

Lecture Notes in Computer Science 6462
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Kai Sachs Ilia Petrov Pablo Guerrero (Eds.)

From Active Data
Management to
Event-Based Systems
and More

Papers in Honor of Alejandro Buchmann
on the Occasion of His 60th Birthday

13

Volume Editors

Kai Sachs
Ilia Petrov
Pablo Guerrero
Technische Universität Darmstadt, FB Informatik/DVS
Hochschulstraße 10, 64289 Darmstadt, Germany
E-mail: sachs@dvs.tu-darmstadt.de, petrov@dvs.tu-darmstadt.de
guerrero@dvs.tu-darmstadt.de

The illustration appearing on the cover of this book is the work of Jean Bacon.
Permission to reproduce this illustration has been obtained from Jean Bacon.

Library of Congress Control Number: 2010938789

CR Subject Classification (1998): C.2, H.4, D.2, H.3, I.2, C.2.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-17225-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17225-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Alejandro Buchmann

Preface

“I think there is something wrong with your arithmetic ...
Alex and I are about the same age,

and he and I cannot be getting close to 60.”

Hector Garcia-Molina

Data management has evolved over the years from being strictly associated with
database systems, through active databases, to being a topic that has grown
beyond the scope of a single field encompassing multiple aspects: distributed
systems, event-driven systems, and peer-to-peer and streaming systems. The
present collection of works, shedding light on various facets of data management,
is dedicated to Prof. Alejandro Buchmann on the occasion of his 60th birthday.
His scientific path looks back on more than 30 years of successful academic life
and high impact research. With this book we celebrate Prof. Buchmann’s vision
and achievements.

The works presented here cover many different topics: database systems,
event-based systems, distributed systems, peer-to-peer systems, etc. All these
are areas in which Prof. Buchmann and his group were active and provided
relevant research contributions over the years.

The area of data management, streams and XML spans contributions from
Theo Härder et al. on XML processing and key concepts implemented in XTC;
from M. Tamer Özsu et al. on mining streaming data; from Thomas Kudraß on
active database systems; and from Frischbier and Petrov on data intensive cloud
applications.

The field of event processing is covered through contributions from many
leading researchers such as K. Mani Chandy on extending the boundaries of
sense-and-respond applications to the Web and the Cloud; from Jean Bacon,
Ken Moody et al. on spatio-temporal composite event languages; from Opher
Etzion et al. on spatial perspectives in event processing; and from Gero Mühl et
al. offering insights on underlying design principles implemented in Rebeca.

The fields of quality of service and real-time systems are represented by
contributions from Krithi Ramamritham et al. on safety partition kernel for
integrated real-time systems; from Annika Hinze et al. on anonymous mobile ser-
vice collaboration; and from Dimka Karastoyanova on scientific experiments and
services.

The area of peer-to-peer concepts and systems contains contributions from
Gerhard Weikum offering an overview and in-depth insights on peer-to-peer
web search; from Max Lehn et al. on benchmarking peer-to-peer systems; and
from Christof Leng et al. on building an SQL query processor for peer-to-peer
networks.

VIII Preface

The field of pervasive computing is covered by interesting contributions from
Friedemann Mattern et al. on Internet of Things and RFID; from Bettina Kemme
at al. around group communication for mobile devices through SMSs; and from
Daniel Jacobi et al. on an approach to declaratively constraining the nodes
participating in a sensor network query.

Another active research area of Prof. Buchmann is performance engineering,
which is represented by a paper introducing the novel QPME 2.0 tool by Samuel
Kounev et al. and a workload characterization for event notification middleware
from Stefan Appel et al.

We are grateful to all those world-class researchers, colleagues and friends
who, with their works, joined us in honoring a truly remarkable figure: as a
visionary and a distinguished personality, as a professor and a leading faculty
member, as an academic peer and fellow researcher, as supervisor and mentor—
Alex Buchmann.

September 2010 Kai Sachs
Ilia Petrov

Pablo Guerrero

Joint Celebration of the 60th Birthday of
Alejandro P. Buchmann, Sorin A. Huss, and

Christoph Walther
on November 19th, 2010

Honourable Colleague,
Dear Alex,

Let me first send my congratulations to you as well as to Sorin Huss and
Christoph Walther. You jointly celebrate your 60th birthdays this year. I wish
you all the best for your future work at TU Darmstadt!

Alex, we have survived many battles and wars in the overlap time of our
periods of service in the department’s headquarters. In the former period, I was
your Deputy Studies, in the latter period, you were one of my Deputies General.
I remember well our meetings in your office (yours is more comfortable than
mine), where we frequently debated the most urgent challenges of the day. These
meetings always took much more time than planned (if they were planned at all).
And each time, I left your office a bit smarter than before, and more confident
that we would eventually cope with all of the trouble. And we did.

A few months ago, you retired; no, not from your position as professor, but
from that treadmill they call “Dekanat”. So you made more time for research. By
the way, research: your breadth and wealth of research interests, which you pur-
sue together with your research group, are impressing. So is your social network
in science and beyond.

You three guys are true institutions of the department (I am tempted to
speak of dinosaurs, however, in an absolutely positive sense). You have seen
colleagues come and go. Due to your experience and your long time of service in
the department, you have become critical nodes of the department’s corporate
memory network. Your experience has been decisive during many discussions,
typically (yet not exclusively) for the better.

I should mention that each of you three guys is equipped with a specific kind
of spirit. Your humorous comments, always to the point, made many meetings
amongst colleagues really enjoyable for the audience (well, the meeting chair did
not always enjoy them, but that’s fine). You have always combined passion with
reason, spirit with analysis, vision with rationality.

X Preface

On behalf of the colleagues, the department, and TU Darmstadt, I hope that
you three guys continue to have a great time together with all of us and an even
longer chain of success stories than ever. Happy Birthday!

September 2010 Karsten Weihe
Dean of the Department of Computer Science,

TU Darmstadt

Laudation for Alejandro Buchmann

I was delighted to be asked to write a laudation for my colleague Alejandro
Buchmann. Not because we are well acquainted or have worked together closely,
neither is the case, regrettably, but because he is, for me, a perfect example of a
scientist coming from abroad and becoming successfully integrated here without
losing his own cultural identity, and in the process enriching our culture and
making a lasting contribution to scientific and academic life in this country.

Alejandro Buchmann began his academic career in his native country Mexico,
studying not computer science, in those days that was not yet possible in Mexico,
but chemistry! He worked briefly as a chemist for Hoechst, but then decided to
continue his studies, obtaining his Master of Science degree from the University
of Texas in Austin.

But, like other engineers, he soon became fascinated with our blossoming
computer science discipline. After successfully completing his doctorate in Austin,
Texas, he worked mainly in the field of computer science, which is where his
major accomplishments lie. And for TU Darmstadt it was definitely a happy
development when he accepted the offer of a C4 professorship there in 1991.

I do not wish, at this point, to go into his numerous academic and scientific
achievements and the many honours accorded him. His university colleagues and
partners can do a much better job of that. Instead, I would like to draw atten-
tion to the way he has used his international network of contacts and his innate
capacity for enthusiasm to build and consolidate close ties and cooperation with
his home country and other countries across Latin America. We all know that
building international ties and cooperation requires a great deal of commitment,
and in particular a proper appreciation of the many and sometimes consider-
able differences between countries in terms of education and training. And who
has been able to make better use of such knowledge and understanding for the
countries of Latin America than Alejandro Buchmann?

To my regret, I have personally only once had the opportunity to witness
him “in action” here: committed, emotional, eminently competent and highly
professional! In this role Alejandro Buchmann has become an ambassador for
German computer science, and for his achievements in this capacity the German
computer science community and its representative body, the Gesellschaft für
Informatik (GI), is greatly indebted to him.

XII Preface

Of course, Alejandro Buchmann’s work within Germany’s computer science
community is not confined to this role of “ambassador”. As a scientist, he enjoys
great national and international renown and respect. This is clearly evidenced
by his many activities as the editor, author and reviewer of numerous books and
other publications. And despite all of these duties, he has twice been the Dean
of the Computer Science Department at TU Darmstadt, a position to which he
brought his wonted commitment and competence.

Congratulations on an impressive life’s work and my very best birthday
wishes!

September 2010 Stefan Jähnichen
President of the Gesellschaft für Informatik (GI)

Table of Contents

Data Management, Streams and XML

Key Concepts for Native XML Processing . 1
Theo Härder and Christian Mathis

Efficient Decision Tree Re-alignment for Clustering Time-Changing
Data Streams . 20

Yingying Tao and M. Tamer Özsu

REaltime ACtive Heterogeneous Systems - Where Did We Reach After
REACH? . 44

Thomas Kudraß

Aspects of Data-Intensive Cloud Computing . 57
Sebastian Frischbier and Ilia Petrov

Event Processing

A Web That Senses and Responds . 78
K. Mani Chandy

Spatial Perspectives in Event Processing . 85
Opher Etzion and Nir Zolotorvesky

Implementing a Practical Spatio-Temporal Composite Event
Language . 108

Ken Moody, Jean Bacon, David Evans, and
Scarlet Schwiderski-Grosche

Design and Implementation of the Rebeca Publish/Subscribe
Middleware . 124

Helge Parzyjegla, Daniel Graff, Arnd Schröter, Jan Richling, and
Gero Mühl

Quality of Service and Real-Time Systems

Anonymous Mobile Service Collaboration: Quality of Service 141
Annika Hinze, Michael Rinck, and David Streader

SParK: Safety Partition Kernel for Integrated Real-Time Systems 159
S. Ghaisas, G. Karmakar, D. Shenai, S. Tirodkar, and
K. Ramamritham

XIV Table of Contents

On Scientific Experiments and Flexible Service Compositions 175
Dimka Karastoyanova

Peer-to-Peer

Peer-to-Peer Web Search: Euphoria, Achievements, Disillusionment,
and Future Opportunities . 195

Gerhard Weikum

Designing Benchmarks for P2P Systems . 209
Max Lehn, Tonio Triebel, Christian Gross, Dominik Stingl,
Karsten Saller, Wolfgang Effelsberg, Alexandra Kovacevic, and
Ralf Steinmetz

Distributed SQL Queries with BubbleStorm . 230
Christof Leng and Wesley W. Terpstra

Pervasive Computing

From the Internet of Computers to the Internet of Things 242
Friedemann Mattern and Christian Floerkemeier

Distributed Group Communication System for Mobile Devices Based
on SMS . 260

Bettina Kemme and Christian Seeger

Towards Declarative Query Scoping in Sensor Networks 281
Daniel Jacobi, Pablo E. Guerrero, Khalid Nawaz, Christian Seeger,
Arthur Herzog, Kristof Van Laerhoven, and Ilia Petrov

Performance Engineering

QPME 2.0 - A Tool for Stochastic Modeling and Analysis Using
Queueing Petri Nets . 293

Samuel Kounev, Simon Spinner, and Philipp Meier

A Logistics Workload for Event Notification Middleware 312
Stefan Appel and Kai Sachs

Business Intelligence

Live Business Intelligence for the Real-Time Enterprise 325
Malu Castellanos, Umeshwar Dayal, and Meichun Hsu

Author Index . 337

Key Concepts for Native XML Processing

Theo Härder1 and Christian Mathis2

1 University of Kaiserslautern, Germany
haerder@cs.uni-kl.de

2 SAP Germany
christian.mathis@sap.com

Abstract. Over the recent five years, we have designed, implemented,
and optimized our prototype system XTC, a native XDBMS providing
multi-user read/write transactions and supporting multi-lingual query
interfaces (XQuery, XPath, DOM, SAX). We have compared competing
concepts in various system layers and iteratively found salient solutions
which drastically improved the overall XDBMS performance. XML query
processing is critically affected by the smooth interplay of concepts and
methods. Here, we focus on the physical level of XML processing: node
labeling and mapping options for storage structures; design of suitable
index mechanisms; enriched functionality of path processing operators,
in particular, for holistic twig joins. In this survey, we outline our expe-
riences gained during the evolution of XTC. We develop “key concepts”
to enable fine-grained, effective, and efficient XML processing1.

1 Motivation

In recent years, XML’s standardization and, in particular, its flexibility (e. g.,
data mapping, cardinality variations, optional or non-existing structures, etc.)
evolved as driving factors to attract demanding write/read applications, to en-
able heterogeneous data stores, and to facilitate data integration. Because busi-
ness models in practically every industry use large and evolving sets of sparsely
populated attributes, XML is more and more adopted by those companies which
have even now launched consortia to develop XML schemas adjusted to their
particular data modeling needs. As an example, world-leading financial compa-
nies defined more than a dozen XML schemata and vocabularies to standardize
data processing and to leverage cooperation and data exchange [Projects 08].
For these reasons, XML databases gain increasingly more momentum if data
flexibility in various forms is a key requirement of the application and they
are, therefore, frequently used in collaborative or even competitive environments
[Loeser 09].

Native XDBMSs need tailored XML processing to run complex XQuery read-
/write transactions on large XML documents in multi-user mode. For this reason,
1 This work has been partially supported by the German Research Foundation (DFG)

and the Rheinland-Pfalz cluster of excellence “Center of Mathematical and Compu-
tational Modelling”, Germany (see www.cmcm.de).

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 1–19, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 T. Härder and C. Mathis

storage and indexing of dynamic XML documents in flexible formats has to be
optimized to best satisfy the needs of specific applications.

Adequate storage and index mechanisms are prerequisites for XDBMSs, which
efficiently support not only fine-grained management, but also concurrent and
transaction-safe modifications of XML documents. A challenging application is
financial application logging whose workloads include 10M to 20M inserts in a
24-hour day, with about 500 peak inserts/sec. Because at least a hundred users
concurrently run XQuery requests, i. e., index-based random reads, to supply data
for troubleshooting and auditing tasks, concurrency control has to make sure that
short-enough response times do not hinder interactive operations [Projects 08].

During the last five years, we have addressed – by designing, implementing,
analyzing, optimizing, and adjusting an XDBMS prototype system called XTC
(XML Transactional Coordinator) – all issues indispensable for a full-fledged
DBMS. To guarantee broad acceptance for our research, we strive for a general
solution that is even applicable for a spectrum of XML language models (e. g.,
XPath, XQuery, SAX, or DOM) in a multi-lingual XDBMS environment. In this
survey paper, we report on our experiences gained and, in particular, focus on
concepts, functionalities, and mechanisms needed for physical XML processing.

2 Node Labeling

The node labeling scheme is the key to fine-grained, effective, and efficient man-
agement of XML documents. Initial XML research only focused on navigation
and retrieval in static documents where limited functionality of node labels is
sufficient. As XML processing has entered the realm of full-fledged, widely-used
database products, flexible handling of dynamic XML documents and their fine-
grained manipulation in multi-user ACID transactions are indispensable. Hence,
labeling must satisfy quite a number of specific criteria.

2.1 Desired Functionality

In the first place, a labeling scheme has to guarantee uniqueness and order
preservation of node labels. Moreover, if two node labels are given, the scheme
should directly enable testing of all (important) XPath axes: all axes relation-
ships should be determined by computation only, i. e., access to the document
(on external storage) is not needed. Dynamic XML documents definitely require
immutable labels even under heavy updates/insertions to guarantee stable node
labels during transaction processing. Furthermore, a given document node la-
bel should enable the reconstruction of all ancestor labels without accessing the
document. Immutability and ancestor label computation have far-reaching con-
sequences to the DBMS-internal processing efficiency: these properties greatly
support for a context node cn intention locking on the entire path to the root
[Haustein 07] and path matching for query processing, e. g., in case of twig
queries.

Key Concepts for Native XML Processing 3

Depts

. . .

4711 Coy 835

33 10815 May XML

. . .

1

1.1.1.7.11.1.1.1.1 1.1.1.3.1 1.1.1.5.1

1.1.3.1.1.1 1.1.3.1.3.1 1.1.3.1.5.1 1.1.3.5.1.1 1.1.3.5.3.1

Dept
1.1

Mgr
1.1.1

Team
1.1.3

Team
1.1.5

Age
1.1.1.5

Name
1.1.1.3

ID
1.1.1.1

Level
1.1.1.7

Emp
1.1.3.1

Proj
1.1.3.5

Name
1.1.3.1.3

ID
1.1.3.1.1

Age
1.1.3.1.5

352509 Jones
1.1.3.3.1.1 1.1.3.3.3.1 1.1.3.3.5.1

Emp
1.1.3.3

Name
1.1.3.3.3

ID
1.1.3.3.1

Age
1.1.3.3.5

PName
1.1.3.5.1

Rating
1.1.3.5.3

Fig. 1. Document fragment (in the path-oriented storage format, only nodes below the
dashed line are physically stored: see Section 3.4)

2.2 DBMS-Adequate Labeling Schemes

Initially, node labeling schemes were not designed to support immutable labels
under arbitrary updates or path-matching operations. Therefore, simple and
straightforward schemes were proposed such as sequential numbering of nodes.
In the sequel, various range-based node labeling schemes were considered the
prime candidates for XDBMSs, because their labels directly enabled testing of
all (important) XPath axes. The advent of prefix-based node labels, however, ini-
tiated a new area of label design and use [O’Neil 04]. This progress can directly
be accredited to the so-called DeweyIDs which facilitate and optimize various
XML processing tasks. Each label based on Dewey Decimal Classification, e. g.,
1.1.3.5.1.1 identifies the value XML for element PName (see Figure 1), directly
represents the path from the document’s root to the related node and the local
order w. r. t. the parent node. Because a DeweyID contains the labels of all an-
cestor nodes, all DeweyIDs along the path to the document root are delivered
for free and are immutable under document updates [Härder 07a]. Some spe-
cific variations of the Dewey numbering scheme such as OrdPaths, DeweyIDs,
or Dynamic Level Numbering (DLN) are equivalent for all XDBMS tasks and
mainly differ only in the way how they provide immutable labels by supporting
an overflow technique for dynamically inserted nodes. For these reasons, we also
use the generic name stable path labeling identifiers (SPLIDs) for them.

While range-based schemes would need for some tasks (such as ancestor label
determination or path matching) further index access or similar deviation, i. e.,
overly expensive look-ups in the disk-based document, only prefix-based node
labeling can support all desired labeling properties without the need of docu-
ment access (see Section 2.1). Until today, the missing support of dynamic XML
documents is ignored by quite a number of researchers – based on range-based
schemes, they still develop solutions which do not meet the state of the art of
XML processing anymore. As a strong hint of superiority, the Dewey scheme is

4 T. Härder and C. Mathis

nowadays used in all major DBMS products and it definitely embodies the core
concept to achieve processing performance [Härder 10].

2.3 Implementation of Node Labels

Because SPLIDs tend to be space-consuming, suitable encoding and compression
of them in DB pages is a must. Effective encoding of (the divisions of) DeweyIDs
at the bit level may be accomplished using Huffman codes [Härder 07a]. It is
important that the resulting codes preserve their order when compared at the
byte level. Otherwise, each comparison, e. g., as keys in B*-trees or entries in
reference lists, requires cumbersome and inefficient decoding and inspection of
the bit sequences. Because such comparisons occur extremely frequent, schemes
such as Quaternary String codes [Li 08] violating this principle may encounter
severe performance problems.

When SPLIDs are stored in document sequence, they lend themselves to prefix-
compression and achieve impressive compression ratios. Our experiments using a
widely known XML document collection [Miklau 09] confirmed that prefix-
compression reduced the space consumed for dense and non-dense DeweyIDs or-
ders down to ∼15 – ∼35% and ∼25 – ∼40%, respectively [Härder 07a].

On the other hand, SPLIDs’ variable length and prefix compression applied
cause some performance problems. Because binary search is not possible on
variable-length SPLIDs inside a database page, each node reference implied a
search from the beginning of the (B*-tree) page which required on average to
reconstruct half of the SPLIDs contained. Although a main-memory operation,
performance suffered in case of frequent accesses, e. g., when the query result
had to be materialized. Caching of pages with uncompressed SPLIDs relieved
such situations. Another performance penalty was decoding of SPLIDs for spe-
cific SPLID operations. Therefore, we currently look for solutions enabling direct
processing of the most important/frequent operations on the encoded byte rep-
resentations.

3 Storing Documents

The flexibility of XML gives to the application quite some freedom when model-
ing or creating XML documents. As a result, existing XML documents are greatly
varying in volume and exhibit very different structural complexities. Over time,
different XML document processing (XDP) interfaces have been standardized:
DOM, SAX, XQuery, and XQuery Update Facility. All of them assume a differ-
ent model of how XML documents are processed: DOM navigates over individual
document nodes, SAX scans over the stored document, XQuery is declarative
and internally operates over sequences using DOM- and SAX-like operations,
and finally XQuery Update modifies the document under a kind of snapshot se-
mantics. To serve all these standard interfaces efficiently, an XDBMS first of all
needs an appropriate document organization on external storage.

Key Concepts for Native XML Processing 5

3.1 Desiderata

Because XDBMSs are generic, they should provide adequate performance and
functionality for all shapes and volumes of XML documents and for all kinds of
XDP models. As a guideline for the design of XML document stores, we have
derived a list of eight properties. As the name “desiderata” implies, we do not
consider this list normative but, nevertheless, suggest that it is meaningful for
many XML applications:

1. Efficient storage and reconstruction. Because XML is a format for data inter-
change, XDBMSs frequently need to receive and emit XML data. Therefore,
the document store has to provide fast storage and reconstruction facilities.

2. Navigational operations. They are required not only to implement the DOM
interface, but also to provide low-level operators for XQuery processing.

3. Scan and subtree reconstruction. A SAX parse is typically implemented by a
document scan. But also for XQuery evaluation, scans are very important,
e. g., for subtree reconstruction during result materialization.

4. Modifications. Applications need to update XML data stored in an XDBMS.
Therefore, the document store should provide means to modify single nodes,
content, and subtrees.

5. Round-trip property. The round-trip property guarantees that a document
can be reconstructed from the document store without any loss. This is in
particular of importance for document-centric XML, for example, when legal
contracts need to be stored.

6. Document and collection support. Documents might come in single instances
of large documents or in large collections of small documents. No matter how,
the document store should be able to efficiently manage the XML data.

7. Succinctness. A space-efficient document store not only saves external stor-
age cost, but also leads to reduced I/O and logging and, therefore, better
XDP performance.

8. Indexing support. For query processing, secondary path indexes are of par-
ticular importance, because documents and collections often are too large
to completely load them into main memory for processing. Therefore, the
document store should provide mechanisms that allow for cheap path index
construction and maintenance.

3.2 Classification of Approaches

Figure 2 gives a comprehensive overview of the methods and approaches used
so far to design XML stores. Obviously, all proposals based on Shredding or
BLOB/File do hardly meet a substantial subset of the desiderata given. There-
fore, we exclusively concentrate on the native approaches.

Depending on the granule of XML items mapped onto a page, subtree map-
pings can be distinguished from node mappings. The first strategy partitions an
XML tree into regions or subtrees, which are then mapped to physical pages –
thus preserving subtree clusters. In contrast, the second strategy uses individual

6 T. Härder and C. Mathis

Schema−
Aware

Node
Mapping

Subtree
Mapping

Schema
Mapping

Schema−
Oblivious

Information
No Path

BLOB/FileStorage Approaches

Native

Shredding

Information
With Path

SystemRX [Beyer 05]
Natix [Fiebig 02]

XTC (node-oriented)
Timber [Jagadish 02]
eXist [Meier 02]
NoK [Zhang 04]

XTC (path-oriented)
XSum [Arion 08]
Sedna [Grinev 06]
OrientX [Mang 03]

LegoDB [Bohannon 02]

Edge [Florescu 99]
Tatarinov et. al. [Tatarinov 02]
Interval [DeHaan 03]
MonetDB/XQuery [Boncz 06]

Lee/Chu [Lee 00]
RRXS [Chen 03b]
ShreX [Amer-Yahia 04]
Georgiadis/Vassalos [Georgiadis 07]

Suxcent++ [Prakash 06]

XRel [Yoshikawa 01]
XParent [Jiang 02]

Fig. 2. Classification of related work on XML storage

nodes as the mapping granule, where several nodes in document order are allo-
cated to a page. Hence, node mappings keep clusters w. r. t.document order, but
do not preserve subtree clusters. As indicated in Figure 2, a third solution class
exploits the ad-hoc structure or the schema of a document for the XML store.

Little is known about the performance of subtree mappings. We expect that
navigational operations are efficiently supported, because subtree clustering
makes sure that related nodes are often placed in the same page, thus mini-
mizing I/O. However, we such methods are not aware of document paths, thus
complicating index construction and maintenance. Furthermore, document stor-
age and reconstruction seems to be more complex than in the other approaches,
because pages need to be visited/buffered multiple times [Mathis 09]. Finally,
structure virtualization, which we identified as the best solution (see Section 3.4),
would not be possible.

Node mappings and particular schema mappings satisfy the list of desiderata
to a large extent. For example, the required indexing functionality can be greatly
supported by using the expressive power of SPLIDs together with a path sum-
mary. Therefore, we will sketch our XTC implementations as reference solutions
in the following sections.

3.3 Node-Oriented Document Store

Node-oriented methods store each document node explicitly together with its
node label, i. e., its SPLID. Typically, they replace the element/attribute names
of the plain (external) format by VocIDs to save space and need some Admin

Key Concepts for Native XML Processing 7

metadata to enable variable-length entries. Inner tree nodes, i. e., the “structure”,
are stored as records containing < SPLID ,VocID ,Admin >, whereas leaf nodes
carry the “content” in < SPLID ,Value,Admin > records.

In XTC, two kinds of node-oriented mappings are provided. They keep both
content and structure: Using the naive format, the VocIDs of all element/at-
tribute and content nodes are directly mapped together with their uncompressed
SPLIDs to the underlying storage structure (see Figure 1), whereas the pc format
deviates from the naive mapping by applying prefix-compression to all SPLIDs.

All documents are physically represented using a B*-tree as base structure,
where the records (tree nodes) are consecutively stored in the document container
thereby preserving the document order. The document index is used to provide
direct access via SPLIDs.

As compared to the plain format, naive as the straightforward internal format
typically achieves a storage gain of ∼10% to ∼30%, although the saving from
VocID usage is partially compensated by the need for node labels. Extensive em-
pirical (structure-only) tests using our reference document collection [Miklau 09]
identified a further gain of ∼27% to ∼43% when using pc format.

3.4 Path-Oriented Document Store

The structure part of XML documents typically contains huge degrees of re-
dundancy, because each path instance is completely stored in the document. A
key observation is that all path instances of the same path class have the same
sequence of element/attribute names along the path to the root. Only the node
labels among path instances of a path class differ. If we represent the different
path classes in a small auxiliary, document-related structure, we can reconstruct
the entire path instance starting from some of its nodes.

Using a novel mapping approach, we are able to design the path-oriented stor-
age format called po which virtualizes the entire structure part of the document.
The reconstruction of a path instance or the entire structure part is achieved by
the interplay of three ingredients: SPLIDs, path synopsis (PS), and path class ref-
erences (PCRs). A path synopsis is an unordered structural summary of all (sub)
paths of the document. Each non-content node belongs to a path class which rep-
resents all path instances having the same sequence of ancestor labels. To facilitate
the use of path classes, we enumerate them with so-called PCRs that serve as a
simple and effective path class encoding. PCRs are used as a kind of links from
index or document entries to the path class they belong to (see Figure 3).

Because a path synopsis does not need order, maintenance in case of document
evolution (creation of new path classes) or shrinking (deleting the last path
instance of an existing path class in a document) is very simple. New path classes
and related PCRs can be added anywhere and existing, but empty path classes do
not jeopardize correctness of path synopsis use. Furthermore, hash-based access
to the PCRs guarantees its efficient evaluation. Because providing substantial
mapping flexibility, effective lock management support, and also considerable
speed-up of query evaluation [Härder 07b], the use of path synopses turned out
to be a key concept for XTC’s processing efficiency.

8 T. Härder and C. Mathis

Depts

Dept

Mgr Team

ID Name Age Level Emp Proj

ID Name Age PName Rating

4 5 6 7

10 11 12 14 15

PCRs: 1

2

83

9 13

Fig. 3. Path synopsis for our sample document fragment of Figure 1

1.1.1.1.1
5

4711
Coy

1.1.1.3.14
1.1.1.5.1 6 35

1.1.1.7.1 7 8 1.1.3.1.1.1
0815 1.1.3.1.5.1. . .

33

250910
35

1.1.3.5.3.1 15 1
...

. . .

. . .
. . .

.

1.1.3.3 1.7

1.1.1.1.1 1.1.3.3.1.1 1.7. . .

contentPCRs + admin(compression not shown) SPLIDs

document
index

document
container

1.1.5.1.1.1 ...

10

12

1.1.3.3.1.1
121.1.3.3.5.1

10

Fig. 4. Stored document fragment of Figure 1 in po format

Only the “content part” is physically stored when the po format is used (see
Figure 1). Reference [Mathis 09] explains the concept of structure virtualiza-
tion, i. e., the po mapping, in detail and shows that path reconstruction can be
achieved on demand when the SPLID of a node together with its PCR is present.
For this reason, leaf records are composed of < SPLID , Value, PCR, Admin >
where the SPLIDs are prefix-compressed. All navigational and set-oriented oper-
ations can be executed guaranteeing the same semantics as on the node-oriented
formats, e. g., naive or pc. As an example, Figure 4 illustrates the po format
for the document fragment of Figure 1, where the document index guides a
SPLID-based access to the requested node. It further shows that only the con-
tent nodes are stored; using the path synopsis, entry < 1.1.3.1.5.1, 12, 33 >
stored in the document container tells us that the related path to the value 33
is /Depts/Dept/Team/Emp/Age with the ancestor SPLIDs 1, 1.1, 1.1.3, 1.1.3.1,
and 1.1.3.1.5.

The po format saves considerable storage space and, in turn, I/O. It provides a
naive-to-po gain of ∼71% to ∼83% [Härder 07b]. Because it also exhibits better
mapping and reconstruction times, the po format is a substantial performance
driver.

Key Concepts for Native XML Processing 9

Content compression is orthogonal to the storage formats discussed. We have
observed [Härder 07b] that, using simple character-based compression schemes,
the content size could be considerably reduced in our rather data-centric doc-
ument collection such that a storage gain of ∼22% to ∼42% is possible. Even
more compression gain could be expected for document-centric XML content.

XTC is designed towards self-tuning and self-administration. By inspect-
ing specific document characteristics, XTC’s storage management provides for
automatic selection of appropriate mapping formats and adjusted parameters
[Schmidt 08].

4 Indexing XML Documents

As in the relational world, secondary indexes are considered non-information-
bearing structures. They are used to (substantially) speed up the evaluation
of XQuery/XPath statements which need random read requests to locate sets
of document nodes on external storage. On the other hand, index maintenance
may considerably burden XQuery updates. For this reason, indexing has to be
selective and adjusted to the anticipated workload – a permanent tuning task to
be taken over in the long run by the XDBMS itself [Schmidt 10].

Because path and tree patterns correspond to the XML data model and can
accordingly be specified in XQuery/XPath expressions, matching such patterns

Summary−Based
Index

Sequence−Based
Index

Structural Join
Index

Content−and−Structure
Index

Twig

Content Index

Path Index

Partial

Complete

Indexing Approaches

Tindex (Lore) [Mchugh 97]

XISS [Li 01]
XR Tree [Jiang 03a]
XB Tree [Bruno 02]
Natix [May 06]
Timber [Jagadish 02]

ViST [Wang 03]
Prix [Rao 04]

]50dasarP[refürP
FiST [Kwon 05]

F&B Index [Kaushik 02a]
Disk-based F&B Index [Wang 05]

IndexFabric [Cooper 01]
Inverted Lists [Kaushik 04]
FLUX [Li 06]
DB2 pureXML [Beyer 06]
XTC CAS Index

DataGuide [Goldman 97]
1-Index [Milo 99]
XTC Path Index

A(k) Index [Kaushik 02b]
D(k) Index [Chen 03a]
M(k) Index [He 04]

Fig. 5. Classification of related work on XML indexing

10 T. Härder and C. Mathis

in XML documents is a frequently occurring task during query evaluation. Be-
cause these pattern may be complex and their optimal evaluation may depend
on quite a number of parameters, e. g., XPath axes specified, element selectivi-
ties present, shape of the document tree, clustering aspects, etc., the spectrum
and the richness of the different proposals concerning XML indexing can be
hardly overlooked. Besides the simple element/attribute indexes, a variety of
content (value and text) indexes, path indexes, adaptive path indexes, content-
and-structure indexes together with those directly tailored to important path
processing operations (PPOs), e. g., twig or structural join evaluation, are stud-
ied in the literature (see Figure 5).

Despite this obvious richness of proposals, the problem of XML indexing re-
mains unsolved, because many of the contributions referenced in Figure 5 lack
a “system context”. They only consider the pure or abstract problem of static
XML indexing, but do not deal with dynamic XML aspects or the interplay
with other components such as PPO evaluation or concurrency control. For this
reason, we try here to emphasize these forgotten issues and, based on our imple-
mentation experience, to take a global, system-centric view on XML indexing.
The following list of desiderata serves to decide on meaningful index methods.

4.1 Desiderata

An XML indexing scheme should provide for the following six characteristics:

1. Optional Use: As in relational systems, indexes should be secondary access
paths that are optional (i. e., not required for document storage). This en-
sures that indexes can be created on demand to trade query performance
with maintenance cost and space consumption.

2. Expressiveness : The indexing scheme should be able to answer path queries
supporting the child (/) and descendant (//) axes, name tests, wildcards (*),
as well as one optional content predicate, e. g., //Emp[Age="33"]. Queries
without content predicates are called simple paths, whereas queries with
a content predicate, are called content-and-structure (CAS) queries. Both
types frequently occur in XQuery expressions.

3. Selectivity: The selectivity of an index, i. e., which paths are actually con-
tained in an index, should be user-defined. Thereby, a set of indexes can be
adjusted to document characteristics and query workload.

4. Updates : The index should be updateable. Depending on the index selectiv-
ity, not all document updates lead to index updates. However, there should
exist efficient mechanisms to discovery, when an index needs maintenance.

5. Applicability: The test whether an index can be applied for query evaluation
should be simple and cost-efficient.

6. Result Computation: The index should be able to retrieve all elements on an
indexed path, e. g., if an index can answer the above query //Emp[Age="33"],
then it should be able to return the matching Emp and Age nodes. Other-
wise, the applicability of the index would be too restricted, w. r. t.further
processing algorithms.

Key Concepts for Native XML Processing 11

4.2 A Minimal Indexing Scheme

Figure 5 gives a comprehensive overview of the more important XML indexing
approaches proposed so far. An immediate question is whether or not a (the best)
method of each class should be made available in a native XDBMS? Another
question concerns the variety of base implementations for the indexes.

When we approach XML indexing from a logical point of view, element
indexes and content indexes are sufficient to evaluate – without scanning or
navigating the document – all types of set-oriented requests coming from the
PPOs needed for XQuery/XPath processing. An element/attribute index refers
to structure nodes, whereas a content index enables direct document access via
text values. These access paths use SPLIDs to refer to the indexed nodes, which
are located via the document index (see Figure 4). Note here again the beneficial
role of SPLIDs to decide on axes relationships, order, etc.

From a performance point of view, the sole existence of both index types would
be disastrous, because the processing overhead for complex PPOs could be pro-
hibitive. Furthermore, large parts of the document had to be often accessed in a
random node-at-a-time manner, which penalizes performance twice, due to ex-
tensive I/Os and unnecessarily large blocking potential to guarantee serializable
transactions. Therefore, indexes achieving much more selective document access
are mandatory.

In XTC, we voted for minimality of concepts and uniform index implemen-
tation. As a minimal basis for physical XML processing, XTC supports two
secondary index types:

– Path index : This structure can index paths qualified by a simple path pred-
icate p, e. g., //Mgr/Age or //Dept//Emp. Because SPLIDs carry essential
path information, they are utilized together with the path synopsis to di-
rectly support path queries. An element index could be obtained by //* as
a special path index.

– Content-and-Structure (CAS) index : As a hybrid index combining content
and structure information, it supports the evaluation of CAS queries, e. g.,
//Mgr[Age="33"] or //Dept//Emp[Name="Jones"]. Again //* delivers a
content index as a special form of the CAS index.

All XTC index types are implemented using B-trees or B*-trees. This guarantees
effective storage allocation, dynamic reorganization, and logarithmic access cost.
With code reuse for the base structures, the indexes distinguish themselves only
in the representation of the index keys and index entries, e. g., variable-length
reference lists of < PCR, SPLID > entries. Because a text value is associated
with a list of < SPLID, PCR > references to the related document nodes, such
a combined reference enables together with the path synopsis the reconstruction
of the entire path without accessing the document. As a salient performance
feature, an index can be defined for PCR clustering or SPLID clustering (within
potentially very long reference lists).

CAS indexes are particularly powerful, because a large share of matching
queries can be evaluated solely on the index structure. Only when additional

12 T. Härder and C. Mathis

attributes/elements are needed for output, access to the disk-based document is
inevitable. This is even true when CAS indexes refer to documents in po format,
i. e. with virtualized structure part. In a unique CAS index, all entries have
the same PCR, while in a homogeneous collective index, the entries may have
varying PCRs, i. e., they may refer to different path classes. For the heterogeneous
collective CAS index, the index predicate p may be generalized to p = p1 ∨ ... ∨
pi∨...∨pn where the pi are simple path predicates. A generic CAS index contains
all values of a certain type, e. g., p = //*.

In [Mathis 09], XTC’s indexing mechanisms are matched against the list of
desiderata and their performance is evaluated in a systematic way, which con-
firms that “minimality” of the right concepts and careful index implementation
guarantee efficient and cost-effective solutions.

5 Implementing Path Processing Operators

Path expressions occur frequently in XML queries. Special path processing op-
erators (PPOs) for path matching are necessary at the level of any XDBMS’s
physical algebra. For PPO evaluation, the document itself or secondary index
structures can be accessed. We distinguish navigational, join-based, and index-
based PPOs:

– The first group of operators is also the most expressive one: every path
expression in a query can be evaluated by navigations on the document.
Compared to join-based and index-based methods, they are, due to ran-
dom access patterns, often enough the group of operators with the lowest
performance. Hence, navigational primitives are a “fallback solution”, when
specific operators of the other two groups are missing or cannot be applied
to evaluate a certain path expression.

– Join-based operators stream through the document or over an element index
and evaluate path expressions by matching structural relationships among
the streamed nodes. Compared to navigational methods, they often provide
for better performance. However, their use is restricted to certain XPath
axes. The two most prominent representatives for this group are structural
joins (STJ) and holistic twig joins (HTJ). Especially holistic twig joins have
gained much attention in the literature and many variations of the original
algorithm [Bruno 02] have been proposed (see Figure 6).

– The third group of operators provides access to the XML path indexes pre-
sented in the previous section. Typically, index-scan operators embody the
fastest way to match a path. However, they have yet again a reduced ex-
pressiveness compared to join-based operators, because join-based operators
can match arbitrary branching path patterns and index-based operators can
only match linear paths (without branches).

For PPOs, the situation in the literature is quite similar to what we find for
indexing proposals: Many proposals exist, but most of them lack a “system
context”. They only consider the pure or abstract algorithmic path matching

Key Concepts for Native XML Processing 13

Algorithms for
Holistic Twig Joins

axes connectors predicates output input

p
h
a
se

s

d
e
sc
e
n
d
a
n
t

ch
il
d

o
p
ti
o
n
a
l
e
d
g
e
s

a
n
d

o
r

n
o
t

e
x
p
re

ss
io
n
s

fi
lt
e
rs

p
o
s.

p
re

d
ic
a
te

s

p
ro

je
c
ti
o
n

g
ro

u
p
in
g

d
o
c
u
m
e
n
t/

e
le
m
e
n
t
in
d
e
x

p
a
th

in
d
e
x
e
s

PathStack [Bruno 02] - +

PathStack¬ [Jiao 05] - + +

TwigStack [Bruno 02] 2 + + +

TwigStackList [Lu 04] 2 + + +

TwigStackList¬ [Yu 06] 2 + + + +

TJFast [Lu 05] 2 + + + +

iTwigJoin [Chen 05] 2 + + + +

TSGeneric+ [Jiang 03b] 2 + + +

Twig2Stack [Chen 06] 1 + + + + +

TwigList [Qin 07] 1 + + +

TwigOpt [Fontoura 05] 1 + + + + +

Ext. TwigOpt [Mathis 09] 1 + + + + + + + + + + + + +

Fig. 6. Twig algorithms: comparison of functionality

problem, but do not deal with the interplay with other algorithms in the physical
algebra or with the requirements imposed by the XQuery language. These points
are, however, crucial for efficient query processing. To emphasize these forgotten
issues, we will discuss the twig matching algorithm developed for XTC as an
example.

5.1 Twig Matching

A twig is a branching path expression. To illustrate the idea, let us assume the
following sample query:

for $i in doc("departments.xml")//Team
where $i/Emp/Age < 30
return <ratings>{$i//Proj/Rating/text() * 2}</ratings>

For each Team, the query returns the project ratings multiplied by two if the
team has at least one employee of age younger than 30. The structural part of this

14 T. Härder and C. Mathis

query can be represented by a twig (also known as branching path expression),
with paths //Team/Emp/Age and //Team//Proj/Rating/text() branching at
the Team node. Many algorithms have been proposed to simultaneously match
these two path expressions against a document (see Figure 6). However, their
applicability w. r. t. XQuery is quite restricted: matching the structure is only
one half of the work. The other half consists of the evaluation of an existential
comparison, an algebraic expression, an implicit group by (by Team nodes),
projections, and the generation of new XML nodes. Embedding this functionality
directly into the twig matching algorithm is performance critical, because

– predicates can be evaluated as early as possible,
– large and complex intermediate results can be avoided, and
– the number of operators in the query execution plan (QEP) can be reduced.

Another often neglected topic is the integration of secondary index structures.
The query processor should be able to make use of an existing CAS index, for
example on //Team/Emp/Age. Therefore, twig matching has to be integrated
with path index scans.

5.2 Desiderata for Twig Matching Algorithms

These considerations lead to the following list of desiderata, which served as a
catalog of requirements for the twig matching algorithm in XTC:

1. Axes : The twig matching algorithm should support the most frequently oc-
curring child, descendant, and attribute axes.

2. Logical operations : The algorithm should allow to evaluate structural pat-
terns with logical and, or, and not operations.

3. Optional subtree patterns: Due to structural flexibility, subtrees are optional
in XML documents. Similar to outer joins in the relational algebra, the
algorithm should allow to match optional subtrees. Optional subtree patterns
occur frequently in XQuery expressions. An example is given in the above
query: the return statement generates an empty rating node when the path
$i//Proj/Rating/text() does not match (i. e., this path is optional).

4. Projections : The algorithm should allow to return only nodes required as
output. Other nodes should only be generated for internal processing, if
necessary. In our sample query, only Rating nodes are required as output.
All other nodes are internal.

5. Content predicates : The algorithm should allow to evaluate content pred-
icates during processing. This enables predicate push-down. In our sample
query, Age < 30 could be evaluated directly. Non-matching subtrees will not
generate further processing costs.

6. Positional predicates : The algorithm should also allow to evaluate positional
predicates directly during processing.

7. Output expressions : The algorithm should support output expressions, for
example, the application of algebraic expressions or the generation of new
XML nodes. This option avoids the materialization of complex intermediate
results (on which these expressions then would have to be evaluated).

Key Concepts for Native XML Processing 15

8. Grouping: XQuery inherently groups subtrees. In our sample query, all Age
and Rating nodes are implicitly grouped by Team. The algorithm should
allow to return grouped results (as well as the direct evaluation of aggregate
functions on these groups).

9. One-phase algorithm: Some twig pattern algorithms first match all subpaths
in the twig query (1st phase) and then merge these intermediate result paths
(2nd phase). This approach prohibits pipelining (because all subpaths need
to be matched first) and may generate large intermediate results. Therefore,
the algorithm should match twigs in a single phase.

10. Index-scan support : The algorithm should be able to consume XML path
and CAS indexes. Otherwise, path indexes could only be applied, when the
query exactly matches the index definition (which is rarely the case). As-
sume a CAS index on //Team/Emp/Age. Then, we could directly evaluate
the predicate (Age < 30) from our sample query on the index and – with
the help of the SPLIDs and the path synopsis – reconstruct the Team nodes
for further processing in the twig algorithm.

On the basis of the well-known TwigOpt algorithm [Fontoura 05], we developed
a twig matching algorithm providing all these features exploited in QEPs gen-
erated by the XTC system [Mathis 09].

5.3 Implementing the Twig Matching Operator

The Extended TwigOpt algorithm operates on a set of input streams (one for
each twig node) and a set of stacks (again, one for each node). The stacks
keep the current processing state (parts of twig instances already matched). The
performance of this new algorithm is based on the following three observations:

– Input stream abstraction: The algorithm can operate on the document and on
secondary indexes by abstracting the input streams. Path and CAS indexes
introduced in the previous section can – due to the salient concepts SPLID
and path synopsis – reconstruct ancestor nodes on the indexed path to serve
as input for twig matching nodes.

– Skipping: The algorithm can skip large fractions of the input streams by
computing target nodes. Target nodes can be derived from the current state
kept on the internal stacks. If the nodes of an input stream are indexed
(as, for example, the nodes in the document store shown in Section 3), the
streams do not have to be processed sequentially. Rather, the relevant nodes
can be obtained by index look-ups.

– Integrated expressions : Expressions (e.g., projection, grouping, output ex-
pressions, etc.) can be evaluated during twig processing based on the current
state of the stacks. No materialization of intermediate results is necessary.

Figure 6 compares the functionality of our Extended TwigOpt algorithm with
other state-of-the-art approaches. We consider the operator richness provided by
Extended TwigOpt as highly desirable, because the higher the expressiveness,

16 T. Härder and C. Mathis

the more QEP-relevant operations can be embedded into the twig algorithm.
As a consequence, the number of operators can be minimized in a QEP for an
XQuery expression.

6 Conclusions

In this survey, we identified the key concepts guiding query processing at the
physical system level and outlined their implementation in XTC. We did not
find these solutions top-down and in one shot. By observing performance bot-
tlenecks or inappropriate system behavior in early experiments, we could adjust
numerous algorithms in XTC. But removing a bottleneck often revealed another
one at a higher performance level. Hence, we had to iteratively and repeatedly
improve XTC to reach the current system version mature in many aspects. As
outlined, we have identified and are still identifying during this maturing pro-
cess many performance-critical concepts. So far, we have often gained orders of
magnitude in component speed-ups and, as a consequence, dramatic overall per-
formance improvements. Future research will address further enhancements in
autonomic system behavior [Schmidt 08, Schmidt 10] and energy efficiency by
using flash disks and implementing energy-aware algorithms in specific XDBMS
components.

References

[Amer-Yahia 04] Amer-Yahia, S., Du, F., Freire, J.: A Comprehensive Solution to the
XML-to-Relational Mapping Problem. In: Proc. WIDM, pp. 31–38
(2004)

[Arion 08] Arion, A., Bonifati, A., Manolescu, I., Pugliese, A.: Path Summaries
and Path Partitioning in Modern XML Databases. World Wide
Web 11(1), 117–151 (2008)

[Beyer 05] Beyer, K., et al.: System RX: One Part relational, One Part XML.
In: Proc. SIGMOD, pp. 347–358 (2005)

[Beyer 06] Beyer, K., et al.: DB2 Goes Hybrid: Integrating Native XML and
XQuery with Relational Data and SQL. IBM Systems Journal 45(2),
271–298 (2006)

[Bohannon 02] Bohannon, P., Freire, J., Roy, P., Siméon, J.: From XML Schema to
Relations: A Cost-Based Approach to XML Storage. In: Proc. ICDE,
pp. 64–73 (2002)

[Boncz 06] Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J.,
Teubner, J.: MonetDB/XQuery: A Fast XQuery Processor Powered
by a Relational Engine. In: Proc. SIGMOD, pp. 479–490 (2006)

[Bruno 02] Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal
XML Pattern Matching. In: Proc. SIGMOD, pp. 310–321 (2002)

[Chen 03a] Chen, Q., Lim, A., Ong, K.W.: D(k)-Index: An Adaptive Structural
Summary for Graph-Structured Data. In: Proc. SIGMOD, pp. 134–
144 (2003)

[Chen 03b] Chen, Y., Davidson, S., Hara, C., Zheng, Y.: RRXS: Redundancy
Reducing XML Storage in Relations. In: Proc. VLDB, pp. 189–200
(2003)

Key Concepts for Native XML Processing 17

[Chen 05] Chen, T., Lu, J., Ling, T.W.: On Boosting Holism in XML Twig Pat-
tern Matching Using Structural Indexing Techniques. In: Proc. SIG-
MOD, pp. 455–466 (2005)

[Chen 06] Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D., Selçuk
Candan, K.: Twig2Stack: Bottom-Up Processing of Generalized-Tree-
Pattern Queries over XML Documents. In: Proc. VLDB, pp. 283–294
(2006)

[Cooper 01] Cooper, B., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon,
M.: A Fast Index for Semistructured Data. In: Proc. VLDB, pp. 341–
350 (2001)

[DeHaan 03] DeHaan, D., Toman, D., Consens, M.P., Özsu, M.T.: A Comprehen-
sive XQuery to SQL Translation using Dynamic Interval Encoding.
In: Proc. SIGMOD, pp. 623–634 (2003)

[Fiebig 02] Fiebig, T., et al.: Anatomy of a Native XML Base Management Sys-
tem. VLDB Journal 11(4), 292–314 (2002)

[Florescu 99] Florescu, D., Kossmann, D.: Storing and Querying XML Data using
an RDBMS. Bulletin of the Technical Committee on Data Engineer-
ing 22(3), 27–34 (1999)

[Fontoura 05] Fontoura, M., Josifovski, V., Shekita, E.J., Yang, B.: Optimizing Cur-
sor Movement in Holistic Twig Joins. In: Proc. CIKM, pp. 784–791
(2005)

[Georgiadis 07] Georgiadis, H., Vassalos, V.: XPath on Steroids: Exploiting Rela-
tional Engines for XPath Performance. In: Proc. SIGMOD, pp. 317–
328 (2007)

[Goldman 97] Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases. In: Proc. VLDB, pp.
436–445 (1997)

[Grinev 06] Grinev, M., Fomichev, A., Kuznetsov, S.: Sedna: A
Native XML DBMS. In: Wiedermann, J., Tel, G.,
Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOF-
SEM 2006. LNCS, vol. 3831, pp. 272–281. Springer,
Heidelberg (2006)

[Härder 07a] Härder, T., Haustein, M.P., Mathis, C., Wagner, M.: Node Label-
ing Schemes for Dynamic XML Documents Reconsidered. Data &
Knowledge Engineering 60(1), 126–149 (2007)

[Härder 07b] Härder, T., Mathis, C., Schmidt, K.: Comparison of Complete and
Elementless Native Storage of XML Documents. In: Proc. IDEAS,
pp. 102–113 (2007)

[Härder 10] Härder, T., Mathis, C., Bächle, S., Schmidt, K., Weiner, A.M.: Es-
sential Performance Drivers in Native XML DBMSs (keynote paper).
In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B.
(eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 29–46. Springer, Heidel-
berg (2010)

[Haustein 07] Haustein, M.P., Härder, T.: An Efficient Infrastructure for Native
transactional XML Processing. Data & Knowledge Engineering 61(3),
500–523 (2007)

[He 04] He, H., Yang, J.: Multiresolution Indexing of XML for Frequent
Queries. In: Proc. ICDE, pp. 683–692 (2004)

[Jagadish 02] Jagadish, H.V., et al.: TIMBER: A Native XML Database. VLDB
Journal 11(4), 274–291 (2002)

18 T. Härder and C. Mathis

[Jiang 02] Jiang, H., Lu, H., Wang, W., Yu, J.X.: Path Materialization Revis-
ited: An Efficient Storage Model for XML Data. Australian Comp.
Science Comm. 24(2), 85–94 (2002)

[Jiang 03a] Jiang, H., Lu, H., Wang, W., Ooi, B.C.: XR-Tree: Indexing XML
Data for Efficient Structural Joins. In: Proc. ICDE, 253–264 (2003)

[Jiang 03b] Jiang, H., Wang, W., Lu, H., Yu, J.X.: Holistic Twig Joins on Indexed
XML Documents. In: Proc. VLDB, pp. 273–284 (2003)

[Jiao 05] Jiao, E., Ling, T.W., Chan, C.Y.: PathStack¬: A Holistic Path Join
Algorithm for Path Query with Not-Predicates on XML Data. In:
Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS,
vol. 3453, pp. 113–124. Springer, Heidelberg (2005)

[Kaushik 02a] Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering
Indexes for Branching Path Queries. In: Proc. SIGMOD, pp. 133–144
(2002)

[Kaushik 02b] Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting Local
Similarity for Indexing Paths in Graph-Structured Data. In: Proc.
ICDE, pp. 129–138 (2002)

[Kaushik 04] Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ramakrishnan, R.:
On the Integration of Structure Indexes and Inverted Lists. In: Proc.
SIGMOD, pp. 779–790 (2004)

[Kwon 05] Kwon, J., Rao, P., Moon, B., Lee, S.: FiST: Scalable XML Document
Filtering by Sequencing Twig Patterns. In: Proc. VLDB, pp. 217–228
(2005)

[Lee 00] Lee, D., Chu, W.W.: Constraints-Preserving Transformation from
XML Document Type Definition to Relational Schema. In: Laender,
A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920,
pp. 641–654. Springer, Heidelberg (2000)

[Li 01] Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path
Expressions. In: Proc. VLDB, pp. 361–370 (2001)

[Li 06] Li, H.-G., Alireza Aghili, S., Agrawal, D., El Abbadi, A.: FLUX:
Content and Structure Matching of XPath Queries with Range Pred-
icates. In: Amer-Yahia, S., Bellahsène, Z., Hunt, E., Unland, R., Yu,
J.X. (eds.) XSym 2006. LNCS, vol. 4156, pp. 61–76. Springer, Hei-
delberg (2006)

[Li 08] Li, C., Ling, T.W., Hu, M.: Efficient Updates in Dynamic XML Data:
from Binary String to Quaternary String. VLDB Journal 17(3), 573–
601 (2008)

[Loeser 09] Loeser, H., Nicola, M., Fitzgerald, J.: Index Challenges in Native
XML Database systems. In: Proc. BTW. LNI, vol. 144, pp. 508–523
(2009)

[Lu 04] Lu, J., Chen, T., Ling, T.W.: Efficient Processing of XML Twig Pat-
terns with Parent Child Edges: a Look-Ahead Approach. In: Proc.
CIKM, pp. 533–542 (2004)

[Lu 05] Lu, J., Chen, T., Ling, T.W.: TJFast: Effective Processing of XML
Twig Pattern Matching. In: Proc. WWW, pp. 1118–1119 (2005)

[Mang 03] Mang, X., Wang, Y., Luo, D., Lu, S., An, J., Chen, Y., Ou, J., Jiang,
Y.: OrientX: A Schema-based Native XML Database System. In:
Proc. VDLB, pp. 1057–1060 (2003)

[Mathis 09] Mathis, C.: Storing, Indexing, and Querying XML Documents in Na-
tive XML Database Management Systems. Ph. D. Thesis, Verlag Dr.
Hut (2009)

Key Concepts for Native XML Processing 19

[May 06] May, N., Brantner, M., Böhm 0002, A., Kanne, C.-C., Moerkotte,
G.: Index vs. Navigation in XPath Evaluation. In: Amer-Yahia, S.,
Bellahsène, Z., Hunt, E., Unland, R., Yu, J.X. (eds.) XSym 2006.
LNCS, vol. 4156, pp. 16–30. Springer, Heidelberg (2006)

[Mchugh 97] Mchugh, J., Abiteboul, S.: Lore: A Database Management System for
Semistructured Data. In: SIGMOD Record, vol. 26, pp. 54–66 (1997)

[Meier 02] Meier, W.: eXist: An Open Source Native XML Database. In:
Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS
2002. LNCS, vol. 2593, pp. 169–183. Springer, Heidelberg (2003)

[Miklau 09] Miklau, G.: XML Data Repository (Feburary 2009),
http://www.cs.washington.edu/research/xmldatasets/

[Milo 99] Milo, T., Suciu, D.: Index Structures for Path Expressions. In: Beeri,
C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 277–295.
Springer, Heidelberg (1998)

[O’Neil 04] O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.:
ORDPATHs: Insert-Friendly XML Node Labels. In: Proc. SIGMOD,
pp. 903–908 (2004)

[Prakash 06] Prakash, S., Bhowmick, S.S., Madria, S.: Efficient Recursive XML
Query Processing Using Relational Database Systems. Data &
Knowledge Engineering 58(3), 207–242 (2006)

[Prasad 05] Hima Prasad, K., Sreenivasa Kumar, P.: Efficient Indexing and
Querying of XML Data Using Modified Prüfer Sequences. In: Proc.
CIKM, pp. 397–404 (2005)

[Projects 08] Financial XML Projects.: XML on Wall Street (2008),
http://lighthouse-partners.com/xml

[Qin 07] Qin, L., Yu, J.X., Ding, B.: TwigList: Make Twig Pattern Matching
Fast. In: Proc. DASFAA, pp. 850–862 (2007)

[Rao 04] Rao, P., Moon, B.: PRIX: Indexing And Querying XML Using Prüfer
Sequences. In: Proc. ICDE, pp. 288–297 (2004)

[Schmidt 08] Schmidt, K., Härder, T.: Usage-driven Storage Structures for Native
XML Databases. In: Proc. IDEAS, pp. 169–178 (2008)

[Schmidt 10] Schmidt, K., Härder, T.: On the Use of Query-driven XML Auto-
Indexing. In: Proc. SMDB Workshop, Long Beach, pp. 1–6 (2010)

[Tatarinov 02] Tatarinov, I., et al.: Storing and Querying Ordered XML Using a
Relational Database System. In: Proc SIGMOD, pp. 204–215 (2002)

[Wang 03] Wang, H., Park, S., Fan, W., Yu, P.S.: ViST: A Dynamic Index
Method for Querying XML Data by Tree Structures. In: Proc. SIG-
MOD, pp. 110–121 (2003)

[Wang 05] Wang, W., Jiang, H., Wang, H., Lin, X., Lu, H., Li, J.: Efficient
processing of XML Path Queries Using the Disk-Based F&B Index.
In: Proc. VLDB, pp. 145–156 (2005)

[Yoshikawa 01] Yoshikawa, M., et al.: XRel: A Path-Based Approach to Storage
and Retrieval of XML Documents Using Relational Databases. ACM
Transact. on Internet Technology 1(1), 110–141 (2001)

[Yu 06] Yu, T., Ling, T.W., Lu, J.: TwigStackList¬: A Holistic Twig Join
Algorithm for Twig Query with Not-Predicates on XML Data. In:
Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS,
vol. 3882, pp. 249–263. Springer, Heidelberg (2006)

[Zhang 04] Zhang, N., Kacholia, V., Tamer Özsu, M.: A Succinct Physical Stor-
age Scheme for Efficient Evaluation of Path Queries in XML. In:
Proc. ICDE, pp. 54–63 (2004)

Efficient Decision Tree Re-alignment for
Clustering Time-Changing Data Streams

Yingying Tao and M. Tamer Özsu

University of Waterloo
Waterloo, Ontario, Canada

{y3tao,tozsu}@cs.uwaterloo.ca

Abstract. Mining streaming data has been an active research area
to address requirements of applications, such as financial marketing,
telecommunication, network monitoring, and so on. A popular technique
for mining these continuous and fast-arriving data streams is decision
trees. The accuracy of decision trees can deteriorate if the distribution of
values in the stream changes over time. In this paper, we propose an ap-
proach based on decision trees that can detect distribution changes and
re-align the decision tree quickly to reflect the change. The technique
exploits a set of synopses on the leaf nodes, which are also used to prune
the decision tree. Experimental results demonstrate that the proposed
approach can detect the distribution changes in real-time with high ac-
curacy, and re-aligning a decision tree can improve its performance in
clustering the subsequent data stream tuples.

1 Introduction

Traditional DBMSs are successful in many real-world applications where data
are modeled as persistent relations. However, for many recent applications, data
arrive in the form of streams of elements, usually with high arrival rates. Tech-
niques for traditional database management and data mining are not suited for
dealing with such rapidly changing streams and continuous queries that run on
them. Examples of such applications include financial marketing, sensor net-
works, Internet IP monitoring, and telecommunication [20,23,22,21].

Significant research has been done in mining data streams, with the goal of
extracting knowledge from different subsets of one data set and integrating these
generated knowledge structures to gain a global model of the whole data set
[9]. Clustering is one of the most important data/stream mining techniques. It
groups together data with similar behavior. Many applications such as network
intrusion detection, marketing investigation, and data analysis require data to
be clustered.

2 Motivation

Use of decision trees is one of the most popular clustering techniques. Compared
to other clustering techniques such as K-means [12,16], decision tree models are

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 20–43, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient Decision Tree Re-alignment 21

robust and flexible. There are many decision tree construction algorithms that
construct a decision tree using a set of data as training examples, where leaf
nodes indicate clusters, and each non-leaf node (called a decision node) specifies
the test to be carried out on a single-attribute value. New data can be clustered
by following a path from the root to one leaf node.

Most decision tree generation algorithms make the assumption that the train-
ing data are random samples drawn from a stationary distribution. However,
this assumption does not hold for many real-world data streams. Typically, fast
data streams are created by continuous activities over a long period of time,
usually months or years. It is natural that the underlying processes generating
them can change over time and, thus, the data distribution may show important
changes during this period. Examples include applications for monitoring stock
prices, network bandwidth usage, foreign currency exchange rates, holiday effect
on sales, and so on. This issue is referred to as data evolution, time-changing
data, or concept-drifting data [1,14,17,24].

Distribution changes over data streams has great impact on a decision tree
model. A decision tree built previously may not be efficient or accurate when the
data evolve. Hence, techniques for detecting distribution changes in data streams
and adjusting the existing decision tree to reflect these changes are required.

A naive extension is to rebuild the decision tree from scratch when a distri-
bution change is detected. Since it may take a long time to re-collect training
samples for rebuilding a decision tree, this solution is impractical. An alternative
solution is to reconstruct the decision tree incrementally, so that the tree can be
adaptive to the changes. Some previous approaches adjust an existing decision
tree when the distribution of the stream changes by replacing the affected leaf
nodes by subtrees to maintain accuracy [11,14,15]. However, this approach may
lead to serious inefficiency in clustering.

Consider a simple scenario. An import-export company in the US uses a data
stream management system to monitor all its transactions with Canada. The
company wants to monitor its transactions and the exchange rate when each
transaction is made. Hence, the decision tree should be built using currency
exchange rates as the criteria for each decision node in the tree. Assume the
data stream starts at a time when the exchange rate is about 1:1.6 US dollars to
Canadian dollars. If the US dollar becomes weaker over time, leaf nodes in the
original decision tree will be replaced by sub-trees to reflect this change. Over
time, the decision tree may have a form similar to the one shown in Figure 1.

Notice the problem here: as the data stream continues, the most recent data
will fall in the clusters (leaf nodes) at the lowest level, i.e., the two leaf nodes
under decision node “rate >1.2”. As the tree gets deeper, clustering becomes
increasingly inefficient.

Based on this insight, a new decision tree-based approach is proposed for
mining time-changing data streams. The approach can be summarized as follows.
The decision tree is continuously monitored and a synopsis is maintained at each
leaf node. This synopsis indicates the number of data elements that fall in this
cluster in certain time periods. If most of the recent data fall in certain leaf

22 Y. Tao and M.T. Özsu

rate > 1.6?

Y

Y Y

Y

Y

Y

N

N N

N

N

N

rate > 1.7?
rate > 1.5?

rate > 1.4?

rate > 1.3?

rate > 1.2?

Fig. 1. Example of a decision tree based on exchange rates

nodes (clusters), while other leaf nodes are barely touched, then this could imply
a distribution change. Hence, the tree is re-aligned to reflect this change.

This approach is independent of the underlying tree construction method. Re-
alignment does not affect the accuracy of a decision tree, since none of the gain
functions on the decision nodes is modified, while the efficiency will be increased
for concept-drifting data. The overhead introduced in this technique is the time
to re-align the tree, and the memory used for keeping synopsis on leaf nodes.

2.1 Summary of Contributions

The contributions of this paper are as follows:
– We propose a new method of detecting distribution changes based solely

on timestamps and sliding windows; hence, the change can be detected in
real-time with very little overhead.

– We propose a decision tree re-alignment technique that is independent of the
underlying decision tree construction method. Our technique adds adaptivity
to changes in the existing decision tree, and can considerably improve the
performance of the decision tree when distribution changes.

– Our heuristics-based approach provides a novel way for tree-pruning.
– We can improve any two of the three major criteria for decision trees (accu-

racy, efficiency, and tree-size) with no impact on the third one.

The rest of the paper is organized as follows. In Section 3, we discuss the re-
lated work on change detection and clustering time-changing stream. Section 4
discusses our technique for detecting distribution changes in data streams. In
Section 5, an algorithm for re-aligning a decision tree is proposed. Section 4
describes an approach for pruning a decision tree effectively. The experimental
results are presented in Section 7. We conclude the paper in Section 8.

3 Related Work

The clustering problem can be viewed as partitioning the data into groups.
The most similar data are grouped into clusters. There are different algorithms

Efficient Decision Tree Re-alignment 23

defined for clustering, among which are those that use neural networks, genetic
algorithms, nearest neighbor algorithms, and so on. Clustering algorithms for
stream data mining can be briefly classified into decision tree based and K-Mean
approach.

K-Mean (or K-Median) problem is to find k centers in a set of n points so as to
minimize the sum of distances from data points to their closest cluster centers.
Charikar et al. propose a K-mean algorithm for the stream clustering problem
[4]. This algorithm uses at most k clusters at all times and modifies the clustering
solution using a very restricted set of operations. These operations do not allow
an existing cluster to be broken up. Charikar and Panigrahy further improve
this algorithm by minimizing the sum of cluster diameters [5]. The improved
algorithm requires linear space and achieves a constant factor approximation
but also increases the number of centers by a constant factor.

Aggarwal et al. introduce a dynamic data stream clustering algorithm using
K-means [2]. The idea is to periodically store summary statistics in snapshots.
By analyzing these statistics, one can have a quick understanding of current
clusters. However, if data are evolving, the model has to be revised off-line by
an analyst.

Most K-mean algorithms have large space requirements and involve random
access to the input data. Aside from these disadvantages, K-mean approaches
also suffer from the well-known problems such as the fixed number of clusters
and high computational cost. Compared to K-mean approaches, decision tree-
based techniques are more flexible with non-fixed number of clusters; only a
small amount of data are required for building a decision tree; and the decision
tree can be maintained incrementally. Therefore, decision tree-based clustering
approaches are more suitable for mining time-changing data streams.

For stream mining techniques using decision trees, a common solution for
detecting and handling time-changing data is to recalculate the gain/loss peri-
odically for a newly arrived data set using the existing classifier. If this gain/loss
exceeds a threshold value, it is accepted that the distribution of the data has
changed and that the old model no longer fits the new data [7,10]. When a dis-
tribution change occurs, one solution is to rebuild the tree. However, rebuilding
has a large overhead and for a data stream with a high arrival rate, it may not
be feasible.

Domingos et al. study the problem of using decision trees over sliding windows
on data streams [6]. They determine the upper bound for the learner’s loss in each
of the clustering steps by a function in number of data items to be examined. A
decision tree-based clustering technique called Very Fast Decision Tree (VFDT)
is then proposed using this upper bound determination function. VFDT is I/O
bound in that it mines samples in less time than it takes to input them from
disk. VFDT does not store any sample (or parts) in main memory so it only
uses space proportional to the size of the tree. By seeing each sample only once,
VFDT does not require samples from an online stream to be stored. However,
VFDT is not sensitive to distribution changes and, hence, does not support
time-changing data streams.

24 Y. Tao and M.T. Özsu

Hulten et al. propose the CVFDT algorithm [14] based on VFDT with the
ability of detecting distribution changes and re-adjusting the decision tree model
for the new distribution. CVFDT reflects the distribution changes in real-time by
replacing leaf nodes that seem to be out-of-date with an alternate subtree. Gama
et al. point out that CVFDT algorithm cannot deal with numerical attributes
and propose an algorithm to extend it [11].

Jin and Agrawal present another approach for constructing a decision tree
that can handle numerical attributes [15]. In their approach, the decision tree
is also constructed by repeatedly replacing leaf nodes with subtrees. However,
as has been discussed in the previous section, both the technique proposed by
Jin and Agrawal and the CVFDT algorithm may lead to an inefficient tree for
time-varying streams.

4 Detecting Distribution Changes

A data stream S is an unbounded sequence of elements 〈s, t〉, where s is data,
and t ∈ T is a monotonically increasing timestamp indicating the arrival time of
the element. Element s can have different forms, such as a relational tuple, or a
set of items, depending on the underlying application that generates S.

4.1 Synopsis Design

Let Ds be a decision tree for clustering data stream S. Let dj (j = 1, 2, ..., q) be
the decision nodes in Ds, and ci (i = 1, 2, ..., m) be the leaf nodes representing
different clusters. Each element in S will be clustered by Ds following a certain
path constructed by a set of decision nodes and one leaf node. For each leaf node
ci in Ds, a synopsis is maintained containing the following:

– γi - The timestamp of the last element that falls in this node; i.e. when a
new element 〈sk, tk〉 is placed in ci, set γi = tk.

– ηi - Total number of elements that are within this cluster represented by ci.
– βi - The average value of timestamps of all elements that fall in ci. βi repre-

sents the “time density” of ci. We will use this value for detecting distribution
changes in the data stream.
Since data streams are unbounded, βi must be maintained incrementally.
Every time a new element 〈sk, tk〉 falls in ci, βi is updated as:

β′
i =

βi ∗ ηi + tk
η′

i

(1)

where β′
i is the new time density and η′

i = ηi +1 is the updated total number
of elements that are in the cluster represented by ci.

4.2 Change Detection

The algorithm for detecting distribution changes is given in Algorithm 1.

Efficient Decision Tree Re-alignment 25

Algorithm 1. Detecting changes in data stream
1: INPUT: Data stream S
2: Decision tree Ds

3: Sliding window W
4: OUTPUT: Modified decision tree D′

s

5: for all new element 〈sk, tk〉 of S that will fall in leaf node cj do
6: if cj is replaced by a subtree with leaf nodes c′j and c′′j then
7: //Set synopsis for c′j and c′′j
8: γ′

i = γ′′
i = tk;

9: η′
i = η′′

i = 0;
10: β′

i = β′′
i = 0;

11: Set c′j and c′′j to be unmarked;
12: else
13: // Update synopsis
14: γj = tk;
15: ηj + +;
16: βj = βj∗ηj+tk

ηj
;

17: if ηj > MinClusterSize then
18: // Check distribution changes
19: distancej = tk − βj ;
20: if distancej < γ then
21: if the re-alignment mark of cj is unmarked then
22: //Start re-aligning
23: Mark ci for re-alignment;
24: Call Algorithm 2;
25: end if
26: else if the re-alignment mark of ci is marked then
27: Reset ci to be unmarked;
28: end if
29: end if
30: for all 〈si, ti〉 belongs to leaf node ci that are moved out of W do
31: //Remove historical data
32: ηi −− ;
33: βi = βi∗ηi−ti

ηi
;

34: end for
35: end if
36: end for

Each time a new element 〈sk, tk〉 falls in a leaf node ci, the timestamp distance
of ci, denoted as tDist, is calculated as

tDisti = tk − βi (2)

This timestamp distance is compared to a threshold value ζ. If tDisti < ζ, it
means that a large portion of newly arrived elements fall in this cluster, which
may imply a distribution change. Hence, this leaf node ci is marked for re-
alignment (lines 19-25 in Algorithm 1). Threshold ζ is a predefined value. The

26 Y. Tao and M.T. Özsu

larger the ζ, the earlier a change in the stream can be detected. However, the
risk for false alarms is also higher, causing more frequent re-alignment, leading
to a higher overhead. Issues related to setting ζ will be discussed in Section 7.2.

For a stream that has continued over a long period, historical data can severely
affect the accuracy and efficiency of the change detection technique. For example,
even when most of the new elements fall in one leaf node ci, if ci contains a large
number of historical data, its timestamp distance may still be larger than the
threshold ζ. Therefore, to reduce the effect of historical data in a cluster, a
time-based sliding window W is applied over the data stream S. Window W
contains a substream of S that arrives within time 〈t, t+Δ〉. Only elements that
are within this sliding window are considered in the calculation of β for each
leaf node. When a data element 〈sk, tk〉 expires from W as W moves forward,
the synopsis for leaf node ci that 〈sk , tk〉 belongs to is updated. The new β′

i is
updated using Equation 1 (lines 30-34).

If a cluster represented by ci contains only historical data, i.e., none of the
elements it contains is within W , then this cluster will have ηi = 0 and βi = 0.
Note that, when a new element 〈sk, tk〉 falls in ci, ci’s synopsis will be updated as
γi = tk, ηi = 1, and βi = tk. Since tDisti = βi − tk will then be 0, a distribution
change will be flagged. This problem is caused by making a decision with very
few samples. The problem arises when a leaf node is replaced by a subtree (as
will be discussed shortly after), since new leaf nodes contain no elements yet. To
solve this problem, a minimum cluster size parameter is introduced to indicate
the minimum number of data elements that a cluster must contain to trigger
change detection on this cluster.

Once a leaf node ci is marked, tDisti may stay below the threshold ζ for a
while. After a certain time period, there are two possibilities:

– The total number of elements that fall in ci is very high, in which case ci

will be replaced by a subtree with one decision node and two leaf nodes c′i
and c′′i (as in [6,11,15]). We then set γ′

i = γ′′
i = tk, η′

i = η′′
i = 0, β′

i = β′′
i = 0,

where tk is the timestamp of the last element that was placed in ci before
the replacement. Re-alignment flags for c′i and c′′i are set to unmarked (lines
6-11).

– dDisti is no longer less than ζ. This may indicate that the distribution change
has ended, i.e., the new distribution has stabilized. Hence, the re-alignment
flags for ci is reset to unmarked (lines 26-27).

4.3 Determining Windows Size

The size of W in terms of time, denoted as Δ, has great impact on the per-
formance of our change detection technique. Larger window size indicates that
more data are collected for detecting changes and, thus, implies a higher accu-
racy on the results. However, since more “old” data reside in a larger window,
a distribution change may not be detected on-time because the historical data
dominate in calculating timestamp distances. Hence, some applications, such
as network monitoring, may require larger Δ, while other applications, such as

Efficient Decision Tree Re-alignment 27

time-critical real-time ones, may prefer a smaller Δ. Note that the actual values
of the elements are not required to be stored within the window for detecting
changes, the time interval of Δ can be very large if needed.

Let α be the minimum accuracy requirement specified by the application, and
N be the average number of new samples received during Δ. Then, the clustering
result should satisfy:

Pr(s clustered in cj | s belongs to ci) ≤ e−(1−α)N (3)

Therefore, a training set can be used to determine the minimum size of Δ based
on Equation 3. Similarly, a training set using the minimum efficiency require-
ment can help to determine the maximum window size. Note that, although these
training procedures may not be efficient for an online process, once Δ is estab-
lished, it usually remains unchanged during the entire lifespan of the stream,
unless the accuracy and efficiency specifications are adjusted by the user.

4.4 Complexity Analysis

Algorithm 1 has complexity O(m) for each new data element, where m is the
total number of out-dated data elements (i.e., the elements that move out of W)
when a new data element arrives. If the arrival rate of the data stream is stable,
then each time a new element arrives only one data element will be removed
from W . For this case, the complexity of Algorithm 1 is O(1). For a data stream
with an unstable arrival rate, m can be greater than 1, indicating that the arrival
rate is decelerating, since there are more out-dated data than new data. Hence,
although Algorithm 1 may take longer for this case, it remains practical, because
when the arrival rate is lower, the clustering process does not require such high
efficiency.

5 Decision Tree Re-alignment

The purpose of re-aligning a decision tree Ds is to move more frequently visited
leaf nodes higher in the tree. By doing this, the overall efficiency of the clustering
process is improved, since most recent elements need to follow shorter paths (i.e.,
pass fewer decision nodes) to be clustered. For example, for the decision tree
shown in Figure 1, recall that most of the recent data elements are in clusters
“rate ≤ 1.2” and “1.2 < rate ≤ 1.3 ”. Any element that needs to reach either
of the clusters must pass five decision nodes (including root). Total number of
decision nodes for reaching both leaf nodes is 10. However, if the tree is re-aligned
to the form shown in Figure 2, the total number of decision nodes for reaching
both of the leaf nodes is three, with one for cluster “rate ≤ 1.2” and two for
cluster “1.2 < rate ≤ 1.3”. To reach the leaf nodes under decision node “rate >
1.7”, six decision nodes need to be passed. However, since these leaf nodes are
barely visited after the distribution change, the efficiency of this decision tree
improves.

28 Y. Tao and M.T. Özsu

Y

Y

N

N

N

N

N

N

Y

Y

Y

Y

rate > 1.2?

rate > 1.3?

rate > 1.6?

rate > 1.7?

rate > 1.4?

rate > 1.5?

Fig. 2. Re-aligned decision tree

5.1 Assigning Weight to Clusters

The problem of re-aligning Ds can be transformed into a problem similar to
the optimal weighted binary search tree construction problem. A weight can
be assigned to each leaf node reflecting the number of recent elements in this
node. The higher the weight, the more recent elements this leaf node contains;
whereas the lower the weight, the more historical elements are within this clus-
ter. An optimal decision tree with the highest weight can then be constructed
using dynamic programming. For the applications where efficiency is the major
concern, a suboptimal decision tree re-alignment technique can be applied.

Let whti be the weight of leaf node ci (i = 1, 2, ..., m). Initialize whti = 1. If a
leaf node ci contains only historical data, i.e., all elements within it are outside
W , we reduce whti by half. Each time W slides through a full length (i.e., every
Δ time period) while no new data element arrives in ci, we continue to reduce
its weight whti by half. Therefore, the smaller whti is, the “older” ci is. Figure
3 gives an example of how the weight should be adjusted for an out-dated leaf
node over time.

Every time ci is changed from unmarked to marked, whti is incremented by
1. Therefore, whether a leaf node has received recent data can be determined
by analyzing the weight attached to it. Based on different applications, a re-
alignment strategy can be either eager or lazy. For an eager strategy, every time

t0

whti =1
(initialize weight of)ci (no new data arrive in)ci

t2t1

whti =1/8 whti =1/16

(stream starts)
S

...
sliding window

t

Fig. 3. Example of the weight change of one out-dated leaf node

Efficient Decision Tree Re-alignment 29

the weight of one leaf node is increased (which indicates a distribution change),
the decision tree is re-aligned. A lazy strategy calls the decision tree re-alignment
procedure periodically or after a certain number of leaf nodes are changed from
unmarked to marked.

Notice that whti only changes when ci changes from unmarked to marked.
For any leaf node cj already marked, its weight will not increase every Δ time
period and the re-alignment procedure will not be invoked. This is because once
a distribution change starts, it may take a while until the new distribution stabi-
lizes. Hence, it takes time for tDistj to become greater than ζ again, or until cj is
replaced by a subtree, as discussed in Section 4. It is unnecessary for re-aligning
the tree before the new distribution stabilizes. If cj is replaced by a subtree with
new leaf nodes c′j and c′′j , then its weight is reset as wht′j = wht′′j = whtj , but
the re-alignment procedure is not invoked immediately.

5.2 Assigning Weight to Decision Tree

Definition 1. For two decision trees Ds and D′
s with decision nodes dj , d′j

(j = 1, 2, ..., q) and leaf nodes ci, c′i (i = 1, 2, ..., m), respectively, we say Ds and
D′

s are functionally equivalent if and only if:

– D′
s is constructed using exactly the same decision nodes and leaf nodes as

Ds, i.e., {d1, ..., dq} = {d′1, ..., d′q} and {c1, ..., cm} = {c′1, ..., c′m}, and
– if a data element 〈sk, tk〉 is in S and if it falls into leaf node ci following Ds,

then it will fall into the same leaf node following D′
s.

Functionally equivalent trees have the same number of decision nodes and leaf
nodes, and the gain functions on decision nodes are identical. They produce
exactly the same results for clustering a data stream. However, the efficiency
of these functionally equivalent trees may be different. The goal for tree re-
alignment is to find the most efficient tree that is functionally equivalent to the
current decision tree Ds. To measure the efficiency of a decision tree, the concept
of the weight for decision trees is introduced.

Definition 2. Let DEP be the depth of Ds and depi be the depth of ci, i.e.,
the number of decision nodes an element needs to pass before it reaches ci. We
define the weight (WHT) of decision tree Ds as:

WHT =
m∑

i=1

(whti × (DEP − depi + 1)) (4)

(DEP − depi + 1) is the level of leaf node ci counting bottom-up. For two leaf
nodes ci and cj with the same weight, if depi < depj (i.e., ci is at a higher
level than cj), then (whti × (DEP − depi + 1)) > (whtj × (DEP − depj + 1)).
Customarily, the level of a node is counted top-down. However, in this case, since
the goal is to push leaf nodes with higher weight to a higher level, the level is
assigned in reverse.

Given two functionally equivalent trees Ds and D′
s with weights WHT and

WHT ′, respectively, if WHT > WHT ′, it may imply that leaf nodes with higher

30 Y. Tao and M.T. Özsu

weights (i.e., most frequently visited) are aligned at higher levels in Ds than in
D′

s. Hence, the goal is to find an equivalent tree of Ds with the highest weight,
i.e., the tree Dbest

s where

WHT best =
m∑

i=1

(whti ∗ (DEP − depbest
i + 1)) = max(WHT) (5)

It is possible that two functionally equivalent trees have the same weight. To
break the tie, the tree with a lower depth is selected.

5.3 Finding Optimal Weighted Decision Tree

For data streams that do not have very high arrival rates and that do not require
frequent re-alignment (i.e., ζ is not set to be very high), dynamic programming
can be applied to find optimal weighted binary trees [18,19]. It has been proven
that the dynamic programming approach for finding optimal weighted binary
tree has time complexity O(n2), where n is the total number of nodes in Ds. The
dynamic programming approach has been shown to admit an implementation
running in O(n log(n)) time [19].

However, for high speed data streams and streams whose distributions change
frequently, quadratic time complexity may not be practical. In these cases, an
approximate algorithm that generates a sub-optimal decision tree using shorter
time is required. Thus, we develop an algorithm with O(m log(m)) time, where
m is the total number of decision nodes in the tree. The algorithm is described
as follows.

Step 1. Calculate the weights of all subtrees in Ds; store the weight of each
subtree on its root. Therefore, each decision node in Ds is assigned a weight
that indicates the weight of the subtree with root di.
Step 2. Select a decision node di with highest weight and re-align Ds, so that
di is the new root of Ds. Update the weights of all subtrees for the re-aligned
tree.
Step 3. Repeat step 2 for all the subtrees in Ds, until Ds is completely “sorted”.
Step 4. Select dj from the sorted Ds as the new root, so that the tree is balanced
in terms of weight. In other words, the weights of the left child and the right
child of dj have minimum difference.
Step 5. Repeat step 4 for all the subtrees in Ds.

Step 1 has O(m) time complexity. The “sorting” process on step 2 and step 3
can achieve O(m) complexity by using the techniques developed by Fredman
[8]. However, because the weights of subtrees need to be updated, the total time
for steps 2 and 3 is O(m log(m)). Similary, steps 4 and 5 also have O(m log(m))
time complexity. Therefore, the complexity of this re-alignment algorithm is
O(m log(m)). Although this algorithm can only generate a sub-optimal tree, it
can be proven that the upper bound of the weight of the resulting sub-optimal
tree is 3 × WHT best. The proof is omitted.

Efficient Decision Tree Re-alignment 31

5.4 Realigning Decision Tree

Let ci be a leaf node of Ds, and dj and d′j be its parent and grandparent nodes.
Let c′i be the direct child of d′j . That is, c′i is one level higher than ci. Starting from
the leaf node on the lowest level and going bottom-up, the following heuristic
rule is applied to each leaf node ci (i = 1, 2, ...m) in Ds.

Heuristic HR1: If the weight of ci is greater than the weight of c′i, i.e., whti >
wht′i, then exchange the position of dj and d′j in Ds by performing a single
rotation.

By applying this heuristic, ci along with its parent dj will be moved to a
higher level than c′i and d′j and, hence, the weight of the new tree is greater than
Ds. This heuristic is repeatedly applied until all the leaf nodes are examined.

Note that the resulting decision tree with a higher overall weight than the
original tree may be imbalanced. A balanced tree may not be the best solution
for many data streams with distribution changes. According to the weight func-
tion in Equation 4, the leaf nodes on very low levels should have low weights,
indicating that their clusters have not received new data for a long time. Hence,
although visiting these leaf nodes may be inefficient, since they are barely visited,
the overall efficiency should not be severely affected. Furthermore, the pruning
method (introduced in the next section) can be adopted to reduce the tree depth
by removing these historical clusters.

The algorithm for assigning weights and eagerly re-aligning the tree is shown
in Algorithm 2.

6 Pruning Decision Tree

There are three major criteria for evaluating decision trees: accuracy, efficiency,
and tree size. As has been mentioned in Section 2, the proposed approach im-
proves the efficiency of a decision tree for concept-drifting data without affecting
its accuracy. A method for effectively reducing the tree size is proposed in this
section. This method reduces the tree size by pruning outdated nodes using the
proposed synopsis.

Most of the decision tree generation and modification techniques over data
streams proposed in literature do not consider the tree size provided that the
tree can fit in main memory. Consequently, the most popular solution is to start
pruning only when a decision tree is too large to fit in memory. This is not
necessarily a good strategy. Since historical data that arrived months or years
ago may no longer be useful after the distribution change, clusters containing
only out-dated data can be deleted even when memory is sufficient. This early-
pruning can result in a reduction in the size and the depth of the tree, leading
to lower overall cost for clustering.

Furthermore, scant attention has been paid in literature to the actual prun-
ing algorithm. One common approach is to remove leaf nodes that contain few
elements. This approach may not be appropriate for data streams that change
over time. For example, assume one leaf node (c1) has more elements than an-
other (c2). Based on the common strategy that leaf nodes with fewer elements

32 Y. Tao and M.T. Özsu

Algorithm 2. Decision tree re-alignment procedure
1: INPUT: Decision tree Ds

2: OUTPUT: Re-aligned decision tree D′
s

3: for all leaf node ci in Ds do
4: //Initialize weights
5: whti = 1;
6: Call change detection algorithm;
7: if ci contains only historical data then
8: whti = whti/2;
9: else if the re-alignment mark of ci is set from unmarked to marked then

10: whti = whti + 1;
11: //Start re-aligning Ds

12: for all leaf node ck in Ds starting from the lowest level do
13: Find its parent dj and grandparent d′

j;
14: Find d′

j’s direct child c′k
15: if whtk > wht′k then
16: Exchange dj and d′

j with a single rotation;
17: end if
18: Move to the leaf node at one level higher;
19: end for
20: end if
21: end for

should be pruned earlier, c2 will be removed. However, for a data stream whose
distribution changes over time, it is possible that most of the elements in c1 had
arrived long time ago, while new data are falling into c2. In this case, a better
solution is to prune c1, since it is less important to the current distribution.

Accordingly, two heuristics are proposed for pruning a decision tree using the
synopsis presented in Section 4 and the weights introduced in Section 5.

Heuristic HR2: Prune leaf nodes with η �= 0 and tDist greater than a certain
threshold.

Recall that η is the number of elements that fall in the cluster represented
by a leaf node. The greater the tDist, the “older” the leaf node is. Hence, by
pruning leaf nodes with tDist greater than a certain threshold, historical clus-
ters are deleted from the tree. The appropriate threshold setting is application
dependent.

Heuristic HR3: Prune leaf nodes with weight wht less than a certain threshold
υ (0 ≤ υ ≤ 1).

The higher υ is, the more leaf nodes will be pruned. For example, if υ is set to
1/2, then the first time one leaf node is considered out-dated, it will be pruned
immediately. If υ is 1/4, then it takes double the time to make this pruning
decision. Hence, when the system resources are limited, υ should be a higher
value, whereas if resources are abundant, υ could be smaller.

Efficient Decision Tree Re-alignment 33

HR2 can be regarded as an eager pruning strategy, and HR3 is a lazy pruning
strategy. For different scenarios, these heuristics can be re-evaluated:

1. every time a new element arrives, when tDist and wht values of all leaf nodes
are recalculated, or

2. when the size, depth, or weight for Ds is less than a predefined threshold, or
3. at certain time intervals, or
4. when memory is insufficient.

After several leaf nodes are deleted, the decision nodes connected to them will
miss one or both of their children. Usually, a decision tree is a full binary tree;
to maintain this property, there are two possible cases:

– Case 1: one child of a decision node da is deleted after pruning.
Let the children of da be ca and c′a (c′a can be a subtree or a leaf node). Let
d′a be the parent of da. Assume ca needs to be pruned according to HR2 or
HR3. If da is the root node (i.e. d′a = NULL), then remove da and set the
root of c′a to be the new root (illustrated in Figure 4(a)). Otherwise, set the
root of c′a to d′a, and remove da (illustrated in Figure 4(b)).

da

ca

ca

da

da
’new root

(old root)

(a) (b)

Fig. 4. Case 1: one child of da is pruned

– Case 2: both children of a decision node da are deleted after pruning.
Let the children of da be ca and c′a. If ca and c′a are to be deleted, replace da

by a new leaf node cb. Set its synopsis as γb = max(γa, γ′
a), ηb = 0, βb = 0.

The weight pb of new leaf cb is reset to 1.

The total cost of the new decision tree may not be optimal after pruning. How-
ever, since the pruning process only modifies historical leaf nodes, recently visited
leaf nodes remain at their current levels. Hence, it is not necessary to re-align
the tree after pruning.

The full algorithm for pruning a decision tree is given in Algorithm 3. Al-
gorithm 3 has complexity O(m) upon each re-evaluation, where m is the total
number of leaf nodes in Ds.

34 Y. Tao and M.T. Özsu

Algorithm 3. Pruning a decision tree
1: INPUT: Decision tree Ds

2: OUTPUT: Modified decision tree D′
s

3: if re-evaluation start then
4: for all leaf node ca in Ds do
5: if ca satisfies HR2 or HR3 then
6: //Depend on which heuristic is adopted
7: //HR1 and HR2 cannot be used at the same time
8: Find ca’s direct parent da;
9: end if

10: if da is the root of Ds then
11: Set da’s another child d′

a as new root;
12: Remove ca and da;
13: else if da’s another child is a leaf node c′a then
14: Create a new leaf node cb;
15: γb = max(γa, γ′

a);
16: ηb = 0;
17: βb = 0;
18: whtb = 1;
19: Replace da with cb;
20: Delete ca and c′a;
21: else
22: //da’s another child is a subtree
23: Find da’s another direct child db;
24: Find da’s direct parent dc;
25: Set db’s direct parent to dc;
26: Delete da and ca;
27: end if
28: end for
29: end if

7 Experiments

To evaluate the performance of the proposed techniques, a series of experiments
are performed. All experiments are conducted on a PC with 3GHz Pentium 4
processor and 1GB of RAM, running Windows XP. All algorithms are imple-
mented in C.

The original decision tree for each data stream used in the experiments is
generated using the CVFDT algorithm [14]. A decision tree generated by the
CVFDT algorithm is adaptive to distribution changes in the stream by replacing
leaf nodes with subtrees. In [14], CVFDT is evaluated with categorical attributes
only. Hence, the technique presented in [15] is also implemented, so that numer-
ical attributes can be used as classifiers on the decision tree. Both techniques
have been discussed in Section 3.

Efficient Decision Tree Re-alignment 35

For a decision tree using numerical attributes as classifiers, when one leaf
node contains too many data elements and needs to be split, the location of
the splitting point is unclear (i.e., the numerical value on the decision node of
the new subtree that replaces this leaf node, see Figure 1 for example). In such
cases, a gain function is used to find the best splitting point. The gain function
is constructed using the Hoeffding bound [13]. In the experiments, for each leaf
node, the splitting procedure starts after at least 5,000 data elements fall in it.
The α value used to calculate the Hoeffding bound is set to 1− 10−6. These two
parameters are set exactly the same as in the experiments of [15].

7.1 Change Detection Evaluation

To evaluate the effectiveness of the proposed change detection technique and
to obtain comparative results, the proposed technique (denoted as TD in the
results) is compared with a distance function-based change detection technique
(DF) proposed in [17]. DF detects changes by calculating the distance of the
current distribution and the distribution of the newly arrived data. The distance
of two distributions can be calculated using different distance measurements;
hence, five distance measurement that are used in [17], the Wilcoxon statistic
(Wil) [25], the Kolmogorov-Smirnov statistic over initial segments (KS) and over
intervals (KSI) [3], and Φ and Ξ statistics [17], are implemented. Their change
detection performances are compared with the proposed TD approach.

Six synthetic data streams (denoted as S1, ..., S6) are used in the experiments.
Each stream contains 2,000,000 points with only one numerical attribute for each
data element. The distribution changes occur every 20,000 points. Hence, there
are 99 true changes in each data stream. S1 is a data stream whose initial dis-
tribution is uniform. The starting distribution of stream S2 is a mixture of a
Standard Normal distribution with some uniform noise. Streams S3, S4, S5 and
S6 contain Normal, Exponential, Binomial, and Poisson distributions, respec-
tively. These are the same data streams used in the experiments of [17].

The arrival speed of this data stream is set to be stable, with one tuple per
unit time. This is done to gain control over the size of the sliding window W ,
since a time-based sliding window will be equal to a count-based one if the
speed of the stream is stable. However, note that the proposed techniques do
not require the data stream to have an even speed. In these experiments, the
time interval Δ of W is set to 500 time units. The minimum cluster size is 100
data elements. Threshold ζ is set as 70 time units. The effect of Δ and ζ settings
on the proposed technique is studied in the next section.

If, at the time when a change is reported, the change point (i.e. the first
element that belongs to the new distribution) remains in W , or it was contained
in W at most Δ time units ago, then this detection is considered to be on-time.
Otherwise, it is considered late. The experimental results of the on-time (O) and
delayed (D) change detection rate are shown in Table 1.

36 Y. Tao and M.T. Özsu

Table 1. Comparison of change detection techniques

TD Wil KS KSI Φ Ξ
O D O D O D O D O D O D

S1 0.42 0.17 0 0.05 0.31 0.30 0.60 0.34 0.92 0.20 0.86 0.19
S2 0.40 0.09 0 2 0 0.15 0.04 0.32 0.16 0.33 0.13 0.36
S3 0.46 0.13 0.10 0.27 0.17 0.30 0.16 0.47 0.16 0.38 0.17 0.43
S4 0.73 0.06 0.12 0.38 0.11 0.38 0.07 0.22 0.07 0.29 0.11 0.46
S5 0.63 0 0.36 0.42 0.24 0.38 0.17 0.22 0.12 0.32 0.23 0.33
S6 0.61 0.02 0.36 0.35 0.23 0.30 0.14 0.25 0.14 0.21 0.23 0.22

These results lead to the following observations:

– The distribution changes are usually detected on-time using the proposed
technique. For other techniques, the change detections are more likely to be
delayed for all test streams except S1.

This is because other techniques need to see the “big picture” of the
stream data distribution to detect changes, while the proposed technique can
quickly locate the clusters (leaf nodes) where changes start without waiting
until the new distribution is fully visible.

– The proposed technique performs much better than others for streams S4,
S5 and S6. Furthermore, for these streams, most of the distribution changes
are detected on-time.

S4 has exponential distribution and S5 and S6 have discrete distribu-
tions. In all three cases, the distribution changes are severe, i.e., the new
distribution is considerably different than the old one. These results indicate
that the proposed technique performs best for data streams that may have
severe distribution changes (such as detecting fraud, instrument failure, and
virus attacks).

– For data streams S1, S2 and S3, the proposed technique may not perform
better than other techniques on the total number of changes detected (even
slightly worse in a few cases). This is because these three streams have rel-
atively slow and smooth distribution changes. For these cases, the efficiency
of the proposed technique can only be improved by increasing ζ. However,
this increases the chance of false detection, as will be shown in next section.

To evaluate the false detection rate, all six techniques are applied on five streams
with 2,000,000 points each and no distribution changes. The results of the total
number of false detections on all five streams are shown in Table 2. These results
reveal that the proposed technique has a lower false detection rate than most of
other techniques.

The experimental results for run time comparison of these techniques is not
given. As mentioned in Section 4, the proposed change detection algorithm has a
worst case complexity of O(m), where m is the number of out-dated data when
new data arrive. Usually m is not a large value unless there is a severe burst in
the stream. For data streams with steady arrival rates, the time complexity of

Efficient Decision Tree Re-alignment 37

Table 2. Number of false alarms

TD Wil KS KSI Φ Ξ

False alarms 26 40 40 49 18 36

Algorithm 1 is O(1). KS and KSI have O(log(m1 + m2)) time complexity [17],
where m1 and m2 are the sizes of a pair of sliding windows. The complexity of
computing Wilcoxon is O(m1 + m2), and the computation time for ΦA and ΞA

is O([m1 + m2]2). Notice that multiple pairs of sliding windows are used in [17]
with different sizes; some pairs may have very large window sizes for detecting
distribution drifts. Hence, the time complexity of the proposed technique is lower
than these techniques.

7.2 Varying Distance Threshold and Sliding Window Interval

To analyze the effect of different Δ and the distance threshold ζ settings on
change detection, the proposed approach is applied on data streams S1 − S6

used in the previous experiments with various settings:

– Keep ζ = 70 time units unchanged, adjust Δ from 300 time units to 800 units
by increasing Δ 100 time units each time. Figures 5(a) and 5(b) show the
results of the number of changes detected on-time and delayed, respectively.

– Fix Δ to 500 time units, and vary the value of ζ from 30 to 150 time units in
increment of 20 units. Figures 6(a) and 6(b) show the results of the number
of changes detected on-time and delayed, respectively.

These results lead to the following observations:

– Increasing Δ may result in a reduction in the number of on-time change
detections. This is because, as Δ increases, more “old” data are involved in
calculating the distance. Hence, it is more difficult to have the distance less
than threshold ζ. However, because the definition of “on time” depends on
Δ, a larger Δ implies a larger W and, thus, the number of changes detected
on-time may increase.

– Larger ζ values may increase the number of changes detected on-time. How-
ever, notice that some of the distribution changes detected may be false.

– It is unclear how the number of delayed change detections will vary when
adjusting Δ or ζ.

Experiments are also conducted for studying how Δ and ζ can affect the false
alarm rate, using the same five stable data streams used in Section 7.1. The
results are shown in Table 3 and Table 4. From these results, it can be seen that
decreasing Δ or increasing ζ may lead to high false alarm rates.

38 Y. Tao and M.T. Özsu

(a) On-time detections

(b) Delayed detections

Fig. 5. Performance of our change detection technique with Δ varied

Efficient Decision Tree Re-alignment 39

(a) On-time detections

(b) Delayed detections

Fig. 6. Performance of our change detection technique with ζ varied

40 Y. Tao and M.T. Özsu

Table 3. Number of false alarms changing Δ

Δ 300 400 500 600 700 800
False alarms 30 26 26 21 12 10

Table 4. Number of false alarms when ζ varies

ζ 30 50 70 90 110 130 150
False alarms 11 15 26 28 32 43 49

7.3 Efficiency Comparison of Re-aligned and Original Tree

To verify the efficiency of the proposed decision tree re-alignment technique, we
apply both the change detection algorithm (Algorithm 1) and the decision tree
re-alignment algorithm (Algorithm 2) on the six data streams (S1−S6) using the
same parameter and threshold settings as in Section 7.1. The efficiency of the
original decision trees Di (i = 1, ..., 6) and the re-aligned trees D′

i are measured
using the weights WHTi and WHT ′

i , as described in Section 5. For each data
stream Si, every time a change is detected, the decision tree is re-aligned and
ratioj = WHT ′

i/WHTi is recorded, where j indicates the j-th change being
detected. Notice that although the original tree Di does not change during pro-
cessing, each time WHT ′

i is calculated, WHTi also needs to be updated, because
the weights attached to some leaf nodes may have changed. The average ratio
Avg(WHT ′

i/WHTi) = r1+r2+...+rq

q (where q is the total number of changes de-
tected) is used to estimate the overall efficiency improvement of the decision tree
re-alignment algorithm on each data stream.

The results are shown in Table 5. These results indicate that the efficiency of
each decision tree is greatly improved after re-alignment.

Table 5. Efficiency improvement of our decision tree re-alignment algorithm

Streams S1 S2 S3 S4 S5 S6

Avg(WHT ′
i/WHTi) 4.67 3.65 7.01 8.69 7.10 4.72

7.4 Performance Comparison of Optimal and Sub-optimal Tree
Re-alignment Strategies

In Algorithm 2 for decision tree re-alignment, an approximate algorithm that
generates a sub-optimal tree is adopted. This is for the purpose of increasing the
efficiency of the decision tree re-alignment process for streams with high arrival
rates. However, if the speed of the data stream is not extremely high and the
re-alignment process is not triggered frequently, the dynamic programming ap-
proach can be applied to generate an optimal tree. To compare the performance
of both sub-optimal and optimal re-alignment approaches, we implement the
dynamic programming approach for tree re-alignment and apply it on streams

Efficient Decision Tree Re-alignment 41

Table 6. Efficiency improvement of using dynamic programming

Streams S1 S2 S3 S4 S5 S6

Avg(WHT ′
i/WHTi) 5.29 4.13 7.66 11.00 8.83 5.56

Table 7. Time of dynamic programming and sub-optimal approach

Streams S1 S2 S3 S4 S5 S6

Dynamic Programming (time unit) 313 269 370 575 661 396
Sub-optimal (time unit) 14 21 32 27 30 13

S1−S6. The performance and time comparison results are shown in Table 6 and
Table 7.

From Tables 5 and 6, it is clear that the average performance increment of
the optimal decision tree over the sub-optimal tree is 17%. The sub-optimal re-
alignment approach is on average 19.92 times faster than dynamic programming.

7.5 Pruning Heuristics Evaluation

A data stream that has only one numerical attribute is generated for evaluating
the power of the proposed pruning heuristics. Data arrive at a rate of one element
per time unit. The value of the data element grows over time. Hence, the decision
tree will grow increasingly deeper as leaf nodes keep splitting and there will be
a large number of historical clusters. The pruning procedure is triggered when
the height of the decision tree is greater than a threshold (set to 12 in this
experiment). Δ is set to 500 time units. For heuristic HR2, the distance threshold
is set to 1500 time units. For heuristic HR3, when the weight of one leaf node is
less than 1/16, this leaf node is pruned. Table 8 demonstrates the results of the
proposed pruning procedure using HR2 and HR3, respectively.

Table 8. Pruning results using HR2 and HR3

Heuristic # of nodes # of nodes tree height
before pruning after pruning after pruning

HR2 35 15 6
HR3 35 21 8

These results demonstrate that the tree size is greatly reduced after prun-
ing. Note that HR2 (eager pruning) usually prunes more nodes than HR3 (lazy
pruning). Which heuristics to choose is an application based decision.

7.6 Running on Real Streams

All experiments conducted so far use synthetic data streams. To test the perfor-
mance of the proposed techniques in practice, a set of experiments is designed
using a real data stream.

42 Y. Tao and M.T. Özsu

The data set used in this set of experiment is the TAO stream from the Tropical
Atmosphere Ocean (TAO) project. Tao data records the sea surface temperature
(SST) from past years. Tao data contains 12218 streams each one of length 962.
Since the streams are too short to fit our experiments, we concatenated them in
the ascending order of the time when these streams were recorded. This is a reason-
able modification because each stream represents the sea surface temperature for
a certain period, thus, the concatenation represents a record for a longer period.

The arrival speed of TAO is set to one tuple per time unit. The decision tree
is built using temperature values as classifier. Minimum cluster size is 100 data
elements. Δ and ζ is set to 500 and 50 time units, respectively.

Experimental results show that 2746 out of the total 3244 distribution changes
in TAO stream are detected using the proposed change detection technique, with
2173 on-time and 573 delayed. The average efficiency improvement after applying
the decision tree re-alignment technique is 8.68. These results demonstrate that
the proposed approach is effective on real data sets.

8 Conclusion

Clustering is one of the most important stream mining tasks. Existing stream
clustering techniques either do not support time-changing streams or suffer from
decreasing performance when a dynamic stream has continued for a long time.
A new decision tree-based technique for detecting distribution changes over dy-
namic data streams is proposed in this paper. A synopsis is maintained for each
leaf node (cluster) in the decision tree. The distribution change is detected by
monitoring the timestamps of data in each cluster using its synopsis.

A novel tree re-alignment approach is proposed for re-aligning the decision
tree after a distribution change occurs. The frequently visited leaf nodes are
moved closer to root after the re-alignment and, thus, the re-aligned tree is more
efficient over the current distribution. Two heuristics for pruning a decision tree
are designed for reducing the memory consumption.

Experiments verify the feasibility of the proposed approach. According to
the results, the proposed change detection technique can report most of the
distribution changes in real time. The decision tree re-alignment technique can
improve the efficiency by at least a factor of 4. It is also shown that the proposed
techniques can be applied to real data streams with good performance.

References

1. Aggarwal, C.: A framework for diagnosing changes in evolving data streams. In:
Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 575–586 (2003)

2. Aggarwal, C., Han, J., Wang, J., Yu, P.: A framework for clustering evolving data
streams. In: Proc. 29th Int. Conf. on Very Large Data Bases, pp. 81–92 (2003)

3. Chakravarti, I., Laha, R., Roy, J.: Handbook of Methods of Applied Statistics.
John Wiley and Sons, Chichester (1967)

4. Charikar, M., Chen, K., Motwani, R.: Incremental clustering and dynamic informa-
tion retrieval. In: Proc. ACM Symp. on Theory of Computing, pp. 626–635 (1997)

Efficient Decision Tree Re-alignment 43

5. Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for
clustering problems. In: Proc. ACM Symp. on Theory of Computing, pp. 30–39
(2003)

6. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proc. 6th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 71–80 (2000)

7. Fan, W., Huang, Y., Yu, P.: Decision tree evolution using limited number of labeled
data items from drifting data streams. In: Proc. 2004 IEEE Int. Conf. on Data
Mining, pp. 379–382 (2004)

8. Fredman, M.: Two applications of a probabilistic search technique: Sorting x + y
and building balanced search tree. In: Proc. ACM Symp. on Theory of Computing,
pp. 240–244 (1975)

9. Gaber, M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: A review. ACM
SIGMOD Record 34(2), 18–26 (2005)

10. Gama, J., Medas, P., Rodrigues, P.: Learning decision trees from dynamic data
streams. In: Proc. 2005 ACM Symp. on Applied Computing, pp. 573–577 (2005)

11. Gama, J., Rocha, R., Medas, P.: Accurate decision tree for mining high-speed data
streams. In: Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, pp. 523–528 (2003)

12. Guha, S., Meyerson, A., Mishra, N., Motwani, R.: Clustering data streams: Theory
and practice. IEEE Trans. Knowledge and Data Eng. 15(3), 515–528 (2003)

13. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58, 18–30 (1963)

14. Hulten, G., Spencer, L., Domingos, P.: Mining time-chaning data streams. In: Proc.
7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 97–
106 (2001)

15. Jin, R., Aggrawal, G.: Efficient decision tree constructions on streaming data. In:
Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
pp. 571–576 (2003)

16. Kaufman, L., Rousseeuw, P.: Finding groups in data: An introduction to cluster
analysis. Addison-Wesley, Reading (1990)

17. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proc.
30th Int. Conf. on Very Large Data Bases, pp. 180–191 (2004)

18. Knuth, D.: Optimum binary search trees. Acta Informatica 1, 14–25 (1971)
19. Knuth, D.: The art of computer programming 3: Sorting and searching. Addison-

Wesley, Reading (1973)
20. Babock, B., et al.: Models and issues in data stream systems. In: Proc. 21st

ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems, pp. 1–
16 (2002)

21. Abadi, D., et al.: The design of the borealis stream processing engine. In: Proc.
2nd Biennial Conf. on Innovative Data Systems Research (2005)

22. Li, J., et al.: Semantics and evaluation techniques for window aggregates in data
streams. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 311–322
(2005)

23. Chen, M., et al.: Path-based failure and evolution management. In: 1st Symposium
on Network Systems Design and Implementation, pp. 309–322 (2004)

24. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams us-
ing ensemble classifiers. In: Proc. 9th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pp. 226–235 (2003)

25. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1,
80–83 (1945)

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 44–56, 2010.
© Springer-Verlag Berlin Heidelberg 2010

REaltime ACtive Heterogeneous Systems -
Where Did We Reach After REACH?

Thomas Kudraß

Fakultät Informatik, Mathematik, Naturwissenschaften
Hochschule für Technik, Wirtschaft und Kultur Leipzig

Postfach 30 11 66
04251 Leipzig

kudrass@imn.htwk-leipzig.de

Abstract. This paper gives a survey of the deployment of ideas from the area of
real-time, active and heterogeneous database systems in the years from 1991 to
2010 as they have been embraced by IT industry. During that time the Database
and Distributed Systems group (DVS) led by Alejandro Buchmann has made
lots of contributions to the development of those ideas by many research
projects. After 20 years it is time to conclude insights how far the ideas of the
first project REACH are still valid for the development of commercial products
and standards. In some cases, industry has taken another direction as it has been
expected. In other cases, the DVS research prototypes were forerunners for
commercial products that are now well-established.

1 The Early History before REACH

The early research topics of Alejandro Buchmann and his colleagues comprised
architectural issues to be resolved when using a database system as an active object in
a distributed environment with real-time capabilities. In the end of the 80s years,
many of those ideas were discussed in the research community but were still far away
from commercial use.

The DOM (Distributed Objects Management) project at GTE Labs addressed the
integration of autonomous, heterogeneous database and non-database systems into a
distributed computing environment. In [Bu90] the idea of an active object space was
sketched to model heterogeneous cooperating information systems. An active object
has been defined by its capability to react autonomously and asynchronously to
incoming events. Object-oriented models were considered best as common model for
federations of heterogeneous systems because of its encapsulation and data
abstraction features.

The late 80s years were characterized by the expectations of a soon retirement of
the then very popular relational DBMS. Therefore, object-oriented data models were
the most favoured to express the behaviour of a system in a heterogeneous
environment. There was a variety of ideas how the ideal object model looks like
regarding its expressiveness and relationship types. But there was still some hope on
an object model standard developed by consortia like the Object Management Group

 REaltime ACtive Heterogeneous Systems - Where Did We Reach After REACH? 45

(OMG) or the Object Database Management Group (ODMG). The notion of active
objects was defined with various forms that have appeared in active database systems
that were another source of inspiration for DOM.

The research of active databases was mainly influenced by some pioneering
projects. Among them HiPAC introduced the event-condition-action (ECA) rule
abstraction. One frequently cited HiPAC paper was titled “Rules are Objects Too”
[DBM88] that promoted the idea to treat rules as first-class objects. One of the
HiPAC ideas was the definition of timing constraints and their assignment to the rules
or to a part of it in order to support application scenarios that require reactions within
a certain time period. In that way, the real-time feature became the third part of the
first Darmstadt research project REACH (REaltime Active Heterogeneous System)
that started in 1992. REACH pursued the idea to really implement lots of the ideas of
HiPAC and DOM to study the real problems in an object-oriented database system
that is active, works in a time-constrained manner when executing queries and can be
the platform for a mediator in an active object space using rules to control overall
consistency or global transactions spanning different components.

The paper is organized as follows: After a retrospective on the early history and the
REACH project we look at the development of concepts of system integration, active
capabilities and global consistency control driven by IT industry. The paper continues
with lessons we have learned from experiences in applying REACH ideas in the
development of large information systems. Finally a short outlook on future issues
concludes the paper.

2 The REACH Project – REaltime ACtive and Heterogeneous

2.1 Real-Time Databases

The idea to constrain the execution of rules relates to the concept of real-time
databases and to the incorporation of the time dimension to specify rules. The ability
to process results in a timely and predictable manner will always be more important
than fast processing. So real-time databases are able to handle time-sensitive queries,
return only temporally valid data, and support priority scheduling. Deadlines are the
constraints for soon-to-be replaced data accessed by the transaction [BB95].
Deadlines can be either observant or predictive. The latter approach is a more stable
way of dealing with deadlines but requires the capability to predict the transaction
behaviour. The response to a missed deadline depends on whether the deadline is
hard, firm or soft. A hard deadline has to be met, otherwise it creates serious
problems. Transactions passing the deadline must be aborted. Firm deadlines are
similar but they measure how important it is to complete the transaction at some point
after the transaction arrives. In real-time environments the data quality decreases as
time progresses between the time data was acquired and the time it is consumed. This
can be expressed by value functions that specify the value of the outcome of the
transaction dependent on the elapsed time. Soft deadlines can be applied best, if
meeting time constraints is desirable but missing deadlines do not cause serious
trouble.

46 T. Kudraß

2.2 Active Databases

An active database system monitors situations of interest and triggers an appropriate
response in a timely manner when they occur. The desired behaviour is expressed by
ECA rules that can be used to specify static or dynamic constraints in a distributed
environment. The monitoring component of an active database is responsible for the
detection of events and their propagation to a rule engine. An event may trigger the
execution of one or more rules. A rule is executed by evaluating the condition and
possibly executing the action. We can define a coupling mode between event and
condition (EC) and between condition and action (CA) as well. The different coupling
modes as they have been introduced in [HLM88] specify the execution of the rule as a
single transaction or even as independent transaction (detached) with consequences to
the required transaction model for the active system beyond flat transactions. In
REACH different rule subclasses that inherit their structure from a RULE superclass
were introduced for different domains: access control, consistency enforcement, flow
control and application-specific rules [BB+93]. So it was possible to process all rules
in a uniform manner.

The event hierarchy of REACH comprised not only changes of the database state
as events but also temporal and transaction events. Due to the underlying object
paradigm events were related to (active) objects such that method calls and operations
on attributes became part of the event hierarchy. By treating transactions as objects,
transaction-specific events were subclasses of a method call event. Besides primitive
events, composite events were defined using logical operators. Any relative temporal
event was defined relative to another event that originated in a committed transaction
– contrary to absolute time events that were classified as primitive events. A specific
aspect was the event consumption semantics when processing lots of event
occurrences together with their parameters. Although events can be considered
instantaneous, the time difference between occurrence and detection of an event has
to be taken into consideration when implementing an active system with event
detection. Events are strictly distinguished from temporal constraints on rules that
determine when a rule execution begins and when the execution of a rule must be
complete.

2.3 Integrating Heterogeneous Databases

Many large companies use various semi-autonomous and heterogeneous database
systems to serve the needs of various application systems. As it has been mentioned
above, one important application domain for REACH was the consistency control in
heterogeneous database that cooperate together in federations with different degrees
of coupling. These federations can be designed in a layered architecture with different
abstraction levels [SL90]. The term interdependent data was coined to imply that two
or more data items stored in different databases are related through a global integrity
constraint [SRK92].

The idea of active objects was to set up an object model that represents the local
components to be controlled. That could be done on a coarse-grained level by viewing
a local component and its interface as an object with methods that represent the
behaviour of the whole system. Relational databases could well be integrated into

 REaltime ACtive Heterogeneous Systems - Where Did We Reach After REACH? 47

such a system by object-relational mapping techniques that make it possible to define
rules on objects that represent relations or single tuples in remote databases.

Many practical problems have to be tackled when dealing with heterogeneous
databases. Since the data items to be managed may be distributed throughout a
network events on them can also be distributed. In a rather conventional approach all
events could be collected and processed by a mediator with active database features as
they have been worked out in REACH [KLB96]. One of the unresolved issues was
how an event service can deal with distributed events in an open environment without
a global clock. Liebig et al. [LCB99] presented algorithms for event composition and
consumption that used accuracy interval based timestamping and discussed the
problems that result from inaccuracy and message transmission delays.

A global system that interacts with components that have been designed
independently has to deal with one main obstacle, the local autonomy of the participant.
In general, autonomy can be characterized as the freedom to make decisions. It
comprises three different categories: structure, behaviour and communication [Ku97].
Structural autonomy covers all design aspects of a system, e.g. its schema and internal
system architecture. The behaviour autonomy describes the capability of a local system
to decide independently about the actions it executes. Actions can be executed at
different local interfaces (e.g., SQL operation or a local operation call) and change the
state of the local database. The behavioural autonomy can be restricted by proscribing
local actions or, vice versa, by enforcing actions that are part of a global transaction
spanning multiple systems. The communication autonomy describes the freedom of a
local system to decide about the information it is willing to provide to the federation.
Among them are: status information at run-time of the system, data and schema
information, and occurred events.

Even if the schema is public there might by some remaining problems to understand
the semantics of the schema elements that is a prerequisite for schema integration
algorithms in tightly coupled integration approaches [RB01]. Alternatively, metadata
about local systems can be used in a global knowledge base in addition to global
integrity rules. In the early REACH prototypes the role of metadata was not completely
analyzed but it was worth doing so, because lots of global knowledge could be
transferred to a metadata base instead of rules.

3 After REACH: Concepts in Distributed Heterogeneous Systems

3.1 Integration Technologies

Object-Oriented Middleware

When the author left the DVS group at the Technical University of Darmstadt 1997
some new paradigms and trends entered the stage in the IT community. The
dominance of relational databases continued, the object-oriented paradigm gained
importance as model for middleware in interoperable systems. In such distributed
computing infrastructures, DBMSs were considered one kind of component over
which distributed applications are built.

As an example, the Common Object Request Broker Architecture (CORBA) was
defined as a standard to enable software components written in multiple languages

48 T. Kudraß

and running on multiple computers to work together [Obj04]. The interface definition
language (IDL) of CORBA specifies interfaces that objects will present to the outside
world. To use different implementation languages mappings from IDL to specific
languages were defined. An Object Request Broker (ORB) is the platform for the
cooperating applications to interact. In addition to providing users with a language
and platform-neutral remote procedure call specification, CORBA defines a landscape
of commonly needed services such as transactions, security, time and events. The
CORBA Event Services support the push model, in which a supplier object initiates
the transfer of event data to consumer objects, as well as the pull model, in which a
consumer of events requests event data from an event supplier. Composite events are
not explicitly defined in the standard. The CORBA specification as the brainchild of a
committee appeared very complex, ambiguous and hard to implement entirely. Thus,
existing ORB implementations were incomplete or inadequate [He08].

There are some other examples of object-oriented middleware that have gained some
popularity. Among them is Java RMI (Remote Method Invocation), the Java
programming interface that performs the object-oriented equivalent of remote procedure
calls. Jini was the more advanced version of RMI with better searching capabilities and
mechanism for distributed object applications [Sun99]. A major competitor of CORBA
was DCOM (Distributed Component Object Model), a proprietary Microsoft
technology for communication among software components distributed across a
network. The difficulties of both CORBA and DCOM technologies to work over the
internet and on unknown and insecure machines hindered their broad acceptance as
middleware standards.

Integration Infrastructures

The integration of heterogeneous systems beyond the communication in a RPC style
was addressed in EAI technologies (Enterprise Application Integration) as they
become popular in the end of the 1990th years. EAI can be considered a framework to
integrate applications within an organization to support business processes that run on
different systems, such as supply chain management, or to enable business
intelligence applications with complex analytical operations over lots of distributed
heterogeneous data [CH+05]. The EAI system can provide a single uniform access
interface to different local application (façade) and can ensure that data of different
sources is kept consistent. This is also known as EII (Enterprise Information
Integration) [HA+05]. An EAI approach avoids point-to-point communication by a
centralized infrastructure that has either a hub-and-spoke or a bus topology.

The latter can be implemented using message-oriented-middleware. The advantage
of a message-based middleware is the decoupling of the sending, receiving and
processing of messages in an asynchronous way. Local applications can preserve
more autonomy (cf. 2.3) and the overall system can be more flexible and failure-
tolerant. The publish/subscribe model brings message publishers together with
message consumers that subscribe messages with certain topics. One of the most
widely used technologies providing publish/subscribe capabilities is the Java Message
Service (JMS) [Sun02]. Since there are two main use cases for EAI, we can
distinguish between mediation and federation scenarios. The mediation scenario
resembles the active object style as it has been conceived in [Bu90, KLB96].
Whenever an interesting event occurs in an application (e.g. data change, end of a

 REaltime ACtive Heterogeneous Systems - Where Did We Reach After REACH? 49

transaction) a component of the EAI broker is notified, necessary actions (e.g. data
propagation) are fired. The federation scenario can be used to shield the user from
local interfaces when business intelligence applications on multiple applications have
to be executed. Message brokers and enterprise service bus systems (ESB) are typical
implementations of the EAI approach.

Data Representation

The coexistence of different data models used by autonomous participants of a
distributed information system made it necessary to think about a suitable format for
data exchange regardless of the used communication protocol. A canonical data
model is considered an independent data model based on a standard data structure. It
must be stated that the idea of distributed objects that communicate via method calls
has become obsolete due to the same reasons why object-oriented database systems
failed to overtake the market. There was no single widely-agreed object model
although there have been standards defined by the Object Management Group. The
OMG Core Object Model with few basic concepts was just an abstraction usable to
define interfaces but required language bindings for every implementation. To
exchange information between cooperating systems a data serialization is necessary to
represent data independently from their original site. For that purpose, XML (together
with XML Schema) was an important milestone. It appears that XML and the use of
XML stylesheets has become the standard for this universal business language that
has been needed for many years.

Service-Oriented Architecture and Business Process Management

XML is commonly used for interfacing services in a service-oriented architecture
(SOA). SOA defines how to integrate disparate applications in a web of autonomous
systems with multiple implementation platforms. It can be considered as the further
development of EAI technologies. A service in a SOA presents a simple interface in
terms of protocols and functionality that abstracts away its underlying complexity.
Users can access independent services without knowledge of the service
implementation. Web Services can implement a service-oriented architecture. The
Web Service Description Language (WSDL) describes the services themselves, while
SOAP describes the communication protocol. Alternative light-weight technologies
can be used to implement a SOA (e.g. REST).

One main purpose of SOA is to allow users to combine chunks of functionality as
they are represented in services to form applications in an agile way (resembling SAP
cross-application technologies). Ideally, services can be used to construct executable
business processes (also known as workflows) that span different organisations.
Standards such as BPMN and WS-BPEL [Obj09] can be used for the definition and
execution of business processes with service calls as process steps. So a common
language to describe long-running activities over heterogeneous systems is available.
The travel reservation example of DOM [BÖ+92] with all dependencies of the
activities can be specified in a convenient way using the BPMN notation. WS-BPEL
supports business transaction by a compensation-based mechanism (long running
transactions). Since we are working in an open environment using the web, closed
nested transactions can not be employed. Instead, compensating activities can be

50 T. Kudraß

executed to undo effects of already finished activities if the overall process has to be
cancelled. Fault and compensation handler can be defined as equivalent to
contingency transactions of the DOM transaction model [BÖ+92].

3.2 Active Capabilities

Business Rules

Looking back at REACH and the active objects, the question remains: Where are the
ECA rules gone? The need for active features is generally accepted. Therefore, so-
called business rules have been incorporated into business processes [Ro03]. The idea
of business rules is similar to that of triggers, they describe invariants that specify
constraints of business aspects, e.g., in a credit application workflow the maximum
loan sum that can be given to a bank customer of a certain category. All business rules
can be maintained in a central business rules repository that should interact with a
workflow engine. Business rules are different from flow logic that is inherent in the
business process. The latter can be found in the process specification as there are
control flow elements available (such as flow objects in BPMN or structured activities
in BPEL). It is a software engineering issue where to place business-related rules.
Alternatively, special decision services that encapsulate a more complex logic could
be integrated as activity into the business process. Database triggers remain an
important part, as they are responsible for local consistency constraints on a (lower)
data level. Business Rule Management Systems (BRMS) have been evolved from rule
engines, based on declarative definitions of business rules. The rule representation is
mapped to a software system for executions. BRMS vendors have been acquired by
big middleware companies because of the obvious need to integrate rules into
business processes, for example: ILOG + IBM = IBM WebSphere ILOG BRMS
[IBM10], Drools + JBoss = JBoss Rules [Jb10]. Thus the business rules approach
gains more importance because it is a key to agile processes with flexible rules that
are interpreted dynamically and may be changed at run-time of the process without
adaptations of services.

Compared to ECA rules, the SQL standard imposes lots of restrictions on database
triggers that consider only database operations as event or action. It is interesting to
note that there is some more emphasis on the role of events in business process
definitions, particularly in BPMN [Obj09]. An event in BPMN is something that
happens (rather than an activity which is something that is done). The current BPMN
standard provides a rich set of event types. We can classify throwing and catching
events that support both scenarios of event-producing and event-consuming
processes. An event can trigger a process as Start event, it can represent the result of a
process as End event, or it is an Intermediate event that can catch or throw triggers.
BPMN supports following event types: Message, Timer (i.e. absolute point in time or
period), Error, Cancel (cancellation of a subprocess), Compensation (compensation of
an activity), Conditional (triggered by a condition), Link (connections to other process
parts), Signal (without specific targets), Terminate (immediate end of all activities
without compensation). In BPMN there exists also a “Multiple” event element, which
represents a choice between a set of events. An arbitrary number of other events can
be connected to the “Multiple” event, which is in fact a complex event. For example,
a message event can be combined with a time event to express the wait for a message
with a timeout.

 REaltime ACtive Heterogeneous Systems - Where Did We Reach After REACH? 51

Event Processing

Complex Event Processing (CEP) is an approach [Lu02] that incorporates concepts of
active databases, middleware and service-oriented architectures. Among them the
issue of composite events and their detection is well-known from early active
database research [CM94, BB+93]. Applications with lots of occurring events such as
network management but also business process management (BPM) have triggered
the development of CEP technologies. CEP must interact with BPM since BPM
focuses on end-to-end business processes. A complex situation to be dealt with can
mostly be considered as a combination of primitive events on a lower abstraction
level. A simple example is calculating an average within a certain time frame based
on data of the incoming events. A similar scenario is the processing of event streams
to identify relevant events within those streams to enable in-time decision making.
Typical applications are stock trading, RFID event processing or process monitoring.
Composite events were just a part of the event hierarchy in REACH, whereas
complex events with a complex detection or calculation algorithm can be considered
more business-oriented in CEP. It is still disputed how far BPM is a natural fit for
CEP which would motivate the integration of CEP technology into BPM.

A second trend emerged some years ago as a complement to the service-oriented
architecture, the event-driven architecture where services can be triggered by
incoming events [Ho06]. Sensing devices such as controllers or sensors can detect
state changes of objects and create events which can then be processed by an active,
i.e. event-driven, system. Such a system typically acts in an open environment
characterized by an unpredictable and asynchronous behaviour. An event-driven
architecture is characterized by applications and systems which transmit events
among loosely coupled software components and services. The pattern recalls the
concept of ECA rules with coupling modes to describe their execution. In an event-
triggered architecture we can distinguish different components: event generator, event
channel and event processing engine. The communication of events is based on the
same principles as asynchronous messaging with queues to be processed later by an
event processing engine.

3.3 Global Integrity Control in Heterogeneous Systems

Master Data Management

The problem of global data consistency in an organization operating a landscape of
heterogeneous information systems has been addressed by the concept of Master Data
Management (MDM). It comprises processes and tools to define and manage non-
transactional data [WK06]. Among them are customer data or product data which are
quite stable and also reference data such as calendars or geographical base data. The
need for MDM is caused by mergers and acquisitions or the organizational autonomy
of departments of a large corporation. The coarse design approach for MDM is to
install a master data hub, a software component that stores the master data and keep it
synchronized with the transactional systems [Wo07]. There are several basic styles of
architecture used for MDM hubs: In the repository approach, the complete collection
of master data is stored in a single database. The applications that use or produce
master data have to be modified to use the master data in the hub instead of the local

52 T. Kudraß

data. The registry approach is the opposite of the repository approach, because none
of the master data is stored in the hub. The master data is maintained in the
application databases, and the MDM hub contains lists of keys to find all related
records in the local databases. The hybrid model, as the name implies, includes
features of both the repository and the registry models, whereby the most significant
attributes of master data are replicated on the hub so that certain MDM queries can be
satisfied directly from the hub database.

Data Quality

The MDM approach is an important technology to implement data quality in a
company. The term data quality considers data in an enterprise-wide context, because
data is considered a production factor and an asset [WZL01]. The Total Data Quality
Management Approach [Wa98] goes far beyond a global integrity control defined by
some rules because the data properties that describe quality include not only
“classical” database attributes such as completeness but also semantic and time-
related aspects that have to be expressed in a knowledge base of a data quality
management system.

4 Conclusions: Where Did We Reach?

When we discussed REACH 18 years ago we underestimated some trends that had
impact on the next research directions. Although we already identified some problems
in that time, their context was narrower and possible solutions for them were more
restricted.

Consider viewpoints in architecture. Although process-oriented information systems
(such as BPM) and data-oriented information systems (such as MDM or Data
Warehouses) should be kept separate in operation, they can be enriched by active
functionality as it has been discussed. Database triggers, business rules, complex events
or rules in a master data hub base can be processed in a similar way but they are on
different abstraction levels. So they have to be implemented in a non-redundant way
avoiding cross-effects. The specification of an open distributed system in terms of
viewpoints as the RM-ODP model provides, combined with system layers [Ku03]
allows us to define the appropriate software architecture with active capabilities.

Rapid growth of events and data. The explosion of data and information driven by
the digitalization and the development of the WWW raises new questions about the
data quality of digital assets and (possibly event-driven) tools to control the quality.
The internet enables lots of people to contribute information to the web as a global
database. Web 2.0 media such as blogs or wikis reflect this trend of the active
participation of users as information producers. The drawback of this development is
a decline of the quality of the published information, it can be erroneous (i.e. with
misspellings), incomplete or outdated. Actually the information quality can be
maintained only for data that is mission-critical for an organization. Global data
integrity has to be defined in different grades, each with a policy that implies the
suitable implementation to ensure the necessary degree of consistency.

 REaltime ACtive Heterogeneous Systems - Where Did We Reach After REACH? 53

Unbundling. We can bring back into use the idea of unbundling that has been
discussed for REACH [ZK96]. Active functionality, like other key features as access
control or transaction management, can be considered a useful but not mandatory
component of a database or information system. When required it must be possible to
enrich the system by an active component, e.g. a business rule or a CEP engine in a
BPM system. The question how far active functionality should be built-in is always a
software engineering issue and depends on the application profile. In some cases it
makes sense to use database triggers, in other cases log-based or message-based
approaches may be superior, for example when managing master data in an
environment of loosely-coupled systems.

The same applies to real-time features. In [BL99] some problems have been
discussed when combining REACH technologies with different goals and requirements
in one system. For example, real-time systems require predictability of resource
consumption and execution time. On the other hand, active databases have to react on
events and trigger rules dynamically, which makes predictability rather difficult. A
second example is the detection delay for complex events in distributed environments,
which may have an impact on the temporal consistency of the data. To solve certain
trade-offs between conflicting system components, unbundling can be an approach for
application-specific solutions.

Services as the new objects. The object paradigm has not gained the broad acceptance
as it was expected when we worked out the REACH ideas. Should we replace “object”
by “service” – and now define rules as services? First, we should understand why
distributed objects and CORBA have failed. On one hand, they provided some
abstraction with regard to the implementation platform and language. However, many
ORB users did not understand the need to model some abstraction layers atop. Even
some component models providing more complex artefacts were not the solution
because they were often too specific and also too complex, e.g. Enterprise JavaBeans in
the Java Enterprise Edition. Like distributed objects, services provide the same
abstraction regarding platform and physical details. They can be design artefacts as well
as executable units of work, typically as web services. They allow loose coupling
between service provider and service user as it is required in most scenarios that connect
multiple parties, even beyond organizational borders. In active systems, a service can be
part of an ECA rule or even represent the whole rule.

Autonomy vs. Quality of Service (QoS). A service level agreement (SLA) is a useful
concept to describe the necessary quality of service a provider has to guarantee. The
requirements on the service agreed herein imply some restrictions on the local
autonomy of the system of the service provider. If a service provider has to guarantee
a certain response time he has to adapt his system, particularly in multi-tenant
applications that are used by independent clients [GK+08]. Besides operational and
availability requirements, data quality can be a key component of an SLA if the
service deals with many data.

With services as generic concept, it is still necessary to solve the whole bunch of
open software architecture issues, for example where to locate consistency
constraints, event composition or execution of business rules. The differentiation of
services into business services or lower-level infrastructure services allows to

54 T. Kudraß

distinguish between low-level events (as they are raised by a sensing device) and
business-level events (that may be the result of a computation). In [ASB10] QoS is
discussed for event-based systems in terms of features they have to provide with an
impact on their autonomy.

Convergence of analytics and processes. The separation of concerns in different
abstraction layers allows us to decide independently on the best way to implement a
multi-tier architecture with active functionality at some level. For example, it would
be possible to define a business rule in a business process with a complex event that is
interpreted as the result of the aggregation of many simple event occurrences stored in
a database. Complex events mark the borderline between analytical and process-
centric systems. There are no restrictions what to define as a service. Even CEP is a
possible service candidate [AS+10]. In this way it recalls the “Rules are Objects Too”
statement [DBM88]. Business process logs can represent the calculation base of
complex events as well as the subject of further analytical, not necessarily event-
driven, applications that measure the process quality.

5 Outlook

There will be some more progress in the development of hardware with major
implications on research in distributed, active and real-time systems.

The growth of event data by enhanced hardware capabilities (e.g., RFID scanners,
sensor networks) to monitor the environment in many scenarios, such as traffic
control or healthcare systems, results in data streams that are processed in a way
different from traditional DBMSs. The term “Internet of Things” refers to the
networked interconnection of everyday objects producing billions of parallel and
simultaneous events.

Data streams need not be stored persistently. Instead, standing queries or event
patterns specify situations an active system has to cope with. As an alternative
platform, main-memory databases are faster than disk-optimized databases, which
make them attractive for applications where response time is critical. The emergence
of solid state disk (SSD) technology that provides higher read performance over
current hard disks will also have an impact on future DBMS architectures. Peripheral
devices such as disk controllers or sensors can behave like a database becoming
ubiquitous smart objects. Those small and mini databases (embedded databases) have
to administrate themselves also known as self-managing, self-healing, always-up.
They mark a trend that is also important to traditional DBMSs [Gr04].

Combining ideas of active and real-time databases applied in a heterogeneous
world as we envisioned it in the REACH project remains a good approach for many
today’s information systems. However, we have to deal with crucial design issues
resulting from the complexity of those systems [BL99]. First it is necessary to
understand the interaction between different base technologies before moving the
boundaries between them towards the goal of a more generic distributed platform
with active and real-time functionality. As we suggested in the paper the future
development will offer lots of further research challenges in this area.

 REaltime ACtive Heterogeneous Systems - Where Did We Reach After REACH? 55

Acknowledgment

I am greatly indebted to my scientific advisor, Professor Alejandro Buchmann, for his
support and for all his suggestions when I was doing my PhD from 1992-97. Many of
the problems and the ideas we discussed in that time appeared in application scenarios
and IT trends I encountered later. In many cases, the REACH ideas were a key to
understand conceptual and architectural issues of system design.

References

[AS+10] Achakeyev, D., Seeger, B., Schäfer, D., Schmiegelt, P.: Complex Event Processing
as a Service. In: GI-Workshop Database as a Service, HTWK Leipzig (2010),
http://fgdb2010.imn.htwk-leipzig.de

[ASB10] Appel, S., Sachs, K., Buchmann, A.: Quality of Service in Event-based Systems. In:
22nd GI-Workshop on Foundations of Databases (GvD), Bad Helmstedt, Germany
(2010)

[BB95] Branding, H., Buchmann, A.: On Providing Soft and Hard Real-Time Capabilities in
an Active DBMS. In: Internat. Workshop on Active and Real-Time Database
Systems, Skovde, Sweden (1995)

[BB+93] Branding, H., Buchmann, A., Kudrass, T., Zimmermann, J.: Rules in an Open
System: The REACH Rule System. In: Proc. of the 1st Internat. Workshop on Rules
in Database Systems (RIDS), Edinburg, Springer, Heidelberg (1993)

[BL99] Buchmann, A., Liebig, C.: Distributed, Object-Oriented, Active, Real-Time DBMSs:
We Want It All – Do We Need Them (At) All? In: Proc. of the joint 24th IFAC/IFIP
Workshop on Real-Time Programming and 3rd Internat. Workshop on Active and
Real-Time Database Systems, Saarland, Germany (1999)

[BÖ+92] Buchmann, A., Özsu, T., Hornick, M., Georgakopoulos, D., Manola, F.: A
Transaction Model for Active Distributed Object Systems. In: Elmagarmid, A. (ed.)
Database Transaction Models for Advanced Applications. Morgan Kaufmann Publ,
San Francisco (1992)

[Bu90] Buchmann, A.: Modelling Heterogeneous Systems as a Space of Active Objects. In:
Proc. of the 4th Internat. Workshop on Persistent Objects, Martha’s Vinyard (1990)

[CH+05] Conrad, S., Hasselbring, W., Koschel, A., Tritsch, R.: Enterprise Application
Integration – Grundlagen, Konzepte Entwurfsmuster, Praxisbeispiele. Spektrum
Verlag, München (2005)

[CM94] Chakravarthy, S., Mishra, D.: Snoop: An Expressive Event Specification Language
for Active Databases. Data and Knowledge Engineering 14(10) (October 1994)

[DBM88] Dayal, U., Buchmann, A., McCarthy, D.: Rules are Objects Too: A Knowledge
Model for an Active Object-Oriented Database System. In: Proc. of the 2nd Internat.
Workshop on Object-Oriented Database Systems, Bad Muenster (1988)

[GK+08] Gmach, D., Krompass, S., Scholz, A., Wimmer, M., Kemper, A.: Adaptive quality of
service management for enterprise services. ACM Transactions on the Web 2(1)
(2008)

[Gr04] Gray, J.: The Next Database Revolution. In: ACM SIGMOD Conference, Paris
(2004)

[HA+05] Halevy, A., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J., Rosenthal, A.,
Sikka, V.: Enterprise information integration: successes, challenges and
controversies. In: ACM SIGMOD Conference, Baltimore (2005)

56 T. Kudraß

[He08] Henning, M.: The rise and fall of CORBA. Communication of the ACM 51(8) (2008)
[HLM88] Hsu, M., Ladin, R., McCarthy, D.: An Execution Model for Active Data Base

Management Systems. In: Proc. of of the 3rd Internat. Conference on Data and
Knowledge Bases, Jerusalem (1988)

[Ho06] van Hoof, J.: How EDA extends SOA and why it is important. V6.0 (2006),
http://soa-eda.blogspot.com

[IBM10] IBM Websphere: What is a BRMS, http://www-01.ibm.com/software/
websphere/products/business-rule-management/whatis/
(retrieved on 24-08-2010)

[Jb10] JBoss Community: Drools 5 – The Business Logic Integration Platform,
 http://www.jboss.org/drools (retrieved on 24-08-2010)

[KLB96] Kudrass, T., Loew, A., Buchmann, A.: Active Object-Relational Mediators. In: Proc.
of the 1st Internat. Conference on Cooperative Information Systems (CoopIS 1996),
Brussels (1996)

[Ku97] Kudrass, T.: Aktive Mechanismen zur Konsistenzsicherung in Förderationen
heterogener und autonomer Datenbanken. Dissertation, infix Verlag (1997) (in
German)

[Ku03] Kudrass, T.: Describing Architectures Using RM-ODP. In: Kilov, H., Baclawski, K.
(eds.) Practical Foundations of Business System Specifications, pp. 231–245.
Kluwer Academic Publishers, Dordrecht (2003)

[LCB99] Liebig, C., Cilia, M., Buchmann, A.: Event Composition in Time-dependent
Distributed Systems. In: Proc. of the 4th Internat. Conference on Cooperative
Information Systems (CoopIS 1999), Edinburgh, Scotland (1999)

[Lu02] Luckham, D.: The Power of Events: An Introduction to Complex Event Processing.
In: Distributed Enterprise Systems. Addison-Wesley, Reading (2002)

[Obj04] Object Management Group: CORBA Home Page (2004),
http://www.corba.org/

[Obj09] Object Management Group BPMN 1.2 – Final Adopted Spccification,
http://www.omg.org/spec/BPMN/1.2/PDF

[RB01] Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4) (2001)

[Ro03] Ross, R.: Principles of the Business Rule Approach. Addison Wesley, Reading (2003)
[SL90] Sheth, A., Larson, J.A.: Federated Database Systems for Managing Distributed

Heterogeneous and Autonomous Databases. ACM Computing Surveys 22, 3 (1990)
[SRK92] Sheth, A., Rusinkiewicz, M., Karabatis, G.: Using Polytransactions to Manage

Interdependent Data. In: Elmagarmid, A. (ed.) Database Transaction Models for
Advanced Applications. Morgan Kaufmann Publ., San Francisco (1992)

[Sun02] Sun Microsystems Inc. Java Message Service Specification Final Release 1.1 (2002)
[Sun99] Sun Microsystems Inc.: Jini Architecture Specification – Revision 1.0 (1999)
[Wa98] Wang, R.: A Product Perspective on Total Data Quality Management. Communications

of the ACM 41(2) (1998)
[WK06] Wolter, R., Haselden, K.: The What, Why, and How of Master Data Management.

Microsoft Corp.,
 http://msdn.microsoft.com/en-us/library/bb190163.aspx

[Wo07] Wolter, R.: Master Data Management (MDM) Hub Architecture. Microsoft Corp.,
http://msdn.microsoft.com/en-us/library/bb410798.aspx

[WZL01] Wang, R., Ziad, M., Lee, Y.: Data Quality. Kluwer, Dordrecht (2001)
[ZK96] Zimmermann, J., Kudrass, T.: Advanced Database Systems: From Monoliths to

Unbundled Components. In: 8th GI-Workshop on Foundations of Databases (GvD),
Friedrichsbrunn, Germany (1996)

Aspects of Data-Intensive Cloud Computing

Sebastian Frischbier and Ilia Petrov

Databases and Distributed Systems Group
Technische Universität Darmstadt, Germany

{frischbier,petrov}@dvs.tu-darmstadt.de

Abstract. The concept of Cloud Computing is by now at the peak of public at-
tention and adoption. Driven by several economic and technological enablers,
Cloud Computing is going to change the way we have to design, maintain and
optimise large-scale data-intensive software systems in the future. Moving large-
scale, data-intensive systems into the Cloud may not always be possible, but
would solve many of today’s typical problems. In this paper we focus on the op-
portunities and restrictions of current Cloud solutions regarding the data model of
such software systems. We identify the technological issues coming along with
this new paradigm and discuss the requirements to be met by Cloud solutions in
order to provide a meaningful alternative to on-premise configurations.

1 Introduction

Large-scale, internet-based and data-intensive services have recently become a corner-
stone of our daily activities: we buy books on Amazon, sell things on Ebay, stay in
contact with friends and colleagues via Facebook, Googlemail or Hotmail, work collabo-
ratively on documents with ThinkFree or GoogleDocs, comment on videos via YouTube,
share our snapshots on Flickr or Picasa and plan our journeys with GoogleMaps
[1,2,3,4,5,6,7,8,9]. These are just examples to name a few well-known internet-based
and data-intensive services we use in our everyday life. All these services are powered by
highly scalable applications based upon massive computing infrastructures. Until lately,
operating infrastructures to power online-services at this scale involved large up-front
investment and running costs for any provider: Whole data centers (or at least suffi-
cient resources within) had to be located, acquired, staffed and operated. The whole
technology stack had to be set up and optimised. Even if these resources are not run on-
premise but rather as a managed-hosting solution the contracts are usually fixed and not
usage-based, shifting the risk of resource planning from the infrastructure provider to
the service provider. There has always been the danger of ill-sizing one’s infrastructure
based on wrong assumptions about the demand to be. Today’s Internet is the backbone
of global communication, connecting millions of users 24 hours seven days a week. This
results in complex patterns of demand that are hard to anticipate and influence. On the
one hand this offers the opportunity to attract millions of customers all over the world
within hours, sometimes even by a minimum of controlled advertisement. On the other
hand, this could backfire as well: unavailable, slow or insecure services get a bad repu-
tation quickly, leading to a drop in demand and a loss of revenue [10]. In recent years
there has been an increase in different commercial offerings, all being subsumed under

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 57–77, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

58 S. Frischbier and I. Petrov

the keyword Cloud Computing. Due to these solutions offered by Amazon, Google, Mi-
crosoft and others, highly-scalable standardized computing power on-demand seems to
become a commodity. The promise is to enable nearly everyone to build and operate
powerful applications easily without the risks mentioned above. No up-front investment
is needed and the risk of ill-sizing is shifted back from the service provider to the infras-
tructure provider. Thus Cloud Computing seems to be the future architecture to support
especially large-scale and data-intensive applications. If the reality of Cloud Comput-
ing lives up to its promises we believe this movement to trigger two trends reinforcing
each other: on the side of service providers, the financial benefits of Cloud Comput-
ing will lead to an overall adoption by companies of all sizes to deliver highly scalable
services with as minimal costs as possible. On the user side, the broad supply of online-
services raises the bar of expectations regarding usability, availability and reliability of
new products even more. Thus companies will have to invest even more into their in-
frastructure in order to meet their customers’ raised expectations. This again may lead
to relying even more on Cloud Computing. Alas, on-premise middleware with individ-
ual frameworks atop is the dominating architecture for those large-scale, data-intensive
applications by now. Especially in the context of Enterprise Computing, extensive mid-
dleware solutions are still custom-tailored to the requirements of each application. In
turn, the application’s functionality and design rely heavily on the properties and re-
quirements of the supporting infrastructure. Although middleware components such as
databases, application servers or messaging systems are highly standardized components
yet, their individual combination and configuration allows to support highly specialized
data-models required by the application logic. To us, this close symbiosis of application
and infrastructure is still an obstacle to the broad adoption of Cloud Computing by large
enterprises. Switching from traditional middleware to the Cloud has a massive influ-
ence on the management of an application’s life-cycle. Among the several concerns are
matters of design, implementation, testing, deployment, version control, debugging and
maintenance. In this paper we focus on the underlying technological issues affecting the
architectural decisions at the initial phase of a data-intensive application’s life-cycle. We
argue that there are certain requirements of data-intensive applications that are hardly
meet by today’s Cloud Computing. As a result, one still has to build and manage certain
infrastructures on-premise in order to meet all requirements. Hence we first introduce
the concept of Cloud Computing with its main characteristics, enablers and properties
of today’s solutions in Sect. 2. The requirements of data-intensive applications are then
exemplarily presented in Sect. 3. Afterwards we contrast the mentioned properties of
today’s Cloud offerings with the requirements regarding data-models of two types of
data-intensive applications in Sect. 4. In Sect. 5 we present a selection of academic as
well as non-academic research results and sum up our findings in Sect. 6.

2 What Cloud Computing Offers Today

Although being a buzzword widely used in marketing and academia, the definition of
Cloud Computing is still somehow blurred. There have been many attempts to define it,
leading to multiply defined keywords which may seem contradicting at first [11]. Thus
we sum up what we think is the core of Cloud Computing in this section, deducing

Aspects of Data-Intensive Cloud Computing 59

the taxonomy being used in this paper to avoid any confusion. The section concludes
with a discussion of several provider related as well as user related technological issues
regarding the paradigm of Cloud Computing.

2.1 What Is Cloud Computing?

To cover the basic principles of Cloud Computing we refer to the definition of Cloud
Computing by now being most agreed on. It was introduced by the National Institute of
Standards and Technology (NIST) in 2009 [12]:

Cloud Computing is a model for enabling convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.

Hence, the term Cloud Computing does not refer to a single technology or specific prod-
uct. It rather denotes a generic term covering all solutions that offer computing resources
as a commodity. The analogies quite often used are those of power or water supply. An-
other quite fitting analogy approach was introduced by Thomas Bittman of Gartner in
2009 [13]: transmitted music. The first transmission of music over air started as a very
basic service with poor and unreliable quality. Anyway it has been an interesting and
quite cheap alternative to the phonographic cylinders used as storage back than. Over
time, standardization set in, quality and supply increased. Although these analogies have
their weak spots we think it is an interesting idea worth mentioning. Based on their broad
definition, Mell and Grance deduce five abstract key characteristics of Cloud Computing
all current industrial offerings have in common [12]:

– On-demand Self Service In contrast to the provision of resources in on-premise or
managed hosting scenarios, no human interaction is necessary to adjust the quantity
of resources needed in the Cloud. This is true for provision of additional resources
(scale-out) as well as for the release of unused ones (scale-in).

– Broad Network Access The service requested is delivered over a standardized net-
work, typically the Internet.

– Resource Pooling The resources needed to provide the requested service automat-
ically to the user are drained from a resource pool designed to serve dynamically
multiple users (multi-tenancy). Size, location and structure of this resource pool are
concealed to the user as well as the identity of the different parties being served by
the same physical resource.

– Rapid Elasticity The provision of resources from the pool as well as the release of
unused resources back to the pool has to be applied rapidly at any quantity and time.
This creates the illusion of infinite resources to the user.

– Measured Service The performance and usage of resources are monitored and me-
tered automatically in order to optimise the overall usage as well as to provide the
information necessary for usage-based billing.

In regard to the parties having access to and control over the resource pool, public, Pri-
vate and Hybrid Clouds are to be distinguished: Public Clouds are accessible by the

60 S. Frischbier and I. Petrov

general public but are controlled by a single dedicated Cloud provider. In this scenario,
the tenants are independent organizations or users sharing the same resources. Private
Clouds denote a scenario where Cloud services are only accessible for divisions of a
single client’s organization. From this point of view, a Private Cloud could be seen as a
Public Cloud within a single company. The control over the resource pool is either on-
premise or off-premise (managed-hosting solution). Hybrid Clouds combine resources
of Private and Public Clouds, hence allowing the quick scale-out of a Private Cloud with
resources temporarily drawn from a pool being publicly accessible.

2.2 Comparing Cloud Computing to Related Paradigms

Without first contrasting Cloud Computing to other related paradigms it is hard to point
out and evaluate any unique contributions of this new paradigm. Thus we compare the
key characteristics of Grid Computing, Utility Computing and Software-as-a-Service
(SaaS) with those of Cloud Computing. The concept of Grid Computing emerged in the
1990s to provide an alternative for organisations to obtain computation power hitherto
only delivered by supercomputers [14]. As Foster points out in [11] Grid Computing
aims at delivering abstracted computational resources drawn from a distributed inter-
organizational resource pool. Each participating organisation remains in control of the
innate resources being committed to the pool while earning the right to use the Grid as a
whole. A multilayered fabric is responsible for abstracting the underlying resources and
scheduling the usage accordingly by queuing. Foster introduces a three point checklist
to tell Grid and non-Grid infrastructures apart [15] by stating that a Grid (i) coordi-
nates resources that are not subject to centralized control; (ii) is using standard, open,
general-purpose protocols and interfaces; (iii) delivers nontrivial qualities of service.
Applying these criteria as well as the characteristics mentioned above on Cloud Com-
puting leads to the following conclusion: Grid computing and Cloud computing are not
precluding but rather intersecting paradigms as depicted in Fig. 1. Both paradigms aim
at delivering abstracted computing resources but differ in their particular approach and
subject [11]: (i) Cloud computing aims at serving multiple users at the same time while
Grid Computing is intended to deliver functionality at a scale and quality equivalent to
supercomputers via a queuing system; (ii) Grids consist of resources owned and oper-
ated by different organisations while Clouds are under a single organisation’s control;
(iii) Cloud services can be obtained by using a standardized interface over a network
while Grids require running the Grid fabric software locally. Both Utility Computing
and Software-as-a-Service (SaaS) are rather generic terms. Mäkilä et al. define SaaS as
a software deployment model, where the software is provisioned over the Internet as a
service [16]. Utility Computing is even broader referred to by Ross and Westerman [17]:

We define utility computing as a collection of technologies and business
practices that enables computing to be delivered seamlessly and reliably across
multiple computers. Moreover, computing capacity is available as needed and
billed according to usage, much like water and electricity are today.

Taking all these top level definitions into account we propose the following categoriza-
tion of the paradigms being discussed in this section: All concepts mentioned aim at

Aspects of Data-Intensive Cloud Computing 61

Services
Oriented

Application
Oriented

Scale Distributed Systems

Clusters
Web 2.0

Supercomputers

CloudsGrids

Fig. 1. Relationship of Grid and Cloud Computing as illustrated in [11]

delivering computational functionality as a service. While Utility Computing describes
the general approach, the other concepts focus on different ways of realisation. SaaS fo-
cuses on delivering application logic while Grid Computing focuses on delivering com-
putational power being equivalent to supercomputers. Thus Cloud Computing embraces
these approaches, itself not being restricted to certain functionalities all the while being
more palpable than Utility Computing.

2.3 Technological and Economic Enablers

To us, the observed characteristics of Cloud Computing as well as the success of this
concept are the result of several economic and technological enablers reinforcing each
other. We believe, that understanding these enablers and their connections is crucial to
identify the real impact Cloud Computing has on large-scale, data-intensive applications.
Thus we start by introducing the five technological and five economic enablers we think
are the stepping stones for the success of Cloud Computing so far. Figure 2 illustrates
the different enablers and their connection.

Technological Enablers

– Virtualisation is the key technology to enable Cloud Computing efficiently on the
resource management level as well as on the product feature level. Regarding the
resources being operated by the Cloud provider, this approach permits mainly three
things: (i) the utilisation of a single physical device is maximised by hosting sev-
eral virtual machines on it; (ii) the overall utilisation and power consummation of

62 S. Frischbier and I. Petrov

the resource pool can be optimised by running as many instances as possible on as
few physical devices as necessary to ensure the availability and performance guar-
anteed by strict Service Level Agreements (SLA) [11]. The aim is to turn machines
automatically off if they are fully idle; (iii) maintenance cycles of hardware and dis-
aster recovery actions are simplified due to the fact that VM instances can be shifted
from one physical device to another or be restarted on uncorrupted hardware quickly.
Regarding Cloud Computing offerings on the infrastructure level, virtualisation per-
mits the product feature most referred to: Automated scaling. Vertical scaling de-
notes the resizing of a single VM instance given (e.g. adding and removing RAM
or CPU respectively). Horizontal scaling refers to adding or removing additional
instances of a given VM running in parallel. By using virtualisation, both types of
scaling could be implemented efficiently. Based on an initial VM image, additional
instances are launched automatically (horizontal scale-out). In case of vertical scal-
ing, a dedicated VM instance is shut down to be automatically launched again with
new parameters setting the desired system properties.

– Grid Computing is closely related to Cloud Computing in many aspects. Both are
partially overlapping but are far from being identical as we have seen in Sect. 2.2.
Nevertheless, the realisation of Grid Computing faces several technological chal-
lenges that hold true for Cloud Computing on the infrastructure level as well. Among
them are the discovering, scheduling, brokering, assigning, monitoring and load bal-
ancing of resources as well as the core communication and authentication in dis-
tributed resources [11]. By addressing and overcoming these challenges for Grid
Computing, technical solutions emerged that are now used to form the basic fabric
on the infrastructure level of Clouds [14].

– Service-oriented Architecture (SOA) may be seen as the latest representative of de-
sign concepts for distributed systems leading to a paradigm shift in application de-
sign in this context. The widespread appliance of this paradigm has laid the general
basis for heavily distributed applications in the Cloud [12]: Individual functions are
encapsulated as autonomous services being accessible only through an implemen-
tation independent interface. The use of shared memory is substituted by message-
based communication hence adding transparency of location to the transparency
of implementation. New functions can be implemented by combining existing ser-
vices using message-based interactions. By now there are already several solutions
to challenges such as semantic interoperability, state-preservation or parallel com-
puting that have to be solved wile pursuing this design approach. Only applications
being based on these principles could benefit from Cloud Computing to the full
extent.

– Rich Internet Applications (RIA). For many years, the user experience of web based
applications has been far from that of desktop applications. The ever increasing
functionality of today’s web technology (e.g. client-side processing, asynchronous
communication or built-in multimedia support of web browsers) now permits com-
plex web based applications that resemble desktop applications (c.f. ThinkFree or
GoogleDocs). Using RIA to deliver the functionality of complex software over the
Internet has certain advantages for both user and provider: no software has to be
installed and maintained on the user’s system because the application is hosted cen-
trally by the provider and accessed by a web browser. Such centrally managed

Aspects of Data-Intensive Cloud Computing 63

software allows easier maintenance, resource provisioning and usage metering by
the provider.

– Broad network coverage. To deliver high-volume products and smooth interactions
for RIAs over the Internet, the overall coverage of broadband connections is cru-
cial. This holds true not only for a good end user experience but for the interactions
between different Cloud services and data centers as well. In recent years there has
been a significant increase, not only in the overall coverage of broadband networks
all over the world but also in capacity and performance.

Economic Enablers

– Economy of Scale. The characteristics of Cloud Computing we have seen so far
favour large-scale infrastructures. As Greenberg at al. [18] or Church et al. [19] point
out, especially providers of Cloud infrastructure services benefit from economy of
scale at multiple cost categories: From one-time investments for land, buildings,
power and network infrastructure to frequently returning costs for hardware and
running costs for power supply, cooling and maintenance [20]. Especially the rapid
decrease of hardware costs intensifies the economies of scale for infrastructures.

– Multi-tenancy. Running multiple users on a single resource is not a quite new con-
cept from a technological point of view. Nevertheless, running different external
customers in parallel on abstracted resources based on a shared and brokered in-
frastructure pool with isolated data, performance and application logic embraces
certain challenges [21]. Besides the technological issues to ensure such isolation,
multi-tenancy has to be accepted by customers.

– Micropayment. To exploit a sophisticated willingness to pay a provider has to offer
different products in high granularity to different customers. Hence, charging even
small quantities effectively with micropayment enables the provider to maximizing
both revenue and utilisation. We subsume the emergence of different online payment
methods (e.g. PayPal) as well as the increased use of credit card payments under this
topic.

– Open Source Software. License fees for software have always been a serious matter
of expense especially at large-scale data centers. Using open source software today
can be an adequate way to decrease the impact of license fees on the revenue dra-
matically. By now, there are open source substitutes all along the technology stack,
starting at the virtualisation layer and ending with the presentation layer (i.e. web
browsers). Furthermore, open source software can be altered to suit very specific
needs without violating license terms. Although that may be true for other propri-
etary systems as well, open source systems suit another long-term aspect: By rely-
ing on open source software (including open standards) lock-in effects to specific
providers are minimised.

– Standardisation. Economy of scale and standardisation are closely related: Stan-
dardisation fuels economy of scale by making components interchangeable and
comparable. In regard to Cloud Computing, standardisation helps to reduce com-
plexity and increase flexibility on all levels of the technology stack (e.g. standardised
hardware, application servers or frameworks).

64 S. Frischbier and I. Petrov

Economy of Scale

Standardisation

Open Source
SoftwareMulti-tenancy

Virtualisation

Micropayment

Service-oriented
Architecture (SOA)

Broad network
coverage

Rich Internet
Applications

(RIA)

Grid Computing

Technology

Economy

Enablers

Fig. 2. Identified key enablers for Cloud Computing

Having introduced these enablers so far we point out some mutual dependencies be-
tween them leading to the characteristics of Cloud Computing as presented in Sect. 2.1:
Virtualisation and Grid Computing form the fabric that enables resource pooling and
rapid elasticity. SOA with its related paradigms reshaped both middleware and applica-
tion architecture to run on those abstracted distributed resources efficiently as managed
services. Economy of scale, standardisation and open source software make Cloud ser-
vices cost-effective by rewarding scale, reducing complexity and minimising license fees
as well as lock-in effects. RIA and broad network coverage simplify renting and main-
taining computational functionality as on-demand self-services. Micropayment permits
effectively charging the usage of such functionality at fine granularity, making even
highly diversified products lucrative. Multi-tenancy maximizes both utilisation and risk-
reduction by involving different parties. Users benefit from transparent pricing models
based on metered usage and seemingly indefinite resources being provided to them on
an abstraction level being suitable for their own purpose. Hence, further technological
enhancements will be encouraged, fuelling the economic mechanisms mentioned here.

2.4 Resulting Business Models and Pricing

While presenting the characteristics as well as the enablers for Cloud Computing, we
referred to the digital product being delivered only as abstract computing functional-
ity. Substantiating this generic term leads to classifying the different delivery models
of Cloud Computing and their business models. As we have discussed earlier, Clouds
benefit highly from standardisation in order to maximize the economies of scale. Hence
providers of Cloud services tend to standardise as many components of their products
and supporting architecture as possible. Such standardisation is often achieved by adding
an abstraction layer and restricting access to the technology stack beneath it. Therefore,

Aspects of Data-Intensive Cloud Computing 65

each delivery model can be defined by two aspects: A core functionality being offered as
a service and a ratio of control by user vs. control by provider for the entire technology
stack.

– On-premise. The whole technology stack is owned and controlled by the user. Until
recently this is the typical setting for large-scale data-intensive applications as de-
scribed in Sect. 1. This scenario could also be used to implement a Private Cloud
setting with the technologies discussed in Sect. 2.3.

– Managed Service Hosting (MSH). Entire servers or virtual machines are rented ex-
clusively to a single user. The user can choose the operating system to be used and
is in control of layers atop the infrastructure while the provider is responsible for
maintenance and operation. The contract period is usually fixed and usage indepen-
dently. Scale-out could be achieved by additional contracts and is seldom promptly.

– Infrastructure as a Service (IaaS). As in MSH, the product core being delivered
is computation power at the infrastructure level for the user to build his own stack
upon. Again the user has full control over the layers atop of the infrastructure. In
contrast to MSH, the resources being rented by the user are not dedicated servers but
virtual machines or equally abstract machine instances based on a shared resource
pool. The structure, location and usage of the resource pool are opaque to the user
and organised according to the requirements of the provider. This has two advan-
tages: Firstly, scale-in as well as scale-out of instances can be achieved in almost
real time according to demand. Secondly, maintenance cycles can be performed by
the provider without affecting the availability and performance guaranteed to the
user. Pricing is usage-based, generally derived from the number, configuration and
usage duration of the active instances.

– Platform as a Service (PaaS). The product core is middleware functionality ranging
from databank management systems (DBMS), messaging or load balancing to even
more specialized functions to build custom applications upon. The functionality is
provided through an abstracted application programming interface (API) making
the implementation and detailed configuration of the underlying infrastructure in-
accessible to the user. Thus, applications build on PaaS have to take that into account.
When the usage for the application upon the platform grows, the provider is respon-
sible for automatically scaling the underlying resources to deliver the quality and
performance guaranteed. Pricing is usage-based with the reference value depending
on the functionality being consumed.

– Software as a Service (SaaS). The product delivered by SaaS is typically a fully-
fledged application. Contrary to PaaS, services at this level mostly aim at end-users
by providing high-level user-experience via rich internet applications. As SaaS is the
first primarily end-user oriented Cloud business model introduced here, it is quite
often identified with Cloud Computing itself by the public. All examples given in
Sect. 1 refer to typical SaaS offerings. In addition to the graphical user interface
provided by RIAs, advanced functionality can be accessed through APIs quite often
to build custom extensions (e.g. as plug-ins for web browsers). Again the provider
is responsible for scaling the underlying resources according to the utilisation of the
application. Pricing is usage or subscription based (recurring fees).

– X as a Service (XaaS). By restricting the user control even more towards the mere
passive use of individual and highly specialised functionalities, new business

66 S. Frischbier and I. Petrov

models can be derived. We propose here exemplarily the idea of Function as a Ser-
vice (FaaS) as a special case of SaaS. Unlike SaaS, FaaS focuses on delivering a
single functionality through a standardised API only. Examples would be the typi-
cal web services: Information about stock exchange prices, appraisal of creditwor-
thiness, weather forecasts or visualisations of GPS coordinates. To us, the further
specialisation of SaaS is motivated by the increasing occurrence of smartphone-
based applications (apps) over the last two years. Many of these applications are
specialised in visualising real-time information being delivered by large-scale
online-applications.The throughputof today’s mobile connections is still rather lim-
ited by way of comparison to broadband networks. In addition, many smartphones
still have certain restrictions regarding screen resolution or supported technology.
Hence the transmission of core information is often preferred to the use of exten-
sive rich internet applications as in SaaS offerings. In such a scenario, the user would
have even less control over the service consumed while the level of abstraction is
extremely high. Driven by the trend of highly specialized apps for smartphones we
believe the business model of XaaS/FaaS soon to grow out of the status of being a
subtype of SaaS.

Although not being a prerequisite, it is often assumed that Cloud services are stacked
to leverage the advantages of Cloud Computing at subjacent layers [22,14]. In addition,
either IaaS, PaaS, SaaS or XaaS can be implemented as Public or Private Cloud. To us,
the attractiveness of the business models mentioned above could be mapped to the Long
Tail of users as depicted in Fig. 3. We base our assumption on the following reasoning:
Moving from the first to the last business model both standardisation and specialisation

MSH IaaS PaaS SaaS XaaSOn-premise

Function

Application

Platform

Infrastructure

Business model
(How?)

Managed Service
Hosting

Infrastructure
 as a service

Platform
 as a service

Software
 as a service

…
 as a service

Flagship product
(What?)

Size of Company

Number

The Long Tail

NIST-Definition

Fig. 3. Different business models of Cloud Computing derived from the level of abstraction and
product core

Aspects of Data-Intensive Cloud Computing 67

increase. This results in offerings of higher granularity and cost effectiveness. Especially
small and middle businesses (SMBs) or start ups may rank cost effectiveness and ease
of use over extensive control.

2.5 Current Commercial Solutions for Public Clouds

To cover the range of Cloud solutions available today we present a selection of commer-
cial solutions and their main characteristics in this section.

– Amazon offers solutions at all levels of abstraction. Nevertheless the dependencies
of most offerings refer to a focus on the IaaS and PaaS levels. Thus we concen-
trate our brief presentation on representatives from both core and complementary
solutions on these levels. With Elastic Cloud Computing (EC2), Amazon offers the
archetyp of IaaS Cloud Computing by providing abstract computing facilities in
terms of virtual Amazon Machine Images (AMI) [23]. Amazon Simple Storage So-
lution (S3) resembles a key-value storage solution for large objects that are seldom
written but often read. The Relational Database Service allows less complex rela-
tional models. CloudFront allows to redirect requests to data stores geographically
close to the customer. Other solutions at the IaaS level (i.e. Elastic Load Balanc-
ing,Virtual Private Cloud), the PaaS level (i.e. Elastic Block Storage, MapReduce)
or as SaaS level (i.e. Cloud Watch,Flexible Payments Service) can be seen as exten-
sions to these core products. For more detail on these solutions as well as use cases
we refer to [24,25,26].

– Google aims at the layers atop of IaaS with several offerings: With Google App En-
gine [27], Google provides a PaaS solution to develop, test and host applications
written in Java or Python. By developing applications against the Google App En-
gine API, issues regarding deployment, sandboxing, instantiation, scaling or load
balancing are handled by the Google middleware and infrastructure. Google App
Engine offers a schemaless datastore with an SQL-like syntax to manipulate tables
while not being a traditional relational database. On the downside, there are artificial
restrictions to the application’s capabilities by the platform as mentioned in [14].
Other offerings such as Google Docs or Google Mail are most prominent rich inter-
net applications with additional API access [28,29,30] as SaaS solutions. Google
Docs offers the functionality of viewing and editing documents online by using a
rich internet application while Google Mail implements a typical mail client. In ad-
dition, there are several experimental offerings that could be assigned to XaaS/FaaS:
Google Finance Data API, Google Friend Connect APIs, Gadgets API, Google
Geocoding API or the Google Prediction API. All matured offerings mentioned are
available with basic functionalities being free of charge. Charging for the Google
App Engine is usage-based and derived from the amount of storage and bandwidth
as well as the CPU cycles used by the application. Google Docs and Google Mail
are also offered subscription-based per user as professional versions.

– Microsoft entered the Cloud Computing market with Windows Azure in 2009. The
Azure platform can be seen as a mixture of IaaS and PaaS by combining aspects
of both [31]. Azure itself contains of offers several Cloud based storage solutions:
Windows Azure Storage and Azure SQL. Windows Azure Storage is provided by

68 S. Frischbier and I. Petrov

the Azure platform itself and consists of Blobs, Tables and Queues as native data
models. A Blob stores binary objects up to 50 GB total thus being suitable especially
for multimedia objects. Different Blobs are logically combined and managed within
a Blob Container. Both Container and single Blob can be associated with metadata
in form of key-value-pairs. Tables consist of entities (rows) and associated prop-
erties (colums) to support structured data. Queues represent a asynchronous mes-
saging facility. Windows Azure SQL resembles a auto-scalable SQL-server as SaaS
solution, claiming to work seamless with on-premise installations of Microsoft SQL
Server [32].

– Salesforce is an on-demand CRM product that is traditionally regarded as one of
the first in the field of Cloud Computing. In the meantime Salesfore supports wide
range of applications and supports a robust Cloud platform, powerful application
development framework and solid services. It a typical representative of the SaaS
group. As underlying technology Salesforce uses Oracle RAC [33] as a relational
database. The data model is simple and essentially comprising database tables and
indices. Salesforce has a multi-tenant architecture and assigns a tenant to a Sales-
fore Node. The system has a powerful application development framework and and
run-time environment. Applications are developed in Salesforece’s own APEX pro-
gramming language, which supports multi-tenant constructs natively, is dynamic
and eases application and data construct generation at run-time.

– Private Cloud Solutions are offered by several suppliers. Among them are IBM, Sun
Microsystems, Red Hat, Jboss, Oracle and Zimory.

2.6 Technological Issues to Think about

Some of the major issues that distinguish Cloud Computing from other approaches are:
scale and simplicity. Under scale we mean: (i) the number of concurrent and potential
users and requests per second; (ii) the size of the computing facility (CPUs, aggregate
memory, aggregate storage capacity) and the size of the data; (iii) the geographical dis-
tribution. Simplicity, on the other hand, is associated with the way the system is used:
(a) ease of programming API simplicity; (b) ease of administration and growth; (c) ease
of consuming and combining different services. These are not easy to achieve especially
under the premise of high performance. Hence most of the vendors and researches min-
gle Cloud applications (sometimes services) with Cloud infrastructure. Indeed the ap-
plication requirements influence the way the Cloud infrastructure is designed and vice
versa objective facts in the Cloud environment influence hard design choices in the Cloud
application architecture. None the less the goal of many Cloud vendors is to provide a
general platform on top of which Cloud applications can be developed.Below we discuss
some of the issues specific to provider and application separately.

Provider Related

– Consistency. The responsibility of enforcing consistency of Cloud data is separated
between the infrastructure and the application. In enterprise computing the estab-
lished approach is expect declarative or implicit consistency such as in ACID trans-
actions. Since at this stage most of the Cloud applications are tightly coupled with

Aspects of Data-Intensive Cloud Computing 69

their infrastructure the application developers implement application specific con-
sistency mechanisms. Due to issues resulting from scale most of the consistency
notions (two phase commit protocol, global atomicity) are inefficient or very dif-
ficult to realize. Due to the CAP theorem enforcing consistency (on infrastructural
and application level) depends on handling availability and the required network
resilience.

– Availability. Cloud services/application as well as the Cloud infrastructure are ex-
pected to be as available as enterprise applications. There are however several issues
that need to be overcome: (i) internet reliability - all Cloud services are available over
the internet hence the upper bound to their availability is the internet availability,
which is max. 99.9%. The issue can be generalized in terms of network reliability.
(ii) hardware fault tolerance since the Cloud utilises commodity hardware the in-
frastructure has to tolerate high failure rates. For example a recent analysis of the
RAM failure rates at Google [34] showed that these lie higher than the currently
assumed value. (iii) All these explain why whole data centers can be suddenly de-
tached from the rest of the infrastructure. Methods to address these issues at present
are: (a) load balancing; (b) redundancy in terms of (geographical) replication. Care-
ful data placement minimize the response times; having multiple consistent replicas
of the data helps to increase the availability (the request can be served on a different
site). Careful data placement also helps the Cloud designers to fight latency. While
the infrastructure can provide replication mechanisms these only work well if they
are suitable to and well instrumented by the application. Latency is another issue
that has to be addressed in Cloud applications. (its effect on enterprise applications
is not as direct). It can be minimized through careful data placement so that requests
can be served close to the user and through extensive caching. Both means to address
latency are very application dependent.

– Predictable Performance + Elasticity. Since many resource hungry applications are
sharing the same set of computing resources in a Cloud Computing facility, it should
be guaranteed that there is no resource contention and that applications are isolated
form each other and are provided with predicable framework performance. Two
factors should be specially emphasized: elasticity and scalability. Elasticity is as-
sociated with providing stable and predicable performance as resource demands of
applications increase (or decrease) ensuring optimal resource utilisation. If an ap-
plication grows resources are not only added in terms of new servers, it also means
more bandwidth, more storage, better load balancing. Elasticity is related to up- and
down-scaling but is more complex in that it involves the Cloud infrastructure as well.
Scalability is the relevant term in this context: that data store must be able to exe-
cute large requests with low response times and redistribute data an load on the new
hardware. Some of the Cloud models (such as IaaS, i.e EC2) rely heavily on vir-
tualization. While virtualization offers significant advantages in handling elasticity
and resource sharing the way Disk IO and Network IO are handled. In fact [35,36]
report similar results.

– Multi-Tenancy. Multi-tenancy is one of the key data storage concepts on the Cloud.
It enables user data manageability, common storage and increased performance.

70 S. Frischbier and I. Petrov

Every user is being seen as a tenant in a multi-tenant store: its data is stored in a
common and general schema with other users’ data. The data entries for a specific
user are automatically annotated with the TenantID. Many Cloud solution derive
tenant specific typed tables from the common data storage.

– Scalable and High Performance Storage. Due to many technical issues data storage
is one of the central issues in Cloud Computing. In Cloud scenario it is one of the
key factors for well-performing and scalable Cloud applications/services. While
raw storage is needed in enterprise computing, it is an inadequate model for the
Cloud. Due to the many possible optimizations and performance gains Cloud stor-
age is almost always bound to a certain data model. Many Cloud providers even
report multiple data stores for different data models (nearly relational, key-value
stores, unstructured large object stores). For example Large parts of Google’s data
are stored on GFS which has inherent support for replication. Structured data are
stored in BigTable. Facebook’s datamodel is graph-based consisting of Fbobj and
associations among them. Salesforce’s datamodel is essentially relational compris-
ing relational tables and indices. In addition there several different data store types
that emerge in Cloud environments. Key Value stores are very widely spread both
as storage service and as caching tier. Almost every Cloud provider has a document
store or a large object store. Researchers [37] unify those under the term NoSQL
databases. Interestingly enough the optimizations and scalability depend indirectly
on the application as well. For example both Salesforce and Facbook rely on SQL
databases [38,33], however Salesfore can very well partition on tenant level (see
multi-tenancy), while Facebook cannot due to the strongly referenced graph nature
of their data.

– Strong and Stable API. The interface which Cloud frameworks exposes to the Cloud
applications should be precisely controlled. In fact many SaaS vendors such as sales-
force [33] claim to support internally a single version of their codebase, but emulate
older versions. While this allows for a significant maintenance, development and
performance gain, it imposes strict requirements on applications and ISVs.

– Software Licensing. Software licenses may pose a significant acceptance barrier to
the IaaS model. It exposes directly elastic computational resources such as CPUs
or storage, while allowing to deploy running images with pre-installed commercial
software. Some software vendors require licenses not for present elastic resources,
but rather for the physically available hardware resources on the server.

User Related

– Parallelism. Commodity hardware, clusters of 10 000 cores and 5 000 computers
Cloud systems horizontally scalable with geographical partitioning. To make the
best of this horizontal scale computing facility applications should be translatable
to parallel jobs that can run onto all these machines in parallel. This is the only way to
satisfy the high number of user requests per second against terabytes of data. Yet not
every application and not every algorithm implemented in a certain programming
language can be translated efficiently into small parallelizable tasks. The task com-
plexity is minimized by employing special-purpose programming languages, espe-
cially for data processing ([39]). For example, Google’s MapReduce [40] framework

Aspects of Data-Intensive Cloud Computing 71

and its open source implementation Hadoop by Yahoo [41] provides an excellent
utility for Cloud data analysis. Yet complex requests such as ones employing joins
cannot be implemented efficiently on MapReduce. Such issues are address by for
instance Yahoo’s Pig framework in which complex data analysis tasks are expressed
in the Pig Latin language and compiled down to MapReduce jobs and deployed on
Haddop. Hence not every enterprise application can make optimal use of the Cloud
advantages without a complete re-design.

– Data-Model. Most of the enterprise applications operate on a relatively well-defined
data model. Web- or Cloud applications, alternatively, must be able to handle both
structured and unstructured, combine multimedia and semantic metadata, handle
text natively. This poses the grand challenge of uniform and efficient handling.
Cloud applications have to operate on a general data model delegating all of the
heavy-lifting to the infrastructure. (See 2.3.1 and 2.3.1.4). In practice however dif-
ferent Cloud applications rely on different models hence the infrastructure has to
support different sores to optimally handle them. For example, Facebook relies on a
interconnected graph model comprising FbObjects and Associations, which is heav-
ily metadata driven [38]. Mail attachments will be stored on a large object store,
while mail messages will go to a different system. Through heavy use of metadata
these pieces of information can be correlated properly. Important is that the infras-
tructure provides a way to combine services from different stores.

– Strict ACID-Transactions. Transactional guarantees are one of the key characteris-
tics of enterprise applications. While ACID transactions represent a very powerful
mechanism, it has been proven that they incur a significant performance overhead in
highly distributed systems. Many authors argue that [42,43] in the Cloud availability
should be traded for consistency. In addition models such as eventual consistency
[43] have been proposed. The implications for the applications a manifold: (i) the
application developer should custom-build consistency mechanisms; (ii) applica-
tions relying on consistency are no suitable for the Cloud. (iii) applications relying
on strong consistency guarantees continue to exists on an enterprise facility are ex-
posed a service and are consumed in the Cloud. This however is the least desirable
alternative.

– Security and Encryption. While the majority of the Cloud providers report major
security efforts as part of their infrastructure, security is widely viewed as a major
hurdle towards Cloud migration. Enterprise systems with heightened security are
designed to operate directly on encrypted data. Such an approach can be adopted in
Cloud applications. On the one hand it entails significant restrictions on the appli-
cations feature set and design. On the other hand it leverages well with the abundant
computing power available within the Cloud.

– Interoperability. While the predominant view nowadays is that applications are de-
veloped for a certain Cloud provider, this dependence seems too risky and is consid-
ered a hurdle for wide Cloud migration [10]. Out of this reason researchers recognize
the need to be able to interoperate between Clouds and ideally be able to migrate.
Given the experience for distributed computing this task will be very difficult.

72 S. Frischbier and I. Petrov

3 Requirements of Data-Intensive Applications

The scale is the single most essential property that dominates the discussion of data-
intensive applications in enterprise computing and in a Cloud environment. It influences
many application characteristics such as basic assumptions, architecture, algorithms as
well as features.

3.1 Types of Data-Intensive Applications

While the two general archetypes of data-intensive applications (OLAP and OLTP) are
still present they differ from their classical meaning.

OLAP. On-Line Analytical Processing (OLAP) refers to querying mostly historical
and multi-dimensional data with the purpose of analyzing it and reporting certain fig-
ures. The term is generalized by the terms business intelligence und analytics, although
these carry a semantics of their own. In the Cloud most vendors offer approaches and
technologies for performing analytics. These analyze terabytes of data calculating statis-
tics or performing aggregate functions. Typical analytical operations such as relational
joins are very difficult to implement. Other operators are also difficult to implement [44].
A major advantage and design goal is to be able to process TB of data, and therefore
scale on a myriad of small inexpensive machines. This high degree of parallelism and
elasticity requires compromises on the algorithmic richness and on the data model part.
Nonetheless Cloud providers such as Salesforce do offer a close-to-relational data model
and operator set. They have found an elegant way to bring the relational technology to
the Cloud. Most of the analytical applications match the Cloud very well. They depend
mostly on the cumulative bandwidth with which the data can be read and transferred -
bandwidth is present within a Cloud data centre. They depend on the CPU power which
is available as well.

OLTP. Although many Cloud applications rely on a batch update mode or expect rare
updates there are many cases where frequent updates are rather the rule. Facebook and
Salesforce are good example of that. Users of both systems update their enterprise data,
profiles, pictures or status frequently. Although updates are a weakness in the Cloud envi-
ronment both systems seem to handle them very well. The CAP theorem explains the key
factor preventing Cloud systems from handling updates. On the one hand to increase the
availability (and account for possible hardware failures) Cloud systems replicate data.
If updates are to be handled consistently all replicas must be updated before the update
operation is acknowledged, which is time consuming and blocks system resources. This
cannot be done at the high request rate these systems have to serve. Therefore in the
Cloud systems are optimised for availability not consistency [42,43]. In systems such
as Facebook or Salesfore consistency is mostly achieved through cache invalidation or
partitioning.

3.2 Characteristics Regarding Data

Data partitioning (or data sharding) is the ability to place data into buckets so that every
bucket is updated independently of each other. For example, the data of a tenant is a

Aspects of Data-Intensive Cloud Computing 73

subset of the global tenant table that is updated by a certain set of clients. It is than pos-
sible to take that tenants data and place it in a data center in geographical proximity to
the client. This is the mode chosen by the architects of Salesfore. Facebook’s data on the
other hand is very strongly connected. Therefore data partitioning cannot be considered
realistic option. Constructing a page on Facebook requires data from different friends of
a person. It is difficult to predict the exact geographical distribution of the friends. Even
if the system manages to do so there is no guarantee that in future friends from different
locations will join. Therefore it is impossible to partition data across Facebook datacen-
ters. Therefore in absence of good partitioning possibilities a pulling friends status from
a geographically remote center may slow down the construction of a page. Instead of par-
titioning [38] Facebook relies on metadata replication, main memory data processing,
distributed indexing as well as multiple systems performing specializes data querying.

4 Discussion: Cloud vs. On-Premise

In an on-premise scenario systems with classical three tier architectures are very success-
fully utilised. Since these are located in the same data centre, latencies are low, through-
put is high and the storage high performant. CRM as well as ERP systems are examples
of OLTP systems. In a Cloud environment these work well only if the data can be parti-
tioned/sharded properly to increase scalability. In a multi tenant environment it is needed
to assign a tenant to a data centre near the client (or the majority of clients). Interestingly
enough the tree tier architecture is still preserved within a data centre. Due to the fact that
tenants are exclusively allotted to a data centre transactions do not span data centers thus
being delayed by high latencies. Text processing on the other hand poses different re-
quirements. In terms of transactions text processing implies long running transactions,
where a document can be checked out, processed and checked back in. Thus it mini-
mizes resource contention on shared resources, since no long locks are being held and
consistency is being enforced upon check in. Interestingly this mode can be very well
combined with versioning; for instance depending on the versioning semantics a new
branch or a new version can be created. The check in of a document can trigger a whole
set of post-processing operations (such as indexing, analytics ETL etc.) operating on the
bulk of the document. Regardless of the rich client presentation requirements this mode
of operations is very suitable for the Cloud. Moreover the transparent check-in/check-
out operations are performed within the users’ private workspace on the Cloud and not
on the local machine (as with classical version control systems) thus avoiding possible
bandwidth issues.

5 Related Work

By blending economic and technological aspects as well as blurring the line between ap-
plication and infrastructure, the concept of Cloud Computing is subject to a wide spec-
trum of academic research. Hence a multitude of academic publications is available. We
would like to point out some exemplarily samples we think most suitable for reflecting
on the topic of Cloud Computing in its various dimensions.

74 S. Frischbier and I. Petrov

Armbrust et al. analyse the phenomenon of Cloud Computing by starting from the
hardware-level [10,35]. Foster et al. define the key issues of Grid-Computing in [15]
and point out the main differences to Cloud Computing in [11]. Yang and Tate give
a descriptive review of 58 academic articles regarding Cloud Computing as in 2009
[45]. Han surveys the market acceptance of Cloud Computing in [23]. Greenberg et al.
look at possibilities to reduce costs in data centers from a provider related point of view
in [18]. Church et al. discuss advantages and drawbacks of geo-diverse, distributed or
containerized designs for data centers [19] .

The problem of the concurring requirements consistency, availability and perfor-
mance in distributed systems is formalized as CAP-Theorem in [46] and further dis-
cussed in [43,47,48]. Bining et al. show the first steps towards a benchmark for Cloud
solutions in [49]. There are multiple new technologies that are especially developed for
Cloud scenarios. Some of the most prominent representatives cover the areas of struc-
tured data storage, analytics and caching. Google’s BigTable [50] technology is one of
the leading structured data stores. Alternative implementations are Yahoo! HBase [51],
or Hypertable [52]. Facebook’s Cassandra [53] is another distributed storage platform.
Amazon S3 is another example of Cloud data store. In terms of analytics some of the
dominating frameworks are Google’s MapReduce [54] and its open source implementa-
tion from Yahoo Hadoop [41]. In addition there are numerous data caching technologies
such as Facebook’s MemCached [55].

In addition to the publications mentioned above, there is a nearly infinite number of
unreviewed industry techreports, whitepapers and presentations available today. Due to
the fact that Cloud Computing is mainly an industry-driven topic, we consider some
of these to be noted when trying to understand and analyse the phenomena of Cloud
Computing. Thus we would like to recommend a few of them [56,57,58,59,60,61].

6 Summary and Conclusions

In the present paper we analyzed different aspect of data intensive Cloud Computing
applications and infrastructure. We analyzed requirements and the presented status quo
between infrastructural and application requirements, between economic and technical
factors. Cloud Computing on the one hand has a wider range of requirements to satisfy
compared to enterprise computing, on the other hand many issues due to scale, elasticity
and simplicity are still unsolved or implemented in a custom-taylored way. In addition
Could Computing as a paradigm inherently offers significant diversity in terms of possi-
ble approaches (IaaS, Paas, SaaS, etc.) and possible architectural and design alternatives.

We also reach the conclusion that applications and Cloud infrastructures are tightly
coupled and influence each other. In order to achieve high performance and cope with
issues resulting from the large scale many Cloud vendors resort to custom solutions.
New algorithms and paradigms are developed from scratch (e.g. Google’s MapReduce).
In this respect data sharding, transactions consistency and isolation are some of the
dominating issues. On the other hand many Cloud providers aim at reusing existing
approaches and technologies from the field of enterprise computing. One of the issues
looming on the horizon is the mechanisms for designing Cloud applications and
infrastructures.

Aspects of Data-Intensive Cloud Computing 75

To recapitulate data-intensive Cloud Computing is a very fast evolving field offering
much room for innovation. New approaches can be expected in the field of transaction
processing, access paths, architectures, caching and analytics.

References

1. YouTube: Youtube - broadcast yourself (2010), http://www.youtube.com/
2. Yahoo!: Flickr (2010), http://www.flickr.com
3. Ebay: ebay - new & used electronics, cars, apparel, collectibles, sporting goods & more at

low prices (2010), http://www.ebay.com
4. Google: Google picasa (2010), http://www.google.com/picasa
5. Microsoft: Microsoft hotmail (2010), http://www.hotmail.com
6. Amazon.com: Online shopping for electronics, apparel, computers, books, dvds & more

(2010), http://www.amazon.com
7. Google: Google documents and spreadsheets (2010), http://www.google.com/

docs/
8. Facebook: Facebook (2010), http://www.facebook.com
9. Google: Google maps (2010), http://maps.google.com/

10. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Communications of the
ACM 53(4), 50–58 (2010)

11. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree com-
pared. In: Grid Computing Environments Workshop, 2008. GCE 2008, pp. 1–10 (2008)

12. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. National Institute of Stan-
dards and Technology, Information Technology Laboratory (July 2009)

13. Bittman, T.: A better cloud computing analogy (September 2009),
http://blogs.gartner.com/thomas_bittman/2009/98/22/
a-better-cloud-computing-analogy/

14. Giordanelli, R., Mastroianni, C.: The cloud computing paradigm: Characteristics, opportu-
nities and research issues. Technical Report RT-ICAR-CS-10-01, Consiglio Nazionale delle
Ricerche Istituto di Calcolo e Reti ad Alte Pestazioni (April 2010)

15. Foster, I.: What is the grid? A three point checklist. GRID Today 1(6), 22–25 (2002)
16. Mäkilä, T., Järvi, A., Rönkkö, M., Nissilä, J.: How to define software-as-a-service - an em-

pirical study of finnish saas providers. In: Tyrväinen, P. (ed.) ICSOB 2010. Lecture Notes in
Business Information Processing, vol. 51, pp. 115–124. Springer, Heidelberg (2010)

17. Ross, J.W., Westerman, G.: Preparing for utility computing: The role of it architecture and
relationship management. IBM Systems Journal 43(1), 5–19 (2004)

18. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research problems
in data center networks. SIGCOMM Comput. Commun. Rev. 39(1), 68–73 (2009)

19. Church, K., Greenberg, A., Hamilton, J.: On delivering embarrassingly distributed cloud
services. Hotnets VII (2008)

20. Patel, C.D., Shah, A.J.: Cost model for planning, development and operation of a data center.
Technical report, HP Laboratories Palo Alto (June 2005)

21. Banks, D., Erickson, J., Rhodes, M.: Multi-tenancy in cloud-based collaboration services.
Technical Report HPL-2009-17, HP Laboratories (February 2009)

22. Grossman, R.L.: The case for cloud computing. IT Professional 11(2), 23–27 (2009)
23. Han, L.: Market Acceptance of Cloud Computing - An Analysis of Market Structure, Price

Models and Service Requirements. Bayreuth Reports on Information Systems Management,
p. 42 Universität Bayreuth (April 2009)

76 S. Frischbier and I. Petrov

24. Varia, J.: Architecting for the cloud: Best practices (January 2010),
http://jineshvaria.s3.amazonaws.com/public/
cloudbestpractices-jvaria.pdf

25. Amazon.com: Amazon web services (2010), http://aws.amazon.com
26. Reese, G.: Cloud Application Architectures: Transactional Systems for EC2 and Beyond, 1st

edn. O’Reilly, Sebastopol (2009)
27. Google: What is google app engine (2010), http://code.google.com/intl/en/

appengine/docs/whatisgoogleappengine.html
28. Google: Google spreadsheets api (2010), http://code.google.com/intl/en/

apis/spreadsheets/
29. Google: Google document list api (2010), http://code.google.com/intl/en/

apis/documents/
30. Google: Gmail apis and tools (2010), http://code.google.com/intl/en/apis/

gmail/
31. Microsoft: Windows Azure (2010),

http://www.microsoft.com/windowsazure/windowsazure/
32. Microsoft: SQL Azure - database as a service (2010), http://www.microsoft.com/

windowsazure/sqlazure/
33. Woollen, R.: The internal design of salesforce.com’s multi-tenant architecture. In: Proceed-

ings of the 1st ACM symposium on Cloud computing, SoCC 2010, pp. 161–161. ACM, New
York (2010)

34. Schroeder, B., Pinheiro, E., Weber, W.D.: Dram errors in the wild: a large-scale field study. In:
Proceedings of the eleventh International Joint Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS 2009, pp. 193–204. ACM Press, New York (2009)

35. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Pat-
terson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley view of cloud
computing. Technical Report UCB/EECS-2009-28, EECS Department, University of Cali-
fornia, Berkeley (February 2009)

36. Appel, S.: Analysis and Modeling of Application Behavior in Virtualized Environments.
Master’s thesis, Technische Universität Darmstadt (2009)

37. Stonebraker, M.: Sql databases v. nosql databases. ACM Commun. 53(4), 10–11 (2010)
38. Sobel, J.: Building facebook: performance at massive scale. In: Proceedings of the 1st ACM

symposium on Cloud computing, SoCC 2010, pp. 87–87. ACM, New York (2010)
39. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign lan-

guage for data processing. In: Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2008, pp. 1099–1110. ACM Press, New York
(2008)

40. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: Pro-
ceedings of the Sixth Symposium on Operating Systems Design and Implementation, OSDI
2004, pp. 137–150 (December 2004)

41. Yahoo!: The hadoop project (2010), http://hadoop.apache.org/core/
42. Brantner, M., Florescu, D., Graf, D., Kossmann, D., Kraska, T.: Building a database on s3.

In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data, SIGMOD 2008, pp. 251–264. ACM Press, New York (2008)

43. Vogels, B.Y.W.: Eventually consistent. Communications of the ACM 52(1), 40–44 (2009)
44. Stonebraker, M., Abadi, D., DeWitt, D.J., Madden, S., Paulson, E., Pavlo, A., Rasin, A.:

Mapreduce and parallel dbmss: friends or foes? ACM Commun. 53(1), 64–71 (2010)
45. Yang, H., Tate, M.: Where are we at with cloud computing? In: Proceedings of the 20th

Australasian Conference on Information Systems, ACIS 2009, pp. 807–819 (2009)
46. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent available partition-

tolerant web services. ACM SIGACT News 33(2), 51–59 (2002)

Aspects of Data-Intensive Cloud Computing 77

47. Finkelstein, S., Brendle, R., Jacobs, D.: Principles for inconsistency. In: Proceedings of the
4th Biennial Conf. on Innovative Data Systems Research (CIDR), Asilomar, CA, USA (2009)

48. Brown, A.B., Patterson, D.A.: Embracing failure: A case for recovery-oriented computing
(roc). In: High Performance Transaction Processing Symposium, vol. 10, pp. 3–8 (2001)

49. Binnig, C., Kossmann, D., Kraska, T., Loesing, S.: How is the weather tomorrow? towards a
benchmark for the cloud. In: Proceedings of the Second International Workshop on Testing
Database Systems (DBTest 2009). ACM, New York (2009)

50. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. In: Pro-
ceedings of the 7th symposium on Operating Systems Design and Implementation, OSDI
2006, pp. 205–218. USENIX Association, Berkeley (2006)

51. Team, H.D.: Hbase: Bigtable-like structured storage for hadoop hdfs (2007), http://
wiki.apache.org/lucene-hadoop/Hbase

52. Hypertable.org: Hypertable (2010), http://hypertable.org/
53. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS

Oper. Syst. Rev. 44(2), 35–40 (2010)
54. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: Proceed-

ings of the 6th Conference on Symposium on Opearting Systems Design & Implementation,
OSDI 2004, pp. 10–10. USENIX Association, Berkeley (2004)

55. Project, M.: What is memcached? (2010), http://memcached.org/
56. Fenn, J., Raskino, M., Gammage, B.: Gartner’s hype cycle special report for 2009 (2009)
57. Dubey, A., Mohiuddin, J., Baijal, A.: Emerging Platform Wars in Enterprise Software. Tech-

nical report, McKinsey & Company (2008)
58. Dubey, A., Mohiuddin, J., Baijal, A.: Enterprise Software Customer Survey 2008. Customer

survey, McKinsey & Company, SandHill Group (2008)
59. Gens, F.: Top 10 predictions: Idc predictions 2010: Recovery and transformation. Survey,

IDC (December 2009)
60. Hagiu, A., Yoffie, D.B.: What’s your google strategy? Harvard Business Review, 74–81 (April

2009)
61. Thethi, J.P.: Realizing the value proposition of cloud computing. Technical report, Infosys

(April 2009)

A Web That Senses and Responds

K. Mani Chandy

California Institute of Technology
Computer Science

Pasadena, CA 91125
mani@cs.caltech.edu

1 Introduction

Sense and Respond Applications

A sense and respond application detects changes in the state of the world relevant
to a user and responds proactively on the user’s behalf. A response may issue
an alert or carry out a sequence of actions. Sense and respond applications
(abbreviated to S&R apps) are used in many areas including defense, homeland
security, finance, logistics, and manufacturing. Some personal applications, such
as location-based services on mobile phones, are S&R apps since they sense a
phone’s location and respond by offering appropriate services.

Sense and Respond Applications and Event Processing

S&R apps are event-processing applications. Systems that execute S&R apps and
event processing apps are similar; the difference is that designs of S&R emphasize
the overall behavior of the system from sensing to response and back to sensing
whereas event-processing apps emphasize event detection. S&R systems consist
of: sensors and other sources of data; agents that detect patterns that indicate
significant events; planners that determine the best response to these events;
responders or actuators that execute the responses; communication networks
for transmitting information between components; and, management layers for
controlling the entire application.

Goal of the Paper

The goal of this paper is to suggest that web and cloud computing technologies
have matured to the point that they enable a worldwide plug and play S&R
web that can grow and change dynamically by the addition and modification of
components. An S&R web enables new S&R apps to be developed as easily as
web applications are developed today.

Organization of the Paper

The organization of the paper is as follows. In Section 2 we explore the demand
for S&R apps for business and personal applications. In Section 3 we propose an
architecture for the S&R web and present designs of two, very different, S&R
apps based on the proposed architecture.

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 78–84, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Web That Senses and Responds 79

2 Demand for Sense and Respond Applications

Demand from Business: S&R Apps with Long-Term Contracts

Sense and respond applications are proactive: they monitor the world and re-
spond proactively on behalf of users without (necessarily) waiting for user com-
mands. Proactive applications have long-term contracts with users whereas
reactive applications may have short-term contracts. Long- and short-term
contracts are illustrated by the following example.

When Professor Buchmann travels from Wiesbaden to the Technische Uni-
versität Darmstadt, on August 18 at 10AM he queries a web application to
determine traffic conditions along the route; the application’s contract is to pro-
vide the information when requested, and after the information is delivered the
contract terminates. An example of a long-term contract is an application that
continuously monitors traffic along the user’s commute and alerts the user when
alternate routes should be taken; this contract remains in force until the user
cancels it. Email and calendar applications also have long-term contracts with
users. Your email application continues to manage your email until you delete
the application. These applications may be proactive or reactive - they may
push alerts to the user or give information to the user only when requested.
Applications with long-term contracts serve users better when users give the
applications personal information that enables the application to be tailored to
the user’s specific needs.

Businesses want long-term, personalized contracts with their customers be-
cause such contracts allow businesses to serve their customers better and reduce
churn. A variety of apps with long-term contracts have become popular and their
successes will lead businesses to offer many more S&R apps.

Demand from Individuals

People expect increasingly rapid interactions with systems and with other peo-
ple. We expect timely information whether we are sharing photographs, getting
updates on stocks, receiving alerts about delays in flights, or getting suggestions
for alternate routes for commutes. GPS and location-based services are useful
to the extent that they provide information when needed. People depend on
mobile-phone services to proactively inform them about their world. All these
services monitor the state of the world and respond on the user’s behalf. The
public increasingly expects services that sense and respond for them, and this
expectation will drive development of S&R apps.

Technology Trends Driving Sense and Respond
Applications

Ubiquitous Sensors

Cars, appliances, the grid, and homes have sensors. Sensors, such as accelerom-
eters are used in car airbags, mobile phones, and computer games. The costs

80 K.M. Chandy

of these devices have dropped as widespread use leads to economies of scale.
This, in turn, allows these devices to be used in even more applications such as
seismological monitoring. Widespread deployment of sensors drives demand for
S&R apps that exploit sensor data in a timely manner.

The mobile phone merits special mention for several reasons: Mobile phones
have become necessities in most parts of the world. Mobile phones have built-in
sensors such as accelerometers and more phone models can now be connected to
external sensors. Alerts are sent to phones and thus phones serve as responders
and as sensors. Widespread deployment of GPS devices also drives S&R apps.

Cloud Computing

Cloud computing systems are used in a variety of application domains. Public
clouds, such as the Google App Engine and Microsoft’s Azure Platform, of-
fer Platforms as a Service (PaaS) that allow web applications to be developed
quickly. PaaS systems are not designed specifically for S&R apps; however, they
enable the development of a plug and play S&R web, and as a consequence will
serve as catalysts for wider deployment of S&R.

Standards and Toolkits

Ubiquity requires standards. Standards and toolkits have made the development
of Web applications much easier, and this has led to their widespread deploy-
ment. Likewise, standards and toolkits for S&R apps are necessary for develop-
ing a ubiquitous, plug-and-play S&R web. Several organizations are developing
standards for event schemas, event specifications, and commands to responders.
Toolkits, such as the Google Web Toolkit (GWT), for Web applications can be
extended to serve as toolkits for S&R apps. Standards and toolkits, particularly
in PaaS systems are helping to develop an S&R web.

3 An Architecture for an S&R Web

A ubiquitous, plug-and-play S&R web can be designed using different architec-
tures. Here we propose an architecture appropriate for many, but not all, S&R
applications. In this architecture, sensors and other data sources are connected
to a cloud computing system that manages the S&R web, accepts data from
data sources, detects events, determines optimum responses, and then instructs
responders. We explore the use of public PaaS cloud-computing systems such as
the Google App Engine (GAE) and Microsoft Azure. Later, we will identify the
strengths and weaknesses of the architecture.

The functions of the cloud computing system, acting as a central server, in
this architecture include the following. Components such as data sources and
responders are registered with the server. Components send periodic heartbeat
messages to the server to indicate that they are alive. The server either polls data
sources for information or accepts messages pushed to it. Likewise, the server

A Web That Senses and Responds 81

sends commands and alerts to responders. The server stores and manages data
from component and accesses this data to enrich information from data sources,
detects significant events, and determines optimum responses. PaaS systems,
such as GAE and Azure, were not designed specifically for S&R apps; however,
they allow S&R server functions to be executed easily.

PaaS systems support Web applications in which clients repeatedly request
the server to execute short services. Server functions for managing components in
S&R systems are implemented as requests from components for (short) services
such as registering new components. A toolkit for implementing S&R apps using
a PaaS cloud has a library of functions for managing components. For example,
a new sensor is registered with the S&R web merely by invoking a registration
function in the library.

PaaS systems were not designed for applications that require intensive com-
putation. In some S&R apps functions for detecting events and computing best
responses may require a great deal of computation time; these functions should
be executed on a local server outside the PaaS cloud.

Case Study: Responding to Earthquakes

We describe the design of an application that senses shaking from earthquakes
and which responds by: (a) alerting people and devices about impending shaking
and (b) directs first responders to areas that are most badly damaged. Our goal
here is to show how an S&R web can be tailored to develop a specific S&R app
such as the earthquake-sensing application.

A sensor is plugged into the system by connecting it to a local computer -
the sensor host - through a USB port and then connecting the sensor host to
the server by giving the server’s address to the host. Responders are plugged
into the system in the same way. Sensors and actuators communicate through
the Internet to a PaaS system, currently implemented using GAE. Sensors (ac-
celerometers) are placed over a quake-prone region. The sensors continuously
monitor movement of the ground and send raw acceleration data to the sensor
host, which detects patterns in the raw data that indicate a possible earthquake.
When a sensor host detects such a pattern it sends a message, called a pick, to
the server. The computational and communication load on the sensor host, when
the host is a standard desktop machine, is so low that it is not noticeable. A
sensor host may also be a standalone device with enough computational capabil-
ity to detect patterns in raw accelerometer data. Such devices can communicate
by wireless to desktops that send aggregate data from multiple sensors to the
server. The advantage of standalone sensor hosts is that they can be placed any-
where with power and wireless connectivity; for instance devices can be placed
in places, such as basements and attics, that don’t have desktop computers.

A sensor host may send an erroneous pick message due to electronic noise in
the sensor or due to the ground shaking from trucks or building construction.
The sensor host generates pick messages when it detects low-frequency (less
than 10 Hz) waves whereas building construction activity, such as operation of

82 K.M. Chandy

jackhammers, generates waves of higher frequencies. The low-pass filter reduces
the rate of erroneous picks. The interval between pick messages from a sensor,
even a noisy sensor, is large - at least in the order of tens of minutes. Simple
machine-learning algorithms in the server can be used to raise the threshold at
which a sensor host identifies picks in the raw data. This reduces the rate at
which sensor hosts send messages when there are no earthquakes going on.

Electronic noise in different sensors is uncorrelated. Noise due to ground shak-
ing from trucks and construction is correlated only for sensors in close proximity.
Therefore the total rate of pick messages sent to the server from all sensor hosts
is small while no earthquake is going on. The rate of pick messages sent to the
server is extremely high while an earthquake is going on because most sensors
in the earthquake region detect ground shaking. The rate at which a sensor host
sends pick messages is throttled so that the total rate of messages to the server
does not exceed its capacity. Even so, traffic to the server occurs in intense bursts,
and the system is useful only if the server processes bursts of messages. When
servers are implemented as public PaaS cloud-computing systems, a concern is
that a server may not provide the required capacity when it is most needed.

Sensor registration and deregistration, functionality for monitoring sensor
health, and other management functions are common to all S&R apps. Like-
wise, functionality for alerting clients is generic. We implement a given S&R
app, such as the earthquake-sensing application, by tailoring the general S&R
framework by specifying: how sensor hosts determine when to send messages and
what messages to send, how the server detects events and computes optimum
responses, and what responders do when they receive messages from the server.
Next, we describe these functions briefly.

The system should react when real earthquakes occur and it should not raise
false alarms. Therefore, the server aggregates information from multiple sensors
before raising an alarm. The server can be more certain about the existence of
an earthquake if it waits for more time and obtains more data to validate its
conclusion; however each additional second that the server waits is a second less
to react. Thus, a critical challenge in the design of the system is determining
when to issue an alert of an earthquake and when to wait for more data.

The earthquake region is gridded, and each sensor belongs to a cell in the grid.
The server determines that an entire cell has detected an earthquake when N out
of M sensors in the cell send pick messages (alarms) to the server in an interval
of duration T where T is determined by the time required for an earthquake
wave to propagate across a single cell. The values of N and M are determined
by the amount of noise in sensors.

When a sensor sends an alarm, the N value for the appropriate cell is incre-
mented, and the system raises an alarm when this number exceeds a threshold.
This computation is fast, and the GAE allows more complex algorithms to be
executed rapidly.

PaaS systems, such as the GAE, simplify the development of S&R apps for
several reasons. The system is distributed and redundant so that an earthquake

A Web That Senses and Responds 83

doesn’t destroy the server. The service provider (Google in this case) acquires
and maintains hardware and the underlying software platform. The library of
functions for managing components can be repurposed for multiple S&R apps.

Case Study: Rural Health Monitoring in Emerging Economies

Next we consider a very different S&R app that can also be implemented on the
same S&R web. The current prototype is also implemented on top of the GAE.

People in remote rural areas in emerging economies may have to travel for
hours to reach doctors and hospitals. When a patient feels unwell, a critical
decision that the patient must make is to either travel to the remote healthcare
facility or use local treatments. Travel to and from a healthcare facility may take
several hours and even days, and some rural poor can ill afford such travel. As
populations age, the problem becomes acute as increasing numbers of the aged
in rural areas have to monitor themselves to make this critical decision.

A prototype system developed at the California Institute of Technology and
the medical school of the University of California at Irvine attempts to help deal
with this problem by developing an S&R app. The idea is to harness the power of
mobile phones (and even computers) that are increasingly used, even in poorer
rural areas, in many parts of the world.

The team has built inexpensive auscultation devices (stethoscopes) and EKG
devices coupled to mobile phones or laptops. Sensory data is sent to a PaaS
cloud computing system (GAE) with additional information about the patient.
Healthcare experts monitor the system, and communicate with patients, when
necessary.

This application is very different from the earthquake application in many
respects. Events are very different - in the case of earthquakes, an event is global
in the sense that it impacts everybody in a region, whereas in the medical appli-
cation, an event is local in the sense that it impacts the patient and perhaps the
patient’s family and village. Likewise, responses are very different. In the case of
earthquakes, responses have to be made in seconds; by contrast, in the medical
application responses could take tens of minutes. Though the applications are
very different, they are both S&R apps: they sense events and respond to them.

Lessons Learned

Different S&R apps have many functions in common. Sensors and responders are
registered with servers. Heartbeat messages are used to check that components
are alive. Machine learning is used to calibrate components. The commonality
of functions suggests the use of a common framework - an S&R web based on
web technologies, web toolkits, and public PaaS cloud computing systems. An
S&R web will make the development of S&R apps as easy as the development
of web apps is today.

84 K.M. Chandy

Acknowledgment

A large group of students, research staff members and faculty members at
Caltech (the California Institute of Technology) are carrying out the work on
earthquakes. The faculty members on the team are Rob Clayton, Tom Heaton,
Andreas Krause, and Mani Chandy. The students and research staff in the team
make the research possible. Michael Olson’s Masters and PhD research is on the
S&R web architecture. The design of public PaaS cloud-computing systems for
community-based sensing is largely due to him.

The medical application is being developed by a team from the medical school
at the University of California at Irvine and at Caltech with the help of doctors
at the Christian Medical College, Vellore, India. Dr. George Chandy, M.D., leads
the UCI team consisting of several medical school students who study healthcare
in emerging economies. The Caltech team includes Dr. Julian Bunn, Karthik
Sarma, Jeff Lin, Albert Tana, and Mani Chandy.

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 85–107, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Spatial Perspectives in Event Processing

Opher Etzion and Nir Zolotorvesky

IBM Haifa Research Lab, Haifa University,
Haifa, Israel

opher@il.ibm.com, nirz@il.ibm.com

Abstract. The processing of geo-spatial events plays an increasingly important
role in constructing enterprise applications that can immediately react to
business critical events. In this paper we introduce spatial extensions to the
event processing model, starting from the introduction of geo-spatial main
concepts, and moving through the life-cycle of event processing application
development and discuss spatial event representation, spatial contexts and
spatial extensions to event processing patterns. The paper also discusses several
use cases from various domains that may benefit from the use of spatial
extensions of event processing.

Keywords: Event Processing; Spatial Event Processing; Spatiotemporal Event
Processing; Event context; Multi dimensional context, Spatial and spatiotemporal
contexts.

1 Introduction

In recent years we have seen substantial growth in the utilization of event processing
for a variety of applications, while most product support semantic abstractions that
relate to the temporal direction, there are many applications that can be assisted in
spatial abstractions. Current Event Processing products have not focused on providing
specific primitives that manipulate the geo-spatial aspects, when such processing is
required; it is being performed by the regular primitives of the event processing
language. However, as both the quantity and complexity of such applications
increase, it becomes cost-effective to extend the current models and products to
support explicit representation of the geo-spatial aspects of events and extend the
processing language to support it.

The contribution of this paper to event processing research and practice is
enhancement of the context notion that typically is viewed as temporal (e.g. time
window) to include multi dimensional, spatial and spatiotemporal contexts.

1.1 Motivation

Geo-spatial event processing is useful when location based aspects of events are
important for business decisions and operations.

Several studies in the GIS community have concentrated on the introduction of a
representation model for geo-spatial events. As an example, Worboys introduced a
spatial event representation in [17], and a spatio-temporal event representation in [18].

86 O. Etzion and N. Zolotorvesky

However, these models concentrated on the representation of events and not on the
processing of events, these models enable reaction to a single event and do not
support composition, or pattern matching in event histories.

There were few proposals for methods for handling spatio-temporality using
subsets that is tailored to a specific application domain like the data management
application presented by Stock in [14], these models do not represent a generic event
processing model.

There are a variety of application areas that require the use of location based
aspects of event in order to process these events. We introduce a list of such
applications to motivate this paper; Section 6 describes some detailed use cases. The
various areas are:

• Transportation - infrastructure management, fleet and logistics manage-
ment.

• Government – with spatial analysis we can analyze revenue collection,
economic development, city planning.

• Military/Fire/Emergency Medical Services/Disaster - Military defense can
use spatial analysis for intelligence, terrain analysis, mission planning, and
facilities management. Public safety personnel can effectively plan for
emergency response, determine mitigation priorities, analyze historical
events, and predict future events using this spatial CEP system.

• Business - Financial analysts can use this system for targeting their markets
by visualizing product and service consumption according to their location.

• Environmental Management - Environmental management can use spatial
analysis tools to provide a better understanding of how elements of natural
communities interact across a landscape. Spatial analysis tools can be used
in ecology labs, planning departments, parks and agencies.

• Natural Resources - Oil and gas exploration, hydrology harnessing, timber
management, and mining operations require sound assessment to steer
growth into areas that can support it while preventing contamination of
rivers or destruction of resources. The delicate balance between industrial
development and environmental conservation requires sophisticated
modeling and spatial analytical tools.

• Utilities–Power/Electricity/Gas/Telecommunications/Water Management -
The process of routing energy/gas/water/ telecommunications is highly
dependent on geographic information. From network design to outage
management, more than 80 percent of utility data management contains
spatial components.

1.2 Structure of This Paper

The paper is structured in the following way: Section 2 provides background, and
explains the event processing model extended by the Geo spatial event processing,
and provides some introduction to geo-spatial computing; Section 3 describes the
representation of the spatial aspects of events; Section 4 describes the notions of
spatial context and multi dimensional context; Section 5 discusses spatial event
patterns; Section 6 demonstrate the utilization of these concepts using a collection of
use cases; Section 7 concluded the paper.

 Spatial Perspectives in Event Processing 87

2 Background

There are some variations of event processing concepts and terms, thus in order to
provide level setting we shortly introduce the specific model and concepts that are
used in this paper in Section 2.1; Section 2.2 provides short background about Geo
spatial computing, Section 2.3 discusses Spatio-Temporal reasoning.

2.1 Introduction to Event Processing

Event denotes something that happens in reality as defined by Luckham in [8]. While
data-item typically denotes the state of some entity, events denote transitions between
these states. There is a semantic overload in the term event, since it reflects both the
event occurred in reality and its representation in the computer domain (event
message or event object). The event processing architecture is called EPN (Event
Processing Network); this concept is formally defined in by Sharon & Etzion in [12].

The life-cycle of event processing application is detailed below (some of it in
iterative way):

1. Event schemata are defined.
2. Event producers devise mechanism to emit events, in push, periodic

pull, or on-demand pull. Event producer examples are: instrumented
programs, state observers in business process management system
and sensors.

3. The event is published on a channel and routed through an event pipe
to one or more event processing agents which – validate, transform,
enrich, filter or match patterns and create more events that are in turn
published on other channels and routed to more event processing
agents.

4. As mentioned by Adi [1], event processing agents work within a
context , a major semantic abstraction which partitions the events
according to temporal and semantic partitions (e.g. the context is valid
every working day between 9AM – 4PM, and events are partitioned by
customer, i.e., the processing of each customer is distinct).

5. Event processing agents may derive new events and send them to
other event processing agents.

6. At the edge of the event processing network the created events called
situation events are routed to event consumers.

Figure 1 shows an EPN example, for a monitored patient in the hospital.

Event producers are:

• Admission office that records admittance and release of patients.
• Blood pressure meter.
• Fever meter.

The agents perform filtering, aggregation, enrichment, transformation and pattern
matching, routing channels are designated in r1… r9 and event pipes are designated in
p1… p20.

88 O. Etzion and N. Zolotorvesky

IBM Haifa Research Lab – Event Processing

IBM Haifa Research Lab – Event Processing © 2008 IBM Corporation

Fever F

Fever C

r2

r3

r8

Enrich:
Is diabetic?

Trans late:
C2F fever

Pattern detection:
Alert physic ian

Pattern Detection:
Alert Nurse

r6

Fever F

Blood pressure re ading

p2

p4

p3

p6

p5

p10

p9

p8

p1

p11

p12

p12

admittance

Aggregato r: Max.

p7

Pattern Detection:
Continuous Fever

r7

r9

Filter: Diabetes
r1 r5

p13
p14

p15

p16

p17

p18

p19

p20

Fig. 1. An example of Event Processing Network

2.2 Geo Spatial Computing

Geo spatial computing or its more familiar name GIS (Geographic Information System)
is a discipline that deals with processing spatial information; it is being used by
comprehensive collection of applications that cover many aspects of modern life [11].

The first aspect is spatial data storage into digital terms. Data is manipulated for
use in a digital environment, and these manipulations often change the data and have
profound effects on the results of analysis. Each of these manipulations involves a
subtle shift in the representation of spatial entities, and accounting for these
modifications and their implications is an important part of GIS.

The second aspect is analyzing, mapping and visualizing GIS results. Visualizing
GIS results is vulnerable to the vagaries of the digital environment, and must be
consistent with human capacity for perception. Each object in the GIS data model
includes attributes which characterize this object. At a small scale, for instance, only a
limited number of attributes can be displayed or the map becomes overcrowded
(objects are very tight located to each other). At a larger scale, a greater number of
attributes can be accommodated. Each of these issues has bearing on how spatial data
is analyzed and interpreted. In order to represent geographical space we need to use
an appropriate data model. In GIS we generally use three data models: the vector data
model, raster data model and object data model. As mentioned by Schuurman [11].

Vector Data Model: The most ubiquitous in GIS, and most closely resembles
traditional maps. Vector data models are constructed from points, lines and areas. The
point is zero-dimensional primitive; lines are one-dimensional and are constructed by
an arc or a chain linking two points. Areas are defined by sets of lines; surfaces are
areas that include height or another dimension such as population density that can be
used to portray relative elevation. In vector data model polygons are synonyms with
areas. Three-dimensional surfaces are, likewise, built from areas.

Raster Data Model: This model divides the world into a sequence of identical,
discrete entities, by imposing a regular grid. Frequently the grid is square. Each grid

 Spatial Perspectives in Event Processing 89

cell in a raster is linked to specific location. Raster data models are distinguished by
their conceptual simplicity and ease of implementation. Raster systems are widely
used in applications which employ remotely sensed images as satellite imagery is
represented using a gridded network.

Raster and Vector data models are also referred to as layer models. Layers refer to
the themes or attributes which are registered to the same geographical area under
consideration. Layers can be compared with each other to determine a new set of
attributes. One of the most useful functions of GIS has traditionally been the ability to
perform map overlay, using the principles of Boolean algebra, to derive new attributes
from combination of layers.

Object Data Model: This model is alternative to viewing the world as a series of
locationally registered layers; each object represents a single attribute. Rather than
focus on location, objects oriented GIS defines phenomena, such as telephone poles
or streets as objects. Objects can represent points, lines, areas and three dimensions.
Objects are usually represented using vector building blocks such as points, lines and
areas. A key difference of object is that object model allows empty space as well as
overlapping objects, i.e. multiple objects occupying the same space. This definition
was discussed in Schuurman [11].

2.3 Temporal GIS

Temporal GIS [10] is aimed to answer questions such as:

• What location changes have been done in the last T time units?
• How these location changes affected other attributes of related events or

the related objects?
• Can we predict future location changes?

Worboy’s book [16] discusses changes of spatial properties with time, as Figure 2
shows changes in administrative areas over time.

6

Example

Change of administrative areas:

R R’ R’R R”
R’

R

1971 1981 1991

Fig. 2. Change of administrative areas example

90 O. Etzion and N. Zolotorvesky

• Relevant questions on the spatio-temporal aspect can be:
• What variation has there been in the population density of R’ between

1971 and 1991?
• Has the A34 route (road) ever passed through region R’?
• Does the A34 route currently pass through land that has ever belonged

to region R’?

These are complex spatial objects that have discrete changes with respect to time.
There is also a problem of storing spatiotemporal data. Simple sequences of

snapshots (raster or vector) waste space with redundant information.
A temporal GIS aims to process, manage, and analyze spatial-temporal data.

However, the capabilities of any information system largely rely on the design of its
data models. According to Date [3], data models present the conceptual core of an
information system; they define data object types, relationships, operations, and rules
to maintain database integrity. A rigorous data model must anticipate spatiotemporal
queries and analytical methods to be performed in the temporal GIS.

The temporal semantics of a spatiotemporal structure depends on the application
domain, and determines whether time is discrete or dense; linear, branching or cyclic;
and whether metric and topological properties are relevant [18].

Next we move to discuss the spatial aspects of event processing based on this
background.

3 Representation of Spatial and Spatiotemporal Events

This Section starts by discussing what events are and how they are defined. We
continue our discussion by explaining the logical structure of events in general and
the added representation required for added for spatial representation of events.

3.1 General Event Representation

When we speak about event representation we refer to the programming entity that is
used to represent the event object. In an event processing application one usually
encounters many event objects that have a similar structure and a similar meaning. All
events that have same structure, similar meaning and contain the same kind of
information are defined to be instances of the same event type. An event type
specifies the information that is contained in its event instances. It does this by
defining a set of event attributes. We distinguish between three kinds of information
carried in an event object: Header, Payload and Event Relations. Figure 3 shows the
general structure of the definition element.

The Header consists of meta-information about the event, for example, its type
description attributes that describes event identification, composition type and
chronology, meta-information also includes attribute indicators such as occurrence
time, detection time, event source, etc.

The Payload contains specific information about the event occurrence itself. We
can liken this to a file in a computer file system; the payload corresponds to the
contents of a file, whereas the header corresponds to file metadata such as its name,
time of last access, and so on.

 Spatial Perspectives in Event Processing 91

Definition Element describing
event type

Header Payload Event
Relations

Event Identifier Attribute list
Event composition true/false
Chronon millisecond/second/minute…

Occurrence Time
Event Certainty
Event Annotation
Event Identity
Detection Time
Event Source

Header
attribute
indicators

Type
description
attributes

Attribute Name Data Type Semantic Role

Event Type Relationship type
 Generalization/

Specialization/
Retraction
Member

Fig. 3. General structure of the event type definition element

The Event Relation is an optional part; each event type definition may contain
references to other event types when there is semantic relationship between them. The
event type definition element lists the referenced event types and gives the nature of
each relationship. There are four types of relationships: membership, generalization,
specialization, and retraction.

3.2 Spatial Event Structure

The first step in processing spatial events is to define the way that the spatial
information associated with the event is represented in the event schema.

In the previous paragraph we described the Payload event structure part which
consists of a collection of data type attributes. We use this data type attribute to define
a new "location" data type which will serve us to define a real-world location
associated with the event; it can refer to the location using domain-specific geospatial
terms, for example, lines and areas that are defined in a particular geospatial domain.

The Location data type can use one of spatial data models described in chapter 2.2,
for example each event can be explicitly represented using a coordinate system; a
point might be represented as a latitude/longitude pair or event can be represented by
identifier of a spatial object, for example, the name of a building or city.

Spatial representation of events can be one of several spatial Types. Spatial type is
a geometric description of the event location. Spatial types are:

• Point - The event is considered as occurring in a specific geometric point
in the space, using some coordinate system (2D or 3D). Example: the GPS
coordinates of a specific vehicle.

• Line - The event is considered as occurring on a line or polyline. Example:
the road (represented by a polyline) that a vehicle is currently driving
along.

92 O. Etzion and N. Zolotorvesky

• Area - The event is considered as occurring within a certain geographical
area or volume (2D or 3D).Example: the local authority jurisdiction that a
vehicle is currently located in.

Figure 4 shows these different representations being used by applications that monitor
traffic on a certain highway.

Fig. 4. Traffic monitor example - Car C described as point type, green neighborhood defined by
area type and a road specified by line type

Note that the additional attributes denote both content attributes and also other
meta-information attributes like temporal attributes that are discussed in Section 3.3.

3.3 The Temporal Dimension

Next we recall the temporal dimension of event representation in order to discuss its
relation with the spatial dimension in Section 3.4.

Events may have two major temporal characteristics that determine the semantic of
their temporal processing.

• Detection Time: The point in time in which the event becomes available
for processing through the introduction of the corresponding event
message Example: the event flight BA0238 landed in 10:39 this has
been reported in 10:40, which is the detection time of this event [5].

• Occurrence time: The time-stamp in which the event occurred in the real
universe. In many applications the occurrence time is the reference time
for the determination of event order, rather than the detection time. In
temporal state processing this time dimension has been mentioned as:
event time or decision time but was not considered as a major dimension
[5].

Next, we discuss how spatiotemporal events are represented.

 Spatial Perspectives in Event Processing 93

3.4 Spatiotemporal Events

Temporal GIS should support process-based changes, for example fire spread and
storm development. Galton [6] makes the distinction between histories that are
functions from a temporal domain to attribute values, or properties of objects, and
chronicles that treat dynamic phenomena as collections of happenings. We define a
spatiotemporal event as an event that contains both time attributes and spatial
attributes. From an ontological perspective, were made several attempts to define
spatio-temporal configuration. Grenon and Smith [7] call temporal sequences of
object configurations the SNAP ontology, and the event/action/process view, the
SPAN ontology. Our spatiotemporal event definition is very close to SPAN ontology
that Grenon and Smith proposed.

From a semantic point of view, spatiotemporal events can be viewed as transitions
among states, where the transitions are ordered according to the time dimension.
There are three types of these events based on the relationships between the
spatiotemporal events and the states that created these events.

Mutation Event is an event in which location has not changed relative to the
previous state; however some of the attributes change their values.

Movement Event is an event in which only the location attribute has changed its
value relative to the pervious state, but other event attributes are not changed.

Mutation Movement event is an event in which both location and content attributes
has changed relative to the previous state.

4 Space Related Context

Context as defined by Adi [1] partitions the space of events according to several
dimensions – temporal, spatial, state and semantic. It is used as a major abstraction,
Each EPA (Event Processing Agent) operates within a specific context, and only
events that are associated with a context are evaluated by that agent. The most
common context is time window that restricts the activities of an EPA to a certain
time interval, however partition can also be semantic, and e.g. the events that related
to platinum customers are mapped to a distinct context. For example: if an agent that
looks for anti-money laundering suspicion is looking for events related to the same
customer during the same week, then the context consists of two dimensions:
temporal (the week) and semantic (the customer). Events are partitioned according to
the context and each context-instance has its own agents.

The spatial dimension partitions events based on their location. In this Section we
discuss the addition of the spatial dimension to the notion of context.

Similar to the definition of temporal context as defined by Etzion [5], we can
define spatial context. We call this spatial context Space-Span. In many cases the
spatial context is closely associated with a temporal context in which our spatial
context is relevant. In order to handle these two contexts we define the notion of
complex context which will composite two simple contexts such as temporal and
spatial or segmentation and spatial.

In this section we define three types of spatial Contexts that may be relevant when
we describe Space-Span.

94 O. Etzion and N. Zolotorvesky

1. Pure Spatial Context – this context partitions the space of events
according to spatial dimension only.

2. Spatiotemporal Context - this context partitions the space of events
according to two dimensions – combining spatial and temporal context
into one mutated context.

3. Complex Context – complex context is a context that is composed of
several one dimensional contexts; example: semantic and temporal
contexts or spatial and temporal contexts.

4.1 Fixed Location Context

A Pure Spatial Context limits the events that serve as input to its associated agents to
the events that happen within that context with no time constraints. A pure spatial
context can be of four types:

1. Fixed Space: at a fixed location.
2. Reference Object based Space: all locations in distance d from a

Reference Object.
3. Event based Space: location that starts at event A's location and ends at

event B's location.
4. Attribute based Space: all locations of either events or reference objects

which have the same attribute value.
5. Computed space: a spatial context that is derived as a function of other

locations of either events or reference objects.

4.1.1 Fixed Space
Fixed Space is a space at a fixed location; example: a room; space is defined by room
space, rectangle – space is defined by rectangle area and all that happens inside this
rectangle is of interest to an event processing agent.

4.1.2 Reference Object Based Space
Reference Object based Space is the collection of all locations from which their
distance to a reference object is bounded by a given upper limit. Examples: all
locations in distance of 1 mile from road number 2; all locations in distance of 2 miles
from the mall; Airport-noise-Area is the area around the airport (E) within a radius of
10KMs. This is sometimes known as buffer, as shown in Figure 5.

e1Buffer
buffer

e1

d

Fig. 5. Buffer representation example

4.1.3 Event Based Space
Event based Space is a space defined by the location of one or more events; example:
disease area, space is defined by start event of disease outburst and is defined by all

 Spatial Perspectives in Event Processing 95

locations at distance d from the location of this event. Note that we can define space
by several events and to calculate distance d from each one of them, creating an area
by merging spaces that each event has created.

4.1.4 Attribute Based Space at Fixed Time
Attribute Based Space is a space defined by either reference objects or events that
have the same attribute value; it can be based on several attributes values.

John
Smith

John
Smith

John
Smith

Bill
StoneBill

StoneAttribute
query

John
Smith

John
Smith

John
Smith

Bill
StoneBill

Stone

Fig. 6. Attribute query example

A derived spatial context is derived through some function of location of either
reference objects or events. The following functions are discussed:

Boundary (L) is a function that returns the boundary of some location, either
event's location or reference object's location. A polygon's boundary is a polyline. A
polyline's boundary is a multipoint that contains the collection of start and end points
of each lines. For point location, the function returns an empty set. Example: The
pattern Country-Border occurs when created new polyline event which represents the
border of a Country.

Envelope (E1, E2, En) is a function that computes a spatial envelope based on
the locations of a collection of events of types E1…En, where all the events have
point location. This function follows the convex hull term in computational geometry,
which stands for the boundary of the minimal convex set containing a given

Fig. 7. An envelope

96 O. Etzion and N. Zolotorvesky

non-empty finite set of points in the plane. Unless the points are collinear, the convex
hull is a simple closed polygonal chain. Figure 7 illustrates an envelope; an example
can be: The envelope of all locations in which a certain disease has been reported. In
this case all events of the type patient complain whose location within this envelope
should get specific processing. Note that this context can change in a dynamic way if
more relevant instances of these types are emitted.

4.2 Spatiotemporal Context

A temporal context [5] can be one of the three types:

1. Fixed Interval : may be periodic.
2. Event Interval: An interval that starts by event and ends by event.
3. Sliding Interval: An interval with fixed length that slides over the time.

A spatiotemporal context is a context that mixes both the spatial and temporal
dimension, i.e. an event is classified to this context if it satisfies both the temporal
dimension and the spatial dimension constraints. Some discussion of spatiotemporal
contexts can be found in [13] in the context of social networks and [9] in the context
of mobile computing.

A Spatiotemporal Context can be of four types:

1. Reference object based Space within a temporal context, all locations in
distance d from Reference Object within a temporal context.

2. Event based space within a temporal context, location that starts at event
A's location and ends at event B's location within a temporal context.

3. Attribute Base Space within a temporal context – all locations which
have same attribute value while this attribute value is checked only in
specific time context.

4. Sliding Space over a time interval: space that is being redefined over
time.

4.2.1 Reference Object Based Space within a Temporal Context
Reference object based space comprises of all locations in distance d from Reference
Object while this space interval is only relevant on specified fixed time interval;
example: all locations in distance of 1 mile from road number 2, between 8-10AM; all
locations in distance of 2 miles from the mall at 3PM.

4.2.2 Event Based Space within a Temporal Context
Event based space is a space defined by one or more events while this space interval
is only relevant within a specified time interval; example: disease area, space is
defined by the location of the start event of disease outburst and is defined by all
locations at distance d from this event. Time is defined by same start event of disease
outburst and lasts 48 hours after the report about the last infected person. Note that we
can define space by several events and to calculate distance d from each one of them,
creating area by merging spaces that each event has created.

 Spatial Perspectives in Event Processing 97

4.2.3 Attribute Based Space within a Temporal Context
Attribute based space is a space defined by events that have same attribute value
while this space interval is only relevant on specified fixed time interval; it can be
based on several attributes values. Example: Pollution Area, space is defined by all
locations for which the value of the AQI attribute is bigger than 100(AQI >100) while
all surveys very done Today.

4.2.4 Sliding Space Over a Time Interval
Time based space is a space whose boundaries change over time. Example: Flying
Aircraft space is defined by area around aircraft at radius 1 mile, while Time interval
is starts at takeoff event and ends at landing event, this location is sliding according
to the current location of the aircraft.

4.3 Complex Context

We can use simple operations in order to compound Complex Context.
Complex Context can be of three types:

1. Intersection of contexts: the complex context is the common part of a
given one dimensional contexts.

2. Union of Contexts: the complex context is a context which contains all
events that satisfy at least one of the given contexts.

3. Symmetric difference of contexts: complex context is the set of events
which are classified to one of the contexts, but not in any other of the
given contexts.

4.3.1 Intersection of Contexts
This Complex Context is compound from intersection of two or more dimensional
contexts. One dimensional context can be of the same type or of different types;
Example: Context C1 is fixed interval temporal context (today between 8-10 AM);
Context C2 is event based temporal context (from car start moving to car stopped).
Context C3 is Reference Object based spatial context (all locations in distance of 1
mile from city center). The complex context denotes all cars that were moving today
between 8-10 AM in distance of 1 mile from city center.

Intersection
of Contexts

C1

C1 C2

C3

Fig. 8. Intersection of contexts example

98 O. Etzion and N. Zolotorvesky

Note that the intersection can be an intersection of several contexts with spatial
characteristics; the spatial intersection is shown in Figure 9.

Fig. 9. Spatial intersection

4.3.2 Union of Contexts
This Complex context is compound from union of two or more one dimensional
context. One dimensional context can be of the same type or of different types;
Example: Context C1 is a fixed temporal context (today between 8-10 AM), Context
C2 is an event based temporal context (from car start moving to car stopped) Context
C3 is a reference object based spatial context (all locations in distance of 1 mile from
city center); The complex context represent all events that happen between 8 and 10
AM today and all the events that relate to a certain car trip and all events that occur in
center city.

Union
of Contexts

C1 C2

C3

Fig. 10. Union of contexts example

Note that the union can be a union of several contexts with spatial characteristics;
the spatial union is shown in Figure 11.

Fig. 11. Spatial unions

 Spatial Perspectives in Event Processing 99

4.3.3 Difference of Contexts
This complex context is compound from the difference of two or more one
dimensional contexts. One dimensional context can be of the same type or of different
types; Example: the context C1 is a fixed temporal context (today between 8-10 AM),
the context C2 is an event based temporal context (from car start moving to car
stopped), the context C3 is a reference object based spatial context (all locations in
distance of 1 mile from city center). The complex context represents all events that
happen between 8 and are not related to this specific car trip and do not occur in the
center city and (which is the difference between C1 and C2, C3). In a symmetric
difference the two other differences are also valid.

Difference
of Contexts

C1 C2

C3

Fig. 12. Difference of Contexts example

Note that the difference can be a difference of several contexts with spatial
characteristics; the spatial difference is shown in Figure 13.

Fig. 13. Spatial Difference

In summary, there are various ways in which spatial context can be applied and be
combined with other dimensions, such as the temporal dimension. The extension of
the concept of context to include spatial and multidimensional contexts is the major
contribution of this paper.

The context determines the events that participate in each EPA processing and next
we discuss the event processing patterns that are proposed as an extension to existing
event processing patterns.

100 O. Etzion and N. Zolotorvesky

5 Spatial Oriented Event Processing Patterns

Detecting event processing patterns [12] is a major function of an event processing
functionality. A pattern is a predicate on the history of events that may include events
from various event types, and has associated policies to tune up its semantics. An
event pattern matching is taking one or more event streams as inputs and as output
returns a collection of events that satisfy this pattern. Some pattern examples are:

• AND (e1, e2) where e1.x > e2.y

• Sequence (e1, e2, e3)

• Not (e1)

All patterns are associated with contexts that determine the input events. For example,
the pattern Not (e1) is associated with the context that starts with the occurrence of
event e2 and terminates after 10 minutes later and determines if e1 does not occur
within 10 minutes after the occurrence of e2.

The notion of pattern is also central to complex event processing [12]. In this
section we discuss initial set of additional event processing patterns that are based on
the spatial characteristics of events and extend the set of existing patterns. We discuss
distance based patterns and interaction based patterns, which are examples for pure
spatial patterns and spatiotemporal patterns with temporal modality.

5.1 Distance Based Patterns

Distance based patterns are used to detect whether the location of an event occurred
within a certain distance from referenced object.

The Min Distance pattern: the pattern

Min Distance (CP, O, DP, E1… En)

Where:

• CP is a context partition
• O is a reference object;
• DP is a min distance predicate. Examples: > 1KM, = 200 M, ≥ 3KM)
• E1,…En are event types
• This pattern is satisfied if ∀ i ∃ e instance of Ei that belongs to the context

partition CP, such that the predicate DP (O, e) is satisfied.

The min distance pattern is satisfied when the minimal distance of the entire
participant events from a given reference object satisfies the min distance threshold
assertion.

To determine whether this pattern is matched or not, you take all the participant
events and find out which one occurred closest to the given point. The pattern is
satisfied if its distance satisfies a threshold assertion.

Example: The pattern Aircraft-on-Radar occurs when an event "aircraft
detected" located in distance of at least 100 KM from the radar location while, when
red alert is in effect.

 Spatial Perspectives in Event Processing 101

In this example, CP is a temporal context partition that spans between two events:
"start of red alert'" and "end of red alert"; O is a radar (in this case it is a transient
object, but can also be moving object); DP = ≥100KM; E1.Et are events from type
"aircraft detected" which are located at least 100 KM away from radar.

The Max Distance pattern: the pattern

Max Distance (CP, O, DP, E1… En)

Where:

• CP is a context partition
• O is a reference object;
• DP is a max distance predicate. Examples: > 1KM, = 200 M, ≤3KM)
• E1,…En are event types
• This pattern is satisfied if ∀ i ∃ e instance of Ei that belongs to the context

partition CP, such that the predicate DP (O, e) is satisfied.

The max distance pattern is satisfied when the maximum distance of all the
participant events from a given reference object satisfies the max distance threshold
assertion.

Max Distance pattern is very similar to Min distance pattern.
The Average Distance pattern: the pattern

Average Distance (CP, O, DP, E1… En)

Where:

• CP is a context partition
• O is a reference object;
• DP is an average distance predicate. Examples: 1KM, 200 M
• E1,…En are event types
• This pattern is satisfied if ∀ i ∃ e instance of Ei that belongs to the context

partition CP, such that the predicate DP (O, e) is satisfied.

The average distance pattern is satisfied when the average distance of all the
participant events from a given point satisfies the average distance threshold
assertion.

The Relative Min Distance pattern: the pattern

Relative Min Distance (CP, DP, E1, E2)

Where:

• CP is a context partition
• DP is a distance predicate. Examples: > 1KM, = 200 M, ≤ 3KM)
• E1, E2 are event types
• This pattern is satisfied if ∃ e1, e2 instances of E1, E2 respectively which

belong to the context partition CP and the predicate DP(e1 , e2) is satisfied.

The relative min distance pattern is satisfied when the minimal distance between any
two participant events satisfies the min distance threshold assertion.

102 O. Etzion and N. Zolotorvesky

To show this in use, we consider a law enforcement application that analyzes
burglary reports looking for patterns of similar-looking burglary events. One
hypothesis is that there could be a burglar who never commits two crimes in the same
neighborhood, to camouflage his tracks. To look for this the application uses a
relative min distance pattern to detect when there is a set of similar burglaries always
separated by a distance of at least 20 km. Figure 12 illustrates this example.

The Relative Max Distance pattern: the pattern

Relative Max Distance (CP, DP, E1, E2)

Where:

• CP is a context partition
• DP is a distance predicate. Examples: > 1KM, = 200 M, ≤ 3KM)
• E1, E2 are event types
• This pattern is satisfied if ∃ e1, e2 instances of E1, E2 respectively which

belong to the context partition CP and the predicate DP(e1 , e2) is satisfied.

The relative max distance pattern is satisfied when the maximal distance between any
two participant events satisfies the max distance threshold assertion.

Using the burglary story again, the relative max distance pattern can be used to
look for lazy burglars who always operate within a single neighborhood. We could,
for example, look for a maximal distance of 5 km between similar burglaries.

The Relative Average Distance pattern: the pattern

Relative Average Distance (CP, DP, E1, E2)

Where:

• CP is a context partition
• DP is a distance predicate. Examples: > 1KM, = 200 M, ≤ 3KM)
• E1, E2 are event types
• This pattern is satisfied if ∃ e1, e2 instances of E1, E2 respectively which

belong to the context partition CP and the predicate DP(e1, e2) is satisfied.

The relative average distance pattern is satisfied when the average distance between
any two participant events satisfies the relative average threshold assertion.

This pattern could be useful looking for a burglar who generally stays in a
particular neighborhood, but now and then takes a journey further afield.

Figure 12 illustrates these three relative patterns.
Looking at the figure you can see that these partitions satisfy the following

patterns:

• The relative max distance pattern with threshold assertion < 5 km is
satisfied in the door breaking partition.

• The relative min distance pattern with threshold assertion > 20 km is
satisfied in the window breaking partition.

The relative average distance pattern with threshold assertion ≤ 3 km is satisfied in the
heavy lifter partition.

 Spatial Perspectives in Event Processing 103

Fig. 14. Example that demonstrate three relative distance patterns

5.2 Spatiotemporal Patterns

Time series consists of a collection of time snapshots. In our context, it is applicable
to case where the events are detected in discrete time-points with fixed distance
among them. Time series are useful in sensor oriented applications where there is a
periodic sensor reading. Within a spatiotemporal context, time series refers to a
collection of time points included in the temporal interval for which the sensors reside
within the spatial dimension of the context. As with temporal trend patterns we
assume that there is just one relevant event type, so all the participant events are
instances of this one type. Moreover, the patterns require that the participant events
themselves constitute a time series, meaning that they are temporally totally ordered.

Moving in a constant direction pattern – Moving in a constant direction
(CP, E1...En)

This pattern is actually a family of patterns, such as moving north, or moving south.
For example, the moving south pattern would be satisfied by a vehicle that is
transmitting GPS readings of its position while it's traveling from Bologna to Florence.

Where:

• CP is the context partition

• E is an event-type.

The moving in a constant direction pattern is satisfied if there exists a direction from
the set {north, south, east, west, northeast, northwest, southeast, southwest} such that
for any pair of participant events e1, e2 we have e1 << e2 => e2 lies in that direction
relative to e1.

104 O. Etzion and N. Zolotorvesky

Moving in a mixed direction pattern – Moving in a mixed direction (CP,
E1...En)

This pattern is the complementary pattern indicating that no consistent direction
can be found among the participant events in the time context being considered.

Where:

• CP is the context partition

• E is an event-type.

The moving in a mixed direction pattern is satisfied if there are at least three events
with different locations and if none of the eight moving in a constant direction
patterns is satisfied.

The Stationary pattern – Stationary (CP, E1...En)
Where:

• CP is the context partition

• E is an event-type.

The stationary pattern is satisfied if the location of all participant events is identical.
The Moving Toward pattern – Moving Towards (CP, E1...En, O)
This is a pattern that indicates movement towards some object.
Where:

• CP is the context partition

• E is an event-type.

• O is a reference object

The moving toward pattern is satisfied when for any pair of participant events e1, e2
we have e1 << e2 => the location of e2 is closer to a reference object O than the
location of e1.
Note that this pattern may be true for several objects at the same time.

6 Use Cases

In this section we are showing several examples of event processing applications that
can be assisted by the use of spatial abstraction. The examples are from the areas of:
utilities grid, insurance, logistics, real estate, low enforcement and healthcare.

6.1 Insurance

Spatial event processing helps insurance companies by giving them the tools to
leverage geographic perspective in their management of to exposure to loss while
successfully competing in an increasingly demanding marketplace. The use of spatial
event processing helps to understand level of risk while making insurance based on
location of asset, to see number of claims in the area, see the value of polices in the
area of insurance.

 Spatial Perspectives in Event Processing 105

Example: When client asks for insurance for his house, an insurance company
wants to evaluate risk of making insurance of this house H; company checks the
number of insurance claims in the area in order to evaluate policy value.

• Context used: Reference Object Space within a temporal context - CP.

• Reference Object – house H.

• Temporal context –year of 2008

• Pattern (P3) - Object Distance Pattern - MinDistance (CP, H, DP, E1… En)

• Events- E1,…En insurance claims event types

• DP is a distance Predicate

• Pattern P3 is satisfied by finding all locations of the claims events in
distance DP from referenced object H within defined context CP.

The derived event is the collection of all claim events which satisfies the pattern P3.
The Insurance company makes decision on the insurance quote based on the
cardinality of this event collection.

6.2 Logistics

Spatial event processing offers a better way to handle customer requests or find the
best site for company’s next warehouse, distribution center, or service department.
With a Spatial Analysis, company can blend customer surveys with census data to
visualize market penetration, market share, and trade areas. When markets change,
spatial analysis can help to plan exit strategies and asset disposal.

Example: A Customer calls our company asks for technical service at his house.
The company needs to find the closest service technician and send him to customer.
Customer location (events E1) and (Ep1, Ep2, Epn) service technician car locations.

• Context used: Fixed Space context - CP.

• Pattern (P4) - - Events: Distance Pattern – Relative Min Distance (CP, DP,
E1,Ep1…Epn)

• Events- E1 customer location event, (Ep1, Ep2…Epn) service technician
car locations.

• DP is a distance Predicate

• Pattern P4 is satisfied by finding minimum distance DP from customer
location to each one of service cars (Ep1, Ep2... .Epn).The smallest DP is
nearest service technician location and this technician will be sent to handle
customer request.

6.3 Real Estate

Real estate is all about location, location, location. Spatial event processing offers a
variety of location–based solutions designed for all segments of the real estate
business such as location–based content management and sophisticated investment
analysis. Spatial event processing lets your customer compare multiple properties and

106 O. Etzion and N. Zolotorvesky

their respective proximity to desired amenities such as schools, parks, and shopping
centers. It can also gracefully introduce the subject of disclosure by displaying FEMA
floodplain data and know toxic sites in an area.

Example: a customer wants to buy an apartment in the center of Manhattan NY.
Real Estate agent needs to find all apartments for sale in distance of 1 mile from
center Manhattan NY and show them to client.

• Context used: Reference Object Space - CP.

• Pattern (P5) - - Object Distance Pattern - MaxDistance (CP, O, DP, E1…
En)

• Reference Object – center Manhattan NY.

• Events- E1,…En sale opportunities event types.
• DP is a distance Predicate - 1 mile.

• Pattern P5 is satisfied by finding all sale opportunities in not more then 1
mile distance from center Manhattan NY.

6.4 Healthcare

An effective health care services management use spatial analysis not only to show
what resources and needs exist but also where to find them. Health experts also can
use spatial event processing in epidemiological and public health monitoring. They
can geographically track public health indicators, identify disease clusters, and
explore sites of environmental risk.

Example: defining disease spreading direction. (Finding that disease is spreading
in same direction as a wind)

• Context used: Event based Space within a temporal context - CP.

o Temporal context – defined by same start event of first disease outburst and
lasts till end event of last infected person + 48hours.

o Pattern (P7) - Contains Pattern - Moving in a constant direction (CP,
E1,…En)

o Events- E1,…En disease infection event types

o Pattern P7 is satisfied by checking if there exists a direction from the set
{north, south, east, west, northeast, northwest, southeast, southwest}
such that for any pair of participant events e1, e2 we have e1 << e2 =>
e2 lies in that direction relative to e1.After finding spreading direction
we can compare to wind direction.

7 Conclusion

The paper has introduced spatial and spatio-temporal extensions to event processing
aspects; this paper has discussed the notion of spatial events and spatio-temporal
events, and discussed spatial and spatio-temporal contexts and patterns. Further work
will continue the thinking of new spatio-temporal patterns and how to handle spatio-
temporal events.

 Spatial Perspectives in Event Processing 107

Future work will deal with collecting more use cases in order to extend the language
to include additional spatial patterns and defining the spatial semantics of derived
events.

The notions of spatial and spatiotemporal contexts are the major contributions of
this paper, applying concepts from GIS into the event processing domain.

As one of the main benefits of event processing is the level of abstractions that
enable to use high level languages and express closes functionality in an easy way, the
addition of spatial abstractions extends the use of event processing. In our opinion
integrating spatial and spatiotemporal processing into event processing languages and
tools opens the way for new applications of these technologies and the spatial
primitives improve the usability of such applications.

References

1. Adi, A., Biger, A., Botzer, D., Etzion, O., Sommer, Z.: Context Awareness in AMiT.
Active Middleware Services, 160–167 (2003)

2. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. ACM Commun. 26(11),
832–843 (1983)

3. Date, C.J.: An Introduction to Database Systems, 6th edn. Addison-Wesley Publishing
Company, Reading (1993)

4. Etzion, O.: Towards an Event-Driven Architecture: An Infrastructure for Event Processing
Position Paper. RuleML, 1–7 (2005)

5. Etzion, O.: Temporal Perspectives in Event Processing, Technical Report, IBM Haifa
Research Lab (2008)

6. Galton, A.: Fields and objects in space, time, and space-time. Spatial Cognition and
Computation 4(1), 39–68 (2004)

7. Grenon, P., Smith, B.: SNAP and SPAN: Towards dynamic spatial ontology. Forthcoming
in the Journal of Spatial Cognition and Computation (2004)

8. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley, Reading (2002)

9. Padovitz, A., Loke, S.W., Zaslavsky, A.B.: The ECORA framework: A hybrid architecture
for context-oriented pervasive computing. Pervasive and Mobile Computing 4(2), 182–215
(2008)

10. Sargent, P.: Spatio-Temporal GIS- JRC Ispra Seminar (1998)
11. Schurman, N.: GIS a short introduction, pp. 12–16, 29-30,53-67. Blackwell Publishing,

Oxford (2004)
12. Sharon, G., Etzion, O.: Event Processing Networks – model and implementation. IBM

System Journal 47(2), 321–334 (2008)
13. Shevade, B., Sundaram, H., Xie, L.: Exploiting Personal and Social Network Context for

Event Annotation. In: ICME 2007, 835–838 (2007)
14. Stock Kristin, M.: Spatio-Temporal Data Management Using Object Lifecycles: A Case

Study of the Australian Capital Territory Spatial Data Management System. Journal of
Spatial Sciences 51(1), 43–58 (2006)

15. Worboys Mike, F.: Innovations in GIS. Taylor & Francis, Taylor (1994) ISBN 0-7484-141-5
16. Worboys Mike, F.: GIS - A computing perspective. Taylor and Francis, Taylor (1995)

ISBN 0-7484-0065-6
17. Worboys, M.F., Hornsby, K.: From objects to events. GEM, the geospatial event model.

In: Third International Conference on GIScience (2004)
18. Worboys, M.F.: Event-Oriented Approaches to Geographic Phenomena. International

Journal of Geographical Information Systems (2005)

Implementing a Practical Spatio-Temporal

Composite Event Language

Ken Moody1, Jean Bacon1, David Evans1, and Scarlet Schwiderski-Grosche2

1 Computer Laboratory, University of Cambridge,
15 JJ Thomson Ave, Cambridge CB3 0FD, UK

{firstname.lastname}@cl.cam.ac.uk
2 Microsoft Research, 7 JJ Thomson Ave, Cambridge, CB3 0FB, UK

scarlets@microsoft.com

Abstract. An earlier paper introduced SpaTeC, a composite event lan-
guage that enables simultaneous matching of event occurrences over
space and time. The driving case study is taken from a paper that
describes techniques for monitoring small animals in New Zealand. The
semantics of SpaTeC is presented in detail with the aid of the case study,
but the syntax is essentially mathematical. This paper describes a pro-
gramming language based on the SpaTeC model, illustrating it through
a practical application, the analysis of GPS traces of buses serving Cam-
bridge, UK. We describe some of the questions that Stagecoach, the bus
operator, wish to have answered, and use these to motivate our exten-
sions to SpaTeC. Composite event patterns are essentially those of the
earlier paper, with the addition of primitive patterns, which enforce re-
strictions on the space and/or time of event occurrences. Data fields
identified during pattern matching can be tested by predicates that fur-
ther restrict the relevant combinations of primitive events. We show how
the language can be used to answer questions posed by Stagecoach and
discuss its realisation.

Keywords: Composite event language, mobile systems, spatio-temporal
reasoning, session types.

1 Introduction

SpaTeC, a composite event language that enables simultaneous matching of
event occurrences over space and time, is described in [1]. Primitive event oc-
currences carry both time and location stamps; the target of the work is to
support sensor-based applications in which both clients and the objects moni-
tored can be mobile. The paper defines operators to combine primitive events to
form composite event occurrence patterns, specifying their semantics in terms
of the time and location stamps of participating primitive event occurrences. A
composite event notification service receives primitive (low-level) event occur-
rences, performs composite event matching against the current set of patterns,
and forwards details of composite (higher-level) event occurrences to the relevant
subscribers. There was no implementation, and although the paper presented a

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 108–123, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Implementing a Practical Spatio-Temporal Composite Event Language 109

detailed mobile event scenario, the data were not easily available for experiment.
The present paper describes a new scenario with more challenging features for
which data are available, using it to help design a SpaTeC programming lan-
guage that builds on and extends the earlier model. We shall not refer to that
paper again, but we assume the reader has access to it and can discover any
relevant details from it.

Physical measurements in both time and space are subject to error. We fol-
low the approach established in [2] to take account of local error using interval
timestamps, and extend the technique to handle location stamps as well. Time
values are essentially one-dimensional, and it makes sense to say that one event
took place before another, though if the uncertainty intervals overlap we cannot
be sure. For location stamps, the most that we can assert is that two events oc-
curred at different places. Recent work taking account of location, such as [3,4,5],
is discussed in the earlier paper.

Operators in SpaTeC establish time and location stamps for each composite
event occurrence matched, and the semantics of the composite event language
depends on the details. Two different semantics are described, which correspond
in the time domain to set-based semantics and interval-based semantics respec-
tively. Which is the more appropriate depends on the specific application; here we
adopt interval-based semantics for timestamps, with the corresponding convex-
hull semantics for composite event location stamps.

The application scenario described in [1] stems from work carried out in the
Department of Biological Sciences at the University of Waikato, New Zealand1.
King et al. develop effective techniques for predator-control operations on pas-
toral farmland, where ferrets and other small carnivores are monitored “both for
keeping track of the distribution and numbers of native species, and for locating,
guiding and auditing control operations against alien species” [6]. Monitoring is
done using the so-called Scentinel�, a “smart” tracking tunnel for small mam-
mals that records time, date, weight and a digital photograph of every animal
entering it. Identifiers of tagged animals that get close to a Scentinel but do not
enter are also recorded. Scentinels represent fixed nodes, radio-tagged animals
represent mobile nodes in the system (GPS satellite collars allow continuous
monitoring, but they are only suitable for animals weighing 15 or more kg).

Data rich events occur only in the vicinity of Scentinels, hence at fixed lo-
cations, though at random times. The present paper uses a complementary
scenario, inspired by the needs of one of the Computer Laboratory’s current
research projects, TIME-EACM [7]. The local Cambridge bus company, Stage-
coach, has fitted its buses with GPS transmitters supported by a local company,
ACIS, who display anticipated arrival times at bus stops. With the agreement
of both Stagecoach and ACIS the data feeds are also sent to the TIME-EACM
project. Unlike Scentinel data, bus position data is transmitted at fixed times,
but bus locations depend on factors such as traffic congestion. A paper giving a
statistical analysis of this bus probe data is forthcoming; see [8]. Stagecoach are
interested in the work, and have suggested other questions that we may be able

1 http://www.bio.waikato.ac.nz/research/research1.shtml#zoology

110 K. Moody et al.

to answer for them. The original SpaTeC was designed for applications that re-
quire temporal and spatial reasoning. The detailed requirements stemming from
the Stagecoach questions have helped us to develop a theoretical design into a
practical composite event language.

The rest of this paper is structured as follows: Section 2 gives the background
to the GPS tracking support for the Stagecoach bus fleet in Cambridge, and
discusses some of the questions of interest to the company. Section 3 presents
the syntax and semantics of the SpaTeC programming language, motivating the
extensions using Stagecoach bus scenarios. We describe our experience using
SpaTeC to model the bus scenarios in Section 4. In Section 5 we outline some
of the considerations when implementing SpaTeC in data intensive applications.
Section 6 discusses related work. Section 7 concludes the paper.

2 GPS Tracking of Buses

Each bus serving Cambridge UK and surrounding areas that is operated by
Stagecoach is equipped with a GPS-based location sensor. Such sensors note the
geographical location of the bus and periodically (about once every 30 seconds)
report it via wireless communication to a central location. Stagecoach, along with
the local County Council and the firm that operates the reporting infrastructure,
use these location reports to provide real-time information to passengers via
displays at bus stops, web sites, and mobile phones.

Each Stagecoach bus therefore produces a series of location events, each hav-
ing an associated timestamp. Both the location and the time are subject to
uncertainty, the location because of error in the GPS reading and subsequent
software processing, and the timestamp because location recording and data
transmission are decoupled. Each bus is assigned an offset within a 30 second
window at which to transmit. This means that a location report reflects the
position of a particular bus some time within the previous 30 seconds. More for-
mally, suppose that the location of bus i is recorded at time t0 and is reported at
time t1 = t0 + τi. The timestamp of the location will be t1, whereas the reading
was actually taken at t0. We are guaranteed that τi < 30 for each bus i. Further,
τi will be the same for each report from bus i within some session; the offsets
for a given set of buses may then be updated, but this will happen only a small
number of times per day. We have no easy way of determining the precise value
of τi within a particular session. Further details are reported in [8].

Aside from providing information to passengers, Stagecoach is interested in
using these location reports to answer questions like the following:
– Does wet weather, as sensed by various environmental detectors, correspond

to longer journey times?
– Anecdotes suggest that journey times increase in the build-up to Christmas.

Is this true?
– What is the quantitative effect on journey times of road disruptions (acci-

dents, road works, etc.)?
– Are journey times to and from a local hospital longer on Tuesdays, when

many outpatient appointments are scheduled?

Implementing a Practical Spatio-Temporal Composite Event Language 111

Answering these questions has a component of historical analysis that amounts
to data mining of the GPS traces. However, each question also defines a situation
that can be detected as it is happening, so that consequent alerts can be issued.
For example, the presence of rain and the lengthening of journey times can cause
a “bad weather performance” alert to be issued, possibly triggering operational
changes. A language based on SpaTeC principles must be able to describe these
events.

3 The SpaTeC Programming Language

The SpaTeC programming language assumes an object-oriented environment.
Events that occur in the application to be modelled conform to some type;
variables in SpaTeC are typed accordingly. Each event occurrence defines an
object instance in the corresponding class; attributes of this class can be used
within the language.

The language has two parts. The first enables construction of match expres-
sions, which are used to define composite event patterns that are always present
in some phenomenon. The result of each match will be a set of primitive events.
A match expression establishes what is, in effect, a session type having receive
primitives only [9]. (If the language runtime used has direct support for session
types, as can be found for Java and Moose as outlined in [10], the facilities can
be used to encode results from match expressions, compare them, move them
between modules of code, and so on. We discuss the use of session types further
in Section 5.) The second part takes the set of composite events found by a
particular match expression and restricts it using filter predicates. Zero or more
filter predicates are attached to a match expression to form a phrase.

Each phrase corresponds to some situation of interest at application level.
The purpose of a given phrase is to identify each composite event occurrence
that identifies a particular instance of that situation. When a specific composite
event is detected, its occurrence will depend on a specific set of primitive events.
The notification service forwards details of each composite event occurrence to
the relevant subscribers, for example by publishing an object instance in a class
specific to this type of composite event; its attributes will reflect the associated
set of primitive event occurrences.

3.1 Primitive Event Match Expressions

Each match expression has a natural tree structure that represents the event
pattern to be identified. Non-leaf nodes in the tree correspond to the operators
introduced in Section 3.3. There are two categories of leaf node.

A primitive event is a typed data structure that represents the reification of an
occurrence. The type of the event is a class (in the object-oriented programming
sense) that contains all the information needed to describe a particular event
occurrence of that type. In our model, every such class will contain time and
location attributes.

112 K. Moody et al.

Assume that e is a primitive event type, for example a GPS bus observation.
The expression e is a primitive event match expression that matches all event
instances of type e. Further, the expression

e → B

is a match expression that, each time it matches an event of type e, unifies B
with the state carried by that event instance. One can think of B as being a
session variable of type e, which in the context of a specific match describes the
corresponding matching event occurrence. We shall see shortly how B is scoped
and why it is useful.

3.2 Primitive Patterns

Alongside primitive events are primitive patterns. These are match expressions
that match events not by type, as with primitive events, but by space and time.
They can be thought of as matching all possible event types, subject to conditions
on their time and/or location attributes. Examples of patterns are “Tuesday”,
which contains every event with a timestamp that falls on a Tuesday2; and “point
x”, containing all events at all times having location stamps x.

The rules for matching primitive patterns are as defined in Tables 1 and 2. We
also need to specify the time and location stamps of composite event occur-
rences matched by expressions that include patterns. First, any composite event
expression consisting only of primitive patterns is a pattern. When a pattern
matches some composite event expression that contains at least one event occur-
rence, the combined matched expression is given the time and location stamps
of the non-pattern operand. In particular, any combination of primitive patterns
can match all possible (composite) event types subject to conditions on the time
and/or location attributes, and the result of matching that composite pattern
will leave both time and location stamps unaltered.

We shall meet examples of the use of patterns in Section 4.

3.3 General Match Expressions

Match expressions are combined to form composite events using operators. The
event operators for simultaneous reasoning in space and time are listed in
Table 1. When we need to reason in only one of space and time, we can use
the simpler event operators listed in Table 2. Event patterns pose precise space
and time requirements, but sometimes the uncertainty of measurement of the
location and time attributes of primitive event occurrences will mean that we
cannot be certain whether there is a match. Notions of same location and same
time must always be interpreted as within measurement error, meaning that

2 We are ignoring issues such as time zones and leap years; the motivated reader can
imagine a system that begins by following the ISO 8601 standard for writing down
times.

Implementing a Practical Spatio-Temporal Composite Event Language 113

Table 1. SpaTeC Event Operators for Reasoning in Space and Time

Event Operator Meaning Description

E1

{
<>
;

}
E2 Location overlap, in sequence

The locations of E1 and E2 overlap,

E1 happens before E2

E1

{
><
;

}
E2 Distinct locations, in sequence

E1 and E2 occur at distinct locations,

E1 happens before E2

E1

{
<>

‖
}

E2 Location overlap, time overlap

The locations of E1 and E2 overlap,

their timestamps also overlap

E1

{
><

‖
}

E2 Distinct locations, time overlap

E1 and E2 occur at distinct locations,

and their timestamps overlap

Table 2. SpaTeC Event Operators for Reasoning in Space or Time

Event Operator Meaning Description

E1 {<>}E2 Location overlap The locations of E1 and E2 overlap

E1 {><}E2 Distinct locations E1 and E2 occur at distinct locations

E1 {‖}E2 Time overlap The timestamps of E1 and E2 overlap

E1 {; }E2 In sequence E1 happens before E2

E1 {, }E2 Conjunction Both E1 and E2 occur

E1 {|}E2 Disjunction Either E1 or E2 occurs

they are too close to be differentiated. In addition SpaTeC supports Boolean
operations on match expressions in the obvious way.

This allows the construction of complex composite events that represent oc-
currences having some spatial and temporal property (such as primitive events
happening in sequence, at the same place, etc.) and the restriction of these by
spatial and temporal constants.

3.4 Filter Predicates

A stream of composite events is likely to be too broad to describe many phe-
nomena of interest. We therefore introduce filter predicates that allow selection
of the composite events emerging from a given match expression.

A filter predicate is defined recursively as the conjunction (∧) or disjunction
(∨) of two other filter predicates. Each predicate can be negated (¬). At the
lowest level, a filter predicate is a Boolean-valued expression containing elements
chosen from the following:

114 K. Moody et al.

– constants
– attributes from variables that are unified as part of the matching composite

event
– simple mathematical operations (by which we mean things like arithmetic

operators and exponentiation)
– functions built from the above, such as computing the distance between two

points (in whatever space those coordinates lie)
– relational operators (<, =, >,≤,≥)

The attributes from variables component of filter predicates needs a little expla-
nation. The variables are like example B in Section 3.1, and represent the data
that characterise matching event instances. This allows predicates to reason over
these data, selecting only composite events of interest. For example, consider the
event type bus that, in addition to the standard attributes time and location,
has a vehicle identification attribute VID that indicates to which bus the event
pertains. Let e1 and e2 represent events of type bus. The expression

(e1 → B1; e2 → B2) [(B1.VID) == (B2.VID)]

matches two observations of the same bus, the first taking place before the
second. The expression

(e1 → B1; e2 → B2) [(B1.VID) == (B2.VID)
∧ distance (B1.location, B2.location) ≥ 450]

matches two observations of the same bus that are at least 450 units apart.
Note that a phrase consists of a match expression and zero or more filter

predicates, each of which must be satisfied. Testing a filter predicate requires
access to the relevant matched variable attributes; supporting multiple predicates
aids specification and offers hints to the optimiser.

4 Using SpaTeC to Analyse the Bus GPS Data

In this section we look in more detail at some of the Stagecoach questions, and
describe some of the basic requirements for answering them. As a first step we
look at two of their interests:

– Anecdotes suggest that journey times increase in the build-up to Christmas.
Is this true?

– Are journey times to and from a local hospital longer on Tuesdays, when
many outpatient appointments are scheduled?

As we have said in Section 2, we are interested not so much in mining the histor-
ical record for answers to these questions as in producing events that correspond
to germane situations as they happen. Of course, anecdotal evidence relates to
past experience and a first step is statistical analysis of the historical record. If

Implementing a Practical Spatio-Temporal Composite Event Language 115

the anecdotal evidence is found to be justified, in general, it is then appropriate
to detect patterns in real time; such a pattern may indicate for example that
congestion is beginning to build up, so appropriate action can be taken, such as
the deployment of extra buses.

Answering these types of question requires selecting bus observations with
particular time or location attributes. The simplest case is that of a single
fixed time or place, for example the stop at the local hospital.

4.1 Constant Patterns and Their Uses

Constant patterns are provided as part of the programming environment when
defining composite event expressions. To say that a pattern is constant does not
mean that its value is necessarily simple; for example, the pattern Tuesday is
constant, but the value requires careful initialisation. We begin with an example
of a point location constant pattern.

To identify observations when a bus is at a particular stop, we have:

(e1 {<>} BusStopX)

BusStopX is a primitive pattern with the location stamp of BusStopX, which
will otherwise match any event. The normal semantics of the {<>} operator will
cause this expression to match all events of type e1 whose location attributes
overlap BusStopX; see Section 3.3. Inevitably buses will not stop precisely at
a single fixed location, and we select an uncertainty radius for the primitive
pattern BusStopX to take account of this.

Suppose that we need to identify, in real time, (composite) events when the
journey time from the hospital to the station is less than 6 minutes.3 e1 and
e2 are bus observation events. We assume that HospitalStop and StationStop
identify the two bus stops.

((e1 → B1 {<>} HospitalStop); (e2 → B2 {<>} StationStop))
[(B1.VID == B2.VID) ∧ (B2.time− B1.time < 6 ∗ 60)] (1)

The composite event (e1 → B1 {<>} HospitalStop) has the timestamp of event
e1, so we can easily check for quick journeys on a Tuesday (unlikely!) by starting
with

(e1 → B1 {<>} HospitalStop) || Tuesday

This works because of the rule for deriving composite event location and time
stamps from primitive patterns (see Section 3.2). The same effect could be ob-
tained using the expression

(e1 → B1

{
<>

‖
}

(HospitalStop ∧ Tuesday))

3 Note that uncertainty in event timestamps means that this can’t be detected
precisely.

116 K. Moody et al.

4.2 More Demanding Stagecoach Questions

Detailed statistical study of bus tracking data along two sections of route has
allowed us to answer some more complex Stagecoach questions, see [8]. This
analysis is time consuming, and by its nature cannot deliver answers in real
time. Recall the other two examples given in Section 2:

– Does wet weather, as sensed by various environmental detectors, correspond
to longer journey times?

– What is the quantitative effect on journey times of road disruptions (acci-
dents, road works, etc.)?

We have been able to resolve these questions to some extent using historical
data, for example looking at the correlation between days when it has rained
and longer journey times. However, these can also be detected in real time by
writing appropriate SpaTeC phrases. For example, suppose that an event of
type r occurs when it rains, its time and location attributes describing the
time and place of the rainfall. (r can also be regarded as an event pattern that
represents all the points where it is raining.) Starting from SpaTeC phrase 1, we
can construct the phrase

((
(e1 → B1 {<>} HospitalStop)

{
<>

‖
}

r

)
;

(
(e2 → B2 {<>} StationStop)

{
<>

‖
}

r

))

[(B1.VID == B2.VID) ∧ (B2.time− B1.time > 20 ∗ 60)]

that detects bus journeys between the hospital and the station, when it is raining
at the beginning and end of the journey and the trip takes longer than 20 minutes
(we shall also need to ensure that the bus is visiting the station for the first time
since it left the hospital).

In addition to the bus tracking data the TIME-EACM project monitors traffic
on the nearest main road in real time, and this data can provide early warning
of congestion and consequent delay to buses. Equally, the bus GPS data in itself
provides evidence of congestion; for example, buses do not make good progress
during the morning and evening rush hours, particularly during the school term.
We hope to be able to calibrate bus movement behaviours from the historical
tracking data, and so develop SpaTeC patterns that, if detected, indicate con-
gestion on the roads. A first shot might be to produce an event when the same
bus reports 4 successive location observations that overlap pairwise. Even this
relatively simple example requires some tedious predicates.

5 SpaTeC - Moving towards Deployment

SpaTeC phrases define sets of composite events, and it is the job of the imple-
mentation to detect these based on primitive event occurrences. Recall that each

Implementing a Practical Spatio-Temporal Composite Event Language 117

phrase consists of an obligatory match expression and optional predicates, which
are tested against each matching set of event occurrences. A possible scenario
is to implement complex event detection as a service above a publish/subscribe
architecture such as Rebeca [11] or Hermes [12]. Clients of the system are pub-
lishers, subscribers or both. Event types are defined and managed by the system.
Potential publishers advertise their ability to publish event instances. Subscribers
subscribe to event types with a subscription filter that represents their particular
interests. Notice that publishers and subscribers are mutually anonymous. The
system is provided as a distributed broker network. A broker may be publisher-
hosting, subscriber-hosting, both or neither; that is, some brokers may merely
act as routers. A common optimisation of publish/subscribe is content-based
routing (CBR), that allows communication paths to be shared when a published
message is transmitted through the network to its subscribers. CBR is typically
set up in the event brokers when events are advertised and subscribed to.

Following [13], each composite event detector (CED) subscribes to events and
advertises and publishes higher-level composite events. A composite event match
expression tree may be split into subtrees that are placed in the distributed
system to optimise communication and detection latency.

Each phrase in a SpaTeC program is handled independently, meaning that
there is no explicit inter-phrase state nor are there references between them.
Therefore, a given program may be implemented as a central service or may be
distributed as an optimisation.

5.1 Centralised Implementation

We first outline how a centralised implementation works.

1. The text of the phrase is processed by a front-end to check syntax and extract
the match expression and predicates. At this stage the match expression is
checked to ensure that unified variables are not re-used and are therefore
conflict-free. This is done as it would be for any programming language, so
it is not discussed further in this paper.

2. Event detectors are built from the phrase’s match expression. This is done
using finite automata based on those used by Hermes [14, chapter 7]. The
automata use initial, ordinary, and generative states but have no need for
generative time states, since SpaTeC does not deal with time events in the
same way. The operators in Tables 1 and 2 that compare location stamps
are handled in the same way that Hermes deals with timestamps, with com-
parisons taking account of the inherent uncertainty.

The only complication is that when primitive events are matched as part
of composite event detection and their instance is unified with a variable, the
attributes of that instance must be saved for future evaluation by filter pred-
icates. A näıve approach is to keep a shared dictionary of unified variables,
associating with each its class (derived from the type of the corresponding
primitive event) and its attributes. The automata contain unification states
that are inserted as required following matching transitions. These states are
responsible for updating the shared dictionary.

118 K. Moody et al.

3. The filter predicates operate on the output of the automata created in step 2,
using the shared dictionary to retrieve any event instance attributes that are
needed. This is done through any suitably efficient rule system, meaning that
a Prolog or Datalog implementation is feasible.

Following these three steps, event processing begins with CED service nodes
evaluating their assigned match expressions.

5.2 Distributed Implementation

In reality a centralised implementation is unlikely to be appealing for the usual
reasons, including poor scalability, inflexibility in the context of a heterogeneous
communication infrastructure, and unreliability. In addition, it is likely to be
inappropriate for multi-organisation systems. A distributed implementation of a
SpaTeC program follows the pattern of a centralised one. Phrases are parsed and
the match expressions and filter predicates extracted. This is likely to remain
centralised as the program is presented to the system at only one place, and
processing is likely to be done only once. In step 2, the automata are distributed
throughout the network in the same manner as are CED subtrees. A shared
dictionary is no longer an option for maintaining event instance attributes, but
a relevant subset may be included with the composite events produced by the
automata at each node. Filter predicates are similarly distributed to the CED
service(s) that can, based on the decomposition derived above, subscribe to each
required event type. In other words, if the allocation of match expressions means
that events of type e are never sent to a particular node, that node need not be
sent predicates involving attributes of variables of type e.

In Section 3 we noted that each phrase establishes a session type associated
with its match expression. Channels of that session type can be used to commu-
nicate attributes of variables to a central site, where the predicates associated
with the phrase can be tested. We are planning to build a prototype implemen-
tation of SpaTeC above Java, with session types provided by SJ [15]. SJ is itself
implemented above Polyglot [16,17]. Polyglot has been around for some time,
and should help to provide a stable framework.

In practice, for phrases that associate primitive events from widely distributed
locations, some of the predicates may test attributes of variables whose locations
of occurrence are clustered. It may make sense to move the evaluation of such
predicates nearer to the relevant locations. Session types associated with match
expressions should support such optimisations, but we shall need to experiment.

6 Related Work

The event-based paradigm emerged during the 1990s when asynchronous notifi-
cation was seen to be crucial for a wide range of applications. [18] investigates the
use of events for building distributed applications based on an object-oriented
distributed programming environment. Other applications include sensor-based

Implementing a Practical Spatio-Temporal Composite Event Language 119

systems for environmental monitoring and, in general, applications with low la-
tency requirements. For example, in 1999 [19] discusses the need for event-based
middleware in Air Traffic Control.

The detection of meaningful patterns of events (so-called composite events)
became a subject of research, for example [13]. But early composite event lan-
guages supported only temporal reasoning, based on the temporal properties
of events; composite event detection was driven by the times of occurrence of
constituent events.

In distributed systems, times of occurrence are fundamentally uncertain, be-
cause of the way earth-time is measured, the way computers’ clocks are set and
drift, and because clocks are synchronized intermittently. In [20] event operators
sequence and concurrency are used to determine whether one event happened
before another or whether they may have happened “at the same time”, that
is, their order cannot be established due to the closeness of the timestamps. In
1999, Liebig and others proposed source-specific interval timestamps to capture
this uncertainty [2]. A sequence is detected if the uncertainty interval of one
event precedes that of another. If the uncertainty intervals overlap it cannot be
determined which one occurred first. It may be important for the application to
be made aware of this, in cases where physical causality is an issue, such as in
real-time monitoring for the control and audit of physical systems.

Spatial reasoning, that is, monitoring the spatial properties of events, was
not supported in traditional composite event detection. When the nodes in dis-
tributed systems are stationary the location of occurrence of node-related events
is implicit, and spatial reasoning is ”hard-wired” into the system.

Mobile environments were explored in [21,22,23,24,4,25,26] where the focus
lies on the adaptation of the publish/subscribe paradigm to different aspects of
mobility, such as client mobility or the lack of a system-wide service infrastruc-
ture. In general, location is being considered in the design of a publish/subscribe
architecture for mobile systems, but not in the underlying event detection capa-
bilities. In [27], Fiege and others consider mobility in publish/subscribe middle-
ware. The Rebeca [11] content-based publish/subscribe middleware is extended
in [24] to accommodate mobile clients, achieving location transparent access to
the middleware without loss of quality of service. Chen and others define the
notion of spatial event and enable a spatial subscription model [3]. In [4], Cu-
gola and Munoz de Cote develop a distributed publish/subscribe middleware
where spatial restrictions can be issued by publishers and subscribers. [5] points
out that high-level spatial events are necessary to observe physical world events
and mentions that traditional composite event systems are not sufficient for
this purpose. However, general spatial reasoning with composite events is not
supported.

In [28], Römer and Mattern acknowledge the suitability of event-based mech-
anisms for monitoring physical phenomena and their spatio-temporal properties
in sensor networks, and investigate composite event detection for detecting the
real-world states associated with such phenomena. In later work they propose

120 K. Moody et al.

spacetime, a four-dimensional vector space where space is represented in three
and time in one dimension, to record the time and location of occurrence of an
event [29].

Limiting the visibility of events is another important requirement in sensor
networks where the lack of an infrastructure and the dynamically changing net-
work topology demand efficient and adaptive event handling. The scoping con-
cept, as introduced in [30], meets this requirement. It represents a fundamental
structuring mechanism for event-based systems where components are bundled
recursively into higher-level components, so-called scopes, yielding a hierarchical
structure. Event notifications are only delivered to subscribers within the same
scope. In [31], Jacobi et al. apply the scoping concept to sensor networks.

7 Conclusions

We have defined the SpaTeC composite event language that enables simultane-
ous matching of event occurrences over space and time. We have built on the
model for SpaTeC presented in [1]. As a source of examples throughout the pa-
per we have used a real application scenario for which data are available; the
analysis of the GPS traces of Cambridge buses made available by Stagecoach to
the TIME-EACM project.

We have described some questions that Stagecoach wish to have answered,
and used them to motivate our extensions to SpaTeC. Composite event patterns
are essentially those of the earlier paper, with the addition of primitive patterns,
which enforce restrictions on the space and/or time of event occurrences. Data
fields identified during pattern matching can be tested by predicates that further
restrict the relevant combinations of primitive events. We have shown how the
language can be used to answer some of the questions posed by Stagecoach.

We have described an implementation scenario for SpaTeC composite event
detection (CED) above a publish/subscribe system. Following [13] we ensure a
clean separation between CED services and the event propagation infrastructure;
a CED service is a subscriber to low-level events and a publisher of higher-level
events. As in [13], processing of composite events arising from a given SpaTeC
phrase may be distributed to optimise communication and detection latency.

A major concern in this area of work is the measurement uncertainty both for
space and time. We have generalised the foundational work of [2], that embodies
the fundamental uncertainty in the measurement of earth-time, to a similar
uncertainty in location stamps. The time and location stamps of the composite
events detected are an open interval and a convex hull respectively, see [1].
The time stamp of a composite event can therefore be represented naturally;
describing a general convex hull is not straightforward, and the location stamp
representation adopted will depend on the semantics of the application.

Future work is to implement SpaTeC as a composite event programming
language and to carry out experimental evaluation.

Implementing a Practical Spatio-Temporal Composite Event Language 121

Acknowledgements

The paper draws on a number of research projects over the years. We acknowl-
edge the support of the UK Engineering and Physical Sciences Research Council
(EPSRC) through grants GR/T28164 (EDSAC21) and EP/C547632 (TIME-
EACM). Stagecoach in Cambridge has greatly assisted TIME-EACM by making
GPS data feeds from their buses available in real time, and by suggesting some
of the scenarios developed in the paper.

We acknowledge the many fruitful interactions with Alejandro Buchmann
and the Databases and Distributed Systems Research Group at the Technische
Universität, Darmstadt. We are grateful for helpful contributions to the pa-
per from several of our colleagues at the Computer Laboratory, in particular
David Eyers and Alan Mycroft. The latter emphasised the relevance of session
types. Interaction with Simon Gay by e-mail identified SJ as a potential tool for
implementation.

References

1. Schwiderski-Grosche, S., Moody, K.: The SpaTeC composite event language for
spatio-temporal reasoning in mobile systems. In: 3rd ACM Intl. Conf. on Dis-
tributed Event-Based Systems, DEBS 2009, pp. 1–12. ACM, New York (2009)

2. Liebig, C., Cilia, M., Buchmann, A.: Event composition in time-dependent dis-
tributed systems. In: 4th Intl. Conf. on Cooperative Information Systems (CoopIS
1999), pp. 70–78 (September 1999)

3. Chen, X., Chen, Y., Rao, F.: An efficient spatial publish/subscribe system for
intelligent location-based services. In: 2nd Intl. Workshop on Distributed Event-
Based Systems (DEBS 2003), 1–6 (2003)

4. Cugola, G., de Cote, J.E.M.: On introducing location awareness in publish-
subscribe middleware. In: 25th International Conference on Distributed Computing
Systems Workshops (ICDCSW 2005), Columbus, OH, USA, June 6-10, pp. 377–
382. IEEE Computer Society, Los Alamitos (2005)

5. Bauer, M., Rothermel, K.: An architecture for observing physical world events. In:
11th Intl. Conf. on Parallel and Distributed Systems (ICPADS 2005), pp. 377–383.
IEEE Computer Society, Los Alamitos (2005)

6. King, C., McDonald, R., Martin, R., Tempero, G., Holmes, S.: Long-term auto-
mated monitoring of the distribution of small carnivores. Wildlife Research 34(2),
140–148 (2007)

7. Bacon, J., Beresford, A., Evans, D., Ingram, D., Trigoni, N., Guitton, A., Skordylis,
A.: Time: An open platform for capturing, processing and delivering transport-
related data. In: IEEE Consumer Communications and Networking Conference,
pp. 687–691. IEEE, Los Alamitos (2008)

8. Bejan, A., Gibbens, R., Evans, D., Beresford, A., Bacon, J., Friday, A.: Statistical
modelling and analysis of sparse bus probe data in urban areas. In: 13th IEEE Intel-
ligent Transportation Systems Conference, Madeira, Portugal. IEEE, Los Alamitos
(2010)

9. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

122 K. Moody et al.

10. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. SIG-
PLAN Not. 43(1), 273–284 (2008)

11. Mühl, G., Ulbrich, A., Herrmann, K., Weis, T.: Disseminating information to mo-
bile clients using publish-subscribe. IEEE Internet Computing 8(3), 46–53 (2004)

12. Pietzuch, P.R., Bacon, J.M.: Hermes: a distributed event-based middleware ar-
chitecture. In: 22nd International Conference on Distributed Computing Systems
Workshops (ICDCSW 2002), Vienna, Austria, July 2–5, pp. 611–618. IEEE Com-
puter Society, Los Alamitos (2002)

13. Pietzuch, P.R., Shand, B., Bacon, J.: A framework for event composition in dis-
tributed systems (Best paper award.). In: Endler, M., Schmidt, D.C. (eds.) Mid-
dleware 2003. LNCS, vol. 2672, pp. 62–82. Springer, Heidelberg (2003)

14. Pietzuch, P.R.: Hermes: A scalable event-based middleware. Technical Report
UCAM-CL-TR-590, University of Cambridge Computer Laboratory (2004)

15. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in Java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008)

16. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An extensible compiler frame-
work for Java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138–152. Springer,
Heidelberg (2003)

17. Polyglot, http://www.cs.cornell.edu/projects/polyglot/
18. Bacon, J., Bates, J., Hayton, R., Moody, K.: Using events to build distributed

applications. In: 2nd Intl. Workshop on Services in Distributed and Networked
Environments, SDNE 1995, Washington, DC, USA, pp. 148–155. IEEE Computer
Society, Los Alamitos (1995)

19. Liebig, C., Boesling, B., Buchmann, A.: A notification service for Next-Generation
IT systems in air traffic control. In: GI-Workshop: Multicast-Protokolle und An-
wendungen, Braunschweig, Germany (May 1999)

20. Schwiderski, S.: Monitoring the behaviour of distributed systems. PhD thesis, Uni-
versity of Cambridge (1996)

21. Meier, R., Cahill, V.: STEAM: event-based middleware for wireless ad hoc net-
works. In: 22nd International Conference on Distributed Computing Systems Work-
shops (ICDCSW 2002), Vienna, Austria, July 2-5, pp. 639–644. IEEE Computer
Society, Los Alamitos (2002)

22. Huang, Y., Garcia-Molina, H.: Publish/subscribe in a mobile environment. Wireless
Networks 10(6), 643–652 (2004)

23. Caporuscio, M., Carzaniga, A., Wolf, A.: Design and evaluation of a support service
for mobile, wireless publish/subscribe applications. IEEE Transactions on Software
Engineering 29(12), 1059–1071 (2003)

24. Zeidler, A., Fiege, L.: Mobility support with REBECA. In: 23rd International Con-
ference on Distributed Computing Systems Workshops (ICDCSW 2003), Provi-
dence, RI, USA, May 19-22, pp. 354–360. IEEE Computer Society, Los Alamitos
(2003)

25. Yoneki, E., Bacon, J.: Unified semantics for event correlation over time and space
in hybrid network environments. In: Meersman, R., Tari, Z. (eds.) OTM 2005.
LNCS, vol. 3760, pp. 366–384. Springer, Heidelberg (2005)

26. Frey, D., Roman, G.C.: Context-aware publish subscribe in mobile ad hoc networks.
In: COORDINATION, pp. 37–55 (2007)

27. Fiege, L., Gärtner, F.C., Kasten, O., Zeidler, A.: Supporting mobility in
content-based publish/subscribe middleware. In: Endler, M., Schmidt, D.C.
(eds.) Middleware 2003. LNCS, vol. 2672, pp. 103–122. Springer, Heidelberg (2003)

Implementing a Practical Spatio-Temporal Composite Event Language 123

28. Römer, K., Mattern, F.: Event-based systems for detecting real-world states with
sensor networks: a critical analysis. In: DEST Workshop on Signal Processing in
Wireless Sensor Networks at ISSNIP, Melbourne, Australia, pp. 389–395 (Decem-
ber 2004)

29. Römer, K., Mattern, F.: Towards a unified view on space and time in sensor net-
works. Elsevier Computer Communications 28(13), 1484–1497 (2005)

30. Fiege, L., Mezini, M., Mühl, G., Buchmann, A.P.: Engineering event-based systems
with scopes. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 309–333.
Springer, Heidelberg (2002)

31. Jacobi, D., Guerrero, P.E., Petrov, I., Buchmann, A.: Structuring sensor networks
with scopes. In: 3rd IEEE European Conference on Smart Sensing and Context
(EuroSSC), IEEE Communications Society, Zurich (2008)

Design and Implementation of the

Rebeca Publish/Subscribe Middleware

Helge Parzyjegla1, Daniel Graff1, Arnd Schröter1,
Jan Richling1, and Gero Mühl2

1 Communication and Operating Systems Group
Berlin Institute of Technology, Germany

2 Architecture of Application Systems Group
University Rostock, Germany

{parzyjegla,daniel.graff,arnd.schroeter,richling,g_muehl}@acm.org

Abstract. Publish/subscribe is used increasingly often as a communi-
cation mechanism in loosely-coupled distributed applications. Research
and product development have focused mostly on efficiency issues and ne-
glected methodological support to build concrete middleware implemen-
tations so far. In this paper, we present the novel design of the Rebeca
publish/subscribe middleware that is based on the experience gained
with previous versions. As basic design concept, we focus on a modular
pipeline architecture that is built around a minimal, but extendable pub-
lish/subscribe core. With respect to modularity, we employ the concept of
features that are well-defined aspects of a software system’s functionality,
encapsulated in pluggable modules, and, thereby, facilitate a separation
of concerns. We address the composition of features and show how this is
realized in Rebeca’s pipeline architecture with independently working
plugins that can influence passing messages in three dedicated stages.

1 Introduction

Publish/subscribe is an appealingly simple, yet powerful and flexible communi-
cation style fostering event-driven applications. Application components interact
by publishing notifications about events occurred and by subscribing to notifica-
tions of those events they are interested in. The main advantage of event-based
interaction using publish/subscribe is the resulting loose coupling of the inter-
acting components: publishers do not necessarily need to know the receivers of
their notifications, while subscribers do not necessarily need to know who pub-
lished a notification. Thus, publishers and subscribers are usually self-contained
focusing on their own functionality and the notifications they receive and publish
in turn. Such a data-centric approach is especially well suited for dynamic envi-
ronments in which components need to be seamlessly added, extended, replaced,
or removed at runtime.

Publish/subscribe concepts and their variants are known from very different
areas of computer science and they can be leveraged on many layers and dif-
ferent scales serving various purposes. Within the area of software engineering,

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 124–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Design and Implementation of the Rebeca Publish/Subscribe Middleware 125

the observer design pattern [8] is well known. With this pattern, application
components are notified when an observed entity’s state changes in order to
trigger automatic updates of dependent components. Modern operating systems
may provide a system-wide message bus [13] that notifies connected applications
about system events such as added or removed hardware. Additionally, appli-
cations may use the bus as a message-based interprocess communication (IPC)
mechanism to exchange data in global or session context in order to talk to each
other and coordinate their actions. In distributed environments, applications of
the publish/subscribe pattern range from gathering data in sensor networks [9]
over real-time data distribution for embedded systems [19] to web service exten-
sions to integrate notifications [20,30] as well as dissemination and processing of
complex events in business workflows [14]. Pursuing the shift from centralized
systems and data stores towards distributed and networked infrastructures, pub-
lish/subscribe is steadily gaining importance as an integrating technology linking
autonomous components, intelligent services, and heterogeneous applications.

With publish/subscribe becoming an integral part of sustainable future com-
puter infrastructures, an increasing number of functional and non-functional re-
quirements such as scalability, reliability and security as well as domain-specific
extensions and constraints have to be taken into consideration when develop-
ing such a system. The sheer quantity of requirements and constraints, even
contradictory ones, usually leads to complex system designs and middleware im-
plementations that are not flexibly deployable in those dynamic environments
where applications could profit most from loose coupling and publish/subscribe
communication. In this paper, we present a modular architecture for publish/
subscribe middleware implementations that facilitates the easy composition of
single features to a tailor-made, light-weight solution. The approach has been
successfully applied to our publish/subscribe system Rebeca.

In the following, we give an overview of the Rebeca middleware in Sect. 2.
Section 3 explains the idea of feature composition that is one of the main con-
cepts of Rebeca. Next, we introduce the architecture of Rebeca and its main
components in Section 4, followed by a description of the features implemented
so far in Sect. 5. Section 6 shows how we realized a discrete event simulation
based on the actual implementation of Rebeca. Finally, we summarize related
work in Section 7 and conclude the paper in Section 8.

2 Rebeca Publish/Subscribe Middleware

The Rebeca middleware supports event-driven applications built of cooperat-
ing components. Components can adopt the roles of publishers or subscribers
depending on whether they act as producers or consumers of information or
both. To make information available, Rebeca offers components an interface to
asynchronously publish notifications. Notifications are based on sets of name/
value pairs that are either deliberately specified by the producer or, as supported

126 H. Parzyjegla et al.

by object-oriented programming languages, derived automatically from the fields
(named attributes) of the notification object to publish. To request information,
Rebeca allows consuming components to issue subscriptions containing notifica-
tion filters that are Boolean expressions on the content of notifications. Together
the subscriptions issued by a component constitute its interest.

Producing and consuming components are connected indirectly with each
other by a notification service provided by the Rebeca middleware. The no-
tification service, interposed between producers and consumers, is responsible
to deliver published notifications to all consumers with matching subscriptions.
Rebeca implements the notification service by a set of cooperating broker in-
stances distributed in the network and each managing a set of locally connected
components. In turn, the brokers are connected via overlay links and exchange
published notifications as well as information about issued and revoked sub-
scriptions on behalf of their clients. For this purpose, each broker keeps track
of the interests of connected neighbor brokers and local clients by storing their
active subscriptions in a content-based routing table. A published notification
can, thus, be forwarded stepwise starting at the publisher hosting broker over
intermediary brokers to all brokers hosting interested consumers.

The development of the initial version of Rebeca started in 1999 and was ini-
tiated by Gero Mühl and Ludger Fiege at the Database and Distributed Systems
Group of Alejandro P. Buchmann at the Darmstadt University of Technology.
Rebeca was originally a recursive acronym for Rebeca Event-Based Electronic
Commerce architecture. The reason to coin this name was that the Rebeca
middleware was at this time mainly intended to support distributed electronic
commerce application such as meta auctions [1]. After this initial development
phase, other students and researchers have used the prototypical implementa-
tion as a basis to carry out their research. Over the years, Rebeca successfully
served as a publish/subscribe system to study advanced and efficient routing
algorithms [15], to implement visibility and structuring concepts [5], to support
mobility of clients and applications [31,17], to consider deployments in actuator/
sensor networks [25], to investigate mechanisms for dynamic reconfiguration [22],
adaptability [26], and self-organization [11], to develop fault-tolerant and self-
stabilizing networks [10], to derive programming abstractions [29] and to discuss
the usage and integration of model-driven architectures [21] as well as to validate
stochastic models for performance analysis [27].

Although involving publish/subscribe communication in general, all research
approaches followed individual directions that each pose particular constraints
to and required specific features from the supporting middleware. As a conse-
quence, Rebeca’s implementation underwent many metamorphosis and this led
from frequent changes in Rebeca’s implementation over separate development
branches and many incompatible program versions to a full-grown maintenance
nightmare. Especially, combining extensions and features of different versions
usually yielded in rather obscure than desired behavior. Obviously, Rebeca
would profit tremendously from a much more modular architecture.

Design and Implementation of the Rebeca Publish/Subscribe Middleware 127

3 Feature Composition

Facing the problems described in the previous section, we began with a radical
redesign of Rebeca, where we focused on the modularity of features to facilitate
and ease their composition.

A feature is a well-defined aspect of a software system’s functionality. Ideally,
it is encapsulated in a separate module fostering separation of concerns. Based
on a core system with a basic functionality, a feature-oriented architecture then
enables extending the system by simply adding new feature modules. In this
way, a general publish/subscribe system could be supplemented and customized,
for example, by more efficient routing algorithms, by reconfiguration and self-
optimization capabilities as well as fault-tolerance mechanisms. Eventually, the
behavior of the system as whole is determined by a composition of the base
system and all integrated feature modules.

However, this feature-oriented approach also has its drawbacks. In any non-
trivial system, and publish/subscribe systems are inherently complex, it is in-
evitable that features interact and interfere with each other. There are two types
of interactions: desired interactions that are necessary to make dependable fea-
tures work and undesired interferences that result as cumbersome byproduct
through composition. In a publish/subscribe system, for example, optimizing
the broker network requires the ability to conduct dynamic reconfigurations of
the network topology by replacing network links must be coordinated with an
applied fault-tolerance scheme. Otherwise a vanishing network link may be seen
as a fault and triggers compensating actions such as activating backup links and
brokers.

Nevertheless, a sustainable feature management is indispensable for any com-
plex evolving system. Thus, following a feature-oriented approach, we faced the
following questions when redesigning Rebeca’s architecture:

– How to encapsulate a system feature in a self-containing module to make
it pluggable? This is challenging because functional modularity in terms of
features and structural modularity in terms of pluggable components are two
different and orthogonal concepts.

– How to enable feature modules to interact with each other? As certain fea-
tures depend on each other, an architectural way has to be provided facili-
tating the interaction of feature modules.

– How to counter undesired interactions of features? As features may interfere
in manifold ways, the system’s architecture should make feature interactions
explicit and visible in order to ease resolving undesired interferences.

– How to deal with non-functional requirements? Meeting non-functional re-
quirements is challenging because this kind of requirements usually affects
the system as whole and, thus, has to be met by all feature implementations.
Nevertheless, the architecture should flexibly support the implementation of
non-functional properties.

The questions above guided us during Rebeca’s redesign. As result, we devel-
oped a flexible architecture based on plugins presented in the next section.

128 H. Parzyjegla et al.

4 Architecture

In order to address the challenges introduced in the previous section, we decided
to consider the functional modularity as primary mean to support fine-grained
feature composition. This implies that we consider every feature of our middle-
ware – even those that are usually considered necessary – as subject of feature
composition to enable a large degree of configuration freedom even with respect
to basic functionality. Therefore, the architecture of Rebeca consists of two
types of elements: The extendable broker forms the functional core of a Rebeca
system and delivers minimal publish/subscribe functionality together with the
possibility to compose features. Such features are implemented as plugins that
are inserted at run-time into Rebeca brokers.

In Sect. 4.1, we describe the architecture of the extendable brokers, followed
by an introduction of our plugin concept in Sect. 4.2. Finally, we consider clients
and their connection to a Rebeca system in Sect. 4.3. Section 5 enumerates a
number of features that we implemented as Rebeca plugins.

4.1 Extendable Broker

Rebeca’s new architecture is centered around functional modularity. Therefore,
each broker feature, even those that are usually considered basic and necessary,
is seen as subject of feature composition to enable a large degree of configuration
freedom. Thus, a broker is basically just a container for pluggable components
which, in turn, realize the functionality. Following this idea, a broker only sup-
ports the basic concepts of message channels and message handling stages into
which components can be plugged as described by a configuration.

Looking at the basic functionality of a publish/subscribe broker in more detail,
three separate message handling stages can be distinguished as depicted in Fig. 1
that every message has to pass. In the input stage, the message is received from
a neighboring broker and, for example, needs to be deserialized. Afterwards, the
main processing stage follows. Here, the routing decision is made whether the
message has to be forwarded and, if forwarding is needed, to which neighbors it
has to be transmitted. The last stage is the output stage, where the message is
prepared for transmission, for example, by serializing it again.

The stages have different contexts and scopes: While there are separate in-
put and output channels for each incoming and outgoing connection, there is
only one global channel in the main processing stage for all messages. Thus, at
the transitions from input to processing stage and from processing to output
stage message streams need to be multiplexed and demultiplexed, respectively.
Multiplexing is usually done by storing received messages in a queue. Thereafter,
they get individually dequeued and handled one by one. Demultiplexing is neces-
sary when the handled message needs to be forwarded to multiple neighbors. To
achieve this, the message is usually copied at the end of the processing stage and
each message copy is put into the respective output channel to be transmitted
separately.

Design and Implementation of the Rebeca Publish/Subscribe Middleware 129

Fig. 1. Pipeline architecture of a broker

Advanced broker functionality which goes beyond simple message forwarding
is achieved by manipulating messages and message streams. To implement a new
feature, for example, it might be necessary to alter certain messages, defer or
delete others, or to create even new ones. To make brokers extendable, Rebeca
enables feature components to be plugged into the channels of each message han-
dling stage. Thus, these components get the possibility to manipulate messages
of interest within the context of their choice, i.e., within the global processing
scope or within the scope of a particular connection before or after processing.

When multiple feature components are plugged into the same stage and chan-
nel, they are chained to a pipeline. In this case, the effective sequence becomes
important in which messages traverse this pipeline. The broker configuration
determines which components will be plugged where and in which order. In fact,
this configuration constitutes a feature composition and, thereby, defines the
behavior of the overall system.

4.2 Plugins

To realize a certain broker feature, message manipulations in all message han-
dling stages may be required, while other features may only need a single inter-
vention. Thus, bundling a feature implementation to a pluggable component of
sensible granularity is challenging. Rebeca brokers support plugins to extend
their features. A Rebeca plugin usually consists of two parts: a broker engine
and a connection sink. Figure 2 gives an overview as a Unified Modeling Lan-
guage (UML) class diagram showing how engines, sinks, and brokers relate to
each other.

Broker engines implement the majority of the processing logic to realize a
particular functionality. There is only one engine per plugin which encloses and
manages all data structures required by a feature. Engines are plugged into
the main processing stage of a broker and chained to a processing pipeline. Each
engine has a processmethod which takes the message to handle, the neighboring
broker it was received from, and an initially empty set of destinations to forward
the message to. The engine can then decide whether it wants to leave the message
untouched and simply passes it along the message handling chain or whether

130 H. Parzyjegla et al.

Fig. 2. Class diagram depicting the relationship between broker, engine and sink

it wants to intervene and manipulate the message or its destinations. When
intervening the message stream, the engine can completely alter a message’s
content as well as add or remove neighboring brokers to the set of forwarding
destinations. Furthermore, it is also possible to silently drop a message or to
insert even new messages into the stream. Thereby, an engine has various means
to realize features.

Certain aspects, however, are easier to implement in more specific scopes,
for example, serialization and deserialization of messages is usually done within
the context of the transmitting connection. Broker engines are, thus, able to
create connection sinks that bundle all connection-specific processing logic in
one place. Sink instances belonging to the same connection are assembled to a
sink chain that messages pass during the input and output stage of a broker. As
input and output stages are usually symmetric—for example, if serialization is
the processing step right before sending a message, then deserialization should
analogously be the next step after receiving it— this leads to a layered design as
shown in Fig. 3, where each layer encapsulates a specific functionality. Received
messages are, thus, passed upwards the chain using a sink’s in method, while
messages that are to be transmitted are passed down the same chain using
the out method. Thereby, each sink instance has the possibility to intervene
in order to suppress the message, to manipulate or to transform its content, or
to insert new ones. Layered architectures are well known from many middleware
implementations and have been proven convenient, useful, and flexible.

Ideally, a well designed Rebeca plugin implements just one specific feature,
works transparently and autonomously, and is independent of other plugins.
Transparency means that the plugin’s engine and sinks only manipulate those
messages needed to realize the feature. Other messages are simply passed along
the message handling chains as if the plugin was not present. Autonomy means
that the plugin is self-containing and when it needs to intervene into the message

Design and Implementation of the Rebeca Publish/Subscribe Middleware 131

Fig. 3. Interconnection of client and broker using sinks

streams it does not need the help of other plugins. Independence means that it
even does not need to be aware of the presence of other plugins. However as
features may depend on each other, it is not always possible to build plugins
fulfilling all these properties. Thus, plugins need a way to interact with each
other. The preferred way is by altering or inserting new messages into the pro-
cessing chain. Thereby, no further changes are necessary. Beyond that, Rebeca
does not restrict engines and sinks to implement any additional methods and
interfaces they need to coordinate and communicate with other plugins besides
the common processing chains. For example, engines and corresponding sinks
usually use additional interfaces. Moreover, many connection sinks are even im-
plemented as inner classes of their corresponding broker engines as a convenient
way to share common data structures.

An important issue is the functional and non-functional compatibility of dif-
ferent plugins, especially in the case that the properties stated above are not
fulfilled. In this case, the plugins depend on each other restricting possible fea-
ture compositions. We tackle this problem by enabling plugins to express pre-
and postconditions for composition. For instance, a plugin may insert routing
control messages into the message stream that contain information needed by
other plugins and use some predefined message format. Another plugin may de-
pend on these messages for its functionality. In this case, the first plugin may
have a postcondition such as “provides routing control messages version 1.4”
while the latter has a precondition “requires routing control messages version
1.2-1.7”. This way, possible feature compositions are restricted in order to ful-
fill these functional requirements. Furthermore, these type of conditions is also
used to establish a reasonable order of plugins within the different message han-
dling stages. Beside functional compatibility, non-functional requirements such
as safety, security, resource usage or timing may also be important – we plan to
address those using techniques of non-functional composability [24].

4.3 Clients

To facilitate and ease the development of publish/subscribe applications, brokers
offer clients a simple interface with clearly determined semantics for disseminat-
ing notifications and specifying their interests. Although the interface is simple,
handling client connections often becomes a burden for brokers and leads to

132 H. Parzyjegla et al.

complex implementations since brokers have to distinguish whether they com-
municate to a client or a neighboring broker. When communicating to a client,
simpler interfaces and protocols need to be supported, while brokers usually ex-
change information more efficiently using advanced protocols and functionality.
As a consequence, broker implementations tend to be rather lengthy, difficult to
read and understand, and, hence, often error-prone.

Rebeca’s new architecture simplifies broker implementations by splitting up
functionality and encapsulating features in separate plugins, i.e., broker engines
and corresponding connection sinks. In order to ease the development of broker
engines and clarify their processing logic, the necessity to distinguish between
client and broker connections has also been dropped. From a broker’s point of
view all connections lead to other neighboring brokers, thus, requiring clients
to behave like brokers now. In order to still offer the simple client interface as
well as to support advanced broker protocols, the concept of pluggable sinks
leveraged to modularity extend the broker’s functionality is also employed on
the client side as shown in Fig. 3.

An application component still uses the traditional publish/subscribe inter-
face for communication. But, however, an additional sink chain provided by the
Rebeca client library has been transparently plugged into its connection to its
hosting broker. There is a corresponding sink instance at the same layer on the
client side for every plugged broker engine and sink on the broker side. Thereby,
they bundle all logic for client handling already on the client side preventing it
from being interwoven into complex broker engine implementations otherwise.
Client sinks are developed together with broker plugins, use similar interfaces as
broker sinks, and, hence, have the same possibilities to intervene the incoming
and outgoing message stream and translate, insert and remove messages. This
way, the achieved flexibility enables an easy integration of and a fast adaptation
to new broker features while still supporting stable client interfaces with fixed
semantics.

Considering performance, however, layered designs have drawbacks. Espe-
cially, when broker and clients are running on the same host or even in the same
process context, lower layers responsible for message serialization and transport
are unnecessary overhead. In this cases, Rebeca’s modular design and flexible
configuration allows to simply omit those layers on the client and broker side that
are not required in this particular setup. This way, Rebeca efficiently supports
client components running locally on the broker as well as remote components
connected over network.

5 Feature Plugins

In this section we introduce a number of features that are available for our
Rebeca middleware. As described earlier, each feature is implemented as plugin
that is inserted into a Rebeca system.

Design and Implementation of the Rebeca Publish/Subscribe Middleware 133

5.1 Mandatory Features

The concept of feature composition is omnipresent in Rebeca in a way that even
mandatory functionality is implemented in terms of plugins. Thereby, a broker’s
core functionality becomes easily exchangeable and can get replaced with custom
implementations that may better suit one’s needs. In the following, we describe
those plugins that are required for a broker to work.

Configuration. The configuration plugin does not manipulate messages. Instead,
it contains the information which other plugins need to be added to the broker
and where their constituent parts have to be inserted in the processing and sink
chain. The configuration itself can be hardcoded within the plugin, read from
an external file, or fetched from a network server. The plugin is then responsible
for instantiating, initializing, and activating all remaining plugins.

Processing. The processing plugin drives a broker’s processing stage. In fact,
it connects the processing stage with the input and the output stage and con-
tains the broker’s logic for multiplexing and demultiplexing messages. Its engine
marks the beginning of the processing chain while its sink instances reside on
the topmost layer of the sink chain and, thus, glue the broker stages together.
By providing customized implementations, it becomes easily possible to adapt a
brokers multiplexing strategy, for example, to support fair strategies, weighted
strategies, or strategies based on priorities of connections or messages.

Transport. The functionality of the transport plugin is to deliver messages to
connected neighboring brokers and clients. Thus, every connection has exactly
one transport sink that is situated at the bottom of the sink chain. Depending
on the connection type, however, different transport mechanisms can be used:
Communication to neighboring brokers and remote clients is based on TCP
and includes message serialization, while the transport plugin for local compo-
nents may simply pass messages as objects in memory. Furthermore, a transport
connector to a discrete event simulation is available as described in Sect. 6.

5.2 Publish/Subscribe Features

A Rebeca broker equipped with just mandatory plugins is already able to offer
basic publish/subscribe functionality by flooding notifications into the network.
However, for more advanced system setups additional features are needed.

Matching and Routing. Content-based routing requires advanced matching ca-
pabilities. Instead of flooding notifications to all neighboring brokers, notifica-
tions are only directed and forwarded towards interested clients and their hosting
brokers. Therefore, the matching plugin administers a routing table, where client
interests are stored in form of subscription filters. Based on this table, the deci-
sion is made to which neighboring broker or connected client a received notification

134 H. Parzyjegla et al.

is finally delivered. Client interests are propagated by subscriptions. When for-
warding subscriptions, different strategies can be used that aim at reducing the
overhead by exploiting similarities between subscription filters [15]. Plugins are
available that support a simple routing, an identity-based routing, and a covering-
based routing of subscriptions [16].

Advertising. Advertisements are an additional mean to further reduce the sub-
scription overhead by requiring producing components to announce the kind of
notifications they intend to publish. As a consequence, subscriptions need only
to be forwarded into the direction of potential publishers. The advertisement
plugin, thus, suppresses all subscriptions that would have been unnecessarily
send to remaining network regions otherwise. Therefore, the plugin needs to ad-
minister an additional advertisement table, where publication announcements
are stored in form of advertisement filters. For forwarding advertisements, the
same optimizations as for subscriptions can be applied [15]. Advertisement plu-
gins based on a simple routing, an identity-based, and a covering-based routing
strategy are available.

Scoping. Scoping [4,6] is a mean to structure the middleware as well as publish/
subscribe applications by delimiting the dissemination of notifications within the
broker network. Thereby, scopes enable the creation of visibility domains and hi-
erarchies thereof by which it gets possible to model and reflect organizational
structures. A company’s publish/subscribe infrastructure, for example, could be
organized by division, department, and group, or alternatively by country, region,
and city. The scope plugin dynamically assigns publish/subscribe components to
scopes based on a given scope specification and available component attributes
whereby it is not unusual that components belong to multiple scopes at the
same time. Furthermore, when forwarding messages, it enforces that notifica-
tions are dropped which are not allowed to pass scope boundaries. For managing
scope memberships and announcing available scopes, however, the scope plu-
gin depends on functionality provided by the routing and advertisement plugin,
respectively.

5.3 Optional Features

In the following, we describe further features implemented for the Rebeca mid-
dleware. These features are optional and primarily aim at improving the control
over the system as well as to enhance the quality of service.

Management and Monitoring. Rebeca’s management plugin provides a conve-
nient monitoring and management interface to the broker and instantiated plug-
ins based on the Java Management Extensions (Jmx) technology [28]. Regarding
a broker’s configuration, the management plugin enables the insertion and re-
moval of other plugins at runtime. For every broker plugin a dedicated MBean
instance is created which provides access to the plugin’s engine. Thereby, it is

Design and Implementation of the Rebeca Publish/Subscribe Middleware 135

possible to read properties, change attributes, and query statistics. The man-
agement plugin administers all MBeans. Furthermore, various connectors and
adapters are available to communicate with the MBeans using protocols such as
SNMP, HTTP, or Java RMI.

Encryption. The encryption plugin provides a secure channel for communication.
The plugin’s sink is inserted into the input and output stage of a broker in
order to encrypt and decrypt all outgoing and incoming messages, respectively.
A configuration specifies on which connection which encryption algorithm is
used. Thereby, it is possible to use strong encryption when communicating to
brokers in insecure networks, but switch encryption completely off if clients are
connected locally.

Adaptivity. When deploying Rebeca in dynamic environments, it is usually de-
sirable for achieving a good system performance, and sometimes even necessary
for avoiding certain overload situations, to continuously adapt the middleware
to changing network and load conditions. Currently, there are two plugins that
autonomously adapt and optimize the broker network and its routing configura-
tion, respectively. The first plugin tries to reorganize the broker network in order
to minimize the number of forwarding hops between publishers and subscribers
while avoiding expensive overlay links. It is based on the heuristic published
in [11]. The second plugin aims at minimizing the number of forwarded mes-
sages by edge-wise switching between different routing algorithms. The idea is
to always use the most efficient algorithm for the current situation [26].

Fault Tolerance. Since Rebeca operates on an acyclic overlay network, the
failure of an essential link or broker may lead to the partition of the whole
broker network. To improve the fault tolerance, the recovery plugin implements
a strategy for reconnecting the network and, thus, adds self-stabilization with
respect to the overlay. Based on the assumption that no additional faults occur
during the time of repair, it is guaranteed that the subnets get rejoined to a valid
broker topology again.

6 Discrete Event Simulation

When developing a new broker feature it is a common task to test and evaluate
the implementation under various load, network, and environment conditions.
Using deployments of real broker instances is the most realistic way of testing
and evaluation which, however, is not always suitable or applicable. Regarding
scalability, for example, the size of the testbed is the limiting factor or, consid-
ering faults and network conditions, the degree of control necessary to induce
specific faults and load situations as well as their reproducibility may not be
given. Instead, simulations provide a well established alternative that offers the
needed scalability, reproducibility, and fine-grained control.

Publish/subscribe systems are often evaluated using discrete event simulations
which model the operation of the whole system as a chronological sequence of

136 H. Parzyjegla et al.

events. Events, such as “message arrived at node X” or “message forwarded to
node Y ”, occur at instants in time and are then processed appropriately. Thereby,
the system’s state is changed and new, causally related events are triggered
and scheduled to be processed in future. After an event has been handled, the
simulation’s time is advanced to the chronological next event which is removed
from schedule and subsequently processed. These steps are repeated until no
further events are available or a previously specified end time is reached.

Rebeca supports discrete event simulations based on the PeerSim frame-
work [18]. More precisely, Rebeca brokers are able to run independently in
stand-alone deployments and can alternatively be executed in a simulation envi-
ronment as well. Due to Rebeca’s modular architecture and functionality many
plugin implementations are reusable without modifications, some need minor
adaptations, and only a few have to be replaced to be compatible to simulation
setups. Since only absolutely necessary changes were made, implementation and
simulation share the same code base—a maximum of simulation validity and
accuracy is reached.

Required adaptations include functional as well as non-functional aspects.
Regarding functionality, the simulated brokers need a way to communicate with
each other. Therefore, a new transport plugin is provided that connects brokers
to the simulated network environment. This way, brokers and clients are able to
exchange messages.

The non-functional aspects, however, are harder to realize as they mainly
affect the style of code execution as well as the simulation’s notion of time. As
discrete event simulations sequentially process one event after the other, they
are usually executed by a single thread without any concurrency. On contrary,
additional broker threads may even be harmful when they are used for periodic
tasks triggered by the system clock. The reason is that the simulation does
not have a continuous time model anymore, provides its own independent and
discrete simulation time, and needs explicitly scheduled events to trigger a task.
Moreover, as events are just instants in time they do not have a duration. Thus,
for modeling a process that takes time (e.g., a broker forwarding a notification)
one needs to explicitly schedule at least two events, one for the start and, after an
appropriate delay, one for the end. To tackle these issues, plugin implementations
(more precisely broker engines) are wrapped in a way that all calls are intercepted
that would lead to the instantiation of independent threads. Furthermore, time
management is completely done by the wrapper which schedules corresponding
simulation events. For processing and manipulating received messages, however,
the original plugin implementation is used.

Changing the time and execution model fundamentally affects the whole im-
plementation as it is a non-functional aspects that cannot be decomposed into
a separate module or component. Nevertheless, Rebeca’s modular architecture
has proven beneficial for adapting the system to support discrete event simula-
tions. Fine-grained modularity is the primary mean to identify and delimit those
portions of code that need to be adapted and reuse the remaining parts.

Design and Implementation of the Rebeca Publish/Subscribe Middleware 137

7 Related Work

In literature, a large number of publish/subscribe systems exist including com-
mercial middleware products as well as research prototypes [23]. As commercial
systems are usually closed source, little is known about implementation details
and even less about feature management within the software lifecycle. Regarding
academic systems, the situation is different but not much better. While imple-
mentations are open source and publicly available, they are often designed for a
particular research interest with a fine-tuned set of selected features. Thereafter,
only a few projects get continuous support and maintenance and even fewer are
developed further so that their feature set evolves and grows over time.

Reds [2] is a publish/subscribe system designed for mobile ad hoc networks.
It is based on a modular architecture and provides means for integrating custom
message formats and filters as well as advanced matching, routing and network
management strategies rendering the system quite adaptable and reconfigurable.
However, implemented reconfiguration mechanisms primarily aim at adapting its
routing overlay structures to the dynamically changing environments and mobile
network topologies. Extendability in terms of integrating completely new features
was not considered to the same extend.

The Padres project [3] consists of a distributed, content-based publish/
subscribe routing substrate and a whole ecosystem of tools and services designed
for workflow and enterprise management solutions [12]. The latter provides fea-
tures necessary for integration into enterprise infrastructures that have been
subsequently added to and build around publish/subscribe messaging. The base
broker has a modular architecture that exhibits, similar to our approach, mes-
sage input and output queues as well as core components. Padres components
are efficient, but seem to be quite coarse and heavy. For example, the full-fledged
Java Expert System Shell (Jess) rule engine [7] is used as matching and routing
engine. Thus, a fine-grained feature control and composition is rather complex
and difficult to realize.

Distributed Feature Composition (Dfc) is a versatile architecture used in
the telecommunications domain. It facilitates a feature-oriented specification,
a modular implementation of features and their dynamic composition to ad-
vanced telecommunication services. Customer calls (e.g., telephone calls, Voice-
over-Internet-Protocol (VoIP) calls) are processed by dynamically assembling
a component chain out of applicable feature boxes from the caller to the callee
when routing and establishing a connection. Ideally, each feature box is transpar-
ent, autonomous, and independent and implements a specific functional aspect
such as blocking calls from particular addresses, suppressing calls at quiet times,
forwarding calls to different receivers or recording a voice mail when the line is
busy. The overall behavior is then determined by the composition of the feature
boxes, i.e., their sequence in the chain.

Dfc and Rebeca’s redesigned architecture are quite similar sharing common
concepts and same goals—both emphasize a feature-oriented modularity. Like-
wise, Rebeca provides means to put feature modules into message processing

138 H. Parzyjegla et al.

chains, however, Rebeca plugins may have up to three hooks in different chains
to implement a particular feature. Therefore, these plugins tend to be more de-
pendable and less self-containing than Dfc feature boxes.

8 Conclusion

With publish/subscribe systems becoming an integral part of the communica-
tion infrastructure in an increasing variety of application domains, the number of
requirements posed to a publish/subscribe middleware implementation steadily
grows and evolves. Knowing from own experience, it is hardly possible to sup-
port all of them at once. Therefore, we centered the new architecture of our
middleware Rebeca around the concept of functional modularity. This way, it
becomes possible to easily build tailor-made, light-weight systems.

In this paper, we introduced the concept of features and presented Rebeca’s
modular architecture facilitating their composition. Based on a minimal func-
tional core, Rebeca brokers can be extended by inserting additional plugins
implementing specific features. Feature plugins are able to intervene a broker’s
internal message stream at three different positions and can thereby control
the forwarding of messages to neighboring brokers and clients in the network.
Messages can be altered, inserted, and removed in order to realize the desired
functionality. On the client side, the same mechanism is applied. This way, the
development of both broker plugins and client sinks is unified and eased.

Rebeca is implemented as prototype together with a variety of plugins to
demonstrate the concept of feature composition. Therefore, implemented plug-
ins provide established publish/subscribe functionality such as matching, rout-
ing, advertising, and scoping as well as features that aim at improving quality of
service, fault tolerance, or the manageability of brokers. Moreover, Rebeca can
be executed within a simulation environment as well. Due to the modular archi-
tecture and functionality, only a few plugins needed to be adapted or replaced
to support discrete event simulations.

Future work focuses on equipping Rebeca with more autonomy to increase
the system’s degree of self-organization, self-optimization, and self-stabilization.
In this context, it is an open research question how to compose different auto-
nomic algorithms in a way that they do not unintentionally interfere with each
other or build up oscillations. Furthermore, we aim at continually improving the
integration of Rebeca into modern computer infrastructures and application
systems. One challenge is to exploit the increasing parallelism provided by cur-
rent multiprocessor and multi-core architectures while still supporting resource-
constrained devices and legacy applications. However, to adequately support
these systems, a holistic approach may be needed including new application in-
terfaces and programming abstractions. We are convinced that Rebeca’s mod-
ular architecture will be an invaluable help and ease the development process
when tackling these challenges.

Design and Implementation of the Rebeca Publish/Subscribe Middleware 139

References

1. Bornhövd, C., Cilia, M., Liebig, C., Buchmann, A.: An infrastructure for meta-
auctions. In: Proceedings of the 2nd International Workshop on Advanced Issues
of E-Commerce and Web-Based Information Systems, pp. 21–30. IEEE Computer
Society, Los Alamitos (2000)

2. Cugola, G., Picco, G.P.: Reds: A reconfigurable dispatching system. In: Proceedings
of the 6th International Workshop on Software Engineering and Middleware (SEM
2006), pp. 9–16. ACM Press, New York (2006)

3. Fidler, E., Jacobsen, H.A., Li, G., Mankovski, S.: The padres distributed publish/-
subscribe system. In: Proceedings of the 8th International Conference on Feature
Interactions in Telecommunications and Software Systems (ICFI 2005), pp. 12–30.
IOS Press, The Netherlands (2005)

4. Fiege, L.: Visibility in Event-Based Systems. Ph.d. thesis, Technische Universität
Darmstadt, Darmstadt, Germany (April 2005)

5. Fiege, L., Cilia, M., Mühl, G., Buchmann, A.: Publish/subscribe grows up: Sup-
port for management, visibility control, and heterogeneity. IEEE Internet Comput-
ing 10(1), 48–55 (2006)

6. Fiege, L., Mezini, M., Mühl, G., Buchmann, A.P.: Engineering event-based systems
with scopes. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 309–333.
Springer, Heidelberg (2002)

7. Friedman-Hill, E.: Jess in Action: Rule-Based Systems in Java. Manning Publica-
tions, Greenwich (June 2003)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)

9. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In: Proceedings of the 6th
Annual International Conference on Mobile Computing and Networking (MobiCom
2000), pp. 56–67. ACM Press, New York (2000)

10. Jaeger, M.A., Mühl, G., Werner, M., Parzyjegla, H.: Reconfiguring self-stabilizing
publish/subscribe systems. In: State, R., van der Meer, S., O’Sullivan, D., Pfeifer,
T. (eds.) DSOM 2006. LNCS, vol. 4269, pp. 233–238. Springer, Heidelberg (2006)

11. Jaeger, M.A., Parzyjegla, H., Mühl, G., Herrmann, K.: Self-organizing broker
topologies for publish/subscribe systems. In: SAC 2007, pp. 543–550. ACM Press,
New York (2007)

12. Li, G., Muthusamy, V., Jacobsen, H.A.: A distributed service-oriented architecture
for business process execution. ACM Transactions on the Web 4(1), 1–33 (2010)

13. Love, R.: Get on the d-bus. Linux Journal 2005(130), 3 (2005)
14. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-

ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Boston (2001)

15. Mühl, G., Fiege, L., Gärtner, F.C., Buchmann, A.P.: Evaluating advanced routing
algorithms for content-based publish/subscribe systems. In: Proceedings of the
10th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems (MASCOTS 2002), pp. 167–176. IEEE
Computer Society, Los Alamitos (2002)

16. Mühl, G., Fiege, L., Pietzuch, P.R.: Distributed Event-Based Systems. Springer,
Heidelberg (2006)

17. Mühl, G., Ulbrich, A., Herrmann, K., Weis, T.: Disseminating information to mo-
bile clients using publish-subscribe. IEEE Internet Computing 8(3), 46–53 (2004)

140 H. Parzyjegla et al.

18. Mark Jelasity, A.M., Jesi, G.P., Voulgaris, S.: PeerSim: A peer-to-peer simulator,
http://peersim.sourceforge.net/

19. Object Management Group (OMG): Data distribution service for real-time systems
(DDS), version 1.2 (January 2007)

20. Organization for the Advancement of Structured Information Standards (OASIS):
Web services notification (WSN), version 1.3. Billerica, MA, USA (October 2006)

21. Parzyjegla, H., Jaeger, M.A., Mühl, G., Weis, T.: Model-driven development and
adaptation of autonomous control applications. IEEE Distributed Systems On-
line 9(11), 1–9 (2008)

22. Parzyjegla, H., Mühl, G., Jaeger, M.A.: Reconfiguring publish/subscribe overlay
topologies. In: Proceedings of the 26th IEEE International Conference on Dis-
tributed Computing Systems Workshops (ICDCSW 2006), p. 29. IEEE Computer
Society, Los Alamitos (2006)

23. Pietzuch, P., Eyers, D., Kounev, S., Shand, B.: Towards a common api for publish/-
subscribe. In: Proceedings of the Inaugural Conference on Distributed Event-Based
Systems, pp. 152–157. ACM, New York (2007)

24. Richling, J.: Komponierbarkeit eingebetteter Echtzeitsysteme. Ph.D. thesis,
Humboldt-Universität zu Berlin, Berlin, Germany (February 2006)

25. Schönherr, J.H., Parzyjegla, H., Mühl, G.: Clustered publish/subscribe in wireless
actuator and sensor networks. In: Proceedings of the 6th International Workshop
on Middleware for Pervasive and Ad-hoc Computing (MPAC 2008), pp. 60–65.
ACM Press, New York (2008)

26. Schröter, A., Graff, D., Mühl, G., Richling, J., Parzyjegla, H.: Self-optimizing
hybrid routing in publish/subscribe systems. In: Gonzalez, A., Pfeifer, T. (eds.)
DSOM 2009. LNCS, vol. 5841, pp. 111–122. Springer, Heidelberg (2009)

27. Schröter, A., Mühl, G., Kounev, S., Parzyjegla, H., Richling, J.: Stochastic perfor-
mance analysis and capacity planning of publish/subscribe systems. In: Proceed-
ings of the 4th ACM International Conference on Distributed Event-Based Systems
(DEBS 2010), ACM Press, New York (2010)

28. Sun Microsystems, Inc.: Java management extensions (JMX) specification, version
1.4. Santa Clara, CA, USA (November 2006)

29. Ulbrich, A., Mühl, G., Weis, T., Geihs, K.: Programming abstractions for content-
based publish/subscribe in object-oriented languages. In: Meersman, R., Tari, Z.
(eds.) OTM 2004. LNCS, vol. 3291, pp. 1538–1557. Springer, Heidelberg (2004)

30. World Wide Web Consortium (W3C): Web services eventing (WS-Eventing)
(March 2010), http://www.w3.org/TR/ws-eventing/

31. Zeidler, A., Fiege, L.: Mobility support with REBECA. In: Proceedings of the 23rd
International Conference on Distributed Computing Systems Workshops (ICDCSW
2003), pp. 354–361. IEEE Computer Society, Los Alamitos (2003)

Anonymous Mobile Service Collaboration:

Quality of Service

Annika Hinze1, Michael Rinck2, and David Streader1

1 University of Waikato, New Zealand
{hinze,dstr}@cs.waikato.ac.nz

2 Humboldt Unversity, Berlin, Germany
rinck@informatik.hu-berlin.de

Abstract. Mobile services depend on user context and preferences, and
a mobile user’s context is constantly changing. Many services are only
available locally. The most appropriate service for a user’s context is not
known in advance and a user may enter or leave a service’s range at
any time. For a seamless user experience, services need to collaborate.
These complex collaborations should be instantaneous yet anonymous –
without disclosing user information.

The paper proposes a new service collaboration model using
event-based interaction. A prototypical implementation is used to demon-
strate functionality, inter-operability, and generality of our solution. The
solution guarantees ad-hoc service collaboration while protecting user in-
formation.

1 Introduction

Service collaboration in mobile and ubiquitous systems presents challenges for
existing service-oriented architectures. Similar services may have limitations on
their availability, for example, with respect to the context in which the service
is required. Services can thus appear or disappear at any time, calling for the
provision of an automatism to select collaboration partners. We refer to this
problem as service selection. An understanding of quality of service becomes an
important issue.

To protect user information, the services should collaborate with each other
without revealing their or the user’s identity. Therefore anonymity is a central
requirement: the services engaged in the interaction should not be mutually
aware of each other’s identity. We refer to this problem as user privacy.

This paper discusses a service infrastructure for collaboration of mobile services
that responds to these two challenges. The interaction infrastructure is based on
the publish/subscribe paradigm; client and server-side services connect via a (dis-
tributed) broker. Its (theoretical) foundations have been discussed in [13].

The following example describes a tourist system that may be achieved through
the collaboration of:

– a map service, showing the position of the user in some representation of her
environment, with pointers to places of interest

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 141–158, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

142 A. Hinze, M. Rinck, and D. Streader

– a locator service used to locate the position of the user
– an information service that displays further information about particular

locations of interest (e.g., in a city or within a museum)

This simple example of three services (map, location, information service) can
already illustrate how service selection is addressed by our quality-of-service
extensions to ensure seamless collaboration. If there are two alternative locator
services, GPS and RFID, the system selects the one with the better quality
for the collaboration context: GPS for outdoor locations and RFID for indoor
locations. When the user moves into a building, the services’ quality changes.
Once the RFID services provide a signal with better quality the broker switches
from GPS to RFID.

The map service would not be aware of the switch as it does not know the
identity of its provider of location data. Each service registers with a trusted
broker and states which types of information it is interested in (e.g., the map
being interested in location data). The problem of data privacy is thus addressed
by the publish-subscribe infrastructure: The broker then selects the appropriate
service (by type and quality) and forwards the data anonymously.

This paper describes a service collaboration infrastructure and an imple-
mented prototype that supports

– anonymous service collaboration using publish/subscribe communication and
– service selection based on QoS data.

The paper discusses alternative architectures for the infrastructure’s implemen-
tation and introduces our implemented prototype. We demonstrate how the QoS
extensions are used to select the appropriate collaboration partners and discuss
the data privacy implications. The prototype application was developed for the
current revision of our mobile tourist information system TIP [14]. It uses a local
broker that enables collaboration between services offered by different providers
without the need to access a global service repository. In particular, we discuss
how a formal proof of data privacy/anonymity may be achieved.

We commence this paper by analysing the requirements for ensuring quality of
service in mobile service collaboration for ad-hoc environments in Section 2. We
compare the related approaches for service collaboration with the one proposed
in this paper (Section 3). In Section 4, we introduce an extended concept for a
mobile service infrastructure that addresses the quality of service requirements.
Architecture variations are compared in Section 5. Finally, Section 6 describes
the implementation of the architecture. We close with a discussion of formal
proofs of anonymity (Section 7) and further extensions of our work.

2 Scenario and Requirements

We start by having a closer look at how mobile service collaboration for ad-
hoc environments is different from traditional service collaboration. Existing
collaboration techniques [7] assume that services are openly known globally and

Anonymous Mobile Service Collaboration: Quality of Service 143

require negotiated contracts for longer term relations. Conditions in a dynamic
mobile environment are fundamentally different. Networks may be available only
in small patches, the services are offered locally, and collaboration should be
anonymous and immediate (i.e., without negotiation). Traditional architectures
are therefore unfit for collaboration between mobile location-based services.

Event-based interaction [9] has mostly been used to initiate service interaction
but not for ongoing anonymous service interaction. To help ensure anonymity
of services, we suggest that event-based interaction between services should be
maintained beyond the initiation of communication.

Let us now revisit the scenario to see how event-based interaction can sustain
service collaboration. As in traditional publish/subscribe architectures, each ser-
vice registers with the broker as publisher or subscriber (a service may have both
roles). Interest in data is expressed as interest in data types with possible ad-
ditional filters. That is, the map service would subscribe to the client’s location
data, not to any particular location service.

For some services, only data from one out of many services of the same
type should be forwarded (e.g., map receiving location information). In stan-
dard service-oriented architectures, this service selection is negotiated directly
between services. As we aim for service anonymity, this direct negotiation is not
an option. Instead we suggest an extension of the traditional publish/subscribe
architecture. Its design can be observed in the following situation where the
broker has to switch between services.

In our scenario, when the user enters a museum the quality of the GPS-based
location service will diminish until no further data is provided. As a conse-
quence, using a standard publish/subscribe approach, the map would ’freeze’ as
it receives no location updates. Here the anonymity and decoupling supported
by publish/subscribe prevents the services from functioning correctly. In our
extended architecture, a failing service (e.g., the GPS) will be replaced by an
alternative service providing better quality of service (e.g., RFID). If no alter-
native is available, the subscribing services will be informed by the broker. In
our scenario, the map service would be informed that no information about the
user location is available (such that an error message can be displayed instead
of the ‘freezing’).

From our scenario description, we derive a number of requirements that must
be satisfied to ensure robust service collaboration. The problem domain (situa-
tion) is captured in the first three requirements. Services may be:

R1 offered by different providers
R2 offered in restricted locations only
R3 designed for mobility (of users)

The quality of a service can be expressed in terms of quality of data: (a) accuracy
of data received, and (b) timeliness of data received. The previous example of
switching GPS to RFID service was influenced by concerns about accuracy. The
notification of the map service that no location data is available is a communi-
cation about the timeliness.

144 A. Hinze, M. Rinck, and D. Streader

R4 service selection based on best quality of data
R5 service liveliness expressed as timeliness of data

In addition to the quality of data, the quality of service a user receives also
depends on the quality of the collaboration infrastructure used by the services.
Consequently to ensure privacy we need to consider more than the quality of an
individual service but also the quality of infrastructure:

R6 anonymity of services and user (ensured by infrastructure)
R7 confidence in privacy (supported by formal proof)

Anonymity and privacy are the main concerns of the infrastructure. We aim to
find means to prove the anonymity conditions for the general infrastructure not
only for given example services. These requirements call for extensions beyond
existing approaches.

3 Related Work

The first three requirements have been addressed by a number of architectures
for location-based systems, however, the issue of service collaboration has not
been a particular focus for concern. Exceptions include, Yau et al. who suggest
a subscriber-based means to access location-restricted services in a mobile envi-
ronment by using a UDDI channel instead of a repository [20]. Another approach
uses cloaking to retain privacy when accessing location-based services (using a
centralised third party [10] or a P2P approach [5]).

Two event-based approaches in particular, more closely address our require-
ments. We will compare these approaches to the seven requirements R1–R7 and
the TIP3 infrastructure as detailed in [13] (summarized in the next section), see
Table 1.

Di Marzo et al. [6] suggested a middleware approach to the problem of reli-
ability of collaborating services. They use metadata to control the behaviour of
the middleware, distinguishing functional and non-functional metadata. Policies
on the metadata are used to ensure reliability of services. This approach is fo-
cussed on the reliability of services and aims to combine services of low quality
to achieve a better quality level. The middleware layer in this approach contains

Table 1. Comparison of approaches: ++ approach fully fulfils/supports the require-
ment, + approach somewhat supports the requirement, o approach partially supports
the requirement, – approach does not support the requirement, – – approach explicitly
excludes the requirement

Situation QoS - data QoS - infra.
R1 R2 R3 R4 R5 R6 R7

Di Marzo et al. [6] ++ ++ – + + – o
Michlmayr et al [18] ++ + – ++ + – – o
TIP3 infrastructure ++ ++ ++ ++ ++ ++ +

Anonymous Mobile Service Collaboration: Quality of Service 145

information about which services can and should be connected, though this as-
pect is not developed in detail. Services are anonymous but a large amount of
additional information is required and held in the middleware layer. However,
depending on the metadata specification method used, proof of reliability and
privacy may be possible. Substantial middleware support is required in this ap-
proach, which means that it is not suitable for mobile devices. The approach
requires the use of logic reasoners which limits the flexibility of the approach
in integrating additional services. The rules followed by the reasoner become
complex.

The method proposed by Michlmayr et al [18] supports changing properties
of services at runtime. Their approach focuses mainly on the standardization of
service requests. Their system is based on the event processing engine Esper,
which uses the SQL-like query language EQL to describe service requirements.
QoS observation details are not given in the paper. Again, this heavy middleware
solution is not particularly suitable for mobile environments. The solution is not
anonymous because services can be notified of, or queried for, changes in quality
or availability of other (explicitly known) services.

4 Rule-Extended Mobile SOA

The proposed approach is an extension of a simpler prototype described in [13]. A
simple anonymous service collaboration has been achieved through publish/sub-
scribe communication managed by a distributed broker network. Our prototype
application is the mobile tourist information system TIP [14]. Implementation
details of the earlier work can be found in [16]. This simple infrastructure satisfies
three requirements: (1) services offered by different providers can collaborate
by interacting with a local broker, (2) services offered in restricted locations
can collaborate as no global service repository is necessary, and (3) services are
anonymous to each other as they are only known to the broker. That initial
prototype, however, did not address the quality of the service interaction.

We now discuss an extension of this basic publish/subscribe communication
that ensures correct service behaviour. Figure 1 shows the conceptual architec-
ture of a broker in a (mobile) client. The broker contains a message handler for
internal communication; publisher and subscribe indexes implement the tradi-
tional event-based communication. A cache is used for pre-fetching and caching
of location-based information [17].

Service collaboration creates interdependencies between services (e.g., the map
depends on location data being available). Because anonymous collaboration has
been established by the infrastructure, services can no longer directly communi-
cate with each other and observe service failure. To prevent subsequent inaccu-
racies in dependent services, these interdependencies between services need to be
monitored by the infrastructure. For this, we introduce automatic event moni-
tors (called ‘observer’ in Figure 1). The event observers adapt to each service’s
capabilities (protocols, QoS information communicated), and are concerned with
service quality and availability. Handling of observed QoS changes is managed by

146 A. Hinze, M. Rinck, and D. Streader

Observer

Publisher Index Subscriber Index

ConnectorConnector

Cache

Message
Handler

Broker

Auxiliary Services

Service Type Conditions

Advertisement Rules

Local Services

Remote Brokers

Client

Fig. 1. Conceptual architecture of mobile client with service collaboration via broker

Map Service RFID
Location
Service

GPS
Museum

Local
Broker Broker

Observer ObserverClient

Fig. 2. Architecture for TIP3 infrastructure: Museum example

rules and conditions, which are defined by each service. Rules describe criteria for
service selection (e.g, select location service with better location data quality),
conditions describe service liveliness constraints (e.g., map needs location data
to function). As QoS parameters change, rules and conditions guide automatic
switching and service failure handling.

On registration with a broker, each service sends the following information: an
advertisement, conditions and rules. An advertisement gives information about
the type of data the service offers (i.e. acting as a publisher) and about the type of
data to which the service wishes to subscribe (acting as a subscriber). Publishing
and subscribing is handled via service type descriptions: The service type allows
the broker to identify groups of services with similar functionality (e.g., services
providing location data are location services). The advertisement also contains
information about quality of service (more about the details in the next section).
Information about publishing and subscribing services are stored in the publisher
and subscriber index, respectively. Conditions define which information is needed
for a service to run correctly. For example, a map service would need the user
location to centre the map. Rules define the criteria of how to select services for
collaboration. For example, the indoor location system of the museum (RFID)
may be identified as offering a better quality of service and should be used instead
of the outdoor GPS service. Rules enable services to prioritize between different
data types and data qualities.

Auxiliary services are used for compatibility and translations between ser-
vices. For example, the RFID information for the indoor location service may be
translated into GPS-type data. Services and auxiliary services only communicate
via the broker. Network communication is implemented between brokers only.

Anonymous Mobile Service Collaboration: Quality of Service 147

The functionality of the design is now illustrated through an example. Figure 2
shows the conceptual architecture of the museum example. As the user enters
the museum; the quality of the GPS service is greatly reduced. We describe two
options for how the infrastructure will handle this situation (depending on the
available service context):

1. The GPS fails; no other location service is available.
Since no alternative service is available, the user (and all subscribed services)
has to be notified after a timeout that the quality of the service is low.

The following rules and conditions could have been defined by the services:

Location Service: GPS
Conditions: none
Rules: none
QoS: location data accuracy

Map Service
Condition: Location service available
(single source)
Rule: location data accuracy > threshold
QoS: none

Figure 3 shows a sequence diagram for this case. The beginning shows the
setup of the services with the broker: As the mobile device is switched on,
the local broker starts and broadcasts a message. Locally starting services
directly connect to a given local broker, known through configuration files.

The local broker sends a list of available event data types (known though
advertisements). If the service is a publisher, it sends its own advertisement
to the broker, which then subscribes the events of this service. If the service
is a subscriber, it will evaluate the event types offered in the advertisements
and send the local broker a package of rules and conditions under which it
will subscribe to certain event type. Services may also subscribe to event
types that are not yet offered by publishers; when events of the desired type
become available they will be forwarded to the subscriber.

The GPS submits its advertisements, offering to send location data. The
broker starts an observer. The map service subscribes for location data; it
also submits its rules and conditions as shown above.

The observer receives the rules & conditions and subscribes at the broker
for the GPS service to monitor its availability (cf. map condition) and its
data accuracy (cf. map rules and GPS QoS). On the first event submitted
by the GPS service, the observer checks the quality and advises the broker
to forward them to the map. Via the broker, map and GPS are now linked
and further events are forwarded automatically as long as the data accuracy
does not sink below the threshold.

As the user enters the museum, the GPS service is no longer connected
to the satellites. It stops sending location data. The observer waits for a
predefined time-span (cf. timeout in condition). It then notifies the broker
and the map service.

148 A. Hinze, M. Rinck, and D. Streader

GPS Local Broker

Event

GPS Fails

GPS gone

Condition broken!

check event for rule matching

and condition satisfaction

Observer

User

Advertisment/Hello

Advertisment

Map service

Starts

Starts

Starts

Advertisment/Hello

Starts

Subscribe - Rules/Conditions

Rules/Conditions Mapservice

Event

maximum timeout for next

event, defined in condition

Event
Event

Subscribes

Event

use GPS!

Event

Legend:

Fig. 3. Sequence diagram: GPS fails and no alternative location service available

2. The GPS fails; alternative service available.
The museum may be offering its own indoor location service for the exhibits
using RFID tags. Figure 4 describes the sequence of switching to the alter-
native service as the quality of the GPS is reduced and the RFID location
service becomes available. Note that the internal timeouts are checked but
are of no consequence for this situation. For clarity of presentation timeout
arrows have therefore been omitted in this figure. The communication of the
observer is also shown in simplified form (omitting communication via the
local broker).

The new service’s subscription conditions and rules are similar to the
ones of the GPS service:

Location Service: RFID
Conditions: none
Rules: none
QoS: location data accuracy

The starting sequence is the same as in the previous case. Then, as the user
moves towards the museum, the RFID service becomes available. That is,
the client’s local broker and the museum’s global broker connect to each
other and exchange advertisements. The new broker may then subscribe to
data from other brokers (here: the event data from the RFID service).

Anonymous Mobile Service Collaboration: Quality of Service 149

GPS location service Local Broker

GPS Event

Museum in range

Observer

user
Advertisement

Map service

Starts

Starts

Starts

Starts

Subscribe - Rules/Conditions

GPS Event

GPS Event

GPS Event

Advertisement/Hello

Advertisement/Hello

GPS Event

GPS Event

Hello

Hello

watch GPS
give QoS

Museum global broker

Advertisement/Hello

Subscribe RFID
Watch RFID

give QoS

QoS-object

GPS accur

give QoS

QoS object

QoS-object

RFID quality
>>

GPS quality

GPS accur

RFID accur

GPS Event

GPS Event

give QoS

QoS object
RFID accur

RFID Event

RFID Event

RFID Event

give QoS

QoS-object
GPS accur

RFID Event

RFID Event

Museum background (services,
local broker, observer

RFID event // QoS Events

GPS Event

GPS Event

RFID event // QoS Events

RFID event // QoS Events

RFID event // QoS Events

RFID event // QoS Events

RFID event // QoS Events

check event for rule matching

and condition satisfaction

Legend:

Fig. 4. Sequence diagram: GPS fails, alternative RFID location service available

The service registers but its event data are not forwarded to the map
service (yet) as its data accuracy is below the threshold and lower than
the accuracy of the already connected GPS (only one location service it to
be connected to the map). Then, as the user enters the museum, the GPS
quality drops under the threshold. The observer detects the GPS failure and
suggests a link to the (now improved) RFID service instead. The broker stops
forwarding the GPS data to the map and forwards the RFID data instead.

We thus include QoS metadata in our services, but keep rules and conditions on a
low level of single value pairs, as well as the metadata specifications. A proof over
these statements is possible, as they can be transformed into prolog statements.
The checks for QoS on services are moved into the services themselves. These

150 A. Hinze, M. Rinck, and D. Streader

will be callable via a function delivered with the advertisement. This will ensure
a maximum openness of the architecture, as our broker does not have to know
how to test certain services. It also helps to keep the services anonymous.

5 Architecture

A number of issues are raised by this example in terms of the architecture. The
key feature of the system is the broker and there are three ways to place the bro-
ker within our architecture. We now describe each of the variations and compare
their suitability for our project. The concept of the broker is implemented as
a network of distributed brokers. Brokers may reside on providers’ sides, client
sides or independently on the network.

5.1 Locally-Included Broker

Each client device has a local broker (see Figure 5). All local services on the
client communicate via this broker.

WWW

Client

Service 1

Service 2

Broker

Observer

BrokerBroker

Broker

Provider

Service 3

Service 4

Observer

Broker

Fig. 5. Locally-included broker architecture

Service providers also have local brokers for their service communication.
Brokers are connected via a network that passes service messages (using pub-
lish/subscibe).

This architecture allows fast communication between services located on the
same device. It provides the greatest possible privacy as each side has a broker
acting as a gatekeeper. Switching between services is managed by rules and
conditions combined with observation of service quality. This architecture may
not be able to cope with an elaborate rule engine performing large calculations.

5.2 Remote Broker

The mobile client connects to the network of brokers via one of the brokers (see
Figure 6). The selection of the broker to which a client connects may be done

Anonymous Mobile Service Collaboration: Quality of Service 151

WWW

Provider Client

Service 1

Service 2

Observer Service 4

Service 3

Observer

BrokerBrokerBroker

Broker

Fig. 6. Remote broker architecture

based on physical location. On the client itself, no broker software is installed.
Communication between client and service providers is always directed via the
broker network.

This model is appropriate for thin clients. It takes advantage of computational
power at the providers’ sides and the easy inclusion of provider-based services.
However, if the network connection fails, local services can no longer commu-
nicate. The local brokers on provider side act as gates, preventing information
from being forwarded to the providers’ services unless they have permission to
access the data. The flow of control, however, is moved towards the providers.

The observer still resides on the client device itself, close to the local services.
More than one observer may be used (as shown in the figure) to service the
different sides.

5.3 Intelligent Gateway

This variation is a hybrid between the remote broker and the included broker.
Each provider has a broker as a gatekeeper for local communication (as in the
locally-included broker). Client brokers are split into two parts: each client has
a lightweight broker part locally and, in addition, a heavy-weight component
residing on the network.

The intelligent gateway has been suggested by Guerrero [11] as a solution for
small client devices without dependence on network availability for local commu-
nication. Messages are filtered first by simple rules on the lightweight broker. In a
second step, heavier rule processing is done on the remote heavy-weight compo-
nent. Local communication can be maintained even when the network connection
fails. The amount of distributed communication increases. This approach leads to
a complex distribution model involving several brokers.

5.4 Comparison

All three approaches can deal with different service providers (R1) and restricted
service locations (R2). The included broker may not support mobility (R3) well
due to restrictions of computing power and space on the mobile devices. The re-
mote broker can work on any mobile device (thick and thin client) as it only

152 A. Hinze, M. Rinck, and D. Streader

WWW

Client

Service 1

Service 2

Observer

BrokerBrokerBroker

Provider

Service 3

Service 4

Observer

Broker
Light

weight
Broker

Heavy
weight
Broker

Fig. 7. Intelligent gateway architecture

Table 2. Comparison of architecture variations

Included Broker Remote Broker Intelligent Gateway
R1 Different providers ++ ++ ++
R2 Restricted locations only ++ ++ ++
R3 Designed for mobility – – ++ +
R4 Service selection ensured by infrastructure
R5 Service liveliness ensured by infrastructure
R6 Anonymity of services and user ++ + o
R7 Confidence in privacy ++ + – – –

requires a very lightweight client software. The quality-of-service requirements
(R4+R5) depend on the way the rules and conditions are evaluated.

Anonymity (R6) for the remote broker has to consider the remote connections
– if these are untrusted, privacy may be compromised (+). If these are trusted
connections, the requirement would be completely met (++) as in the case of the
local broker. The intelligent gateway relies on external components for reasoning,
which may or may not be trusted components. The same argument applies as
for the remote broker: trusted connections and components may ensure privacy.
A more detailed discussion of the aspects of privacy is provided in Section 7.
As a result of this comparison, we use a remote broker architecture for our
prototypical implementation.

For a proof of anonymity/privacy (R7) in the included broker, only the han-
dling of rules needs to be evaluated. No private information is communicated
outside the client (++). The main focus for the remote broker would lie in
analysing the additional remote communication, which may or may not be com-
promised (+−). The intelligent gateway has many data transfers, potentially
leading to greater difficulties in proving that none of the data may be accessed
by an unauthorised source.

6 Prototype Implementation

In this section the prototype architecture is discussed. The implementation does
not use existing frameworks (such as JMS) as this would have required substantial

Anonymous Mobile Service Collaboration: Quality of Service 153

Observer

Reasoner
local

service

connector

Broker

Remote Broker

connector

Broker

connector

Broker

External service providers

connector

local
service

Client

Provider

Delivery table
(Publisher Index)

Conditions
& Rules

Advertisement table
(Subscriber Index)Cache

local
service

connector

Fig. 8. Prototype implementation: architecture of the TIP remote broker

extensions (e.g., to support multiple connections to multiple providers on the same
subject). The service collaboration infrastructure is implemented with a focus on
employment for the mobile tourist information system TIP; we therefore used a
Java implementation in the prototype (as done for existing TIP services).

The implementation uses the remote broker architecture as described in Sec-
tion 5.2; here we give more detail about the actual implementation of the broker.
The message handler of the earlier version (Figure 1) was extended into a rea-
soner (handling rules and conditions). All communication uses connectors to
encapsulate the network/local traffic. Services and brokers are implemented as
Java objects.

Advertisements, rules and conditions, are stored in their respective indexes.
Rules and conditions are kept as object lists. Publisher and subscriber indexes
are implemented in an SQLite database. The advertisement index is accessed
when (1) a new service subscribes and the conditions need to be checked initially,
and (2) on timeout if an advertisement needs to be removed and all conditions
referring to this service need to be checked again.

Current information about the quality of services is stored in the same database.
When the observer detects changes in a service’s quality, it notifies the reasoner
who will, in turn, change the stored information.

The delivery table is created from the subscriber information, indicating al-
ternative services (cf. map and GPS/RFID services). The observer is set up by
the reasoner to monitor the QoS parameters of selected services. The observer is
here shown as part of the remote broker; it may also be kept outside the broker
next to services or on the client’s side.

Rule structure. Rules are implemented as objects with a rule id and owner for
identification. Rule types are currently restricted to comparison between single
value types (‘<’, ‘>’, and ‘=’). The rule value determines which event attribute
is used. Only subscriber services (e.g., the map) may supply rules and conditions.
Example rule for map service (id 01):

154 A. Hinze, M. Rinck, and D. Streader

Rule.id: 01
Rule.owner: 01
Rule.type: >
Rule.value: location.accuracy

Condition structure. The condition id and owner are used for identification.
The condition object defines the service type, on which the condition is to be
evaluated. The state defines the required property of the condition.object.
The example condition for the map service (see below) states that a location
service needs to be available. The cardinality defines that only one location
services is allowed to be connected.

Condition.id: 01
Condition.owner: 01
Condition.object: location service
Condition.state: available
Condition.cardinality: exactly one

Advertisement. The advertisement announces service id, owner and offered
event type to the broker. The QoScheck value defines a function the broker can
use to retrieve a QoS object. For example, for the GPS service, the QoS function
is called check locationAccuray. Example advertisement for GPS service (id
02):

Advertisement.id: 01
Advertisement.owner: 02
Advertisement.type: location service
Advertisement.QoScheck:
check locationAccuracy

7 Formal Proof of Privacy of User Information

As stated in Section 1, we assumed that the anonymity of user and services
will ensure privacy of user information. In this section, we have a closer look
at this assumption and discuss issues in formally proving privacy for an open
infrastructure.

As illustrated in Figure 9, the system may be considered on different layers of
abstraction. In Section 4 of this chapter, we discussed the conceptual model of
the proposed infrastructure (conceptual layer as in Figure 9). Sections 5 and 6
discuss the (implementation) architecture of the infrastructure (cf. architectural
layer in Figure 9). The physical layer of a particular mobile device has not been
discussed in the chapter.

Each of these three layers is a refinement of the layer above and an abstraction
of the layer below. Formal proof of privacy needs to span all three layers. Each
proof normally refers to one layer only.[1] Proofs spanning more than one layer

Anonymous Mobile Service Collaboration: Quality of Service 155

require a mapping between the layers.[15,19] This mapping is expressed as a pair
of formal refinement/abstraction functions, the correctness of which need formal
proof as well.

In our work, we will restrict ourselves to issues of the conceptual and architec-
tural layer, leaving technical issues of the physical device layer unexamined. To
do this, we replace this layer with a set of assumptions idealising and abstracting
from the physical conditions of various devices.

The infrastructure is designed to be open, i.e., third party services can join
the system. However, our view of the overall system only encompassed the in-
frastructure and services communicating via this infrastructure. We need to ac-
knowledge that there exists an outer world of services and other parties that
may interact with the services in the infrastructure or our client device. For the
closed world view, a proof of anonymity as argued in this chapter is sufficient
for privacy. In an open world environment, anonymity does not ensure privacy:
external services may employ statistical methods to aggregate anonymous data
in such a way that user identities can be inferred.

For proof of privacy, again we need a set of formalized assumptions that
define the extent and nature of the communication between services using the
infrastructure and the outside world. For example, services may either freely
communicate all their data or give only restrict access within the system.

When analysing the system itself, providing proof of privacy for a closed subset
is not sufficient. Most of the available tools for formal analysis and verification
only work with closed systems. We attempted such a limited proof in [8]; Baresi
now suggested a novel approach to avoid state explosion in complex (closed)
systems[3]. Verification of publish/subscribe systems [2] (not their privacy) and
service oriented architectures[4] has already been attempted for closed worlds;
however, these approaches also encountered problems of state explosion. Proving
that the infrastructure preserves privacy for a set number of known services (e.g.,
the three services used in our example) is not sufficient for an open infrastructure
accepting third party services.

Instead one needs to employ symbolic techniques of formal methods: states
are not described by enumeration but by variables, which therefore allows for
infinite state space. First we need to build both a formal model of our system
and a formal statement of the desired properties to be proven (e.g., privacy).
Proving properties of a system can give us confidence in its behaviour.

However, we need to remember that a mathematical proof is a formal con-
struction without inherent mapping onto the real world. The definition of this
mapping, that is, the real world meaning or interpretation of the formal expres-
sions, is left to each reader. This mapping is inevitably informal and inaccuracies
may remain hidden in the gap between formality and actuality.

Some attempts have been made to close this gap by defining formal semantics
that bring the formal model into closer alignement with real world interpreta-
tion. Different layers of abstraction and different desired properties may require
different formal semantics.

156 A. Hinze, M. Rinck, and D. Streader

conceptual layer

architectural layer

physical layer

abstraction/refinement

abstraction/refinement

outer
world

closed system

fo
rm

al
re

pr
es

en
ta

tio
n

ab
st
ra
ct
io
n

formal proof

properties
fo

rm
al

re

pr
es

en
ta

tio
n

ab
st
ra
ct
io
n

more detailed (refinement)

less detailed (abstraction)

Fig. 9. Layers and issues to consider for proof of privacy

Even using an appropriate semantics, a detailed model of the entire system is
likely to be prohibitively large. A standard formal methods technique to address
this is to first build a small formal abstract model that specifies the system. In
a second step one may then refine this model into a more detailed model which,
by construction, satisfies the requirements. Many of the standard semantics and
refinement tools are often too restrictive for large or complex systems and this
necessitates using other approaches, such as building a hierarchy of models where
each layer in the hierarchy is formally related to the layers above and below it.

There are no off-the-shelf solutions available but there are many techniques
that can be adapted to provide a formal proof of privacy in the infrastructure.

8 Discussion and Conclusion

We introduced a service-oriented architecture for mobile context-aware services
using event-based communication. In addition, we described a QoS extension
using rules and conditions to ensure quality of the service collaboration (a) in
the selection of alterative services and (b) to ensure liveliness of services when
dealing with changing availability of collaborating services. The advantage of our
approach is that no external information about services is necessary for making
coupling decisions. Though the information is anonymized, all QoS decisions are
directed by the services. In this way, the collaboration infrastructure is open for
all third-party services that adhere to the rule & condition structure.

We implemented a prototype using a remote broker architecture. The proto-
type was developed and used for our mobile tourist information service TIP. The
prototype is useful to show the principle of the proposed service collaboration
infrastructure.

Anonymous Mobile Service Collaboration: Quality of Service 157

We also discussed validation and formal proof of anonymity/privacy for vari-
ations architectures. However, complete proof of correctness for a new collabo-
ration method goes beyond the capability of a prototype implementation. For
this, a formally verified model for real-time interactions between mobile context-
aware services is required. We already developed a set of initial models [12,13]
to clarify the modelling challenges: In particular, both the interdependencies be-
tween services and the impact of mobility on privacy and user experience cannot
be ignored. We also need to investigate issues of distribution. We need to express
and prove properties such as: “this device can never get into deadlock (i.e. be
unable to make progress towards its current goal)”; “this service will recover if
this other service becomes unavailable”.

As discussed above, formal methods using enumeration of system states are not
suitable for the validation of an open infrastructure: they are restricted to enumer-
able service instantiations and typically face state explosion. We are therefore cur-
rently looking into verification methods using abstraction and process-algebraic
approaches.

Acknowledgements

The authors would like to give thanks to Michael Harrison, Newcastle University,
for his valuable and constructive feedback on this work.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Baresi, L., Ghezzi, C., Mottola, L.: Towards fine-grained automated verification of
publish-subscribe architectures. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge,
V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 131–135. Springer, Heidelberg
(2006)

3. Baresi, L., Ghezzi, C., Mottola, L.: Loupe: Verifying publish-subscribe architectures
with a magnifying lens. IEEE Transactions on Software Engineering 99 (2010)
(preprint)

4. Baresi, L., Heckel, R., Thöne, S., Varró, D.: Modeling and validation of service-
oriented architectures: application vs. style. In: Proceedings of the 9th European
Software Engineering Conference, ESEC/FSE-11, pp. 68–77 (2003)

5. Chow, C.-Y., Mokbel, M.F., Liu, X.: A peer-to-peer spatial cloaking algorithm
for anonymous location-based service. In: Proceedings of the 14th annual ACM
International Symposium on Advances in Geographic Information Systems, GIS
2006, pp. 171–178 (2006)

6. Di Marzo Serugendo, G., Fitzgerald, J., Romanovsky, A., Guelfi, N.: A metadata-
based architectural model for dynamically resilient systems. In: SAC 2007, pp.
566–572. ACM, New York (2007)

7. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

8. Eschner, L.: Design and formal model of an event-driven and service-oriented archi-
tecture for a mobile tourist information system. Master’s thesis, Freie Universität
Berlin (July 2008)

158 A. Hinze, M. Rinck, and D. Streader

9. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

10. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: Proceedings of the 1st International Conference
on Mobile Systems, Applications and Services, MobiSys 2003, pp. 31–42 (2003)

11. Guerrero, P., Sachs, K., Cilia, M., Bornhövd, C., Buchmann, A.: Pushing business
data processing towards the periphery. In: IEEE International Conference on Data
Engineering, ICDE (2007)

12. Hinze, A., Malik, P., Malik, R.: Interaction design for a mobile context-aware sys-
tem using discrete event modelling. In: Australasian Computer Science Conference
(ACSC 2006), Hobart, TAS, pp. 257–266 (2006)

13. Hinze, A., Michel, Y., Eschner, L.: Event-based communication for location-based
service collaboration. In: ADC, vol. 92, pp. 127–136 (2009)

14. Hinze, A., Voisard, A., Buchanan, G.: TIP: Personalizing information delivery in a
tourist information system. Journal on Information Technology and Tourism 11(4)
(2009)

15. Hoare, C., Jifeng, H.: Unifying Theories of Programming. International Series in
Computer Science. Prentice-Hall, Englewood Cliffs (1998)

16. Michel, Y.: Location-aware caching in mobile environments. Master’s thesis, Freie
Universität Berlin (June 2006)

17. Michel, Y., Hinze, A.: Traditional pre-fetching and caching of limited use for mobile
applications. In: Proceedings, Mobile and Ubiquitous Information Systems, pp. 25–
38 (2009)

18. Michlmayr, A., Leitner, P., Rosenberg, F., Dustdar, S.: Event Processing in Web
Service Runtime Environments. In: Principles and Applications of Distributed
Event-based Systems, IGI Global (2010)

19. Reeves, S., Streader, D.: A robust semantics hides fewer errors. In: Cavalcanti, A.,
Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 499–515. Springer, Heidelberg
(2009)

20. Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S.: Reconfigurable context-
sensitive middleware for pervasive computing. IEEE Pervasive Computing 1(3),
33–40 (2002)

SParK: Safety Partition Kernel for Integrated

Real-Time Systems

S. Ghaisas1, G. Karmakar1, D. Shenai2, S. Tirodkar2, and K. Ramamritham2

1 Bhabha Atomic Research Centre, Mumbai, India
gkarma@barc.gov.in

2 Computer Science & Engineering, Indian Institute of Technology, Bombay, India
krithi@cse.iitb.ac.in

Abstract. In safety critical systems, huge manpower and cost goes
towards the qualification and certification of software that requires rig-
orous V&V (Verification & Validation) effort. In practice it has been ob-
served that considerable parts of a safety-critical software do not perform
safety-critical tasks (e.g., communication to operator station, hardware
diagnostics). Therefore, if the non-critical modules of the class IA/IB sys-
tems are partitioned and if the integrity of the partitions is ensured while
sharing the same hardware, V&V effort can be minimized while reducing
hardware resource needs. We have designed and implemented a Safety
Partition Kernel (SParK) to provide such a strictly partitioned operating
environment, where partitions reside on top of SParK and are provided
with temporal guarantees and spatial isolation from each other. Even
though prior art exists for partitioned environments, certain practical
issues like handling the effect of blocking due to system calls generated
by the Real-Time Operating System (RTOS) running in a partition and
handling partition-specific external interrupts while still providing tem-
poral guarantees to each partition, have not been completely addressed.
To address this lacuna, we have introduced the concept of a Virtual
Interrupt Partition and accounted for the time overheads of servicing
interrupts in schedulability analysis of partitions. We have implemented
SParK for both Intel x86 as well as for PowerPC architectures; μC-OS II
and a customized version of saRTL have been ported as GuestOSs. These
have demonstrated the flexibility and practicality of the novel features
built into SParK. Applications realized using SParK have shown that
SParK is technically capable of serving as a microkernel for Integrated
Real-Time Systems.

1 Introduction

An Integrated Real-Time System consists of applications of varying levels of crit-
icality that coexist, sharing the same computational resources in a uniprocessor
system. Hence, in order to protect each application from potential interference
from others, it becomes very important to guarantee a secure environment for
these applications to meet their real-time behavior. A mechanism needs to be
provided to partition the applications based on their degree of criticality and

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 159–174, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

160 S. Ghaisas et al.

functionality. Each partition needs to be spatially isolated from other partitions
to ensure reliable memory and device access for every application. Also, tem-
poral guarantees need to be given for every partition to ensure that the CPU
time reserved for an application in that partition is not affected by time/space
overruns or faulty behavior of other applications.

Safety critical system incur huge manpower and costs for the qualification and
certification of software that requires rigorous Verification & Validation (V&V)
effort. In practice it has been observed that considerable parts of a safety-critical
software do not perform safety-critical tasks (e.g., communication to operator
station, hardware diagnostics). For example, in Nuclear Power Plants (NPP),
software modules of a class-IA/IB [2] system, even if they do not perform safety-
critical/safety-related functions, are raised to the level of class IA/IB criticality
because they are part of it [4]. Therefore, if the non-critical modules of the class
IA/IB systems are partitioned and if the integrity of the partitions is ensured
while sharing the same hardware, the V&V effort will be greatly reduced.

In addition to the clear advantage of reduced V&V effort, an Integrated Real-
time system architecture has remarkable advantages from the point of view of
maintenance. For example, traditionally, different classes of C&I (Control & In-
strumentation) systems, have been developed by different groups of developers
even within the same organization, which employ different set of hardware and
software, each having its own set of maintenance procedures and hardware in-
ventory requirement. The need for better resource utilization and a uniform set
of qualified hardware favors the use of an Integrated Real-time System.

1.1 Our Contributions: The Design, Implementation and Evaluation
of SParK

In this paper, we present the concept, design and implementation highlights of
a microkernel, SParK (Safety Partition Kernel). SParK provides a strictly par-
titioned environment where individual partitions can have applications running
on their own independent (guest) RTOSs or even without any RTOS.

SParK is essentially a Virtual Machine Monitor (VMM) but, it provides tem-
poral guarantees to each partition, in addition to providing spatial integrity.
Although there is significant similarity between current virtualization systems
and SParK, strict timeliness requirements in SParK makes it more challenging.

The SParK microkernel uses para-virtualization technique as opposed to full
virtualization [12]. This is because full virtualization techniques make it very
difficult to ensure time predictability in their operations. Many of the virtualiza-
tion techniques applied today, like VMware’s full virtualization technique, suffer
from the fact that the guestOS time lags real time at some instances during their
execution. This shortcoming is completely unacceptable for real-time systems.

With para-virtualization, deployment of a new RTOS on the system requires
modifications to the source code of the RTOS but, these modifications are mostly
at the hardware access layer (HAL) level.

We followed certain guiding principles in design and development:

SParK: Safety Partition Kernel for Integrated Real-Time Systems 161

1. Simplicity in design and implementation, so that V&V is simplified. This
dictates the approach to be followed when multiple solution options are
available.

2. Keeping the SParK microkernel as light as possible, so that SParK itself can
be put to rigorous V&V within a reasonable cost and time.

On partitioned environments, a lot of work has been carried out by researchers
during the last decade offering different scheduling strategies for partitions. But,
certain practical issues including

1. Handling the effect of blocking due to system calls generated by the GuestOS
running in a partition, and

2. Handling the effect of partition-specific external interrupts

and still providing temporal guarantees to each partition have not been com-
pletely addressed.

Simple, yet effective, techniques to bridge this lacuna form one of the con-
tributions of this paper: We have introduced the concept of Virtual Interrupt
Partition and account for the time of servicing interrupts in schedulability anal-
ysis of partitions. Also, we have shown how to take care of blocking. In addition,
providing basic clock tick to individual partitions poses challenging implemen-
tation issues. We show how our technique of handling timer interrupts addresses
the issues effectively.

We have implemented SParK for both Intel x86 as well as for PowerPC ar-
chitectures; μC/OS-II[19] as well as a customized version of saRTL(stand-alone
RT Linux)[14] have been ported as GuestOSs. These have demonstrated the
flexibility and practicality of the novel features built into SParK.

Applications used to test and evaluate SParK have shown that SParK is tech-
nically capable of serving as a microkernel for Integrated Real-Time Systems.
Thus, though our motivation was to utilize the concept of partitioned RTOS in
reducing V&V effort, SParK can be used for the development of Integrated Real-
Time Systems, e.g., Integrated Modular Avionics (IMA) conforming to ARINC
653[20] that aims at reduction in hardware space, weight and power consump-
tion, yet providing the advantages of a federated architecture.

2 SParK Architecture and Spatial Partitioning

We employ a two level hierarchical architecture (Fig.1). The bottom layer is
where SParK resides and provides i) Hardware Initialization, ii) Timer services,
iii) Interrupt support, iv) Device driver support, v) Memory Management, vi)
Partition scheduling, and vii) Hypercall support. Partitions reside on top of
SParK. Individual partitions can have their RTOS, which we term as GuestOS,
or it may run single threaded applications without any GuestOS. Scheduling of
tasks in the applications running in the partitions is the job of the individual
GuestOSes. All GuestOSes get their system clock tick from the SParK Timer
service and any hardware access or execution of any privileged instruction is
always mediated by SParK.

162 S. Ghaisas et al.

Hardware Layer

SParK Layer

Partition 1 Partition 2 Partition n

Task 1 Task 2 Task m

Fig. 1. Basic Architecture of SParK

SParK

Partition 1

Partition n

GuestOS Kernel

Task 1

Task m

Fig. 2. Spatial Isolation: Memory Layout of SParK System

2.1 Spatial Partitioning

One of the important concepts of SParK is spatial partitioning, the technique
to guarantee spatial isolation between SParK layer and individual partitions, as
well as between any two partitions.

SParK exploits the hardware mediation provided by the Memory Manage-
ment Unit (MMU) of the target processor. The memory layout of SParK system
is shown in Fig. 2. In Section 6, the implementation issues and challenges in
providing Spatial Partitioning in x86 as well as PowerPC 7447A based hardware
are discussed.

2.2 Communication between Partitions

In integrated real-time systems, there are tasks running in different partitions
to achieve a common goal. Hence, a task running in a partition may need to

SParK: Safety Partition Kernel for Integrated Real-Time Systems 163

communicate with another task running in a different partition. For this pur-
pose, we have implemented Inter-Partition Communication (IPC). The IPC is
implemented in such a way that it is in-line with the spatial and temporal re-
quirements of the system. Also it should be flexible enough to be used by variety
of heterogeneous operating systems.

In SParK, we have provided a simple IPC interface in accordance with our
guiding principles of simplicity in design and implementation. The interface con-
sists of few hypercalls to register a connection, and send/receive the data. The
protocol requires the GuestOS (either consumer or producer) to register a con-
nection with SParK using a unique identifier (IPC-UID). The other partition(s)
can establish connection with this GuestOS using the same IPC-UID. Once the
connection is established, any participating GuestOS can send or receive the
data using the IPC interface. Implementation involves copying the sent data
from sender to SParK and from SParK to receiver. For IPC, SParK is the only
entity that has rights to read/write data from/to the communicating partitions.
This ensures spatial isolation between them. Also, the communicating entities
are modeled as periodic tasks in a partition, thus taking care of their tempo-
ral requirements during the schedulability analysis. Other advantages of this
approach are:

– Reduced Complexity : SParK does not need to know the the details of the
protocols and the end entities (tasks) involved in the communication. This
reduces the design complexity of SParK.

– Flexibility : Flexibility is provided to the GuestOSs to use this minimal
communication interface to achieve customized protocols (one-to-one, one-
to-many, many-to-one or many-to-many) according to their requirements.

One disadvantage is that this approach involves copying the same data twice, once
from sender to SParK and second time from SParK to receiver. This scheme might
be inefficient when the data transferred between the sender and receiver is large.
So, we have also implemented the shared memory approach to IPC. Out of these
two approaches, which one to use can be decided at application design time.

Sharing memory between two partitions without violating the spatial guaran-
tees is a challenging task. This has been solved by reserving a separate memory
block exclusively for shared memory IPC. The page tables of both the commu-
nicating partitions are manipulated to map one (or more) physical pages from
this memory block with exclusive read/write privileges. In this way pages can be
shared between two partitions without compromising the safety of the partitions.

3 Temporal Partitioning

Temporal Partitioning ensures that CPU time reserved for a partition would not
be affected either by task over-runs or by hazardous events of other applications.
In order to achieve the same, SParK employs a two-level hierarchical scheduler
structure in which the bottom layer (SParK layer) schedules partitions and the ap-
plications in each partition are responsible for locally scheduling their own tasks.

164 S. Ghaisas et al.

Our work on lower-level scheduling analysis is an extension to the SPIRIT [5]
scheduling model, which uses distance-constrained cyclic scheduler in the lower
level and fixed-priority scheduler in the higher level.

Assume a system consists of n partitions. Application Ak executes on partition
Pk and consists of tasks τ1, τ2 ... τn. Each task τk is invoked periodically with
period Tk and has worst case execution time Ck. Also, each invocation of τk must
be completed before its deadline Dk, where Ck <=Dk <= Tk. The notation used
for explaining the scheduler is given in Table 1.

Table 1. Notations for Descriptions of SParK Schedulability Analysis

Notation Description
n Number of tasks in a partitions
Pk Partition k
τk Task k
αk Partition capacity of partition Pk

ηk Partition cycle for partition Pk

Tk Period for task τk

Ck Worst case execution time of task τk

Dk Deadline of task τk

For each partition Pk, two values have been defined (αk , ηk). These partition
characteristics represent the scheduling requirement of that partition. The share
of the total capacity that partition Pk receives is αk. The schedulability of the
partition is then evaluated with the help of the necessary and sufficient condition
of schedulability in [7]. The condition states that task τi is schedulable if there
exists t ε Hi = { ITj | j = 1, 2, . . . i ; I = 1, 2. . . � Di / Tj�} ∪ {Di}, such that

Wi(αk, t) =
i∑

j=1

Cj

αk
� t

Tj
� ≤ t (1)

The quantity Wi(αk, t) represents the worst cumulative demand made on the
processor by the tasks with a priority higher than or equal to that of τi during
the interval [0, t]. The parameter Bi(αk) is defined now:

Bi(αk) = maxt∈Hi{t − Wi(αk, t)} (2)

B0(αk) = mini=1,2,...,nBi(αk) (3)

Bi(αk) represents the total period in the interval [0,t] that the processor is not
running any task with a priority higher than or equal to τi. B0(αk) is the mini-
mum of Bi(αk) at all the levels and represents the time for which the partition
Pk is idle. B0(αk), when scaled with the capacity of the processor that the par-
tition Pk is not using, gives the time for which the partition Pk is idle on the
shared processor. Based on this, [5] has shown that

ηk ≤ B0(αk)/(1 − αk) (4)

SParK: Safety Partition Kernel for Integrated Real-Time Systems 165

The quantity ηk represents the cycle time for partition Pk. In other words, the
partition must receive an αk share of the processor capacity at least every ηk time
units. Thus now each of the partitions is characterized by a pair of parameters
αk and ηk.

It can be observed that if the partition was executing on a single dedicated
processor, the tasks could have finished earlier as the tasks would not have
been blocked by the demand on processing capacity by other partitions. In case
of shared processing capacity, the execution of any task can be blocked by a
partition switch and, ηk in this case, ensures that the consecutive executions of
the partition Pk are close enough to satisfy its own processing requirements and
at the same time they are spaced out so that the inactivity period of a partition
can be used by other partitions.

The pair of characteristics (αk, ηk) is not unique for a partition. There could
be many such pairs for each of the partitions depending on how we calculate the
αk. For any possible combination of (αk, ηk) pairs for all the partitions in the
system, we must ensure that the total allocated capacity of the processor never
exceeds 1.

Calculation of αk: The calculation of αk has been suggested in [6], but it is
based on the execution time (Ci) and the period (Ti) values of the mythical
(analysis purpose) slower processor, in which the task set of individual parti-
tions are schedulable. Practicable calculations of αk needs to be done based on
the execution time Ci and the period Ti values of the actual faster processor.
Therefore, we suggest that the worst case should be considered because of the
following reasons. Firstly, we do not want the processor utilization to go be-
yond the rate monotonic bound [10]. Thus, we divide the processing capacity of
0.69314 (RM bound) amongst the partitions in proportion to their utilization,
i.e.,

αk =
∑n

i=1 (Ci/Ti)
0.69314

(5)

Secondly, the above calculation gives us the larger possible value of αk and be-
cause of this larger value, the inactivity period will be governed only by the
smallest task period and thus we can get a longer partition cycle. With a longer
partition cycle, there will be less partition switching, which is a practical imple-
mentation requirement so that less time is wasted in partition switching over-
head.

4 Ensuring Temporal Guarantees for Partitions in Spite
of Interrupts and Hypercalls

In this section we discuss the issues related to external interrupts and its effect
on partition schedulability.

4.1 Interrupts and Schedulability Analysis of Partitions

Accommodating the processing needs of interrupt based devices in a system that
guarantees temporal partitioning is challenging. It is necessary that the Interrupt

166 S. Ghaisas et al.

Service Routine (ISR) execution time needs to be as minimal as possible, because,
it is the time that the interrupted task is loosing from its allotted execution time.
Also, we have to account for the interrupted time in schedulability analysis.

To minimize the ISR execution time, we split the ISR into two parts, front-
end and back-end. Similar solution has been employed in SPRING kernel [1].
The front end is responsible for recognizing the interrupt, clearing the interrupt
and saving the information transmitted through the interrupt. The back end is
responsible for using the information saved by the front end. When an interrupt
occurs only the front end ISR is executed. The back end later executes as a user
task. Though this method reduces the ISR’s disturbances to the scheduled tasks,
a burst of interrupts may still result in missed deadlines of tasks.

Therefore, if we want to run an interrupt based device we have to take care
of it in the schedulability analysis of partitions. On the other hand, if we want
to run the device in polling mode we have to be sure that the polling is done
fast enough so as to ensure reasonable response times and to avoid data losses
due to limited buffer space in hardware.

To take care of the external interrupts and accommodating them in schedu-
lability analysis we propose the concept of Virtual Interrupt Partition.

4.2 The Virtual Interrupt Partition

Virtual Interrupt Partition (VIP) is a partition that is solely responsible for
handling the interrupts in the system. Temporal partitioning is ensured by as-
signing some fixed budget to the VIP in the schedulability analysis. For budget
assignment, each source of interrupt Ii is modeled as a periodic task τi on VIP.
The minimum inter-arrival time of interrupt is mapped to the task’s period Ti,
the execution time of ISR is mapped to the task’s execution time Ci and the
response deadline is mapped to the task’s deadline Di.

Such an assumption can be justifiably made, because in safety-critical appli-
cations, to ensure temporal guarantee, interrupts are made into periodic tasks,
when minimum inter-arrival time of interrupts are known or there exists a min-
imum period, within which a fresh interrupt can be deferred safely till the next
period.

Thus, the necessary and sufficient condition of schedulability can be re-stated
as: interrupt Ii is schedulable if it runs in a partition with capacity αV IP and
there exists a t ∈ Hi = {l ∗ IATj | j = 1, 2, . . . , i; l = 1, 2, . . . , �Di/IATj�} ∪
{Di}, such that

Wi(αV IP , t) =
i∑

j=1

Cj

αV IP
� t

IATj
� ≤ t (6)

Where Wi(αV IP , t) is worst case response time of the interrupt when all other
higher priority interrupts may execute in time ≤ t. Here, IATj is the minimum
inter-arrival time of interrupt Ij , Dj is the deadline of interrupt Ij , and Cj is
the computation time of interrupt Ij . In the schedulability analysis, VIP is just
like any other partition with tasks being interrupt sources modeled as periodic
tasks. Using the method discussed in Section 3, αV IP and ηV IP are calculated

SParK: Safety Partition Kernel for Integrated Real-Time Systems 167

and VIP is included in the cyclic schedule along with other partitions. Whenever
an interrupt arrives, it is deferred till VIP is scheduled. When VIP is scheduled,
it serves the interrupt.

4.3 Hypercalls and Schedulability of Partitions

When a user task within some partition is to run, the GuestOS in that partition
must load the page table corresponding to the task. Similarly it must provide
interrupt service routines for various interrupt sources like timer, system call
interrupts, etc. that will be used by the partition to carry out its operation.
These are some of the privileged operations which can not be directly done by
a GuestOS. Hence SParK provides an interface called as Hypercall that is used
by GuestOS to carry out privileged operations. Since Hypercalls are function
calls made between programs running in two different privilege levels and also
to functions present in different binary, they are implemented using software
interrupts provided by the processor architecture. For maintaining system in-
tegrity, SParK executes each Hypercall as a ’critical section’. Since a hypercall
is a ’critical section’, the timer interrupt occurring while the hypercall is being
executed, which would have otherwise lead to partition switch, is kept pending
till execution of a hypercall is complete. Without appropriate checks this can
violate the temporal guarantees given by SParK to the partitions. Therefore,
the blocking cost due to hypercalls needs to be accounted to provide more re-
alistic schedulability analysis of the partition scheduling and establish how the
pair (αk, ηk) is affected.

Let Bj(hc) denote the Blocking time for partition switching due to hypercalls
(critical section) in task τj . The worst-case blocking time for partition switching
is the maximum of the execution times of all the hypercalls. This is because, at
any given time, the blocking due to hypercall will happen only when the event
of partition scheduling occurs during the time interval a GuestOS in a partition
is executing a hypercall. Therefore, partition switching can be delayed by the
worst-case execution time of the longest hypercall.

The following theorem presents the necessary and sufficient condition of
schedulability of a partition under worst-case overhead due to hypercall.

Theorem 1 : A partition running a set of n periodic tasks will be schedulable if
the following holds.

If there exists a t ε Hi = { ITj | j = 1, 2, . . . i ; I = 1, 2. . . � Di / Tj�} ∪
{Di}, such that

Wi(αk, t) =
i∑

j=1

Cj + max(Bj(hc))
αk

� t

Tj
� ≤ t (7)

Where, �t/Tj� represents the number of invocations of task Tj within time t.
Each invocation consumes Cj + max(Bj(hc)) in the worst case, which is then
normalized to the share αk of the running partition Pk.

Proof : Due to blocking caused by current execution of hypercall, the worst case
execution time of any task can be elongated further by max(Bj(hc)), if it is

168 S. Ghaisas et al.

time to switch partition. Therefore, the value of the worst cumulative execution
demand Wi(αk, t) made on the processor by the task with a priority higher than
or equal to Ti during the interval [0, t] will be modified as shown in Equation 7.
This will reduce the inactivity period Bi(αk) accordingly, which forms the basis
for calculating the partition cycle.

Thus using hypercalls and at the same time taking into account its blocking
effect, we maintain system integrity while providing temporal guarantees to the
individual partitions.

5 System Clock Management and Virtual Timer
Interrupt

A GuestOS in any partition needs regular time ticks to keep track of the real
time and to periodically invoke the task scheduler. These time ticks are usually
provided by an external hardware timer through interrupts. But in two-level
hierarchical system like SParK this hardware timer must be owned solely by
SParK. Hence SParK provides the GuestOS with Virtual Timer Interrupts (VTI)
to simulate these time ticks.

Different approaches towards implementing VTIs are possible.

1) SParK delivers VTIs to all partitions that have a timer interrupt due, even if
those partitions are not currently active/scheduled. This approach leads to far
too many context switches and timing overheads.
2) Deliver VTIs only to the currently active partition. But, since the partition
may have missed many VTIs during its inactive period, SParK delivers VTIs at
a faster rate than that registered by the GuestOS, thus enabling the GuestOS to
catch up with the actual time. This catch up phase lasts only till the GuestOS
time catches up with actual time. After this VTIs are delivered at expected inter-
vals. Though this method is extensively used in full virtualization based systems
[12], it has a major flaw with respect to real-time systems hosting RTOSs. This
is because the GuestOS (RTOS) time lags the actual time during the catch up
phase, which may affect the scheduling decisions taken by the GuestOS during
this phase. Hence this approach can not be used for safety-critical systems.

Given the disadvantages of the two approaches, we now discuss a novel ap-
proach implemented in SParK. Each GuestOS registers its timer ISR with SParK
through a hypercall. The hypercall accepts the time tick resolution required by
the GuestOS. At a given instance, SParK delivers VTIs only to the currently
scheduled partition. As a result, the times kept by guest RTOSs lag the actual
time. In order to maintain actual time, every GuestOS registers a memory lo-
cation and this location is updated by SParK before every scheduling instance
of the corresponding partition. Thus, it automatically gets its time keeping data
structures updated with real time before every scheduled instance.

Whether current partition has a VTI due or not is checked in the hardware
timer ISR in SParK. Whenever a partition has a VTI due, SParK manipu-
lates the kernel stack of the partition’s GuestOS such that the execution control
reaches directly to the registered ISR of the GuestOS. Also, provision is made

SParK: Safety Partition Kernel for Integrated Real-Time Systems 169

to transfer control to the code executing before the arrival of hardware timer
interrupt upon completion of the GuestOS ISR. This ensures seamless delivery
of VTI to the GuestOS, giving it the impression of receiving timer interrupts
directly from the timer hardware. This makes porting of the GuestOS easier and
also makes the VTI delivery event time predictable.

6 Implementation Highlights: x86 and PowerPC
Architectures

It is our design goal to keep the implementation of SParK as simple as possible.
To achieve this and to make it easy for any GuestOS to run on top of SParK
and to provide temporal and spatial guarantees to partitions, SParK has made
innovative use of different features provided by the processor architecture. In this
section we list the implementation highlights of SParK for X86 and for PowerPC.

One important issue in space partitioning is to provide three levels of spatial
isolation i) between tasks of the same partition, ii) between tasks and GuestOS,
iii) between partitions and between SParK & Partitions. We used different tech-
niques to provide the required spatial isolation in PowerPC & x86 hardware
because of the variation in hardware MMU (Memory Management Unit) sup-
port. However, we made maximum use of features provided by the processor
architectures to reduce software overheads and the possibility of software errors,
which lead to better system performance and ease of V&V.

6.1 PowerPC 7447A Platform

The main challenge in using the PowerPC was to provide three levels of spatial
partitioning using the available hardware support of only two privilege levels
[16]. By assigning privilege level 0 to SParK and privilege level 1 to GuestOS &
tasks and judicious use of separate page tables for each GuestOS and tasks, the
required three levels of spatial partitioning is achieved.

PowerPC architecture has large number of registers. To achieve simple imple-
mentation of many of the features, SParK reserves use some of the registers for
specific purpose as detailed below.

1. SParK achieves spatial partitioning by maintaining different page tables for
each of the GuestOSs.

2. SParK provides necessary support that allows each GuestOS to maintain
distinct page tables for each of the user tasks running on top of it and
achieve protection of tasks from each other.

3. SParK itself runs in real mode gaining access to the entire memory map. It
turns on paging and loads appropriate page table before passing control to
the partition.

4. SParK implements hypercall using the software interrupt supported by pro-
cessor architecture. In order to differentiate it from the system call made by
user task within a partition, SParK reserves a register to keep identifier for
the call being made.

170 S. Ghaisas et al.

5. SParK reserves some registers to pass parameters to hypercall.
6. SParK reserves a register to support implementation of critical section within

GuestOS. To enter or exit the critical section the GuestOS simply has to
write specific values to the register. SParK checks this register before passing
any of the interrupts to partition.

7. SParK provides means to each GuestOS to keep backup of values of the
registers whose values get altered on occurrence of an interrupt.

6.2 X86 Platform

Spatial partitioning in x86 platform was simplified by the hardware MMU sup-
port of four privilege levels [15]. SParK executes at highest privilege level 0,
GuestOS kernel at level 2 and the tasks at level 3. The key points are high-
lighted below.

1. SParK memory management scheme uses segmentation as well as paging.
Segmentation provides four execution levels, level 0 (highest privilege) to
level 3 (lowest level). SParK executes at the highest privilege level, that is
level 0. The GuestOS kernels execute at level 2 and the user tasks at the
lowest run level 3.

2. Separate segment tables (GDT) are maintained for every partition, with
segment table entries for access to only its own memory block. SParK, on
the other hand, has access to the entire physical memory. On top of this,
paging is employed, which does a one-to-one mapping between the logical
and physical addresses.

3. SParK provides necessary support that allows each GuestOS to maintain
distinct page tables for each of the user tasks running on top of it and
achieve protection of tasks from each other.

4. In page table of each task, the GuestOS pages are marked as Super User.
The tasks running in level 3 cannot access them whereas the GuestOS can
access them. (Level 0, 1, 2 are superuser levels and level 3 is user level).

5. SParK implements hypercall using the software interrupt (INT 82) and sys-
tem call (INT 92).

We have ported third-party RTOS μC/OS-II and a customized version of saRTL
(stand alone RTLinux) [14] over SParK as GuestOSs. The ease with which these
ports were possible demonstrate the flexibility of the SParK design.

Further we developed a study application using multiple partitions to validate
our design and measure the performance parameters. It uses one partition as
communication partition (non-safety application) that manages Ethernet as a
device (to communicate to the operator) and shared between two other partitions
where safety-critical applications run. We have demonstrated how SParK safely
handles an illegal operation by a partition, shown the correct functioning of IPC,
Inter-Task Communication (ITC) and other system calls. We also measured the
performance parameters , such as PST, SDT & WBT as stated below:

SParK: Safety Partition Kernel for Integrated Real-Time Systems 171

1. Scheduling Decision Time (SDT): This is an important parameter, as the
scheduler is invoked at every timer tick. So, the scheduler should be efficient.
It is the time to for choosing the next partition to be run.

2. Partition Switching Time (PST): It is the time taken to switch between parti-
tions. It constitutes time for saving context of one partition, the scheduling
decision making time and the time for restoring context of next partition
chosen for scheduling.
PST = SDT + SaveContextTime + RestoreContextTime

3. Worst case hyper call blocking time (WBT): This is the worst case execu-
tion time for any of the hypercalls. It is the time measured starting from
occurrence of software interrupt to the instant when control goes back to
instruction following the software interrupt instruction.

Table 2 shows the values of performance parameters measured (averaged over
1000 measurements) for SParK on proprietary PowerPC based CPU board. The
processor is clocked at speed 600MHz. The time base register used for measure-
ment of values given below is clocked at 25MHz. Table 3 shows the performance
parameters measured (averaged over 1000 measurements)for SParK on desktop
Pentium-IV PC.

The wide variation in performance parameters on PowerPC and x86 hardware
was mainly because of the following reasons.

– Different Target boards: It was a Pentium-4 3.0 GHz processor in x86, while
in PowerPC it was 7447A, 600MHz processor.

– More context-saving time in PowerPC due to large number of registers in
use compared to x86.

– x86 has hardware support for context switching. The entire context gets
pushed onto the stack in x86, whereas, the same operation is carried out in
software for PowerPC.

Our intent behind providing these numbers is to indicate the broad range of
system overheads, which are 50 μsecs or less, even for our unoptimized kernel
code.

Table 2. Performance Parameters on PowerPC

Parameter Min Max

SDT 52 nS 63 nS

PST 519 nS 530 nS

WBT 572 nS 574 nS

Table 3. Performance Parameters on x86

Parameter Min Max

SDT 52 nS 63 nS

PST 519 nS 530 nS

WBT 572 nS 574 nS

172 S. Ghaisas et al.

7 Related Work

Sharing hardware resources between applications with various levels of real-time
requirements (hard, firm and soft) is the goal of the Resource Kernel [18]. But, it
does not deal with strictly partitioned environments where different applications
can employ their own RTOSs having their own scheduling policies as in SParK.

With respect to two-level hierarchical scheduling, Deng and Liu [8] proposed
the Open System Environment, which has an EDF scheduler at higher level
and the next level scheduling within each real-time application can adopt any
scheduling technique, cyclic table driven or priority driven (fixed or dynamic).
Kim, et al. [5, 6] discuss a Strongly Partitioned Integrated Real-Time system
model in which at higher level, the partitions are scheduled by cyclic partition
scheduler and the tasks of a partition are scheduled by the fixed-priority driven
local task scheduler of individual partitions. They discuss the schedulability con-
ditions in a partitioned environment, and showed how to find a pair (αk, ηk) for
each partition where ηk is the cycle-time of the partition Pk and αk is fractional

Table 4. Comparison of SParK with Related Work

Feature SPIRIT Open Sys-
tem Envi-
ronment

DECOS Integrated
Auto-
motive
Architec-
ture

SParK Vx-
Works

Partition Sched-
uler (Bottom
Layer)

Cyclic
Table-
driven
(simpler
imple-
menta-
tion)

EDF (com-
plex imple-
mentation
with overhead
of dynamic
calculations)

Time-
triggered

Time-
triggered

Cyclic
Table-
driven
(simpler
imple-
menta-
tion)

Cyclic
Table-
driven

Blocking due to
System calls by
GuestOS

Not con-
sidered

Not consid-
ered

Not con-
sidered

Not con-
sidered

Taken
care of in
schedul-
ing
analysis

Not
known

Blocking due to
External Inter-
rupt handling

Not con-
sidered

Not consid-
ered

Not con-
sidered

Not con-
sidered

Taken
care of
by VIP
Concept

Not
known

Device Driver
support through
front-end and
back-end driver
technique

Not avail-
able

Not available Not con-
sidered

Not con-
sidered

Available Not
avail-
able

Need for Special
hardware

No No Yes Yes No No

SParK: Safety Partition Kernel for Integrated Real-Time Systems 173

processor capacity that must be ensured every cycle-time. Lippari & Bini [9],
presented a technique to find the best pair (αk, ηk) that can be assigned to the
partition server so that the task group is schedulable, where application(s) in a
partition is assigned a server (partition server) that is characterized by a pair
(αk, ηk), with the meaning that the server gets (αk units of execution every
ηk) units of time. But, none of these ([5, 6, 8, 9]) address the issue of handling
external interrupts and account for it in partition scheduling analysis.

Obermaisser, et al. [11] discuss an Integrated Automotive Architecture based
on multicore Systems-on-Chips (SoC) mainly focused on automotive industry
requirement. It calls for special hardware using IP cores interconnected through
on-chip network. Schlager and Erkinger discuss the DECOS [13] encapsulation
approach, where the integrated architecture consists of multiple nodes that are
interlinked by a dedicated communication channel. DECOS runs its kernel at
the highest privilege level and the GuestOS kernel (along with user level tasks)
at the user privilege level. But, both these approaches ([11, 13]) call for special
hardware, where multiple communicating nodes are integrated.

Table 4 gives the comparison of SParK with related work. Even though,
for completeness, we have included commercial partitioned RTOS VxWorks[17],
since they do not provide much technical details in the open domain, fair com-
parisons cannot be made. In such cases of non-availability of data, we have stated
’Not known’ in the comparison Table 4.

In this paper, we attempted to resolve the practical issues of i) Handling the
effect of blocking due to hypercalls (most importantly the system calls generated
by the GuestOS in a partition), partition switching and ii) Handling external In-
terrupts, which to the best of our knowledge, have not been completely addressed
by any of the existing systems.

8 Conclusion

SParK provides an environment for integrated real-time systems for safety-
critical applications and it accounts for the effect of external interrupts in par-
tition scheduling analysis. It has also been shown as to how blocking is taken
care of by SParK. SParK has been ported both into x86 and PowerPC based
hardware. Third party RTOS μC/OS-II and a customized version of saRTL [14]
have been ported as GuestOSs.

We believe that SParK serves as a unified platform for building Integrated
time critical systems which need V&V support. It is built using simple and
sound design principles and is analyzable for schedulability. The different hard-
ware platforms and RTOSs that have been deployed with SParK speak to the
generality of the design of SParK.

In our ongoing work, we are porting existing applications from Power plant
control domain on top of SParK so as to reap the benefits that motivated the
development of SParK.

174 S. Ghaisas et al.

References

[1] Stankovic, J.A., Ramamritham, K.: The Spring Kernel: a new paradigm for real-
time operating systems. SIGOPS Oper. Syst. Rev. 23(3), 54–71 (1989)

[2] IEC-61226: Nuclear Power Plants: Instrumentation and Control Systems Impor-
tant to Safety classification of instrumentation and control functions. Technical
Report, International Electrotechnical Commission (2005)

[3] IEC-61513: Nuclear Power Plants: Instrumentation and Control Systems Impor-
tant to Safety - general requirements for systems. Technical Report, International
Electrotechnical Commission (2001)

[4] IEC-60880: Nuclear Power Plants: Instrumentation and Control Systems Impor-
tant to Safety software aspects for computer based systems performing category
a functions. Technical Report, International Electrotechnical Commission (2001)

[5] Daeyoung, K.A., Yann-Hang, L., Mohamed, Y.: Software architecture supporting
integrated real-time systems. J. Syst. Softw. 1, 71–86 (2003)

[6] Lee, Y.H., Kim, D., Younis, M., Zhou, J.: Partition Scheduling in APEX Runtime
Environment for Embedded Avionics Software. In: Proceedings of the 5th Inter-
national Conference on Real-Time Computing Systems and Applications, RTCSA
1998. IEEE Computer Society103, Los Alamitos (1998)

[7] Lehoczky, J., Sha, L., Ding, Y.: The rate-monotonic scheduling algorithm: Exact
characteristics and average case behavior. In: Proceedings of IEEE Real-Time
Systems Symposium, pp. 166–171 (1989)

[8] Deng, Z., Liu, J.W.S., Sun, J.: A scheme for scheduling hard real-time applications
in open system environment. In: Proceedings of the 9th Euromicro Workshop on
Real-Time Systems (1997)

[9] Lipari, G., Bini, E.: Resource partition among real-time applications. In: Proceed-
ings of the 15th Euromicro Workshop on Real-Time Systems, pp. 151–158 (2003)

[10] Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. J. ACM 20, 46–61 (1973)

[11] Obermaisser, R., Salloum, C.E., Huber, B., Kopetz, H.: From a federated to an in-
tegrated automotive architecture. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 28(7), 956–965 (2009)

[12] VMware: White paper: Understanding full virtualization, paravirtualization and
hardware assist. (2007)

[13] Schlager, M., Erkinger, E.: FBenifits and implications of the DECOS encapsulation
approach. Research report 80, Vienna university of technology, Austria (2005)

[14] saRTL (Stand Alone RTLinux), http://www.ocera.org
[15] Intel arch: software developers manual, vol.3.

http://www.intel.com/design/processor/manuals/253668.pdf
[16] Programming environments manual: PowerPC architectur,

http://e-www.motorola.com/brdata/PDFDB/docs/MPCFPE32B.pdf
[17] VMware: Whitepaper:Safety-Critical Software Development for Integrated Mod-

ular Avionics, http://www.windriver.com
[18] Rajkumar, R., Juvva, K., Molano, A., Oikawa, S.: Resource kernels: A resource-

centric approach to real-time and multimedia systems. In: Proceedings of the
SPIE/ACM Conference on Multimedia Computing and Networking, pp. 150–164
(1998)

[19] Labrosse, J.J.: MicroC/OS-II: The Real-Time Kernel. CMP Books, San Fransisco
94107 (2002)

[20] ARINC: Avoincs Application Software Standard Interface, ARINC Specification
653. Aeronautical Radio Inc., Annapolis, Maryland (1997)

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 175–194, 2010.
© Springer-Verlag Berlin Heidelberg 2010

On Scientific Experiments and Flexible Service
Compositions

Dimka Karastoyanova

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

dimka.karastoyanova@iaas.uni-stuttgart.de

Abstract. The IT support for scientific experimenting and e-science is currently
not at the level of maturity of the support enterprises obtain. Since recently
there is a trend of reusing existing enterprise software and related concepts for
scientific experiments, scientific workflows and simulation. Most notably these
are the workflow technology, which is widely used in business process
management (BPM), and integration paradigms like the service oriented
architecture (SOA). In this work we give an overview of open issues in the
support for scientific experiments and possible approaches to addressing them
in a service-based environment. We identify the need for enhancing the BPM
practices, technologies and techniques in order to render them applicable in the
area of scientific experimenting. We stress on the even greater importance of
workflow flexibility and also show why flexibility techniques are crucial when
it is about improving the IT support for scientists.

Keywords: Scientific Experiments, Scientific Workflows, Simulation, Workflow,
Service Oriented Computing and Architecture, Service Composition, BPEL,
Compensation, Aspect-orientation, Flexibility, Adaptability.

1 Introduction

Service orchestration technology gained much attention in research and industry in the
last decade. This is due to its high potential for the support of application integration (in
both EAI and B2B settings) and flexible and machine-readable business processes.
Service orchestration approaches are based on the principles of service orientation and
are typically enacted by process-like or workflow-like approaches. A great number of
commercial systems exist by all big software vendors providing business solutions,
however the support for scientific experimenting is still rudimentary and the
commercially available tools do not cover the whole life cycle of scientific experiments.
Recently there have been some attempts to combine tools supporting scientists in
computations and simulations in service-based applications. Mostly these were
prototypical applications that compose several modules or programs that perform some
computations using service compositions. These are however only preliminary attempts
for proof of concept only and are not satisfying the requirements imposed on scientific
calculation.

176 D. Karastoyanova

Obviously, the field of scientific computing is still in need of improvements and in
this work an overview will be given of some of the approaches currently under
development and in the area of service oriented computing that aim at addressing this
need. The objective of these approaches is to improve both the modeling and
execution of scientific computations by (re)using features from the conventional
workflow technology (as in [5]) and existing scientific workflow systems like Kepler
[46], Pegasus [49], Triana [47], Taverna [48] and others.

We use the term scientific experiment to stand for the overall process of
performing an experiment including preparation and set-up, experiment execution that
may include complex computations, a simulation or a scientific workflow (as defined
currently by the e-science community), and post-processing. A scientific workflow is
an application that performs some kind of scientific computation or is a simulation
and is used to execute a part of the overall experiment. Note that the term scientific
workflow does not currently imply that the conventional workflow technology as in
[5] and [16] is used. However in this work what we call a scientific workflow may
imply a realization in terms of conventional workflow – this however will be
disambiguated in this work.

For what concerns scientific experiment modeling the following are the most
notable required features:

• domain specific modeling of the overall scientific experiments and of the
scientific workflows

• automation of manual steps
• reduced learning curve for scientists
• modeling of multi-scale and multi-physics simulations
• management of large data sets in experiments and simulations stemming

from multiple and diverse data sources (e.g. sensors, databases, file
systems).

In terms of scientific experiments execution there are features that the existing
systems do not completely and adequately enable and these are for example:

• straightforward fault handling
• execution of incomplete or partially modeled experiment models
• automated monitoring of experiments and the constituent workflows and

simulations
• parallel execution of multiple instances of scientific experiments.

These are some of the requirements on systems for scientific experimenting which we
argue can be addressed in terms of features that can be borrowed from the
conventional workflow systems and applied in and enhanced for a service-based
environment. For example, scientific experiments can be modeled using conventional
standard-based workflow modeling tools extended with domain specific tasks that
correspond to particular computational steps or set-up step in an experiment. The
major issue in scientific experiments modeling is the complexity of the notations and
languages to use and the user-friendliness of the tools and notations. The execution of
such experiments needs to be automated in order to shorten experimental runs, while
still in control enabled by monitoring facilities. Additionally, to provide scientists
with the most suitable support any kind of exceptional situations should be dealt with

 On Scientific Experiments and Flexible Service Compositions 177

in an automatic manner, if possible, or the scientists should be given for example a
choice when deciding on the way an exception is to be handled.

Since the conventional workflow technology is capable of addressing some of the
requirements and due to our expertise in the field, the focus of our work is on
extending the conventional workflow technology for scientific experimenting. One
very important difference between the two areas is that scientists follow a different
life cycle of their processes than the business users. In order to enable support for the
life cycle of scientific experiments using conventional workflows we need to enhance
the existing meta-models for workflows and the modeling and execution
environments appropriately. We devised the so called model-as-you-go approach, in
which the flexibility of the workflows (that stand for the scientific experiments) is
instrumental.

The rest of this work is structured as follows. Section 2 shortly introduces the
basic principles of SOA, the Web service technology and service composition based on
the workflow technology. Section 3 presents the observed life cycle of scientific
experiments and discusses open issues in terms of both approaches for modeling and
execution of such experiments, while the focus is on how the existing service
composition approaches can be enhanced to become applicable in the scientific
computing area. Since the phases of modeling and execution are continuously
alternating and thus resembling the life cycle of agile workflows, in Section 4 we
provide a summary and assessment of the approaches for flexibility of service
compositions that can be employed for improving the conventional workflow
technology for the purposes of scientific experimenting. We close the paper with a
summary.

2 SOA, Web Services and Service-Based Workflows

This section provides background information and major assumptions for the
presented work. Service oriented Architecture (SOA) is one natural continuation in
the evolution of integration technologies [2] and enables the interoperability within
and across organizations using basic principles like service abstraction, loose coupling
[25], composability, and allows for leveraging of technology and investment. Services
are self-contained and self-describing units of functionality exposing stable interfaces
in a unified format independent of implementation specifics and interaction formats
and protocols. They render a heterogeneous environment homogeneous. Thus services
allow for standardized access and identification of functionality/applications and
facilitate application integration. Service clients use only the stable interface exposed
by the service and hence the client application that uses this service will not break if
the implementation of the service itself is changed.

The SOA architectural style specifies three major roles: service providers, service
consumers and service brokers, and three operations. The operations defined by SOA
are: find, register, and bind and invoke/interact. The find operation is used by service
consumers to discover services, while the service providers use the register operation
to provide information about their services in the discovery component (the broker).
Once a client discovers an appropriate service he binds to the service and starts
interacting with it. These operations are realized by the service middleware, the so-
called service bus [17, 34] and are made available to the entities playing any of the

178 D. Karastoyanova

SOA roles. The invocation of services is performed by the bus. If the service
consumer has not provided the location of the service and the access mechanism, it is
up to the bus to discover a service on behalf of the client that meets his requirements.

Web services (WSs) are the only existing standardized implementation of SOA.
This technology provides a model for use of (existing) applications, not for
programming applications. Web services are about virtualization of applications,
which also explains their already huge success in industrial applications and in utility
and cloud computing [50]. Services can be implemented in any programming
language for any platform, as well as they can be exposed for use via any of the
existing interface description languages (IDLs). The novelty in Web services is the
notion of binding, which is reflected by the standard language for WS interface
description, the Web Service Description Language (WSDL) [3]. Unlike any other
existing IDL, WSDL keeps the information about the transport protocol and message
encoding separate from the actual interface description (signature). This allows for
exposing the same functionality/program/implementation on different endpoints/ports
by combining a service interface description with multiple bindings. This improves
modularity and facilitates loose coupling between service providers and consumers.
The Web Service technology enables composability of technology and specifications.
There are many specifications in the WS protocol stack dealing with different
concerns of application development and integration. Recently, the need has arisen to
virtualize hardware resources in particular in the area of scientific computing and
simulation, where the computations are lengthy and resource-consuming due to the
nature of the computations and the huge amounts of distributed data used and
produced. This need was addressed partly by the Grid, and its name stands for a
distributed IT infrastructure for advanced science and engineering applications [20,
21]. Cloud computing and the *aaS delivery models also heavily rely on this.

WS (and Grid services, i.e. WS-Resources [39]) can be combined in more complex
applications using some composition approach. The workflow- or process-based
approach [5, 16] is the most favored one. The process-based approach to service
composition, also known as service orchestration, allows composing services in a very
flexible manner by means of improved modularity, separation of concerns and
configurability. Processes are created in terms of (i) control logic that specifies the
sequencing of tasks and the data they exchange, (ii) the functions/services that
implement the tasks and (iii) the human participants in an organization that participate
in carrying out the tasks. These entities form the so-called workflow/process
dimensions. In (Web) service compositions, due to the fact that services do not involve
people or hide their participation, the organizational dimension is not present. The
definition of a workflow or process used here is based on those presented in BPM
(Business Process Management) literature like [5] and [16]. It is important to note that
the workflow technology distinguished between a workflow model and workflow
instances. A model can be run multiple times, i.e. multiple workflow instances can be
executed simultaneously, which brings significant time savings. To the best of our
knowledge, based on our participation in multiple projects together with researchers
from the scientific computing community, the definitions of the notion of workflow first
differ from group to group in the scientific world, and second stands for only the
sequencing of tasks and the data dependencies. According to these definitions
workflows do not include the features from the workflow technology, like: interruptible

 On Scientific Experiments and Flexible Service Compositions 179

sequences of tasks, modeling of constraints to transitioning from task to task in a global
model of the overall computation, modeling parallel execution of independent tasks,
forward and backward recovery, fault handling, staff assignment per task. The available
scientific workflow infrastructures do not always distinguish among workflow model
and workflow instances; moreover, some of them are tailor-made for a concrete
scientific domain, which the workflow engines employed in business applications
indeed avoid by implementing a generic workflow meta-model suitable for all
application domains. In this work we have as a starting point the workflows or processes
as defined by the BPM community.

Usually processes are modeled using some graphical notation, however in order to be
executed (on a workflow engine/system) they need to be transformed into some
executable format. There are many workflow languages and BPEL [1] is the standard
language for describing service orchestrations. It contains constructs for control flow
and data manipulation, as well as the so-called interaction activities which model the
interaction with WSs that implement tasks in a workflow, e.g. book hotel, calculate
credit risk, generate a mesh in a FEM computation etc. The interaction activities contain
references to the service port type and operation and specifies the input and output data.
In BPEL the control flow and the functions (WSs) used are predefined during the
modeling of the composition and remain unchanged during the process execution.
Processes are executed by process/orchestration/workflow engines and currently these
engines make use of the service middleware to invoke services (see Figure 1). The use
of Grid infrastructures for involving WS-Resources into BPEL service orchestrations
has great potential and will allow for flexible mixing and interchange of WSs and WS-
Resources from the point of view of service orchestrations. This should be addressed by
research and engineering efforts in this direction.

** **

O
rc

he
st

ra
tio

n
E

ng
in

e

Fig. 1. Interplay among Service Compositions, WSs and Grid Services

180 D. Karastoyanova

BPEL is being extensively used in business applications and all big software
vendors have rolled out products with BPEL support. There are preliminary attempts
to utilize BPEL for composing scientific computations using existing algorithm and
computation implementations [19, 22, 35]. Admittedly, there are many open issues
that still have to be considered in the area of applying the SOA paradigm, Web
services and Grid services for scientific applications [44, 23]. The major critical
issues are in particular the robustness, scalability and availability the infrastructure
and resources to maintain the long-running scientific application up and running.

While SOA has great success in improving the support for business applications,
techniques from Grid can be utilized to enhance this support further. Some of the
reasons for the modern SOA infrastructures to not yet support such features can be
explained by the requirements business applications up till now had on technologies.
Modern business applications however are much more complex and require most of
the features mentioned above.

Indeed, both business and scientific applications miss certain features which the
other domain has already implemented. Usually, each industry stays in its own
confines and keeps developing its own technology and standards. With the advent of
service-orientation, which is employed by both communities, now there is a chance to
unify the efforts in developing infrastructures comprising concepts, techniques and
implementations from different domains for mutual benefit.

3 Scientific Experiments, Scientific Workflows and Simulation

In general, scientific experiments are performed in several phases. Typically there is a
preparation phase, in which the different models for the experiment are prepared
(usually these are models of the object to be simulated if simulations is part of the
experiment, of the environment in which the experiment takes place and others,
dependencies among the models), data is collected, the IT support infrastructure is set
up, etc. The second phase is the actual experiment, in which simulations are carried
out and calculations are done in different combinations. This phase is usually long
and consumes computational resources and huge storage. Currently this is the phase
supported by the so-called scientific workflows that are executing the actual
computation steps in the correct sequence. In case of faults in the execution and/or
incomplete or incorrect data the scientists usually terminate the current experimental
run and start it from the beginning. This phase may include multiple runs of the
scientific computation (e.g. parameter sweep) or a simulation (again with different
parameters). The last phase is the one of analysis of the experimental results, which
may need visualization of the results, too. This life cycle is also presented in Figure 2
B, where we also show that the scientist perceives the experiment as a whole and is
the only user involved in its modeling, execution, repair and analysis. In contrast, the
conventional workflows have more phases and there are separate users in each of the
phases (see Figure 2 A).

 On Scientific Experiments and Flexible Service Compositions 181

Modeling

Monitoring

Analysis

Business analyst

Business specialist

IT specialistAdministrator
(IT specialist)

Client/Employee

Phase

User

Legend

Execution

Deployment

Analysis

Execution and
Monitoring

Run/Resume

Modeling

Suspend

Phase

User

Legend

Action

Scientist

(A) (B)

Fig. 2. Life cycle of (A) service compositions/workflows and (B) scientific workflows as
perceived by scientist [40]

We argue that the conventional workflow technology can be used to enable the
overall lifecycle of scientific experiments and also the scientific workflows that are used
for complex computations or simulations during the second phase of the lifecycle of
scientific experiments [40]. Thus the advantages the conventional workflow technology
provides can be employed and reused for the benefit of scientific experimenting without
the need to reinvent the realization and implementation of such features especially for
scientific workflows [41]. Since the conventional workflows have been mainly used in
business applications, which pose a different set of requirements on the IT support, there
is still a need to improve this technology in order to be able to make use of all its
advantages for scientific experiments. In particular, the way scientists perceive the
experiments needs to be kept the same as with the existing approaches. This
requirement solely has important implications on the way the workflow technology has
to be enhanced. Essentially, for the scientists the way they carry out their work should
not change, to the contrary the support has to be improved and made much more
straightforward and user-friendly, while accompanied by improved infrastructure with
better performance and flexibility for the users. More details on these requirements on
the workflow technology as imposed by the scientific work and the possible ways to
address them are given later in this work.

In order to facilitate the presentation next, we present here the architecture of an
enhanced workflow management system that is meant to support the features required
by scientists [41].

The proposed infrastructure is made available to the users, i.e. the scientists, via a
single user interface containing a modeling tool for the overall experiment and its
constituent models. It is also responsible for generating all the artifacts needed for the
deployment and execution of the experiment. This interactive framework should also
contain a facility for monitoring of the experiment and its constituent parts like
workflows, services, human participants, the whole infrastructure, its performance,
etc. Visualization of the experimental results, in part and completely should be
enabled through a set of visualization tools that are to be selected on-the-fly by the
scientist. Access to a service registry is also needed for the scientist to choose the
services for the computational steps of the experiment. This kind of combination of
components in the infrastructure that need to closely interact with each other is novel

182 D. Karastoyanova

Interactive Framework

Provenance

Se
rv

ic
es

/R
es

ou
rc

es

W
SD

L,
 W

SR
F

Auditing

Other
Functions

Result
Display

Adaptation ModelingMonitoring

Workflow EditorMonitor

Scientists

Engine

Deployment

Service Bus

Fig. 3. Architecture of a next generation Infrastructure for Scientific Experiments based on
conventional workflows [40, 41]

and is not typical for the workflow management systems for business applications.
Different approaches will be needed to engineer this kind of system. This interactive
framework used by scientists needs to be coupled to the underlying environment for
execution of the experiments, too.

This environment includes a service middleware and a workflow management
system that carries out service composition instances. Auditing of execution data and
recording of the provenance information are inseparable features of that kind of
environments, especially because this data is needed for monitoring, analysis and
reproducibility of the experiments.

3.1 Modeling Scientific Experiments

Scientists create their experiments in a step-by-step fashion. Typically, an experiment
is not completely modeled when the execution starts. Sometimes the reason for this is
missing information or result necessary for a next step in the scientific workflow.
Sometimes it is simply a matter of availability of resources, since this information is
sometimes also part of the specification of a scientific workflow, because for example
the system used requires such a specification. Monitoring of the experimental results
is also done before the completion of the experiment specification or the model itself.
In conventional workflow systems however, the models are completely specified
before being executed, and changes are only sometimes necessary or possible,
depending on the modeling language and the supporting infrastructure used.

 On Scientific Experiments and Flexible Service Compositions 183

Sometimes in scientific workflow management systems the overall experiment
execution is compiled to a monolithic application, which cannot be split into separate
reusable services. This hinders the reusability of computational modules across
applications and across scientific domains using similar computations like PDE
solvers, FEM implementations for different physical media, etc.

The workflow technology is capable of improving all these features if it is extended
appropriately. First of all we argue that conventional workflows can be used to model
either the (1) whole experiment or (2) only the scientific computation, be it a simulation
or an experiment. In the former case the workflow will take over the role of controlling
the sequencing of steps of the overall experiment, a.k.a. supervising workflow, while the
actual execution of the experiment will be carried out by reusing the existing monolithic
applications. Thus the manual work for set-up and infrastructure provisioning is reduced
by virtue of automation; the same is valid for the analysis phase. In the latter, the
workflow technology is used to enable a composition of individual computational
modules exposed as services. This approach renders the scientific computation a
modularized and reusable application allowing the use of existing computations even
across scientific domains. A combination of the two approaches is possible too, but
complex correlation between the supervising workflow instances and the workflow
instances carrying out the computations/simulations also needs to be enforced. A
conventional workflow modeling environment needs to enable the modeling of such
nested workflows. Correlation among many workflows constituting a single scientific
experiment is also needed when multi-scale and multi-physics simulations are to be
modeled as workflows. More precisely, since these kinds of simulations and their
complex interrelationships and data and functional dependencies resemble choreo-
graphies of service compositions, the modeling of such choreographies and their
correlation is extremely important and a must. This also implies that the execution
environment must possess the capability of executing such experiments.

Additional concerns of scientific experiments modeling is the management of the
huge amounts of data scientific experiments deal with. Due to the distributed nature
of the conventional workflows and the small amounts of data exchanged with the used
services the data is stored in the workflow engine. This is not an option with scientific
workflows. Some approaches suggest the use of DBMS directly in the scientific
workflows, so that data sets can be stored directly into data bases [51]. Other data
sources like sensor networks are also used in scientific experiments for different
purposes like populating a simulation with initial data from sensors, or reaction to
changes in the environment that is signaled by sensors. Approaches for incorporating
sensor data into the workflows are also under development [53]. Note, that whatever
the data source, the workflow meta-model needs to reflect these into its constructs,
which will inevitably be a part of the extended workflow meta-model for scientific
experiments. One such approach for incorporating the management of data is
presented in [52], where references to the data sources are allowed as variable values
in BPEL processes, so that the data is made available by reference to the workflow
engine and hence the experiment and does not need to be transferred to the engine.

One very important requirement on workflows that scientists impose is the ability
to model in a domain-specific (graphical) language; this serves also the purpose of
reducing the learning curve for scientists in getting acquainted with the IT
infrastructure. While the perceived domain specific modeling is a part of the way the

184 D. Karastoyanova

modeling environment is to be engineered, the underlying workflow meta-model must
allow for extensions that accommodate the domain-specific constructs. Workflow
code generation may be required for this, too. Additionally, interaction between the
modeling tool and a registry for scientific computing modules exposed as services is a
must. In such a way scientist will be given the possibility to choose a particular
service for their workflow from the set of all available ones. Models for such service
registries and extensions to the service interface description (functional, non-
functional and QoS) will also be required, since the information needed by scientists
to choose a service is different than the one typically provided in business scenarios.

During the modeling phase the scientists want to be given the chance to specify the
provenance data they need to collect. This can be enabled by setting additional
parameterization options for the process models in terms of special-purpose auditing
and provenance related artifacts in the workflow deployment package.

3.2 Execution of Scientific Experiments

The execution phase of scientific experiments in existing systems does not rely on the
concept of workflow instance and therefore the existing infrastructures do not support
the simultaneous execution of multiple instances of the same workflow. Typically the
scientists simply start manually the next simulation or experiment run, after the first
one has been completed. This results in long experiment durations and in a lot of
error-prone manual work (in setting-up experimental infrastructure, directories for
data, correlating results and simulation runs, etc.) – hence one opportunity for parallel
execution is passed by. Note that as another way of enabling parallelism, parallel
computing is used in scientific workflows to parallelizing applications on high-
performance computing infrastructures and on Grids.

Mostly data management and many manual steps are what existing scientific
workflow management systems support. There is no support for the steering workflows,
neither there is support for execution of service compositions that represent simulations
based on reusable services. The execution of the scientific applications does not always
enable the reaction to failures in the environment, in the data quality or errors on behalf
of humans.

A very important requirement we derived based on our observations of how
scientist perform experiments is that there is a need to execute partially modeled
workflows. This is not possible with the conventional workflow management systems.
This leads to the merging of the modeling and execution phase of workflows and their
continuous interleaving, so that scientists can model a part of an experiment as a
workflow, start its execution and continue its modeling after the already modeled part
has been executed and (the data it produced) analyzed. The implications are manifold
and complex:

(i) The execution environment needs to start the execution of incomplete model and
allow for its continuous step-by-step modeling while the workflow instance is
still running in the workflow engine. This feature has not been necessary so far
in business workflows and hence has never been dealt with. One way to enable
this is to use approaches for adaptation of workflows (described in the next
section and) as argued for in [40]. These approaches will also improve the
robustness of the scientific experiments, because they can be used to react to

 On Scientific Experiments and Flexible Service Compositions 185

changes in the environment like missing services, the need to include additional
steps into a workflow and others [26].

(ii) Some of the modeling approaches require special-purpose constructs to be
included onto the original workflow model to enable the particular flexibility
approach during the execution of the workflow instance. Therefore modeling
for flexibility needs to be enabled on the level of the workflow meta-model and
in the modeling tool.

(iii) The modeling and execution environment for scientific experiments must be
integrated and perceived by the scientists as a single tool/application so that
they do not perceive any distinction in modeling and execution of experiments.

Dealing with data while executing processes is a must, as explained in the previous
section. Therefore the execution environment must be able to support multiple
approaches, regardless of whether they are reflected in workflow modeling constructs
or not. For example the engine must be capable of following the references in the
model to data or data storage needed for the workflow execution, or distribute the
execution close to the data as in [42] where a space-based computing approach for
scientific computations has been introduced, or enable the coupling of the
infrastructure with data sources of different type.

One additional issue that concerns the execution of scientific workflows that need
to reuse existing computations is the granularity of the services to reuse. This is a
problem inherent to other domains too, where service orientation has been introduced
to infrastructures containing monolithic and complex applications. In our current
work we have been experimenting with exposing whole computational modules as
services and parts of them; the systems used are DUNE, ChemShell and currently
under development is similar work with PANDAS. These applications for FEM
simulations are being used and extended in projects of the SimTech Cluster [44].
Most of the work has been on architecting adapters for these applications and
implementing them using the Web Service technology. Conventional workflows have
been used to supervise the simulations (but not the overall experiment with all its
phases) or to implement the simulations themselves.

Supervising workflows have been realized using BPEL and with the existing
scientific workflow environment Pegasus [49]. The steering workflow that governs
the whole experiment works in cooperation with Pegasus that implements the
experimental phase; a demonstration is available at [43].

Auditing of experimental workflows can be enabled by workflow management
systems since auditing is instrumental for business applications and their compliance
to regulations and law. Still this capability needs to be extended to enable appropriate
monitoring and provenance of scientific workflows and experiments for the simple
reason that scientists need information about much more details related to the
execution of a workflow than businesses.

4 Approaches to Flexibility of Service Compositions

As stated earlier in this work, the approaches for flexibility of conventional
workflows are very useful in the area of enabling support for scientific experiments.
On the one hand these approaches can be used to enable the model-as-you-go nature

186 D. Karastoyanova

of scientific experimenting [40]. On the other hand the robustness of scientific
applications can be improved [26]. These approaches can be applied to conventional
workflows, which are the basis for our work on the objective to enable a better
support for interactive scientific experimenting and simulations. In this section an
overview of workflow flexibility approaches is presented and their applicability is
assessed.

4.1 Approaches to Flexibility of Service Composition – A Classification

Workflow flexibility has been an area of research for the last decade and lots of
approaches have been developed [15, 28, 6 and many others]. Recently with the
advent of service-oriented computing and service composition approaches based on
the workflow technology, where service compositions are completely automated
workflows, the flexibility to react to changes in the environment has been revised for
the service-oriented context. Adaptation approaches require support on behalf of the
modeling language and of the workflow management system.

Adaptation of service compositions can be performed on the workflow model
(design time adaptation) or on the workflow instances (known as ad-hoc adaptation).
These changes can be carried out on the control flow and/or data flow of the
workflow, or on the business functions implementing steps in the workflows, i.e. the
implementations of activities [26]. Approaches for control flow change have been part
of our previous work and reported in [29, 32, 4, 9, and 33]. Since service
compositions that allow people to be part of the workflow are still a very active
research area, the development of flexibility approaches related to the organizational
dimension of workflows is still in its early stages and will not be discussed here.

When adapting running workflow instances first it has to be checked if these
instances can be modified at all to reflect the new model depending on their current
status/position in the execution of the process. The instances that can be modified
according to the new model are said to be migrated to this model. This may require
changing the internal workflow engine representation of the instances. Additionally,
the instances that cannot be migrated may either be terminated or let complete
according to the original model. This results into two versions of the same model for a
period of time and version management is one of the implied infrastructure features.
Instance migration and the supporting infrastructure are not in the scope of this work.

Service composition instances may also incorporate a reaction to changes in the
environment, e.g. failing WS, the appearance of a new service with better QoS
characteristics, adaptation request due to recommendation of a test run [24], by
exchanging a concrete WS implementation that has originally been chosen to perform
a task in an instance [30]. An overview of some of the existing approaches is
presented in the following.

4.2 Exchanging Concrete Service Implementations during Run Time

Since service compositions reference only port types of services, there must be a
mechanism to resolve these port types to concrete service endpoints/ports. The
mechanism is called service binding (see Figure 4 A). There are several strategies
defined in literature [2] for controlling this mechanism called binding strategies. The

 On Scientific Experiments and Flexible Service Compositions 187

WSs port types,
operations

Design time Run time

Binding
Strategy

W
eb

 S
er

vi
ce

 p
or

ts

Parameter

Parameter
Evaluation
Strategy

Design time Run time

fixed

Binding
Strategy

W
eb

 S
er

vi
ce

 p
or

ts

WSs port types,
operations

governs
A B

Fig. 4. (A) The role of binding strategies and (B) of parameterization in service compositions
[26]

static binding strategy prescribes concrete service ports for each of the tasks in a
process during either design time or deployment time; the statically prescribed service
ports are used during process execution. Dynamic service binding is a strategy that
postulates that the concrete services are to be discovered during process instance
execution. It is enabled during both design time and run time. During modeling or
deployment time the port types of services that implement a task are specified; these
are the functional requirements toward a service. Additionally, the QoS selection
criteria, usually provided in terms of WS-Policies, are typically used. During process
execution the process engine delegates the discovery and selection of the concrete
services for each of the tasks to the service bus, which uses as input these functional
and non-functional properties as provided by the process specification. The dynamic
binding is an approach used to enable flexibility for each process instance with
respect to the functional dimension of service composition.

The mechanism for discovery, selection and invocation of WS is known by the
name “find and bind mechanism” and is utilized during the normal execution of
service compositions. It can also be used to exchange services that have been bound
for use with a service composition, regardless of the strategy used for the original
binding, with another port. This may be necessary in order to handle a fault of a
service and the inability of the service middleware to discover a new alternative but
compliant service. For the discovery of the new service, additional selection criteria
must be provided in the process model. There are several ways to do this: (a) to
extend the process definition language to allow for specification of such criteria
directly in the interaction activity elements; (b) to extend the deployment information
by alternative selection policies and use it during execution for the discovery of a
substitute for a failed service. The latter approach is much more configurable.
Approach (a) has already been defined and implemented [28, 30].

4.3 Parameterized Processes

One approach to make service compositions flexible on the functions dimension is
enabled by the so-called parameterized processes [29]. The approach extends BPEL
and provides an extension element in the interaction activities to allow for providing
or discovering a port type for the service to be bound using a parameter evaluation
strategy (see Figure 4 B). Such a strategy is specified during design time but is

188 D. Karastoyanova

executed during run time to resolve parameter values. The parameter values may be
provided manually by a human participant, or may be provided as a result of a
discovery according to service criteria specified in terms of semantic description of
services in any of the existing semantic Web services frameworks, or may be copied
from a variable. Parameterized processes can only be executed on a BPEL engine that
implements this particular extension; standard BPEL implementations can execute the
process but will have to ignore the extension. If semantic information is used for the
description of service requirements then the BPEL engine must also make use of an
execution environment for semantic Web services [29, 28], the so-called semantic
service bus [27]. The use of the approach requires also the use of the dynamic binding
strategy, since the concrete implementation of the discovered port type for each
instance of the task has to be discovered as well (see Figure 4 B). This approach
provides a primitive support for control flow change in service composition.

4.4 BPELlight

BPELlight [38] is an extension to BPEL that decouples the process logic from the
WSDL descriptions of services and thus enables the use of any kind of service
interface descriptions. This approach has been implemented prototypically and
described in [33]. The BPELlight specification defines an extension activity, which
separates completely the process logic from the descriptions of service interfaces.
During process deployment, the service descriptions are simply supplied together with
the process logic in a separate artifact. This approach removes the hard-coding to
service interfaces into the process models and facilitates the adaptability and
reusability of service composition definitions. It is a standard compliant extension of
BPEL and can be executed on BPEL compliant engines with appropriate extensions.
To enable the use of semantic WSs with BPELlight, the BPEL4SWS specification has
also been created. The prototype supports the use of conventional WSs and semantic
Web services described in WSMO [33]. Once the service type is discovered based on
its semantic description, the discovery of service ports/endpoint is a must. Any other
semantic service description framework, like OWL-S and SAWSDL, can also be
applied with BPEL4SWS. Through the use of semantics BPEL4SWS improves the
discovery of services (port types and ports) through an additional level of abstraction
provided by the semantic description of interfaces. This improves further flexibility
and reusability of BPEL processes. The approach supports flexibility of the functions
dimension of WS compositions and may in some cases enable control flow
adaptations similar to the way it is enabled by parameterized processes.

4.5 BPEL’n’Aspects

The BPEL’n’Aspects approach [4] draws on the concepts of the aspect-oriented
programming (AOP) paradigm. The approach enables control flow adaptation of
running workflow instances. It is a non-intrusive approach, which means that the
original process models are kept unchanged, and using the approach only the actual
execution of each of the instances of a model are adapted as needed. The analogy
used to enable the approach follows the AOP paradigm, which postulates that upon
events of a specified type additional functionality, which has not been part of the

 On Scientific Experiments and Flexible Service Compositions 189

Aspect

Endpoint Reference

+ Operat ion

BPEL
ProcessAspect

Endpoint Reference

+ Operat ion

BPEL
Process

Fig. 5. Aspects in the BPEL’n’Aspects approach [19]

original code, can be executed or weaved into the control flow of the original
program. Following this analogy we treat the BPEL processes as the original
programs that are executed on BPEL engines; the BPEL engines interpret the BPEL
process models and publish navigation events. WSs implement functionalities and can
be treated as the functionalities to be weaved in upon a notified navigation event.
Similarly the WSs are the advices in AOP terms (see Figure 5). An aspect is specified
as a WS-Policy and references the Web Service (advice) that will represent the
additional functionality (i.e. inserted activity).

An aspect also specifies upon which event in the process navigation the WS should
be executed by means of the so-called pointcut and advice type (before, after and
instead). Aspects can also be used to modify the value of variables or transition
conditions on links. The aspects/WS-Policies are attached to the workflow models
and/or process instances using WS-PolicyAttachment [8] (see Figure 6). This serves
the better configurability of the approach and allows for combining any aspect
definition with any workflow model.

A
Charge
Credit
Card

. . .

. . .

Book Trip

Tracking

Store
Debit

AdvicePointcut

Aspect

W
e

b
 S

e
rv

ic
e

operat ion

Joinpoint

B
P

E
L

Pr
oc

es
s

W
S

-P
o

lic
y

WS-Policy
Attachment

Fig. 6. A BPEL’n’Aspects example [19]

190 D. Karastoyanova

The implementation of the approach follows the architecture presented in Figure 7.
A BPEL engine that is capable of publishing navigation events is needed.
Additionally, a custom controller [32] (Khalaf & Karastoyanova & Leymann, 2007)
implements the functionality of the weaver. It is responsible of including the
additional functionality for each process instance as defined by the aspects attached to
that process instance. The weaver lets only the navigation events for which there is an
aspect deployed to be notified. Upon such a notification the WS referenced in the
aspect advice is invoked. This communication (between the process instances and the
WSs/advices) is based on the publish/subscribe paradigm and in this particular case
uses WS-Notification.

Fig. 7. Architecture of the infrastructure implementing the BPEL’n’Aspects approach [19]

The BPEL’n’Aspects approach improves the modularity and configurability of
service compositions, while maintaining the standardization endeavor of the WS
technology as a whole, and supports both model evolution and ad-hoc changes in
service compositions in a non-intrusive manner. The approach tackles major
drawbacks of other flexibility approaches; for further references please consider [28].

4.6 Assessment of the Flexibility Approaches

The approaches to flexibility of service compositions presented in this chapter enable
different types of changes. The exchange of concrete services/ports during the
execution of service compositions allows for adaptations on the level of functions in
processes on per-instance basis. The functions dimension can be modified with
respect to the port types used on both models and instances using the approach of
process parameterization. The BPEL’n’Aspects approach has been designed with the
purpose to support adaptation of control flows of service compositions. It can also be
used to render the functions dimension flexible.

In the scenarios where existing running processes need to be adapted, the best
approach to use is BPEL’n’Aspects, since it utilizes existing technology and standard
specifications and does not alter the process definition language. It however requires
extending the execution environment but all the needed extensions leverage existing
very well known technologies and concepts like the WS stack and publish/subscribe.

 On Scientific Experiments and Flexible Service Compositions 191

The rest of the approaches are based on changes in the process definition language
and hence imply more changes to the execution engine.

We support the same recommendations in the case of scientific experiments, since
changes like including or deleting activities/tasks, exchanging failing service imple-
mentations and selecting alternative implementations of computational tasks are
required for enabling the life cycle of scientific experiments as perceived by
scientists.

5 Summary

In this work we presented an overview of current research in the area of supporting
scientific experimenting using conventional workflows. The life cycle of scientific
experiments and how it compares to the life cycle of conventional workflows has
been described. Based on this requirements on the supporting infrastructure for
scientific computing have been derived. Some of the requirements can be addressed
by existing techniques from conventional workflows, among which are the
approaches for (domain-specific) workflow modeling, parallelization of work using
the concept of workflow instances, flexibility and others. These still need some
extensions to enable a full-fledged support for scientific experimenting, scientific
workflows and simulations.

Acknowledgements

The author would like to thank Mirko Sonntag, Katharina Görlach, Michael Reiter,
Polina Malets, Rania Khalaf, Ingo Weber, Frank Leymann for the fruitful discussions.
Thanks also go to my colleagues at IAAS and many SimTech [44] researchers at the
University of Stuttgart.

References1

1. OASIS: Web Services Business Process Execution Language Version 2.0. OASIS
Standard (2007), http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html

2. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice Hall, Englewood Cliffs (2005)

3. W3C: Web Services Description Language (WSDL) Version 2.0 Part 0: Primer (2007),
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/

4. Karastoyanova, D., Leymann, F.: BPEL’n’Aspects: Adapting Service Orchestration Logic.
In: Proceedings of the 7th International Conference on Web Services, ICWS 2009 (2009)

5. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall,
Englewood Cliffs (2000)

1 Some of the references are to be considered as additional literature and are not explicitly

referenced in the work.

192 D. Karastoyanova

6. Reichert, M., Dadam, P.: Adeptflex – Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Information Systems 10(2) (1998)

7. Charfi, A., Mezini, M.: Aspect-Oriented Web Service Composition. In (LJ) Zhang, L.-J.,
Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 168–182. Springer, Heidelberg
(2004)

8. W3C: Web Services Policy 1.5 – Attachment. W3C Recommendation (2007),
http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/

9. Wiselka, M.: Erweiterung einer AOP-fähigen BPEL Engine um die Kompensation von
eingewobenen Aktivitäten. Diploma Thesis No. 2905, University of Stuttgart (2009)

10. Niemöller, J., Levenshteyn, R., Freiter, E., Vandikas, K., Quinet, R., Fikouras, I.: Aspect
Orientation for Composite Services in the Telecommunication Domain. In: Proceedings of
7th International Joint Conference ICSOC-Service Wave (2009)

11. Charfi, A.: Aspect-Oriented Workflow Languages: AO4BPEL and Applications,
Fachbereich Informatik, TU Darmstadt, PhD Thesis (2007)

12. Courbis, C., Finkelstein, A.: Towards Aspect Weaving Applications. In: Proceedings of
ICSE (2005)

13. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 269–282.
Springer, Heidelberg (2005)

14. Baresi, L., Guinea, S.: A Dynamic and Reactive Approach to the Supervision of BPEL
Processes. In: Proceedings of the 1st India Software Engineering Conference, ISEC (2008)

15. van der Aalst, W.M.P., Jablonski, S.: Dealing with workflow change: identification of
issues and solutions. International Journal of Computer Systems Science and
Engineering 15(5) (2000)

16. van der Aalst, W., van Hee, K.: Workflow Management. Model, Methods and Systems.
MIT Press, Cambridge (2002)

17. Chappell, D.: Enterprise Service Bus. O’Reilly Media, Inc., Sebastopol (2004)
18. Czajkowski, K., et al.: From Open Grid Services Infrastructure to WS-Resource

Framework: Refactoring & Evolution. Global Grid Forum Draft Recommendation (2004)
19. Emmerich, W., Butchart, B., Chen, L., Wassermann, B., Price, S.: Grid Service

Orchestration Using the Business Process Execution Language (BPEL). Journal of Grid
Computing 3, 283–304 (2005)

20. Foster, I.: What is the Grid? - a three point checklist. GRIDtoday 1 (2002),
http://www.Gridtoday.com/02/0722/100136.html

21. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, San Francisco (2004)

22. Fox, G.C., Gannon, D.: Workflow in Grid Systems. Concurrency and Computation:
Practice and Experience 18, 1009–1019 (2006)

23. Gannon, D.: A Service Architecture for eScience Grid Gateways. In: Grid Computing,
High-Performance and Distributed Applications, GADA 2007 (2007)

24. Gehlert, A., Hielscher, J., Danylevych, O., Karastoyanova, D.: Online Testing,
Requirements Engineering and Service Faults as Drivers for Adapting Service
Compositions. In: Proceedings of MONA+ at ServiceWave (2008)

25. Kaye, D.: Loosely Coupled: The Missing Pieces of Web services. RDS Press (2003)
26. Karastoyanova, D., Leymann, F.: Making scientific applications on the grid reliable

through flexibility approaches borrowed from service compositions. In: Antonopoulos, et
al. (eds.) Handbook of research on P2P and grid systems for service-oriented computing:
Models, methodologies and applications, Information Science Publishing, United
Kingdom (2009)

 On Scientific Experiments and Flexible Service Compositions 193

27. Karastoyanova, D., Van Lessen, T., Nitzsche, J., Wetzstein, B., Wutke, D., Leymann, F.:
Semantic Service Bus: Architecture and Implementation of a Next Generation
Middleware. In: Proceedings of the 2nd International Workshop on Services Engineering
(SEIW) 2007, in conjunction with ICDE (2007)

28. Karastoyanova, D.: Enhancing Flexibility and Reusability of Web Service Flows through
Parameterization. PhD Thesis. TU-Darmstadt, Shaker Verlag (2006)

29. Karastoyanova, D., et al.: Parameterized BPEL Processes: Concepts and Implementation.
In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 471–
476. Springer, Heidelberg (2006)

30. Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F., Buchmann, A.: Extending
BPEL for Run Time Adaptability. In: Proceeding of EDOC (2005)

31. Keller, A., Badonnel, R.: Automating the Provisioning of Application Services with the
BPEL4WS Workflow Language. In: Sahai, A., Wu, F. (eds.) DSOM 2004. LNCS,
vol. 3278, pp. 15–27. Springer, Heidelberg (2004)

32. Khalaf, R., Karastoyanova, D., Leymann, F.: Pluggable Framework for Enabling the
Execution of Extended BPEL Behavior. In: Proceedings of the 3rd ICSOC International
Workshop on Engineering Service-Oriented Application: Analysis, Design and
Composition (WESOA 2007). Springer, Heidelberg (2007)

33. van Lessen, T., Nitzsche, J., Dimitrov, M., Konstantinov, M., Karastoyanova, D., Cekov,
L.: An Execution Engine for Semantic Business Process. In: 2nd International Workshop
on Business Oriented Aspects concerning Semantics and Methodologies in Service-
oriented Computing (SeMSoC), in conjunction with ICSOC (2007)

34. Leymann, F.: The (Service) Bus: Services Penetrate Everyday Life. In: Benatallah, B.,
Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 12–20. Springer,
Heidelberg (2005)

35. Leymann, F.: Choreography for the Grid: towards fitting BPEL to the Resource
Framework: Research Articles. Journal of Concurrency and Computation: Practice &
Experience 18, 1201–1217 (2006)

36. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall
PTR, Englewood Cliffs (1999)

37. Mietzner, R., Karastoyanova, D., Leymann, F.: Business Grid: Combining Web services
and the Grid. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets.
LNCS, vol. 5460, pp. 136–151. Springer, Heidelberg (2009)

38. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPEL light. In: Alonso, G.,
Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 214–229. Springer,
Heidelberg (2007)

39. OASIS Web services Resource Framework (WSRF) TC (2008),
http://www.oasis-open.org/committees/documents.php?
wg_abbrev=wsrf

40. Sonntag, M., Karastoyanova, D.: Next Generation Interactive Scientific Experimenting
Based On The Workflow Technology. In: 21st IASTED International Conference on
Modelling and Simulation (2010)

41. Sonntag, M., Karastoyanova, D., Leymann, F.: The Missing Features of Workflow
Systems for Scientific Computations. In: Proceedings of the 3rd Grid Workflow
Workshop, GWW (2010)

42. Sonntag, M., Görlach, K., Karastoyanova, D., Leymann, F., Reiter, M.: Process Space-
based Scientific Workflow Enactment. International Journal of Business Process
Integration and Management (IJBPIM) Special Issue on Scientific Workflows 5(1), 32–44
(2010)

194 D. Karastoyanova

43. Sonntag, M.: BPEL4Pegasus Demonstration Video (2010),
http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/
sonntag/indexE.php#videos

44. SimTech Cluster of Excellence at the University of Stuttgart:
http://www.simtech.uni-stuttgart.de/

45. Ludaescher, B., et al.: Scientific workflows: Business as usual? In: Dayal, U., Eder, J.,
Koehler, J., Reijers, H.A. (eds.) Business Process Management. LNCS, vol. 5701, pp. 31–
47. Springer, Heidelberg (2009)

46. Altintas, I., et al.: Kepler: An extensible system for design and execution of scientific
workflows. In: Proc. International Conf. on Scientific and Statistical Database
Management (2004)

47. Churches, D., et al.: Programming scientific and distributed workflow with Triana
services. In: Concurrency and Computation: Practice and Experience. Special Issue on
Scientific Workflows (2005)

48. Oinn, T., et al.: Taverna: Lessons in creating a workflow environment for the life sciences.
Concurrency and Computation: Practice and Experience 18(10), 1067–110 (2006)
doi:10.1002/cpe.993

49. Deelman, E., et al.: Pegasus: Mapping scientific workflows onto the grid. In: Proc. of 2nd
European AcrossGrids Conf., pp. 11–20. Springer, Heidelberg (2004)

50. Mietzner, R., Leymann, F.: Towards Provisioning the Cloud: On the Usage of Multi-
Granularity Flows and Services to Realize a Unified Provisioning Infrastructure for SaaS
Applications. In: Proceedings of the International Congress on Services, SERVICES
(2008)

51. Reimann, P.: Optimization of BPEL/SQL Flows in Federated Database Systems, Diploma
Thesis No. 2744 (2008)

52. Wieland, M., Görlach, K., Schumm, D., Leymann, F.: Towards Reference Passing in Web
Service and Workflow-based Applications. In: Proceedings of the 13th IEEE Enterprise
Distributed Object Conference, EDOC 2009 (2009)

53. Benzing, A., Koldehofe, B., Rothermel, K.: Distributed Diagnostic Simulations for the
Smart Grid. Accepted Poster at the 1st International Conference on Energy-Efficient
Computing and Networking: E-Energy (2010)

Peer-to-Peer Web Search:
Euphoria, Achievements, Disillusionment,

and Future Opportunities

Gerhard Weikum

Max-Planck Institute for Informatics
Saarbruecken, Germany

weikum@mpi-inf.mpg.de

Abstract. The peer-to-peer (P2P) computing paradigm has been very successful
like file sharing in Internet-wide communities (e.g., Gnutella, BitTorrent) or IP
telephony (e.g., Skype). P2P systems promise perfect scalability from few peers
to many millions, and resilience to failures, dynamic variability, and even mis-
behaving peers with egoistic or even malicious behavior. None of these salient
properties requires any global planning, administration, or control; so P2P sys-
tems are completely self-organizing.

Web search seems to be a perfect match for P2P architectures. The Web has
naturally distributed data, spread across the entire Internet, as opposed to ar-
tifically hosting all content by a centralized search engine. For user-provided
contents in Web 2.0 communities, consideration of the content ownership, the
autonomy of users, and the individualized control of privacy would also suggest
decentralized solutions with many peers. Using the combined power and knowl-
edge of millions of users and their computers could offer a more informative and
pluralistic view of the world’s information. A P2P search engine could benefit
from the intellectual input – bookmarks, queries, clicks – of a large user commu-
nity, without undue risks about privacy or censorship, because users can gather
logs on their own computers and control further sharing and aggregation by their
individual policies. These potential benefits have motivated a wealth of exciting
research on algorithms and systems for P2P Web search. This paper gives a brief
overview on the last decade’s research achievements along these lines.

Despite all these intriguing promises and notwithstanding the impressive suc-
cess of simpler file-sharing applications, P2P approaches to Web search or Web
2.0 services did not make a significant impact on the practical deployment side.
The wave of P2P euphoria in academic research was followed by a phase of
disillusionment about the lack of business models and user incentives. This pa-
per discusses these shortcomings, and points out new opportunities for the P2P
paradigm to play a more successful role in future Web applications.

1 Promises and Euphoria

Peer-to-peer (P2P) systems [38] aim to provide scalable and self-organizing ways of
loosely coupling thousands or millions of computers in order to jointly achieve some
global functionality. In the last decade, very successful systems of this kind have been
built. Most notably, these include file-sharing networks such as Gnutella or BitTorrent,

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 195–208, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

196 G. Weikum

and IP telephony like Skype and other collaborative messaging services. They organize
peers in so-called overlay networks on top of the standard Internet infrastructure, and
use various forms of epidemic dissemination (“bounded flooding”) and distributed data
structures like distributed hash tables (DHTs). The basic functionality that underlies
many of these systems is the distributed and dynamic maintenance of a dictionary with
efficient support for exact-match key lookups. A key property of P2P systems is that
there should be “no centralized anything”: data, computation, control, and administra-
tion should be fully decentralized and preserve the autonomy of the participating peers.
The latter implies high dynamics, as peers may join or leave the network without prior
notice.

Web search is not a “naturally born” P2P application, as it requires much richer
functionality than exact-match lookups. Keyword queries over Web contents combine
multiple dimensions of a very-high-dimensional data space in an ad hoc manner so that
standard multi-dimensional data structures are not applicable, and they require ranking
of query results based on statistics about local and global keyword frequencies. Thus,
P2P Web search cannot be implemented as a straightforward application of a P2P file-
sharing network. On the other hand, it is extremely intriguing to build Web search in a
P2P manner for various reasons:

– Naturally distributed contents. First, the producers and owners of Web pages are
widely distributed and autonomous. Thus, the standard approach of crawling the
Web and collecting all pages in a central site for a global index and centralized
search engine is actually unnatural, but has advantages regarding system manage-
ment and commercial services (e.g., query-specific advertisements and the moni-
toring of click-through rates).

– User behavior at individual and community level. Second, user queries and
clicks can be locally observed on the user’s computer for personalized search with
the user staying in control (e.g., for physical deletion of logged activities), whereas
a centralized collection of all this user information may be perceived as a potential
privacy risk. On the other hand, whenever users are willing to release specific parts
of their personal information, possibly in aggregated or anonymized form, this data
could be a great asset in exploiting community behavior – bookmarks, tags, clicks,
etc. – at massive scale without committing to a large centralized provider.

– Computing power and energy. Third, when a P2P network succeeds in attract-
ing millions of peers, the total computing power would vastly exceed the per-
formance capacity of the data centers of today’s major search engines and could
facilitate advanced forms of natural-language processing or machine learning for
deeper analysis and enhanced indexing of Web contents. Moreover, although the
energy-efficiency of many small computers is clearly worse than that of a high-
end-engineered data center, the fact that many small computers across the world
are continuously running with substantial idle times could still potentially yield
enormous energy savings and reduce environmental damage.

– Pluralism and political dimension. Finally, but perhaps even more importantly, a
P2P Web search engine could also facilitate pluralism in informating users about

Peer-to-Peer Web Search 197

Internet contents, which is crucial in order to preclude the formation of information-
resource monopolies, the biased visibility of content from economically powerful
sources, and politically motivated censorship.

Motivated by these compelling expectations, there was a euphoric wave of research
projects on P2P search in the last decade. Many of them focused on algorithmic building
blocks, but quite a few actually built full-fledged systems (e.g., [7,12,19,28,31,35], see
also [38] for further literature) that could, in principle, be deployed at Internet scale. In
recent years, it was also recognized that Web 2.0 communities, with their user-provided
and richly interlinked contents, would be a natural fit for P2P approaches. For example,
one could combine Web search with recommendations derived from social networks in
the modern cyber-world. However, despite this intriguing potential, today’s Web and
Web 2.0 solutions are more centralized than ever: Web search is firmly in the hands of
three “mega-providers”, and the market for social-network providers has also evolved
towards a very small number of big commercial players.

This paper reviews the research achievements on P2P Web search, and discusses
why the P2P paradigm did nonetheless not have any significant impact on Web solu-
tions and business practice. On the optimistic side, the paper also speculates on future
opportunities for the P2P paradigm.

2 Technical Problems

Approaches to P2P Web search are reminiscent of earlier work on distributed infor-
mation retrieval (IR), most notably, various kinds of metasearch engines where queries
are routed to judiciously chosen search providers [9,15,25]. However, the P2P setting
is much more challenging regarding the enormous scale of the underlying data sources,
the dynamics of the system, and the autonomy of the individual peers.

We assume that every peer has a powerful local search engine, with its own crawler
(or other means of content organization such as photo albums), indexer, and query pro-
cessor. Such a peer can compile its own content from thematically focused crawls or
by organizing user’s personal data, and make this content available in a P2P overlay
network. This entails the issue of how to best connect a peer with other peers, using
either a structured overlay, e.g., based on DHTs, or unstructured overlay, e.g., with
epidemic dissemination in bounded neighborhoods. Search requests issued by a peer
can first be executed locally, on the peer’s locally indexed content. When the recall of
the local search result is unsatisfactory, the query can be forwarded to a small set of
other peers that are expected to provide thematically relevant, high-quality and previ-
ously unseen results. Deciding on this set of target peers is the query routing problem
in a P2P search network, also known as “collection selection” in IR terminology. Sub-
sequently, the actual search on the chosen target peers requires efficient algorithms for
distributed top-k query processing. Search results are then returned by different peers
and need to be meaningfully merged, which entails specific problems for result rank-
ing. Both query routing and result ranking can build on various forms of distributed
statistics, computed in a decentralized way and aggregated and disseminated in a scal-
able P2P manner (using compact synopses such as Bloom filters or hash sketches and
leveraging a DHT infrastructure).

198 G. Weikum

3 Achievements

3.1 Self-organizing Overlay Networks

Peer-to-peer overlay networks should have various good properties, that are algorith-
mically guaranteed at least with high probability. These include the efficiency of basic
operations like searching for a key or inserting a new key-value pair, all of which should
have worst-case run-times that are logarithmic in the network size. The desiderata also
include resilience to peer failures, and smoothly coping with the potentially high dy-
namics of load, data, and network structure, including the so-called “churn” problem
that arises when many peers join or leave the P2P system. All this should be scalable,
so that with a growing number of peers the same performance and availability levels
can be guaranteed at every scale and with near-perfect load balancing, and it should be
self-organizing, meaning that the system never needs to resort to external intervention
by a human administrator.

Structured overlays based on distributed hash tables (DHTs) are the best known
approaches to satisfy these requirements; the Chord and Pastry systems fall into this
category [39,36]. Their principle is to hash searchable keys onto peer identifiers orga-
nized as a ring or other suitable topology. Then any peer can initiate a search request,
and small routing tables of logarithmic size at every peer are sufficient to reach the
key (or find out that it does not exist in the overall network) in a logarithmic number
of message-forwarding steps. In case of peer failures or churn, the overlay network is
self-repairing by adjusting the routing tables. The load across peers is always kept bal-
anced (except for unavoidable minor fluctuations). For faster average access time and
high availability in the presence of transient failures, data items can be easily replicated
onto multiple peers. The hash-based organization ensures that failure probabilities are
independent among the replica holders of an item, and the replication mechanism can
be seamlessly integrated with the DHT self-maintenance.

Building simple Web search and IR functionality on top of a DHT is relatively
straightforward. Every term that can be used in a keyword query is treated as a key
for the DHT. This can include words, word stems, but also bi-grams (two successive
words), variable-length phrases like names of people, organizations, locations, songs,
etc. The data item associated with such a key can be either a set of Web pages or other
forms of documents, or it can be an inverted list for the given term, that is, a list of point-
ers to the documents that contain the term. In the former case, the documents are spread
across all peers of the network; in the latter case, only the inverted lists are spread
and the documents themselves can stay at their “native” location, usually the peer of
the data owner. Both cases are easily supported by the DHT infrastructure. However,
queries with multiple terms entail advanced query processing with multiple DHT oper-
ations with various degrees of freedom for query optimization. Moreover, this approach
by itself does not support any statistics-based ranking of search results. While some
form of scores can be easily stored in the entries of an inverted list, their interpreta-
tion and aggregation over multiple lists is a separate issue (see below) and not directly
supported by the DHT.

Unstructured overlays are an alternative to the DHT-based architectures. Typically,
peers are connected into a random graph with O(log n)- or even O(1)-bounded

Peer-to-Peer Web Search 199

degrees (i.e., incident edges per node). Instead of truly random graphs (in the Erdös-
Renyi sense), some randomized form of graph construction may be used, and nodes are
dynamically re-wired to cope with failures and churn. Ideally, the overlay would form a
so-called expander graph, for which the diameter, and thus maximum number of mes-
sage hops, is guaranteed to be logarithmic in the network size (with high probability).
[24] has shown how to achieve this objective in a fully self-organizing manner. To obtain
an overlay network with short diameter and high connectivity, any initial topology can
be turned into a regular random graph (with the same constant degree for every node)
by repeatedly performing a very inexpensive, purely local Pointer-Push&Pull opera-
tion that involves only two neighboring peers, with the peers chosen by random walks.
With this method, the network provably converges to an expander graph asymptotically
almost surely. Moreover, the method can easily maintain this property as the network it-
self evolves, simply by continuously running in the background. While this an example
of an overlay with mathematically provable properties, there are alternative approaches
with similar flavor that are practically superior. For example, the BubbleStorm method
[41] uses randomly wired, regular multi-graphs where multi-edge degrees reflect the
corresponing link bandwidths of the underyling physical network. This approach com-
bines the advantages of random graphs with practical considerations of real network
properties.

Searching keys in an unstructured overlay of this kind is bound to be either spec-
ulative – hoping that the keys are found in the local neighborhood – or exhaustive
– potentially asking every peer in the network. More technically, bounded forms of
“epidemic flooding”, or equivalently random walks, are used to prompt the peers in
an increasingly enlarged neighborhood of the search request’s origin. Therefore, worst-
case execution times for queries are poor. However, the randomized nature of the search
and the small diameter of the network can be harnessed to derive probabilistic guar-
antees for finding keys within a small number of hops with high probability. With
data items replicated at random peers, the probability of unsuccessfully terminating
a search for an actually existing key drops even further and is often neglibly small.
With these properties, unstructured overlays are an attractive alternative to DHTs for
supporting Web search and other IR tasks. It is straightforward to implement inverted-
lists-driven algorithms in this setting, but also more complex operations such as partial-
match search or similarity-based approximate search (e.g., tolerating mis-spellings) fit
nicely with the principles of unstructured overlays. In this regard, unstructured overlays
are more versatile than DHTs.

3.2 Query Routing

In unstructured overlays and also in structured overlays where peer autonomy dictates
that the full content of searchable data items stays with the owner, search can usually
never be exhaustive. DHT-based inverted lists and epidemic exploration should provide
directives for contacting good peers that could answer a user query, but would typically
limit this selection to a subset of the possible answers. This is the query routing problem,
or peer selection problem. A practically viable query routing strategy needs to consider
the similarity of peers in terms of their thematic profiles, the overlap of their contents,

200 G. Weikum

the potential relevance of a target peers collection for the given query, and also the costs
of network communication and peer-specific processing loads.

Traditionally, the most important measure for assessing the benefit of a candidate tar-
get peer for a given query is the estimated relevance of the peer’s overall content for the
query. This standard IR measure can be estimated frequency statistics over the query’s
keywords (terms in IR jargon). In conventional, document-oriented, IR, these would be
term frequencies (tf) within a document and the so-called inverse document frequen-
cies (idf), the reciprocal of the global number of documents that contain a given term.
In P2P IR, the estimation is based on the overall content of a peer as a whole. Instead
of tf we consider the document frequency (df) of a peer, the total number of documents
that contain the term and are in the peers collection; and instead of idf we consider the
inverse collection frequency (icf), which is the reciprocal of the total number of peers
that contain (at least one document with) the term. These basic measures are combined
into a relevance or query-specific quality score for each candidate peer. There are vari-
ous models for the combined scores; among the most cited and best performing models
are CORI [9], based on probabilistic IR, and statistical language models adapted to the
setting of P2P collection selection [23]. The Decision-Theoretic Framework (DTF) [32]
provides a unified model for incorporating quality measures of this kind as well as var-
ious kinds of cost measures. All these models are also applicable to Web 2.0 settings,
especially so-called “social tagging” communities, where the concept of user annota-
tions (tags) would take the role of terms.

Selecting peers solely by query relevance, like CORI routing, potentially wastes re-
sources when executing a query on multiple peers with highly overlapping contents. To
counter this problem, methods for estimating the overlap of two peers’ contents have
been developed. These estimates are then factored into an overlap-aware query routing
[27] method by using a weighted combination of peer quality and overlap (or novelty)
as ranking and decision criterion.

Query routing decisions are typically made at query run-time, when the query is
issued at some peer. But the above methods involve directory lookups, statistical com-
putations, and multi-hop messages; so it is desirable to pre-compute preferred routing
targets and amortize this information over many queries. A technique for doing this is
to encode a similarity-based pre-computed binary relation among peers into a Semantic
Overlay Network (SON) [11,40]. The routing strategy would then select target peers
only or preferably from the SON neighbors of the query initiator.

3.3 Distributed Top-k Query Processing

Search engines execute multi-keyword queries by aggregating pre-computed partial
scores for individual keywords and computing the top-k results with the highest to-
tal scores (with typical k being 10 for end-user consumption, but potentially in the
hundreds for search-result diversification, clustering, visualization, etc.).

For centralized systems, the algorithm of choice for processing such top-k aggrega-
tion queries is the family of threshold algorithms, also known as Fagin’s TA [13]. This
method operates on pre-computed index lists, one for each keyword (searchable term).
Each list consists of entries that capture a score for a document or data item, and the

Peer-to-Peer Web Search 201

entries are sorted in descending order of scores. TA scans the lists to which a given
query refers and incrementally aggregates the scores that are seen for result candidates.
Additionally, TA can look up values for promising candidates at the cost of random ac-
cess to the relevant index entries. In distributed settings, however, the index lists usually
reside on different peers, and the fine-grained nature of the TA algorithm then incurs
high communication costs. Notwithstanding some interesting work on distributed ex-
tensions of TA [3], the cost of many small messages makes TA less attractive for P2P
querying and rather suggests alternatives that operate with fewer (but larger) messages
for data exchange.

A fundamental alternative to the TA paradigm is to convert the top-k query into a
set of range queries with educated guesses (e.g., driven by pre-computed statistics such
as histograms) for the range parameters, thus producing result candidates for subse-
quent aggregation and priority-queue-based ranking. For distributed settings, this ap-
proach has led to the TPUT and KLEE algorithms, which define the state of the art.
TPUT [10] operates on m distributed lists in three phases: the first phase retrieves the
best k candidates from each list and aggregates them; the second phase then generates
range queries on all lists to retrieve all further candidates whose local values exceed or
equal 1/m of the rank-k partially aggregated value from the first phase; the third phase
performs random lookups to complete the aggregation for all retrieved candidates and
safely determine the top-k result items.

The KLEE family of algorithms [26] (see also [47] for related parallel work) gen-
eralizes and improves the TPUT approach by adding statistics for predicting scores of
candidates after the first phase of initial retrieval. To this end, index lists are enhanced
by score-distribution histograms and a set of Bloom filters that capture the items whose
scores fall into specific score intervals. Histograms and Bloom filters are very compact
data structures that can be piggybacked on the result transfer of the first-phase candidate
fetching, at very small extra cost. The query coordinator that is responsible for aggre-
gating partial scores thus obtains valuable additional information about candidates that
allows speculative completion of scores. In particular, the additional knowledge can
be harnessed for deriving a higher threshold for the second phase’s range queries and
saving substantial execution and communication costs in this most expensive step. As
Bloom filters are hash-based and potentially lossy, this approach leads to an approx-
imation algorithm, but the potential error is typically negligible and can be explicitly
tuned to the application needs. The KLEE family goes even one step further in its ex-
plicit control of quality/cost tradeoffs, and optionally allows omitting the final random-
lookup phase and other optimizations. For large numbers of input lists and peers with
highly varying performance characteristics, it is often desirable to structure the overall
execution into a flexible execution tree of aggregation operators. Then, database query
optimization algorithms, based on dynamic programming, can be used to compute a
cost-optimal or near-optimal form of operator tree [30].

3.4 Search Result Ranking

When a query returns results that have been obtained from different peers, the scores
that the peers assign to them are usually not comparable. The reason is that different

202 G. Weikum

peers may use different statistics, for example, for estimating the idf value of a term
which is crucial for weighting the importance of different query terms, or they may
even use completely different IR models. This situation leads to the problem of result
merging. It is addressed by re-normalizing scores from different peers to make results
meaningfully comparable. A variety of such methods exist in the literature, some using
only the peer-specific scores and some aggregated measures about peers (e.g., the total
number of documents per peer), some using sampling-based techniques, and some using
approaches that first reconstruct the necessary global statistics (e.g., global document
frequencies for each term) for optimal re-normalization of scores.

Web search ranking usually considers also the query-independent authority of pages
as derived from link analysis, and a P2P network is a natural habitat for such “social
ratings” of authority or trust. Link analysis algorithms such as PageRank [8] are cen-
tralized algorithms with very high memory demand. Executing them in a distributed
manner would allow scaling up to even larger link graphs, by utilizing the aggregated
memory of a P2P system. Various decentralized methods have been developed to this
end, including a general solution to the spectral analysis of graphs and matrices, which
underlies the PageRank computation.

Most of these methods assume that the underlying Web graph can be nicely parti-
tioned among peers (e.g. [22]). In contrast, a P2P system with autonomous peers faces
a situation where the Web pages and links that are known to the individual peers are
not necessarily disjoint. The JXP algorithm [34] computes global authority measures
such as PageRank in a decentralized P2P manner, when the Web graph is spread across
autonomous peers and the peers’ local graph fragments overlap arbitrarily, and peers
are (a priori) unaware of other peers’ fragments. With JXP, each peer computes the au-
thority scores of the pages that it has in its local index, by locally running the standard
PageRank algorithm. A page may be known and indexed by multiple peers, and these
may have different scores for that same page. A peer gradually increases its knowl-
edge about the rest of the network by meeting with other, randomly chosen, peers and
exchanging information, and then recomputes the PageRank scores for its pages of in-
terest. The local computations are very space-efficient (as they require only the local
graph and the authority-score vector), and fast (as they operate on much smaller graph
fragments than a server-side global PageRank computation). The scores computed by
JXP provably converge to the same values that would be obtained by a centralized
PageRank computation on the full Web graph.

These kinds of algorithms are also interesting for analyzing authority and reputation
measures in large-scale social networks (e.g. [16]). For example, in a bookmark-sharing
and social-tagging environment such as librarything.com, every user may manage her
own collections (such as books), friendship lists, and friends information on her own
computer or at least by means of a personalized agent governed by the user’s individual
policy (e.g., for visibility by other parties and for revoking information). Finding the
highest-authority data items, such as books, and the most influential or most trusted
users require extended forms of link analyses (over typed graphs with different kinds
of entities as nodes). Then, a decentralized peer-to-peer algorithm would again be the
method of choice.

Peer-to-Peer Web Search 203

3.5 Distributed Statistics

P2P search engines require statistics about data and load at both local and global lev-
els. For example, query routing needs estimates of candidate peers’ content features,
their content overlap, the local and global correlations among different keywords in the
query, and so on. It has turned out that this issue of distributed statistics management
is a very important, overriding research topic by itself. It entails the gathering of dis-
tributed statistics, the efficient estimation of a wide variety of interesting measures, with
tunable accuracy, and the dissemination of the results to peers that are in need of such
statistics.

There are at least three major alternatives for going about these issues:

– aggregation trees that build on the topology of the overlay network for statistical
computations (e.g., [45,46]),

– gossiping algorithms that spread partially aggregated data (e.g., partial sums) through
the network, with eventual convergence to the full result (e.g., [20,41]), and

– distributed synopses that combine compact, often hash-based, approximations of
local statistics into globally aggregated synopses (e.g., [33]).

All three approaches have strengths, but also limitations. Algorithms based on aggre-
gation trees scale very well but typically depend on specifics of the overlay network
and have limited adaptivity to high network dynamics. Gossiping algorithms are best
suited for unstructured overlays; they may be wasteful on network resources when run
in structured overlays. Synopses-based methods are based on probabilistic summaries
like Bloom filters, hash sketches, etc. They are very elegant, but strictly bounding esti-
mation errors in a distributed setting is not an easy issue. Both gossiping and synopses
may give probabilistic results only, that is, approximate results that are correct with
probability converging to one; this is usually acceptable in a large-scale, highly dy-
namic system.

As a concrete example for combining synopses-based statistical estimation with a
DHT overlay, consider the estimation of global document frequencies in a P2P system,
an IR measure that counts for each term the number of distinct documents that contain
this term. Because of the overlap in the contents of different peers, this counting is not
straightforward at all. An analogy is the species-counting problem for bird watchers:
each bird watcher reports a total number of birds and her estimate of the number of dis-
tinct species that she saw. When aggregating over all bird watchers, one cannot simply
sum up the observations, as several bird watchers may have seen the same flock passing
by. The solution builds local Flajolet-Martin hash sketches [14], for each term on each
peer, then distributes them based on the DHT’s hash function, and finally aggregates the
hash sketches that different peers send for the same term by a simple bit-wise union.
The correctness of this approach falls out directly from the distributivity of the hash-
sketch construction [6]. Similar ideas have led to approaches for capturing important
correlations among search terms in large-scale P2P networks [5].

There is a wealth of efficient and scalable P2P algorithms for similar statistical tasks,
within each of the three paradigms outlined above.

204 G. Weikum

4 Disillusionment and Lessons Learned

The last decade’s intensive research on P2P Web search has contributed many good
building blocks for distributed data management in general. These are not only suit-
able for P2P search, but also applicable to Grid environments or Cloud computing. Ex-
amples are distributed link analyses, statistical computations, and further analytics on
Web-scale datasets. In fact, the services of major Internet, Web, and Web 2.0 providers
would not be possible without such scalable algorithms. However, these algorithms run
inside centralized data centers: large distributed systems with hundred thousands of
computers but very different from a P2P system. Overall, the P2P paradigm has not
been successful in influencing practical solutions for Web search, recommendations,
and analytics. None of the research prototypes made it into notable business stories,
and commercial endeavors with P2P flavor did not catch on either. There are several
technical and non-technical reasons for this disillusioning observation about the poor
impact of P2P research: 1) manageability issues, 2) the business model, 3) misbehaving
users, and 4) privacy concerns.

Manageability: The promise of self-organizing large-scale systems has not been ful-
filled yet. Although the abstract arguments about self-healing and self-optimizing P2P
systems are valid in principle, nobody seems to have found a practical way yet of fully
realizing this potential. Components break all the time, software is buggy or corrupted
by attacks, and consistently good performance with quality-of-service guarantees needs
a lot of human planning and continuous care by system administrators. The manageabil-
ity of centralized data centers is still much bettter and the service guarantees are much
stronger and tangible than what has been achieved so far with P2P architectures where
individual peers may exhibit unpredictable and arbitrary wild behavior. For simple ap-
plications like file-sharing, this is not a P2P showstopper, but for richer functionality
like Web search and higher standards of user expectations about service quality, this is
a serious impediment.

Business model: Every system paradigm, technology, or service that strives for im-
pact on millions of users needs a business model, with a good balance of financing the
steady-state costs of the system or service and low pricing or even free service to attract
a large user community. Web search engines have gone through this before, and their
business model today is clearly the income from clicks on advertisements. This model
cannot be easily copied by P2P search engines for various reasons: first, the ads market
is already controlled by big stakeholders, and second, it is not easy at all to intelligently
place fresh ads, based on a real-time auction with many commercial advertisers, on
“just the right computer” at “just the right time” in a huge and totally decentralized P2P
network. Refining the second point, it is also tremendously difficult to monitor user
activities in a P2P fashion and ensure that all clicks on ads are properly tracked for ac-
counting, while eliminating clickthrough fraud. It has taken the search engine industry
major investments to establish their currently successful systems. This cannot be easily
mimicked by totally decentralized approach. One may wonder why and how other P2P
applications have managed to become widely deployed. A speculative answer lies in
the “no centralized anything” paradigm, which includes no centralized accounting, de
facto meaning that services are free, and no centralized legislation. The former applies

Peer-to-Peer Web Search 205

to Skype, which has attracted so many users because it is free, and the latter applies
to file-sharing where a large fraction of the contents presumably is pirate copies of
software, music, and movies.

Misbehaving users: Clickthrough fraud and content piracy are specific forms of mis-
behaving users. In P2P Web search, abnormal behavior would span a wide range from
content spamming and manipulating of search results or rankings all the way to sabo-
taging the entire system. It is a huge challenge to counter such anomalies and attacks
in a fully decentralized way. As a concrete case in point, reconsider the distributed link
analysis over Web graphs or social-network graphs spread across thousands or millions
of autonomous peers. Algorithms for this purpose must rely on message passing be-
tween peers, which implies the risk of cheating peers. For example, when replying to
a request about locally computed PageRank values or social-authority scores, a peer
may lie and return incorrect values to manipulate the prestige scores of the user or her
contents. Such misbehavior cannot be easily countered. Although the research literature
contains ideas and approaches to this end, there are also lower-bound theorems on the
communication complexity of cheating-resilient link analysis over autonomous peers
[37]. Unfortunately, these results are not exactly encouraging, as they imply that ev-
ery approach with certain desirable properties needs a large number of messages and
a very long time for the computation to converge to the correct outcome. This is a big
showstopper unless fundamentally new approaches can be found.

Privacy concerns: More than ever, there is growing concern that centralized search
engines collect enormous amounts of personal data about users’ queries, clicks, reading
news, joining user groups, etc. The same holds for the providers of Web 2.0 social
networks. Even without any bad intentions on the side of those providers, there may be
bugs, system-management accidents, or attacks or internal sabotage that could unduly
release or abuse privacy-critical information. Ideally, a totally decentralized system like
a P2P architecture would be much less susceptible to these kinds of risks. The argument
is that every individual peer bears only a small risk because it has few data and few
connections to neighboring peers. Moreover, as peers are autonomous, every user could
perfectly control to what extent her data is shared with others and used for aggregation,
recommendation, etc. In reality, however, it is very unclear if the masses of users really
want to be bothered with fine-grained policy decisions about sharing-versus-privacy
issues, possibly on a daily basis. In addition, it is unclear if the P2P software is indeed
in no way corrupted. It is a grand challenge to enforce the privacy policies of millions of
users in a humongous distributed system with ever-changing structure. Thus, although
privacy has been an early argument in favor of the P2P approach, it still seems to be a
point where P2P solutions are much weaker than centralized ones.

5 Future Opportunities

The bottom line of this paper is that research on P2P Web search has contributed tech-
nically very interesting results, but has failed to become practically deployed at large
scale. Nevertheless, algorithmic building blocks are useful assets for other forms of
distributed computing, including the current wave of big-data analytics on Cloud plat-
forms. Perhaps, Web search is simply not a good application for P2P paradigm, despite

206 G. Weikum

the intriguing arguments that we gave in the beginning and that led to the initial eupho-
ria about this topic. We leave further discussion of this debatable point to the readers.
Instead, we conclude the paper with some speculation about potential killer applications
for P2P search in other settings.

First, there is a megatrend towards Web services on smart phones. This requires
location-aware search and recommendation (see, e.g., [29] and references given there).
Obviously, nearby devices could be an asset here. Also, the privacy concerns about
tracking users day and night at very precise resolutions may become super-critical, and
could trigger another wave of P2P euphoria (if business models can be worked out).

Second, instead of explicitly initiated search, many users may prefer being alerted
when something interesting happens that matches their search profiles. This calls for
publish-subscribe services, where conceptually queries are continuously running. As
such services have higher resource consumption than traditional simple search, P2P ap-
proaches may become more attractive from a cost/performance point of view [42,43,48].

Third, in a similar vein, queries themselves seem to become much more complex,
for example, by searching for entities (celebrities, diseases, drugs, etc.) and their re-
lationships (e.g., side-effects of drugs) rather than keywords to be matched by Web
pages. Also, now that the Web exists for almost two decades, there is huge value in the
history of digital-born content, so that advanced users (e.g., sociologists, journalists,
business or media analysts, etc.) are interested in “time-travel” access to Web archives
and also in “longitudinal” analytics of the data, e.g., to analyze the people, places, and
organizations related to a politician along the time dimension. The amount of data and
the complexity of the workload exceeds the capacity of today’s data centers and could
perhaps justify moving towards distributed, P2P-style architectures [1].

Fourth and last, the “Web of (Structured) Data” is finally growing at a high rate.
For example, governments and other public organizations are publishing an enormous
amount of data about their services and activities, using the RDF data model and follow-
ing the principles of Linked Open Data. News providers and the entertainment industry
also seem to pursue this direction of more structured data on the Web. This will lead
to a vastly distributed set of data-centric hosts, and it is questionable whether crawling
stays a viable option of handling this data. Instead, we may well see a revival of P2P ap-
proaches to managing this richly interlinked data in a fully decentralized manner (see,
e.g., [17,18,44]).

References

1. Anand, A., Bedathur, S.J., Berberich, K., Schenkel, R., Tryfonopoulos, C.: EverLast: a dis-
tributed architecture for preserving the web. In: JCDL 2009, pp. 331–340 (2009)

2. Baeza-Yates, R.A., Castillo, C., Junqueira, F., Plachouras, V., Silvestri, F.: Challenges on
Distributed Web Retrieval. In: ICDE 2007, pp. 6–20 (2007)

3. Balke, W.-T., Nejdl, W., Siberski, W., Thaden, U.: Progressive Distributed Top k Retrieval in
Peer-to-Peer Networks. In: ICDE 2005, pp. 174–185 (2005)

4. Barroso, L.A., Dean, J., Hlzle, U.: Web Search for a Planet: The Google Cluster Architecture.
IEEE Micro 23(2), 22–28 (2003)

5. Bender, M., Ntarmos, N., Triantafillou, P., Weikum, G., Zimmer, C.: Discovering and exploit-
ing keyword and attribute-value co-occurrences to improve P2P routing indices. In: CIKM
2006, pp. 172–181 (2006)

Peer-to-Peer Web Search 207

6. Bender, M., Michel, S., Triantafillou, P., Weikum, G.: Global Document Frequency Estima-
tion in Peer-to-Peer Web Search. In: WebDB (2006)

7. Bender, M., Michel, S., Parreira, J.X., Crecelius, T.: P2P Web Search: Make It Light, Make
It Fly. In: CIDR 2007, pp. 164–168 (2007)

8. Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas, P.: Link analysis ranking: algorithms,
theory, and experiments. ACM Trans. Internet Techn. 5(1), 231–297 (2005)

9. Callan, J.P., Lu, Z., Bruce Croft, W.: Searching Distributed Collections with Inference Net-
works. SIGIR, 21–28 (1995)

10. Cao, P., Wang, Z.: Efficient top-K query calculation in distributed networks. In: PODC 2004,
pp. 206–215 (2004)

11. Crespo, A., Garcia-Molina, H.: Semantic Overlay Networks for P2P Systems. In: Moro,
G., Bergamaschi, S., Aberer, K. (eds.) AP2PC 2004. LNCS (LNAI), vol. 3601, pp. 1–13.
Springer, Heidelberg (2005)

12. Cuenca-Acuna, F.M., Peery, C., Martin, R.P., Nguyen, T.D.: PlanetP: Using Gossiping to
Build Content Addressable Peer-to-Peer Information Sharing Communities. In: HPDC 2003,
pp. 236–249 (2003)

13. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput.
Syst. Sci. 66(4), 614–656 (2003)

14. Flajolet, P., Nigel Martin, G.: Probabilistic Counting Algorithms for Data Base Applications.
J. Comput. Syst. Sci. 31(2), 182–209 (1985)

15. Gravano, L., Garcia-Molina, H., Tomasic, A.: GlOSS: Text-Source Discovery over the Inter-
net. ACM Trans. Database Syst. 24(2), 229–264 (1999)

16. Guha, R.V., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In:
WWW 2004, pp. 403–412 (2004)

17. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.-U., Umbrich, J.: Data summaries
for on-demand queries over linked data. In: WWW 2010, pp. 411–420 (2010)

18. Hartig, O., Bizer, C., Freytag, J.C.: Executing SPARQL Queries over the Web of Linked Data
19. Kalnis, P., Ng, W.S., Ooi, B.C., Tan, K.-L.: Answering similarity queries in peer-to-peer

networks. Inf. Syst. 31(1), 57–72 (2006)
20. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-based

peer sampling. ACM Trans. Comput. Syst. 25(3) (2007)
21. Kempe, D., Dobra, A., Gehrke, J.: Gossip-Based Computation of Aggregate Information. In:

FOCS 2003, pp. 482–491 (2003)
22. Kempe, D., McSherry, F.: A decentralized algorithm for spectral analysis. In: STOC 2004,

pp. 561–568 (2004)
23. Lu, J., Callan, J.P.: Content-based retrieval in hybrid peer-to-peer networks. In: CIKM 2003,

pp. 199–206 (2003)
24. Mahlmann, P., Schindelhauer, C.: Distributed random digraph transformations for peer-to-

peer networks. In: SPAA 2006, pp. 308–317 (2006)
25. Meng, W., Yu, C.T., Liu, K.-L.: Building efficient and effective metasearch engines. ACM

Comput. Surv. 34(1), 48–89 (2002)
26. Michel, S., Triantafillou, P., Weikum, G.: KLEE: A Framework for Distributed Top-k Query

Algorithms. In: VLDB 2005, pp. 637–648 (2005)
27. Michel, S., Bender, M., Triantafillou, P., Weikum, G.: IQN Routing: Integrating Quality

and Novelty in P2P Querying and Ranking. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W.,
Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006.
LNCS, vol. 3896, pp. 149–166. Springer, Heidelberg (2006)

28. Mislove, A., Gummadi, K.P., Druschel, P.: Exploiting Social Networks for Internet Search.
HotNets (2006)

29. Mokbel, M.F. (ed.): Special Issue on Spatial and Spatial-temporal Databases. IEEE Data
Eng. Bull. 33(2) (March 2010)

208 G. Weikum

30. Neumann, T., Bender, M., Michel, S., Schenkel, R., Triantafillou, P., Weikum, G.: Distributed
top-k aggregation queries at large. Distributed and Parallel Databases 26(1), 3–27 (2009)

31. Nguyen, L.T., Yee, W.G., Frieder, O.: Adaptive distributed indexing for structured peer-to-
peer networks. In: CIKM 2008, pp. 1241–1250 (2008)

32. Nottelmann, H., Fuhr, N.: Comparing Different Architectures for Query Routing in Peer-
to-Peer Networks. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T.,
Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 253–264. Springer, Heidelberg (2006)

33. Ntarmos, N., Triantafillou, P., Weikum, G.: Distributed hash sketches: Scalable, efficient, and
accurate cardinality estimation for distributed multisets. ACM Trans. Comput. Syst. 27(1)
(2009)

34. Parreira, J.X., Castillo, C., Donato, D., Michel, S., Weikum, G.: The Juxtaposed approximate
PageRank method for robust PageRank approximation in a peer-to-peer web search network.
VLDB J. 17(2), 291–313 (2008)

35. Podnar, I., Rajman, M., Luu, T., Klemm, F., Aberer, K.: Scalable Peer-to-Peer Web Retrieval
with Highly Discriminative Keys. In: ICDE 2007, pp. 1096–1105 (2007)

36. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and Rout-
ing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

37. Sozio, M., Parreira, J.X., Crecelius, T., Weikum, G.: Good Guys vs. Bad Guys: Countering
Cheating in Peer-to-Peer Authority Computations over Social Networks. In: WebDB (2008)

38. Steinmetz, R., Wehrle, K.: Peer-to-Peer Systems and Applications. Springer, Heidelberg
(2005)

39. Stoica, I., Morris, R., Karger, D.R., Frans Kaashoek, M., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: SIGCOMM 2001, pp. 149–160
(2001)

40. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-organizing
semantic overlay networks. In: SIGCOMM 2003, pp. 175–186 (2003)

41. Terpstra, W.W., Kangasharju, J., Leng, C., Buchmann, A.P.: Bubblestorm: resilient, proba-
bilistic, and exhaustive peer-to-peer search. In: SIGCOMM 2007, pp. 49–60 (2007)

42. Terpstra, W.W., Behnel, S., Fiege, L., Zeidler, A., Buchmann, A.P.: A peer-to-peer approach
to content-based publish/subscribe. In: DEBS 2003 (2003)

43. Tryfonopoulos, C., Koubarakis, M., Drougas, Y.: Information filtering and query indexing
for an information retrieval model. ACM Trans. Inf. Syst. 27(2) (2009)

44. Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., Decker, S.: Sig.ma:
live views on the web of data. In: WWW 2010, pp. 1301–1304 (2010)

45. van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable technology
for distributed system monitoring, management, and data mining. ACM Trans. Comput.
Syst. 21(2), 164–206 (2003)

46. Yalagandula, P., Dahlin, M.: A scalable distributed information management system. In: SIG-
COMM 2004, pp. 379–390 (2004)

47. Yu, H., Li, H.-G., Wu, P., Agrawal, D., El Abbadi, A.: Efficient Processing of Distributed
Top-k Queries. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS,
vol. 3588, pp. 65–74. Springer, Heidelberg (2005)

48. Zimmer, C., Tryfonopoulos, C., Weikum, G.: Exploiting correlated keywords to improve
approximate information filtering. In: SIGIR 2008, pp. 323–330 (2008)

Designing Benchmarks for P2P Systems

Max Lehn1, Tonio Triebel2, Christian Gross3, Dominik Stingl3,
Karsten Saller4, Wolfgang Effelsberg2, Alexandra Kovacevic3,

and Ralf Steinmetz3

1 Databases and Distributed Systems,
Technische Universität Darmstadt, Germany

mlehn@dvs.tu-darmstadt.de
2 Praktische Informatik IV,

Universität Mannheim, Germany
{triebel,effelsberg}@pi4.informatik.uni-mannheim.de

3 KOM – Multimedia Communications Lab,
Technische Universität Darmstadt, Germany

{gross,stingl,sandra,steinmetz}@kom.tu-darmstadt.de
4 Real-Time Systems Lab,

Technische Universität Darmstadt, Germany
karsten.saller@kom.tu-darmstadt.de

Abstract. In this paper we discuss requirements for peer-to-peer (P2P)
benchmarking, and we present two exemplary approaches to benchmarks
for Distributed Hashtables (DHT) and P2P gaming overlays. We point
out the characteristics of benchmarks for P2P systems, focusing on the
challenges compared to conventional benchmarks. The two benchmarks
for very different types of P2P systems are designed applying a common
methodology. This includes the definition of the system under test (SUT)
and particularly its interfaces, the workloads and metrics. A set of com-
mon P2P quality metrics helps to achieve a comprehensive selection of
workloads and metrics for each scenario.

1 Introduction

In the past decade, peer-to-peer (P2P) systems have become an active research
area. Originally used for file sharing applications such as Napster, P2P networks
are nowadays used for various tasks like video streaming, voice communication,
and gaming. It turned out that the different fields of applications require dif-
ferent types of P2P overlays. When new overlays are proposed, each group of
researchers evaluates their system based on their individual tools and methodol-
ogy, counteracting a fair comparability. Hence our goal is to develop benchmarks
for P2P systems so that an unbiased comparison of different solutions can be
achieved. Due to the fact that P2P networks are tailored for different purposes,
the network architectures vary significantly. Thus it is not possible to create one
single benchmark that is capable to evaluate every kind of P2P network. Rather
it is necessary to define classes of P2P networks. Within such a class the systems

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 209–229, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

210 M. Lehn et al.

can be compared. The main challenge therefore is to understand the functional-
ities and interfaces of the systems that are evaluated. Based on this knowledge
the classes can be defined and meaningful benchmarks can be built.

In this paper, we present exemplary benchmarking approaches for two differ-
ent classes of P2P overlays. The first class are search overlays, tested using a
synthetic workload on top of a minimalistic DHT interface (Section 3). DHTs
are designed for large-scale applications, thus the scenario focuses on scalabil-
ity (Section 4). The second class are information dissemination overlays (IDO),
tested with a gaming application scenario. Unlike the DHT scenario, gaming
focuses less on high scales, but rather on timing constraints which are set by a
fast-paced game.

In contrast to standard benchmarks of computing systems, P2P-benchmarks
have to define relevant properties of the underlay network to be reproducible.
We thus propose a generic underlay model, based on commonly accepted studies
on Internet node connectivity and capabilities (Section 2.4).

2 Benchmarking

The purpose of a benchmark is to quantify the performance of a system or of
one of its components according to a set of quality aspects.

A useful benchmark generally should fulfill a set of basic requirements, as
identified in previous work [28], [18]:

– It must be based on a workload representative of real-world applications.
– It must exercise all critical services provided by platforms.
– It must not be tuned/optimized for a specific product, i.e. it must provide a

level playing field for performance comparisons.
– It must generate reproducible results.
– It must not have any inherent scalability limitations.

In the remainder of this section, we define the important terms for benchmarking
and specify the quality aspects that are used for the evaluation. At the end of
the section we consider issues that are specific to P2P-benchmarks and describe
the underlying network model, we utilize for our benchmarks.

2.1 Terminology

System Under Test (SUT): The term System Under Test denotes the sys-
tem that shall be tested or benchmarked. This system consists of several
interacting components and summarizes a set of services that are offered by
the service interface to a further component.

Scenario: The benchmark scenario defines the environment in which the bench-
mark takes place. It describes the expected functionality of the SUT and
what interfaces the SUT has to provide.

Designing Benchmarks for P2P Systems 211

Workload: The entirety of operations that are performed by the users on the
SUT interface are called the workload. The workload specified by a bench-
mark can be synthetic, i.e., generated according to an abstracted applica-
tion model. On the other hand there are application level workloads that
are generated by real applications. A benchmark’s workload is typically
parametrized to be able to scale with the SUT’s capabilities.

There are two common scaling dimensions in benchmarks for distributed
systems (e.g., SPECjms2007 [28]), namely horizontal and vertical. Horizontal
scaling affects the number of users in the system while vertical scaling affects
the load generated by each user. A benchmarking system typically provides
a workload generator component which simulates the users’ behavior. The
workload generator takes workload parameters as an input and operates on
the SUT interface.

Metrics: To evaluate the performance of a system, it is necessary to have a set
of metrics. Exemplary metrics are average response times, throughput, CPU
consumption, or failure rates. The component that measures the system’s
performance according to the metrics is called monitor.

We differentiate between macro metrics and micro metrics. Macro met-
rics measure the system on its application interface level, e.g., response times
of queries on a DHT. Micro metrics measure internal system aspects, e.g.,
routing table completeness, which help to understand why a system behaves
a certain way. Comparing different systems using micro metrics may however
be difficult due to the differences in their internal structure.

Test Procedures: In benchmarking, there are generally two basic test pro-
cedures, the static test and the variation test. The static test provides a
predefined, fixed workload. Certain metrics are calculated from the system’s
behavior and directly account for the benchmark results. The variation test
increases the load over time to push the SUT to its limits. Those limits are
defined by certain QoS criteria, which are derived from system metrics (e.g.,
response time has to be less or equal to 2 seconds). The load is typically
derived from one scalar load parameter. The benchmark result is the highest
load value under which the system meets the given QoS criteria.

2.2 P2P Quality Aspects

There are certain key quality aspects that each P2P system can be evaluated
for. Our benchmarks target at the quality aspects that were identified by the
QuaP2P research group [3, 20].

Validity, meaning that the system responses are complete and correct. All re-
sponses of a P2P system must match the expected responses. The term
“expected” in this context means that the results obtained from the system
are logically correct and complete. The system response varies depending
on the type of systems being investigated. For instance, in context of search
overlays the system response is the query result obtained after injecting a
query request into the overlay.

212 M. Lehn et al.

Efficiency, defined as the ratio of performance and costs. Performance is the
ability of a system to deal with its workload to a certain degree of quality.
Usually this refers to the number of operations that the system can handle
in a certain amount of time or the time the system needs to perform a set
of operations. The term cost means how many resources are spent while the
system is dealing with a given workload.

Fairness, meaning that both the costs for operating the system and the avail-
ability of services are distributed over the participating entities (peers) such
that a given fairness criteria holds. There can be various types of fairness
criteria, depending on the system type and requirements. Typical examples
are uniform distribution, capacity or resource proportional distribution, and
contribution proportional distribution.

Scalability, the quantitative adaptability of the P2P system to a changing num-
ber of entities (peers or services) in the system, while preserving validity,
efficiency, and fairness. In contrast to client/server systems where resources
have to be added manually in case that the system load exceeds a given
threshold, P2P systems automatically scale as new joining peers share their
resources with the system. Thus, scalability in the area of P2P systems is
the quantitative adaptability of the system in case of a changing number
of entities (peers or services), while preserving the quality aspects validity,
efficiency, and fairness.

Robustness, the persistence of a P2P system when crucial parts of a system
fail. The definition of robustness is similar to the common understanding of
fault-tolerance. Robustness is, however, broader since it examines multiple
failures or the failures of the participants identified to have a crucial role in
the system, while fault-tolerance is a system persistence under single parts
failures. Robust systems have no single points of failure, repair themselves,
and failures are not propagated through the system.

Stability, the persistence of the P2P system under system perturbations such
as intensive or frequent use of system functions. Under heavy load or load
hotspots, a stable system has to maintain its functionality. In contrast to
robustness, the stability definition only refers to intended system operations
and does not include failures of parts of the system.

2.3 P2P Benchmarking Specifics

P2P benchmarks have certain characteristics that distinguish them from most
other benchmarks. Usually, it is assumed that the SUT is self-contained, i.e.,
the whole system from the lower (‘physical’) hardware layers up to the software
layers providing the SUT interface are part of the SUT. In contrast to that, the
‘physical world’ of P2P systems is the Internet. The Internet, however, cannot
be assumed as a part of the SUT. This would contradict the requirement of
reproducibility for benchmarks, since the Internet is growing every day and thus
does not represent a fixed reference. While physical underlay networks can only
be reproduced in small scales, it is infeasible to build a real underlay network ac-
cording to the specifications provided by the benchmark. The practical approach

Designing Benchmarks for P2P Systems 213

is to simulate (or emulate) the underlay network and to run the SUT instances
in the simulation. The simulator has to fulfill certain requirements (e.g., con-
cerning simulation granularity) which must be specified in order to reproduce
the simulation environment for further benchmarks, enabling comparability of
results. Since it is feasible to either implement a given network specification in
a simulator or to use existing simulation tools which provide the specific un-
derlay model, the reproducibility requirement can be fulfilled. As a result, the
underlying network has to be excluded from the SUT and instead specified as a
part of the benchmark scenario. The following subsection describes our proposed
network model.

2.4 Underlay Model Specification

In this section, we give a brief overview about current techniques to abstract and
model the network with its characteristics. Subsequently, we present the chosen
solution integrated in our simulation environment and detail the connection type
of the hosts to the Internet within the underlay model.

Dealing with the representation of the underlay, there exist several approaches
to model the underlay which may address one or several aspects of real networks
like the network topology, geographical locations, delay, jitter, or packet loss.
On the one hand, current models generate network topologies based on math-
ematical functions (e.g., Positive-Feedback-Preference-Model [34]) or topology
generators like Inet-3.0 [33], where each connection between two elements ex-
hibits its own delay and loss probability. On the other hand, some models just
focus on the estimation of delays and loss probabilities of an entire communi-
cation path between two hosts, while the details of the path in between are
not considered. The latter models can utilize a lookup table to estimate the de-
lay between two communicating hosts, as proposed by Gummadi et al. [14], or
following the approach of global network positioning as introduced by [24].

Regarding the utilised underlay model for our simulations, we adopt the pro-
posed model from Kaune et al. [17] which avoids static delays and splits the
calculation of the delay between two hosts up in two different parts, as depicted
in Figure 1. The static part of the delay returns the minimum delay between
any two hosts based on their distance to each other in the n-dimensional space.
For calculating the distance between the hosts, the embedding within the space
is realized using global network positioning [24]. The data for creating the posi-
tioning and for the calculation of the delay relies on the measured data of the
Macroscopic Topology Project from CAIDA [1]. The dynamic part of the delay
consists of the jitter for the connection between two hosts. Out of the provided
data from the PingER project [4], different jitter distributions based on the geo-
graphical positions of the hosts are derived. During a simulation, a value for the
jitter between two hosts is randomly chosen from the respective distribution.

Besides the realistic and accurate calculation of delay, the model of the un-
derlying network should also take the connection type of a host to the Internet
into consideration. Thus, the utilized network model for our simulations also
consists of hosts with different access types, which vary regarding their available

214 M. Lehn et al.

MaxMind

H1 = <(x1, … xn), GeoData>

HN = <(x1, … xn), GeoData>

Host set with GeoData

Embedding into Euclidean space

…

End-to-end-link jiiter distribution

H1

H2

60 ms PingER

60 ms

CAIDA

Simulation Framework

MinimumRTT

2
Delay(H1, H2) = + Jitter

Static part Random part

Fig. 1. The calculation of delay [17]

Table 1. OECD broadband statistics from 2009

Internet
connection
type

Number of subscribed
connections

Average upload
speed (kbit/s)

Average
download speed
(kbit/s)

Cable modem 81.253.021 2.269 25.474
DSL1 168.964.115 3.055 14.404
FTTH2 31.589.868 51.692 76.792

bandwidth. This feature allows for simulations focusing on the heterogeneity of
hosts. As an proposal for the distribution of utilized access types, Table 1 depicts
an overview about the worldwide broadband access during 2009 obtained from
the OECD Broadband Portal [2]. The report lists three different broadband con-
nection types comprising the number of subscriptions and the average upload
and download speed. The presented distribution of the different connections can
be used as basis for a detailed model of the simulated access types specifying
their characteristics and utilization. By offering the developed model, its reuse
for other simulations can be facilitated and allows for obtaining comparable
results.

3 Scenario 1: Distributed Hashtable

In this section we define a basic benchmark for Distributed Hashtables (DHT)
which fulfills the interface presented in Section 3.1. Our benchmark addresses
two main goals. Firstly, it enables the comparability of existing DHT implemen-
tations under different workloads. Based on this comparison, it is possible to
determine which DHTs are suitable for a specific application scenario stating
specific workload characteristics. Secondly, by pushing DHT implementations to
their performance limits, their strengths and weaknesses become visible.

Designing Benchmarks for P2P Systems 215

3.1 SUT Interface

In our scenario we focus on distributed hashtables, supporting the two basic
methods put(key, data, lifetime) and get(key) -> data for storing and
retrieving a data item associated with a key. The get function asynchronously
returns the result. It is expected to always deliver a result. If no item for the
requested key is found, it returns an empty data item. In most applications the
key is calculated by hashing the data item using a hash function such as MD5
or SHA-1. Each data item is stored with a maximum lifetime after which it is
deleted, enabling a simple garbage collection mechanism.

3.2 Workload

For the workload generation, we assume a Wikipedia-inspired document model.
We model documents with a given maximum lifetime, which are stored into the
DHT and retrieved afterwards. All documents that are stored in the DHT are
also stored in a global document database which is not part of the SUT. Since
this benchmark is designed for simulated or emulated environments, we assume
that this database can be maintained as part of the global knowledge of the
simulator. The database is used for selecting documents to be queried as well
as for validating results obtained from the DHT. The following parameters are
considered for our model:

Number of Peers, Online Time, Persistent storage on peers. An impor-
tant parameter is the number of peers. The peer’s online times are
determined by the churn model which is described by their online time dis-
tribution. In our workload model we assume a non-persistent storage in case
that a peer goes offline, which means that its stored data is deleted.

Document Size, Popularity, Lifetime. The second parameter set is related
to the documents to be stored in the DHT. We model the document size and
the popularity of documents based on distribution functions derived from
Wikipedia article statistics. In order to avoid a constantly growing number
of documents, we introduce a document lifetime after which an article is
considered to be outdated and deleted from the DHT.

Peer Activity. The third set is related to the peer activity, specifying how often
a peer executes a certain type of action. We define three basic operations:
creating a new document, requesting an existing document, and updating
a document. Hence, it is necessary to specify an execution probability per
peer for each of these operations. In addition, the time between successive
operations needs to be modeled based on peer activity statistics taken from
Wikipedia measurements. A grace period between the creation or update of
a document before a read or update request for the same document allows
the DHT to properly store the documents. The delete operation is not part
of the peer activity as the deletion of articles is done automatically by the
DHT in case that an article’s time-to-life counter has expired.

216 M. Lehn et al.

Global Document Database. We introduce a Global Document Database
which maintains information about all documents stored in the DHT. For each
document this information comprises the document id, the document lifetime,
the document store timestamp, and a hash value of the document’s content. This
information is needed in order to verify whether the correct version of requested
document is returned by the DHT. The document database offers methods for
creating, updating, and requesting a document.

Per Peer Workload Generation. The workload generation algorithm which
is run by each peer works as follows. Initially an activity index is defined per
peer drawn from a global activity index distribution Xactivity. The activity index
defines the expected value of inter-arrival times between two successive actions
performed by the peer. The peer action algorithm is shown in Listing 1.

− s e l e c t ac t i on to be performed (add , modify , read)
based on p r opab i l i t y

− i f a c t i on = add :
− c r e a t e a r t i c l e from g l oba l a r t i c l e database
− put a r t i c l e to DHT

− i f a c t i on = read :
− count read ac t i on
− get a r t i c l e ID to be read from g l oba l a r t i c l e

database
− get a r t i c l e from DHT
− i f r e t r i e v e succeeds :

− v e r i f y document content us ing hash value
− i f c o r r e c t : count c o r r e c t response
− e l s e : count i n c o r r e c t re sponse

− e l s e :
− count i n c o r r e c t re sponse

− i f a c t i on = update :
− perform read ac t i on
− i f read succeeds :

− c r ea t e new ve r s i on o f the document from the
g l oba l document database

− put a r t i c l e to DHT

Listing 1. Per Peer Workload Algorithm

Load Variation Schemes. In the following different load variation schemes
of the workload within the DHT scenario are explained. Each scheme covers a
specific situation in a DHT lifetime each assuming a different churn behavior of
the peers (times without any churn, exponential churn phase, and massive join
or leave).

Scheme 0: Without Churn. Peers join the network according to join func-
tion Fjoin(t) until the specified number of peers n is reached. After a silent

Designing Benchmarks for P2P Systems 217

Table 2. Workload parameters for the DHT scenario

Variable Description Unit Levels

n Number of peers in stable state
(after the join process)

[1..∞]

Fjoin(t) Function describing the number of
peers over time during the join
process

eλt

tsilent Duration of the graceful phase af-
ter initial join phase

s [0..∞]

Xtime Peer Online Time Distribution s Exp(λ)
Xactivity Peer Activity Distribution s Zipf(s)
pcreate,
pupdate,
pread

Execution probability for the ac-
tions create, update, or read

[0, 1],
pcreate +pupdate +
pread = 1

Xpopularity Document Popularity Distribu-
tion

Zipf(s), Exp(λ)

Xsize Document Size Distribution bytes Zipf(s), Exp(λ)
tliftime Document Lifetime s 1..∞
bpersist Whether peers persist their docu-

ments while offline
{0, 1}

rmassleave,
rmasscrash

Ratio of leaving/crashing peers in
case of a massive leave/crash

[0, 1]

tmassleave,
tmasscrash

Time after the silent period after
which a massive leave/crash oc-
curs

s [0..∞]

rmassjoin Ratio of joining peers in case of a
massive join

[0, 1]

tmassjoin Time after the silent period after
which a massive join occurs

s [0..∞]

tflashcrowd Time after which the flash crowd
starts

s [0..∞]

dflashcrowd The duration of the flash crowd s [0..∞]
rflashcrowd Ratio of increased requests per

peers in case of a flash crowd
s [0..∞]

Frequest(t) Function describing the variation
of the inter-arrival time of per-
peer actions over time.

m ∗ t + a

period of tsilent seconds where no further join or leave of peers occurs the
workload is deployed on the system. (Figure 2a)

Scheme 1: Exponential Churn. After a join phase as in Scheme 0, there is
a silent period of tsilent seconds after which the system should be in stable
state. Then, an exponential churn phase with exponentially distributed ses-
sion times of the peers together with the workload is deployed on the system.
(Figure 2b)

Scheme 2: Massive Leave/Crash. The third scheme covers the extreme sit-
uation of a massive leave or crash of peers. As in Scheme 1, peers join, and

218 M. Lehn et al.

Fig. 2. DHT scenario schemes

the workload starts after a silent period. Then, after tmassleave (tmasscrash)
seconds, a massive leave (crash) with rmassleave (rmasscrash) of leaving (crash-
ing) peers occurs. (Figure 2c)

Scheme 3: Massive Join. Scheme 3 is similar to Scheme 2 but with joining
instead of leaving or crashing peers. (Figure 2d)

Scheme 4: Flash Crowd Behavior. In this scheme, a large amount of the
peers requests a specific content in a short amount of time. Based on Scheme
1, after tflashcrowd seconds, the flash crowd phase begins. The request fre-
quency per peer is increased by a factor of rflashcrowd with a duration of
dflashcrowd seconds.

Scheme 5: Linearly Increasing Number of Peers. Peers join according to
a linear join function Fjoin(t), increasing their number as long as system
remains stable. The workload is deployed instantly at the beginning of the
benchmark.

Scheme 6: Linearly Increasing Number of Requests. Based on Sscheme 1,
the workload is deployed on the peers with a decreasing inter-arrival time as
defined by the request increasing function Frequest(t).

3.3 Metrics

This section combines the load variation schemes with appropriate metrics
(Table 3) to provide benchmarks for the P2P quality aspects as described in
Section 2.2.

Robustness. For testing robustness, we use Scheme 2 with massively crashing
peers. After rmasscrash of the peers have crashed, the system either becomes
stable again after tr seconds or it remains unstable where the remaining
peers are unable to reorganize the DHT topology. tr is the time the system
takes to return to a certain minimum acceptable QoS level. In case of our

Designing Benchmarks for P2P Systems 219

Table 3. Metrics for the DHT scenario

Variable Metric Unit Description

tq Average query re-
sponse time

s The time that passes between
the insertion of query into the
system and its response aver-
aged over time.

q Number of queries The total number of all exe-
cuted queries within the mea-
surement interval.

r+ Number of correct re-
sponses

The total number of correct
responses within the measure-
ment interval. A response is
considered to be correct if and
only if the right document in
the latest version is returned.

r− Number of negative
responses

The total number of incorrect
responses within the measure-
ment interval. Both invalid re-
sponses and missing responses
are counted as incorrect.

S Success ratio The ratio of successfully exe-
cuted query requests. S = r+

q
.

S̄ Fail ratio The ratio of failed query re-
quests. S̄ = r−

q
.

tr Recovery time s The time needed by the qual-
ity metric of a system to re-
turn back to a defined QoS
level after a massive perturba-
tion of the system.

li The average load on
peer i

bytes
s

The bandwidth usage on peer
i within the measurement in-
terval averaged over time.

Li The average relative
load on peer i

The bandwidth usage on peer
i in relative to its maximum
capacity within the measure-
ment interval averaged over
time.

μl The average load on
the overall system

bytes
s

The average bandwidth usage
of all peers. μl = 1

n

∑
li

μL The average relative
load on the overall
system

The average relative band-
width usage of all peers. μL =
1
n

∑
Li

220 M. Lehn et al.

DHT scenario the QoS level is defined by the query time tq and the success
ratio S. For instance, the average query time should always be below 2
seconds and the query success ratio should be above a threshold of 0.95
(tq < 2 ∧ S > 0.95).

Efficiency. The efficiency of the system is measured using Scheme 1 where
peers join and leave the system according to an exponential churn model.
Furthermore, a typical workload is applied on the DHT. Efficiency is defined
as the quotient of performance and costs. In case of a DHT, the performance
is the average query response time tq. Costs are defined as the average load
μl on the system for solving the query requests. In order to calculate how
efficient the system is the average query time is divided by the average system
load.

Validity. In order to benchmark the validity of the results returned by the
DHT we again consider a typical churn influenced environment as described
in Scheme 1 and measure the success ratio S.

Fairness. Benchmarking fairness is done by applying Scheme 1 and measuring
the average load li on each peer. For the purpose of simplification in our
DHT scenario the distribution of load is considered to be fair if the load is
distributed equally over all peers. More sophisticated definitions of fairness
can be taken into account, e.g., a capacity-proportional definition of fairness
where load has to be distributed according to the capacities of the peers. To
calculate the degree of fairness the standard deviation of the relative load
over all peers is calculated as σL = 1

n−1

∑
(Li − μL)2.

Stability. To test the stability of a DHT, we use Scheme 1 with an increasing
exponential churn factor. The stability is measured by the maximum churn
level under which the query reponse times tq and success ratio S fulfill the
required QoS levels.

Scalability. The scalability of a DHT is tested by increasing the workload on
the system vertically (number of request) or horizontally (number of peers)
according to Schemes 5 and 6 respectively. In both cases we measure the
maximum scale up to which the query response times tq and success ratio S
fulfill the required QoS levels.

4 Scenario 2: Massively Multiplayer Online Game

The area of P2P Massively Multiplayer Online Games (P2P MMOG) is much
more complex and less standardized than the field of DHTs. Several groups have
been doing research in P2P MMOGs in the last ten years, focusing on various
aspects. Those can be categorized to six main issues [13]:

Interest Management. In an MMOG, every player has his own personal view
on the game world, depending on his current state, most importantly his
location. That view defines what parts of the world he can see and what
events he can perceive. Interest management (IM) decides which information
is necessary for each player to build his personal view of the world. The area

Designing Benchmarks for P2P Systems 221

of interest (AOI), typically centered at the player’s position and bounded
by his vision range (VR), defines the region within which the player needs
to receive game event information.

Game Event Dissemination. The game event dissemination system has to en-
sure that each player receives all relevant game events within his AOI. Real-
time games require low latencies in the event dissemination to keep the players’
views as fresh as possible. Since the AOI is bound to game world positions, the
dissemination systems are typically based on game world proximity. The task
can thus also be formulated as a spatial publish/subscribe model.

NPC Host Allocation. Many games have the concept of so-called non-player
characters (NPC) which are game entities controlled by scripts and/or ar-
tificial intelligence and which interact with the human players in the game.
Since there is no central server the program controlling an NPC has to run
on some peer. The assignment of NPC routines and states to peers and,
if necessary, their relocation to alternative peers is part of the NPC Host
Allocation.

Game State Persistence. Any object in the game world that is not directly
associated to a player has to be kept persistent and consistent. The object
state must be replicated to one or more peers in the network, and leav-
ing peers must transfer their objects to others. An important requirement
specific to games is that operations on game objects must not induce high
latencies since the game cannot be paused until the operation is complete.

Cheating Mitigation. P2P games require special mechanisms for cheating
prevention and reaction. There is no central server with a full view on the
whole game world, thus the cheating mitigation algorithms must work in a
decentralized manner without access to the complete game state.

Incentive Mechanisms. A P2P system lives from the resources provided by
the participants. Those resources include network bandwidth, CPU cycles,
and storage capacity. Incentive mechanisms make sure that every participant
has to provide a certain amount of resources and prohibit free-riders.

In our scenario we concentrate on the first two aspects, Interest Management
and Game Event Dissemination. While NPC Host Allocation and particularly
Game State Persistence are topics for a future benchmark, the performance of
cheating mitigation mechanisms is hardly quantifiable. Incentive mechanisms are
a general topic on P2P systems, and P2P MMOG do not make special demands
on these mechanisms. Therefore, they can be analyzed in separate scenarios.

4.1 SUT Interface

A typical MMOG information dissemination overlay (IDO) integrates the two is-
sues Interest Management and Game Event Dissemination. As introduced above,
Interest Management in an MMOG is based on an AOI defined by the vision
range. The two systems VON [15] and pSense [29] act as references for our
scenario. Both VON and pSense interpret the vision range as a (more or less
constant) radius and the AOI as a circle on the 2D plane of the game world.

222 M. Lehn et al.

The overlay network topology is constructed locally by each player (i.e., each
peer) using the AOI radius and the relative positions of surrounding players in
the game world. Thus, an important aspect of MMOG IDOs is their awareness
of player positions in the game world.

It is the purpose of the IDO to disseminate the game events generated by each
player to all other players in whose AOI he currently is. Those events include
first and foremost the player’s movements (or, more generally, his position), but
also other game-specific activities such as firing a missile. Since the IDO is aware
of game world positions but should still be generic, it is necessary to split the
disseminated information into position updates, which have semantics known
by the IDO, and game-specific data that is opaque to the IDO. Besides the
dissemination to the whole set of interested nodes, it should be possible to send
messages to single nodes.

Fig. 3. The abstract game architecture

The core of our architecture (Fig. 3) consists of the game instance containing
the local game logic and the network engine managing the network communica-
tion. From the benchmarking point of view, the network engine implements the
SUT and the game instance applies the workload.

Based on the given requirements, our API connecting the local game logic
and the network component comprises the following concepts:

– The network engine regularly pulls the local player’s state (particularly its
current game world coordinates) from the game instance and disseminates
them. Depending on the particular IDO, the position information is also
used to build the overlay topology. The pull and dissemination frequency
is chosen by the network engine so that it can adapt the generated update
traffic when necessary (e.g., in case of congestion).

– Neighboring players within the AOI and their positions are pushed by the
network engine to the game instance whenever new information is available.

Designing Benchmarks for P2P Systems 223

– Game actions other than player movements are pushed by the game instance
to the network engine at a time when they occur, to be disseminated or to be
sent to a single player. Those messages do not have a semantic meaning to the
network engine; they have to be delivered reliably and without modification.

4.2 Workload

A synthetic workload appears infeasible for a gaming scenario. Games have a
relatively complex and unstandardized network functionality which makes it
difficult to collect measurements to derive representative workloads. While there
are plenty of studies analyzing and modeling the network traffic generated by
(massively) multiplayer games (e.g., [6], [7], [30]), there are only a few trying to
characterize player behavior on a game activity level, such as [31].

Network traffic models of online games, since they deal with the traffic below
the game’s network component, do not contain enough information to model the
workload on top of that component. And player behavior models or traces from
real matches cannot realistically represent the game workload on the various
network implementations. This is because of the high degree of interactivity,
which introduces feedback loops making the player’s behavior depend on the
network’s properties (such as message delay).

For the given reasons, we propose a workload generation process that directly
originates from the game mechanics specifying the player’s capabilities. For the
purpose of reproducible workload generation, all players are controlled by au-
tonomous players (bots) which are designed just with the goal of successfully
playing the game. With this approach we can model the whole degree of inter-
activity which, of course, is also influenced by the SUT properties.

Gameplay Scenario. Planet π4 [32], the game designed as a workload refer-
ence, is a spaceship first-person shooter (FPS). The game scenario consists of n
players. Each player is assigned to one of m teams within which they cooperate
and compete with the other teams. The game world is a 3D space in which the
spaceships can freely move in all directions.

Certain strategic points of interest (POI) are randomly scattered within a
bounded region of the game world. Specifically, a POI is a base that can be
captured by the teams. For each base that a team possesses, it gains game points
and/or other rewards such as weapons and energy. Once captured, a team has
to defend a base by keeping players from other teams out of the base’s range.
To capture a base it is necessary to stay within the range of the particular base
with at least one player and to prevent any other teams’ players to enter that
range. The bases are placed on fixed solid bodies in the space, comparable to
asteroids in an asteroid field. Those also serve as obstacles in the otherwise free
space.

The POIs have two important aspects concerning workload generation:

– The distribution of players in the game world is influenced by the POI.
Particularly, attractive POIs will generate hotspots in player density, while
spaces between the POI are expected to have low densities.

224 M. Lehn et al.

– The borders of the region containing the POI are natural borders of the
effective game world without the need for artificial boundaries. Although
players could move far beyond the borders, there is no incentive to do so.
Limiting the effective size of the game world is necessary to be able to control
the average player density.

High maximum spaceship velocities together with the hotspots allow for a high
workload scalability. Thereby, the overlay implementations (SUTs) can be
stressed enough to find their effective limitations.

Workload Parameters. The game scenario described above provides several
parameters that can be utilized to adjust the workload.

Players and teams. Each player corresponds to a peer in the network. So the
number of players (n) in the game equals the number of peers. The players
are divided into m (almost) equally sized teams.

POI (bases). The bases that have to be captured by the teams cause hotspots
in the player density. The hotspot magnitudes can be controlled by adjusting
the values (i.e. the benefit for the possessing team) of each base separately.
Each base has a range in which it can be captured and a time it takes to
capture it.

Gameplay region. The gameplay region is the region within which the bases
are located, thus in which the gameplay happens. Together with the total
number of players, its size influences the average player density. The height of
the region may be set relatively small to obtain a flat, thus pseudo-2D, game
world. Pseudo-2D mode is used for gaming overlays that are only designed
for a 2D world.

Ships’ capabilities. The game activities (moving, shooting) are heavily influ-
enced by the corresponding capabilities of the players’ spaceships. A very
important factor is the maximum velocity. All position changes affect the
players’ AOI and thus require certain updates in the gaming overlay. The
ship’s maximum forward velocity limits the rate of AOI changes. (We as-
sume that the forward velocity is the highest velocity component and thus
the most important.) Additionally, the ship’s inertia limit the maximum ac-
celeration in any direction. Missile fire events have to be delivered reliably,
forming a different category than position update messages. Their rate is
limited by the maximum missile firing frequency.

4.3 Metrics

Metrics are used as the performance criteria for the evaluation and have a major
impact on the result of the benchmark. The goal is to choose a complete and
non-redundant set of metrics with a low variability [16]. Completeness can be
considered as covering the relevant quality aspects validity, efficiency, fairness,
stability, robustness, and scalability (see Section 2.2).

In the P2P gaming scenario the central services are interest management and
event dissemination. Also, we are aiming to benchmark different P2P gaming

Designing Benchmarks for P2P Systems 225

overlays. Thus, a set of macro metrics must be defined. A concrete list of metrics
can be derived based on the quality aspects:

Validity. The validity of an IDO is determined by the list of AOI members.
Such a list is maintained by the interest management service. Thus we de-
fine the metric for validity as correctness of the AOI member list. A first ap-
proach is to use the ratio of correct entries. An improvement can be achieved
by weighting wrong entries with their importance, e.g., the distance to the
player’s avatar, since players mainly interact with other players or objects in
their vicinity. Schmieg et al. proposed to use a position quality metric [29].

Efficiency. The efficiency of a system is defined as the ratio of performance and
costs. For realtime games the performance is reflected by the responsiveness.
The costs are the bandwidth that is consumed to achieve the performance.
In order to calculate the efficiency quotient the responsiveness must be ex-
pressed by a responsiveness index. High latencies of events are represented
by a low index, low latencies correspond to a high value.

Fairness. The fairness metric depends on a given fairness criteria. In the case of
pure P2P IDOs without any incentive strategies (like pSense and VON) the
distribution of load can considered as fair if the load is distributed equally
to all peers.

Stability. A gaming overlay is considered stable if it reacts in a valid and re-
sponsive way under stress. If either validity or responsiveness decreases to a
certain amount, the system becomes unstable. Stress is a result of high player
density, velocities, and interaction rates (e.g., shooting). In order to quantify
the stability, QoS criteria for validity and responsiveness must be defined.
The stability index is then derived from the maximum stress parameters
under which the system remains stable.

Robustness. The robustness of a gaming overlay is determined by the coher-
ence of the virtual world. Thus, the main robustness criteria is the probability
of partitions when a large fraction of the peers fails.

Scalability. Like the stability, the scalability is a second level metric. It is used
to measure how a systems validity, efficiency, fairness, and robustness per-
form with an increasing/decreasing number of participants. For each quality
aspect a threshold must be defined. The scalability metric can be formulated
as maximum/minimum number of participants a system can handle without
exceeding a given quality threshold.

5 Related Work

There is a wide range of benchmarks in the area of computing, starting with
classic CPU benchmarks such as Dhrystone or Linpack. Other popular examples
are Futuremark’s 3DMark [9] for 3D graphic rendering and BAPCo SYSmark [8]
for business applications. Recognized database benchmarks are defined by the
Transaction Processing Performance Council (TPC) [12].

Further relevant benchmarks in the area of distributed systems are provided
by the Standard Performance Evaluation Corporation (SPEC) [11], for instance

226 M. Lehn et al.

SPECjms2007 [27, 10] for message-oriented middleware systems. The SPECjms
2007 benchmark describes a supermarket supply chain application scenario.
It consists of company headquarters, distribution centers, supermarkets, and
suppliers communicating through the message-oriented middleware. Continuing
work presents performance evaluation methods for event-based systems in gen-
eral [19] and particularly for publish/subscribe systems [26].

In the area of P2P there are only a few benchmarking approaches yet. General
ideas for a P2P benchmarking platform and an analysis of existing tools for P2P
network simulation have been presented by Kovačević et al. [22]. A concrete
benchmarking scenario for structured overlays in the context of Network Virtual
Environments [21] focuses on lookup and routing latencies as well as the overlay
message distribution.

Carlo Nocentini et al. present a performance evaluation of implementations of
the JXTA rendezvous protocol [25]. JXTA specifies a set of protocols for P2P com-
munication of which the rendezvous protocol provides a DHT mechanism. The pa-
per specifies the metrics lookup time, memory load, CPU load, and dropped query
percentage, as well as the parameters query rate, presence of negative queries, and
type of peer disconnections (gentle or abrupt). The authors omit the specification
of underlay network properties; the evaluation tests are run in a local area network
whose properties are not comparable with the Internet.

A comprehensive benchmark for P2P web search engines was proposed by
Thomas Neumann et al. [23]. The benchmark suggests the freely available
Wikipedia content as the benchmark’s document corpus. The queries, are taken
from Google’s Zeitgeist archive. The result quality metrics are recall and preci-
sion; efficiency is measured as query response time and network resource con-
sumption. In contrast to most others, this work includes concrete performance
properties of the network and the nodes’ local disk IO. However, the network
property model is simplistic, assuming a fixed latency and maximum transfer
rate between all nodes, and thus not taking any kind of heterogeneity into
account.

P2PTester [5] is a project aiming to provide a tool for measuring large-scale
P2P data management systems. The project focus is on the applicability to
various kinds of systems using a modular measurement architecture. P2PTester
could be a useful tool for conducting benchmarks which particularly need to
measure the connectivity traffic. The presented version of P2PTester, however,
only considers a real network deployment where reproducible and Internet-like
network properties are hard to achieve.

6 Conclusion and Future Work

In this paper we have discussed general requirements for P2P benchmarks, and
we have presented benchmarking approaches for two very different scenarios.
While the DHT scenario has a relatively clear scope and well-known functional-
ity, the gaming scenario includes several aspects that have to be identified first
and analyzed separately. Despite the wide spectrum of functionalities covered

Designing Benchmarks for P2P Systems 227

by the two exemplary scenarios, we we have shown that a common methodology
can be applied.

In each scenario definition we start with a description the SUT including
and the general context, its functionalities, and interfaces. Based on the SUT
interface, the workload is specified, including the relevant parameters that can
be used to scale the workload. Metrics then have to be defined to quantify the
system behavior. Those metrics are assigned to the common P2P quality aspects
which provide a general-purpose categorization of the performance criteria.

Particularly for P2P benchmarks we provide an underlay model specification
that reflects the important network aspects for P2P systems derived from Inter-
net measurements. This model can be adapted for various kinds of benchmarks
for P2P, or more generally, Internet-scale distributed systems.

This work is supposed to be the starting point for a larger number of Bench-
marks for various types of P2P systems. The variety of P2P solutions for different
purposes should become much more tangible once there is set of system classes
with clearly defined functionalities and interfaces. This categorization plus the
opportunity to compare the performance of alternative solutions, significantly
simplifies engineering approaches for P2P applications using existing and new
solutions.

It is, however, still a long way to go towards a standardization of P2P system
components that are comparable trough common interfaces. With this work we
have made a first step in defining a common benchmarking methodology which
can be applied for any kind of P2P system.

References

1. CAIDA - Macroscopic Topology Measurements,
http://www.caida.org/projects/macroscopic

2. OECD Broadband statistics, http://oecd.org/sti/ict/broadband
3. QuaP2P Project Website, http://www.quap2p.tu-darmstadt.de
4. The PingER Project, http://www-iepm.slac.stanford.edu/pinger
5. Butnaru, B., Dragan, F., Gardarin, G., Manolescu, I., Nguyen, B., Pop, R., Preda,

N., Yeh, L.: P2PTester: a tool for measuring P2P platform performance. In: ICDE
2007. IEEE 23rd International Conference on Data Engineering, Istanbul, pp. 1501–
1502 (2007)

6. Chambers, C., Feng, W.-C., Sahu, S., Saha, D.: Measurement-based characteri-
zation of a collection of on-line games. In: 5th ACM SIGCOMM conference on
Internet Measurement. USENIX Association, New York (2005)

7. Chen, K.-T., Huang, P., Huang, C.-Y., Lei, C.-L.: Game traffic analysis: An
MMORPG perspective. Computer Networks 50(16), 3002–3023 (2006)

8. BAPCo consortium. SYSmark 2007 Preview,
http://www.bapco.com/products/sysmark2007preview/

9. Futuremark Corporation. 3DMark Vantage,
http://www.futuremark.com/benchmarks/3dmarkvantage/

10. Standard Performance Evaluation Corporation. SPECjms (2007),
http://www.spec.org/jms2007/

11. Standard Performance Evaluation Corporation. SPEC’s Benchmarks and Pub-
lished Results, http://www.spec.org/benchmarks.html

228 M. Lehn et al.

12. Transaction Processing Performance Council. TPC Benchmarks,
http://tpc.org/information/benchmarks.asp

13. Fan, L., Trinder, P., Taylor, H.: Design Issues for Peer-to-Peer Massively Multi-
player Online Games. In: MMVE 2009 (2009)

14. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: Estimating latency between arbi-
trary Internet end hosts. In: 2nd ACM SIGCOMM Workshop on Internet Measur-
ment, pp. 5–18. ACM, New York (2002)

15. Hu, S.-Y., Liao, G.-M.: VON: A Scalable Peer-to-Peer Network for Virtual Envi-
ronments. IEEE Network 20(4), 22–31 (2006)

16. Jain, R.: The Art of Computer Systems Performance Analysis. John Wiley & Sons,
Chichester (1991)

17. Kaune, S., Pussep, K., Leng, C., Kovacevic, A., Tyson, G., Steinmetz, R.: Mod-
elling the internet delay space based on geographical locations. In: 17th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing
(PDP 2009), pp. 301–310 (2009)

18. Kounev, S.: Performance Engineering of Distributed Component-Based Systems
- Benchmarking, Modeling and Performance Prediction. Shaker Verlag, Aachen
(2005)

19. Kounev, S., Sachs, K.: Benchmarking and Performance Modeling of Event-Based
Systems. It - Information Technology 51, 262–269 (2009)

20. Kovacevic, A.: Peer-To-Peer Location-Based Search: Engineering a Novel Peer-To-
Peer Overlay Network. PhD thesis, Technische Universität Darmstadt (2009)

21. Kovacevic, A., Graffi, K., Kaune, S., Leng, C., Steinmetz, R.: Towards Bench-
marking of Structured Peer-to-Peer Overlays for Network Virtual Environments.
In: 14th IEEE International Conference on Parallel and Distributed Systems, pp.
799–804. IEEE, Los Alamitos (2008)

22. Kovacevic, A., Kaune, S., Liebau, N., Steinmetz, R., Mukherjee, P.: Benchmark-
ing Platform for Peer-to-Peer Systems (Benchmarking Plattform für Peer-to-Peer
Systeme). It - Information Technology 49(5), 312–319 (2007)

23. Neumann, T., Bender, M., Michel, S., Weikum, G.: A Reproducible Benchmark
for P2P Retrieval. In: International Workshop on Performance and Evaluation of
Data Management Systems. ACM, New York (2006)

24. Eugene Ng, T.S., Zhang, H.: Towards global network positioning. In: 1st ACM
SIGCOMM Workshop on Internet Measurement, pp. 25–29. ACM Press, New York
(2001)

25. Nocentini, C., Crescenzi, P., Lanzi, L.: Performance Evaluation of a Chord-based
JXTA Implementation. In: First International Conference on Advances in P2P
Systems, pp. 7–12. IEEE, Los Alamitos (2009)

26. Sachs, K., Appel, S., Kounev, S., Buchmann, A.: Benchmarking Publish/Subscribe-
based Messaging Systems. In: Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q.,
Sun, L., Watanabe, C. (eds.) Database Systems for Advanced Applications. LNCS,
vol. 6193, pp. 203–214. Springer, Heidelberg (2010)

27. Sachs, K., Kounev, S., Bacon, J., Buchmann, A.: Performance evaluation of
message-oriented middleware using the SPECjms2007 benchmark. Performance
Evaluation 66(8), 410–434 (2009)

28. Sachs, K., Kounev, S., Carter, M., Buchmann, A.: Designing a workload scenario
for benchmarking message-oriented middleware. In: SPEC Benchmark Workshop
(2007)

29. Schmieg, A., Stieler, M., Jeckel, S., Kabus, P., Kemme, B., Buchmann, A.: pSense -
Maintaining a Dynamic Localized Peer-to-Peer Structure for Position Based Mul-

Designing Benchmarks for P2P Systems 229

ticast in Games. In: IEEE International Conference on Peer-to-Peer Computing
(2008)

30. Svoboda, P., Karner, W., Rupp, M.: Traffic Analysis and Modeling for World of
Warcraft. In: IEEE International Conference on Communications, pp. 1612–1617
(2007)

31. Tan, S.A., Lau, W., Loh, A.: Networked Game Mobility Model for First-Person-
Shooter Games. In: 4th ACM SIGCOMM workshop on Network and system sup-
port for games, p. 9. ACM, New York (2005)

32. Triebel, T., Guthier, B., Süselbeck, R., Schiele, G., Effelsberg, W.: Peer-to-Peer
Infrastructures for Games. In: 18th International Workshop on Network and Oper-
ating Systems Support for Digital Audio and Video, NOSSDAV 2008, pp. 123–124
(2008)

33. Winick, J., Jamin, S.: Inet-3.0: Internet topology generator. Technical report, Uni-
versity of Michigan (2002)

34. Zhou, S.: Characterising and modelling the internet topology – the rich-club phe-
nomenon and the pfp model. BT Technology Journal 24(3), 108–115 (2006)

Distributed SQL Queries with BubbleStorm

Christof Leng and Wesley W. Terpstra

Databases and Distributed Systems, Technische Universität Darmstadt, Germany
{cleng,terpstra}@dvs.tu-darmstadt.de

Abstract. Current peer-to-peer (p2p) systems place the burden of appli-
cation-level query execution on the application developer. Not only do
application developers lack the expertise to implement good distributed
algorithms, but this approach also limits the ability of overlay architects
to apply future optimizations. The analogous problem for data manage-
ment was solved by the introduction of SQL, a high-level query language
for application development and amenable to optimization.

This paper attempts to bridge the gap between current access-oriented
p2p systems and relational database management systems (DBMS). We
outline how to implement every relational operator needed for SQL
queries in the BubbleStorm peer-to-peer overlay. The components of
BubbleStorm map surprisingly well to components in a traditional DBMS.

1 Introduction

Due to its advantages SQL became the most widely used query language for
structured data. It combines a powerful set of query operations with a rela-
tively clean abstraction of system internals. The abstraction benefits both the
user and the DBMS developer. A user can easily learn and use SQL without
understanding how the DBMS executes his queries. The DBMS developer on
the other hand has the freedom to optimize the execution of the query in many
different ways. This combination leads to an easy to learn yet performant query
language. Beyond that SQL offers flexibility for both sides. The user can intro-
duce new queries or change existing ones at any time. The DBMS developer can
integrate new optimizations without breaking existing applications. The advan-
tages of SQL have made it almost ubiquitous in computing. Many standalone
applications like Firefox use SQL internally to manage their data and countless
hobby programmers use MySQL and the like for their web projects.

In contrast to the SQL success story, things in peer-to-peer look quite bleak.
The best-known interface for peer-to-peer search overlays is key-based routing
(KBR) [5]. It provides an abstraction that works more or less with all distributed
hash tables (DHT), but is not much more than a hash table interface. This
limits users to simple key-value lookups or forces them to build tailor-made
algorithms for their more sophisticated problems on top of that primitive. The
execution plan of such a query is thus moved from the realm of the system
architect to the responsibility of the user. Obviously this contradicts the idea of
an abstraction like SQL. Now the user needs to have the expertise to implement
search algorithms and the system architect can not optimize the execution easily.

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 230–241, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Distributed SQL Queries with BubbleStorm 231

With key-value lookup as the only means of access, DHTs resemble indexes
in traditional database systems. Indexes are an important tool for database
performance tuning, but with ever increasing hard disk throughput and nearly
constant random access times, their relevance is decreasing. Instead, scanning
the table directly is often more efficient than using the index. The rise of solid
state disks with their super fast random access might change the rules here, but
there won’t be such a thing for the Internet. The latency of Internet connections
is dictated by the physical distance between the communication partners and the
speed of light. On the other hand according to Gilder’s Law [4] the bandwidth
doubles or even triples each year. Or as David Clark once put it “There is an
old network saying: bandwidth problems can be cured with money. Latency
problems are harder because the speed of light is fixed - you can’t bribe God.”

Therefore, a more powerful abstraction for peer-to-peer search overlays should
be based on a technology that is able to benefit from continuing bandwidth
growth. Such an abstraction might be based on the established SQL standard.
This would enable developers to build upon their database programming expe-
rience for peer-to-peer application development resulting in an easier learning
curve. In this paper we present how to implement distributed SQL queries with
the BubbleStorm [12] peer-to-peer search overlay. Its rendezvous approach makes
BubbleStorm a perfect fit for this kind of abstraction because it resembles a table
scan in a traditional database system.

We cover all major aspects of SQL queries like selection, projection, and ag-
gregation. A focus of this paper is the discussion of join algorithms applicable
in BubbleStorm. Furthermore query execution planning for the peer-to-peer en-
vironment is discussed. The data definition language (DDL) for schema modifi-
cations and the data manipulation language (DML) for inserts and updates are
beyond the scope of this paper.

2 Related Work

Distributed search is probably the most prominent research topic in peer-to-
peer networking. Most publications focus on algorithms for more efficient or
more powerful search and relatively few propose abstractions or query lan-
guages for those algorithms. Of those, key-based routing [5] is the most well-
established approach. Unfortunately, it is so low-level that it should be used
to build application-level query languages rather than direct application devel-
opment. Also, it focuses on DHTs which are limited to indexing functions and
cannot be scanned efficiently.

A few projects have considered SQL as a query language for their peer-to-
peer system. All of them have in common that they keep local databases that
are shared with other users instead of a global database that is distributed
over the network. Thus, when a user goes offline, he takes his data with him.
Furthermore, a user with a large amount of data might become overloaded with
requests and will be unable to answer all of them reliably.

PeerDB [9] was one of the earliest attempts at accessing distributed data
with SQL queries. In the tradition of multi-database systems they assume no

232 C. Leng and W.W. Terpstra

general schema and apply a schema matching algorithm that relies on human
interaction. The underlying näıve flooding-based overlay is clearly not scalable.

Minerva [3] is a peer-to-peer database based on DHTs. The DHT is used to
index the local databases of the participating peers. To execute a query, one
looks up the most promising peers for the relevant query terms in the DHT and
then queries them directly. The distributed index might become prohibitively
expensive if the number of terms and users grows. Like PeerDB, queries that
combine data from multiple nodes like joins are not considered.

Astrolabe [14] is a peer-to-peer information dissemination system that allows
queries to be formulated in SQL. As an information dissemination system it does
not support storing data in the network but queries the current state of online
nodes. Astrolabe is organized hierarchically and thus relatively static. Sacrificing
one of the major advantages of SQL, it only allows predefined queries because
it pre-aggregates information in its hierarchy.

3 BubbleStorm Overview

BubbleStorm [12] is a rendezvous-based peer-to-peer search overlay. A rendezvous
search system is a distributed system that ensures that a query meets all data that
is available in the system. Meeting means that the query is executed on at least
one node that has a copy of the data item in its local dataset. This is typically
achieved by replicating both data and queries onto O(

√
n) nodes. The benefit of a

rendezvous system is that any selection operator that can be executed locally can
be executed in the distributed search overlay.

Designed for highly dynamic, failure-prone and open-membership scenarios
BubbleStorm does not guarantee an unobtainable 100% search success, but in-
stead gives a tunable probabilistic success guarantee. Replicating query and data
to

√
λn nodes guarantees a search success probability of p = 1− e−λ. Thus, the

application developer can pick the right traffic vs. recall tradeoff for his applica-
tion by setting λ.

This probabilistic approach is implemented by a random graph topology which
gives BubbleStorm extreme resilience against node failures [12]. Every node can
pick its own degree and will keep this number of neighbours. Since the load of
a node in BubbleStorm scales linearly with its degree, this ensures load balance
in heterogeneous environments.

The actual replication of data and queries in the overlay is implemented with a
binary-tree-based algorithm called bubblecast. Being a tree, bubblecast reaches
x nodes within log x hops. The intersection of a given query and data bubble is
called the rendezvous (Figure 1). The nodes in the rendezvous (there could be
several) can test this data item for the searcher’s query.

To compute the global parameters for bubblecast and topology maintenance
BubbleStorm monitors a number of system statistics like the network size. To do
this it uses a gossip-based measurement protocol [13] that computes system-wide
sums, maxima, and averages and provides the results to all nodes in the system.

Distributed SQL Queries with BubbleStorm 233

Fig. 1. Intersection of two bubbles in BubbleStorm

4 SQL Query Optimization

Our proposal for executing SQL queries closely follows the approach used in
modern DBMS systems. To understand it, a short review of standard SQL query
processing is in order. For a more complete understanding, the interested reader
is referred to [7].

Architecturally, the system goes through the steps shown in Figure 2(a). First,
the SQL query is parsed into an expression involving relational operators. Then,
various result-preserving rearrangements of these operators, called query plans,
are considered by the optimizer. The plan generator creates the rearrangements
and the cost estimator determines how expensive they would be. Finally, the
chosen query plan is fed into the interpreter which executes the query.

(a) Query processing (b) An example query tree

Fig. 2. DBMS query execution (taken from [7])

The SQL Parser needed for a BubbleStorm DBMS is unchanged from a tradi-
tional DBMS system. It produces relational expressions like those in Figure 2(b).

234 C. Leng and W.W. Terpstra

The plan generator also remains more-or-less unchanged, considering only left-
deep plans using a dynamic programming algorithm [7]. Where the BubbleStorm
DBMS differs is the plan interpreter, cost estimator, and system catalog. Sec-
tion 5 will detail how BubbleStorm can execute each relational operator and
derive a cost estimator for each technique. Section 6 details how to implement
a DBMS catalog in a peer-to-peer setting.

5 Plan Execution in BubbleStorm

Before discussing how we choose an optimized query plan, we first turn our
attention to how we execute a given plan in BubbleStorm. Armed with this
understanding, we will be able to estimate the cost of a plan and thus choose an
acceptable strategy.

To execute a query plan in a peer-to-peer network, we pay several different
costs. First, there is the time required for participating peers to locally execute the
query, which we ask a traditional DBMS to estimate. As every operation includes
this classically estimated cost, we elide them from discussion to keep things sim-
ple. A real implementation should include the local execution cost in its estimates
during query optimization. We will henceforth focus on the bandwidth costs.

Depending on the execution plan, the bandwidth costs may be paid by the
executing peer (we call this local bandwidth cost) or by intermediate peers in the
network (we call this network bandwidth cost). Query plans can trade between
a very selective, but large query (imposing a large network bandwidth cost) or a
smaller, simple query (requiring more local bandwidth to filter the results). The
correct trade-off between these local/network costs depends on the application
and resources of the executing peer. In our cost analysis, we assign a simple
weighting: L for local bandwidth cost and N for network bandwidth cost.
When discussing bandwidth costs, message headers play an important constant-
wise role. We will use h to designate their length, typically on the order of 100
bytes in a BubbleStorm implementation.

5.1 Selection and Projection

As discussed in Section 3, BubbleStorm provides a rendezvous search interface.
This lends itself naturally to the execution of selection and projection on a base
table. Since both selection and projection may be executed simultaneously, we
consider a combined select/project operator.

To execute the operator, we define two intersecting bubble types. One bub-
ble type consists of the rows (or tuples) in the base table. The other bubble
type contains a particular select/project operator. To be concrete, each bub-
ble of the first type contains a tuple insertion statement like, “INSERT INTO
tableA VALUES (4, 5, 6);”. These insert statements are individually repli-
cated onto several of the participating peers. Each bubble of the second type
contains a select statement like, “SELECT project-clause FROM tableA WHERE
select-clause;”, which is executed by several participating peers.

Distributed SQL Queries with BubbleStorm 235

Each peer locally stores the tuples it receives in a traditional database. Upon
receipt of a projection/selection operator, it uses this database to execute the op-
erator and then forwards the results to the originator of the query. BubbleStorm
ensures that every tuple and every operator meet on some peer with a user-
specified probability, p = 1 − e−λ. Therefore, the query originator receives p
of the requested tuples. Unfortunately, each matching tuple might be received
multiple times (on average, λ times).

The cost to execute this operator has several parts. First there is the cost of
shipping the query to the n executing peers. If the selection/projection-operator
has length q, then the originator as the root of the bubblecast tree pays 2(h+ q)
traffic to send the query to two peers, but the network pays 2(h + q)m by
replicating the query to m ≈ √

λn peers for the rest of the tree. This includes
the cost of sending and receiving the query.

Finally, there is the cost to download the result-set. Suppose the result table
R has r entries and a total size of |R| bytes. The header cost depends on the
number of responding peers. Recall that λ BubbleStorm peers respond for each
tuple, but only one of them will transfer the payload. The expected number
of responders is asymptotically 1 − e−λr/m percent of the m peers, making the
bandwidth cost to both the originator and the network hm(1 − e−λr/m) + |R|
traffic. The total cost is therefore,

(L + N)[2(h + q) + hm(1 − e−λr/m) + |R|] + N 2m(h + q) (1)

In some cases, we may have an index available, allowing us to find tuples without
a full scan of the table. BubbleStorm has its own indexing mechanism costing e
hops on average (DHTs can do the same in log n hops). If an index is available,
the download cost and query forwarding costs remains unchanged. However,
m ≈ e instead of ≈ √

λn, a potentially significant savings whenever an index is
available.

5.2 Post Processing

After receiving matching tuples, the query originator might need to aggregate
and sort/filter the result. The user may have specified an SQL aggregation op-
eration like, “SELECT owner, SUM(balance) FROM account GROUP BY owner
HAVING SUM(balance) < 0;”. He may also have requested the output in sorted
order, possibly with distinct results. We perform all of this post processing locally
on the originator where standard database techniques apply.

Performing aggregation is relatively inexpensive so long as the result set fits in
main memory. Form a hash-table using the GROUP BY expression as the key. Then
as results arrive, aggregate them in-place. All of the standard SQL aggregates
can be implemented this way; AVG (average) can be implemented using SUM and
COUNT. In our scenario, with a slow Internet connection and desktop-class peers,
this work can be pipelined with receiving the incoming tuples. If the aggregated
result does not fit in main memory, there are standard algorithms to perform
aggregation very efficiently. Their cost can be estimated from the estimated size
of the result set.

236 C. Leng and W.W. Terpstra

Similarly, sorting the result set can be achieved by storing the incoming tuples
in a balanced search tree as they arrive. If the group-by columns appear only
as a prefix of the order-by columns, sorting can be combined with aggregation
by replacing the hash-table with a balanced search tree. Otherwise sorting must
occur after aggregation. If main memory is insufficient and/or sorting cannot be
combined with aggregation, the cost of an external sort can be estimated from
the size of the result set.

One interesting enhancement is to move the aggregation into the network. A
query like “SELECT COUNT(*) FROM account;” can clearly be further optimized.
Some of the previous work on peer-to-peer search result retrieval [1] builds a tree,
where the aggregation proceeds up the tree. This increases the total traffic, since
the leaf peers still send the same results and now intermediate peers must also
transmit. However, it does lighten the burden of the originator and parallelizes
the load. As a more fruitful approach, one could move the aggregation operator
into the leaf peers themselves. Then, each peer reports only its locally aggregated
result.

Unfortunately, the result sets from each peer in BubbleStorm are not disjoint.
This leads to double-counting. Leaf peer aggregation can be applied to ren-
dezvous systems which guarantee exactly one copy of each result, like [11,10,2].
Eliminating double-counting in a more failure-tolerant scenario like BubbleStorm
would be an interesting direction for future work.

5.3 (Block) Nested Loop Join

In a traditional DBMS, a nested loop join is used when one table (S) is small.
For each tuple in the smaller table, the larger table (L) is scanned for matching
tuples. The block nested optimization simply loads a block of S at a time instead
of a tuple. During the scan of L, tuples are matched against the loaded block S.

In some sense, a nested loop join writes a subquery like,

SELECT * from L WHERE joinColumn=x; (2)

for each tuple x ∈ S. The block nested variant reads like,

SELECT * from L WHERE joinColumn in X; (3)

for each block X ⊆ S. We use this analogy to create a BubbleStorm equivalent.
To execute a block nested loop join in BubbleStorm, first query the network to

load the result table S as in Section 5.2. Now there are two options. If an index is
available for the join columns in L, we can use query 2 to lookup the join results
one at a time. Alternatively, divide S up into ‘blocks’ that fit inside a query
bubble. For each block B, run the query 3 with X = B. This select operation
can be executed as described in Section 5.1 using rendezvous techniques.

Now we compute the costs. Let π(S) be the projection of the columns neces-
sary to perform the join and s the total number of tuples in S. When there is an
index, we replace m with e and q with |π(S)| in Equation 1 and run it s times,

(L + N)[2sh + 2|π(S)| + she + |R|] + N 2e(sh + |π(S)|) (4)

Distributed SQL Queries with BubbleStorm 237

Similarly, performing a block-nested loop join costs,

(L + N)[2h + 2|π(S)| + hm(1 − e−λr/m) + |R|] + N 2m(h + |π(S)|) (5)

Whenever an index is available and s < m ≈ √
λn, using an index-nested loop

join is beneficial. However, if s > m things start to swing the other way. In
some sense, this transition captures the selectivity of the query, analogous to a
traditional DBMS. As S grows, you need to execute more and more subqueries
and batching them together in a scan become cheaper.

5.4 Sort-Merge and Hash Join

In a traditional DBMS, nested loop joins are not ideal for similarly sized, large
tables. This is also true for BubbleStorm due to the factors he for index-nexted
loop joins and m for block-nested loop joins. For the case where both tables are
large, DBMSs use either a sort-merge or hash join.

Ignoring the details, both sort-merge and hash join walk both tables once in
their entirety. Sort-merge works well when the tables are already sorted and hash
join partitions the tables while it walks them. When an index is present, a nested
loop join may be faster since each tuple in the outer table O can find matching
inner tuples without walking the entire inner table I. However, there is a cost
to this lookup, and once a significant portion of the inner table is retrieved, it
becomes faster to simply walk the inner table in its entirety.

The situation in BubbleStorm is more-or-less analogous. The rendezvous sys-
tem provides an index for any select criteria. Nevertheless, it has a cost m to
use per outer tuple. Once |O|m > |I|, it becomes cheaper to walk the entire I.

In the setting of BubbleStorm, walking both tables in their entirety simply
means to retrieve both tables (after applying any selection and projection oper-
ators). This can be done as in Section 5.1. Since a block nested loop join must
already retrieve the smaller table, it is quite intuitive that retrieving both is a
good plan when they have similar size. After both tables have been retrieved,
they can be joined locally using a traditional hash join. Hash join is preferred
since the tuples do not arrive in sorted order, and partitioning can be easily
pipelined with reception.

6 Query Plan Generation and the Catalog

Armed with equations to estimate the cost of given query plan, we can now pick
a good one. The considerations are identical to those in a traditional DBMS; we
choose the best left-deep tree using a dynamic programming algorithm [7]. Just
as in a traditional DBMS, we push the projection and selection operations as
far toward the leaves in the query plan as we can. If a table has an index on the
join columns, we also consider a plan which does not push selection to the base
table (which would prevent use of the index). The query plan generation for a

238 C. Leng and W.W. Terpstra

BubbleStorm search system is thus completely standard. The only difference is
the particular costs for the operators and how we obtain the size estimates for
resulting relations.

To compute the cost of our operators, we need to know the size of the re-
sult. A traditional DBMS estimates these sizes using the database catalog. The
catalog contains, at the least, the database schema, the number of rows in each
table, the average bit length of each attribute, the number of distinct values for
each attribute, and the maximum/minimum for each attribute. This informa-
tion can be used to estimate result sizes. For example, if a table Teachers is
joined by EmployeeID with another table which has 20 distinct EmployeeIDs,
the catalog can be used to estimate the number of matching tuples in Teachers.
Take the ratio of the distinct EmployeeIDs to the total number of tuples in the
Teachers table (in our example this ratio is probably 1). Now multiply this by
20 to determine that we expect 20 tuples in the result. Sum the average column
sizes for the projected columns and multiply by 20 to find the resulting table
size.

In a peer-to-peer database like BubbleStorm, the schema is a global piece of
metadata. In order to facilitate future development, new, signed versions of the
schema can be flooded to all participating peers. Care must be taken between
subsequent versions of the software to ensure that the schema is kept backwards
compatible with the program logic. Nevertheless, this part of the catalog is rel-
atively straight-forward to access.

BubbleStorm already includes a mechanism for computing sums, averages,
minimums and maximums. This measurement protocol can be used to find the
average size of each column, the total number of tuples in the table, and the
minimum/maximum for each attribute. The global schema tells peers which
attributes and tables to gossip about using the measurement protocol.

The only piece of information that is hard to come by in a peer-to-peer setting
is the number of distinct values in an attribute. The heart of the problem is that
we have no locality and there are duplicate entries. A peer with one value has
no way of knowing how many other peers have the same value. However, there
is a way to calculate the number of distinct values using statistics.

It is a well-known property of k independent exponential random variables Xi

with rate γ that their minimum Y := mini Xi is also exponentially distributed
with rate kγ. This can be exploited, as in [8], to calculate sums by finding
k. While this technique is inferior to the distributed sum algorithm used in
BubbleStorm [6,13], it can be tweaked to calculate the number of distinct objects
(a variation we have not seen published yet).

To count the distinct values in a table’s attribute, hash each value to ob-
tain a seed for a random number generator. Use this seed to compute an ex-
ponential random variable with γ = 1. Find the minimum of the exponential
random variables computed locally. Use BubbleStorm’s built-in measurement
protocol to find the global minimum Y . Take 1/Y ≈ k as the number of distinct
objects.

Distributed SQL Queries with BubbleStorm 239

This algorithm works because two copies of the same object result in the same
seed. Therefore, there are only as many dice rolled as there are distinct objects.
Unfortunately, an exponential random variable has standard deviation equal to
its mean. However, by averaging several of these minimums, the estimate may
be improved. If we average j minimums, the standard deviation falls to k/

√
j.

In a practical system where measurements are continuously generated, we can
take an exponentially moving average of the minimums. If the weight given to
the newest estimate is 1/16, then the standard deviation is better than ± 25%,
good enough for our cost estimates.

7 Materialized Views

When a join is executed many times, one way to improve performance is to
cache/store the joined table. While traditional DBMS systems do not create
materialized views on their own, given a view created by the administrator,
most query optimizers will recognize when the view can be used. In this way,
materialized views can be used to improve system performance.

Updating a materialized view is quite complicated. When the base tables
change, a subquery must be triggered which updates the view. These subqueries
may themselves be using auxiliary tables to speedup execution. We believe that
most of these trigger-based approaches could be applied one-to-one in a Bub-
bleStorm DBMS.

However, peer-to-peer rendezvous gives us another possibility. We can create
a materialized cross-product of two tables at a cost which, while still expensive,
is much cheaper than in a traditional DBMS. The core idea is to form a three-
party rendezvous instead of the more common two-party scenario. Local to each
peer the cross-product need not be materialized; it can execute the join operator
directly or perhaps materialize the join instead.

If a query is interested in a join of tables A and B, then a three-way rendezvous
will ensure that every pair of tuples (a, b) ∈ A×B will rendezvous with the query.
The idea is that if there are enough copies of a and b, then many peers will have
both of them. When the query is executed, some peer who has both will also
receive the query. This allows that peer to execute the join operation completely
locally and still produce the resulting tuple.

While we never actually store the cross-product on disk, the increased repli-
cation of tables A and B is obviously expensive. Normally, if the query had
q replicas and table A a replicas, these must roughly obey qa = λn which
leads to q, a ∈ O(

√
λn). With the materialized cross-product, the relationship is

qab = λn2, so q, a, b ∈ O(3
√

λn2)). If one of the relations is small or infrequently
changed, replicating it to every node may be less expensive than executing the
join repeatedly. Conversely, if the join query is rarely executed, the cost to nearly
flood it might be acceptable.

We leave as future work the problem of gauging when/if a three-way ren-
dezvous is cheaper than a trigger-based update for materialized views.

240 C. Leng and W.W. Terpstra

8 Conclusion

In this paper we described how to build a complete SQL query processor for
the BubbleStorm peer-to-peer network. The main thrust of our work is how to
execute selection, aggregation, index and block nested loop joins, and hash joins.
For each operator we provided a cost estimator compatible with a traditional
DBMS query optimizer. The cost estimator relies on the system catalog. We
designed a distributed version of the system catalog which we show can be done
with just BubbleStorm’s gossip protocol.

We believe traditional DBMS architecture remains a good fit in the peer-
to-peer environment. In particular BubbleStorm provides everything needed to
arrive at a simple and natural design. Table scans map to bubblecast, indexes
map to key-value lookups, and the system catalog maps to the gossip protocol.
Overall it is surprisingly easy to execute SQL queries with BubbleStorm.

References

1. Balke, W.-T., Nejdl, W., Siberski, W., Thaden, U.: Progressive distributed top-k
retrieval in peer-to-peer networks. In: Proceedings of ICDE 2005, Washington, DC,
USA, 2005, pp. 174–185. IEEE Computer Society Press, Los Alamitos (2005)

2. Barroso, L.A., Dean, J., Hölzle, U.: Web search for a planet: The google cluster
architecture. IEEE Micro. 23(2), 22–28 (2003)

3. Bender, M., Michel, S., Triantafillou, P., Weikum, G., Zimmer, C.: Minerva: col-
laborative p2p search. In: Proceedings of VLDB 2005, Trondheim, Norway, pp.
1263–1266. VLDB Endowment (2005)

4. Coffman, K.G., Odlyzko, A.M.: Internet growth: is there a ”moore’s law” for data
traffic? In: Handbook of massive data sets, pp. 47–93. Kluwer Academic Publishers,
Norwell (2002)

5. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a common
api for structured peer-to-peer overlays. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS
2003. LNCS, vol. 2735, Springer, Heidelberg (2003)

6. Kempe, D., Dobra, A., Gehrke, J.: Gossip-Based Computation of Aggregate In-
formation. In: Proceedings of FOCS 2003, Washington, DC, USA, p. 482. IEEE
Computer Society Press, Los Alamitos (2003)

7. Kifer, M., Bernstein, A., Lewis, P.M.: Database Systems: An Application Oriented
Approach, Compete Version. Addison-Wesley, Reading (2006)

8. Mosk-Aoyama, D., Shah, D.: Computing separable functions via gossip. In: PODC
2006: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Distributed Computing, pp. 113–122. ACM, New York (2006)

9. Ng, W.S., Ooi, B.C., Tan, K.-L., Zhou, A.: PeerDB: A P2P-based system for dis-
tributed data sharing. In: Proceedings of ICDE 2003 (2003)

10. Raiciu, C., Huici, F., Handley, M., Rosenblum, D.S.: Roar: increasing the flexibility
and performance of distributed search. In: Proceedings of SIGCOMM 2009, pp.
291–302. ACM, New York (2009)

11. Terpstra, W.W., Behnel, S., Fiege, L., Kangasharju, J., Buchmann, A.: Bit Zip-
per Rendezvous—Optimal Data Placement for General P2P Queries. In: Lindner,
W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS,
vol. 3268, pp. 466–475. Springer, Heidelberg (2004) (received best paper award)

Distributed SQL Queries with BubbleStorm 241

12. Terpstra, W.W., Kangasharju, J., Leng, C., Buchmann,A.P.: Bubblestorm: resilient,
probabilistic, and exhaustive peer-to-peer search. In: Proceedings of SIGCOMM
2007, pp. 49–60. ACM Press, New York (2007)

13. Terpstra, W.W., Leng, C., Buchmann, A.P.: Brief announcement: Practical sum-
mation via gossip. In: Twenty-Sixth Annual ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC 2007), pp. 390–391. ACM Press,
New York (August 2007)

14. Van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Transactions on Computer Systems (TOCS) 21(2), 164–206 (2003)

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 242–259, 2010.
© Springer-Verlag Berlin Heidelberg 2010

From the Internet of Computers
to the Internet of Things

Friedemann Mattern and Christian Floerkemeier

Distributed Systems Group, Institute for Pervasive Computing, ETH Zurich
{mattern,floerkem}@inf.ethz.ch

Abstract. This paper1 discusses the vision, the challenges, possible usage sce-
narios and technological building blocks of the “Internet of Things”. In particu-
lar, we consider RFID and other important technological developments such as
IP stacks and web servers for smart everyday objects. The paper concludes with
a discussion of social and governance issues that are likely to arise as the vision
of the Internet of Things becomes a reality.

Keywords: Internet of Things, RFID, smart objects, wireless sensor networks.

In a few decades time, computers will be inter-

woven into almost every industrial product.

 Karl Steinbuch, German computer science pioneer, 1966

1 The Vision

The Internet of Things represents a vision in which the Internet extends into the real
world embracing everyday objects. Physical items are no longer disconnected from
the virtual world, but can be controlled remotely and can act as physical access points
to Internet services. An Internet of Things makes computing truly ubiquitous – a
concept initially put forward by Mark Weiser in the early 1990s [29]. This
development is opening up huge opportunities for both the economy and individuals.
However, it also involves risks and undoubtedly represents an immense technical and
social challenge.

The Internet of Things vision is grounded in the belief that the steady advances in
microelectronics, communications and information technology we have witnessed in
recent years will continue into the foreseeable future. In fact – due to their diminish-
ing size, constantly falling price and declining energy consumption – processors,
communications modules and other electronic components are being increasingly
integrated into everyday objects today.

“Smart” objects play a key role in the Internet of Things vision, since embedded
communication and information technology would have the potential to revolutionize
the utility of these objects. Using sensors, they are able to perceive their context, and
via built-in networking capabilities they would be able to communicate with each

1 This paper is an updated translation of [19].

 From the Internet of Computers to the Internet of Things 243

other, access Internet services and interact with people. “Digitally upgrading” conven-
tional object in this way enhances their physical function by adding the capabilities of
digital objects, thus generating substantial added value. Forerunners of this develop-
ment are already apparent today – more and more devices such as sewing machines,
exercise bikes, electric toothbrushes, washing machines, electricity meters and photo-
copiers are being “computerized” and equipped with network interfaces.

In other application domains, Internet connectivity of everyday objects can be used to
remotely determine their state so that information systems can collect up-to-date infor-
mation on physical objects and processes. This enables many aspects of the real world
to be “observed” at a previously unattained level of detail and at negligible cost. This
would not only allow for a better understanding of the underlying processes, but also
for more efficient control and management [7]. The ability to react to events in the
physical world in an automatic, rapid and informed manner not only opens up new
opportunities for dealing with complex or critical situations, but also enables a wide
variety of business processes to be optimized. The real-time interpretation of data
from the physical world will most likely lead to the introduction of various novel
business services and may deliver substantial economic and social benefits.

The vision outlined above is often referred to as the “Internet of Things”. In that
context, the word “Internet” can be seen as either simply a metaphor – in the same way
that people use the Web today, things will soon also communicate with each other,
use services, provide data and thus generate added value – or it can be interpreted in a
stricter technical sense, postulating that an IP protocol stack will be used by smart
things (or at least by the “proxies”, their representatives on the network).

The term “Internet of Things” was popularized by the work of the Auto-ID Center
at the Massachusetts Institute of Technology (MIT), which in 1999 started to design
and propagate a cross-company RFID infrastructure.2 In 2002, its co-founder and
former head Kevin Ashton was quoted in Forbes Magazine as saying, “We need an
internet for things, a standardized way for computers to understand the real world”
[23]. This article was entitled “The Internet of Things”, and was the first documented
use of the term in a literal sense3. However, already in 1999 essentially the same
notion was used by Neil Gershenfeld from the MIT Media Lab in his popular book
“When Things Start to Think” [11] when he wrote “in retrospect it looks like the rapid
growth of the World Wide Web may have been just the trigger charge that is now
setting off the real explosion, as things start to use the Net.”

In recent years, the term “Internet of Things” has spread rapidly – in 2005 it could
already be found in book titles [6, 15], and in 2008 the first scientific conference was
held in this research area [9]. European politicians initially only used the term in the
context of RFID technology, but the titles of the RFID conferences “From RFID to
the Internet of Things” (2006) and “RFID: Towards the Internet of Things” (2007)
held by the EU Commission already allude to a broader interpretation. Finally, in
2009, a dedicated EU Commission action plan ultimately saw the Internet of Things

2 The Auto-ID Center’s first white paper [22] already suggested a vision that extended beyond

RFID: “The Center is creating the infrastructure […] for a networked physical world. […] A
well known parallel to our networked physical world vision is the Internet.”

3 Kevin Ashton commented in June 2009: “I’m fairly sure the phrase Internet of Things started
life as the title of a presentation I made at Procter & Gamble in 1999” [2].

244 F. Mattern and C. Floerkemeier

as a general evolution of the Internet “from a network of interconnected computers to
a network of interconnected objects” [5].

2 Basics

From a technical point of view, the Internet of Things is not the result of a single
novel technology; instead, several complementary technical developments provide
capabilities that taken together help to bridge the gap between the virtual and physical
world. These capabilities include:

− Communication and cooperation: Objects have the ability to network with
Internet resources or even with each other, to make use of data and services
and update their state. Wireless technologies such as GSM and UMTS, Wi-Fi,
Bluetooth, ZigBee and various other wireless networking standards currently
under development, particularly those relating to Wireless Personal Area
Networks (WPANs), are of primary relevance here.

− Addressability: Within an Internet of Things, objects can be located and
addressed via discovery, look-up or name services, and hence remotely
interrogated or configured.

− Identification: Objects are uniquely identifiable. RFID, NFC (Near Field
Communication) and optically readable bar codes are examples of technologies
with which even passive objects which do not have built-in energy resources
can be identified (with the aid of a “mediator” such as an RFID reader or mo-
bile phone). Identification enables objects to be linked to information associ-
ated with the particular object and that can be retrieved from a server, provided
the mediator is connected to the network (see Figure 1).

− Sensing: Objects collect information about their surroundings with sensors, re-
cord it, forward it or react directly to it.

− Actuation: Objects contain actuators to manipulate their environment (for
example by converting electrical signals into mechanical movement). Such
actuators can be used to remotely control real-world processes via the Internet.

− Embedded information processing: Smart objects feature a processor or micro-
controller, plus storage capacity. These resources can be used, for example, to
process and interpret sensor information, or to give products a “memory” of
how they have been used.

− Localization: Smart things are aware of their physical location, or can be
located. GPS or the mobile phone network are suitable technologies to achieve
this, as well as ultrasound time-of-flight measurements, UWB (Ultra-Wide
Band), radio beacons (e.g. neighboring WLAN base stations or RFID readers
with known coordinates) and optical technologies.

− User interfaces: Smart objects can communicate with people in an appropriate
manner (either directly or indirectly, for example via a smartphone). Innovative
interaction paradigms are relevant here, such as tangible user interfaces, flexi-
ble polymer-based displays and voice, image or gesture recognition methods.

Most specific applications only need a subset of these capabilities, particularly since
implementing all of them is often expensive and requires significant technical effort.

 From the Internet of Computers to the Internet of Things 245

Logistics applications, for example, are currently concentrating on the approximate
localization (i.e. the position of the last read point) and relatively low-cost identifica-
tion of objects using RFID or bar codes. Sensor data (e.g. to monitor cold chains) or
embedded processors are limited to those logistics applications where such informa-
tion is essential such as the temperature-controlled transport of vaccines.

Forerunners of communicating everyday objects are already apparent, particularly
in connection with RFID – for example the short-range communication of key cards
with the doors of hotel rooms, or ski passes that talk to lift turnstiles. More futuristic
scenarios include a smart playing card table, where the course of play is monitored
using RFID-equipped playing cards [8]. However, all of these applications still
involve dedicated systems in a local deployment; we are not talking about an “Inter-
net” in the sense of an open, scalable and standardized system.

Fig. 1. The smartphone as a mediator between people, things and the Internet

But these days wireless communications modules are becoming smaller and cheap-
er, IPv6 is increasingly being used, the capacity of flash memory chips is growing, the
per-instruction energy requirements of processors continues to fall and mobile phones
have built-in bar code recognition, NFC and touch screens – and can take on the role
of intermediaries between people, everyday items and the Internet (see Figure 1). All
this contributes to the evolution of the Internet of Things paradigm: From the remote
identification of objects and an Internet “with” things, we are moving towards a sys-
tem where (more or less) smart objects actually communicate with users, Internet
services and even among each other. These new capabilities that things offer opens up
fascinating prospects and interesting application possibilities; but they are also ac-
companied by substantial requirements relating to the underlying technology and
infrastructure. In fact, the infrastructure for an Internet of Things must not only be
efficient, scalable, reliable, secure and trustworthy, but it must also conform with
general social and political expectations, be widely applicable and must take eco-
nomic considerations into account.

246 F. Mattern and C. Floerkemeier

3 Drivers and Expectations

What is driving the development of an Internet of Things? One important factor is the
mere evolutionary progress of information and communications technology which is
enabling continuous product improvements. Examples of this include navigation
devices that receive remote road traffic messages, cameras that connect to a nearby
netbook to exchange photos, tire pressure sensors that send their readings to the car’s
dashboard, and electronic photo frames that communicate with household electricity
meters and display not only family photos but also illustrative graphs showing the
power being generated by domestic solar panels.

Instead of giving devices conventional operating controls and displays, it can soon
be more cost-effective to fit them with an “invisible” wireless interface such as NFC,
WLAN or ZigBee and export their interaction components to the Web or a mobile
phone. This development will also benefit smart things that were previously unable to
disclose their state to their surroundings, either because they were too small for con-
ventional user interfaces or for other reasons (such as inaccessibility or aesthetics) –
examples include pacemakers or items of clothing. From here it is a small but logical
step for smart objects to connect to Internet services instead of just to browsers or
mobile phones, and even to network with each other.

Larger and more visionary application scenarios are increasingly moving into the
realm of what is possible. Although they require a more complex infrastructure,
greater investment and cooperation between multiple partners, they can be socially
desirable or offer the prospect of novel services with significant profit potential. The
first category includes cars communicating with each other to improve road safety,
ways of using energy more rationally in the home by cooperating energy-aware
household devices [20], and “ambient assisted living” aimed at unobtrusively support-
ing elderly people in their everyday lives.

Examples of the second category include a virtual lost-property office [10], where
a mobile infrastructure would pick up feeble cries for help from lost things, or prop-
erty insurance where the risk can often be better assessed (and possibly even reduced)
if the insured item is “smart”. This might be a dynamic car insurance that makes your
premium dependent not only on how far you drive (“pay as you drive”), but also on
the individual risk. Speeding, dangerous overtaking and driving in hazardous condi-
tions would then have a direct impact on the insurance costs [3].

In general, we can expect the Internet of Things to give rise to increasing numbers
of hybrid products that provide both, a conventional physical function and informa-
tion services. If objects become access points for relevant services, products will be
able to provide recommendations for use and maintenance instructions, supply war-
ranty information or highlight complementary products. Furthermore, the digital
added value of a company’s products can be used not only to differentiate them from
physically similar competing products and tie customers to the company’s additional
services and compatible follow-on products, but can also be used to protect against
counterfeit products. Completely new opportunities would arise if products independ-
ently cooperated with other objects in their proximity. For example, a smart fridge
might reduce its temperature when the smart electricity meter indicates that cheap
power is available, thus avoiding the need to consume energy at a later stage when
electricity is more expensive.

 From the Internet of Computers to the Internet of Things 247

Another driver for the Internet of Things is the real-world awareness provided to
information systems. By reacting promptly to relevant physical events, companies can
optimize their processes, as typically illustrated by the use of RFID in logistics appli-
cations. Or to put it another way, by increasing the “visual acuity” of information
systems, it is possible to manage processes better, typically increasing efficiency and
reducing costs [7].

Although such telemetry applications are nothing new in principle, they have
previously been restricted to special cases due to the costly technology involved (such
as inductive loops in roads that transmit traffic conditions to a central computer in
order to optimize the sequencing of traffic lights). Due to diminishing cost and
technical progress, many other application areas can now benefit from an increased
awareness of real-world processes. For example, it is now becoming worthwhile for
suppliers of heating oil to remotely check how full customers’ oil tanks are (to
optimize the routes of individual fuel tankers), and for operators of drinks and
cigarette machines to establish the state of their vending machines (how full they are,
any malfunctions, etc.) via a wireless modem.

If a smart object possesses a suitable wireless interface (e.g. NFC), the user can
interact with the object via a mobile phone. As mentioned above, when only
information about the object is to be displayed, it is often sufficient simply to identify
the object in question (Figure 1). For example, if the bar code on a supermarket item
can be read using a smartphone, additional data can automatically be retrieved from
the Internet and displayed on the phone [1]. The “augmented reality” achieved in this
way can be used to display helpful additional information on the product from
independent sources, for example a personally tailored allergy warning or nutritional
“traffic lights”. Political shopping would also be possible (displaying an item’s
country of origin, seal of approval or CO2 footprint), as would self-checkouts in
supermarkets.

Smartphones can thus provide displays for physical objects and act as browsers for
the Internet of Things – with the added benefit that the phone knows something about
the current situation (such as the current location or the user’s profile). “Pointing” at
the object in question also removes the need to manually input an Internet address or
search term, making the process extremely quick and easy. It appears conceivable that
in the future the ability to obtain information about nearby things will be considered
just as important as the “worldwide” Web is today, or that this ability will even be-
come part of the Web.

In summary, the following expectations can be associated with the Internet of
Things: from a commercial point of view, increased efficiency of business processes
and reduced costs in warehouse logistics and in service industries (by automating and
outsourcing to the customer), improved customer retention and more targeted selling,
and new business models involving smart things and associated services. Of interest
from a social and political point of view is a general increase in the quality of life due
to consumers and citizens being able to obtain more comprehensive information, due
to improved care for people in need of help thanks to smart assistance systems, and
also due to increased safety, for example on roads. From a personal point of view,
what matters above all are new services enabled by an Internet of Things which
would make life more pleasant, entertaining, independent and also safer, for example
by locating things that are lost, such as pets or even other people.

248 F. Mattern and C. Floerkemeier

4 Technological Challenges

While the possible applications and scenarios outlined above may be very interesting,
the demands placed on the underlying technology are substantial. Progressing from
the Internet of computers to the remote and somewhat fuzzy goal of an Internet of
Things is something that must therefore be done one step at a time. In addition to the
expectation that the technology must be available at low cost if a large number of
objects are actually to be equipped, we are also faced with many other challenges,
such as:

− Scalability: An Internet of Things potentially has a larger overall scope than
the conventional Internet of computers. But then again, things cooperate main-
ly within a local environment. Basic functionality such as communication and
service discovery therefore need to function equally efficiently in both small-
scale and large-scale environments.

− “Arrive and operate”: Smart everyday objects should not be perceived as
computers that require their users to configure and adapt them to particular
situations. Mobile things, which are often only sporadically used, need to es-
tablish connections spontaneously, and organize and configure themselves to
suit their particular environment.

− Interoperability: Since the world of physical things is extremely diverse, in an
Internet of Things each type of smart object is likely to have different informa-
tion, processing and communication capabilities. Different smart objects would
also be subjected to very different conditions such as the energy available and
the communications bandwidth required. However, to facilitate communication
and cooperation, common practices and standards are required. This is particu-
larly important with regard to object addresses. These should comply with a
standardized schema if at all possible, along the lines of the IP standard used in
the conventional Internet domain.

− Discovery: In dynamic environments, suitable services for things must be au-
tomatically identified, which requires appropriate semantic means of describ-
ing their functionality. Users will want to receive product-related information,
and will want to use search engines that can find things or provide information
about an object’s state.

− Software complexity: Although the software systems in smart objects will have
to function with minimal resources, as in conventional embedded systems, a
more extensive software infrastructure will be needed on the network and on
background servers in order to manage the smart objects and provide services
to support them.

− Data volumes: While some application scenarios will involve brief, infrequent
communication, others, such as sensor networks, logistics and large-scale
“real-world awareness” scenarios, will entail huge volumes of data on central
network nodes or servers.

− Data interpretation: To support the users of smart things, we would want to
interpret the local context determined by sensors as accurately as possible. For
service providers to profit from the disparate data that will be generated,
we would need to be able to draw some generalizable conclusions from the

 From the Internet of Computers to the Internet of Things 249

interpreted sensor data. However, generating useful information from raw sen-
sor data that can trigger further action is by no means a trivial undertaking.

− Security and personal privacy: In addition to the security and protection as-
pects of the Internet with which we are all familiar (such as communications
confidentiality, the authenticity and trustworthiness of communication partners,
and message integrity), other requirements would also be important in an Inter-
net of Things. We might want to give things only selective access to certain
services, or prevent them from communicating with other things at certain
times or in an uncontrolled manner; and business transactions involving smart
objects would need to be protected from competitors’ prying eyes.

− Fault tolerance: The world of things is much more dynamic and mobile than
the world of computers, with contexts changing rapidly and in unexpected
ways. But we would still want to rely on things functioning properly. Structur-
ing an Internet of Things in a robust and trustworthy manner would require
redundancy on several levels and an ability to automatically adapt to changed
conditions.

− Power supply: Things typically move around and are not connected to a power
supply, so their smartness needs to be powered from a self-sufficient energy
source. Although passive RFID transponders do not need their own energy
source, their functionality and communications range are very limited. In many
scenarios, batteries and power packs are problematic due to their size and
weight, and especially because of their maintenance requirements. Unfortu-
nately, battery technology is making relatively slow progress, and “energy har-
vesting”, i.e. generating electricity from the environment (using temperature
differences, vibrations, air currents, light, etc.), is not yet powerful enough to
meet the energy requirements of current electronic systems in many application
scenarios.

Hopes are pinned on future low-power processors and communications units
for embedded systems that can function with significantly less energy. Energy
saving is a factor not only in hardware and system architecture, but also in
software, for example the implementation of protocol stacks, where every sin-
gle transmission byte will have to justify its existence. There are already some
battery-free wireless sensors that can transmit their readings a distance of a few
meters. Like RFID systems, they obtain the power they require either remotely
or from the measuring process itself, for example by using piezoelectric or
pyroelectric materials for pressure and temperature measurements.

− Interaction and short-range communications: Wireless communication over
distances of a few centimeters will suffice, for example, if an object is touched
by another object or a user holds their mobile against it. Where such short
distances are involved, very little power is required, addressing is simplified
(as there is often only one possible destination) and there is typically no risk of
being overheard by others. NFC is one example of this type of communication.
Like RFID, it uses inductive coupling. During communication, one partner is
in active mode and the other can be in passive mode. Active NFC units are
small enough to be used in mobile phones; passive units are similar to RFID
transponders and are significantly smaller, cheaper and do not need their own
power source.

250 F. Mattern and C. Floerkemeier

− Wireless communications: From an energy point of view, established wireless
technologies such as GSM, UMTS, Wi-Fi and Bluetooth are far less suitable;
more recent WPAN standards such as ZigBee and others still under develop-
ment may have a narrower bandwidth, but they do use significantly less power.

5 RFID and the EPC Network

RFID (Radio Frequency Identification) is primarily used to identify objects from a
distance of a few meters, with a stationary reader typically communicating wirelessly
with small battery-free transponders (tags) attached to objects. As well as providing
two important basic functions for an Internet of Things – identification and communi-
cation – RFID can also be used to determine the approximate location of objects pro-
vided the position of the reader is known.

At the end of the 1990s, RFID technology was restricted to niche applications such
as animal identification, access control and vehicle immobilizers. High transponder
prices and a lack of standards constituted an obstacle to the wider use of the technol-
ogy. Since then, however, its field of application has broadened significantly, mainly
thanks to MIT’s Auto-ID Center, which was founded in 1999. The Auto-ID Center
and its successor organization EPCglobal have systematically pursued a vision of
cheap, standardized transponders identifying billions of everyday objects, and they
have developed the necessary technology jointly with commercial partners. The use
of RFID technology in the supply chains of retail giants such as Wal-Mart and Metro
is the result of these efforts. While the adoption by major retailers represents a re-
markable success, the evolution of RFID and its associated infrastructure technologies
in recent years also highlights challenges involved in realizing an Internet of Things
in the broader sense of the term.

The development of RFID over recent years is reflected not only in technical
progress but also in cost reductions and standardization. For example, the power
consumption of the latest generation of transponders is less than 30 μW, with reading
distances of up to ten meters possible under favorable conditions. Increasing minia-
turization has also led to a unit price of close to five cents for bulk orders of simple
RFID transponders. Major progress has also been made in the field of standardization,
with the ISO 18000-6C RFID protocol – also referred to as EPCglobal Gen2 – being
supported by several manufacturers, dominating the market and guaranteeing
interoperability.

High cost pressure and the absence of batteries in transponders means that RFID
communications protocols cannot be based on established Internet protocols due to a
scarcity of resources. For example, a typical RFID microchip merely consists of a few
hundred thousand transistors, contains no microcontroller and has minimal storage
capacity – usually just a few bytes. Instead of using a battery, passive RFID
microchips are supplied with power remotely from a reading device. Since the power
supply can frequently be interrupted due to “field nulls”, the transmission of large
data packets is avoided – at 128 bits, these are typically much shorter than IP packets.
Everyday objects that are to be addressed in an Internet of Things using RFID
technology will therefore not behave in exactly the same way as Internet nodes.
Instead, it is likely that a highly optimized wireless protocol will be used over the last

 From the Internet of Computers to the Internet of Things 251

Fig. 2. RFID communication

few meters due to scarce resources and the adverse conditions encountered in the
physical world. The RFID reader would act as a gateway between the two different
protocols. TCP and HTTP-based protocols have been developed for use in RFID
environments, where they are used to configure readers and distribute the data cap-
tured via the Internet.

One key application area for RFID is logistics. Whereas previously information
systems had to be “hand-fed” with data via a keyboard or bar code reader, data relat-
ing to logistics units can now be captured automatically, without delay and at a
fraction of the cost using RFID technology. The systematic development of RFID
technology now means it is used not only in the commercial supply chain, but also in
numerous other application areas. For example, RFID is used to manage books and
media in libraries, to locate tools and other portable inventory items in factories, and
even in the apparel industry, where RFID systems ensure that the retail store shelves
are regularly replenished with the appropriate clothing items.

Most of the RFID applications deployed are closed-loop applications. When RFID
systems are introduced in open-loop applications such as supply chains involving
many different partners with different commercial interests, the resulting organiza-
tional complexity can rapidly become a problem. It is therefore advisable to use RFID
initially within a single organization, and perhaps even within a limited geographical
area. In such closed-loop applications, costs can be directly offset against added value
and gains in efficiency, and technological challenges are often easier to overcome.
Transferred to the general Internet of Things vision, this means that we are unlikely to
see “global” applications requiring cooperation between many different partners any
time soon. It is thus important to use standardized interfaces to implement local appli-
cations, which can then be combined at a later point in time.

In the long term, infrastructure such as the EPC network will play an important
role [28]. The EPC network takes its name from the “Electronic Product Code” – a
structured identifier that uniquely identifies each individual product-related RFID
transponder. The aim of the EPC network is not only to enable RFID technology to

252 F. Mattern and C. Floerkemeier

identify objects, but also to simplify the processing and exchange of the data captured.
The EPCIS standard represents a fundamental part of this network, and is already
supported by many software manufacturers. It defines events that can be used to link
the RFID data captured by readers with contextual information. For example, EPCIS
events cannot only tell when and where a particular transponder was detected, but
also provide information on associated business processes or application events. Cus-
tom, application-specific business logic is used for the contextual data interpretation
that results in the generation of EPCIS events.

In addition to defining EPCIS events, the EPCIS standard also defines an interface
that can be used to search for such events in repositories. If the repositories that hold
information on a particular RFID transponder are known, one can follow the “trail” of
the object to which it is attached. In practice, however, there are numerous problems
associated with this type of global information scenario. For example, one would not
normally know all of the repositories that held data relating to a given object, and a
global search of all repositories would be unrealistic as their numbers grow. In many
cases, the data would be commercially confidential and not generally accessible –
even the fact that a company possesses information relating to a particular object may
itself be confidential. These difficulties show that there are still many challenges relat-
ing to applicability, scalability and security that need to be overcome before we can
achieve an Internet of Things that supports such global queries.

6 IP for Things

If, in a future Internet of Things, everyday objects are to be addressed and controlled
via the Internet, then we should ideally not be resorting to special communications
protocols as it is currently the case with RFID. Instead, things should behave just like
normal Internet nodes. In other words, they should have an IP address and use the
Internet Protocol (IP) for communicating with other smart objects and network nodes.
And due to the large number of addresses required, they should use the new IPv6
version with 128-bit addresses.

The benefits of having IP-enabled things are obvious, even if the objects in ques-
tion are not going to be made globally accessible but instead used in a controlled
intranet environment. This approach enables us to build directly on existing function-
ality such as global interoperability, network-wide data packet delivery (forwarding
and routing), data transport across different physical media, naming services (URL,
DNS) and network management. The use of IP enables smart objects to use existing
Internet services and applications and, conversely, these smart objects can be ad-
dressed from anywhere since they are proper Internet participants. Last but not least,
it will be easy to use important application layer protocols such as HTTP. IPv6 also
provides the interesting capability of automatic address configuration, enabling smart
objects to assign their own addresses.

Until recently, however, the prospect of full IP support for simple things appeared
illusory due to the resources required (such as processor capacity and energy) and
thus the costs involved. Instead, it was suggested to connect smart objects to the
Internet indirectly via proxies or gateways. But the disadvantage of such non-
standardized solutions is that end-to-end functionality is lost because standardized

 From the Internet of Computers to the Internet of Things 253

Internet protocols would be converted to proprietary protocols over the last few
meters. Gateways would also generate added complexity, making installation,
operation and maintenance time-consuming and costly.

However, there are now not only 16-bit microcontrollers with sufficient storage
that require less than 400 μW/MIPS, but also TCP/IPv6 stacks that can operate with
4 kB RAM and 24 kB flash memory [13]. Equally important are wireless
communications standards such as IEEE 802.15.4 that cover the layers below IP and
consume relatively little power – ZigBee implementations require approximately 20
to 60 mW (for 1 mW transmission power, a range of 10 to 100 meters and a data
transmission rate of 250 kbit/s). Whenever possible, the wireless unit is being used for
short periods of time only in order to save energy. This approach enables AA batteries
to provide a modest level of computing power and wireless communication that is
nevertheless sufficient for many purposes over many months.

The opportunities that this opens up have recently led to companies and standards
committees adopting various measures. At the end of 2008, Atmel, Cisco, Intel, SAP,
Sun Microsystems and other companies founded the “IP for Smart Objects” (IPSO)
corporate alliance to promote the implementation and use of IP for low-powered
devices such as radio sensors, electricity meters and other smart objects. More spe-
cifically, the “IPv6 over Low Power Wireless Area Networks” (6LoWPAN) working
group set up by the Internet Engineering Task Force (IETF) is addressing the problem
of supporting IPv6 using the 802.15.4 wireless communication standard [14]. This is a
technical challenge because the maximum length of 802.15.4 data frames is only 127
bytes due to lower data rate, higher susceptibility to failure and bit error rate of wire-
less communications. The IPv6 packet header alone is 40 bytes long (primarily due to
the source and target addresses each being 16 bytes long), and unfragmented IPv6
packets can be up to 1280 bytes long.

To make IPv6 communications function efficiently in wireless networks, a
protocol modification layer has been defined that essentially deals with four issues –
embedding IPv6 packets in 802.15.4 frames, fragmenting long packets to fit these
frames, statelessly compressing packet headers (typically to just 6 bytes), and
forwarding IPv6 packets via multihop wireless routes. It is possible to compress the
IPv6 header so drastically because 802.15.4 nodes communicate mainly within their
own wireless network, and therefore most of the information can be reconstructed
from the general context or the surrounding 802.15.4 frames and considerably shorter
local addresses can be used.

The working group’s proposal has now been published as proposed Internet
standard RFC 4944, and an implementation based on this is described in [13]. In
2009, the ZigBee Alliance announced it would be incorporating this “native IP sup-
port” into future ZigBee specifications, “allowing seamless integration of Internet
connectivity into each product”.

7 The Web of Things

One logical development of the Internet of Things is to leverage the World Wide Web
and its many technologies as an infrastructure for smart objects. Several years ago,
Kindberg et al. put forward the idea of marking physical objects with URLs that

254 F. Mattern and C. Floerkemeier

could, for example, be read using an infrared interface and cross-reference Web pages
containing information and services on the objects in question [16]. Another funda-
mental way of using the Web is to incorporate smart objects into a standardized Web
service architecture (using standards such as SOAP and WSDL), although in practice
this might be too expensive and complex for simple objects.

Instead of conventional Web service technology, the recently established “Web of
Things” initiative [12] uses simple embedded HTTP servers and Web 2.0 technology.
Modern Web servers with a sufficient feature set (support for several simultaneous
connections, an ability to transmit dynamically generated content, and “server push”
event reporting) can make do with 8 kB memory and no operating system support
thanks to clever cross-layer TCP/HTTP optimization. These web server implementa-
tions are therefore suitable for even tiny embedded systems such as smart cards,
where they provide a high level API to a low power device [4]. Since embedded Web
servers in an Internet of Things generally possess fewer resources than Web clients
such as browsers on personal computers or mobile phones, AJAX technology (Asyn-
chronous JavaScript and XML) has proved to be a good way of transferring some of
the server workload to the client.

In the Web of Things, smart objects and their services are typically addressed via
URLs and controlled via a simple interface using a few well-defined HTTP operations
such as GET and PUT. The data that objects transmit to the Web usually takes the
form of a structured XML document or a JSON object that is machine-readable (using
JavaScript). These formats can be understood not only by machines but also by peo-
ple, provided meaningful markup elements and variable names are used. They can
also be supplemented with semantic information using microformats.

In this way, smart objects can not only communicate on the Web but also create a
user-friendly representation of themselves, making it possible to interact with them
via normal Web browsers and explore the world of smart things with its many rela-
tionships (via links to other related things). Dynamically generated real-world data on
smart objects can be displayed on such “representative” Web pages, and can then be
processed using the extensive functionality of widely available Web 2.0 tools. For
example things could, via their digital representations, be indexed like Web pages,
users could “google” their properties, or they could be passed on as references. The
physical objects themselves could become active and keep blogs or update each other
using social networking tools like Twitter. Although this may sound like an odd hu-
manizing of inanimate objects, it is of practical significance. The Web and its services
are being used as ubiquitous middleware – facilitating the implementation of new
functionality and innovative applications for smart things. So if, for example, your
washing machine is in the basement and you want to monitor its progress, you could
subscribe to its atom feed on a Web client and get information on major state changes,
or follow its tweets on Twitter.

In a more generalized way, a mashup editor can be used to link event and data
streams from physical objects with each other (and with Web services). Here is
an example to illustrate this: most planes are equipped with radio beacons (“ADS-B”)
that transmit a short data packet once or twice per second at 1090 MHz, which can
be received within a range of a few hundred kilometers. In addition to the plane’s

 From the Internet of Computers to the Internet of Things 255

Fig. 3. A mashup displaying flight paths around Zurich [18]

identifier, this packet contains its current position, height, speed and rate of climb or
descent. At http://radar.zhaw.ch one can find a mashup that uses Google maps to display
the real-time flight paths of planes around Zurich in Switzerland (see Figure 3; the size
of the shadow and its proximity to the plane symbol indicates altitude). This mashup is
enriched with additional data from various sources such as www.flightstats.com.
Clicking on the plane symbol now also results in a display of details such as the airline,
departure and destination airports, expected arrival time, etc.

Although planes are not small “everyday objects” as envisaged in an ultimate
Internet of Things, this example convincingly illustrates the potential for connecting
the physical world with cyberspace. A more “down-to-earth” physical mashup is
described in [12] which displays the energy consumption of appliances such as
fridges, kettles and PC screens on Web browsers by using smart power sockets and
Web technology.

Regardless of the long-term vision of an Internet of Things, cheap embedded Web
interfaces could soon open up a wide variety of application opportunities. Take the
example of household automation, for instance. To save energy and reduce costs or –
particularly in private homes, to increase comfort and security – temperature sensors,
motion detectors and other types of sensors will control many different aspects of
buildings such as lighting, heating, ventilation, shutters and locking systems. To do
so, these units need to be able to communicate. In the past, a variety of standards were
developed, such as the European Installation Bus (EIB), but installation was still a

256 F. Mattern and C. Floerkemeier

rather costly business; and configuring, parameterizing and assigning addresses to the
units had to be done in situ by experts using special software.

Since it is cheap, standardized and widely available, Web and Internet technology
could be the answer here. Such an approach would allow for the use of tried-and-
tested network concepts (such as auto-configuration and network management tools),
and remote maintenance would be possible using standard Web browsers and inter-
faces. With smart household devices (“Web 2.0-ready”), WLAN-enabled electricity
meters and other wirelessly communicating and self-integrating gadgets, it might then
be possible to gradually realize the old dream (or perhaps nightmare?) of the “smart
home”…

8 Social and Political Issues

The Internet has long since changed from being a purely informational system to one
that is socio-technological and has a social, creative and political dimension. But the
importance of its non-technological aspects is becoming even more apparent in the
development of an Internet of Things, since it adds an entirely new quality to these non-
technological aspects. So in addition to the positive expectations mentioned above,
several critical questions need to be asked with regard to possible consequences.

Much of the public debate on whether to accept or reject the Internet of Things in-
volves the conventional dualisms of “security versus freedom” and “comfort versus
data privacy”. In this respect, the discussion is not very different from the notorious
altercations concerning store cards, video surveillance and electronic passports. As
with RFID [27], the unease centers primarily on personal data that is automatically
collected and that could be used by third parties without people’s agreement or know-
ledge for unknown and potentially damaging purposes.

And personal privacy is indeed coming under pressure. Smart objects can accumu-
late a massive amount of data, simply to serve us in the best possible way. Since this
typically takes place unobtrusively in the background, we can never be entirely sure
whether we are being “observed” when transactions take place. Individual instances
of observation might seem harmless enough, but if several such instances were to be
amalgamated and forwarded elsewhere, this could under certain circumstances result
in a serious violation of privacy.

Irrespective of the data protection issues, there is also the question of who would
own the masses of automatically captured and interpreted real-world data, which
could be of significant commercial or social value, and who would be entitled to use it
and within what ethical and legal framework.

Another critical aspect is that of dependence on technology. In business and also in
society generally we have already become very dependent on the general availability
of electricity – infrequent blackouts have fortunately not yet had any serious conse-
quences. But if everyday objects only worked properly with an Internet connection in
the future, this would lead to an even greater dependence on the underlying technol-
ogy. If the technology infrastructure failed for whatever reason – design faults, mate-
rial defects, sabotage, overloading, natural disasters or crises – it could have a
disastrous effect on the economy and society. Even a virus programmed by some
high-spirited teenagers that played global havoc with selected everyday objects and

 From the Internet of Computers to the Internet of Things 257

thus provoked a safety-critical, life-threatening or even politically explosive situation
could have catastrophic consequences.

Remotely controlled things could also cause us to become dependent and lose our
supremacy on a personal level. And even with no ill intent, our own smart objects
might not behave as we would wish, but rather as they “believe” is best for us – pres-
aging a subtle type of technological paternalism [24]. The prompt feedback that smart
things can give us about themselves or that helpful tools such as smartphones and
augmented reality spectacles can give us about our environment is also a mixed bless-
ing. While it can encourage us to do good, useful things (such as an animated smiley
in a smart bathroom mirror that praises us for brushing our teeth properly with the
electric toothbrush), it can also seduce us into making unnecessary impulse purchases.

The Internet of Things has now arrived in politics. A study for the “Global Trends
2025” [21] project carried out by the US National Intelligence Council states that
“foreign manufacturers could become both the single source and single point of fail-
ure for mission-critical Internet-enabled things” [25], warning not only of the nation
becoming critically dependent on them, but also highlighting the national security
aspect of extending cyberwars into the real world: “U.S. law enforcement and military
organizations could seek to monitor and control the assets of opponents, while oppo-
nents could seek to exploit the United States” [26].

The European Commission is reflecting vocally but somewhat vaguely on the
problem of governance for a future Internet of Things. The issue here is how to safe-
guard the general public interest and how to prevent excessively powerful centralized
structures coming into being or the regulatory power of the Internet of Things falling
exclusively into the hands of what they describe as a single “specific authority”.

The European Commission’s action plan on the Internet of Things [5] mentioned
above has also provoked a huge emotional backlash, as critically noted in the German
“Telepolis” [17] online magazine with its lead story entitled “A brief route to collec-
tive incapacitation” (the tone of the article is that the Internet of Things would cost a
lot of money, that consumers would have to pay for it, and that its benefits would be
small). Readers’ comments on the article describe the Internet of Things as a “world
of enforced networking” and a “gigantic funny farm”; it would make us “totally
dependent on technology and those in power” and would mean “surrendering all free-
dom”. It was even called a perversion of the Internet and its alleged political mission:
“a medium that was developed to free mankind and that should be used for this pur-
pose could hence be misused in order to establish total control”.

Although these extreme opinions are not representative, it must be said that for an
Internet of Things to be truly beneficial requires more than just everyday objects
equipped with microelectronics that can cooperate with each other. Just as essential
are secure, reliable infrastructures, appropriate economic and legal conditions and a
social consensus on how the new technical opportunities should be used. This repre-
sents a substantial task for the future.

Acknowledgements. Our thanks go to Christof Roduner and Kay Römer for their
constructive criticism, and to Elgar Fleisch for many interesting discussions and
fascinating joint projects on the Internet of Things.

258 F. Mattern and C. Floerkemeier

References

1. Adelmann, R., Langheinrich, M., Floerkemeier, C.: A Toolkit for Bar Code Recognition
and Resolving on Camera Phones – Jump-Starting the Internet of Things. In: Hochberger,
C., Liskowsky, R. (eds.) Proc. Workshop Mobile and Embedded Interactive Systems.
Informatik 2006 – GI Lecture Notes in Informatics (LNI) 94, pp. 366–373 (2006)

2. Ashton, K.: That Internet of Things Thing. RFID Journal (2009),
http://www.rfidjournal.com/article/print/4986

3. Coroama, V.: The Smart Tachograph – Individual Accounting of Traffic Costs and its Im-
plications. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006.
LNCS, vol. 3968, pp. 135–152. Springer, Heidelberg (2006)

4. Duquennoy, S., Grimaud, G., Vandewalle, J.-J.: Smews: Smart and Mobile Embedded
Web Server. In: Proc. Int. Conf. on Complex, Intelligent and Software Intensive Systems,
pp. 571–576 (2009)

5. European Commission: Internet of Things – An action plan for Europe. COM (2009) 278
(2009), http://eur-lex.europa.eu/LexUriServ/site/en/com/2009/
com2009_0278en01.pdf

6. Fleisch, E., Mattern, F.: Das Internet der Dinge. Springer, Heidelberg (2005)
7. Fleisch, E.: What is the Internet of Things? When Things Add Value. In: Auto-ID Labs

White Paper WP-BIZAPP-053, Auto-ID Lab, St. Gallen, Switzerland (2010)
8. Floerkemeier, C., Mattern, F.: Smart Playing Cards – Enhancing the Gaming Experience

with RFID. In: Magerkurth, C., Chalmers, M., Björk, S., Schäfer, L. (eds.) Proc. 3rd Int.
Workshop on Pervasive Gaming Applications – PerGames 2006, pp. 27–36 (2006)

9. Floerkemeier, C., Langheinrich, M., Fleisch, E., Mattern, F., Sarma, S.E. (eds.): IOT 2008.
LNCS, vol. 4952. Springer, Heidelberg (2008)

10. Frank, C., Bolliger, P., Mattern, F., Kellerer, W.: The Sensor Internet at Work: Locating
Everyday Items Using Mobile Phones. Pervasive and Mobile Computing 4(3), 421–447
(2008)

11. Gershenfeld, N.: When Things Start to Think. Henry Holt and Company (1999)
12. Guinard, D., Trifa, V., Wilde, E.: Architecting a Mashable Open World Wide Web of

Things. TR CS-663 ETH Zürich (2010),
http://www.vs.inf.ethz.ch/publ/papers/WoT.pdf

13. Hui, J., Culler, D.: IP is Dead, Long Live IP for Wireless Sensor Networks. In: Proc. 6th
Int. Conf. on Embedded Networked Sensor Systems (SenSys), pp. 15–28 (2008)

14. Hui, J., Culler, D., Chakrabarti, S.: 6LoWPAN – Incorporating IEEE 802.15.4 into the IP
architecture. In: Internet Protocol for Smart Objects Alliance, white paper #3 (2009)

15. International Telecommunication Union: The Internet of Things. ITU (2005)
16. Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal, G., Frid,

M., Krishnan, V., Morris, H., Schettino, J., Serra, B., Spasojevic, M.: People, Places,
Things: Web Presence for the Real World. Mobile Networks and Applications 7(5), 365–
376 (2002)

17. Kollmann, K.: Das “Internet of Things“ – Der kurze Weg zur kollektiven Zwangsent-
mündigung. Telepolis (2009),
http://www.heise.de/tp/r4/artikel/30/30805/1.html

18. Kramarz, D., Loeber, A.: Visualisierung von Transponder-Daten mittels Mashup.
Diplom-arbeit, Zürcher Hochschule für Angewandte Wissenschaften (2007)

19. Mattern, F., Floerkemeier, C.: Vom Internet der Computer zum Internet der Dinge. Infor-
matik-Spektrum 33(2),107–121 (2010)

 From the Internet of Computers to the Internet of Things 259

20. Mattern, F., Staake, T., Weiss, M.: ICT for Green – How Computers Can Help Us to Con-
serve Energy. In: Proc. e-Energy 2010, pp. 1–10. ACM, New York (2010)

21. National Intelligence Council Global Trends 2025: A Transformed World (2008),
http://www.dni.gov/nic/NIC_2025_project.html

22. Sarma, S., Brock, D.L., Ashton, K.: The Networked Physical World. TR MIT-AUTOID-
WH-001, MIT Auto-ID Center (2000)

23. Schoenberger, C.R.: The internet of things. Forbes Magazine, March 18 (2002)
24. Spiekermann, S., Pallas, F.: Technology paternalism – wider implications of ubiquitous

computing. Poiesis & Praxis 4(1), 6–18 (2006)
25. SRI Consulting Business Intelligence: Disruptive Civil Technologies – Six Technologies

with Potential Impacts on US Interests out to 2025 (2008),
http://www.fas.org//nic/.pdf

26. SRI Consulting Business Intelligence: Disruptive Civil Technologies, Appendix F: The
Internet of Things, Background (2008),
http://www.dni.gov/nic/PDF_GIF_confreports//_F.pdf

27. Thiesse, F.: RFID, Privacy and the Perception of Risk: A Strategic Framework. The Jour-
nal of Strategic Information Systems 16(2), 214–232 (2007)

28. Thiesse, F., Floerkemeier, C., Harrison, M., Michahelles, F., Roduner, C.: Technology,
Standards, and Real-World Deployments of the EPC Network. IEEE Internet Comput-
ing 13(2), 36–43 (2009)

29. Weiser, M.: The Computer for the 21st Century. Scientific American 265(9), 66–75 (1991)

Distributed Group Communication System for

Mobile Devices Based on SMS�

Bettina Kemme1 and Christian Seeger2

1 McGill University, School of Computer Science,
3480 University Street, Room 318, Montreal, Canada

kemme@cs.mcgill.ca
2 Technische Universität Darmstadt, Department of Computer Science,

Databases and Distributed Systems Group,
Hochschulstraße 10, 64289 Darmstadt, Germany

cseeger@dvs.tu-darmstadt.de

Abstract. This paper presents a group communication system for mo-
bile devices, called DistributedGCS. Mobile communication is slow, ex-
pensive and suffers from occasional disconnections, especially when users
are moving. DistributedGCS is based on SMS and enables group commu-
nication despite these restrictions. It provides all primitives needed for
a chat application and handles process failures. As mobile communica-
tion is expensive, DistributedGCS is designed for small message overhead
and, additionally, exploits SMS based message relaying to handle short-
term disconnections. In this work, we present the group maintenance
service and the multicast service of DistributedGCS. In order to dis-
tribute the overhead of failure discovery over all processes we introduce
the concept of a circle of responsibility for failure detection. We discuss
informally that DistributedGCS can handle the most common failures
properly while keeping the message overhead very low.

1 Introduction

Mobile phones have not only become a standard commodity for telephony but
we also use them for online shopping, to find the nearest restaurants, and to chat
with our friends. Text-messaging has become particularly popular, especially in
Europe. Nevertheless, basically all interaction we currently do is between two
mobile phones or between the mobile phone and a central service. While a cen-
tral service might disseminate information (e.g., flight information) to many
interested phones, a phone usually does not send messages to many recipients.
Nevertheless, there are plenty of applications that would benefit from a com-
munication middleware that would allow mobile phones to participate in group
communication. Two obvious applications are chat among a group of friends or
� The work in this paper is based on an earlier work by Christian Seeger, Bettina

Kemme and Huaigu Wu: SMS based Group Communication System for Mobile De-
vices, that appeared in the Proceedings of the ACM Workshop on Data Engineering
for Wireless and Mobile Access, (c) ACM, 2010.

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 260–280, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Distributed Group Communication System 261

business partners, or information dissemination among a group of people with
similar interest (e.g., a common research project).

In this paper, we propose such a group communication system (GCS) provid-
ing both the primitives to manage a group of mobile phones as well as offering
multicast to group members. A very special feature of our system is that it com-
pletely relies on SMS (the GSM Short Message Service) as underlying commu-
nication medium. SMS allows short messages to be sent from one mobile device
to another without the need of a centrally maintained service that would charge
extra service fees. Routing is done through the network carrier. Our decision on
this communication medium has two main reasons. Firstly, not all mobile users
subscribe to a data plan that would allow Internet connectivity, and access to
the Internet through wireless access points is usually very sporadic. In contrast,
SMS is basically always provided and continuously available. Secondly, even if a
data plan or other wireless access exists, phones cannot be directly accessed by
other phones through TCP or UDP as they do not own a permanent IP address.
And even if they have for intermittent time, it is usually not possible to connect
to them. Thus, any solution based on Internet communication would likely need
to rely on a server on the Internet to which the phones connect. The server
would be responsible for relaying messages to all phones. However, our goal was
to design a truly distributed, server-less solution that is easier to deploy and
run. Our GCS solution only relies on a network carrier that supports SMS and
a Java-enabled phone. Compared to an ad hoc network solution, users do not
need to be in the same communication area.

The solution that we present is a pragmatic one. Mobile communication is
expensive and slow. Every message counts. Furthermore, mobile devices have
low computing power and restricted memory. Thus, our solution provides much
weaker properties than traditional group communication systems. For instance,
we consider the communication overhead to maintain virtual synchrony [4,16]
too high. Similarly, providing reliable message delivery [4] requires considerable
communication and storage overhead that we are not willing to pay. Nevertheless,
our system needs to be able to handle the fragile connectivity of mobile phones
as phones can quickly disconnect for short, medium and long time periods. Thus,
our approach includes extensive failure handling. However, it attempts to keep
the overhead as small as possible. As a trade-off, it does not handle all failure
combinations correctly. We believe this to be a compromise that users are readily
going to accept.

Our solution was influenced by the requirements of the application that we
believe will be the first one to adopt group communication technology, and that
is chatting. Nevertheless, we believe that other applications can also benefit from
our tool. Our GCS offers the chat application to create, join, leave and destroy a
chat room and to send FIFO multicast messages. All message exchange is done
via SMS and only among the phones.

Failed phones are detected and removed from the group. The system han-
dles short disconnections gracefully. In order to keep the message overhead for
group maintenance small and distribute it over all phones, we introduce the

262 B. Kemme and C. Seeger

concept of circle of responsibility as our failure detection system. Group mem-
bership changes can be handled and propagated by every group member which
automatically distributes the group maintenance overhead.

2 Background

This section depicts different aspects of GCSs and the network environment of
mobile devices which we rely on. Additionally, we introduce the GCS require-
ments of a chat application and close this section with related work.

2.1 Group Communication Systems

GCSs are implemented as a layer between the application and the network layer
and provide two types of services [4]: group maintenance service and multicast
service. Group maintenance manages a list of all active members, called view V.
At any given point in time a view describes the current set of members of a group.
Processes can join or leave, and failed processes will be excluded. Members are
informed about a view change through the delivery of a view change message
containing the members of the new view. The big challenge is to find a consen-
sus between member processes about the current view. View proposal algorithms
usually involve complex coordination protocols, requiring several rounds of mes-
sage exchange among all members in order to guarantee that all members agree
on the same view. Even more advanced, certain services provide a logical order
between view change messages and application messages delivered in each view,
such as virtual synchrony [16]. In this case, the view change protocol also has to
agree on the set of application messages to be delivered at each process.

The multicast service propagates application messages submitted by the ap-
plication layer to all group members. In our notation, we say that the application
layer of a member receives a message that the GCS layer delivers to it. There
are two main demands on a multicast service: ordering and reliability. FIFO
ordering requires that if the application layer of a process sends two messages,
then these messages are delivered in the order in which they were sent. Causal
ordering requires that if an application first receives a message m and then sends
a message m′, then all members should deliver m before m′. And total ordering
requires for every two messages m and m′ and two processes, if both deliver m
and m′ they deliver them in the same order. Message delivery can be unreliable,
reliable or uniform reliable. Reliable delivery (uniform reliable delivery) guar-
antees that if a message is delivered to an available member (to any member
– available or one that crashes shortly afterwards) then it will be delivered to
all available members. The higher the degree of ordering and/or reliability, the
more expensive and complex is the message exchange between the members in
term of additional messages and message delay.

2.2 Network Environment of Mobile Devices

Mobile devices, especially mobile phones, usually connect to stationary base sta-
tions provided by network carriers which provide mobile devices with different

Distributed Group Communication System 263

speech and data services. The most common data services for mobile devices are
SMS, MMS, GPRS and UMTS. SMS and MMS are services designed for direct
data communication among mobile phones. Messages are addressed to the re-
ceiver’s phone number and can be sent even if the receiver is disconnected from
the network. The network carriers store the messages and relay them when the
receiver is connected again although the number of messages and the time mes-
sages are stored are limited. GPRS and UTMS enable mobile phones to establish
an Internet connection. The base station allocates an IP address to the device
and acts as a router enabling message delivery but only as long as the phone is
connected to the Internet. Furthermore, IP addresses can change quickly due to
two reasons. Phones automatically disconnect after a certain idle time. When the
phone reconnects, the phone’s base station might allocate another IP address.
Furthermore, if a mobile phone moves from one cell to another, the base stations
change and, hence, the allocated IP address changes, too. In addition to this,
for propagating a phone’s current IP address an additional server is needed and
this we want to avoid. Phones could also connect to the Internet through wire-
less access points. However, such connectivity is very sporadic and not available
everywhere. Therefore, we decided to use SMS as underlying communication
layer due to its universal, bidirectional and fairly reliable services. MMS would
be equally possible and we will look into this in future work. Disadvantages of
SMS (and MMS) are an often higher message delay than for IP packets and a
payment per message independently of the size of the message.

2.3 Application

We decided for a chat application as our example application and developed our
GCS with regard to the primitives a chat application requires. In our opinion,
chatting is a feasible scenario for a mobile application, because almost every
mobile device fulfills the hardware requirements for a chat application. Addi-
tionally, we assume that friends or colleagues have their phone numbers already
stored in their mobile phones. Hence, the users do not need additional informa-
tion from a server as long as the membership consists of known people. Since
there is no need for a name server in a chat application with known members,
we decided to design a completely decentralized group communication system
without an expensive server. However, a server-based naming service could be
easily integrated into our GCS architecture. In a chat application typically all
members multicast relatively short messages. While causal order would be de-
sirable, FIFO order should be acceptable for most situations. Similarly, while
reliability is important, the emphasis is probably more on fast message delivery.
We assume that a chat application on a mobile phone is not feasible with more
than 20 users, as the message delay would be too high for propagating informa-
tion to more than 20 users in acceptable time. For applications beyond 20 users,
SMS and server-less communication will likely be problematic due to the high
message costs and delay. With twenty users, view change messages can be easily
propagated within one message assuming phone numbers are process identifiers.

264 B. Kemme and C. Seeger

2.4 Related Work

Group communication systems are available for many different network types.
The first generation of GCS has been mainly developed for local area networks
(LANs) such as Totem [12], Isis [2], Horus [8] and Spread [1]. They provide
basically all virtual synchrony and strong ordering and reliability guarantees.

There are also approaches for mobile networks. The authors of [14] propose
an algorithm for consistent group membership in ad hoc networks. This algo-
rithm allows hosts within communication range to maintain a consistent view
of the group membership despite movement and frequent disconnections. Pro-
cesses can be included or excluded with regard to their distance from the group.
Different groups can be merged when they move into a common geographical
area and the partition of one group can be handled as multiple disjoint groups.
Another further approach [13] uses not only the ad-hoc network, but also the
cellular network and a Virtual Cellular Network (VCN). A Proximity Layer pro-
tocol monitors all network nodes within a certain area and forwards changes to
the Group Membership Layer. Based on this information a three-round group
membership protocol builds a group of mobile nodes.

Closest to the approach presented in this paper is SMS GupShup Chat [18].
SMS GupShup Chat is a commercial group chat application based on SMS and
managed by a central server. Users are able to create a group by sending a SMS
message to the special phone number of the server. Also invitation messages
containing up to four phone numbers are possible. Once a group is created, users
can join or leave the group. Users can post a message to the group by sending
a simple SMS message to the special phone number. The message forwarding to
all group members is done by the server.

Not all existing systems provide strong guarantees. Epidemic approaches only
provide guarantees with a certain probability and will only achieve that mes-
sages are “eventually” delivered (such [3,6]) or views “eventually” converge (e.g,
[7]). The idea is to let nodes regularly exchange their past history of received
messages. Given the low memory capacity and the high costs of communication,
we do not consider epidemic protocols applicable for mobile phones. Also, in our
application context of chatting, we require much lower delivery delays than the
ones provided by epidemic protocols.

The work presented in this paper, DistributedGCS, is based on MobileGCS
[17]. Message dissemination and failure detection are very similar in both sys-
tems but in MobileGCS the group maintenance relies on one specific phone,
called master phone. Since the master phone is responsible for distributing group
changes, it suffers from a higher message overhead. Therefore, we introduced a
master move operation for switching these responsibilities from one phone to
another. Still, a master move costs additional messages that we want to save.
Furthermore, if several membership changes occur the master phone could eas-
ily get overloaded. In DistributedGCS, every member can propagate member-
ship changes and every member manages its own list of group members. This
makes a master phone and a master move operation unnecessary. On average,

Distributed Group Communication System 265

membership changes cost the same number of messages in DistributedGCS as
in MobileGCS, but DistributedGCS inherently distributes the overhead over all
group members and saves the messages for master moves.

3 System Overview

Our GCS layer provides the typical primitives to the application: create, join,
leave and destroy a group. The application receives a view change in form of an
SMS message every time the group configuration changes. The application can
write an SMS and submit it to the GCS layer. The GCS layer will deliver this
messages to all group members.

3.1 Multicast

We do not provide reliable message delivery to all available nodes. This would re-
quire a node to store messages that it receives from other nodes in order to be
able to relay them in case of the failure of the sender. We consider this unfeasi-
ble for mobile environments. However, as mentioned above, we can assume each
individual SMS message to be delivered reliably, even when short periods of dis-
connection occur. Therefore, we implement multicast by simply sending the mes-
sage via SMS to each phone that is currently in the view of the sending phone.
This achieves what we call sender reliability. A message sent by a node that does
not fail during the sending process is delivered to all available members that are
in the view of the sending process. If the sender fails during the sending process,
some members might not receive the message. If a phone disconnects before the
message is received, it will very likely receive it upon reconnection. Furthermore,
as SMS offers FIFO delivery, we automatically also provide FIFO delivery.

3.2 Group Membership Guarantees

Considering a chat application, we think that virtual synchrony, although de-
sirable, is not absolutely needed. Thus, view membership is decoupled from the
delivery of application messages.

Ideally, we would like to have an eventual agreement, that is, all available
members of a group will have eventually the same view of the group if there
is a sufficiently long time without membership changes. We achieve this if we
assume a strong failure detector that allows for the correct detection of a failure
by choosing a sufficiently large timeout interval. In most cases, wrongly suspect-
ing a non-failed node, simply leads to the exclusion of an available node from
the group, something that we consider acceptable. However, in some rare cases,
a wrong suspicion or short-term disconnections might lead to partitioned, and
thus, incorrect views. Nevertheless, we tolerate many forms of concurrent fail-
ures, and we believe that our properties are acceptable for chat applications. As
a result, we do not offer more than best-effort membership that will handle the
most common errors but might not converge in some cases.

The remainder of this paper is dedicated to the discussion of the membership
protocols.

266 B. Kemme and C. Seeger

4 DistributedGCS without Failures

DistributedGCS provides a totally distributed group maintenance service. All
group members are equal and allowed to handle group operations such as join
and leave requests. In contrast to the predecessor of DistributedGCS, Mobi-
leGCS [17], where group maintenance was coordinated by a master phone, the
additional overhead for group maintenance messages is distributed over all pro-
cesses. This makes costly operations for changing the group master unnecessary.
On the other hand, having a master process simplifies the group maintenance. In
MobileGCS, when a mobile phone wants to join or leave a group, or if a failure
occurs, the corresponding request is sent to the group master, which decides on
a new view configuration and sends the new view to all affected phones. As a
result, every process that receives the view change has a consistent view with
the group master. As long as every message sent by the master is received by all
members and the master does not fail, all members install the same sequence of
views. In contrast, DistributedGCS allows every process to handle membership
operations and to change the view. This prevents overloading a single phone,
but makes it more difficult to find a consensus if two or more processes change
the view simultaneously. Nevertheless, DistributedGCS eventually achieves the
same view among all members after a feasible amount of time.

With regard to a chat application, we assume that it is more important to keep
all active processes in the view than excluding left or failed processes. Thus, the
view management of DistributedGCS has a higher priority for keeping processes
than for excluding them.

4.1 Group Maintenance Service

In DistributedGCS, every process has to maintain the group membership on its
own. Although not every process necessarily receives the same messages in the
same order, the views of all processes should eventually converge if there are no
further configuration changes. This is the main challenge DistributedGCS has
to deal with. For this, we first describe the basic communication schemes in the
case of only one event at a time. After that, in View Management, we explain
the processing of more complex events.

In order to identify a process’ status change, DistributedGCS uses additional
flags behind process identifiers / phone numbers. A flag represents the status a
process pi has stored about a foreign process pj. It might be that two processes
have different flags stored for one process pj . We distinguish between three dif-
ferent flags.

– “u” - up: process is in the group and has not changed its status recently
– “j” - join: process has recently joined the group
– “l” - leave: process has recently left the group

Figure 1 shows how flags are changed in DistributedGCS. A view change mes-
sage consisting of a set of processes indicates that a process (e.g., D) has joined by

Distributed Group Communication System 267

(join)

(up)

(leave)

local flag change after Tjoin

join request

leave request

delete process entry after Tleave

Fig. 1. Flag changes in DistributedGCS

tagging it with a join flag (e.g., Dj). When a process p that is already group
member receives the view change message it first keeps this flag for the newly
joined process. After a local timeout Tjoin exceeds, p sets the new process’ flag set
from join to up (e.g., from Dj to Du). This is done individually at every process.
As long as a process has an up or join status, it is considered a member of the
group. If a process leaves the group, a new view change message is distributed
marking the leaving process with a leave flag (e.g., Dl). When process p receives
this message, it changes the leaving process’ flag to leaving (e.g., Dl) but it does
not immediately remove the process from its view. It is important to keep track
of an already left process for a while in order to avoid that it is mistakenly added
again. After Tleave time passes at process p, it finally removes the leaving process
from the view. For simplification in the following figures, a process without a
flag has always an up flag.

Create/Destroy. Since we avoid the usage of a central server the existence of a
new group has to be propagated. The idea is that when a user wants to create a
group, it invites other phones to be members of the group. This means group cre-
ation is combined with group invitations. This is useful for chatting as it allows the
creation of a new chat room and to invite other people to join it. Figure 2 shows
how the creation and invitation is done. In time step T0, the user of the upper
phone creates a new group. The create method requires a group name and a list
of other phones that are invited to become group members. The phone numbers to
be invited must be provided by the user. The group name only needs to be unique
over its lifetime across the phones that might want to participate. Given that it
is unlikely that a given user will create many chat rooms concurrently, a group
name containing the creator’s identifier and a sequence number suffice. For a chat
application, group creation will open a chat room and invite others to join the

268 B. Kemme and C. Seeger

J J J

T0 T1 T2

T3 T4

J – join

Invitation messages

View change {A,B*,C,D}

Fig. 2. Create

group. A phone that calls the create method automatically becomes a temporary
group master (black color) and the group creation is completed only including the
calling phone as group member. The next step involves sending invitations to con-
tacts that are chosen by the user. The chosen phones receive invitation messages
including the group name from the temporary master in T1. The GCS layer of
these phones relay the message to the application which can now indicate whether
it wants to accept the invitation. If it does accept the invitation, the GCS sends a
join request to the initiating phone. In the given example, each phone, except for
the phone E, sends a join request in step T2. In T3, the black phone adds all join-
ing processes to the view and sends a view change message to all members of the
new group. After that, the black phone stops acting as a master. The temporary
master only waits a limited time to send the view change as described in the fol-
lowing section. If a further join request is received later, it simply sends a further
view change message. At T4 phones A-D are all members of the group and have
the same view.

For a chat application, we think, it makes sense that a group can only be
destroyed when there is only one process left which is automatically done af-
ter/once the last processes leaves the group. Therefore, DistributedGCS does
not provide a special destroy operation.

Join. If a phone wants to join after the initial creation has completed, it has to
send a join request to one of the group members. Our GCS processes join requests
in a completely distributed manner. Figure 3 depicts a simple join request from
process D. Time step T0 shows an already existing group of three processes
A, B, C that have the same view {A, B, C} ({Au, Bu, Cu} including status flags)
installed. At T1, process D sends a join request to process C. As all processes
are equal, D can send a join request to any group member. In this case, process
C is requested and adds the new process D to its view and sets its flag to join:
{A, B, C, Dj}. In the next time step process C sends the new view first to the
old view members and then to the joining process. At T4, all group members
that have received the view update send an acknowledge message to D and D
checks whether the join succeeded or not.

Distributed Group Communication System 269

{A,B,C,DJ} {A,B,C,DJ} {A,B,C,DJ} {A,B,C,D}

T4

{A,B,C,DJ} {A,B,C,DJ} {A,B,C,DJ} {D}

I

I II

T3

{A,B,C} {A,B,C} {A,B,C,DJ} {D}

T2

JoinReq

{A,B,C} {A,B,C} {A,B,C} {D}

T1

{A,B,C,DJ}

{A,B,C,DJ}

{A,B,C,DJ}

ACK: {A,B,C,DJ}

{A,B,C} {A,B,C} {A,B,C} {D}

T0

Fig. 3. Join

{A,B,C,DJ,EJ} {A,B,C,DJ,EJ} {A,B,C,DJ,EJ} {A,B,C,D,EJ}

{A,B,C,DJ,EJ} {A,B,C,DJ,EJ} {A,B,C,DJ,EJ} {A,B,C,D}

I

I II

{A,B,C,EJ} {A,B,C} {A,B,C,DJ} {D}

JoinReq

{A,B,C} {A,B,C} {A,B,C} {D}

{A,B,C,DJ}

{A,B,C,DJ}

{A,B,C,DJ}

ACK: {A,B,C,DJ,EJ}

T4

T3

T2

T1

{A,B,C,DJ,E}

{A,B,C,E}

{E}

{E}

JoinReq

{A,B,C,EJ}

{A,B,C,EJ}

I

I

{A,B,C,EJ}
II

ACK: {A,B,C,DJ,EJ}

Fig. 4. Two Joins

270 B. Kemme and C. Seeger

The acknowledge messages sent to the joining process fulfill two requirements.
First, they allow a joining process to check whether the join succeeded or not.
And second, by attaching their originator’s view, these acknowledge messages
allow to capture further join requests. Figure 4 depicts an example that shows
how two simultaneous join requests sent to two different phones are processed.
Again, we start with a group of three processes A, B, C. Processes D and E
want to join the group. Process D sends a join request to C and process E
sends a join request to A at T1. In the next step, both join requests are pro-
cessed in the same way as already described for a single join. The requested
processes add the new process to their views and set the join flag. Then, they
send the resulting views first to the old members and then to the joining pro-
cesses. Hence, process C sends {A, B, C, Dj} to B, C, D and process A sends
{A, B, C, Ej} to A, B, E. In order to include all joining processes, every process
that receives a foreign view builds a union of its own view and the incoming
view. Process B, for example, has the view {A, B, C} installed and receives both
update messages in T2. Assuming the message from C is processed first, it cal-
culates the following view: {A, B, C} ∪ {A, B, C, Dj} = {A, B, C, Dj}. Then, it
processes the second update message sent by A and builds the following view:
{A, B, C, Dj} ∪ {A, B, C, Ej} = {A, B, C, Dj , Ej}. The order of incoming up-
date messages does not affect the result of a union. T3 in our example highlights
the reason for attaching the current view to the acknowledge message. At T2,
process C was not informed about E when it sent the update message to D.
Hence, the update message to D does not include process E. However, at T3 the
processes A and B already added E to their views and attached them to their
acknowledge messages. On receiving the acknowledge messages from A and B,
process D gets informed about the new process E and adds it to its view. And
process E gets also informed about the new process D by receiving acknowledge
messages from B and C. This way, attaching views to acknowledge messages
enables DistributedGCS to detect simultaneous joins. At T4, the processes D
and E have joined the group and all processes have the same view installed.

Leave. Figure 5 shows how a leave request is processed. In the first step, the
leaving process D sends a leave request to any group member (C in our example).
At T2, process C changes D’s flag from up to leave and propagates the view
change among all members. Process D does not get an acknowledge message
for its request. We let another process than the leaving process propagate the
leave request to make this procedure similar to what is done when nodes fail
(cp. Section 5). At time step three, every available process has set D to leave
and, therefore, D is excluded from the group.

4.2 View Management

Building the union of two views only works as long as two incoming views do
not carry different flags for the same process. In the case of different flags, a
consensus among all processes has to be found. DistributedGCS does not have
a group master for conflict resolution and we also want to avoid expensive view

Distributed Group Communication System 271

{A,B,C,DL} {A,B,C,DL} {A,B,C,DL}

T3

{A,B,C,D} {A,B,C,D} {A,B,C,D} {A,B,C,D}

T1

{A,B,C,D} {A,B,C,D} {A,B,C,DL}

T2

LeaveReq

{A,B,C,DL}

{A,B,C,DL}

Fig. 5. Leave

proposal algorithms. Therefore, we will present a view management scheme that
eventually finds a common view with local decisions and with a minimum of
message exchanges among processes. It does not use any kind of voting algorithm
that guarantees that every member installs the same view. Our goal is to find a
common view with local decisions and without sending any additional message.
Incoming views are processed sequentially. A foreign view can be received as a
view change message, an acknowledge message after a join request or as a safety
message. A safety message is the view from a process to which the process’ own
view was sent before. It is the response to a strong inconsistency between two
views. For example, an up message about a process which has already left the
group. Safety messages are not necessary, but they accelerate finding a common
status.

local flag incoming flag timeout
J U L Tleave Tjoin

J J J J U
U U U L
L J L L

J U

Fig. 6. View change table of pi for process pj

As said before, each process can have one of three different flags (up, join,
leave) in both the current view of another process and in an incoming message.
Figure 6 shows how a process pi changes the local flag of another process pj

triggered by an incoming view or triggered by one of the timeouts Tjoin and
Tleave. The first entry in each row is the local flag of pi for the process pj (“-”
stands for no entry). The following columns show how pi changes pj ’s flag upon
receiving a foreign view or when a timeout exceeds.

272 B. Kemme and C. Seeger

First, we take a look at incoming views. For simplification, we say a local flag
is the locally stored flag for a process pj and an incoming flag is the flag for this
process pj received from another process pu. If the local flag and the incoming
flag are the same, nothing has to be done. If there is an incoming join flag and
the local flag is leave or there is no entry, the local flag is set to join. If the local
flag is up, the incoming join is ignored. Incoming up flags are ignored unless this
process is not in the local view. In this case, a process is added with an up flag
set. If the local flag for a process pj is join and pi receives a leave from pu, pi

sends a safety message to pu and does not change the local flag. In the case of
a local up and an incoming leave flag, a process is set to leave. A second reason
for a safety message is an incoming up flag when the local view has the leave
flag set.

Upon receiving an incoming leave of a process pj a local timer tleave is started.
As soon as tleave exceeds Tleave process pj is finally deleted from the local view
and incoming leave flags for pj are ignored. If a process deleted pj immediately
upon receiving the leave message, an incoming view that still contains an up flag
for pj would add the already left process pj to view again. Therefore, pj stays
in view for Tleave. Upon receiving the incoming join of a process pj a local timer
tjoin is started. As soon as tjoin exceeds timeout Tjoin the local flag for pj is
changed from join to up. Keeping a local join flag for a while is not necessary but
helpful in order to inform simultaneous joining process (cp. Figure 4) about the
other recently joined process(es). Assuming that processes can fail, this timeout
becomes more important and will be discussed in the next section.

5 Failure Detection

SMS does not establish a connection to other phones nor does it provide a
method to check whether a phone is available or not. Hence, the GCS has to
detect failures on its own. Failure detectors are a standard component of GCS.
They typically require members to send heartbeat messages to each other. Once
heartbeat messages are not received for a certain period of time, the member
is suspected to have failed. Then, an agreement protocol is run to remove the
suspected node. As we mentioned before, we do not want to have a complex
protocol requiring many messages, neither heartbeat nor agreement messages.
Thus, we use a very pragmatic approach where each member only sends heart-
beat messages to one other node, and this node makes a solitary decision to
remove the node if it does not receive the heartbeat messages anymore.

The authors in [9] and [15] introduce distributed failure detectors that dis-
tribute the workload for failure detection to more than one failure detection
module. Each module monitors a subset of nodes and, thus, has a reduced work-
load compared to a central approach. We use the same idea by introducing a
circle of responsibility among all processes. The GCS runs on mobile phones
and every phone has a unique phone number. Since we use phone numbers as
process identifiers, every process knows all phone numbers in the current view.
By sorting the phone numbers and connecting the first number with the last

Distributed Group Communication System 273

heartbeat message

process

Fig. 7. Circle of Responsibility

number, we get a unique circle of phone numbers which is known by every pro-
cess. As a result, every process knows its successors and predecessors. Figure 7
illustrates such a circle of responsibility. For simplification, we use again letters
instead of phone numbers. The white process A is monitored by the successor
process on its right side and, therefore, it sends heartbeat messages to B every
time period t. Every successor process also knows its predecessor process and
expects heartbeat messages from it.

5.1 Failure of a Process

If an expected heartbeat message is missing for a period T (T is significantly
larger than t in order to handle message delay variations), the failure procedure
is started. The monitoring process performs a self test, and if it succeeds it
sends a process failure message to the group. This means that it marks the
suspected process as down in its view and distributes the new view among all
group members of the new group. It also sends the new view excluding the
suspected process to the suspected process. In principle, when node B does
not receive the heartbeat from A, A could have failed or be disconnected, in
which case it should be excluded from the group. Alternatively, B itself could be
temporarily disconnected from the network. If the latter is the case, B should
not send the process failure message to the group. The self-test allows B to
detect whether it is currently connected and is described in Section 5.4.

5.2 Adapting to Process Leaves/Failures

For the circle of responsibility, it makes no difference whether a process leaves
the group or has failed. In both cases, the process will be excluded from the
circle of responsibility which has to be adapted. The adaption is done as follows:
the successor process of a leaving process has to change the process it monitors
and the predecessor process has to change its heartbeat receiver. Assume pro-
cess pi leaves or fails. Then the successor of pi, i.e., pi+1 must now monitor the
predecessor of pi, i.e., pi−1. That is, pi−1 has now to send its heartbeat messages
to pi+1 instead of pi. If the leaving process pi has a temporary status (temporary

274 B. Kemme and C. Seeger

processes are described in next section), pi−1 only deletes pi as a heartbeat
receiver and pi+1 stops monitoring it. No other process needs to adjust its mon-
itoring activity.

5.3 Adapting to Process Joins

If a process joins the group, the responsibilities change and the circle of respon-
sibility has to adapt to it. In order to avoid a gap in the circle of responsibility,
a joining process pi is only then completely included into the circle when pi+1

actually knows that the join was successful and pi becomes a permanent mem-
ber of the circle. For this, a joining process gets a temporary status first. Upon
receiving the first heartbeat message from this process, it is assured that the
join succeeded. Only the processes pi−1, pi and pi+1 have to adjust their mon-
itoring activity upon receiving the view change message including pi: (i) pi−1

marks pi as temporary and starts sending heartbeat messages to both pi and
pi+1, (ii) pi starts sending heartbeat messages to pi+1 and monitoring pi−1 and
(iii) pi+1 marks pi as temporary and starts monitoring pi (it still monitors also
pi−1). Upon receiving pi’s first heartbeat message, pi+1 stops monitoring its for-
mer predecessor pi−1 and deletes pi’s temporary status. In addition to this, pi

sends a stop heartbeats message to pi−1. Process pi−1, upon receiving pi+1’s stop
heartbeats message, deletes pi’s temporary status and stops sending heartbeat
messages to pi+1.

If there are two or more joining processes in a row, they are all first monitored
as temporary processes.

5.4 Self Test Message

With a self test, a mobile phone checks whether it is connected to the network.
A phone does so by sending a self test SMS to itself. SMS does not distinguish
between a message sent to a foreign phone number or the own phone number.
It will always use the network carrier to send the message. Thus, we can use
SMS to test our own network status. As long as a phone is able to send and
receive a self test message, it is also able to receive foreign messages. If a phone
does not receive its own self test message (identified by a random number), we
can assume that this phone is currently disconnected from the network and,
hence, we can avoid wrong failure assumptions. Thus, after not receiving its own
self-test message, it suppresses all process down and heartbeat messages until
connectivity is re-established and the self test message is received.

5.5 Down Status

Mobile phones can be frequently disconnected for short time periods, for in-
stance, while its user takes the metro for two stops. The network carrier forwards
messages sent to a disconnected phone after reconnection. We do not want that
short disconnections completely expel a phone from the group. Therefore, we

Distributed Group Communication System 275

take a two-step approach for removing phones from group activity. When the
failure detection mechanism is triggered for a process pi from which no heartbeat
messages are received anymore, pi is removed from the circle of responsibility.
This leads to a view change message excluding pi. However, the remaining pro-
cesses keep pi’s phone number and set a down flag. They continue sending the
application messages to pi. If pi does not reconnect within a certain time period,
pi’s phone number will be completely deleted and no more messages sent to it.
The down flag is similar to the leave flag with the exception that processes with
the leave flag will not receive any application messages anymore as they left the
group voluntarily and explicitly.

At the same time, pi itself detects that it is disconnected as it does not receive
any heartbeat messages from its predecessor and performs a self-test which fails.
It sets itself to down status and queues all messages that the application wants
to send. It also informs the application that there is a disconnection. If pi does
not become connected within a certain time period, it drops all queued messages
and informs the application about being removed from the view. When pi be-
comes connected it receives all messages sent to it, including the view change
excluding itself. It delivers all received application messages. These might not
be all messages sent within the view during the downtime because each process
handles down flags individually, but the application is aware of this best effort,
since it receives the temporary disconnection message. From there, pi joins again
and then sends any message it might have locally queued.

6 Reasoning for Correctness

In this section we argue about the correctness of DistributedGCS. For this, we
show that many common join requests, leave requests and failure cases are han-
dled correctly by our approach. But we also show that some cases in Distribut-
edGCS are not handled as well as they were in MobileGCS that we presented
in [17]. We will illustrate some of these failure cases by assuming a group of six
processes A, B, C, D, E, F . In each of the situations below, we assume there are
no further joins, leaves and failures than the ones explicitly mentioned.

One Failure. Assume only one process pi fails. Then pi’s successor pi+1 will
detect the failure by not receiving heartbeat messages from pi. As a result, pi+1

will set pi to down and send a view change message. As no further process fails,
all these actions will succeed, and everybody adjusts the circle of responsibility
guaranteeing that process pi−1 monitored by pi will receive as new monitor pi+1.
Although all nodes will still send application messages to the failed node for a
time period after exclusion (as long as the down flag is set), the failed process is
removed from the view.

Several Failures. Assume some processes fail. If the failures are not consecutive
corresponding to the circle of responsibility, they will be detected concurrently.
Every monitor process detects the failure of its predecessor and sends a view
change message. For example, if processes B and D fail, C detects B’s failure

276 B. Kemme and C. Seeger

and E detects D’s failure. C sends a view change message setting B to down
and E sends a view change message setting D to down. Theses view change
messages are sent to every member and as no consecutive processes fail, the
adjustments to the circle of responsibility are independent of each other. If there
are consecutive failures (for e.g., pi and pi+1), the last process in row (pi+1) will
be detected first (by pi+2). After a new view was sent and the responsibilities
were adapted, the next process (pi) will be detected (again, by pi+2) and so on.
For our example, if B and C fail, D first detects C’s failure. After C is excluded,
D becomes monitor of B. But as B has also failed, it does not receive the view
change and does not send heartbeats. Thus, D detects B’s failure. Additional
non-consecutive process failures are detected concurrently.

Concurrent Joins and Leaves. Concurrent joins and leaves are not a problem. As
shown in Figure 4, concurrent joins are handled simultaneously. The same applies
for one or more simultaneous leave requests. Since a joining process waits for
acknowledge messages of members, the missing acknowledge message of a leaving
process could be a problem. There are three cases we have to analyze. Assume a
group of five processes A, C, D, E, F which have the view Vi = {A, C, D, E, F}
(with identifier i) installed. Process D sends a leave request to C and process
B wants to join the group. Let’s take a look at three cases. First, process B
requests the leaving process D to join the group and D does not react. Process
B will timeout receiving the view change and send the join request to another
process. Second, B requests process A and A distributes the new view Vi+1 =
{A, B, C, D, E, F}. Process D sends a leave request to C. If C receives Vi+1

after the leave request, C’s acknowledge message to B already contains the leave
request of D and, hence, B does not wait for D’s acknowledge message. Third,
if C receives Vi+1 before the leave request, C automatically forwards D’s leave
request as it has Vi+1 already installed. Therefore, concurrent joins and leaves
are handled properly.

Concurrent Join and Failure. Assume a view Vi = {A, B, C, E, F} and process
D joins the group. If D sends the join request to a process that does not fail,
this process sends a new view including D. At the same time, the monitor of the
failed process sends a view excluding the failed process. Similar to a concurrent
leave request as explained in the previous paragraph, D gets informed about the
failure and does not expect an acknowledge message from the failed process. The
join request and the failure detection will succeed.

If the successor pi+1 of a joining process pi fails, pi+2 will detect pi+1’s failure.
After excluding pi+1, the circle of responsibility adapts. Hence, pi monitors pi−1

and pi+2 monitors pi.
If the predecessor pi−1 of a joining process pi fails and pi has not sent its first

heartbeat message, then pi+1 will detect the failure and pi might detect it. Both
processes send the same resulting view. If pi has already sent its first heartbeat
message, only pi excludes pi−1 from view and sends a view change message. In
both cases, pi−1 will be correctly excluded from the view.

In fact, processes might fail in any combination concurrently to the join, and
as long as the process that processes the join request does not fail, every process

Distributed Group Communication System 277

might combine view changes. All failed processes are detected and removed and at
the end the circle of responsibility is set correctly at all the remaining processes.

Let’s have a look at an interesting case. If D requests a process, e.g., A, that
fails while it sends the view change message Vi+1 including D, D will timeout
receiving the view change and send the join request to another process. Within
the failure of A and the second join request of D exists a period of time with
different installed views. Some processes have already installed Vi+1 and some
have Vi installed. If D’s successor E has already installed the view Vi+1, it
detects that D is not in group and send Vi+2 excluding D. If E and C have
still Vi installed, the unsuccessful join of D is not detected. If D does not try
to join the group again, there will be two different views installed until a new
view change message is sent. In the current version of the system, we do not
handle this problem properly. Since heartbeat messages contain the originator’s
view, a view including D will be propagated slowly and D isexcluded when E is
receiving this view. This might take some time.

Failure while Sending View Change Message. The previous example depicts a
general problem of DistributedGCS. The distributed approach works fine unless
a process fails during view change transmission. In MobileGCS, if the master
process fails, a new master is elected and sends a new view to all members. The
previously installed views are dropped and, thus, it is not important which view
a non-master member had installed before. In DistributedGCS, a new view is
the union of the previous view and the incoming view. Therefore, it is important
which view was installed before. If a process fails while sending a view change
message containing Vi, some processes have more actual information than oth-
ers. If a further view change Vi+1 does not contain the information sent before
because its originator has not received Vi, group members have still different
views installed. Exchanging view information by sending heartbeat messages
helps finding a consensus, but since they are only sent to a process’ successor,
the information flow is very slow.

In particular, there are two cases of missing events: a mistakenly included
(join) or a mistakenly excluded (leave, down) process which is only installed at
a subset of group members. Let’s start with the mistakenly included process.
Assume a process pi likes to join the group and process pj which processes the
join request fails while transmitting the view change and, thus, the view change
is not distributed among all group members. If pi retries to join the group and
the new requested process does not fail while transmitting, the join will succeed.
If pi does not retry to join, there could be two situations. First, pi+1 already
received the view change from pj and detects a failure of pi. Process pi+1 will
send a new view excluding pi and pi is completely excluded from the group.
Second, pi+1 has not received the view change from pj but at least from one
other group member. In this situation, pi+1 does not monitor pi and, hence, it
does not recognize the failure of pi, but other processes which have received the
view including pi assume that the join succeeded. In this case, pi is mistakenly
included in some views. By adding the current view to each heartbeat message
and treating inclusions of each incoming heartbeat message like a view change,

278 B. Kemme and C. Seeger

the group members that have received pi’s join will propagate its inclusion to
their successors along the circle of responsibility. With every set of heartbeat
messages sent among the group the mistaken inclusion of pi is forwarded towards
pi+1. In worst case, if n denotes the total number of processes in the group and
pi+2 is the only process that has received the join of pi, it takes n− 2 steps until
pi+1 is informed about the mistaken inclusion of pi and, thus, it will exclude
pi because it does not receive heartbeat messages from it. In summary, if no
further view changes occur, a mistakenly added process is eventually detected
after n − 2 heartbeat steps in the worst case.

A mistaken exclusion could occur when a process pi suspects its not-failed
predecessor pi−1 to have failed and fails while transmitting the view change. As
a result of pi’s failure, pi+1 will send a view change message excluding pi. If
pi+1 received the view change from pi before it failed, the failure assumption of
pi−1 will also be propagated within the group and pi−1 will be excluded. If pi+1

has not received the view change before, it will propagate a view including pi−1.
Processes which have received the previous exclusion of pi−1 will ignore the up
information until Tleave/down exceeded and they have completely deleted pi−1

from their view. Once pi−1 is deleted, an incoming heartbeat message including
this process will add it again. In worst case, a mistakenly added process will be
eventually detected after n−2 heartbeat steps as soon as Tleave/down is exceeded.
We would like to mention here that exclusion information carried by a heartbeat
message are discarded which emphasizes our assumption to focus more on the
inclusion than on the exclusion of processes.

7 Performance Analysis

We only want to provide a rough overhead analysis for simple multicast mes-
sages, and single joins and leaves. We consider both the number of messages as
well as the communication steps needed to finish the operation. The overhead
of heartbeat messages is ignored. In our analysis, we would like to make an as-
sumption that we have a group of n phones. Each multicast takes n-1 messages
as each group member receives its own copy of a message. As messages can be
sent concurrently, there is only one time step. For a join, the joining process
contacts a group member by sending a join request (1 message and 1 step). Upon
receiving this request, a view change message is sent to all group members in-
cluding the new process except the sending process itself (n messages in 1 step).
All group members, except for the requested process, send an acknowledge mes-
sage to the joining process (n − 1 messages and 1 step). Once the successor of
the joining process p receives the first heartbeat from p (1 step) it sends a stop
heartbeat message to p’s predecessor (1 message and 1 step). Thus, we have a
total of 2n messages in 3 steps until the joining process is included and 5 steps
until the circle of responsibility is completely adjusted. A leave request takes
n− 1 messages and two time steps. One message for the request itself and n− 2
view change messages to all group members except the requested process. For
processing a failure, DistributedGCS takes one process down message and n−1

Distributed Group Communication System 279

messages for the view change to all group members including the failed process.
Thus, we have a total of n messages and 2 steps. These two time steps, however,
do not contain the delay until a failure is detected.

8 Implementation

Our GCS layer and a corresponding chat application layer have been fully imple-
mented based on Java ME [10]. We decided for Java ME as it is a very common
environment for applications running on mobile devices. It allows us to test our
GCS on many different devices. Additional toolkits [11,5] for Java ME supported
our analysis. Java ME is divided into two base configurations: Connected Limited
Device Configuration (CLDC) and Connected Device Configuration (CDC). We
use CLDC as it is designed for devices with limited capabilities like mobile phones
and best fits our purpose. For incoming messages, we utilize a synchronous mes-
sage listener that listens at SMS port 2000. Thus, messages are redirected to the
GCS layer and do not end up in the mailbox of the user. We have thoroughly
tested scenarios on a testbed consisting of up to four phones.

9 Conclusions

This paper presents a novel, completely decentralized group communication ar-
chitecture for mobile devices that uses SMS-based message passing. Compared to
our MobileGCS, DistributedGCS inherently distributes the management over-
head and does not need special master move operations. It’s main target ap-
plication is chatting but we believe that it can be used for other applications
with similar reliability requirements. The system has a thorough failure detection
mechanism that keeps the overhead for failure handling very low, while at the
same time handling the most common failure scenarios. Our approach handles
short disconnections, as this is a common phenomenon in mobile environments.
Furthermore, failure handling is equally distributed over all nodes. For future
work we will focus on integrating additional communication channels and, hence,
supporting a wider spectrum of applications.

References

1. Amir, Y., Stanton, J.: The Spread Wide Area Group Communication System. The
Johns Hopkins University, Baltimore (1998)

2. Birman, K., Cooper, R.: The ISIS project: real experience with a fault tolerant pro-
gramming system. In: EW 4: Proceedings of the 4th Workshop on ACM SIGOPS
European Workshop, pp. 1–5. ACM Press, New York (1990)

3. Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal
multicast. ACM Trans. Comput. Syst. 17(2), 41–88 (1999)

4. Chockler, G.V., Keidar, I., Vitenberg, R.: Group communication specifications: a
comprehensive study. ACM Comput. Surv. 33(4), 427–469 (2001)

280 B. Kemme and C. Seeger

5. Ericsson, S.: SDK 2.5.0.3 for the Java ME Platform (2010),
http://developer.sonyericsson.com/wportal/devworld/article/java-

sdk-versionhistory (Online; accessed October 28, 2009)
6. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec, A.-

M.: Lightweight probabilistic broadcast. ACM Trans. Comput. Syst. 21(4), 341–374
(2003)

7. Golding, R.A.: Weak-Consistency Group Communication and Membership. PhD
thesis, Santa Cruz, CA, USA (1992)

8. Horus. The Horus Project (2009),
http://www.cs.cornell.edu/Info/Projects/HORUS/index.html

9. Larrea, M., Arevalo, S., Fernandez, A.: Efficient algorithms to implement unreliable
failure detectors in partially synchronous systems. In: Jayanti, P. (ed.) DISC 1999.
LNCS, vol. 1693, pp. 34–48. Springer, Heidelberg (1999)

10. Microsystems, S.: Java ME (2009), http://java.sun.com/javame/index.jsp
11. Microsystems, S.: Java Wireless Toolkit (2009),

http://java.sun.com/products/sjwtoolkit/

12. Moser, L., Melliar-Smith, P., Agarwal, D.A., Budhia, R.K., Lingley-papadopoulos,
C.A.: Totem: A Fault-Tolerant Multicast Group Communication System. Commu-
nications of the ACM 39, 54–63 (1996)

13. Prakash, R., Baldoni, R.: Architecture for Group Communication in Mobile Sys-
tems. In: SRDS 1998: Proceedings of the The 17th IEEE Symposium on Reliable
Distributed Systems, Washington, DC, USA. IEEE Computer Society Press, Los
Alamitos (1998)

14. Roman, G.-C., Huang, Q., Hazemi, A.: Consistent group membership in ad hoc
networks. In: ICSE 2001: Proceedings of the 23rd International Conference on Soft-
ware Engineering, Washington, DC, USA, pp. 381–388. IEEE Computer Society
Press, Los Alamitos (2001)

15. Schiper, A.: Early consensus in an asynchronous system with a weak failure detec-
tor. Distrib. Comput. 10(3), 149–157 (1997)

16. Schiper, A., Birman, K., Stephenson, P.: Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst. 9(3), 272–314 (1991)

17. Seeger, C., Kemme, B., Wu, H.: SMS based Group Communication System for
Mobile Devices. In: ACM Workshop on Data Engineering for Wireless and Mobile
Access, vol. 9 (2010)

18. SMSGupShup. SMS Gup Shup Chat (2009),
http://www.smsgupshup.com/apps_chat

Towards Declarative Query Scoping

in Sensor Networks

Daniel Jacobi1, Pablo E. Guerrero1, Khalid Nawaz1,
Christian Seeger1,�, Arthur Herzog1,�, Kristof Van Laerhoven2, and Ilia Petrov1

1 Databases and Distributed Systems Group
2 Embedded Sensing Systems,

Dept. of Computer Science, Technische Universität Darmstadt, Germany

Abstract. In the last decade, several large-scale wireless sensor networks
have been deployed to monitor a variety of environments. The declara-
tive nature of the database approach for accessing sensor data has gained
great popularity because of both its simplicity and its energy-efficient im-
plementation. At the same time another declarative abstraction made its
way into mainstream sensor network deployments: user-defined groups of
nodes. By restricting the set of nodes that participate in a task to such a
group, the overall network lifetime can be prolonged. It is straightforward
to see that integrating these two approaches, that is, restricting a query’s
scope to a group of sensor nodes, is beneficial. In this work we explore
the integration of two such database and scoping technologies: TikiDB, a
modern reincarnation of a sensor network query processor, and Scopes, a
network-wide grouping mechanism.

1 Introduction

Wireless Sensor Networks (WSNs) have been suggested as a potent solution to
monitor large areas with sensing hardware, distributed over hundreds of nodes
that jointly form an ad-hoc multi-hop network. Each node in such a WSN is
equipped with a limited amount of processing and battery resources, commu-
nication capabilities to transmit its information to neighboring nodes in the
network, and a set of sensors, which can observe the local environment.

Operating a sensor network originally implied writing code in a procedural
programming language like C (or variants of it) for TinyOS [9]. This code has
to deal with low-level issues such as interrupts, network unreliability and power
consumption. In contrast, declarative operation is simpler than writing procedu-
ral code: it allows the user to focus on what needs to be done, without thinking
how to achieve it, and thereby reduces the system complexity.
� Supported by the German Research Foundation (DFG) within the research train-

ing group 1362 Cooperative, Adaptive, and Responsive Monitoring in Mixed Mode
Environments, and the Center for Advanced Security Research Darmstadt (CASED).

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 281–292, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

282 D. Jacobi et al.

In sensor networks, declarative data access was investigated by Gehrke [1,19]
and Madden [11,12]. Their systems offer a query processor-like interface to the
sensor network. The vast amount of work in this context shows general consensus
that sensor data access should be declarative.

Another abstraction that has made its way into mainstream sensor network
deployments is node grouping1. Having its origin in event-based systems [6],
the idea of scoping a WSN was published in [16], and related implementations
appeared in [18,13,15]. Most of these systems do acknowledge the importance of
a declarative operation by providing a simple syntax to define the node groups.

The intuitiveness of the database and scoping approaches makes their com-
bination an ideal integrated solution for query management in sensor networks.
To the best of our knowledge no work has explored this intersection. This paper
presents a number of extensions that this integration enables, their implemen-
tation and evaluation.

The rest of the paper is structured as follows. In the next section we review
related sensor network research with distinct attention to declarative query pro-
cessing and management of node groups, describing specific components of the
two approaches and their relevant implementation details. In Section 3, a num-
ber of extensions are presented that naturally emerge when using both systems
together. An initial evaluation is provided in Section 4 studying the behavior of
the system. We summarize our main findings in Section 5, together with future
directions of research.

2 Related Work

A significant amount of work has been carried out in the last decade to address
the topics of query processing and node group management. In the following two
subsections we review these topics. We then describe techniques to constrain a
query’s span in the network which are, to a certain extent, comparable to the
approach presented in this paper.

2.1 From Cougar to TikiDB

Fig. 1. TinyDB’s sensors virtual
data cube

The earliest systems to provide a declara-
tive interface for accessing sensor data were
Cougar [1,19] and TinyDB [11,12]. In TinyDB,
the sensor nodes compose a global, virtual ta-
ble called sensors, which has sensor types
as columns (e.g., temperature, humidity), and
nodes as rows. Each record is virtually up-
dated by each node at a frequency specified by the user, effectively forming a
virtual data cube over time, as illustrated in Fig. 1.

1 Should not be confused with node clustering, a technique to subordinate nodes to a
master according to their physical proximity.

Towards Declarative Query Scoping in Sensor Networks 283

SELECT humidity
FROM sensors
WHERE humidity > 20%
SAMPLE PERIOD 30s
FOR 3d

Users, in turn, specify a SQL-like query to
extract sensor data from the network. Con-
sider for example a sensor network equipped
with environmental monitoring nodes. A user,
e.g., interested in determining whether air hu-
midity exceeds a threshold of 20%, provides
the query to the right. The SELECT clause defines a projection on humidity, i.e.,
the result set consists of a table with one column and one row per network node.
The WHERE clause reduces the set of results by filtering temperature tuples that
don’t fulfill the specified condition. The results are delivered to the base station
at a 30-second sample rate (as specified with the SAMPLE PERIOD clause), and
the query lifetime is 3 days.

SELECT AVG(temperature)
FROM sensors
SAMPLE PERIOD 30s

When users are interested in aggregated
values instead of collecting all individual rows,
the query can include the desired aggregation
and the system performs the computation, as
shown in the query to the right. The result of this query is a single row per sam-
ple period, based on the non-aggregated rows, with the average temperature.
Performing the aggregation inside the network has the benefit of lowering the
communication costs. TinyDB’s data aggregation framework [11] implements
this mechanism, and can be extended with customized functions beyond the
traditional average, max and min functions.

This style of declarative interaction, i.e. issuing queries through the network
via one of its nodes, makes the system flexible to be used and reconfigured with-
out requiring any changes to the individual node’s code. TinyDB, alas, has not
been kept up-to-date with the evolution of neither sensor hardware platforms nor
TinyOS, the operating system on which it worked. Therefore we developed our
own system, called TikiDB, which works on Contiki’s Rime protocol stack [4,5].
TikiDB behaves just as TinyDB: it exhibits a tree establishment protocol over
which query dissemination, data collection and aggregation functions operate.

2.2 Management of Node Groups

Initial sensor network architectures assumed that all sensor nodes participate in
a single global task. It soon became evident that in many scenarios, a sensor
network could be used for multiple purposes [17]. The idea of creating groups of
nodes evolved naturally [16]: by restricting the set of nodes that participate in
each task, communication costs are reduced, which translates into a prolonged
overall network lifetime. Variations of this idea emerged almost concurrently,
e.g., for groups of physically nearby nodes [18], logical groups [13], and also
under the name of roles [15].

In our group we have built Scopes [10], a framework in which a group of nodes
(called scope) can be declaratively defined by specifying a membership condition
that nodes must satisfy.

284 D. Jacobi et al.

Office

Group

Floor

Building

Department

University Technische Universität Darmstadt

Comp. Science

Robert Piloty

1st. Floor

DVS

D106 …

Dean’s …

2nd. Floor

…

3rd. Floor

…

CASED

ETiT

Hans-Busch

…

Common

University
Center

Audimax

Fig. 2. A hierarchy of scopes for facility management applications at TUD

CREATE SCOPE Office_D106

AS (ROOM = ‘D106’)

SUBSCOPE OF DVS;

Fig. 3. Scope definition for
office D106

CREATE SCOPE Temp_Office_D106

AS (EXISTS SENSOR ‘TEMPERATURE’

AND TEMPERATURE < 20C)

SUBSCOPE OF Office_D106;

Fig. 4. Specialization for temperature nodes

An important feature of the framework is the possibility to relate scopes
to each other in a hierarchy. A scope’s definition specializes that of its parent
scope: member nodes will be a subset of its parents’. As an example, consider the
development of facility management applications at the Technische Universität
Darmstadt. Fig. 2 presents one such simple scope hierarchy. The topmost scope,
representing the entire university, is split into departments, which in turn are
split geographically into buildings, then floors, and so on, until fine granularity
scopes are achieved, e.g. D106 being Prof. Buchmann’s office. The statements
below show how to declaratively express scope Office D106 as subscope of DVS
(Fig. 3), as well as Temp Office D106, which picks temperature nodes in the
given office (Fig. 4).

A node’s membership to a scope might change over time, hence a timely
reevaluation at each node is required. The Scopes framework implements mech-
anisms to correctly deal with the membership, and provides automatic main-
tenance against network dynamics (nodes leaving and joining and unreliable
communication).

In addition to reliably notifying nodes about their membership, Scopes en-
ables a bidirectional communication channel between a scope’s creator (called
scope root) and the scope members. The framework resorts to specific routing
algorithms that can be chosen to better fulfill the application needs. A näıve im-
plementation simply floods messages throughout the network. An energy-efficient
protocol was presented in [10], which uses controlled flooding to disseminate top
level scope definitions through the network, and a converge-cast routing tree for

Towards Declarative Query Scoping in Sensor Networks 285

relaying data back to the sink. The used tree topology makes this protocol a good
candidate for implementing query processing functions, therefore we concentrate
on it in this work.

2.3 Node Set Reduction

Semantically, a query is answered by extracting data from the sensors table as
specified by the FROM clause, effectively addressing all nodes. Internally, however,
queries do not always necessarily need to be spread across the entire network.
Consider a query which requires temperature readings greater than or equal to
a certain threshold ‘x’. Clearly, nodes with values lower than ‘x’ can abstain
from participating in the query other than for forwarding purposes. TinyDB
reduces the set of nodes that participate in answering such queries by using a
semantic routing tree (or SRT for short). SRTs are overlays on traditional routing
trees that, similar to database indices, are used to locate nodes that have data
relevant to the query. An SRT is created over constant values, e.g. temperature
and humidity, with the statement:

CREATE SRT th_index ON sensors (temperature,humidity) ROOT 1

The statement creates an SRT named th index rooted at node 1; nodes then
discover the range of temperature and humidity values their children have. That
information is used later to determine whether a query must be forwarded down-
wards or not. To a minor extent, the definition of an SRT resembles those of
scopes. The flexibility of scope definitions, as shown in the previous subsection,
goes far beyond such indices.

Other techniques exist that reduce the set of nodes participating in a query.
Dubois-Ferrière and Estrin investigated a multi-sink scenario, and proposed to
partition the network using Voronoi scopes [2]. Gupta et al. [8] investigated an
approach to suppress nodes that are in close enough proximity such that they
might contribute the same or similar data, effectively assuming node redundancy.
These techniques complement the approach presented in this paper, and can be
applied a posteriori. When resource constraints are not an issue, the approach
for mobile phones and smart objects from Frank et al. [7] can be also used.

In the next section we present and exemplify a number of extensions that
emerge from the integration of declarative query processing and network scoping.

3 Integrating Queries with Scopes

As introduced earlier, the declarative approach to querying a sensor network em-
ploys a SELECT-FROM-WHERE-GROUP BY statement. The user is normally bound
to refer to the whole network in these queries: the FROM clause is used with
the sensors table2. Scoping a sensor network, on the other hand, enables the
definition of dynamic data sources.
2 Other tables can be used, called materialization points, but these can’t be used to

specify node sets.

286 D. Jacobi et al.

Therefore, it results natural to extend the query semantics by adding the
possibility to use these scopes as sources instead of the entire sensors table.
This section describes TikiDB’s extensions to the query processing data model
by resorting to example queries for illustration purposes.

3.1 Data Model Extensions

SELECT temperature, humidity
FROM Office_D106
WHERE humidity > 20%
SAMPLE PERIOD 30s

The simplest way to restrict the set of
nodes that participate in a query is by
replacing the sensors keyword with the
name of the scope to be used. Consider
the query to the right, where the scope
Office D106 is defined as in Fig. 3. In this case, the result set consists of tuples
generated at nodes which are members of the specified scope (and which meet
the WHERE clause).

SELECT light

FROM Office_D106, Office_D108

WHERE light > 200 lux

SAMPLE PERIOD 30s

When multiple scopes are to be used as
sources, they can be listed separated from
each other by commas as in the query to
the right. Here, a user is interested in light
sensor values from nodes in both offices.
It is easy to observe that the notation stands for union between node groups,
instead of an implicit cross join between these.

SELECT AVG(temperature)
FROM Office_D106
WHERE humidity > 20%
SAMPLE PERIOD 30s

Data aggregation also matches very
well with scopes. Aggregating data from
a scope’s nodes over an epoch is possi-
ble by specifying the desired attribute and
the aggregation function, as exemplified
to the right. The temperature values of all nodes being member of Office D106
are then averaged and presented to the user at the base station.

SELECT node_type,
MIN(battery_voltage)

FROM ComputerScience
GROUP BY node_type
SAMPLE PERIOD 30s

Results can also be grouped by com-
mon attributes such as node type or room.
In this case, the root node will deliver a
result set with one row for each unique
value of the grouping attribute (e.g. node
type) together with the aggregated value.
The query to the right assumes an attribute node type, which takes values
according to the node’s properties such as processor and sensors available. It
illustrates how to find the lowest battery level for each node type at a large
scope, ComputerScience.

SELECT SUBSCOPE OF DVS,
AVG(light)

FROM DVS
GROUP BY SUBSCOPES OF DVS
SAMPLE PERIOD 30s

Lastly, a more powerful aggregation op-
eration exploits the hierarchical relation
between a scope and its subscopes. When
a user is interested in an aggregated value
for each of the subscopes of a particular
scope, he can use the clause SUBSCOPE OF.
With this, the result set includes one row for each subscope of the specified scope,

Towards Declarative Query Scoping in Sensor Networks 287

together with the aggregated value. Consider the query to the right: the group-
ing element are those subscopes of DVS, that is, each of the offices that belong
to it (cf. Fig. 2). Note that the user might not know a priori what the subscopes
of a scope are, or if there exist any at all. The system takes care of looking them
up and managing the aggregated values independently from each other.

3.2 Design Considerations

Each of the introduced queries require a corresponding mapping to the oper-
ations offered by the network scoping interface. We now describe the design
considerations and implementation details of the aforementioned operations, as
well as modifications to the underlying scoping layers to correctly support these
query processing operations.

Fig. 5. System layers

Architecture. The system follows a layered ar-
chitecture, as depicted in Fig. 5. Users write and
submit queries to TikiDB through a connected
node. TikiDB is in charge of parsing the query
and allocating the necessary timers and other re-
sources for its execution. Scopes is used for creat-
ing the node groups and maintaining them against
network dynamics, as well as for disseminating the
queries towards scope members and transporting
data flowing back to the scope root. We have im-
plemented this stack entirely using Contiki [4], an
operating system running threads on a C-based event-driven kernel.

Fig. 6. Query dissemination

Query Dissemination. TikiDB’s procedure for
query injection uses the communication channel
offered by Scopes to disseminate the query spec-
ification. In this way, indeed, only nodes that are
members of the scope are notified (e.g., nodes cir-
cled in green in Fig. 6). The strict layering em-
ployed by the Scopes framework avoids notifying
intermediate nodes, which only forward data mes-
sages to their destination (cf. node 2). This feature
is necessary in scenarios where security and pri-
vacy are of utmost importance, since the network
may contain multiple scopes from different users and/or companies. The draw-
back of this approach, however, is that such nodes cannot be used to perform
aggregation: when data flows from producer nodes towards the root. In this work
we have extended the Scopes framework to enable the user to specify whether
this behavior is desired or not.

288 D. Jacobi et al.

4 Preliminary Evaluation

In this section we describe a preliminary evaluation of our approach regarding
reliability and power efficiency.

4.1 Simulation Setup

We have evaluated the integration of Scopes with TikiDB through simulations.
For this purpose we use Contiki’s COOJA/MSPSim, which is a simulator pro-
viding a very accurate emulation of the node’s hardware [14]. This enables the
usage of exactly the same binary for simulations as for real hardware. While
COOJA offers emulation for several hardware platforms, we chose to use Telos
nodes since we plan to evaluate the system in our Tmote Sky testbed.

The energy consumed by the nodes was measured using the power profil-
ing mechanism [3] provided by Contiki. The execution times were measured for
different components (e.g., radio and processor) on the nodes while they were
awake. This information, along with the current energy consumption obtained
from the Tmote Sky datasheet, was used to compute the energy consumed by
the nodes. In our experiments, initial energy assigned to all nodes was equal,
unless otherwise stated.

SELECT INTERNAL_VOLTAGE

FROM scope_x

SAMPLE PERIOD 128s

Fig. 7. Query Q1

SELECT ROOM, AVG(TEMPERATURE)

FROM scope_x

SAMPLE PERIOD 128s

Fig. 8. Query Q2

The used network topology was a uniform, 100-node grid of 10 nodes by side.
Transmission range was adjusted so that each node can communicate with its
four direct neighbors. Despite having used transmission success rates of 100%,
radio communication is subject to collisions (we discuss this issue later). We
tested the system with two different scopes, which covered 25% of the network
(hence 25 nodes were members of it). The first scope, S1, covered nodes dis-
tributed uniformly throughout the network, while for the second scopes, S2, we
chose those in the upper left corner. These scope definitions were used in com-
bination with two queries (presented in Fig. 7 and 8) by replacing scope x with
the respective scope name (S1 or S2). Query Q1 simply requests the internal
voltage reading. Despite its simplicity, this query puts the network protocols
under stress given the network size (and the respective tree height). Query Q2

is slightly more complex in that it requires aggregation over an epoch. Radio
messages are smaller, however more processing delay is present.

4.2 Simulation Results

In Fig. 9 we present the reliability results for the aforementioned combination
of scope definitions and queries. The x axis represents elapsed time. The plain

Towards Declarative Query Scoping in Sensor Networks 289

 0

 5

 10

 15

 20

 25

00:00:00 00:20:00 00:40:00 01:00:00 01:20:00 01:40:00 02:00:00 02:20:00 02:40:0

elapsed time [hh:mm:ss]

membership
results

(a) S1, Q1

 0

 5

 10

 15

 20

 25

00:00:00 00:20:00 00:40:00 01:00:00 01:20:00 01:40:00 02:00:00 02:20:0

elapsed time [hh:mm:ss]

membership
results

(b) S1, Q2

 0

 5

 10

 15

 20

 25

00:00:00 00:20:00 00:40:00 01:00:00 01:20:00 01:40:00 02:00:00 02:20:00 02:40:0

elapsed time [hh:mm:ss]

membership
results

(c) S2, Q1

 0

 5

 10

 15

 20

 25

00:00:00 00:20:00 00:40:00 01:00:00 01:20:00 01:40:00 02:00:00 02:20:0

elapsed time [hh:mm:ss]

membership
results

(d) S2, Q2

Fig. 9. Result delivery reliability for S1, S2 combined with Q1, Q2

(green) curve shows node membership, while the line with crosses (blue) rep-
resents the number of received results at the scope root (the positions of the
crosses indicate the start of a new epoch). The plots show results for the first 60
epochs (∼2.5 hours).

The first aspect to consider is the scope membership (green curve), since
nodes that do not become scope members will not generate tuples to contribute
to the result. Both scope definitions cover 25 nodes; we observe that while S2

remains stable over time from the beginning of the test run till the end, S1

shows a slight variability. This is expected, since S1 spans the whole network,
while S2 covers a concentrated, smaller fraction of it. In general, however, scope
membership remained high, which is to be attributed to the reliability with
which administrative messages are sent by the Scopes framework.

Given this almost ideal node membership, we consider the amount of received
results at the scope root. At first sight, it seems surprising that only around 50%
of the results arrive at the root. This suboptimal outcome, however, is due to a
number of issues. With query Q1, messages get longer as nodes are closer to the
root. This triggers the message fragmentation function; the Scopes framework,
in turn, sends data messages without requesting acknowledgements. Occupying
the broadcast medium for longer periods of time clearly increases the probability
of message collisions. A packet loss near the root implies losing a big part of the

290 D. Jacobi et al.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

00:00:00 00:20:00 00:40:00 01:00:00 01:20:00 01:40:00 02:00:00

ac
cu

m
ul

at
ed

 n
et

w
or

k
en

er
gy

 c
un

su
m

pt
io

n
[u

J]

elapsed time [hh:mm:ss]

S1,Q1
S1,Q2
S2,Q2
S2,Q1

Fig. 10. Power efficiency for the tested queries

results. With query Q2, on the other side, in-network processing keeps individual
nodes busier for longer times. This causes results to sometimes arrive out of order
at their next hop, which eventually discards them (out-of-order messages arrived
3% of the time).

In Fig. 10, we present the results for power efficiency. The plot presents time
on the x axis, and accumulated network energy consumption on the y axis. The
plot contains energy consumption measurements for the first ∼55 epochs. Here
it is observed that the queries involving scope S1 consume 14% more energy
than the queries involving S2. This was expected because nodes in S1 are spread
through the network, which requires spending more energy to collect results.
Also, it is noted that the two queries executed on the same scope do not vary
drastically (the observed absolute difference was < 2%). As expected, S1,Q1 has
required more energy than S1,Q2, since the latter performs in-network aggrega-
tion, therefore minimizing message size. However, the lower energy consumption
shown by S2,Q1 compared to S2,Q2 is contradictory to our expectations: the
query executing aggregation requires more energy than the query without it.
We speculate that a possible explanation could be that the savings in communi-
cation costs are lower than the extra costs for computing aggregates, since in S2,
member nodes are closer to the scope root, thus requiring less communication.
A detailed investigation of this issue is a matter of future work.

5 Conclusions and Future Work

In this paper we have proposed an approach to declaratively specify the set of
nodes that participate in a query. While, in sensor networks, declarative inter-
faces to query processing as well as for node group management had already
been investigated, the integration of these two is a promising approach which
can further improve the usability of sensor networks for non-experts.

Towards Declarative Query Scoping in Sensor Networks 291

We have shown the benefits of this approach by integrating two of such sys-
tems. On one side, TikiDB, which is a modern reincarnation of a distributed
query processor developed on the Contiki operating system. TikiDB manages
query aspects such as query parsing, data acquisition, data aggregation and fil-
tering. On the other side, Scopes, which is a distributed node grouping system
that efficiently handles network dynamics and enables a bidirectional communi-
cation channel between a scope’s root node and its members.

We have proposed four extensions to TinyDB’s original data model that make
use of scopes to specify or reduce the set of nodes that participate in the query.
The easiness in describing its syntax suggests that the constructs are applicable
to many situations. Our preliminary evaluation results show a non-ideal result
delivery reliability, leaving space for optimizations. Clearly, around the scope
root, messages get large enough such that fragments have high probability of
collision. Since data messages in Scopes are not acknowledged, data loss becomes
an issue.

In the future we plan to enhance our implementation to improve reliability,
reduce energy consumption, and also optimize the program size. These activities
will be surrounded by extensive test runs on a real deployment to characterize
and evaluate our framework in more detail.

References

1. Bonnet, P., Gehrke, J., Seshadri, P.: Towards Sensor Database Systems. In: Pro-
ceedings of the Second International Conference on Mobile Data Management,
Hong Kong (January 2001)

2. Dubois-Ferriere, H., Estrin, D.: Efficient and Practical Query Scoping in Sensor
Networks. In: Procs. of the 1st IEEE International Conference on Mobile Ad-hoc
and Sensor Systems, pp. 564–566 (October 2004)

3. Dunkels, A., Österlind, F., Tsiftes, N., He, Z.: Software-based Online Energy Esti-
mation for Sensor Nodes. In: 4th IEEE Workshop on Embedded Netwoked Sensors
(Emnets-IV), Cork, Ireland (June 2007)

4. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a Lightweight and Flexible Oper-
ating System for Tiny Networked Sensors. In: 29th Annual IEEE International
Conference on Local Computer Networks, pp. 455–462 (November 2004)

5. Dunkels, A., Österlind, F., He, Z.: An Adaptive Communication Architecture for
Wireless Sensor Networks. In: Proceedings of Conference on Embedded Networked
Sensor Systems (Sensys 2007). ACM Press, New York (November 2007)

6. Fiege, L., Mezini, M., Muehl, G., Buchmann, A.: Engineering Event-based Systems
with Scopes. In: European Conference on Object-Oriented Programming 2002, pp.
257–268 (2002)

7. Frank, C., Roduner, C., Noda, C., Kellerer, W.: Query scoping for the sensor inter-
net. In: Proceedings of the 2006 ACS/IEEE International Conference on Pervasive
Services, PERSER 2006, Washington, DC, USA, pp. 239–242. IEEE Computer
Society Press, Los Alamitos (2006)

8. Gupta, H., Zhou, Z., Das, S.R., Gu, Q.: Connected sensor cover: self-organization
of sensor networks for efficient query execution. IEEE/ACM Trans. Netw. 14(1),
55–67 (2006)

292 D. Jacobi et al.

9. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.: System Archi-
tecture Directions for Networked Sensors. SIGOPS Oper. Syst. Rev. 34(5), 93–104
(2000)

10. Jacobi, D., Guerrero, P.E., Petrov, I., Buchmann, A.P.: Structuring Sensor Net-
works with Scopes. In: 3rd IEEE European Conference on Smart Sensing and
Context (EuroSSC), Zurich, Switzerland, pp. 40–42. IEEE Computer Society, Los
Alamitos (2008)

11. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny AGgregation
Service for Ad-hoc Sensor Networks. In: 5th Symposium on Operating Systems
Design and Implementation, vol. 36(SI), pp. 131–146 (2002)

12. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an Acquisitional
Query Processing System for Sensor Networks. ACM Trans. Database Syst. 30(1),
122–173 (2005)

13. Mottola, L., Picco, G.P.: Logical Neighborhoods: A Programming Abstraction for
Wireless Sensor Networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R.
(eds.) DCOSS 2006. LNCS, vol. 4026, pp. 150–168. Springer, Heidelberg (2006)

14. Österlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level simu-
lation in cooja. In: European Conference on Wireless Sensor Networks (EWSN),
Poster/Demo session, Delft, The Netherlands (January 2007)

15. Römer, K., Frank, C., Marrón, P.J., Becker, C.: Generic Role Assignment for Wire-
less Sensor Networks. In: Proceedings of the 11th ACM SIGOPS European Work-
shop, Leuven, Belgium, pp. 7–12 (September 2004)

16. Steffan, J., Fiege, L., Cilia, M., Buchmann, A.: Scoping in Wireless Sensor Net-
works: A Position Paper. In: Proceedings of the 2nd Workshop on Middleware for
Pervasive and Ad-hoc Computing, pp. 167–171. ACM, New York (2004)

17. Steffan, J., Fiege, L., Cilia, M., Buchmann, A.P.: Towards Multi-Purpose Wireless
Sensor Networks. In: Systems Communications, Montreal, Canada, pp. 336–341.
IEEE Computer Society, Los Alamitos (2005)

18. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.E.: Hood: A Neighborhood Ab-
straction for Sensor Networks. In: MobiSYS 2004: Proceedings of the 2nd Inter-
national Conference on Mobile Systems, Applications and Services, Boston, Mas-
sachusetts, USA, pp. 99–110. ACM Press, New York (2004)

19. Yao, Y., Gehrke, J.: The Cougar Approach to In-network Query Processing in
Sensor Networks. SIGMOD record 31(3), 9–18 (2002)

QPME 2.0 - A Tool for Stochastic Modeling and
Analysis Using Queueing Petri Nets

Samuel Kounev, Simon Spinner, and Philipp Meier

Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
kounev@kit.edu, simon.spinner@gmail.com

Abstract. Queueing Petri nets are a powerful formalism that can be ex-
ploited for modeling distributed systems and analyzing their performance
and scalability. By combining the modeling power and expressiveness of
queueing networks and stochastic Petri nets, queueing Petri nets pro-
vide a number of advantages. In this paper, we present Version 2.0 of
our tool QPME (Queueing Petri net Modeling Environment) for model-
ing and analysis of systems using queueing Petri nets. The development
of the tool was initiated by Samuel Kounev in 2003 at the Technische
Universität Darmstadt in the group of Prof. Alejandro Buchmann. Since
then the tool has been distributed to more than 100 organizations world-
wide. QPME provides an Eclipse-based editor for building queueing Petri
net models and a powerful simulation engine for analyzing the models.
After presenting the tool, we discuss ongoing work on the QPME project
and the planned future enhancements of the tool.

1 Introduction

QPME (Queueing Petri net Modeling Environment) [20] is a modeling and anal-
ysis tool based on the Queueing Petri Net (QPN) modeling formalism. The tool
is developed and maintained by the Descartes Research Group [7] at Karlsruhe
Institute of Technology (KIT). Introduced in 1993 by Falko Bause [1], the QPN
formalism has a number of advantages over conventional modeling formalisms
such as queueing networks and stochastic Petri nets. By combining the modeling
power and expressiveness of queueing networks and stochastic Petri nets, QPNs
enable the integration of hardware and software aspects of system behavior into
the same model. In addition to hardware contention and scheduling strategies,
QPNs make it easy to model simultaneous resource possession, synchronization,
asynchronous processing and software contention. These aspects have significant
impact on the performance of modern enterprise systems.

Another advantage of QPNs is that they can be used to combine qualitative
and quantitative system analysis. A number of efficient techniques from Petri net
theory can be exploited to verify some important qualitative properties of QPNs.
The latter not only help to gain insight into the behavior of the system, but are
also essential preconditions for a successful quantitative analysis [3]. Last but
not least, QPN models have an intuitive graphical representation that facilitates
model development. In [11], we showed how QPNs can be used for modeling

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 293–311, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

294 S. Kounev, S. Spinner, and P. Meier

distributed e-business applications. Building on this work, we have developed a
methodology for performance modeling of distributed component-based systems
using QPNs [9]. The methodology has been applied to model a number of systems
ranging from simple systems to systems of realistic size and complexity. It can be
used as a powerful tool for performance and scalability analysis. Some examples
of modeling studies based on QPNs can be found in [14, 15, 18, 21]. These stud-
ies consider different types of systems including distributed component-based
systems, event-based systems and Grid computing environments.

In this paper, we present QPME 2.0 (Queueing Petri net Modeling Environ-
ment) - a tool for stochastic modeling and analysis of systems using queueing
Petri nets. The paper is an updated and extended version of [13] where we pre-
sented version 1.0 of the tool. QPME is made of two major components, a QPN
Editor (QPE) and a Simulator for QPNs (SimQPN). In this paper, we present an
overview of these components. Further details on their internal architecture and
implementation can be found in [8, 10, 12, 24]. QPME is available free-of-charge
for non-profit use (see [7]) and has been distributed to more than 100 universi-
ties and research organizations worldwide. The current license is closed-source,
however, there are plans to make the tool open-source in the near future.

The most important new features introduced in Version 2.0 of the tool are
the following:

– Central queue management and support for having multiple queueing places
that share the same underlying physical queue.

– Advanced query engine for processing and visualization of simulation results.
– Support for simulating hierarchical QPNs using SimQPN.
– Support for defining probes that specify metrics of interest for which data

should be collected.
– Support for two additional simulation output data analysis techniques: spec-

tral analysis and standardized time series.
– Support for empirical and deterministic distributions.
– Improved performance and scalability of the simulation engine (SimQPN).
– Automatic detection of infinitely growing queues (model instability).
– A number of features improving user friendliness (e.g., simulation progress

bar and "stop simulation" button).

The rest of this paper is organized as follows: We start with a brief introduction
to QPNs in Section 2. Sections 3 and 4 provide an overview of the QPN editor
and the simulation engine, respectively. Section 5 presents the framework for
processing and visualization of the simulation results. Finally, Section 6 summa-
rizes the ongoing and future work on QPME and the paper is wrapped up with
some concluding remarks in Section 7.

2 Queueing Petri Nets

The main idea behind the QPN formalism was to add queueing and timing
aspects to the places of Colored Generalized Stochastic Petri Nets (CGSPNs) [1].

QPME 2.0 - A Tool for Stochastic Modeling and Analysis 295

This is done by allowing queues (service stations) to be integrated into places of
CGSPNs. A place of a CGSPN that has an integrated queue is called a queueing
place and consists of two components, the queue and a depository for tokens
which have completed their service at the queue. The behavior of the net is as
follows: tokens, when fired into a queueing place by any of its input transitions,
are inserted into the queue according to the queue’s scheduling strategy. Tokens
in the queue are not available for output transitions of the place. After completion
of its service, a token is immediately moved to the depository, where it becomes
available for output transitions of the place. This type of queueing place is called
timed queueing place. In addition to timed queueing places, QPNs also introduce
immediate queueing places, which allow pure scheduling aspects to be described.
Tokens in immediate queueing places can be viewed as being served immediately.
Scheduling in such places has priority over scheduling/service in timed queueing
places and firing of timed transitions. The rest of the net behaves like a normal
CGSPN. A formal definition of a QPN follows [1]:

Definition 1. A QPN is an 8-tuple
QPN = (P, T, C, I−, I+, M0, Q, W) where:

1. P = {p1, p2, ..., pn} is a finite and non-empty set of places,
2. T = {t1, t2, ..., tm} is a finite and non-empty set of transitions, P ∩ T = ∅,
3. C is a color function that assigns a finite and non-empty set of colors to

each place and a finite and non-empty set of modes to each transition.
4. I− and I+ are the backward and forward incidence functions defined on

P × T , such that
I−(p, t), I+(p, t) ∈ [C(t) → C(p)MS], ∀(p, t) ∈ P × T 1

5. M0 is a function defined on P describing the initial marking such that
M0(p) ∈ C(p)MS .

6. Q = (Q̃1, Q̃2, (q1, ..., q|P |)) where
– Q̃1 ⊆ P is the set of timed queueing places,
– Q̃2 ⊆ P is the set of immediate queueing places, Q̃1 ∩ Q̃2 = ∅ and
– qi denotes the description of a queue2 taking all colors of C(pi) into

consideration, if pi is a queueing place or equals the keyword ‘null’, if pi

is an ordinary place.
7. W = (W̃1, W̃2, (w1, ..., w|T |)) where

– W̃1 ⊆ T is the set of timed transitions,
– W̃2 ⊆ T is the set of immediate transitions,

W̃1 ∩ W̃2 = ∅, W̃1 ∪ W̃2 = T and
– wi ∈ [C(ti) 	−→ R

+] such that ∀c ∈ C(ti) :

1 The subscript MS denotes multisets. C(p)MS denotes the set of all finite multisets
of C(p).

2 In the most general definition of QPNs, queues are defined in a very generic way
allowing the specification of arbitrarily complex scheduling strategies taking into
account the state of both the queue and the depository of the queueing place [1]. In
QPME, we use conventional queues as defined in queueing network theory.

296 S. Kounev, S. Spinner, and P. Meier

wi(c) ∈ R
+ is interpreted as a rate of a negative exponential distribution

specifying the firing delay due to color c, if ti ∈ W̃1 or a firing weight
specifying the relative firing frequency due to color c, if ti ∈ W̃2.

For a more detailed introduction to the QPN modeling formalism, the reader is
referred to [1,3]. To illustrate the above definition, we present an example QPN
model of a simple Java EE system. The model was taken from [11] and is shown
in Figure 1.

������� 	
���� 	
����� 	
����

	
��������������

������

	���
����������

�
�

�
�

�
�

�
�

�
�

��������� �����

	
����������
�

�

� � � � � � �

!"�

�

!"�

!"� !"�
�
� �

#
#

�
� �

�
�

!"# !"#

�
�

Fig. 1. QPN Model of a Java EE System [11]

The system modeled is an e-business application running in a Java EE envi-
ronment consisting of a WebLogic Server (Java EE application server) hosting
the application components and a backend database server used for persisting
business data. In the following, we describe the places of the model:

Client Queueing place with IS scheduling strategy used to represent clients
sending requests to the system. Time spent at the queue of this place cor-
responds to the client think time, i.e., the service time of the queue is equal
to the average client think time.

WLS-CPU Queueing place with PS scheduling strategy used to represent the CPU
of the WebLogic Server (WLS).

DBS-CPU Queueing place with PS scheduling strategy used to represent the CPU
of the database server (DBS).

DBS-I/O Queueing place with FCFS scheduling strategy used to represent the
disk subsystem of the DBS.

WLS-Thread-Pool Ordinary place used to represent the thread pool of the WLS.
Each token in this place represents a WLS thread.

DB-Conn-Pool Ordinary place used to represent the database connection pool
of the WLS. Tokens in this place represent database connections to the DBS.

DBS-Process-Pool Ordinary place used to represent the process pool of the
DBS. Tokens in this place represent database processes.

QPME 2.0 - A Tool for Stochastic Modeling and Analysis 297

DBS-PQ Ordinary place used to hold incoming requests at the DBS while they
wait for a server process to be allocated to them.

The following types of tokens (token colors) are used in the model:

Token ’ri’ represents a request sent by a client for execution of a transaction
of class i. For each request class a separate token color is used (e.g., ’r1’,
’r2’, ’r3’,...). Tokens of these colors can be contained only in places Client,
WLS-CPU, DBS-PQ, DBS-CPU and DBS-I/O.

Token ’t’ represents a WLS thread. Tokens of this color can be contained only
in place WLS-Thread-Pool.

Token ’p’ represents a DBS process. Tokens of this color can be contained only
in place DBS-Process-Pool.

Token ’c’ represents a database connection to the DBS. Tokens of this color
can be contained only in place DB-Conn-Pool.

We now take a look at the life-cycle of a client request in our system model. Every
request (modeled by a token of color ’ri’ for some i) is initially at the queue of
place Client where it waits for a user-specified think time. After the think time
elapses, the request moves to the Client depository where it waits for a WLS
thread to be allocated to it before its processing can begin. Once a thread is
allocated (modeled by taking a token of color ’t’ from place WLS-Thread-Pool),
the request moves to the queue of place WLS-CPU, where it receives service from
the CPU of the WLS. It then moves to the depository of the place and waits for
a database connection to be allocated to it. The database connection (modeled
by token ’c’) is used to connect to the database and make any updates required
by the respective transaction. A request sent to the database server arrives at
place DBS-PQ (DBS Process Queue) where it waits for a server process (modeled
by token ’p’) to be allocated to it. Once this is done, the request receives service
first at the CPU and then at the disk subsystem of the database server. This
completes the processing of the request, which is then sent back to place Client
releasing the held DBS process, database connection and WLS thread.

3 QPE - Queueing Petri Net Editor

QPE (Queueing Petri net Editor), the first major component of QPME, provides
a graphical tool for building QPN models [8]. It offers a user-friendly interface
enabling the user to quickly and easily construct QPN models. QPE is based
on the Eclipse Rich Content Platform (RCP) and the Graphical Editing Frame-
work (GEF) [23]. The latter is an open source framework dedicated to providing
a rich, consistent graphical editing environment for applications on the Eclipse
platform. As a GEF application, QPE is written in pure Java and runs as a
standalone RCP application on all operating systems officially supported by the
Eclipse platform. This includes Windows, Linux, Solaris, HP-UX, IBM AIX and
Apple Mac OS among others, making QPE widely accessible. The only thing

298 S. Kounev, S. Spinner, and P. Meier

required is a Java Runtime Environment (JRE) 6.0. It is recommended to run
QPE on Windows since this is the platform it has been tested on.

Being a GEF application, QPE is based on the model-view-controller (MVC)
architecture. The model in our case is the QPN being defined, the views provide
graphical representations of the QPN, and finally the controller connects the
model with the views, managing the interactions among them. QPN models
created with QPE can be stored on disk as XML documents. QPE uses its
own XML schema based on the Petri Net Markup Language (PNML) [4] with
some changes and extensions to support the additional constructs available in
QPN models. Figure 2 shows the QPE main window which is comprised of four
views: Main Editor View, Outline View, Properties View and Console View. The
Main Editor View contains a Net Editor, Palette and Color Editor. The Net Editor
displays the graphical representation of the currently edited QPN, the Palette
displays the set of QPN elements that are used to build QPN models and the
Color Editor, shown in Figure 3, is used to define the token colors available for
use in the places of the QPN. The Properties View enables the user to edit the
properties of the currently selected element in the Net Editor. Finally, the Console
View is used to display output from QPE extensions and plug-ins.

A characterizing feature of QPE is that it allows token colors to be defined
globally for the whole QPN instead of on a per place basis. This feature was
motivated by the fact that in QPNs typically the same token color (type) is

Fig. 2. QPE Main Window

QPME 2.0 - A Tool for Stochastic Modeling and Analysis 299

Fig. 3. QPE Color Editor

used in multiple places. Instead of having to define the color multiple times, the
user can define it one time and then reference it in all places where it is used.
This saves time, makes the model definition more compact, and last but not
least, it makes the modeling process less error-prone since references to the same
token color are specified explicitly.

Another characterizing feature of QPE, not supported in standard QPN mod-
els [21], is the ability to have multiple queueing places configured to share the
same underlying physical queue3. In QPE, queues are defined centrally (similar
to token colors) and once defined they can be referenced from inside multiple
queueing places. This allows to use queueing places to represent software entities,
e.g., software components, which can then be mapped to different hardware re-
sources modeled as queues [21]. This feature of QPE, combined with the support
for hierarchical QPNs, allows to build multi-layered models of software architec-
tures similar to the way this is done in layered queueing networks, however,
with the advantage that QPNs enjoy all the benefits of Petri nets for modeling
synchronization aspects.

Figure 4 shows the Incidence Function Editor. The incidence function specifies
the behavior of the transition for each of its firing modes in terms of tokens
3 While the same effect can be achieved by using multiple subnet places mapped to a

nested QPN containing a single queueing place, this would require expanding tokens
that enter the nested QPN with a tag to keep track of their origin as explained in [2].

300 S. Kounev, S. Spinner, and P. Meier

Fig. 4. QPE Incidence Function Editor

destroyed and/or created in the places of the QPN. Once opened the Incidence
Function Editor displays the transition input places on the left, the transition
modes in the middle and the transition output places on the right. Each place
(input or output) is displayed as a rectangle containing a separate circle for each
token color allowed in the place. The user can create connections from token
colors of input places to modes or from modes to token colors of output places.
If a connection is created between a token color of a place and a mode, this means
that when the transition fires in this mode, tokens of the respective color are
removed from the place. Similarly, if a connection is created between a mode and
a token color of an output place, this means that when the transition fires in this
mode, tokens of the respective color are deposited in the place. Each connection
can be assigned a weight interpreted as the number of tokens removed/deposited
in the place when the transition fires in the respective mode.

Further details on the implementation of QPE can be found in [8, 24].

4 SimQPN - Simulator for Queueing Petri Nets

The second major component of QPME is SimQPN - a discrete-event simulation
engine specialized for QPNs. It is very light-weight and has been implemented
100% in Java to ensure portability and platform-independence. SimQPN can be
run either as Eclipse plugin in QPE or as a standalone Java application. Thus,

QPME 2.0 - A Tool for Stochastic Modeling and Analysis 301

even though QPE is limited to Eclipse-supported platforms, SimQPN can be
run on any platform on which Java SE 5.0 is available. This makes it possible
to design a model on one platform (e.g., Windows) using QPE and then analyze
it on another platform (e.g., Linux) using SimQPN. SimQPN configuration pa-
rameters are stored as metadata inside the XML file containing the QPN model.

SimQPN simulates QPNs using a sequential algorithm based on the event-
scheduling approach for simulation modeling. Being specialized for QPNs, it
simulates QPN models directly and has been designed to exploit the knowledge
of the structure and behavior of QPNs to improve the efficiency of the simulation.
Therefore, SimQPN provides much better performance than a general purpose
simulator would provide, both in terms of the speed of simulation and the quality
of output data provided.

SimQPN currently supports most, but not all of the QPN features that are
supported in QPE. The reason for not limiting QPE to only those features sup-
ported by SimQPN is that QPE is meant as a general purpose QPN editor and
as such the QPN features it offers should not be limited to any particular anal-
ysis method. SimQPN currently supports three different scheduling strategies
for queues inside queueing places: Processor-Sharing (PS), Infinite Server (IS)
and First-Come-First-Served (FCFS). A wide range of service time distributions
are supported including Beta, BreitWigner, ChiSquare, Gamma, Hyperbolic,
Exponential, ExponentialPower, Logarithmic, Normal, StudentT, Uniform and
VonMises as well as deterministic and empirical distributions. Empirical distri-
butions are supported in the following way. The user is expected to provide a
probability distribution function (PDF), specified as an array of positive real
numbers (histogram) read from an external text file. A cumulative distribution
function (CDF) is constructed from the PDF and inverted using a binary search
for the nearest bin boundary and a linear interpolation within the bin (resulting
in a constant density within each bin).

Timed transitions are currently not supported, however, in most cases a timed
transition can be approximated by a serial network consisting of an immediate
transition, a queueing place and a second immediate transition. The spectrum
of scheduling strategies and service time distributions supported by SimQPN
will be extended. Support for timed transitions and immediate queueing places
is also planned and will be included in a future release.

4.1 Probes and Data Collection Modes

SimQPN offers the ability to configure what data exactly to collect during the
simulation and what statistics to provide at the end of the run. This can be
specified on a per location basis where location is defined to have one of the
following five types:

1. Ordinary place.
2. Queue of a queueing place (considered from the perspective of the place).
3. Depository of a queueing place.
4. Queue (considered from the perspective of all places it is part of).
5. Probe.

302 S. Kounev, S. Spinner, and P. Meier

A probe is a tool to specify a region of interest for which data should be collected
during simulation. The region of a probe includes one or more places and is
defined by one start and one end place. The goal is to evaluate the time tokens
spend in the region when moving between its begin and end place. The probe
starts its measurements for each token entering its region at the start place and
updates the statistics when the token leaves at the end place. It can be specified
whether the measurements start when the token enters the start place or when
the token leaves it. The same can be specified for the end place. Each probe
references a subset of the colors defined in the QPN. A probe only collects data
for tokens of the referenced colors.

Currently, probes allow to gather statistics for the residence time of a token
in a region of interest. For example, in the model shown in Figure 1, a probe
can be used to measure the time spent at the database server, which consists
of places DBS-PQ, DBS-CPU and DBS-I/O. In this case, the probe starts at place
DBS-PQ (on entry) and ends at place DBS-I/O (on exit). For each transaction
of type i for which data should be collected, a reference to color ’ri’ is defined
in the probe. As a result, the user is provided with the mean residence time of
requests in the database server including the associated confidence interval and
distribution.

The probes are realized by attaching timestamps to individual tokens. In the
start place a probe adds the current simulation time as a timestamp to all tokens
of colors it is interested in. A token can carry timestamps from different probes.
Thus intersecting regions of several probes in a QPN are supported. Firing tran-
sitions collect all timestamps from input tokens and copy the timestamps to the
output tokens. For each output token only the timestamps of probes interested in
the token color are passed on. In some models, e.g. with a synchronous fork/join,
it is possible that a transition gets tokens with different timestamps from the
same probe. In this case, a warning is issued and only the minimal timestamp is
passed on. The other timestamps are discarded. In the end place of a probe, its
timestamp is removed and its statistics are updated.

For each location the user can choose between six modes of data collection
(called stats-levels). The higher the mode, the more information is collected
and the more statistics are provided. Since collecting data costs CPU time,
the more data is collected, the slower the simulation would progress. Therefore,
by configuring data collection modes, the user can speed up the simulation by
making sure that no time is wasted collecting unnecessary data. The six data
collection modes (stats-levels) are defined as follows:

Mode 0. In this mode no statistics are collected.
Mode 1. This mode considers only token throughput data, i.e., for each location

the token arrival and departure rates are estimated for each color.
Mode 2. This mode adds token population, token occupancy and queue uti-

lization data, i.e., for each location the following data is provided:
– Token occupancy (for locations of type 1 or 3): fraction of time in which

there is a token inside the location.
– Queue utilization (for locations of type 2 or 4): proportion of the queue’s

server resources used by tokens arriving through the respective location.

QPME 2.0 - A Tool for Stochastic Modeling and Analysis 303

– For each token color of the respective location:
• Minimum/maximum number of tokens observed in the location.
• Average number of tokens in the location.
• Token color occupancy: fraction of time in which there is a token of

the respective color inside the location.
Mode 3. This mode adds token residence time data, i.e., for each location the

following additional data is provided on a per-color basis:
– Minimum/maximum observed token residence time.
– Mean and standard deviation of observed token residence times.
– Estimated steady state mean token residence time.
– Confidence interval (c.i.) for the steady state mean token residence time

at a user-specified significance level.
Mode 4. This mode adds a histogram of observed token residence times.
Mode 5. This mode additionally dumps token residence times to a file for fur-

ther analysis.

Since probes currently only support residence time statistics, mode 1 and 2 do
not apply to them.

4.2 Steady State Analysis

SimQPN supports the following four methods for estimation of the steady state
mean residence times of tokens inside the various locations of the QPN:

1. Method of independent replications (replication/deletion approach).
2. Method of non-overlapping batch means (NOMB).
3. Spectral analysis.
4. Standardized time series.

We refer the reader to [16,19] for an introduction to these methods. All of them
can be used to provide point and interval estimates of the steady state mean
token residence time. Details on the way these methods were implemented in
SimQPN can be found in [12]. For users that would like to use different methods
for steady state analysis (for example ASAP [22]), SimQPN can be configured to
output observed token residence times to files (mode 5), which can then be used
as input to external analysis tools. SimQPN utilizes the Colt open source library
for high performance scientific and technical computing in Java, developed at
CERN [6]. In SimQPN, Colt is primarily used for random number generation
and, in particular, its implementation of the Mersenne Twister random number
generator is employed [17].

We have validated the analysis algorithms implemented in SimQPN by sub-
jecting them to a rigorous experimental analysis and evaluating the quality of
point and interval estimates [12]. In particular, the variability of point estimates
provided by SimQPN and the coverage of confidence intervals reported were
quantified. A number of different models of realistic size and complexity were
considered. Our analysis showed that data reported by SimQPN is very accurate

304 S. Kounev, S. Spinner, and P. Meier

and stable. Even for residence time, the metric with highest variation, the stan-
dard deviation of point estimates did not exceed 2.5% of the mean value. In all
cases, the estimated coverage of confidence intervals was less than 2% below the
nominal value (higher than 88% for 90% confidence intervals and higher than
93% for 95% confidence intervals). For FCFS queues, SimQPN also supports
indirect estimation of the steady state token residence times according to the
variance-reduction technique in [5].

SimQPN includes an implementation of the method of Welch for determining
the length of the initial transient (warm-up period). We have followed the rules
in [16] for choosing the number of replications, their length and the window
size. SimQPN allows the user to configure the first two parameters and then
automatically plots the moving averages for different window sizes. Simulation
experiments with SimQPN usually comprise two stages: stage 1 during which
the length of the initial transient is determined, and stage 2 during which the
steady-state behavior of the system is simulated and analyzed. Again, if the
user prefers to use another method for elimination of the initialization bias, this
can be achieved by dumping collected data to files (mode 4) and feeding it into
respective analysis tools.

4.3 Departure Disciplines

A novel feature of SimQPN is the introduction of the so-called departure dis-
ciplines. This is an extension of the QPN modeling formalism introduced to
address a common drawback of QPN models (and of Petri nets in general), i.e.,
tokens inside ordinary places and depositories are not distinguished in terms of
their order of arrival. Departure disciplines are defined for ordinary places or de-
positories and determine the order in which arriving tokens become available for
output transitions. We define two departure disciplines, Normal (used by default)
and First-In-First-Out (FIFO). The former implies that tokens become available
for output transitions immediately upon arrival just like in conventional QPN
models. The latter implies that tokens become available for output transitions
in the order of their arrival, i.e., a token can leave the place/depository only
after all tokens that have arrived before it have left, hence the term FIFO. For
an example of how this feature can be exploited and the benefits it provides we
refer the reader to [9]. An alternative approach to introduce token ordering in an
ordinary place is to replace the place with an immediate queueing place contain-
ing a FCFS queue. The generalized queue definition from [1] can be exploited to
define the scheduling strategy of the queue in such a way that tokens are served
immediately according to FCFS, but only if the depository is empty [3]. If there
is a token in the depository, all tokens are blocked in their current position until
the depository becomes free. However, the generalized queue definition from [1],
while theoretically powerful, is impractical to implement, so, in practice, it is
rarely used and queues in QPNs are usually treated as conventional queues from
queueing network theory.

QPME 2.0 - A Tool for Stochastic Modeling and Analysis 305

5 Processing and Visualization of Simulation Results

After a successful simulation run, SimQPN saves the results from the simulation
in an XML file with a .simqpn extension which is stored in the configured output
directory. In addition, a summary of the results in text format is printed on the
console and stored in a separate file with a .log extension.

QPE provides an advanced query engine for processing and visualization of
the simulation results. The query engine allows to define queries on the sim-
ulation results in order to filter, aggregate and visualize performance data for
multiple places, queues and colors of the QPN. The results from the queries can
be displayed in textual or graphical form. QPE provides two editors that can be
used as a front-end to the query engine: "Simple Query Editor" and "Advanced
Query Editor".

Fig. 5. Basic Query Editor

5.1 Simple Query Editor

The "Simple Query Editor", shown in Figure 5, is displayed when opening the
.simqpn file containing the results from the simulation. The editor displays the
collected statistics for the various places and queues of the QPN. Statistics are
reported on a per location basis where location is defined as in Sect. 4.1). The
five location types are denoted as follows:

306 S. Kounev, S. Spinner, and P. Meier

1. "place" - ordinary place.
2. "qplace:queue" - queue of a queueing place considered from the perspective

of the place.
3. "qplace:depository" - depository of a queueing place.
4. "queue" - queue considered from the perspective of all places it is part of.
5. "probe".

The statistics for the various locations are presented in two tables. The first
table contains the statistics for locations of type "place", "qplace:queue",
"qplace:depository" and "probe", while the second one contains the statistics for
locations of type "queue". Depending on the configured data collection modes
(see Sect. 4.1), the set of available performance metrics for the various locations
may vary.

By clicking on multiple locations while holding "Ctrl", the user can select a
set of locations and respective token colors. A right click on a selection opens the
context menu (see Figure 6) in which the user can choose which metric should
be visualized for the selected set of locations and token colors. After choosing
a metric, the user can select the form in which the results should be presented.
Currently, three options are available: "Pie Chart", "Bar Chart" and "Console
Output". Figure 7 shows an example of a pie chart and bar chart for the metric
mean token residence time.

The "Simple Query Editor" is intended for simple filtering and visualization of
the simulation results and does not provide any means to aggregate metrics over

Fig. 6. Context Menu in Basic Query Editor

QPME 2.0 - A Tool for Stochastic Modeling and Analysis 307

multiple locations and token colors. Queries involving aggregation are supported
by the "Advanced Query Editor".

5.2 Advanced Query Editor

The "Advanced Query Editor" is opened by clicking on the respective button
at the bottom of the "Simple Query Editor". Using this editor the user can
define complex queries on the simulation results involving both filtering and
aggregation of performance metrics from multiple places, probes and queues of
the QPN. An example of such a query is shown in Figure 8.

(a) Bar Chart (b) Pie Chart

Fig. 7. Example Diagrams

Fig. 8. Advanced Query Editor

308 S. Kounev, S. Spinner, and P. Meier

A query is defined by first selecting a set of locations and a set of colors using
the combo boxes and the +/- buttons at the top of the editor. The selected
locations and colors specify a filter on the data that should be considered as
part of the query. Using the table at the bottom of the editor, the user can select
the specific performance metrics of interest and how data should be aggregated
with respect to the considered locations and colors. Three options for aggregating
data are available:

– "For each" - no aggregation is applied and performance metrics are consid-
ered separately for each location/color.

– "Average" - the average over the selected locations/colors is computed.
– "Sum" - the sum over the selected locations/colors is computed.

Two "Aggregation" fields are available, the left one is applied to the set of
locations, while the right one is applied to the set of colors. Similarly, two

(a) For each - For each (b) For each - Aggregation

(c) Aggregation - For each (d) Aggregation - Aggregation

Fig. 9. Aggregation Scenarios

QPME 2.0 - A Tool for Stochastic Modeling and Analysis 309

"Visualization" fields are available, one applied to the set of locations, the other
one to the set of colors. QPE currently offers three visualization options: "Bar
Chart", "Pie Chart" and "Console Output".

Depending on the selected aggregation options, there are four possible scenar-
ios: a) no aggregation, b) aggregation over colors, c) aggregation over locations,
d) aggregation over both colors and locations. The four scenarios are depicted
in Figure 9 illustrating how performance metrics are aggregated and used to
produce a set of charts capturing the results from the respective query. Assum-
ing that the user has selected a set of locations p1, p2, ..., pm and a set of colors
c1, c2, ..., cn, a matrix is generated that contains the values of the selected per-
formance metric for each combination of location and color. Some of the cells
of the matrix could be empty (denoted in grey in Figure 9). This could happen
if the metric is not available in the configured data collection mode or if the
considered color is not defined for the respective location. The number of charts
generated depends on the selected aggregation options. In case no aggregation
is selected, m + n charts are generated. In the case of aggregation over the set
of colors or locations, one chart is generated. Finally, in the case of aggregation
over both colors and locations, the result of the query is a single value.

6 Ongoing and Future Work

As part of our ongoing and future work on QPME, enhancements along three
different dimensions are envisioned: i) user friendliness, ii) model expressiveness
and iii) model analysis methods. In the following, we outline the major enhance-
ments that have been planned.

Improve User Friendliness. Support for the following features will be added:
◦ Introduce modeling templates (e.g., for modeling common types of re-

sources and workloads) to facilitate model reuse.
◦ Introduce automated support for sensitivity analysis.

Improve Model Expressiveness. Support for the following features will be
added:
◦ Load-dependent service times (resource demands).
◦ Further scheduling strategies for queues, e.g., GPS, priority scheduling.
◦ Timed transitions.
◦ Transition priorities and inhibitor arcs.

Improve Model Analysis Methods. Support for the following features will
be added:
◦ Support for parallel/distributed simulation to take advantage of multi-

core processors.
◦ Support for analytical model solution techniques (structured analy-

sis techniques, product-form solution techniques, approximation tech-
niques).

◦ Further methods for determining the length of the simulation warm-up
period.

310 S. Kounev, S. Spinner, and P. Meier

7 Summary

In this paper, we presented QPME 2.0, our tool for modeling and analysis using
queueing Petri nets. QPME provides a user-friendly graphical interface enabling
the user to quickly and easily construct QPN models. It offers a highly opti-
mized simulation engine that can be used to analyze models of realistically-sized
systems. In addition, being implemented in Java, QPME runs on all major plat-
forms and is widely accessible. QPME provides a robust and powerful tool for
performance analysis making it possible to exploit the modeling power and ex-
pressiveness of queueing Petri nets to their full potential. The tool is available
free-of-charge for non-profit use and there are plans to make it open-source in
the near future. Further information can be found at the QPME homepage [20].

Acknowledgements

This work was funded by the German Research Foundation (DFG) under
grant No. KO 3445/6-1. We acknowledge the support of Frederik Zipp and
Ana Aleksieva from KIT.

References

1. Bause, F.: Queueing Petri Nets - A formalism for the combined qualitative and
quantitative analysis of systems. In: Proc. of 5th Intl. Workshop on Petri Nets and
Perf. Models, Toulouse, France, October 19-22 (1993)

2. Bause, F., Buchholz, P., Kemper, P.: Integrating Software and Hardware Perfor-
mance Models Using Hierarchical Queueing Petri Nets. In: Proc. of the 9. ITG / GI -
Fachtagung Messung, Modellierung und Bewertung von Rechen- und Kommunika-
tionssystemen, Freiberg, Germany (1997)

3. Bause, F., Kritzinger, F.: Stochastic Petri Nets - An Introduction to the Theory.
Vieweg Verlag (2002)

4. Billington, J., Christensen, S., van Hee, K., Kindler, E., Kummer, O., Petrucci,
L., Post, R., Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts,
Technology, and Tools. In: Proc. of 24th Intl. Conf. on Application and Theory of
Petri Nets, June 23-27, Eindhoven, Holland (2003)

5. Carson, J., Law, A.: Conservation Equations and Variance Reduction in Queueing
Simulations. Operations Research 28 (1980)

6. CERN - European Organisation for Nuclear Research. The Colt Distribution -
Open Source Libraries for High Performance Scientific and Technical Computing
in Java (2004), http://dsd.lbl.gov/~hoschek/colt/

7. Descartes Research Group (August 2010), http://www.descartes-research.net
8. Dutz, C.: QPE - A Graphical Editor for Modeling using Queueing Petri Nets.

Master thesis, Technische Universität Darmstadt (April 2006)
9. Kounev, S.: Performance Modeling and Evaluation of Distributed Component-

Based Systems using Queueing Petri Nets. IEEE Transactions on Software En-
gineering 32(7), 486–502 (2006)

10. Kounev, S.: QPME 2.0 User’s Guide. Descartes Research Group, Karlsruhe Insti-
tute of Technology (KIT) (August 2010)

QPME 2.0 - A Tool for Stochastic Modeling and Analysis 311

11. Kounev, S., Buchmann, A.: Performance Modelling of Distributed E-Business Ap-
plications using Queuing Petri Nets. In: Proc. of the 2003 IEEE Intl. Symposium on
Performance Analysis of Systems and Software, Austin, USA, March 20-22 (2003)

12. Kounev, S., Buchmann, A.: SimQPN - a tool and methodology for analyzing queue-
ing Petri net models by means of simulation. Performance Evaluation 63(4-5),
364–394 (2006)

13. Kounev, S., Dutz, C.: QPME - A Performance Modeling Tool Based on Queueing
Petri Nets. ACM SIGMETRICS Performance Evaluation Review (PER), Special
Issue on Tools for Computer Performance Modeling and Reliability Analysis 36(4),
46–51 (2009)

14. Kounev, S., Nou, R., Torres, J.: Autonomic QoS-Aware Resource Management in
Grid Computing using Online Performance Models. In: Proc. of 2nd Intl. Conf.
on Perf. Evaluation Methodologies and Tools - VALUETOOLS, Nantes, France,
October 23-25 (2007)

15. Kounev, S., Sachs, K., Bacon, J., Buchmann, A.: A Methodology for Perfor-
mance Modeling of Distributed Event-Based Systems. In: Proc. of 11th IEEE Intl.
Symp. on Object/Comp./Service-oriented Real-time Distr. Computing (ISORC),
Orlando, USA (May 2008)

16. Law, A., Kelton, D.W.: Simulation Modeling and Analysis, 3rd edn. Mc Graw Hill
Companies, New York (2000)

17. Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-Dimensionally Equidis-
tributed Uniform Pseudo-Random Number Generator. ACM Trans. on Modeling
and Comp. Simulation 8(1), 3–30 (1998)

18. Nou, R., Kounev, S., Julia, F., Torres, J.: Autonomic QoS control in enterprise
Grid environments using online simulation. Journal of Systems and Software 82(3),
486–502 (2009)

19. Pawlikowski, K.: Steady-State Simulation of Queueing Processes: A Survey of Prob-
lems and Solutions. ACM Computing Surveys 22(2), 123–170 (1990)

20. QPME Homepage (August 2010),
http://descartes.ipd.kit.edu/projects/qpme/

21. Sachs, K.: Performance Modeling and Benchmarking of Event-based Systems. PhD
thesis, TU Darmstadt (2010)

22. Steiger, N., Lada, E., Wilson, J., Joines, J., Alexopoulos, C., Goldsman, D.: ASAP3:
a batch means procedure for steady-state simulation analysis. ACM Transactions
on Modeling and Computer Simulation 15(1), 39–73 (2005)

23. The Eclipse Foundation. Graphical Editing Framework (GEF) (2006),
http://www.eclipse.org/gef/

24. Zipp, F.: Study Thesis : Filterung, Aggregation und Visualisierung von QPN-
Analyseergebnissen. Descartes Research Group, Karlsruhe Institute of Technology
(KIT) (May 2009) (in German)

A Logistics Workload for

Event Notification Middleware

Stefan Appel and Kai Sachs

TU Darmstadt, Germany
lastname@dvs.tu-darmstadt.de

Abstract. The event-based paradigm plays an important role to reflect
logistics processes in modern IT infrastructures. Events occur at many
stages, e.g., when goods tagged with RFID chips are scanned, when trans-
portation vehicles move or when sensors report environmental observa-
tions. These events have to be delivered to interested consumers by a
reliable notificationmiddleware,which is crucial for a successful implemen-
tation of event-based applications. Specified service levels have to be ful-
filled and to guarantee them, an exhaustive evaluation and analysis of the
underlying event notification middleware is required. This can be achieved
by applying well-defined test scenarios that allow us to analyze different
aspects of the middleware in an independent and representative way.

In this paper we present a realistic workload originating from a real
world scenario in the logistics domain. Our workload is suited to test event
notification middleware under realistic conditions; it stresses different as-
pects of the middleware while being scalable.

1 Introduction

Designing systems that follow the event-based paradigm are necessary to develop
new types of applications [6,3]. These application have to handle large amounts
of data originating from, e.g., sensor networks or the Internet of Things. The
devices collect a variety of data that is potentially interesting for different appli-
cations. For example, nowadays mobile phones are equipped with GPS sensors
and accelerometers allowing applications for monitoring the environment [9,15].
All these events, or more precisely, their representations, the event notifications,
need to be transported from the event producers to event consumers [6]. To
reach a high amount of flexibility throughout this communication process, event
producers and consumers need to be decoupled physically and logically. There-
fore, event notifications are routed from event producers to event consumers by
a notification middleware (also called notification service, see Figure 1). This un-
derlying notification middleware allows us to decouple producers and consumers
and is responsible for a reliable message transportation [10].

Driven by the research in ADiWa1 we identified the need for testing and an-
alyzing event notification middleware. Within ADiWa business processes adapt
and react dynamically to events.
1 Alliance Digital Product Flow (ADiWa). Funded by the German Federal Ministry

of Education and Research under grant 01IA08006.

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 312–324, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Logistics Workload for Event Notification Middleware 313

Fig. 1. Event-based System - Schematic Overview

In this paper, we present a novel workload based on a logistics scenario. Our
goal is to support exhaustive testing and analysis of a notification middleware by
stressing the system in different ways. The remainder of this paper is structured
as follows: we first present related work in the area of quality of service (QoS) and
workload characterization of event-based systems (EBS). In the next section we
discuss requirements a workload has to fullfil with a focus on the logistics domain.
We then introduce a logistics workload which models three interactions among
different entities and derive variable message rates to describe the workload. The
paper concludes with a short summary of our results and an outlook on future
research.

2 Related Work

Several test harnesses and benchmarks for different EBS were published, e.g.,
[8,5,7]. However, previous work in the area of benchmarking mostly focuses on
the design and development of test frameworks, but not on the definition of
workloads. An example for a well-defined workload scenario used for the indus-
try standard benchmark SPECjms2007 can be found in [13]. The application
scenario models seven business interactions of a supermarket’s supply chain
where RFID technology is used to track the flow of goods. SPECjms2007 in-
cludes some limited publish/subscribe communication as part of the workload,
but mainly focusing on point-to-point communication. The setup of consumer,
producer and subscriptions is static and does not change at runtime. A bench-
mark for publish/subscribe systems built on top of the SPECjms2007 workload is
jms2009-PS [12]. However, the implemented topology is static and subscriptions
do not change at runtime. For a comprehensive overview of existing benchmarks
and test harnesses we refer to [11]. An overview of relevant QoS metrics in the
context of distributed and decentralized publish-subscribe systems is provided
in [2]. Further, QoS of EBS is discussed in [1].

314 S. Appel and K. Sachs

3 Workload Requirements

The major goal of this paper is to provide a standard workload and metrics for
measuring and evaluating the performance and scalability of event notification
middleware in dynamic environments. To achieve this goal, a workload must be
designed to meet a number of important requirements. These requirements can
be grouped in the following five categories [11]:

1. Representativeness: It has to reflect the way middleware services are exer-
cised in real-life systems.

2. Comprehensiveness: All middleware features and services typically used in
applications have to be exercised. Features and services stressed should be
weighted according to their usage in real-life systems.

3. Focus: The emphasis has to be on the event notification middleware and the
impact of other components and services has to be minimized.

4. Configurability: The workload should be configurable to provide a base for
exhaustive system analysis.

5. Scalability: The workload must not have any inherent scalability limitations
and provide ways to scale the workload in a flexible manner.

Based on these categories, we specified a set of requirements, which differ in
major points from previous work. For example:

1. Independent Participants: Event producers and consumers should be logi-
cally decoupled.

2. Communication Plattform: An event service bus [4] should be used for com-
munication.

3. Dynamic Environment: Subscriptions, subscribers and message producers
should not be static and change frequently.

Keeping these requirements in mind we specified a novel workload for perfor-
mance analysis of event notification middleware based on a real-world scenario.

4 Logistics Workload

In this section we present a logistics workload to evaluate event notification mid-
dleware. The workload models three different interactions in a company. Figure 2
gives a schematic overview and shows the information flow as well as the flow of
goods. A logistics workload stresses different aspects of the middleware; especially
high fluctuation rates of event producers and consumers are characteristic.

In the following sections we first introduce event notification producers and
and interacting entities involved in our scenario. Three different interactions
between the entities are simulated to evaluate the event notification middleware.
For this we derive interaction rates and publish/subscribe parameters.

A Logistics Workload for Event Notification Middleware 315

Headquarter

Logistics Hubs

Transportation Fleet

Customer

Recipient

Information Flow:
Flow of Goods:

Fig. 2. Flow of Information and Goods

4.1 Event Notification Producers

In our scenario the event notifications are generated by different entities. Ei-
ther humans or three different types of devices, RFID Readers, On-board Units
or Environment Sensors, are involved in the event detection and notification
generation process:

Humans (H). To initiate a shipment process an order has to be triggered by
humans. The addresses of sender and recipient are submitted to and verified
by the company. Afterwards, the order is acknowledged and the transportation
process starts.

RFID Reader (RFID). We assume a scenario where RFID tags are attached
to all transported goods. These tags are read when goods enter and leave hubs
as well as when they are delivered.

On-board Units (OBU). Modern trucks are equipped with on-board units in-
cluding GPS receivers so that the vehicle position can be tracked. The update
interval is a tradeoff between accuracy and system utilization in terms of band-
width, CPU utilization and network traffic. For our scenario we assume an
update interval of three minutes.

Environment Sensors (ENV). To ensure that goods are transported appro-
priately, environment sensor can be installed to monitor, e.g., the temperature.
Customers are interested in whether the conditions were met throughout the
transportation process.

4.2 Interacting Entities

The above listed notification producers act in the context of entities. The
following parties participate in interactions modeling the message flow:

316 S. Appel and K. Sachs

1. Company Headquarters (HQ):
Messages generated by humans.

2. Logistics Hubs (LH):
Messages generated by RFID readers and environment sensors.

3. Customers (C):
Messages generated by humans.

4. Transportation Vehicles (V):
Messages generated by on-board units and environment sensors.

We consider that customers are performing monitoring and tracking of goods.
For better usability, we specified a fixed ratio between different entities based
upon data from a real-world company [14]. The base value for scaling the entities
is the number of hubs BASEL.

|Logistics Hubs| := BASEL

|Headquarters| := 1
|V ehicles| := 53 · BASEL∣∣∣∣

Customers

day

∣∣∣∣ := 1000 · BASEL

∣∣∣∣
Shipments

day

∣∣∣∣ := 8384 · BASEL

4.3 Interaction Patterns

Throughout the delivery process different interactions between the entities take
place. Each interaction involves messages, subscriptions and quality of service
requirements. We identify three interaction patterns for which we derive the
message rates depending on the number of hubs:

Interaction 1 (I1): Shipment Order and Proof of Delivery
Interaction 2 (I2): Real-time Shipment Tracking
Interaction 3 (I3): Freight Monitoring

While I1 is a common interaction in logistics companies, I2 and I3 are currently
popular trends, but are still in the early adopter phase. We expect the wide-
spread deployment of real-time tracking and freight monitoring in the future.

I1 - Shipment Order and Proof of Delivery. The most important inter-
action is receiving shipment orders from customers and providing a proof of
delivery (PoD) once the shipment is successfully delivered. The first event in
this interactions is a message originating from a customer requesting pick up of
goods (ShipmentOrder). Afterwards, shipment IDs are generated and the goods
are tagged with RFID labels. The order confirmation message containing ship-
ment IDs is then sent to the customer (OrderConfirmation). A hub close to
the customer is selected and a pickup order is sent (PickupOrder). As soon
as the goods leave the customer, the headquarters is responsible for tracking

A Logistics Workload for Event Notification Middleware 317

Table 1. Interactions

(a) Interaction 1 - Shipment Order and Proof of Delivery

Message Publisher Message Subscriber Type QoS

Customer Headquarters ShipmentOrder Reliable
Headquarters Customer OrderConfirmation Reliable
Headquarters Logistics Hub PickupOrder Reliable
Logistics Hub Headquarters ShipmentScan Reliable
...

...
...

...
Recipient Headquarters ProofOfDelivery Reliable

(b) Interaction 2 - Real-time Shipment Tracking

Message Publisher Message Subscriber Type QoS

Logistics Hub Customer ShipmentScan Reliable
Vehicle Customer PositionData Unreliable

(c) Interaction 3 - Freight Monitoring

Message Publisher Message Subscriber Type QoS

Vehicle Customer EnvironmentData Reliable
Logistics Hub Customer EnvironmentData Reliable

the goods and thus it receives messages whenever a shipment enters or leaves a
hub (ShipmentScan). Finally, a proof of delivery message is generated once the
shipment receives its final destination (ProofOfDelivery). With this message
the interaction ends. Table 1(a) shows the message exchanges within I1; during
the shipment process, the goods enter and leave several hubs. Thus multiple
ShipmentScan messages occur within this interaction.

In terms of QoS, I1 has to be reliable. This means that the delivery of all mes-
sages has to be ensured in case of failures. This requires persistence mechanisms
and recovery strategies integrated in the middleware.

I2 - Real-time Shipment Tracking. Real-time shipment tracking is an in-
teraction pattern involving multiple entities and advanced application logic.
It requires the knowledge of shipment IDs; based upon those IDs, it is pos-
sible to track the flow of goods. For tracking, the first step is subscribing to
ShipmentScan messages matching the IDs of the shipments to track to receive
messages originating from RFID readers. These events indicate whenever a ship-
ment leaves or enters a hub. As soon as the shipment enters a transportation
vehicle an additional subscription has to be issued to receive position events
from the respective transportation vehicle.

Table 1(b) shows the messages within I2. Besides ShipmentScan messages,
which need to be delivered reliably, PositionData messages are generated. The
latter do not require reliable delivery since positions updates are generated reg-
ularly and only the last position is of major interest.

I3 - Freight Monitoring. Some goods require special treatment throughout
the transportation process. For example, fresh products have to be kept below a

318 S. Appel and K. Sachs

Table 2. Messages per Shipment

Message Type Messages per Shipment
ShipmentOrder 1

OrderConfirmation 1
PickupOrder 1
ShipmentScan 4

ProofOfDelivery 1
PositionData 720

EnvironmentData 1440

certain temperature, other goods can only be transported in an upright position.
Thus, it is essential to monitor goods and to identify improper treatment. An
early detection is desirable to inform customers as fast as possible. This gives
the opportunity to react quickly while the goods are still on their way. Real-time
monitoring stresses the middleware and thus it is included in this workload. We
choose temperature monitoring since it is one characteristic application of freight
monitoring.

Table 1(c) shows the message exchange within I3. Opposed to PositionData
messages in I2, EnvironmentData messages require reliable transportation since
a violation of environmental conditions has to be reported.

4.4 Workload Generation

To simulate the message flow within a company, we derive rates at which mes-
sages enter the system. These rates are determined by the scenario design and
scale with the number of hubs, BASEL. Based upon the number of shipments per
day (cp. Section 4.2) the rates can be calculated. We further make the following
assumptions:

1. Time from pickup of goods to delivery is 3 days.
2. The goods are in transit 1.5 days (real transportation time), the goods are

processed at hubs the other 1.5 days.
3. Vehicles and environment sensors submit messages every 3 minutes.
4. The goods pass 2 hubs until the recipient is reached.
5. Shipment scans and transportation are uniformly distributed over time.
6. All shipments are tracked in real-time.
7. The environmental conditions of 30% of the shipments are monitored.

This results in multiple messages for each shipment as shown in Table 2. Position
and environment data messages are relevant for multiple shipments, thus the use
of publish/subscribe mechanisms is the delivery paradigm of choice.

To generate the workload, five components are necessary, one for each message
type. Each message driver component produces messages with certain rates,
consumes them and simulates join and leave of producers and consumers at
certain rates. Therefore, the message driver components have to ensure that
published messages are consumed according to the scenario specification.

A Logistics Workload for Event Notification Middleware 319

For describing the behavior of workload generating components (drivers) we
use the following terms:

– Active Entity: Producer/consumer which publishes/subscribes to messages.
– Messages min−1: Total number of published messages per minute.
– Parallel Subscriptions: Number of subscriptions in parallel.
– Parallel Publishers: Number of parallel message publishers.
– Subscription join/leave min−1: Rate at which subscribers leave, respectively

join the system.
– Publisher join/leave min−1: Rate at which publishers leave, respectively join

the system.
– Pub/Sub Factor: The number of recipients for each published message.

Table 3 lists all the message driver components along with the derived service
rates.

ShipmentOrder Driver. Shipment orders are generated by customers, the
destination is always the headquarters. Multiple customers issue shipment orders
in parallel and customers enter, respectively leave, the system constantly. Each
costumer only sends one shipment order. The pub/sub factor of one indicates
that each messages is delivered to one destination, the headquarters.

OrderConfirmation Driver. As for the shipment orders, order confirmations
are a one-to-one communication between headquarters and customers. Each cus-
tomer receives one order confirmation.

PickupOrder Driver. Pickup orders are messages from the headquarters to
hubs; each hub is supposed to receive the same number of messages. Since hubs
and the headquarters are static parts of the infrastructure, a change rate of zero
is assumed.

ShipmentScan Driver. Goods are scanned whenever they enter or leave hubs.
The resulting messages are part of I1 and I2 and thus consumed by the head-
quarters as well as by customers. Many customers are subscribed simultaneously
since transportation of goods lasts three days. Each message is consumed by the
headquarters and by one customer.

ProofOfDelivery Driver. The proof of delivery (PoD) denotes the arrival
of the shipment at the designated recipient. The final delivery is performed by
vehicles, whereas the driver triggers the generation of the PoD message. PoD
messages are consumed by customers as well as by the headquarters.

PositionData Driver. Position data is sent by all vehicles. Multiple shipments
are transported within one vehicle, this motivates the high pub/sub factor; each
position data message has to be received by around 474 customers. We assume
that all shipments within a vehicle belong to different customers. The total
number of subscriptions is determined by the goods being in move in parallel.

EnvironmentData Driver. We assume that 30 percent of all shipments re-
quire monitoring, e.g., of temperature. The monitoring is either performed within
the trucks or the hubs which then generate the environment data messages; the
messages are consumed by multiple customers.

320 S. Appel and K. Sachs

Table 3. Event Driver and their Characteristics

Type Characteristic Rate Active Entity

Messages min−1 5.82 ·BASEL C

Parallel Subscriptions 1 HQ

ShipmentOrder Parallel Publishers 8.43 ·BASEL C

Subscription join/leave min−1 0 HQ

Publisher join/leave min−1 0.69 ·BASEL C

Pub/Sub Factor 1 HQ

Messages min−1 5.82 ·BASEL HQ

Parallel Subscriptions 8.43 ·BASEL C

OrderConfirmation Parallel Publishers 1 HQ

Subscription join/leave min−1 0.69 ·BASEL C

Publisher join/leave min−1 0 HQ

Pub/Sub Factor 1 C

Messages min−1 5.82 ·BASEL HQ

Parallel Subscriptions BASEL LH

PickupOrder Parallel Publishers 1 HQ

Subscription join/leave min−1 0 C

Publisher join/leave min−1 0 HQ

Pub/Sub Factor 1 LH

Messages min−1 7.76 ·BASEL LH

Parallel Subscriptions 25152 ·BASEL C

Parallel Subscriptions 1 HQ

ShipmentScan Parallel Publishers BASEL LH

Subscription join/leave min−1 5.82 ·BASEL C

Subscription join/leave min−1 0 HQ

Publisher join/leave min−1 0 LH

Pub/Sub Factor 1 / 1 HQ / C

Messages min−1 5.82 ·BASEL V

Parallel Subscriptions 1 HQ

Parallel Subscriptions 25152 ·BASEL C

ProofOfDelivery Parallel Publishers 53 ·BASEL V

Subscription join/leave min−1 5.82 ·BASEL C

Subscription join/leave min−1 0 HQ

Publisher join/leave min−1 0 LH

Pub/Sub Factor 1 / 1 HQ / C

Messages min−1 8.83 ·BASEL V

Parallel Subscriptions 25152 ·BASEL C

PositionData Parallel Publishers 53 ·BASEL V

Subscription join/leave min−1 5.82 ·BASEL C

Publisher join/leave min−1 0 V

Pub/Sub Factor 474.74 C

Messages min−1 2.91 ·BASEL LH

Messages min−1 2.91 ·BASEL V

Parallel Subscriptions 7546 ·BASEL C

EnvironmentData Parallel Publisher BASEL LH

Parallel Publisher 53 ·BASEL V

Subscription join/leave min−1 1.75 ·BASEL C

Publisher join/leave min−1 1.75 ·BASEL V

Pub/Sub Factor 142.36 C

A Logistics Workload for Event Notification Middleware 321

1

10

100

1e+3

1e+4

1e+5

1e+6

1e+7

 0 5 10 15 20 25 30 35 40 45 50

N
o.

 S
ub

sc
rip

tio
ns

BASE

C
HQ
LH

(a) Subscriptions per Entity

1

10

100

1e+3

 0 5 10 15 20 25 30 35 40 45 50

M
sg

. p
er

 m
in

.

BASE

C
HQ
LH

V

(b) Published Messages per Entity

1

10

100

1e+3

1e+4

1e+5

1e+6

 0 5 10 15 20 25 30 35 40 45 50

M
sg

. p
er

 m
in

.

BASE

C
HQ
LH

(c) Received Messages per Entity

Fig. 3. Workload Characteristics

322 S. Appel and K. Sachs

4.5 Message Contents

All messages include timestamps and identification information of the message
producer. Shipment orders contain further address information necessary to de-
liver the goods. The order confirmation, as reply to the order message, contains the
shipment identification data necessary for tracking- and monitoring-subscriptions.
The pickup order contains the address data and, in addition, the ID of the hub be-
ing responsible for picking up goods. Shipment scans contain the ID of shipments
as well as identification information of the hub the RFID reader is installed at.
The proof of delivery contains recipient related data, e.g., the name of the person
acknowledging the reception of the shipment. Position data messages contain GPS
coordinates in addition to the mandatory vehicle identification data. Environment
data messages contain the environment monitoring values, e.g., temperature data,
as well as all shipment IDs of goods monitored at a specific hub or vehicle.

4.6 Workload Characeristics

To illustrate the scaling behavior of our workload, Figure 3 shows different char-
acteristics in terms of number of subscriptions and messages per entity. At this,
entities are seen as a whole, e.g., LH refers to all hubs, C refers to all customers
together.

Figure 3(a) shows the number of subscriptions per entity. While a constant
number of subscriptions is issued by HQ, the number of subscriptions issued from
C and LH grows linearly with an increasing base. Although the overall number of
subscriptions increases, the number of subscriptions per single entity, e.g., per
customer, remains constant. Characteristic of our workload is the large number
of subscriptions; many customers subscribe in order to receive information about
their shipments. With BASEL = 10 already more than 500.000 subscriptions of
customers exist.

In Figure 3(b) the number of published messages per minute is shown. Since
our workload scales with BASEL, the number of hubs, the amount of goods and
customers increases accordingly leading to a linear increase in the number of
messages. The same holds for the number of received messages as shown in
Figure 3(c). The combination of both figures illustrates the publish/subscribe
characteristics of our workload; while the number of published messages for
BASEL = 10 ranges from around 60 to 180 per entity, the number of received
messages for customers goes up to 50.000. This difference originates from the
nature of publish/subscribe communication. In our workload PositionData and
EnvironmentData messages are of interest for many different customers, e.g.,
position data is relevant for all parcels within one vehicle.

As for the number of subscriptions, the number of messages per single entity
remains constant except for the HQ entity. Since the number of HQ is constant,
an increasing number of LH and C leads to an increased message load of HQ and
thus stresses the system yet in another dimension.

A Logistics Workload for Event Notification Middleware 323

5 Conclusion and Outlook

In the ADiWa project we identified the middleware as a key component for
a successful adoption of event-based architecture in business environments. In
particular, a reliable event transportation mechanism is needed that is highly
scalable and performs according to the business needs. To ensure that a noti-
fication middleware provides the QoS specified in the service level agreements,
a detailed analysis and evaluation has to be performed. This can be achieved
by applying comprehensive workloads to compare various setups with respect to
different system dimensions in a realistic and independent way.

In this paper we introduced a novel workload for event notification services in
highly dynamic environments. We specified three realistic business interactions
(including event types and communication patterns) covering several processes
of the logistics domain. Characteristic of the logistics domain is a large number
of subscribers (e.g., customers) whereas each subscriber receives only a small
amount of messages (e.g., tracking information of specific shipments). Further,
subscribers and publishers join and leave the system constantly, i.e., the event
notification middleware has to orchestrate a highly dynamical environment. In
contrast to synthetic workloads often used to demonstrate the capabilities of
systems, our workload is specified independently from a particular event noti-
fication middleware or standards and allows us to evaluate different features of
a middleware in a realistic way. Furthermore, previous realistic workload defini-
tions targeting event-based systems assumed that publishers and consumers stay
connected to the middleware. While this assumption is true for many scenarios,
in this paper we considered scenarios with a dynamic changing environment with
event producers and consumers joining and leaving the system. With each join
or leave the event notification routing has to be adapted and potentially calcu-
lated subscription aggregates have to be revised. Handling this task efficiently is
a key point in providing a high level of service quality. Our workload is the first
considering these dynamic environments and allows evaluating system quality in
highly dynamic environments.

As part of the ADiWa project, we are working on a prototype implementation
of our workload and plan to analyze the service quality of the event notification
middleware.

References

1. Appel, S., Sachs, K., Buchmann, A.: Quality of service in event-based systems. In:
Proceedings of the 22. GI-Workshop on Foundations of Databases, GvD (2010)

2. Behnel, S., Fiege, L., Mühl, G.: On Quality-of-Service and Publish/Subscribe. In:
Proceedings of the 26th IEEE International Conference on Distributed Comput-
ing Systems Workshops: Fifth International Workshop on Distributed Event-based
Systems (DEBS 2006). IEEE Computer Society, Los Alamitos (2006)

3. Chandy, K.M., Schulte, W.: Event Processing: Designing IT Systems for Agile
Companies. Mcgraw-Hill Professional, New York (2009)

4. Chappell, D.: Enterprise Service Bus. O’Reilly, Sebastopol (2004)

324 S. Appel and K. Sachs

5. Geppert, A., Gatziu, S., Dittrich, K.R.: A Designer’s Benchmark for Active
Database Management Systems: oo7 Meets the BEAST. In: Sellis, T.K. (ed.) RIDS
1995. LNCS, vol. 985, Springer, Heidelberg (1995)

6. Hinze, A., Sachs, K., Buchmann, A.: Event-Based Applications and Enabling Tech-
nologies. In: Proceedings of the International Conference on Distributed Event-
Based Systems (DEBS 2009). ACM, New York (2009)

7. McCormick, B., Madden, L.: Open architecture publish subscribe benchmarking.
In: Proceedings of the OMG Real-Time and Embedded Systems Workshop (2005)

8. Mendes, M.R.N., Bizarro, P., Marques, P.: A framework for performance evaluation
of complex event processing systems. In: Proceedings of the Second International
Conference on Distributed Event-based Systems (DEBS 2008): Demonstration Ses-
sion. ACM, New York (2008)

9. Moore, J., Collins, T., Shrestha, S.: An open architecture for detecting earthquakes
using mobile devices, vol. 1, pp. 437–441 (April 2010)

10. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer-
Verlag New York, Inc., Secaucus (2006)

11. Sachs, K.: Performance Modeling and Benchmarking of Event-Based Systems. PhD
thesis, TU Darmstadt (2010)

12. Sachs, K., Appel, S., Kounev, S., Buchmann, A.: Benchmarking Publish/Subscribe-
based Messaging Systems. In: Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q., Sun,
L., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 6193, pp. 203–214. Springer,
Heidelberg (2010)

13. Sachs, K., Kounev, S., Bacon, J., Buchmann, A.: Performance evaluation of
message-oriented middleware using the SPECjms2007 benchmark. Performance
Evaluation 66(8), 410–434 (2009)

14. United Parcel Service of America, Inc. UPS facts website (August 2010),
http://www.ups.com/content/us/en/about/facts/worldwide.html

15. Varshney, U.: Pervasive healthcare and wireless health monitoring. Mob. Netw.
Appl. 12(2-3), 113–127 (2007)

K. Sachs, I. Petrov, and P. Guerrero (Eds.): Buchmann Festschrift, LNCS 6462, pp. 325–336, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Live Business Intelligence for the Real-Time Enterprise

Malu Castellanos, Umeshwar Dayal, and Meichun Hsu

Hewlett Packard Laboratories
Palo Alto, USA

{malu.castellanos,umeshwar.dayal,meichun.hsu}@hp.com

Abstract. We present our vision of a unified data management and analytics
platform, which we call “Live Business Intelligence” (LiveBI) that transforms
business intelligence from the traditional back-office, report-oriented platform,
to an enabler for delivering data-intensive, real-time analytics that transform
business operations in the modern enterprise. The LiveBI Platform leverages
data management technology and fuses it with new paradigms for analytics and
application development. We present the architecture of the platform and illus-
trate its value in a couple of applications.

1 Introduction

Many emerging application scenarios motivate the creation of a new business intelli-
gence (BI) platform and BI solutions that deliver quality insights and predictive ana-
lytics within actionable time windows (i.e., “at the speed of business”). Examples of
such scenarios include: situational awareness, sentiment analysis, environmental
sensing, and smart meters and smart appliances. These BI solutions will need to inte-
grate information of diverse data types from an increasing number of sources, handle
explosive growth in data volumes, and deliver shorter cycle times to quality decisions
as well as a higher degree of automation that, on the one hand, will require sophisti-
cated aggregated analysis, and on the other hand, must be personalized or individually
targeted.

We envision the existence of a unified data management and analytics platform,
which we call “Live Business Intelligence” (LiveBI), and which transforms BI from
the traditional back-office, report-oriented platform, to an enabler for delivering data-
intensive analytics that transform operational business processes. LiveBI platform
enables 3 business loops, strategic (targeted by traditional BI platforms), operational
(targeted by operational data store (ODS) platforms), and automation loops (targeted
by complex event processing (CEP) and main memory database platforms), to operate
from a unified framework. In doing so, it is capable of delivering complex analytics
over large volumes of data while reducing the latency to quality analytics results.

The LiveBI Platform leverages data management technology and fuses it with
new paradigms for analytics and application development. The platform supports
declarative models for computation and data management conducive to massively
parallel processing. It integrates multiple types of analytics that currently are sup-
ported by separately managed technologies: information extraction, information trans-
formation, analytics over static data, analytics over streaming data, and computation

326 M. Castellanos, U. Dayal, and M. Hsu

for visualization. Our approach to the LiveBI platform breaks down the stove-piped
barriers that have contributed to significant latency and cost.

In the BI software platform arena, LiveBI is closest to existing categories of ETL,
BI reporting, stream databases, rule or CEP engines, data flow engines, and data
warehouses, appliances, and accelerators. Our goal, however, is to create a unified
platform supporting an advanced model of analytic applications that enables automa-
tion in parallel deployment and data management. Table 1 summarizes LiveBI’s posi-
tion against a number of representative existing and emerging product categories.

Table 1. LiveBI positioning against representative product categories
Table 1.

Data mgmt -
scale

Analytics - scale Analytics–
event/data flow

Live Ana-
lytics + Data

MMgmt
SMP MPP SMP MPP pull push

DBMS x x
Analytics

Engine
x x

ETL x x
CEP

Stream
Processing

Engines

x x

Live BI x x x x x

In a nutshell, the vision of LiveBI is one of a unified system that removes barriers
across different dimensions:

1. Latency dimension: process both streaming and stored data.

2. Data dimension: process both structured and unstructured data.

3. Architectural dimension: data management and analytics are integrated in the
same platform; data is not pulled out of the database into an external analytics
engine.

In this paper we outline the architectural components of the LiveBI platform and some
of the main research problems that need to be addressed to enable the realization of
these components (section 2). We also describe some compelling applications of LiveBI
that clearly demonstrate its value and benefits over existing solutions (section 3).

2 LiveBI Architecture

The overall system architecture of the LiveBI Platform is shown in figure 1. The sys-
tem is layered on top of a massively parallel, shared nothing (cluster, Grid, or Cloud)
Infrastructure layer. Data from many different sources (streaming and batch-oriented,
structured and unstructured) is ingested into the system through the Information Cap-
ture and Access layer. Depending on the latency requirements, fast moving data

 Live Business Intelligence for the Real-Time Enterprise 327

streams can be piped directly to the Analytics Execution layer without loading it first
into a data warehouse, or the data can be captured in a repository for later processing,
or both. The Analytics Execution layer provides highly parallel execution of query
operations and analytic computations drawn from a library of smart operators. Appli-
cations are developed as data flow graphs, whose nodes are these smart operators. The
Optimization and Automation layer takes as input a specification of the data flow
graph representing the processing required by the application, and a set of perform-
ance and other quality objectives, and produces an optimal plan that can be executed
by the Analytics Execution layer. The results of the processing are delivered through
the Interaction and Service Integration layer, which also provides multi-modal inter-
faces for user interaction.

The rest of this section describes the functionality of these layers and some of the
research challenges we are addressing to realize this architecture.

2 LiveBI Architecture

Fig. 1. LiveBI Platform

2.1 Interaction and Service Integration Layer

OLTP,
Sensors,
data feeds,
web, social
network..,

Streaming, data & query pipeline, pa-

rallel processing, heterogeneous compute
engines

Highly concurrent & robust data algorithms
Main and solid state memory stores

Unified model of data and analytics

Massively Parallel, Fault Tolerant Cluster

Interaction and Service Integration Layer

Optimization and Automation Layer

Analytics Execution Layer

Information Capture and Access Layer

Leveraged Infrastructure Layer

Smart Operator Library

Fig. 1. LiveBI Platform

2.1 Interaction and Service Integration Layer

This layer consists of components and tools that enable the Live BI Platform to easily
capture, deliver, visualize, analyze, and act on information in multiple domains.

Visual analytics is an important mechanism for delivery of analytic results, espe-
cially in the context of Live BI. The challenges here are to enable real-time interactive
exploration and analysis of high dimensionality data streams, including unstructured
information. Research to solve these challenges addresses the following issues: (1)
Mechanisms for visualizing and interacting with streaming data. (2) Techniques for
integrating text analytics with visual methods. (3) Automation of the selection of
parameters for visualization, avoiding clutter and focusing the user’s attention on the
most interesting patterns through smart analytics (e.g., motif pattern detection, neigh-
borhood marking, alerts). (4) Tight integration of automated analytics (e.g., correla-
tion, similarity, clustering, and classification) with visual methods. (5) Incorporation

328 M. Castellanos, U. Dayal, and M. Hsu

of users’ expert domain knowledge to enable interactive and collaborative explora-
tion, discovery, and analysis.

Our approach is to deal with user interactions in the context of tasks that the user is
trying to accomplish, which may span locations (e.g. home, store, work etc.), multiple
touch points (e.g. online, discussions with friends and family, mobile etc.) and tools
(e.g. to-do lists, email, SMS, social networking websites, reminders etc.). Mobile de-
vices play an important role in determining the context associated with user interactions.
These devices can be used to obtain indicators of the current context or environment in
which the user is interacting with the service.

From an architectural point of view, this layer has a SOA based unifying architec-
ture that exposes the visual analytics and user interaction management capabilities as
composable services, deployed on the 'cloud' [1]. In addition, the visual analytics
techniques become “smart operators” to be included in the Smart Operator Library.

2.2 Optimization and Automation Layer

2.2.1 Specification, Design, and Optimization of Live BI Data Flows
Today, designing and implementing the information processing pipeline, starting from
the raw data sources all the way to delivering insights to the end user, is a challenging
task, requiring the implementation of ETL scripts, SQL queries, reports, and analytics
programs. In the LiveBI platform, automating and optimizing this process is based on a
framework (which we call the QoX framework [2]) that uses step-wise refinement to
produce detailed data flows starting from high-level conceptual requirements, and in-
corporates both functional (correctness) objectives and non-functional quality objectives
(e.g. freshness, recoverability, maintainability, performance). The framework allows
flows to be optimized according to the quality objectives, considering trade-offs among
objectives. In [3], we described this QoX framework for designing and optimizing ETL
flows. We intend to extend the framework to end-to-end LiveBI data flows.

Enabling this framework to automate the design and optimization of end-to-end
LiveBI data flows requires that the following research challenges be addressed:

1. Specification language and logical model: Define a declarative language for spe-
cifying the functional and quality objectives of the end-to-end flows, and define a
logical data flow model into which the business-level specifications can be trans-
lated and which serves as the input to the optimizer.

2. Design methodology and tools: Create tools that map from the high-level specifi-
cations to the logical model, preserving the functional and quality objectives.

3. QoX-driven optimization: The quality objectives define a multi-objective optimi-
zation problem, where trade-offs may need to be made among different objec-
tives. This requires to formulate cost models and optimization techniques that
enable these trade-offs to be made automatically, and result in optimized execu-
tion plans that can be passed to the Execution layer. In [4], we showed how to
optimize ETL flows for fault tolerance, latency, and performance.

4. Information extraction operators: Define a set of operators for extracting struc-
tured information from less-structured data sources, so that this information can
be integrated into the end-to-end data flows. These operators will also be in-
cluded in the Smart Operator Library and can be incorporated into the design and
optimization of data flows.

 Live Business Intelligence for the Real-Time Enterprise 329

2.2.2 Physical Design Tuning and Workload Management
One big challenge in LiveBI is to dramatically reduce the cost of ownership by mak-
ing its components easy to manage and tune. This requires tools to simplify or auto-
mate the many management tasks that today require highly skilled administrators to
set and tune thousands of configuration parameters. To this end, two aspects of the
problem need to be addressed:

The first one is to develop a physical design tool with the capability to handle LiveBI
mixed workloads and perform on-line tuning so as to dynamically adapt the physical
database design to continuously changing workloads. In addition, this tool should con-
sider new data structures and access methods (e.g., new kinds of indexes) and new
layouts (e.g., column stores) which are part of the execution layer of the LiveBI stack.
Finally, the impact of the QoX qualities of the dataflows of the specification and opti-
mization layer on physical design and tuning needs to be considered as well.

The workload management capabilities of the layer should go beyond management
of traditional data warehouses. First, it needs to manage more complex mixed work-
loads consisting of ETL jobs, queries, reports, analytics and stream processing tasks
(since these will all be running on the LiveBI platform). Second, it needs to manage
workloads that might be distributed over multiple engines (for purposes of load bal-
ancing, fault tolerance, or customer preference). Third, it should manage LiveBI
workloads running over virtual resources (deployed in the Cloud, for instance).

Managing a workload that consists of a diverse set of queries against large amounts
of complex data is an expensive, labor-intensive task. The scale, complexity and loose
coupling of a Live BI system add tremendous uncertainty to this picture. Workload
management thus becomes substantially difficult in the context of Live BI for exactly
the same reasons that it also becomes critically important. Automating policy man-
agement to provide a feedback-based mechanism that will automatically adjust work-
load management admission control, scheduling, and execution control policies in
response to dynamic changes to a running workload is of utmost importance [5].

2.3 Analytics Execution and Operator Library Layer

2.3.1 Data-Intensive Analytics Engine
LiveBI is a data-intensive and knowledge-rich computation pipeline from data
streams to high-level analytics results, in which the dynamically collected data and
the statically stored data are used in combination. The existing database query proc-
essing and user-defined function (UDF) technologies have several limitations in
handling unbounded stream data, applying a query to data chunks divided by time-
windows and supporting general graph-structured dataflow. These problems have
been gradually addressed by related work with the common characteristics of building
a stream processing system from scratch or providing a middleware layer on top of
the query engine, rather than extending the query engine directly.

The unified LiveBI engine extends the query engine while achieving high perform-
ance. A parallel database engine constitutes a suitable foundation to develop a
massively-parallel, scale-out LiveBI infrastructure. Two major issues need to be tack-
led [need reference: Qiming and Mei’s papers]:

330 M. Castellanos, U. Dayal, and M. Hsu

(1) Enabling query engine for stream processing. The general goal is to allow the
query engine to execute a single, long-standing, truly continuous query on the un-
bounded streaming data often divided by time-windows.

(2) Extending SQL to functional form-SQL (FF-SQL) based on a calculus of que-
ries, to declaratively express general graph-structured dataflows, and extend the query
engine to support the execution of FF-SQL queries. This includes: (a) developing a
query algebra by introducing functional forms on queries to express graph-structured
dataflow, and (b) developing a super query container to interact with the query exe-
cuter for carrying out data intensive computations in a query network.

2.3.2 High-Performance Analytic Operators
Not only does the LiveBI platform need to achieve effective integration of analytics
with data management, it also needs to exploit emerging parallel architecture to re-
duce time to solution. Parallel architectures consisting of commodity components
promise to provide high performance at a much lower cost. For example, Google’s
MapReduce is built on the principle of large-scale low-cost cluster computing. Paral-
lel co-processors, such as Intel’s Larrabee processors and the OpenCL effort, and
Nvidia’s CUDA-enabled general purpose graphics processors (GPGPUs), also have
great potential. The goal here is to develop high-performance implementations of core
analytic operators in the context of emerging parallel architecture.

We argue that memory utilization is a crucial factor in data intensive analytics. We
propose to refine memory utilization across multiple levels - cache, memory, disks,
and distributed memory, and use it to devise data movement algorithms that optimize
performance of very large (both in terms of data set size and in non-linear time com-
putation) analytical computations. Research should address the following: (1) Defini-
tion of the new concept of memory utilization. (2) Selection of a suite of operators.
(3) Design of algorithms for the suite of operators to achieve high performance and
memory utilization. (4) Application of the principle to high performance implementa-
tion of core analytic operators.

2.3.3 Multi-dimensional and Multi-level Streaming Analytic Operators
Enterprises are starting to actively monitor data streams and need to react quickly to
unfolding events. For example, detecting the cause of a power outage in a smart grid
can be implemented as a continuously running OLAP aggregation of the power
consumption at all different levels of the grid. Examples of the problems that are
important to these new applications include: (a) continuous OLAP queries (Skyline,
Iceberg, Pivot, Top k, etc); (b) multi-level, multi-dimensional sequence and pattern
detection; and (c) multi-level, multi-dimensional learning (outlier detection, cluster-
ing, association rules, etc).

The Smart Operator layer in the LiveBI includes new operators that are impossible
or extremely expensive to realize today. These operators will, in turn, enable a whole
new class of applications. In the context of LiveBI applications, it is crucial to have
streaming versions of the operators and analytic tasks, where availability of data is a
function of time, and the analytic results are refined continuously over time. These
operators should be parallelizable and should scale up (and out) along with the LiveBI
environment, and they should support seamless time windows over streaming and
historical data [6, 7].

 Live Business Intelligence for the Real-Time Enterprise 331

2.4 Information Capture and Access Layer

2.4.1 High-Bandwidth Information Capture and Robust Query Processing
Some streaming applications require that input data, intermediate data, or output items
be captured in a persistent store yet be made available for query & analysis with
minimal or no delay. This problem is very similar to the old tension in data ware-
houses between high load bandwidth and query processing performance – for high
load bandwidth, one must avoid indexes and other auxiliary data structures; for high
performance query processing, a database must provide indexes, histograms (or
equivalent synopsis information), materialized views, etc.

Multiple traditional indexes permit optimal query performance at the expense of
rather poor load performance. Heaps without indexes permit load at hardware write
bandwidth but lead to poor query performance, in particular for highly selective que-
ries. Partitioned B-trees combine high load bandwidth and high query performance
but only at the expense of intermediate operations that reorganize and optimize the B-
tree indexes. Thus, the load bandwidth that can be sustained over a long period is less
than the ideal load bandwidth by a small factor.

LiveBI requires a technique that combines high information capture bandwidth
with high query processing performance immediately after new information is com-
mitted to the data store. This technique will enable the following: a) capture and index
new information at a small fraction of hardware bandwidth (e.g., ¼ of disk write
bandwidth), b) perform insertions and deletions (roll-in and roll-out) at this high
bandwidth, c) proceed with information capture and query processing concurrently,
each at half of their maximal (stand-alone) bandwidth, and d) sustain such high band-
widths indefinitely as long as storage space remains.

Information capture should pair with robust query and analytics processing. Robust
processing reduces total cost of ownership and the risk of poor performance, system
overload, and associated costs. The goal is to enhance robustness of complex ana-
lytics processing in addition to query processing. The research involves developing
algorithms that measurably improve robustness of the system.

2.4.2 Column Store
The main advantages of a columnar data layout are: (a) reading just the subset of
columns relevant to any given query, (b) higher compression rates for any given col-
umn, as the values of a single column exhibit less entropy than a set of values from
different columns, and (c) the ability to implement several code optimizations given
that operators operate on a vector of packed values belonging to the same column [8].

All current column-stores have opted for developing database software from
scratch, instead of modifying existing row-store systems. While the performance of a
column-store is highly desirable in a Live BI platform, where a large fraction of ana-
lytic tasks are powered by selecting columns in data sets, the rich feature set of tradi-
tional row-store database systems is indispensable for the rest of the tasks supported
by the Live BI platform. Therefore, our BI platform would benefit the most by incor-
porating a row-store database system that can also reap the performance benefits of
columnar data orientation. To this end, research aims at developing a set of techniques
and algorithms to support column-store functionality inside a row-store with a mini-
mal set of changes in the row-store code base.

332 M. Castellanos, U. Dayal, and M. Hsu

3 Applications

In this section, we describe two representative LiveBI applications that we are devel-
oping. These applications exercise different aspects of the LiveBI architecture shown
in Figure 1. The first application, Situational Awareness, illustrates the integration of
insights gleaned from unstructured and structured data, and deals with both streaming
and stored data. The second application, Live Operational Intelligence, illustrates the
application of scalable analytics to a combination of time-series and event steam data
and stored historical data to derive insights for improving business operations.

3.1 Situational Awareness

In today’s fast paced and competitive economy, it is increasingly important for com-
panies to become aware of events occurring in the world that can affect their business.
We call this situational awareness and correspond to what [9] calls situational busi-
ness intelligence. It is an application of LiveBI where the goal is to provide real-time
(or better said, right-time) actionable insight to support decision making in business
operations. For instance, when a natural disaster occurs in some part of the world, it is
important for a manufacturing company to know which contracts exist with suppliers
located in the affected region so that it can take appropriate actions to minimize the
effect on its business operations [10, 11]. As another example, for the same manufac-
turing company, it is important to know what customers are saying (i.e., what is their
sentiment) about its new products or its competitors’ products so that it can intervene
in blog discussions or provide immediate feedback to the development or support
teams. An important requirement of situational aware applications is to provide timely
insight into these situations so that appropriate actions can be taken.

In general terms, situational awareness consists of two phases. In the first phase
(Extraction) facts are extracted from different data sources [12]; and in the second
phase (Correlation) these facts are correlated to detect potentially relevant situations.
Then, queries from the end users (ad-hoc queries) and from BI applications (prede-
fined queries) can be formulated over the extracted and correlated information to get
insight into these situations. A simple example of a situational awareness query could
be: “give me the names of the products in product line Laptops that are receiving
greater than 2:1 ratio of negative to positive comments on social media web sites”. A
BI application could include this kind of query to alert the marketing manager for this
product line, together with links to the actual reviews. A more sophisticated query
could be “give me the aggregated value of the contracts on deals greater than 1 mil-
lion dollars that exist with suppliers in any region affected by a natural disaster”. A
BI application including such a query could alert a business executive with the infor-
mation of the natural disaster, together with the contract IDs and contact information
of the suppliers in the affected region.

In the extraction phase, relevant information can come from any kind of data
source: stored or streaming, structured or unstructured data, and internal or external to
the organization. In general, stored data sources are updated over time, and for our
purposes, they can be viewed as slow data streams. In the contracts example, the slow
stream would be the internal contracts collection (where new contracts come in at a
relatively slow pace) and the fast stream would be news feeds like the New York

 Live Business Intelligence for the Real-Time Enterprise 333

Times RSS feeds that contain news about world events. In the sentiment analysis
example, the slow stream would be the IT news on new products and the fast stream
could be tweets and blogs.

Once relevant information has been extracted from the data sources, correlations
are detected to identify relevant situations. One data stream (e.g., New York Times
RSS feeds) contains interesting events, and the other contains information about busi-
ness entities (e.g., suppliers, products) that can be affected by the events. By correlat-
ing them, we can identify which entities are potentially affected by the events. Notice
that doing this task manually is infeasible since there is so much information in both
streams that it would be impossible to keep track of all the potentially relevant events
and all the entities that can be affected by them. LiveBI addresses this problem and
reduces the time and effort to develop situational awareness applications (where data
flows integrate structured, unstructured, slow and fast streams) and execute them
(extracting, transforming and correlating the streams) while satisfying different qual-
ity and performance objectives. Four of the main components of the LiveBI platform
are essential here:

a) An application development interface which allows situational aware applications
to be expressed declaratively as data flow graphs. Figure 2 illustrates a simple data
flow for sentiment analysis to illustrate this concept.

b) A set of smart operators to perform different functions required to detect poten-
tially relevant situations. These functions include: text mining operations (for extract-
ing structured data such as events and entities from text [12], cleansing extracted data,
mining customer opinions, classifying documents, and so on); and streaming correla-
tion operations to identify which events affect which business entities. Any of these
operations, together with SQL query operations, can be included in the data flow
graphs to create a situational awareness application.

c) A QoX-driven optimizer.that takes the data flow graph specification of the applica-
tion and generates an optimal execution plan that satisfies different quality objectives
specified by the user. These quality objectives may include: performance (e.g., mini-
mum number of situations detected per minute), freshness (e.g., time elapsed from an
event being reported to the time it is detected as a relevant situation), accuracy (e.g.,
at least 80% of true relevant situations detected).

d) An execution engine that executes the plan produced by the optimizer.

Logical Data Flow:

Review Stream: Amazon

IT News Stream: CNET

PoS Tagger Discriminant Analyzer Sentiments to
Attributes Association

Keyword Based Entity
Recognizers
(Products)

Concept Vector
Mapper

Hierarchical
Similarity-based Join

on Products

Sentiment Word
Extraction

Concept Vector
Mapper

Fig. 2. Sentiment Analysis Data Flow

334 M. Castellanos, U. Dayal, and M. Hsu

For situational-aware applications, the main data flow can be separated into two
primary components: information extraction (IE) where the structured or unstructured
data sources are transformed into concept vectors, and hybrid query processing where
these vectors are correlated. The analysis challenge in situational awareness is to
query both stored and streaming data. These queries could involve standard SPJ
(Select, Project, Join), roll-ups and correlations. Computing correlations is a critical
operation for situational awareness. Although correlations can be expressed in terms
of joins, performing correlation via exact keyword matching or via equi-joins is
overly restrictive in the context of situational awareness. A new operator, the hierar-
chical-based similarity join (or correlation) has been defined for this purpose [10, 13].
The basic idea is that of using the extracted information as features and extending
them along predefined hierarchies. The similarity is computed in terms of hierarchical
neighbors using fast streaming data structures called Hierarchical Neighborhood
Trees (HNT). Based on HNT, a scale based neighborhood relationship can be speci-
fied which measures the level in the HNT tree of the closest common ancestor. The
hierarchical neighborhoods are critical to finding correlations between the two
streams (e.g., the contracts and the news items) [10, 13]. For example, assume a con-
tract doesn’t mention Mexico by name but is negotiated in Mexican pesos, and a news
article talks about a hurricane in the Gulf of Mexico. The peso belongs to a hierarchy
where one of its ancestors is Mexico, and similarly Gulf of Mexico belongs to a hier-
archy that also contains Mexico as an ancestor. In this case, the contract and the news
article are neighbors at the level of Mexico. As a result we not only learn that these
are neighbors but also that they are related through “Mexico”.

3.2 Live Operations Intelligence

Business process complexity is growing at an exponential rate. A breakdown in the
operational management of these complex business processes can have catastrophic
results. As sensor technology develops, enterprises are now increasingly able to place
sensors and measure different aspects of their business processes. Managing and ana-
lyzing all this sensor and event data is a big challenge for human operators. The use of
live BI for operations intelligence (we call this Live Operations Intelligence) can
result in high efficiency and in being able to use business operations data for true
competitive advantage.

Examples of domains that can benefit from operations intelligence solutions in-
clude: Oil and Gas Drilling and Production, IT Operations Management, Healthcare
Operations, Smart Transportation, Smart Grid, and Public Safety, amongst others. For
instance, in an oil production scenario, there may be hundreds (or even thousands) of
sensors deployed at various points in the well to monitor temperatures, pressures,
fluid flow rates, etc. In addition, there are many operational events (equipment main-
tenance, operational actions such as turning on valves, weather related events, etc.)
that can affect the outcomes of the process. The objective of Live Operations Intelli-
gence is to monitor these data streams, detect or even predict situations that may
cause operational problems (e.g., production losses), diagnose such situations, and
recommend corrective or preventive actions that help to avert or minimize the impact
of problems on the operational process.

 Live Business Intelligence for the Real-Time Enterprise 335

Figure 3 shows a general data flow for such Live Operations Intelligence applica-
tions. Streaming time-series data from sensors or event sequence data from opera-
tional logs is analyzed in real-time to detect patterns or events of interest. These might
be anomalies in operational parameters, sudden changes in value of some variable,
rapid fluctuations in value, or some other domain-dependent patterns. This phase of
processing converts raw time-series data or low level event sequence data into
streams of patterns or meaningful events. These higher level events are then subject to
further analysis to detect complex events, discover correlations, perform diagnostics
and root cause analyses, and predict events that are likely to occur in the future. The
models that drive these analytic operations are typically learnt from historical data.
For instance, we might mine historical event data to identify frequently occurring
patterns (or motifs) and learn rules for detecting such patterns. These rules are then
installed in the stream processing path of the data flow shown in Figure N to detect
occurrences of the patterns in real time. Analogously, we build diagnostic and predic-
tion models by mining historical data, and apply these models in real-time to the event
streams. Finally, since the operational processes being monitored and analyzed
typically exist in physical environments that change over time, we have to apply con-
tinuous learning techniques to adapt the models as the process changes.

Fig. 3. Live Operations Intelligence Data Flow

4 Conclusions

We have presented our vision of Live BI, a unified data and analytics platform that
aims to deliver quality insights and predictive analytics within actionable time win-
dows (i.e., “at the speed of business”). It integrates data-flow and streaming analytics
with large scale data management, exploits massively parallel processing, and prom-
ises to significantly reduce latency and cost in large scale business intelligence. The
value of such a platform has been illustrated with two concrete applications.

Acknowledgement. The authors wish to thank the researchers who have contributed to
the Live BI research: Qiming Chen, Mohamed Dekhil, Goetz Graefe, Chetan Gupta,
Ming Hao, Jhilmil Jain, Harumi Kuno, Choudur Lakshminarayan, Abhay Mehta, Alkis
Simitsis, Krishna Viswanathan, Janet Wiener, Song Wang, Kevin Wilkinson, Ren Wu,
and Bin Zhang.

336 M. Castellanos, U. Dayal, and M. Hsu

References

1. Eidt, E., Salle, M., Wallikci, J.: Cloud Ecosystems: Architectural Principles and Prefer-
ences. Whitepaper (June 2009)

2. Dayal, U., Castellanos, M., Simitsis, A., Wilkinson, K.: Data integration flows for business
intelligence. In: EDBT 2009: Proceedings of the 12th International Conference on Extend-
ing Database Technology: Advances in Database Technology, Saint Petersburg, Russia,
vol. 360, pp. 1–11 (March 2009)

3. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: QoX-driven ETL design: reducing
the cost of ETL consulting engagements. In: SIGMOD 2009: Proceedings of the 35th
SIGMOD International Conference on Management of Data, Providence, Rhode Island,
USA, pp. 953–960 (June 2009)

4. Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimizing ETL Work-flows for
Fault-Tolerance. In: ICDE 2010: Proceedings of the 26th IEEE International Conference
on Data Engineering, Los Angeles, USA (March 2010)

5. Stefan Krompass, S., Dayal, U., Kuno, H., Kemper, A.: Dynamic Workload Management
for Very Large Data Warehouses: Juggling Feathers and Bowling Balls. In: VLDB 2007:
Proceedings of the 33rd International Conference on Very Large Databases, Vienna,
Austria, pp. 1105–1115 (September 2007)

6. Golab, L., Johnson, T., Seidel, J.S., Shkapenyuk, V.: Stream warehousing with DataDepot.
In: SIGMOD 2009, Providence, USA, pp. 847–854 (June 2009)

7. Magdalena, B., YongChul, K., Nathan, K., Dennis, L.: Moirae: History-Enhanced Moni-
toring. In: CIDR 2007: Third Biennial Conference on Innovative Data Systems Research,
Asilomar, USA, pp. 375–386 (January 2007)

8. Abadi, D.J., Boncz, P.A., Harizopoulos, S.: Column-oriented Database Systems. In: VLDB
2009: Proceedings of the 35th International Conference on Very Large Databases, Lyon,
France (August 2009)

9. Loeser, A., Hueske, F., Markl, V.: Situational Business Intelligence. In: BIRTE 2009: Pro-
ceeding of the 2nd International Workshop on Real-Time Business Intelligence at VLDB
2009, Auckland, New Zealand. LNBIP, vol. 27, Springer, Heidelberg (2008)

10. Castellanos, M., Gupta, C., Wang, S., Dayal, U.: Leveraging Web Streams for Contractual
Situational Awareness in Operational BI. In: BEWEB 2010: Proceedings of the 1st Inter-
national Workshop on Business Intelligence for the Web at EDBT 2010, Lausanne,
Switzerland (March 2010)

11. Castellanos, M., Dayal, U.: FACTS: An Approach to Unearth Legacy Contracts. In: WEB
2004: Proceedings of the 1st International Workshop on Electronic Contracting, San
Diego, USA (July 2004)

12. Sarawagi, S.: Information Extraction. Foundations and Trends in Databases 1(3), 261–377
(2008)

13. Castellanos, M., Wang, S., Dayal, U., Gupta, C.: SIE-OBI: A Streaming Information Ex-
traction Platform for Operational Business Intelligence. In: SIGMOD 2010, Indianapolis,
USA (June 2010)

Author Index

Appel, Stefan 312

Bacon, Jean 108

Castellanos, Malu 325
Chandy, K. Mani 78

Dayal, Umeshwar 325

Effelsberg, Wolfgang 209
Etzion, Opher 85
Evans, David 108

Floerkemeier, Christian 242
Frischbier, Sebastian 57

Ghaisas, S. 159
Graff, Daniel 124
Gross, Christian 209
Guerrero, Pablo E. 281

Härder, Theo 1
Herzog, Arthur 281
Hinze, Annika 141
Hsu, Meichun 325

Jacobi, Daniel 281

Karastoyanova, Dimka 175
Karmakar, G. 159
Kemme, Bettina 260
Kounev, Samuel 293
Kovacevic, Alexandra 209
Kudraß, Thomas 44

Lehn, Max 209
Leng, Christof 230

Mathis, Christian 1
Mattern, Friedemann 242
Meier, Philipp 293
Moody, Ken 108
Mühl, Gero 124

Nawaz, Khalid 281

Özsu, M. Tamer 20

Parzyjegla, Helge 124
Petrov, Ilia 57, 281

Ramamritham, K. 159
Richling, Jan 124
Rinck, Michael 141

Sachs, Kai 312
Saller, Karsten 209
Schröter, Arnd 124
Schwiderski-Grosche, Scarlet 108
Seeger, Christian 260, 281
Shenai, D. 159
Spinner, Simon 293
Steinmetz, Ralf 209
Stingl, Dominik 209
Streader, David 141

Tao, Yingying 20
Terpstra, Wesley W. 230
Tirodkar, S. 159
Triebel, Tonio 209

Van Laerhoven, Kristof 281

Weikum, Gerhard 195

Zolotorvesky, Nir 85

	Cover
	Lecture Notes in Computer Science 6462
	From Active DataManagement toEvent-Based Systemsand More
	ISBN-13 9783642172250
	Alejandro Buchmann
	Preface
	Joint Celebration of the 60th Birthday ofAlejandro P. Buchmann, Sorin A. Huss, andChristoph Waltheron November 19th, 2010
	Laudation for Alejandro Buchmann
	Table of Contents

	Data Management, Streams and XML
	Key Concepts for Native XML Processing
	Motivation
	Node Labeling
	Desired Functionality
	DBMS-Adequate Labeling Schemes
	Implementation of Node Labels

	Storing Documents
	Desiderata
	Classification of Approaches
	Node-Oriented Document Store
	Path-Oriented Document Store

	Indexing XML Documents
	Desiderata
	A Minimal Indexing Scheme

	Implementing Path Processing Operators
	Twig Matching
	Desiderata for Twig Matching Algorithms
	Implementing the Twig Matching Operator

	Conclusions
	References

	Efficient Decision Tree Re-alignment for Clustering Time-Changing Data Streams
	Introduction
	Motivation
	Summary of Contributions

	Related Work
	Detecting Distribution Changes
	Synopsis Design
	Change Detection
	Determining Windows Size
	Complexity Analysis

	Decision Tree Re-alignment
	Assigning Weight to Clusters
	Assigning Weight to Decision Tree
	Finding Optimal Weighted Decision Tree
	Realigning Decision Tree

	Pruning Decision Tree
	Experiments
	Change Detection Evaluation
	Varying Distance Threshold and Sliding Window Interval
	Efficiency Comparison of Re-aligned and Original Tree
	Performance Comparison of Optimal and Sub-optimal Tree Re-alignment Strategies
	Pruning Heuristics Evaluation
	Running on Real Streams

	Conclusion
	References

	REaltime ACtive Heterogeneous Systems - Where Did We Reach After REACH?
	The Early History before REACH
	The REACH Project – REaltime ACtive and Heterogeneous
	Real-Time Databases
	Active Databases
	Integrating Heterogeneous Databases

	After REACH: Concepts in Distributed Heterogeneous Systems
	Integration Technologies
	Active Capabilities
	Global Integrity Control in Heterogeneous Systems

	Conclusions: Where Did We Reach?
	Outlook
	References

	Aspects of Data-Intensive Cloud Computing
	Introduction
	What Cloud Computing Offers Today
	What Is Cloud Computing?
	Comparing Cloud Computing to Related Paradigms
	Technological and Economic Enablers
	Resulting Business Models and Pricing
	Current Commercial Solutions for Public Clouds
	Technological Issues to Think about

	Requirements of Data-Intensive Applications
	Types of Data-Intensive Applications
	Characteristics Regarding Data

	Discussion: Cloud vs. On-Premise
	Related Work
	Summary and Conclusions
	References

	Event Processing
	A Web That Senses and Responds
	Introduction
	Demand for Sense and Respond Applications
	An Architecture for an S&R Web

	Spatial Perspectives in Event Processing
	Introduction
	Motivation
	Structure of This Paper

	Background
	Introduction to Event Processing
	Geo Spatial Computing
	Temporal GIS

	Representation of Spatial and Spatiotemporal Events
	General Event Representation
	Spatial Event Structure
	The Temporal Dimension
	Spatiotemporal Events

	Space Related Context
	Fixed Location Context
	Spatiotemporal Context
	Complex Context

	Spatial Oriented Event Processing Patterns
	Distance Based Patterns
	Spatiotemporal Patterns

	Use Cases
	Insurance
	Logistics
	Real Estate
	Healthcare

	Conclusion
	References

	Implementing a Practical Spatio-Temporal Composite Event Language
	Introduction
	GPS Tracking of Buses
	The SpaTeC Programming Language
	Primitive Event Match Expressions
	Primitive Patterns
	General Match Expressions
	Filter Predicates

	Using SpaTeC to Analyse the Bus GPS Data
	Constant Patterns and Their Uses
	More Demanding Stagecoach Questions

	SpaTeC - Moving towards Deployment
	Centralised Implementation
	Distributed Implementation

	Related Work
	Conclusions
	References

	Design and Implementation of the Rebeca Publish/Subscribe Middleware
	Introduction
	Rebeca Publish/Subscribe Middleware
	Feature Composition
	Architecture
	Extendable Broker
	Plugins

	FeaturePlugins
	Mandatory Features
	Publish/Subscribe Features
	Optional Features

	Discrete Event Simulation
	Related Work
	Conclusion
	References

	Quality of Service and Real-Time Systems
	Anonymous Mobile Service Collaboration: Quality of Service
	Introduction
	Scenario and Requirements
	Related Work
	Rule-Extended Mobile SOA
	Architecture
	Locally-Included Broker
	Remote Broker
	Intelligent Gateway
	Comparison

	Prototype Implementation
	Formal Proof of Privacy of User Information
	Discussion and Conclusion

	SParK: Safety Partition Kernel for Integrated Real-Time Systems
	Introduction
	Our Contributions: The Design, Implementation and Evaluation of SParK

	SParK Architecture and Spatial Partitioning
	Spatial Partitioning
	Communication between Partitions

	Temporal Partitioning
	Ensuring Temporal Guarantees for Partitions in Spite of Interrupts and Hypercalls
	Interrupts and Schedulability Analysis of Partitions
	The Virtual Interrupt Partition
	Hypercalls and Schedulability of Partitions

	System Clock Management and Virtual Timer Interrupt
	Implementation Highlights: x86 and PowerPC Architectures
	PowerPC 7447A Platform
	X86 Platform

	Related Work
	Conclusion
	References

	On Scientific Experiments and Flexible Service Compositions
	Introduction
	SOA, Web Services and Service-Based Workflows
	Scientific Experiments, Scientific Workflows and Simulation
	Modeling Scientific Experiments
	Execution of Scientific Experiments

	Approaches to Flexibility of Service Compositions
	Approaches to Flexibility of Service Composition – A Classification
	Exchanging Concrete Service Implementations during Run Time
	Parameterized Processes
	BPEL\light
	BPEL’n’Aspects
	Assessment of the Flexibility Approaches

	Summary
	References1

	Peer-to-Peer
	Peer-to-Peer Web Search: Euphoria, Achievements, Disillusionment, and Future Opportunities
	Promises and Euphoria
	Technical Problems
	Achievements
	Self-organizing Overlay Networks
	Query Routing
	Distributed Top-k Query Processing
	Search Result Ranking
	Distributed Statistics

	Disillusionment and Lessons Learned
	Future Opportunities
	References

	Designing Benchmarks for P2P Systems
	Introduction
	Benchmarking
	Terminology
	P2P Quality Aspects
	P2P Benchmarking Specifics
	Underlay Model Specification

	Scenario 1: Distributed Hashtable
	SUT Interface
	Workload
	Metrics

	Scenario 2: Massively Multiplayer Online Game
	SUT Interface
	Workload
	Metrics

	Related Work
	Conclusion and Future Work
	References

	Distributed SQL Queries with BubbleStorm
	Introduction
	Related Work
	BubbleStorm Overview
	SQL Query Optimization
	Plan Execution in BubbleStorm
	Selection and Projection
	Post Processing
	(Block) Nested Loop Join
	Sort-Merge and Hash Join

	Query Plan Generation and the Catalog
	Materialized Views
	Conclusion
	References

	Pervasive Computing
	From the Internet of Computers to the Internet of Things
	The Vision
	Basics
	Drivers and Expectations
	Technological Challenges
	RFID and the EPC Network
	IP for Things
	The Web of Things
	Social and Political Issues
	References

	Distributed Group Communication System for Mobile Devices Based on SMS
	Introduction
	Background
	Group Communication Systems
	Network Environment of Mobile Devices
	Application
	Related Work

	System Overview
	Multicast
	Group Membership Guarantees

	DistributedGCS without Failures
	Group Maintenance Service
	View Management

	Failure Detection
	Failure of a Process
	Adapting to Process Leaves/Failures
	Adapting to Process Joins
	Self Test Message
	Down Status

	Reasoning for Correctness
	Performance Analysis
	Implementation
	Conclusions
	References

	Towards Declarative Query Scoping in Sensor Networks
	Introduction
	Related Work
	From Cougar to TikiDB
	Management of Node Groups
	Node Set Reduction

	Integrating Queries with Scopes
	Data Model Extensions
	Design Considerations

	Preliminary Evaluation
	Simulation Setup
	Simulation Results

	Conclusions and Future Work
	References

	Performance Engineering
	QPME 2.0 - A Tool for Stochastic Modeling and Analysis Using Queueing Petri Nets
	Introduction
	Queueing Petri Nets
	QPE - Queueing Petri Net Editor
	SimQPN - Simulator for Queueing Petri Nets
	Probes and Data Collection Modes
	Steady State Analysis
	Departure Disciplines

	Processing and Visualization of Simulation Results
	Simple Query Editor
	Advanced Query Editor

	Ongoing and Future Work
	Summary
	References

	A Logistics Workload for Event Notification Middleware
	Introduction
	Related Work
	Workload Requirements
	Logistics Workload
	Event Notification Producers
	Interacting Entities
	Interaction Patterns
	Workload Generation
	Message Contents
	Workload Characeristics

	Conclusion and Outlook
	References

	Business Intelligence
	Live Business Intelligence for the Real-Time Enterprise
	Introduction
	LiveBI Architecture
	Interaction and Service Integration Layer
	Optimization and Automation Layer
	Analytics Execution and Operator Library Layer
	Information Capture and Access Layer

	Applications
	Situational Awareness
	Live Operations Intelligence

	Conclusions
	References

	Author Index

