process
with heavy-tailed claims (see Example 6). Consider Example 5, where the
Ai’s are exponentially distributed with rate λ and the Bi’s are heavy-tailed.
Let ρ = λE(B1). Let (H1�H2� � � �) denote the ‘ladder-heights’ of the random
walk described in Example 5. The ladder-height Hi is the difference between
the ith maximum and (i − 1)st maximum of the random walk on a sample
path where it achieves at least i new maxima; a maximum is achieved at j,
if Si < Sj for all i < j (see, e.g., Asmussen, 2003). These ladder heights
are i.i.d., and when the Ai’s are exponentially distributed, they have the dis-
tribution of the integrated-tail of Bi; note that if FB denotes the distribution
function of Bi then the distribution function of its integrated tail is given by
FB�I(x) = 1

E(B1)

∫ x
0 (1 − FB(y)) dy. Using the Pollaczeck–Khinchine formula,

P(W∞ > u) may be represented as P(
∑N

i=1 Hi > u), where N is indepen-
dent of the Hi’s, and geometrically distributed with parameter ρ (see, e.g.,
Asmussen and Binswanger, 1997). Typically Hi is heavy-tailed if Bi is.

The definition of heavy-tailed random variables as given above is almost
equivalent to random variables belonging to the subexponential family. A non-
negative random variable X is said to be subexponential iff

lim
u→∞

P(Sn > u)

P(X1 > u)
= n

for all n (Chistyakov, 1964; Sigman, 1999), where X1�X2� � � � �Xn are i.i.d.
copies of the random variable X and Sn = ∑n

i=1 Xi. This definition can be
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seen to be equivalent to the requirement that

lim
u→∞P

(
max
i�n

Xi > u
∣∣Sn > u

)
= 1�

This provides the main intuition that is used to investigate stochastic models
with heavy tails, i.e., the most likely way for a sum of heavy-tailed random vari-
ables to become large is by one of the random variables becoming large. This is
different from the light-tailed case, where all the random variables in the sum
contribute to the sum becoming large. Common examples of subexponential
random variables are the Pareto that has a tail that decays at a polynomial rate
(e.g., 1/xα for α > 0), the log-normal whose tail decays at the rate e−(lnx)2/(2σ2)

(σ2 is the variance of the associated normal random variable), and the heavy-
tailed Weibull whose tail decays at the rate e−λxα for 0 < α < 1 and λ > 0.
A comprehensive reference for subexponential distributions is Embrechts et
al. (1997).

Consider the estimation of P(Sn > u) when X1�X2� � � � �Xn are nonnega-
tive, subexponential random variables, and u is large. The first algorithm for
their fast simulation was given by Asmussen and Binswanger (1997). It made
direct use of the intuition mentioned above. Let X(1) < X(2) < · · · < X(n)

denote the order statistics of X1�X2� � � � �Xn. Since the most likely way u is
exceeded is by one of the Xi’s becoming large, it is X(n) that is the main
cause of the variance of I(Sn > u). Asmussen and Binswanger (1997) pro-
pose a sampling technique that involves generating samples ofX1�X2� � � � �Xn,
then discarding sample of X(n), and using the conditional probability P(Sn >
u|X(1)�X(2)� � � � �X(n−1)) as an estimator of P(Sn > u). Asmussen and
Binswanger (1997) show that this estimator is asymptotically optimal when
the Xi’s belong to the class of subexponential distributions that have regularly
varying tails, e.g., Pareto-type tails (see Embrechts et al., 1997, for a precise de-
finition) both for fixed n and geometric N . Asmussen and Kroese (2004) gives
a related algorithm that has bounded relative error (instead of just asymptotic
optimality) for all regularly varying distributions with Pareto-type tails.

Asmussen et al. (2000) gave an importance sampling algorithm for the fixed
n and geometric N case. It involves doing importance sampling with another
distribution with p.d.f. h, that has the following properties: the distribution K
with density k(x) = f 2(x)/(ch(x)) where c = ∫ f 2/h is subexponential and
has the property ln �K(x) � ln(�F(x))2 (here f denotes the original p.d.f. of Xi,�F and �K denote the tail d.f. associated with f and k, respectively). The main
motivation for this condition is that terms similar to k(Xi) occur in the square
of the second moment of the importance sampling estimator. The condition is
accomplished by selecting a p.d.f. h that has a tail that is much heavier than f .
For example, for the case of Pareto, Weibull and lognormal f , the choice

h(x) = 1
(x+ e) ln(x+ e)2 � x > 0�
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works. For the geometric N case, an additional condition cρ < 1 is needed
for asymptotic optimality of h (recall that ρ is the parameter of the geometric
distribution). Asmussen et al. (2000) also propose modifications to h to achieve
this condition (similar modifications were independently proposed in Juneja et
al., 1999; Juneja and Shahabuddin, 2002).

Juneja and Shahabuddin (2002) propose an importance sampling distribu-
tion obtained by hazard rate twisting the original distribution. Define the hazard
rate function ofX asΛ(x) = − ln �F(x) where F(x) is the d.f. ofX. The hazard
rate twisted distribution with twisting parameter θ is given by

(33)dFθ(x) = eθΛ(x) dF(x)∫∞
0 eθΛ(s) dF(s)

for 0 < θ < 1. This is similar to exponential twisting, except that the twist-
ing rate is θΛ(x) instead of θx. Juneja and Shahabuddin (2002) show that
the distributions associated with θ ≡ θu = 1 − b/Λ(u) where b is any posi-
tive constant, asymptotically optimally estimate P(Sn > u), for a large class of
subexponential distributions. The proof is easily seen if we assume that Λ(·) is
concave (this is true for the common subexponential distributions like Weibull
and Pareto). Assuming that X has a p.d.f.,

∫ ∞

0
eθΛ(s) dF(s) =

∫ ∞

0
eθΛ(s)f (s) ds

=
∫ ∞

0
eθΛ(s)

(
Λ′(s)e−Λ(s)

)
ds

= 1
1 − θ

�

Hence the likelihood ratio of the original distribution w.r.t. the hazard rate
twisted distribution is given by

n∏
i=1

(
1

1 − θ
e−Λ(Xi)θ

)
�

Since Λ is concave,

n∑
i=1

Λ(Xi) � Λ

(
n∑
i=1

Xi

)
= Λ(Sn)�

Hence one can upper bound the second moment

Eθ

(
I(Sn > u)

(
1

1 − θ

)2n
exp

{
−

n∑
i=1

2θΛ(Xi)

})

�
(

1
1 − θ

)2n
e−2θΛ(u)�
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(Here Eθ denotes the expectation operator under the hazard rate twisted dis-
tribution.) It is easily verified that selecting θ = 1 − b/Λ(u) gives asymptotic
optimality. For fixed n, the choice b = n minimizes the above bound on the
second moment (this choice also minimizes the cross entropy as mentioned
in Asmussen et al., 2005). Delayed hazard rate twisting and weighted delayed
hazard rate twisting are modifications of hazard rate twisting, that, for suitably
chosen parameters, asymptotically optimally estimate P(SN > u)whenN has a
geometrically decaying tail. In cases where the hazard function is not available
in closed form (e.g. log-normal), ‘asymptotic’ hazard rate twisting may also be
effective (Juneja et al., 2005). In this case the Λ(x) in (33) is replaced by Λ̃(x)
where limx→∞ Λ̃(x)/Λ(x) = 1 and Λ̃(x) is available in a simple closed form.

Kroese and Rubinstein (2004) and Huang and Shahabuddin (2004) consider
the problem of estimating small tail probabilities of general functions of a finite
number of heavy-tailed random variables. Kroese and Rubinstein (2004) pro-
pose approaches based on various parameterizations of the input distributions
(that determine allowable changes of measure for the importance sampling),
one of them being hazard rate twisting. The specific parameters for doing the
importance sampling for a given problem are obtained by adaptively minimiz-
ing the cross-entropy. No asymptotic optimality results are shown. Huang and
Shahabuddin (2004) propose applying hazard rate twisting by an amount θ to
all the input distributions, and give an analytical way of determining a θ that
yields asymptotic optimality in the simulation.

Huang and Shahabuddin (2003) and Kroese and Rubinstein (2004) make
the observation that transforming a heavy-tailed random variable via its hazard
function converts it to an exponential random variable with rate one. Hence
one of the approaches suggested in Kroese and Rubinstein (2004) is to first use
this transformation on each of the input random variables, and then apply ex-
ponential twisting to each of these resulting light-tailed random variables. This
approach and the one mentioned earlier are equivalent, since it is shown in
Huang and Shahabuddin (2003) that applying an exponential change of mea-
sure to the transformed input random variables by amount θ, 0 < θ < 1, is
equivalent to hazard rate twisting the original random variable by amount θ.

We now consider two basic probabilities associated with random walks and
queues: The level crossing probability and the level crossing probability during
the busy cycle. Specifically, let S0 be the initial state and for n � 1, let Sn =
S0 +∑n

i=1Xi where the Xi’s are random variables with negative mean and
with right tails decaying at a subexponential rate. Let τ = inf{n � 1: Sn < 0}.
Consider the problems of estimating P0(maxn Sn > u) and P0(maxn�τ Sn > u)
for large u, where the subscript x in Px denotes that S0 = x.

Boots and Shahabuddin (2000) propose a hazard rate twisting based algo-
rithm for efficiently estimating P0(maxn Sn > u). They propose that the ran-
dom walk be truncated after a specified number of transitions and they develop
an asymptotically valid upper bound on the bias resulting from this truncation.
Though this approach is asymptotically optimal for Weibull-type tails, it did
not work well for Pareto-type tails. Bassamboo et al. (2005b) show that no dis-
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tribution among the class of importance sampling distributions under which
Xi’s remain i.i.d., can asymptotically optimally estimate P0(maxn�τ Sn > u)
when the Xi’s have Pareto-type polynomially decaying tails. They also develop
explicit upper bounds on the improvement possible under such importance
sampling distributions. This motivates the development of state-dependent im-
portance sampling changes of measure that we now briefly discuss.

Again consider the problem of estimating P0(maxn Sn > u). From the dis-
cussion in Section 3.2 it can be seen that conditioned on (X1�X2� � � � �Xn−1)
and that the rare event has not occurred, the distribution ofXn under the zero-
variance measure is given by

dF∗s (x) = dF(x)
Ps+x(maxn Sn > u)

Ps(maxn Sn > u)
�

when
∑n−1

i=1 Xi = s (here F denotes the d.f. of X1, and Ps(maxn Sn > u) = 1
for s � u). This is not implementable as Ps(maxn Sn > u) is not known for
s < u; if these were known, there would be no need for simulation. The idea
then is to use asymptotic approximations to these probabilities as surrogates
for them. Note that the same discussion also applies to P0(maxn�τ Sn > u).
Bassamboo et al. (2005b) develop asymptotic approximations for the latter
probability in discrete settings. They then use the corresponding approximate
zero variance measure and empirically demonstrate its asymptotic optimality
in certain settings. Shahabuddin (2005) uses the approximate zero variance
measure associated with the well-known asymptotic

Ps
(

max
n
Sn > u

)
∼ 1
|E(X)|

∫ ∞

u−s
�F(t) dt

derived in Pakes (1975) that holds whenX is subexponentially distributed (un-
der additional mild restrictions; see, e.g., Asmussen, 2003) to estimate the level
crossing probability. However, they achieve limited success in this.

In a recent presentation, Blanchet and Glynn (2005) display a more refined
approximation of the level crossing probability and claim that the change of
measure corresponding to it leads to provably asymptotically optimal estima-
tion of the level crossing probability.

8 Financial engineering applications

We first present some examples of rare-event simulation problems that arise
in financial engineering.

Example 10 (Light-tailed value-at-risk). We first give a brief overview of the
standard setting that has been given in Glasserman et al. (2000). Consider
a portfolio consisting of several instruments (e.g., shares, options, bonds,
etc.). The value of each instrument depends on one or more of m risk fac-
tors (e.g. stock price, price of gold, foreign exchange rate, etc.). Let S(t) =
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(S1(t)� � � � � Sm(t)) denote the values of the risk factors at time t and let
V (S(t)� t) denote the value of the portfolio at time t (the values of several
instruments, e.g., options, may depend directly on the time). Let t denote
the current time, and let  S = [S(t +  t) − S(t)]T (the notation AT stands
for the transpose of the matrix A) be the random change in risk factors over
the future interval (t� t +  t). Hence the loss over the interval  t is given by
L = V (S(t)� t)− V (S(t)+  S� t +  t). Note that the only random quantity in
the expression for the loss is  S. The risk problem is to estimate P(L > x) for a
given x, and the value-at-risk problem is to estimate x such that P(L > x) = p
for a given p, 0 < p < 1. Usually p is of the order 0�01 and  t is either 1 day
or 14 days. Techniques that are efficient for estimating P(L > x) for a given x,
can be adapted to estimate the value-at-risk. Hence the focus in most papers
in this area is on efficient estimation of P(L > x) for a given x.

A quadratic approximation to L is an approximation of the form

(34)L ≈ a0 + aT S + ( S)TA S ≡ a0 +Q�

where a0 is a scalar, a is a vector and A is a matrix. The importance sampling
approach given in Glasserman et al. (2000) involves determining an efficient
change of measure on the  S for estimating P(Q + a0 > x), and then using
the same change of measure for estimating P(L > x); since L ≈ a0 + Q, it
is likely that such an approach will be efficient for estimating the latter. The
r.v. Q is more tractable and it is easier to come up with efficient changes of
measure for estimating P(Q+a0 > x) and proving their asymptotic optimality
as x → ∞. Glasserman et al. (2000) use the ‘delta–gamma’ approximation.
This is simply the Taylor series expansion of the loss L with respect to  S and
it uses the gradient and the Hessian of L with respect to  S to come up withQ.
The gradient and Hessian may be computed analytically in cases where the
portfolio consists of stocks and simple options.

Usually some probability model is assumed for the distribution of  S, and
parameters of the model are estimated from historical data. A common as-
sumption, that is also used in Glasserman et al. (2000), is that  S is distributed
as N(0� Σ), i.e., it is multi-variate normal with mean zero andΣ is its covariance
matrix. If we let C be such that CCT = Σ, then  S may be expressed as CZ
where Z ∼ N(0� I). Hence Q = (ZTCTACZ) + (aTCZ). For the case where
Σ is positive definite, Glasserman et al. (2000) give a procedure to find such a
C so that CTAC is a diagonal matrix. In that case

(35)Q = ZTΛZ + bTZ =
m∑
i=1

(
λiZ

2
i + biZi

)
�

where Λ is a diagonal matrix with λi’s in the diagonal, and b is a vector with
elements bi. The problem is to find an efficient change of measure to estimate
P(Q > y), for large y := x + a0. Note that in this case Q is a sum of the
independent random variables Xi = (λiZ

2
i + biZi).
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Example 11 (Heavy-tailed value-at-risk). The multivariate normal is quite
light-tailed and there is evidence from empirical finance that risk factors may
have tails that are heavier than normal. Glasserman et al. (2002) consider the
case where  S has a multivariate t distribution (i.e., the marginals have the
univariate t distribution) with mean vector 0. The univariate t distribution with
ν degrees of freedom has a tail that decays polynomially, i.e., similar to x−ν, as
compared to x−1 exp(−x2/2σ2) which roughly describes the order of decay for
the normal distribution. Glasserman et al. (2000) consider the version of the
multivariate t as defined in Anderson (1984) and Tong (1990). This random
variable may be expressed as

W√
χ2
ν/ν

�

where W ∼ N(0� Σ) and χ2
ν is a chi-square random variable with ν degrees

of freedom (see, e.g., Fang et al., 1987) that is independent of W . If we let
V = χ2

ν/ν, then similar to (35), the diagonalized quadratic form becomes

(36)Q =
m∑
i=1

(
1
V
λiZ

2
i +

1√
V
biZi

)

(as before, Z ∼ N(0� I) and λi and bi are constants). The problem is to deter-
mine an efficient change of measure for estimating P(Q > y) for large y, so
that the same change of measure can be used for estimating the actual proba-
bility P(L > y).

In this case the quadratic form is more complicated than the quadratic form
for the normal case, due to two reasons.

• In this case, Q is heavy-tailed.
• We no longer have a sum of independent random variables; we now

have dependence among the components in the sum through V . In
this sense, this problem is more complex than the heavy-tailed prob-
lems considered in Asmussen and Binswanger (1997), Asmussen et al.
(2000) and Juneja and Shahabuddin (2002), that dealt with sums of
independent heavy-tailed random variables.

Example 12 (Credit risk). Consider a portfolio of loans that a lending insti-
tution makes to several obligors, say m. Obligors may default causing losses
to the lending institution. There are several default models in the literature.
In “static” default models, the interest is in the distribution of losses for the
institution over a fixed horizon. More formally, corresponding to each obligor
there is a default indicator Yk, i.e., Yk = 1 if the kth obligor defaults in the
given time horizon, and it is zero otherwise. Let pk be the probability of de-
fault of the kth obligor and ck be the loss resulting from the default. The loss
is then given by Lm = ∑m

k=1 ckYk. Efficient estimation of P(Lm > x) when
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m and x are large then becomes important. To study the asymptotics and rare-
event simulation for this as well as more general performance measures, it is
assumed that x ≡ xm = qm for fixed q, so that P(Lm > xm)→ 0 as m → ∞
(Glasserman and Li, 2005).

An important element that makes this problem different from the earlier
random walk models is that in this case the Yk’s are dependent. One method
to model this dependence is the normal copula model. (This methodology un-
derlies essentially all models that descend from Merton’s seminal firm-value
work Merton (1974); also see Gupta et al. (1997).) In this case, with each
Yk a standard normal random variable Xk is associated. Let xk be such that
P(Xk > xk) = pk, i.e., xk = Φ−1(1 − pk) where Φ is the d.f. of standard
normal distribution. Then, setting Yk = I(Xk > xk), we get P(Yk = 1) = pk
as required. Dependence can be introduced among the Yk’s by introducing
dependence among the Xk’s. This is done by assuming that each Xk depends
on some “systemic risk factors” Z1� � � � � Zd that are standard normal and in-
dependent of one another, and an “idiosyncratic” risk factor εk that is also
standard normal and independent of the Zi’s. Then each Xk is expressed as

Xk =
d∑
i=1

akiZi + bkεk�

The aki’s are constants and represent the “factor-loadings”, i.e., the effect of

factor i on obligor k. The bk is a constant that is set to
√

1 −∑d
i=1 a

2
ki so that

Xk is standard normal.

8.1 Approaches for importance sampling

There are two basic approaches that have been used for determining as-
ymptotically optimal changes of measures for problems of the type mentioned
above. The first approach makes use of the light-tailed simulation framework
of exponential twisting. As in Section 4, this is done with the aim of getting
a uniform bound (see Section 2.4.1) on the likelihood ratio. For light-tailed
problems like the one in Example 10, the framework can be applied directly.
Heavy-tailed problems like the ones in Example 11, are transformed into light-
tailed problems and then the framework is applied to them. All this is discussed
in Sections 8.2–8.4. A general reference for this approach applied to several
value-at-risk problems is Glasserman (2004); in the further discussion we at-
tempt to bring out the essentials.

The second approach uses conditioning. Note that in Example 11, if we
condition on V or B, then Q is reduced to the one in Example 10 (that is
light-tailed) for which exponential twisting can be effectively used. Similarly in
Example 12 in the normal copula model, conditioned on Z, the loss function
is a sum of independent random variables for which the exponential twisting
approach is well known. The question then arises as to what change of measure
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to use on the conditioning random variable, if any. This is discussed in Sections
8.5 and 8.6.

8.2 A light-tailed simulation framework

Consider the problem of estimating P(Y > y) where Y = h(X1� � � � �Xm),
h is some function from #m to #, and X1� � � � �Xm are independent random
variables, not necessarily i.i.d. For simplicity in presentation we assume that
each Xi has a p.d.f. fi(x) and that the function h is sufficiently smooth so that
Y also has a p.d.f. Let Fi(x) be the d.f. of Xi, let �Fi(x) = 1−Fi(x), and define
the hazard function as Λi(x) = − ln �Fi(x). Recall that for any two functions,
say g1(x) and g2(x), g1(x) ∼ g2(x)means that limx→∞ g1(x)/g2(x) exists and
equals 1.

If we let f̃i(x) be a new p.d.f. for Xi, with the same support as Xi, then the
importance sampling equation (2) specializes to

(37)P(Y > y) = E
(
I(Y > y)

) = Ẽ
(
I(Y > y)L(X1� � � � �Xm)

)
�

where

L(x1� � � � � xm) =
m∏
i=1

fi(xi)

f̃i(xi)
�

and Ẽ(·) denotes the expectation operator associated with the p.d.f.’s f̃i. Once
again, the attempt is to find f̃i’s so that the associated change of measure is
asymptotically optimal.

As mentioned in Section 3.3, for light-tailed random variables one may use
the change of measure obtained by exponentially twisting the original distrib-
utions. In our case, exponentially twisting fi(x) by amount θ, θ > 0, gives the
new density

fi�θ(x) = fi(x)eθx

MXi(θ)
�

whereMXi(θ) denotes the moment generating function (m.g.f.) of the random
variable Xi.

Consider the case when Y is light-tailed. In that case the attempt in the
literature is to find f̃1� � � � � f̃m, that translate into exponential twisting of Y by
amount θ. This means that the new likelihood ratio, L(X1� � � � �Xm), is of the
form MY(θ)e−θY . For example, consider the simple case where Y =∑m

i=1Xi,
and theXi’s are light-tailed random variables. Now consider doing exponential
twisting by amount θ on Xi. Then one can easily see that

L(X1� � � � �Xm) =
m∏
i=1

(
MXi(θ)e

−θXi
) =MY(θ)e−θY �
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Hence, in this specific case, the exponential twisting ofXi’s by θ translates into
exponential twisting of Y by θ.

If such an exponential twist on the Xi’s can be found, then the second mo-
ment can be bounded as follows:

Ẽ
(
I(Y > y)L2(X1� � � � �Xm)

) = Ẽ
(
I(Y > y)M2

Y (θ)e
−2θY )

(38)� M2
Y (θ)e

−2θy�

Then θ = θ∗y may be selected that minimizes M2
Y (θ)e

−2θy or equivalently that
minimizes lnMY(θ) − θy. Huang and Shahabuddin (2003) generalize earlier
specific results and show that under fairly general conditions, this procedure
yields asymptotically optimal estimation.

Hence, the main challenge in this approach is to find a change of measure
on the Xi’s that translates into exponential twisting of Y . We now see how this
is done for the examples mentioned in the beginning of this section.

8.3 Light-tailed value-at-risk

Consider the problem of estimating P(Q > y), where Q is given by (35). In
this caseQ =∑m

i=1 Vi, where Vi = λiZ
2
i +biZi. Hence, as shown in Section 8.2,

exponentially twisting each Vi by θ, will translate into exponential twisting of
Q by θ. The question then is: What is the change of measure on the Zi’s that
would achieve exponential twisting of the Vi’s. Glasserman et al. (2000) show
that this is achieved if the mean and variance of Zi are changed to μi(θ) and
σ2
i (θ), respectively, where

σ2
i (θ) =

1
1 − 2θλi

� μi(θ) = θbiσ
2
i (θ)

(the Zi’s remain independent).
Glasserman et al. (2000) perform a further enhancement to the simulation

efficiency by using stratification on Q. Note that by completing squares, each
Vi may be expressed as the sum of a noncentral chi-square r.v. and a constant.
Hence its m.g.f. is known in closed form and thus the m.g.f. of Q can eas-
ily be obtained in closed form. This can be inverted to get the distribution
of Q. This enables stratification on Q that further brings down the variance of
the importance sampling estimator I(Q > y)MQ(θ

∗
y) exp(−θ∗yQ). Glasserman

et al. (2000) give a simple algorithm for generating (Z1� � � � � Zm) conditional
on Q lying in given stratas.

8.4 Heavy-tailed value-at-risk: transformations to light tails

Consider estimating P(Q > y) where Q is given by (36). As mentioned
before, Q is heavy-tailed and thus direct application of exponential twisting
cannot be attempted here. Glasserman et al. (2002) transform this problem
into a light-tailed problem before using exponential twisting. In particular, they
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define

Qy = V (Q− y) =
m∑
i=1

(
λiZ

2
i + biZi

√
V
)− yV �

It is easy to check that Qy is light-tailed for each y, since all its components are
light-tailed. Also P(Q > y) = P(Qy > 0) and hence a heavy-tailed simulation
problem is transformed into a light-tailed one!

An exponential change of measure by amount θ � 0 onQy can be attempted
through selecting appropriate changes of measure for the Zi’s and V . In this
case, we have the following simple bound on the second moment:

E
(
I(Qy > 0)M2

Qy
(θ)e−2θQy

)
� M2

Qy
(θ)�

Adapting the same approach as in Section 8.2, a θ∗y is selected that mini-
mizes this bound. Indeed, as proved in Glasserman et al. (2002), for the case
where λi > 0 for i = 1� � � � �m, this selection gives bounded relative error.
Glasserman et al. (2002) also give an explicit change of measure (in terms of θ)
on V , and changes of measure (in terms of θ) on Zi’s conditional on V , that
achieve exponential twisting of Qy by amount θ.

Huang and Shahabuddin (2003) give another approach for transforming
a heavy-tailed simulation problem into a light-tailed one. Note that the haz-
ard function of any random variable whose p.d.f. is positive on #+ (resp., #)
is an increasing function on #+ (resp., #). Let ΛY(y) be the hazard func-
tion of Y , and let Λ(y) be any monotonically increasing function such that
Λ(y) ∼ ΛY(y). Then it is shown in Huang and Shahabuddin (2003) that
Λ(Y) is exponential-tailed with rate 1. Usually such a Λ(y) may be deter-
mined through asymptotic results in heavy-tailed theory, or by clever appli-
cation of the Laplace method for solving integrals. Then P(Y > y) may be
re-expressed as P(Λ(Y) > Λ(y)), and we again have a light-tailed simulation
problem where y is replaced by its monotonic transformation Λ(y) (note that
Λ(y) → ∞ as y → ∞). In this case, since Λ(Y) is usually not in the form of
a sum of functions of the individual Xi’s, it is difficult to find a change of mea-
sure on the Xi’s that will achieve exponential twisting on the Λ(Y). For the
case where the changes in risk factors have the Laplace distribution, Huang
and Shahabuddin (2003) find upper bounds on Λ(Y) that are in this form, so
that exponential twisting can easily be applied.

8.5 Conditional importance sampling and zero-variance distributions

As mentioned in Example 11, conditioned on V , Q has the same form as in
Example 10, for which the asymptotically optimal change of measure is much
simpler to determine. This motivates a conditioning approach for such prob-
lems.

Consider the more general problem of estimating P(Yy > 0) where Yy =
hy(X1� � � � �Xm) and hy is some function from #m to # that also depends on y.
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For the class of problems considered in Section 8.2, Yy = Y − y. The Qy
described in Section 8.4 is also an example of this. Assume that P(Yy > 0)→ 0
as y → ∞. Let V = h̃(X1� � � � �Xm) be a ‘conditioning’ random variable,
where h̃ is some other function of the input random variables (usually V is
a function of just one of the input random variables). As mentioned in the
previous paragraph, it is important to select V such that, given V = v, it is easy
to determine changes of measure on the Xi’s that translate into exponential
twisting of the Yy . This implies that for any v, given V = v, the Yy should be
light-tailed.

For conditional importance sampling, we again use insights from the zero-
variance change of measure. Note that

(39)P(Yy > 0) =
∫

P(Yy > 0|V = v)fV (v) dv�

Hence if P(Yy > 0|V = v) were computable for each v, then the zero-variance
change of measure on the V (for estimating P(Yy > 0)) would be

(40)
P(Yy > 0|V = v)fV (v)∫
P(Yy > 0|V = v)fV (v) dv

�

Recall that Yy is a tractable approximation to the actual loss function. Usu-
ally, given V = v, Yy is a sum of independent random variables and hence
P(Yy > 0|V = v) may be determined by numerical transform inversion tech-
niques. Once one is able to compute P(Yy > 0|V = v) for each v, then one can
compute P(Yy > 0) by numerical integration. One can then generate from the
zero-variance change of measure on the V by first computing its cumulative
distribution function (using numerical integration) and then using numerical
inversion. All this, even though theoretically possible, is practically possible
usually for the case of only discrete V . The asymptotic optimality proof is usu-
ally not possible for either continuous or discrete V . This approach has been
proposed in Shahabuddin and Woo (2004) and applied to the estimation of the
tail probability of the quadratic form in the value-at-risk problem, where the
risk factors have the distribution of a finite mixture of multivariate normals. In
this case, the conditioning random variable V is the random identifier of the
multivariate normal that one samples from in each step. The multivariate mix-
ture of normals has applications for the case where the asset prices obey the
jump diffusion model (see Shahabuddin and Woo, 2004).

As another approach to this problem, Shahabuddin and Woo (2004) use the
Markov inequality

P(Yy > 0|V = v) � E
(
eYyθ

∗
y�v |V = v

)
�

where θ∗y�v is obtained from minimizing the Markov bound E(eYyθ|V = v)

over all θ � 0. Then E(eYyθ
∗
y�v |V = v) may be used as a close surrogate to

P(Yy > 0|V = v) in (40). Usually, this inequality is somewhat tight for large y,
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and hence not much loss in performance may be expected due to this substi-
tution. Also, E(eYyθ

∗
y�v |V = v), the conditional moment generating function,

is usually computable in closed form. By using this surrogate, the approximate
zero-variance change of measure for the V would be

f̃V (v) = E(eYyθ
∗
y�v |V = v)fV (v)∫

E(eYyθ
∗
y�v |V = v)fV (v) dv

�

Once again, even though theoretically possible, there are difficulties with this
approach both regarding the implementation and the asymptotic optimality
proof. In addition to the numerical computational burden in the previous ap-
proach, we have the additional burden of determining θ∗y�v for each v, and
θ∗y�v is rarely available in closed form. Hence this approach is again efficient
only for the case where V is a discrete random variable taking a finite number
of values. In Shahabuddin and Woo (2004) it has been applied to the mixture
of normal problems mentioned in the previous paragraph. The asymptotic op-
timality for this case is also proved.

In order to make the implementation simpler for a continuous conditioning
random variable V , Shahabuddin and Woo (2004) consider relaxing the bound
on P(Yy > 0|V = v), by using the same θ for all V = v, and then determining
the best θ to use. In that case, the approximate zero-variance distribution is
given by

f̃V (v) = E(eYyθ|V = v)fV (v)∫
E(eYyθ|V = v)fV (v) dv

�

In this case, if V is such that

(41)E
(
eYyθ|V = v

) = g1(θ� y)eg2(θ�y)v

(for any functions g1 and g2) then

f̃V (v) = eg2(θ�y)vfV (v)∫
eg2(θ�y)vfV (v) dv

�

i.e., the approximate zero-variance change of measure is then an exponen-
tial twisting by amount g2(θ� y). Once V is sampled from the new measure,
then one needs to do a change of measure on the Xi’s given V = v, so that
one achieves exponential twisting of Yy . If this can be done, then it is easy to
check that the likelihood ratio is MYy(θ)e

−Yyθ, and thus we are in a frame-
work similar to that in Section 8.4. As in that section, the second moment
E(I(Yy > 0)M2

Yy
(θ)e−2θYy ) may then be upper bounded by M2

Yy
(θ), and a

θ∗y may be selected that minimizes this bound.
It is easy to check that forQy in the multivariate t case in Section 8.4, select-

ing V as the chi-square random variable achieves the condition given in (41).
However, the choice of the conditioning variable may not always be obvious.
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For example, consider the case where the risk factors have the Laplace distrib-
ution with mean vector 0, as considered in Huang and Shahabuddin (2003). In
this case, the tails of the marginal distributions decay according to 1√

x
e−cx, for

some constant c > 0. Justifications of this type of tail behavior may be found in
Heyde and Kou (2004). The multivariate Laplace random-variable with mean
vector 0 may be expressed as

√
BW �

where W ∼ N(0� Σ) and B is an exponentially distributed random variable
with rate 1 (see, e.g., Kotz et al., 2001). In this case the Qy becomes

(42)Qy =
m∑
i=1

(
λiZ

2
i +

1√
B
biZi − y

B

)
�

However, taking B as the conditioning random variable does not work. In fact,
a conditioning random variable V that satisfies (41) in this case is V = −1/B.
This is indeed surprising since the V does not even take positive values and
we are doing exponential twisting on this random variable! Shahabuddin and
Woo (2004) thus generalize the exponential twisting idea in Glasserman et al.
(2002) to make it more widely applicable. It also improves the earlier method
in Huang and Shahabuddin (2003) for the case where the changes in risk fac-
tors are Laplace distributed (that was based on hazard rate twisting).

8.6 Credit risk models

Consider the model described in Example 12 where the problem is to es-
timate P(Lm > xm) where Lm = ∑m

k=1 ckYk and xm = qm for some con-
stant q. For the case of independent obligors, where the Yk’s are independent
Bernoulli’s, the basic procedure is the same as described in Section 8.2. For
the case when the Yk’s are dependent, with the dependence structure speci-
fied in Example 12, Glasserman and Li (2005) first attempt doing importance
sampling conditional on the realization of the normal random variable Z, but
leaving the distribution ofZ unchanged. A similar approach is also followed by
Merino and Nyefeler (2004). Note that in this case, the probability of default
for obligor k now becomes a function of Z, i.e.,

pk(Z) = Φ

(∑d
i=1 akiZi +Φ−1(pk)

bk

)
�

In the simulation procedure, first Z is sampled and pk(Z)’s are computed,
then the importance sampling procedure mentioned above is applied by treat-
ing the pk(Z)’s as fixed. In particular, let ψ(m)i (θ� z) be the log moment gener-
ating function of Lm given Z = z, and let θm(z) be the θ � 0 that maximizes
−θqm+ψ(m)i (θ� z). Then after sampling Z, exponential twisting is performed
on the ciYi’s by the amount θm(Z). Note that θm(Z) > 0 only when Z is such
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that
∑m

i=1 ckpk(Z) = E(Lm|Z) < qm; for the other case θm(Z) = 0, and we
do not do importance sampling.

Glasserman and Li (2005) show that when the dependence among the Yi’s
is sufficiently low, conducting importance sampling conditional on the Z is
enough, i.e., the distribution of Z’s need not be changed under importance
sampling. However, when the dependence is higher, one also has to change the
distribution ofZ so that it has greater probability of falling in regions where the
default events are likely to occur. Again, one approach is to select the impor-
tance sampling distribution of Z that is close to the zero-variance distribution.

In an earlier paper Glasserman et al. (1999) consider the problem of esti-
mating E(eG(Z)) where Z is N(0� I), and G is some function from #m to #.
An importance sampling method proposed in Glasserman et al. (1999) was to
find the point that maximizes eG(z)φ(z) (assuming it is unique) where φ(z) is
the p.d.f. of N(0� I). If the maximum occurs at μ, then the new measure that is
used for Z is N(μ� I).

Once again, the intuition behind this procedure in Glasserman et al. (1999)
is obtained from the zero-variance distribution. Note that the zero-variance
distribution of Z is one that is proportional to eG(z)φ(z). The heuristic in
Glasserman et al. (1999) is based on the idea that if one aligns the mode of
the new normal distribution (i.e., μ) and the mode of eG(z)φ(z), then the two
may also roughly have the same shape, thus approximately achieving the pro-
portionality property. One can also see this if one approximates G(z) by its
first order Taylor series expansion around μ. Note that if G(z) is exactly lin-
ear with slope a, then the zero-variance distribution can be easily derived as
N(a� I). Also, in this case, it is easy to see that a minimizes eG(z)φ(z).

In the credit risk case, G(z) = ln P(Lm > qm|Z = z). Since P(Lm >
qm|Z = z) is usually not computable, one uses the upper bound obtained
from the Markov inequality, i.e.,

G(z) = ln P(Lm > qm|Z = z) � −θqm+ ψ(m)(θ� z)

for all θ � 0. As before, if we let θm(z) be the θ � 0 that maximizes −θqm +
ψ(m)(θ� z) for a given z, and define Fm(z) := −θm(z)qm + ψ(m)(θm(z)� z),
then G(z) = ln P(Lm > qm|Z = z) � Fm(z). One can then use Fm(z) as a
close surrogate toG(z), in order to determine the importance sampling change
of measure for Z. Glasserman and Li (2005) develop some new asymptotic
regimes and prove asymptotic optimality of the above procedure as m → ∞,
again for the homogeneous (pk = p and ck = 1) single factor case.

Algorithms and asymptotic optimality results for the multi-factor, nonho-
mogeneous case have been analyzed in Glasserman et al. (2005). Another
approach, but without any asymptotic optimality proof has been presented
in Morokoff (2004). Algorithms for the “t-copula model” (in contrast to the
Gaussian copula model) and related models, have been studied in Bassamboo
et al. (2005c) and Kang and Shahabuddin (2005). Bassamboo et al. (2005c)
develop sharp asymptotics for the probability of large losses and importance
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sampling techniques that have bounded relative error in estimating this prob-
ability. This analysis is extended to another related and popular performance
measure, namely expected shortfall or the expected excess loss given that a large
loss occurs, in Bassamboo et al. (2005a) (also see Merino and Nyefeler, 2004).
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Chapter 12

Quasi-Random Number Techniques

C. Lemieux
Department of Mathematics and Statistics, University of Calgary, Canada
E-mail: lemieux@math.ucalgary.ca

Abstract

Over the last decade, quasi-Monte Carlo methods have been used as an efficient
estimation tool in various high-dimensional applications, particularly in the field of
finance. These methods can be seen as a deterministic version of the Monte Carlo
method for multidimensional integration, in which quasi-random numbers are used
to construct highly-uniform point sets over which the integrand is sampled. This chap-
ter discusses the use of these techniques in simulation.

1 Introduction

At the heart of any simulation study, a reliable source of (pseudo)random
numbers – such as those discussed in Chapter 3 – is required to ensure that
the statistical output analysis of interest is done correctly. It may thus appear
dangerous to replace this pseudorandom source by a stream of quasi-random
numbers, which, unlike pseudorandom numbers, are designed to produce
a highly-uniform sampling in which correlations are allowed. Nevertheless,
over the last decade there have been many success stories in which using
these quasi-random numbers have produced estimates with a smaller er-
ror than their pseudorandom counterpart (Paskov and Traub, 1995; Spanier,
1995; Ninomiya and Tezuka, 1996; Acworth et al., 1997; Caflisch et al., 1997;
Morokoff and Caflisch, 1997). These successful applications of quasi-random
numbers (particularly those in the field of finance) have received a great deal of
attention (Business Week, 1994; The Economist, 1995; New York Times, 1995).
But maybe more importantly, they have generated considerable interest among
many researchers, thereby resulting in numerous papers where improvements
and theories explaining this success have been presented (see, e.g., Caflisch
et al., 1997; Morokoff and Caflisch, 1997; Acworth et al., 1997; Owen, 1998a;
Sloan and Woźniakowski, 1998; Hickernell, 1998c; Hickernell and Wang, 2001;
Owen, 2002; Papageorgiou, 2003; Sobol’ and Asostsky, 2003; Wang and Fang,
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2003). The purpose of this chapter is to present the general tools and principles
required to use quasi-random numbers in simulation. In the remainder of this
introduction, we briefly outline the main ideas behind these methods.

To better understand why it makes sense to use quasi-random numbers for
simulation, it is useful to formulate the goal of the simulation study in terms
of an integral to be estimated. Indeed, typically simulation is used to estimate
one or more quantities of the form

(1)μ =
∫
[0�1)s

f (u) du�

where f is a real-valued function and s is a positive integer. The function f can
be interpreted as the mapping that transforms a set of s numbers between
0 and 1 into an observation of the output quantity of interest, and μ is the
expectation of this quantity. In other words, s is the number of pseudorandom
numbers that are required in each run of the simulation, and u is the vector that
contains those uniform numbers. If an unbounded number of uniform numbers
are required in each simulation run, then s can be considered as infinite. An
example describing what this function f is for a simple queueing problem is
given in Section 2.

In this context, using n independent simulation runs to estimate μ amounts
to using the Monte Carlo (MC) method. In this case, μ is approximated by

(2)μ̂MC = 1
n

n∑
i=1

f (ui)�

where Pn = {u1� � � � �un} is a set of n independent points uniformly distrib-
uted over [0� 1)s. (Of course, in practice these n points are obtained by using
a pseudorandom number generator.)

From this point of view, it seems like better estimates of μ could be ob-
tained by choosing these n sampling points more carefully. For example, it
is well known that for small dimensions s (say, below 4 or 5), methods like
Gaussian quadrature or Simpson’s rule can achieve a smaller error than MC
(Davis and Rabinowitz, 1984). The use of quasi-random numbers, in what
has become known as quasi-Monte Carlo (QMC) methods, can also be shown
to produce a smaller error than MC, at least asymptotically and for certain
classes of functions (see, e.g., Niederreiter, 1992). These methods provide esti-
mators of the same form as the MC estimator (2), but in which the random
point set Pn is replaced by a deterministic, highly-uniform point set. They
were proposed as an alternative to the MC method shortly after the latter
was introduced at the end of the 1940’s. One of these early proposals was
from Richtmyer (1951), who suggested approximating multidimensional inte-
grals by using the points produced by the sequence {nαmod 1� n = 1� 2� � � �},
where α is an s-dimensional vector of irrational numbers which, together
with 1, are linearly independent over the rationals, and the mod 1 operation is
taken coordinate-wise. Other constructions that produce highly-uniform point
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sets were proposed later, including Korobov rules (Korobov, 1959), Halton
sequences (Halton, 1960), Sobol’ sequences (Sobol’, 1967), Faure sequences
(Faure, 1982), Niederreiter sequences (Niederreiter, 1987) and Niederreiter–
Xing sequences (Niederreiter and Xing, 1996).

The uniformity of the point sets used by QMC methods is often measured
by their “discrepancy”, that is, by how far their induced empirical distribu-
tion departs from a truly uniform distribution. For this reason, another way
to refer to quasi-random numbers is to talk about low-discrepancy point sets or
sequences. In this chapter, we interchangeably use the terms low-discrepancy
point sets, highly-uniform point sets, or quasi-random point sets. Typically,
a sequence of numbers u1�u2� � � � in [0� 1)s is considered to have low dis-
crepancy if D(Pn) ∈ O(logs n/n), where Pn = {u1� � � � �un} contains the first
n points of the sequence, and D(Pn) is the so-called star discrepancy of Pn,
which is defined by

D(Pn) = sup
v=(v1�����vs)∈[0�1)s

∣∣∣∣∣
s∏
j=1

vj − 1
n

∣∣∣∣∣Pn ∩
s∏
j=1

[0� vj)
∣∣∣∣∣
∣∣∣∣∣�

That is, consider all rectangular boxes anchored at the origin (as determined
by v) and compute the difference between the volume of the box and the
fraction of points in Pn that fall in the box. Then take the supremum of this
difference over all boxes. For example, in one dimension the regular grid
{0� 1/n� 2/n� � � � � (n−1)/n} has a discrepancy of 1/n. For a dimension s larger
than one however, the s-dimensional grid {(i1/N� � � � � is/N)� 0 � ij < N� 1 �
j � s} with N = n1/s has a discrepancy in O(1/N) = O(n−1/s), so it is not a
low-discrepancy point set. When s > 1, the points must be placed more care-
fully to get a low discrepancy, i.e., not by simply taking the Cartesian product
of s one-dimensional low-discrepancy point sets. For example, one kind of con-
struction called a lattice rule places the points on the vertices of a lattice that
intersect the unit hypercube [0� 1)s. Figure 1 illustrates the difference between
a lattice point set and a regular grid in two dimensions.

There is a large amount of literature on the concept of discrepancy
(Niederreiter, 1992; Morokoff and Caflisch, 1994; Hickernell, 1998a; Matou-
šek, 1998), but we do not discuss it further here since its relevance for simula-
tion is rather limited.

Because of the deterministic nature of the point sets Pn on which QMC
methods are based, the error analysis for these methods is often done by trying
to derive upper bounds on the deterministic error

En = |μ̂QMC − μ|�
where

μ̂QMC = 1
n

∑
ui∈Pn

f (ui)�
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Fig. 1. Left: two-dimensional regular grid. Right: two-dimensional lattice point set.

and Pn is a highly-uniform point set. For example, one can use the Koksma–
Hlawka inequality

(3)En � D(Pn)V (f )�

where D(Pn) is the star discrepancy and V (f ) is the variation of f in the sense
of Hardy and Krause (see Niederreiter, 1992, for more details). This inequality
can be used to show that for any function with V (f ) < ∞, the error of the
approximation μ̂QMC is in O(logs n/n), which for a fixed s is better than the
probabilistic O(n−1/2) associated with MC.

What this means is that asymptotically and for a fairly limited class of func-
tions, the error is smaller for approximations based on low-discrepancy point
sets than it is for MC-based estimates. However, one of the problems with
this type of analysis is that it does not explain the success of QMC methods
on high-dimensional integrands (e.g., s = 360 in Paskov and Traub, 1995)
since for s even as small as 10, n needs to be about 1039 in order to have
logs n/n � n−1/2. Also, inequalities such as (3) only provide bounds on the
error and cannot be used to estimate En.

If we go back to the idea of using quasi-random numbers for simulation,
it seems like it cannot work since in the simulation context, estimates of the
error are important, unbiased estimators are typically preferred, and we of-
ten have to work with large values of s. Fortunately, these seemingly major
hurdles can be removed if instead of using purely deterministic quasi-random
numbers, one uses randomized quasi-Monte Carlo (RQMC) methods. The idea
here is to randomize a highly-uniform point set Pn so that each of its points fol-
lows the uniform distribution over [0� 1)s, while preserving the high uniformity
of Pn. Many randomization techniques that achieve this have been proposed
and used in practice; see Owen (1998a), L’Ecuyer and Lemieux (2002) and
the references therein. Since they are better suited for simulation, we will be
mostly discussing RQMC methods in this chapter.
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Once we have a randomized highly-uniform point set P̃n with the prop-
erties mentioned above, each of its points are used to drive one run of the
simulation. More precisely, the ith run is driven by the s coordinates of
ui = (ui�1� � � � � ui�s). Since each ui is uniformly distributed over [0� 1)s, the
estimator

(4)μ̂RQMC = 1
n

∑
ui∈P̃n

f (ui)

is unbiased, and its variance can be estimated by creating m copies of μ̂RQMC
based on m i.i.d. copies of the randomized point set P̃n. More details on this
procedure are given in Sections 2 and 6.

As we just outlined, with RQMC methods it is possible to estimate the vari-
ance of the estimator μ̂RQMC. One can therefore verify empirically whether the
RQMC estimator has a smaller variance than the corresponding MC estima-
tor based on n points. This type of analysis has been done for different kinds
of problems, using different quasi-random point sets and randomizations (see,
e.g., Tan and Boyle, 2000; L’Ecuyer and Lemieux, 2000; Kollig and Keller, 2002;
Lemieux and L’Ecuyer, 2003). In most (if not all) cases, it was observed that
the RQMC estimator reduced the variance compared to the MC estimator.
Moreover, it can be proved theoretically that in some cases, the variance of
the RQMC estimator is smaller than the MC variance (Owen, 1997a, 1997b,
1998b). For this reason, one can think of RQMC methods as variance reduc-
tion techniques such as those discussed in Chapters 10 and 11. More precisely,
because of the nature of the randomized point set P̃n, they can be seen as cor-
relation induction methods.

The plan for the remainder of this chapter is as follows. We illustrate the
main ideas of quasi-random number techniques in Section 2 by using a simple
queueing example. In Section 3, we discuss the concept of effective dimen-
sion, which is important to understand the success of quasi-random number
techniques in practice. The main tools used for designing highly-uniform point
sets are presented in Section 4, where we also describe some of the construc-
tions most commonly used in practice. Section 5 is devoted to recurrence-based
point sets, which have been discussed in Chapter 3 and provide an especially
useful type of highly-uniform point set in practice. In Section 6, we talk about
randomization techniques and give some theoretical results supporting the use
of RQMC methods as variance reduction techniques. The connections be-
tween these results and selection criteria for choosing good parameters for
different constructions are also briefly mentioned. Issues that arise when quasi-
random point sets are combined with other variance reduction techniques are
discussed in Section 7. Finally, current and future avenues of investigation
for the use of quasi-random point sets in simulation are presented in Sec-
tion 8.

http://dx.doi.org/10.1016/S0927-0507(06)13003-0
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2 An example

Consider an M/M/1 queue with an arrival rate of λ = 1 customer per
minute and a service rate of μ = 1�2 customers per minute. Suppose the sys-
tem starts empty, runs for 8 hours, and that we want to estimate the expected
average waiting time in the queue for the customers that entered the system
during that period. Formally, our goal is to estimate

μ = E
(∑N

i=1wi
N

)
�

where N is the number of customers that have entered the system in 8 hours
and wi is the waiting time in the queue of the ith customer. The above ratio
is defined to be 0 when N = 0. We have expressly chosen a finite-horizon
measure of performance for this example, just so that the problem would fit
more naturally in the general framework outlined in the Introduction.

Using the formulation (1), we see that here the dimension s is unbounded
since it depends on the number N of customers entering the system, which is
itself unbounded. To describe the function f in (1) that corresponds to this
problem, we first use Lindley’s equation

(5)wi = max(0� wi−1 + si−1 − ai)� i � 1�

where si is the service time of the ith customer, ai is the interarrival time be-
tween the (i− 1)st and ith customer, and w0 = s0 = 0.

To write wi as a function of u = (u1� u2� � � �), we need to decide what non-
uniform generation method (see Chapter 4) to use for the ai’s and the si’s. With
RQMC methods, inversion is the most natural choice because it often helps
minimizing the number s of uniform numbers required for each simulation.
Thus we let

(6)ai = − ln(1 − u2i−1)

λ

and

(7)si = − ln(1 − u2i)

μ
�

Using (5) along with (6) and (7), it is easy to see that each wi can be written as
a function gi of u1� � � � � u2i−1. Similarly, the number N of customers entering
the system can be written as

N =
∞∑
i=1

Ia1+···+ai<480�

http://dx.doi.org/10.1016/S0927-0507(06)13004-2
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where IX is the indicator function for the event X. Since ai is a function of
u2i−1 for each i, N itself becomes a function of u. We can then write

f (u) = 1
N(u)

N(u)∑
i=1

gi(u1� � � � � u2i−1)�

A possibly more intuitive way of understanding how f takes the vector u as in-
put and outputs an observation of the quantity of interest is to use pseudocode
as follows:

OneSim(u1� u2� � � �)
TotWait = 0 // Total waiting time
w = 0
a = − ln(1 − u1)/λ
j = 2 // Indexes the coordinate of u to be used next
time = a // Current time
NbCust = 1 // Number N of customers that entered so far
while(time < 480) do
s = − ln(1 − uj)/μ
a = − ln(1 − uj+1)/λ
NbCust = NbCust + 1
time = time + a
w = max(0� w + s − a)
if(time < 480) then TotWait = TotWait + w
j = j + 2

return(TotWait/NbCust)

This describes how this simple simulation problem fits the framework of
multidimensional integration over [0� 1)s, with s = ∞ here. Now we need to
explain how quasi-random numbers can be used to estimate μ. Probably the
simplest method to describe is the one based on a randomly shifted Korobov
point set. This is a special case of a randomized recurrence-based point set
where the underlying highly-uniform point set is obtained by taking the succes-
sive overlapping vectors produced by a linear congruential generator (LCG).
The point set is then randomized by adding a random vector v = (v1� v2� � � �)
modulo 1 to each point.

In practice, using the LCG formulation to construct Pn is very useful (see
Section 5). Here however, we describe Pn using the “Korobov formulation”
(Korobov, 1959). The ith point in the randomized point set P̃n is given by

ui =
(
i(1� a� a2� � � �)modn

n
+ v
)

mod 1�

where a ∈ {1� � � � � n − 1} is the generator of the point set. Hence ui�j = ((i ×
aj−1 modn)/n+ vj)mod 1 for each i = 0� � � � � n− 1, j � 1.
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Putting everything together, the following algorithm estimates μ by using
10 i.i.d. copies of an RQMC estimator based on a randomly shifted Korobov
point set. It returns an estimator for μ and its estimated standard deviation.
We assume below that Rand01(·) returns a (pseudo)random uniform number
between 0 and 1, and that ave(x) and std(x) return the average and sample
standard deviation of the vector x, respectively. In the pseudocode below, the
definition of v suggests it is a vector of infinite length. In practice, it suffices
to generate the coordinates only as they are needed. More details are given in
Section 6.

QueueKorobov
for l = 1 to 10 do

sum = 0
v = (v1� v2� � � �) // where vj = Rand01(·)
for i = 0 to n− 1 do

sum = sum+OneSim(ui�1� ui�2� � � �)
// where ui�j = ((1/n)(i× aj−1 modn)+ vj)mod 1

end for
x[l] = sum /n

end for
return(ave(x)� std(x)) // x = (x[1]� x[2]� � � � � x[10])
In Table 1, we give the results obtained both with a randomly shifted Ko-

robov point set and the MC method for this example. The generators used are
a = 76 and a = 1516 for n = 1021 and n = 4093, respectively (L’Ecuyer and
Lemieux, 2000). The first number in each entry for “Korobov” (MC) is the
mean of 10 i.i.d. copies of μ̂RQMC(μ̂MC) based on n points, and the number
in parentheses is the estimated standard deviation of μ̂RQMC(μ̂MC). As we can
see there, the RQMC estimator has an estimated standard deviation less than
half the size of its MC counterpart. In addition, the computation time required
is slightly smaller for this RQMC estimator than for the MC estimator, so in
terms of efficiency, the gains are even higher. Note that for this example, since
the average number of clients entering the system in 8 hours is 480 and we need
to generate two random variables per client, the average number of required
components in u is 960.

Table 1.
Simulation results with a randomly shifted Korobov
point set and MC for the M/M/1 problem: each entry
gives the estimated mean (standard deviation)

n Korobov MC

1021 3.84 (0.04) 3.87 (0.10)
4093 3.85 (0.02) 3.85 (0.04)
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3 A key concept: Effective dimension

We saw in the previous section an example where the RQMC estimator has
an empirical standard deviation less than half the size of its MC counterpart
on a problem where the dimension s is close to 1000. The “classical” analysis
that we briefly outlined in the Introduction (e.g., the Koksma–Hlawka inequal-
ity (3)) cannot explain this kind of result. Moreover, when the dimension s is
close to 1000, it seems impossible that a set of only 1021 points could have
sampled the unit hypercube [0� 1)s very evenly. To explain the success of the
RQMC estimator in this example, we must look at the function f that is inte-
grated, and how it interacts with the point set P̃n used. (Since the features of P̃n
that are relevant when studying this interaction are usually inherited from Pn,
we consider the unrandomized point set Pn in what follows.)

Intuitively, it makes sense to think that in this example, the waiting time of
a customer will probably not be affected by the waiting times of customers that
were not close to him in the system, e.g., that arrived one hour before or after
him. In terms of the function f , this translates into saying that the interaction
of, say, two coordinates uj and ul where |j − l| is large does not contribute
very much to the variability of f . Going one step further, one could say that
for this example, it is reasonable to assume that f can be well approximated by
a sum of functions defined over subspaces of low dimensions. Consequently, as
long as the set Pn is highly-uniform over these subspaces, the RQMC estimator
based on Pn will be a good approximation for f . These ideas can be made more
formal by using the functional ANOVA decomposition of a function (Hoeffding,
1948), which we now describe.

3.1 A functional ANOVA decomposition

This decomposition allows us to write any square-integrable function f de-
fined over [0� 1)s as a sum

f (u) =
∑

I⊆{1�����s}
fI(u)�

where fI only depends on those variables uj such that j ∈ I. This decomposi-
tion is such that

∫
[0�1)s fI(u) du = 0 for any nonempty I, and f∅(u) = μ. Also,

it is orthogonal, i.e., for any I �= J, we have that∫
[0�1)s

fI(u)fJ(u) du = 0�

We assume s is finite here, but ANOVA decompositions can also be used to
analyze integrands f of infinite dimension (Owen, 1998a).

Each component is defined as follows (Owen, 1998a): f∅(u) = μ, and for
I �= ∅, fI(u) =

∫
[0�1)s−|I| f (u) duIc −∑J⊂I fJ(u), where Ic is the complement

of I and⊂ denotes strict set inclusion. For example, if f (u1� u2) = u1+2u1u
2
2+
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u3
2, then f∅(u1� u2) = 13/12 f{1}(u1� u2) = 5u1/3 − 5/6, f{2}(u1� u2) = u2

2 +
u3

2 − 7/12, and f{1�2}(u1� u2) = 2u1u
2
2 − 2u1/3 − u2

2 + 1/3.
For each nonempty subset I, the variance σ2

I of the ANOVA component
fI is given by

σ2
I = Var

(
fI(U)

) =
∫
[0�1)s

f 2
I (u) du�

Because of the orthogonality of the fI ’s, we have that
∑

I⊆{1�����s} σ2
I = σ2,

where σ2 = Var(f (U)). Therefore we can view σ2
I /σ

2 – these are called sensi-
tivity indices in Sobol’ (2001) – as a measure of the relative importance of the
ANOVA component fI . Note that the best mean-square approximation of f
by a sum of d-dimensional (or less) functions is given by

∑
I:|I|�d fI .

In many situations – for example, when evaluating financial products – the
function f of interest is such that the components fI with |I| small are the most
important. For instance, Lemieux and Owen (2001) estimate that the one- and
two-dimensional components of the 30-dimensional function representing the
price f of an Asian option (with specific parameters) contribute about 97%
of the variance of f . In some sense, this suggests that for this example, the
effective dimension of f is 2 rather than 30. In Paskov (1997), this concept of
effective dimension was used to explain the success of QMC methods on a
360-dimensional integrand resulting from the evaluation of a Collateralized
Mortgage Obligation (CMO). Other investigations of the effective dimension
in finance problems are reported in, e.g., Wang and Fang (2003), Wang and
Sloan (2003). Because of its crucial importance in our understanding of the
success of QMC methods in practice, we now discuss this concept in more
detail.

3.2 Effective dimension

Our treatment here closely follows Caflisch et al. (1997) and Hickernell
(1998b), which provide two definitions of the effective dimension of f based
on its ANOVA decomposition.

Definition 1. The effective dimension of f (in proportion p), in the superpo-
sition sense, is the smallest integer dS such that

∑
I:|I|�dS σ

2
I � pσ2.

In the 30-dimensional Asian option mentioned above, f has an effective
dimension of 2 in the superposition sense, in proportion 0.97.

Definition 2. The effective dimension of f (in proportion p), in the truncation
sense, is the smallest integer dT such that

∑
I:I⊆{1�����dT } σ

2
I � pσ2.

When a function f has an effective dimension of d in the superposition
sense in proportion p, it means that it can be approximated by a sum f̃ of
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d-dimensional (or less) functions, and that the approximation explains at least
100p% of the variance. Now, if we have a point set Pn such that all projections
Pn(I) of the form

Pn(I) =
{
(ui�i1� � � � � ui�ij ): ui = (ui�1� � � � � ui�s) ∈ Pn� I = {i1� � � � � ij}

}
with |I| = j � d are highly-uniform, then the estimator μ̂RQMC based on Pn
should approximate the integral of f̃ very well. Furthermore, if p is close to 1
then f̃ is “close” to f (in a mean-square sense), and thus μ̂RQMC should also be
a very good estimator of μ. A more formal treatment of this kind of argument
can be found in Wang and Fang (2003).

The definition of the effective dimension in the truncation sense can lead
to similar arguments describing how the interaction between Pn and f can
lead to a successful application of RQMC methods. An important difference
with the definition in the superposition sense is that the ordering of the vari-
ables u1� � � � � us matters here. The motivation behind this definition is that
for some QMC constructions such as Sobol’ and Halton sequences, it has
been observed that the projections Pn(I) deteriorate as the indices in I in-
crease (see, e.g., Morokoff and Caflisch, 1994). In order for the estimator
μ̂RQMC to be good for such point sets, the function f to be integrated must
be such that the components fI with |I| or imin I = min{j: j ∈ I} large
should be unimportant. Not all constructions for highly-uniform point sets
have this undesirable feature. For instance, recurrence-based point sets have
projections Pn(I) that do not deteriorate as imin I increases (all things being
equal elsewhere) because they are dimension-stationary. This means that the
projections Pn(I) depend only on the spacing between the indices in I, e.g.,
Pn({1� 3� 4}) = Pn({2� 4� 5}) = Pn({10� 12� 13}).

Another possible definition for the effective dimension is given in L’Ecuyer
and Lemieux (2000).

Definition 3. The effective dimension of f (in proportion p), in the successive-
dimensions sense, is the smallest integer dSD such that

s−dSD+1∑
i=1

∑
I:I⊆{i�����i+dSD−1}

σ2
I � pσ2�

As for dT , the value of dSD depends on the ordering of the variables uj
because of the restriction on the subsets I that the range rI = max{j: j ∈ I} −
min{j: j ∈ I} be upper bounded by dSD. The motivation behind this definition
is that in some problems, especially in the simulation context, a variable uj
does not interact very strongly with variables ul such that |l − j| is large. We
made this point (intuitively) at the beginning of this section, when discussing
the M/M/1 example. In addition, when designing highly-uniform point sets in
high dimensions, it is not possible in practice to make sure that all projections
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Pn(I) are good, even if we only consider those with |I| � d for some d < s.
However, if the point set is designed for classes of functions that are believed
to have a small effective dimension in the above sense, then it is reasonable to
decrease the number of projections considered by adding the corresponding
restriction on the range of I. We refer the reader to Chapter 3 for more on
selection criteria that use such restrictions.

3.3 Relevance in the simulation context

In the context of simulation, it often happens that the integrand f in (1) has
a very large nominal dimension, but a small or moderate effective dimension.
Intuitively, the reason for this is that although a large number of input vari-
ables are used in each simulation, each of them usually interacts strongly with
only a few other variables. For this reason, RQMC methods can often be used
successfully in the simulation context. For example, in Lemieux and L’Ecuyer
(1999), RQMC methods are used to reduce the variance by factors between
2 and 5 for a ruin probability problem where the nominal dimension is 8000.

It is important to note that in the formulation (1), there are two things that
can influence the size of the effective dimension of f : (i) which nonuniform
generation methods are used; (ii) how the variables uj are assigned to the input
variables in the problem. As we mentioned in Section 2, with RQMC methods
it is preferable to use inversion for generating nonuniform random variables,
as it often helps minimizing the dimension (nominal, and thus effective) of f .
Inversion also helps with the assignment mentioned in (ii), in the same way
it helps achieve synchronization when common random numbers or antithetic
variates are used (Law and Kelton, 2000, pp. 586–599). When using inversion,
there is often a “natural” way of assigning the coordinates uj to the input vari-
ables: one simply assigns the uj ’s in the chronological order produced by the
simulation. This is what we did in Section 2: u1 was used to generate the first
interarrival time, then u2 was used for the service time of the first client, then
u3 for the next interarrival time, etc. Assignment done in this way typically con-
tributes to reduce the effective dimension (in the successive-dimensions sense)
since the uj ’s whose indices are far apart are associated with events that are far
apart in time and thus do not interact strongly together. This is especially true
when the simulation has regenerative cycles (see Chapter 16). In this case, if all
the variables uj associated with one cycle have successive indices, then we can
say that roughly, the effective dimension (in the successive-dimensions sense)
is bounded above by the expected number of input variables associated with
one regenerative cycle.

The assignment choice may not be that crucial in some cases and, as men-
tioned before, it does not affect the value of the effective dimension in the
superposition sense. Also, if the point set Pn is such that for any fixed size d,
each projection Pn(I) with |I| = d is of the same quality, then the assignment
can be done arbitrarily. This is true when Pn is a set of i.i.d. uniform points
as in the MC method, but typical highly-uniform point sets do not have this

http://dx.doi.org/10.1016/S0927-0507(06)13016-9
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property. Instead, for a fixed size |I|, the projections Pn(I) with either a small
minimal index imin I or range rI are usually more uniform. In this case, the as-
signment choice may make a difference, but what may really help with such
point sets is to use dimension reduction techniques, which we now discuss.

3.4 Reducing the effective dimension

For some problems, it is possible to use techniques that can reduce the ef-
fective dimension. One kind of application where this is especially true is when
the problem requires the simulation of an underlying Brownian motion. In
this case, one can use the Brownian Bridge Technique (Caflisch et al., 1995;
Morokoff and Caflisch, 1997), which uses the Brownian bridge property to gen-
erate the Brownian motion’s steps in an arbitrary order.

Let 0 � t1 < · · · < ts. For a standard Brownian motion B(·), the usual way
of generating a path B(t1)� � � � � B(ts) from a uniform point u = (u1� � � � � us) is
as follows:

t0 = B(t0) = 0
for j = 1 to s
B(tj) = B(tj−1)+√tj − tj−1Φ

−1(uj) // where Φ(x) = P(N(0� 1) � x)
end for

An alternative idea is to try using the first few coordinates of u to specify as
much as possible the behavior of B(·), so that functions of B(·) will (hopefully)
have a small effective dimension in the truncation sense. The Brownian bridge
technique does that by first generating B(ts), then B(t�s/2�), then B(t�s/4�) and
B(t�3s/4�), and so on. This can be done easily since the Brownian bridge prop-
erty tells us that for any u < v < w, we have that B(v) | (B(u) = a�B(w) = b)
has a normal distribution with mean a(w− v)/(w−u)+b(v−u)/(w−u) and
variance (v − u)(w − v)/(w − u). Similar techniques can be used to generate
Poisson processes, as discussed in Fox (1999).

For Brownian motion, the above technique can be generalized by observing
that the standard method to generate B(·) can be written as⎛

⎝
B(t1)
���

B(ts)

⎞
⎠ = A

⎛
⎝
z1
���
zs

⎞
⎠ �

where

A =

⎛
⎜⎜⎝

1 0 0 � � � 0
1 1 0 � � � 0

���
1 1 1 � � � 1

⎞
⎟⎟⎠ �

if we assume that tj − tj−1 = 1 for each j = 1� � � � � s, and the zj = Φ−1(uj) are
i.i.d. standard normal variables. Replacing A by a matrix B such that BBT =
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AAT =: � is called a generalized Brownian bridge technique in (Morokoff and
Caflisch, 1997). For example, Acworth et al. (1997) use a principal compo-
nents analysis to define B, i.e., they take B = PD1/2, where P’s columns are
formed by the eigenvectors of the covariance matrix �, and D is a diagonal
matrix containing the corresponding eigenvalues of� in decreasing order. This
method was shown to numerically outperform the Brownian bridge technique
in Acworth et al. (1997), but its computation time is much longer since to simu-
late n Brownian motion paths, it runs in O(ns2) rather than the O(ns) required
for the standard and Brownian bridge methods. Following this work, Åkesson
and Lehoczy (2000) proposed a modification reducing the computation time
for the principal components’ method.

It is important to be aware that these dimension reduction methods do not
provide estimators with reduced variance for all problems. They aim at im-
proving the simulation of the Brownian motion paths, but they do not take
into account how these paths contribute to the value of the function to be esti-
mated. For example, Papageorgiou (2002) provides numerical results showing
that for a certain type of digital option in finance, the Brownian bridge tech-
nique produces estimators with a far worse error than the standard method
does.

For simulation problems that do not rely on Brownian motions or Poisson
processes, it is still possible to come up with dimension reduction techniques.
For example, using Conditional Monte Carlo (CMC) typically amounts to re-
ducing the number of input variables that need to be generated, thereby re-
sulting in an automatic reduction of the (nominal) dimension. See for example
L’Ecuyer and Lemieux (2000), where CMC and RQMC are used to simulate
a stochastic activity network.

4 Constructing quasi-random point sets

As seen in the previous sections, the success of RQMC methods in practice
relies on the availability of highly-uniform point sets that interact in a construc-
tive way with the integrand. Of course, the applicability of these methods would
be greatly diminished if one had to choose a specific point set for each problem
in order for this interaction to work properly. A more reasonable approach is
to have a few good constructions whose parameters have been chosen so that
for a large number of integrands, they should produce good results, that is,
estimators with lower variance than MC.

Currently, most of the highly-uniform point sets used in practice come from
two families of constructions. Lattice Rules (Niederreiter, 1992; Sloan and Joe,
1994), which generalize the early construction of Korobov (1959), and digital
nets and sequences (Niederreiter, 1992; Tezuka, 1995), which generalize the
Sobol’ sequence. Further, we describe these families and some of their most
widely used constructions. We do not discuss polynomial integration lattices



Ch. 12. Quasi-Random Number Techniques 365

and their extensions, and refer the reader to Lemieux and L’Ecuyer (2003),
Niederreiter (2003) and L’Ecuyer (2004) for information on those.

4.1 Lattice rules

Lattice rules construct approximations for (1) by using a lattice point set of
the form Pn = L ∩ [0� 1)s, with L an integration lattice defined as

(8)L =
{

x =
s∑
j=1

zjvj : z = (z1� � � � � zs) ∈ Z
s

}
�

where the vectors v1� � � � � vs ∈ R
s are linearly independent and form a basis

for L. In other words, a lattice is obtained by taking all integer linear combi-
nations of the vectors in its basis. In addition, L must contain Z

s – this is what
makes it an integration lattice – which implies that each vj contains only ratio-
nal numbers. As an example, a Korobov rule is based on a lattice with a basis
of the form v1 = (1� a� a2� � � � � as−1)/nmod 1, vj = ej for j = 2� � � � � s, where
ej is a vector of zeros with a one in the jth position.

A given lattice does not have a unique basis. However, its rank r and in-
variants n1� � � � � nr are uniquely determined integers having the property that
(i) Pn can be written as

(9)Pn =
{
j1
n1

z1 + · · · + jr

nr
zr : 0 � jl < nl� l = 1� � � � � r

}
�

where z1� � � � � zr are linearly independent integer vectors; (ii) nj+1 divides nj ,
for j = 1� � � � � r − 1 and n = n1� � � � � nr (Sloan and Joe, 1994). The formu-
lation (9) is easier to work with than (8) is when the time comes to choose
specific lattice constructions. More precisely, one can choose the rank and in-
variants beforehand, and then proceed to a search for “good” vectors z1� � � � � zr
according to some criterion. When the rank is larger than one, these vectors
are not uniquely determined in (9), and so computer searches must be done
carefully in order to avoid too much duplication. See Sloan and Walsh (1990)
for examples of computer searches where the rank is 2.

In practice, most lattice rules are based on lattices of rank 1. In this case, the
lattice point set can be written as

Pn =
{
i

n
(z1� � � � � zs)mod 1: 0 � i < n

}
�

where (z1� � � � � zs) ∈ Z
s is the generating vector. The parameters to be deter-

mined are thus z1� � � � � zs, and there is no loss of generality in assuming that
z1 = 1 and 1 � zj < n for j = 2� � � � � s. Restricting the search to rank-1
rules certainly simplifies the search procedure. In addition, rank-1 rules are
fully projection regular, a property meaning that each projection Pn(I) contains
n distinct points. Lattices of higher rank do not provide point sets with this
desirable property.
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Korobov rules are an example of rank-1 rules. As seen in Section 2, only
one parameter, the generator a of Pn, needs to be specified. This provides ad-
ditional speedup for the search procedure. Moreover, Korobov point sets are
dimension-stationary. Tables of good generators a for various values of n can
be found in, e.g., Haber (1983), L’Ecuyer and Lemieux (2000).

In our discussion of lattice rules, we have assumed that the number of points
n was fixed. In applications where a certain level of accuracy is desired, the
required number of evaluation points may not be known in advance. In this
case, constructions whose number of points can be increased indefinitely –
just like with digital sequences – are better suited. Recently, lattice rules
whose size n can be extended have been studied (Hickernell and Hong, 1997;
Hickernell et al., 2001; Hickernell and Niederreiter, 2003) and parameters
for such sequences can be found in Hickernell et al. (2001). Another recent
advance in the theory of lattice rules is the development of component-by-
component constructions for rank-1 rules that minimize a certain criterion
(more precisely, a worst-case error in some class of functions). Tables of pa-
rameters for such point sets can be found in, e.g., Sloan et al. (2002), Sloan
and Rezstov (2002). The constructions studied in Sloan et al. (2002) have the
additional advantage of achieving a strong tractability error bound in some space
of functions. This roughly means that the number of points required to keep
the error bounded as the dimension s increases does not grow exponentially
with s.

4.2 Digital nets and sequences

Before giving a general description of digital nets and sequences, let us first
present a one-dimensional low-discrepancy sequence due to van der Corput
(1935). This sequence makes use of the radical-inverse function ϕb, a central
tool in the design of digital nets. Let n be a nonnegative integer and consider
its unique digital expansion in base b given by

(10)n =
∞∑
i=0

aib
i�

where 0 � ai < b, and ai = 0 for all sufficiently large i, i.e., the sum in (10) is
actually finite. Then we have

ϕb(n) =
∞∑
i=0

aib
−i−1�

The van der Corput sequence in base 2 u0� u1� � � � is defined by

un = ϕ2(n)� n � 0�

i.e., the nth term in the sequence is obtained by applying the radical inverse
function in base 2 to n.
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To generalize this construction to point sets or sequences of higher dimen-
sions, at least two ideas can be exploited: (i) for each dimension j = 1� � � � � s,
apply a different linear transformation to the coefficients ai before apply-
ing ϕb; (ii) use a different base b for each dimension. The Sobol’ sequence is
based on the first idea, while the Halton sequence uses the second one. More
generally, applying the first idea in an arbitrary base b is what gives rise to the
general notion of digital net and sequence, which we now describe following
Niederreiter (1992). (Our description is not as general as the one given there,
but general enough to cover most constructions used in practice.)

Let b be a prime and k � 0 be an integer. A digital net in base b with n = bk

points is a point set Pn defined by s generating matrices C1� � � � �Cs of size k×k,
with entries in Zb. The jth coordinate ui�j of the ith point is obtained as ui�j =∑k

l=1 yj�lb
−l, where

(11)

⎡
⎣
yj�1
���
yj�k

⎤
⎦ = Cj

⎡
⎣

a0
���

ak−1

⎤
⎦ �

and the al’s come from the digital expansion i = ∑k−1
l=0 alb

l of i in base b.
So ui�j is obtained by first applying a linear transformation determined by the
matrix Cj to the coefficients a0� � � � � ak−1 in the digital expansion of i, and
then by applying the radical-inverse function to these transformed coefficients
yj�1� � � � � yj�k. It is possible to define digital nets in a base b that is not prime.
One simply needs to choose a commutative ring R of cardinality b. The gener-
ating matrices then contain elements in that ring R, and bijections going from
Zb to R and from R to Zb must be applied to the ai’s and the yj�l, respectively.
This setup can actually be used for a prime base b as well.

Related to digital nets are digital sequences, which are infinite sequences of
points rather than point sets Pn of finite size n. Points from a digital sequence
are obtained as above, but with generating matrices of infinite size.

We now describe three special cases of digital sequences: the Halton, Sobol’
and Faure sequences. As we outlined previously, an s-dimensional Halton se-
quence is obtained by juxtaposing s van der Corput sequences in different
bases. More precisely, the jth coordinate of the ith point is obtained as

uij = ϕbj (i)�

where the bj , j = 1� � � � � s, are integers larger than 1 typically chosen as the
first s prime numbers. Formally, this is not a digital sequence, but we feel it is
important to present this construction because of its wide use in practice (e.g.,
see Spanier, 1995; Kollig and Keller, 2002). Many improvements have been
proposed for this sequence since its introduction in 1960 (Braaten and Weller,
1979; Struckmeier, 1995; Tuffin, 1998).

The Sobol’ sequence is a digital sequence in base 2. It was proposed by
Sobol’ (1967) before the concept of digital net was defined in Niederreiter
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(1987). Thus, its definition does not directly use generating matrices, although
it can be defined that way. Instead, it relies on direction numbers vj�1� vj�2� � � �
that must be chosen for each coordinate j = 1� � � � � s. These direction numbers
are rational numbers of the form

vj�l =
mj�l

2l
=

l∑
p=1

vj�l�p2−p� l � 1�

wheremj�l is an odd integer smaller than 2l. Also needed is a primitive polyno-
mial fj(z) = zq+αj�1zq−1+· · ·+αj�q over F2, the finite field with two elements,
for each j = 1� � � � � s. The method described in Sobol’ (1967) chooses fj(z) to
be the jth polynomial in a list of primitive polynomials over F2 sorted by in-
creasing degree.

For a given j, if fj(z) is of degree q(j), then only the first q(j) direction
numbers vj�1� � � � � vj�q(j) must be chosen. The next ones are obtained through
the recurrence

vj�l = αj�1vj�l−1 ⊕ · · · ⊕ αj�q(j)−1vj�l−q(j)+1 ⊕
vj�l−q(j)

2q(j)
� l > q(j)�

where⊕ denotes a bit-by-bit exclusive-or operation and vj�l−q/2q(j) means that
the binary expansion of vj�q(j) is shifted by q(j) positions to the right. The jth
coordinate of the ith point in the sequence is then defined as

ui�j = a0vj�1 ⊕ · · · ⊕ ak−1vj�k�

where a0� � � � � ak−1 are the coefficients in the binary expansion of i.
Hence the parameters that must be chosen are the q(j) first direction num-

bers for each j = 1� � � � � s. Equivalently, one must specify mj�1� � � � �mj�q(j) for
each j. Sobol’ and Levitan (1976) give a table of values of mj�l for j � 40
that is used in the implementation given by Bratley and Fox (1988). Other
implementations of the Sobol’ sequence can be found in the Finder soft-
ware (http://www.cs.columbia.edu/~ap/html/finder.html), the SamplePack soft-
ware (http://www.uni-kl.de/AG-Heinrich/SamplePack.html) and the RandQMC
library (http://www.math.ucalgary.ca/~lemieux/randqmc.html, Lemieux et al.,
2002).

The quality of digital nets and sequences is often measured by a quan-
tity called t. Niederreiter (1992) calls an s-dimensional digital net in base b
with bm points a (t�m� s)-net, where t refers to this quality parameter. The
smaller t is, the more uniform the net is. Similarly, an s-dimensional digital
(t� s)-sequence is a digital sequence such that for each m � 0, the first bm
points form a (u�m� s)-net, for some u � t. Sobol’ (1967) calls his sequence
an LPτ-sequence, where τ refers to this value of t. The Faure sequence is a
digital sequence with t = 0 (Faure, 1982). For this property to hold, we must
have b � s, and thus the base b increases with s. This sequence uses the Pas-
cal matrix P, whose entry on the kth row and lth column is

(k
l

)
for k � l, and

0 otherwise. More precisely, the generating matrix Cj for the Faure sequence is

http://www.cs.columbia.edu/~ap/html/finder.html
http://www.uni-kl.de/AG-Heinrich/SamplePack.html
http://www.math.ucalgary.ca/~lemieux/randqmc.html
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taken to be the transpose of the Pascal matrix P raised to the power j − 1, and
where each entry is reduced modulo b. Tezuka (1995) has introduced a con-
struction called a generalized Faure sequence, in which Cj = Aj(PT)j−1, where
each Aj is a non-singular lower-triangular matrix. Specific choices for these Aj
can be found in Tezuka and Tokuyama (1994) and Faure (2001).

5 Recurrence-based point sets

We have seen in Chapter 3 how to define highly-uniform point sets by using
a pseudorandom number generator (PRNG). Let us first recall briefly how this
construction works.

Let R be a finite set. Assume we have a PRNG based on a transition func-
tion ψ from R to R and an output function g from R to [0� 1). The sequence
x0� x1� � � � , obtained using the recurrence

(12)xi = ψ(xi−1)� i � 1�

has a period of at most |R|. The associated recurrence-based point set is defined
by

Pn =
{(
g(x0)� g(x1)� � � � � g(xs−1)

)
: x0 ∈ R

}
�

Thus n = |R| for this construction, as long as g is one-to-one. As seen in
Chapter 3, different kinds of PRNGs can been used in this manner to de-
fine highly-uniform point sets. For example, recall from Section 2 that using
an LCG yields a Korobov point set.

Let us now discuss properties of recurrence-based point sets that are useful
in practice. First, these point sets are fully projection regular and dimension-
stationary. In addition, they can handle problems where the integrand f has an
infinite dimension. This is because a given point in Pn is of the form

ui =
(
g(x0)� � � � � g(xs−1)

)
for some x0 ∈ R. Therefore the size s of ui can be increased indefinitely simply
by continuing to run the recurrence (12). Of course, this means that if s ex-
ceeds |R|, the coordinates in ui will eventually repeat. This would be bad if no
randomization was applied, since it would mean that a simulation based on ui
reuses the same input numbers. However, by randomizing Pn appropriately,
there will not be any repetition. For example, suppose we use a random shift
v = (v1� v2� � � � � vs) as in Section 2 to obtain ũi = (ui + v)mod 1. Then even
if, say, ui�j = ui�j+|R|, since vj �= vj+|R| with probability 1, then ũi�j �= ũi�j+|R|
with probability 1 as well.

This brings us to the discussion of some implementation ideas that can be
useful in the simulation context. As noted above, recurrence-based point sets
can be used for infinite-dimensional problems. One way to implement this is
to choose an a priori size S for the dimension of the point set. When a point

http://dx.doi.org/10.1016/S0927-0507(06)13003-0
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ui needs to be of a larger dimension than S (i.e., the simulation based on that
point needs more than S random numbers), we just need to know which el-
ement of R produced the last coordinate of ui, i.e., which xS−1 ∈ R is such
that ui�S = g(xS−1). Then we can obtain ui�S+1� ui�S+2� � � � , by computing
xS� xS+1� � � � from (12) and putting ui�S+l+1 = g(xS+l), for l � 0.

Another possibility is to use an alternative definition for Pn, which says that
Pn contains the overlapping vectors of all the cycles of a PRNG. More pre-
cisely,

(13)Pn =
⋃
x0∈R

C(x0)�

where

C(x0) =
{(
g(xi)� g(xi+1)� � � � � g(xi+s−1)

)
: 0 � i < τ(x0)

}
�

and τ(x0) is the period of the sequence {xl� l � 0}. Of course, if x� y ∈ R
are in the same cycle, then C(x) = C(y), so the number of distinct sets in
the union (13) is equal to the number of distinct cycles of the PRNG. The
idea is then to store these distinct cycles into separate arrays and record their
respective lengths. Arbitrary coordinates ui�j can then be easily retrieved by
doing a simple arithmetic computation to figure out which cycle contains ui
and in what position. Here is an example to illustrate how it works.

Example 4. Suppose we have a PRNG over a finite set R of size 128, with
4 cycles of respective length τ1 = 1, τ2 = 7, τ3 = 15 and τ4 = 105. Let ucl
be the lth output number in the cth cycle. Then Pn can be defined so that for
i = 0� � � � � n− 1,

ui =
(
uc(i)l(i) � u

c(i)
l(i)+1 mod τc(i)

� � � � � uc(i)l(i)+s−1 mod τc(i)

)
�

where

(
c(i)� l(i)

) =
⎧⎪⎨
⎪⎩
(1� 1) if i = 0�
(2� i) if 1 � i < 8�
(3� i− 7) if 8 � i < 23�
(4� i− 22) if i � 23�

This alternative implementation has been used in Dembeck (2003). It is very
useful in cases where the dimension is very large, e.g., s � n, because instead
of having to store an s-dimensional vector representing the point, coordinates
can be generated online, and only the n numbers output by the PRNG in all its
cycles need to be stored. This is also useful when one needs to partition points
into blocks that are not used at the same time. This can happen when infor-
mation is sequentially gathered through time to update the simulation, such
as in sequential Monte Carlo methods (Doucet et al., 2001), or in the context of
perfect simulation (Propp and Wilson, 1996). When s is not too large and points
of a fixed dimension s are used one after the other in the simulation, the ui’s
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should instead be generated by shifting the coordinates by one position in the
current cycle (unless the index i corresponds to a change of cycle c(i), in which
case the point has to be filled in from the first s numbers of the next cycle).
This kind of implementation is used in the QMC portion of the SSJ package
(L’Ecuyer et al., 2002).

6 Randomization techniques and variance results

We already saw in Section 2 a simple randomization method that consists
in adding a random uniform vector v ∈ [0� 1)s to each point in Pn. Although
this method can be used to randomize any highly-uniform point set (Lemieux
and L’Ecuyer, 2000; Morohosi and Fushimi, 2000; Kollig and Keller, 2002),
it was originally proposed for lattice rules by Cranley and Patterson (1976).
Below, we discuss this randomization and two other ones that are better suited
for digital nets. But first, we outline a general framework that includes most
randomization methods.

6.1 General principles

Let Pn = {u0� � � � �un−1} be a highly-uniform point set, and let v be a uni-
form random vector in some space Ω. To randomize Pn, a randomization
function r :Ω × [0� 1)s → [0� 1)s is needed in order to obtain a randomized
version P̃n = {ũ0� � � � � ũn−1} of Pn defined by

ũi = r(v�ui)�

For example, in the Cranley–Patterson method, Ω = [0� 1)s and r(v�ui) =
(ui + v)mod 1.

As mentioned in the Introduction, the function r should be chosen so that
(i) r(v�u) is uniformly distributed over [0� 1)s for each u, and (ii) P̃n has the
same highly-uniform properties as Pn. Another property that holds for most
randomization techniques is that they can be written in a product form, i.e.,
Ω is of the form Ω = Ω̃ × · · · × Ω̃, and r(v�u) = (r̃(v1� u1)� � � � � r̃(vs� us)),
where vj ∈ Ω̃, and r̃ : Ω̃ × [0� 1) → [0� 1). This property simplifies the imple-
mentation when s is infinite, since when additional coordinates are required,
one simply needs to generate additional random components v in Ω̃. In prac-
tice, this can be done by using similar ideas as those discussed in Section 5, i.e.,
one can fix an a priori bound S, generate and store v1� � � � � vS , memorize the
state xS of the PRNG used to generate the vj . Then, when additional coordi-
nates need to be randomized, set the PRNG’s state to xS and generate vS+1,
vS+2, etc.

6.2 Shift modulo 1

This is the Cranley–Patterson method that we have already discussed. It is
easy to see that this randomization method satisfies property (i) above. As
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for (ii), assume that Pn is a lattice point set and that its uniformity is measured
by the largest distance between adjacent parallel hyperplanes that together
cover the points in Pn (this is the quantity measured by the spectral test dis-
cussed in Chapter 3). Obviously, the uniformity of P̃n is then the same as that
of Pn. This randomization also satisfies the product-form property.

In the case where Pn = L ∩ [0� 1)s is a lattice point set, the variance of the
estimator μ̂RQMC based on a randomly shifted lattice point set P̃n satisfies the
following (L’Ecuyer and Lemieux, 2000):

Proposition 5. If f is square-integrable, then for a randomly shifted lattice point
set we have

Var(μ̂RQMC) =
∑

0�=h∈L⊥

∣∣f̂ (h)∣∣2�

where L⊥ = {h ∈ R
s: h · ui ∈ Z for each ui ∈ Pn} is the dual lattice of L and

f̂ (h) is the Fourier coefficient of f in h.

In comparison, for the MC estimator we have

Var(μ̂MC) = 1
n

∑
0�=h∈Zs

∣∣f̂ (h)∣∣2�

It can be shown that the dual lattice L⊥ has n times less elements than Z
s (see,

e.g., Sloan and Joe, 1994). Using this fact and the above proposition, we can see
that for the randomly shifted lattice estimator to have a smaller variance than
the MC estimator, the squared Fourier coefficients of f must be smaller on
average over the dual lattice than they are over Z

s. In practice, f is often such
that the largest Fourier coefficients are those associated with small h’s. Hence
one could argue that to get an estimator with a smaller variance than the MC
estimator, the lattice L on which Pn is based should be chosen so that its dual
lattice does not contain short vectors. Recall from Chapter 3 that the quantity
measured by the spectral test is also equal to the inverse of the length of the
shortest vector in the dual lattice L⊥. This means that using criteria based on
the spectral test such as those discussed in Chapter 3 can be justified from the
above variance analysis.

We refer the reader to L’Ecuyer and Lemieux (2002) and the references
therein for more details on criteria that can be used to choose lattice point
sets, and to Morohosi and Fushimi (2000) for a variance analysis of randomly
shifted digital nets. Note that although this randomization method does not
provide a guaranteed variance reduction, it is often used in practice because of
its simplicity.

6.3 Digital shift

The analog of the Cranley–Patterson method for a digital net in base b is to
use a digital shift in base b (see L’Ecuyer and Lemieux (2002) and the refer-

http://dx.doi.org/10.1016/S0927-0507(06)13003-0
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ences therein). In this case, the randomization function r is defined by

r(v�u) = u
⊕
b

v�

where v ∈ Ω = [0� 1)s and
⊕

b is a coordinate-wise addition of the base b
expansion of u and v, i.e., for u = (

∑∞
l=1 u1�lb

−l� � � � �
∑∞

l=1 us�lb
−l) and v =

(
∑∞

l=1 v1�lb
−l� � � � �

∑∞
l=1 vs�lb

−l), we have that

u
⊕
b

v =
( ∞∑

l=1

(
(u1�l + v1�l)mod b

)
b−l�

� � � �

∞∑
l=1

(
(us�l + vs�l)mod b

)
b−l
)
�

The uniformity of Pn as measured by the parameter t and the resolution (see
Chapter 3) is preserved by this randomization.

The variance of a digitally shifted net can be analyzed in a way that closely
mimics the results for shifted lattice rules: the Fourier coefficients are instead
coefficients from the Walsh expansion of f , and a notion of dual space of the
digital net Pn replaces the dual lattice in the above analysis. We refer the
reader to L’Ecuyer and Lemieux (2002) and L’Ecuyer (2004) for more details.
In particular, more details can be found in these papers on selection criteria
for digital nets that can be related to the variance expression obtained in that
context.

6.4 Scrambling

The scrambling method was proposed by Owen (1995) to randomize digital
nets. Alternative scrambling strategies have been studied in Matoušek (1998),
Faure et al. (2001), Hong and Hickernell (2003), Faure and Tezuka (2003) and
Owen (2003). Here we briefly discuss two of them, using the terminology from
Owen (2003): the nested uniform scrambling of Owen (1995) and the affine
matrix scrambling of Matoušek (1998) (called random linear scrambling in that
paper).

Let Pn be a digital net in base b. Nested uniform scrambling applies random
uniform permutations to the digits of each coordinate ui�j in its base b expan-
sion. More precisely, if we write

ui�j =
∞∑
l=1

ylb
−l�

then the nested uniform scrambling maps ui�j to

ũi�j =
∞∑
l=1

π·�y1�����yl−1(yl)b
−l�

http://dx.doi.org/10.1016/S0927-0507(06)13003-0
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where π·�y1�����yl−1(·) is a random uniform permutation of [0� 1� � � � � b− 1] that
depends on y1� � � � � yl−1. All permutations used for a given j and across differ-
ent values of j are independent.

The cost in time and space required by this method is quite large, and for
that reason several alternatives have been proposed. Here we discuss only one
and refer the reader to Owen (2003) for additional information. In affine ma-
trix scrambling, we have that ũi�j =∑∞

l=1 ỹlb
−l, with

ỹl =
l∑

k=1

Ll�kyk + dl�

where Ll�l ∈ Zb \ {0}, Ll�k ∈ Zb for k < l, and dl ∈ Zb are randomly and uni-
formly chosen. An alternative description is to say that with this scrambling,
each generating matrix is multiplied by a random lower-triangular matrix of
infinite size with elements in Zb and nonzero elements on the diagonal. A dig-
ital shift is then performed.

These two scrambling methods produce estimators μ̂RQMC satisfying the fol-
lowing proposition.

Proposition 6 (Owen, 1998b; Hong and Hickernell, 2003; Owen, 2003). Under
either scrambling method described above, if Pn is a (t�m� s)-net in base b, then
for any square-integrable function f ,

Var(μ̂RQMC) � bt
(
b+ 1
b− 1

)s σ2

n
�

If f is sufficiently smooth (i.e., its mixed partial derivatives satisfy a Lipschitz con-
dition: see Owen (1998b) for the details), then

Var(μ̂RQMC) ∈ O
(
n−3 logs n

)
�

What this result says is that estimators based on scrambled nets cannot do
worse than the MC estimator (up to a constant with respect to n), and that
for a function that is smooth enough, the variance is in O(n−3 logs n), which is
significantly better than the O(n−1) that we get for the MC estimator.

7 Combination with other variance reduction techniques

It is a natural idea in simulation to try combining different variance re-
duction techniques, hoping that their individual beneficial effect will add up
(or even be enhanced) in the combination. Since RQMC methods can be seen
as a way to produce estimators with lower variance than MC, it makes sense to
try combining them with more standard variance reduction techniques such as
those discussed in Chapters 10 and 11. As one would expect, care must be taken
when doing so if we want to make sure that the combination will not backfire
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and produce undesirable effects. To illustrate this point, we briefly discuss in
this section the combination of RQMC methods with control variates (CV), as
studied in Hickernell et al. (2005).

When RQMC is combined with CV, the optimal control variate coefficients
are not necessarily the same as when CV is used with plain MC. The idea is
as follows. Assume we have a control variable described by a function g(u)
over [0� 1)s, with known expectation μg. We are looking for the value of β that
minimizes the variance of

(14)μ̂RQMC(f )+ β
(
μg − μ̂RQMC(g)

)
�

where μ̂RQMC(f ) and μ̂RQMC(g) are the RQMC estimators of μ and μg,
respectively. As seen in Chapter 10, with plain MC the optimal β is given
by β∗MC = Cov(f (u)� g(u))/Var(g(u)). In the RQMC context, it is clear
from (14) that the optimal β should instead be

β∗RQMC = Cov(μ̂RQMC(f )� μ̂RQMC(g))

Var(μ̂RQMC(g))
�

which in general is not equal to β∗MC. The optimal β∗RQMC can be estimated
using i.i.d. replications of μ̂RQMC(f ) and μ̂RQMC(g), as is done to estimate the
variance of μ̂RQMC(f ). Although there are some pathological cases for which
using β∗MC instead of β∗RQMC can lead to a significant increase in variance,
experiments in Hickernell et al. (2005) suggest that for problems frequently
encountered in practice, using the wrong optimal coefficient may not signifi-
cantly affect the variance. We refer the reader to Hickernell et al. (2005) for
more on this topic, including asymptotic variance analyses and alternative ways
to estimate β∗RQMC.

8 Future directions

There is still much work to do in order to make quasi-random numbers a
well-known and widely used tool in simulation. First, it would be useful to have
simulation packages that incorporate several RQMC methods as alternatives
to the use of pseudorandom numbers. Progress in this direction may come
from a package developed by Pierre L’Ecuyer and his collaborators (L’Ecuyer
et al., 2002).

As seen in Section 3, the interplay between the function f to be integrated
and the highly-uniform point set Pn used plays an important role in the success
of RQMC methods. Being able to extract important features of f in an online
fashion would thus be useful for choosing an appropriate construction for Pn.
For example, being able to know what are the important projections of f in its
ANOVA decomposition, or what its effective dimension is in some sense would
be helpful. Recent papers (Lemieux and Owen, 2001; Jiang and Owen, 2003;
Liu and Owen, 2003; Wang and Fang, 2003; Wang and Sloan, 2003) take some
steps in that direction.

http://dx.doi.org/10.1016/S0927-0507(06)13010-8
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The search for better constructions is another area where new contributions
would be helpful. For example, the Sobol’ sequence is widely used but in prac-
tice, its implementation requires an upper bound on the dimension s. It would
be desirable to have alternative constructions in base 2 (for a quick implemen-
tation) with an infinite number of points and dimension. Niederreiter (2003)
gives theoretical results proving the existence of such sequences, but no con-
structions have been suggested so far.
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Chapter 13

Analysis for Design

Ward Whitt
Department of Industrial Engineering and Operations Research, Columbia University, USA
E-mail: ww2040@columbia.edu

Abstract

In this chapter we discuss analysis for the design of simulation experiments. By that we
mean, not the traditional (important) methods to design statistical experiments, but
rather techniques that can be used, before a simulation is conducted, to estimate the
computational effort required to obtain desired statistical precision for contemplated
simulation estimators. In doing so, we represent computational effort by simulation
time, and that in turn by either the number of replications or the run length within a
single simulation run. We assume that the quantities of interest will be estimated by
sample means. In great generality, the required length of a single simulation run can
be determined by computing the asymptotic variance and the asymptotic bias of the
sample means. Existing theory supports this step for a sample mean of a function of
a Markov process. We would prefer to do the calculations directly for the intended
simulation model, but that usually is prevented by model complexity. Thus, as a first
step, we usually approximate the original model by a related Markovian model that is
easier to analyze. For example, relatively simple diffusion-process approximations to
estimate required simulation run lengths for queueing models can often be obtained
by heavy-traffic stochastic-process limits.

1 Introduction

Simulations are controlled experiments. Before we can run a simulation pro-
gram and analyze the output, we need to choose a simulation model and decide
what output to collect; i.e., we need to design the simulation experiment. Since
(stochastic) simulations require statistical analysis of the output, it is often ap-
propriate to consider the perspective of experimental design, e.g., as in Cochran
and Cox (1992), Montgomery (2000) and Wu and Hamada (2000).

Simulations are also explorations. We usually conduct simulations because
we want to learn more about a complex system we inadequately understand. To
head in the right direction, we should have some well-defined goals and ques-
tions when we start, but we should expect to develop new goals and questions as
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we go along. When we think about experimental design, we should observe that
the time scale for computer simulation experiments tends to be much shorter
than the time scale for the agricultural and medical experiments that led to the
theory of experimental design. With the steadily increasing power of comput-
ers, computer simulation has become a relatively rapid process. After doing
one simulation, we can quickly revise it and conduct others. Therefore, it is
almost always best to think of simulation as an iterative process: We conduct a
simulation experiment, look at the results and find as many new questions as
answers to our original questions. Each simulation experiment suggests sub-
sequent simulation experiments. Through a succession of these experiments,
we gradually gain the better understanding we originally sought. To a large
extent, it is fruitful to approach simulation in the spirit of exploratory data analy-
sis, e.g., as in Tukey (1977), Velleman and Hoaglin (1981) and Chapter 1 of
NIST/SEMATECH (2003).

Successful simulation studies usually involve an artful mix of both experi-
mental design and exploration. We would emphasize the spirit of exploration,
but we feel that some experimental design can be a big help. When we plan to
hike in the mountains, in addition to knowing what peak we want to ascend, it
is also good to have a rough idea how long it will take to get there: Should the
hike take two hours, two days or two weeks?

That is just the kind of rough information we need for simulations. A ma-
jor purpose of simulation experiments, often as a means to other ends, is to
estimate unknown quantities of interest. When we plan to conduct a simula-
tion experiment, in addition to knowing what quantities we want to estimate,
it is also good to have a rough idea how long it will take to obtain a reliable
estimate: Should the experiment take two seconds, two hours or two years?

As in Whitt (1989), in this chapter we discuss techniques that can be used,
before a simulation is conducted, to estimate the computational effort re-
quired to obtain desired statistical precision for contemplated simulation es-
timators. Given information about the required computational effort, we can
decide what cases to consider and how much computational effort to devote
to each. We can even decide whether to conduct the experiment at all. We can
also decide if we need to exploit variance-reduction techniques (or efficiency-
improvement techniques), see Chapters 10–12 and 14–16.

The theoretical analysis we discuss should complement the experience we
gain from conducting many simulation experiments. Through experience, we
learn about the amount of computational effort required to obtain desired sta-
tistical precision for simulation estimators in various settings. The analysis and
computational experience should reinforce each other, giving us better judg-
ment. The methods in this chapter are intended to help develop more reliable
expectations about statistical precision. We can use this knowledge, not only to
design better simulation experiments, but also to evaluate simulation output
analysis, done by others or ourselves.

At first glance, the experimental design problem may not seem very difficult.
First, we might think, given the amazing growth in computer power, that the
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computational effort rarely needs to be that great, but that is not the case:
Many simulation estimation goals remain out of reach, just like many other
computational goals; e.g., see Papadimitriou (1994).

Second, we might think that we can always get a rough idea about how long
the runs should be by doing one pilot run to estimate the required simulation
run lengths. However, there are serious difficulties with that approach. First,
such a preliminary experiment requires that we set up the entire simulation
before we decide whether or not to conduct the experiment. Nevertheless, if
such a sampling procedure could be employed consistently with confidence,
then the experimental design problem would indeed not be especially difficult.
In typical simulation experiments, we want to estimate steady-state means for
several different input parameters. Unfortunately, doing a pilot run for one set
of parameters may be very misleading, because the required run length may
change dramatically when the input parameters are changed.

To illustrate how misleading one pilot run can be, consider a simulation of a
queueing model. Indeed, we shall use queueing models as the context examples
throughout the chapter. Now consider the simulation of a single-server queue
with unlimited waiting space (the G/G/1/∞ model, e.g., see Cohen (1982)
or Cooper (1982)), with the objective of estimating the mean steady-state (or
long-run average) number of customers in the system, as a function of basic
model data such as the arrival stochastic process and the service-time distribu-
tion. This queueing experimental design problem is interesting and important
primarily because a uniform allocation of data over all cases (parameter val-
ues) is not nearly appropriate. Experience indicates that, for given statistical
precision, the required amount of data increases dramatically as the traffic in-
tensity ρ (arrival rate divided by the service rate) increases toward the critical
level for stability and as the arrival-and-service variability (appropriately quan-
tified) increases. For example, the required simulation run length to obtain
5% relative error (width of confidence interval divided by the estimated mean)
at a high traffic intensity such as 0.95 tends to be 100 times greater than at
a lower traffic intensity such as 0.50. (The operative formula underlying this
rough estimate is f (ρ) ≡ (1− ρ)−2; note that f (0�95)/f (0�50) = 400/4 = 100.
If we consider the more extreme case ρ = 0�995, then the factor is 10,000. If we
used a criterion of absolute error instead of relative error, then the operative
formula becomes even more impressive: then f (ρ) ≡ (1 − ρ)−4.)

In this queueing example, and throughout this paper, we use simulation time
as our characterization of computational effort. (For a theoretical discussion
of this issue, see Glynn and Whitt, 1992.) Some computational experience or
additional experiments on the selected computer are needed to convert sim-
ulation time into computational effort. Since there is a degree of freedom in
choosing the measuring units for time, it is important to normalize these time
units. For example, in a queueing model we might measure time in terms of
the number of arrivals that enter the system or we might stipulate that a rep-
resentative service-time distribution has mean 1. On the positive side, focusing
on required simulation time has the advantage that it yields characterizations
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of computational effort that are independent of the specific computer used to
conduct the simulation. It seems best to try to account for that important factor
separately.

We assume that the quantities of interest will be estimated by sample means.
(There are other estimation procedures; e.g., see Chapters 8 and 9.) With sam-
ple means, in great generality the required amount of simulation time can be
determined by computing quantities called the asymptotic variance and the as-
ymptotic bias of the sample means. Thus, we want to estimate these quantities
before conducting the simulation. In general, that is not so easy to do, but ex-
isting theory supports this step for a sample mean of a function of a Markov
process. However, the stochastic processes of interest in simulation models are
rarely Markov processes. Thus, it is usually necessary to first approximate the
given stochastic process by a Markov process in order to apply the techniques
in this paper.

It is important to approach this approximation step with the right attitude.
Remember that we usually only want to obtain a rough estimate of the required
simulation run length. Thus, we may well obtain the desired insight with only
a very rough approximation. We do not want this analysis step to take longer
than it takes to conduct the simulation itself. So we want to obtain the approx-
imation quickly and we want to be able to do the analysis quickly. Fortunately,
it is often possible to meet these goals.

For example, we might be interested in simulating a non-Markovian open
network of single-server queues. We might be interested in the queue-length
distributions at the different queues. To obtain a rough estimate of the re-
quired simulation run length, we might first solve the traffic-rate equations to
find the net arrival rate at each queue. That step is valid for non-Markovian
queueing networks as well as Markovian queueing networks; e.g., see Chen
and Yao (2001), Kelly (1979) or Walrand (1988). Given the net arrival rate at
each queue, we can calculate the traffic intensity at each queue by multiplying
the arrival rate times the mean service time. Then we might focus on the bottle-
neck queue, i.e., the queue with the highest traffic intensity. We do that because
the overall required run length is usually determined by the bottleneck queue.
Then we analyze the bottleneck queue separately (necessarily approximately).

We might approximate the bottleneck queue by the Markovian M/M/1
queue with the same traffic intensity, and apply the techniques described in
this paper to the Markovian queue-length process in order to estimate the re-
quired simulation run length. Alternatively, to capture the impact of the arrival
and service processes beyond their means, we might use heavy-traffic limit the-
orems to approximate the queue-length process of the bottleneck queue by a
reflected Brownian motion (RBM); e.g., see Chen and Yao (2001) and Whitt
(2002). We then apply the techniques described in this paper to the limiting
RBM, which is also a Markov process. By the methods described in these last
two paragraphs, we can treat quite general queueing-network models, albeit
roughly.
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Here is how the rest of the chapter is organized: We start in Section 2 by de-
scribing the standard statistical framework, allowing us to estimate the statistical
precision of sample-mean estimators, both before and after the simulation ex-
periment is conducted. In Section 2 we define the asymptotic variance and the
asymptotic bias of a sample mean. We relate these asymptotic quantities to
the ordinary variance and bias of a sample mean. We show the critical role
played by the asymptotic variance in confidence intervals and thus for the re-
quired sample size to obtain desired statistical precision. We first discuss the
classical statistical case of independent and identically distributed (i.i.d.) ran-
dom variables, which arises naturally when the simulation estimate is based on
independent replications. For i.i.d. random variables, the asymptotic variance
coincides with the variance of a single random variable. Finally, we discuss the
problem of initial transients and correlations that arise when we form the sam-
ple mean from a stochastic process observed over time within a single run.

In Section 3, following Whitt (1992), we indicate how to compute the asymp-
totic variance and the asymptotic bias of functions of continuous-time Markov
chains. We describe a recursive algorithm for functions of birth-and-death
processes. In Section 4 we consider several birth-and-death process examples,
including the M/M/1 and M/M/∞ queueing models. These examples show
that model structure can make a big difference in the computational effort
required for estimation by simulation.

In Section 5 we consider diffusion processes, which are continuous ana-
logues of birth-and-death processes. We give integral representations of the as-
ymptotic parameters for diffusion processes, which enable computation by nu-
merical integration. In Section 6 we discuss applications of stochastic-process
limits to the planning process. Following Whitt (1989) and Srikant and Whitt
(1996), we show how heavy-traffic limits yield relatively simple diffusion ap-
proximations for the asymptotic variance and the asymptotic bias of sample-
mean estimators for single-server and many-server queues. The time scaling in
the heavy-traffic limits plays a critical role. In Section 7 we consider not collect-
ing data for an initial portion of a simulation run to reduce the bias. Finally, in
Section 8 we discuss directions for further research.

2 The standard statistical framework

2.1 Probability model of a simulation

We base our discussion on a probability model of a (stochastic) simulation
experiment: In the model, the simulation experiment generates an initial seg-
ment of a stochastic process, which may be a discrete-time stochastic process
{Xn: n � 1} or a continuous-time stochastic process {X(t): t � 0}. We form
the relevant sample mean

�Xn ≡ n−1
n∑
i=1

Xi or �Xt ≡ t−1
∫ t

0
X(s) ds�
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and use the sample mean to estimate the long-run average,

μ = lim
n→∞

�Xn or μ = lim
t→∞

�Xt�

which is assumed to exist as a proper limit with probability one (w.p.1). Un-
der very general regularity conditions, the long-run average coincides with
the expected value of the limiting steady-state distribution of the stochas-
tic process. For example, supporting theoretical results are available for re-
generative processes, Chapter VI of Asmussen (2003); stationary marked
point processes, Section 2.5 of Sigman (1995); and generalized semi-Markov
processes (GSMPs), Glynn (1989).

These stochastic processes arise in both observations from a single run and
from independent replications. For example, in observations from a single run,
a discrete-time stochastic process {Xn: n � 1} arises if we consider the waiting
times of successive arrivals to a queue. The random variable Xn might be the
waiting time of the nth arrival before beginning service; then μ is the long-
run average waiting time of all arrivals, which usually coincides with the mean
steady-state waiting time. On the other hand, Xn might take the value 1 if the
nth arrival waits less than or equal to xminutes, and take the value 0 otherwise;
then μ ≡ μ(x) is the long-run proportion of customers that wait less than
or equal to x minutes, which usually corresponds to the probability that the
steady-state waiting time is less than or equal to x minutes.

Alternatively, in observations from a single run, a continuous-time stochas-
tic process {X(t): t � 0} arises if we consider the queue length over time,
beginning at time 0. The random variable X(t) might be the queue length at
time t or X(t) might take the value 1 if the queue length at time t is less than
or equal to k, and take the value 0 otherwise.

With independent replications (separate independent runs of the exper-
iment), we obtain a discrete-time stochastic process {Xn: n � 1}. Then
Xn represents a random observation obtained from the nth run. For exam-
ple, Xn might be the queue length at time 7 in the nth replication or Xn might
be the average queue length over the time interval [0� 7] in the nth replication.
Then the limitμ represents the long-run average over many independent repli-
cations, which equals the expected value of the random variable in any single
run. Such expected values describe the expected transient (or time-dependent)
behavior of the system.

2.2 Bias, mean-squared error and variance

By assuming that the limits exist, we are assuming that we would obtain the
exact answer if we devoted unlimited computational effort to the simulation
experiment. In statistical language, e.g., see Lehmann and Casella (1998), we
are assuming that the estimators �Xn and �Xt are consistent estimators of the
quantity to be estimated, μ. For finite sample size, we can describe the statis-
tical precision by looking at the bias and the mean-squared error. The bias,
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which we denote by β̄n in the discrete-time case and β̄t in the continuous-time
case, indicates how much the expected value of the estimator differs from the
quantity being estimated, and in what direction. For example, in the discrete-
time case, the bias of �Xn is

β̄n = E[�Xn] − μ�

The mean-squared error (MSEn or MSEt) is the expected squared error, e.g.,

MSEn = E
[|�Xn − μ|2]�

If there is no bias, then the MSE coincides with the variance of �Xn, which we
denote by σ̄2

n , i.e.,

σ̄2
n ≡ Var(�Xn) ≡ E

[∣∣�Xn − E[�Xn]
∣∣2]�

Then we can write

σ̄2
n ≡ Var(�Xn) = n−2

n∑
i=1

n∑
j=1

Cov(Xi�Xj)�

where Cov(Xi�Xj) is the covariance, i.e.,

Cov(Xi�Xj) ≡ E[XiXj] − E[Xi]E[Xj]�
Analogous formulas hold in continuous time. For example, then the variance
of the sample mean �Xt is

σ̄2
t ≡ Var(�Xt) = t−2

∫ t

0

∫ t

0
Cov

(
X(u)�X(v)

)
du dv�

Unfortunately, these general formulas usually are too complicated to be of
much help when doing preliminary planning. What we will be doing in the
rest of this paper is showing how to develop simple approximations for these
quantities.

2.3 The classical case: independent replications

In statistics, the classical case arises when we have a discrete-time stochastic
process {Xn: n � 1}, where the random variablesXn are mutually independent
and identically distributed (i.i.d.) with mean μ and finite variance σ2, and we
use the sample mean �Xn to estimate the mean μ. Clearly, the classical case
arises whenever we use independent replications to do estimation, which of
course is the great appeal of independent replications.

In the classical case, the sample mean �Xn is a consistent estimator of the
mean μ by the law of large numbers (LLN). Then there is no bias and the MSE
coincides with the variance of the sample mean, σ̄2

n , which is a simple function
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of the variance of a single observation Xn,

σ̄2
n = MSE(�Xn) = σ2

n
�

Moreover, by the central limit theorem (CLT), �Xn is asymptotically normally
distributed as the sample size n increases, i.e.,

n1/2[�Xn − μ] ⇒ N
(
0� σ2) as n→∞�

where N(a� b) is a normal random variable with mean a and variance b,
and “⇒” denotes convergence in distribution.

We thus use this large-sample theory to justify the approximation

P(�Xn � x) ≈ P
(

N
(
μ�

σ2

n

)
� x

)
= P

(
N(0� 1) � x− μ√

σ2/n

)
�

Based on this normal approximation, a (1 − α)100% confidence interval for μ
based on the sample mean �Xn is[

�Xn − zα/2
σ√
n
� �Xn + zα/2

σ√
n

]
�

where

P
(−zα/2 � N(0� 1) � +zα/2

) = 1 − α�

A common choice is a 95% confidence interval, which corresponds to α = 0�05;
then zα/2 = 1�96 ≈ 2.

The statistical precision is typically described by either the absolute width
or the relative width of the confidence interval, denoted by wa(α) and wr(α),
respectively, which are

wa(α) = 2zα/2σ√
n

and wr(α) = 2zα/2σ
μ
√
n
�

There are circumstances where each measure is preferred. For specified ab-
solute width or relative width of the confidence interval, ε, and for specified
level of precision α, the required sample size na(ε� α) or nr(ε� α) is then

(1)na(ε� α) =
4σ2z2

α/2

ε2 or nr(ε� α) =
4σ2z2

α/2

μ2ε2 �

From these formulas, we see that na(ε� α) and nr(ε� α) are both inversely pro-
portional to ε2 and directly proportional to σ2 and z2

α/2.
Standard statistical theory describes how observations (data) can be used

to estimate the unknown quantities μ and σ2. We might use a two-stage sam-
pling procedure, exploiting the first stage to estimate the required sample size.
However, here we are concerned with what we can do without any data at all.
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We propose applying additional information about the model to obtain
rough preliminary estimates for these parameters without data. Following the
general approach of this paper, we suggest trying to estimate μ and σ2 be-
fore conducting the simulation by analyzing the probability distribution of the
outcome of a single replication, Xn (using knowledge about the model). Ad-
mittedly, this preliminary estimation is often difficult to do; our approach is
usually more useful in the context of one long run, which is discussed in the
next section.

However, more can be done in this context than is often thought. Again, we
must remember that we are only interested in making a rough estimate. Thus,
we should be ready to make back-of-the-envelope calculations.

To illustrate what can be done, suppose that we focus on the relative-width
criterion. With the relative-width criterion, it suffices to estimate the squared
coefficient of variation (SCV, variance divided by the square of the mean)

c2 ≡ σ2

μ2 �

instead of both μ and σ2. With the relative-width criterion, the required sam-
ple size is

nr(ε� α) =
4c2z2

α/2

ε2 �

From the analysis above, we see that we only need to estimate a single pa-
rameter, the SCV c2, in order to carry out this preliminary analysis. In many
cases, we can make reasonable estimates based on “engineering judgment”.
For that step, it helps to have experience with variability as quantified by the
SCV. First, note that the SCV measures the level of variability independent of
the mean: The SCV of a random variable is unchanged if we multiply the ran-
dom variable by a constant. We are thus focusing on the variability independent
of the mean. Clearly, it is important to realize that the mean itself plays no role
with the relative-width criterion.

Once we learn to focus on the SCV, we quickly gain experience about what
to expect. A common reference case for the SCV is an exponential distribution,
which has c2 = 1. A unit point mass (deterministic distribution) has c2 = 0.
Distributions relatively more (less) variable than exponential have c2 >(<) 1.
In many instances we actually have a rough idea about the SCV. We might be
able to judge in advance that the SCV is one of: (i) less than 1, but probably not
less than 0.1, (ii) near 1, (iii) bigger than 1, but probably not bigger than 10, or
(iv) likely to be large, even bigger than 10. In other words, it is not unreasonable
to be able to estimate the SCV to within an order of magnitude (within a factor
of 10). And that may be good enough for the desired rough estimates we want
to make.
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In lieu of information about the SCV, to obtain a rough estimate we can just
let c2 = 1. To proceed, we can also let α = 0�05, so that zα/2 ≈ 2. Then, if we
set ε = 10−k, the required simulation run length is

nr
(
10−k� 0�05

) = 16 × (10)2k�

Thus, when c2 = 1, 10% relative precision requires about 1600 replications,
while 1% relative precision requires 160,000 replications. If c2 �= 1, then we
would multiply the number of required replications above by c2. We thus can
easily factor in the only unknown, the SCV c2.

We have just reviewed the classical i.i.d. case, which is directly relevant when
we use independent replications. However, in this chapter we concentrate on
the more complicated case in which we consider an initial segment of a sto-
chastic process from a single simulation run. It is good to have the classical
i.i.d. case in mind, though, to understand the impact of bias and dependence
upon the required computational effort.

2.4 An initial segment from a single run

Now suppose that we intend to estimate a long-run average within a single
run by the sample mean from an initial segment of a stochastic process, which
could evolve in either discrete time or continuous time. The situation is now
much more complicated, because the random observations need not be i.i.d.
Indeed, they need not be either independent or identically distributed. Unlike
the case of independent replications, we now face the problems of bias and
dependence among the random variables.

Fortunately, there are generalizations of the classical i.i.d. framework that
enable us to estimate the bias and the mean squared error as a function of the
sample size in terms of only two fundamental parameters: the asymptotic bias
and the asymptotic variance; see Whitt (1992) and references therein. That
theory tells us that, under regularity conditions, both the bias and the MSE are
of order 1/n.

Within a single run, the stochastic processes tend to become stationary as
time evolves. Indeed, now we assume that Xn ⇒ X(∞) as n → ∞ (in the
discrete-time case) and X(t) ⇒ X(∞) as t → ∞ (in the continuous-time
case). The stochastic processes fail to be stationary throughout all time primar-
ily because it is necessary (or at least more convenient) to start the simulation
in a special initial state. We thus can reduce the bias by choosing a good initial
state or by deleting (not collecting statistics over) an initial portion of the simu-
lation run. Choosing an appropriate initial state can be difficult if the stochastic
process of interest is not nearly Markov. For example, even for the relatively
simple M/G/s/∞ queueing model, with s servers and nonexponential service
times, it is necessary to specify the remaining service time of all customers ini-
tially in service.
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The asymptotic bias helps us to determine if it is necessary to choose a spe-
cial initial state or delete an initial portion of the run. The asymptotic bias also
helps us estimate the final bias, whether or not we choose a special initial state
or delete an initial portion of the run. It also helps us determine what propor-
tion of the full run should be deleted if we follow that procedure.

Under regularity conditions, there is a parameter β̄ called the asymptotic
bias such that

(2)β̄ = lim
n→∞nβ̄n;

see Whitt (1992) and references therein. Given the definition of the bias β̄n,
we see that the asymptotic bias must be

β̄ =
∞∑
i=1

(
E[Xi] − μ

);
the regularity conditions ensure that the sum is absolutely convergent. We thus
approximate the bias of �Xn for any sufficiently large n by

β̄n ≈ β̄

n
�

This approximation reduces the unknowns to be estimated from the function
{β̄n: n � 1} to the single parameter β̄. Corresponding formulas hold in con-
tinuous time.

Given that we can ignore the bias, either because it is negligible or because
it has been largely removed by choosing a good initial state or by deleting an
initial portion of the run, we can use the asymptotic variance to estimate the
width of confidence intervals and thus the required run length to yield desired
statistical precision. Under regularity conditions, there is a parameter σ̄2 called
the asymptotic variance such that

(3)σ̄2 = lim
n→∞ nσ̄

2
n�

where (under the assumption that {Xn: n � 1} is a stationary process)

σ̄2 = Var(X1)+ 2
∞∑
i=1

Cov(X1�X1+i)�

with σ2 being the variance of Xn and Cov(X1�X1+i) being the lag-i autoco-
variance. Because of the dependence, σ̄2 often is much bigger than σ2. We
thus approximate σ̄2

n , the variance of �Xn, for any sufficiently large n by

σ̄2
n ≡ Var(�Xn) ≈ σ̄2

n
�

Again, this approximation reduces the unknowns to be estimated from the
function {σ̄2

n : n � 1} to the single parameter σ̄2.
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In continuous time, we have the related asymptotic variance formula

σ̄2 = lim
t→∞ tσ̄

2
t �

where (under the assumption that {X(t): t � 0} is a stationary process)

σ̄2 = 2
∫ ∞

0
Cov

(
X(0)�X(t)

)
dt�

In continuous or discrete time, a critical assumption here is that the asymp-
totic variance σ̄2 is actually finite. The asymptotic variance could be infinite
for two reasons: (i) heavy-tailed distributions and (ii) long-range dependence.
In our context, we say that Xn or X(t) has a heavy-tailed distribution if its
variance is infinite. In our context, we say that there is long-range dependence
(without heavy-tailed distributions) if the variance Var(Xn) or Var(X(t)) is
finite, but nevertheless the asymptotic variance is infinite because the autoco-
variances Cov(Xj�Xj+k) or Cov(X(t)�X(t+k)) do not decay quickly enough
as k→∞; e.g., see Beran (1994), Samorodnitsky and Taqqu (1994) and Chap-
ter 4 of Whitt (2002).

Assuming that σ̄2 < ∞, we can apply CLTs for weakly dependent random
variables (involving other regularity conditions, e.g., see Section 4.4 of Whitt,
2002) to deduce that �Xn (as well as �Xt) is again asymptotically normally dis-
tributed as the sample size n increases, i.e.,

n1/2[�Xn − μ] ⇒ N
(
0� σ̄2) as n→∞�

so that the asymptotic variance σ̄2 plays the role of the ordinary variance σ2 in
the classical i.i.d. setting.

We thus again can use the large-sample theory to justify a normal approxi-
mation. The new (1 − α)100% confidence interval for μ based on the sample
mean �Xn is

[
�Xn − zα/2

σ̄√
n
� �Xn + zα/2

σ̄√
n

]
�

which is the same as for independent replications except that the asymptotic
variance σ̄2 replaces the ordinary variance σ2.

The formulas for the confidence interval relative width, wr(α), and the re-
quired run length, nr(ε� α), are thus also the same as for independent repli-
cations in (1) except that the asymptotic variance σ̄2 is substituted for the
ordinary variance σ2; e.g., the required simulation run length with a relative-
width criterion is

(4)nr(ε� α) =
4σ̄2z2

α/2

μ2ε2 and nr
(
10−k� 0�05

) ≈ σ̄2

μ2 16 × (10)2k�
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From (1) and (4), we immediately see that the required run length is approx-
imately σ̄2/σ2 times greater when sampling from one run than with indepen-
dent sampling (assuming that we could directly observe independent samples
from the steady-state distribution, which of course is typically not possible).

As with independent replications, established simulation methodology and
statistical theory tells how to estimate the unknown quantities μ, β̄ and σ̄2

from data; e.g., see Bratley et al. (1987) and Fishman (2001). Instead, we apply
additional information about the model to obtain rough preliminary estimates
for these parameters without data. For σ̄2, the representation of the asymptotic
variance in terms of the autocovariances is usually too complicated to be of
much help, but fortunately there is another approach, which we will describe
in Section 3.

3 The asymptotic parameters for a function of a Markov chain

From the previous section, it should be apparent that we can do the intended
preliminary planning if we can estimate the asymptotic bias and the asymp-
totic variance. We now start to describe how we can calculate these important
parameters. We first consider functions of a Markov chain. That illustrates
available general results. However, fast back-of-the-envelope calculations usu-
ally depend on diffusion approximations, based on stochastic-process limits,
after doing appropriate scaling, which we discuss later in Sections 5 and 6.
Indeed, the scaling is usually the key part, and that is so simple that back-of-
the-envelope calculations are actually possible.

In this section, drawing on Whitt (1992), which itself is primarily a sur-
vey of known results (including Glynn (1984) and Grassman (1987a, 1987b)
among others), we observe that (again under regularity conditions) we can cal-
culate the asymptotic bias and the asymptotic variance whenever the stochastic
process of interest is a function of a (positive-recurrent irreducible) Markov
chain, i.e., when Xn = f (Yn) for n � 1, where f is a real-valued function and
{Yn: n � 1} is a Markov chain or when X(t) = f (Y(t)) for t � 0, where
again f is a real-valued function and {Y(t): t � 0} is a Markov chain. As noted
before, we usually obtain the required Markov structure by approximating the
given stochastic process by a related one with the Markov property.

In fact, as in Whitt (1992), we only discuss the case in which the underlying
Markov chain has a finite state space (by which we mean countably finite, i.e.,
{0� 1� � � � �m}, not [c� d]), but the theory extends to more general state spaces
under regularity conditions. For illustrations, see Glynn (1994) and Glynn and
Meyn (1996). But the finite-state-space condition is very useful: Under the
finite-state-space condition, we can compute the asymptotic parameters nu-
merically, without relying on special model structure. However, when we do
have special structure, we can sometimes go further to obtain relatively simple
closed-form formulas. We also obtain relatively simple closed-form formulas
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when we establish diffusion-process approximations via stochastic-process lim-
its.

3.1 Continuous-time Markov chains

We will discuss the case of a continuous-time Markov chain (CTMC); sim-
ilar results hold for discrete-time Markov chains. Suppose that the CTMC
{Y(t): t � 0} is irreducible with finite state space {0� 1� � � � �m} (which implies
that it is positive recurrent). Our sample-mean estimator is

�Xt ≡ t−1
∫ t

0
X(s) ds� t � 0�

where X(t) = f (Y(t)). (With the discrete state space, we write both
f (j) and fj for the value of f at argument j.)

A finite-state CTMC is characterized by its infinitesimal generator matrix
Q ≡ (Qi�j); Qi�j is understood to be the derivative (from above) of the proba-
bility transition function

Pi�j(t) ≡ P
(
Y(s + t) = j|Y(s) = i

)
with respect to time t evaluated at t = 0. However, in applications the model is
specified by defining the infinitesimal generator Q. Then the probability tran-
sition function can be obtained subsequently as the solution of the ordinary
differential equations

P ′(t) = P(t)Q = QP(t)�

which takes the form of the matrix exponential

P(t) = eQt ≡
∞∑
k=0

Qktk

k! �

Key asymptotic quantities associated with a CTMC are the stationary proba-
bility vector π and the fundamental matrix Z. (By convention, we let vectors
be row vectors.) The stationary probability vector π can be found by solving the
system of equations

πQ = 0 with
m∑
i=0

πi = 1�

The quantity we want to estimate is the expected value of the function f
(represented as a row vector) with respect to the stationary probability (row)
vector π, i.e.,

μ = πfT =
m∑
i=0

πifi�
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where “T” is the transpose.
We would not need to conduct a simulation to estimate μ if indeed we can

calculate it directly as indicated above. As noted before, in intended applica-
tions of this planning approach, the actual model of interest tends to be more
complicated than a CTMC, so that we cannot calculate the desired quantity μ
directly. We introduce a CTMC that is similar to the more complicated model
of interest, and use the CTMC analysis to get rough estimates of both μ and
the required computational effort in order to estimate μ by simulation. We will
illustrate for queueing models later.

To continue, the fundamental matrix Z describes the time-dependent devi-
ations from the stationary vector, in particular,

Zi�j ≡
∫ ∞

0

[
Pi�j(t)− πj

]
dt�

Given the stationary probability vector, π, the fundamental matrix Z can be
found by first forming the square matrix Π, all of whose rows are the vector π,
and then calculating

Z = (Π −Q)−1 −Π�

with the inverse always existing; again see Whitt (1992) and references therein.
We now consider how the desired asymptotic parameters can be expressed in
terms of the stationary probability vector π and the fundamental matrix Z,
including ways that are especially effective for computation.

3.2 Poisson’s equation

For that purpose, it is useful to introduce Poisson’s equation. The stationary
probability vectorπ and the fundamental matrixZ can be viewed as solutions x
to Poisson’s equation

xQ = y�

for appropriate (row) vectors y. It can be shown that Poisson’s equation has a
solution x if and only if yeT = 0, where e is the row vector of 1’s and eT is its
transpose. Then all solutions are of the form

x = −yZ + (xeT)π�
For example, π is obtained by solving Poisson’s equation when y is the zero
vector (and normalizing by requiring that xeT = 1). Then elements of Z can
be obtained by choosing other vectors y, requiring that xeT = 0.

In passing, we remark that there also is an alternate column-vector form of
Poisson’s equation, namely,

QxT = yT�
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which has a solution if and only if πyT = 0. Then all solutions are of the form

xT = −ZyT + (πxT)eT�

It is significant that, for a CTMC, the asymptotic bias β̄ defined in (2) and
the asymptotic variance σ̄2 defined in (3) can be expressed directly in terms
of π, Z, the function f and (for β) the initial probability vector, say ξ, i.e.,

β̄(ξ) = ξZfT ≡
m∑
i=0

m∑
j=0

ξiZi�jfj

and

σ̄2 = 2
(
fπT)ZfT ≡ 2

m∑
i=0

m∑
j=0

fiπiZi�jfj�

Moreover, the asymptotic parameters β̄(ξ) and σ̄2 are themselves directly so-
lutions to Poisson’s equation. In particular,

β̄(ξ) = xfT�

where x is the unique solution to Poisson’s equation for y = −ξ + π with
xeT = 0. Similarly,

σ̄2 = 2xfT�

where x is the unique solution to Poisson’s equation for yi = −(fi −μ)πi with
xeT = 0.

3.3 Birth-and-death processes

Birth-and-death (BD) processes are special cases of CTMCs in whichQi�j = 0
when |i − j| > 1; then we often use the notation Qi�i+1 ≡ λi and Qi�i−1 ≡ μi,
and refer to λi as the birth rates and μi as the death rates. For BD processes
and skip-free CTMCs (which in one direction can go at most one step), Pois-
son’s equation can be efficiently solved recursively.

To describe the recursive algorithm for BD processes, we start by observing
that for a BD process Poisson’s equation xQ = y is equivalent to the system of
equations

xj−1λj−1 − xj(λj + μj)+ xj+1μj+1 = yj� j � 0�

where x−1 = xm+1 = 0. Upon adding the first j + 1 equations, we obtain the
desired recursive algorithm,

xj+1 = λjxj + sj

μj+1
�
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where

sj =
j∑
i=0

yi�

Hence, Poisson’s equation for BD processes can indeed be solved recursively.
For BD processes and their continuous-time relatives – diffusion processes –

the asymptotic parameters can be expressed directly as sums and integrals,
respectively. For BD processes,

β̄(ξ) =
m−1∑
j=0

1
λjπj

j∑
i=0

(fi − μ)πi

j∑
k=0

(ξk − πk)

and

σ̄2 = 2
m−1∑
j=0

1
λjπj

[ j∑
i=0

(fi − μ)πi

]2

�

where, as for CTMCs, π is the steady-state probability vector, while μ is the
expected value of f with respect to π. However, for BD processes, it is usually
easier to use the recursive algorithm for computation. Indeed, the recursive
algorithm for the asymptotic bias and the asymptotic variance parallels the
well known recursive algorithm for the steady-state probability vector π.

4 Birth-and-death examples

In this section we consider examples of BD processes, primarily of queueing
models. These examples show that the model structure can make a big differ-
ence in the computational effort required for estimation by simulation.

Example 1 (The M/M/1 queue). Consider the queue-length (number in sys-
tem, including the customer in service, if any) process {Q(t): t � 0} in the
M/M/1 queue with unlimited waiting space. This model has a Poisson ar-
rival process with constant rate and i.i.d. service times with an exponential
distribution. The state space here is infinite, but the theory for the asymptotic
parameters extends to this example. The queue-length process is a BD process
with constant arrival (birth) rate and constant service (death) rate.

Let the service rate be 1 and let the arrival rate and traffic intensity be ρ.
Fixing the service rate gives meaning to time in the simulation run length. Let
f (i) = i for all i, so that we are estimating the steady-state mean. The steady-
state mean and variance are

μ = ρ

1 − ρ
and σ2 = ρ

(1 − ρ)2 ;
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e.g., see Cohen (1982).
To estimate the required simulation run length from a single long run, we

use the asymptotic bias and the asymptotic variance. Let the system start out
empty, so that the initial state is 0. As an argument of β̄(ξ), let 0 also denote
the initial probability vector ξ that puts mass 1 on the state 0. Then

β̄(0) = −ρ
(1 − ρ)3 and σ̄2 = 2ρ(1 + ρ)

(1 − ρ)4 �

These formulas can be derived from the general BD formulas or directly; see
Abate and Whitt (1987a, 1988a, 1988b).

Ignoring the initial transient (assuming that the queue-length process we
observe is a stationary process), the required run length with a relative-width
criterion, specified in general in (4), here is

tr(ε� α) =
8(1 + ρ)z2

α/2

ρ(1 − ρ)2ε2 and tr
(
10−k� 0�05

) ≈ 32(1 + ρ)(10)2k

ρ(1 − ρ)2 �

For 10% statistical precision (ε = 0�1) with 95% confidence intervals
(α = 0�05), when the traffic intensity is ρ = 0�9, the required run length is
about 675,000 (mean service times, which corresponds to an expected num-
ber of arrivals equal to 0�9 × 675�000 = 608�000); when the traffic intensity
is ρ = 0�99, the required run length is 64,300,000 (mean service times, which
corresponds to an expected number of arrivals equal to 0�9 × 64�300�000 =
57�900�000). To summarize, for high traffic intensities, the required run length
is of order 106 or more mean service times. We can anticipate great computa-
tional difficulty as the traffic intensity ρ increases toward the critical value for
stability.

Compared to independent sampling of the steady-state queue length (which
is typically not directly an option), the required run length is greater by a factor
of

σ̄2

σ2 = 2(1 + ρ)

ρ(1 − ρ)2 �

which equals 422 when ρ = 0�9 and 40,200 when ρ = 0�99. Clearly, the depen-
dence can make a great difference.

Now let us consider the bias. The relative bias is

β̄t(0)
μ

≈ β̄(0)
tμ

= −1
(1 − ρ)2t

�

so that, for ρ = 0�9 the relative bias starting empty is about 100/t, where t is the
run length. For a run length of 675,000, the relative bias is 1�5×10−4 or 0.015%,
which is indeed negligible compared to the specified 10% relative width of
the confidence interval. Hence the bias is in the noise; it can be ignored for
high traffic intensities. The situation is even more extreme for higher traffic
intensities such as ρ = 0�99.
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Example 2 (A small example with large asymptotic parameters). It is interest-
ing to see that the asymptotic bias β̄(ξ) and the asymptotic variance σ̄2 can be
arbitrarily large in a very small BD model with bounded rates. Suppose that
m = 2, so that the BD process has only 3 states: 0, 1 and 2. Consider the sym-
metric model in which λ0 = μ2 = x and λ1 = μ1 = 1, where 0 < x � 1. Then
the stationary distribution is

π0 = π2 = 1
2 + x

and π1 = x

2 + x
�

Let fi = i for all i, so that we are estimating the mean μ. Then the mean is
μ = 1 and the asymptotic variance is

σ̄2 = 4
x(2 + x)

≈ 2
x

for small x�

This model has a high asymptotic variance σ̄2 for small x because the model is
bistable, tending to remain in the states 0 and 2 a long time before leaving. To
see this, note that the mean first passage time from state 0 or state 2 to state 1
is 1/x.

Note that the large asymptotic variance σ̄2 cannot be detected from the
variance of the steady-state distribution, σ2. As x ↓ 0, σ2, the variance of π,
increases to 1. Thus, the ratio σ̄2/σ2 is of order O(1/x). The steady-state dis-
tribution has moderate variance, but the process has quite strong dependence
(but not so strong that the asymptotic variance becomes infinite).

The asymptotic bias starting in state 0 (or state 2) is also large for small x.
The asymptotic bias starting in state 0 is

β̄(0) = −(x+ 1)2

x(x+ 2)2 ≈ −1
4x

for small x�

As a function of the key model parameter x, the bias is much more impor-
tant here than it was for the previous M/M/1 queue example. Here, both the
asymptotic bias and the asymptotic variance are of order O(1/x), so that as a
function of x, for very small x, the width of the confidence interval is O(1/

√
x ),

while the bias is of order O(1/x). Thus the bias tends to be much more impor-
tant in this example. In particular, the run length required to make the bias
suitably small is of the same order as the run length required to make the width
of a confidence interval suitably small. For this example, using simulation to
estimate the mean μ when the parameter x is very small would be difficult at
best.

This model is clearly pathological: For very small x, a relatively long sim-
ulation run of this model starting in state 0 could yield a sample path that is
identically zero. We might never experience even a single transition! This ex-
ample demonstrates that it can be very helpful to know something about model
structure when conducting a simulation.



400 W. Whitt

Example 3 (TheM/M/∞ queue). A queueing system with many servers tends
to behave quite differently from a single-server queue. A queueing system with
many servers can often be well approximated by an infinite-server queue. Thus
we consider the number of busy servers at time t, also denoted by Q(t), in
an M/M/∞ queue. As before, let the mean individual service time be 1, but
now let the arrival rate be λ (since the previous notion of traffic intensity is no
longer appropriate). Now the arrival rate λ can be arbitrarily large.

The first thing to notice is that as λ increases, the required computational
effort for given simulation run length in the simulation increases, simply be-
cause the expected number of arrivals in the interval [0� t] is λt. Thus, with
many servers, we need to do a further adjustment to properly account for
computational effort. To describe the computational effort, it is appropriate
to multiply the time by λ. Thus, for the M/M/∞ model with mean individ-
ual service rate 1, we let cr = λtr represent the required computational effort
associated with the required run length tr .

It is well known that the steady-state number of busy servers in theM/M/∞
model, say Q(∞), has a Poisson distribution with mean λ; e.g., see Cooper
(1982). Thus, the mean and variance of the steady-state distribution are

μ ≡ E
[
Q(∞)

] = λ and σ2 ≡ Var
[
Q(∞)

] = λ�

The asymptotic parameters also are relatively simple. As for the M/M/1
queue, we assume that we start with an empty system. Then the asymptotic
bias and asymptotic variance are

β̄(0) = −λ and σ̄2 = 2λ�

From the perspective of the asymptotic variance and relative error, we see that

σ̄2

μ2 = 2λ
λ2 = 2

λ
�

so that simulation efficiency increases as λ increases. However, the required
computational effort to achieve relative (1 − α)% confidence interval width
of ε is

cr(ε� α) ≡ λtr(ε� α) = 8z2
α

ε2

which is independent of λ. Thus, from the perspective of the asymptotic vari-
ance, the required computational effort does not increase with the arrival rate,
which is very different from the single-server queue.

Unfortunately, the situation is not so good for the relative bias. First, the
key ratio is

β̄(0)
μ

= −λ
λ

= −1�

Thus the required run length to make the bias less than ε is 1/ε, and the re-
quired computational effort is λ/ε, which is increasing in λ. Unlike for the
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M/M/1 queue, as the arrival rate λ increases, the bias (starting empty) even-
tually becomes the dominant factor in the required computational effort.

For this M/M/∞ model, it is natural to pay more attention to bias than we
would with a single-server queue. A simple approach is to choose a different
initial condition. The bias is substantially reduced if we start with a fixed num-
ber of busy servers not too different from the steady-state mean λ. Indeed, if
we start with exactly λ busy servers (assuming that λ is an integer), then the
bias is asymptotically negligible as λ increases. Note, however, that this special
initial condition does not directly put the system into steady state, because the
steady-state distribution is Poisson, not deterministic.

If, instead, we were working with the M/G/∞ model, then in addition we
would need to specify the remaining service times of all the λ customers ini-
tially in service at time 0. Fortunately, for theM/G/∞model, there is a natural
way to do this: The steady-state distribution of the number of busy servers
is again Poisson with mean λ, just as for the M/M/∞ model. In addition,
in steady-state, conditional upon the number of busy servers, the remaining
service times of those customers in service are distributed as i.i.d. random
variables with the stationary-excess (or equilibrium residual-life) cumulative
distribution function (c.d.f.) Ge associated with the service-time c.d.f. G, i.e.,

(5)Ge(t) ≡ m−1
∫ t

0

[
1 −G(u)

]
du�

where m is the mean of G (here m = 1); e.g., see Takács (1962).
It is natural to apply this insight to more general many-server queueing

models. Even in more general G/G/s models, it is natural to initialize the
simulation by putting s customers in the system at time 0 and letting their re-
maining service times be distributed as s i.i.d. random variables with c.d.f. Ge.
For large s, that should be much better than starting the system empty.

For many-server queues, we may be interested in different congestion mea-
sures. By Little’s law (L = λW ), we know that the expected steady-state
number of busy servers in the G/G/s/∞ model is exactly λ (provided that
λ < s). Thus, in simulation experiments, we usually are more interested in
estimating quantities such as E[(Q(∞) − s)+], where (x)+ ≡ max{0� x}, or
P(Q(∞) > s + k). Note that we can calculate the asymptotic bias and the
asymptotic variance for these quantities in the M/M/s model by applying the
BD recursion with appropriate functions f . With large s, it often helps to start
the recursion at s and move away in both directions. The initial value at s can
be taken to be 1; afterwards the correct value is obtained by choosing the ap-
propriate normalizing constant.

5 Diffusion processes

Diffusion processes are continuous analogues of BD processes; e.g., see
Karlin and Taylor (1981) and Browne and Whitt (1995). In this chapter we dis-
cuss diffusion processes because we are interested in them as approximations
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of other processes that we might naturally simulate using discrete-event simu-
lation. We want to use the diffusion processes to approximate the asymptotic
bias and the asymptotic variance of sample means in the original process.

Diffusion processes tend to be complicated to simulate directly because they
have continuous, continuously fluctuating, sample paths. Nevertheless, there
also is great interest in simulating diffusion processes and stochastic differen-
tial equations, e.g., for finance applications, and special techniques have been
developed; see Kloeden et al. (1994) and Kloeden and Platen (1995). Hence
the analysis in this section may have broader application.

For diffusion processes, there are integral representations of the asymptotic
parameters, paralleling the sums exhibited for BD processes. Corresponding
to the finite-state-space assumption for the BD processes, assume that the
state space of the diffusion is the finite interval [s1� s2] and let the diffusion
be reflecting at the boundary points s1 and s2, but under regularity condi-
tions the integral representations will be valid over unbounded intervals. Let
{Y(t): t � 0} be the diffusion process and letX(t) = f (Y(t)) for a real-valued
function f . The diffusion process is characterized by its drift function μ(x) and
its diffusion function σ2(x).

Let π be the stationary probability density. The stationary probability den-
sity can be represented as

π(y) = m(y)

M(s2)
� s1 � y � s2�

where

m(y) ≡ 2
σ2(y)s(y)

is the speed density,

s(y) ≡ exp
{
−
∫ y

s1

2μ(x)
σ2(x)

dx
}

is the scale density and

M(y) =
∫ y

s1

m(x) dx� s1 � y � s2�

provided that the integrals are finite.
Let p(t� x� y) be the transition kernel. Then, paralleling the fundamen-

tal matrix of a CTMC, we can define the fundamental function of a diffusion
process, Z ≡ Z(x� y), by

Z(x� y) ≡
∫ ∞

0

[
p(t� x� y)− π(y)

]
dt�



Ch. 13. Analysis for Design 403

As before, let μ be the average of f with respect to the stationary probability
density π, i.e.,

μ =
∫ s2

s1

π(x)f (x) dx�

Then the integral representations for the asymptotic bias β̄(ξ) starting with
initial probability density ξ and the asymptotic variance σ̄2 are

β̄(ξ) = 2
∫ s2

s1

1
σ2(y)π(y)

×
[∫ y

s1

(
f (x)− μ

)
π(x) dx

∫ y

s1

(
ξ(z)− π(z)

)
dz
]

dy

and

σ̄2 = 4
∫ s2

s1

1
σ2(y)π(y)

[∫ y

s1

(
f (x)− μ

)
π(x) dx

]2
dy�

We now discuss two examples of diffusion processes, which are especially
important because they arise as limit processes for queueing models, as we
explain in Section 6.

Example 4 (RBM). Suppose that the diffusion process is reflected Brown-
ian motion (RBM) on the interval [0�∞) with drift function μ(x) = a and
diffusion function σ2(x) = b, where a < 0 < b, which we refer to by
RBM(a� b); see Harrison (1985), Whitt (2002) and references therein for more
background. RBM is the continuous analog of the queue-length process for the
M/M/1 queue (as we will explain in the next section). It is a relatively simple
stochastic process with only the two parameters a and b.

In fact, we can analyze the RBM(a� b) processes by considering only the
special case in which a = −1 and b = 1, which we call canonical RBM be-
cause there are no free parameters. We can analyze RBM(a� b) in terms of
RBM(−1� 1) because we can relate the two RBMs by appropriately scaling
time and space. For that purpose, let {R(t; a� b�X): t � 0} denote RBM(a� b)
with initial distribution according to the random variable X. The key relation
between the general RBM and canonical RBM is

{
R(t; a� b�X): t � 0

} d= {c−1R
(
d−1t;−1� 1� cX

)
: t � 0

}
or, equivalently,

{
R(t;−1� 1�X): t � 0

} d=
{
cR

(
dt; a� b� X

c

)
: t � 0

}
�

where

c = |a|
b
� d = b

a2 � a = −1
cd

and b = 1
c2d

�
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where “ d=” means equal in distribution (here as stochastic processes).
Hence it suffices to focus on canonical RBM. It has stationary density

π(x) = 2e−2x, x � 0. If we initialize RBM with its stationary distribution,
then we obtain a stationary process. Let R∗ ≡ {R∗(t; a� b): t � 0} denote
stationary RBM, initialized by the stationary distribution.

If f (x) = x for canonical RBM, then we would be estimating the steady-
state mean μ = 1/2. In this case, the asymptotic bias is β̄(0) = −1/4 (The-
orem 1.3 of Abate and Whitt, 1987a) and the asymptotic variance (for R∗) is
σ̄2 = 1/2 (Abate and Whitt, 1988b).

To describe the general RBM with parameters a and b, we apply the scaling
relations in Section 6.1. As a consequence of those scaling properties, the mean
and variance of the steady-state distribution of RBM(a� b) are

μa�b = b

2|a| and σ2
a�b = μ2

a�b =
b2

4a2 �

and the asymptotic parameters are

β̄a�b(0) = −b2

4|a|3 and σ̄2
a�b =

b3

2a4 �

For the relative-width criterion, the key ratios are

β̄a�b(0)
μa�b

= −b
2a2 and

σ̄2
a�b

μ2
a�b

= 2b
a2 �

Thus we see that the relative asymptotic bias is about the same as the rel-
ative asymptotic variance. Since the bias of the sample mean �Xt is of order
O(1/t), while the square root of the variance of the sample mean �Xt is of or-
der O(1/

√
t ), the bias tends to be negligible for large t.

Example 5 (OU). Suppose that the diffusion process is the Ornstein–
Uhlenbeck (OU) diffusion process on the interval (−∞�∞) with drift func-
tion μ(x) = ax and diffusion function σ2(x) = b, where a < 0 < b, which we
refer to as OU(a� b). It is the continuous analog of the queue-length process
in the M/M/∞ queue when we center appropriately.

We also can analyze the OU(a� b) processes by considering only the special
case in which a = −1 and b = 1, which we call canonical OU. We can analyze
OU(a� b) in terms of OU(−1� 1) because we can relate the two OUs by appro-
priately scaling time and space, just as we did for RBM. For that purpose, let
{Z(t; a� b�X): t � 0} denote OU(a� b) with initial distribution according to
the random variable X. The key relation between the general OU(a� b) and
canonical OU(−1� 1) is

{
Z(t; a� b�X): t � 0

} d= {c−1Z
(
d−1t;−1� 1� cX

)
: t � 0

}
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or, equivalently,

{
Z(t;−1� 1�X): t � 0

} d=
{
cZ

(
dt; a� b� X

c

)
: t � 0

}
�

where

c = |a|
b
� d = b

a2 � a = −1
cd

and b = 1
c2d

�

Then the stationary density of canonical OU is normal with mean 0 and vari-
ance 1/2. The mean of canonical OU starting at x is

E
[
Z(t;−1� 1� x)

] = xe−t � t � 0�

Paralleling our treatment of RBM, let Z∗ ≡ {Z∗(t; a� b): t � 0} be stationary
OU, obtained by initializing the OU(a� b) with the stationary normal distribu-
tion. For stationary canonical OU, the autocovariance function is

Cov
(
Z∗(0)�Z∗(t)

) = 1
2

e−t � t � 0�

Hence, the asymptotic parameters for canonical OU are

β̄(ξ) = ξ and σ̄2 = 1
2
�

Just as with RBM, we can apply Section 6.1 to determine the effect of scaling.
The mean and variance of the steady-state distribution of OU(a� b) are

μa�b = 0 and σ2
a�b =

b

2|a| �

and the asymptotic parameters are

β̄a�b(x) = x
b2

|a|3 and σ̄2
a�b =

b3

2a4 �

The relative-width criterion makes less sense here because the random vari-
ables are not nonnegative.

6 Stochastic-process limits

In this section we discuss stochastic-process limits that make the RBM
and OU diffusion processes serve as useful approximations for queueing mod-
els. We start by discussing the impact of scaling space and time. The scaling is
often the key part.



406 W. Whitt

6.1 Scaling of time and space

To obtain relatively simple approximate stochastic processes, we often con-
sider stochastic-process limits, as in Whitt (2002). (We elaborate further.) To
establish appropriate stochastic-process limits, we usually consider not just one
stochastic process but a family of stochastic processes constructed by scaling
time and space. It is thus important to know how the asymptotic parameters
change under such scaling.

Suppose that we have a stochastic process Z ≡ {Z(t): t � 0} and we want
to consider the scaled stochastic process Zu�v ≡ {Zu�v(t): t � 0}, where

Zu�v(t) ≡ uZ(vt)� t � 0�

for positive real numbers u and v. Suppose that Z(t) ⇒ Z(∞) as t → ∞.
Then Zu�v(t)⇒ Zu�v(∞) as t →∞, where

Zu�v(∞) = uZ(∞)�

Let μ be the mean and σ2 the variance ofZ(∞); let μu�v be the mean and σ2
u�v

the variance of Zu�v(∞). Then

μu�v = uμ and σ2
u�v = u2σ2�

The relation is different for the asymptotic parameters: Observe that
EZu�v(t) = uEZ(vt) for t � 0 and, under the assumption that Z is a sta-
tionary process,

Cov
(
Zu�v(0)�Zu�v(t)

) = u2 Cov
(
Z(0)�Z(vt)

)
� t � 0�

As a consequence, the asymptotic bias and the asymptotic variance are

β̄u�v = u

v
β̄ and σ̄2

u�v =
u2

v
σ̄2�

Thus, once we have determined the asymptotic parameters of a stochastic
process of interest, it is easy to obtain the asymptotic parameters of associated
stochastic processes constructed by scaling time and space. If the scaling para-
meters u and v are either very large or very small, then the scaling can have a
great impact on the required run length. Indeed, as we show below, in standard
queueing examples the scaling is dominant.

6.2 RBM approximations

Consider the queue-length (number in system) stochastic process {Qρ(t):
t � 0} in the G/G/s/∞ with traffic intensity (rate in divided by maximum
rate out) ρ, with time units fixed by letting the mean service time be 1, without
the usual independence assumptions. As reviewed in Whitt (1989, 2002), in
remarkable generality (under independence assumptions and beyond), there
is a heavy-traffic stochastic-process limit for the scaled queue-length processes,



Ch. 13. Analysis for Design 407

obtained by dividing time t by (1 − ρ)2 and multiplying space by (1 − ρ), i.e.,
{
(1 − ρ)Qρ

(
t(1 − ρ)−2): t � 0

}⇒ {
R(t; a� b): t � 0

}
as ρ ↑ 1

for appropriate parameters a and b, where {R(t; a� b): t � 0} is RBM(a� b)
and again “⇒” denotes convergence in distribution, but here in the function
space D containing all sample paths.

The limit above is very helpful, because the number of relevant parameters
has been greatly reduced. We see that the queue behavior for large ρ should
primarily depend upon only ρ and the two parameters a and b. Moreover, it
turns out the parameters a and b above can be conveniently characterized (in
terms of scaling constants in central limit theorems for the arrival and service
processes). For example, in the standard GI/GI/s/∞ model the heavy-traffic
limit holds with

a = −s and b = s
(
c2
a + c2

s

)
�

where c2
a and c2

s are the SCVs of an interarrival time and a service time, re-
spectively (provided that the second moments are finite). Similar limits hold
for workload processes, recording the amount of remaining unfinished work in
service time in the system.

We thus can apply the stochastic-process limit with the scaling properties in
Section 6.1 and the properties of RBM to obtain approximations paralleling
the exact results for the M/M/1 queue. We apply the stochastic-process limit
to obtain the approximation

{
Qρ(t): t � 0

} ≈ {(1 − ρ)−1R
(
t(1 − ρ)2; a� b): t � 0

}
�

The resulting approximations for the mean and variance of the steady-state
distribution of the queue-length process are thus

E
[
Qρ(∞)

] ≈ b

2|a|(1 − ρ)
and σ2

ρ ≡ Var
(
Qρ(∞)

) ≈ b2

4a2(1 − ρ)2 ;

the approximations for the asymptotic parameters are

β̄ρ(0) ≈ −b2

4|a|3(1 − ρ)3 and σ̄2
ρ ≈

b3

2a4(1 − ρ)4 �

In the GI/GI/s/∞ case, we just substitute the specific parameters a and b
above. The resulting approximate asymptotic variance is

σ̄2
ρ ≡ σ̄2

(s�ρ�c2
a�c

2
s )
= (c2

a + c2
s )

3

2s(1 − ρ)4 �

Note that these formulas agree with the limits of theM/M/1 formulas as ρ ↑ 1.
Thus, we see that the M/M/1 formulas are remarkably descriptive more gen-
erally. But we also see the impact of s servers and the GI arrival and service
processes: The asymptotic variance is directly proportional to 1/s and to the
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third power of the overall “variability parameter” (c2
a + c2

s ) as well as to the
fourth power of (1 − ρ)−1.

More generally, we see how the parameters s, ρ, a and b in more general
G/G/s/∞ models (with nonrenewal arrival processes and non-i.i.d. service
times) will affect the required simulation run length. Once we have established
the corresponding heavy-traffic limit and identified the new values of a and b
for these alternative models, we can apply the results above. For the relative-
width criterion, the key ratios are

β̄a�b(0)
μa�b

≈ −b
2a2(1 − ρ)2 and

σ̄2
a�b

μ2
a�b

≈ 2b
a2(1 − ρ)2 �

Values of the key parameters a and b in alternative models have been deter-
mined; e.g., see Sections 5.2–5.5 of Whitt (1989) and Fendick et al. (1989).

6.3 Many-server queues

The analysis above applies to multiserver queues, but when the number of
servers is large, the RBM approximation tends to be inappropriate. When the
number of servers is large, it is often preferable to consider different limits
in which the number s of servers is allowed to increase as the arrival rate λ in-
creases; see Halfin and Whitt (1981), Chapter 10 of Whitt (2002), Whitt (2005)
and references therein. Alternatively, when there is a large number of servers,
a more elementary direct approach is to consider an infinite-server model as
an approximation for the model with finitely many servers. We thus might ap-
proximate the queue-length (number in system) process in the G/G/s model
(with finite or infinite waiting room) by the stochastic process representing the
number of busy servers in the associated G/G/∞ model.

When we do consider the G/G/∞ model, it is natural to develop approx-
imations based on heavy-traffic stochastic-process limits, where now heavy-
traffic is defined by having the arrival rate λ increase without bound. For that
purpose, let Qλ(t) denote the number of busy servers at time t as a function
of the arrival rate λ. Again, under regularity conditions, there is a heavy-traffic
stochastic-process limit, but it takes a different form. Now

{
Qλ(t)− λ√

λ
: t � 0

}
⇒ {

L(t): t � 0
}

as λ→∞�

where the limit process L ≡ {L(t): t � 0} is a zero-mean Gaussian process,
i.e., for which (L(t1)� � � � � L(tk)) has a k-dimensional normal distribution for
all positive integers k and all time points 0 < t1 < · · · < tk; see Section 10.3
of Whitt (2002), Glynn and Whitt (1991) and references therein. As with the
previous RBM limit, this limit generates a natural approximation; here it is

{
Q(t): t � 0

} ≈ {λ+√
λL(t): t � 0

}
�
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For the G/M/∞ special case, when the service times are i.i.d. and ex-
ponentially distributed (still with mean 1), the Gaussian limit process L is
OU(−1� 1 + c2

a), where c2
a is the normalization constant in the central limit

theorem for the arrival process, corresponding to the SCV of an interarrival
time in the renewal (GI) case. Thus the approximate asymptotic variance is

σ̄2 ≡ σ̄2
Qλ

≈ λ
(1 + c2

a)
3

2
�

For the more general G/GI/∞ model, when the service times are not expo-
nentially distributed, the limiting Gaussian process is not Markov (except if
G is a mixture of an exponential and a point mass at 0; see Glynn (1982)). If
G denotes the c.d.f. of the service time and Gc(t) ≡ 1 − G(t) is the associ-
ated complementary c.d.f. (c.c.d.f.), then the autocovariance function of the
stationary version L∗ of the limit process L is

Cov
(
L∗(0)� L∗(t)

)

=
∫ ∞

0
G(u)Gc(t + u) du+ c2

a

∫ ∞

0
Gc(t + u)Gc(u) du�

In the special case of the M/GI/∞ model, c2
a = 1 and the autocovariance

function simplifies, becoming

Cov
(
L∗(0)� L∗(t)

) =
∫ ∞

0
Gc(t + u) du = Gc

e(t)�

where Gc
e is c.c.d.f. associated with the stationary-excess c.d.f. Ge in (5). Since

Ge has mean (c2
s + 1)/2, the asymptotic variance of L∗ is (c2

s + 1)/2. Thus, for
the M/GI/∞ model the approximate asymptotic variance of Qλ is

σ̄2 ≡ σ̄2
Qλ

≈ λ(c2
s + 1)
2

�

With many-server queues, we are often less interested in the queue-length
process than other stochastic processes. For example in the M/M/s/0 (Erlang
loss or B) model, which has s servers, no extra waiting room and arrivals
blocked or lost without affecting future arrivals when arrivals find all servers
busy, instead of the number of busy servers, we are often interested in the
steady-state blocking probability. In the correspondingM/M/s/∞ (Erlang de-
lay or C) model, which has s servers and unlimited extra waiting room, we are
often interested in the steady-state delay probability, i.e., the probability that
an arrival must wait before beginning service, or the probability that an ar-
rival must have to wait more than some designated time, such as 20 seconds
(a common target in telephone call centers).

To consider the simulation run length required to estimate these alterna-
tive characteristics, we may nevertheless use the infinite-server model and the
analysis above as a rough guide. To get better estimates we can consider the
multi-server model with s servers (instead of letting s = ∞). It has been found
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useful to consider limits in which s increases along with λ. It turns out to be
appropriate to let s and λ increase so that

λ− s√
λ

→ γ as λ→∞�

Then, just as in the infinite-server case, under regularity conditions there
is again a heavy-traffic limit for [Qλ(t) − λ]/√λ but now with a different
limit process L; see Halfin and Whitt (1981), Srikant and Whitt (1996, 1999),
Puhalskii and Reiman (2000) and Whitt (2005). That in turn allows us to ap-
proximate the asymptotic variance and estimate the required simulation run
length. The issue of required simulation run lengths for many-server loss sys-
tems is the main focus of Srikant and Whitt (1996, 1999).

7 Deleting an initial portion of the run to reduce bias

We have seen that for various Markov processes we can estimate the bias
of a sample mean associated with any contemplated initial distribution and
simulation run length. If the estimated bias is too large, then we can try to
reduce the bias by choosing alternative initial conditions. We can estimate the
bias reduction gained by choosing alternative initial distributions, because the
asymptotic bias β̄(ξ) is a function of the initial probability distribution ξ.

If the estimated bias is too large, and it is difficult to change the initial condi-
tions, then we might instead consider not collecting data for an initial portion
of the simulation run, given the natural initial conditions. However, it is more
difficult to estimate the bias reduction from not collecting data from an ini-
tial portion of the run. For that purpose, we need to know the time-dependent
mean E[X(t)], where {X(t): t � 0} is the stochastic process being observed.
The asymptotic bias when we do not collect data over an initial interval [0� c]
is

β̄(ξ� c) =
∫ ∞

c

(
EX(t)− μ

)
dt�

A rough approximation for the asymptotic bias β̄(ξ� c) can be based on the
exponential approximation

E
[
X(t)

]− μ ≈ e−t/β̄� t � 0�

where the parameter β̄ is chosen to yield the correct asymptotic bias β̄ =
β̄(ξ� 0). Then we obtain the approximation

β̄(ξ� c) ≈
∫ ∞

c
e−t/β̄ dt = β̄e−c/β̄�

Unfortunately, however, the exponential approximation is not very reli-
able, because the time-dependent mean rarely has such a simple exponential
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form. For better estimates of the reduced bias, we need to estimate the time-
dependent mean EX(t). Fortunately, for some commonly occurring stochastic
processes, expressions for the time-dependent mean are available. For ex-
ample, exact and approximate expressions for the time-dependent mean for
M/M/1 and RBM are contained in Abate and Whitt (1987a, 1987b, 1988b).

For the M/GI/∞ model with arrival rate λ and service-time c.d.f. G, start-
ing empty,

E
[
Qλ(t)

] = E
[
Qλ(∞)

]
Ge(t) = λGe(t)� t � 0�

where Ge is the stationary-excess c.d.f., just as in the covariance function; see
Section 4 of Eick et al. (1993). So the asymptotic bias is −λ(c2

s + 1)/2, just like
the asymptotic variance.

8 Directions for further research

We described two classes of models that have been analyzed rather thor-
oughly to understand the required simulation run lengths: single-server queues
and many-server queues (here approximated by infinite-server queues). Other
important classes of stochastic models should be analyzed in the same way.

The analysis here is based on the normal approximation for the sample
mean reviewed in Section 2. The conditions in the central limit theorem yield-
ing the normal approximation are not satisfied when there are heavy-tailed
distributions or long-range dependence. Since these features tend to arise in
practice, it is natural to include them in simulations. As can be seen from
Chapter 4 of Whitt (2002), there is alternative asymptotic theory for heavy-
tailed distributions or long-range dependence, and there is a body of statistical
techniques, as in Beran (1994), but more needs to be done to plan simulations
in that context. In general, simulations in face of such stochastic complexity are
difficult. Work to cope with such complexity is described in Chapter 11.
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Abstract

Bootstrap resampling is an extremely practical and effective way of studying the dis-
tributional properties of statistical data. It requires computer intensive methods, but
these are often already incorporated as data gathering procedures in the simulations
themselves, and there should be little additional work in commandeering these pro-
cedures for use in the statistical analysis itself. Resampling is therefore often easy and
straightforward to carry out in simulations. More importantly there is ample evidence
both in theory and in practice that such methods can be more effective than classi-
cal statistical inference, especially in small samples. The purpose of this chapter is to
review existing bootstrap methodology and to highlight the main methods and accom-
panying theoretical results that are of most use in the simulation context. We consider
parametric as well as the classical nonparametric version of the bootstrap and show
that they can handle a very wide variety of problems. The main message is that on the
grounds of simplicity and effectiveness bootstrapping should be a statistical approach
of first resort in simulation output analysis.

1 Introduction

Stochastic simulations typically generate data from which we compute a sta-
tistic of interest. This statistic is a random variable and the immediate, all-
embracing question is: What is its distribution? A simple way of answering this
question is as follows. We generate, not one, but a large number of indepen-
dent and identically distributed data sets and for each data set we calculate
the statistic of interest. This gives us a (large) random sample of the statistic.
The empirical distribution function (EDF) formed from this random sample
provides an immediate answer to our question.

Where the computer simulation runs are quick to make, the approach just
described is an attractive and effective one for analyzing simulation output. It
allows the distribution of even complicated statistical quantities to be obtained
without having to resort to elaborate statistical procedures.
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However, there are many simulation experiments where the simulation
model is complex and it takes a significant time to make just one run, so that
making a large number of runs is out of the question. The approach above of
generating an EDF by repeated sampling does not then seem available.

Bootstrapping is a very effective way of recovering the situation by enabling
a large number of data sets to be generated simply by resampling from the orig-
inal data set. It is therefore an attractive approach that avoids having to make
too many simulation runs when these are time consuming.

Given that sampling is very much part of the overall simulation experiment,
it is very natural to turn to resampling methods for carrying out the statisti-
cal analysis. Used in this way the bootstrap approach often enables statistical
procedures to be applied in a simple and painless manner without having
to draw heavily on specialist statistical knowledge. This is an important ad-
vantage. However, there are common situations where bootstrapping, when
applied properly, produces adjustments to estimators or confidence intervals
with properties superior to those derived from asymptotic theory. Thus, there
are clear theoretical as well as practical reasons for using bootstrapping.

The basic ideas of bootstrapping are quite general and apply not simply to
simulation experiments. Our discussion reflects this. Many of the main results
are applicable to any bootstrapping situation and not simply to simulation ex-
periments. It should nevertheless be apparent how they can be applied in the
simulation context.

Many of the situations where bootstrapping is appropriate are connected
with the estimation of key quantities that characterize a system, such as aver-
age output or utilization rates. We are in consequence interested in estimating
quantities or parameters whose estimators often have an asymptotic normal
distribution. Chapter 8 discusses such estimators and their properties.

The discussion of this chapter focuses on independent samples. But in time
series, and more general stochastic processes, the observations can be depen-
dent. We discuss this in Section 9. For a more comprehensive view on correla-
tion based methods, see Chapter 15.

An immediate issue is the balance between making ‘real’ simulation runs
as opposed to bootstrapping. As will become evident, bootstrapping is usually
cheap to do compared with making simulation runs. Therefore, it is generally
best to expend most of the available computing effort on making ‘real’ sim-
ulation runs. In classical experiments all the real data gathering is done first,
with the analysis carried out subsequently. However, there is no need to fol-
low such a rigid procedure in simulation experiments. Even when simulation
runs are relatively cheap, we can still alternate between simulation runs and
bootstrapping. The bootstrapping gives information about the accuracy of the
simulation results and thus provides a guide as to how best to expend subse-
quent simulation effort.

In compiling this chapter four sources were especially useful, and this is
freely acknowledged here. Hjorth (1994) gives a very readable introductory
account, though the early discussion of model selection and cross-validation



Ch. 14. Resampling Methods 417

gives a rather different focus to the material than that presented here. The
book by Davison and Hinkley (1997) contains a wealth of practical advice on
methodological and practical issues. Shao and Tu (1995) gives a detailed sur-
vey of theoretical work undertaken on the bootstrap. Hall (1992) provides a
thorough study of the bootstrap and its properties in a very instructive and
unified way via the theory of Edgeworth expansions. To these four should also
be added the book by Chernick (1999) which contains a thorough survey of
the major areas of application of the bootstrap together with a comprehensive
bibliography. Finally we should point out that Efron and Tibshirani (1993) is
a popular and very good recommendation for an introductory text, but we did
not make significant use of it as a reference source, preferring instead to dwell
a little more on slightly more mathematical aspects than on practical method-
ology.

Most of the literature on bootstrapping takes a general standpoint and does
not have simulation studies specifically in mind. This chapter is not all that
different in this regard especially in the sections up to Section 5. However, in
reducing the material to chapter length we have attempted to select topics that
seem most relevant and useful from the viewpoint of the analysis of simulation
experiments, with a more explicit simulation viewpoint adopted from Section 5
onwards.

2 The bootstrap

2.1 The bootstrap concept

To start with we shall just consider samples Y = (Y1� Y2� � � � � Yn) and sta-
tistics s(Y) calculated from them. The Yi may themselves be vectors, and they
are not necessarily independent, though often they will be. However, we shall
assume initially that the Yi are mutually independent so that Y is a random
sample. (The case of several samples is considered in Section 6 and the case
when the Yi are dependent will be discussed in Section 8.)

The reader anxious to relate this immediately to simulation may wish to have
the following typical simulation situation in mind: Let Y be the observed value
of a performance index of the system under investigation, obtained from one
run of a simulation model. In a queueing system Y might represent average
utilization. We make n runs, obtaining an observation Yi from each. This is
the random sample, Y, under consideration. In this case s(Y) might well be
the sample mean �Y . For some initial discussion of bootstrapping as applied
to simulation see Barton and Schruben (1993), Kim et al. (1993), Shiue et al.
(1993) and Cheng (1995).

In fact practically all of inferential statistics reduces to trying to answer
the question: ‘What is G(·), the probability distribution of a statistic s(Y),
calculated from a sample Y = Y(Y1� Y2� � � � � Yn)?’ Bootstrapping is simply
a numerical way of answering this question. It might appear at first sight that
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bootstrapping attempts to get ‘something for nothing’. This is quite erroneous.
Any statistical inference makes use of the observed values in some way and
bootstrapping is no different. Repeated sampling of the observed values does
lend bootstrapping its distinctive nature, but the inferences that are then drawn
from the results of this resampling cannot provide any more information than
is already in the sample, and in this respect bootstrapping is no different than
any other method of analysis.

If we knew F(·), the distribution of Y , the above question, ‘What is G(·)?’,
is easily answered numerically. We simply generate a number, B, of indepen-
dent samples of Y: y1� y2� � � � � yB, and calculate the statistic sj = s(yj) from
each sample. Then the empirical distribution function (EDF) of the sample
s = (s1� s2� � � � � sB),

Gn(s|s) = # of sj � s

B
�

will converge pointwise with probability one toG(s). (Here and in what follows
we shall use the notation Gn(·) to denote the EDF of a sample of size n drawn
from the distribution G(·). Where the precise sample s used to construct
Gn needs to be made explicit then we use the notation Gn(·|s) or Gn(s|s)).
The basic sampling process is as shown in Figure 1.

The problem is that we usually do not know F(·). However we do have the
EDF, Fn(·|y), formed from the sample y. The bootstrap idea is to use Fn(·|y)
instead of F(·) in the basic process above. To obtain a sample we draw values,
not from F(·), but from Fn(·|y). This is equivalent to drawing a sample of the
same size n, with replacement, from the original set of y’s. We call such a sample
a bootstrap sample to distinguish it from the original sample, and write it as y∗ =
(y∗1 � y

∗
2 � � � � � y

∗
n). As in the basic process, B such bootstrap samples are drawn,

and the statistic is calculated from each of these samples: s∗j = s(y∗j ). The EDF,
Gn(·|s∗), of these bootstrap statistics s∗j , is our estimate of G(·). The bootstrap
process is as shown in Figure 2. The underlying hope and expectation is that
the bootstrap process will under many conditions reproduce the behavior of
the original process. This is what we examine in detail in the remainder of the
chapter.

The Basic Sampling Process
For j = 1 to B

For i = 1 to n
Draw yij from F(·)

Next i
Calculate sj = s(yj)

Next j
Form Gn(·|s)

Fig. 1. The basic sampling process.
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The Bootstrap Sampling Process
Given a random sample y = (y1� y2� � � � � yn) from F(·)
Form the EDF Fn(·|y)
For j = 1 to B

For i = 1 to n
Draw y∗ij from Fn(·|y)

Next i
Calculate s∗j = s(y∗j )

Next j
Form Gn(·|s∗)

Fig. 2. The bootstrap sampling process.

2.2 Basic method

We shall assume that the objective of the experiment (simulation or other-
wise) is to use the random sample y = {y1� y2� � � � � yn} to estimate a parameter
η = η(F(·)) that describes some quantity of interest of the distribution of Y .
Typical examples are the mean

η =
∫ ∞

−∞
y dF(y)

or some other moment of Y , or a quantile η = q(p), defined by
∫ q(p)

−∞
dF(y) = p�

The statistic s(Y) can then be regarded as any appropriate quantity that we
may care to use for estimating η. We shall emphasize this view by using the
alternative but entirely equivalent notation η̂(Y) ≡ s(Y), with the ‘hat’ indicat-
ing an estimated quantity. Thus, when η is the mean, an obvious statistic is the
sample mean

s(Y) = �Y�
It is important to realize that we do not have to use the sample version as the
estimator, assuming we can calculate it at all. In the present example we might
use a trimmed sample mean, or even the median rather than the sample mean.
What we shall do is regard the sample version of the parameter as being the
quantity of interest in the bootstrap process, i.e., the parameter of interest in
the bootstrap process is

η∗ = η
(
Fn(·)

)
�

Thus we think of the bootstrap process as one where we are generating boot-
strap samples y∗j from which bootstrap estimates s∗j = s(y∗j ) are obtained that
estimate the bootstrap parameter η∗.

With this viewpoint, the bootstrap process is a prime example of the so-
called plug-in approach, being a precise analogue of the original process with
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the only difference being that the known Fn(·) is plugged-in for, i.e., replaces
the unknown F(·). The bootstrap principle is that the bootstrap process repro-
duces the properties of the original basic process.

Useful quantities that are obtained from the bootstrap process are the sam-
ple mean and variance of the bootstrap estimates

s̄∗ = 1
B

B∑
j=1

s∗j �

σ∗2 = 1
B − 1

B∑
j=1

(
s∗j − s̄∗

)2
�

We also have an estimate of the bias of the mean of the bootstrap estimates:
b∗ = s̄∗ − η∗. A bootstrap bias adjusted estimate for η is thus

η̆ = η̂− b∗�

If the bootstrap expectation satisfies E∗(s∗j ) = η̂ (here E∗ denotes the con-
ditional expectation E[s∗j |Fn(·|y)], where Fn(·) is treated as being the parent
distribution), then s̄∗ → η̂ in probability as B→∞, and we have

η̃ = η̂− b∗ = η̂− (s̄∗ − η∗
)→ η̂− (η̂− η∗

) = η∗�

Thus, in this case, adjusting the original estimator for bias using the bootstrap
bias is equivalent to using the bootstrap parameter η∗ as the initial estimate.

2.3 Parametric bootstrap

We now consider parametric bootstrapping. Again we focus on a random
sample y = (y1� y2� � � � � yn) drawn from a distribution F(y�θ), with the dif-
ference that the form of F is known but which depends on a vector θ of
parameters that is unknown. We denote the unknown true value of θ by θ0.
We then usually estimate θ0 by some estimator θ̂ calculated from the sample y.
Clearly F(y� θ̂)will estimate F(y�θ0). Bootstrap samples y∗ can then be drawn,
not from the EDF Fn(y|y), but from the distribution F(y� θ̂). Sampling from
F(y� θ̂) instead of Fn(y|y) is called parametric bootstrapping.

As with the basic bootstrap, the distribution of any statistic s(Y) can be esti-
mated from a sample of parametric bootstrap statistics s(y∗(j)), j = 1� 2� � � � � B.
This includes where we might be interested in the distribution of the estima-
tor θ̂ itself, so that s(Y) = θ̂ in this case.

By far the most often employed estimator is where θ̂ is the maximum like-
lihood (ML) estimator. In this particular case, under quite general regularity
conditions, the asymptotic distribution of θ̂ is known. We will later be consid-
ering situations where we wish to bootstrap from this asymptotic distribution.
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We therefore gather a few key results together here. We have

(1)n1/2(θ̂− θ0)⇒ N
(
0� V (θ0)

)
as n→∞�

where V (θ0) = [I(θ0)]−1, and I(θ0) is the information matrix. A reasonable
approximation for I(θ0) is

(2)I(θ̂) . −n−1 ∂
2L(θ)

∂θ2

∣∣∣∣
θ̂

�

More generally, suppose that η is a smooth function of θ, i.e., η = η(θ).
The ML estimate of η is then simply η̂ = η(θ̂), where θ̂ is the ML estimate
of θ. The asymptotic normality of η̂ follows from that of θ̂, assuming that η(θ)
can be approximated by a linear Taylor series in θ. This is the so-called delta-
method of obtaining the asymptotic behavior of η̂ and it yields the result

(3)n1/2(η̂− η0)⇒ N
(
0� σ2(θ0)

)
as n→∞�

where

(4)σ2(θ0) = gT(θ0)V (θ0)g(θ0)

and

(5)g(θ0) = ∂η(θ)

∂θ

∣∣∣∣
θ0

�

An approximation for the distribution of η̂ is given by (3) with θ̂ used in place
of the unknown θ0.

The asymptotic results above are firmly established and much used in prac-
tice. For this reason parametric bootstrapping is not especially needed when
parametric models are fitted to large samples. However, as will be discussed,
there are certain situations where parametric bootstrapping is competitive. For
example, it provides a neat way of obtaining the distribution of a goodness-of-
fit statistic in a parametric setting where this distribution is otherwise difficult
to obtain.

In practice, when the sample size is small, Monte Carlo methods are often
used in parametric problems to examine the behavior of estimators and fit-
ted distributions. Such methods are actually parametric bootstrapping under
a different name and as such have been known and used for a long time. In
this sense parametric bootstrapping significantly predates the direct nonpara-
metric bootstrap. Parametric bootstrapping lacks the computational novelty
of direct sampling in that resampling is not involved. Perhaps it is because of
this that the significance of parametric bootstrapping was not fully appreci-
ated, and its theoretical importance not recognized until the landmark paper
of Efron (1979).

If we view bootstrapping as a numerical sampling approach involving models
that may include parameters, then its potential is significantly extended. We
shall therefore consider its use in more complex situations, where different
kinds of parameters, including Bayesian ones are involved.
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3 Quantiles and confidence intervals

3.1 Quantiles

In this section we discuss quantile estimation and the closely related prob-
lem of calculating confidence intervals. (We shall refer to quantiles rather than
percentiles throughout, but many authors, including two of our main references
Hjorth (1994) and Davison and Hinkley (1997), favor the term percentiles. The
only real import is that we shall for consistency use the term quantile in the
names of certain methods. Thus, for example, the reader should be aware that
the bootstrap quantile method is precisely the same as the bootstrap percentile
method referred to in other texts.)

We shall denote the estimate of a quantile qp, with quantile probability p,
by q̂p(y).

The obvious choice for estimating a quantile nonparametrically is to use
the corresponding quantile of the EDF. For a discrete distribution no spe-
cial adjustment is needed as the EDF is already a step function. However for
a continuous distribution, use of the EDF would mean that all quantiles in the
interval (k−1

n � kn ) are estimated by the same observed-order statistic, y(k). Con-
versely the quantile k

n is estimated by any point y for which Fn(y) = k/n. Such
ambiguities are removed if the EDF is smoothed. One way is to use a kernel
estimator of the density but in most simulations this is perhaps unnecessarily
elaborate.

The simplest smoothing procedure is to note that if Y(k) is the kth-order
statistic (as opposed to the observed value y(k)) then E[F(Y(k))] = k/(n + 1)
and to use this value to estimate the value of F at the observed order statis-
tic y(k). We can now simply interpolate between these estimated points (y(k)�
k/(n+ 1)) for k = 1� 2� � � � � n. The range can be extended to (0� 0) (using the
line segment joining (0� 0) and (y(1)� 1/(n + 1)) if Y is known to be a positive
random variable. If we denote this smoothed version of Fn(·) by F̃n(·) then an
obvious estimator for qp is

q̂p(y) = F̃−1
n (p)�

Estimating F(·) in the range (y(n)�∞), or equivalently, qp for p > n/(n + 1)
is not advisable unless the tail behavior of F is known.

The bootstrap analogue of q̂p(y) is obtained in the usual way. We draw y∗,
a bootstrap sample from y, and construct F̃n(·|y∗), the smoothed version of the
bootstrap EDF. (Where there is no ambiguity we shall write F∗n(·) for Fn(·|y∗)
and F̃∗n(·) for F̃n(·|y∗).) We can now calculate q̂∗p as q̂∗p = F̃∗−1

n (p). The boot-
strap parameter here is η∗ = q̂p(y).

In the parametric case, things are much easier. Quantiles are simply esti-
mated from the fitted distribution F(·� θ̂).
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3.2 Confidence intervals by direct bootstrapping

We now consider the construction of confidence intervals for a parameter
of interest, η, and consider to what extent the corresponding bootstrap process
can be used to supply a confidence interval for this original parameter η. The
key requirement is that the distribution of the bootstrap difference η̂∗ − η∗
should be close to that of η̂− η. Roughly speaking we need

(6)P∗
(√
n
(
η̂∗ − η∗

)
� y
)− P

(√
n(η̂− η) � y

)→ 0

for any y as n→∞. (As before with E∗, P∗ denotes the conditional probability
evaluation treating Fn(·y) as the parent distribution.) More precise statements
of this convergence (6) and other results are given in Section 4.

We can proceed as follows. We generate B bootstrap samples y∗j , j =
1� 2� � � � � B, and corresponding bootstrap estimates η̂∗j , j = 1� 2� � � � � B. Then
we select an appropriate confidence level (1− 2α) (we use 2α rather than α so
that α corresponds to each of the two tail probabilities in two-sided intervals)
and find values a∗ and b∗ for which

P∗
(
a∗ � η̂∗ − η∗ � b∗

) . 1 − 2α�

We then appeal to (6) to replace η̂∗ − η∗ by η̂− η and obtain

P
(
a∗ � η̂− η � b∗

) . 1 − 2α

which on inversion gives the approximate (1 − 2α) confidence interval

(7)η̂− b∗ � η � η̂− a∗

for η.
One way of obtaining a∗ and b∗ is as follows. Let the bootstrap estimates of

the α and (1 − α) quantiles obtained from the smoothed EDF of the η̂∗j ’s be
q̂α(η̂

∗) and q̂1−α(η̂∗). These are estimates of the quantiles of the distribution
of η̂∗; so the corresponding quantiles of η̂∗ − η∗ are

(8)a∗ = q̂α
(
η̂∗
)− η∗ and b∗ = q̂1−α

(
η̂∗
)− η∗�

Substituting these into (7) and noting that η∗ = η̂ gives what is normally called
the basic bootstrap confidence interval

(9)2η̂− q̂1−α
(
η̂∗
)

� η � 2η̂− q̂α
(
η̂∗
)
�

This confidence interval is also known as the hybrid bootstrap confidence interval
as we have essentially replaced percentage points of the unknown original EDF
by those of the smoothed bootstrap EDF. There is substantial evidence that this
basic bootstrap can be significantly improved (in terms of giving coverage that
is closer to the nominal level) if we use a pivotal quantity, like a Studentized
mean, rather than focusing just on the difference η̂ − η. The reason is that
a pivotal quantity is less dependent (ideally not dependent at all) on the form
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of the original distribution. This would mean that the confidence interval is less
influenced by any difference there may be in the distributions of η̂∗ − η∗ and
η̂− η. We consider this next.

3.3 Studentization

Suppose that σ̂2(y), an estimate of the variance of η̂, can be calculated from
the sample y. This will be the case for η̂ = ȳ say, when we have σ̂2(y) = s2, the
sample variance.

As before suppose we can find a∗ and b∗ such that

P∗
(
a∗ � η̂∗ − η∗

σ̂∗
� b∗

)
. 1 − 2α�

If we then appeal to a similar result to (6) and replace (η̂∗ − η∗)/σ̂∗ by
(η̂− η)/σ̂ , we obtain

P
(
σ̂a∗ � η̂− η � σ̂b∗

) . 1 − 2α

which on inversion gives the approximate (1 − 2α) confidence interval

η̂− σ̂b∗ � η � η̂− σ̂a∗�
We can now calculate a∗ and b∗ by drawing B bootstrap versions of z =
(η̂ − η)/σ̂ : z∗j = (η̂∗j − η∗)/σ̂∗j , j = 1� 2� � � � � B. Let q̂α(z∗) and q̂1−α(z∗)
be the quantiles obtained from the EDF of these z∗j . The confidence interval
for η is now

(10)
(
η̂Stud
α � η̂Stud

1−α
) = (η̂− σ̂q̂1−α

(
z∗
)
� η̂− σ̂q̂α

(
z∗
))
�

This is usually called the Studentized bootstrap confidence interval.
Studentized bootstrap intervals can be readily used with the parametric

model F(y�θ) of Section 2.3. Suppose that y is a random sample of size n
drawn from the distribution F(y�θ0), and that η0 = η(θ0) is the quantity of
interest. We can estimate η0 using η̂ = η(θ̂) where θ̂ is the MLE of θ0. When
n is large we can use the asymptotic approximation

n1/2 η̂− η0

σ
(θ̂) ∼ N(0� 1)�

When n is not large it is worth employing bootstrapping. We draw B boot-
strap samples y∗j , j = 1� 2� � � � � B, from the fitted distribution F(y� θ̂). From

each sample we obtain the bootstrap ML estimator θ̂
∗
j and bootstrap Studen-

tized quantity z∗j = n1/2(η̂∗j − η∗)/σ(θ̂∗j ). The quantiles q̂α(z∗) and q̂1−α(z∗)
can be obtained from the EDF of these z∗j and the Studentized interval (10)
constructed.

In the nonparametric case an estimate of the variance of η̂ may not be im-
mediately available. One possibility is to use what is called the double bootstrap.
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The Double Bootstrap
Given a random sample y = (y1� y2� � � � � yn) from F(·),
Let η̂ = s(y),
η∗ = η(Fn(·|yj))
Outer Bootstrap:
For j = 1 to B

For i = 1 to n
Draw y∗ij from Fn(·|y)

Next i
Let η̂∗j = s(y∗j ), η∗∗j = η(Fn(·|y∗j ))
Inner Bootstrap:
For k = 1 to B

For i = 1 to n
Draw y∗∗

ijk
from Fn(·|y∗j )

Next i
Let s∗∗

jk
= s(y∗∗

jk
)

Next k
Let s̄∗∗j· = 1

B

∑B
k=1 s

∗∗
jk

Let v∗∗j = 1
B−1

∑B
k=1(s

∗∗
jk
− s̄∗∗j· )2

Let z∗j = n1/2(η̂∗j − η∗)/(v∗∗j )1/2
End of Inner Loop

Next j
Form the EDF of the z∗j , j = 1� � � � � B
Obtain the quantiles q̂α(z∗) and q̂1−α(z∗)
Form the Studentized confidence interval
(η̂Stud
α � η̂Stud

1−α) = (η̂− σ̂q̂1−α(z∗)� η̂− σ̂q̂α(z∗))
End of Outer Bootstrap

Fig. 3. The double bootstrap.

This comprises an outer and inner bootstrap loop. The outer loop produces,
for each j, a bootstrap sample y∗j and the resulting bootstrap quantity of in-
terest η̂∗j . In addition, for each j, there is an inner loop which produces a set
of samples {y∗∗jk� k = 1� � � � � B} by bootstrap sampling from F̃n(·|y∗j ) (the EDF
of the bootstrap sample y∗j ). This allows a set of (double) bootstrap quanti-
ties of interest to be produced: η̂∗∗jk, k = 1� � � � � B. The sample variance, v∗∗j say,
of these η̂∗∗jk, then provides an estimate of the variance of η̂∗j thereby allowing
the bootstrap Studentized z∗j to be calculated. Precise details of this double
bootstrap calculation is given in Figure 3.

If the double bootstrap is considered computationally too expensive, then
an alternative using influence functions can be used provided our statistic is
expressible as a functional of the EDF, i.e., s(y) = η[Fn(·|y)]. Such statistics are
termed statistical functions, and were introduced by von Mises (1947). We then
assume that the relevant functional η = η[F(·)] has a linearized form (akin
to a first-order linear generalization of a Taylor series): η(G(·)) . η(F(·)) +
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∫
Lη(y|F(·)) dG(y). Here

Lη
(
y|F(·)) = ∂η{(1 − ε)F(·)+ εHy(·)}

∂ε

(11)= lim
ε→0

ε−1[η{(1 − ε)F(·)+ εHy(·)
}− η

(
F(·))]�

the derivative of η at F , is called the influence function of η, and Hy(x) is
the Heaviside unit step function with jump from 0 to 1 at x = y. The sample
approximation

(12)l(y|y) = Lη
(
y|Fn(·|y)

)
is called the empirical influence function. An analogous argument to that used
in the delta method yields the nonparametric analogue of (4) as

Var
[
η
{
F(·)}] = n−1

∫
L2
η

{
y|F(·)}dF(y)�

with sample version

Var
[
η
{
Fn(·|y)

}] = n−2
n∑
j=1

l2(yj|y)�

where the l(yj|y) are the empirical function values evaluated at the observed
values yj . In practice these values have to be evaluated numerically using (11)
with, typically, ε = (100n)−1.

The ease with which the empirical influence function can be evaluated is
rather problem dependent, and the potential complexity of this calculation
detracts from this approach. One simple approximation is the jacknife approx-
imation

ljack(yj|y) = (n− 1)
(
η̂(y)− η̂(y\j)

)
�

where η̂(y\j) is the estimate calculated from the sample y but with the obser-
vation yj omitted. (See Davison and Hinkley, 1997, problem 2.18.)

3.4 Quantile methods

Suppose now that the distribution of η̂ is symmetric, or more generally,
there is some transformation w = h(η̂) for which the distribution is symmet-
ric. Examination of the form of the bootstrap quantiles (8) (see, for example,
Hjorth, 1994, Section 6.6.2) shows that they do not depend on the explicit form
of h(·) at all. Instead we find that they can, with a change of sign, be swapped,
i.e. a∗ is replaced by −b∗ and b∗ by −a∗. Then (7) becomes

(13)
(
η̂Q
α � η̂

Q
1−α
) = (q̂α(η̂∗)� q̂1−α

(
η̂∗
))
�

This (1 − 2α) confidence interval is known as the bootstrap quantile interval.
This confidence interval is easy to implement but can be improved. We give
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two variants called the bias corrected (BC) and accelerated bias corrected (BCa)
quantile methods.

The basic idea in the BCa method is that there is a Studentized transforma-
tion g for which

(14)
g(η̂)− g(η)

1 + ag(η)
+ b ∼ N(0� 1)�

The BC method is simply the special case where a = 0.
If we calculate a one-sided confidence interval for η under the assump-

tion (14) we find that if we set

β1 = Φ

(
b+ b+ zα

1 − a(b+ zα)

)
�

where Φ(·) is the standard normal distribution function, then with confidence
1 − α

q̂β1

(
η̂∗
)
< η�

where q̂β(η̂∗) is the bootstrap quantile of the η̂∗ with probabilityβ. In a similar
way a two-sided (1 − 2α) confidence interval is

q̂β1

(
η̂∗
)
< η < q̂β2

(
η̂∗
)
�

where

β2 = Φ

(
b+ b+ z1−α

1 − a(b+ z1−α)

)
�

The bias parameter b is obtained as

b = Φ−1{F̃n(η̂|η̂∗)}

where F̃n(η̂|η̂∗) is the smoothed EDF of the bootstrap sample η̂∗ evaluated
at the original estimated value η̂. If we now set a = 0 this gives the BC
method. We denote the resulting two-sided version of the confidence interval
by (η̂BC

α � η̂BC
1−α).

The acceleration parameter a is arguably less easily calculated. Efron (1987)
suggests the approximation (which is one-sixth the estimated standard skew-
ness of the linear approximation to η)

a = 1
6

∑n
i=1 l

3(yi|y)
[∑n

i=1 l
2(yi|y)]3/2 �

where l(yi|y) are the values of the empirical influence function (12) evaluated
at the observations yi. We denote the two-sided version of the confidence in-
terval given by this BCa method by (η̂BCa

α � η̂BCa
1−α).
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3.5 Comparison of methods

We have considered four types of confidence intervals: the basic bootstrap
method, the Studentized bootstrap method, the quantile method and the acceler-
ated bias corrected method (and its variant, the bias corrected method). The ob-
vious question is when should each be used? Davison and Hinkley (1997) give
several empirical examples which indicate that the basic and quantile methods
can perform quite poorly especially when sample size is small (n < 30, say). In
contrast the Studentized and accelerated bias corrected methods appear quite
robust, giving coverages close to the nominal value. If an appropriate trans-
formation of the observations can be applied, to make them more normally
distributed, then this does improve the performance of the basic and quantile
methods, but tends to improve the performance of the Studentized and accel-
erated methods even more. Hjorth (1994), Example 6.4, gives an interesting
numerical example that corroborates these findings. The accelerated bias cor-
rected method performed best, followed by the Studentized. The percentile
came next, with the basic method faring noticeably the worst.

This empirical evidence is borne out by theory which is considered in the
next section.

4 Theory

Like many statistical methods, understanding of the practical usefulness of
the bootstrap as well as its limitations has been built up gradually with expe-
rience through applications. This practical experience has been underpinned
by a growing asymptotic theory which provides a basis for understanding when
bootstrapping will work and when it will not. A truly general theory rapidly
becomes very technical and is still incomplete. We shall not attempt a detailed
treatment but will summarize some of the more accessible and useful results.
A weakness of the theory is that it is asymptotic, and so is not directly applica-
ble to the small sample situation of real interest. Nevertheless, though indirect,
asymptotic convergence properties provide some feel for when a method might
perform well in small samples.

Bootstrapping relies on sampling from the EDF Fn(·|y) reproducing the
behavior of sampling from the original distribution F(·). We therefore need
convergence of Fn(·|y) to F(·). This is confirmed by the Glivenko–Cantelli the-
orem which guarantees strong convergence, i.e.,

sup
y

∣∣Fn(y|y)− F(y)
∣∣→ 0 with probability 1

as n → ∞. Though reassuring this does not throw any direct light on the
bootstrap process.
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To investigate the bootstrap process we look instead at the equally well-
known result that the process

{
Zn(y) =

√
n
(
Fn(y)− F(y)

)
: y ∈ R

}
converges in probability to the Brownian bridge {B(F(y)): y ∈ R} as n→ ∞.
(A Brownian bridge B(t), 0 < t < 1, is a Gaussian process for which B(0) =
B(1) = 0, E[B(u)] = 0 and E[B(u)B(v)] = u(1−v) for 0 < u < v < 1.) Bickel
and Freedman (1981) give the following bootstrap version of this.

Theorem. Let Y1� Y2� � � � be a sequence of independent observations from F(·),
with Yn comprising the first n values. Then for almost all such sequences (i.e., with
probability 1) the bootstrap process

{
Z∗
n(y) =

√
n
(
F∗n(y|Yn)− Fn(y)

)
: y ∈ R

}
converges in probability to the Brownian bridge {B(F(y)): y ∈ R} as n→∞.

An interesting immediate application of this result to the calculation of con-
fidence bands for F(y) is given by Bickel and Freedman. We set a confidence
level 1 − α and, from the bootstrap process, we then select cn(α) so that, as
n→∞,

P∗
{

sup
y

∣∣Z∗
n(y)

∣∣ � cn(α)
}
→ 1 − α�

Then, as Z∗
n(y) and Zn(y) converge to the same process B(F(y)), we have also

that

P∗
{

sup
y

∣∣Zn(y)∣∣ � cn(α)
}
→ 1 − α�

Thus an asymptotically correct (1 − α) confidence band for F(y) is

Fn(y)± cn(α)√
n
�

We now consider the distribution of an estimator η̂ of a parameter η. We
need the distributions of the bootstrap estimator η̂∗ and of the difference
η̂∗ − η∗ to reproduce respectively the distributions of η̂ (≡ η∗) and of η̂− η.
The most general results obtained to date assume that the statistic can be ex-
pressed as s = η(Fn) where both the EDF Fn and the underlying distribution
F belong to a space F of distributions. Moreover such results require s to be
differentiable in such a way that a linear approximation can be formed with, as
first-order terms, the previously described influence functions, i.e.,

η(Fn) = η(F)+ n−1
n∑
j=1

l(yj|y)+ op
(
n−1/2)�
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Then it is often possible to establish the analogous result for the bootstrap
version

η
(
F∗n
) = η(F)+ n−1

n∑
j=1

l
(
y∗j |y∗

)+ op
(
n−1/2)�

and, provided Var[η(F)] is finite, then in probability, the sequence y1� y2� � � �
is such that

sup
z

∣∣P∗(η(F∗n) � z
)− P

(
η(Fn) � z

)∣∣→ 0

as n → ∞. Here we have written P∗(η(F∗n) � z) for P(η(F∗n) � z|Fn). If,
in addition, s is continuously differentiable, then we can usually strengthen the
result to almost sure convergence.

A detailed discussion is given by Shao and Tu (1995) who give examples
of η̂(F) that satisfy such conditions. Convergence has been studied in detail
for the particular case of means and quantiles. In this case a more accessible
approach using the Berry–Esséen inequality is possible, and this we discuss in
the next section.

4.1 Convergence rates

Efron (1979) considered the finite case where Y takes just a finite set of val-
ues which we can take to be {1� 2� � � � �m} with probabilities p = (p1� p2� � � � �
pm)

T. We shall not discuss this particular case, a good summary for which is
provided by Hjorth (1994).

We shall instead focus on the continuous case where η = μ ≡ E(Y), with
η̂ = �Yn = ∑n

i=1 Yi/n. We also write Var(Y) = σ2, ρ = E(|Y |3). The well-
known Berry–Esséen theorem (see Serfling, 1980, for example) then provides
a powerful result for investigating bootstrap convergence. To avoid long for-
mulas we shall write

Hn(y) = P
(√
n(�Yn − μ) � y

)
for the (unknown) CDF of interest and

H∗
n(y) = P∗

(√
n
(�Y ∗

n − �Yn
)

� y
)

for the bootstrap version of this. We write

H̃n(y) = P
(√

n
�Yn − μ

σ
� y

)

for the (unknown) standardized CDF of interest,

H̆n(y) = P
(√

n
�Yn − μ

σ̂n
� y

)
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for the Studentized CDF, and

H̆∗
n(y) = P∗

(√
n
�Y ∗
n − �Yn
σ̂∗n

� y

)

for its bootstrap Studentized version. We write also Φ(y) for the CDF of the
standard normal distribution.

The Berry–Esséen theorem states that if Y1� Y2� � � � are independent identi-
cally distributed random variables and ρ = E[|Y 3

i |] <∞ then for all n,

sup
y

∣∣∣∣Hn(y)−Φ

(
y

σ

)∣∣∣∣ < K
ρ

σ3√n�

The value of the constant given by Berry and Esséen, K = 33
4 , has been

improved and reduced to 0.7975 (van Beeck, 1972). Thus the theorem gives
a bound on the effectiveness of the normal distribution in approximatingHn(·).

A typical application of the theorem is in proving the following one.

Theorem. If ρ = E[|Y 3
i |] <∞ then, as n→∞,

(15)sup
y

∣∣H∗
n(y)−Hn(y)

∣∣→ 0

for almost all sequences y1� y2� � � � of independent observations drawn from F(·).

Proof outline. Write σ̂n =
√
n−1∑n

i=1(Yi − �Yn)2� ρ̂n = n−1∑n
i=1 |Yi − �Yn|3.

By the Berry–Esséen theorem we have∣∣∣∣Hn(y)−Φ

(
y

σ

)∣∣∣∣ < K
ρ

σ3√n
and ∣∣∣∣H∗

n(y)−Φ

(
y

σ̂n

)∣∣∣∣ < K
ρ̂n

σ̂3
n

√
n
�

By the strong law of large numbers μ∗ ≡ ȳn → μ, σ̂n → σ , ρ̂n → ρ all with
probability 1. This shows that the two probabilities in (15) converge to the same
normal distribution from which the result follows easily. �

In fact the result above does not depend on ρ < ∞; the condition σ2 < ∞
is actually enough (see Bickel and Freedman (1981) or Singh (1981)). How-
ever, the condition ρ < ∞ and explicit use of the Berry–Esséen theorem is
needed to establish the rate of convergence more precisely. In the remainder
of this section we summarize results obtained by Singh (1981) and Bickel and
Freedman (1981).

We need one further definition. A random variable has distribution F(·)
that is lattice if there is zero probability of it taking values outside the discrete
points yj = c ± jd, j = 0� 1� 2� � � � , where c and d are constants.
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Theorem. For almost all sequences Y1� Y2� � � � of independent observations
drawn from F(·):

(i) If E(Y 4) <∞, then

lim sup
n→∞

[ √
n√

log logn
sup
y

∣∣H∗
n(y)−Hn(y)

∣∣
]
=
√

Var[(Y − μ)2]
2σ2√πe

�

(ii) If E[|Y |3] <∞ and F(·) is lattice then

lim sup
n→∞

[√
n sup

y

∣∣H̃∗
n(y)− H̃n(y)

∣∣] = d√
2πσ

�

(iii) If E[|Y |3] <∞ and F(·) is nonlattice then
√
n sup

y

∣∣H̃∗
n(y)− H̃n(y)

∣∣→ 0�

The result (i) shows that, when E(Y 4) < ∞, the convergence rate of H∗
n is

O(
√

log logn/n). This is actually the same as that for approximating
√
n(�Yn −

μ)/σ̂n, the Studentized original �Y by Z, a standard normal, i.e., approximating
Hn(y) by Φ(y/σ̂n). So in this case we do no better using the bootstrap than
standard normal theory.

Results (ii) and (iii) show that when E[|Y |3] < ∞, the convergence rate of
H̃∗
n(·) to H̃n(·) is at least O(n−1/2) and is o(n−1/2) when F is nonlattice. Thus

bootstrapping does better than the usual normal approximation in this case.
This is the key theoretical result that underpins much of bootstrapping.

We consider now quantile estimation. Perhaps the most informative gen-
eral result is that due to Singh (1981). Let η = q(p) = F−1(p); where the
conditions of the theorem ensure that q(p) is uniquely defined. We can esti-
mate η from the EDF using η̂ = F−1

n (p) = sup{y: Fn(y) � p} and define
η̂∗ = F∗−1

n (p) from y∗ as usual. We take Hn = P(
√
n(η̂ − η) � y) and

H∗
n = P∗(

√
n(η̂∗ − η̂) � y).

Theorem. If F has a bounded second derivative in a neighborhood of η and
f (η) = dF

dy |η > 0, then

lim sup
n→∞

n1/4 supy |H∗
n(y)−Hn(y)|√

log logn
= cp�F with probability 1�

where cp�F is a constant depending on p and F only.

This result shows thatH∗
n(y) converges at rate O(n−1/4

√
log logn) toHn(y).

Now for a quantile estimator we have from the Berry–Esséen theorem

sup
y

∣∣∣∣Hn(y)−Φ

(
y

τ

)∣∣∣∣ = O
(
n−1/2)�
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where τ = √p(1 − p)/f (η). Thus if we were to use a normal approximation
for Hn(y) we would use Φ(y/τ̂) where τ̂ is an estimate of τ. Whether this is
better than H∗

n(y) thus depends on the convergence rate of τ̂, and the matter
is not a clear one.

4.2 Asymptotic accuracy of EDFs

Edgeworth expansions are asymptotic series aimed at improving the normal
approximation by introducing additional terms that try to correct for effects of
skewness, kurtosis and higher moments which slow the rate of convergence to
normality.

For fixed n, asymptotic series usually diverge as more and more terms are
included. However for a fixed number of terms, k say, the series converges as
n → ∞. The rate of convergence is usually of smaller order than the last in-
cluded term. We shall only consider the special case η̂ = �Yn. Here, the general
Edgeworth expansion is a power series in n−1/2 and has the form

H̃n(y) = Φ(y)+ n−1/2p(1)(y)φ(y)+ · · · + n−k/2p(k)(y)φ(y)
(16)+ o

(
n−k/2

)
�

where φ(y) = (2π)−1/2 exp(−y2/2) is the standard normal density, and p(j) is
a polynomial of degree 3j − 1. We have explicitly

p(1)(y) = −1
6
κ3
(
y2 − 1

)

and

p(2)(y) = −
{

1
24
κ4
(
y2 − 3

)+ 1
72
κ2

3
(
y4 − 10y2 + 15

)}
�

where κ3 and κ4 are the skewness and kurtosis of F(·). The term involving p(1)
corrects for the main effect of skewness, the term involving p(2) corrects for
the main effect of kurtosis and for the secondary effect of skewness.

Often the remainder term o(n−k/2) can be replaced by O(n−(k+1)/2) when
the Edgeworth expansion is said to be (k + 1)st order accurate. Usually in-
clusion of more than one or two correction terms becomes counter-productive
as the coefficients associated with the powers of n−1/2 rapidly become large
with k.

When E(|Y |3) < ∞ and Y is nonlattice, one-term Edgeworth expansions
for both Hn(y) and H∗

n(y) exist and a comparison (see Shao and Tu, 1995,
Section 3.3.3) shows thatH∗

n(y) has smaller asymptotic mean square error than
Φ(y/σ̂n) unless the skewness is zero. Comparison of H∗

n(y) and the one-term
Edgeworth expansion estimator

HEDG
n (y) = Φ(z)+ n−1/2p(1)n (z|yn)φ(z)�
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where z = σ̂−1
n y, and p(1)n (z|yn) is the polynomial p(1)(z) with the moments

of F(·) replaced by the sample moments calculated from yn, shows that both
have the same asymptotic mean square error.

For Studentized versions the bootstrap does even better. Under appropriate
moment conditions both H̆n(y) and H̃∗

n(y) have two-term Edgeworth expan-
sions and a comparison of these shows that H̃∗

n(y) has a smaller asymptotic
mean square error than the corresponding one-term Edgeworth estimator,
though they have the same convergence rate.

The normal, bootstrap and one-term Edgeworth expansion estimators of
the standardized distribution have been compared by Hall (1988) using the
criterion of asymptotic relative error.

When E(|Y |3) < ∞ then the bootstrap does better than the normal ap-
proximation, but it may or may not do better than the one term Edgeworth
expansion (see Shao and Tu, 1995).

When E(|Y |3) = ∞, the situation is more complicated and depends on the
tail behavior of F(·). When the tail is thin the bootstrap can be worse than the
normal approximation.

In estimating tail behavior the bootstrap is comparable to the one term
Edgeworth expansion except in the extreme of the tail.

4.3 Asymptotic accuracy of confidence intervals

The analysis above focuses on distribution functions, and does not give the
whole picture. It is helpful to consider also the coverage accuracy of confidence
intervals. We shall write the basic confidence limit that we seek as η̂α defined
by

Pr(η � η̂α) = α

and the normal, basic, quantile, Studentized bootstrap, BC and BCa approxi-
mations as η̂Norm

α , η̂Boot
α , η̂Q

α�η̂
Stud
α , η̂BC

α and η̂BCa
α , respectively. We summarize

the results given in Shao and Tu (1995). These apply when the parameter of in-
terest is a smooth function of the mean,η = η(ȳn). Then an analysis analogous
to that used for EDF’s can be carried out, but now relying on an expansion of
the quantile, that is the inverse of Edgeworth series, called the Cornish–Fisher
expansion.

Let Φ(zα) = α. Under appropriate moment conditions qα has an expansion
of the form

qα = zα + n−1/2q(1)(zα)+ n−1q(2)(zα)+ o
(
n−1)�

where comparison with the Edgeworth expansion shows that

q(1)(y) = −p(1)(y)
and

q(2)(y) = p(1)(y)p(1)′(y)− 1
2
p(1)(y)2 − p(2)(y)�
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Under appropriate conditions we find that analogous expansions exist for the
quantile approximations listed above. We find in particular that

η̂Boot
α − η̂α = Op

(
n−1)

and in general

Pr
(
η̂Boot
α � η

) = 1 − α+ O
(
n−1/2)�

However, the two tailed version is second-order accurate:

Pr
(
η̂Boot
α � η � η̂Boot

1−α
) = 1 − 2α+ O

(
n−1)�

For symmetric distributions, these results apply to the quantile approximation
as well, for example:

η̂Qα − η̂α = Op
(
n−1)�

The bootstrap BC method turns out to perform no better than the quantile
limit, in terms of convergence rate, but the constant factor is smaller so it is
marginally to be preferred.

Studentization is definitely better with

η̂Stud
α − η̂α = Op

(
n−3/2) and η̂BCa

α − η̂α = Op
(
n−3/2)

and

Pr
(
η̂Stud
α � η

) = 1 − α+ O
(
n−1) and

Pr
(
η̂BCa
α � η

) = 1 − α+ O
(
n−1)�

It follows that the two-sided intervals for both limits are also both second-order
accurate.

Finally we note that

η̂Boot
α − η̂Norm

α = Op
(
n−1)

so that the usual normal approximation and the basic bootstrap behave simi-
larly.

4.4 Failure of bootstrapping

It should be clear from the previous three subsections that, for bootstrap-
ping to work well, regularity conditions are required on both the distribution F
and also on the statistic of interest.

More explicitly, bootstrapping is sensitive to the tail behavior of F ; conver-
gence of H∗

n usually requires moment conditions on F that are more stringent
than those needed for convergence of Hn.

Also the statistic s(Y) has to be suitably smooth in an appropriate sense.
Finally it is possible for convergence of the bootstrap to be sensitive to the

method used in carrying out the bootstrapping.
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An example of the first situation is inconsistency of s(Y), when it is simply
the variance, even when the asymptotic variance is finite (see Ghosh et al.,
1984). This can occur if F(·) is fat-tailed and does not have appropriate mo-
ments. The problem then arises because the bootstrap s(Y∗) can take excep-
tionally large values.

An example of the second situation is where y is a random sample, from
U(0� b) say, and we wish to consider y(n), the largest-order statistic. Then
a natural statistic to consider is s(y) = n(b − y(n))/b, which has a limiting
standard exponential distribution as n → ∞. The bootstrap version is then
s(y∗|y) = n(y(n) − y∗(n))/y(n). But

P∗
(
s(y∗|y) = 0

) = P∗
(
y∗(n) = y(n)

) = 1 − (1 − n−1)n → 1 − e−1�

Thus H∗
n does not tend to Hn as n→∞. This result applies to any given order

statistic y(n−k) where k is fixed. However the problem does not arise for a given
quantile y(pn) where p is fixed with 0 < p < 1.

We shall see an example of the last situation, where convergence depends
not on the problem but on the bootstrapping method employed, when we con-
sider model selection in Section 5.6.

5 Simulation models

5.1 Direct models

Simulation models are direct models in the sense that they attempt to mimic
the behavior of an actual system by simulating the different objects of a system
and the (typically) dynamic relationships between them. For example in a sin-
gle server queue we try to capture the actual arrival patterns of customers and
how they are then processed by the server. The quantities that we try to analyze
are summary characteristics such as average queue length and waiting times.
We can therefore think of a set of n simulation runs as yielding observations

(17)yj = y
(
uj� vj� θ̂(w)� xj

)
� j = 1� 2� � � � � n�

where the yj depend on a number of quantities that we now explain.
Firstly uj denotes the stream of uniformly distributed U(0� 1) random num-

bers used in the jth run. Typically the uniforms are not used directly, but are
transformed into random variables drawn from distributions other than the
uniform.

Next comes vj . This represents a sequence of inputs that are random, but
that has been generated independently of the simulation model. A typical in-
stance is where vj comprises sampled real observations taken from some real
system, separate from the system being modeled, but on which yj depends.
Such a sampled real process is sometimes called a trace. We shall simply think
of vj as being just a sample of observations.



Ch. 14. Resampling Methods 437

In addition there may be further quantities which may affect y. These are
denoted by x and θ. There is no essential difference between x and θ in the way
that they influence y. They are simply variables on which y depends. However
we make a distinction in supposing that x are decision variables, i.e., quantities
that can be selected by the simulator. However we also include in x parameters
whose values are known, and that might affect y, but which are not selectable
by the simulator. The reason for adopting this convention is that it then allows
us to assume θ to be those parameters whose values are not known, and so
have to be estimated. We will therefore assume that in addition to v, there
exists input data w that is used exclusively to estimate θ and it is the estimated
values, θ̂(w), that are used in the simulation runs.

A simple example is a simulation model of a multiserver queue, where y is
the observed average queue length over a given period, v might be a previously
observed set of interarrival times, x might be the (scalar) number of servers
and θ the service rates of servers. Here we treat x as being selectable by the
simulator so that it is a design variable, and θ may not be known and have to
be estimated from available sampled real service times w.

Resampling might already feature in carrying out the runs yielding the yj
of (17). For example variability in the v will contribute to the variability of y.
We can therefore automatically build this effect into the simulation runs simply
by using resampling from an initial given sequence v to construct resampled
sequences v∗j for use in the actual runs.

Similarly in the case (17), because θ̂(w) is estimated, we can allow for its
randomness affecting the distribution of y by using independent values of θj in
each simulation run. When θ̂(w) is the ML estimate we can draw sample values
of θ

(18)θ∗j ∼ N
(
θ̂� I−1(θ̂)

)

from the asymptotic normal distribution (1) with I(θ̂) calculated from (2). An
alternative is to produce bootstrap samples w∗

j from w, and to use the bootstrap
estimate

(19)θ∗j = θ̂
(
w∗j
)

for θ in the jth run.

5.2 Metamodels

We now consider a very different approach where the behavior of a system
is represented by a metamodel. This is simply where we regard the behavior
of y as representable by a statistical regression model. The runs are then not
represented as (17) but instead as

yj = η(xj;β)+ εj� j = 1� 2� � � � � n�
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where η(xj;β) is called the regression function. Its form is usually known,
though in the problem of model selection, one has to choose from a number
of possible competing models. The errors εj are assumed to be independent
with E(εi) = 0. We shall consider mainly the case where all the error variances
are equal Var(εi) = σ2, but will consider the heteroscedastic case too. The
β are unknown coefficients that have to be estimated.

An immediate question is why one would wish to use a metamodel to repre-
sent the output, as opposed to having a direct model representation. The main
reason is that a metamodel provides a very succinct representation of the out-
put response and its dependence on concomitant factors. Therefore, when the
representation is a good one, a metamodel enables the nature of the variation
in simulation output to be accurately characterized in a simple and transpar-
ent way. Partly as a consequence of this, a metamodel provides an excellent
and efficient vehicle for extracting, from the data, information about the sys-
tem under investigation.

Use of a metamodel is very advantageous when implementing a bootstrap
analysis. We simply treat the fitted metamodel as the surrogate for the real
simulation model and analyze (using bootstrapping) the fitted metamodel as if
it were the simulation model.

We shall discuss the some of the uses of metamodels in Section 5.5. How-
ever, we shall first discuss the mechanics of obtaining bootstrap samples from
metamodels. This is done in the next two subsections. We consider linear meta-
models first.

5.3 Linear metamodels

In the linear metamodel, observations are assumed to take the form

Yj = xT
j β+ εj� j = 1� 2� � � � � n�

where the errors are assumed to be independent and identically distributed
with E(εi) = 0 and Var(εi) = σ2, and the β are unknown and have to be
estimated. Let

X = (x1� � � � � xn)T� Y = (Y1� � � � � Yn)
T

and

β̂ = (XTX
)−1XTY

be the usual least squares estimate (equivalent to maximum likelihood when
the εi are normally distributed). The fitted values are

(20)Ŷ = HY�

where

(21)H = X
(
XTX

)−1XT
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is the well-known ‘hat’ matrix.
The raw residuals are r = (I−H)Y. One way of resampling is to sample from

these residuals as if they were the unknown errors. This gives the bootstrap
sample

(22)Y ∗
j = xT

j β̂+ r∗j � j = 1� 2� � � � � n�

We shall call this residual sampling. However we have that E(r) = 0 and
Var(r) = σ2(I − H). Thus a better bootstrapping method is to sample from
the adjusted residuals

(23)ej = rj

(1 − hjj)1/2 �

where hjj is the jth diagonal entry of H (hjj is commonly known as the leverage
of the jth point). Bootstrap sampling from these ej yields bootstrap samples of
the form

(24)Y ∗
j = xT

j β̂+ e∗j � j = 1� 2� � � � � n�

We shall call this adjusted residual sampling.
An alternative is to use case sampling and to sample from the (Yj� xj) pairs

directly. The main problem with this method is that it introduces extra varia-
tion into the data. In the conventional situation X is regarded as fixed, but using
case sampling replaces this by a bootstrap X∗ which will be variable. This prob-
lem is particularly pronounced when the number of parameters, p say, is large
compared with n. There may then be a nonnegligible probability that the case
sampled matrix X∗ results in a singular design matrix, with not all parameters
estimable.

A partial correction can often be made. For example suppose we are inter-
ested in the distribution of cTβ̂ where c is a constant vector. Then Var[cT(β̂−
β)] = σ2cT(XTX)−1c. We can then study the behavior of

cT(β̂− β)
cT(XTX)−1c

indirectly by considering the bootstrap version

cT(β̂
∗ − β∗)

cT(X∗TX∗)−1c

(where β∗ = β̂).
A common variation is when the errors are heteroscedastic so that their

variances are unequal. In this case resampling can be carried out as

Y ∗
j = xT

j β̂+ ejt
∗
j � j = 1� 2� � � � � n�
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with ei as defined in (23) and with t∗j independent and random with E(t∗j ) = 0,
Var(t∗j ) = 1. Wu (1986) suggests sampling the t∗j with replacement from the set

(rj − r̄)
/[

n−1
n∑
i=1

(ri − r̄)2

]1/2

� j = 1� 2� � � � � n�

5.4 Nonlinear metamodels

The previous ideas apply with little change to nonlinear models. For additive
errors we have

(25)Yj = η(xj;β)+ εj� j = 1� 2� � � � � n�

where η(xj;β) is not necessarily linear in β. Again β̂ can be obtained by ML
say and residuals formed: rj = Yj − η(xj; β̂), j = 1� 2� � � � � n. This time there
is no obvious equivalent of standardization so the bootstrap sample is simply

Y ∗
j = η(xj; β̂)+ r∗j � j = 1� 2� � � � � n�

However the method extends easily to more complex nonlinear situations.
For example it may be that we have observations (yj� xj) where

yj ∼ Poisson(μj)� μj = exp
(
xT
j β
)
�

Again β̂ can be obtained by ML and a bootstrap sample can then be formed by
drawing a sample as

y∗j ∼ Poisson
(
μ∗j
)
� μ∗j = exp

(
xT
j β̂
)
�

A clear introduction to resampling using generalized linear models is given by
Hjorth (1994).

5.5 Uses of metamodels

We end by discussing some illustrations of when we might wish to use a meta-
model and where bootstrap resampling would be useful. We give three exam-
ples.

The first is when the regression function η(x;β) represents a performance
index and we might wish to construct a confidence interval for it at some given
value of x, x0 say. Suppose that we draw B sets of bootstrap observations of the
form (24)

{
Y(i)∗
j = η(xj; β̂)+ e(i)∗j � j = 1� 2� � � � � n

}
� i = 1� 2� � � � � B�

and from each set we calculate a bootstrap estimator β̂
(i)∗

of β̂ using the
ML method say. Then the corresponding set of bootstrap regression function
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values η(x0� β̂
(i)∗
) can be used to calculate a bootstrap confidence interval.

For instance we could use (13) with η̂∗ in that formula having components

η̂∗i = η(x0� β̂
(i)∗
).

The second example is when we wish to find an optimal setting for x. We
consider the simplest case where

Y = η(x;β)+ ε�

with x scalar and where

η(x;β) = β0 + β1x+ β2x
2�

Then the optimal setting is given by dη/dx = 0, i.e., at xopt = −β1/(2β2).
Using ML to estimate this yields

x̂opt = − β̂1

2β̂2
�

Again a simple confidence interval for the unknown xopt is given by (13), only
this time, with η̂∗ in that formula having components η̂∗i = −β̂(i)∗1 /(2β̂(i)∗2 ).
This is an example where bootstrapping furnishes a relatively easy answer to
what in classical statistics is a problem that is not straightforward.

The final example concerns the identification of important factors. Suppose
we are interested in identifying those coefficients in the regression function
η(x;β) for which |βi| > β0i where β0i > 0 are given constants. Let S =
{βi: |βi| > β0i} denote the important set of coefficients. The obvious estimate
is to select those coefficients βi for which |β̂i| > β0i, i.e., Ŝ = {βi: |β̂i| > β0i}.
Bootstrapping is a simple way of assessing the stability of this choice. We gen-
erate B bootstrap samples (y(k)∗j � x(k)∗j ), j = 1� 2� � � � � n, k = 1� 2� � � � � B, using
either residual sampling or case sampling say and fit the regression model to

each bootstrap sample to give bootstrap estimates β̂
(k)∗

, k = 1� 2� � � � � B. We
then calculate Ŝ(k)∗ = {βi: |β̂(k)∗i | > β0i}, k = 1� 2� � � � �K. Now assume
that B is sufficiently large so that each distinct bootstrap important set that has
been obtained occurs a reasonable number of times. Then a (1−α) confidence
region for the unknown true important set can be constructed by selecting
bootstrap important sets in decreasing order of their observed frequency of
occurrence until a proportion (1 − α) of the Ŝ(k)∗ have been chosen.

Related to identifying important factors in metamodels is the rather more
difficult problem of metamodel selection. We consider this in the next section.

5.6 Metamodel comparison and selection

Metamodel comparison and selection is a difficult subject. The main trouble
is that models that we wish to compare may be of different functional complex-
ity. The statistical properties associated with quantities derived from different
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models may therefore be hard to put on a common scale on which they can be
compared.

A reasonably satisfactory approach is based on the use of cross-validation.
We suppose that the initial data has the form

S = {(yj� xj)� j = 1� 2� � � � � n
}

with

yj = η(xj�β)+ εj� j = 1� 2� � � � � n�

Suppose that our fitted regression is

ŷ(x) = η(x� β̂)�

In its basic form cross-validation is used to assess how effective the fitted re-
gression is for predicting the response at some new design point xnew. Rather
than explicitly choosing such a new point, a simple idea is the leave-one-out
method where we drop an observed point (yj� xj) from the set of all observed
points, fit the metamodel to the remaining points S−j = S \ (yj� xj) giving the
fitted regression as

ŷ−j(x) = η(x� β̂−j)�
and then look at the squared difference between the omitted yj and the value
of y at xj , as predicted by the fitted model; i.e.,

(
yj − ŷ−j(xj)

)2
�

If we do this even handedly by leaving out each observation in turn we have as
an estimate of cross-validation prediction error

(26)L̂CV = n−1
n∑
j=1

(
yj − ŷ−j(xj)

)2
�

It turns out that, for the linear regression model, this formula simplifies ele-
gantly to one where we only need comparisons with the one model fitted to all
the original observations

L̂CV = n−1
n∑
j=1

(yj − ŷ(xj))2

1 − hjj
�

where

ŷ(xj) = xT
j β̂�

and hjj is the jth main diagonal entry in the hat-matrix (21), as before.
The distributional property of L̂CV can be obtained in the usual way by boot-

strapping to get B bootstrap samples. If we use case resampling say then

S(i)∗ = {(y(i)∗j � x(i)∗j

)
� j = 1� 2� � � � � n

}
�
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where each (y(i)∗j � x(i)∗j ) is an observation drawn at random from the set S.
We turn now to model selection. For simplicity we shall only consider the

linear case where y = xTβ + ε, though with an obvious adjustment, the dis-
cussion does generalize. Let β be of dimension p. If we are uncertain as to
which design variables are really needed in the model, then we would have in
principle up to 2p models to choose from with

(p
q

)
(sub)models where there

were precisely q covariates selected. We denote a typical submodel by M . The
estimate of prediction error using (26) is

L̂CV(M) = n−1
n∑
j=1

(yj − ŷM(xj))2

1 − hMjj
�

It turns out that this measure does not work as well as it might even when n is
large. (This is an example previously referred to in Section 4.4 where inconsis-
tency arises not in the problem itself but in the bootstrap sampling method.)
A much better variant is not to leave out just one observation at a time but
instead to split the observations into two: a training set, and an assessment set
with respectively nt = n − m and na = m observations in each. We shall
moreover select not one but K such pairs and denote the sets as St�k and Sa�k,
k = 1� 2� � � � �K. We shall write β̂Mk for the coefficients of model M fitted to
the kth training set, and write ŷMjk = xT

Mjβ̂Mk for the value of xT
j β predicted

by this model M at xj . Then L̂CV(M) becomes

(27)L̂CV(M) = K−1
K∑
k=1

m−1
∑
j∈Sa�k

(yj − ŷMjk)
2�

We use the same set of K pairs for all models being compared. Provided n −
m→∞ and m/n→ 1 as n→∞ then selecting M to minimize (27) will yield
a consistent estimator for the correct model. When n is small it may not be
possible to select m large enough in which case Davison and Hinkley (1997)
suggest taking m/n . 2/3.

The variability of L̂CV(M) can be estimated by bootstrapping in the usual
way.

6 Bootstrap comparisons

In this section we briefly consider problems where there are a number of
different samples to compare. A more comprehensive discussion focusing on
the issue of selecting between systems is given in Chapter 17: Selecting the Best
System.

We suppose that we have m data sets

(28)yi = (yi1� yi2� � � � � yi�ni)� i = 1� 2� � � � �m�

http://dx.doi.org/10.1016/S0927-0507(06)13017-0
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the ith being of size ni runs. This situation covers two different scenarios in
particular.

The first is where we are considering the question: Does the output of the
simulation model accurately represent the output of the system being mod-
eled? Here we have just two data sets, so that m = 2, and one data set com-
prises observations of a real system whilst the other comprises the observed
output from a simulation model. Thus this is a question of validation.

The second is when we have a number of different simulation models to as-
sess. Here validation against real data is not the issue. The different models
simply represent different systems, and their validity is not in doubt. Instead
we are just interested in assessing how differently the systems behave, as rep-
resented by the output of their simulation models. Typically we might be inter-
ested in which system produces the greatest average output, or least average
delay. Alternatively we might wish to compare output variability.

A similar methodology can be applied to either problem. We discuss this in
the remainder of this section.

6.1 Goodness-of-fit and validation

A discussion of validation involving trace-driven simulation is given in
Kleijnen et al. (2000, 2001). The basic idea used there can be generalized. We
treat the problem as essentially one of goodness-of-fit.

A simple starting point is where we have n simulation outputs yj , j =
1� 2� � � � � n, to compare with m observations yReal

j , j = 1� 2� � � � �m, of a real
system and we wish to know if the two samples are identically distributed.
A good goodness-of-fit statistic is the two sample Cramér–von Mises statistic
(see Anderson, 1962)

(29)W 2 =
∫ [

Fn(y)− FReal
m (y)

]2 dHn+m(y)�

where Fn, FReal
m andHn+m are respectively the EDFs of the simulated, real and

combined samples. The asymptotic distribution ofW 2 is known when the sam-
ples are drawn from continuous distributions, but it is easy to set up a bootstrap
version of the test that can handle discrete distributions just as well.

We can use a bootstrapping method as follows. We obtain B pairs of boot-
strap samples (y(i)∗� yReal(i)∗), i = 1� 2� � � � � B, each sample in the pair being ob-
tained by resampling with replacement from y and yReal combined but with y(i)∗
the same sample size as y, and yReal(i)∗ the same sample size as yReal. Denote
the EDFs of the samples of each pair by F(i)∗n and FReal(i)∗

n , i = 1� 2� � � � � B. We
can now calculate B bootstrap two sample Cramér–von Mises statistics from
each pair

(30)W (i)∗2 =
∫ [

F(i)∗n (y)− FReal(i)∗
m (y)

]2 dH(i)∗
n+m(y)�
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Under the null assumption that y and yReal are drawn from the same distribu-
tion it follows that each W (i)∗2 is just a bootstrap version of W 2. We can thus
calculate a critical p-value from the EDF of the W (i)∗2, i = 1� 2� � � � � B. The
null hypothesis that y and yReal are drawn from the same distribution can be
tested simply by checking if the original W 2 exceeds this p-value or not.

The validation method just described is easily extended to allow the repre-
sentational accuracy of a number of different competing simulation models to
be compared against (the same) real data. We order the Cramér–von Mises
goodness-of-fit statistics (29) obtained from comparing the real data with the
simulated output of each of the models. We can assess the reliability of the
comparison by bootstrapping as in (30) to obtain bootstrap distributions of
each such Cramér–von Mises statistic and looking at the degree of overlap
among these distributions.

When the W 2 statistic shows the data samples yj to be significantly differ-
ent, there is an interesting decomposition of W 2 that allows the nature of the
differences to be more clearly identified. Durbin and Knott (1972) show that
in the one sample case where Fn(·) is being compared with a uniform null
distribution, so that W 2 = n

∫ 1
0 [Fn(y) − y]2 dy, then W 2 has the orthogonal

representation

W 2 =
∞∑
j=1

(jπ)−2z2
nj�

where the znj are scaled versions of the coefficients in the Fourier decomposi-
tion of the process

√
n(Fn(y)− y). The znj are stochastic of course, depending

on Fn(·), but they are independent and, under the null, have identical dis-
tributions. It can be shown that zn1, zn2 and zn3 are dependent essentially
exclusively on deviations respectively of the mean, variance and skewness of
F(·) from that of the null. In other words these components zn1, zn2 and zn3
can be used to provide convenient statistical tests for these differences. Cheng
and Jones (2000, 2004) describe a generalization of the results of Durbin and
Knott (1972), which they term EDFIT statistics, suitable for comparison of data
of the form (28) arising in the simulation context. Their formulation uses ranks
rather than the original observations. Though this leads to some loss of power
the method does then have the advantage of enabling critical values of tests to
be easily obtained by bootstrapping, and moreover in an exact way.

6.2 Comparison of different systems

We now consider the situation of (28) where the data sets are outputs from
different simulation models only, and no comparison is made with real data.
Here we are interested simply in making comparisons between different mod-
els. The discussion of the previous subsection goes through with no essential
change. The only difference is that all samples have the same status; there is
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no sample being singled out as special by being drawn from a real system. The
EDFIT approach can therefore be used directly, with bootstrapping providing
critical null values.

A more direct approach, not using goodness-of-fit ideas, is possible. We fo-
cus on examining differences between the means, ȳi, i = 1� 2� � � � �m, of the
m samples of (28). Comparison of other sample statistics can be handled in
the same way. If we suppose that largest is best we can rank the means as
ȳ(1) > ȳ(2) > · · · > ȳ(m). The question then is how stable is this order?
Bootstrapping provides an easy answer. We generate B bootstrap sets of ob-
servations

(31)

y(k)∗i = (y(k)∗i1 � y(k)∗i2 � � � � � y(k)∗i�ni

)
� i = 1� 2� � � � �m� k = 1� 2� � � � � B�

where each sample y(k)∗i , k = 1� 2� � � � � B, is obtained by sampling with re-
placement from yi. We then order the means in each bootstrapped set: ȳ(k)∗(1) >

ȳ(k)∗(2) > · · · > ȳ(k)∗(m) , k = 1� 2� � � � � B. The frequency count of how many times
the mean of a given sample comes out on top is a measure of its relative merit.
A more comprehensive picture is provided by setting up a two-way table show-
ing the number of times ȳ(k)∗i > ȳ(k)∗j out of the B bootstrapped sets, for each
possible pair 1 � i, j � m.

The parametric form of the bootstrapping procedure is equally easy to im-
plement, though it is not clear there is much advantage to be had in doing
so. Suppose for example that the ith sample yi is drawn from the distribution
F(i)(·�θi). Usually the F(i)(·�θi) will have the same functional form, for ex-
ample all normal distributions, but the procedure works equally well when the
F(i) are functionally different. Let the mean of the F(i) distribution be μ(i)(θi).
Then we can estimate, by ML say, the parameters of each distribution from
their corresponding sample. Let these estimates be θ̂i. We can then carry
out parametric bootstrapping by forming (31) but this time with each sam-
ple y(k)∗i , k = 1� 2� � � � � B, obtained by sampling from the fitted distribution
F(i)(·� θ̂i). The analysis then proceeds as before.

7 Bayesian models

A full discussion of Bayesian techniques is given in Chapter 9. Much of the
current popularity of Bayesian methods comes about because increased com-
puting power makes possible Bayesian analysis by numerical procedures, most
notably Markov chain Monte Carlo (MCMC). See Gilks et al. (1996). This al-
lows numerical sampling to be carried out in much the same way as is done in
bootstrap and other resampling procedures. We indicate the commonality by
considering just one or two situations where Bayesian methods and resampling
overlap.

http://dx.doi.org/10.1016/S0927-0507(06)13009-1
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We again focus on a random sample w = (w1� w2� � � � � wn) drawn from a
distribution F(w�θ). As in the situation where we considered ML estimation,
the form of F is known but it depends on a vector θ of parameters. In the
ML estimation situation θ0, the true value of θ, was assumed unknown. In
the Bayesian case a prior distribution is assumed known. We consider just the
continuous case and denote the p.d.f. of the prior by π(θ). The main step in
Bayesian analysis is to construct the posterior distribution π(θ|w) which shows
how the sample w, which depends on θ, has modified the prior. The Bayesian
formula is

(32)π(θ|w) = p(w|θ)π(θ)∫
p(w|ϕ)π(ϕ) dϕ

�

The difficult part is the evaluation of the normalizing integral
∫
p(w|ϕ) ×

π(ϕ) dϕ. MCMC has proved remarkably successful in providing a powerful
numerical means of doing this.

In the context of simulation a Bayesian approach is useful in assessing un-
certainty concerning input parameter values used in a simulation model. We
can adopt the viewpoint given in (17) and regard the runs as taking the form

(33)yj = y(uj� vj�θ� xj)� j = 1� 2� � � � � n�

only now θ is assumed to have a Bayesian prior distribution π(θ). Note that in
this situation we do not have the equivalent of data w from which to calculate
a posterior distribution for θ. What we can do is to treat the prior π(θ) as
inducing a prior distribution on y = y(u� v�θ� x). In this sense we can think
of y itself as having a prior which can then be estimated by sampling θ from its
prior π(θ), yielding values θj , j = 1� 2� � � � � n, and then running the model to
produce a set of observations

yj = y(uj� vj�θj� xj)� j = 1� 2� � � � � n�

The EDF of these yj then estimates this prior distribution of y. This process
clearly is the analogue to the classical situation where θ is estimated from
data w, as is supposed in (17), and we then allowed for this variability in the yj
by replacing θ̂(w) by θ∗j calculated from (18) or (19).

More interestingly we can take this a step further if there are real obser-
vations available of the y process itself. We do not attempt a fully general
formulation but give an example to indicate the possibilities. Suppose that

yReal
j = yReal(xj)� j = 1� 2� � � � � n�

comprise n observations on the real system being modeled by the simulation.
The precise relationship between the simulation output y = y(u� v�θ� x) and
yReal(x) is not known. However, we might assume that

y(u� v�θ� x) ∼ N
(
yReal(x)� σ2)�



448 R.C.H. Cheng

where σ2 is an additional parameter that will also be treated as Bayesian in the
sense of having a prior. We can express our great prior uncertainty about σ by
assuming a reference prior distribution, ρ(σ), for it. Then, by (32), the posterior
distribution of (θ� σ) is proportional to

σ−nπ(θ)ρ(σ) exp

{
− 1

2σ2

n∑
j=1

[
y(u� v�θ� xj)− yReal(xj)

]2
}
�

The posterior distribution can thus be obtained by MCMC methods for ex-
ample. An interesting application of this problem occurs in epidemiological
modeling. Suppose that y is a measure of the progress of an epidemic that
is dependent on factors θ for which there are previous measurements or for
which there is expert information. A Bayesian approach is then a natural way
of incorporating this prior information. We need also to have a good epidemic
model for producing a simulated y. Thus reverse use of simulation as indicated
above has allowed this prior information to be updated.

8 Time series output

Bootstrapping of time series is a well-studied problem. In simulation the
most likely use of such procedures is to generate correlated input for a model.
As usual the parametric form is relatively easy to explain and implement and
we discuss this first.

8.1 Residual sampling

We consider the case where the time-series is an autoregressive model. Here
the residual sampling method used to construct a bootstrap metamodel applies
with little change. Suppose we have the autoregressive model

Yt =
p∑
j=1

ajYt−j + εt�

where the εt are independently and identically distributed, commonly called
the innovations. Suppose that y1� y2� � � � � yn are a series drawn from this model.
Then we can estimate the aj by least squares say, yielding the estimates âj ,
j = 1� 2� � � � � p, and form the residuals

rt = yt −
p∑
j=1

âjyt−j� t = p+ 1� p+ 2� � � � � n�

We can then form the bootstrap time-series as

y∗t =
p∑
j=1

âjy
∗
t−j + r∗t � t = 1� 2� � � � � n�
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by sampling the r∗t from the EDF of the residuals {rt}. We need y∗1 � y
∗
2 � � � � � y

∗
p

to initiate the process, but if we assume that the observed series is stationary, it
is probably easiest to simply initiate the series with some arbitrary starting val-
ues, possibly the original y1� y2� � � � � yp, then run the bootstrapping sufficiently
long to make the initial effects negligible and collect the actual y∗t from that
point on. Freedman (1984) gives conditions for the asymptotic validity of this
procedure, Basawa et al. (1989) extending these results to the case of nonlinear
time-series.

8.2 Block sampling

For time-series the analogue of case sampling is block sampling. We cannot
sample individual observations yt because this loses the correlation between
observations. If the series is long enough then we can take n = bl and think
of the series as comprising b blocks each of length l. We write the ith block
as yi = (yl(i−1)+1� yl(i−1)+2� � � � � yli), i = 1� 2� � � � � b. Bootstrapping is done
by sampling blocks with replacement from this set of b blocks, retaining the
order of the observations in each block when writing down the individual ob-
servations of the bootstrapped series. A balance needs to be struck between
having block lengths long enough to retain the correlation properties between
neighboring observations, and having enough blocks to measure the inherent
variation of the series. A typical compromise is to use say b = l = n1/2 so that
both quantities tend to infinity as n → ∞. The methodology is related to the
batch means method for obtaining independent observations, see Chapter 15.

A major weakness of block sampling is the loss of correlation incurred by
the random sampling of blocks. This loss of correlation is called whitening.
It is especially serious when the statistic of interest involves correlations of
high lag. The crude block sampling just described may be quite ineffective if
the size of blocks is not large enough, because calculation involves quantities
which straddle blocks and which are then not sufficiently correlated because
of the whitening. There are many variants of block sampling aimed at reduc-
ing the effect of whitening in specific situations. A good example is estimation
of the lag m covariance

cm = 1
n−m

n−m∑
t=1

(yt − ȳ)(yt+m − ȳ)�

Here we can define a two-dimensional process

zt =
(
z1t

z2t

)
=
(

yt

yt+m

)
� t = 1� 2� � � � � n−m�

with z̄i = (n−m)−1∑n−m
t=1 zit and think of c1 as a statistic of this process

c1 = 1
n− 1

n−1∑
t=1

(z1t − z̄1)(z2t − z̄2)�

http://dx.doi.org/10.1016/S0927-0507(06)13015-7
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We can then obtain bootstrap z∗t by sampling with replacement from the
set {zt}. The bootstrap lag m covariance then clearly substantially retains the
covariance of the original series as we have, in effect, bootstrap sampled
the terms (yt − ȳ)(yt+m − ȳ) appearing in the formula giving cm. General-
izations of this technique are known as block of blocks sampling.

8.3 Spectral resampling

Residual and block sampling are time domain techniques. An alternative
approach is to sample in the frequency domain. A big advantage is that spectral
increments are uncorrelated, and for Gaussian processes this strengthens to
independent increments.

Suppose we have n = 2m+ 1 observations

yt� t = −m�−m+ 1� � � � �m− 1�m�

for which there is a continuous spectral density S(ω) and define the frequen-
cies ωk = 2πk/n, −m � k � m. Then the observations have the spectral
representation

yt =
m∑

k=−m
akeiωkt�

where

ak = n−1
m∑

t=−m
yte−iωkt�

In this section i = √−1. For a Gaussian process the real and purely imaginary
components of the ak are independent, and the ak are asymptotically so.

Norgaard (1992) gives two possible ways of obtaining bootstrap samples of
the ak. The simplest version is to draw a∗k at random from one of the twelve
elements

(±ak−1�±ak�±ak+1�±iak−1�±iak�±iak+1)

when 0 < k < n, and to draw a∗n at random from one of the twelve elements

(±an−1�±an�±an�±ian−1�±ian�±ian)

(note the repetition of some elements in this latter case). In both cases we set

a∗−k = a∗k�
i.e., a∗−k is the complex conjugate of a∗k. The value of a∗0 needs to be real. The
simplest case is when E(Yt) = 0 when we can select a∗0 at random as one of the
four elements (±a0�±|a1|).

A variant which seems to be significantly superior is called the extended circle
(EC) method by Norgaard (1992). Here we select |a|∗k as a random element of
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the set (|ak−1|� |ak|� |ak+1|) and then give this a random spin in both the real
and imaginary directions:

a∗k = |a|∗k(cosφ1k + i sinφ2k)� k = 1� 2� � � � � n�

where φ1k and φ2k are independent U(−π�π) angles. We have a∗−k = a∗k as
before.

9 Final comments

It is hoped that this chapter has given a hint of the richness of the topic and
its practical potential.

We have not discussed implementation issues at all. It should be clear how-
ever that most of the procedures are quite elementary to set up. Efron and
Tibshirani (1993, Appendix) gives good advice on how best to implement boot-
strapping, in a general statistical context. In the simulation context this is still
perhaps an issue that deserves more attention. When these are cheap, runs
of the model are to be preferred. However in complex models, simulation runs
can be expensive to make. It would be convenient to have a toggle that switches
from simulation model sampling to bootstrap sampling. A framework that al-
lows this to be done, and its actual implementation in simulation packages
would allow bootstrapping to be much more available on tap.

There are many topics not covered in this chapter that could well have been
included. We have for instance, not touched on the closely related technique
of jackknifing. Other topics we have made only cursory mention, such as cross-
validation and when bootstrapping fails.

The main thing that distinguishes simulation experiments from other sta-
tistical experiments is the control exercised in the random sampling. Variance
reduction is perhaps special to simulation experiments. There has been some
consideration of how bootstrapping and variance reduction might be combined
(see Hall, 1989). A particular example is the use of balanced resampling is
discussed by Davison et al. (1986), who also consider use of control variates.
Importance resampling has been suggested by Johns (1988). This perhaps is an
area that still needs further work.
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Abstract

We describe methods for estimating the variance of the sample mean of a steady-state
simulation output process using correlation-based methods, all involving some form
of “batching”. Since no single method dominates all others across all measures of
performance, we provide a framework for asymptotic comparison of such estimators.
Research challenges are also identified.

1 Introduction

The input processes driving a simulation are usually random variables – ex-
amples include interarrival times of customers, resource service times, and
machine breakdown times. Random input means that the output from the
simulation is also apt to be random – for instance, customer waiting times,
resource utilizations, and product cycle times. This in turn implies that runs
of the simulation only yield estimates of the true measures of system perfor-
mance – e.g., the mean customer waiting time, the long-run utilization, or the
80th percentile of product cycle time. Since these estimators are themselves
random variables, they are therefore subject to sampling error which must be
taken into account in a rigorous way if we are to make valid inferences or de-
cisions concerning the performance of the underlying system. Thus, as part of
a complete simulation study, we should always carry out a careful statistical
analysis of the simulation’s output.
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The fundamental problem is that simulations almost never produce raw out-
put that is independent and identically distributed (i.i.d.), much less normally
distributed. For example, consecutive customer waiting times from a compli-
cated queueing system pose a number of difficulties that hinder analysis via
elementary statistical methods:

• Simulation data are not independent – typically, they are serially corre-
lated. If one customer at the post office waits in line a long time, then
the next customer is also likely to wait a long time.

• Simulation data are not identically distributed. Customers showing up
early in the morning might have a much shorter wait than those who
show up just before closing time.

• Simulation data are not normally distributed – waiting-time distribu-
tions are usually skewed to the right (and are certainly never less than
zero).

These facts of life render it challenging to apply “classical” statistical tech-
niques to the analysis of simulation output. So our purpose in this chapter is
to present methods for statistical analysis of output from discrete-event com-
puter simulations. We focus our discussion on data arising from steady-state
(nonterminating) simulations, where the interest lies in the long-run behavior
of the system. Presumedly this steady-state behavior is independent of the sim-
ulation’s initial conditions. An example is a continuously running production
line for which the experimenter is interested in some long-run performance
measure. See Chapters 1 and 2 for examples and a precise definition of the
“steady-state simulation” problem.

The main concern of the present chapter lies in studying methods for
evaluating the variance of estimators derived from steady-state simulation out-
put data. In particular, we concentrate on so-called “correlation-based” tech-
niques, where we have knowledge of – and take advantage of – the correlation
structure of certain stochastic processes. For a general introduction to estima-
tion methods for simulation see Chapter 8.

Of course, many simulations are not run in steady state, e.g., the simulation
of the ebb and flow of customers in a bank that opens and closes at certain
times every day. Such transient (terminating) simulations use output analysis
techniques that are primarily based on the method of independent replications
(see Law and Kelton, 2000 and Chapter 8).

We henceforth assume access to steady-state data Y1� Y2� � � � � Yn, where
Yi might represent, e.g., the ith customer’s waiting time in a specified queue.
In this case, a good analysis might start off with, at the very least, an estimate of
the unknown mean μ of the steady-state output process. Of course, the sample
mean �Yn is the usual estimator for μ; but since the sample mean is a ran-
dom variable, the experimenter should estimate the sample mean’s variability
as well. One such measure is simply σ2

n ≡ nVar(�Yn), or almost equivalently,
the variance parameter, σ2 ≡ limn→∞ σ2

n . Owing to the fact that outputs from
steady-state simulations are almost never i.i.d., the “standard” sample-variance

http://dx.doi.org/10.1016/S0927-0507(06)13008-X
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estimator for σ2 is almost guaranteed to be biased (usually on the low side for
queueing simulations), and should therefore never be used.

The remainder of this chapter addresses a number of valid methods for es-
timating σ2

n or σ2. There are many techniques in the literature concerning this
key task. We begin in Section 2 with some additional motivational comments
and basic material to keep the discussion self-contained. In Section 3, we de-
vote much our time to a tutorial on the well-known methods of nonoverlapping
batch means (NBM) and standardized time series (STS); afterwards, Section 4
introduces overlapping batch means (OBM) estimators and overlapping ver-
sions of the STS estimators. These, along with other popular techniques such
as spectral analysis, regeneration, and autoregressive modeling, are prescribed
in Chapter 16 and standard simulation texts such as Bratley et al. (1987) and
Law and Kelton (2000). Finally, Section 5 gives a summary, conclusions, and
some suggestions for future research areas.

2 Motivation

In this chapter, we consider a stationary stochastic process Y1� Y2� � � � � Yn,
e.g., a simulation in steady state. In fact, we assume that the stochastic process
satisfies a Functional Central Limit Theorem (FCLT). This assumption applies
to a general class of stochastic processes, and will help give us the limiting
properties of the various variance estimators considered herein.

Assumption 1 (FCLT). There exist constants μ and positive σ such that as
n→∞,

Xn ⇒ σW�

where W is a standard Brownian motion process, “⇒” denotes weak conver-
gence as n→∞ (see Billingsley, 1968) and

Xn(t) ≡ �nt�(�Y�nt� − μ)√
n

for t � 0�

where �Yj ≡∑j
k=1 Yk/j, j = 1� 2� � � � , and �·� is the greatest integer function.

Glynn and Iglehart (1990) list several different sets of sufficient conditions –
usually in the form of moment and mixing conditions – for Assumption 1 to
hold; see also Chapter 2. The constants μ and σ2 in the assumption can be
identified with the steady-state mean and variance parameters, respectively.

Let Rk ≡ Cov(Y1� Y1+k), k = 0�±1�±2� � � � , denote the covariance func-
tion of the stationary stochastic process, and define the “center of gravity”
quantity γ ≡ −2

∑∞
k=1 kRk (cf. Song and Schmeiser, 1995). In addition, the

notation p(n) = o(q(n)) means that p(n)/q(n)→ 0 as n→ ∞. This is nota-
tion we will need later.

http://dx.doi.org/10.1016/S0927-0507(06)13016-9
http://dx.doi.org/10.1016/S0927-0507(06)13002-9
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The rest of this chapter is devoted to motivating, defining and comparing
classes of estimators of σ2

n and σ2. To facilitate discussing what makes an esti-
mator good, let σ̂2

n and σ̂2 denote generic estimators of σ2
n and σ2, respectively.

In this section we focus on σ̂2 for convenience, but nearly everything applies
to σ̂2

n as well.
The most critical properties of σ̂2 are its variance and bias: Var(σ̂2) =

E{(σ̂2 − E[σ̂2])2} and Bias(σ̂2) = E[σ̂2] − σ2. Clearly an estimator with low
bias – which implies that its distribution is centered at the desired value σ2 –
and low variance – so that it also tends to be close to the desired value – is what
we want. A single measure that combines both measures is the mean squared
error

MSE
(
σ̂2) = Var

(
σ̂2)+ Bias2(σ̂2)�

As will become apparent when we look at different classes of estimators, there
is often a bias-variance tradeoff so that doing something that decreases one of
the measures increases the other. So why not simply use the variance estima-
tor σ̂2 offering the lowest MSE? The problem is that it is not possible to derive
a useful expression for the MSE of any reasonable variance estimator applied
to all stationary output process that we might encounter in real life. As a result,
the analysis and comparison of variance estimators typically takes one or more
of the following forms:

Empirical evaluation: Variance estimators are applied to simulated processes
with known σ2’s, allowing their bias, variance and MSE to be estimated.
Since we “know the answer”, we can see how the competing variance es-
timators compare against each other. Simple Markovian queueing models
are often used for this type of comparison (e.g., Sargent et al., 1992).

Surrogate-processes evaluation: Simple output-process models, under which the
bias, variance, and MSE of σ̂2 can be explicitly derived, are used as sur-
rogates (stand-ins) for the more-general simulation output processes we
might encounter. Time-series processes, such as low-order autoregressive
and moving average, are often chosen for this purpose (cf. Sargent et al.,
1992).

Asymptotic analysis: The bias, variance, and MSE measures of appropriately
scaled versions of σ̂2 can sometimes be derived as the sample size n goes
to infinity, and these limiting results are often free of the fine details of
the specific simulation output process. We focus on this approach here by
relying on the FCLT as our basic building block.

Unfortunately, it has never been proven, nor is it likely ever to be proven,
that any one estimator has uniformly the smallest MSE across the space of all
stationary output processes to which it could be applied.

The bias and variance of σ̂2 are the most critical distributional properties
when determining its usefulness as an estimator. Secondarily, the distribution
itself also matters, particularly when the goal is to use σ̂2 to form a confidence
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interval for μ. The usual normal-theory (1−α)100% confidence interval for μ
takes the form

(1)�Yn ± t1−α/2�ν

√
σ̂2

n
�

where t1−α/2�ν is the 1 − α/2 quantile of the t distribution with ν degrees of
freedom. The validity of this confidence interval depends on �Yn being ap-
proximately normally distributed and independent of σ̂2, which has a scaled
chi-squared distribution with ν degrees of freedom. Therefore, if σ̂2 is to be
incorporated into a confidence-interval procedure it is important to have some
assurance that its distribution is approximately chi-squared and an appropri-
ate degrees of freedom can be associated with it. For all practical purposes this
property never precisely holds for steady-state simulation output processes, so
the that best we can hope is that it is true in some appropriate asymptotic sense
(cf. Alexopoulos et al., 2005a, who present histograms of the distributions of
various variance estimators).

This chapter emphasizes asymptotic analysis, which has been exceptionally
useful for deriving and comparing classes of estimators. But the estimator with
the best asymptotic properties is not necessarily the best estimator in practice,
because “practice” can include problems with sample sizes too small for the
asymptotic properties of all available estimators to hold. Certain estimators
with inferior asymptotic properties have been shown to be robust in practical
problems. Nevertheless, asymptotic comparisons provide a level playing field
at least for initial evaluation, as well as providing hints for how to improve
estimator performance.

3 Estimators using nonoverlapping batches

This section examines a number of different estimators for σ2 resulting from
nonoverlapping batches of observations. Loosely speaking, this section exam-
ines estimators arising from the following recipe:

• Divide the run into contiguous, nonoverlapping batches,
• form an estimator from each batch, and
• take the average of the estimators.

In particular, we discuss the NBM, STS batched area, and STS batched
Cramér–von Mises (CvM) estimators for σ2 in Sections 3.1, 3.3 and 3.4, re-
spectively; Section 3.2 gives a short primer on standardized time series. In each
case, we give results on the expected value and variance of the estimator under
consideration.

Throughout the entire section we will work with b contiguous, nonover-
lapping batches of observations, each of length m, from the simulation
output, Y1� Y2� � � � � Yn, where n = bm. Thus, the observations Y(i−1)m+1�
Y(i−1)m+2� � � � � Yim constitute batch i, for i = 1� 2� � � � � b.
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3.1 NBM estimator

The batches of observations can be depicted as follows.

Batch 1: Y1� Y2� � � � � Ym�

Batch 2: Ym+1� Ym+2� � � � � Y2m�

���

Batch b: Y(b−1)m+1� Y(b−1)m+2� � � � � Yn�

For each of these batches, we calculate the batch mean, �Yi�m ≡ m−1 ×∑m
k=1 Y(i−1)m+k, for i = 1� 2� � � � � b, which is the genesis of the method’s name.
The NBM estimator for μ is simply the grand sample mean from the

b batch means, �Yn ≡ b−1∑b
i=1

�Yi�m = n−1∑n
�=1 Y�. Stationarity implies that

E[�Yn] = μ, so the grand mean is unbiased for μ; and the variance of the grand
mean is, by definition, Var(�Yn) = σ2

n/n.
The batch means �Yi�m, i = 1� 2� � � � � b, are often assumed to be i.i.d. nor-

mal random variables, at least for large enough batch size m; this is borne out
by Equation (8) below. The i.i.d. assumption immediately suggests the NBM
estimator for σ2,

(2)N (b�m) ≡ m

b− 1

b∑
i=1

(�Yi�m − �Yn)2 D−→ σ2χ2
b−1

b− 1

as m→ ∞ with b fixed, and where χ2
ν denotes a chi-squared random variable

with ν degrees of freedom and “
D−→ ” denotes convergence in distribution

as m → ∞ (see, e.g., Glynn and Whitt, 1991; Schmeiser, 1982; Steiger and
Wilson, 2001). The NBM estimator, which is the sample variance of the batch
means, is one of the most popular for σ2, and is a benchmark for comparison
with other estimators.

Under mild conditions, Chien et al. (1997), Goldsman and Meketon (1986)
and Song and Schmeiser (1995) show that

(3)E
[
N (b�m)

] = σ2 + γ(b+ 1)
bm

+ o
(

1
m

)
�

So as the batch size m increases, the bias of N (b�m) as an estimator of σ2

goes to zero.
How does one prove a result such as Equation (3) for the expected value?

It amounts to careful bookkeeping of covariance terms. First of all, assuming
that the underlying process {Yi} is stationary and that all of the following sums
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are well defined, we have

σ2
m ≡ mVar(�Ym)

= 1
m

m∑
i=1

m∑
j=1

Cov(Yi� Yj)

= R0 + 2
m−1∑
i=1

(
1 − i

m

)
Ri (after collecting like covariance terms)

= R0 + 2
m−1∑
i=1

Ri − 2
m

m−1∑
i=1

iRi

= R0 + 2
∞∑
i=1

Ri − 2
∞∑
i=m

Ri − 2
m

∞∑
i=1

iRi + 2
m

∞∑
i=m

iRi

= σ2 + γ

m
− 2

∞∑
i=m

(
1 − i

m

)
Ri

(4)= σ2 + γ

m
+ o
(

1
m

)
�

where, as in Chien et al. (1997), we have implicitly assumed that∑∞
j=1 j|Rj| <∞. Turning to the matter at hand, we have

E
[
N (b�m)

] = E

[
m

b− 1

b∑
i=1

(�Yi�m − �Yn)2

]

= m

b− 1
E

[
b∑
i=1

�Y 2
i�m − b�Y 2

n

]

= m

b− 1

[
b∑
i=1

E
[�Y 2

i�m

]− bE
[�Y 2

n

]]

= bm

b− 1
[
E
[�Y 2

i�m

]− E
[�Y 2

n

]]
(by stationarity of the batch means)

= bm

b− 1
[
Var(�Yi�m)− Var(�Yn)

]
(since the common mean μ cancels)

= 1
b− 1

[
bσ2 + bγ

m
− σ2 − γ

n

]
+ o
(

1
m

)

(by Equation (4))�
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which gives (3) after a little algebra.
Obtaining the NBM estimator’s variance takes more work. Chien et al.

(1997), Glynn and Whitt (1991), Goldsman and Meketon (1986) and Song and
Schmeiser (1995) find that, for fixed b,

(5)lim
m→∞(b− 1)Var

(
N (b�m)

) = 2σ4

which certainly makes sense in light of the distributional result given by Equa-
tion (2).

By combining Equations (3) and (5), we can obtain a simple expression for
the mean squared error of the NBM estimator for σ2,

(6)MSE
[
N (b�m)

] �=
(
γ(b+ 1)
mb

)2
+ 2σ4

b
�

where we have ignored some small-order terms. For large b and m, this ex-
pression can be minimized by taking the number of batches b = cn2/3 and the
batch size m = n/b = n1/3/c, where we need to determine the constant c.
Thus, expression (6) becomes

MSE
[
N (b�m)

] �=
(
c2γ2 + 2σ4

c

)
1
n2/3 �

Minimizing this expression with respect to c, we obtain c+ = (σ4/γ2)1/3, and
hence an (asymptotically) optimal mean squared error of

(7)MSE+[N (b�m)
] �= 3

(
σ4γ

n

)2/3
�

Of course, σ2 and γ are not known in general, so that it will be problematic
to actually obtain this minimal MSE in practice; however, Equation (7) still
has practical value, since it can be used as a basis for comparison among other
variance estimators. For instance, if another estimator has a minimal MSE of
the same form as (7), but with a leading constant smaller than 3, then one can
claim that it is a “better” estimator than NBM.

3.2 STS primer

Before presenting additional estimators for σ2, we give a mini-tutorial
on standardized time series, which will provide the necessary background.
Schruben (1983) defines the standardized time series from batch i as

Ti�m(t) ≡ �mt�(�Yi��mt� − �Yi�m)
σ
√
m

for 0 � t � 1 and i = 1� 2� � � � � b, where

�Yi�j ≡ 1
j

j∑
k=1

Y(i−1)m+k
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for j = 1� 2� � � � �m and i = 1� 2� � � � � b. Then we have the following theorem.

Theorem 1 (see Schruben (1983), Glynn and Iglehart (1990), Foley and Golds-
man (1999), or Alexopoulos et al. (2005b), among others). Define Zi(m) ≡√
m(�Yi�m − μ), i = 1� 2� � � � � b. Then under Assumption 1,

(
Z1(m)� � � � � Zb(m);σT1�m� � � � � σTb�m

)
(8)⇒ (

σZ1� � � � � σZb;σB0� � � � � σBb−1
)
�

where the Zi’s are i.i.d. standard normal random variables, and Bu denotes a
Brownian bridge process on [u� u+ 1], i.e., for t ∈ [0� 1],

Bu(t) =W(u+ t)−W(u)− t
[
W(u+ 1)−W(u)

]
�

Notice that the scaling factor σ actually cancels out in the denominator of
Ti�m, thus eliminating any unknowns and so allowing us to explicitly calcu-
late all of the quantities on the left-hand side of Equation (8). Further, for
those unfamiliar with Brownian bridges, it turns out that all finite-dimensional
joint distributions of a Brownian bridge Bu are normal with E[Bu(t)] = 0 and
Cov(Bu(s)�Bu(t)) = min(s� t) − st, 0 < s, t < 1. In addition, since Brownian
motion has independent increments, it is easy to see that B0�B1� � � � �Bb−1 are
independent Brownian bridges. These facts will allow us to evaluate proper-
ties of the random variables on the left-hand side of (8) using the analogous
asymptotic distributions from the right-hand side of the equation.

3.3 Batched area estimator

This subsection deals with the (nonoverlapping) batched area estimator
for σ2 (Goldsman et al., 1990; Goldsman and Schruben, 1990).

We will work with the square of the weighted area under the standardized
time series from the ith batch,

Ai(f ;m) ≡
[

1
m

m∑
k=1

f

(
k

m

)
σTi�m

(
k

m

)]2

�

and its limiting functional

Ai(f ) ≡
[∫ 1

0
f (t)σBi−1(t) dt

]2
�

for i = 1� 2� � � � � b, where f (t) is continuous on the interval [0� 1] and normal-
ized so that Var(

∫ 1
0 f (t)B0(t) dt) = 1. Under mild conditions (see Alexopoulos

et al., 2005b), one can use the continuous mapping theorem (see Billingsley,

1968) to show that Ai(f ;m) D−→ Ai(f ), i = 1� 2� � � � � b; and further,
A1(f )� � � � �Ab(f ) are i.i.d. σ2χ2

1. This result motivates construction of the
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batched area estimator for σ2,

(9)A(f ; b�m) ≡ 1
b

b∑
i=1

Ai(f ;m)�

As the batch size m→∞ with a fixed number of batches b, the distribution of
the batched area estimator converges to that of the average of the correspond-
ing Ai(f ) functionals, i.e.,

A(f ; b�m) D−→ A(f ; b) ≡ 1
b

b∑
i=1

Ai(f ) ∼ σ2χ
2
b

b
�

The next theorem gives the expected value and variance of the area estimator.

Theorem 2 (see, e.g., Foley and Goldsman, 1999). Suppose that {Yi� i � 1}
is a stationary process for which Assumption 1 holds,

∑∞
k=1 k

2|Rk| < ∞, and
σ2 > 0. Further, suppose that A2(f ; b�m) is uniformly integrable (cf. Billingsley,
1968). If we define the quantities F ≡ ∫ 1

0 f (t) dt, �F ≡ ∫ 1
0
∫ t

0 f (s) ds dt and F+ ≡
[(F − �F )2 + �F 2]/2, then

E
[
A(f ; b�m)] = σ2 + F+γ

m
+ o
(

1
m

)

and

Var
(
A(f ; b�m))→ Var

(
σ2χ

2
b

b

)
= 2

σ4

b

as m → ∞. Note that the limiting variance does not depend on the choice of the
weighting function (as long as it is legal).

Example 1. Schruben (1983) first considered the area estimator with constant
weighting function f0(t) ≡

√
12 for 0 � t � 1. For this choice, Theorem 2

implies that E[A(f0; b�m)] = σ2 + 3γ/m+ o(1/m).

Example 2. If the selection of f (t) turns out to give F = �F = 0, the result-
ing estimator is first-order unbiased for σ2, i.e., its bias is o(1/m). An example
of such a weighting function is the quadratic f2(t) ≡

√
840(3t2 − 3t + 1/2)

(Goldsman et al., 1990; Goldsman and Schruben, 1990).

Example 3. Foley and Goldsman (1999) give an “orthonormal” sequence of
first-order unbiased weights, fcos�j(t) = √

8πj cos(2πjt), j = 1� 2� � � � . It
can be shown that the orthonormal estimators’ limiting functionals Ai(fcos�1),
Ai(fcos�2)� � � � are i.i.d. σ2χ2

1. Thus, we have a new estimator for σ2, since as
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the batch size m becomes large,

(10)
1
k

k∑
j=1

Ai(fcos�j;m) D−→ σ2χ
2
k

k
�

for some “reasonable” number of orthonormal weights k. This estimator is
actually the average of different weighted area estimators from the same batch,
whereas the estimator given in Equation (9) uses observations from all batches.
Of course, one could also average estimators of the form given in Equation (10)
over all batches to obtain even more degrees of freedom, but that estimator’s
performance properties have not yet been thoroughly evaluated.

Remark 1. Since the Zi’s and Bi’s in Equation (8) turn out to be uncorrelated
normal random variables, the standardized sample mean is asymptotically (as
m → ∞) independent of the standardized time series (Schruben, 1983). One
can use this fact to argue that STS estimators such as A(f ; b�m) are asymptot-
ically independent of the NBM estimator N (b�m); and then we can take an
appropriate linear combination of the STS and NBM estimators, e.g.,

bA(f ; b�m)+ (b− 1)N (b�m)

2b− 1
�

with the intent that the combined estimator will have more degrees of free-
dom – and so reduce variance without affecting bias too much.

3.4 Batched CvM estimator

This subsection discusses the weighted Cramér–von Mises estimator for σ2

(see Goldsman et al., 1999). To begin with, the weighted area under the square
of the STS from the ith batch and its limiting functional are given by

Ci(g;m) ≡ 1
m

m∑
k=1

g

(
k

m

)
σ2T 2

i�m

(
k

m

)

and

Ci(g) ≡
∫ 1

0
g(t)σ2B2

i−1(t) dt�

respectively. Here g(t) is a weighting function normalized so that E[Ci(g)] =
σ2 and possessing a continuous and bounded second derivative on [0� 1].

Under mild assumptions, the continuous mapping theorem implies that

Ci(g;m) D−→ Ci(g), i = 1� 2� � � � � b. This leads to the batched CvM estima-
tor for σ2

C(g; b�m) ≡ 1
b

b∑
i=1

Ci(g;m)�
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As the batch size m → ∞ with a fixed number of batches b, the distribution
of the batched CvM estimator converges to that of the average of the corre-
sponding Ci(g) functionals, i.e.,

C(g; b�m) D−→ C(g; b) ≡ 1
b

b∑
i=1

Ci(g)�

An immediate question to ask is: Why should we bother with yet another esti-
mator C(g; b�m) for σ2? Theorem 3 prepares us for an answer by presenting
results on the expected value and variance of the weighted CvM estimator.

Theorem 3 (Goldsman et al., 1999). Define G ≡ ∫ 1
0 g(t) dt. Under conditions

similar to those of Theorem 2,

E
[
C(g; b�m)] = σ2 + γ

m
(G− 1)+ o

(
1
m

)

and, for fixed b,

lim
m→∞ bVar

(
C(g; b�m)) = bVar

(
C(g; b))

= Var
(
C1(g)

)

(11)= 4σ4
∫ 1

0
g(t)(1 − t)2

∫ t

0
g(s)s2 ds dt�

Example 4. Consider the constant weighting function g0(t) ≡ 6 for 0 �
t � 1. Theorem 3 shows that the resulting CvM estimator has expected value
E[C(g0; b�m)] = σ2 + 5γ/m+ o(1/m).

Example 5. Suppose we select a weighting function having G = 1 (in addition
to the normalizing and derivative constraints). Then the theorem implies that
the CvM estimator C(g; b�m) has bias o(1/m). For example, the quadratic
weighting function g+2(t) ≡ −24+150t−150t2 has this first-order unbiasedness
property.

Now, back to the question concerning our interest in yet another estimator
for σ2. We see from Theorem 3 that the choice of weighting function g(t)
affects the variances of C(g; b�m) and C(g; b). This was not the case for the
area estimator of Section 3.3, where the weighting function f (t) affects the
variance of A(f ; b�m), but not that of the limiting functional A(f ; b), which is
always Var(A(f ; b)) = 2σ4/b. Thus, the CvM estimator gives us a tool to find
reduced-variance estimators for σ2.

Example 6. Theorem 3 shows that Var(C(g0; b)) = 0�8σ4/b and Var(C(g+2;
b)) = 1�73σ4/b, which are both smaller than the limiting (m → ∞) variance
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of any batched area estimator, as discussed immediately above. Even though
Var(C(g+2; b)) > Var(C(g0; b)), the estimator C(g+2; b�m) is first-order unbi-
ased for σ2, while C(g0; b�m) does not have this nice property.

3.5 Comparison

We have seen that as the batch size m → ∞, the NBM, batched area, and
batched CvM estimators are all asymptotically unbiased for σ2. Furthermore,
the variances of these estimators are all more-or-less inversely proportional
to the number of batches – though one has to be careful not to decrease the
variance too much at the expense of relatively high bias or MSE (cf. Song and
Schmeiser, 1995).

What happens if m and b both become large? Such a scenario might oc-
cur in sequential estimation procedures – for example, Steiger et al.’s (2005)
ASAP3 procedure – which occasionally take additional observations to achieve
user-specified estimator precision requirements. Asm and b→∞, it has been
shown in, e.g., Alexopoulos et al. (2000) and Chien et al. (1997) that the esti-
mators under discussion herein are consistent in mean square.

Since NBM is regarded as the benchmark method, one could informally
regard its bias and variance as straw men. The interesting result is that STS
area and CvM estimators with certain well-chosen weighting functions can beat
NBM in terms of large-sample bias; in addition, the CvM estimators studied in
this article have smaller variance than does NBM. Better yet, we will see in the
next section that the use of overlapping batches with respect to any particular
estimator preserves its expected value, while reducing its variance – sometimes
substantially. See Table 1 for an early preview.

Obviously, for fixed sample size n = mb, some estimators will tend to do
better than others in terms of bias and variance. But for fixed n, decreasing one
performance measure usually comes at the expense of increasing the other –
the well-known trade-off that we have already mentioned. Thus, we ought to be
interested in small-sample performance of the various estimators in addition
to asymptotic performance. For various “toy” processes, it is actually possible
to calculate exact results for finite sample sizes.

Example 7. Suppose that Y1� Y2� � � � � Yn arise from a first-order moving av-
erage (MA(1)) process, that is, Yi+1 = θεi + εi+1, where the εi’s are i.i.d.
standard normal and −1 < θ < 1. The MA(1) has covariance function
R0 = 1 + θ2, R±1 = θ, and Rk = 0 elsewhere, from which we can easily
derive σ2 =∑∞

j=−∞Rj = (1 + θ)2 and γ = −2
∑∞

j=1 jRj = −2θ.



468 D. Goldsman and B.L. Nelson

After some tedious algebra (see, e.g., Goldsman et al., 2003), we have the
following exact results:

E
[
N (b�m)

] = σ2 + γ(b+ 1)
mb

�

E
[
A(f2; b�m)

] = σ2 + 7(σ2 + 6γ)
2m2 + o

(
m−2)�

E
[
C
(
g+2; b�m

)] = σ2 + 4(σ2 + 6γ)
m2 + o

(
m−2)�

We see that these particular weighted area and CvM estimators are less biased
than NBM as the batch size m becomes large; and the area estimator beats
CvM for moderate m.

4 Estimators from overlapping batches

We now discuss the use of estimators based on overlapping batches, à la
Meketon and Schmeiser (1984). Here we implement a slightly different recipe
than that for nonoverlapping batches:

• Divide the run into a number of overlapping batches,
• form an estimator from each batch, and
• take the average of the estimators.

The presentation roughly follows that of the previous section. Section 4.1 dis-
cusses some necessary basics and provides the notation that we will use. Sec-
tions 4.2–4.4 give the OBM, STS overlapping area, and STS overlapping CvM
estimators, respectively. As before, we are concerned with results on the ex-
pected values and variances of the various estimators.

4.1 Overlapping fundamentals

Suppose we have n observations Y1� Y2� � � � � Yn on hand and that we form
n−m+ 1 overlapping batches, each of size m. The overlapping batches can be
depicted as follows.

Overlapping batch 1: Y1� Y2� � � � � Ym�

Overlapping batch 2: Y2� Y3� � � � � Ym+1�

���

Overlapping batch n−m+ 1: Yn−m+1� Yn−m+2� � � � � Yn

Specifically, the observations Yi� Yi+1� � � � � Yi+m−1 comprise batch i, i =
1� 2� � � � � n −m + 1. Further, we use the notation b ≡ n/m as before, though
b is no longer “the number of batches”.
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As in Section 3.2, the standardized time series from overlapping batch i is

TO
i�m(t) ≡

�mt�(�YO
i��mt� − �YO

i�m)

σ
√
m

for 0 � t � 1 and i = 1� 2� � � � � n−m+ 1, where

�YO
i�j ≡

1
j

j−1∑
k=0

Yi+k

for i = 1� 2� � � � � n−m+1 and j = 1� 2� � � � �m. Under the same mild conditions
as before,

σTO�um��m ⇒ σBu� 0 � u � b− 1� u fixed�

Roughly speaking, we will try to glean more information about σ2 by consid-
ering the variance estimators from each of the n−m+ 1 overlapping batches
rather than from just the b nonoverlapping batches of the earlier discussion.
The hope is that the additional information will somehow compensate for the
fact that estimators arising from overlapping batches might be highly corre-
lated.

4.2 OBM estimator

The ith overlapping batch mean is given by �YO
i�m, i = 1� 2� � � � � n − m + 1.

The OBM estimator for σ2 was originally studied by Meketon and Schmeiser
(1984) (using a slightly different scaling coefficient), and is given by

O(b�m) ≡ nm

(n−m+ 1)(n−m)

n−m+1∑
i=1

(�YO
i�m − �Yn

)2
�

Theorem 4. Under mild conditions, Goldsman and Meketon (1986) and Song
and Schmeiser (1995) show that, for large b,

E
[
O(b�m)

] �= σ2 + γ

m
+ o
(

1
m

)
�

Further, Meketon and Schmeiser (1984), Damerdji (1995) and Alexopoulos
et al. (2005b) find that for large b, as m→∞,

Var
(
O(b�m)

) �= 4σ4

3b
�
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4.3 Overlapping area estimator

The square of the weighted area under the standardized time series from
the ith overlapping batch is

AO
i (f ;m) ≡

[
1
m

m∑
k=1

f

(
k

m

)
σTO

i�m

(
k

m

)]2

�

i = 1� 2� � � � � n−m+ 1. The overlapping area estimator for σ2 is

AO(f ; b�m) ≡ 1
n−m+ 1

n−m+1∑
i=1

AO
i (f ;m)�

Alexopoulos et al. (2005b) use the continuous mapping theorem to show
that as m→∞,

AO(f ; b�m) D−→ AO(f ; b) ≡ σ2

b− 1

∫ b−1

0

[∫ 1

0
f (t)Bu(t) dt

]2
du�

(12)

It is easy to see that the expected value of the overlapping area estimator
equals that of the corresponding batched area estimator. Thus, Theorem 2
gives the following.

Theorem 5. Under mild conditions, Alexopoulos et al. (2005a, 2005b) show that

E
[
AO(f ; b�m)] = σ2 + F+γ

m
+ o
(

1
m

)
�

Calculation of the variance of the overlapping area estimator can be under-
taken using the right-hand side of Equation (12) along with some algebraic
elbow grease. Some examples from Alexopoulos et al. (2005b) reveal that the
limiting (m→∞) variance of the overlapping area estimator depends on the
choice of weighting function.

Example 8. Consider the overlapping constant-weighted area estimator from
Example 1. We have after some algebra that as m→∞,

Var
(
AO(f0; b�m)

)→ Var
(
AO(f0; b)

) = 24b− 31
35(b− 1)2σ

4�

This compares very nicely to the generic batched area estimator’s asymptotic
(m→∞) variance, Var(A(f ; b)) = 2σ4/b (see Theorem 2).
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Example 9. Consider the overlapping area estimator with first-order unbiased
quadratic weighting function f2(t) from Example 2. This estimator has a limit-
ing variance of

Var
(
AO(f2; b)

) = 3514b− 4359
4290(b− 1)2 σ

4�

Example 10. Consider the overlapping area estimators from the family of
orthonormal first-order unbiased weights fcos�j(t), j = 1� 2� � � � . From Exam-
ple 3, we have a limiting variance of about

Var
(
AO(fcos�j; b)

) �= 8π2j2 + 15
12π2j2b

σ4�

Remark 2. One can average the orthonormal estimators AO(fcos�j; b�m), j =
1� 2� � � � , and use knowledge of the covariances of these estimators to obtain
estimators with even smaller variance (cf. Alexopoulos et al., 2005b).

4.4 Overlapping CvM estimator

We define the overlapping CvM estimator from overlapping batch i by

CO
i (g;m) ≡

1
m

m∑
k=1

g

(
k

m

)[
σTO

i�m

(
k

m

)]2
�

i = 1� 2� � � � � n−m+ 1. The overlapping CvM estimator for σ2 is

CO(g; b�m) ≡ 1
n−m+ 1

n−m+1∑
i=1

CO
i (g;m)�

Then it can be shown using the continuous mapping theorem that as m→∞,

CO(g; b�m) D−→ CO(g; b) ≡ 1
b− 1

∫ b−1

0

∫ 1

0
g(u)σ2B2

s (u) du ds�

(13)

Meanwhile, Theorem 3 implies

E
[
CO(g; b�m)] = σ2 + γ(G− 1)

m
+ o
(

1
m

)
�

So the expected value of the overlapping CvM estimator is the same as that of
the batched CvM estimator.

Let us turn to the variance of the overlapping CvM estimator. After a great
deal of algebra involving Equation (13), we have the following results.
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Example 11. For the overlapping constant-weighted CvM estimator, we have

Var
(
CO(g0; b�m)

)→ Var
(
CO(g0; b)

) = 88b− 115
210(b− 1)2σ

4�

This compares nicely to the batched constant-weighted CvM estimator’s as-
ymptotic (m→∞) variance, Var(C(g0; b)) = 4σ4/(5b).

Example 12. For the overlapping CvM estimator with quadratic weight g+2(t)
from Example 5, we have

Var
(
CO(g+2; b

)) = 10768b− 13605
13860(b− 1)2 σ4 �= 0�777

b
σ4�

This compares to the batched quadratic CvM estimator’s asymptotic variance,
Var(C(g+2; b)) = 121σ4/(70b). In other words, Var(CO(g+2; b))/Var(C(g+2;
b))

�= 0�450.

Example 13. We can even work with the quartic weighting function

g+4(t) ≡ −1310
21

+ 19270t
21

− 25230t2

7
+ 16120t3

3
− 8060t4

3
�

Goldsman et al. (1999) show that this weighting function yields the first-order
unbiased CvM estimator for σ2 having the minimum variance over all quar-
tic weights. After still more algebra involving Equation (13), we find that the
corresponding overlapping quartic CvM estimator has

Var
(
CO(g+4; b

)) �= 0�477
b

σ4�

which is quite competitive compared to the other estimators examined so far.

4.5 Comparison

Paralleling the discussion in Section 3.5, we see that as m → ∞, the over-
lapping area, overlapping CvM, and OBM estimators are all asymptotically
unbiased for σ2. In addition, the variances of these estimators are all inversely
proportional to the ratio b = n/m (for sufficiently large batch size).

All of the overlapping estimators preserve the bias properties of their
nonoverlapping counterparts. Thus, we found that the overlapping area and
overlapping CvM estimators with certain “unbiased” weighting functions can
beat OBM in terms of large-sample bias. The overlapping STS estimators also
defeat their nonoverlapped counterparts as well as OBM in terms of variance.
Table 1, abstracted from Alexopoulos et al. (2005a, 2005b), gives a more-
complete synopsis of all of the asymptotic results.

We can carry out small-sample analysis for the various overlapping estima-
tors, similar to what we did in Example 7.
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Table 1.
Approximate asymptotic bias and variance for different estimators (abstracted from Alexopoulos et al.,
2005a, 2005b)

Nonoverlapping (m/γ)Bias (b/σ4)Var Overlapping (m/γ)Bias (b/σ4)Var

A(f ; b�m) F+ 2 AO(f ; b�m) F+ various
A(f0; b�m) 3 2 AO(f0; b�m) 3 0�686
A(f2; b�m) o(1) 2 AO(f2; b�m) o(1) 0�819
A(fcos�j; b�m) o(1) 2 AO(fcos�j; b�m) o(1) (8π2j2+15)/(12π2j2)

C(g; b�m) G− 1 Eq. (11) CO(g; b�m) G− 1 various
C(g0; b�m) 5 0�8 CO(g0; b�m) 5 0�419
C(g+2; b�m) o(1) 1�729 CO(g+2; b�m) o(1) 0�777
C(g+4; b�m) o(1) 1�042 CO(g+4; b�m) o(1) 0�477

N (b�m) 1 2 O(b�m) 1 1�333

Example 14. Suppose that Y1� Y2� � � � � Yn arise from the MA(1) process de-
scribed in Example 7. Goldsman et al. (2003) derive the following exact results:

E
[
O(b�m)

] = σ2 + γ

m(b− 1)

[
b2 + 1
b

− 2
mb−m+ 1

]
�

E
[
AO(f2; b�m)

] = E
[
A(f2; b�m)

] = σ2 + 7(σ2 + 6γ)
2m2 + o

(
m−2)

and

E
[
CO(g+2; b�m

)] = E
[
C
(
g+2; b�m

)] = σ2 + 4(σ2 + 6γ)
m2 + o

(
m−2)�

First of all, we see that the bias results here reflect their counterparts from
Example 7. Like that example, the overlapping area and CvM estimators are
less biased than OBM as the batch size m becomes large; and the overlapping
area estimator beats overlapping CvM for moderate m.

5 Summary and conclusions

This chapter has focused on the need to estimate the variance parameter σ2

to give users information about the precision of the sample mean �Yn as an
estimator for the steady-state mean μ. We presented a small selection of ways
to go about estimating σ2, illustrating various general tricks of the trade on
certain variance estimators of interest along the way.

Certainly, mean squared error is an excellent criterion for comparing the
performance of different estimators; but we could have also evaluated vari-
ance estimator performance when used within confidence interval estimators
of the general form given by Equation (1) – it usually turns out that good point
estimators yield good confidence intervals (cf. Sargent et al., 1992).
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In terms of specifics, we found that

• overlapping estimators for σ2 always seem to preserve bias and de-
crease variance vs. their nonoverlapping counterparts – sometimes by
a great deal, especially in the case of the STS estimators;

• overlapping performs as advertised on the empirical MA(1) example.

So even though the overlapping estimators can be quite correlated from batch
to batch, their overall performance is superior to that of the asymptotically
i.i.d. estimators from nonoverlapping batches.

In the future, we can envision a focus on other variance estimators that re-
use data over and over again, in the spirit of overlapping estimators. Examples
of this ilk that immediately come to mind are the “orthonormal” estimators
from Foley and Goldsman (1999) and the “permuted” estimators studied by
Calvin and Nakayama (2002). Such estimators are apt to be computationally
more complicated, but this should not present a problem, as a number of au-
thors are addressing that particular issue, e.g., Damerdji et al. (1997).

Perhaps more-ambitious, long-term goals include those of enhancing auto-
matic run-control procedures (e.g., Steiger et al., 2005), multivariate point and
confidence interval estimation, and applications of variance estimation tech-
niques to quality control, ranking-and-selection, optimization, and financial
analysis problems.
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Chapter 16

Simulation Algorithms for Regenerative Processes

Peter W. Glynn
Department of Management Science and Engineering, Stanford University, USA
E-mail: glynn@stanford.edu

Abstract

This chapter is concerned with reviewing the basic ideas and concepts underlying the
use of regenerative structure in the development of efficient simulation algorithms.
While it has long been known that discrete state space Markov chains exhibit regen-
erative structure, we argue that well-behaved discrete-event simulations typically also
contain an embedded sequence of regeneration times. However, algorithmic identifi-
cation of the corresponding regeneration times turns out to be a nontrivial problem.
We discuss the theoretical and implementation issues involved in identifying the cor-
responding regeneration times, and describe how regenerative methodology supplies
effective solutions to several difficult simulation problems. In particular, we discuss
the use of regeneration in the context of steady-state simulation as a means of effi-
ciently computing confidence intervals and correcting for initial bias. We also point
out that regeneration has the potential to offer significant algorithmic efficiency im-
provements to the simulationist, and illustrate this idea via discussion of steady-state
gradient estimation and computation of infinite horizon expected discounted reward.

1 Introduction

Let V = (V (t): t � 0) be a real-valued stochastic process in which V (t)
represents the simulation output collected at time t. Roughly speaking, the
process V is said to be (classically) regenerative if there exist random times
T(0) < T(1) < · · · at which the process “regenerates” (in the sense that
V probabilistically starts afresh at each time T(i), i � 0, and evolves indepen-
dently of the process prior to time T(i)). Such regenerative structure implies
that V can be viewed conceptually as a sequence of independent “cycles”
(V (s): T(i − 1) � s < T(i)) that are “pasted together” (where we adopt the
convention that T(−1) = 0). Thus, the infinite time behavior of V over [0�∞)
is implicitly captured in the behavior of V over a cycle. Hence, in principle,
virtually any expectation of V over [0�∞) can be alternatively described as
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an expectation involving cycle-related quantities. This observation is the key
insight that underlies regenerative simulation.

The use of regenerative structure as an algorithmic tool in the simulation
setting has primarily focused on its use in the context of steady-state simula-
tion. The first suggestion that regenerative cycles could play a useful role in
steady-state simulation output analysis came from Cox and Smith (1961), and
the idea was further developed in Kabak (1968). However, the first compre-
hensive development of the regenerative method for steady-state simulation
output analysis came in a series of papers of Crane and Iglehart (1974a, 1974b,
1975), as well as concurrent work by Fishman (1973, 1974). The great majority
of subsequent work on algorithmic exploitation of regeneration has followed
the historic tradition of focusing on its application to steady-state simulation
output analysis.

In this chapter we focus our discussion on the key theoretical and algorith-
mic issues underlying the use of regeneration in the steady-state simulation
context. We start, in Section 2, by describing the key challenges that confront
a simulationist in analyzing steady-state simulation output, while Section 3
discusses the basic regenerative approach to forming an estimator for the so-
called “time-average variance constant”. Section 4 offers some discussion of
how the particular choice of regenerative structure influences the efficiency
of the method, and Section 5 describes the regenerative solution to the initial
transient problem and the construction of low-bias steady-state estimators. In
Sections 6–8 we discuss the theoretical issue of when a simulation is regen-
erative, with a particular focus on when a discrete-event simulation contains
algorithmically identifiable regenerative structure. Section 9 then discusses
steady-state regenerative analysis from the perspective of martingale theory.

The last two sections of the chapter are intended to give the reader a hint of
the role that regeneration can play in the development of computationally ef-
ficient algorithms for other simulation problems. In particular, we show that
in computing either steady-state gradients or infinite-horizon expected dis-
counted reward that regeneration offers the simulationist the opportunity to
not only construct asymptotically valid confidence statements but to also im-
prove computational efficiency. While regeneration is primarily understood
within the simulation community as offering a vehicle for analysis of simula-
tion output, our two examples are intended to argue that regeneration has the
potential to also play a significant role in the variance reduction context.

2 The steady-state simulation problem

Let V = (V (t): t � 0) be a real-valued stochastic process in which V (t)
represents the value of the simulation output process at (simulated) time t.
For example, V (t) could represent the total work-in-process at time t in a pro-
duction context or the inventory position at time t in a supply chain setting.
Throughout this chapter, we use a continuous time formulation to describe
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the relevant theory. (Note that any discrete-time sequence (Vn: n � 0) can be
embedded into continuous time via the definition V (t) = V�t� for t � 0, where
�x� is the greatest integer less than or equal to x.)

Many simulation applications demand that the simulationist compute a
steady-state performance measure. To be specific, suppose that V satisfies a law
of large numbers (LLN), so that there exists a (deterministic) constant α for
which

(1)
1
t

∫ t

0
V (s) ds⇒ α

as t → ∞, where “⇒” denotes weak convergence. The constant α appearing
in (1) is known as the steady-state mean of V . Computing α is the central
problem in steady-state simulation.

Given the LLN (1), the time-average �V (t) � t−1 ∫ t
0 V (s) ds is the natural es-

timator for α. However, in view of the fact that the simulation of V will usually
be initialized in a state that is atypical of equilibrium behavior, the process V
will at best exhibit the stationarity associated with steady-state dynamics only
in an approximate sense. As a consequence, such a simulation of V over [0� t]
will necessarily include some “initial transient period” over which the simula-
tion outputs will be biased as estimators of steady-state performance. This, in
turn, induces bias in the estimator �V (t) (known as “initial bias”). While the
effect of the initial transient can be expected to dissipate as t →∞, it can have
a significant “small sample” impact on the quality of the estimator �V (t).

To reduce the effect of the initial transient on the steady-state estimation
algorithm, it is commonly recommended that the simulationist expend his com-
puter budget on one (long) replication of V (for which the time horizon t can
be made large), rather than multiple short replications. Because of the fact that
only one realization of the process V is then simulated, estimating the variance
of the associated estimator can then be challenging.

In particular, it is usually the case that a process V satisfying the LLN (1)
will also satisfy a central limit theorem (CLT). Specifically, there exists a (de-
terministic) constant σ ∈ (0�∞) for which

(2)t1/2
(�V (t)− α

)⇒ σN(0� 1)

as t →∞, where N(0� 1) denotes a normal random variable (r.v.) having mean
zero and unit variance. The constant σ2 is called the time-average variance
constant (TAVC) of V . In view of (2), it is easily verified that

(3)
[
�V (t)− zσ√

t
� �V (t)+ zσ√

t

]

is an (asymptotic) 100(1 − δ)% confidence interval for α, provided that z is
chosen so that P(−z � N(0� 1) � z) = 1 − δ. Of course, (3) can be computed
at a practical level only if the TAVC σ2 is known.

Since knowledge of σ2 is virtually never available, the simulationist must in-
stead estimate σ2 from the observed simulation up to time t. If V is stationary,
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σ2 can (in great generality) be represented in terms of the spectral density f̃ (·).
Specifically, σ2 = 2πf̃ (0), where

(4)f̃ (λ) = 1
π

∫ ∞

0
cos(λu) cov

(
V (0)� V (u)

)
du�

Spectral density estimation for stationary processes has been well studied in
the literature; see, for example, Chapter 9 of Anderson (1971). Such estimators
converge at a rate of t−1/3 or t−2/5, with the specific rate depending on the de-
gree of differentiability of f̃ . While virtually all steady-state simulations involve
simulating nonstationary stochastic processes that contain an initial transient
period, one would expect that the best possible convergence rate for an esti-
mator of the TAVC σ2 will be no faster than that which is achievable in the
stationary setting. Hence, more problem structure must be assumed in order
to obtain a TAVC that converges (for example) at rate t−1/2.

In the next section, we show how regenerative structure can be exploited to
obtain an estimator for the TAVC σ2 that converges at rate t−1/2 in the simula-
tion time horizon t. Given the substantial body of theory establishing that t−1/2

is typically an optimal rate of convergence for statistical estimators (see, for
example, Chapter 2 of Ibragimov and Has’minskii, 1981), this suggests that re-
generative structure permits the simulationist to obtain TAVC estimators that
converge at the best possible rate.

3 The regenerative estimator for the TAVC

To obtain a TAVC estimator that converges to σ2 at rate t−1/2, one needs
to assume additional structure about the process V . To illustrate this idea,
suppose that the simulation output process V is a (continuous-time) autore-
gressive process satisfying

(5)dV (s) = −γV (s) ds + dW (s)�

where γ > 0 and W = (W (s): s � 0) is a square integrable process with
stationary independent increments for which EW (s) = μs and varW (s) = η2s
for s � 0. It is easily verified that

V (t) = e−γtV (0)+
∫ t

0
e−γ(t−s) dW (s)

and that V satisfies (2) with α = μ/γ and σ2 = η2/γ. Hence, if the simulation
output process can be assumed to evolve according to (5), we can estimate σ2

via η̂2/γ̂, where η̂2 and γ̂ are appropriately chosen estimators for the para-
meters η2 and γ underlying (5). If V satisfies (5), it can be shown (in great
generality) that the resulting TAVC estimator converges at a rate t−1/2. The
problem, of course, is that it is rarely (if ever) the case that the simulation out-
put process V evolves precisely according to (5). As a consequence, a TAVC
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estimation algorithm based on assuming that V ’s dynamics are governed by (5)
can, at best, provide only an approximation to the true σ2. Nevertheless, this
autoregressive approach to estimating σ2 can, when appropriately applied, of-
fer an effective means of estimating σ2.

The key idea exploited above is the fact that the TAVC σ2 can be easily
and exactly computed for the class of processes described by (5). One then
uses a “plug-in” estimator to estimate the unknown quantities appearing in
the corresponding expression for the TAVC.

The importance of the regenerative method lies in the fact that a large
class of interesting and useful steady-state simulations fall into the class of
regenerative processes, and that a simple expression for the TAVC of such
processes can be derived. For example, suppose that V (t) = g(X(t)), where
X = (X(t): t � 0) is an irreducible positive recurrent continuous-time
Markov chain (CTMC) living on discrete state space S, and where g : S→ R is
a given performance measure. Fix a state z ∈ S. Then, V is regenerative with
cycles defined by the consecutive times (T(n): n � 0) at whichX enters z. The
class of CTMCs (and its discrete-time cousin, the class of discrete-time Markov
chains (DTMCs)) form an important class of models that are commonly simu-
lated and that enjoy regenerative structure.

Simple expressions for the steady-state mean α and TAVC σ2 can be derived
in the regenerative setting. For α, note that (1) suggests that

(6)
1

T(n)

∫ T(n)

0
V (s) ds⇒ α

as n→∞. But the left-hand side of (6) equals

n−1∑n
i=1 Yi

n−1∑n
i=1 τi

�

where

Yi �
∫ T(i)

T(i−1)
V (s) ds and

τi � T(i)− T(i− 1)�

Since (Yi: i � 1) is a sequence of independent and identically distributed
(i.i.d.) r.v.’s, �Yn � n−1∑n

i=1 Yi ⇒ EY1 as n → ∞ (provided E|Y1| < ∞).
Similarly, we expect that τ̄n � n−1∑n

i=1 τi ⇒ Eτ1 as n → ∞, so that the
identity

(7)α = EY1

Eτ1

must hold.
To heuristically derive a corresponding expression for σ2, note that a regen-

erative process is (in great generality) asymptotically stationary. Given (4), we
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expect to be able to represent σ2 as

(8)σ2 = 2
∫ ∞

0
cov
(
V ∗(0)� V ∗(r)

)
dr�

where V ∗ = (V ∗(r): r � 0) is a stationary version of V . Put V ∗
c (r) = V ∗(r)−α

and rewrite (8) as

(9)σ2 = 2
∫ ∞

0
EV ∗

c (0)V
∗
c (r) dr�

The stationary version V ∗ is itself regenerative, with regeneration times 0 <
T ∗(0) < T ∗(1) < · · · . In view of the independence across cycles and the fact
that EV ∗

c (r) = 0, we might hope that the right-hand side of (9) simplifies to

(10)2 E
∫ T ∗(0)

0
V ∗
c (0)V

∗
c (r) dr�

Given the approximate stationarity of V , (10) should be approximately
equal to

2 E
∫ T(N(s)+1)

s
Vc(s)Vc(r) dr

when s is large, where N(s) = max{n � −1: T(n) � s}. Averaging over
s ∈ [0� T (n)], this suggests that

E
2

T(n)

∫ T(n)

0

∫ T(N(s)+1)

s
Vc(s)Vc(r) dr ds

should be close to σ2 when t is large. But

2
∫ T(n)

0

∫ T(N(s)+1)

s
Vc(s)Vc(r) dr ds

= 2
n∑
i=0

∫ T(i)

T(i−1)
Vc(s)

∫ T(i)

s
Vc(r) dr ds

=
n∑
i=0

Z2
i �

whereZi � Yi−ατi. The i.i.d. cycle structure implies that n−1∑n
i=1 Z

2
i ⇒ EZ2

1
as n→∞. Equation (10) therefore suggests that the equality

(11)σ2 = EZ2
1

Eτ1

should hold.
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Given the equality (11), the obvious “plug-in” estimator for the TAVC
σ2 based on simulating V over [0� t] is

∑N(t)
i=1 (Y1 − �V (t)τi)2/N(t)∑N(t)

i=1 τi/N(t)

or its asymptotically equivalent variant

σ̂2(t) = 1
t

N(t)∑
i=1

(
Y1 − �V (t)τi

)2
�

The following theorem makes rigorous the validity of the regenerative TAVC
estimator σ̂2(t). For the proof, see Glynn and Whitt (1993, 2002) and Glynn
and Iglehart (1993).

Theorem 1. Suppose that V is regenerative with respect to the regeneration time
sequence (T(n): n � 0). Assume that Eτ1 <∞. Then, there exist (deterministic)
constants α and σ2 such that

(12)t1/2
(�V (t)− α

)⇒ σN(0� 1)

as t →∞ if and only if E|Y1| <∞ and EZ2
1 <∞, in which case

α = EY1

Eτ1
� σ2 = EZ2

1
Eτ1

�

Furthermore, if (12) holds, then

σ̂2(t)⇒ σ2

as t →∞.

Theorem 1 shows that σ̂2(t) is consistent as an estimator for σ2 precisely
when the CLT (12) holds. When (12) holds with σ2 > 0, then

[
�V (t)− z

√
σ̂2(t)

t
� �V (t)+ z

√
σ̂2(t)

t

]

is an approximate 100(1 − δ)% confidence interval for α.

4 Choice of the optimal regeneration state

Given a simulation of V over the time interval [0� t], the natural point esti-
mator for the steady-state mean α is, of course, the time-average �V (t). While it
may be desirable to modify �V (t) to deal with initial transient or initial bias ef-
fects, one would expect such modifications to be of small order asymptotically.
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Hence, any reasonable point estimator for α will either be exactly equal to �V (t)
or asymptotically equivalent to �V (t). Of course, the r.v. �V (t) is not influenced
in any way by the choice of the regeneration or return state z.

On the other hand, the TAVC estimator σ̂2(t) is defined relative to a specific
choice of the regeneration or return state z ∈ S. A natural question that then
arises is the determination of the state z∗ that is the “best” choice of return
state for estimating σ2. This question can be resolved by studying the rate of
convergence of

√
σ̂2(t) to

√
σ2.

Theorem 2. Suppose that E[Y 4
1 + τ4

1] <∞. Then

t1/2
(�V (t)− α� σ̂(t)− σ

)⇒ N(0�D)

as t → ∞, where N(0�D) is a bivariate normal r.v. with mean 0 and covariance
matrix D given by

D = 1
Eτ1

(
EZ2

1
EA1Z1−λEZ2

1
2σ

EA1Z1−λEZ2
1

2σ
EA2

1−2λEA1Z1+λ2EZ2
1

4σ2

)
�

where Ai = Z2
i − σ2τi and λ = 2 EZ1τ1/Eτ1.

See Glynn and Iglehart (1987) for the proof. Theorem 2 establishes that the
TAVC estimator does indeed converge at rate t−1/2. It further describes the
asymptotic variance of σ̂2(t) in terms of the given regenerative cycle structure.
The asymptotic variance can be explicitly computed for certain CTMC mod-
els; see Glynn and Iglehart (1986). These examples make clear that there is,
unfortunately, no simple guidance available for how to choose the best pos-
sible regeneration state. In particular, the examples make clear that choosing
the regeneration state z̃ that minimizes the mean return time is not necessarily
the choice that minimizes the asymptotic variance of σ̂2(t).

One odd characteristic of Theorem 2 is that the covariance entry D12
(= D21) of the matrix D appearing there turns out to be independent of the
choice of regeneration state. This result, due to Calvin (1994), has no obvious
and apparent simple explanation, and is a consequence of a direct computa-
tion. By contrast, the entry D11 must clearly be independent of the choice of
the regeneration state z, since it is the asymptotic variance of the r.v. �V (t) that
is defined independently of z.

5 The regenerative approach to the initial transient and initial
bias problems

As discussed in Section 2, one of the major challenges in steady-state simu-
lation is the mitigation of effects due to the initial transient and initial bias. We
deal first with the better understood issue of how to reduce biasing effects due
to a nonstationary initialization.
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It is usual, in the presence of (1), that there exists ν > 0 such that

(13)EV (t) = α+ O
(
e−νt

)
as t → ∞, where O(h(t)) represents a function that is bounded by a constant
multiple of |h(t)| as t → ∞. For example, (13) is known to typically hold
for geometrically ergodic Markov processes; see Meyn and Tweedie (1993).
Given (13),

∫ t

0
E
(
V (s)− α

)
ds = b+ O

(
e−νt

)

as t →∞, so that

(14)E�V (t) = α+ t−1b+ O
(
e−νt

)
as t →∞, where

b =
∫ ∞

0
E
(
V (s)− α

)
ds�

An estimator with lower initialization bias can therefore be constructed if
one can find an asymptotically unbiased estimator for b. Deriving such an es-
timator without imposing additional structure is an impossibility in the single
replication context, because only one realization of the process from which to
estimate b is available. On the other hand, if the process V is assumed to be
regenerative, estimating b should (in principle) be possible, because the i.i.d.
cycle structure suggests that the effect of initialization is now implicitly repli-
cated (for example, by permuting the simulated cycles).

Appealing to renewal theory yields the following expression for b; for the
proof see Glynn (1994).

Proposition 1. Suppose that V is regenerative with respect to the regeneration
times 0 = T(0) < T(1) < · · · . If τ1 has a density and satisfies

Eτ1

(
1 +

∫ τ1

0

∣∣V (s)∣∣ ds
)
<∞�

then (14) holds with

b = − 1
Eτ1

(
E
∫ τ1

0
sV (s) ds − αE

τ2
1

2

)
�

In view of Proposition 1, it is now clear how one can potentially reduce
the effects of initial bias. In particular, consider the “plug-in” estimator for b
defined by

b̂(t) = − 1
T(N(t))

N(t)∑
i=1

(∫ τi

0
sV
(
T(i− 1)+ s

)
ds − �V (t)τ

2
i

2

)
�
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We expect that

(15)E
(�V (t)− t−1b̂(t)

) = α+ o
(

1
t

)

as t →∞, where o(h(t)) denotes a function that, when divided by |h(t)|, tends
to zero as t →∞. Given that α1(t) � �V (t)− t−1b̂(t) generally satisfies

(16)
varα1(t)

var �V (t) → 1

as t → ∞, (15) establishes that α1(t) has lower asymptotic bias while suffer-
ing no increase in asymptotic variance. For additional discussion, see Glynn
(1994).

Consider the estimators:

α2(t) = �V (T (N(t)+ 1
))
�

α3(t) = �V (T (N(t)))+ 1
t2

N(t)∑
i=1

(
Yi − �V (t)τi

)
τi�

α4(t) = N(t)�V (T (N(t)))− N(t)− 1
N(t)

N(t)∑
i=1

∑
j �=i Yj∑
j �=i τj

�

Each of the above estimators duplicates the performance of α1(t), in the
sense that each satisfies both (15) and (16); see Meketon and Heidelberger
(1982) and Glynn and Heidelberger (1990, 1992).

Turning next to the question of identifying the duration of the initial tran-
sient period, recall that the sequence of cycle variables ((Yi� τi): i � 1) is i.i.d.
Hence, on the time-scale of regenerative cycles, the initial transient disappears
entirely. Furthermore, recall that the steady-state mean α can be expressed
as the ratio of expectations (7) defined in terms of cycle-related quantities
Yi and τi. Hence, if one simulates V over n regenerative cycles (to time T(n)),
the natural estimator for α is the ratio estimator �V (T(n)) = �Yn/τ̄n. The bias
of this estimator arises as a consequence of the fact that �Yn/τ̄n = h(�Yn� τ̄n),
where h is the nonlinear function defined by h(x1� x2) = x1/x2. Thus, on
the time-scale of regenerative cycles, initialization bias manifests itself as es-
timator bias due to nonlinearity. Such nonlinearity bias has long been studied
within the statistical literature, and a large number of remedies for dealing
with bias of this kind have been developed over the years: Taylor expansion
methods (Cramér, 1946), the jack-knife (Miller, 1974), the bootstrap (Efron
and Tibshirani, 1993), and sectioning (Lewis and Orav, 1989).

Thus, regenerative structure suggests a variety of different mechanisms for
dealing with initial bias (and, on the regenerative cycle time scale, the initial
transient).
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6 When is a simulation regenerative?

As has been seen in preceding sections, regenerative structure turns out
to be algorithmically useful in developing solutions to various aspects of the
steady-state simulation problem. Furthermore, regenerative structure can be
easily identified in the setting of discrete state space Markov chains, in either
discrete or continuous time.

Of course, most real-world discrete-event simulations do not involve simu-
lating a discrete state space Markov processes. Much more complicated models
are typically simulated. However, one can persuasively argue that the great
majority of discrete event simulations can, from a mathematical standpoint, be
viewed as simulations of Markov processes (living on a continuous state space
rather than a discrete state space). In particular, by adding supplementary vari-
ables to the “physical state” (e.g., the location of each customer in a network)
of the system, one typically ends up with a state descriptor that evolves accord-
ing to a Markov process. For example, one can supplement the physical state
by adding the remaining time to completion of each currently scheduled event
associated with the currently occupied physical state. Thus, one may abstractly
view the typical discrete-event simulation as corresponding to the simulation
of a Markov process X = (X(t): t � 0) living on a continuous state space S,
where the continuous component of the state records the remaining time to
event completion for each of the active event “clocks”.

We assume throughout the reminder of the paper that the state space S is
a separable metric space (so that, for example, open and closed subsets of R

d

are covered by our theory).
Now that we have established that the typical discrete-event simulation can

be viewed as a Markov process, we next argue that any Markov process for
which the steady-state simulation problem is well defined necessarily exhibits
regenerative structure. This, in turn, will show that any discrete-event simula-
tion for which the steady-state simulation problem makes sense must contain
regenerative structure.

We start with a precise definition of “well-posedness” for the steady-state
simulation problem. For x ∈ S, let Px(·) and Ex(·) be the probability and ex-
pectation operator, respectively, under which X(0) = x.

Definition 1. We say that the steady-state simulation problem is well-posed for
the S-valued Markov process X = (X(t): t � 0) if for each bounded function
g : S→ R, there exists α(g) such that for x ∈ S,

1
t

∫ t

0
Exg

(
X(s)

)
ds→ α(g)

as t →∞.

According to the definition, the expectation of V (s) = g(X(s)) must con-
verge (at least in an average sense) to a number α = α(g) that is independent
of the initial state x. This seems a reasonable definition of well-posedness, for
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otherwise, there exists a bounded function g for which t−1 ∫ t
0 Exg(X(s)) ds

either does not converge or converges to a limit that depends on the initial
state x. In either case, this precludes what is normally understood by the no-
tion of steady-state.

Recall that a sequence (Wi: i � 0) is said to be one-dependent if (Wj: j < i)
is independent of (Wj : j > i) for each i � 1.

Theorem 3. Let X = (X(t): t � 0) be an S-valued Markov process for which
the steady-state simulation problem is well-posed. Then, there exist random times
0 � T(0) < T(1) < · · · such that:

(i) The probability distribution Px((X(T(i − 1) + s): 0 � s � τi) ∈ ·) is
independent of both x ∈ S and i � 1;

(ii) The sequence of cycles ((X(T(i − 1) + s): 0 � s � τi): i � 0) is one-
dependent;

(iii) Exτ1 <∞.

For the proof, see Glynn (1994).
This theorem asserts that any simulation for which the steady-state simula-

tion problem is well-posed necessarily possesses regenerative structure. How-
ever, the regenerative structure identified by this result only guarantees the
existence of one-dependent identically distributed cycles. Fortunately, much
of the theory developed in Sections 3–5 generalizes from the classical regen-
erative structure (of i.i.d. cycles) to the setting of one-dependent regenera-
tive processes. For example, the one-dependent analog to σ̂2(t) continues
to converge to the TAVC σ2 at rate t−1/2 in the one-dependent setting; see
Henderson and Glynn (2001).

However, an alternative approach exists that permits one to use conven-
tional regenerative methodology based on i.i.d. cycle structure. For one-
dependent regenerative processes, the ratio formula for the steady-state
mean α(g) continues to hold:

(17)α(g) = E
∫ τ1

0 g(X(T(0)+ s)) ds
Eτ1

�

To estimate α(g), we simulate X over the cycle corresponding to the inter-
val [T(0)� T (1)]. At time T(1), rather than continuing the simulation of X,
one now terminates the simulation. One then independently draws a new
initial condition from P(X(T(0)) ∈ ·) and simulates a second independent
trajectory of X up to completion of its corresponding first cycle. By repeat-
ing this process, we are simulating independent realizations of X over its first
cycle. By “pasting” these i.i.d. cycles back to back, one is generating a new
process X̃ that is regenerative in the classical sense (with i.i.d. cycles). Given
the ratio formula (17), the steady-state of X̃ exactly coincides with that of the
one-dependent process X. Hence, if one simulates X̃ rather than X, all the
methods of Sections 3–5 apply without change.
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7 When is a GSMP regenerative?

Section 6 makes clear that regeneration is the rule rather than the excep-
tion for well-behaved steady-state simulations. This, however, leaves open the
question of when a specific simulation model has the structure necessary to
guarantee that the associated steady-state simulation is well behaved.

We shall focus exclusively, in this section, on conditions under which
discrete-event simulations possess the required structure. We take the point
of view here that a discrete-event simulation is tantamount to simulation of a
class of processes known as generalized semi-Markov processes (GSMPs). To
describe a GSMP, we make concrete our discussion of Section 6, in which we
argued that a discrete-event simulation can be viewed as a Markov process. Let
P be a finite or countably infinite set of physical states and let E be a finite set
corresponding to those events that can trigger physical state transitions. For
each of the events e ∈ E that are active in a physical state s ∈ P , we can con-
ceptually imagine that there is an associated clock. When a clock e∗ runs down
to zero in state s, it triggers a physical state transition to s′ with probability
p(s′; s� e∗). The clocks e′ active in s′ correspond to events that were already
scheduled in the previous state s (but had not yet run down to zero), in which
case the clocks continue running down to zero in s′ at rate r(s′� e′), or corre-
spond to new events that must be scheduled in s′. The clocks associated with
such new events in e′ are independently scheduled according to distributions
F(·; e′� s′� e∗� s), where e∗ is the trigger event that initiated the transition. Ex-
perienced simulationists will recognize that the state of the clocks effectively
describes the “future event schedule” of the associated discrete-event simula-
tion.

Given that the physical state and future event schedule is precisely the in-
formation necessary to evolve a discrete-event simulation forward in time, it
is clear that X(t) = (S(t)� C(t)) is Markov, where S(t) is the physical state
occupied at time t (known as the GSMP corresponding to X), and C(t) is the
vector of clock readings corresponding to active events.

To develop a sufficient condition under which the steady-state simulation
problem for the Markov process X = (X(t): t � 0) is well posed, one clearly
needs to invoke an assumption that ensures that there is a unique stationary
distribution forX. This, of course, requires an irreducibility hypothesis of some
kind.

Definition 2. The GSMP corresponding toX is said to be irreducible if for each
pair (s� s′) ∈ P×P , there exists a finite sequence of states s1� � � � � sn and events
e1� � � � � en such that for 0 � i � n, ei is active in si (s0 � s, sn+1 = s′) and

n∏
i=0

p(si+1; si� ei)r(si� ei) > 0�
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The above assumption induces irreducibility over the physical states of
the GSMP. For irreducibility over the clock readings of X, consider the fol-
lowing definition.

Definition 3. The GSMP corresponding to X satisfies the positive density as-
sumption if each distribution F(·; e′� s′� e� s) has a density component that is
strictly bounded away from zero on an interval [0� ε] with ε > 0.

We are now ready to state our main result for GSMPs.

Theorem 4. Suppose that:

(i) The GSMP corresponding toX is irreducible and satisfies the positive den-
sity assumption;

(ii) |P | <∞;
(iii)

∫
[0�∞) tF(dt; e′� s′� e� s) <∞ for all (e′� s′� e� s).

Then, the steady-state simulation problem for the Markov processX is well-posed.

For a proof, see Glynn and Haas (2006). The above conditions are necessary,
in the sense that if any of the three conditions above is violated, then there exist
counterexamples.

8 Algorithmic identification of regenerative structure

Our discussion of Sections 6 and 7 makes clear that regenerative structure
exists within the typical discrete-event steady-sate simulation. On the other
hand, the TAVC estimator of Section 3, as well as the low bias estimators of
Section 5, all depend upon the ability of the simulationist to identify the asso-
ciated regeneration times. Of course, this identification is trivial in the setting
of discrete state space Markov chains, where the regeneration times can be
chosen to be those times at which the chain enters a fixed state. Unfortunately,
identification of the regenerative structure guaranteed by Theorem 3 is not
algorithmically trivial in general.

The main difficulty is that the regenerative structure of Theorem 3 involves
the use of randomized regeneration. This means that the regeneration times
cannot be identified purely on the basis of simulating X alone. Some addi-
tional random variables (i.e., the “randomization”) must also be generated.
This means, for example, that a “randomization post-processor” must be added
to the typical discrete-event simulation in order to be able to exploit the regen-
erative structure that is theoretically guaranteed to exist.

We now proceed to describe the randomized regeneration structure that
arises in the setting of discrete time Markov chains X = (Xn: n � 0). The re-
generative structure that can be required in continuous time is generally more
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complicated to describe; see Sigman (1990) for details. Fortunately, the dis-
crete time theory covers discrete-event simulations. In that setting, the key
discrete-time process is the sequence (X(Γn): n � 0), where 0 = Γ0 < Γ1 <
· · · are the epochs at which physical state transitions occur and (X(t): t � 0) is
the continuous-time Markov process (associated with GSMPs) described ear-
lier.

Let (Xn: n � 0) be an S-valued discrete-time Markov chain satisfying the
conditions of Theorem 3. Then, there exists a function λ : S → [0� 1], a subset
A ⊆ S, an integer m � 1 and a probability distribution ϕ such that:

(i) Px(Xm ∈ ·) � λ(x)ϕ(·), x ∈ S;
(ii) Px(Xn ∈ A infinitely often) = 1, x ∈ S;

(iii) inf{λ(x): x ∈ A} > 0.

To see how this gives rise to randomized regenerative structure, note that
condition (i) guarantees that we can write

(18)Px(Xm ∈ ·) = λ(x)ϕ(·)+ (1 − λ(x)
)
Q(x� ·)�

where Q(x� ·) is a probability distribution on S for each x. Hence, conditional
on Xn = x, we can generate Xn+m by generating a Bernoulli r.v. having para-
meter λ(Xn). If the Bernoulli r.v. takes on value 1, then we distribute Xn+m
according to ϕ; otherwise, we distribute Xn+m according to Q(Xn� ·). The
segment (Xn+1� � � � �Xn+m−1) is then generated from the conditional distri-
bution, given the starting state Xn and ending state Xn+m for the full segment
(Xn� � � � �Xn+m). Whenever we distribute Xn+m according to ϕ, Xn+m is in-
dependent of the history of the chain up to and including step n. Conditions
(ii) and (iii) guarantee that there exist infinitely many times T(0) < T(0)+m �
T(1) < T(1)+m � T(2) < · · · (separated by gaps of at leastm steps) at which
the chain is distributed according to ϕ.

The random times (T(n): n � 0) form cycle boundaries that correspond to
a regenerative process with one-dependent identically distributed cycles. In the
special case that m = 1, the cycles are i.i.d. and the process X is regenerative
in the classical sense. One difficulty with this means of identifying regener-
ative times is that the algorithm is invasive. By invasive, we mean that the
algorithm impacts the way we generate sample replications of the process X.
In particular, were we to straightforwardly adapt the above mechanism for
constructing regeneration times, the basic algorithms used to simulate (for ex-
ample) discrete-event systems would need to be modified.

In view of this, it is clearly desirable to develop an alternative implementa-
tion of the algorithm. Under the conditions above, it can be shown that there
exists a function w : S × S→ [0� 1] for which

λ(x)ϕ(dy) = w(x� y)Px(Xm ∈ dy)�(
1 − λ(x)

)
Q(x� dy) = (1 −w(x� y)

)
Px(Xm ∈ dy)�

Suppose that one simulates a realization of the process X (using one’s algo-
rithm of choice). To identify the regeneration time, we apply the following
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“post-processor” to the sampled realization. If Xn = x and Xn+m = y, gener-
ate a Bernoulli r.v. having probability w(Xn�Xn+m). If the Bernoulli r.v. is 1,
then the process has distribution ϕ at time n +m; otherwise, it does not. This
algorithm is probabilistically equivalent to the method described earlier, but it
is noninvasive and requires only the post-processing step.

This idea can be applied even to discrete state space Markov chains in which
consecutive entry times to a fixed state z constitute easily identified regenera-
tions. To illustrate, suppose that (P(x� y): x� y ∈ S) is the one-step transition
matrix of a discrete-time Markov chain to be simulated. Put ϕ(y) = P(z� y)
and

λ(x) = inf
y∈S

P(x� y)

P(z� y)

so that P(x� y) � λ(x)P(z� y) for x� y ∈ S. Clearly, λ(z) = 1. However,
λ(x) typically will be positive for some states x �= z. Hence, our random-
ized (classical) regenerations occur every time the chain leaves z, but generally
occur more frequently. For this special case in which one sequence of regener-
ations is a superset of another sequence of regenerations, one can prove that
the superset provides a statistically more efficient estimator of the TAVC (i.e.,
the D22 term in Theorem 2 is reduced); see Andradóttir et al. (1995) for de-
tails.

Returning to the discrete-event context, the key to practical implementation
is computing the function w. This, in turn, involves computing Px(Xm ∈ ·).
This can easily be done for m = 1, but is nontrivial for values of m � 2.
Henderson and Glynn (2001) argue that for a discrete-event simulation in
which no “event cancellation” is possible, the minimal value of m compati-
ble with conditions (i)–(iii) is m∗, where m∗ is the minimal number of events
that are ever simultaneously scheduled by the simulation. Hence, any discrete-
event simulation possessing a so-called “single state” (i.e., a state in which only
one event is scheduled) is easily amenable to regenerative methodology.

When m∗ > 1, algorithmic identification of regeneration times is substan-
tially more complicated. Suppose, however, that there is no event cancellation
in the GSMP and that each “speed” r(s� e) equals one. Assume the GSMP
is initially in a state x = (s� c) in which m clocks are active and in which
event ẽ = ẽ(x) is the one that has the most remaining time until its clock
runs down to zero. Then, the m-step transition probability for (X(Γi): i � 0)
can be easily computed on that part of the sample space on which the (ran-
dom) trigger event e∗m corresponding to transition m equals ẽ. In other words,
Px(X(Γm) ∈ ·� e∗m = ẽ(x)) can be written down explicitly, because the event
{e∗m = ẽ(X0)} is precisely the event that all of the clocks scheduled prior to
time m were set at values greater than that associated with ẽ(X0). Thus, if we
find a function λ and a probability ϕ for which

Px
(
Xm ∈ ·� e∗m = ẽ(X0)

)
� λ(x)ϕ(·)�
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we can implement the same approach as desired above, by letting w be chosen
so that

w(x� y)Px
(
Xm ∈ dy� e∗m = ẽ(X0)

) = λ(x)ϕ(dy)�

The only significant change is that we generate the Bernoulli r.v. having
parameter w(Xn�Xn+m) only when e∗n+m = ẽ(Xn); see Henderson and Glynn
(1999) for a related idea.

This method (and analogous ideas for dealing with nonunit speeds and
event cancellation) can be used to construct regenerations for a large class
of GSMPs. Practically speaking, however, the method is difficult to apply for
GSMPs for which m∗ is large. The difficulty is that condition (i) becomes more
demanding when m∗ is large, because one must lower bound a joint density
on a “clock space” having dimension at least m∗. Such lower bounds typically
degenerate badly in high-dimensional contexts, leading to implementations in
which regeneration occurs (very) infrequently.

Thus, the question of developing easily implemented and practically useful
methods for algorithmic identification of regeneration times remains largely
open at this point.

9 A martingale perspective on regeneration

To illustrate the connection between martingales and regeneration, we focus
here on the case in which V (t) = g(X(t)), where X = (X(t): t � 0) is an
irreducible finite state continuous time Markov chain with rate matrix Q =
(Q(x� y): x� y ∈ S). Given the performance measure g : S → R (where we
choose to encode g = (g(x): x ∈ S) as a column vector), the linear system

(19)Qh = −(g − αe)

has a solution h. Here, e is the column vector in which all entries equal 1,
and (19) is called Poisson’s equation.

It is a standard fact in the theory of Markov processes that

h
(
X(t)

)−
∫ t

0
(Qh)

(
X(s)

)
ds

is then a martingale; see, for example, Karlin and Taylor (1981). In other words,

h
(
X(t)

)+
∫ t

0
g
(
X(s)

)
ds − αt

enjoys the martingale property. Suppose that T is a stopping time adapted toX
(so that I(T � t) is a deterministic function of the path (X(s): 0 � s � t))
having finite expectation. Then, the optional sampling theorem for martingales
(Breiman, 1968) can be applied, yielding

(20)Eh
(
X(T)

)+ E
∫ T

0
g
(
X(s)

)
ds − αET = Eh

(
X(0)

)
�
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The identity (20) holds in great generality for Markov processes in discrete and
continuous time, provided that one suitably generalizes the rate matrixQ in an
appropriate way; see Ethier and Kurtz (1986).

Note that if the stopping time T can be chosen so that Eh(X(T)) =
Eh(X(0)), then α can be viewed as the ratio of expectations

(21)α = E
∫ T

0 g(X(s)) ds
ET

� EY
Eτ

�

Hence, by simulating independent copies of the process X over the time in-
terval [0� T ], α can be computed via a ratio estimator that enjoys precisely the
same central limit and bias properties as the conventional regenerative estima-
tor described earlier in this chapter. In particular, if (Y1� τ1)� � � � � (Yn� τn) are
n i.i.d. copies of (Y� τ), then αn = (Y1 + · · · +Yn)/(τ1 + · · · + τn) satisfies the
CLT

n1/2(αn − α)⇒ σN(0� 1)

as n→∞, where σ2 = var(Y − ατ)/(Eτ)2, and the bias expansion

Eαn = α− 1
n

E(Y − ατ)τ

(Eτ)2 + o
(

1
n

)

holds (thereby providing a straightforward construction of a “low bias” estima-
tor having bias o(1/n)).

Of course, the key is to find a distribution for X(0) and a random time T so
that Eh(X(T)) = Eh(X(0)).

Since the simulationist does not know the solution to Poisson’s equation,
one simply chooses X(0) and T so that X(0) and X(T) have the same distri-
bution. Of course, the easiest way to guarantee this is to let T be the first time
that X returns to the state occupied at time t = 0. In this case, the above esti-
mation procedure just reduces to the conventional regenerative method based
on successive returns to a single state. Thus, the martingale perspective offers
a complementary viewpoint regarding the regenerative method for computing
steady-state expectations.

However, the optional sampling formula (20) offers the potential for de-
veloping new steady-state estimation algorithms. As an example, consider the
successive times β1� β2� � � � at which X enters some fixed nonempty subset
A ⊂ S. To be precise, let β0 = 0 and put

βi = inf
{
t > βi−1: X(t) ∈ A�X(t−) /∈ A}�

Then, (X(βi): i � 1) is an irreducible A-valued discrete time Markov chain
with stationary distribution νA. If EνA(·) is the expectation operator under
which X(0) has distribution νA, then (20) yields the equality

EνAh
(
X(T)

)+ EνA

∫ β1

0
g
(
X(s)

)
ds − αEνAβ1 = EνAh

(
X(0)

)
�
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Because EνAh(X(T)) = EνAh(X(0)), we obtain the identity

(22)α = EνA

∫ β1
0 g(X(s)) ds
EνAβ1

�

Hence, the regenerative ratio formula (7) generalizes beyond the conventional
setting in which cycles are defined in terms of i.i.d. cycles. (Note that the βi’s
split the sample path for X into identically distributed cycles having a complex
dependency structure.)

One might hope to algorithmically exploit (22) in the same way as for (21).
If we could generate variates from νA, the algorithm would be clear. Just gen-
erate X(0) from νA, simulate to time β1, and compute (Y� τ), where

Y =
∫ β1

0
g
(
X(s)

)
ds�

τ = β1�

By simulating i.i.d. copies of (Y� τ), we can estimate α via αn = (Y1 + · · · +
Yn)/(τ1+· · ·+τn). Precisely the same CLT and low bias estimation procedure
as before can thus be utilized. Because a “multi-state”A is hit more frequently
than any single state, we can expect this estimation procedure to be more effi-
cient than the conventional regenerative method based on returns to a single
fixed state.

The difficulty, of course, is that we typically are unable to generate vari-
ates from νA. However, by conditioning on X(0) and X(β1) in (22), we can
rewrite (22) as

(23)α =
∑

x�y ExY(y)νA(x)∑
x�y Exτ(y)νA(x)

�
∑

x�y Exu(x� y)∑
x�y �(x� y)

�

where

Y(y) =
∫ β1

0
g
(
X(s)

)
ds I
(
X(β1) = y

)
�

τ(y) = β1I
(
X(β1) = y

)
�

Each term in the numerator and denominator can be estimated via simulation
of X over [0� t], namely

û(t� x� y) = 1
J(t)

J(t)∑
i=1

∫ βi

βi−1

g
(
X(s)

)
ds I
(
X(βi−1) = x�X(βi) = y

)
�

�̂(t� x� y) = 1
J(t)

J(t)∑
i=1

(βi − βi−1)I
(
X(βi−1) = x�X(βi) = y

)
�
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where J(t) is the number of times the process X enters A over [0� t]. The
representation (23) leads to a point estimator∑

x�y û(t� x� y)∑
x�y �̂(t� x� y)

for α. A corresponding “plug-in” TAVC estimator can be implemented in a
straightforward fashion when |A| <∞. The plug-in estimator takes advantage
of the fact that the TAVC estimator for the A-valued discrete-time Markov
chain (X(βi): i � 1) can be computed easily (by solving a linear system of |A|
equations in |A| unknowns). This new estimator for the TAVC associated with
simulation ofX over [0� t] is essentially the semi-regenerative TAVC estimator
proposed by Calvin et al. (2006).

10 Efficiency improvement via regeneration: Computing steady
state gradients

In many applications settings, it is of interest to compute the sensitivity of
the system’s performance to perturbations in an underlying parameter. For
example, it may be that the arrival rate to a queue is only approximately known,
so that computing the change in performance that corresponds to changing
the arrival rate is relevant. In particular, computing the derivative (or, more
generally, the gradient) of a steady-state performance measure with respect
to the arrival rate is a computational problem of significant importance. Of
course, such derivatives also play a key role in both simulation-based stochastic
optimization and statistical analysis of complex stochastic systems; see Glynn
(1990).

To be more precise, suppose that the probability distribution underlying the
simulation of V depends on a parameter θ ∈ R

d. Let Pθ be the distribution
corresponding to θ. Then, the steady-state mean of V depends on θ, so that
α = α(θ). As noted earlier, the time average �V (t) satisfies

�V (t)⇒ α(θ)

under Pθ, suggesting that

(24)Eθ
�V (t)→ α(θ)�

In significant generality, there exists a random process L(θ� t) (typically,
a martingale), known as the “likelihood ratio process”, such that

(25)Eθ
�V (t) = Eθ0

�V (t)L(θ� t)
for t � 0, where Eθ0(·) is the expectation operator corresponding to Pθ0 .
Assuming that the gradient can be interchanged with the expectation opera-
tor Eθ0(·), we find that

∇Eθ
�V (t)|θ=θ0 = Eθ0

�V (t)∇L(θ� t)|θ=θ0 �
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In view of (24), it seems reasonable to expect that

∇Eθ
�V (t)|θ=θ0 → ∇α(θ0)

as t →∞, so that

Eθ0
�V (t)∇L(θ0� t)→ ∇α(θ0)

as t → ∞. In particular, assume that a bias expansion similar to that derived
in Section 5 holds, so that

(26)Eθ0
�V (t)∇L(θ0� t) = ∇α(θ0)+ 1

t
∇b(θ0)+ o

(
1
t

)

as t →∞. On the other hand, (L(θ� t): t � 0) is typically a martingale process
for each θ. Given that (h−1(L(θ0+hei� t)−L(θ0� t)): t � 0) is then a martin-
gale for each unit vector ei, one expects (∇L(θ0� t)ei: t � 0) to be a martingale
as well. The martingale CLT (see, for example, p. 476 of Billingsley, 1995) then
suggests that there exists a (deterministic) constant γ ∈ (0�∞) such that

t−1/2∇L(θ0� t)ei ⇒ γN(0� 1)

as t →∞. Slutsky’s lemma then implies the weak convergence statement

t−1/2�V (t)∇L(θ0� t)ei ⇒ αγN(0� 1)

as t →∞, so that we expect

(27)t−1 var �V (t)∇L(θ0� t)ei → α2γ2 var N(0� 1)

as t →∞.
For a given computer budget c, how many independent replications m of

length c/m should one simulate to minimize the mean square error of the re-
sulting estimator? Note that the bias of each replication is then of order m/c
(in view of (26)). The variance of a replication of length c/m is of order c/m
(see (27)). So, the sample mean over m such replications has a variance of
order c/m2. The value of m that minimizes the mean square error of the cor-
responding gradient estimator is then of order c3/4, yielding an estimator with
a root mean square error of order c−1/4.

However, if regenerative structure can be identified algorithmically, then
a different means of estimating ∇α(θ0) is available to simulationist. If the
process V is regenerative under Pθ, the ratio formula

(28)α(θ) = Eθ
∫ τ1

0 V (s) ds
Eθτ1

holds (provided that the process is initiated with a regeneration at t = 0,
so that T(0) = 0). Assuming the existence of a likelihood ratio process
(L(θ� t): t � 0), we expect to be able to extend the identity (25) separately
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to the numerator and denominator of (28) to

(29)α(θ) = Eθ0

∫ τ1
0 V (s) ds L(θ� τ1)

Eθ0τ1L(θ� τ1)
�

Assuming that the gradient operator can be interchanged with the expecta-
tion operator Eθ0(·) (as above), we find that

(30)∇α(θ0) =
Eθ0

[∫ τ1
0 (V (s)− α(θ0)) ds∇L(θ� τ1)

]
Eθ0τ1

�

Consequently, ∇α(θ0) can be expressed as ∇α(θ0) = k(Eξ), where

ξ =
(∫ τ1

0
V (s) ds� τ1�

∫ τ1

0
V (s) ds∇L(θ0� τ1)� τ1∇L(θ0� τ1)

)

and

k(x1� x2� x3� x4) = x3 − (x1/x2)x4

x2
�

Suppose that one simulates n i.i.d. cycles of v under the probability Pθ0 , thereby
obtaining n independent copies ξ1� ξ2� � � � � ξn of the random vector ξ. The
estimator ∇αn(θ0) � k(n−1∑n

i=1 ξi) can then be analyzed via “delta-method”
type arguments (see, for example, Serfling, 1980) to establish that the estimator
converges at rate n−1/2 (and hence, in units of computer time, at rate c−1/2)
to the gradient ∇α(θ0). This c−1/2 convergence rate is to be contrasted with
the c−1/4 rate observed earlier, and shows clearly that regenerative structure
can be usefully exploited in obtaining substantial efficiency improvements.

11 Efficiency improvement via regeneration: Computing infinite horizon
discounted reward

We now offer a second illustration of the principle that the presence of
regenerative structure can be usefully exploited to obtain efficiency improve-
ments. Consider the infinite horizon expected discounted reward α = ED,
where

D =
∫ ∞

0
e−rtV (t) dt

for some r > 0. From a computational standpoint, an algorithm based on sim-
ulating i.i.d. copies of the r.v. D cannot be operationalized, because it takes
infinite time to generate the above r.v. As a consequence, one needs to con-
sider computationally feasible alternatives.

One such approach is to exploit regeneration. In particular, suppose that
V is regenerative with regeneration times 0 = T(0) < T(1) < · · · (so that
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V regenerates at T = 0) that split the sample path of V into i.i.d. cycles. Then,

α = E
∫ ∞

0
e−rtV (t) dt

= E
∫ τ1

0
e−rtV (t) dt + Ee−rτ1

∫ ∞

0
e−rtV (τ1 + t) dt

= E
∫ τ1

0
e−rtV (t) dt + Ee−rτ1α

so that α = k(Eξ), where

ξ =
(∫ τ1

0
e−rtV (t) dt� e−rτ1

)

and k(x1� x2) = x1/(1 − x2).
As in Section 10, the corresponding regenerative estimator for α is αn =

k(n−1∑n
i=1 ξi), where ξ1� ξ2� � � � � ξn are i.i.d. copies of ξ obtained by simu-

lating n independent cycles of V . Note that the estimator for α can be com-
puted in finite time and is computationally feasible. Furthermore, the delta
method again applies, yielding the conclusion that αn typically converges to α
at rate c−1/2 in the computer budget c. Thus, use of regeneration in this setting
makes feasible and practical a computation that is problematic in its original
form.
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Abstract

We describe the basic principles of ranking and selection, a collection of experiment-
design techniques for comparing “populations” with the goal of finding the best
among them. We then describe the challenges and opportunities encountered in
adapting ranking-and-selection techniques to stochastic simulation problems, along
with key theorems, results and analysis tools that have proven useful in extending
them to this setting. Some specific procedures are presented along with a numerical
illustration.

1 Introduction

Over the last twenty years there has been considerable effort expended to
develop statistically valid ranking-and-selection (R&S) procedures to compare
a finite number of simulated alternatives. There exist at least four classes of
comparison problems that arise in simulation studies: selecting the system with
the largest or smallest expected performance measure (selection of the best),
comparing all alternatives against a standard (comparison with a standard),
selecting the system with the largest probability of actually being the best
performer (multinomial selection), and selecting the system with the largest
probability of success (Bernoulli selection). For all of these problems, a con-
straint is imposed either on the probability of correct selection (PCS) or on
the simulation budget. Some procedures find a desirable system with a guar-
antee on the PCS, while other procedures maximize the PCS under the budget
constraint. Our focus in this chapter is on selection-of-the-best problems with
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a PCS constraint. A good procedure is one that delivers the desired PCS effi-
ciently (with minimal simulated data) and is robust to modest violations of its
underlying assumptions. Other types of comparison problems and procedures
will be discussed briefly in Section 7. In this chapter “best” means maximum
expected value of performance, such as expected throughput or profit.

Traditional roles for R&S are selecting the best system from among a (typ-
ically small) number of simulated alternatives and screening a relatively large
number of simulated alternatives to quickly discard those whose performance
is clearly inferior to the best. More recently, R&S procedures are playing an
important role in optimization via simulation. Many algorithms for optimiza-
tion via simulation search the feasible solution space by some combination of
randomly sampling solutions and exploring the neighborhood of good solu-
tions (see Chapters 18–21). R&S procedures can be embedded within these
algorithms to help them make improving moves correctly and efficiently. In
addition, at the end of an optimization-via-simulation search, R&S procedures
can be applied to those solutions that were visited by the search to provide a
statistical guarantee that the solution returned as best is at least the best of
all the solutions actually simulated. See, for instance, Boesel et al. (2003) and
Pichitlamken and Nelson (2001) for more on the application of R&S in this
context.

Rather than present a comprehensive survey of R&S procedures, or pro-
vide a guide for applying them, our goal is to explain how such procedures
are constructed, emphasizing issues that are central to designing procedures
for computer simulation, and reviewing some key theorems that have proven
useful in deriving procedures. We do, however, present three specific R&S pro-
cedures as illustrations. See Goldsman and Nelson (1998) and Law and Kelton
(2000) for detailed “how to” guides, Bechhofer et al. (1995) for a comprehen-
sive survey of R&S procedures and Hochberg and Tamhane (1987) or Hsu
(1996) for closely related multiple comparison procedures (MCPs).

The chapter is organized as follows: In Section 2 we show how R&S proce-
dures are derived in an easy, but unrealistic, setting. Section 3 lists the chal-
lenges and opportunities encountered in simulation problems, along with key
theorems and results that have proven useful in extending R&S procedures
to this setting. Three specific procedures are presented in Section 4, followed
by a numerical illustration in Section 5. Section 6 reviews asymptotic analysis
regimes for R&S. Section 7 describes other formulations of the R&S problem
and gives appropriate references. Section 8 closes the chapter by speculating
on future research directions in this area.

2 Basics of ranking and selection

In this section we employ the simplest possible setting to illustrate how R&S
procedures address comparison problems. This setting (i.i.d. normal data with
known, common variance) allows us to focus on key techniques before moving

http://dx.doi.org/10.1016/S0927-0507(06)13018-2
http://dx.doi.org/10.1016/S0927-0507(06)13018-2 10.1016/S0927-0507(06)13019-4
10.1016/S0927-0507(06)13020-0 10.1016/S0927-0507(06)13021-2
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on to the technical difficulties that arise in designing procedures for realistic
simulation problems.

R&S traces its origins to two papers: Bechhofer (1954) established the
indifference-zone formulation, while Gupta (1956, 1965) is credited with the
subset selection formulation of the problem. Both approaches are reviewed
in this section, and both were developed to compensate for the limited in-
ference provided by hypothesis tests for the homogeneity of k population
parameters (usually means). In many experiments, rejecting the hypothesis
H0: μ1 = μ2 = · · · = μk, where μi is the parameter associated with the
ith population, leads naturally to questions about which one has the largest or
smallest parameter. R&S tries to answer such questions. MCPs also provide in-
ference beyond rejection of homogeneity; there is a close connection between
R&S and MCPs, as we demonstrate later.

Suppose that there are k systems. Let Xij represent the jth output from
system i and let Xi = {Xij; j = 1� 2� � � � } denote the output sequence
from system i. In this section, we assume that the Xij are i.i.d. normal with
means μi = E[Xij] and variances σ2

i = Var[Xij]. Further, we assume that
the processes X1�X2� � � � �Xk are mutually independent, and the variances
are known and equal; that is, σ2

1 = σ2
2 = · · · = σ2

k = σ2. These are un-
realistic assumptions that will be relaxed later, but we adopt them here be-
cause we can derive R&S procedures in a way that illustrates the key issues.
Throughout the chapter we assume that a larger mean is better, and we let
μk � μk−1 � · · · � μ1, so that (unknown to us) system k is the best system.

2.1 Subset-selection formulation

Suppose that we have n outputs from each of the systems. Our goal is to use
these data to obtain a subset I ⊆ {1� 2� � � � � k} such that

(1)Pr{k ∈ I} � 1 − α�

where 1/k < 1−α < 1. Ideally |I| is small, the best case being |I| = 1. Gupta’s
solution was to include in the set I all systems � such that

(2)�X�(n) � max
i �=�

�Xi(n)− hσ

√
2
n
�

where �Xi(n) is the sample mean of the (first) n outputs from system i, and h
is a constant whose value will depend on k and 1 − α. The proof that rule (2)
provides guarantee (1) is instructive and shows what the value of h should be

Pr{k ∈ I}
= Pr

{
�Xk(n) � max

i �=k
�Xi(n)− hσ

√
2
n

}

= Pr
{
�Xk(n) � �Xi(n)− hσ

√
2
n
� ∀i �= k

}
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= Pr
{ �Xi(n)− �Xk(n)− (μi − μk)

σ
√

2/n
� h− (μi − μk)

σ
√

2/n
� ∀i �= k

}

� Pr{Zi � h� i = 1� 2� � � � � k− 1} = 1 − α�

where (Z1� Z2� � � � � Zk−1) have a multivariate normal distribution with
means 0, variances 1 and common pairwise correlations 1/2. Therefore, to
provide the guarantee (1), h needs to be the 1 − α quantile of the maximum
of such a multivariate normal random vector, a quantile that turns out to be
relatively easy to evaluate numerically. Notice the inequality in the final step
where we make use of the fact that μk � μi.

A theme that runs throughout much of R&S is first using appropriate standard-
ization of estimators and then bounding the resulting probability statements in such
a way that a difficult multivariate probability statement becomes one that is readily
solvable.

2.2 Indifference-zone formulation

A disadvantage of the subset-selection procedure in Section 2.1 is that the
retained set I may, and likely will, contain more than one system. However,
there is no procedure that can guarantee a subset of size 1 and satisfy (1) for
arbitrary n. Even when n is under our control, as it is in computer simulation,
the appropriate value will depend on the true differences μk − μi, ∀i �= k.
To address this problem, Bechhofer (1954) suggested the following compro-
mise: guarantee to select the single best system, k, whenever μk − μk−1 � δ,
where δ > 0 is the smallest difference the experimenter feels is worth detect-
ing. Specifically, the procedure should guarantee

(3)Pr{select k|μk − μk−1 � δ} � 1 − α�

where 1/k < 1 − α < 1. If there are systems whose means are within δ of
the best, then the experimenter is “indifferent” to which of these is selected,
leading to the term indifference-zone (IZ) formulation.

The procedure is as follows: From each system, take

(4)n =
⌈

2h2σ2

δ2

⌉

outputs, where h is an appropriate constant (determined below) and 
x�means
to round x up; then select the system with the largest sample mean as the best.
Assuming μk − μk−1 � δ,

Pr{select k}
= Pr

{�Xk(n) > �Xi(n)� ∀i �= k
}

= Pr
{ �Xi(n)− �Xk(n)− (μi − μk)

σ
√

2/n
< −(μi − μk)

σ
√

2/n
� ∀i �= k

}
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� Pr
{ �Xi(n)− �Xk(n)− (μi − μk)

σ
√

2/n
<

δ

σ
√

2/n
� ∀i �= k

}

� Pr
{ �Xi(n)− �Xk(n)− (μi − μk)

σ
√

2/n
< h�∀i �= k

}

= Pr{Zi < h� i = 1� 2� � � � � k− 1} = 1 − α�

where again (Z1� Z2� � � � � Zk−1) has a multivariate normal distribution with
means 0, variances 1, and common pairwise correlations 1/2, implying h needs
to be the 1−α quantile of the maximum of such a multivariate normal random
vector.

Notice that the first inequality results from the assumption that μk−μk−1 � δ,
while the second occurs because

√
n �

√
2hσ/δ. Both of these tricks are standard:

the first frees the probability statement of dependence on the true means, while the
second frees it of dependence on the value of the variance.

It is worth noting that, over all configurations of the true means such that
μk − μk−1 � δ, the configuration μi = μk − δ, ∀i �= k minimizes the PCS;
it is therefore known as the least-favorable configuration (LFC). In this chapter
we break from the statistics literature in that we will not be concerned with
identifying the LFC; our only interest is insuring that (3) is met.

Bechhofer’s procedure is essentially a power calculation: how large a sam-
ple is required to detect differences of at least δ? When true differences are
greater than δ, Bechhofer’s n may be much larger than needed. By taking ob-
servations and making decisions sequentially, it is often possible to reach an
earlier decision. Sequential selection procedures can be traced back at least
to Wald (1947), but here we present a procedure due to Paulson (1964) that
better illustrates the approach that has had the most impact in computer simu-
lation. Paulson’s procedure takes observations fully sequentially – meaning one
at a time – and eliminates systems from continued sampling when it is statisti-
cally clear that they are inferior. Thus, simulation for a problem with a single
dominant alternative may terminate very quickly.

Using the same notation as above, let �Xi(r) be the sample mean of the first
r outputs of system i. At each stage r = 1� 2� � � � � n, one output is taken from
each system whose index is in I, where initially I = {1� 2� � � � � k}. At stage r
system � is retained in I only if

(5)�X�(r) � max
i∈I

�Xi(r)− max
{

0�
a

r
− λ

}
�

where a > 0 and 0 < λ < δ are constants to be determined, and n = �a/λ�,
with �·� meaning round down. The procedure ends when |I| = 1, which re-
quires no more than n + 1 stages. Parallels with Gupta’s subset selection
and Bechhofer’s IZ ranking are obvious: At each stage a subset selection is
performed, with the hedging factor (a/r − λ) decreasing as more data are ob-
tained. In the end, if the procedure makes it that far, the system with the largest
sample mean is selected.
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The following result is used to establish the PCS: Suppose Z1� Z2� � � � are
i.i.d. N(μ� σ2) with μ < 0. Then it can be shown that

(6)Pr
{
�Z(r) > a

r
� for some r <∞

}
� exp

(
2μ
σ2 a

)
�

This result is a consequence of Wald’s lemma (Wald, 1947, p. 146). Large devi-
ation results, frequently based on the analysis of approximating Brownian motion
processes, are central to the design of fully sequential procedures that involve fre-
quent looks at the data.

The approach in this case is to bound the probability of an incorrect selection
(ICS). An ICS event occurs if system k is eliminated at some point during
the procedure. Let Pr{ICSi} be the probability of an incorrect selection if only
systems i and k are included in the competition.

The first key inequality is

(7)Pr{ICS} �
k−1∑
i=1

Pr{ICSi}�

Decomposition into some form of paired comparisons is a key step in many se-
quential procedures.

This decomposition allows us to focus only on Pr{ICSi}. Notice that

Pr{ICSi} � Pr
{
�Xk(r) < �Xi(r)+ λ− a

r
� for some r � n+ 1

}

= Pr
{
�Xi(r)− �Xk(r)+ λ >

a

r
� for some r � n+ 1

}

� Pr
{
�Xi(r)− �Xk(r)+ λ >

a

r
� for some r <∞

}

� exp
(
(μi − μk + λ)

σ2 a

)

� exp
(
(λ− δ)

σ2 a

)
�

The third inequality comes from the large deviation result (6), while the fourth
inequality exploits the indifference-zone assumption. If we set

(8)a = ln
(
k− 1
α

)
σ2

δ− λ

then Pr{ICSi} � α/(k− 1) and

Pr{ICS} � (k− 1)
α

(k− 1)
= α�
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2.3 Connection to multiple comparisons

MCPs approach the comparison problem by providing simultaneous con-
fidence intervals on selected differences among the systems’ parameters.
Hochberg and Tamhane (1987) and Hsu (1996) are good comprehensive ref-
erences. As noted by Hsu (1996, pp. 100–102), the connection between R&S
and MCPs comes through multiple comparisons with the best (MCB). MCB
forms simultaneous confidence intervals for μi − max� �=i μ�, i = 1� 2� � � � � k,
the difference between each system and the best of the rest. Specialized to the
known-variance case, the intervals take the form

μi − max
� �=i

μ� ∈
[
−
(
�Xi(n)− max

� �=i
�X�(n)− hσ

√
2
n

)−
�

(9)
(
�Xi(n)− max

� �=i
�X�(n)+ hσ

√
2
n

)+]
�

where h is the same critical value used in Bechhofer’s and Gupta’s procedures,
−x− = min{0� x} and x+ = max{0� x}. Under our assumptions these k con-
fidence intervals are simultaneously correct with probability greater than or
equal to 1 − α.

Consider the set I containing the indices of all systems whose MCB upper
confidence bound is greater than 0. Thus, for i ∈ I,

�Xi(n) > max
� �=i

�X�(n)− hσ

√
2
n
�

meaning these are the same systems that would be retained by Gupta’s subset-
selection procedure. Since μk − max� �=k μ� > 0 and these intervals are simul-
taneously correct with probability greater than or equal to 1 − α, system k will
be in the subset identified by the MCB upper bounds with the required proba-
bility.

Now suppose that n has been selected such that n � 2h2σ2/δ2, implying
that

hσ

√
2
n

� δ

as in Bechhofer’s procedure. Let B be the index of the system with the largest
sample mean. Then the MCB lower bounds guarantee with probability greater
than or equal to 1 − α that

μB − max
� �=B

μ� � −
(
�XB(n)− max

� �=B
�X�(n)− hσ

√
2
n

)−

� −δ�
The final inequality follows because �XB(n) − max� �=B �X�(n) � 0 by the defin-
ition of B, and hσ

√
2/n � δ because of our choice of n. This establishes that
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the system selected by Bechhofer’s procedure is guaranteed to be within δ of
the true best, with probability greater than or equal to 1 − α, under any config-
uration of the means. Further, if μk − μk−1 > δ, then Pr{B = k} � 1 − α as
required.

As a consequence of this analysis both Bechhofer’s and Gupta’s procedures
can be augmented with MCB confidence intervals “for free”, and Bechhofer’s
procedure is guaranteed to select a system within δ of the best. Nelson and
Matejcik (1995) establish very mild conditions under which these results hold
for far more general R&S procedures.

3 Simulation issues and key results

In the previous section we illustrated different approaches to the R&S prob-
lem under assumptions such as independence, normality, and known and equal
variances. Unfortunately, such assumptions rarely hold in simulation experi-
ments. There are also opportunities available in simulation experiments that
are not present in physical experiments. In the following subsections we de-
scribe these issues and opportunities, and present key theorems and results
that have been useful in deriving R&S procedures that overcome or exploit
them.

3.1 Unknown and unequal variances

Unknown and unequal variances across alternatives is a fact of life in system
simulation problems, and the variances can differ dramatically. In the simple
inventory model presented in Section 5 the ratio of the largest to smallest vari-
ance is almost 4.

There are many subset-selection procedures that permit an unknown, com-
mon variance (see Goldsman and Nelson, 1998, for one). When variances are
unknown and unequal, however, the subset-selection problem is essentially
equivalent to the famous Behrens–Fisher problem. One approach is to work
with the standardized random variables

(10)
�Xi(n)− �Xk(n)− (μi − μk)

(S2
i /n+ S2

k/n)
1/2

� i = 1� 2� � � � � k− 1�

where S2
i is the sample variance of the outputs from system i. Neither the joint

nor marginal distributions of these quantities are conveniently characterized. If
we break the required joint probability statement up into statements about the
individual terms, using techniques described below, then there are at least two
solutions available. Welch (1938) suggested approximating each term in (10)
as having a tν̂ distribution, where the degrees of freedom ν̂ is an approxima-
tion based on the values of S2

i and S2
k. Banerjee (1961) proposed a probability

bound that we specialize to our case:
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Theorem 1 (Banerjee, 1961). Suppose Z is N(0� 1) and independent of
Yi and Yk, which are themselves independent χ2

ν random variables. Then for
arbitrary but fixed 0 � γ � 1,

(11)Pr
{

Z2

γYiν + (1 − γ)Ykν

� t21−α/2�ν
}

� 1 − α�

where t1−α/2�ν is the 1−α/2 quantile of the t distribution with ν degrees of freedom.

To employ Banerjee’s inequality in our context, identify

Z =
�Xi(n)− �Xk(n)− (μi − μk)

(σ2
i /n+ σ2

k/n)
1/2

and

γ
Yi
ν
+ (1 − γ)

Yk
ν

= S2
i /n+ S2

k/n

σ2
i /n+ σ2

k/n

=
(

σ2
i

σ2
i + σ2

k

)
S2
i

σ2
i

+
(

σ2
k

σ2
i + σ2

k

)
S2
k

σ2
k

�

This inequality is used in Procedure NSGS presented in Section 4.
For some time it has been known that it is not possible to provide a guar-

anteed PCS, in the IZ sense, with a single stage of sampling when variances
are unknown (see Dudewicz, 1995, for a comprehensive discussion of this re-
sult). Thus, practically useful IZ procedures work sequentially – meaning two
or more stages of sampling – with the first stage providing variance estimates
that help determine how much, if any, additional sampling is needed in the
succeeding stages. However, one cannot simply substitute variance estimators
into Bechhofer’s or Paulson’s procedures and hope to achieve a guaranteed
PCS. Instead, the uncertainty in the variance estimators enters into the deter-
mination of the sample sizes, invariably leading to more sampling than would
take place if the variances were known.

A fundamental result in parametric statistics is the following: If X1�X2�
� � � �Xn are i.i.d. N(μ� σ2), then �X and S2 are independent random variables.
The result extends in the natural way to random vectors Xj that are multivari-
ate normal. An extension of a different sort, due to Stein (1945), is fundamen-
tal to R&S procedures with unknown variances:

Theorem 2 (Stein, 1945). Suppose X1�X2� � � � �Xn are i.i.d. N(μ� σ2), and S2

is σ2χ2
ν/ν and independent of

∑n
i=1Xj and of Xn+1�Xn+2� � � � .

(1) If N � n is a function only of S2 then

(12)
�X(N)− μ

S/
√
N

∼ tν�
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(2) If ξ > 0 and

N = max
{⌈

S2

ξ2

⌉
� n+ 1

}

then, for any weights w1� w2� � � � � wN satisfying
∑N

j=1wj = 1, w1 = w2 =
· · · = wn, and S2∑N

j=1w
2
j = ξ2, we have

(13)

∑N
j=1wjXj − μ

ξ
∼ tν�

In the usual case where S2 is the sample variance of the first n observations,
ν = n− 1. The importance of this result in R&S is that it allows determination
of a sample size large enough to attain the desired power against differences
of at least δ without requiring knowledge of the process variance.

If comparisons of only k = 2 systems were necessary, then Stein’s result
would be enough (at least in the i.i.d. normal case). But our problem is multi-
variate and requires joint probability statements about

(14)
�Xi(Ni)− �Xk(Nk)− (μi − μk)

Sik
� i = 1� 2� � � � � k− 1�

where S2
ik is a variance estimate of the difference between systems i and k

based on an initial sample of size (say) n, and Ni and Nk are the final sample
sizes from systems i and k. The joint distribution of these random variables is
quite messy in general, even if all systems are simulated independently (as we
assume in this section). One approach is to condition on Sik and �Xk(Nk) and
apply inequalities such as the following to bound the joint probability:

Theorem 3 (Kimbal, 1951). Let V1� V2� � � � � Vk be independent random vari-
ables, and let gj(v1� v2� � � � � vk), j = 1� 2� � � � � p, be nonnegative, real-valued
functions, each one nondecreasing in each of its arguments. Then

E

[ p∏
j=1

gj(V1� V2� � � � � Vk)

]
�

p∏
j=1

E
[
gj(V1� V2� � � � � Vk)

]
�

Kimball’s theorem is actually only for the case k = 1; see Hochberg and
Tamhane (1987) for the extension.

Theorem 4 (Slepian, 1962). Let (Z1� Z2� � � � � Zk) have a k-variate normal dis-
tribution with zero mean vector, unit variances and correlation matrix R = {ρij}.
Let ξ1� ξ2� � � � � ξk be some constants. If all the ρij � 0, then

Pr

{
k⋂
i=1

(Zi � ξi)

}
�

k∏
i=1

Pr{Zi � ξi}�
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Notice that, conditional on the S2
ik, the terms in (14) are positively cor-

related (due to the common �Xk(Nk) term), providing the opening to apply
Slepian’s inequality. Kimball’s inequality then can be applied to simplify the
unconditioning on S2

ik. Both of these ideas are employed in the design of Pro-
cedure NSGS in Section 4.

3.2 Initial sample size problem

When variances are unknown, then at least two stages of sampling are re-
quired to deliver a guaranteed PCS. In a typical two-stage R&S procedure,
such as Rinott’s (1978) procedure, the total sample size required of, say, sys-
tem i is

(15)Ni = max
{
n0�

⌈(
hSi
δ

)2⌉}
�

where h = h(k� 1−α� n0) is a constant determined by k, the number of systems
being compared; 1−α, the desired confidence level; and n0, the number of first-
stage observations used to produce the variance estimator, S2

i . The constant h
increases in k, and decreases in α and n0. The experiment design factor that is
under our control is n0.

Figure 1 presents the typical form of E[Ni] as a function of n0. The figure
shows that increasing n0, up to a point, decreases E[Ni], but if n0 is too large
then more data are obtained in the first stage than required to deliver the PCS
guarantee. Unfortunately, the location of the minimizing value of n0 depends
on the unknown variance. Nevertheless, it is clear that there is a huge penalty
for selecting n0 too small, which forces an excessive second-stage sample to

Fig. 1. Illustration of the impact of n0 on E[N].
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compensate for the highly unstable variance estimator. Taking n0 � 10 is a
common recommendation.

3.3 Nonnormality of output data

Raw output data from industrial and service simulations are rarely normally
distributed. Surprisingly, nonnormality is usually not a concern in simulation
experiments that (a) are designed to make multiple independent replications,
and (b) use a within-replication average of a large numbers of raw simulation
outputs as the basic summary measure. This is frequently the situation for so-
called “terminating simulations” in which the initial conditions and stopping
time for each replication are an inherent part of the definition of the system.
A standard example is a store that opens empty at 6 a.m., then closes when the
last customer to arrive before 9 p.m. leaves the store. If the output of inter-
est is the average customer delay in the checkout line over the course of the
day, and comparisons will be based on the expected value of this average, and
the average is over many individual customer delays, then the Central Limit
Theorem suggests that the replication averages will be approximately normally
distributed.

Difficulties arise in so-called “steady-state simulations” where the parame-
ter of interest is defined by a limit as the time index of a stochastic process
approaches infinity (and therefore forgets its initial conditions). Some steady-
state simulations are amenable to multiple replications of each alternative and
within-replication averages as summary statistics, in which case the preceding
discussion applies. Unfortunately, severe estimator bias due to residual effects
of the initial conditions sometimes force an experiment design consisting of
a single, long replication from each alternative. The raw outputs within each
replication are typically neither normally distributed nor independent. For ex-
ample, waiting times of individual customers in a queueing system are usually
dependent because a long delay for one customer tends to increase the delays
of the customers who follow. The best we can hope for is an approximately
stationary output process from each system, but neither normality nor inde-
pendence.

The most common approach for dealing with this problem is to transform
the raw data into batch means, which are averages of large numbers of raw
outputs. The batch means are often far less dependent and nonnormal than
the raw output data. There are problems with the batching approach for R&S,
however. If a “stage” is defined by batch means rather than raw output, then
the simulation effort consumed by a stage is a multiple of the batch size. When
a large batch size is required to achieve approximate independence – and batch
sizes of several thousand are common – then the selection procedure is forced
to make decisions at long intervals, wasting outputs and time. This inefficiency
becomes serious when fully sequential procedures are employed because the
elimination decisions for clearly inferior systems must wait for an entire batch
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to be formed. Therefore, for steady-state simulations, selection procedures
that use individual raw outputs as basic observations are desirable.

Although no known procedures provide a guaranteed PCS for single-
replication designs, some procedures have shown good empirical performance
(e.g., Sullivan and Wilson, 1989), while others have been shown to be asymptot-
ically valid (e.g., Procedure KN++ in Section 4). See Law and Kelton (2000)
or Chapter 15 for a general discussion of replications versus batching, Glynn
and Iglehart (1990) for conditions under which the batch means method is
asymptotically valid for confidence intervals and Section 6 for a review of as-
ymptotic analysis of R&S procedures.

3.4 Common random numbers

The procedures described in Section 2 assume that data across the k al-
ternative systems are independent. In simulation experiments this assumption
can be made valid by using different sequences of random numbers to drive
the simulation of each system (see Chapter 3). However, since we are making
comparisons, there is a potential advantage of using common random numbers
(CRN) to drive the simulation of each system because

Var[Xij −X�j] = Var[Xij] + Var[X�j] − 2 Cov[Xij�X�j]�
If implemented correctly (see Banks et al., 2005), CRN tends to make
Cov[Xij�X�j] > 0 thereby reducing the variance of the difference.

R&S procedures often need to make probability statements about the col-
lection of random variables

(16)�Xi(n)− �Xk(n)− (μi − μk)� i = 1� 2� � � � � k− 1�

The appearance of the common term �Xk(n) causes dependence among these
random variables, but it is often easy to model or tightly bound. The intro-
duction of CRN induces dependence between �Xi(n) and �Xk(n) as well. Even
though the sign of the induced covariance is believed known, its value is not,
making it difficult to say anything about the dependence among the differ-
ences (16).

Two approaches are frequently used. The first is to replace the basic data
{Xij; i = 1� 2� � � � � k; j = 1� 2� � � � � n} with pairwise differences {Xij − X�j;
i �= �; j = 1� 2� � � � � n} because the variance of the sample mean of the dif-
ference includes the effect of the CRN-induced covariance. The second is to
apply the Bonferroni inequality to break up joint statements about (16) into
statements about the individual terms. Recall that for events E1� E2� � � � � Ek−1,
the Bonferroni inequality states that

(17)Pr

{
k−1⋂
i=1

Ei
}

� 1 −
k−1∑
i=1

Pr
{
Ec
i

}
�

http://dx.doi.org/10.1016/S0927-0507(06)13015-7
http://dx.doi.org/10.1016/S0927-0507(06)13003-0
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In the R&S context Ei corresponds to an event like {�Xi(n) − �Xk(n) − (μi −
μk) � h}.

Approaches based on the Bonferroni inequality make no assumption about
the induced dependence, and therefore are very conservative. A more ag-
gressive approach is to assume some structure for the dependence induced
by CRN. One standard assumption is that all pairwise correlations ρ =
Corr[Xij�X�j] are positive, and identical, and all variances are equal; this is
known as compound symmetry. Nelson and Matejcik (1995) extended Rinott’s
(1978) procedure – one of the simplest and most popular IZ procedures – in
conjunction with CRN under a more general structure called sphericity. The
specific assumption is

(18)Cov[Xij�X�j] =
{

2βi + τ2� i = ��
βi + β�� i �= ��

with τ2 > 0, which is equivalent to assuming that Var[Xij −X�j] = 2τ2 for all
i �= �, a type of variance balance. This particular structure is useful because
there exists an estimator τ̂2 of τ2 that is independent of the sample means
and has a χ2 distribution (allowing a pivotal quantity to be formed and Stein’s
theorem to be applied). Nelson and Matejcik (1995) showed that procedures
based on this assumption are robust to departures from sphericity, at least in
part because assuming sphericity is like assuming that all pairwise correlations
equal the average pairwise correlation.

3.5 The sequential nature of simulation

Suppose an IZ ranking procedure is applied in the study of k new blood
pressure medications. Then “replications” correspond to patients, and the idea
of using a fully sequential procedure (assign one patient at a time to each drug,
then wait for the results before recruiting the next patient) seems absurd. In
simulation experiments, however, data are naturally generated sequentially, at
least within each simulated alternative, making multi-stage procedures much
more attractive. However, there are some issues:

• In multiple-replication designs, sequential sampling is particularly at-
tractive. All that needs to be retained to start the next stage of sampling
is the ending random number seeds from the previous stage. In single-
replication designs it can be more difficult to resume sampling from
a previous stage, since the entire state of the system must be retained
and restored.

• A hidden cost of using multi-stage procedures is the computational
overhead in switching among the simulations of the k alternatives. On
a single-processor computer, switching can involve saving output, state
and seed information from the current system; swapping the program
for the current system out of, and for the next system into, active mem-
ory; and restoring previous state and seed information for the next
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system. Thus, the overall computation effort includes both the cost of
generating simulated data and the cost of switching. Hong and Nelson
(2005) look at sequential IZ procedures that attempt to minimize the
total computational cost.

• If k processors are available, then an attractive option is to assign each
system to a processor and simulate in parallel. This is highly effective in
conjunction with R&S procedures that require little or no coordination
between the simulations of each system, such as subset-selection pro-
cedures or IZ-ranking procedures that use only variance information
(and not differences among the sample means). Unfortunately, a fully
sequential procedure with elimination would defeat much of the bene-
fit of parallel processing because communication among the processors
is required after generating each output.

Many sequential procedures are based on results for Brownian motion
processes. Let B(t;Δ) be a standard Brownian motion process with drift Δ.
Consider the partial sum of the pairwise difference Di(r) =∑r

j=1(Xkj −Xij),
r = 1� 2� � � � . If the Xij are i.i.d. normal, and μk − μi = δ, then {Di(r)� r =
1� 2� � � �} D= {σB(t;δ/σ)� t = 1� 2� � � �}, where σ2 = Var[Xkj − Xij] (with or
without CRN). In other words, Di(r) is a Brownian motion process with drift
observed only at discrete (integer) points in time. A great deal is known about
the probability of Brownian motion processes crossing boundaries in various
ways (see, for instance, Siegmund (1985) or Jennison and Turnbull (2000)); we
display one specific result below. Thus, it seems natural to design R&S proce-
dures for σB(t;δ/σ) and apply them to Di(r).

Let c(t) be a symmetric (about 0) continuation region for σB(t;δ/σ),
and let an incorrect selection correspond to the process exiting the region in
the wrong direction (down, when the drift is positive). If T = inf{t � 0:
|σB(t;δ/σ)| > c(t)}, then

Pr{ICSi} = Pr
{
σB
(
T ; δ

σ

)
< 0
}
�

Of course σB(t;δ/σ) is only an approximation for Di(r). However, Jennison
et al. (1980) show that under very general conditions, Pr{ICSi} is no greater if
the Brownian motion process is observed at discrete times; thus, procedures
designed for σB(t;δ/σ) provide an upper bound on the probability of incor-
rect selection for Di(r). In conjunction with a decomposition into pairwise
comparisons, as in (7), this result can be used to derive R&S procedures for
k � 2.

Fabian (1974) tightened the triangular continuation region used by Paulson,
and this was exploited by Hartmann (1988, 1991), Kim and Nelson (2001, 2006)
and Hong and Nelson (2005).
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Theorem 5 (Fabian, 1974). Let {B(t� Δ)� t � 0} be a standard Brownian motion
with drift Δ > 0. Let

l(t) = −a+ λt�

u(t) = a− λt�

for some a > 0 and λ = Δ/(2b) for some positive integer b. Let c(t) denote the
continuation region (l(t)� u(t)) and let T be the first time that B(t� Δ) /∈ c(t).
Then

Pr
{
B(T�Δ) < 0

}

�
b∑
j=1

(−1)j+1
(

1 − 1
2
I(j = b)

)
exp
{−2aλ(2b− j)j

}
�

Fabian’s bound on Pr{ICS} is particularly useful because a is the term that
depends on the sample variance (see Paulson’s a in Equation (8) for intuition).
Thus, appropriately standardized, exp(−a) is related to the moment generat-
ing function of a chi-squared random variable, which simplifies unconditioning
on the sample variance.

3.6 Large number of alternatives

The number of alternatives of interest in simulation problems can be quite
large, with 100 or more being relatively common. However, Bechhofer-like IZ
procedures were developed for relatively small numbers of alternatives, say no
more than 20. They can be inefficient when the number of alternatives is large
because they were developed to protect against the LFC – the configuration of
system means under which it is most difficult to correctly select the best – to
free the procedure from dependence on the true differences among the means.
The Slippage Configuration (SC), μi = μk−δ for i = 1� 2� � � � � k−1, is known
to be the LFC for many procedures.

When the number of systems is large we rarely encounter anything remotely
like the SC configuration, because large numbers of alternatives typically result
from taking all feasible combinations of some controllable decision variables.
Thus, the performance measures of the systems are likely to be spread out,
rather than all clustered near the best. Paulson-like procedures with elimina-
tion might seem to be a cure for this ill, but the inequalities used to decompose
the problem of k systems into paired comparisons with system k are typically
quite conservative and become much more so with increasing k (although Kim
and Nelson’s, 2001, fully sequential procedure KN , described in the next sec-
tion, has been shown to work well for up to k = 500 systems).

To overcome the inefficiency of IZ approaches for large numbers of alter-
natives, one idea is to try to gain the benefits of screening, as in Paulson-
like procedures, but avoid the conservatism required to compensate for so
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many looks at the data. Nelson et al. (2001) proposed spending some of the
α for incorrect selection on an initial screening stage (using a Gupta-like
subset-selection procedure), and spending the remainder on a second rank-
ing stage (using a Bechhofer-like IZ procedure). Additive and multiplicative
α spending is possible, depending on the situation (see Nelson et al., 2001;
Wilson, 2001). The resulting procedure, named NSGS, is presented in the next
section.

This so-called “α-spending” approach – spreading the probability of incor-
rect selection across multiple stages – is a general-purpose tool, and there is no
inherent reason to use only a single split. See Jennison and Turnbull (2000) for
a thorough discussion.

4 Example procedures

In this section we present three specific procedures to illustrate the con-
cepts described in earlier sections. The NSGS procedure, due to Nelson et al.
(2001), and the KN procedure, due to Kim and Nelson (2001), are appropri-
ate for terminating simulations or for steady-state simulations when multiple
replications are employed. Procedure KN++, due to Kim and Nelson (2006),
is specifically designed for steady-state simulations employing a single replica-
tion from each alternative. All of the procedures employ the IZ approach and
utilize elimination to gain efficiency in the case of many systems. In all three
procedures variances are considered unknown and unequal.

The NSGS procedure requires that the output data from each system be
i.i.d. normal, and that outputs across systems be independent, which leaves out
CRN. NSGS is the combination of a Gupta-like subset-selection procedure, to
reduce the number of alternatives still in play after the first stage of sampling,
and a Bechhofer-like ranking procedure applied to the systems in the subset.
The procedure uses α-spending between the subset selection and ranking to
control the overall PCS. Banerjee’s inequality allows the subset-selection pro-
cedure to handle unequal variances.

Procedure NSGS.

(1) Setup. Select the overall desired PCS 1−α, IZ parameter δ, and com-
mon first-stage size n0 � 2. Set

t = tn0−1�1−(1−α/2)1/(k−1)

and obtain Rinott’s constant h = h(n0� k� 1 − α/2) from the tables in
Wilcox (1984) or Bechhofer et al. (1995). See also Table 8.3 in Goldsman
and Nelson (1998).

(2) Initialization. Obtain n0 outputs Xij , j = 1� 2� � � � � n0, from each sys-
tem i, i = 1� 2� � � � � k, and let �Xi(n0) = n−1

0
∑n0

j=1Xij denote the sample
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mean of the first n0 outputs from system i. Calculate the marginal sam-
ple variances

S2
i =

1
n0 − 1

n0∑
j=1

(
Xij − �Xi(n0)

)2

for i = 1� 2� � � � � k.
(3) Subset selection. Calculate the quantity

Wi� = t

(
S2
i + S2

�

n0

)1/2

for all i �= �. Form the screening subset I, containing every alternative i
such that 1 � i � k and

�Xi(n0) � �X�(n0)− (Wi� − δ)+ for all � �= i�

(4) Ranking. If |I| = 1, then stop and return the system in I as the best.
Otherwise, for all i ∈ I, calculate the second-stage sample sizes

Ni = max
{
n0�

⌈(
hSi
δ

)2⌉}
�

where 
·� is the ceiling function.
(5) Take Ni − n0 additional outputs from all systems i ∈ I.
(6) Calculate the overall sample means �Xi(Ni) for all i ∈ I. Select the sys-

tem with the largest �Xi(Ni) as best.

Nelson et al. (2001) showed that any subset-selection procedure and any
two-stage IZ ranking procedure that satisfy certain mild conditions can be com-
bined in this way while guaranteeing the overall probability of correct selection.
The NGSG procedure can handle a relatively large number of systems because
the first-stage screening is pretty tight. Nelson et al. (2001) provide a revised
version of the NGSG procedure, the Group-Screening procedure, in which one
can avoid simulating all the systems simultaneously. Boesel et al. (2003) ex-
tended the Group-Screening procedure for “clean up” after optimization via
simulation.

The KN procedure is fully sequential because it takes only a single basic
output from each alternative still in contention at each stage. Also, if there
exists clear evidence that a system is inferior, then it will be eliminated from
consideration immediately – unlike the NSGS procedure, where elimination
occurs only after the first stage. KN also requires i.i.d. normal data, but does
allow CRN. KN exploits the ideas of using paired differences, and controlling
the Pr{ICS} on pairs to control it overall. Fabian’s result is used to bound the
error of a Brownian motion process that approximates each pair.
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Procedure KN .

(1) Setup. Select the overall desired PCS 1−α, IZ parameter δ and com-
mon first-stage sample size n0 � 2. Set

η = 1
2

[(
2α
k− 1

)−2/(n0−1)
− 1
]
�

(2) Initialization. Let I = {1� 2� � � � � k} be the set of systems still in con-
tention, and let h2 = 2η(n0 − 1).

Obtain n0 outputs Xij , j = 1� 2� � � � � n0, from each system i, i =
1� 2� � � � � k, and let �Xi(n0) = n−1

0
∑n0

j=1Xij denote the sample mean
of the first n0 outputs from system i.

For all i �= � calculate

S2
i� =

1
n0 − 1

n0∑
j=1

(
Xij −X�j −

[�Xi(n0)− �X�(n0)
])2
�

the sample variance of the difference between systems i and �. Set
r = n0.

(3) Screening. Set Iold = I. Let

I = {i: i ∈ Iold and
�Xi(r) � �X�(r)−Wi�(r)� ∀� ∈ Iold� � �= i

}
�

where

Wi�(r) = max
{

0�
δ

2r

(
h2S2

i�

δ2 − r

)}
�

(4) Stopping rule. If |I| = 1, then stop and select the system whose index
is in I as the best.

Otherwise, take one additional output Xi�r+1 from each system i ∈ I,
set r = r + 1 and go to Screening.

The KN procedure requires simulation of all systems simultaneously and a
lot of switching among them. As discussed in Section 3, the switching cost can
overwhelm the sampling cost, but this has become less of an issue in modern
computing environments.

Both NSGS and KN can be applied to steady-state simulations if one is will-
ing to use within-replication averages or batch means as the basic observations.
However, as discussed in Section 3, employing within-replication averages or
batch means as basic observations may be inefficient, so it is desirable to use
individual outputs from within a single replication of each system if possible.
Damerdji and Nakayama (1999) developed two-stage multiple-comparison
procedures to select the best system for steady-state simulation that use batch
means in the first stage of sampling, but can use individual outputs thereafter.
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Similarly, Goldsman et al. (2001) and Kim and Nelson (2006) proposed three
R&S procedures that make a single replication from each system and use in-
dividual output as basic observations. One is a two-stage procedure based on
Rinott’s procedure, and the others are extensions of KN to steady-state simu-
lation. One extension of KN , called KN++, updates the variance estimators
as more outputs are available and has been shown to be highly efficient. We
present the procedure below.

In KN++, we assume that the output from each system i,Xij , j = 1� 2� � � � ,
is a stationary stochastic process that satisfies a Functional Central Limit Theo-
rem condition (see Kim and Nelson, 2006, for detailed conditions), and further
that the systems are simulated independently. Variance estimation centers on
the asymptotic variance constant v2

i = limr→∞ rVar[�Xi(r)]. See Goldsman et
al. (2001) and Chapter 15 for reviews of different methods for the estimation
of v2

i . KN++ extends KN to steady-state simulation by replacing its first-stage
variance estimator with an estimator of the appropriate asymptotic variance
constant. Moreover, KN++ updates the variance estimator as more data are
obtained based on a batching sequencemr which is an integer-valued and non-
decreasing function of r. The batching sequence needs to be carefully chosen
to guarantee the strong consistency of the variance estimator in use; Goldsman
et al. give three examples of such batching sequences. In general, mr satisfies
the property that mr →∞ as r →∞.

Procedure KN++.

(1) Setup. Select the overall desired PCS 1 − α, indifference-zone para-
meter δ, common first-stage sample size n0 � 2 and initial batch size
mn0 < n0. Set r = n0. Calculate

η = 1
2
{[

2
(
1 − (1 − α)1/k−1)]−2/f − 1

}
�

(2) Initialization. Let I = {1� 2� � � � � k} be the set of systems still in con-
tention, and let h2 = 2ηf , where f is a function of the number of
batches, br that depends on the variance estimator in use.

Obtain n0 outputs Xij� j = 1� 2� � � � � n0, from each system i =
1� 2� � � � � k.

(3) Update. If mr has changed since the last update, then for all i �= �,
calculate mrV

2
i�(r), the sample asymptotic variance of the difference

between systems i and � based on br batches of size mr . Update f , η
and h2.

(4) Screening. Set Iold = I. Let

I = {i: i ∈ Iold and

�Xi(r) � �X�(r)−Wi�(r)� ∀� ∈ Iold� � �= i
}
�

http://dx.doi.org/10.1016/S0927-0507(06)13015-7
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where

Wi�(r) = max
{

0�
δ

2r

(
h2mrV

2
i�(r)

δ2 − r

)}
�

(5) Stopping rule. If |I| = 1, then stop and select the system whose index
is in I as the best.

Otherwise, take one additional output Xi�r+1 from each system i ∈ I
and set r = r + 1 and go to Update.

Even if the output data fed to KN++were i.i.d. normal, the procedure does
not provide a guaranteed PCS in finite samples. However, using techniques
described in Section 6.1, KN++ can be shown to guarantee PCS � 1 − α
asymptotically.

5 Application

This section illustrates NSGS and KN using an (s� S) inventory system with
the five inventory policies as described in Koenig and Law (1985). The goal
of this study is to compare the five policies given in Table 1 and find the one
with the smallest expected average cost per month for the first 30 months of
operation. Table 1 also contains the expected cost (in thousands of dollars) of
each policy, which can be analytically computed in this case. We set δ = $1000,
n0 = 10 initial replications, and 1 − α = 0�95.

Table 2 shows the results of the simulation study for each procedure, includ-
ing the total number of outputs taken and the sample average cost per month
for each policy. In NSGS, policies 3, 4 and 5 were eliminated after the first stage
of sampling, so only policies 1 and 2 received second-stage samples. In KN ,
only policies 4 and 5 were eliminated after the first stage, but the elimination
of policies 3 and 1 occurred after they received 16 and 98 observations, respec-
tively. This illustrates the value of the tighter initial screen in NSGS, which
takes only one look at the data, and the potential savings from taking many
looks, as KN does. Both procedures chose policy 2 as the best (which is in fact
correct). Since the true difference is larger than δ, NSGS and KN will choose
the true best with 95% confidence. However, in general we do not have any

Table 1.
The five alternative inventory policies

Policy i s S Expected cost

1 20 40 114�176
2 20 80 112�742
3 40 60 130�550
4 40 100 130�699
5 60 100 147�382
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Table 2.
Simulation results of the (s� S) inventory example

Policy i NSGS KN
# Obs. Average # Obs. Average

1 209 114�243 98 114�274
2 349 112�761 98 113�612
3 10 130�257 16 130�331
4 10 128�990 10 128�990
5 10 147�133 10 147�133

Total 588 232

information about the true differences; therefore, the most we can conclude
without prior knowledge is that policy 2 is either the true best, or has expected
cost per month within $1000 of the true best policy, with 95% confidence.

6 Asymptotic analysis

In order of importance, the key performance measures for R&S procedures
are the ability to deliver the nominal PCS and the ability to deliver it efficiently.
Although many procedures provide a guaranteed PCS under ideal conditions
(e.g., i.i.d. normal outputs), and the expected sample size of simple procedures
can be explicitly calculated, when conditions are not ideal, or when the pro-
cedure is more complex (e.g., it includes early elimination), small-sample per-
formance may be difficult to derive. Fortunately, asymptotic analysis – driving
the sample sizes to infinity – can sometimes provide meaningful insights. The
power of asymptotic analysis is that many of the problem-specific details that
thwart small-sample analysis wash out in the limit. Appropriate asymptotic
analysis can establish conditions under which procedures work (at least ap-
proximately), and the superiority of one procedure over another. In the R&S
literature there are at least three asymptotic regimes:

PCS as δ → 0. To evaluate the ability of a procedure to provide a PCS guar-
antee under a range of conditions, the indifference-zone parameter δ may
be driven to zero. Done naively, this drives the sample sizes from all sys-
tems to infinity and the PCS to 1. Therefore, to make the analysis useful,
the selection problem must become more difficult as δ → 0. We describe
this approach in Section 6.1.

Efficiency as δ → 0. The indifference-zone parameter δ may also be driven
to zero to evaluate the efficiency of a procedure that estimates unknown
variances, relative to a corresponding known-variance procedure. To date
this type of analysis has only been applied to procedures whose sample
sizes are independent of the true means (that is, the procedure does not
take advantage of a favorable configuration of the means, e.g., Bechhofer,
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1954), so there is no need to change the selection problem as δ → 0. We
briefly describe this approach in Section 6.2.

Efficiency as (1 − α) → 1. To compare the efficiency of competing proce-
dures, the nominal PCS may be driven to 1. This, too, will drive the sample
sizes to infinity, but if the rate at which they grow can be determined then
that rate can be compared to the rate achieved by other procedures. We
describe this approach in Section 6.3.

See also Damerdji and Nakayama (1999) for a related asymptotic analysis
of multiple-comparison procedures.

6.1 Asymptotic probability of correct selection

There is a close connection between the PCS in R&S and the power in sta-
tistical hypothesis testing. Consider a hypothesis testing problem of the form

H0: θ = θ0�

H1: θ > θ0�

Suppose that the power of the test cannot be calculated explicitly. As the sam-
ple size n goes to infinity, any reasonable test has asymptotic power 1 against
any fixed alternative (say, θ = θ0 + δ). As noted by Lehmann (1999, Sec-
tion 3.3), the trick is to embed the actual situation into a suitable sequence
(n� θn) that makes the discrimination problem more difficult as the sample
size increases in such a way that a meaningful limit less than 1 is reached. A se-
quence that frequently works is

θn = θ0 + δ√
n
+ o
(

1√
n

)

with δ > 0.
IZ R&S procedures are essentially power calculations, since their goal is

to detect the best with given probability (power) when the best is at least a
significant amount δ > 0 better than the rest (think H1: μk > μk−1 + δ).
However, instead of n driving the parameter θn, as in the hypothesis test, it
makes more sense to have δ → 0 drive Ni, the number of observations to be
taken from system i; frequently

√
Ni ∝ 1/δ.

Mukhopadhyay and Solanky (1994) say that an IZ procedure is asymptoti-
cally consistent if

lim inf
δ→0

PCS � 1 − α

for all μ1� μ2� � � � � μk such that μk − μk−1 � δ. For a procedure that assumes
normally distributed output data, Dalal and Hall (1977) declare an IZ proce-
dure to be asymptotically robust if

lim inf
δ→0

inf
F∈F

PCS � 1 − α�
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where F is a suitable family of location parameter distributions F(x−μi) (con-
taining the normal distribution) with μ1� μ2� � � � � μk such that μk −μk−1 � δ.

An example of a procedure that does not provide a guaranteed PCS for
finite samples, but can be shown to be asymptotically consistent, is due to
Robbins et al. (1968). Their procedure generalizes Bechhofer’s (1954) known,
common-variance procedure in Section 2.2 to the unknown common variance
case (still assuming normally distributed data). They suggest taking N obser-
vations from each system, where

N = N(δ) = inf
{
n � n0: n � h2S2(n)

δ2

}

with n0 � 2 and S2(n) the usual pooled estimator of σ2 based on n observa-
tions. Notice that the variance estimator is updated as more data are collected,
which makes it impossible to establish the finite-sample PCS.

The proof of asymptotic consistency illustrates a key idea in this approach.
After some manipulation one can show that

(19)PCS � E
[∫ ∞

−∞

{
Φ

(
y +

√
Nδ

σ

)}k−1
φ(y) dy

]
�

where Φ and φ are the c.d.f. and p.d.f., respectively, of the standard normal
distribution. Now since

√
Nδ/σ → h with probability 1 as δ → 0, the right-

hand side of (19) converges to∫ ∞

−∞
{
Φ(y + h)

}k−1
φ(y) dy = 1 − α�

Notice that in the limit the unknown-variance procedure behaves like Bech-
hofer’s known-variance procedure. The asymptotic validity of KN++ (see
Section 4) is based on an analogous argument showing that as δ→ 0 the (ap-
propriately standardized) output processes behave like (known variance and
drift) Brownian motion processes (Kim and Nelson, 2006). See also Damerdji
et al. (1996).

6.2 Asymptotic efficiency

Let n be the sample size (per system) of a Bechhofer-like, known-variance
R&S procedure, and let N be the sample size of a corresponding unknown-
variance procedure where an initial n0 observations from each system are used
to estimate the unknown variance. Typically N takes the form

N = max
{
n0�

⌈(
hS

δ

)2⌉}
�

where S2 is a pooled estimator of the unknown variance and h is an appropri-
ately adjusted constant.
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Mukhopadhyay and Solanky (1994) say that a procedure is asymptotically
first-order efficient if

lim
δ→0

E
(
N

n

)
= 1

and asymptotically second-order efficient if limδ→0 E(N − n) is bounded. They
show that the typical procedure for which n0 is a fixed value, the variance is
estimated only once, and N grows as 1/δ2 is neither asymptotically first- nor
second-order efficient. However, if N grows somewhat more slowly than 1/δ2

then an asymptotically first-order efficient procedure can be obtained, while
asymptotic second-order efficiency typically requires that the variance estima-
tor be updated as more data are obtained.

6.3 Asymptotic sample size

Suppose that we want to know the expected sample size of Paulson’s proce-
dure in Section 2.2. The fact that systems can be eliminated before the terminal
stage implies that the expected sample size depends on the differences between
the true means, and that we must account for the complication that any system
has a chance to eliminate any other. However, consider what happens as we
drive (1− α)→ 1 (the following heuristic argument is made precise by Perng,
1969):

• As (1− α)→ 1, the procedure stops making mistakes; the best system
survives and all of the inferior systems are eliminated by the best one.

• As the sample sizes are driven to infinity, �Xi(r) behaves more and more
like μi. Thus, the stage at which system i �= k is eliminated is the first r
for which

μi � μk −
(
a

r
− λ

)
�

This occurs (approximately) when ri = a/(μk − μi + λ).
• Recall that

a = ln
(
k− 1
α

)
σ2

δ− λ
�

Therefore, as (1−α)→ 1, the expected sample size from system i �= k
is approximately

ri ≈ ln
(
k− 1
α

)
σ2

(δ− λ)(μk − μi + λ)

while for i = k it is

rk ≈ ln
(
k− 1
α

)
σ2

(δ− λ)(μk − μk−1 + λ)
�
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Thus, the expected total sample size as (1 − α)→ 1, is approximately
equal to

∑k
i=1 ri.

Notice that the impact of the true differences μk − μi and the choice of λ be-
come apparent from this analysis. The growth rate of ln((k−1)/α) is common
to many procedures (see Dudewicz, 1969), so the differences in their asymp-
totic efficiency is the term that multiplies ln((k−1)/α). For an example of this
type of analysis for a more complex procedure see Jennison et al. (1982).

7 Other formulations

Throughout this chapter we have focused on the problem of finding the
best when the best is defined as the system with the largest or smallest mean
performance measure. As discussed in Section 1, there exist other types of
comparison problems. Here we briefly visit each type of comparison problem
and provide useful references.

7.1 Comparisons with a standard

The goal of comparison with a standard is to find systems whose expected
performance measures are larger (or smaller) than a standard and, if there are
any, to find the one with the largest (or smallest) expected performance. For
this type of problem, each alternative needs to be compared to the standard as
well as the other alternative systems, and the standard may be a known value or
the expected value of a designated system (simulated or real). Such procedures
first appeared in Paulson (1952) and Bechhofer and Turnbull (1978).

Clearly, the standard could be treated as just another system and the prob-
lem formulated as selection of the best. Specially tailored procedures are re-
quired when the standard is to be given special status, specifically a guarantee
that no alternative will be selected unless it beats the standard substantially.

Let μ0 denote the expected performance of the standard (which may be
known or unknown), and let μ1� μ2� � � � � μk be the unknown means of the
alternatives, as in selection of the best. In comparisons with a standard we
require

(20)Pr{select 0 | μ0 � μk} � 1 − α�

(21)Pr{select k | μk − μ0 � δ�μk − μk−1 � δ} � 1 − α�

Thus, we try to protect the standard, but if the best system is substantially better
then we want to select it.

Nelson and Goldsman (2001) proposed two-stage procedures for this prob-
lem that are specifically designed for computer simulation. Similar to Paulson
(1952) and Bechhofer and Turnbull (1978), at the end of their procedures the
standard is retained if �X0 + c > �Xi for i = 1� 2� � � � � k, otherwise the system
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with the largest sample mean is selected. The following result provides guid-
ance for designing the algorithm and specifying the value of c > 0:

Theorem 6 (Nelson and Goldsman, 2001). If the distribution of �Xij − μi is in-
dependent of μi for i = 0� 1� 2� � � � � k, and if

Pr
{
(�Xi − �X0)− (μi − μ0) � c� i = 1� 2� � � � � k

}
� 1 − α�

Pr
{
(�Xk − �X0)− (μk − μ0) > c − δ�

(�Xk − �Xi)− (μk − μi) > −δ� i = 1� 2� � � � � k− 1
}

� 1 − α�

then (20) and (21) hold.

The two conditions are intuitive: The first insures that, when the standard
is best, no inferior system’s sample mean beats it by too much. The second
condition guarantees that when system k is best by δ or more, then its sample
mean is enough bigger than the standard’s sample mean, and is bigger than the
sample mean of every other system, so that it is selected.

Kim (2005) proposed fully sequential procedures for comparison with a
standard. A procedure such as Paulson (1964) or KN is not directly applicable
because it would require μ0 � μk + δ, not just μ0 � μk, for the standard to
be retained with the desired probability. But since KN and other procedures
that are similar to Paulson (1964) focus on all pairwise comparisons, and the
identity of the standard is known, the following reformulation in Kim (2005)
works: In any comparison with the standard, revise (5) from

�X0(r) � max
i∈I

�Xi(r)− max
{

0�
a

r
− λ

}

to

(22)�X0(r)+ δ

2
� max

i∈I
�Xi(r)− max

{
0�
a

r
− λ

}

and further, select a and λ to detect differences of size δ/2 instead of δ.
Why does this work? Suppose that μ0 = μk so that the standard should be

retained. Then �X0(r) + δ/2 has expected value at least δ/2 better than all the
other systems and will be retained with the desired probability. On the other
hand, if μk = μ0+δ, so that system k should be selected, then �X0(r)+δ/2 has
expected value that is δ/2 inferior to the best and will be eliminated with the
appropriate probability. The procedure is set up for, and detects, differences
of size δ for comparisons among the alternatives, but whenever the standard is
involved in a comparison, the procedure is adjusted to detect δ/2.

7.2 Selecting the system most likely to be the best

In multinomial selection problems, the definition of “best” is the system that
is mostly likely to be the best in a single trial. Historically, these procedures were
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designed for experiments that have a categorical response (e.g., which among
5 soft drinks a subject will say that they prefer). If there are k categories, pi is
the probability that the ith category is selected in a single trial, and the trials
are independent, then the number of times each category is selected has a
multinomial distribution. More precisely, let Ni be the number of times that
category i is chosen in n independent trials. Then

Pr{N1 = n1�N2 = n2� � � � �Nk = nk} = n!∏k
i=1 ni!

k∏
i=1

p
ni
i �

where
∑k

i=1 ni = n.
For convenience of notation (but unknown to us), assume thatpk � pk−1 �

· · · � p1. Therefore, a correct selection in this context is selecting cate-
gory k. Multinomial selection procedures seek to provide a guaranteed PCS.
The compromise that makes this possible is to guarantee the PCS whenever
pk/pk−1 � θ, where θ > 1 is interpreted as the smallest pk/pk−1 ratio
worth detecting (and therefore defines another form of indifference zone).
Bechhofer et al. (1959) proposed a single-stage procedure that satisfies this
requirement. Other work on this problem includes Bechhofer and Goldsman
(1986), who proposed a procedure that uses closed, sequential sampling. See
Bechhofer et al. (1995) for a review.

Goldsman (1984a, 1984b) first suggested the more general use of this type
of procedure to find the simulated system most likely to produce the “most
desirable” observation on a given trial, where “most desirable” can be almost
any criterion of goodness. This often means identifying the system i with the
largest value of pi, where pi = Pr{Xij > X�j� ∀� �= i} for a problem in which
a larger simulation output response is better. For instance, in a reliability set-
ting the simulation output X might be the time to system failure and the goal
is to select the system that is most likely to survive the longest. The key dif-
ference from the categorical data context is that each trial involves obtaining a
response value from each simulated system and the winner is determined by com-
paring these values. Stated differently, a trial or replication produces a vector
response (X1j�X2j� � � � �Xkj) that is transformed into a categorical response
(0� 0� � � � � 0� 1� 0� � � � � 0) with the 1 indicating the system with the largest out-
put on the jth replication.

With this in mind, Miller et al. (1998) devised a single-stage procedure that
achieves a higher probability of correct selection than do Bechhofer et al.
(1959) in the case where both the replications (vector observations) and the
systems themselves are simulated independently (no common random num-
bers). The key insight is that the formation of vector observations by replication
number – (X1j�X2j� � � � �Xkj) – is arbitrary; any vector formed with one out-
put from each system has the same distribution. Thus, n replications from each
system can form nk vector observations. Of course, these vectors are no longer
independent, since they share observations, so this is not the same as having
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nk independent replications. However, Miller et al. (1998) showed that form-
ing all vector comparisons increases the effective sample size by at least one
third, and their procedure exploits this additional information to achieve the
desired PCS with fewer total replications.

The role of CRN in multinomial selection is interesting and worthy of dis-
cussion. In the means-based procedures that are the focus of this chapter, CRN
was introduced as an experiment design technique to increase efficiency but it
has no effect on the problem parameters, specifically μ1� μ2� � � � � μk. How-
ever, in multinomial selection the value of pi = Pr{Xij > X�j� ∀� �= i} will, in
general, be different if the systems are simulated with CRN as opposed to in-
dependently, as noted by Mata (1993). Miller and Bauer (1997) observed that
the identity of the best is typically the same with or without CRN, although
this is not guaranteed, but the relative dominance of the best can increase or
decrease even if the identity is unchanged. Thus, in multinomial selection the
decision as to whether or not to use CRN should be based on whether the
actual performance of the real systems would be affected by like or common
factors, or whether their actual performance would be independent.

7.3 Selecting the largest probability of success

In Bernoulli selection problems, the basic output from each system on each
independent replication, denoted Xij , takes either the value 1 (“success”) or
0 (“failure”), and the best system is the one with the largest probability of suc-
cess, pi = Pr{Xij = 1}. Simulation applications include comparing systems in
terms of their ability to survive a mission or to meet a goal such as on-time per-
formance. To our knowledge there has been little research on, or application
of, Bernoulli selection in simulation despite the obvious relevance.

Assume that (unknown to us) pk � pk−1 � · · · � p1 so that a correct selec-
tion is choosing system k. At least three types of indifference-zone parameters
have been considered in Bernoulli selection.

Difference: pk − pk−1 � δ.
Odds ratio: (pk/(1 − pk))/(pk−1/(1 − pk−1)) � θ.
Relative risk: pk/pk−1 � θ.

Here δ > 0 and θ > 1 are user-specified parameters. A PCS � 1 − α is
desired in any case. Clearly the Difference formulation is analogous to the IZ
formulation for normal-theory procedures described throughout this chapter.
A concern about the Difference formulation is that it seems unnatural for a
significant difference not to be tied to the sizes of the success probabilities
themselves. The other two formulations attempt to incorporate this feature.
See Chapter 7 of Bechhofer et al. (1995) for a discussion of this issue and a list
of procedures.

To obtain a sense of the analysis involved in developing Bernoulli selection
procedures, suppose that the IZ is of the odds-ratio form, there are only k = 2
systems and the two systems are simulated independently (no CRN). We want
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to develop a procedure that terminates when
∑

j(X2j −X1j) = ±a, where a is
a nonnegative integer. Thus, the procedure terminates whenever system 2 has
a more successes than system 1, or vice versa. In this case a correct selection
will occur if

∑
j(X2j −X1j) = a.

Let Sn = ∑n
j=1(X2j − X1j), n = 0� 1� � � � , a random walk on {−a�−a +

1� � � � � a − 1� a} with initial state S0 = 0. Although we could work with this
process, it will be more useful to consider a related process,

Ym = value of Sn after its mth change in state�

Stated differently, {Ym;m = 0� 1� 2� � � � } is the process that results from ignor-
ing the transitions of {Sn} that do not change its state. Assume that

pk/(1 − pk)

pk−1/(1 − pk−1)
= θ

so that the IZ condition is an equality. It is easy to show that {Ym;m =
0� 1� 2� � � � } is a time-homogeneous discrete-time Markov chain with one-step
transition probabilities

qij = Pr{Ym+1 = j|Ym = i} =

⎧⎪⎪⎨
⎪⎪⎩

1� i = j = a�−a�
θ

1+θ � j = i+ 1� i < a�
1

1+θ � j = i− 1� i > −a�
0� otherwise�

Notice that the IZ assumption leads to transition probabilities that are inde-
pendent of the actual values of p1 and p2.

Using standard Gambler’s ruin results (e.g., Ross, 2000), the probability that
the process is absorbed in state a – the state that would cause us to declare
system 2 as best – is θa/(1 + θa). Therefore, to obtain PCS � 1 − α we set

a =
⌊

ln((1 − α)/α)

ln(θ)

⌋
�

Random-walk analysis is at the heart of many sequential procedures for
Bernoulli selection, and Smith (1995) shows that it is often useful for evalu-
ating the efficiency of such procedures.

The role of CRN in Bernoulli selection is largely unexplored. Continuing
the previous example, suppose now that the data are generated as follows:

Xij =
{

0� Uj � 1 − pi�
1� otherwise�

for i = 1� 2, where U1�U2� � � � are i.i.d. U(0� 1) random variables. This set up
induces the largest possible correlation between two Bernoulli random vari-
ables and has a profound effect on our procedure because now the outcome
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(X2j = 0�X1j = 1) cannot occur. Therefore, the one-step transition probabili-
ties of {Ym} become

qij = Pr{Ym+1 = j|Ym = i} =
{ 1� i = j = a�−a�

1� j = i+ 1� i < a�
0� otherwise�

and the PCS of the selection procedure is 1. This might seem like a desirable
outcome until you consider the efficiency of the procedure. Remember that
the cost of running the procedure is not the number of Ym’s that are required,
but rather the number of Xij ’s. In the independent case, the expected number
of Xij ’s required for each transition of Ym is

2
p2 − p1 + 2p1(1 − p2)

but under CRN it is greater, specifically,

2
p2 − p1

�

In many cases this is enough to make the procedure less efficient when CRN is
employed (assuming the value of a is not altered). For instance, if p2 = 4/5,
p1 = 3/4, 1 − α = 0�95 and θ = 4/3, then we can show that the expected
number of outputs that must be generated under independent sampling is
about 357, while under CRN it is 400. Obviously a should be altered when
CRN is employed – in fact a = 1 is adequate in this illustration – but to date
no procedure has been developed. Tamhane (1980, 1985) does provide a pro-
cedure for k = 2 systems, but it requires being able to provide an upper bound
on Pr{X1j �= X2j}.
7.4 Bayesian procedures

Instead of providing a PCS guarantee, Bayesian procedures attempt to allo-
cate a finite computation budget to maximize the posterior PCS of the selected
system. Chen et al. (2000) and Chick and Inoue (2001) are two recent refer-
ences; see Chapter 9 for a thorough review of this approach.

8 Future directions

The following are some directions in which future breakthroughs are most
needed:

• Procedures specifically designed for very large numbers of alternatives,
particularly when the alternatives are not all available at the same
time (such as occurs during the search phase of an optimization-via-
simulation algorithm).

http://dx.doi.org/10.1016/S0927-0507(06)13009-1
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• Procedures that exploit common random numbers for very large num-
bers of alternatives without employing such conservative inequalities
that the impact of CRN is overwhelmed.

• Development of constrained selection-of-the-best procedures; for in-
stance, procedures that select the best based on one performance mea-
sure, subject to a constraint or condition on a different measure.
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Abstract

Simulation models allow the user to understand system performance and assist in
behavior prediction, to support system diagnostics and design. Iterative optimiza-
tion methods are often used in conjunction with engineering simulation models to
search for designs with desired properties. These optimization methods can be diffi-
cult to employ with a discrete-event simulation, due to the stochastic nature of the
response(s) and the potentially extensive run times. A metamodel, or model of the
simulation model, simplifies the simulation optimization in two ways: the metamodel
response is deterministic rather than stochastic, and the run times are generally much
shorter than the original simulation. Metamodels based on first- or second-order poly-
nomials generally provide good fit only locally, and so a series of metamodels are fit as
the optimization progresses. Other classes of metamodels can provide good global fit;
in these cases one can fit a (global) metamodel once, at the start of the optimization,
and use it to find a design that will meet the optimality criteria. Both approaches are
discussed in this chapter and illustrated with an example.

1 Introduction

Simulation models provide insight on the behavior of real systems. This in-
sight can be used to improve system performance by ad hoc changes to the
system design parameter values, or the simulation model may be analyzed re-
peatedly to find a set of design parameters that provide the best simulated
performance. We define simulation optimization as the latter case: repeated
analysis of the simulation model with different values of design parameters, in
an attempt to identify best simulated system performance. The design parame-
ters of the real system are set to the ‘optimal’ parameter values determined by
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the simulation optimization exercise, rather than in an ad hoc manner based
on qualitative insights gained from exercising the simulation model. We will
use the following notation to represent the general simulation optimization
problem, following Andradóttir (1998):

(1)min
θ∈Θ

f(θ)�

where θ is the (possibly vector-valued) design parameter of the system being
simulated, and the feasible regionΘ ∈ R

d is the set of possible values of θ. The
optimization model response function is represented by f (θ) which is usually
the expected value (long-term average) of some simulated system performance
measure Y as a function of the design parameter vector θ. That is,

f (θ) = E
(
Y(θ)

)
�

The form of f is not known. Its value is estimated using n runs of the simulation
model under the design scenario specified by θ,

(2)f̂ (θ) =
n∑
i=1

Yi

/
n�

where the dependence of Y on the value of θ has been suppressed. While f (θ)
is deterministic, its estimate is stochastic, since the simulation run time must
be finite (so n <∞).

Simulation optimization strategies depend on the nature of f and Θ. When
the feasible set of design parameter vector values Θ is a discrete set, appropri-
ate optimization methods include ranking and selection (Chapter 17), random
search (Chapter 20) and metaheuristics (Chapter 21). If Θ is continuous and
f is differentiable, then gradient-based methods (Chapter 19) or metamodel-
based optimization (this chapter) can be used. This structure is shown in Fig-
ure 1.

Fig. 1. Simulation optimization strategy depends on the nature of Θ and f .

http://dx.doi.org/10.1016/S0927-0507(06)13017-0
http://dx.doi.org/10.1016/S0927-0507(06)13020-0
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Table 1.
Simulation optimization strategies (+, advantage; −, disadvantage)

Strategy Coding
modifications
to simulation

External
‘custom’
(non-RSM)
metamodel
code

External
standard
statistical
(RSM)
code

External
optimizer
code

Efficiency Provides
insight on
local
response
behavior

Provides
insight on
global
response
behavior

Random search and
metaheuristics

−

Ranking and
selection

−

Direct gradient
methods

− − + +

Response surface
methodology

− +

Global metamodel
optimization

− − + +

The properties of these general classes of optimization strategies are shown
in Table 1. Random search and metaheuristics attempt to select θ values
from Θ efficiently. This generally requires a specialized code external to the
simulation package. Ranking and selection methods assume that a set of θ al-
ternatives is given, and determine the number of simulation replications and
run lengths required for each alternative to give a pre-specified probability of
selecting the best or near-best θ. The effectiveness of ranking and selection in
an optimization setting depends on the method for choosing candidates. Again,
external calculations are necessary to compute run lengths and replications.

If Θ is continuous, other search methods can be employed. Stochastic
gradient-based optimization methods such as stochastic approximation can
use efficient methods for estimating the gradient of f such as likelihood ra-
tios (these require modification of the simulation code – see Table 1), or less
efficient finite-difference approximations. These methods search Θ to find op-
timum system performance without attempting to provide a global approxima-
tion to f , an efficiency advantage (see Section 5.4 in Fu, 1994). The stochastic
optimization code is usually external to the simulation code, and can be com-
plex to implement. Simplex search combines features of ranking and selection
and gradient optimization, but can fail on stochastic responses with large vari-
ation (Tomick et al., 1995). Metamodel-based optimization methods fall in two
categories, both of which use an indirect-gradient optimization strategy. It is
indirect because the gradient is computed for the metamodel (a deterministic
function) rather than for the simulation response. Response surface method-
ology (RSM) is a metamodel-based optimization method that builds linear or
quadratic local approximations to f to be used by a deterministic gradient-
based optimization strategy. Old local models are discarded and new ones are
fitted at the end of each line search cycle. The global metamodel-based opti-
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mization methods build a single global metamodel (usually requiring a much
larger set of simulation runs) which is then optimized using a gradient-based
strategy.

In some cases metamodel-based optimization can be used with discrete-
valued design parameters. If the parameter has a natural integer order, say the
number of machines in a work cell, then the continuous approximation can be
solved using a metamodel strategy, and the solution parameter value rounded
to the nearest (feasible) integer value.

This brief description of simulation optimization serves to place metamodel-
based optimization in the overall context of simulation optimization. Fu (2001)
provides an overview of simulation optimization methods and the implemen-
tations that exist in commercial software.

The remainder of this chapter focuses on metamodel-based optimization
strategies. The next section provides an overview of metamodel types and
their appropriateness for discrete-event simulation response functions. The
following section describes the overall strategy of metamodel-based optimiza-
tion, and highlights the differences between local and global metamodel ap-
proaches. Section 4 describes the RSM approach in more detail and highlights
important issues in its use. RSM is illustrated using a network routing de-
sign example. Section 5 examines one global metamodel-based approach and
applies it to the same optimization case. Section 6 provides a summary and
describes how metamodels can be used for robust design, whose objective is
to simultaneously optimize the expected value and the standard deviation of
the response. Any discussion of metamodel-based optimization necessitates
reference to concepts from a variety of fields, including simulation, statistics,
response surfaces, and nonlinear optimization. For an introduction to concepts
and terminology in these areas, see Banks et al. (2005) and Law and Kelton
(2000) for simulation, Box and Draper (1987), Khuri and Cornell (1987),
Montgomery (2001), Myers and Montgomery (2002) and Santner et al. (2003)
for statistics and response surfaces, and Bertsekas (1999) for nonlinear opti-
mization.

2 Metamodels and simulation

Experimentation with computer simulation models of proposed or existing
real systems is often used to make decisions on changes to the system design.
Analysts exercise the simulation model because cost, time or other constraints
prohibit experimentation with the real system. For the extensive experimenta-
tion required for optimization, the simulation models themselves may require
excessive computation, and so simpler approximations are often constructed;
models of the model, called metamodels (Kleijnen, 1975a, 1975b, 1987) or
surrogate models (Yesilyurt and Patera, 1995). These metamodels are usually
deterministic approximating functions for f that are inexpensive to compute.
Running multiple replications of the simulation to produce f̂ (θ) is expensive;
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running the metamodel once produces the deterministic value g(θ) which ap-
proximates f (θ) with low computational expense.

The major issues in metamodeling include: (i) the choice of a functional
form for g, (ii) the design of experiments, that is, the selection of a set of θ val-
ues at which to observe Y(θ) by running the simulation model, the assignment
of random number streams, the length of runs, etc., (iii) fitting g to the sim-
ulation response using the experimental data, and (iv) the assessment of the
adequacy of the fitted metamodel (confidence intervals, hypothesis tests, lack
of fit and other model diagnostics). We will restrict this discussion to the case of
a single output performance measure, say total cost. Multiple output measures
would each require a separate metamodel.

The functional form for g is typically a linear combination of basis functions
from a parametric family. There are choices for parametric families (polynomi-
als, sine functions, piecewise polynomials, etc.) and choices for fitting; that is,
choosing the ‘best’ representation from within a family (via least squares, max-
imum likelihood, cross-validation, etc.). This section draws from earlier meta-
model review papers (Barton, 1992, 1998), with a focus on the most promising
metamodel and experiment design strategies for simulation optimization.

2.1 Response surface metamodels

Response surface models were developed over fifty years ago for “the ex-
ploration and exploitation” of stochastic response functions (Box and Wilson,
1951; Box, 1954). They are used in conjunction with response surface method-
ology, the most commonly used approach to metamodel-based simulation op-
timization. This metamodel family consists of first or second-order polynomial
probability models fitted to observed values of Y , the system response. A full
second-order response surface model would be

(3)Y(θ) = β0 +
p∑
j=1

βjθj+
p∑
i=1

p∑
k=i

βikθiθk + ε� ε ∼ NID
(
0� σ2)�

where NID indicates that the deviations have independent (and identical) nor-
mal distributions.

Suppose that an experiment has been conducted, with simulation runs at
parameter settings θ1� θ2� � � � � θn and corresponding observed responses (per-
haps averages of replications) of y1� � � � � yn. Let y represent the vector of
responses. For metamodel prediction, maximum likelihood (equivalently, least
squares) estimators for the β0, βi, βik and σ2 are computed, and used in the
prediction equation

(4)g(θ) = β0 +
p∑
j=1

βjθj +
p∑
i=1

p∑
k=i

βikθiθk�
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Response surface metamodels can be fit using standard statistical packages.
Experiment designs for RSM models and other details of this method are dis-
cussed in Section 4.

2.2 Regression spline metamodels

If a linear or quadratic polynomial regression does not provide a good fit,
it is natural to think of higher-order polynomial approximations. Any poly-
nomial regression model can be constructed from linear combinations of the
functions

∏
k θjk , where the index jk may take the same value more than once.

This choice for a basis has drawbacks. The high-order polynomial achieves a
good fit by adjusting coefficients to achieve cancellation of large oscillations
over most of the range. This reliance on cancellation makes high-order polyno-
mial fits nonrobust. Figure 2 shows a 14th degree polynomial fitted to a sample
of deterministic responses at 15 points evenly spaced in the interval [−5� 5]
for the response function f (θ) = 1/(1 + θ2). The magnitude of the overshoot
at the extremes in the figure would increase if the number of design points and
the degree of the polynomial were further increased.

If a linear, quadratic, or cubic approximation to the function is adequate,
then polynomial basis functions can be used to construct an effective meta-
model. If this is not adequate, the simulation modeler should consider other
basis functions from which to build the metamodel. The difficulties with poly-
nomial basis functions are avoided if: (i) they are applied to a small region, and
(ii) only low order polynomials are used. This is the motivation for metamodels
based on piecewise polynomial basis functions. When continuity restrictions
are applied to adjacent pieces, the piecewise polynomials are called splines.
The (univariate) metamodel can be written as

(5)g(θ) =
∑
k

βkBk�

where the Bk are quadratic or cubic piecewise polynomial basis functions. The
basis functions can be described most simply for the univariate case. The do-
main is divided into intervals [t1� t2)� [t2� t3)� � � � � [tm−1� tm) whose endpoints

Fig. 2. 14th degree regression polynomial g(θ) fitted to data from f (θ) = 1/(1 + θ2).
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are called knots. Two sets of spline basis functions are commonly used, the
truncated power function basis and the B-spline basis (de Boor, 1978). Since
most simulation model output functions will not be deterministic, interpolating
splines will not be satisfactory. The motivation for smoothing splines is based
on an explicit tradeoff between the fit/accuracy of the approximation at known
points and smoothness of the resulting metamodel. The fit term is represented
as a sum of squared differences of the metamodel and simulation model re-
sponses at each of the experimental runs. The smoothness is represented by an
integral of the square of some derivative over the region of validity of the meta-
model. The relative weight of these objectives is captured by the smoothing
parameter, λ: λ = 0 provides interpolation with no constraint on smoothness.
The function that minimizes this quantity will be a spline of order q, which is
in Cq−2 (continuous derivatives up to the (q− 2)nd derivative) and is a piece-
wise polynomial with terms up to θq−1. The knots will occur at points in Θ
corresponding to the observed data, θi.

An important issue is the selection of the value for the smoothing parame-
ter λ. The value may be chosen by visual examination of the fit, or by min-
imizing cross-validation (like residual sum of squares), or generalized cross-
validation (GCV) (an adjusted residual sum of squares). Eubank (1988) and
Craven and Wahba (1979) discuss these approaches.

Smoothing splines are appropriate for simulation metamodels, but the de-
velopments have focused on univariate and bivariate functions. The global
metamodel example in Section 5 uses the bivariate smoothing spline code
of Dierckx (1981, 1993). Unfortunately, the most popular and effective mul-
tivariate spline methods are based on interpolating splines, which have little
applicability for simulation optimization (Breiman, 1991; Friedman, 1991).

2.3 Spatial correlation (kriging) metamodels

Sacks et al. (1989) and numerous references therein develop a spatial cor-
relation parametric regression modeling approach. The expected smoothness
of the function is captured by a spatial correlation function. Spatial correlation
models, also called kriging models, have recently become popular for deter-
ministic simulation metamodels (Simpson et al., 1998; Booker et al., 1999).
They are more flexible than polynomial models in fitting arbitrary smooth re-
sponse functions, and seem to be less sensitive than radial basis functions to
small changes in the experiment design (Meckesheimer et al., 2002).

Mitchell and Morris (1992) describe the spatial correlation model that is
appropriate for (stochastic) simulation responses. The probability model rep-
resents the simulation response, Y as

(6)Y(θ) = Z(θ)+ ε�

where ε are independent Gaussian random quantities with mean zero and vari-
ance α2 and Z represents a Gaussian process with mean μ(θ) = E(Y(θ)) and
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variance σ2 that exhibits spatial correlation,

Cov
(
Z(u)�Z(v)

) = σ2R(u� v)�

where R describes the spatial correlation function. Mitchell and Morris (1992)
list four spatial correlation functions, the most commonly used being

(7)R(u� v) =
p∏
j=1

exp
(−ωj|uj − vj|2

)
�

where the index j runs over the dimension of Θ. This Gaussian correlation
structure gives an infinitely differentiable metamodel.

Suppose that an experiment has been conducted, with simulation runs at
parameter settings θ1� θ2� � � � � θn and corresponding observed responses (per-
haps averages of replications) of y1� � � � � yn. Let y represent the vector of
responses. For metamodel prediction, maximum likelihood estimators for the
ωj , μ, σ2 and α2 are computed, and used in the prediction equation for E(Y)

(8)g(θ) = μ+ r′(θ)C−1(y − μ1)�

where r′(θ) has components σ2R(θ� θi), Cjk = σ2R(θi� θk)+α2I(i = k), and
I is the indicator function. The matrix C depends on θi but not on θ. Using γi
to represent the elements of the matrix–vector product C−1(y−μ1)makes the
form of the basis functions of θ for the spatial correlation metamodel clearer
(with μ, γi and ωj as the fitted coefficients).

g(θ) = μ+
n∑
i=1

γi

p∏
j=1

exp
(−ωj∣∣θj − θij

∣∣2)�

For fitting deterministic simulation models, the spatial correlation model ex-
cludes the ε term, and the resulting approximation provides an interpolating
fit to the experimental data.

Although discussed in Barton (1992), Mitchell and Morris (1992) and
Barton (1998), spatial correlation models have not been applied in the discrete-
event simulation context until recently. See Kleijnen (2005) for an overview
and Kleijnen and van Beers (2005) for an assessment of robustness of this
approach in the presence of heterogeneous variance that often characterizes
simulation response functions. The book by Santner et al. (2003) gives a good
review of spatial correlation models, and provides the PeRK code for fitting
and prediction.

Factorial experiment designs can cause ill-conditioned likelihood functions
for spatial correlation metamodels. Orthogonal array, Latin hypercube and or-
thogonal array-based Latin hypercubes have been shown to be effective (Jin
et al., 2000; Meckesheimer et al., 2002). A set of C routines written by Art
Owen at Stanford University generate orthogonal arrays, Latin hypercube de-
signs, and orthogonal array based Latin hypercube designs. The routines are
available from Statlib at http://lib.stat.cmu.edu.

http://lib.stat.cmu.edu
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2.4 Radial basis function metamodels

Radial basis functions (RBF) provide an alternative approach to multivari-
ate metamodeling. In an empirical comparison, Franke (1982) found radial
basis functions to be superior to thin plate splines, cubic splines, B-splines,
and several others for fitting deterministic response functions. Tu and Barton
(1997) found them to provide effective metamodels for electronic circuit simu-
lation models, and Shin et al. (2002) applied a radial basis function metamodel
to a queueing simulation and cited its potential.

The radial basis function approximation consists of a sum of radially sym-
metric functions centered at different points in the domain Θ. The original
development by Hardy (1971) introduced simple “multiquadric” basis func-
tions ‖θ− ck‖ (where ‖ ·‖ denotes Euclidean distance) to give the metamodel
form

(9)g(θ) =
r∑

k=1

γk
∥∥θ− ck

∥∥�

The parameters to be chosen are the basis function centers ck, and the coef-
ficients (positive or negative) γk, k = 1� � � � � r. If the basis function centers
are chosen to be the experiment design points (r = n and ck = θk), then the
approximation provides an interpolating fit. Shin et al. (2002) used a Gaussian
basis function, exp(−‖θ− ck‖2/2σ2). Fitting in the noninterpolating case is by
least squares.

Radial basis functions can be used with many kinds of experiment designs.
Because of the radial symmetry of the functions, the responses are sensitive to
scaling of the design points and the axes. This problem is avoided by scaling
variables to +/−1 and using the same number of levels for each design vari-
able. In a computational study on deterministic response functions, factorial
designs generally provided better fit compared with Latin hypercube designs,
except, in some instances, near the center of the design space (Hussain et al.,
2002). Radial basis function metamodels are easy to code due to the simple
form of (9). Example code is provided by (Watlington, 2005).

2.5 Neural network metamodels

Artificial neural networks (ANNs) can approximate arbitrary smooth func-
tions and can be fitted using noisy response values. ANNs were developed to
mimic neural processing, and can be implemented on a digital computer or in
parallel using networks of numerical processors, whose inputs and outputs are
linked according to specific topologies. For an introduction to neural networks,
see Másson and Wang (1990).

ANNs used for function approximation are typically multi-layer feedforward
networks. Feedforward layered networks have the flexibility to approximate
smooth functions arbitrarily well, provided sufficient nodes and layers. This
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follows from the work of Kolmogorov (1961) whose results imply that any con-
tinuous function f can be reproduced over a compact subset by a three-layer
feedforward neural network. While there are some approximation schemes us-
ing three layers, most approximations use a two layer network structure, with a
single hidden layer and a single output node for models having a univariate de-
pendent variable. The overall metamodel is then a linear combination of linear
or nonlinear functions of the argument vector θ. Figure 3 shows the structure
for a two-layer feedforward network. The function t is a monotone threshold
function, t(u)→ 0, u→ −∞ and t(u)→ 1, u→∞. The symbol denotes the
element by element weighting of elements of the parameter vector θ by weight
coefficients ω. This can be a simple dot product, e.g., ω1 ⊗ θ =∑i ω1�iθi. The
transition value for u is the threshold δk.

Commonly used threshold functions include the sigmoid functions: t(u) =
1/2 + arctan(u)/π, t(u) = 1/(1 + exp(−u)), t(u) = 1/2 + tanh(u)/2.

While t functions are usually threshold functions, it is useful to imagine
more general functions, and to think of neural networks as a technique for
computing metamodel coefficients and predicted values for a broad class of
metamodels, rather than as representing a particular class of modeling tech-
niques. For example, if the t functions are products of power functions of
the θ’s, then the model will be a polynomial regression, with λk values cor-
responding to the usual β coefficients.

Fig. 3. General structure for two-layer feedforward neural network.
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There are many sources for neural network code. See, for example,
MATLAB (2005) and Netlab (2005).

2.6 Validating and assessing metamodel fits

Response surface models are validated by a statistical test for lack of fit. This
test requires repeated simulation runs under the same parameter setting, e.g.,
θi = θi+1 = · · · = θi+r−1, where r is the number of replications. This permits
the construction of a pure error mean square term, which can be compared
with the lack of fit mean square using an F test.

For other metamodel types, fit is usually determined by cross-validation
(Stone, 1974). Let {y� θ} represent the experimental results used for fitting,
with fitted metamodel function g(θ) and suppose that {y−k� θ−k} composes the
set of experimental results less the kth design point (all replicates) and g−k(θk)
is the cross-validation predictive value from the model fitted to {y−k� θ−k}.
The difference g−k(θk) − g(θ) can be computed for each design point k, and
the sum of squares used as an error measure. Meckesheimer et al. (2002) ex-
plored how well the cross-validation error measure approximates the mean
squared error of the metamodel fit. The study was restricted to determin-
istic simulation output using designs with no replications. For radial basis
functions the approximation was reasonably good, but for the spatial correla-
tion model, a ‘leave-r–out’ cross-validation produced a better approximation,
where r = √

n. For additional details on metamodel fitting and validation is-
sues, see Kleijnen and Sargent (2000).

3 Metamodel-based optimization

Law and Kelton (2000) provide a table showing simulation optimization
technologies included with commercial simulation software. The list (repeated
with web sites in Fu, 2001) shows heuristic search methods including genetic
algorithms, tabu search and simulated annealing, but does not include any opti-
mizers solely based on metamodels. Law and McComas (2002) show a similar
list in their empirical study. Neural network global metamodels are used in
several of these optimizers to screen unpromising new points generated by the
heuristic search or to suggest new points to evaluate via simulation (April et al.,
2003). For example, see the description of the OptQuest algorithm in Glover
et al. (1996).

While metamodels play a role in some of these optimizers, none opti-
mize the metamodel function directly, in a way that might be considered
metamodel-based optimization. Further, neither the textbook of Law and
Kelton (2000) nor that of Banks et al. (2005) discuss metamodel-based op-
timization. Fu (2003) states “it is a little baffling that sequential RSM using
regression – very well established in the literature and quite general and easy
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to implement – has not been incorporated into any of the commercial pack-
ages”.

Why then should one be interested in this approach? Metamodel-based op-
timization simplifies dealing with issues that complicate direct optimization
of the simulation model, such as multiple local optima, multiple objectives,
and constraints on design parameters and/or responses. This is because the
implicitly represented stochastic response of the simulation is replaced by
an explicit deterministic metamodel response function. Techniques developed
for deterministic optimization can be applied to these metamodel objectives.
For example, see Boender and Rinooy Kan (1987), Floudas and Pardalos
(1996) and Grossman (1996) for multiple local optima, Charnes and Cooper
(1977), Zionts (1992) and Thurston et al. (1994) for handling multiple objec-
tives, and Bazaraa et al. (1993) for handling constraints. Response surface
models have substantial statistical theory behind them that permit assess-
ment of the uncertainty about the exact value of the optimal design para-
meter values and the optimal response (see Myers and Montgomery, 2002;
del Castillo and Cahya, 2001; Peterson et al., 2002). Further, the metamodels
used during the optimization phase have other usefulness: they can provide in-
sight on the behavior of the simulated system, sensitivity analysis, and the abil-
ity to do repeated “what if” analyses quickly. Rapid reporting of the response
impacts the efficiency, effectiveness and satisfaction of human interactive de-
sign using repeated what if analyses (Simpson et al., 2003).

A significant advantage of a metamodel-based optimization strategy is the
incorporation of knowledge of the smoothly varying response function. The
metamodel enables a reduction in prediction variance by extending the effect
of the law of large numbers over all points in the fitting design. That is, the
prediction variance at a design point is less than that which results from an
estimate based solely on the replicated simulation runs made at that point.
This advantage comes at a cost: bias that is introduced when the metamodel
fails to capture the true nature of the response surface (see Figure 2).

A metamodel-based optimization strategy consists of choosing a metamodel
form, designing an experiment to fit the metamodel, fitting the metamodel and
validating the quality of its fit, optimizing the metamodel (or using it to pro-
vide a search direction), and checking the performance of the simulation at
the metamodel-predicted optimum (or in the metamodel-determined search
direction). In some cases this process is repeated, with the new experiment
design focused on the neighborhood of the predicted optimum. Two gen-
eral strategies have been used for metamodel-based simulation optimization:
global metamodel fit, followed by optimization, and iterated local metamod-
els. These strategies are illustrated graphically in Figure 4. A third strategy
has been used with deterministic simulations: global metamodel fit with local
updates (Alexandrov et al., 1998).

The iterative local metamodeling strategy is commonly used to determine
an optimization search direction. This is followed by a line search using the
simulation response directly. Because the metamodels are local, Taylor’s theo-
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Fig. 4. Global and local metamodel-based optimization strategies.

rem implies that linear and quadratic polynomial models can provide adequate
fit. This is the scenario for response surface methodology. Of course, determin-
ing the meaning of ‘local’ is critical to the adequacy of these metamodels and
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to the success of the method. If the local region is too small, response surface
characteristics will be swamped by variation in the simulation model output. If
the local region is chosen too large, linear or quadratic approximations will be
inadequate.

Global metamodel fits using polynomial response surface metamodels are
rarely adequate. Instead, spline, neural network, spatial correlation or radial
basis function approximation is recommended. The experiment designs for
fitting global approximation metamodels differ from the central composite,
factorial and fractional factorial designs of RSM optimization. Orthogonal
array-based Latin hypercubes tend to perform well. Since global metamodels
can have multiple local optima, a global optimization strategy is recommended.

4 Response surface methodology (RSM)

4.1 Origins and strategy of RSM

Response surface methodology has its origins in the work of Box and
Wilson (1951). Their collaboration initiated at a chemical company when solv-
ing the problem of determining optimal operating conditions for chemical
processes. Response surface methodology is used in many practical applica-
tions in which the goal is to identify the levels of p design factors or variables,
θ = (θ1� θ2� � � � � θp), that optimize a response, f (θ), over an experimental
region. One of the earliest applications in simulation was by Biles (1974).
Other early papers on RSM in a simulation context are referenced by Kleijnen
(1975b). Since in simulation, RSM uses linear and quadratic model approxima-
tions to the simulation model, it is a metamodel-based optimization method.
In simulation applications, the system response is obtained from simulation
output data. We represent the simulation model outputs by the vector-valued
function, as in (2).

In the previous section we introduced a general metamodel-based opti-
mization strategy, which is similar to the formal RSM algorithms described
in Neddermeijer et al. (2000) and Nicolai et al. (2004). Table 2 shows how the
general strategy is applied specifically for RSM. The labels (L1–L10) map back
to the general local metamodel based optimization strategy, illustrated graph-
ically in Figure 4.

The strategy in RSM is to sequentially explore small (local) subregions
of the experimental region and use line searches to find a new experimen-
tal subregion closer to the optimum. In this approach, first or second-order
polynomial models are fit to observed values, y, of the system response. The
observed system response values are obtained by means of an experiment, de-
signed to provide a good model fit. The choice of models and designs is such
that a series of first-order polynomial models are utilized initially, in order to
approach a region in design space that is close to an optimum. This sequence
of local approximations using first-order metamodels followed by line searches
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Table 2.
RSM strategy for metamodel-based optimization

Phase I: First-order regression Phase II: Second-order regression

L1: Determine initial local region
Small enough so linear approximation adequate,
large enough so expected effects will be significant

NA

L2: Choose a local metamodel form. See Section 4.2
First-order polynomial Second-order polynomial

L3: Design local metamodel fitting experiment. See Section 4.3
Fractional factorial plus center point Central composite, small composite or

augmented fractional factorials

L5/L6/L7: Fit local metamodel and check fit for adequacy. Change model if necessary.
Lack of fit test and tests for significance of regression coefficients. See Section 4.4

See Figure 5(a) See Figure 5(b)

L8/L9: Provide a search direction or optimize the metamodel. See Section 4.5
Steepest ascent/descent Direction based on canonical/ridge

analysis

L10: Check the performance of the simulation at the metamodel-
predicted optimum. Confirmation runs. See Section 4.6

is often called Phase I (see left column in Table 2). When close to the optimum,
one or more iterations using second-order models are used to optimize the re-
sponse function (Phase II of the RSM approach). New experimental designs
are constructed or augmented at the line search optimal point. In addition, the
use of replications at a center point allows a ‘pure error’ calculation, which per-
mits a check for lack of fit. The different actions to take based on the outcome
of the regression analysis are summarized in Figure 5(a) for the first-order
regression and in Figure 5(b) for the second-order regression. Each case is dis-
cussed in more detail in Section 4.4. The process comes to an end once the
iteration-to-iteration improvement is not practically significant and a number
of confirmation runs have been conducted to validate the results. More details
on each of the steps are given in the sections indicated in Table 2.

4.2 Choosing a local metamodel form (L2)

The multiple regression model for Phase I is a first-order polynomial model,

(10)Y(θ) = β0 +
p∑
j=1

βjθj + ε� ε ∼ i.i.d. N
(
0� σ2)�
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Fig. 5. Actions based on model adequacy for RSM-based optimization. (a) Model adequacy for Phase I;
(b) Model adequacy for Phase II.

Similarly, a full second-order model for Phase II is

Y(θ) = β0 +
p∑
j=1

βjθj +
p∑
i=1

p∑
k=i

βikθiθk + ε�

(11)ε ∼ i.i.d. N
(
0� σ2)�

The quantitative variables θ are often replaced by coded variables, which are
typically scaled to +/−1,

xi = θi − (θimin + (θimax − θimin)/2)
θi�max − (θimin + (θimax − θimin)/2)

for i = 1� � � � � p�

Let D denote the design matrix, which is different from the matrix of design
parameter values used in the fitting runs ( θ1 � � � θi � � � θn )′. Each column in
the matrix corresponds to the function to be multiplied by the corresponding
β coefficient in (10) or (11), say φi(θ) for coefficient βi. Even for a first-order
polynomial regression shown in (10),D and ( θ1 � � � θi � � � θn )′ are not the same;
D is augmented with an initial column of ones for the intercept term (i.e., co-
efficient β0), as shown in Equation (12). For the p = 2 case with n experiment
runs,

( θ1 � � � θi � � � θn )′ =
⎛
⎝
θ1

1 θ1
2

θi1 θi2
θn1 θn2

⎞
⎠ �

(12)D =
(
φ0(θ

1) φ1(θ
1) φ2(θ

1)
φ0(θ

i) φ1(θ
i) φ2(θ

i)
φ0(θ

n) φ1(θ
n) φ2(θ

n)

)
=
⎛
⎝

1 θ1
1 θ1

2
1 θi1 θi2
1 θn1 θn2

⎞
⎠ �

where scaled x values could be substituted for θ values throughout.
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The multiple regression metamodel that is constructed assuming a true re-
sponse of the form (10) or (11) substitutes 0 for ε and estimates (denoted
by b’s) for the unknown β coefficients. The b vector is calculated using an
existing set of (x� y) data, where xij is the value of the jth design parameter
(j = 1� 2� � � � � p) in the ith run of the system (i = 1� 2� � � � � n). Let xi denote
the vector of values for the ith run. Finally, yi is the value of the response in
the ith run of the system.

For the single response case, under the assumption of independent, identi-
cally distributed random perturbations from run to run, b is found by solving
the least-squares equations,

(13)b = (D′D
)−1

D′y�

For many simulation situations, the usual assumption ε ∼ i.i.d. N(0� σ2)
does not hold. In many cases this is because the variance increases with the
mean. In some cases it is by deliberate intent, through the use of common and
antithetic random numbers, for example. In this more general setting normal-
ity is still assumed, but the perturbations can be dependent and have different
variances. In this case one has ε ∼ N(0� ΣY ), where ΣY is the variance–
covariance matrix for the ε values. The vector β can then be estimated using
weighted least squares with weight matrix W = Σ−1

Y

b = (D′WD
)−1

D′Wy�

In most cases ΣY is unknown and W is an estimate of Σ−1
Y based on sample

data.
In some cases, a transformation of the response produces i.i.d. error. There

are a number of transformations that can be used for variance stabilizing pur-
poses and to improve the analysis. A family of power transformations has been
proposed by Box and Cox (1964). These transformations are of the form

yλ =
{
yλ−1
λ � λ �= 0�

log(y)� λ = 0�

where λ typically takes on values of −1 (reciprocal), 0 (log), 1/2 (square
root) and 2 (square). Statistical software can estimate the value of λ for the
Box–Cox transformation by the method of maximum likelihood. Alternatively,
a variance stabilizing transformation can be selected via a plot of log standard
deviation of response vs. log mean over all design points. See Chapter 3 of
Montgomery (2001) for a detailed discussion of variance-stabilizing transfor-
mations. In practice, the analysis is conducted with the transformed response.
The results are then transformed back to their original scale for easier interpre-
tation. Transformations of the response are also discussed in Kleijnen (1987).
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4.3 Designing local metamodel fitting experiments (L3)

RSM estimates first and second derivatives by regression over a finite re-
gion. The concept is similar to the idea of local vs. infinitesimal sensitivity
analysis. RSM uses a local measure by running the simulation at a number
of points, often with repeated runs at each point (replications) because the
response is stochastic. This set of points is the experiment design for that
particular RSM step. There are a number of issues to be addressed in or-
der to create such a fitting data set. For simulation experiments, these include
(i) choosing the experimental conditions (the θi’s), (ii) choosing the simulation
run lengths, and (iii) choosing the pseudo-random number assignment strategy
within and across runs.

There are many criteria for designing a fitting experiment. In the context of
response surface methodology:

• the design should result in a good fit of the model to the data in a
minimum number of experimental runs,

• it should control errors due to both variance and bias,
• it should allow models of increasing order to be constructed sequen-

tially and allow experiments to be conducted in blocks to accommodate
Phase I and Phase II models, and

• it should be robust to the presence of outliers in the data, should allow
for lack of fit testing and should provide an estimate of experimental
error.

Equations (10), (11) and (13) imply that b can be characterized as a random
variable with E(b) = β, with variance–covariance matrix

Σb = σ2(D′D
)−1

and variance of a predicted value at θ0, say based on b,

Var
(
g(θ0)

) = σ2φ(θ0)
′(D′D

)−1
φ(θ0)�

where the φ terms are the functions to be multiplied by the corresponding
β coefficient as in (12).

Many of the measures of experiment design goodness, that is, the goodness
of ( θ1 � � � θi � � � θn )′, attempt to minimize some measure associated with Σb
or Var(g(θ0)). For example, a confidence ellipsoid for the true vector β has a
form based on Σb

(β− b)′
(
D′D

)−1
(β− b) = Kα�

where the constant Kα depends on the confidence level desired, 100(1− α)%.
Minimizing the volume of this ellipsoid corresponds to maximizing the deter-
minant of (D′D). This is one measure of design goodness. For the non-i.i.d.
case one can substitute (D′WD) for (D′D) in the equations above.
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Phase I Designs. Common first-order RSM designs include factorial designs,
which comprise full and fractional factorial designs. In factorial designs, each
dimension of the design space is covered by a series of (typically) uniformly
spaced values; their Cartesian product provides a map of the entire response
surface of the system. Usually, first-order designs have only two levels for each
design parameter. The number of points required in full factorial designs be-
comes prohibitively large as the number of factors in the model increases, so
fractional factorials are often used as an efficient alternative to full factorial
designs when there are many design parameters.

Phase II Designs. Common second-order designs include the central compos-
ite (CCD, Box and Wilson, 1951), Box–Behnken (Box and Behnken, 1960),
small composite (Draper and Guttman, 1986; Draper and Lin, 1990) and three-
level experimental designs (Morris, 2000). A CCD is a two level 2p−k or 2p
factorial design, augmented by n0 center points and two axial points, so that
the quadratic effects can be estimated. This design consists of 2p−k + 2p+ n0
total design points to estimate 2p + p(p − 1)/2 + 1 model coefficients.
Central composite designs have been used effectively for polynomial models
with interaction terms; however, they become impractical for a large num-
ber of factors, since they are based on expensive factorial designs. Myers and
Montgomery (2002) provide a thorough discussion on response surface model-
ing and application of factorial designs and other geometric design strategies.
The Box–Behnken designs are combinations of incomplete block designs that
require fewer levels than CCDs. Small composite designs combine axial runs
with fractional-factorials. Morris designs are specially constructed fractional-
factorial designs. The designs presented by Morris (2000) are easy to construct
and have excellent properties.

Note that there is a significant difference in the number of runs required to
fit a ‘first-order’ (linear approximation) vs. the number of runs to fit a quadratic
approximation. In terms of the minimum number of runs required, each re-
quires as many runs as there are terms in the model. For a first-order model,
there are p + 1 terms (including the intercept). For a quadratic model, there
are a total of (p+1)(p+2)/2 terms. For an optimization on seven factors, the
linear approximation requires 8 runs and the quadratic model requires 36 runs,
not counting replications. For this reason, an important part of the RSM strat-
egy is to use a linear approximation whenever it is adequate. In particular,
when the optimization begins, there is no reason to expect that the initial de-
sign parameters are near optimal. If the initial point is far from optimal, the
gradient direction may provide an adequate search direction, and a linear ap-
proximation may provide an adequate fit.

Replicate runs and variance reduction methods
Another important aspect of experimental design is the use of replicates.

One consideration when using replicates is determining at which points those
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replicates should be conducted. While replicates are often done at the center
point of a factorial design to provide an estimate of error and detect curva-
ture, there may be situations for which it may be more appropriate to add
replicates at some of the factorial points. For example, in the presence of non-
homogeneous variance in the design space, Kleijnen (2005) suggests increasing
the number of replicates to reduce the magnitudes of the variances to reduce
the noise at single replicates. In earlier work, Kleijnen and van Groenendaal
(1995) propose selecting the additional replicates such that the variances of
average responses become a constant. Alternatively, one might consider ad-
justing the run length of the simulation and partition that run into subruns to
obtain replicates (Law and Kelton, 2000). These strategies to reduce variance
at high-variance design points are plagued by the

√
n rule: standard deviations

decrease only in the square root of the number of replications (or total simula-
tion run length). If the simulation modeler can tolerate higher prediction error
in regions with high response means, then variance stabilizing transformations
provide a less costly way to achieve equal variance across the design region.

Variance reduction techniques for simulation models are discussed by
Donohue (1995) and McAllister et al. (2001), for example. However, some
of these strategies may affect the optimality properties of the experimental
design, and the final choice of design strategy (including the number and
location of replicates) will depend on the computational expense of the sim-
ulation model, the objective and the assumptions of the analysis. Myers and
Montgomery (2002) provide a more extensive discussion on the effect of repli-
cates and the design choice.

Control of the random numbers in a simulation permits additional ma-
nipulation of the variance/covariance structure of the responses. If RSM is
being applied to a discrete-event stochastic simulation model, there are special
strategies for selecting the random number streams to improve the precision
and accuracy of the fitted model. The original paper in this area is Schruben
and Margolin (1978). Donohue et al. (1993a, 1993b, 1995) also discuss designs
for fitting quadratic models to discrete-event simulation data. The statistical as-
pect of analysis with induced correlation and/or control variates are described
in Nozari et al. (1987) and Tew and Wilson (1992, 1994). See also Donohue
(1995).

4.4 Assessing the adequacy of the metamodel fit (L5/L6/L7)

Testing the model adequacy for RSM is done using a lack-of-fit test, a sta-
tistical test that compares model fitting error with “pure” variation within
replicated observations. This measures the adequacy of the response surface
model. The validation strategy is illustrated in Table 2 and Figure 5, and de-
pends on whether the RSM is in Phase I or Phase II.

For Phase I, if there is no lack of fit, and the regression coefficients are sta-
tistically significant (β �= 0), a new line search begins in the direction suggested
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by the regression coefficients. If there is lack of fit, or lack of significance of the
model, other steps must be taken.

If there is lack of fit, the design should be augmented with additional runs
to fit a local quadratic approximation. Either a central composite design or a
small composite design is usually used. An alternative is to use a Resolution V
2p−k design combined with 2p axial points and a center point. Such designs
are called small composite designs (Draper and Guttman, 1986). Optimization
steps using quadratic metamodels are considered to be Phase II of RSM.

On the other hand, if there is no lack of fit, but there is no statistical signifi-
cance for the first-order regression model, then additional replications should
be taken at the fractional factorial points, or a new first-order design should be
constructed with a larger range for the design variables. The possible actions
following the analysis of the first-order regression model are summarized in
Figure 5(a).

For Phase II, cases where there is lack of fit or lack of model significance
require a modification of the design: either more replications, or a smaller
range for the design.

If some or all of the quadratic model coefficients are statistically significant
and there is no lack of fit, then the search direction is selected based on the
nature of the quadratic model, as described in Section 4.5. The possible actions
following the analysis of the second-order regression model are summarized in
Figure 5(b).

4.5 Conducting simulation runs in the search direction (L8/L9)

For Phase I, when the analysis shows that the first-order model is adequate,
the regression coefficients are used to identify the gradient. For a minimization
problem, the line search proceeds in the negative gradient direction (path of
steepest descent), typically beginning at the center of the fractional factorial
design region. The path of steepest descent is the direction perpendicular to
the contour lines of the response surface. The strategy is to conduct a series of
experimental runs along the path of steepest descent indicated by the vector
of estimated response surface coefficients b. The step size is usually chosen
as the distance from the center of the design region to the edge of the design
region. Additional steps are taken in this direction until no further reduction
in the objective function occurs. Since the response is stochastic, an unusually
good or unusually bad observed value might lead to a premature termination
of the search. To reduce this chance, Myers and Khuri (1979) recommend a
hypothesis test for significance of the change. del Castillo (1997) and Miró-
Quesada and del Castillo (2004) fit a (univariate) polynomial to the responses
along the search direction and use the predicted minimum as the end of the
line search. They also show that the stopping rule based on three consecutive
observations without a decrease is effective.
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If multiple first-order fits and line searches are performed, conjugate-
gradient or quasi-Newton directions might be chosen instead of the gradient
direction (see Joshi et al., 1998).

Phase II generally follows a sequence of one or more Phase I iterations.
Eventually the first-order model fails to fit the local response function ad-
equately, and the design is augmented to fit a second-order model for the
current design region. This initiates Phase II of the method.

During the analysis of the second-order response surface model, it is some-
times convenient to translate the variables to a new center and rotate the axes
so that they correspond to the principal axes of the matrix of second deriva-
tives of the quadratic approximation to the underlying response function, also
called the Hessian. The new center is the stationary point of the quadratic
model (where the gradient is zero), and the process of rotation and translating
the axes to the stationary point is called canonical analysis.

A canonical analysis permits an easy characterization of the local shape of
the response function and helps determine whether the estimated stationary
point is a maximum, a minimum, or a saddle point. If the eigenvalues of the
Hessian are all positive, then the quadratic approximation is bowl-shaped, and
a predicted minimum exists, which can be found by setting the gradient of the
quadratic approximation equal to zero and solving for x∗. The search direction
in this case is toward x∗. If the eigenvalues of H are not all positive, then the
search is in the direction of the negative gradient of the fitted quadratic, or
may be a ridge direction: a direction that gives the best predicted value of the
quadratic on a hypersphere of fixed radius (the radius is typically chosen to
be 1 or

√
n if the factorial values of the variables have been scaled to +/−1

over the fitting design).
After a line search is completed, RSM may terminate, either because the

budget of runs has been exhausted, or because the optimal point of the most
recent line search is very close to the optimal point of the previous cycle.

4.6 Validation of the optimum: checking performance (L9/L10)

Once a local optimum has been found, a number of confirmation runs
should be conducted to validate the results. In addition, Peterson et al. (2002)
and del Castillo and Cahya (2001) discuss the computation of confidence
regions on the stationary point of a response surface. A confidence region
provides a measure of quality for the point estimate and can be useful when
analyzing problems with multiple responses. Furthermore, confidence regions
indicate how robust the solution is. This may be of advantage in determining
whether a new metamodel-fitting experiment design, centered about the opti-
mum, should be conducted to refine knowledge of the response function near
the optimum.
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Fig. 6. Arena model for the queuing system design example.

4.7 Illustration of response surface methodology: queuing example

There are many operational and strategic issues associated with conducting
RSM-based simulation optimization. These are more easily understood in the
context of an example, which follows the strategy outlined in Table 2.

Consider a simple network design situation consisting of a communication
system in which one must choose routing percentages to route 1000 ran-
domly arriving messages to a particular destination. Suppose that there are
three routes (networks) that might be used. One must choose P1, the per-
cent to network 1 and P2, the percent of the remaining information packets
that go to network 2, to minimize costs. Suppose that costs are composed
of $0.005/time unit each packet is in the system, plus a per-packet processing
cost, ci, that varies by network: $0.03 for network 1, $0.01 for network 2 and
$0.005 for network 3. In terms of the general simulation optimization problem,
θ = ( P1 P2 )

′ and Θ = [0� 100] × [0� 100], and f is the expected total cost.
An Arena model for this system is shown in Figure 6. The Arena simulation en-
vironment is described by Kelton et al. (2004). Suppose that packet interarrival
times have an exponential distribution with mean = 1/λ = 1 time unit. Sup-
pose that network transit times have triangular distributions with mean E(S)
and limits +/−0�5 with E(S) = 1, 2 and 3 for networks 1, 2 and 3, respectively.

Selecting the design region (L1)
Preliminary simulation runs have revealed that very low as well as very

high percentages produce high traffic intensities and high cost. In addition,
the initial local metamodel design region should be small enough so a linear
approximation is adequate and large enough so that expected effects will be
significant. Therefore, the initial region was chosen as [37� 78] × [37� 78].
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Choosing local metamodel type (L2)
The objective of the queuing system analysis is to find values for θ =

( P1 P2 )
′ that minimize the total cost of the system. Suppose that the current

settings for P1 and P2 are 40% and 75% (the center of the initial design re-
gion), and we suspect that the minimum cost is not near the current settings.
Therefore, the local surface could be approximated by a first-degree polyno-
mial

Y = β0 + β1θ1 + β2θ2 + ε� ε ∼ NID
(
0� σ2)�

Designing local metamodel fitting experiment: Phase I (L3)
The design consisted of 10 simulation runs; a 22 factorial design with 2 repli-

cations at each point was chosen as a first-order design to fit this model. Repli-
cates were used to provide an estimate of the experimental error. In addition,
the inclusion of runs at a center point permits a check on the adequacy of the
first-order model. The design as well as the data obtained from it are shown in
Table 3.

Examining the standard deviations of the response (cost) at each of the de-
sign points shows some indication of nonhomogeneous standard homogeneous
deviations (12.10, 3.26, 14.44, 9.60 and 4.13). A transformation may be appro-
priate to stabilize the variance. A maximum likelihood estimation of the power
transformation parameter suggests a log transformation on the response. The
transformed response values have also been included in Table 3. Subsequent
analyses for this iteration are done for the transformed response.

Check model adequacy: Phase I (L5/L6/L7)
The analysis of variance and lack of fit for the least squares analysis is sum-

marized in Figure 7. The first-order model is significant, indicated by a P-value
of 0.0420 and there is no lack of fit, indicated by the P-value of 0.2049. For this
situation, Figure 5(a) suggests continuing with a line search.

Table 3.
Data obtained from a first-order factorial design (centered around P1 = 40, P2 = 75)

Run Design variables Coded variables Response

θ1 = P1 θ2 = P2 x1 x2 cost ln(cost)

1 37 72 −1 −1 54�40 4�00
2 37 72 −1 −1 37�29 3�62
3 43 72 +1 −1 39�90 3�69
4 43 72 +1 −1 35�29 3�56
5 37 78 −1 +1 64�87 4�17
1 37 78 −1 +1 85�29 4�45
2 43 78 +1 +1 52�83 3�97
3 43 78 +1 +1 39�25 3�67
4 40 75 0 0 66�14 4�19
5 40 75 0 0 60�30 4�10
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Response Surface for Variable log(cost)
Response Mean 3.942000
Root MSE 0.213286
R-Square 0.5958
Coefficient of Variation 5.4106

Type I Sum
Regression DF of Squares R-Square F Value Pr > F
Covariates 2 0.469325 0.5958 5.16 0.0420
Linear 0 0 0.0000 . .
Quadratic 0 0 0.0000 . .
Crossproduct 0 0 0.0000 . .
Total Model 2 0.469325 0.5958 5.16 0.0420

Sum of
Residual DF Squares Mean Square F Value Pr > F
Lack of Fit 2 0.149535 0.074768 2.21 0.2049
Pure Error 5 0.168900 0.033780
Total Error 7 0.318435 0.045491

Parameter
Estimate

Standard from Coded
Parameter DF Estimate Error t Value Pr > |t| Data
Intercept 1 3.942000 0.067447 58.45 <.0001 3.942000
x1 1 -0.168750 0.075408 -2.24 0.0603 -0.168750
x2 1 0.173750 0.075408 2.30 0.0547 0.173750

Fig. 7. Phase I analysis of first-order regression model with transformed response.

Conducting simulation runs in the search direction: Phase I (L8/L9)
With the coefficient estimates for the first-order model the equation of the

first-order model can be written as

ln
(
g(x)

) = 3�942 − 0�16875x1 + 0�17375x2�

Rounding the coefficients for the gradient gives (−0�17 0�17 )′ which can be
scaled to (−1 1 )′. Because the objective is to minimize the response, we take
a series of steepest descent steps, starting at the center of the initial experi-
mental region and moving b2/b1 = 1/(−1) = −1�0 units in x2 for every 1 unit
in x1. Table 4 illustrates this process. Note how the response initially decreases,
but then increases again in run 15. As recommended in Section 5.4, three ad-
ditional steps were done to verify that the increase was not due to variability in
the process.

A new 22 factorial design can be constructed in the vicinity of run 14; the
design is shown in Table 5. This time, there is much less variability in the stan-
dard deviations of the responses and we proceed with the analysis of variance
and lack of fit for the least squares analysis without a response transformation.
This analysis is summarized in Figure 8.

In this case, the model is significant, with a P-value of 0.0283, but the lack
of fit test is also significant, with a P-value of 0.005. Following the path sug-
gested in Figure 5(a), the first-order design is augmented to construct a central
composite design with axial points at δ = √

2, as shown in Table 6.
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Table 4.
Steepest descent path for queuing system design

Run Coded variables Design variables Total cost

yx1 x2 P1 P2

Center run conditions 0 0 40 75 63.2 (average)

11 1 −1 43 72 38.3
12 2 −2 46 69 36.2
13 3 −3 49 66 33.3
14 4 −4 52 63 32.6
15 5 −5 55 60 33.5
16 6 −6 58 57 34.4
17 7 −7 61 54 34.2

Table 5.
Data obtained from a first-order factorial design (centered around P1 = 52, P2 = 63)

Run Design variables Coded variables Total cost

yP1 P2 x1 x2

18 49 60 −1 −1 34�3
19 49 60 −1 −1 34�0
20 55 60 +1 −1 33�5
21 55 60 +1 −1 33�5
22 49 66 −1 +1 33�3
23 49 66 −1 +1 33�5
24 55 66 +1 +1 32�8
25 55 66 +1 +1 32�9
26 52 63 0 0 32�9
27 52 63 0 0 32�6

Response Surface for Variable cost
Response Mean 33.330000
Root MSE 0.370521
R-Square 0.6389
Coefficient of Variation 1.1117

Type I Sum
Regression DF of Squares R-Square F Value Pr > F
Covariates 2 1.700000 0.6389 6.19 0.0283
Linear 0 0 0.0000 . .
Quadratic 0 0 0.0000 . .
Crossproduct 0 0 0.0000 . .
Total Model 2 1.700000 0.6389 6.19 0.0283

Sum of
Residual DF Squares Mean Square F Value Pr > F
Lack of Fit 2 0.846000 0.423000 18.39 0.0050
Pure Error 5 0.115000 0.023000
Total Error 7 0.961000 0.137286

Fig. 8. Phase I analysis of first-order regression model, after the line search.
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Table 6.
Data obtained from an augmented design (centered around P1 = 52, P2 = 63)

Run Design variables Coded variables Total cost

yP1 P2 x1 x2

28 48 63 −1�41 0 32�7
29 48 63 −1�41 0 33�7
30 56 63 +1�41 0 33�4
31 56 63 +1�41 0 32�8
32 52 59 0 −1�41 32�8
33 52 59 0 −1�41 33�4
34 52 67 0 +1�41 33�2
35 52 67 0 +1�41 32�7
36 52 63 0 0 33�0
37 52 63 0 0 32�7
38 52 63 0 0 32�5

Response Surface for Variable cost
Response Mean 33.152381
Root MSE 0.403984
R-Square 0.4805
Coefficient of Variation 1.2186

Type I Sum
Regression DF of Squares R-Square F Value Pr > F
Linear 2 1.102082 0.2339 3.38 0.0616
Quadratic 2 1.157249 0.2456 3.55 0.0548
Crossproduct 1 0.005000 0.0011 0.03 0.8634
Total Model 5 2.264331 0.4805 2.77 0.0573

Sum of
Residual DF Squares Mean Square F Value Pr > F
Lack of Fit 3 1.221049 0.407016 3.98 0.0351
Pure Error 12 1.227000 0.102250
Total Error 15 2.448049 0.163203

Fig. 9. Phase II analysis of second-order regression model (based on CCD).

Check Model Adequacy: Phase II (L5/L6/L7)
The analysis of the second-order response surface model is summarized in

Figure 9.
The analysis of the second-order model shows that there is lack of fit, with

P-value 0.0351, and marginal model significance, with P-value 0.0573. Refer-
ring back to Figure 5(b), this is a case that requires choosing a smaller range
for a new second-order design. In an attempt to reduce the cost of exercising
the simulation code, we first reduce the range of the second-order design by
placing the axial points of the CCD at the center of the faces (with δ = 1),
creating a face-centered design. The four new points, with 2 replications each,
are shown in Table 7.

The analysis of the second-order model based on the face-centered design
is shown in Figure 10.
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Table 7.
Data for a face centered design (centered around P1 = 52, P2 = 63)

Run Design variables Coded variables Total cost

yP1 P2 x1 x2

39 49 63 −1 0 33�3
40 49 63 −1 0 33�4
41 55 63 +1 0 32�4
42 55 63 +1 0 32�8
43 52 60 0 −1 33�4
44 52 60 0 −1 33�4
45 52 66 0 +1 33�2
46 52 66 0 +1 32�9

Response Surface for Variable cost
Response Mean 33.227778
Root MSE 0.168874
R-Square 0.9108
Coefficient of Variation 0.5082

Type I Sum
Regression DF of Squares R-Square F Value Pr > F
Linear 2 2.288333 0.5965 40.12 <.0001
Quadratic 2 1.200556 0.3130 21.05 0.0001
Crossproduct 1 0.005000 0.0013 0.18 0.6828
Total Model 5 3.493889 0.9108 24.50 <.0001

Sum of
Residual DF Squares Mean Square F Value Pr > F
Lack of Fit 3 0.097222 0.032407 1.19 0.3672
Pure Error 9 0.245000 0.027222
Total Error 12 0.342222 0.028519

Fig. 10. Phase II analysis of second-order regression model.

The adjustment to the design range improved the second-order model with
a model significance P-value of less than 0.0001 and a lack of fit P-value
of 0.3672. Using Figure 5(b) as a guide, we continue with a line search.

Conducting simulation runs in the search direction: Phase II (L8/L9)
Figure 11 summarizes the results for the canonical analysis, as discussed in

Section 4.5.
The stationary point found is a minimum point, with ( θ1 θ2 ) = ( 54�0 63�8 ),

after translating the coded variables ( x1 x2 ) = ( 0�66 0�28 ) to the original
units. The estimated cost at the optimal operating conditions was $32.59.

Conducting simulation runs in the search direction: Phase II (L8/L9)
To confirm the results from the analysis, 16 additional runs were made at

P1 = 54�0 and P2 = 63�8. In practice, the number of confirming runs may
depend on how many runs one can afford. The 95% confidence interval for
the cost based on 16 replications was [$32�77� $33�31]. Compared with the
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Canonical Analysis of Response Surface Based on Coded Data
Critical Value

Factor Coded Uncoded
x1 0.657937 0.657937
x2 0.279883 0.279883
Predicted value at stationary point: 32.591158

Eigenvectors
Eigenvalues x1 x2
0.492290 0.049814 0.998759
0.241043 0.998759 -0.049814
Stationary point is a minimum.

Fig. 11. Phase II canonical analysis for the second-order regression model.

average cost at the starting point, $54.97, the response has improved signif-
icantly. We performed a 1000-replication validation for the same point, not
likely to be practical in many settings, which provided a confidence interval of
[$33�03� $33�10] for the cost.

4.8 RSM for simulation optimization

RSM has been used successfully for over 40 years for processes with stochas-
tic variation. It has been successfully applied to stochastic simulation problems
for approximately half that time. The advantage of the method is that it is
robust. The disadvantages of the method are that automated versions of the
algorithm are not readily available, and manual implementation of the method
for more than a few cycles is tedious, complex, and prone to error. In Section 5,
we use the network design example to illustrate a global metamodel approach
and also provide an analytic solution to this problem.

5 Global metamodel-based optimization

5.1 Motivation and strategy

The developments in global approximation model technology present an
opportunity for optimization using a single metamodel, rather than a sequence
of fitted local metamodels. There are several potential advantages to this ap-
proach. First, a relatively flexible global metamodel may be able to provide a
high-fidelity approximation for the response surface with relatively few exper-
imental points, while a polynomial (RSM) metamodel using the same experi-
mental data would fail.

Second, the overall process is simplified: there can be a single experiment
design, and a single model-fitting step. This removes the need for sequential
decisions on the type of metamodel to be fit and the kind of experiment design
to be used for fitting.

Of course, more complex global metamodel-based optimization methods
could be designed, for example, to update the fit by selecting additional
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Table 8.
General and specific global strategy for metamodel-based optimization

General global strategy Network design example strategy

G1: Determine global region Smaller than the feasible region:
elimination of obvious nonoptimal regions

G2: Choose a global metamodel type Smoothing spline

G3: Choose global metamodel fitting DOE Full factorial (42) plus center for smoothing
spline

G5/G6/G7: Fit global metamodel and check fit for
adequacy. Change model if necessary

Leave-one-out cross-validation sum of
squared error. Confirmation runs

G8: Apply global optimization algorithm Grid search

G10: Check the performance of the simulation at
the metamodel-predicted optimum

Confirmation runs

simulation runs as the optimization progressed (Alexandrov et al., 1998;
Booker et al., 1999). Such strategies are actually a mix of global and local
strategies and will not be considered in this chapter. We will assume that the
strategy follows that shown in Figure 4, and that the metamodel-fitting step
occurs once, rather than having a sequential update of the design and refitting
of the model.

In this section we illustrate a global metamodel-based optimization strat-
egy for the network routing example described in the previous section. Table 8
shows the general global strategy from Figure 2 and the specific implemen-
tation that will be used for the network routing optimization example. The
process is described in detail in the following sections.

5.2 Selecting the design region (G1)

Recall that for the network design example the design variables θ =
( P1 P2 ). The objective is to find routing percentages that minimize total
cost (network use plus transit time) for 1000 messages. The feasible region
isΘ = [0� 100]×[0� 100], since the routing percentages can be set to any value.
Setting a percentage near 100 means that the subsequent network route(s)
will not be used, and so the traffic intensity might be too high on the used
network(s). On the other hand, a percentage near zero again means that a net-
work will not be used, and that traffic intensities on the remaining networks
may be excessive. Some exploratory simulation runs showed that percentages
less than 40 or greater than 80 tended to produce high traffic intensities and
high costs. For this reason, the global metamodel fitting region was reduced
from [0� 100] × [0� 100] to [40� 80] × [40� 80].
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5.3 Global metamodel type (G2)

Section 2 describes many possible types for the global metamodel. We se-
lected smoothing splines for several reasons. First, they are widely used for
response functions of one or two variables. Second, there is publicly available
code for fitting and prediction using smoothing splines (Dierckx, 1981, 1993;
NETLIB, 2005). Third, they allow for a weighted fit based on observed stan-
dard deviations of responses.

5.4 Experiment design (G3)

Bivariate smoothing splines can be used with a variety of design types.
We believed the response would be well-behaved (but not quadratic), with sub-
stantial increases in cost near the boundaries of the design region. Beyond that,
we had no special knowledge of the likely location of the optimum, and chose
a 42 factorial design to cover the design space, plus a center point (P1 = 60�
P2 = 60).

The design consisted of 34 simulation runs, two runs at each of the 17 de-
sign points. Table 9 shows the average cost and standard deviation of cost at
each design point. Note that there were significant variations in the observed
standard deviations. This problem is more likely to occur when fitting global
metamodels than when fitting local RSM-type metamodels.

Table 9.
Means and standard deviations for the 17 point, 34 run 42 factorial design

Design point P1 P2 Avg. cost S.D. cost

1 40 40 92�527 22�335
2 40 53 41�200 5�547
3 40 67 34�350 0�776
4 40 80 109�445 40�906
5 53 40 40�485 3�222
6 53 53 34�413 1�572
7 53 67 33�418 0�242
8 53 80 35�275 1�089
9 67 40 35�483 0�327

10 67 53 35�063 0�715
11 67 67 34�350 0�776
12 67 80 34�661 1�250
13 80 40 43�248 3�612
14 80 53 40�711 0�308
15 80 67 39�953 0�676
16 80 80 39�967 1�320
17 60 60 33�293 0�379
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5.5 Checking model adequacy (G5, G6, G7)

We expected that a poor model fit might occur since there was substantial
variation in standard deviations across the design points. This is a common
characteristic for queueing simulations: means and standard deviations of time
in system are typically related. We would like to limit the influence of high-
variance observations on the overall fit by considering a variance-stabilizing
transformation for the response.

Figure 12 shows the log standard deviation vs. the log mean for the 17 de-
sign points, which has a slope of approximately 3. This suggests a variance
stabilizing transformation of 1/(cost2), as discussed in Montgomery (2001).
Figure 13 shows the fitted global metamodel for the untransformed data, us-
ing a weight function equivalent to the inverse standard deviation as well as
metamodel fitted to the transformed data and using a constant standard devia-

Fig. 12. Log standard deviation vs. log mean for the 17-point 42 design.

(a) (b)

Fig. 13. Fitted global metamodels for the 17-point 42 design: (a) 1/y2 transformation, (b) no transfor-
mation.
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tion assumption. The order of magnitude of the smoothing parameter in each
case was chosen to provide good leave-one-out cross-validation results. For
both the transformed (T-Model) and untransformed (U-Model) response, the
smoothing parameter was set to 1.7. Although leave-one-out cross-validation
has been shown useful in metamodel assessment (Meckesheimer et al., 2002),
it has some drawbacks (Shao, 1993; Tibshirani, 1996). For that reason the two
model fits were checked against 10 replications of four randomly selected con-
firmation design points.

The cross-validation and confirmation run results are summarized in Ta-
ble 10. While the untransformed metamodel provides better cross-validation
results, the transformed model provides lower error (though not statistically
significant) for the confirmation runs. More than three times as many confir-
mation runs would be required to detect the observed differences as statis-
tically significant. There is not a strong reason to select one model over the
other, but we continue with the transformed response metamodel to parallel
the analysis in the RSM section.

Table 10.
Validation results for metamodels with transformed (T-model) and untransformed (U-model) re-
sponses

P1 P2 Cost U-Model U-Error2 T-Model T-Error2

Cross-validation results
40 67 34�35 37�46 9�69 41�18 46�72
40 80 109�45 46�55 3956�12 35�10 5527�71
40 53 41�20 39�87 1�77 46�34 26�41
40 40 92�53 85�31 52�03 10�70 6695�82
80 67 39�95 39�62 0�11 41�30 1�82
80 80 39�97 41�43 2�15 34�78 26�90
80 53 40�71 41�25 0�29 48�88 66�77
80 40 43�25 42�18 1�13 35�35 62�36
53 67 33�42 32�43 0�98 32�21 1�46
53 80 35�28 39�74 19�98 40�21 24�34
53 53 34�41 35�15 0�54 34�11 0�09
53 40 40�48 38�71 3�15 43�36 8�27
67 67 34�35 34�40 0�00 34�09 0�07
67 80 34�66 33�35 1�71 36�71 4�19
67 53 35�06 34�61 0�20 34�02 1�08
67 40 35�48 36�38 0�81 37�56 4�33
60 60 33�29 33�59 0�09 33�62 0�11

Average cross-validation squared error 238.28 735.20

Confirming run validation results
53 72 33�89 33�80 0�008 34�18 0�084
40 80 34�71 36�33 2�624 35�82 1�232
40 53 34�18 34�30 0�014 34�57 0�152
40 40 36�02 35�16 0�740 35�47 0�302

Average confirming run squared error 0.85 0.44
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5.6 Global optimization results (G8)

The global optimization might proceed with a multistart gradient-based op-
timizer, identifying the global optimum as in Boender and Rinooy Kan (1987).
For a two-variable optimization, a simpler grid search strategy is possible. The
optimal operating conditions based on this search are P1 = 54�1 and P2 = 64,
with an estimated cost of $33.34 (for the untransformed response metamodel
the results were P1 = 57�1 and P2 = 65�6, with an estimated cost of $33.14).

5.7 Validation: confirming runs (G9)

Confirming runs of the simulation were made at P1 = 54�1 and P2 = 64. In
practical situations it may be cost-prohibitive to conduct many replications. For
this example we have chosen a middle ground for replications at 16. This pro-
vides a 95% confidence interval of [$32�75� $33�22] for the cost. We performed
a 1000-replication validation for the same point, not likely to be practical in
many settings, which provided a confidence interval of [$33�05� $33�11] for the
cost. For comparison, the untransformed candidate for optimum produced a
1000-replication confidence interval of [$33�18� $33�24], inferior to the trans-
formed response metamodel solution. With 16 replications, the two candidate
solutions were indistinguishable.

5.8 An alternative global ‘metamodel’ based on steady-state behavior

An alternative ‘model of the simulation model’ is to take the steady-state
approximation, which can be solved analytically. This is equivalent to assuming
that the network queues begin in steady state, rather than empty and idle.

Suppose that the system to be studied terminates after processing 1000 jobs.
The total cost can be approximated using the analytical solution for the steady-
state problem. It is possible to decompose the system into three M/G/1
queues. In steady state, the average transit time on the ith network will be wi.
If pi is the probability that a packet is routed through network i and wi is its
average transit time, then the total cost in the steady-state approximation will
be

Expected total cost for 1000 steady-state customers

(14)=
3∑
i=1

1000pi(ci +wi)�

The routing probabilities are computed as p1 = P1/100, p2 = (P2/100)(1 −
P1/100) and p3 = 1−[P1/100+(P2/100)(1−P1/100)]. For anM/G/1 system
in steady state, the average time in the system for an entity is

w = E(S)+ λ
(E(S))2 + σ2

2(1 − λE(S))
�
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The queue for machine 1 has λ1 = λ(P1/100) = P1/100, μ1 = 1/E(S1) = 1
and σ2

1 = [0�52+12+1�52−(0�5)(1)−(0�5)(1�5)−(1)(1�5)]/18 = 1/24, which
gives

w1 = 1 + (P1/100)(1 + (1/24))
2(1 − (P1/100))

�

Similarly,

w2 = 2 + (P2/100)(1 − (P1/100))(4 + (1/24))
2(1 − ((P2/100)(1 − (P1/100))2))

and

w3 = 3 + (1 − ((P1/100)+ (P2/100)(1 − P1/100)))(9 + (1/24))
2(1 − (1 − ((P1/100)+ (P2/100)(1 − P1/100))3))

�

By solving these equations for the values of P1 and P2 that minimize the ex-
pected total cost in Equation (14), we find that the optimum is at $33.10 with
P1 = 53�5 and P2 = 63�1.

The validation runs for this design point give a 1000-replication average
of $33.04 and a 95% confidence interval for the mean of [$33�01� $33�07]. One
would expect the true optimal routing values to transfer a bit more traffic to
routes 2 and 3 than the optimal steady-state solution, with slightly lower cost,
since at the start the routes are not congested. This implies that ( 53�5 63�1 )
may overestimate the percentages. The differences in performance are very
small in this neighborhood, however, and not much more can be gained over
the design identified by the analytical metamodel. For example the slight re-
duction of P1 = 53�1 and P2 = 62�7 drops less than $0.02 in observed average
cost for a 1000-replication validation, statistically indistinguishable from the
expected cost for the simulation at the analytic solution.

6 Summary

Optimization of computationally costly simulations can be approximated by
optimizing metamodels as surrogates for the costly simulation response func-
tions. Local metamodels can be used within an iterative optimization strategy,
developed or updated as the optimization progresses. Alternatively, global
metamodels can be fitted once, based on a set of simulation runs from a global
experiment design, and then the optimization can proceed iteratively using the
same metamodel. In either case, it is important to (i) choose the metamodel
form carefully, (ii) choose an experiment design appropriate for fitting that
type of metamodel, and (iii) validate the metamodel fit and the predicted op-
timal operating conditions.

Metamodel-based optimization has two distinct benefits over other simula-
tion optimization approaches: a reduction in prediction error that comes from
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an aggregation of error across many design points, and a representation that
often permits insight into the behavior of the response function.

Metamodels can also be used for optimization in a robust design context. In
that setting, the objective is to seek an ideal mean response while minimizing
its variance. Ramberg (Ramberg et al., 1991), Sanchez (2000) and others cited
by these authors discuss the metamodel approach to robust design.

Nearly thirty years after the coining of the term, metamodel-based opti-
mization continues to be an active area of research. A number of researchers
are studying how Bayesian methods can improve the fitting and prediction
processes (Cheng and Currie, 2004; Chick, 2004), others examine the sequen-
tial design of fitting experiments for Bayesian and other metamodels (Kleijnen
and van Beers, 2004; Santner et al., 2000, 2003; van Beers and Kleijnen, 2004).
Barton (2005) examines alternatives to metamodel-based optimization when
this optimization serves as a proxy for having an inverse function metamodel.
Myers (1999) gives a fairly recent summary of research issues for RSM.

Finally, general purpose metamodel functions are not always the best ap-
proach: when the simulation models are relatively simple, analytic approxima-
tions may be used, and can serve as equally effective metamodels.
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Abstract

This chapter considers the problem of efficiently estimating gradients from stochastic
simulation. Although the primary motivation is their use in simulation optimization,
the resulting estimators can also be useful in other ways, e.g., sensitivity analysis. The
main approaches described are finite differences (including simultaneous perturba-
tions), perturbation analysis, the likelihood ratio/score function method, and the use
of weak derivatives.

1 Introduction

For optimization problems with continuous-valued controllable parameters,
the availability of gradients is clearly helpful in obtaining improved solutions
based on an iterative scheme, and can play a critical role in making a particu-
lar problem tractable. This is true in stochastic optimization, as well, especially
for such problems based on an underlying simulation model. However, in this
stochastic setting, since the outputs are themselves random, finding or deriv-
ing stochastic gradient estimators can itself be a challenging problem, which
constitutes the subject of this chapter.

We write the general simulation optimization problem as follows:

(1)min
θ∈Θ

J(θ)�

where θ ∈ Θ is the controllable parameter and Θ ⊂ Rd is the feasible re-
gion, i.e., θ is a d-dimensional vector. For the objective function, we use the
variable J instead of f as in the preceding and succeeding chapters, because
we will use f for the probability density functions (p.d.f.s) of the input random
variables required to generate estimates for J.

We describe three examples that will be used in the chapter for illustrative
purposes. The first example is the stochastic activity network introduced in
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Chapter 1. The input random variables are the individual activity times, and the
objective function is the total project duration. The parameters are the mean
activity times, i.e., θ = (θ1� � � � � θd), where θi is the mean of the ith activity,
and the dimension of the parameter vector is equal to the number of activities.
The optimization problem is to minimize the expected project duration as a
function of the mean activity times, where a cost is attached to each choice of
mean activity time.

The second example is the familiar first-come, first-served (FCFS), single-
server queue, with the input random variables being the interarrival and service
times, and the output performance measure being time spent in the system.
The objective function includes a cost on the service rate, and the optimization
problem is

(2)min
θ∈(0�1/λ)

E
[
T(θ)

]+ c

θ
�

where c is the service rate cost, T(θ) is the average system time, θ is the mean
service time (hence θ is scalar) and λ is the arrival rate. Usually the problem
is considered in steady state, and often specializing to the M/M/1 queue, be-
cause this leads to an analytically tractable solution that can be compared with
that obtained using the simulation optimization algorithm. Note that this is es-
sentially a simplified version of the form of the optimization problem (9) posed
at the end of Chapter 1 for the stochastic activity network, whereby the second
term in the objective function (c/θ) can be viewed as the first constraint in (9)
taken into the objective function using a Lagrange multiplier. The formulation
here is a design problem that selects the parameter values “from scratch”, as
opposed to modifying nominal values of the parameters in an existing configu-
ration.

The third example is an (s� S) inventory control system, which was treated
in Chapter 17 as a discrete optimization problem where ranking and selection
procedures can be applied. Here, the input random variables are related to
demand (amount and possibly timing), with the objective function being a to-
tal cost function associated with inventory levels and order amounts, and the
optimization problem being to minimize expected total cost by the selection of
the inventory control parameters s and S, i.e., θ = (s� S) is a two-dimensional
vector.

Although the main application of gradient estimation emphasized in this
chapter is simulation-based optimization, derivative estimation has other im-
portant applications in simulation, most notably sensitivity analysis. This can be
useful in many different contexts, e.g., factor screening to decide which factors
are the most critical, and hedging of financial instruments and portfolios. The
rest of this chapter is organized as follows. A brief overview of gradient-based
simulation optimization is provided. Then the main approaches for stochas-
tic gradient estimation are developed in some detail, including examples, some
discussion of desirable theoretical properties and computational requirements.
Specific applications in different areas are then described. Other than a few
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exceptions – such as acknowledging a specific key result – references to the lit-
erature will be provided in (deferred to) Sections 8 and 9 on applications and
probing further.

We conclude this introduction by explicitly stating an implicit assumption
that pervades stochastic gradient estimation research (as well as much of the
research reported in this handbook).

Key Implicit Assumption. Each estimate of J at a given θ is expensive to gen-
erate.

This is not a very rigorous statement, as it is not even mathematical, but the
gist of its implication is that because estimating J requires a nontrivial amount
of effort, it behooves us to make use of its output more efficiently. The costli-
ness can be due to a number of reasons:

(a) It is expensive to generate input random variables {Xi} used to produce
an estimate of J.

(b) A lot of input random variables need to be generated, either because
each estimate involves a large number of input random variables, or be-
cause a lot of estimates (simulation replications) need to be generated
to achieve a desired level of precision.

(c) It is a nontrivial task to go from the input random variables {Xi} to the
estimate of J.

In most stochastic discrete-event simulation models of practical interest, both
(b) and (c) are true. If none of these conditions hold, then the simulation user
should probably just use “brute force” finite difference techniques, which are
described in Section 3.

2 Gradient-based simulation optimization

The two main approaches for conducting simulation-based optimization can
be roughly characterized as follows:

• Carry out all of the simulations first – generally a very large number
of replications – and then store things appropriately (random number
seeds, the random numbers themselves, or realizations of random vari-
ates or possibly sample paths), converting the stochastic problem into
a deterministic problem that is based on a large enough set of samples
to well approximate the desired problem.

• Carry out a relatively small set of simulations and iteratively improve
upon the current solution (or set of solutions in a population-based
approach) until a sufficiently good solution is reached or found.

Previously, the first approach might have been hindered for large problems
by constraints in computer memory, but that has become less of an issue over
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the past decade, making it a more attractive option, due to its conceptual sim-
plicity and ability to use the arsenal of deterministic nonlinear optimization
algorithms available. Since the topic of this chapter and handbook is not de-
terministic optimization, we will not delve further along this line; see Section 9
for some references to the development of the theory and application of this
approach, which has a number of different names: sample average approxima-
tion, sample path optimization, and stochastic counterpart. We note that the
gradient estimates discussed in this chapter can also be incorporated into, and
often play a critical role in, these algorithms. Often this involves “freezing” the
random numbers, to be able to use them to generate a value of the perfor-
mance measure at any value of the parameter, and this value is treated as a
deterministic quantity rather than a sample estimate.

The second approach, as related to the context of this chapter, uses the
stochastic analog of gradient-based optimization, which is converted to a zero-
finding problem (for the gradient of the objective function) and then addressed
using stochastic approximation, which we now describe.

2.1 Stochastic approximation

A natural adaptation of “steepest descent” in deterministic nonlinear opti-
mization is stochastic approximation (SA), an iterative update scheme on the
parameter that takes the following general form for finding a zero of the ob-
jective function gradient:

(3)θn+1 := ΠΘ

(
θn − an∇̂J(θn)

)
�

where the “hat” notation denotes an estimate of the gradient ∇J(θn), {an} de-
notes the “gain” (step-size multiplier) sequence, and ΠΘ denotes a projection
back into the feasible region Θ when the update (3) takes θ out of Θ. Whereas
in second-order Newton–Raphson schemes, a key enhancer is to use the in-
verse Hessian to estimate the optimal step size, this is much less of a concern
in SA, especially in the early stages of the algorithm. In fact, to guarantee al-
most sure (a.s.) convergence, the gain sequence must vanish in the limit, but
not too quickly. The usual condition is that

∑
n

an = ∞�
∑
n

a2
n <∞�

However, in practice, one often decreases the step size to some value at which
it is kept constant. Theoretically, this leads to weak convergence (in distribu-
tion), at best, which might be unsatisfactory. Note that the sequence need not
be deterministic either, in which case the conditions above have to be modified
accordingly. There are also Central Limit Theorem results for the asymptotic
behavior of θn, but these are beyond the scope of this chapter.

When ∇̂J(θn) is an unbiased estimator of ∇J(θn), the SA algorithm is gen-
erally referred to as being of the Robbins–Monro type, whereas if ∇̂J(θn) is
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only asymptotically unbiased, e.g., using a finite difference estimate with the
difference going to zero at an appropriate rate, then the algorithm is referred
to being of the Kiefer–Wolfowitz type. The Robbins–Monro SA algorithm gen-
erally has a canonical asymptotic convergence rate of n−1/2, in contrast to n−1/3

for the Kiefer–Wolfowitz SA algorithm, which takes the following form in the
scalar parameter case:

(4)θn+1 := ΠΘ

(
θn + an

Ĵ(θn + cn)− Ĵ(θn − cn)

2cn

)
�

where Ĵ denotes an estimate of J and {cn} denotes a difference sequence that
must also decrease to zero at an appropriate rate satisfying

∑
n

ancn <∞�
∑
n

a2
n

c2
n

<∞�

Thus, in addition to having a slower canonical asymptotic convergence rate,
a Kiefer–Wolfowitz SA algorithm involves the additional selection of an appro-
priate difference sequence. In certain special cases involving common random
numbers, however, the best n−1/2 rate can also be achieved in practice. A com-
mon form for the two sequences is an = an−1 for some positive a (harmonic
series) and cn = cn−1/6 for positive c. If

(5)
Ĵ(θn + cn)− Ĵ(θn)

cn

is used instead for the gradient estimator in the Kiefer–Wolfowitz SA algo-
rithm (i.e., one-sided forward difference gradient estimator), then cn = cn−1/4

is commonly used.
Perhaps one of the key drawbacks of using an SA algorithm, especially

for the new or inexperienced user, is the sensitivity of the early “transient”
convergence rate to the choices of these sequences. For example, if the com-
mon sequences just mentioned are used, then the behavior will depend on the
choices of a and c. If a is too small, then the algorithm will “crawl” towards
the optimum, even at the 1/

√
n asymptotic rate. On the other hand, if a is cho-

sen too large, then extreme oscillations may occur, resulting in an “unstable”
progression. As far as we know, all of the theoretical results relating to con-
vergence rate of these types of algorithms are asymptotic results, which may be
of little practical use in some applications where all of the action occurs in a
relatively short time.

Another drawback is that in general the SA algorithm converges only to a
local optimum, although this can also be strengthened by the appropriate in-
troduction of “noise” into the algorithm. Finally, in some settings, it may not
be obvious how to project onto the feasible region Θ, which might be speci-
fied indirectly (e.g., in a mathematical programming formulation) and possibly
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involve “noisy” constraints that also have to be estimated along with the ob-
jective function. These are practical issues that still have not been adequately
addressed for simulation optimization.

3 Indirect gradient estimation

We divide the approaches to stochastic gradient estimation into two main
categories – indirect and direct – which we now define. An indirect gradient
estimator usually has two characteristics: (i) it only estimates an approxima-
tion of the true gradient value, e.g., via a secant approximation in the scalar
case; and (ii) it uses only function evaluations (performance measure output
samples) from the original (unmodified) system of interest. A direct gradient
estimator tries to estimate the true gradient using some additional analysis of
the underlying stochastics of the model. More specifically, we will refer to the
indirect gradient estimation approach as one in which the simulation output is
treated as coming out of a given black box, by which we mean it satisfies two
assumptions: (i) no knowledge of the underlying mechanics of the simulation
model is used in deriving the estimators, such as knowing the input probability
distributions; and (ii) no changes are made in the execution of the simulation
model itself, such as changing the input distribution for importance sampling.
Note that this entails satisfying both assumptions; many of the direct gradient
estimation techniques can be implemented without changing anything in the
underlying simulation, but they may require some knowledge of the simula-
tion model, such as the input distributions or some of the system dynamics.
In the case of stochastic simulation, as opposed to online estimation based
on an actual system, it could be argued that to carry out the simulation most
of these mechanics need to be known, i.e., one cannot carry out a stochastic
simulation without specifying the input distributions. Here, we simply use the
two assumptions to distinguish between the two categories of approaches and
not to debate whether an estimator is “model” dependent or not. In terms
of stochastic approximation algorithms, indirect and direct gradient estimators
generally correspond to Kiefer–Wolfowitz and Robbins–Monro algorithms, re-
spectively.

We describe two indirect gradient estimators: finite differences and simul-
taneous perturbations. Following our definition, these approaches require no
knowledge of the workings of the simulation model, which is treated as a black
box.

3.1 Finite differences

The “brute force” or “naïve” method for estimating a gradient at θ is sim-
ply to use finite differences, i.e., perturbing the value of each component of θ
separately while holding the other components at the nominal value. If the
value of the perturbation is too small, the resulting difference estimator could
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be extremely noisy, because the output is stochastic; hence there is a trade-off
between bias and variance in making this selection, and unless all components
of the parameter vector are suitably “standardized” a priori, this choice must
be done for each component separately, which could be a burdensome task for
high-dimensional problems. If the goal is sensitivity analysis rather than op-
timization, then one would generally err on the side of selecting a relatively
larger value for the perturbation.

The ith component of the one-sided forward difference gradient estimator
is given by

(6)
Ĵ(θ+ ciei)− Ĵ(θ)

ci
�

where c is the vector of differences (ci the perturbation in the ith direction)
and ei denotes the unit vector in the ith direction.

The ith component of the two-sided symmetric (or central) difference gra-
dient estimator is given by

(7)
Ĵ(θ+ ciei)− Ĵ(θ− ciei)

2ci
�

which corresponds to the estimator used in the original Kiefer–Wolfowitz SA
algorithm given by (4).

Again, it should be noted that in stochastic simulation, using common ran-
dom numbers can reduce the variance of the gradient estimators substantially,
although in practice synchronization is clearly an issue, since merely using the
same random number seeds is typically not effective. The symmetric difference
estimator given by (7) is more accurate, but it requires 2d objective function
estimates (simulation replications) per gradient estimate, as opposed to d + 1
function estimates (simulation replications) for the one-sided estimator given
by (6). For example, in the stochastic activity network, the symmetric differ-
ence estimator would involve performing simulations by varying the mean of
each activity i individually by±ci while holding the other activity means at their
nominal values, i.e., at parameter settings {θi ± ci� θj� j �= i} for i = 1� � � � � d.

3.2 Simultaneous perturbations

This approach has the advantage that the number of simulation replications
needed to form an estimator of the gradient is independent of the dimension
of the parameter vector.

The ith component of the simultaneous perturbations (SP) gradient estima-
tor is given by

(8)
Ĵ(θ+ cΔ)− Ĵ(θ− cΔ)

2ciΔi
�

where Δ = (Δ1� � � � � Δd) is a d-dimensional vector of perturbations, which
are generally assumed i.i.d. as a function of iteration and independent across
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components. In this case, c is again the set of differences for each component,
but it is a diagonal matrix with the differences {ci} on the diagonal. The key
difference between this estimator and a finite difference estimator is that the
numerator of (8) – corresponding to a difference in the function estimates –
is the same for all components (i.e., independent of i), whereas the numera-
tor in the symmetric difference estimator given by (7) involves a different pair
of function estimates for each component (i.e., is a function of i). Thus, the
full gradient estimator requires only two function estimates, regardless of the
size of the parameter dimension d. However, since d random numbers must
be generated to produce the perturbation sequence Δ at each iteration, if gen-
erating the function estimates Ĵ is relatively “cheap”, then this procedure is
likely to be inferior to the previous finite difference approaches. However, our
key implicit assumption is that function estimates are expensive, which is gen-
erally true in the context of stochastic discrete-event simulation. Furthermore,
this procedure may also be of benefit in deterministic situations where J is ex-
pensive to generate, e.g., requires a computationally intensive finite element
analysis program.

The key requirement on the perturbation sequence to guarantee a.s. con-
vergence when used in a simultaneous perturbation stochastic approximation
(SPSA) algorithm is that each term have mean zero and finite inverse sec-
ond moments. Thus, the normal (Gaussian) distribution is prohibited, and the
most commonly used distribution is the symmetric Bernoulli, whereby the per-
turbation takes the positive and negative (equal in magnitude, e.g., ±1) value
w.p. 0.5. Intuitively, convergence comes about from the averaging property of
the random directions selected at each iteration, i.e., in the long-run, each com-
ponent will converge to the correct gradient even if at any particular iteration
the estimator may appear odd. This estimator was designed for optimization
via stochastic approximation, and is of limited use in sensitivity analysis, al-
though perhaps averaging over a large number of replications might make it
more applicable.

A very similar gradient estimator for use in SA algorithms is the random
directions gradient estimator, whose ith component is given by

(9)
(Ĵ(θ+ cΔ)− Ĵ(θ− cΔ))Δi

2ci
�

Instead of dividing by the perturbation component, the difference term
multiplies the component. Thus, normal distributions can be used for the
perturbation sequence, and convergence requirements translate the moment
condition to a bound on the second moment, as well as zero mean. Of course,
a correspondence to the SP estimator can be made by simply taking the com-
ponentwise inverse, but in practice the performance of the two resulting SA
algorithms differs substantially.

A more recent development in the application of SPSA is to use determinis-
tic sequences for the perturbation sequences {Δ}. The idea is analogous to the
use of quasi-Monte Carlo, whereby the gradient averaging is the critical factor.
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There are also relevant connections to literature in the design of experiments
methodology. However, more theoretical work explaining their effectiveness
and more numerical examples establishing their advantage over stochastic se-
quences is needed.

4 Direct gradient estimation

Although indirect gradient estimation offers greater generality, direct gra-
dient estimation has the following advantages:

• It usually provides an unbiased estimator, which leads to faster conver-
gence rates when implemented in a simulation optimization algorithm,
e.g., stochastic approximation.

• It eliminates the need to determine appropriate values for the finite
difference perturbations – c in the estimators given by (4)–(9) – which
influences the accuracy of the estimator. Smaller values lead to lower
bias but generally at the cost of increased variance, to the point of pos-
sibly giving the wrong sign for small enough values.

• The resulting estimators are usually more computationally efficient.
This is almost universally true when compared to high-dimensional
brute force finite differences, but not necessarily the case when com-
pared with SP estimators. When used in stochastic approximation, this
can result in faster convergence rates, as discussed earlier.

Potential challenges in applying direct gradient estimation include the fol-
lowing:

• They require more “off-line” work, which might be as simple as com-
puting some derivatives of density functions, but could involve quite a
bit of problem-specific analysis requiring sophisticated applied proba-
bility tools.

• The implementation usually requires some coding inside the simula-
tion model, and sometimes involves some changes in the way the sim-
ulation is actually carried out.

For expositional purposes, we will assume that the objective function is an
expectation, specifically

(10)J(θ) = E
[
Y(θ)

] = E
[
Y(X1� � � � �XT )

]
�

where Y is the (univariate) output performance measure, {Xi} are the input
random variables and T is a fixed finite number. This covers performance mea-
sures of type PM1 and PM2 discussed in Chapter 1, as well as distributional
performance measures such as the tail distribution PM3, handled using indica-
tor functions as the performance measure. However, the “dual” performance
measure involving quantiles (e.g., median), as in PM4, and also measures such
as the mode, cannot be absorbed into this framework. The cases where T is

http://dx.doi.org/10.1016/S0927-0507(06)13001-7
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random (a stopping time) or as T goes to infinity (steady state), covering PM5
and PM6, can also be handled, but require some additional technicalities that
are beyond the scope of the discussion in this chapter.

In the right-most expression for the performance measure given in (10), the
dependence on θ has not been displayed, because where θ appears influences
which direct gradient estimation technique is most applicable. In particular, we
distinguish between two main dependencies:

• sample (pathwise);
• measure (distributional).

It is important to note that for many performance measures of interest, Y can
be expressed such that either dependency can be used. We will see examples of
this in the discussion that follows.

To derive direct gradient estimators, we write the expectation using what is
sometimes called the law of the unconscious statistician:

(11)E
[
Y(X)

] =
∫
y dFY (y) =

∫
Y(x) dFX(x)�

In fact, one of our chief views of stochastic simulation is a way of carrying out
this relationship, i.e., coming into the simulation are input random variables,
for which we know the distribution; coming out of the simulation are output
random variables, for which we would like to know the distributions. However,
what we have is a way to generate samples of the output random variables as a
function of the input random variables via the simulation model. Of course, if
we really knew the distribution of the sample performance output r.v. Y , then
there would probably be little reason to have to simulate the system.

For simplicity in discussion, we will assume henceforth that the parameter θ
is scalar, because the vector case can be handled by taking each component
individually. In view of the right-hand side of (11), we revisit the question as
to the location of the parameter in a stochastic setting. Putting it in the sam-
ple performance Y(·; θ) corresponds to the view of perturbation analysis (PA),
whereas if it is absorbed in the distribution F(·; θ), then the approach follows
that of the likelihood ratio (LR) method (also known as the score function (SF)
method) or weak derivatives (WD) (also known as measure-valued differenti-
ation). In the general setting where the parameter is a vector, it is possible that
some of the components would be most naturally located in the sample perfor-
mance, while others would be easily retained in the distributions, giving rise to
a mixed approach. For example, in the (s� S) inventory control case with ran-
dom order arrival times, it might be most effective to use PA for the control
parameters, WD for demand parameters, and LR/SF for order parameters.

Naming the parameter “Spot” for good measure, we pose a question and
offer several observations:

(i) Where is Spot?
This may determine which approach is most appropriate. LR/SF and
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WD estimators consider distributional parameters, so for them the
parameter should appear in the input distribution(s).

(ii) Spot can move!
For the same system, the problem may be formulated such that Spot
appears in either spot (location). We will demonstrate this in the
examples. In the first two examples, it is simply a matter of interpre-
tation of the underlying stochastics (probability measures), whereas
in the (s� S) inventory system, a change of variables is necessary.

(iii) Spot can make repeat appearances.
For example, in the single-server queue example, where the parame-
ter appears in the service time distribution, the parameter must be
considered every time a service time is generated.

(iv) Spot can be in two places at once!
It is possible that the parameter appears in both the distribution and
in a sample pathwise manner. Also, the parameter could appear in
more than one distribution (as opposed to being in the same distri-
bution multiple times, as in the previous item).

Let f denote the joint p.d.f. of all of the input random variables. Differenti-
ating (11), and assuming an interchange of integration and differentiation is
permissible, we write two cases:

(12)
dE[Y(X)]

dθ
=
∫ ∞

−∞
Y(x)

df (x; θ)
dθ

dx�

and

(13)
dE[Y(X)]

dθ
=
∫ 1

0

dY(X(θ;u))
dθ

du�

where x and u and the integrals are all T -dimensional. For notational simplic-
ity, throughout these T -dimensional multiple integrals are written as a single
integral, and we also assume one random number u produces one random
variate x. In (12), the parameter appears in the distribution directly, whereas
in (13), the underlying uncertainty is considered the uniform random numbers.
These correspond to what we called the distributional (measure) and pathwise
(sample) dependencies, respectively.

For expositional ease in introducing the approaches, we begin by assuming
that the parameter only appears in X1, which is generated independently of the
other input random variables. So for the case of (13), we use the chain rule to
write

dE[Y(X)]
dθ

=
∫ 1

0

dY(X1(θ;u1)�X2� � � �)

dθ
du

(14)=
∫ 1

0

∂Y

∂X1

dX1(θ;u1)

dθ
du�
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In other words, the estimator takes the form

(15)
∂Y(X)

∂X1

dX1

dθ
�

where the parameter appears in the transformation from random number to
random variate, and the derivative is expressed as the product of a sample path
derivative and derivative of a random variable. The issue of what constitutes
the latter will be taken up shortly, but this approach is called infinitesimal per-
turbation analysis (IPA). For the M/M/1 queue, the sample path derivative
could be derived using Lindley’s equation, relating the time in system of a cus-
tomer to the service times (and interarrival times, which are not a function of
the parameter).

Assume that X1 has marginal p.d.f. f1(·; θ) and that the joint p.d.f. for the
remaining input random variables (X2� � � �) is given by f−1, which has no (func-
tional) dependence on θ. Then the assumed independence gives f = f1f−1,
and the expression (12) involving differentiation of a density (measure) can
be further manipulated using the product rule of differentiation to yield the
following:

(16)
dE[Y(X)]

dθ
=
∫ ∞

−∞
Y(x)

∂f1(x1; θ)
∂θ

f−1(x2� � � �) dx

(17)=
∫ ∞

−∞
Y(x)

∂ ln f1(x1; θ)
∂θ

f (x) dx�

In other words, the estimator takes the form

(18)Y(X)
∂ ln f1(X1; θ)

∂θ
�

Since the term ∂ ln f1(·;θ)
∂θ is the well-known (efficient) score function in statistics,

this approach has been called the score function (SF) method. The other name
given to this approach – the likelihood ratio (LR) method – comes from the
closely related likelihood ratio function given by

f1(·; θ)
f1(·; θ0)

�

which when differentiated with respect to θ gives

∂f1(·; θ)/∂θ
f1(·; θ0)

�

which is equal to the score function upon setting θ0 = θ.
On the other hand, if instead of expressing the right-hand side of (16) as

(17), the density derivative is written as

∂f1(x1; θ)
∂θ

= c(θ)
(
f (2)1 (x1; θ)− f (1)1 (x1; θ)

)
�
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it leads to the following relationship:

dE[Y(X)]
dθ

=
∫ ∞

−∞
Y(x)

∂f (x; θ)
∂θ

dx

= c(θ)

(∫ ∞

−∞
Y(x)f (2)1 (x1; θ)f−1(x2� � � �) dx

−
∫ ∞

−∞
Y(x)f (1)1 (x1; θ)f−1(x2� � � �) dx

)
�

The triple (c(θ)� f (1)1 � f (2)1 ) constitutes a weak derivative (WD) for f1, which is
in general not unique, as we shall shortly see. The corresponding WD estimator
is of the form

(19)c(θ)
(
Y
(
X(2)

1 �X2� � � �
)− Y

(
X(1)

1 �X2� � � �
))
�

where X(1)
1 ∼ f (1)1 and X(2)

1 ∼ f (2)1 . The term “weak” derivative comes about
from the possibility that ∂f1(·;θ)

∂θ in (16) may not be proper, but its integral may
be well defined, e.g., it might involve delta-functions (impulses), corresponding
to mass functions of discrete distributions.

If in the expression (13), the interchange of expectation and differentiation
does not hold (e.g., if Y is an indicator function), then as long as there is more
than one input random variable, appropriate conditioning will often allow the
interchange as follows:

(20)
dE[Y(X)]

dθ
=
∫ 1

0

dE[Y(X(θ;u))|Z(u)]
dθ

du�

where Z ⊂ {X1� � � � �XT }. This conditioning is known as smoothed perturba-
tion analysis (SPA), because it is intended to “smooth” out a discontinuous
function. It leads to an estimator of the following form

(21)
∂E[Y(X)|Z]

∂X1

dX1

dθ
�

Note that taking Z as the entire set leads back to (15).

Remark. For SPA, the conditioning in (20) was done with respect to a subset
of the input random variables only. Further conditioning can be done on events
in the system, which leads to an estimator of the following general form:

(22)
dY
dθ

+ EZ[δY |B]dPZ(B)
dθ

�

where the subscript indicates a corresponding conditional expectation/probab-
ility, B is an appropriately selected event and δY represents a change in the
performance measure under the conditioned (usually called “critical”) event.
In this case, if the probability rate dPZ(B)

dθ is 0, the estimator (22) also reduces
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to IPA. On the other hand, if the IPA term dY
dθ is zero, the estimator may co-

incide with the WD estimator in certain cases, with correspondences between
c(θ) and the probability rate, and between the difference term in (19) and the
conditional expectation in (22).

4.1 Desirable properties

Direct gradient estimators are estimators like any other estimators; they just
happen to be estimating derivatives. Thus, like other estimators, we would like
them to be unbiased.

Definition. The stochastic gradient estimator ∇̂J(θ) is unbiased if E[∇̂J(θ)] =
∇θJ(θ).

We would also like the estimators to have low variance. In other words, we
want them to be both correct and precise, as opposed to being wrong and noisy.
Strong consistency is another desirable property. For finite horizon perfor-
mance measures, we simply invoke the strong law of large numbers. For infinite
horizon or steady-state performance measures, the usual ergodicity considera-
tions come into play, and just as in steady-state output analysis methodology,
this can involve a lot of theoretical tools from applied probability.

Basically, unbiasedness requires the exchange of the operations of differen-
tiation (limit) and integration (expectation), as was assumed in deriving (12)
and (13). Mathematically, this boils down to whether or not the dominated
convergence theorem can be applied (see Section 6). In the case of PA, the
bounding involves properties of the performance measure, whereas in LR/SF
and WD, the bounding involves the distribution functions. In either case, the
primary difficulty is in being able to implement the derivative/gradient, just as
building a simulation model is a nontrivial task in implementation, although
conceptually there may be little difficulty.

The applicability of IPA may depend on how the input processes are con-
structed/generated (see the next section). In applying SPA, there is the choice
of conditioning quantities (cf. (20) and (21)), which affects how easily the re-
sulting conditional expectation can be estimated from sample paths. There are
also a multitude of choices of WD triples for a given input distribution, and
this determines both the amount of additional simulation required and the
variance of the resulting WD output gradient estimator. For LR/SF estima-
tors, the variance of the estimator could also be a problem if care is not taken
in implementation, e.g., the naïve estimator will lead to a linear increase in
variance with respect to the simulation horizon.

4.2 Derivatives of random variables

PA estimators – e.g., those shown in (15), (21) and (22) – require the no-
tion of derivatives of random variables. The mathematical problem for defining
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such derivatives consists of constructing a family of random variables parame-
terized by θ on a common probability space, with the point of departure being
a set of parameterized distribution functions {F(·; θ)}. We wish to construct
X(θ) ∼ F(·; θ) s.t. ∀θ ∈ Θ, X(θ) is differentiable w.p.1. The sample deriva-
tive is then defined in the intuitive manner as

dX(θ�ω)
dθ

= lim
 θ→0

X(θ+  θ�ω)−X(θ�ω)

 θ
�

where ω denotes a sample point in the underlying probability space. If the
distribution of X is known, we have

(23)
dX(θ)

dθ
= − ∂F(X; θ)/∂θ

∂F(X; θ)/∂X �

where we use the (slightly abusive) notation

∂F(X; θ)
∂X

= ∂F(x; θ)
∂x

∣∣∣∣
x=X

�

Definition. For a distribution function F(x; θ), θ is said to be a location para-
meter if F(x+ θ; θ) does not depend on θ; θ is said to be a scale parameter if
F(xθ; θ) does not depend on θ; and θ is said to be a generalized scale parame-
ter if F(θ̄ + xθ; θ) does not depend on θ, for some fixed θ̄ (usually a location
parameter) not dependent on θ.

In these special cases, one can use the following sample derivatives for the
three respective cases (location, scale, generalized scale):

dX
dθ

= 1�
dX
dθ

= X

θ
�

dX
dθ

= X − θ̄

θ
�

The most well-known example is the normal distribution, with the mean being
a location parameter and the standard deviation a generalized scale parame-
ter. Similarly, the two parameters in the Cauchy, Gumbel (extreme value), and
logistic distributions also correspond to location and generalized scale para-
meters. Other examples include the mean of the exponential being a scale
parameter; and the mean of the uniform distribution being a location para-
meter, with the half-width being a generalized scale parameter. In the special
case U(0� θ), the single parameter is an ordinary scale parameter. Also, for
N(θ� (θσ)2), θ is an ordinary scale parameter.

Lastly, note that for a given distribution, there may be multiple ways to gen-
erate a random variate (see Chapter 4), which leads to different derivatives,
some of which may be unbiased and some of which may not. This is called the
role of representations, which we illustrate with a simple example.

Example 1. Let

X ∼
{

U(1� 2) w.p.θ� θ ∈ (0� 1)�
U(0� 1) w.p.(1 − θ)�

http://dx.doi.org/10.1016/S0927-0507(06)13004-2
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a mixture of two uniform distributions, with dE[X]/dθ = 1. A straightforward
construction/representation using two random numbers is

(24)X = 1{U1 � θ}(1 +U2)+ 1{U1 > θ}U2�

where U1� U2 ∼ U(0� 1) are independent and 1{·} denotes the indicator func-
tion. However, since

dX
dθ

= 0 w.p.1�

this clearly leads to a biased estimator. Note that viewed as a function of θ,
X jumps from U2 to 1+U2 at θ = U1. However, an unbiased estimator can be
obtained by using the following construction in which the “coin flipping” and
uniform generation are correlated:

X = 1{U � θ}
(

1 + θ−U

θ

)

+ 1{U > θ}
(

1 −U

1 − θ

)
� where U ∼ U(0� 1)�

�⇒ dX
dθ

= 1{U � θ}U
θ2 + 1{U > θ} 1 −U

(1 − θ)2 �

which is unbiased (has expectation equal to dE[X]/dθ = 1). This construction
is based on the property that the distributions of the random variable (θ−U)/θ
under the condition {U < θ} and the random variable (1 − U)/(1 − θ) under
the condition {U � θ} are both U(0� 1). From a simulation perspective, this
representation has the additional advantage of requiring only a single random
number to generate X instead of two as in the previous construction. In terms
of the derivative, the crucial property is that X is continuous across θ = U .
One can easily construct other single random number representations that do
not have this desirable characteristic, e.g.,

X = 1{U � θ}
(

1 + U

θ

)
+ 1{U > θ}U − θ

1 − θ
� where U ∼ U(0� 1)�

�⇒ dX
dθ

= 1{U � θ}−U
θ2 + 1{U > θ}

[
− 1 −U

(1 − θ)2

]
�

which is biased (has expectation −1), the intuitive reason being the discontinu-
ity of X at U = θ.

For the first representation, where the “natural” construction leads to a bi-
ased estimator, we demonstrate the use of conditioning (SPA) to rectify the
situation. First, we derive an alternative estimator by conditioning on U2, i.e.,
let

X = E[X1|U2] = (1 +U2)θ+U2(1 − θ) = θ+U2�
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leading to the obviously unbiased estimator dX/dθ = 1.
Alternatively, consider the event

B( θ) = {U1 ∈ (θ� θ+  θ]}�  θ > 0�

Intuitively, this event corresponds to those samples such that a perturbation
 θ > 0 causes a “jump” in the sample performance from U2 (when U1 > θ) to
1+U2 (when U1 � θ+ θ). The complement of this event corresponds to the
“smooth” case of IPA. Thus, we write for the representation defined by (24):

dE[X]
dθ

= lim
 θ→0

E[X(θ+  θ)−X(θ)]
 θ

= lim
 θ→0

E[(X(θ+  θ)−X(θ))1(Bc( θ))]
 θ

+ lim
 θ→0

E[(X(θ+  θ)−X(θ))1(B( θ))]
 θ

= E
[

dX
dθ

]

+ lim
 θ→0

E
[
X(θ+  θ)−X(θ)|B( θ)] lim

 θ→0

P(B( θ))
 θ

(25)= lim
 θ→0

(
E
[
(1 +U2)−U2

])
lim
 θ→0

 θ

 θ
= 1�

where Bc denotes the complement of B. In this case, because we can evaluate
the difference (1+U2)−U2 analytically, the final “estimator” is a deterministic
quantity equal to the value to be estimated. In more complicated systems, the
challenge is usually in estimating this difference of the sample performance
under two different conditions on the sample path, given by the limiting con-
ditional expectation in (25).

4.3 Derivatives of measures

As we have seen already, both the LR/SF and WD estimators rely on dif-
ferentiation of the underlying measure, so the parameters of interest should
appear in the underlying (input) distributions. If this is not the case, then one
approach is to try to “push” the parameter out of the performance measure
into the distribution, so that the usual differentiation can be carried out. This
is achieved by a change of variables, which is problem dependent.

Recall that we introduced the idea of a weak derivative by expressing the
derivative of a density as the difference of two measures, i.e.,

∂f (x; θ)
∂θ

= c(θ)
(
f (2)(x; θ)− f (1)(x; θ))�

This idea can be generalized without the need for a differentiable density, as
long as the integral exists with respect to a certain set of (integrable) “test”
functions, say L, e.g., the set of continuous bounded functions.
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Definition. The triple (c(θ)� F(1)� F(2)) is called a weak derivative for distribu-
tion (c.d.f.) F if for all functions g ∈ L (not a function of θ),

d
dθ

∫
g(x) dF(x; θ)

= c(θ)

(∫
g(x) dF(2)(x; θ)−

∫
g(x) dF(1)(x; θ)

)
�

Remarks. As mentioned earlier, the derivative is “weak” in the sense that
the density derivative may not be defined in the usual sense, but in terms of
generalized functions integrable with respect to the functions in L, as in the
“definition” of a delta function in terms of its integral, i.e., they could include
discrete mass functions, as well. The concept of a weak derivative need not
be restricted to probability measures, but any finite signed measures. Lastly,
note that a WD gradient estimate may require as many as 2d additional simu-
lations for the vector case (a pair for each component), unlike LR/SF and IPA
estimators, which will always require just a single simulation.

One choice for the weak derivative (density) that is readily available is

(26)
df
dθ

= c(f2 − f1)�

where

(27)f1 = 1
c

(
df
dθ

)−
� f2 = 1

c

(
df
dθ

)+
�

x+ ≡ max(x� 0)� x− ≡ max(−x� 0) and c = ∫
(df

dθ )
+ dx = ∫

f2 dx =∫
(df

dθ )
− dx, using the fact that
∫
f (x) dx = 1 �⇒

∫
df
dθ

dx = 0�

The representation given by (26) and (27) is the Hahn–Jordan decomposition,
which will always exist for probability measures, and results in a decomposition
involving two measures with complementary support.

Remarks. The representation is clearly not unique. In fact, for any nonnega-
tive integrable function h, we have

df
dθ

= c
([f1 + h] − [f2 + h]) = c′

(
f1 + h

1 + ∫ h − f2 + h

1 + ∫ h
)
�

where c′ = c(1+∫ h). Thus, one way to obtain the estimator using the original
simulation is to choose a representation in which both measures have the same
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support as the original measure. Then importance sampling can be applied, so
that the original simulation can be used to generate the estimator without the
need for simulating the system under alternative input distributions. Perhaps
the most direct way to achieve this is to add the original measure itself to both
f1 and f2 and renormalize appropriately, i.e., choose h = f above:

df
dθ

= 2c
(
f1 + f

2
− f2 + f

2

)
�

4.4 Input distribution examples

We now demonstrate some of these concepts on a single random variable.
Section 5 will consider the examples introduced at the beginning of the chapter.

Example 2. Let X ∼ exp(θ), an exponential random variable with mean θ,
with p.d.f. given by

f (x; θ) = 1
θ

e−x/θ1{x > 0}�
The usual construction of the r.v. is as follows:

X(θ;u) = −θ lnu�

where u represents a random number. Differentiating, we get

df (x; θ)
dθ

=
[
x

θ2
1
θ

e−x/θ − 1
θ2 e−x/θ

]
1{x > 0}

=f (x; θ)
[
x

θ2 −
1
θ

]

=1
θ

[
x

θ2 e−x/θ1{x > 0} − f (x; θ)
]

= 1
θe

[
e
θ

(
x

θ
− 1
)

e−x/θ1{x > θ}

− e
θ

(
1 − x

θ

)
e−x/θ1{0 < x � θ}

]
�

dX(θ;u)
dθ

=− lnu = X(θ;u)
θ

�

In the third and fourth lines above, the density derivative (which is itself not
a density) has been expressed as the difference of two densities multiplied by
a constant. This demonstrates that the weak derivative representation is not
unique, with the last decomposition being the Hahn–Jordan decomposition,
noting that x = θ is the point at which df (x; θ)/dθ changes sign. The following
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correspond to the LR/SF, WD (a) and (b), and IPA estimators, respectively:

Y(X)
1
θ

(
X1

θ
− 1
)
�

1
θ

[
Y
(
X(2)

1a � � � �
)− Y

(
X(1)

1a � � � �
)]
�

1
θe
[
Y
(
X(2)

1b � � � �
)− Y

(
X(1)

1b � � � �
)]
�

dY
dX1

X1

θ
�

where X(1)
1a and X(2)

1a are random variables distributed as exp(θ) and Erl(2� θ),
respectively, and X(1)

1b and X(2)
1b are random variables with densities

e
θ

(
1 − x

θ

)
e−x/θ� 0 < x � θ� and

e
θ

(
x

θ
− 1
)

e−x/θ� x > θ�

respectively.

The following is a simple example that demonstrates that the WD estimator
is more broadly applicable than the LR/SF estimator.

Example 3. Let X ∼ U(0� θ). Then we have the following:

f (x; θ) = 1
θ

1{0 < x < θ}�
X(θ;u) = uθ�

df (x; θ)
dθ

= 1
θ

[
δ(θ− x)− 1

θ
1{0 < x < θ}

]

= 1
θ

[
δ(θ− x)− f (x; θ)]�

(28)
dX(θ;u)

dθ
= u = X(θ;u)

θ
�

where we define the Dirac δ-function as the “derivative” of a step function by

(29)1{x � θ} =
∫ x

−∞
δ(y − θ) dy�

On the right-hand side of Equation (28), we have the difference of densities
for a mass at θ and the original U(0� θ) distribution, respectively, i.e., the weak
derivative representation (1/θ� θ� F), where θ indicates a deterministic distri-
bution with mass at θ. So, for example, the estimator in (19) would be given
by

1
θ

(
Y(θ�X2� � � �)− Y(X1�X2� � � �)

)
�
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This is a case where the LR/SF estimator is ill-defined, due to the δ-function.

Another example is the following one.

Example 4. Let X ∼ Par(α� θ), which represents the Pareto distribution with
shape parameter α and scale parameter θ, and p.d.f. given by

f (x) = θααx−(α+1)1{x � θ}�
Once again the LR/SF estimator does not exist, due to the appearance of the
parameter in the indicator function that controls the support of the distrib-
ution, whereas WD estimators can be derived (see Table 1 at the end of the
section).

However, the very general exponential family of distributions leads to a nice
form for the LR/SF estimator.

Example 5. Let θ denote the vector of parameters in a p.d.f. that can be written
in the following form:

f (x; θ) = k(θ) exp
(∑

i

vi(θ)ti(x)

)
h(x)�

where the functions h and {ti} are independent of θ, and the functions k and
{vi} do not involve the argument. Then it is straightforward to derive

∂ ln f (x; θ)
∂θ

= ∇k(θ)
k(θ)

+
∑
i

∇vi(θ)ti(x)�

Examples include the normal, gamma, Weibull and exponential, for the con-
tinuous case, and the binomial, Poisson and geometric for the discrete case.

Discrete distributions present separate challenges for the two approaches.
Basically, when the parameter appears in the support probabilities, then LR/SF
can be easily applied, whereas IPA is in general not applicable. The reverse
is true, however, if the parameter appears instead in the support values. Here
are two examples to demonstrate this, where we work directly with probability
mass functions p(x; θ) = P(X = x), instead of densities with δ-functions. Let
Ber(p; a� b) denote a Bernoulli distribution that takes value a with probability
p and b with probability 1 − p.

Example 6. Let X ∼ Ber(θ; a� b), which has mass function

p(x; θ) = θ1{x = a} + (1 − θ)1{x = b}�
so

∂p

∂θ
= 1{x = a} − 1{x = b}�
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which can be viewed as the difference of two (deterministic) masses at a and b
(with c(θ) = 1), and is the Hahn–Jordan decomposition in this case. For the
LR/SF estimator, we have

∂ lnp
∂θ

= 1{x = a} − 1{x = b}
θ1{x = a} + (1 − θ)1{x = b}

= 1
θ

1{x = a} − 1
1 − θ

1{x = b}�
In this case, there is no way to construct X such that it will be differentiable
w.p.1. For example, the natural construction/representation

X = a1{U � θ} + b1{U > θ}
yields dX/dθ = 0 w.p.1, so IPA is not applicable.

Example 7. Let X ∼ Ber(p; θ; 0), which has mass function

p(x; θ) = p1{x = θ} + (1 − p)1{x = 0}�
which is not differentiable with respect to θ, so LR/SF and WD estimators
cannot be derived.

The natural random variable construction

X = θ1{U � p}
leads to the unbiased

dX
dθ

= 1{U � p} = 1{X = θ}
(which in this example also happens to equal X/θ). The IPA estimator
dX/dθ = 1{X = θ} holds even if any number of additional values are added
to the underlying support, if all of them do not involve θ. If θ enters into them,
then the estimator can be easily modified to reflect that.

It is straightforward to verify the corresponding derivatives of some com-
mon distributions displayed in Table 1, where geo(p) indicates a geometric
distribution with mass function

(1 − p)n−1p� x = 1� 2� � � � ;
bin(n� p) indicates a binomial distribution with mass function(

n
p

)
px(1 − p)n−x� x = 0� 1� � � � ;

negbin(n� p) indicates a negative binomial distribution with mass function(
x− 1
n− 1

)
(1 − p)x−npn� x = n� n+ 1� � � � ;
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Table 1.
Derivatives for some common/simple input distributions (“NA” = not applicable)

Input dist
X ∼ F

WD
(c� F(2)� F(1))

IPA
dX
dθ

LR/SF
d ln f (X)

dθ

Ber(θ; a� b) (1� a� b) NA 1
θ 1{X = a}
− 1

1−θ 1{X = b}
Ber(p; θ� b) NA 1{X = θ} NA
geo(θ)

( 1
θ � geo(θ)� negbin(2� θ)

)
NA 1

θ + 1−X
1−θ

bin(n� θ) (n� 1 + bin(n− 1� θ)� bin(n− 1� θ)) NA X
θ − n−X

1−θ
Poi(θ) (1� 1 + Poi(θ)�Poi(θ)) NA X

θ − 1

N(θ� σ2)
( 1√

2πσ
� θ+ Wei

(
2� 1

2σ2

)
� θ− Wei

(
2� 1

2σ2

))
1 X−θ

σ2

N(μ� θ2)
( 1
θ �Mxw(μ� θ2)�N(μ� θ2)

) X−μ
θ

1
θ

[( x−μ
θ

)2 − 1
]

U(0� θ)
( 1
θ � θ�U(0� θ)

) X
θ NA

U(θ− γ� θ+ γ)
( 1

2γ � θ+ γ� θ− γ
)

1 NA

U(μ− θ�μ+ θ)
( 1
θ �Ber(0�5;μ− θ�μ+ θ)�U(μ− θ�μ+ θ)

) X−μ
θ NA

exp(θ)
( 1
θ �Erl(2� θ)� exp(θ)

) X
θ

1
θ

(X
θ − 1

)
Wei(α� θ)

(α
θ � F

∗(α� θ)�Wei(α� θ)
) X

θ
1
θ

[(X
θ

)α − α
]

gam(α� θ)
(α
θ � gam(α+ 1� θ)� gam(α� θ)

) X
θ

1
θ

(X
θ − α

)
Par(α� θ)

(α
θ �Par(α� θ)� θ

) X
θ NA

Poi(λ) indicates a Poisson distribution (mean/variance λ) with mass function

e−λλx

x! � x = 0� 1� � � � ;
Erl(n� β) indicates an Erlang distribution with p.d.f.

β−nxn−1e−x/β

(n− 1)! 1{x > 0};

Mxw(μ� σ2) indicates a double-sided Maxwell distribution with p.d.f.

(x− μ)2
√

2πσ3
e−(x−μ)2/(2σ);

Wei(α�β) indicates a Weibull distribution with shape parameter α and scale
parameter β, and p.d.f.

αβ−αxα−1e−(x/β)α1{x > 0};
gam(α�β) indicates a gamma distribution with shape parameter α and scale
parameter β, and p.d.f.

β−αxα−1e−x/β

�(α)
1{x > 0}�
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where

�(α) =
∫ ∞

0
tα−1e−t dt = (α− 1)�(α− 1);

recalling that Erl(n� β) = gam(n� β) for positive integer n; Wei(1� β) =
gam(1� β) = exp(β); and the special distribution F∗(α� θ) has p.d.f.

αβ−2αx2α−1e−(x/β)α�
Note that our definition of the second parameter β in the gamma and Weibull
distributions (also corresponding to the only parameter in the exponential dis-
tribution) is the inverse of what is usually found in the literature (Law and
Kelton (2000) being a notable exception), but leads to it being a scale parame-
ter under our definition.

5 Examples

5.1 Stochastic activity network

Let Xi have p.d.f. fi, and assume all of the activity times are independent.
Let P∗ denote the set of activities on the optimal path corresponding to the
project duration (e.g., shortest or longest path, depending on the problem), so
we can write

Y =
∑
j∈P∗

Xj�

where P∗ itself is a random variable. We wish to estimate dE[Y ]/dθ. Let θ be
a parameter in the distribution of X1, i.e., in f1 only. Then, the IPA estimator
is given by

dY
dθ

= dX1

dθ
1
{
1 ∈ P∗}�

The LR/SF estimator is given by

Y
∂ ln f1(X1; θ)

∂θ
�

The WD estimator is of the form

c(θ)
(
Y
(
X(2)

1 �X2� � � � �XT

)− Y
(
X(1)

1 �X2� � � � �XT

))
�

where X(j)
1 ∼ F

(j)
1 , j = 1� 2, and (c(θ)� F(2)1 � F(1)1 ) is a weak derivative for F1.

If we allow the parameter to possibly appear in all of the distributions, then
the IPA estimator is found by applying the chain rule:

dY
dθ

=
∑
i∈P∗

dXi

dθ
;
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whereas the LR/SF and WD estimators are derived by applying the product
rule of differentiation to the underlying input distribution, applying the inde-
pendence that allows the joint distribution to be expressed as a product of
marginals. In particular, the LR/SF estimator is given by

Y(X)

(
d∑
i=1

∂ ln fi(Xi; θ)
∂θ

)
�

The WD estimator is of the form

T∑
i=1

ci(θ)
(
Y
(
X1� � � � �X

(2)
i � � � � �XT

)− Y
(
X1� � � � �X

(1)
i � � � � �XT

))
�

where X(j)
i ∼ F

(j)
i , j = 1� 2, i = 1� � � � � T , and (ci(θ)� F

(2)
i � F(1)i ) is a weak

derivative for Fi.
If instead we were interested in estimating P(Y > y) for some fixed y, the

WD and LR/SF estimators would simply replace Y with the indicator function
1{Y > y}. However, IPA will not apply, since the indicator function is inher-
ently discontinuous, so an extension of IPA such as SPA is required. On the
other hand, if the performance measure were P(Y > θ), then since the para-
meter does not appear in the distribution of the input random variables, WD
and LR/SF estimators cannot be derived without first carrying out an appro-
priate change of variables. These cases are addressed in Fu (2006).

5.2 Single-server queue

We illustrate all of the gradient estimators for the queueing example. LetAn

be the interarrival time between the (n−1)st and nth customer (i.i.d. with p.d.f.
f1 and c.d.f. F1),Xn the service time of the nth customer (i.i.d. with p.d.f. f2 and
c.d.f. F2) and Tn the system time (in queue plus in service) of the nth customer.
We consider the case where θ is a parameter in the service time distribution,
and the sample performance of interest is the average system time over the
first N customers TN = 1

N

∑N
n=1 Tn. Assume that the system starts empty, so

that the times of the first N service completions are completely determined by
the first N interarrival times and first N service times.

The system time of a customer for an FCFS single-server queue satisfies the
well-known recursive Lindley equation

(30)Tn+1 = Xn+1 + (Tn −An+1)
+�

The IPA estimator is obtained by differentiating (30):

(31)
dTn+1

dθ
= dXn+1

dθ
+ dTn

dθ
1{Tn � An+1}�
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Using the above recursion, the IPA estimator for the derivative of average sys-
tem time is given by

(32)
dTN
dθ

= 1
N

N∑
n=1

dTn
dθ

= 1
N

M∑
m=1

nm∑
i=nm−1+1

i∑
j=nm−1+1

dXj

dθ
�

where M is the number of busy periods observed and nm is the index of the
last customer served in the mth busy period (n0 = 0 and nM = N for M com-
plete busy periods). Implementation of the estimator involves keeping track of
two running quantities, one for (31) and another for the summation in (32);
thus, the additional computational overhead is minimal, and no alteration of
the underlying simulation is required.

The implicit assumption used in deriving an IPA estimator is that small
changes in the parameter will result in small changes in the sample perfor-
mance. Thus, in the above, this means that the boundary condition in (31) is
unchanged by differentiation. In general, the interchange (13) will typically
hold if the sample performance is continuous with respect to the parameter.
For the Lindley equation, although Tn+1 in (30) has a “kink” at Tn = An+1, it
is still continuous at that point. This intuitively explains why IPA works. Unfor-
tunately, the “kink” means that the derivative given by (31) has a discontinuity
at Tn = An+1, so that IPA will fail for the second derivative.

An unbiased SPA second derivative estimator can be derived by condition-
ing on all previous interarrival and service times at each departure, which de-
termines the system time, say Tn, with the corresponding next interarrival time,
An+1, unconditioned. We provide a brief informal derivation based on sample
path intuition (refer to Figure 1). For the right-hand estimator, in which we
assume  Tn > 0 (technically it should refer to  θ), the only “critical” events
are those departures that terminate a busy period, with the possibility that two
busy periods coalesce (idle period disappears) due to a perturbation. The cor-
responding probability rate (conditional on Tn) is then calculated as follows:

lim
 θ→0

P(Tn +  Tn � An+1|Tn < An+1)

 Tn
= f1(Tn)

1 − F1(Tn)

dTn
dθ

�

and the corresponding effect would be that the  Tn perturbation would be
propagated to the next busy period. The complete SPA estimator is given by

(
d2TN

dθ2

)
SPA

= 1
N

M∑
m=1

nm∑
i=nm−1+1

i∑
j=nm−1+1

d2Xj

dθ2

+ 1
M

M∑
m=1

f1(Tnm)

1 − F1(Tnm)

(
dTnm

dθ

)2
�

where d2X/dθ2 is well defined when F2(X; θ) is twice differentiable, d2X
dθ2 = 0

for location, scale and generalized scale parameters.
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Fig. 1. Quantities used in deriving FCFS single-server queue SPA estimator.

To derive the LR/SF estimator, since all the interarrival and service times
are independently generated, the joint p.d.f. f on X will simply be the product
of the p.d.f.s of the interarrival and service time distributions given by

(33)f (θ�A1� � � � �AN�X1� � � � �XN) =
N∏
i=1

f1(Ai)

N∏
i=1

f2(Xi; θ)�

Thus, the straightforward estimator would be given by

(34)
(

d�TN
dθ

)
LR

= 1
N

N∑
i=1

Ti

N∑
j=1

∂ ln f2(Xj; θ)
∂θ

�

where expressions for some common input distributions can be found in Ta-
ble 1. However, for large N , the variance of the estimator, which increases
linearly with N , will render it practically useless, so some sort of truncation
is necessary, and in this particular example, the regenerative structure pro-
vides such a mechanism. Using regenerative theory (see Chapter 16) the mean
steady-state system time can be written as a ratio of expectations:

E[T ] = E[Q]
E[η] �

where η is the number of customers served in a busy period and Q is the sum
of the system times of customers served in a busy period. Differentiation yields

dE[T ]
dθ

= dE[Q]/dθ
E[η] − dE[η]/dθ

E[η] E[T ]�

Now, use the natural LR/SF estimators for each of the terms separately to

http://dx.doi.org/10.1016/S0927-0507(06)13016-9
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obtain the following regenerative estimator over M busy periods:
(

d�TN
dθ

)
LR

= 1
N

M∑
m=1

{
nm∑

i=nm−1+1

Ti

nm∑
i=nm−1+1

∂ ln f2(Xi; θ)
∂θ

}

− 1
N

M∑
m=1

{
(nm − nm−1)

nm∑
i=nm−1+1

∂ ln f2(Xi; θ)
∂θ

}
1
N

N∑
j=1

Tj�

The advantage of these estimators is that the summations are bounded by the
length of the busy periods, so as long as the busy periods are not too lengthy,
the variance of the estimators should be acceptable. Furthermore, the second
derivative estimator is relatively easy to derive, as well:

(
d2�TN
dθ2

)
LR

= 1
N

M∑
m=1

{
nm∑
i=1

Ti

nm∑
i=nm−1+1

[
∂2 ln f2(Xi; θ)

∂θ2 +
(
∂ ln f2(Xi; θ)

∂θ

)2]}

− 1
N

M∑
m=1

{
(nm − nm−1)

nm∑
i=nm−1+1

[
∂2 ln f2(Xi; θ)

∂θ2

+
(
∂ ln f2(Xi; θ)

∂θ

)2]}

× 1
N

N∑
j=1

Tj�

The WD estimator is also relatively straightforward, just incorporating the
product rule of differentiation as before:

(
d�TN
dθ

)
WD

= c(θ)

N∑
i=1

[�TN(A1� � � � �AN� � � � �X
(2)
i � � � �

)

− �TN
(
A1� � � � �AN� � � � �X

(1)
i � � � �

)]
�

where X(j)
i ∼ F

(j)
2 , j = 1� 2, i = 1� � � � �N , for (c(θ)� F(1)2 � F

(2)
2 ) a weak deriva-

tive of F2. A second derivative estimator would take exactly the same form, the
only difference being that (c(θ)� F(1)2 � F(2)2 ) should be a weak second derivative
of F2. Note that in general, implementation of the estimator requires 2T sep-
arate sample paths and resulting sample performance estimates, because the
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parameter appears in T input random variables. Although the variance of the
estimator does not increase with T , implementation may not be practical for
large T . However, in many cases, the expression can be simplified, making the
computation more acceptable. The variance properties of the estimators de-
pend heavily on the particular weak derivative(s) used.

What happens when T is random and when T → ∞ is also of theoretical
interest. In these settings, the estimators are extended in the natural way, but
proving theoretical properties becomes a more challenging task.

5.3 (s� S) inventory system

We now consider the single-item periodic review (s� S) inventory system,
in which once every period the inventory level is reviewed and, if necessary,
orders are placed to replenish depleted inventory. An (s� S) ordering policy
specifies that an order be placed when the level of inventory on hand plus
that on order (called inventory position) falls below the level s, and that the
amount of the order be the difference between S and the present inventory
position, i.e., order amounts are placed “up to S”. For expositional ease, we
describe only the gradient estimate for average inventory level with respect to
the policy parameters s and q = S − s, which do not enter through probability
distributions as in the previous examples.

We consider the model where all excess demand is backlogged and eventu-
ally filled, and replenishment orders are immediately received (zero lead time),
so that inventory level and inventory position coincide. We assume that during
the period, demand is satisfied, and then the order replenishment decision is
made at the end of the period. Let Dn be the demand in period n, which is as-
sumed i.i.d. with respective density and distribution functions given by f and F ,
and let Vn be the inventory level in period n after demand satisfaction at the end
of the period, but just prior to the order replenishment decision. This quantity
satisfies a recursive equation somewhat analogous to the Lindley equation:

(35)Vn+1 =
{
Vn −Dn+1 if Vn � s�
S −Dn+1 if Vn < s�

The average inventory level over N periods is given by

�VN = 1
N

N∑
n=1

Vn�

From a sample path point of view, the key discrete event in the system is the
ordering decision each period. A change in s, with q held fixed, has no effect
on these decisions, so infinitesimal perturbations in s result in infinitesimal
changes in the inventory level and in the sample performance function V N . In
particular, for a perturbation of size  s (of any size, not necessarily infinitesi-
mal), Vn(s +  s) = Vn(s)+  s, and thus ∂�VN/∂s = 1 is an unbiased estimator
for ∂E[�VN ]/∂s. Intuitively, the shape of the sample path is unaltered by changes
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in s if q is held constant; the entire sample path is merely shifted by the size of
the change (assuming starting inventory of V0 = S = s+ q; else, the statement
only holds starting from the first order point). The IPA estimator can also be
obtained by simply differentiating the recursive relationship (35), noting that
Dn does not depend on s or q:

dVn+1

dθ
=
{ dVn

dθ if Vn � s�

1 if Vn < s�

for either θ = s or θ = q. Under the assumption that V0 = S = s + q, the
expression reduces to 1 for all n when θ = s.

On the other hand, a change in q with s held fixed may cause a change in
the set of ordering decisions, resulting in a drastic change in the sample path
and hence in the performance measure �VN . Thus, SPA is required to derive an
unbiased gradient estimator for θ = q. We provide a brief informal derivation
for a right-hand SPA estimator, i.e.,  q > 0, in which a period where a replen-
ishment order was originally placed could become one where an order is not
placed, for sufficiently large  q (refer to Figure 2). To calculate the probability
rate for such an event requires knowing the quantity above the reorder point s
prior to demand being realized in the period, given by ξn = Yn− s in Figure 2,
where Yn is the inventory position/level prior to demand being realized. Con-
ditioning on all demands except the one in the period of interest (in which an
order is placed), Dn, the corresponding probability rate is then given by

lim
 q→0

P(ξn +  q � Dn|ξn < Dn)

 q
= f (ξn)

1 − F(ξn)
�

The resulting conditional expected effect on the performance measure re-
quires some further analysis, and is omitted here, and we simply give the final
SPA estimator for ∂E[�VN ]/∂q, which can be easily and efficiently estimated

Fig. 2. Quantities used in (s� S) inventory system.
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from the original sample path:

1 + 1
N

∑
n�N:Vn<s

f (ξn)

1 − F(ξn)

[
s − E[D] − �VN

]
�

where E[D] is mean demand.
The LR/SF and WD methods require a change of variables in order to move

the parameters into the distribution. This requires some nontrivial analysis,
beyond the scope of this chapter.

6 Basic theoretical tools

The key result used in the theoretical proofs of unbiasedness is the
(Lebesgue) dominated convergence theorem that allows for the exchange of
limit and expectation operators required in Equations (12) or (13).

Theorem 1 (Dominated convergence theorem). If limn→∞ gn = g a.s. and
|gn| � M ∀n a.s. with E[M] <∞, then limn→∞ E[gn] = E[g].

Take  θ → 0 instead of n → ∞, and g is the gradient estimator, so g θ is
the limiting sequence that defines the sample (path) gradient. Verifying that an
actual bound exists is often a nontrivial task in applications, especially in the
case of perturbation analysis.

Looking at (12), we translate these conditions to

g θ = Y(θ+  θ)− Y(θ)

 θ
�

g θ = Y(x)
f (x; θ+  θ)− f (x; θ)

 θ
�

for IPA and LR/SF, respectively.
For IPA, the following generalization of the mean value theorem is most

useful (cf. Theorem 6 in Chapter 2).

Theorem 2 (Generalized mean value theorem). LetY be a continuous function
that is differentiable on a compact set Θ̃ = Θ \ D̃, where D̃ is a set of countably
many points. Then ∀θ, θ+  θ ∈ Θ,∣∣∣∣Y(θ+  θ)− Y(θ)

 θ

∣∣∣∣ � sup
θ∈Θ̃

∣∣∣∣dYdθ
∣∣∣∣�

If Y(θ) can be shown to be continuous and piecewise differentiable on Θ
w.p.1, then it just remains to show

E
[

sup
θ∈Θ̃

∣∣∣∣dYdθ
∣∣∣∣
]
<∞�

http://dx.doi.org/10.1016/S0927-0507(06)13002-9
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to satisfy the conditions required for unbiasedness via the dominated con-
vergence theorem. Basically, in order for the chain rule to be applicable, the
sample performance function needs to be continuous with respect to the un-
derlying random variable(s). This translates into requirements on the form of
the performance measure and on the dynamics of the underlying stochastic
system.

For the LR/SF method, the bound is applied to the (joint) density (or mass)
function. Note that the bound is for f (x; θ) with respect to the parameter θ
and not its usual argument. For WD, the required interchange is guaranteed
by the definition of the weak derivative, but the sample performance must be
in the set of “test” functions L in the definition, which again generally requires
the dominated convergence theorem (or uniform integrability, which is usually
difficult to check directly).

The previous examples can be used to show in very simple cases where dif-
ficulties arise.

Consider the p.d.f.

f (x; θ) = 1
θ

1{0 < x < θ}�
where the LR/SF method does not apply. In this case, f viewed as a function
of θ for fixed x has a discontinuity at θ = x.

Consider the function

P(Y > y) = E
[
1{Y > y}]�

in which IPA will not work. In this case, the performance measure is an indica-
tor function, which is discontinuous in its argument.

Thus, in both simple examples, the dominated convergence theorem is not
applicable as the required quantity cannot be bounded. However, it is only a
sufficient condition, not necessary, so in some (very) special cases, unbiased-
ness may hold even without the boundedness (continuity).

7 Simple guidelines for the simulation practitioner

We summarize the most important considerations in applying the three di-
rect gradient procedures (PA, LR/SF, WD):

• IPA – cannot handle “bad” performance measures, e.g., indicator func-
tions, or nonsmooth systems; one way of checking the latter is the
commuting condition, which checks event sequences in the system (cf.
Glasserman, 1991); smoothness may depend on system representation
(see discussion on role of representations);

• SPA – choice of what to condition on, and how to compute (estimate)
resulting conditional expectation; may require many additional simu-
lations;
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• LR/SF and WD – may encounter difficulties in handling parameters
not in distribution (so-called “structural” parameters); may need to try
a change of variables;

• LR/SF – if the parameter appears in an input distribution that is reused
frequently (parameter makes too many repeat appearances), e.g., i.i.d.
service times in a queueing system, then may need to find a way to
truncate the estimator to mitigate the linear increase in variance;

• WD – choice of which (nonunique) WD representation to use; also
high-dimensional vectors may require many simulations;

• For discrete distributions, IPA works if the parameter occurs in the
support values, whereas LR/SF and WD work if the parameter occurs
in the support probabilities;

• Higher derivative estimates are usually easiest to derive using LR/SF,
but even then the variance of the resulting estimators may be problem-
atic.

The characteristics/choices in applying SPA are strikingly similar to the use of
conditional Monte Carlo for variance reduction. The choice of what to condi-
tion on in applying SPA also has analogs to the WD representation choice. The
simplest procedures to use are the LR/SF and IPA estimators. The WD esti-
mator may be easier to apply than SPA, because one has a set of “standard”
choices for a large class of distributions. However, there is no guarantee that
these choices are necessarily good for a particular application.

It should be clear from this brief summary that the direct gradient estima-
tion techniques may require some effort on the part of the simulation user,
whereas the indirect techniques are straightforward to apply. To put it another
way, for direct gradient estimation sometimes it takes some art to do the sci-
ence.

8 Applications

In discussing applications, the focus is on the direct gradient estimators,
since application of the indirect gradient estimates is generally more straight-
forward and domain independent. The most dominant application of direct
gradient estimation in the research literature is clearly queueing systems; how-
ever, inventory management and financial engineering have employed many of
these results in real-world practice.

For derivatives with respect to distributional parameters, IPA can be applied
in any single-class Jackson-like network. Here, “Jackson-like” (also called a
“generalized Jackson network”) means that the network retains all of the usual
characteristics of a Jackson network except that service times and interarrival
times (in an open network) do not have to be exponentially distributed. This is
also true for the LR/SF method and the WD method. In the latter case, there
are often choices of the WD used. However, if the parameter is the routing
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probabilities, then IPA cannot be applied directly. Also, if the network is ex-
tended to multiple classes of customers, then IPA is often not applicable.

It is relatively straightforward to apply the LR/SF method to queueing sys-
tems, the only caveat being the potential variance problem mentioned in the
previous section. It is also relatively straightforward to derive weak derivative
estimators, but there are generally many choices of distributions, and often
one or more additional simulations using different input distributions will be
necessary.

Inventory systems is a domain in which direct gradient estimation has been
successfully applied in real-world applications. Because the parameters of in-
terest are usually those controlling replenishment decisions as in the (s� S)
inventory control example of Section 5, PA is most relevant. For so-called
base–stock policies, often IPA suffices. Such IPA estimators are being used
to optimize inventory management in the worldwide supply chain of Caterpil-
lar, and the success of the approach is reported in a Fortune magazine article,
“New victories in the supply chain revolution” (by Philip Siekman, October
30, 2000); technical details of the approach can be found in Kapuscinski and
Tayur (1999). For more complicated ordering policies such as an (s� S) policy
that comes about with the inclusion of a fixed order cost, extensions of IPA are
required; see Fu and Healy (1992, 1997), Fu (1994b), Bashyam and Fu (1994),
Fu and Hu (1994), Zhang and Fu (2005), Pflug and Rubinstein (2002) for an
LR/SF estimator using the push-out method with conditioning, and especially
Chapter 7 of Fu and Hu (1997).

Because on Wall Street and elsewhere in the global financial world, Monte
Carlo simulation is routinely used for pricing and hedging derivatives, it is now
commonly included in any finance text that addresses numerical solution meth-
ods. Simulation can easily handle the pricing of high-dimensional derivatives,
such as path-dependent claims or systems with a large number of underlying
assets and/or uncertainties (e.g., stochastic volatility and interest rate models);
see also the discussion in Chapter 1. In hedging, gradients are the most critical
ingredients in determining what positions need to be taken in any portfolio.
In equities, they are usually referred to as “Greeks”, because they are rep-
resented by Greek letters. For example, the most common one is the Delta,
which is the sensitivity of a derivative price with respect to the underlying se-
curity price, e.g., the price of a call option with respect to the underlying stock
price on which the contract is written. Delta hedging and other types of hedg-
ing are described in most elementary finance textbooks on derivatives such as
Hull (2005), and the text by Clewlow and Strickland (1999) includes simple
IPA estimators for calculating Greeks using Monte Carlo simulation (though
they do not use the term IPA nor stochastic gradient estimation). Fu and Hu
(1995) and Broadie and Glasserman (1996) were the first to develop stochas-
tic gradients in these settings; see also Glasserman (2004). Heidergott (2001b)
considered weak derivatives in a similar setting as Fu and Hu (1995). In fixed
income securities, the analogous quantities go by the name of duration and
convexity. In Chen and Fu (2002), IPA is applied to the pricing and hedging

http://dx.doi.org/10.1016/S0927-0507(06)13001-7
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of mortgage-backed securities, where both first and second derivatives are re-
quired. For just five parameters, if symmetric differences were used, this would
require 236 (1+10+225) simulations for each set of performance measures and
gradient estimates. In actual implementation, there was a resulting dramatic
97.2% reduction in computation time. Another important finance application
is the pricing of American-style derivatives: contingent claims in which early
exercise is permitted. One of the earliest proposed approaches to this prob-
lem was to parameterize the early exercise boundary, thus casting the optimal
stopping problem as a stochastic optimization problem with respect to the pa-
rameters. The earliest example of applying PA and SA to such an option pricing
problem is given in Fu and Hu (1995). Earlier editions of Hull (2005) and
other finance texts claimed that simulation could be used only to price Euro-
pean options, so this is one of many approaches that dispelled that belief. See
Glasserman (2004) for other approaches and references on this topic.

Other applications include stochastic activity networks (see Rubinstein and
Shapiro (1993) for the LR/SF method, Bowman (1994) for IPA, and Fu (2006)
for SPA and WD); preventive maintenance (Fu et al., 1993; Heidergott 1999,
2001a; L’Ecuyer et al., 1999); statistical process control (Fu and Hu, 1999);
traffic light signal control (Howell and Fu, 2003; also mentioned in Rubinstein
and Shapiro, 1993, p. 3, as an example).

9 Probing further

Disclaimer: The list here is meant to be representative, not comprehensive,
and almost no attempt is made to provide a historical context to the results in
this chapter.

Other approaches not treated in this chapter include frequency domain ex-
perimentation (Schruben and Cogliano, 1981; Schruben, 1986; Jacobson et al.,
1991; Jacobson, 1994); and Malliavin calculus, which has been used primar-
ily in financial applications (e.g., Fournié et al., 1999; Benhamou, 2002, and
references therein).

For gradient-based simulation optimization, further discussion can be found
in the papers of Fu (2002), Andradóttir (1998), Fu (1994a) and Jacobson and
Schruben (1989); see also the books by Rubinstein and Shapiro (1993), Pflug
(1996), Fu and Hu (1997) and Spall (2003), as well as Fu (2001b). Both of the
well-known simulation textbooks by Law and Kelton (2000) and Banks et al.
(2000) also devote sections to the topic, but the latter does not discuss gradient
estimation, per se. Applications to the single-server queue example consid-
ered here include the theoretical convergence results of Fu (1990), Chong and
Ramadge (1992) and L’Ecuyer and Glynn (1994), and the in-depth numeri-
cal comparisons of L’Ecuyer et al. (1994) and Andradóttir (1998). Andradóttir
(1996) considers the more general setting of using the LR/SF estimators in
SA algorithms, and Tang et al. (1999) analyze the asymptotic efficiency of an
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averaging version of SA using perturbation analysis estimators. Work on sam-
ple path optimization (called the stochastic counterpart method in Rubinstein
and Shapiro, 1993) includes Plambeck et al. (1996), Robinson (1996), Gürkan
et al. (1999), Homem-de-Mello et al. (1999); Dussault et al. (1997) combines
the approach with stochastic approximation. See also the chapter by Shapiro
(2003) on using Monte Carlo methods for stochastic programming. The orig-
inal papers on stochastic approximation are Robbins and Monro (1951) and
Kiefer and Wolfowitz (1952). For a more recent general book on stochastic ap-
proximation, see Kushner and Yin (1997); L’Ecuyer and Yin (1998) discusses
convergence rates as a function of computational budget. Spall (2000) provides
both indirect and direct gradient-based SA methods for obtaining near-optimal
or optimal convergence rates via stochastic analogues to the deterministic
Newton–Raphson algorithm, using Hessian matrix estimation. SPSA was intro-
duced by Spall (1992), although the random directions method was proposed
in Kushner and Clark (1978); see http://www.jhuapl.edu/SPSA/ for an exten-
sive annotated bibliography. Application to the settings of this handbook is
described in Fu and Hill (1997), and using deterministic sequences for SPSA
is considered in Bhatnagar et al. (2003) and Xiong et al. (2002). Andradóttir
(1998) contains further useful discussion on the application of SA algorithms
in simulation optimization, especially regarding the issues of choosing the gain
sequence and modifying the algorithm in cases where the objective function
is not well behaved. Most stochastic approximation algorithms involve known
constraints; Bashyam and Fu (1998) consider the case of a noisy constraint
that must also be estimated, in particular a service level constraint for an (s� S)
inventory system. Studies on choosing the finite difference used in the Kiefer–
Wolfowitz version of SA include Zazanis and Suri (1993) and L’Ecuyer and
Perron (1994).

For perturbation analysis, the books by Glasserman (1991), Ho and Cao
(1991), and Cao (1994) treat IPA extensively (in particular, see Glasserman
(1991) for a complete treatment of the commuting condition; see also Cao
(1985) and Heidelberger et al. (1988)) and SPA to some extent, whereas the
book by Fu and Hu (1997) is a comprehensive treatment of SPA, which was
introduced by Gong and Ho (1987) and Suri and Zazanis (1988); see also Fu
and Hu (1992), Fu (2001a) and Fu and Hu (1991, 1993), where higher deriva-
tives for multi-server queues are treated. Many of the examples in this chapter
are adopted from Fu and Hu (1997). More recent work connecting IPA with
Markov decision processes using the idea of potentials, which also relates to
the LR/SF method, include Cao (2000, 2003a, 2003b). The field of perturbation
analysis for gradient estimation includes numerous other extensions and varia-
tions on IPA not discussed here, including rare perturbation analysis (Brémaud
and Vázquez-Abad, 1992); structural IPA (Dai and Ho, 1995); discontinu-
ous perturbation analysis (Shi, 1996); and augmented IPA (Gaivoronski et al.,
1992). Seminal papers applying perturbation analysis for estimating the effects
of finite perturbations in the parameter include Ho and Li (1988), Cassandras
and Strickland (1989) and Vakili (1991).

http://www.jhuapl.edu/SPSA/
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For the likelihood ratio or score function method, a good reference is the
book by Rubinstein and Shapiro (1993), which also includes some discussion of
IPA (Chapter 5 on the “push in” method), as well as both first and second deriv-
ative estimators for most of the entries in Table 1 (Section 2.2); see also Reiman
and Weiss (1989), Rubinstein (1989), Glynn (1990) and Andradóttir (1996).
The “push out” method for handling structural parameters was introduced in
Rubinstein (1992); see also Section 2.5.4 in Rubinstein and Shapiro (1993). Us-
ing conditional expectation to reduce variance in the LR/SF method was con-
sidered in McLeish and Rollins (1992); see also Section 3.4 in Rubinstein and
Shapiro (1993). A “unified” view of IPA and LR/SF is presented in L’Ecuyer
(1990), which allows the parameter to appear in both the sample performance
and the distribution (see also L’Ecuyer (1995) for further discussion and some
technical corrections).

The weak derivative method was introduced by Pflug (1989, 1990, 1996).
More recent work attempting to unify the approach with others, such as
rare perturbation analysis and smooth perturbation analysis, includes Hei-
dergott and Vazquez-Abad (20006a, 2006b), in the setting of general Markov
processes, which may not provide as convenient a framework for the discrete-
event simulation setting as generalized semi-Markov processes (GSMPs).
Derivations for many of the entries in Table 1 can be found in Heidergott et al.
(2003).

10 Future research directions

Stochastic gradient estimation research has matured over the last decade to
the point that much of the analysis has become theoretical rather than algorith-
mic. This line of research addresses many issues that also arise in traditional
steady-state output analysis – only now for stochastic gradient estimators – and
can involve advanced probabilistic tools. In contrast, two possible directions
for future research described briefly here are more motivated by simulation
practice and have much algorithmic room left in them to grow.

How is gradient estimation best employed in simulation optimization? One
recent development is the use of fluid models in this setting. A discrete-event
simulation model for which application of the direct derivative estimation may
be difficult is approximated by a stochastic fluid model, which is used to derive
IPA estimators that are then implemented on either the (simulated) stochastic
fluid model or sometimes on the original stochastic discrete-event simulation
model. In the former case, where the IPA estimates are generally unbiased,
the optimal settings often provide a good approximation for the optimum in
the original model. In the latter case, the new IPA estimators do not yield
unbiased estimators when implemented in the discrete-event model (so are
generally not useful in sensitivity analysis, per se), but they often provide a
good approximation of the zero gradient location when used in optimization;
however, the theoretical basis for this good fortune is still not fully understood.

http://dx.doi.org/10.1016/S0927-0507(06)13005-4
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Some papers in this area include Wardi et al. (2002), Cassandras et al. (2002),
Sun et al. (2004) and Panayiotou et al. (2005).

The LR/SF method is closely related to importance sampling (cf. Chap-
ter 11). Investigating this connection more thoroughly for variance reduction
purposes, and doing so in a more general stochastic gradient setting, would be
of benefit to simulationists. Some work along this line in the setting of stochas-
tic programming is contained in Shapiro and Homem-de-Mello (1998).

Acknowledgements

This work was supported in part by the National Science Foundation under
Grants DMI 9988867 and DMI 0323220, and by the Air Force Office of Scien-
tific Research under Grants F496200110161 and FA95500410210. The author
thanks the co-Editors for their detailed comments and suggestions that have
led to an improved exposition, and Jeff Heath, Jiaqiao Hu, Ying He, Scott
Nestler, Chang Su, and Xiaoping Xiong for their reading of various drafts
along the way.

References

Andradóttir, S. (1996). Optimization of the transient and steady-state behavior of discrete event sys-
tems. Management Science 42, 717–737.

Andradóttir, S. (1998). Simulation optimization. In: Banks, J. (Ed.), Handbook of Simulation: Principles,
Methodology, Advances, Applications, and Practice. Wiley, New York, pp. 307–333, Chapter 9.

Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M. (2000). Discrete Event Systems Simulation, 3rd edition.
Prentice Hall, Englewood Cliffs, NJ.

Bashyam, S., Fu, M.C. (1994). Application of perturbation analysis to a class of periodic review (s� S)
inventory systems. Naval Research Logistics 41, 47–80.

Bashyam, S., Fu, M.C. (1998). Optimization of (s� S) inventory systems with random lead times and a
service level constraint. Management Science 44, S243–S256.

Benhamou, E. (2002). Smart Monte Carlo: Various tricks using Malliavin calculus. Quantitative Fi-
nance 2, 329–336.

Bhatnagar, S., Fu, M.C., Marcus, S.I., Wang, I.J. (2003). Two-timescale simultaneous perturbation sto-
chastic approximation using deterministic perturbation sequences. ACM Transactions on Modeling
and Computer Simulation 13, 180–209.

Bowman, R.A. (1994). Stochastic gradient-based time-cost tradeoffs in PERT network using simulation.
Annals of Operations Research 53, 533–551.

Brémaud, P., Vázquez-Abad, F.J. (1992). On the pathwise computation of derivatives with respect to the
rate of a point process: The phantom RPA method. Queueing Systems: Theory and Applications 10,
249–270.

Broadie, M., Glasserman, P. (1996). Estimating security price derivatives using simulation. Management
Science 42, 269–285.

Cao, X.R. (1985). Convergence of parameter sensitivity estimates in a stochastic experiment. IEEE
Transactions on Automatic Control 30, 834–843.

Cao, X.R. (1994). Realization Probabilities: The Dynamics of Queuing Systems. Springer-Verlag, New
York.

Cao, X.R. (2000). A unified approach to Markov decision problems and performance sensitivity analy-
sis. Automatica 36, 771–774.

http://dx.doi.org/10.1016/S0927-0507(06)13011-X
http://dx.doi.org/10.1016/S0927-0507(06)13011-X


Ch. 19. Gradient Estimation 613

Cao, X.R. (2003a). From perturbation analysis to Markov decision processes and reinforcement learn-
ing. Discrete Event Dynamic Systems: Theory and Applications 13, 9–39.

Cao, X.R. (2003b). Semi-Markov decision problems and performance sensitivity analysis. IEEE Trans-
actions on Automatic Control 48, 758–769.

Cassandras, C.G., Strickland, S.G. (1989). On-line sensitivity analysis of Markov chains. IEEE Transac-
tions on Automatic Control 34, 76–86.

Cassandras, C.G., Wardi, Y., Melamed, B., Sun, G., Panayiotou, C.G. (2002). Perturbation analysis
for on-line control and optimization of stochastic fluid models. IEEE Transactions on Automatic
Control 47, 1234–1248.

Chen, J., Fu, M.C. (2002). Hedging beyond duration and convexity. In: Proceedings of the 2002 Winter
Simulation Conference. IEEE Press, Piscataway, NJ, pp. 1593–1599.

Chong, E.K.P., Ramadge, P.J. (1992). Convergence of recursive optimization algorithms using infinites-
imal perturbation analysis. Discrete Event Dynamic Systems: Theory and Applications 1, 339–372.

Clewlow, L.J., Strickland, C.R. (1999). Implementing Derivative Models. Wiley, New York.
Dai, L., Ho, Y.C. (1995). Structural infinitesimal perturbation analysis for derivative estimation in dis-

crete event dynamic systems. IEEE Transactions on Automatic Control 40, 1154–1166.
Dussault, J.P., Labrecque, D., L’Ecuyer, P., Rubinstein, R.Y. (1997). Combining the stochastic counter-

part and stochastic approximation methods. Discrete Event Dynamic Systems: Theory and Applica-
tions 7, 5–28.

Fournié, E., Lasry, J.M., Lebuchoux, J., Lions, P.L., Touzi, N. (1999). Applications of Malliavin calculus
to Monte Carlo methods in finance. Finance and Stochastics 3, 391–412.

Fu, M.C. (1990). Convergence of a stochastic approximation algorithm for the GI/G/1 queue using
infinitesimal perturbation analysis. Journal of Optimization Theory and Applications 65, 149–160.

Fu, M.C. (1994a). Optimization via simulation: A review. Annals of Operations Research 53, 199–248.
Fu, M.C. (1994b). Sample path derivatives for (s� S) inventory systems. Operations Research 42, 351–

364.
Fu, M.C. (2001a). Perturbation analysis. In: Gass, S.I., Harris, C.M. (Eds.), Encyclopedia of Operations

Research and Management Science, 2nd edition. Kluwer Academic Publishers, Boston, MA, pp. 608–
611.

Fu, M.C. (2001b). Simulation optimization. In: Gass, S.I., Harris, C.M. (Eds.), Encyclopedia of Oper-
ations Research and Management Science, 2nd edition. Kluwer Academic Publishers, Boston, MA,
pp. 756–759.

Fu, M.C. (2002). Optimization for simulation: Theory vs. practice (Feature Article). INFORMS Journal
on Computing 14, 192–215.

Fu, M.C. (2006). Sensitivity analysis for stochastic activity networks. In: Alt, F.B., Fu, M.C., Golden,
B.L. (Eds.), Topics in Modeling, Optimization, and Decision Technologies: Honoring Saul Gass’ Con-
tributions to Operations Research. Kluwer Academic Publishers, Boston, MA, in press.

Fu, M.C., Healy, K.J. (1992). Simulation optimization of (s� S) inventory systems. In: Proceedings of the
Winter Simulation Conference. IEEE Press, Piscataway, NJ, pp. 506–514.

Fu, M.C., Healy, K.J. (1997). Techniques for simulation optimization: An experimental study on an
(s� S) inventory system. IIE Transactions 29, 191–199.

Fu, M.C., Hill, S.D. (1997). Optimization of discrete event systems via simultaneous perturbation sto-
chastic approximation. IIE Transactions 29, 233–243.

Fu, M.C., Hu, J.Q. (1991). On choosing the characterization for smoothed perturbation analysis. IEEE
Transactions on Automatic Control 36, 1331–1336.

Fu, M.C., Hu, J.Q. (1992). Extensions and generalizations of smoothed perturbation analysis in a gen-
eralized semi-Markov process framework. IEEE Transactions on Automatic Control 37, 1483–1500.

Fu, M.C., Hu, J.Q. (1993). Second derivative sample path estimators for the GI/G/m queue. Manage-
ment Science 39, 359–383.

Fu, M.C., Hu, J.Q. (1994). (s� S) inventory systems with random lead times: Harris recurrence and its
implications in sensitivity analysis. Probability in the Engineering and Informational Sciences 8, 355–
376.

Fu, M.C., Hu, J.Q. (1995). Sensitivity analysis for Monte Carlo simulation of option pricing. Probability
in the Engineering and Information Sciences 9, 417–446.



614 M.C. Fu

Fu, M.C., Hu, J.Q. (1997). Conditional Monte Carlo: Gradient Estimation and Optimization Applications.
Kluwer Academic Publishers, Boston, MA.

Fu, M.C., Hu, J.Q. (1999). Efficient design and sensitivity analysis of control charts using Monte Carlo
simulation. Management Science 45, 395–413.

Fu, M.C., Hu, J.Q., Shi, L. (1993). An application of perturbation analysis to replacement problems in
maintenance. In: Proceedings of the 1993 Winter Simulation Conference. IEEE Press, Piscataway, NJ,
pp. 329–337.

Gaivoronski, A., Shi, L., Sreenivas, R.S. (1992). Augmented infinitesimal perturbation analysis: An
alternate explanation. Discrete Event Dynamic Systems: Theory and Applications 2, 121–138.

Glasserman, P. (1991). Gradient Estimation via Perturbation Analysis. Kluwer Academic Publishers,
Boston, MA.

Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York.
Glynn, P.W. (1990). Likelihood ratio gradient estimation for stochastic systems. Communicatios of the

ACM 33, 75–84.
Gong, W.B., Ho, Y.C. (1987). Smoothed perturbation analysis of discrete-event dynamic systems. IEEE

Transactions on Automatic Control 32, 858–867.
Gürkan, G., Özge, A.Y., Robinson, S.M. (1999). Sample-path solution of stochastic variational inequal-

ities. Mathematical Programming 84, 313–333.
Heidelberger, P., Cao, X.R., Zazanis, M., Suri, R. (1988). Convergence properties of infinitesimal per-

turbation analysis estimates. Management Science 34, 1281–1302.
Heidergott, B. (1999). Optimization of a single-component maintenance system: A smoothed pertur-

bation analysis approach. European Journal of Operational Research 119, 181–190.
Heidergott, B. (2001a). A weak derivative approach to optimization of threshold parameters in a multi-

component maintenance system. Journal of Applied Probability 38, 386–406.
Heidergott, B. (2001b). Option pricing via Monte Carlo simulation: A weak derivative approach. Prob-

ability in Engineering and Informational Sciences 15, 335–349.
Heidergott, B., Vázquez-Abad, F. (2006a). Measure-valued differentiation for random horizon prob-

lems. Markov Processes and Related Fields, in press.
Heidergott, B., Vázquez-Abad, F. (2006b). Measure-valued differentiation for Markov chains. Journal

of Optimization Theory and Applications, in press.
Heidergott, B., Pflug, G., Vázquez-Abad, F. (2003). Measure-valued differentiation for stochastic sys-

tems: From simple distributions to Markov chains. Manuscript. Available at http://staff.feweb.vu.nl/
bheidergott/.

Ho, Y.C., Cao, X.R. (1991). Discrete Event Dynamics Systems and Perturbation Analysis. Kluwer Acad-
emic Publishers, Boston, MA.

Ho, Y.C., Li, S. (1988). Extensions of infinitesimal perturbation analysis. IEEE Transactions on Auto-
matic Control 33, 827–838.

Homem-de-Mello, T., Shapiro, A., Spearman, M.L. (1999). Finding optimal material release times using
simulation based optimization. Management Science 45, 86–102.

Howell, W.C., Fu, M.C. (2003). Application of perturbation analysis to traffic light signal timing. In:
Proceedings of the 42nd IEEE Conference on Decision and Control. IEEE Press, Piscataway, NJ,
pp. 4837–4840.

Hull, J.C. (2005). Options, Futures, and Other Derivative Securities, 6th edition. Prentice Hall, Englewood
Cliffs, NJ.

Jacobson, S.H. (1994). Convergence results for harmonic gradient estimators. ORSA Journal on Com-
puting 6, 381–397.

Jacobson, S.H., Schruben, L.W. (1989). A review of techniques for simulation optimization. Operations
Research Letters 8, 1–9.

Jacobson, S.H., Buss, A., Schruben, L.W. (1991). Driving frequency selection for frequency domain
simulation experiments. Operations Research 39, 917–924.

Kapuscinski, R., Tayur, S.R. (1999). Optimal policies and simulation based optimization for capacitated
production inventory systems. In: Tayur, S.R., Ganeshan, R., Magazine, M.J. (Eds.), Quantitative
Models for Supply Chain Management. Kluwer Academic Publishers, Boston, MA. Chapter 2.

http://staff.feweb.vu.nl/bheidergott/
http://staff.feweb.vu.nl/bheidergott/


Ch. 19. Gradient Estimation 615

Kiefer, J., Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. Annals
of Mathematical Statistics 23, 462–466.

Kushner, H.J., Clark, D.S. (1978). Stochastic Approximation Methods for Constrained and Unconstrained
Systems. Springer-Verlag, New York.

Kushner, H.J., Yin, G.G. (1997). Stochastic Approximation Algorithms and Applications. Springer-
Verlag, New York.

Law, A.M., Kelton, W.D. (2000). Simulation Modeling and Analysis, 3rd edition. McGraw-Hill, New
York.

L’Ecuyer, P. (1990). A unified view of the IPA, SF, and LR gradient estimation techniques. Management
Science 36, 1364–1383.

L’Ecuyer, P. (1995). On the interchange of derivative and expectation for likelihood ratio derivative
estimators. Management Science 41, 738–748.

L’Ecuyer, P., Glynn, P.W. (1994). Stochastic optimization by simulation: Convergence proofs for the
GI/G/1 queue in steady-state. Management Science 40, 1562–1578.

L’Ecuyer, P., Perron, G. (1994). On the convergence rates of IPA and FDC derivative estimators. Oper-
ations Research 42, 643–656.

L’Ecuyer, P., Yin, G. (1998). Budget-dependent convergence rate of stochastic approximation. SIAM
Journal on Optimization 8, 217–247.

L’Ecuyer, P., Giroux, N., Glynn, P.W. (1994). Stochastic optimization by simulation: Numerical experi-
ments with a simple queue in steady-state. Management Science 40, 1245–1261.

L’Ecuyer, P., Martin, B., Vázquez-Abad, F. (1999). Functional estimation for a multicomponent age-
replacement model. American Journal of Mathematical and Management Sciences 19, 135–156.

McLeish, D.L., Rollins, S. (1992). Conditioning for variance reduction in estimating the sensitivity of
simulations. Annals of Operations Research 39, 157–173.

Panayiotou, C.G., Howell, W.C., Fu, M.C. (2005). Online traffic light control through gradient estima-
tion using stochastic fluid models. Proceedings of the IFAC 16th Triennial World Congress. CD-ROM.

Pflug, G.C. (1989). Sampling derivatives of probabilities. Computing 42, 315–328.
Pflug, G.C. (1990). On-line optimization of simulated Markovian processes. Mathematics of Operations

Research 15, 381–395.
Pflug, G.C. (1996). Optimization of Stochastic Models. Kluwer Academic Publishers, Boston, MA.
Pflug, G.C., Rubinstein, R.Y. (2002). Inventory processes: Quasi-regenerative property, performance

evaluation and sensitivity estimation via simulation. Stochastic Models 18, 469–496.
Plambeck, E.L., Fu, B.-R., Robinson, S.M., Suri, R. (1996). Sample-path optimization of convex sto-

chastic performance functions. Mathematical Programming 75, 137–176.
Robinson, S.M. (1996). Analysis of sample-path optimization. Mathematics of Operations Research 21,

513–528.
Reiman, M.I., Weiss, A. (1989). Sensitivity analysis for simulations via likelihood ratios. Operations

Research 37, 830–844.
Robbins, H., Monro, S. (1951). A stochastic approximation method. Annals of Mathematical Statis-

tics 22, 400–407.
Rubinstein, R.Y. (1989). Sensitivity analysis of computer simulation models via the score efficient. Op-

erations Research 37, 72–81.
Rubinstein, R.Y. (1992). Sensitivity analysis of discrete event systems by the ‘push out’ method. Annals

of Operations Research 39, 229–251.
Rubinstein, R.Y., Shapiro, A. (1993). Discrete Event Systems: Sensitivity Analysis and Stochastic Opti-

mization by the Score Function Method. Wiley, New York.
Schruben, L.W. (1986). Simulation optimization using frequency domain methods. In: Proceedings of

the Winter Simulation Conference. IEEE Press, Piscataway, NJ, pp. 366–369.
Schruben, L.W., Cogliano, V.J. (1981). Simulation sensitivity analysis: A frequency domain approach.

In: Proceedings of the Winter Simulation Conference. IEEE Press, Piscataway, NJ, pp. 455–459.
Shapiro, A. (2003). Monte Carlo sampling methods. In: Ruszczynski, A., Shapiro, A. (Eds.), Stochas-

tic Programming. Handbook in Operations Research and Management Science. Elsevier, New York.
Chapter 6.



616 M.C. Fu

Shapiro, A., Homem-de-Mello, T. (1998). A simulation-based approach to two-stage stochastic pro-
gramming with recourse. Mathematical Programming 81, 301–325.

Shi, L.Y. (1996). Discontinuous perturbation analysis of discrete event dynamic systems. IEEE Trans-
actions on Automatic Control 41, 1676–1681.

Spall, J.C. (1992). Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic Control 37, 332–341.

Spall, J.C. (2000). Adaptive stochastic approximation by the simultaneous perturbation method. IEEE
Transactions on Automatic Control 45, 1839–1853.

Spall, J.C. (2003). Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Con-
trol. Wiley, Hoboken, NJ.

Sun, G., Cassandras, C.G., Wardi, Y., Panayiotou, C.G., Riley, G.F. (2004). Perturbation analysis and
optimization of stochastic flow networks. IEEE Transactions on Automatic Control 49, 2143–2159.

Suri, R., Zazanis, M.A. (1988). Perturbation analysis gives strongly consistent sensitivity estimates for
the M/G/1 queue. Management Science 34, 39–64.

Tang, Q.-Y., L’Ecuyer, P., Chen, H.-F. (1999). Asymptotic efficiency of perturbation analysis-based sto-
chastic approximation with averaging. SIAM Journal on Control and Optimization 37, 1822–1847.

Vakili, P. (1991). Using a standard clock technique for efficient simulation. Operations Research Let-
ters 10, 445–452.

Wardi, Y., Melamed, B., Cassandras, C.G., Panayiotou, C.G. (2002). IPA gradient estimators in single-
node stochastic fluid models. Journal of Optimization Theory and Applications 115, 369–406.

Xiong, X., Wang, I.J., Fu, M.C. (2002). Randomized-direction stochastic approximation algorithms us-
ing deterministic perturbation sequences. In: Proceedings of the 2002 Winter Simulation Conference.
IEEE Press, Piscataway, NJ, pp. 285–291.

Zazanis, M.A., Suri, R. (1993). Convergence rates of finite-difference sensitivity estimates for stochastic
systems. Operations Research 41, 694–703.

Zhang, H., Fu, M.C. (2005). Sample path derivatives for (s� S) inventory systems with price determina-
tion. In: Golden, B.L., Raghavan, S., Wasil, E.A. (Eds.), The Next Wave in Computing, Optimization,
and Decision Technologies. Kluwer Academic Publishers, Boston, MA, pp. 229–246.



S.G. Henderson and B.L. Nelson (Eds.), Handbook in OR & MS, Vol. 13
Copyright © 2006 Elsevier B.V. All rights reserved
DOI: 10.1016/S0927-0507(06)13020-0

Chapter 20

An Overview of Simulation Optimization via
Random Search

Sigrún Andradóttir
School of Industrial and Systems Engineering, Georgia Institute of Technology, USA
E-mail: sa@gatech.edu

Abstract

This chapter provides an overview of the use of random search methods for optimiz-
ing system performance via simulation. More specifically, we consider a broad class of
optimization algorithms that sample a set of feasible system designs in each iteration,
conduct simulations at the sampled designs in an effort to estimate the performance
of these designs, and then use the simulation results to decide on what designs should
be sampled in the next iteration and on the current estimate of the optimal system de-
sign. Consequently, the class of optimization algorithms under consideration is broad
enough to include simulated annealing, tabu search, and genetic algorithms as special
cases. We provide a discussion of when random search methods are guaranteed to
converge almost surely to a globally optimal system design, as well as a description
of desirable features such methods should have in order to yield attractive empirical
performance.

1 Introduction

This chapter is concerned with the use of random search to solve simulation
optimization problems of the form

(1)min
θ∈Θ

f(θ)�

where Θ is the feasible region and f :Θ → R is the objective function. In
practice, the feasible region Θ consists of all possible designs of a system un-
der consideration and f (θ) denotes the expected performance of that system
under the design θ ∈ Θ. We assume that the system under consideration is
complex enough that the expected performance f (θ) of each system design
θ ∈ Θ cannot be determined exactly, but is instead estimated through simu-
lation. The feasible region Θ is often embedded in a real space (i.e., Θ ⊂ R

d,
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where d is a positive integer), but this is not a requirement for applying random
search methods to solve the optimization problem (1). We will outline the basic
form of random search methods and discuss the convergence of such meth-
ods and other desirable features the methods should have. Other approaches
for solving simulation optimization problems of the form (1) are described in
Chapters 18, 19 and 21 of this volume.

Random search methods involve sampling points from the feasible regionΘ
of the underlying optimization problem (1) based on some sampling strategy,
evaluating the performance of the objective function f at the chosen points,
and then updating the sampling strategy based on the observed history (i.e.,
the feasible points that have been sampled so far and the associated objec-
tive function values), before proceeding to the next iteration. Hence, random
search methods constitute a broad class of optimization techniques that can
be applied to solve both deterministic and stochastic optimization problems
with either discrete or continuous decision parameters (or both). Simulation
optimization is a special case of stochastic optimization where the required ob-
jective function values f (θ) are estimated via computer simulation, and hence
involve some noise.

Most existing random search methods were originally developed for solving
deterministic optimization problems where there is no noise in the estimated
objective function values. There are two primary ways in which simulation op-
timization techniques address the problem of having noise in the estimated
objective values (it is also possible to combine ideas from the two approaches).
One approach involves expending a significant amount of computer effort at
each point visited by the algorithm to obtain a relatively precise estimate of the
objective function values at these points (especially as the search for an optimal
solution progresses), and then using a deterministic optimization approach to
solve the underlying optimization problem. Kleywegt et al. (2001) study the ap-
plication of this sample path approach to solve discrete optimization problems;
see also Healy and Schruben (1991), Rubinstein and Shapiro (1993), Robinson
(1996), Shapiro and Wardi (1996), Chen and Schmeiser (2001) and Homem-
de-Mello (2003), among others, for related work.

The other approach does not involve obtaining highly precise estimates of
the objective function values each time the algorithm visits a feasible point, so
that the algorithm must at each step decide on how to proceed based only on
limited information. This means that techniques that were originally intended
for deterministic optimization generally need to be modified to yield good
performance in the presence of noise. The basic issue is that the fact that a
particular point appears at first to be good (bad), in that it has a small (large) es-
timated objective function value, see Equation (1), does not necessarily imply
that this point is in fact good (bad). Consequently, the optimization technique
must proceed cautiously based on the information that is available at the time,
so that the method can recover quickly from errors made due to misleading
information. For example, it is possible for the method to obtain misleading
estimated objective function values suggesting that a bad subset of the feasible

http://dx.doi.org/10.1016/S0927-0507(06)13018-2
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region Θ is preferable to a good subset of Θ. When this happens, the method
should not completely lose progress made previously with respect to identifying
the location of a global optimal solution. Stochastic approximation methods
fall within this category of simulation optimization techniques, see, for exam-
ple, Chapter 19 in this volume and Robbins and Monro (1951), Kiefer and
Wolfowitz (1952), Kushner and Clark (1978), Benveniste et al. (1990), Pflug
(1996), Kushner and Yin (1997) and Spall (2003). Currently existing random
search methods for simulation optimization fall in both categories in that they
may require highly precise estimates of the objective function values as the
search progresses or not.

Throughout this chapter, we focus on the use of random search methods
to optimize the expected performance of stochastic systems using simulation
when the number of potential system configurations (i.e., the number of ele-
ments of the feasible regionΘ) is either finite or countably infinite. This is con-
sistent with the current use of random search methods for solving simulation
optimization problems. The objective function values f (θ) can be estimated
using either transient or steady-state simulation, depending on whether we are
interested in optimizing the performance of the underlying system over a finite
time horizon, or in the long run, respectively.

The outline of this chapter is as follows: In Section 2 we describe the basic
structure of random search methods and briefly review the literature on such
methods designed for solving simulation optimization problems. In Section 3
we discuss conditions under which random search methods can be shown to
be almost surely convergent to the set of global optimal solutions of the opti-
mization problem (1). In Section 4 we discuss properties that random search
methods should have in addition to guaranteed convergence to perform well
in practice. Finally, Section 5 contains a brief summary of this chapter.

2 A brief review of random search methods

In this section, we provide the general structure and a brief review of ran-
dom search methods. We start by providing the general structure of random
search methods applied to solve the simulation optimization problem (1).

Generic random search algorithm for simulation optimization:

Step 0 (initialize). Choose the initial sampling strategy S1 and let n = 1.
Step 1 (sample). Select θ(1)n � � � � � θ(Mn)

n ∈ Θ according to the sampling strat-
egy Sn.

Step 2 (simulate). Estimate f (θ(i)n ), for i = 1� � � � �Mn, using simulation.
Step 3 (update). Use the simulation results obtained so far in Step 2 to com-

pute an estimate of the optimal solution θ∗n and to choose an updated
sampling strategy Sn+1. Let n = n+ 1 and go to Step 1.

http://dx.doi.org/10.1016/S0927-0507(06)13019-4
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Note that the number Mn of feasible points sampled in iteration n of the
algorithm above is a parameter of the sampling strategy Sn used in iteration n,
and consequently does not need to be chosen in advance of executing the algo-
rithm. Also, note that the statement of the algorithm above does not include a
stopping criterion. This is typical of the random search literature, and is con-
sistent with the fact that convergence results for random search methods are
typically asymptotic in nature; i.e., the sequence {θ∗n} will be shown to converge
in some sense as n approaches infinity. In practice, it is of course necessary to
augment this algorithm with a suitable stopping criterion (because otherwise
the algorithm involves executing an infinite loop).

The generic random search algorithm given above clearly outlines a broad
class of techniques for solving the simulation optimization problem (1). These
techniques differ primarily in the choice of the sampling strategy {Sn}. For ex-
ample, the sampling strategy can be “point-based”, leading to methods such as
simulated annealing and tabu search that involve sampling points in the neigh-
borhood of the current point that the algorithm is visiting, where the neighbor-
hood of a feasible point θ ∈ Θ is a set N(θ) ⊂ Θ \ {θ}, and the neighborhood
structure N = {N(θ): θ ∈ Θ} is connected in the sense that it has the feature
that for all θ� θ′ ∈ Θ, θ �= θ′, there exist θ1� � � � � θk ∈ Θ such that θi+1 ∈ N(θi)
for i = 0� � � � � k, where θ0 = θ and θk+1 = θ′. The sampling strategy can also
be “set-based”, leading to methods such as (stochastic) branch-and-bound and
nested partitions (see Chapter 21) that sample points in a particular subset of
the feasible space Θ. Finally, the sampling strategy can be “population-based”,
leading to methods such as genetic algorithms that generate a new collection
of points using properties of the current collection of points. Random search
methods also differ in the choice of the sequence of estimates {θ∗n} of the opti-
mal solution. This is discussed in Section 3.

A detailed discussion of specific random search methods is outside the scope
of this chapter. Instead, we focus on desirable properties of random search
methods (i.e., guaranteed convergence and attractive empirical performance)
and how these properties may be achieved. Nevertheless, to assist readers
who are interested in using random search methods to solve simulation op-
timization problems, we now briefly describe some existing random search
methods. Tabu search, nested partitions, and genetic algorithms are reviewed
in Chapter 21 of this volume, and hence will not be discussed here.

Stochastic ruler methods constitute one class of random search methods,
see Yan and Mukai (1992) and Alrefaei and Andradóttir (2001, 2005). These
are point-based methods in which the quality of different feasible points and
future movements of the algorithm are decided by comparing estimated objec-
tive function values to observations of the stochastic ruler, which is a uniform
random variable covering the range of values the objective function f can take.
Stochastic comparison and descent algorithms form another class of random
search methods. This class would include the point-based methods of An-
dradóttir (1995, 1996, 1999), Gong et al. (1999) and Prudius and Andradóttir
(2004, 2006a), and also the set-based COMPASS method of Hong and Nelson
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(2005). These methods involve comparing estimated objective function values
at different points with each other, rather than with a stochastic ruler. Algo-
rithm movements take place when a point is found that appears to be better
(i.e., has a smaller objective function value, see Equation (1)) than previously
visited points. Simulated annealing methods constitute a third class of random
search methods, see Gelfand and Mitter (1989), Gutjahr and Pflug (1996),
Fox and Heine (1996), Alrefaei and Andradóttir (1999) and Prudius and An-
dradóttir (2005, 2006b). These point-based methods are designed to escape
from locally optimal solutions (and hence be globally convergent), and conse-
quently will sometimes move from the current point to an apparently inferior
candidate point in the hope that this will allow the algorithm to eventually find
even better points elsewhere in the feasible region Θ. Other related work in-
cludes the branch-and-bound method of Norkin et al. (1998a, 1998b), and also
the results of Homem-de-Mello (2003) on the convergence of random search.

3 Convergence

One desirable feature of random search methods for discrete simulation op-
timization is that such methods can be shown to converge almost surely to the
set of global optimal solutions of the underlying (discrete) simulation optimiza-
tion problem under very general conditions. We now review such convergence
results. The material in this section is based on Andradóttir (1999, 2006); see
also Andradóttir (2000).

In the process of using the generic random search algorithm described in
Section 2 to solve a simulation optimization problem of the form (1), simu-
lations will be conducted at any point θ in the feasible region Θ each time
the algorithm visits that point (i.e., each time when θ ∈ {θ(1)n � � � � � θ(Mn)

n }).
These simulation results are then aggregated to obtain estimates of the ob-
jective function value f (θ), for each θ ∈ Θ, that improve with each visit the
algorithm makes to θ. We will use the notation Cn(θ) to refer to the number of
times the feasible point θ has been visited in the first n iterations, and fn(θ) to
refer to the aggregated estimate of f (θ) available after n iterations have been
completed.

We first consider the case when the feasible region Θ is finite, see
Andradóttir (1999). In this case, the estimated optimal solution θ∗n after n it-
erations have been completed will be chosen from the subset of the feasible
points visited so far by the method whose elements have the best (smallest, see
Equation (1)) estimated objective function values. Hence,

(2)θ∗n ∈ arg min
θ∈Θ̃n

fn(θ)

for all n � 1, where

Θ̃n =
{
θ ∈ Θ: Cn(θ) � 1

}
�
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If the estimates fn(θ) of the objective function are strongly consistent, for all
θ ∈ Θ, then almost sure convergence to the set of global optimal solutions

Θ∗ = {θ ∈ Θ: f (θ) � f
(
θ′
)
� ∀θ′ ∈ Θ}

of the simulation optimization problem (1) is guaranteed. Assuring the strong
consistency of the objective function estimates fn(θ), for all θ ∈ Θ, would typi-
cally require that the underlying random search method be guaranteed to visit
each feasible point θ ∈ Θ infinitely often with probability one as the number
of iterations grows.

For all θ ∈ Θ and t � 0, let Xθ(t) denote the state of the simulated system
at time t when the value of the decision parameter that we want to optimize
is given by θ. In transient simulation optimization, the objective function val-
ues take the form f (θ) = E{Yθ}, where the random variable Yθ only depends
on the system behavior Xθ(t) until some finite time τθ, where τθ is a stop-
ping time with respect to the stochastic process {Xθ(t)} (so that f (θ) can be
estimated using transient simulation). For example, if for all θ ∈ Θ, Xθ(t)
denotes the number of customers in a G/G/s queue at time t, for all t � 0,
τθ = T ∈ (0�∞), and Yθ =

∫ T
0 Xθ(t) dt/T , then f (θ) represents the average

number of customers in the system over the period [0� T ]. The strong consis-
tency of the estimated objective function values fn(θ) in transient simulation
optimization is usually achieved by generating one or more observations of Yθ
at each feasible point θ ∈ {θ(1)n � � � � � θ(Mn)

n } visited in each iteration n of the al-
gorithm, averaging these observations to obtain an estimate of f (θ), and then
letting fn(θ) be the average of the Cn(θ) estimates of f (θ) that have been ob-
tained so far by the algorithm. The strong law of large numbers would then be
used to prove the strong consistency of the estimated objective function values
fn(θ), assuming that each feasible point θ ∈ Θ is visited infinitely often by the
underlying algorithm with probability one.

In steady-state simulation optimization, we usually have that

f (θ) = lim
t→∞

∫ t

0
hθ
(
Xθ(u)

)
du
/
t

(assuming that the limit exists and equals a constant almost surely), where hθ is
a deterministic function. For example, in the G/G/s example given in the pre-
vious paragraph, if for all θ ∈ Θ, hθ(x) = x for all x ∈ R, then f (θ) represents
the long-run average number of customers in the system. The strong consis-
tency of the estimators fn(θ) in steady-state simulation optimization is usually
proved using renewal or regenerative process theory, and can be achieved in
various ways, see Andradóttir (2000). One approach involves saving enough
information about the simulation at each point θ ∈ Θ̃n visited so far by the
algorithm, so that the simulation can be restarted when the algorithm revisits
the point θ. Then if the process {Xθ(t)} is simulated for T time units each time
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when θ ∈ {θ(1)n � � � � � θ
(Mn)
n }, the estimate fn(θ) will be an observation of

1
TCn(θ)

∫ TCn(θ)

0
hθ
(
Xθ(u)

)
du

(we could also truncate some observations at the beginning of the run). An-
other way involves starting simulations from scratch each time the algorithm
visits a point θ ∈ Θ, letting the length Tk of the simulation run conducted
the kth time the algorithm visits a feasible point grow to infinity with k and
averaging all the resulting Cn(θ) estimates, so that

fn(θ) = 1
Cn(θ)

Cn(θ)∑
k=1

1
Tk

∫ Tk

0
hθ
(
Xθ�k(u)

)
du

for all n � 1 and θ ∈ Θ̃n, where {Xθ�k(t)} denotes the sample path of {Xθ(t)}
generated the kth time the algorithm visits θ ∈ Θ for all k � 1 (as before, we
could truncate some observations at the beginning of each replication).

In both cases (transient and steady-state simulation optimization), one can
ensure that each point θ ∈ Θ is visited infinitely often by including a pure
search component in the random search method (e.g., in each iteration n,
generate a point at random from the feasible region with a small probabil-
ity). Moreover, many existing random search methods have the property that
Mn = 1 for all n, and the sequence of points {θ(1)n } visited by the algorithm
is a Markov chain. If this Markov chain is time-homogeneous, irreducible and
positive recurrent, then each feasible point θ ∈ Θ will be visited infinitely often
with probability one.

We now consider the case when the feasible region Θ is countably infinite,
see (Andradóttir, 2006). In this case, we constrain the estimated optimal so-
lution θ∗n after n iterations of the random search method under consideration
have been completed to be chosen from the subset of the feasible points visited
sufficiently often so far by the algorithm whose elements have the best (smallest)
estimated objective function values. (This approach for estimating the optimal
solution may also perform better than the approach (2) even when Θ is fi-
nite, see Prudius and Andradóttir, 2006a.) Moreover, it is often useful to also
constrain θ∗n to lie in a deterministic set Θn, where Θn ⊂ Θn+1 for all n and⋃∞
n=1Θn = Θ. Consequently, we let

(3)θ∗n ∈ arg min
θ∈Θ̃′

n

fn(θ)�

where

Θ̃′
n =

{
θ ∈ Θn: Cn(θ) � Kn

}
and {Kn} is a nondecreasing sequence of positive integers that converges to
infinity at a sublinear rate. For example, the sequence {Θn} would typically
be chosen so that the number of elements |Θn| in Θn increases at a polyno-
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mial rate with n (e.g., if Θ ⊂ R
d, then we could choose Θn = Θ ∩∏d

i=1[θ̃i −
Pi(n)� θ̃i + Pi(n)] for all n � 1, where (θ̃1� � � � � θ̃d) is the user’s best initial
guess of an optimal solution θ∗ ∈ Θ∗ and P1(n)� � � � � Pd(n) are polynomial
functions that increase with n), and one could chooseKn = [anα] for all n � 1,
where a > 0, 0 < α < 1, and [x] is the integer closest to x for all x ∈ R.
(The sequence {Kn} is constrained to grow at a sublinear rate in n because it is
typically possible to show that the number of visits Cn(θ) to the feasible point
θ in the first n iterations of the algorithm grows at a linear rate with n for all θ
in some subset of interest of the feasible region. Such feasible points θ would
then be included in the set Θ̃′

n with probability one for large n. If the number
Mn of points sampled in iteration n grows superlinearly with n, then it is pos-
sible that Cn(θ) will also grow superlinearly with n for some interesting set of
feasible points θ, in which case the sequence Kn could be chosen to grow at a
linear or superlinear rate with n.)

Suppose that Θ is countably infinite, Equation (3) is used to estimate the
optimal solution, the underlying random search method is guaranteed to visit
each feasible point sufficiently often as the number of iterations grows (so that
the intersection between Θ̃′

n and Θ∗ is nonempty for sufficiently large n), and
the estimates of the objective function value f (θ) obtained after the feasible
point θ has been visited k times by the algorithm, denoted f̂k(θ), are “suf-
ficiently close to” the true objective function value f (θ) for large k and all
θ ∈ Θ. Then almost sure convergence to the set Θ∗ of global optimal solutions
to the simulation optimization problem (1) is guaranteed, see Theorem 3.1 and
Section 4 of Andradóttir (2006) for the details. Assuring that each point θ ∈ Θ
is visited sufficiently often can typically be achieved in the same manner as
when Θ is finite (i.e., by incorporating a pure search component in the method
or ensuring that the sequence of points visited by the algorithm constitutes a
time-homogeneous, irreducible, and positive recurrent Markov chain). Ensur-
ing that the estimated objective function values f̂k(θ) are sufficiently close to
the true objective function values f (θ) for large k and all θ ∈ Θ can usually
be ascertained using large deviations theory, see Andradóttir (2006) for more
details and Dembo and Zeitouni (1993) for an introduction to large deviations
theory.

4 Efficiency

In Section 3 we reviewed under what conditions a random search method is
guaranteed to converge almost surely to the set of global optimal solutions Θ∗.
These conditions are quite general, and consequently leave a lot of flexibility
to develop simulation optimization algorithms that are both provably globally
convergent and also highly efficient. Consequently, we believe that there is no
reason to consider simulation optimization algorithms in practice that are not
guaranteed to converge almost surely to the set of global optimal solutions un-
der weak conditions. Fortunately, many existing random search methods that
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do not have this property at present can be easily modified in a way that assures
almost sure and global convergence (e.g., by adding a pure search component
to the method).

However, knowing that a simulation optimization algorithm is globally con-
vergent with probability one does not necessarily imply that this algorithm will
perform well in practice. In fact, it is easy to see that certain algorithms that are
obviously undesirable are nevertheless guaranteed to converge almost surely
to the set of global optimal solutions Θ∗ with probability one. For example,
when Θ is finite, then repeated enumeration (to repeatedly visit all the points
in the state space in a particular order) will converge almost surely to Θ∗ as
long as the point with the best estimated objective function value is used to
estimate the optimal solution (see Equation (2)) and the estimated objective
function values obtained after k visits to each feasible point are strongly con-
sistent as k grows.

Moreover, no-free-lunch theorems for deterministic optimization (see
Wolpert and Macready, 1997) show that without any knowledge about the
structure of the underlying optimization problem, all optimization algo-
rithms will exhibit the same average performance (with the average taken
over all possible objective functions). More specifically, suppose that we
want to optimize a function f :X → Y , where both X and Y are fi-
nite (e.g., because of finite precision). Suppose furthermore that dm =
{(dxm(1)� dym(1))� � � � � (dxm(m)� dym(m))} is a time ordered set of m distinct
points visited by an optimization algorithm (not counting times when feasible
points are revisited), with dxm = {dxm(1)� � � � � dxm(m)} being the successive (dis-
tinct) feasible points and dym = {dym(1)� � � � � dym(m)} being the corresponding
objective function values. Then Theorem 1 of Wolpert and Macready (1997)
states that if a1 and a2 are two optimization algorithms, then

∑
f

P
{
d
y
m|f�m� a1

} =∑
f

P
{
d
y
m|f�m� a2

}
�

In other words, the average probability of observing a particular value of dym
(averaged over all possible objective functions f ) does not depend on the
choice of optimization algorithm. This result immediately implies that for any
measure of algorithm performance that is a function of dym, the average per-
formance of all optimization algorithms (averaged over all possible f ) is the
same. Consequently, for an optimization algorithm to do better than repeated
enumeration, the underlying optimization problem needs to have some known
structure that the algorithm can exploit. Ideas about how such “landscape”
structure can be measured can be found in the literature on evolutionary com-
puting, see for example Vassilev et al. (2000) and Reidys and Stadler (2002).

In contrast with the literature on deterministic optimization, which is dom-
inated by methods designed to solve highly structured optimization problems
(e.g., linear programs), simulation optimization problems frequently have very
little structure that the optimization algorithm can exploit, and even if the
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underlying problem has a lot of structure, the user may not be aware of this
fact. Moreover, since most simulation practitioners use simulation languages
to implement their models, for a simulation optimization technique to find
widespread use it is desirable that the method be suitable for incorporation
in simulation languages. This requires the method to perform well on a broad
class of problems having very different characteristics. Consequently, most ran-
dom search methods are designed to exploit the structure that good points (i.e.,
points with low objective function values, see (1)) tend to be clustered together.
Of course, if more structure is available (e.g., convexity), then this can be ex-
ploited to make the search more efficient by narrowing down the location of
the global optimal solution(s) as the search progresses.

When a method that is designed to exploit the structure that good points
tend to be clustered together has identified a relatively good feasible point (or
collection of feasible points), it is sensible to focus the search near that point.
Point-based methods do this by focusing the search in a neighborhood of the
current point (see Section 3), set-based methods do it by focusing the search
in a set containing the current point, and population-based methods focus the
search on points that can be generated by manipulating the current collec-
tion of points. Additionally, for good performance, these methods must have a
mechanism for finding attractive points quickly. This generally translates into
ensuring that the method can move rapidly around within the feasible region.
A mechanism that accomplishes this needs to be incorporated in the sampling
strategy used by the algorithm, regardless of whether it is point-based, set-
based, or population-based.

Achieving the goals described in the previous paragraph depends on the
set of feasible points under consideration by the sampling strategy Sn in each
iteration n (including the size of this set), and also on how this set is searched.
For point-based methods, this translates into the choice of the neighborhoods
N(θ) and the decision about how these neighborhoods are searched. Based on
the discussion in the previous paragraph, the neighborhood N(θ) of a feasible
point θ ∈ Θ should include points close to θ (to allow the method to focus the
search near θ if desired) and also allow for rapid movements within the feasible
region Θ (this would generally involve including some points that are far from
θ inN(θ)). Since the choice of the neighborhood structureN = {N(θ): θ ∈ Θ}
can have a substantial effect on the performance of the random search method
under consideration, it is important to try to capture the essential features of
the underlying optimization problem (1) in this choice, especially with respect
to deciding what points should be considered to be close to each other.

With respect to the size of the neighborhoods, at one extreme one can use
very large neighborhoods (e.g., N(θ) = Θ \ {θ} for all θ ∈ Θ), while at the
other extreme the neighborhoods can be very localized around the current
point (e.g., N(θ) = Θ ∩ {θ′ ∈ R

d: ‖θ′ − θ‖ � 1} when Θ ⊂ R
d). Clearly,

large neighborhoods allow rapid movements within the feasible region and fa-
cilitate achieving global convergence, but they can be less effective than small
neighborhoods in focusing the search around desirable points. On the other



Ch. 20. An Overview of Simulation Optimization via Random Search 627

hand, small neighborhoods can lead to good performance if the algorithm is
started in a good point, but can perform poorly if the feasible region Θ is large
and many steps are required to move from the starting point(s) θ(1)1 � � � � � θ

(M1)
1

to the global optimal solutions (e.g., if Θ is the set of integers, N(θ) = {θ− 1�
θ+ 1} for all θ ∈ Θ, M1 = 1, and infθ∗∈Θ∗ |θ(1)n − θ∗| is large).

When it comes to deciding how the neighborhoods N(θ) should be
searched, at one extreme one could sample one point from the neighbor-
hood of the current point and compare it with the current point, while at the
other extreme one could search for the best point in the neighborhood and
compare that point with the current point. Procedures that search very large
neighborhoods constitute an active area of research in the combinatorial op-
timization community, see Ahuja et al. (2002) for a recent review. However,
doing this effectively requires the exploitation of some underlying structure
that the optimization problem has. Since such structure is often either not
present or unknown in simulation optimization problems, this approach does
not appear to be promising for developing simulation optimization algorithms
that are suitable for widespread use, for example through being incorporated
in a simulation language. Hence, the use of large neighborhood structures for
simulation optimization would typically be accompanied by a sampling mech-
anism over the neighborhoods, rather than an optimization approach.

On the other hand, when the neighborhoods are relatively small in size,
then it is possible to either sample from them or optimize over them. In the
latter case, there is an opportunity to combine random search methods with
ranking-and-selection methods, see Chapter 17 of this volume for a review.
However, care needs to be taken to avoid expending too much computer time
on optimizing over neighborhoods early in the search when the neighbor-
hoods may not include any desirable points, or on choosing between several
points exhibiting very similar performance (except perhaps near the conclu-
sion of the search). Other opportunities for combining random search methods
and ranking-and-selection techniques in the simulation optimization setting in-
clude using ranking and selection to ensure that the method will only change
the estimate of the optimal solution or focus the search in a different subset
of the feasible region Θ if there is strong evidence that the change is in fact an
improvement over the status quo, and for “clean up” at the end of the search
(i.e., to ensure that the final estimate of the optimal solution is in fact the best
point visited by the algorithm with high probability). These issues are discussed
by Pichitlamken and Nelson (2003) and Boesel et al. (2003), respectively.

The discussion above suggests that it is desirable for a random search
method to incorporate both global and local search components, and to main-
tain the right balance between the two as the search progresses. The global
search component is useful for quickly identifying desirable subsets of the fea-
sible region Θ (with small objective function values). Once such subsets have
been found, then it is beneficial to search locally within these areas to identify
improved solutions. More details about how both global and local search can
be included in random search methods, and how appropriate balance can be

http://dx.doi.org/10.1016/S0927-0507(06)13017-0
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maintained between the two, are discussed by Prudius and Andradóttir (2004,
2006a). A related issue involves deciding on the appropriate balance between
the number of points sampled by the algorithm and how much effort is spent on
estimating the objective function value at each sampled point, see for example
Yakowitz et al. (2000).

Note that if a random search method is guaranteed to be globally conver-
gent with probability one, then this method does include a mechanism for
escaping from feasible points that are locally, but not globally optimal (in other
words, such a mechanism should be included in the method). Another desir-
able feature a random search algorithm may have (in addition to almost sure
and global convergence, the ability to focus the search in desirable regions,
and the ability to move quickly within Θ) is the ability to focus the search
in areas of the feasible region that either appear to be desirable (i.e., have
relatively low objective function values) or have not been sampled much pre-
viously. This is accomplished in tabu search by excluding certain points from
consideration (e.g., points that have been visited recently by the algorithm),
and in COMPASS by using a neighborhood structure that focuses the search
in the region whose elements are closer to the best point seen so far than they
are to other points that the algorithm has already visited.

Furthermore, it is desirable for random search methods to be highly adap-
tive in order to take as much advantage as possible of the information that
it gathers throughout the search to guide the search. In our generic random
search algorithm for simulation optimization given in Section 2, we incorpo-
rate this by allowing the sampling strategies {Sn} to adapt to all information
collected by the algorithm. For example, the neighborhoods used by point-
based methods can be chosen adaptively, and the same is true of how these
neighborhoods are searched. The only restrictions on this are that adapting to
the information collected by the algorithm should in fact improve performance
(e.g., the algorithm should not be misled by the noise in the estimated objective
function values), this should be done in a way that maintains the guarantee of
almost sure convergence, and it is preferable for the algorithm not to require
the intervention of the user as it adapts to the available information (e.g., for
the method to be suitable for inclusion in a simulation language).

One way of adapting the search to the information collected over time by
the random search method is to use the aggregated function estimates fn(θ) to
guide the search, rather than simply for computing the sequence {θ∗n} of esti-
mates of the optimal solution, see Equations (2) and (3). The most commonly
used alternative to this approach is to use only the simulation results obtained
in the current iteration of the algorithm to decide on the next action taken by
the algorithm (this is often done to ensure that the progression of the algorithm
can be modeled as a Markov chain, which is useful for proving results about
the behavior of the algorithm). Since for all θ ∈ Θ, the aggregated estimate
fn(θ) of the objective function value f (θ) is more precise than an estimate of
f (θ) obtained in a single replication (as long as the feasible point θ has been
visited more than once by the random search method), and since the presence
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of noise in the estimated objective function values makes it more difficult to
solve the simulation optimization problem (1), it is reasonable to expect that
using the aggregated estimates fn(θ) to guide the search will lead to better
empirical behavior than using only the most recently obtained estimates. How-
ever, this is not always the case, because there are situations where the random
search algorithm being used can benefit from the added simulation noise (in
addition to any randomness inherent in the algorithm itself). For example, if
the random search method being used is a descent method (so that it does not
have a mechanism for escaping from solutions that are locally, but not glob-
ally optimal) and if the underlying optimization problem has locally optimal
solutions that are not globally optimal, then there may be instances where the
algorithm will converge to a locally optimal solution when the aggregated esti-
mates fn(θ) are used, but it will converge to a globally optimal solution when
the most recently available estimates of f (θ) are used (because the noise in
the most recently available estimates allows the algorithm to escape from lo-
cally optimal solutions). For more discussion on the use of aggregated objective
function estimates in simulation optimization, the reader is referred to Prudius
and Andradóttir (2005, 2006b).

The discussion in this section is concerned with features a random search
method should have to exhibit attractive empirical performance. More details
about the design of random search methods are given by Prudius and An-
dradóttir (2006a). Finally, note that it would of course be desirable to be able
to prove results about how fast a random search method is likely to converge in
practice. This would include both asymptotic rate-of-convergence and attrac-
tion results, see Andradóttir (1999). Similarly, results about the finite-horizon
behavior of random search methods, such as determining how many iterations
are required to reach a certain level of performance with a specified probabil-
ity, would also be valuable. However, such rate-of-convergence results are only
of practical value if the conditions under which they hold do not unduly limit
the flexibility in the algorithm design (so that an algorithm that satisfies these
conditions is not likely to perform worse in practice than the algorithms with
the best empirical performance on the class of optimization problems under
consideration).

5 Summary

In this chapter, we have outlined the features a random search method
should have to both be provably convergent and also exhibit attractive em-
pirical performance. We showed that almost sure and global convergence is
not difficult to achieve, and as a result it seems reasonable to focus on random
search methods that have this property. We have also discussed other desir-
able characteristics of random search methods, including the ability to move
rapidly within the feasible region to identify desirable areas worthy of further
investigation, to focus the search in desirable subsets of the feasible region
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that have not been extensively explored before, and to adapt to information
collected by the method about the optimization problem at hand as it becomes
available. The application of these principles towards the design of effective
random search methods for simulation optimization is presently an active and
worthy research area.
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Abstract

Metaheuristics have been established as one of the most practical approaches to
simulation optimization. However, these methods are generally designed for com-
binatorial optimization, and their implementations do not always adequately account
for the presence of simulation noise. Research in simulation optimization, on the
other hand, has focused on convergent algorithms, giving rise to the impression of
a gap between research and practice. This chapter surveys the use of metaheuristics
for simulation optimization, focusing on work bridging the current gap between the
practical use of such methods and research, and points out some promising directions
for research in this area. The main emphasis is on two issues: accounting for sim-
ulation noise in the implementation of metaheuristics, and convergence analysis of
metaheuristics that is both rigorous and of practical value. To illustrate the key points,
three metaheuristics are discussed in some detail and used for examples throughout,
namely genetic algorithms, tabu search, and the nested partitions method.

Keywords: Simulation optimization, metaheuristics, tabu search, genetic algo-
rithms, nested partitions method, convergence analysis

1 Introduction

Optimization in simulation has been a topic of intense investigation for
decades, but for most of this period, the research effort was rarely transferred
to simulation practice. This has changed dramatically over the past decade,
however, and optimization routines are now part of most commercial simu-
lation software. On the other hand, these commercial simulation optimizers
draw little on the decades of academic research in this field. In fact, they al-
most exclusively use metaheuristics that have been most extensively studied
to solve deterministic combinatorial optimization problems (April et al., 2003;
Fu, 2002; Ólafsson and Kim, 2002).
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Several classes of simulation optimization problems and solution method-
ologies have been analyzed in the literature. When the underlying space is
continuous, gradient search methods are applicable and derivative estimation
is a key issue (see Chapter 19), when the number of alternatives is small,
statistical selection methods can be applied (see Chapter 17), and in many sit-
uations, metamodeling and response surface methods have been found useful
(see Chapter 18). Another relevant line of research has focused on provably
convergent random search methods (see Chapter 20). In this chapter we ad-
dress the use of metaheuristics in simulation optimization. Our focus is on
basic methodology and research issues, but we make a deliberate effort to high-
light work that bridges the gap between simulation practice and research, and
indicate promising research directions in this area that are motivated by the
prevalence of metaheuristics.

In simulation practice, the choice and design of an algorithm always boils
down to computational efficiency (Kelly, 2002). Rapid progress of the search
and demonstrating improvement over the initial solution therefore takes
precedence over possible convergence statements, and provably obtaining a
global optimum is rarely a significant concern. While this is certainly a reason-
able stance in practice, a consequence of this view may be that the simulation
takes on a subservient role to the optimization (Fu, 2002). This, in our opin-
ion, is an undesirable property for simulation optimization software. Thus, the
challenge to the research community is to shift the focus back to the simula-
tion itself, by rigorously accounting for the simulation noise in the optimization
routines, and establishing convergence results that are both well founded and
useful in practice.

Indeed, although more advanced implementations do consider statistical
significance, there are some concerns about how metaheuristics developed for
combinatorial optimization perform for simulation problems, and there are
significant lessons that can be learned from the existing body of research. In
particular, we believe that by understanding how to account for simulation
noise in metaheuristics, their performance in practice may be improved. We
also believe that convergence statements do have value, and that it is reassur-
ing to know that given enough computational effort, the search will eventually
be successful. Furthermore, it would be ideal to be able to terminate the search
and know at that moment how good a solution has been obtained. With regards
to metaheuristics, relatively little work has been done in the deterministic com-
binatorial optimization context to analyze convergence in this manner, and
even less in the simulation optimization context. Thus, with the assumption
that metaheuristics will continue to dominate simulation practice, we advocate
a research agenda that focuses on how to account for simulation noise in these
methods, and making convergence statements that are applicable to how the
algorithms are actually employed.

As stated above, several simulation optimization packages have re-
cently been developed for commercial simulation software. These include
SimRunner® that is used by Promodel® and OptQuest®, which can be used
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by numerous simulation software packages such as Arena®, Crystal Ball®,
Promodel®, SIMUL8®. Such packages use one or more common metaheuris-
tics as their primary search method. Specifically, genetic algorithms are used
in SimRunner®, and tabu search, genetic algorithms, and scatter search are all
used in OptQuest®. A recent survey that discussed the use of simulation op-
timization in such commercial software can be found in April et al. (2003). In
this chapter we focus on three metaheuristics methods that have either been
used widely in practice or shed some light on the convergence issues to be
studied. In particular, we study genetic algorithms, tabu search, and the nested
partitions method. We review the state of the art with regard to the use of these
methods for simulation optimization; consider how to account for simulation
noise in their implementation; and explore what convergence statements can
be made.

The remainder of the chapter is organized as follows. In Section 2 we give
a brief review of metaheuristics methods and their uses in combinatorial op-
timization. A comprehensive review is beyond the scope of the chapter, and
the focus is on common elements and what defines each method. In Section 3
we discuss how those methods can be applied to simulation optimization and
focus in particular on what makes simulation optimization fundamentally dif-
ferent and how the challenges of noisy performance can be addressed. The
next three sections discuss specific metaheuristics, namely genetic algorithms,
tabu search, and the nested partitions method. The focus of these sections is
on the issues that arise when these methods are applied in simulation opti-
mization. Section 7 is a discussion of what type of convergence statements can
be made for metaheuristics, with a focus on of both asymptotic and finite-time
convergence results. Examples from genetic algorithms and nested partitions
methods are used for illustration. Finally, in Section 8, we summarize the re-
search agenda that we advocate for metaheuristics in simulation optimization.

2 Background to metaheuristics

Metaheuristics are designed to tackle complex optimization problems where
other optimization methods have failed to be either effective or efficient. These
methods have come to be recognized as one of the most practical approaches
for solving many complex problems, and this is particularly true for the many
real-world problems that are combinatorial in nature. The practical advantage
of metaheuristics lies in both their effectiveness and general applicability. In
the early research literature, specialized heuristics were typically developed
to solve complex combinatorial optimization problems. This required a new
approach to every problem and lessons learned from one problem did not
always generalize well to a different class of problems. On the other hand,
with the emergence of more general solution strategies, including such meta-
heuristics as tabu search, genetic algorithms and simulated annealing, the main
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challenge has become adapting the metaheuristics to a particular problem or
problem class. This usually requires much less work than developing a spe-
cialized heuristic for a specific application, which makes metaheuristics an
appealing choice for implementation in general purpose software. Further-
more, a good metaheuristic implementation is likely to provide near optimal
solutions in reasonable computation times. For further reading, Glover and
Kochenberger (2003) provide a good introduction and general reference to
many of the most popular metaheuristics.

The applicability of metaheuristics as a preferred method over other op-
timization methods is primarily to find good heuristic solutions to complex
optimization problems with many local optima and little inherent structure to
guide the search. The metaheuristic approach to solving such problem is to
start by obtaining an initial solution or an initial set of solutions, and then ini-
tiating an improving search guided by certain principles. The structure of the
search has many common elements across various methods. In each step of
the search algorithm, there is always a solution (or a set of solutions) θk, which
represents the current state of the algorithm. Many metaheuristics, including
simulated annealing, tabu search, variable neighborhood search, and GRASP,
are solution-to-solution search methods, that is, θk is a single solution or point
θk ∈ Θ in some solution space Θ. Others, including genetic algorithms, scatter
search and the nested partitions method, are set-based, that is, in each step
θk represents a set of solutions θk ⊆ Θ. However, the basic structure of the
search remains the same regardless of whether the metaheuristics is solution-
to-solution or set-based.

Given a neighborhoodN(θk) of the solution (set), a candidate solution (set)
{θc} ⊂ N(θk) is selected and evaluated. This evaluation involves calculating or
estimating the performance of the candidate solution(s) and comparing them
with the performance of θk and sometimes with each other. Based on this eval-
uation, the candidate may be either accepted, in which case θk+1 = θc, or
rejected, in which case θk+1 = θk. We now have the following metaheuristic
framework:

Obtain an initial solution (set) θ0 and set k = 0.
Repeat:

Identify the neighborhood N(θk) of the current solution(s).
Select candidate solution(s) {θc} ⊂ N(θk) from the neighborhood.
Accept the candidate(s) and set θk+1 = θc or reject it and
set θk+1 = θk.
Increment k = k+ 1.

Until stopping criterion is satisfied.
As we will see in this section, this framework can be applied to numerous meta-
heuristics.

The reason for the “meta-” prefix is that metaheuristics do not specify all the
details of the search, which can thus be adapted by a local heuristic to a specific
application. Instead, they specify general strategies to guide specific aspects of
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the search. For example, tabu search uses a list of solutions or moves called the
tabu list, which ensures the search does not revisit recent solutions or becomes
trapped in local optima. The tabu list can thus be thought of as a restriction
of the neighborhood. On the other hand, methods such as genetic algorithm
specify the neighborhood as all solutions that can be obtained by combining
the current solutions through certain operators. Other methods, such as simu-
lated annealing, do not specify the neighborhood in any way, but rather specify
an approach to accepting or rejecting solutions that allows the method to es-
cape local optima. Finally, the nested partitions method is an example of a
set-based method that selects candidate solutions from the neighborhood with
a probability distribution that adapts as the search progresses to make better
solutions be selected with higher probability.

Within the framework presented here, all metaheuristics share the elements
of selecting candidate solution(s) from a neighborhood of the current solu-
tion(s) and then either accepting or rejecting the candidate(s). With this per-
spective, each metaheuristic is thus defined by specifying one or more of these
elements, but allowing others to be adapted to the particular application. This
may be viewed as both a strength and a liability. It implies that we can take
advantage of special structure for each application, but it also means that the
user must specify those aspects, which can be complicated. For the remainder
of this section, we briefly introduce a few of the most common metaheuristics
and discuss how they fit within this framework. Three of those methods will
then be analyzed in more detail as we discuss how to apply them for simulation
optimization in subsequent sections.

One of the earliest metaheuristics is simulated annealing (Kirkpatrick et al.,
1983; Eglese, 1990; Fleischer, 1995), which is motivated by the physical an-
nealing process, but within the framework here simply specifies a method for
determining if a solution should be accepted. As a solution-to-solution search
method, in each step it selects a candidate θc ∈ N(θk) from the neighbor-
hood of the current solution θk ∈ Θ. The definition of the neighborhood is
determined by the user. If the candidate is better than the current solution it is
accepted, but if it is worse it is not automatically rejected, but rather accepted
with probability

(1)P
[
Accept θc] = e(f (θk)−f (θc))/Tk�

where f :Θ→ R is an objective function to be minimized, and Tk is a parame-
ter called the temperature. Clearly, the probability of acceptance is high if the
performance difference is small and Tk is large. The key to simulated annealing
is to specify a cooling schedule {Tk}∞k=1, by which the temperature is reduced
so that initially inferior solutions are selected with a high enough probability
so local optimal are escaped, but eventually it becomes small enough so that
the algorithm converges. We do not discuss simulated annealing any further
here and refer the interested reader to Chapter 20 for its use in simulation
optimization.
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Tabu search is another popular metaheuristics (Glover, 1989, 1990; Glover
and Laguna, 1997). As is the case for simulated annealing, it is a solution-
to-solution search method where the neighborhood is specified by the user.
However, the defining characteristic of tabu search is in how solutions are se-
lected from the neighborhood. In each step of the algorithm, there is a list Lk
of solutions that were recently visited and are therefore tabu. The algorithm
looks through all of the solutions of the neighborhood that are not tabu and
selects the best one, that is,

(2)θc = arg min
θ∈N(θk)∩�Lk

f (θ)�

where as before f :Θ → R is to be minimized. The candidate solution θc is
accepted even if it is worse than the current solution, that is, P[Accept θc] = 1.
Accepting inferior solutions allows the search to escape local optima, and the
tabu list prevents the search from immediately reverting to the previous solu-
tion. Tabu search for simulation optimization is discussed further in Section 5.
However, tabu search has many intricacies and variations that are not discussed
in this chapter, and we refer the interested reader to Glover and Laguna (1997)
for a more complete discussion of this method.

Other popular solution-to-solution metaheuristics include the greedy ran-
domized adaptive search procedure (GRASP) and the variable neighborhood
search (VNS). The defining property of GRASP is its multi-start approach that
initializes several local search procedures from different starting points. The
advantage of this is that the search becomes more global, but on the other
hand, each search cannot use what the other searches have learned, which
introduces some inefficiency. The VNS is interesting in that it uses an adap-
tive neighborhood structure, which changes based on the performance of the
solutions that are evaluated. More information on GRASP can be found in
Resende and Ribeiro (2003), and for an introduction to the VNS approach we
refer the reader to Hansen and Mladenovic (1999).

Several metaheuristics are set-based or population based, rather than
solution-to-solution. This includes genetic algorithms and other evolutionary
approaches, as well as scatter search and the nested partitions method. All
of these methods are readily adapted to simulation optimization, and both
genetic algorithms and the nested partitions method are discussed in detail
in later sections. All evolutionary algorithms are based on the idea of nat-
ural selection, where a population of solutions evolves, or improves, through
a series of genetic operators (Goldberg, 1989; Liepins and Hilliard, 1989;
Muhlenbein, 1997). This includes survival of the fittest or best solutions,
crossover, which is simply a combination of two fit solutions, and mutation,
which is a slight modification to fit solutions. From the perspective of the gen-
eral framework, these operators define the neighborhood of a solution set.
Thus, given a current set θk ⊆ Θ of solutions, the neighborhood is defined as

(3)N(θk) = Ncrossover(θk) ∪Nmutation(θk) ∪ θk�
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where

Ncrossover(θk)

= {ψ ∈ Θ | ψ is the crossover of two solutions ζ1� ζ2 ∈ θk}�
(4)Nmutation(θk) = {ψ ∈ Θ | ψ is a mutation of some ζ ∈ θk}�

For evolutionary methods, the key feature is therefore this innovative defin-
ition of a neighborhood, which allows the search to quickly and intelligently
traverse large parts of the solution space. The selection of candidates from the
neighborhood is either deterministic or random, which is discussed further in
Section 4. The selected candidates are then always accepted.

Scatter search is another metaheuristic related to the concept of evolution-
ary search. In each step a scatter search algorithm considers a set, θk ⊆ Θ, of
solutions called the reference set. Similar to the genetic algorithm approach,
these solutions are then combined into a new set θk+1 ⊆ Θ. However, as op-
posed to the genetic operators, in scatter search the solutions are combined
using linear combinations, which thus define the neighborhoodN(θk). For ref-
erences on scatter search, we refer the reader to Glover et al. (2003).

The final method that we mention in this section is the nested partitions
method (Shi and Ólafsson, 2000a), which like genetic algorithms and scatter
search is a set-based metaheuristic. Unlike any of the previous methods, how-
ever, the nested partitions method is global in that the neighborhood is always
the entire set of feasible solutions. Thus, given a current set θk ⊆ Θ of solu-
tions, the neighborhood is always N(θk) = Θ. In addition to the global per-
spective, the defining element of this method is the adaptive distribution that
is used to obtain sample solutions from this neighborhood. By going through a
sequence of set partitions, with each partition nested within the last, the sam-
pling is concentrated in sets that are considered promising, that is, where the
optimal solution is believed to be contained. Once the random candidate so-
lutions have been generated according to this adaptive distribution, they are
always accepted, and the search continues with a new sampling distribution.
The nested partitions method for simulation optimization is discussed in more
detail in Section 6.

Although the metaheuristics discussed in this section are usually consid-
ered separately in the literature, we have made the case that they do in fact
have many common elements that make it possible to analyze them within a
common framework. An interesting step in this direction is the generalized
hill-climbing (GHC) algorithm framework of Jacobson et al. (1998). The GHC
framework is general enough to cover various stochastic local search algo-
rithms, including both simulated annealing and tabu search. Analysis of the
GHC can be found in Johnson and Jacobson (2002) and Sullivan and Jacobson
(2001).



640 S. Ólafsson

3 Accounting for simulation noise

Metaheuristics have been found to be particularly effective for combinator-
ial optimization, and it is therefore natural to examine if they perform similarly
when applied to such problem in the stochastic or simulation optimization
context. In this section, we define the simulation optimization problem, ex-
amine what makes this problem uniquely different from the corresponding
deterministic problem, and discuss how metaheuristics need to account for the
simulation noise when solving such problems.

We define the general simulation optimization problem to be studied as fol-
lows. Given a finite feasible region Θ, and performance measure J :Θ → R,
the objective is to find the solution θ∗ ∈ Θ that minimizes the objective, that is,

(5)θ∗ = arg min
θ∈Θ

J(θ)�

In addition to the general difficulties association with combinatorial optimiza-
tion, we have the complexity that for any solution θ ∈ Θ, the performance J(θ)
cannot be evaluated analytically and must be estimated using simulation. The
performance is often an expectation of some random estimate of the perfor-
mance of a complex stochastic system given the parameter θ, that is,

(6)J(θ) = E
[
L(θ)

]
�

Here, L(θ) is random variable, which depends on the parameter θ ∈ Θ, which
we assume to be the sample performance from a simulation run.

Numerous metaheuristics, such as genetic algorithms, simulated annealing,
the nested partitions method, and tabu search, have been adapted for solving
the problem above. As mentioned above, metaheuristics, and in particular evo-
lutionary algorithms, certainly dominate simulation practice, and numerous
articles that discuss metaheuristics for simulation and stochastic optimization,
mostly application oriented, have appeared in the research literature. For same
examples of this line of research, see Azadivar and Wang (2000), Faccenda
and Tenga (1992), Haddock and Mittenhall (1992), Hall and Bowden (1997),
Tompkins and Azadivar (1995) and Watson et al. (2003).

Despite their definite success in practice, directly applying metaheuristics
that are designed for combinatorial optimization problems to simulation op-
timization may ignore some of the differences that exist from deterministic
environments. Metaheuristics are generally not designed to account for the
simulation noise, which as we discuss below may be critical. As discussed in
Section 2, these methods attempt to move from one solution to another better
solution, or one set of solutions to another set of solutions, and thus iteratively
improving the solution quality until the method terminates. However, when
simulation is used to estimate the performance, determining what constitutes
a better solution becomes an issue. Given two solutions θ1 and θ2, and sim-
ulation performance estimates Ĵ(θ1) and Ĵ(θ2), the fact that Ĵ(θ1) < Ĵ(θ2)
does not guarantee that J(θ1) < J(θ2). In particular, we now have to look at
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the statistical significance. In other words, the question is whether Ĵ(θ1) is sta-
tistically significantly smaller than Ĵ(θ2)? How this should be implemented in
a search algorithm is an issue that has received very little attention. It could
be argued that a solution should only be considered better, and hence the al-
gorithm should move to this solution, only if the improvement is statistically
significant at some level. However, it is also possible that a sequence of im-
provements that were not significant individually will become significant when
taken together (Kelly, 2002), and many metaheuristics are quite robust to cer-
tain level of randomness.

Accounting for the simulation noise is a theoretically challenging issue that
has real implications to simulation practice. However, this issue has received
somewhat limited attention in the research literature to date. Many of the rel-
evant research issues are application specific, but at least two general research
directions seem promising. In particular, ideas from both ordinal optimization
and statistical selection have been successfully applied to guide the search in
stochastic environments, and we believe more research is warranted in both
areas.

One approach to simulation optimization is to shift the focus from cardinal
to ordinal comparison (Ho et al., 2000). Making a decision to move from one
solution to another only requires comparison between the solutions, that is, if
we know that J(θ1) < J(θ2), then we know if the move should be made. Such
comparisons are the focus of ordinal optimization (Ho et al., 1992). It can be
shown that ordinal comparisons converge much faster than cardinal estimation
(Dai, 1996), which could be utilized to guide the search. These considerations
are relevant to any metaheuristic as they all move based on comparisons be-
tween solutions.

An alternative approach is to incorporate statistical selection methods into
the search. For the nested partitions method, Ólafsson (2004) proposes us-
ing statistical selection to guide the movement of the search. In particular, for
every step of the algorithm, a statistical selection procedure is used to deter-
mine the required amount of samples from each region so that the correct
region is selected within an indifference zone with a given minimum probabil-
ity. In related work, Shi and Chen (2000) use statistical selection to determine
the simulation effort for each sample solution used by the nested partitions
method. Various statistical selection methods have been studied extensively in
simulation (see Chapter 17), and it should be possible to take advantage of
these methods in a similar fashion for other metaheuristics.

Another issue in accounting for the simulation noise is how to recover from
the incorrect moves that will inevitably be made due to this noise. Tabu search,
for example, uses the tabu list to disallow moves to previously visited solutions.
This feature enables it to escape local optima and is intuitively appealing in the
deterministic context, when we know with certainty the quality of those previ-
ously visited solutions, as well as those solutions that are in the neighborhood
of the previously visited solutions. However, in the simulation optimization
context it is possible, and even likely, that an incorrect move was selected due
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to the simulation noise, which may make it worthwhile to revisit a solution for a
reason that does not exist in the deterministic context. How this can be solved,
while retaining the appealing property of the tabu list, is an issue that needs to
be addressed.

In genetic algorithms, a solution is selected for survival or crossover due
to its fitness. Fit solutions will reoccur either unchanged or as part of their
offspring, whereas unfit solutions will not survive. However, in the simulation
context, the fitness of these solutions is subject to the same simulation noise
and thus good solutions may be judged unfit prematurely. The question now
arises of how to account for the simulation noise. One approach might be to
account for the simulation noise in every generation by making sure that the
selection for survival or crossover is done at a statistically significant level, or
by employing statistical screening procedures to select a subset of solutions
for survival or crossover. However, genetic algorithms seem quite robust to
inaccuracies in the performance estimates as it is actually preferable to have
some randomness in the selection of solutions, and further research is certainly
warranted to resolve these issues.

The nested partitions method includes a built-in mechanism for recovering
from incorrect moves. In every step, the neighborhood of the current solution
is the whole solution space, so any solution has a positive probability of being
selected to be evaluation. This includes the surrounding region, that is, those
solutions that are not in the set currently considered most promising. If the
best solution is found in the surrounding region, the algorithm backtracks to
an earlier (larger) set of solutions. This can be viewed as an automated mecha-
nism to recover from an incorrect move made either due to the use of random
samples to guide the search, or due to the simulation noise. These global search
and backtracking mechanisms of the nested partitions method can therefore be
used as a global guidance system to local improvement methods in simulation
optimization (Pichitlamken and Nelson, 2003). In the context of combinator-
ial optimization, other efficient metaheuristics such as genetic algorithms (Shi
et al., 1999) and tabu search (Shi and Men, 2003) have been incorporated into
the nested partitions method. These methods are used to speed the evaluation
of each region, but the nested partitions guide the overall search. In terms of
computational efficiency, this approach has been found to perform favorably
when compared to the direct use of either genetic algorithms or tabu search
for many applications, and in the simulation optimization context, it has the
added benefit of allowing the search to recover from mistakes made due to the
simulation noise. Such promising results from combinatorial optimization ap-
plications also motivate further investigation of such global guidance systems
for metaheuristics in simulation optimization.

Finally, an overarching issue in accounting for simulation noise for any
metaheuristic is the question of how the inevitably very limited computational
effort should be spent. That is, given a fixed computing-budget, there is a trade-
off between obtaining high quality estimates of each solution, and allowing the
search to traverse the solution space quickly and exploring more solutions. At
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least some partial resolution to this issue is the goal of much ongoing research
in this area, and has implications in the design, implementation, and analysis
of the algorithms.

4 Genetic algorithm

This section looks closer at one of the popular metaheuristics for simulation
optimization, namely genetic algorithms. As an approach to global optimiza-
tion, genetic algorithms (GA) have been found to be applicable to optimiza-
tion problems that are intractable for exact solutions by conventional methods
(Holland, 1975; Goldberg, 1989). It is a set-based search algorithm, where
at each iteration it simultaneously generates a number of solutions. In each
iteration, a subset of the current set of solutions is selected based on their per-
formance and these solutions are combined into new solutions. The operators
used to create the new solutions are survival, where a solution is carried to the
next iteration without change, crossover, where the properties of two solutions
are combined into one, and mutation, where a solution is modified slightly. The
same process is then repeated with the new set of solutions. The crossover and
mutation operators depend on the representation of the solution, but not on
the evaluation of its performance. They are thus the same even though the per-
formance is estimated using simulation. The selection of solutions, however,
does depend on the performance. The general principle is that high perform-
ing solutions (which in genetic algorithms are referred to as fit individuals)
should have a better chance of both surviving and being allowed to create new
solutions through crossover. The simplest approach is to order the solutions
J(θ[1]) � J(θ[2]) � · · · � J(θ[n]), and only operate on the best solutions. If a
strict selection of say, the top k solutions, were required, this would complicate
the issue significantly in the simulation optimization context, and considerable
simulation effort would have to be spent to obtain an accurate ordering of the
solutions.

Fortunately, genetic algorithms appear to be quite robust with respect to
which solutions are selected to create the next set. Indeed, a purely deter-
ministic selection of the top k solution is typically not the best approach for
deterministic problems, and some randomness is usually introduced into the
process. A popular example of this is the roulette strategy, which several au-
thors have used for the application of genetic algorithms to stochastic problems
(see, e.g., Dasgupta and Mcgregor, 1992; Grefenstette, 1992; Ishibuchi and
Murata, 1996; Vavak and Fogarty, 1996; Yoshitomi and Yamaguchi, 2003). In
the roulette strategy the probability of selecting a solution θ is calculated as
follows,

(7)P(θ) = f̂ (θ)∑
Allθ f̂ (θ)
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Here f̂ (θ) is an estimate of the fitness function f :Θ → R that measures the
quality of the solution and is to be maximized (higher value implies more fit).
Thus, every solution has a positive probability of being selected, but the fitter
solutions are selected with higher probability. Assuming an unbiased simula-
tion estimate, this statement will continue to be true when the roulette strategy
is applied to simulation optimization. However, existing studies in this area
are based almost exclusively on numerical evaluations and the claim is simply
made that genetic algorithms are robust and hence applicable to simulation op-
timization. While the robustness of genetic algorithms with respect to noise in
the selection method is unquestionable, it would be desirable to have research
that provides a better understanding into how much noise is acceptable, and
thus how much simulation effort should be devoted to the evaluation of solu-
tions during the search.

In another study, Boesel et al. (2003a) use genetic algorithm together with
statistical selection method to develop a system for simulation optimization.
Their approach consists of three phases. First, there is an initialization phase,
where the parameters of the algorithms are specified. Second, there is the ac-
tual search phase, that is, the usual iteration of the genetic algorithm selection,
crossover, and mutation operators. Finally, then the search terminates there
is a solutions phase where the alternatives generated by the GA search are
evaluated using ranking and selection. In particular, they use a screening and
selection procedure to first quickly filter out inferior solutions and then de-
termine the best solution by carrying out additional simulation runs for the
remaining solutions. They also consider how best to implement the solution
selection procedure in a noisy environment. Their design choice is to use what
is called anti-ranks and a q-tournament selection (Back, 1996), which also ap-
pears to be quite robust with regards to the simulation noise.

Genetic algorithms and other evolutionary approaches appear to be readily
adaptable to simulation optimization. As discussed in this section, the primary
reason is that only the selection of solutions for survival, crossover, and muta-
tion depends on the performance estimates, and a certain amount of noise is
desirable in this process even for deterministic optimization. Thus, it is possi-
ble to envision that certain amount of simulation noise might even assist the
search. However, most results that point in that direction are based on numer-
ical evidence and we encourage further research in this area that focuses on
how to best select solutions in the presence of noise.

5 Tabu search

Tabu search was introduced by Glover (1989, 1990) to solve combinatorial
optimization problems and it has been used effectively for simulation optimiza-
tion, most notably by the OptQuest simulation optimization software (April
et al., 2003). It is a solution-to-solution method and the main idea is to make
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certain moves or solutions tabu, that is they cannot be visited as long as they
are on what is called the tabu list. The tabu list Lk is dynamic and after each
move, the latest solution θk, or the move that resulted in this solution, is added
to the list and the oldest solution or move is removed from the list. Another
defining characteristic of tabu search is that the search always selects the best
nontabu solution from the neighborhood, even if it is worse than the current
solution. This allows the search to escape local optima, and the tabu list en-
sures that the search does not revert back. Tabu search has numerous other
elements, such as long-term memory that restarts the search with a new tabu
list at previously found high quality solutions, and a comprehensive treatment
of this methodology can be found in Glover and Laguna (1997).

Several aspects of tabu search are affected by the noisy estimates of simula-
tion optimization. First, the simulation noise is relevant to one of the two main
components of this approach, namely that in every step the best nontabu solu-
tion is selected from the neighborhood N(θk) of the current solution θk, that
is, θk+1 = arg minθ∈N(θk)∩�Lk Ĵ(θ) where �Lk denotes the compliment of Lk,
or the nontabu solutions. The issue thus arises of how accurately this selection
should be made, that is, is it worthwhile to spend considerable simulation effort
on each solution in N(θk)∩�Lk to make the correct selection with a high prob-
ability, or is this simulation effort better spent by making a quick selection and
exploring more of the search space. Note that unlike genetic algorithms that
select a set of solutions and randomness is beneficial even in the determinis-
tic context, here it is desirable to select the single best solution. The answer
to how accurate this selection needs to be is not clear and deserves further
investigation.

The simulation noise is also relevant to the other main component of tabu
search, namely the tabu list itself. In the deterministic context, the best solution
is selected from a neighborhood N(θk) and thus if the search visits a solution
θk again, the same solution will be selected from the neighborhood (assum-
ing it is not tabu in either visit). This would imply a cycle, which is avoided
by the use of the tabu list. However, in the presence of simulation noise, each
time a solution is visited, a different neighborhood solution may be selected,
even if the tabu list is identical. Also, if the incorrect solution is selected from
the neighborhood N(θk), that is, another nontabu solution ξ ∈ N(θk) ∩ �Lk
satisfies J(ξ) < J(θk+1), then it may be desirable to revisit θk to correct the
mistake. Thus, for simulation optimization, the tabu list loses some of the ap-
peal it has for deterministic optimization. In particular, cycles can be broken
without it due to the simulation noise, and allowing the algorithm to revert
back to an old solution enables the search to correct mistakes made due to
the simulation noise. On the other hand, as noted earlier, tabu search has be
effectively applied for simulation optimization, so it is certainly worthwhile to
investigate how its performance is affected by the simulation noise and what
implications this has in terms of its ideal implementation.
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6 The nested partition method

Introduced by Shi and Ólafsson (2000a), the nested partition (NP) method
is another metaheuristic for combinatorial optimization that is readily adapted
to simulation optimization problems (Shi and Ólafsson, 2000b). The key idea
behind this method lies in systematically partitioning the feasible region into
subregions, evaluating the potential of each region, and then focusing the com-
putational effort to the most promising region. This process is carried out
iteratively with each partition nested within the last. The computational effec-
tiveness of the NP method relies heavily on the partitioning, which, if carried
out in a manner such that good solutions are clustered together, can reach a
near optimal solution very quickly.

In the kth iteration of the NP algorithm, a region σ(k) ⊆ Θ is considered
most promising. What this means is that the algorithm believes that this is the
most likely part of the solution space to contain the optimal solution, and thus
the computation effort should be concentrated in this region. As in the begin-
ning nothing is known about the location of the optimal solution, the algorithm
is initialized with σ(0) = Θ. The most promising region is then partitioned into
M subsets or subregions and the entire surrounding region Θ\σ(k) is aggre-
gated into one. Thus, in each iteration M + 1 disjoint subsets that cover the
entire feasible region are considered. Each of these M + 1 regions is sampled
using some random sampling scheme to obtain sets of solutions, and the sim-
ulated performance function values at randomly selected points are used to
estimate the promising index for each region. This index determines the most
promising region in the next iteration by taking the subregion scoring highest
on the promising index. If the surrounding region rather than the subregion is
found to have the highest promising index, the method backtracks to a previ-
ous solution corresponding to a larger region. The new most promising region
is partitioned and sampled in a similar fashion. This generates a sequence of
set partitions, with each partition nested within the last.

The effect of the simulation noise comes into play in the NP method in
the selection of a region as the most promising region. If the performance
estimates for each sample solution are noisy, the next most promising region
is selected with less confidence. However, this is already a noisy selection even
for deterministic problem since there are two sources of randomness:

• There is a sampling error due to a small sample of solutions being used
to estimate the overall promise of what is often a large set of solutions
(region).

• For each of the sample solutions, the performance is estimated using
simulation, and is hence noisy.

The nested partitions method is therefore a set-based method that has an
inherent noise in the selection of move, which as for genetic algorithms, ap-
pears to make it relatively insensitive to the simulation noise. Furthermore, as
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mentioned in Section 3, the nested partitions method includes a built-in mech-
anism for recovering from incorrect moves. Sometimes the simulation noise
may cause the algorithm to move to the wrong subregion. However, as the
search progresses the surrounding region continues to be sampled, which al-
lows the algorithm to recover from incorrect moves through backtracking.

Regardless of the robustness of the method with regard to simulation noise,
it is desirable to be able to control this noise. Ólafsson (2004) addresses this in
a variant of the nested partitions method that uses statistical selection to guide
the search. In this variant, the sampling of each region has two phases. First,
a small sample is obtained from each region to get an initial idea of the perfor-
mance variance within each region, and possibly screen out very poor regions.
Then, based on these initial samples, a second set of samples is obtained from
all viable regions to ensure that the correct selection of a region is made within
an indifference zone with a pre-specified minimum probability. This can thus
be thought of as a mechanism to control the noise in the performance estimates
of each region, which guides the search. However, this only controls the overall
noise and simply prescribes additional samples from each region. Some of the
previously sampled solutions could be sampled again, which would improve
the estimate of that solution’s performance, or it could be completely different
solutions. Thus, this method does not prescribe how much effort should be de-
voted to estimating the performance of each solution and how much should be
devoted to obtaining more samples solutions. Investigating this balance is an
important future research topic.

7 Making convergence statements

Research in simulation optimization has largely focused on algorithms
where rigorous convergence statements can be made. However, such analy-
sis has frequently been under either severely restrictive assumptions, or the
design of the algorithm sacrifices efficiency for theoretically appealing proper-
ties. This has contributed to an unfortunate perception of a trade-off between
rigor and practicality.

Much of this work in this area has focused on some type of asymptotic con-
vergence. For example, many stochastic optimization procedures can be shown
to converge to the optimal solution θ∗ almost surely or with probability one
(w.p.1), that is,

(8)θ̂∗k
k→∞−→ θ∗� w.p.1�

Here, θ̂∗k denotes the best solution found by the kth iteration, that is, the
current estimate of the optimal solution. Other algorithms may converge in
probability or in distribution. The drawback to any asymptotic analysis is that
having such convergence results may be of limited practical value. It is of
course somewhat reassuring to have asymptotic convergence, but since little
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can be inferred about what happens when the optimizer inevitably terminates
in finite time, its value to a practitioner is often hard to argue.

Although most research on metaheuristics in the deterministic domain has
focused on implementation and computational issues, the research has also
resulted in numerous convergence proofs of these algorithms. For example, ge-
netic algorithms have been investigated to determine how many iterations are
needed before the optimal solution θ∗ has been seen with a given probability,
that is, the best solution found so far, θ̂∗k, is equal to the optimum. In partic-
ular, Liepins (1992) shows that a genetic algorithm generates a homogeneous
Markov chain, and uses this to analyze the number of iterations k = t(1 − α)
needed so that

(9)P
[
θ̂∗t(1−α) = θ∗

]
� 1 − α�

Aytug et al. (1996) develop a bound on the number t(1 − α) of iterations
required by the genetic algorithm for deterministic optimization. Greenhalgh
and Marshall (2000) further refine this bound and show that

t(1 − α)

(10)�
⌈

ln(α)
n ln(1 − min{(1 − μ)γ−1(μ/(K − 1))� (μ/(K − 1))γ})

⌉
�

where μ > 0 is the mutation probability, and each solution is represented as
a point in the space {0� 1� 2� � � � �K − 1}γ, which means K is the string length,
for example,K = 2 corresponds to the traditional binary string representation.
Reynolds and Gomatam (1996) also analyze genetic algorithms for determin-
istic optimization using a Markov chain analysis, and prove convergence of
certain variations.

Note that (9) does not guarantee the quality of the estimate θ̂∗t(1−α) of the
best solution, just that it is equal to the best solution with a minimum probabil-
ity. In other words, it does not make a direct statement about the performance
difference |J(θ̂∗t(1−α))− J(θ∗)|, even in expectation or probability. This shift
away from cardinal comparison is related to the concept of ordinal optimiza-
tion where the analysis is solely based on ordinal comparisons (Ho et al.,
1992, 2000). In this approach, the objective is relaxed from finding the opti-
mal solution to finding a subset ΘG ⊂ Θ of ‘good enough’ solutions (called
goal softening). In the kth step, there is a set of selected solutions θ̂∗k ⊂ Θ,
and the key convergence statements are made about the alignment probability
P[|ΘG ∩ θ̂∗k| � y] between those two sets. For example, if θ̂∗k is a set of g = |ΘG|
uniformly sampled solutions, then the alignment probability is (Ho et al., 1992)

(11)P
[∣∣ΘG ∩ θ̂∗k

∣∣ � y
] =

g∑
i=y

(
g
i

)(
N − g
g − i

)/(
N
g

)
�
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where N = |Θ|. We note that (9) is a special case of the alignment probability
with ΘG = {θ∗}, y = 1, and k = t(1 − α).

Significant research has also been devoted to the convergence of tabu search
in the deterministic context. In an early work, by introducing the Metropo-
lis criterion and annealing process of simulated annealing into the general
framework of tabu search, Tian et al. (1997) proposed a stochastic tabu search
strategy for discrete optimization. This algorithm is provably asymptotically
convergent to a global optimal. Later, Hanafi (2000) proved convergence using
the observation that if the neighborhood employed is strongly connected there
will be a reversible path from each solution to the every other one, which is a
conjecture originally stated by Glover (1990). Glover and Hanafi (2002) pro-
vided more efficient forms of convergent tabu search, offering specific bounds,
and establishing the finite convergence of tabu search for deterministic combi-
natorial optimization.

Shi and Ólafsson (2000a) showed that in the case of combinatorial optimiza-
tion problems, the nested partition method converges with probability one to
a global optimum in finite time. In their analysis, they showed that the NP
algorithm generates an absorbing Markov chain and that any absorbing state
corresponds to a global optimum. Thus, the algorithm may spend a certain
random number of iterations in the transient states, but since the number of
states is finite, it will visit an absorbing state, and hence converge, in time T ,
which is finite with probability one, that is, P[θ̂∗T = θ∗] = 1 for a random stop-
ping time T , with P[T <∞] = 1. They also use the Markov chain analysis to
provide bounds on E[T ], the expected number of iterations required for con-
vergence.

With only a few exceptions, both asymptotic and finite-time convergences
results of metaheuristics have been done for deterministic problems only.
However, notable exceptions are simulated annealing and the use of global
guidance systems, and in particular the nested partitions method. The simu-
lated annealing algorithm is discussed in Chapter 20 and we do not explore it
further here. With regards to the nested partitions method, Shi and Ólafsson
(2000b) prove the asymptotic convergence of NP algorithm for stochastic prob-
lems. They show that the NP algorithm generates an ergodic Markov chain,
and used this to develop conditions under which the NP method converges to
an optimal solution with probability one, that is, under which the algorithm sat-
isfies (8). The key to the proof is to show that the estimate of the best solution,
which is the singleton region visited the most often, converges with probabil-
ity one to a maximizer of the stationary distribution of the chain. Under some
mild condition, this maximum corresponds to the global optimum, and it fol-
lows that for simulation optimization the NP method converges asymptotically
to an optimal solution. Pichitlamken and Nelson (2003) also employ the NP
method as a global guidance system. In their approach, they combine NP with
statistical selection of the best, which is used to control the selection error, and
local improvement heuristics, which is used to speed the search. The result is
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an algorithm that is both provably convergent and exhibits good performance
in practice.

Despite the reassurance of asymptotic convergence, for the practitioner it
would be more useful to be able to make a convergence statement once the
optimizer terminates. Ideally, one would like to be able to make a statement
about how close in performance our estimate θ̂∗k of the optimal solution is to
the true optimal solution θ∗, that is,

(12)
∣∣J(θ̂∗k

)− J
(
θ∗
)∣∣ � ε�

where ε is an error that is either pre-specified or calculated after the algorithm
terminates after the kth iteration. This is an unreasonably strong statement
to hope for in simulation optimization. On the other hand, relaxed versions
of such statements are common in the simulation literature when ranking and
selection algorithms are used (see Chapter 17). In particular, relaxing the state-
ment (12) to being with an indifference zone ε > 0 of the optimal performance
with a given minimum probability 1 − α, that is,

(13)P
[∣∣J(θ̂∗k

)− J
(
θ∗
)∣∣ � ε

]
� 1 − α�

makes it a more reasonable goal for simulation optimization. Such conver-
gence statements are commonly made for statistical selection, but those are
only applicable when the number of alternatives is small.

Utilizing the idea of relaxing the convergence to obtaining a solution that
has performance within an indifference zone of the optimum with a minimum
probability, Ólafsson (2004) analyzed the finite time behavior of a variant of
the nested partitions method called the two-stage nested partitions (TSNP).
This variant uses a statistical selection method in each step to guide the amount
of computational effort of the algorithm. They show that (13) is satisfied when
the algorithm terminates at a random time k = T , given that statistical se-
lection methods are used to ensure that the correct selection is made in each
step within the same indifference zone ε and with a given probability P(CS).
This probability can be calculated based on the final probability 1− α, and the
depth d of the partitioning tree, that is,

(14)P(CS) = (1 − α)d

αd + (1 − α)d
�

The depth d is the number of partitions needed until the regions become sin-
gletons. This number is proportional to log(|Θ|), and is therefore monotone
increasing, albeit slowly, in the problem size. Ólafsson (2004) also provides
simple bounds on the expected number of steps until termination, namely

(15)E[T ] � d

2P(CS)− 1
�
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We finally note that by selecting the indifference zone small enough, that is, if
θ∗ is unique and

(16)ε <
∣∣∣ min
θ∈Θ\{θ∗}

J(θ)− J
(
θ∗
)∣∣∣

then (13) reduces to (9). This illustrates that these approaches are related, al-
though for the NP for simulation optimization, the time is necessarily random
and thus the bounds (15) are in terms of expectation whereas (10) is deter-
ministic, and (13) is more general than (9) in that it provides a performance
statement for the final solution when it is not the optimal solution.

Even though they are the most popular metaheuristics for simulation opti-
mization in practice (April et al., 2003), there has been very little work done
regarding the convergence of genetic algorithms when it comes to its appli-
cation to stochastic problems. Thus, more work is needed to analyze both
asymptotic convergence and finite time convergence properties. An interest-
ing analysis of the output of genetic algorithm is the work done by Boesel
et al. (2003b), which builds on the work by Boesel et al. (2003a) described in
Section 4. As mentioned before, in order to apply deterministic genetic algo-
rithms in stochastic setting, the authors combined the search with both multiple
comparison procedure and ranking and selection procedures. Thus, in this ap-
proach the search is separated from the solution selection. Genetic algorithm is
first used to generate a set of solutions, and these solutions are then further an-
alyzed to select the one that is truly the best. This does not prove convergence,
or even make a statement regarding the quality of the final solution relative
to the optimal solution, but it does rigorously analyze the output generated
by the genetic algorithm and accounts for the simulation noise. This analysis
does, however, seem to naturally complement the analysis of Liepins (1992),
Aytug et al. (1996) and Greenhalgh and Marshall (2000) and Equation (10) in
particular, which could to be extended to the simulation optimization setting
by accounting for the simulation noise.

Most convergence analysis for simulation optimization algorithms appears
to be based on the algorithm generating a homogeneous Markov chain. This
is in particular true for the various variants of the nested partitions method
(Shi and Ólafsson, 2000b; Ólafsson, 2004), and allows for eloquent analysis
of the method. However, the disadvantage is that to guarantee time homo-
geneity, independence must be enforced between iterations, and independent
simulation runs must be made for solutions, even if they have been previ-
ously estimated. Due to the computational expense of simulation runs, this
is inefficient (Kim and Ólafsson, 2002). On the other hand, this property may
sometimes be helpful when the variance of the estimates is high and previ-
ous biased estimates have caused the algorithm to make an incorrect move. In
such cases, obtaining new estimates in every step may help the algorithm to
recover from wrong moves as discussed in Section 3. However, we believe fur-
ther research is needed to extend existing convergence results to allow reuse
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of simulation runs, and to determine the proper balance that also enables the
algorithm to recover from incorrect moves.

8 Future directions

Due to their prevalence and effectiveness in simulation practice, we believe
that metaheuristics will continue to be an important part of simulation method-
ology in the future, which also makes this an important area of research. Such
research should focus on the simulation aspects of the problem, that is, mak-
ing the simulation a driver rather than being secondary to the optimization
routine. However, as this research is carried out, it is important to take into ac-
count the concerns of practitioners, where computational efficiency is the key
issue. Thus, effectiveness should never be sacrificed at the expense of theoret-
ical insights.

In this chapter, we have outlined two areas that we believe to be of par-
ticular importance, accounting for simulation noise in guiding the search and
deriving convergence results. We start with the first issue of accounting for the
simulation noise in the design of the metaheuristics. Too often, metaheuris-
tics that are designed for deterministic, most often combinatorial, optimization
problems are simply applied to a simulation problem with only minimal con-
sideration into the effects of the simulation noise. As outlined in Section 3,
two of the concerns include determining if a new (candidate) solution is really
better and should be selected, and recovering from incorrect moves made due
to the noisy performance estimates. Fortunately, several areas of research ap-
pear to be promising. Ideas from ordinal optimization and statistical selection
can be incorporated to help determine if a move should be made, which ad-
dresses the first issue. Second, the local search can be embedded into a global
guidance system, such as the nested partitions method, that allows the search
to recover from incorrect moves. Such combination of metaheuristics has been
found effective in combinatorial optimization, and we believe that such careful
consideration of the simulation noise will improve the computational perfor-
mance of the metaheuristics, and hence have great practical value.

The second main area of research discussed in this chapter is providing con-
vergence results, which we explored in Section 7. We do believe that the ability
to make such convergence statements is of value, but also think that the focus
should be shifted away from the traditional asymptotic convergence results to
finite time behavior and goal softening. For example, rather than proving as-
ymptotic convergence to a global optimum, it would be of more practical value
to show that a solution has been obtained that is within an indifference zone of
the optimal performance with a pre-specified minimum probability. This ter-
minology stems from ranking and selection, which can be used to guide search
methods in simulation optimization. As noted in Section 7, this idea is also
related to the goal softening of ordinal optimization. Further research along
those directions would both make existing use of metaheuristics more rigorous
and may lead to insights that would improve the algorithm performance.
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178, 179
in-tree network 330
inverse cumulative hazard function technique

167–170
inverse function metamodel 570
inverse marginal transformations 141
inversion 75, 83, 84, 88–90, 92, 95, 98, 100, 103,

113, 114, 131, 146, 162, 163, 166, 167,
170, 186, 255, 342, 356, 362, 423, 424

inversion method 83, 84, 88, 90, 113, 170, 356

J

Jackson network 317, 322, 328–330, 348, 349,
607

Jeffreys’ prior distribution 230, 255
Johnson translation system 134, 135
Johnson variates 136
joint input–output model 240, 244
jump-ahead method 57, 67, 70

K

Kendall’s τ 139, 140
kernel 27, 53, 102, 126, 132, 133, 150, 153,

194, 195, 212–218, 220, 221, 223, 236–
238, 253, 256, 402, 422

– bandwidth 133, 214–216
– estimator 27, 126, 132, 133, 194, 195, 212–

214, 216, 217, 220, 221, 223, 236–238,
253, 256, 422

– functions 212, 216
– roughness 213
– smoothing parameter 212
– variable estimator 214
kernel density estimation 132, 133, 150
Kiefer–Wolfowitz algorithm 579–581, 610
Kimball’s inequality 511
Kimball’s theorem 510
knots 541
Koksma–Hlawka inequality 354, 359
Kolmogorov measure 83
Kolmogorov’s canonical representation 106
Kolmogorov–Smirnov
– distribution 104, 118
– limit distribution 94, 118
Korobov formulation 357
Korobov lattice rules 59, 353, 364, 365
Korobov point set 357, 358, 366, 369
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Korobov rules 353, 366
Krein’s condition 102
kriging 243, 256, 541, 572, 574; see also spatial

correlation
Kullback–Leibler distance 319, 320
Kullback–Leibler divergence 240, 245, 252
Kummer’s distribution 97

L

lagged–Fibonacci generator 63, 64, 68
landscape structure 625
Laplace density 91
large deviations theory 309, 329, 624
large-sample properties 19
large-sample theory 222, 388, 392, 533
Latin hypercube sampling (LHS) 259, 260,

268, 281, 283, 285, 286, 288, 289
Latin hypercube 286, 542, 543, 548
lattice
– dual 62, 64, 71, 72, 372, 373
– integration 79, 364, 365, 377
– property 62
– random variable 308, 431
– rule 59, 61, 64, 80, 353, 364–366, 371, 373,

377–379
– structure 56, 61–63, 66, 71, 72, 78, 79
law of large numbers (LLN) 20, 22, 39, 196,

202, 294, 296, 310, 387, 431, 479, 500,
546, 588, 622

LCG – see linear congruential generator
least-favorable configuration (LFC) 505
leave-one-out method 564, 567
Lebesgue density theorem 109
Legendre polynomial 103
Letac’s lower bound 111
Lévy measure 106
Lévy processes 107, 120
lifetime generation 171, 172
likelihood function 160, 164, 225, 230, 244,

256, 542
– ratio (LR) 53, 236, 292, 294, 295, 297, 299–

301, 306, 307, 309, 311, 313–315, 319,
321, 326, 329, 333, 338, 339, 343, 349,
496, 497, 500, 537, 575, 584, 586, 611,
614, 615

limit distribution 94, 106, 109, 118
limit law method 109
Lindley’s equation 356, 586
linear congruential generator (LCG) 79, 80,

177, 357
linear feedback shift register (LFSR) 59, 72
linear recurrence 55, 56, 60, 67, 69, 74, 77, 80,

81

linear recurrences modulom 60, 61, 64, 65, 67,
75

linear recurrences with carry 67
linear-type generator 55
Linnik distribution 87, 119
Linnik–Laha distribution 101
Lin’s condition 102
Lipschitz condition 374
Lipschitz densities 99
Little’s law 198, 401
LLN – see law of large numbers
local metamodel 546–549, 552, 557, 558, 563,

569
location parameter 134, 135, 524, 532, 589
logistic distribution 97, 589
longest route problem 14–16
look-ahead density estimators 25, 27, 29
loss function 228, 233–235, 247, 248, 252, 338,

342
low-discrepancy point set 353
Lp limit properties 202
�p-norm 233
Lyapunov condition 20, 36, 37, 39, 47, 49
Lyapunov function 20, 21, 46, 48, 50

M

majorization technique 170
majorizing function 120, 167
majorizing hazard function 170
majorizing value 167
Malliavin calculus 609, 612, 613
MAP – see maximum a posteriori probability
Markov additive process 313, 317, 323, 325
Markov chain central limit theorem (MCCLT)

42
Markov chain strong law of large numbers

(MCSLLN) 20, 22, 39
Markov chain
– continuous time (CTMC) 305, 394, 493
– discrete time (DTMC) 36, 305, 394, 490–492,

494, 530
– general state space 20, 36
– mixing time 115
– Monte Carlo (MCMC) 237, 255, 256, 446
– stationary distribution 41, 114, 115, 238, 244,

399, 404, 494, 649
Markov decision process 316, 347, 610, 613
Markov process 20, 36, 204, 209, 216, 293, 302,

303, 316, 381, 384, 485, 487–491, 493,
494, 497, 614

Markov-additive process 313
martingale 53, 287–289, 478, 493, 494, 496, 497
– semi- 328
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matrix linear recurrence 69
maximally equidistributed 71, 74, 75, 79
maximally equidistributed combined LFSR

generator 79
maximally equidistributed combined TGFSR

generator 74
maximum a posteriori probability (MAP) 232
maximum entropy methods
– diffuse 231
maximum likelihood (ML) 160, 163, 210, 226,

420, 438, 539, 541, 551, 558
– estimator 160, 161, 163, 420, 539, 542, 558
– function 160, 163
Maxwell distribution 597
MCMC – see Markov chain Monte Carlo
mean squared error (MSE) 16, 132, 133, 195,

218, 262, 263, 386, 387, 390, 462, 473, 475
measures of equidistribution 70
measure-valued differentiation 584, 624
median deviation concordance 139
Mersenne twister 70, 73, 74, 77, 80, 81
metaheuristics 536, 537, 633–643, 646, 648,

649, 651–654
metamodel 17, 241, 437, 535–574
– Bayesian 241–245
– kriging 243, 256, 541, 572, 574
– linear 438, 440
– nonlinear 440
metamodel-based optimization 537, 538, 545–

549, 563, 564, 569, 570
method-of-moments approach 240
Metropolis random walk 112
Metropolis–Hastings chain 109, 111, 112
minimum information copula 146
Mittag–Leffler distribution 87
mixed Poisson process 159
mixing hypotheses 21
mixture method 89, 148
MLE – see maximum likelihood
modeling error 11, 13, 14
moment condition 34, 50, 434, 435
moment function 199
– autocovariance 199, 200, 405, 409
– mean 199
moment generating function 38, 83, 103, 309,

331, 340, 343
monotonic-transformation-invariant measures

of dependence 139
Monte Carlo 15
– adaptive 316, 318, 347
– conditional 25, 29, 34, 41, 53, 259, 260, 266,

273, 274, 286, 364, 607
– Markov chain 179, 237, 255, 256, 446, 452

– quasi 58, 59, 78, 80, 81, 118, 288, 351, 352,
354, 376–379, 582

– randomized quasi 80, 354, 376, 377
– weighted 260, 269, 275, 285, 286, 288
Morris design 553
multinomial selection 501, 527–529, 533, 534
multiple comparison procedures (MCP) 502,

519, 523, 532, 533
multiple comparisons with the best (MCB)

507
multiple recursive matrix generator 60, 61, 80
multiple recursive matrix method 70, 80
multiplicative Poisson equation 317, 323, 324
multiply-with-carry (MWC) 67, 78, 79
multiquadric basis functions 543
multistage procedures 514
multistart gradient-based optimizer 568
multivariate input processes 123, 126, 181
multivariate time series 124, 125, 138, 140, 142,

150

N

naïve resampling 133
naïve simulation 294–298, 330
negative binomial distribution 596
neighborhood structure 620, 626–628, 638
nested partitions method 633, 635–642, 646,

647, 649–652, 654
– backtracking 642
– global guidance system 642, 649
NETLIB 656, 573
network completion time 21
neural network metamodel 543
Newton–Raphson scheme 578
No-free-lunch theorem 625
nonhomogeneous Poisson process (NHPP)

119, 158, 159, 161, 166, 168, 170, 178, 179
nonlinear generator 55
nonoverlapping batch means 457
nonoverlapping batches 459, 463, 468, 469, 474
nonparametric approximation method 149
nonparametric estimations 126, 178, 179, 191,

222, 223
nonparametric functional estimation 27, 53
nonparametric method 211
nonstationary Poisson process 180, 186
nonstationary processes 6
nonuniform random variate generation 83, 94,

95, 119
normal copula model 338
normal distribution 106, 117, 125, 133, 134,

139, 152, 153, 162, 163, 196, 220, 231–
234, 240, 241, 249, 308, 337, 338, 345,
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350, 363, 377, 405, 408, 427, 431, 437,
446, 504, 505, 510, 524, 582, 589

– standard 162, 163, 196, 427, 431, 524
normal-to-anything (NORTA) distribution

142, 143, 151, 179

O

optimal computing budget allocation 236, 245,
249, 255

optimal stopping problem 609
optimization via simulation 17, 502, 534, 572,

613, 631, 654
OptQuest® 545, 634, 635, 644
Ornstein–Uhlenbeck 404
orthant probability 139, 140
orthogonal array 542, 548
orthogonal array-based Latin hypercube 542,

548
– output function 541
overdispersed processes 158
overlapping area estimator 470, 471
overlapping batch means 457, 469
overlapping batches 459, 463, 467–471, 475
overlapping CvM estimator 468, 471–473

P

paired t method 187, 188
parallel and distributed simulation 3, 18
parametric bootstrap 420, 421, 446
Pareto 85, 97, 222, 332–335
Pareto distribution 595
Pareto-type tails 332, 334
Pearson correlation 138
Pearson-type distribution 134
– type IV 97
percentile 213, 244, 256, 422, 428, 455; see also

quantiles
perfect sampling 106, 115, 118, 121; see also

coupling from the past
period length 56, 57, 60, 65, 66, 68–70, 73–75,

77
PeRK 542, 573
Perks’ distribution 97
Perron–Frobenius eigenvector 324, 325
Person-in-the-loop simulations 3
perturbation analysis (PA) 53, 575, 584, 605,

610–614, 616
perturbation matrix 175
piecewise polynomial basis function 540
plug-in approach 419
Poisson distribution 98, 108, 116, 117, 230, 400,

597

Poisson equation 317, 323, 324, 412
Poisson point process 105, 108
Poisson process 27, 105, 119, 156, 164–166,

168, 170, 179, 180, 186, 190, 220, 363
polar method 86
Pollaczeck–Khinchine formula 331
Pólya–Eggenberger distribution 98
polynomial LCG 70
polynomial trend 165
positive density assumption 490
posterior distribution 120, 226, 230, 231, 233,

235, 237, 238, 246, 248, 253, 254, 256,
447, 448

posterior normality 231
– smoothness 232
– steepness 232
posterior probability 229, 247
power law process 164
powers-of-two decomposition 65
precision 64, 144, 162, 177, 182, 186–189, 194,

232, 234–246, 248, 381–383, 385, 386,
388, 390, 391, 398, 467, 473, 554, 577, 625

predictive distribution 234, 248
primitive polynomial 61, 70, 368
prior distribution 228–235, 240, 245, 247, 248,

253, 255, 447, 448
probability integral transform 139, 169
probability of an incorrect selection (ICS) 506
probability of correct selection (PCS) 226, 246,

247, 249, 501, 518, 523, 528
process-interaction view 156, 165, 182
process-interaction 5–7
product-moment (and rank) correlation

matching problem 144
product-moment correlation 130, 138–141,

143, 146
product-moment covariance 137
projection theorem 265
Promodel® 634, 635
proportional hazards model 170–173, 179
pseudorandom number generator 352, 369
pseudorandom numbers 77, 78, 81, 152, 351,

352, 375
pure bit model 84
purely periodic sequence 56, 58, 66, 70
push in method 611
push out method 608, 611, 615

Q

quadratic mean 195, 216; see also convergence
in mean

quantile estimation 207, 208, 277, 288, 422, 432
quantile estimator 50, 432
quantile method 422, 426–478
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quantile 9, 15, 50, 53, 193, 196, 206–208, 253,
277, 419, 422–428, 430, 432, 434–436,
459, 504, 505, 509, 583; see also per-
centiles

quasi Monte Carlo (QMC) 58, 59, 78, 70–81,
118, 288, 351, 352, 354, 376–378, 380,
382

quasi-Monte Carlo integration 58, 377, 379
quasi-Newton direction 556
quasi-random numbers 351–354, 357, 375

R

radial basis function 541, 543, 548, 572, 574
radical-inverse function 366, 367
Radon–Nikodym derivative 297
Radon–Nikodym theorem 24
random correlation matrices 175, 176; see also

generating correlation matrices
random directions method 610
random lifetimes 155, 167, 168, 170, 181
random matrices 174–177, 179
random number generator 55, 56, 76, 78–81,

177, 182–185, 189, 190, 252, 294
random objects 110, 155, 172, 190
random partition of an integer 173, 174
random polynomials 177–179
random search 68, 537, 617–624, 626–630, 634
random variate generation 17, 56, 57, 83–121,

131, 132, 179
random walk 52, 76, 112, 115–117, 291–293,

295, 303, 304, 309, 314, 315, 317, 322,
331, 334, 338, 347, 349, 350, 378, 530

random walks on graphs 115–117
randomized quasi-Monte Carlo 80, 354, 376–

378
random-number generation 17, 182, 186
random-number generator 182–185, 189, 190;

see also random-number generation
random-structure generation 184, 186
– body art 185, 188, 189
– faucets 185, 188–190
rank correlation 130, 139, 141, 143–147, 152
ranking and selection (R&S) 226, 236, 245,

252–255, 474, 501, 502, 532–534, 536,
537, 576, 627, 630, 644, 651–653

rare perturbation analysis 610, 611
rare-event probabilities 292, 302, 309, 317,

319, 327, 330
rare-event simulation 291, 293–296, 299, 302,

330, 335, 346–350
rate function 105, 168, 186, 310, 333; see also

hazard function
raw event times 161, 162

RBM – see reflected Brownian motion
recurrence-based point set 59, 358, 361, 369
recurrence-based QMC 70
recursive estimators 216, 219
reflected Brownian motion (RBM) 328, 384
regeneration 53, 204, 316, 457, 474, 477, 478,

482–485, 489–493, 496–499
– randomized 490
regeneration state 483, 484
regenerative cycles 363, 478, 484, 486
regenerative estimator 480, 494, 499, 602
regenerative method 34, 43, 210, 477, 478, 487,

488, 492, 494, 495, 499, 500
regenerative process theory 622
regenerative structure 316, 477, 478, 480, 481,

486–488, 490, 491, 497, 498, 601
rejection methods 83, 86, 90, 93–96, 99, 103,

105, 106, 111, 112, 116, 119, 126, 127
relative error 206, 297, 299, 300, 306, 332, 341,

346, 383, 400, 434
relative width 223, 297, 388, 389, 392, 398, 404,

405
reliability and survival analysis 155, 167
reliability theory 157, 159
renewal process 157, 158, 160, 165, 166, 171
renewal theory 485
replication 9, 15, 190, 204–210, 229, 278, 375,

387–390, 497, 512
replication method 9, 15
required sample size 388
residual sampling 132, 133, 415–417, 422, 437,

439, 440, 442, 444, 446, 450–453
– innovations 448
residual workload 35
resolution 71, 72, 74, 181, 191, 373, 555, 643
– gap 71, 74
– V 555
response surface methodology (RSM) 537,

539, 547, 548, 552, 572, 573
response surface modeling 225–227, 252, 539,

545, 546, 548, 553, 554, 556, 573
Rinott’s procedure 511, 514, 520, 534
Robbins–Monro algorithm 323, 578–580
robust design 538, 570, 573
RQMC – see randomized quasi-Monte Carlo
run length 194, 381, 383, 384, 390–393, 397–

400, 406, 408–411, 413, 537, 552, 594

S

safety stock selection problem 13
sample averaging approximation 578
sample path optimization 578, 615, 631
sampling strategy 618–620, 626
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– point-based 620, 621, 626
– population-based 620, 626
– set-based 620, 621, 626
sampling with replacement 174, 444, 446, 450
scale density 402
scale parameter 135, 138, 164, 220, 589, 595,

597, 598, 600
scatter search 635, 638, 639, 653
Scheffé’s identity 112
score function (SF) 575, 586, 611, 615
scrambling 373, 374, 376
screening 246, 247, 253, 502, 516–520, 534,

576, 642, 644
second Lyapunov condition (SLC) 47–49
selecting the largest probability of success 529
selecting the system most likely to be the best

501, 527
selection of the best 501, 526, 532–534, 649
sensitivity analysis 231, 236, 546, 552, 575, 576,

581, 582, 611–615, 631
sensitivity indices 360, 379
separable metric space 487
sequential selection procedures 505, 533
serial tests of uniformity 76, 80
shuffling 76, 172, 179
Silverman’s rule 219
simplex search 537
Simpson’s rule 236, 352
SimRunner® 634, 635
SIMUL8® 635
simulated annealing 545, 617, 620, 621, 630,

631, 635–640, 649, 653, 654
simulation-based methods 237
simultaneous perturbation stochastic approxi-

mation algorithm (SPSA) 582, 612, 613,
620

sinusoidal periodicities 165
Skorohod space 203
Slepian’s inequality 249, 250, 511
slice sampler 113, 116, 120
slippage configuration (SC) 516
SLLN – see strong law of large numbers
Slutsky’s theorem 24, 163, 219
small composite design 553, 555
small-sample properties 19
smoothed bootstrap 423
smoothed perturbation analysis (SPA) 587,

613, 614
smoothing parameter 212, 541, 567
Sobol’ sequence 353, 360, 361, 364, 367, 368,

376, 378, 379
solution-to-solution search method 636–638,

644; see also point-based search
spatial correlation 541, 542, 545, 548, 573

spawning trees 155, 172
Spearman rank correlation 139
spectral density 450, 480
spectral resampling 450
spectral test 62, 64, 79, 372
speed density 402
sphericity 514
splines 540, 541, 543, 548, 564, 565, 571–573
– cubic 543
– interpolating 541
– metamodel 540
– smoothing 541, 564, 565, 572
– thin plate 543
S-plus 175, 176, 178, 239
squared coefficient of variation 389
standardized sample mean 465
standardized time series (STS) 44, 53, 222,

457, 459, 462, 465, 469, 470, 475, 533
star discrepancy 353, 354
state-change process 8
state-dependent drift 49
static importance sampling technique 293,

317, 323, 327
stationarity 117, 156, 157, 199, 200, 243, 460,

479, 482; see also stationary
– weak 200
stationary arrival process 5
stationary distribution 41, 114, 115, 238, 244,

399, 404, 494, 649
stationary probability vector 115, 394, 395
stationary process 6, 21, 199–204, 216, 217,

222, 223, 391, 392, 398, 404, 464, 480
stationary-excess – see equilibrium residual-

life
stationary – see also stationarity
– arrival process 5, 159, 186
– distribution 36, 39, 45, 111, 114, 238, 394,

402, 494, 649
– process 11, 140–142, 147, 156, 199–204, 216–

220, 390–393, 449, 464, 480, 482
Statlib 542
steady-state estimation problem 10, 11, 479,

494
steady-state gradient 478
steady-state parameter mean 193
steady-state performance measures 479, 496,

588
steady-state simulation 10, 19, 21, 34, 35, 193,

194, 200, 221, 287, 454–456, 459, 475,
477–481, 484, 487, 489, 490, 500, 512,
513, 517, 519, 520, 533, 619, 622, 623, 630

Stirling’s approximation 96
stitching transformation 148
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stochastic activity network (SAN) 4, 14, 20–22,
286, 287, 364, 575, 576, 581, 598, 609, 613

stochastic approximation (SA) 50, 316, 317,
322, 323, 327, 346, 349, 537, 578, 580,
582, 583, 610, 613, 615, 616, 619, 630, 631

stochastic comparison 620, 630
stochastic counterpart 578, 610, 613
stochastic gradient estimators 575, 577, 580,

588, 607, 611
stochastic optimization 573, 575, 609, 615, 618,

630, 631, 640, 647, 654
stochastic root finding algorithm 140, 630
stochastic ruler method 620, 621, 630
stratification 259, 260, 270, 278–282, 286, 288,

340, 348
– post- 279, 281
– proportional (PS) 278–280
– refined proportional (rST) 282
streams 57, 76, 77, 80, 176, 178, 183–186, 188–

191, 539, 554
strip method 92
strong law of large numbers (SLLN) 20, 22, 39,

196, 202, 431, 588, 622
strong law of large numbers estimator 22, 196
structural IPA 610
structure function 168
Student t 86, 90, 97, 98, 247
Studentization 424, 435; see also Studentized
Studentized 423–425, 427, 428, 431, 432, 434
Studentized bootstrap method 424, 428, 434
subexponential family 331
subjective probability 225–257
subset selection formulation 254, 503–505,

508, 515, 517, 518
substreams 57, 80, 183–185, 188, 190, 191
subtract-with-borrow 68, 81
surrogate models 538
surrogate-processes evaluation 458
survival models involving covariates 170, 172
survivor function 168
synchronization 184–186, 188–190, 362, 581
systems dynamics 3

T

tabu list 637, 638, 641, 642, 645
tabu search 545, 617, 620, 628, 633, 635–642,

644–646, 649, 653, 654
target arrival process 160
Tausworthe generator 72, 79
T -convexity 98
t -copula model 345, 349
tempering 73, 81

terminating simulation 9, 15, 20, 43, 45, 259,
260, 287, 456, 512, 517; see also transient
simulation

terminating-simulation performance mea-
sures 9

TES – see transform-expand-sample process
tests of linear complexity 77
theta distribution 229, 594
thinning 104, 105, 108, 119, 167, 168, 170, 179,

180
third Lyapunov condition (TLC) 49
threshold function 544
time-average variance constant 478, 479; see

also asymptotic variance
time-shift invariant 200
transformation-based simulation metamodels

34
transformed-density-rejection method 127
transform-expand-sample process (TES) 141,

147, 148, 152
transient simulation 622; see also terminating

simulation
transition function 56, 57, 75, 77, 369, 394
tree-based generator 84
trinomial-based LFSR generator 72, 73
truncation 90, 208–210, 334, 360, 361, 363, 532,

601
Tukey’s g and h transformations 136
twisted GFSR (TGFSR) 70, 73, 80
two-stage nested partition (TSNP) 650, 654

U

uncertainty analysis 152, 226, 228, 233, 236,
239, 244, 252, 253, 256

– experimental design 226, 233, 234, 243, 252
– parameter uncertainty 226, 235, 236, 241–

243
– response surface uncertainty 226, 227
– stochastic uncertainty 226, 240, 242, 252
underdispersed process 158
uniform convergence 27
uniform random number generation 55–81;

see also random number generation
uniformity measures 58
uniformly bounded time 94, 95
universal generator 93, 97, 113, 119, 120

V

validation 125, 126, 245, 444, 445, 452, 545,
554, 556, 563, 564, 567–569, 574

value of information procedure, 245, 248
value-at-risk 2, 293, 336–340, 342, 348, 350
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variable neighborhood search (VNS) 636, 638,
653

variance estimator 457–459, 469, 472, 474, 475,
500, 509, 511, 512, 520, 524, 525

variance reduction 27, 50, 52, 53, 80, 85, 185–
189, 240, 259–289, 291, 292, 295, 298,
301, 313, 315, 330, 348, 355, 372, 374,
377, 382, 413

variance stabilizing transformation 551, 554,
566

variance-correction algorithm 133
variance-reduction technique 185, 186, 189,

382
vector-autoregressive-to-anything (VARTA)

process 143
vine copula method 142, 146, 151, 152
virtual generator 57
virtual reality 3
V -uniform ergodicity 45

W

Wald’s lemma 506
warm-up interval 194
Wasserstein metric 85
weak convergence 203, 457, 479, 497, 578
weak derivatives (WD) 575, 584, 587, 591–593,

598, 602, 603, 606, 608, 611, 614
Weibull distribution 85, 333, 595, 597, 598
weighted Cramér–von Mises estimator 465
weighted Monte Carlo 259, 260, 269, 275, 286–

288
world view 6, 7
worst-case standardized spectral test 69

Z

zero-variance estimator 293, 295, 302, 311, 320
zero-variance measure 293–295, 298, 307, 308,

316–319, 320, 322, 325, 327, 342–344
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