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PREFACE

Multicore and many-core computing systems have emerged as an important paradigm
in high-performance computing (HPC) and have significantly propelled development
of advanced parallel and distributed applications as well as of embedded systems.
Multicore processors are now ubiquitous, indeed, from processors with 2 or 4 cores in
the 2000s, the trend of increasing the number of cores keeps the pace, and processors
with hundreds or even thousands of (lightweight) cores are becoming commonplace
to optimize not only performance but also energy. However, this disruptive technol-
ogy (also referred to as ‘continuum computing paradigm’) presents several major
challenges such as increased effort and system-specific skills for porting and opti-
mizing application codes, managing and exploiting massive parallelism and system
heterogeneity to achieve increased performance, innovative modeling strategies for
low-power simulation, etc. Among these, we would distinguish the challenge of mas-
tering the multicore and many-core and heterogeneous systems – this is precisely the
focus of this book!

The emergence of multicore processors has helped in addressing several problems
that are related to single-core processors – known as memory wall, power wall and
instruction-level parallelism wall – but they pose several other ‘walls’ such as the
programmability wall or the coherency wall. Among these, programmability wall is a
long-standing challenge. Indeed, on the one hand, program development for multicore
processors, especially for heterogeneous multicore processors, is significantly more
complex than for single-core processors. On the other hand, programmers have been

xv
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xvi PREFACE

traditionally trained for the development of sequential programs, and only a small
percentage of them have experience with parallel programming.

In fact, in the past only a relatively small group of programmers interested in HPC
was concerned with the parallel programming issues; the situation has changed dra-
matically with the appearance of multicore processors in commonly used computing
systems. Traditionally parallel programs in HPC community have been developed
by heroic programmers using a simple text editor as programming environment, pro-
gramming at a low level of abstraction and doing manual performance optimization. It
is expected that with the pervasiveness of multicore processors, parallel programming
will become mainstream, but it cannot be expected that a mainstream programmer
will prefer to use the traditional HPC methods and tools.

The main objective of this book is to present a comprehensive view of the
state-of-the-art parallel programming methods, techniques and tools to aid the
programmers in mastering the efficient programming of multicore and many-core
systems. The book comprises a selection of twenty-two chapter contributions by
experts in the field of multicore and many-core systems that cover fundamental tech-
niques and algorithms, programming approaches, methodologies and frameworks,
task/application scheduling and management, testing and evaluation methodologies
and case studies for programming multicore and many-core systems. Lessons
learned, challenges and road map ahead are also given and discussed along the
chapters.

The content of the book is arranged into five parts:

Part I: Foundations

The first part of the book covers fundamental issues in programming of multicore and
many-core computing systems. Along four chapters the authors discuss the state of
the art on multi- and many-core architectures, programming models, concurrent data
structures and memory allocation, scheduling and management.

Natvig et al. in the first chapter, ‘Multi- and many-cores, architectural overview
for programmers’, provide a broad overview of the fundamental parallel techniques,
parallel taxonomies and various ‘walls’ in programming multicore/many-core
computing systems such as ‘power wall’, ‘memory wall’ and ‘ILP (instruction level
parallelism) wall’. The authors also discuss the challenges of the heterogeneity
in multicore/many-core computing systems. They conclude by stressing the need
for more research in parallel programming models to meet the five P’s of parallel
processing – performance, predictability, power efficiency, programmability and
portability – when building and programming multicore and many-core computing
systems.

Varbanescu et al. in the second chapter, ‘Programming models for multicore
and many-core computing systems’, survey a comprehensive set of programming
models for most popular families of many-core systems, including both specific and
classical parallel models for multicore and many-core platforms. The authors have
introduced four classes of reference features for model evaluation: usability, design
support, implementation support and programmability. Based on these features, a
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multidimensional comparison of the surveyed models is provided aiming to identify
the essential characteristics that separate or cluster these models. The authors con-
clude by emphasizing the influence that the choice of a programming model can have
on the application design and implementation and give a few guidelines for finding a
programming model that matches the application characteristics.

The third chapter by Cederman et al., ‘Lock-free concurrent data structures’,
deals with the use of concurrent data structures in parallel programming of multicore
and many-core systems. Several issues such as maintaining consistency in the pres-
ence of many simultaneous updates are discussed and lock-free implementations of
data structures that support concurrent access are given. Lock-free concurrent data
structures are shown to support the design of lock-free algorithms that scale much
better when the number of processes increases. A set of fundamental synchroniza-
tion primitives is also described together with challenges in managing dynamically
allocated memory in a concurrent environment.

Mannarswamy in the fourth chapter, ‘Software transactional memory’, addresses
the main challenges in writing concurrent code in multicore and many-core comput-
ing systems. In particular, the author focuses on the coordinating access to shared
data, accessed by multiple threads concurrently. Then, the software transactional
memory (STM) programming paradigm for shared memory multithreaded programs
is introduced. STM is intended to facilitate the development of complex concurrent
software as an alternative to conventional lock-based synchronization primitives by
reducing the burden of programming complexity involved in writing concurrent code.
The need for addressing performance bottlenecks and improving the application per-
formance on STM is also discussed as a major research issue in the field.

Part II: Programming Approaches

The second part of the book is devoted to programming approaches for multicore
and many-core computing systems. This part comprises seven chapters that cover a
variety of programming approaches including heterogeneous programming, skeleton
programming, DSL and object-oriented stream programming and programming with
transactional memory.

The fifth chapter, ‘Heterogeneous programming with OMPSs and its implica-
tions’, by Ayguadé et al. discusses on programming models for heterogeneous
architectures aiming to ease the asynchrony and to increment parallelization,
modularity and portability of applications. The authors present the OmpSs model,
which extends the OpenMP 3.0 programming model, and show how it leverages
MPI and OpenCL/CUDA, mastering the efficient programming of the clustered
heterogeneous multi-/many-core systems. The implementation of OmpSs as well as
a discussion on the intelligence needed to be embedded in the runtime system to
effectively lower the programmability wall and the opportunities to implement new
mechanisms and policies is also discussed and some overheads related with task
management in OmpSs are pointed out for further investigation.

Kessler et al. in the sixth chapter, ‘Skeleton programming for portable many-core
computing’, consider skeleton programming (‘data parallel skeletons’) as a model to
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solve the portability problem that arises in multi-and many-core programming and to
increase the level of abstraction in such programming environment. After overview-
ing the concept of algorithmic skeletons, the authors give a detailed description of
two recent approaches for programming emerging heterogeneous many-core systems,
namely, SkePU and SkelCL. Some other skeleton programming frameworks, which
share ideas with SkePU and SkelCL but address a more narrow range of architectures
or are used in industrial application development, are also discussed. Adding support
for portable task parallelism, such as farm skeletons, is pointed out as an important
research issue for future research.

In the seventh chapter, ‘DSL stream programming on multicore architectures’, by
de Oliveira Castro et al., the authors present a novel approach for stream program-
ming, considered a powerful alternative to program multi-core processors by offering
a deterministic execution based on a sound mathematical formalism and the ability
to implicitly express the parallelism by the stream structure, which leverages com-
piler optimizations that can harness the multicore performance without having to tune
the application by hand. Two families of stream programming languages are ana-
lyzed, namely, languages in which the data access patterns are explicitly described
by the programmer through a set of reorganization primitives and those in which the
data access patterns are implicitly declared through a set of dependencies between
tasks. Then, the authors expose the principle of a two-level approach combining the
advantages and expressivity of both types of languages aiming to achieve both the
expressivity of high-level languages such as Array-OL and Block Parallel and the rich
optimization framework, similar to StreamIT and Brook.

The eighth chapter, ‘Programming with transactional memory’, by Gramoli and
Guerraoui addresses similar issues as in Chapter 4, namely, the use of transac-
tional memory to remedy numerous concurrency problems arising in multicore and
many-core programming. The chapter analyzes the state-of-the-art concurrent pro-
gramming advances based on transactional memory. Several programming languages
that support TM are considered along with some TM implementations and a running
example for software support. The causes for performance limitations that TMs may
suffer from and some recent solutions to cope with such limitations are also discussed.

Otto and Tichy in the ninth chapter, ‘Object-oriented stream programming’,
present an approach unifying the concepts of object orientation (OO) and stream
programming aiming to take advantage of features of both paradigms. Aiming
for better programmability and performance gains, the object-oriented stream
programming (OOSP) is introduced as a solution. The benefits of OO and stream
programming are exemplified with XJava, a prototype OOSP language extending
Java. Other issues such as potential conflicts between tasks, run-time performance
tuning and correctness, allowing for interprocess application optimization and faster
parameter adjustments are also discussed.

The tenth chapter, ‘Software-based speculative parallelization’, by Tian et al.
studies the thread level speculative parallelization (SP) approach for parallelizing
sequential programs by exploiting dynamic parallelism that may be present in a
sequential program. As SP is usually applied to loops and performed at compile time,
it requires minimal help from the programmer who may be required to identify loops
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to which speculative parallelization is to be applied. The authors have discussed
several issues in SP, such as handling misspeculations, recovery capabilities and
techniques for identifying parallelizable regions. Some ongoing projects that focus
on SP techniques are also briefly discussed along with direction on future research
issues comprising energy efficiency in SP, using SP for heterogeneous processors
and 3D multicore processors, etc.

Schubert et al. in the eleventh chapter, ‘Autonomic distribution and adaptation’,
describe an approach for increasing the scalability of applications by exploiting inher-
ent concurrency in order to parallelize and distribute the code. The authors focus more
specifically on concurrency, which is a crucial part in any parallelization approach,
in the sense of reducing dependencies between logical parts of an application. To that
end, the authors have employed graph analysis methods to assess the dependencies
on code level, so as to identify concurrent segments and relating them to the specific
characteristics of the (heterogeneous, large-scale) environment. Issues posed to pro-
gramming multicore and many-core computers by the high degree of scalability and
especially the large variance of processor architectures are also discussed.

Part III: Programming Frameworks

The third part of the book deals with methodologies, frameworks and high program-
ming tools for constructing and testing software that can be ported between different,
possibly in themselves heterogeneous many-core systems under preservation of spe-
cific quantitative and qualitative performance aspects.

The twelfth chapter, ‘PEPPHER: Performance portability and programmability
for heterogeneous many-core architectures’, by Benkner et al. presents PEPPHER
framework, which introduces a flexible and extensible compositional metalanguage
for expressing functional and nonfunctional properties of software components, their
resource requirements and possible compilation targets, as well as providing abstract
specifications of properties of the underlying hardware. Also, handles for the run-time
system to schedule the components on the available hardware resources are provided.
Performance predictions can be (automatically) derived by combining the supplied
performance models. Performance portability is aided by guidelines and requirements
to ensure that the PEPPHER framework at all levels chooses the best implementation
of a given component or library routine among the available variants, including set-
tings for tunable parameters, prescheduling decisions and data movement operations.

Aldinucci et al. in the thirteenth chapter, ‘Fastflow: high level and efficient
streaming on multicore’, consider, as in other chapters, the difficulties of pro-
grammability of multicore and many-core systems, but from the perspective of
two interrelated needs, namely, that of efficient mechanisms supporting correct
concurrent access to shared-memory data structures and of higher-level program-
ming environments capable of hiding the difficulties related to the correct and
efficient use of shared-memory objects by raising the level of abstraction provided
to application programmers. To address these needs the authors introduce and
discuss FastFlow, a programming framework specifically targeting cache-coherent
shared-memory multicores. The authors show the suitability of the programming
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abstractions provided by the top layer of FastFlow programming model for
application programmers. Performance and efficiency considerations are also given
along with some real-world applications.

In the fourteenth chapter, Roma et al., ‘Programming framework for H.264/AVC
video encoding in multicore systems’, the authors bring the example of usefulness of
multicore and many-core computing for the video encoding as part of many multi-
media applications. As video encoding distinguishes for being highly computation-
ally demanding, to cope with the real-time encoding performance concerns, parallel
approaches are envisaged as solutions to accelerate the encoding. The authors have
presented a new parallel programming framework, which allows to easily and effi-
ciently implementing high-performance H.264/AVC video encoders. The modularity
and flexibility make this framework particularly suited for efficient implementations
in either homogeneous or heterogeneous parallel platforms, providing a suitable set
of fine-tuning configurations and parameterizations that allow a fast prototyping and
implementation, thus significantly reducing the developing time of the whole video
encoding system.

The fifteenth chapter, ‘Parallelizing evolutionary algorithms on GPGPU cards
with the EASEA platform’, by Maitre et al. presents the EASEA (EAsy Specification
of Evolutionary Algorithm) software platform dedicated to evolutionary algorithms
that allows to exploit parallel architectures, that range from a single GPGPU equipped
machine to multi-GPGPU machines, to a cluster or even several clusters of GPGPU
machines. Parallel algorithms implemented by the EASEA platform are proposed for
evolutionary algorithms and evolution strategies, genetic programming and multiob-
jective optimization. Finally, a set of problems is presented that contains artificial and
real-world problems, for which performance evaluation results are given. EASEA is
shown suitable to efficiently parallelize generic evolutionary optimization problems
to run on current petaflop machines and future exaflop ones.

Part IV: Testing, Evaluation and Optimization

The forth part of the book covers testing, evaluation and optimization of parallel
programs, with special emphasis for multicore and many-core systems. Techniques,
methodologies and approaches are presented along four chapters.

Farchi in the sixteenth chapter, ‘Smart interleavings for testing parallel
programs’, discusses the challenges of testing parallel programs that execute several
parallel tasks, might be distributed on different machines, under possible node or
network failures and might use different synchronization primitives. Therefore, the
main challenge is of parallel program testing resides in the definition and coverage of
the rather huge space of possible orders of tasks and environment events. The author
has presented state-of-the-art testing techniques including parallel bug pattern-based
reviews and distributed reviews. The later techniques enable the design of a test plan
for the parallel program that is then implemented in unit testing. Coping with the
scaling is envisaged as a main challenge for future research.

In the seventeenth chapter by Shafi, ‘Parallel performance evaluation and opti-
mization’, are covered important aspects of shared-memory parallel programming
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that impact performance. Guidance and mitigation techniques for diagnosing perfor-
mance issues applicable to a large spectrum of shared-memory multicore programs in
order to assist in performance tuning are also given. Various overheads in parallel pro-
grams including thread overheads, cache overheads and synchronization overheads
are discussed and mitigation techniques analyzed. Also, optimization-related issues
such as nonuniform access memory and latency are described. The chapter overviews
diagnostic tools as critical means to achieving good performance in parallel applica-
tions.

The eighteenth chapter, ‘A methodology for optimizing multithreaded system scal-
ability on multicores’, by Gunther et al. presents a methodology which combines
controlled measurements of the multithreaded platform together with a scalability
modeling framework within which to evaluate performance measurements for mul-
tithreaded programs. The authors show how to quantify the scalability using the
Universal Scalability Law (USL) by applying it to controlled performance measure-
ments of memcached, J2EE and WebLogic. The authors advocate that system per-
formance analysis should be incorporated into a comprehensive methodology rather
than being done as an afterthought. Their methodology, based on the USL, empha-
sizes the importance of validating scalability data through controlled measurements
that use appropriately designed test workloads. Some results from quantifying GPU
and many-core scalability using the USL methodology are also reported.

Ozturk and Kandemir in the nineteenth chapter, ‘Improving multicore system
performance through data compression’, consider some important issues related to
accessing off-chip memory in a multicore architecture. Such issues include off-chip
memory latencies, large performance penalties, bandwidth limitations between the
multicore processor and of the off-chip memory, which may not be sufficient to
handle simultaneous off-chip access requests coming from multiple processors. To
tackle these issues the authors propose an on-chip memory management scheme
based on data compression, aiming to reduce access latencies, reduce off-chip band-
width requirements and increase the effective on-chip storage capacity. Results are
exemplified with empirical data from an experimental study. Building an optimization
framework to find the most suitable parameters in the most effective way is planned
for future research direction.

Part V: Scheduling and Management

The last part of the book deals with scheduling and resource management in multicore
and many-core computing systems. The chapters discuss many-core accelerators as
catalysts for HPC systems, nodes management, configuration, efficient allocation and
scheduling in multicore clusters as well as operating systems and scheduling support
for multicore systems and accelerator-based clusters.

In the twentieth chapter, ‘Programming and managing resources on accelerator
enabled clusters’, Rafique et al. study the use of computational accelerators as
catalysts for HPC systems and discuss the challenges that arise in accelerator-based
systems (specifically the case of accelerators on clusters), large-scale parallel
systems with heterogeneous components for provisioning general-purpose resources
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and custom accelerators to achieve a balanced system. The study is exemplified
with a study on the implementation of MapReduce, a high-level parallel pro-
gramming model for large-scale data processing, on asymmetric accelerator-based
clusters. Empirical results are presented from an experimental test-bed using
three representative MapReduce benchmarks, which shed light on overall system
performance.

Muresano et al. in the twenty-first chapter, ‘An approach for efficient execu-
tion of SPMD applications on multicore clusters’, describe an efficient execution
methodology for multicore clusters, which is based on achieving a suitable applica-
tion execution with a maximum speedup achievable while the efficiency is maintained
over a defined threshold. The proposed methodology enables calculating the maxi-
mum number of cores that maintain strong application scalability while sustaining
a desired efficiency for SPMD applications. The ideal number of tiles that have to
be assigned to each core with the objective of maintaining a relationship between
speedup and efficiency can also be calculated. It was shown, by experimental evalu-
ation tests using various scientific applications, that the execution methodology can
reach an improvement of around 40% in efficiency.

The last chapter, ‘Operating system and scheduling for future multicore and many-
core platforms’, by Cucinotta et al. analyzes the limitations of the nowadays oper-
ating system support for multicore systems, when looking at future and emerging
many-core, massively parallel and distributed platforms. Therefore, most promising
approaches in the literature dealing with such platforms are discussed. The discussion
is mainly focused on the kernel architecture models and kernel-level mechanisms, and
the needed interface(s) toward user-level code and more specifically on the problem
of scheduling in multiprocessor and distributed systems, comprising scheduling of
applications with precise timing requirements.
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CHAPTER 1

MULTI- AND MANY-CORES,
ARCHITECTURAL OVERVIEW FOR
PROGRAMMERS

Lasse Natvig, Alexandru Iordan, Mujahed Eleyat, Magnus Jahre

and Jorn Amundsen

1.1 INTRODUCTION

1.1.1 Fundamental Techniques

Parallelism has been used since the early days of computing to enhance performance.
From the first computers to the most modern sequential processors (also called uni-
processors), the main concepts introduced by von Neumann [20] are still in use. How-
ever, the ever-increasing demand for computing performance has pushed computer
architects toward implementing different techniques of parallelism. The von Neu-
mann architecture was initially a sequential machine operating on scalar data with
bit-serial operations [20]. Word-parallel operations were made possible by using
more complex logic that could perform binary operations in parallel on all the bits in
a computer word, and it was just the start of an adventure of innovations in parallel
computer architectures.

3Programming Multicore and Many-core Computing Systems,
First Edition. Edited by Sabri Pllana and Fatos Xhafa.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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Prefetching is a 'look-ahead technique' that was introduced quite early and is
a way of parallelism that is used at several levels and in different components of
a computer today. Both data and instructions are very often accessed sequentially.
Therefore, when accessing an element (instruction or data) at address k, an auto-
matic access to address k+1 will bring the element to where it is needed before it
is accessed and thus eliminates or reduces waiting time. Many clever techniques
for hardware prefetching have been researched [5, 17] and can be exploited in the
context of the new multicore processors. However, the opportunities and challenges
given by the new technology in multicores require both a review of old techniques
and a development of new ones [9, 21]. Software prefetching exploits sequential
access patterns in a similar way but either it is controlled by the compiler
inserting prefetch operations or it can be explicitly controlled by the programmer [10].

Block access is also a fundamental technique that in some sense is a parallel op-
eration. Instead of bringing one word closer to the processor, for example, from
memory or cache, a cache line (block of words) is transferred. Block access also
gives a prefetching effect since the access to the first element in the block will bring
in the succeeding elements. The evolution of processor and memory technology during
the last 20 years has caused a large and still increasing gap between processor and
memory speed-making techniques such as prefetching and block access even more
important than before. This processor–memory gap, also called the memory wall, is
further discussed in Section 1.2.

Functional parallelism is a very general technique that has been used for a long
time and is exploited at different levels and in different components of almost all
computers today. The principle is to have different functional units in the processor
that can operate concurrently. Consequently, more than one instruction can be ex-
ecuted at the same time, for example, one unit can execute an arithmetic integer
operation while another unit executes a floating-point operation. This is to exploit
what has later been called instruction level parallelism (ILP).

Pipelining is one main variant of functional parallelism and has been used ex-
tensively at different levels and in different components of computers to improve
performance. It is perhaps most widely known from the instruction pipeline used in
almost all contemporary processors. Instructions are processed as a sequence of steps
or stages, such as instruction fetch, instruction decoding, execution and write back of
results. Modern microprocessors can use more than 20 pipeline stages so that more
than 20 instructions are being processed concurrently. Pipelining gives potentially a
large performance gain but also added complexity since interdependencies between
instructions must be handled to ensure correct execution of the program.

The term scalar processor denotes computers that operate on one computer word
at a time. When functional parallelism is used as described in the preceding text
to exploit ILP, we have a superscalar processor. A k-way superscalar processor
can issue up to k instructions at the same time (during one clock cycle). Also instruction
fetching, decoding and other nonarithmetic operations are parallelized by adding
more functional units.
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Figure 1.1 Flynn’s taxonomy.

1.1.2 Multiprogramming, Multiprocessors and Clusters

Multiprogramming is a technique invented in the 1960s to interleave the execution of
the programs and I/O operations among different users by time multiplexing. In this
way many users can share a single computer and get acceptable response time, and
the concept of a time-sharing operating system controlling such a computer was a
milestone in the history of computers.

Multiprocessors are computers with two or more distinct physical processors, and
they are capable of executing real parallel programs. Here, at the cost of additional
hardware, a performance gain can be achieved by executing the parallel processes in
different processors.

Many multiprocessors were developed during the 1960s and early 1970s, and in
the start most of the commercial multiprocessors had only two processors. Different
research prototypes were also developed, and the first computer with a large number
of processors was the Illiac IV developed at the University of Illinois [6]. The project
development stretched roughly 10 years, and the computer was designed to have 256
processors but was never built with more than 64 processors.

1.1.2.1 Flynn’s Taxonomy Flynn divided multiprocessors into four categories
based on the multiplicity of instruction streams and data streams –  and this has
become known as the famous Flynn’s taxonomy [14, 15] illustrated in Figure 1.1.

A conventional computer (uniprocessor or von Neumann machine) is termed a
Single Instruction Single Data (SISD) machine. It has one execution or processing
unit (PU) that is controlled by a single sequence of instructions, and it operates on a
single sequence of data in memory. In the early days of computing, the control logic
needed to decode the instructions into control signals that manage the execution and
data traffic in a processor was a costly component. When introducing parallel pro-
cessing, it was therefore natural to let multiple execution units operate on different
data (multiple data streams) while they were controlled by the same single control
unit, that is, a single instruction stream. A fundamental limitation of these SIMD archi-
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tectures is that different PUs cannot execute different instructions and, at the same
time, they are all bound to one single instruction stream.

SIMD machines evolved in many variants. A main distinction is between SIMD
with shared memory as shown in Figure 1.1 and SIMD computers with distributed
memory. In the latter variant, the main memory is distributed to the different PUs.
The advantage of this architecture is that it is much easier to implement compared
to multiple data streams to one shared memory. A disadvantage is that it gives the
need for some mechanism such as special instructions for communicating between
the different PUs.

The Multiple Instruction Single Data (MISD) category of machines has been
given a mixed treatment in the literature. Some textbooks simply say that no ma-
chines of this category have been built, while others present examples. In our view
MISD is an important category representing different parallel architectures. One of
the example architectures presented in the classical paper by Flynn [14] is very simi-
lar to the variant shown in Figure 1.1. Here a source data stream is sent from the 
memory to the first PU, then a derived data stream is sent to the next PU, where it
is processed by another program (instruction stream) and so on until it is streamed
back to memory. This kind of computation has by some authors been called a soft-
ware pipeline [26]. It can be efficient for applications such as real-time processing
of a stream of images (video) data, where data is streamed through different PUs
executing different image processing functions (e.g. filtering or feature extraction).

Another type of parallel architectures that can be classified as MISD is systolic
arrays . These are specialized hardware structures, often implemented as an
application specific integrated circuit (ASIC), and use highly pipelined and parallel exe-
cution of specific algorithms such as pattern matching or sorting [36, 22].

The Multiple Instruction Multiple Data (MIMD) category comprises most con-
temporary parallel computer architectures, and its inability to categorize these has
been a source for the proposal of different alternative taxonomies [43]. In a MIMD
computer every PU has its own control unit that reads a separate stream of,  
instructions dictating the execution in its PU. Just as for SIMD machines, a main
subdivision of MIMD machines is into those having shared memory or distributed
memory. In the latter variant each PU can have a local memory storing both
instructions and data. This leads us to another main categorization of multipro-
cessors, –shared memory multiprocessors and message passing multiprocessors.

1.1.2.2 Shared Memory versus Message Passing When discussing commu-
nication and memory in multiprocessors, it is important to distinguish the program-
mers view (logical view or programming model ) from the actual implementation
(physical view or architecture ). We will use Figure 1.2 as a base for our discussion.

The programmers, view of a shared memory multiprocessor is that all processes
or threads share the same single main memory. The simplest and cheapest way of
building such a machine is to attach a set of processors to one single memory thr-
ough a bus. A fundamental limitation of a bus is that it allows only one transaction
(communication operation or memory access) to be handled at a time. Consequently,
its performance does not scale with the number of processors. When multiproces-
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Figure 1.2 Multiprocessor memory architectures and programming models.

sors with higher number of processors were built – the bus was often replaced by
an interconnection network that could handle several transactions simultaneously.
Examples are a crossbar switch (all-to-all communication), multistage networks, hy-
percubes and meshes (see [23] Appendix E for more details). The development
of these parallel interconnection networks is another example of increased use of
parallelism in computers, and they are highly relevant also in multi- and many-core
architectures.

When attaching many processors to a single memory module through a parallel in-
terconnection network, the memory could easily become a bottleneck. Consequently,
it is common to use several physical memory modules as shown in Figure 1.2(a).
Although it has multiple memory modules, this architecture can be called  a
centralized memory system since the modules (memory banks) are assembled as
one subsystem that is equally accessible from all the processors. Due to this uni-
formity of access, these systems are often called symmetric multiprocessors (SMP)
or uniform memory access (UMA) architectures. This programming model (SW)
using shared memory implemented on top of centralized memory (HW) is marked
as alternative (1) in Figure 1.2(c).

The parallel interconnection network and the multiplicity of memory modules
can be used to let the processors work independently and in parallel with different
parts of the memory, or a single processor can distribute its memory accesses across
the memory banks. This latter technique was one of the early methods to exploit
parallelism in memory systems and is called memory interleaving. It was motivated
by memory modules being much slower than the processors and was together with
memory pipelining used to speed up memory access in early multiprocessors [26]. As
seen in the next section, such techniques are even more important today.

The main alternative to centralized memory is called distributed memory and is
shown in Figure 1.2(b). Here, the memory modules are located together
with the processors. This architecture became popular during the late 1980s
and 1990s, when the combination of the RISC processor and VLSI technology made it
possible to implement a complete processor with local memory and network inter-
connect (NIC) on a single board. The machines typically ran multiprocessor variants
of the UNIX operating system, and parallel programming was facilitated by message
passing libraries, standardized with the message passing interface (MPI) [47]. Typ-
ical for these machines is that access to a processors local memory module is much

(a) (b) (c)

n n
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faster than access to the memory module of another processor, thus giving the name
NonUniform Memory Access (NUMA) machines. This multiprocessor variant with
message passing SW and a physically distributed memory is marked as (2) in
the right part of Figure 1.2(c).

The distributed architectures are generally easier to build, especially for com-
puters designed to be scalable to a large number of processors. When the number of
processors grows in these machines either the cost of the interconnection network will
increase rapidly (as with crossbar) or it will become both more costly and slower (as
with multistage network). A slower network will make every memory access slower
if we use centralized memory.

However, with distributed memory, a slower network can to some extent be hid-
den if a large fraction of the accesses can be directed to the local memory module.
When this design choice is made, we can use cheaper networks and even a hierarchy
of interconnection networks, and the programmer is likely to develop software that
exploits the given NUMA architecture. A disadvantage is that the distribution and
use of data might become a crucial factor to achieve good performance – and in that
way making programming more difficult. Also, the ability of porting code to other
architectures without loosing performance is reduced.

Shared memory is generally considered to make parallel programming easier
compared to message passing, since cooperation and synchronization between the
processors can be done through shared data structures, explicit message passing code
can be avoided, and memory access latency is relatively uniform. In such distributed
shared memory (DSM) machines, the programmers view is one single address space,
and the machine implements this using specialized hardware and/or system software
such as message passing. The last alternative (3) – to offer message passing on top
of centralized memory-is much less common but can have the advantage of offer-
ing increased portability of message passing code. As an example, MPI has been
implemented on multicores with shared memory [42].

The term multicomputer has been used to denote parallel computers built of au-
tonomous processors, often called nodes [26]. Here, each node is an independent
computer with its own processor and address space, but message passing can be
used to provide the view of one distributed memory to the multicomputer program-
mer. The nodes normally also have I/O units, and today the mostly used term for
these parallel machines is cluster. Many clusters are built of commercial-off-the
-shelf (COTS) components,such as standard PCs or workstations and a fast local area
network or switch. This is probably the most cost-efficient way of building a large
supercomputer if the goal is maximum compute power on applications that are easy
to parallelize. However, although the network technology has improved steadily,
these machines have in general a much lower internode communication speed and
capacity compared to the computational capacity (processor speed) of the nodes. As
a consequence, more tightly coupled multiprocessors have often been chosen for the
most communication intensive applications.

1.1.2.3 Multithreading Multithreading is quite similar to multiprogramming,
that is, multiple processes or threads share the functional units of one processor by using
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overlapped execution. The purpose can be to execute several programs on one pro-
cessor as in multiprogramming or can be to execute a single application organized
as a multithreaded program (real parallel program). The threads in multithreading
are sometimes called HW threads, while the threads of an application can be called
SW threads or processes. The HW threads are under execution in the processor ,
while SW threads can be waiting in a queue outside the processor or even swapped
to disk.

When implementing multithreading in a processor, it is common to add internal
storage making it possible to save the current architectural state of a thread in a very
fast way, making rapid switches between threads possible.

A switch between processes, normally denoted context switch in operating sys-
tems terminology, can typically use hundreds or even thousands of clock cycles,
while there is multithreaded processors that can switch to another thread within one
clock cycle. Processes can belong to different users (applications) while threads be-
long to the same user (application). The use of multithreading is now commonly
called thread-level parallelism (TLP), and it can be said to be a higher level of paral-
lelism than ILP since the execution of each single thread can exploit ILP.

Fine-grained multithreading denotes cases where the processor switches between
threads at every instruction, while in coarse grained multithreading the processor
executes several instructions from the same thread between switches, normally when
the thread has to wait for a lengthy memory access. Both ILP and TLP can be
combined as in simultaneous multithreading (SMT) processors where the k issue
slots of a k-way superscalar processor can be filled with instructions from different
threads. In this way, it offers 'real parallelism' in the same way as a multiprocessor.
In a SMT processor, the threads will compete for the different subcomponents of
the processor, and this might at first sight seem to be a poor solution compared to a
multiprocessor where a process or thread can run at top speed without competition
from other threads. The advantage of SMT is the good resource utilization of such
architectures – very often the processor will stall on lengthy memory operations,
and more than one thread is needed to fill in the execution gap. Hyper-threading is
Intel’s terminology (officially called hyper-threading technology) and corresponds
to SMT [48].

1.2 WHY MULTICORES?

In recent years, general-purpose processor manufacturers have started to provide
chips with multiple processor cores. This type of processor is commonly referred
to as a multicore architecture or a chip multiprocessor (CMP) [38]. Multicores
have become a necessity due to four technological and economical constraints, and
the purpose of this section is to give a high-level introduction to these.
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Technological trends for microprocessors. Simplified version of Figure 1 in [18].

High-performance single-core processors consume a great deal of power, and high
power consumption necessitates expensive packaging and powerful cooling solu-
tions. During the 1990s and into the 21st century, the strategy of scaling down the gate
size of integrated circuits, reducing the supply voltage and increasing the clock rate,
was successful and resulted in faster single-core processors. However, around year
2004, it became infeasible to continue reducing the supply voltage, and this made it
difficult to continue increasing the clock speed without increasing power dissipation.
As a result, the power dissipation started to grow beyond practical limits [18], and
the single-core processors were said to hit the power wall. In a CMP, multiple cores
can cooperate to achieve high performance at a lower clock frequency.

Figure 1.3 illustrates the evolution of processors and the recent shift toward
multicores. First, the figure illustrates that Moore’s law still holds since the number
of transistors is increasing exponentially. However, the relative performance, clock
speed and power curves have a distinct knee in 2004 and has been flat or slowly
increasing since then. As these curves flatten, the number of cores per chip curve
has started to rise. The aggregate chip performance is the product of the relative
performance per core and the number of cores on a chip, and this scales roughly
with Moore’s law. Consequently, Figure 1.3 illustrates that multicores are able to
increase aggregate performance without increasing power consumption. This expo-
nential performance potential can only be realized for a single application through
scalable parallel programming.

1.2.2 The Memory Wall

Processor performance has been improving at a faster rate than the main memory
access time for more than 20 years [23]. Consequently, the gap between processor
performance and main memory latency is large and growing. This trend is referred
to as the processor–memory gap or memory wall. Figure 1.4 contains the classical
plot by Hennessy and Patterson that illustrates the memory wall. The effects of the

Figure 1.3

1.2.1 The Power Wall
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The processor–memory gap (a) and a typical memory hierarchy (b).

memory wall have traditionally been handled with latency hiding techniques such as
pipelining, out-of-order execution and multilevel caches. The most evident effect
of the processor–memory gap is the increasing complexity of the memory hierarchy,
shown in Figure 1.4(b). As the gap increased, more levels of cache were added.
In recent years, it has been common with a third level of cache, L3 cache. The
figure gives some typical numbers for storage capacity and access latency at the
different levels [23].

The memory wall also affects multicores, and they invest a significant amount
of resources to hide memory latencies. Fortunately, since multicores use lower
clock frequencies, the processor–memory gap is growing at a slower rate for multi-
cores than for traditional single cores. However, aggregate processor performance
is growing at roughly the same rate as Moore’s Law. Therefore, multicores to
some extent transform a latency hiding problem into an increased bandwidth de-
mand. This is helpful because off-chip bandwidth is expected to scale significantly
better than memory latencies [29, 40]. The multicore memory system must pro-
vide enough bandwidth to support the needs of an increasing number of concurrent
threads. Therefore, there is a need to use the available bandwidth in an efficient
manner [30].

1.2.3 The ILP Wall and the Complexity Wall

It has become increasingly difficult to improve performance with techniques that ex-
ploit ILP beyond what is common today. Although there is a considerable ILP
available in the instruction stream [55], extracting it has proven difficult
with current process technologies [2]. This trend has been referred to as the ILP wall.
Multicores alleviate this problem by shifting the focus from transparently extracting
ILP from a serial instruction stream to letting the programmer provide the
parallelism through TLP.

Designing and verifying a complex out-of-order processor is a significant task.
This challenge has been referred to as the complexity wall. In a multicore, a proces-
sor core is designed once and reused as many times as there are cores on the chip.

(a) (b)

Figure 1.4



12 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

These cores can also be simpler than their single-core counterparts. Consequently,
multicores facilitate design reuse and reduce processor core complexity.

1.3 HOMOGENEOUS MULTICORES

Contemporary multicores can be divided into two main classes. This section intro-
duces homogeneous multicores that are processors where all the cores are similar,

they have the same amount of cache resources. Conceptually, these multicores are
quite similar to SMPs. The section starts by introducing a possible categorization
of such multicores, before we describe a selected set of modern multicores
at a high level. All of these are rather complex products, and both the scope
of this chapter and the space available make it impossible to give  a complete 
and thorough description. Our goal is to introduce the reader to the richness
and variety of the market – motivating for further studies. The other mainclass,
heterogeneous multicores, is discussed in the next section. A tabular summary
of a larger number of commercial multicores can be found in a recent paper by
Sodan et-al. [48].

1.3.1 Early Generations

In the paper Chip Multithreading: Opportunities and Challenges by Spracklen and
Abraham [50], the authors introduced a categorization of what they called chip multi

core architectures. As shown in Figure 1.5, the first generation multicores typically
had processor cores that did not share any on-chip resources except the off-chip
datapaths. It was normally two cores per chip and they were derived from earlier
uniprocessor designs. Also the PUs used in the second generation multicores
were from earlier uniprocessor designs, but they were more tightly integrated
through use of a shared L2 cache. It could be more than two processors, and the
shared L2 made intracore communication very fast. The cores sometimes run the
same program (SPMD), so the demand for cache capacity for storing instructions can
be reduced. Both these advantages of the shared L2 cache can reduce the demand
of off-chip bandwidth. However, more than one core using the L2 cache introduce
new challenges such as cache partitioning, fairness and quality of service (Qos)
[12, 11, 30].

The third generation multicores can be said to be those using cores that are de-
signed from the ground up and optimized to sit in a multicore processor. These may
typically be simpler cores running at a lower frequency and hence with a much lower
power consumption. Further, they are typically using SMT. Olukotun and Hammond [37]

.call these three generations for simple CMP, shared-cache CMP and multithreaded
shared-cache CMP, respectively.

that is, they execute the same instruction set, they run on the same clock frequency and

threaded processors (CMT processors) that also can be used to categorize multi-
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Multicore processor generations: first (a), second (b), third (c).

1.3.2 Many Thin Cores or Few Fat Cores?

The choice between a few powerful and many less powerful processors or cores
has been discussed widely both during the multiprocessor era and the multicore
era. In his classical paper Amdahl [3] gave a simple formula explaining how the
serial fraction of an application severely constraints the maximum speedup that can be
achieved by a multiprocessor. The serial fraction is a code that cannot be parallelized,
and Amdahl’s law might motivate for having at least one core that is faster than the
others, that is, go for a heterogeneous multicore. For executing the so-called embarrassingly
parallel applications, that is, applications that are very easy to parallelize since they
have no or a very tiny serial part – a multicore with a large number of small cores
might be most efficient, especially if power efficiency is in focus. However, if there
is significant serial fraction, a smaller number of more powerful cores might be best.
A recent paper by Hill and Marty [24] titled Amdahl’s Law in the Multicore Era
demonstrates the influence of Amdahl’s law on this trade-off in an elegant way.

1.3.3 Example Multicore Architectures

1.3.3.1 IBM(R) Power(R) Performance Optimization With Enhanced RISC
(POWER) is an IBM processor architecture for technical computing workloads im-
plementing superscalar RISC. The POWER architecture was the starting point in
1991 of the Apple R©, IBM and Motorola R© (now Freescale Semiconductor R©) joint
effort to develop a new RISC processor architecture, the PowerPC R© architecture
[49]. The design goals of PowerPC were to create a single chip providing multipro-
cessing extensions and 64-bit support (addressing and operations). It was later ex-
panded with vector instructions, originally trademarked AltiVecTM. In 2006, POWER
and PowerPC was unified into a new brand, the Power Architecture, owned by
Power.org.

The POWERn series of processors are IBM’s main product line implementing
the Power architecture. The first product in this series was the multichip, super-

(a) (b) (c)

Figure 1.5
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scalar and out-of-order POWER1 processor, introduced in 1990. The POWER7 R©,
introduced in 2010, is the latest development in this series and is also the pro-
cessor to power the first DARPA High Productivity Computing System (HPCS)
petaflops computer. A stripped-down POWER7-core is expected to be used in the
Blue Gene R©/Q system, replacing the BlueGene/P massively parallel supercomputer
in 2012.

The POWER7 processor provides 4, 6 or 8 cores per chip, each with 4-way hard-
ware multithreading (SMT) [1]. A core might under software control be set to

Power 7 multicore, simplified block diagram.

operate at different degrees of multithreading from single-threaded mode (ST) to
4-ways SMT.

The chip is implemented in 45 nm technology, with cores running at a nominal
frequency of 3.0 – 4.14 GHz, depending on the configuration. The cache hierarchy
consists of 32K 4-way L1 data and instruction caches, a 256K 8-way L2 cache and
32 MB shared L3 cache, partitioned into 8 4 MB 8-way partitions. The L3 cache is
implemented with embedded DRAM technology (eDRAM). The chip is organized
as 8 cores (called chiplets), each containing the PU, L1 and L2 caches and
one of the 8 L3-cache partitions (Fig. 1.6). A consequence of this design is
that the L3 has a nonuniform latency. A pair of DDR3 DRAM controllers, each
with four 6.4 GHz channels provides a sustained main memory bandwidth of over
100 GB/s.

In addition to POWER6 R© VMX (AltiVec) and decimal floating point (DFU), the
POWER7 core provides the new VSX vector facility. VSX is mainly an extension for
64-bit vector floating-point arithmetic; it does not provide 64-bit integer arithmetic
like Intel R© and AMD processors.

Energy efficiency is implemented at the core or chiplet level where each core
frequency might be individually changed. The modes sleep, nap and turbo allows
dynamic voltage and frequency adjustment, from off, to –50% and +10% for maxi-
mum performance.

×

Figure 1.6
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Figure 1.7 ARM Cortex A15, simplified block diagram.

ARM  became one
of the first companies to implement multicore technology with the launch of the
ARM11TM MPCoreTM processor in 2004. The latest version of the ARM MPCore
technology is the ARM CortexTM-A15 MPCore processor, targeting markets ranging
from mobile computing, high-end digital home, servers and wireless infrastructure.

The processor can be implemented to include up to four cores (see Figure 1 7) The. .
multicore architecture enables the processor to exceed the performance of single

Every Cortex-A series processor has power management features including dynamic
voltage and frequency scaling and the ability for each core to go independently into
standby, dormant or power off energy management states. Like its predecessors
Cortex-A15 is based on the ARMv7A processor architecture giving full application
compatibility with all ARM Cortex-A processors. This compatibility enables access
to an established developer and software ecosystem.

Each processor core has an out-of-order superscalar pipeline and low-latency ac-
cess through a bus to a shared L2 cache that can be up to 4 MB. The cores provide
floating-point support and special SIMD instructions for media performance [4].

1.3.3.3 Sun UltraSPARC(R) T2 Sun’s UltraSPARC T2 is a homogeneous
multithreaded multicore specially designed to exploit the TLP present
in almost every server type application. Sun introduced its first multicore,
multithreaded microprocessor the UltraSPARC T1 (codenamed Niagara) in Novem-
ber 2005 [33]. The UltraSPARC T1 uses the SPARC V9 R© instruction set and was
available with 4, 6 and 8 processing cores, each able to execute four threads simul-
taneously [48]. The UltraSPARC T2 includes a network interface unit and a PCI
express interface unit, and this is why the T2 is sometimes referred to as a system
on chip [45]. It was available in October 2007 and produced in 65 nm technology.

The UltraSPARC T2 is comprised of 8 64-bit cores, and each core can execute 8 in-
dependent threads. Thus, T2 is able to execute 64 threads simultaneously. The cores
are connected by a crossbar to an 8-banked shared L2 cache, 4 DRAM controllers and
2 interface units (Fig. 1.8).

In order to minimize power requirements and to meet temperature constraints, the
UltraSPARC T2 uses a core frequency of only 1.4 GHz. A complete implementation
of the UltraSparc T2 processor in VerilogTM (a HW description language) along

-core high-performance embedded devices while consuming significantly less power.

1.3.3.2   ARM(R) Cortex -A15 MPCoreTM ProcessorTM
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Figure 1.8 Sun UltraSPARC T2 architecture, simplified block diagram.

with tools is freely available from the OpenSPARC R© project [54]. This gives the
interested researcher a rare opportunity to study the inner details of a modern multi-
core processor.

In autumn 2010, Oracle launched the SPARC T3, previously known as Ultra-
SPARC T3. It has 16 cores each capable of 8-way SMT giving a total of 128-way
multithreading [39].

1.3.3.4 AMD Istanbul The Istanbul processor is the first 6-core AMD OpteronTM

processor and is available for 2-, 4- and 8-socket systems, with clock speeds rang-
ing from 2.0 to 2.8 GHz. It was introduced in June 2009 and is manufactured in a
45 nm process and based on the AMD 64-bit K10 architecture. The K10 architecture
supports the full AMD64 instruction set and SIMD instructions for both integer and
floating-point operations [25].

Figure 1.9 shows a simplified block diagram. The processor has six cores, three
levels of cache, a crossbar connecting the cores, the system request interface, the
memory controller and the three HyperTransport TM 3.0 links. The memory con-
troller supports DDR2 memory with a bandwidth of up to 12.8 GB/s. In addition,
the HyperTransport 3.0 links provide an aggregate bandwidth of 57.6 GB/s and are
used to allow communication between different Istanbul processors.

The 6 MB of L3 cache is shared among the 6 cores: there are a 512 KB L2 cache
per core and 64 KB L1 data cache and a 64 KB L1 instruction cache for each core.

1.3.3.5 Intel(R) Nehalem In November 2008, with the release of CoreTM i7,
Intel introduced the new microprocessor architecture Nehalem [28]. The Nehalem
architecture (Fig. 1.10) has been used in a large number of processor variants in the
mobile, desktop and servers markets and is mainly produced in 45 nm technology.
The core count is typically 2 for mobile products, 2 – 4 cores for desktop and 4,
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AMD Opteron Istanbul processor, simplified block diagram.

Figure 1.10 Intel Nehalem architecture – 4 cores, simplified block diagram.

6 or 8 for servers. At the high end, the Nehalem architecture shrinked to 32 nm
technology (also called Westmere) has been announced to provide a 10-core chip.

Intel introduced with Nehalem the turbo boost technology (TBT) to allow ad-
justments of core frequency at runtime [27]. Considering the number of active cores,
estimated current usage, estimated power requirements and CPU temperature, TBT
determines the maximum frequency that the processor can run at. Core frequency
can be increased in steps of 133 MHz and to a higher level if few cores are active.
This allows for a boost in performance while still maintaining the power envelope.
To save energy, it is possible to power down cores when they are idle, but when
needed again they are turned on, and the frequency of the processor is reduced ac-
cordingly [52].

The QuickPath interconnect (QPI) was introduced in Nehalem to provide high
speed, point-to-point connections between all cores, the I/O hub, the memory con-
troller and the large shared L3 cache (Fig. 1.10). The L3 cache is inclusive. Ne-
halem-based processors have up to 3.5 times more memory bandwidth than previous
generation processors.

Figure 1.9
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The Nehalem architecture reintroduced hyper-threading, a technique that allows
each core to run two threads simultaneously, improving on resource utilization and
reducing latency. Although it was introduced in Intel processors as early as in 2002,
it was not used in the Intel core architecture that preceded Nehalem.

For faster computation of media applications, the Nehalem architecture supports
the SSE4 instruction set introduced in the previous generation processors. SSE is
an abbreviation for streaming SIMD extensions and is an SIMD instruction set ex-
tension to the 86 architecture that is used by compilers and assembly coders for
vectorization.

1.3.3.6 Tilera(R) TILE64 TM Tilera [53] has developed and is currently ship-
ping the TILEPro36TM and TILEPro64TM series of embedded many-core processors.
The Tilera devices may contain up to 64 individual 32-bit processors on a single sil-
icon device and are targeted at embedded markets which require programmability,
high performance and demanding power constraints. All Tilera devices contain nu-
merous integrated IO interfaces, allowing system designers to save board real estate
and complexity by integrating the IO and processing into a single device. Current
target markets for the TILEProTM family of devices include video and network pro-
cessing. The TILEPro family of devices is fabricated in TSMC’s 90 nm technology
and comes in 700 and 866 MHz frequency grades.

Each Tilera device contains multiple individual processor cores. Each core sup-
ports the TILE instruction set architecture (ISA), a Tilera proprietary ISA sharing
many similarities with modern RISC ISAs. The Tilera ISA is a 3-wide VLIW for-
mat, where each 64-bit VLIW  instruction encodes three operations. Correspondingly,
there are three execution pipelines per processor core, two arithmetic pipelines and
one load/store pipeline. When running at 866 MHz, a TILEPro64 is capable of 166
billion 32-bit operations per second. Additionally, the Tilera ISA contains SIMD op-
erations, enabling 32b, 16b and 8b arithmetic. The physical address of the TILEPro
devices is 36 bits, giving a TILEPro device access to up to 64 GB of memory. The
TILEPro processor is an in-order machine, issuing 64-bit VLIW instructions in pro-
gram order. However, the TILEPro cache subsystem is out of order, allowing the
processor to continue to fetch, issue and execute instructions in the presence of mul-
tiple cache misses. The TILE cores do not have HW FPU support.

The TILEPro device is a complete system on a chip, containing multiple inte-
grated IO interfaces. TILEPro64 contains four integrated DDR2 memory controllers,
capable of supporting 800 MHz operation. Memory space may be configured to be
automatically interleaved across the four controllers or programmatically assigned
on a page-by-page mapping from page to controller.

A TILEPro processor core contains a 16 KB L1 instruction cache, an 8 KB L1 data
cache and a 64 KB unified L2 cache (used for both instructions and data). All pro-
cessor cores on a TILEPro device are cache coherent, enabling running of standard,
shared-memory programs such as POSIX threads across the entire device. The cores
may be configured into multiple coherence domains, allowing a single SMP Linux
image to run across all cores within the system, or only a subset. Tilera hypervisor
technology enables the ability to run multiple Linux images in parallel. Coherency

×
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is maintained between the processor cores via a unique directory-based coherency
protocol, called dynamic distributed cache (DDC). The DDC protocol tracks ad-
dress sharers within the system via a distributed directory and maintains coherence
by properly invalidating/updating shared data upon modification. Additionally, the
Tilera cache subsystem provides the ability for one core’s L2 cache to serve as a
backing L3 cache for another core within the system. In this context, the L2 storage
structures may contain both L2 and L3 cache blocks.

The TILEPro processor cores communicate with each other and the IO inter-
faces via multiple on-chip, packet-switched networks. These networks, called the
iMeshTM, are proprietary interconnects used to carry communication within the system
such as memory read requests, memory read responses, tile-to-tile read responses,
etc. The networks are configured in a mesh topology, providing performance
scalability as the number of cores is increased. The TILEPro devices contain three
separate mesh networks for memory and cache communication, as well as two
networks for user-level messaging. These networks are synchronous with the pro-
cessor cores and run at the same frequency, and the latency for a message through
the mesh networks is one processor cycle per node.

1.4 HETEROGENEOUS MULTICORES

This section introduces heterogeneous multicores – processors where one or some
of the cores are significantly different than the others. The difference can be as funda-
mental as the instruction set used, or it can be the processor speed or cache/memory
capacity of the different cores. We start by introducing some of the main types of het-
erogeneity, before we present three different contemporary products in this category
of processors.

1.4.1 Types of Heterogeneity in Multicores

Single-ISA heterogeneous multicores are processors where all the cores have the
same ISA, that is, they can execute the same instructions, but they can have
different clock frequencies and/or cache sizes. Also the cores might have,   
different architectures implementing the same ISA. Typically there is one
or a few high-performance cores (fat cores) that are superscalar out-of-order
processors and a larger number of smaller and simpler cores that can be in-order
processors with a shorter pipeline [34]. As discussed in Section 1.3.2, this can be
beneficial for speeding up applications where there is a significant part of the com-
putation that is serial or if some of the threads put more demand on the memory
system. This kind of multicores is called by some authors asymmetric multicore
processors (AMP). They have gained increased interest lately since they potentially
can be more energy efficient than conventional homogeneous multicores [13].

Multiple-ISA multicores such as the Cell/BE TM microprocessor presented in
Section 1.4.2.1 have two or more different instruction sets. They require a toolchain
for each core type and are in general harder to program. In addition, many of these
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processors, including CellTM, have explicitly managed memory hierarchies where
the programmer is responsible for placement and transfer of data. This will in general
increase programmer effort and code complexity compared to a cache-based system
that are automatic and hidden from the programmer. Recent research has shown that
comparable performance can be achieved through programming environments where
compiler and runtime support implicitly manage locality [44].

In the embedded systems market, there is a long tradition of using highly hetero-
geneous multicores with different kinds of simple or complex cores and HW units
integrated on a single chip. These multiprocessor system-on-chip (MPSoC) sys-
tems often achieve a very high level of power efficiency through specialization [35],
but again the price to pay is often more difficult programming. MPSoC systems
have been available as commercial products for longer than multicores, and some
few MPSoCs are homogeneous. We refer the reader to a recent survey of MPSoCs
by Wolf, Jerraya and Martin for this rich branch of multicore processors [57].

Graphics processing units (GPU) and accelerators are also considered examples
of heterogeneous multicores, even though in most cases they in general need a host
processor to be able to run a complete application. The principle of hardware ac-
celeration – adding a special purpose HW unit to off load the processor or to speed
up computation by doing specific functions in HW instead of software - has a long
history. About 30 years ago, a common practice for speeding up floating-point op-
erations in a PC was to add a floating-point coprocessor unit (FPU). Today , the
inclusion of different accelerator subunits in a CMP is becoming increasingly
popular, and IBM has recently announced a processor architecture where processing 
cores and hardware accelerators are closely coupled [16].

Similarly, the GPU was added to accelerate the processing of graphics. GPUs
have during the last two decades been through a substantial development from spe-
cialized units for graphics processing only to more programmable units being
popular for general-purpose GPU (GPGPU). Their programming has become
substantially improved through languages such as CUDATM and OpenCLTM [32, 8].

1.4.2 Examples of Multicore Architectures

1.4.2.1 The CellTM Processor Architecture The Cell Broadband EngineTM

(Cell/BE) is a heterogeneous processor that was jointly developed by Sony R©, Tos-
hiba R© and IBM R©. As shown in Figure 1.11, it is  mainly composed of one  main core
(power processing element (PPE)), 8 specialized cores (called synergistic processing
elements (SPEs)), an on-chip memory controller and a controller for a configurable
I/O interface, all linked together by an element interconnection bus (EIB) [46]. The
main core is a 64-bit Power processor with vector processing extensions and two lev-
els of hardware-managed caches, a 32 KB L1 data cache and a 512 KB L2 cache. In
addition, it is a dual-issue, dual-threaded processor that has a single-precision peak
of 25.6 Gflops/s and a double-precision peak of 6.4 Gflops/s.

The 8 SPEs are SIMD cores (SPU) which each possess a 256 KB local store (LS)
for storing both data and instructions, a 128 128-bit register file and a memory
flow controller (MFC). MFC has the capability to  move code and data between main

×
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Simplified block diagram of Cell/BE

memory and LS using a direct memory access (DMA) controller. Moreover, each 
SPE has a single-precision peak of 25.6 Gflops/s and a double-precision peak of  
only 1.83 Gflops/s. The EIB is composed of 4 unidirectional rings that are used as a
communication bus between elements that are connected to it, and it can deliver
25.6 GB/s to each of them.

The memory controller is used to connect to a dual-channel Rambus extreme 
data rate (XDR) memory which can deliver a bandwidth of 25.6 GB/s. In addition, 
the Cell has an I/O controller which can be dedicated to connect up to two separate 
logical interfaces [31]. These interfaces provide chip-to-chip connections and can be 
used to design an efficient dual-processor system.

The main core (PPE) is usually responsible for running the operating system and
controlling the other cores (SPEs); it can start, stop, interrupt and schedule pro-
cesses running on them. In fact, SPEs achieve their work only by following PPE
commands. The PPE can read and write the main memory and the local memories
of SPEs through the standard load/store instructions. However, data movement to
and from an SPE (LS) is achieved explicitly using DMA commands. The explicit 
transfer of data and limited size of SPE LS poses a major challenge to software 
development on the Cell/BE processor.

The PowerXCellTM 8i is a revised variant of the Cell/BE processor that was an-
nounced by IBM in 2008 and made available in IBM QS22 blade servers. The SPEs 
in the new variant have a much better double-precision floating-point peak
performance (102.4 GFLOPS) compared to the previous one (14.64 GFLOPS). In
addition, it has support for up to 32 GB of slotted DDR2 memory. The PowerXCell
8i processor has been used in several supercomputers. For example, the Roadrunner
supercomputer, the world’s fastest in 2008–2009, has 12,240 PowerXCell 8i proces-
sors in addition to 6562 AMD Opteron processors. PoweXCell 8i supercomputers
have also occupied many of the top positions on the Green500 list of the most
energy-efficient supercomputers in the world [51].

1.4.2.2 NVIDIA(R)Fermi The GPU is a highly specialized PU dedicated to exe-
cute or accelerate video applications. Since

.

these applications have an increased

Figure 1.11
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NVIDIA Fermi, simplified block diagram.

degree of parallelism, GPUs use tens to hundreds of cores to perform the advanced   
floating-point operations specific to video rendering. With the introduction of    
NVIDIA’s unified shader architecture in 2006 and CUDA in 2007, the potential     
performance of GPU’s massively parallel architecture was also made available to   
other fields, like high-performance computing (HPC) [19].

Fermi (or GeForce©R  400)  is  the  latest  architecture  from  NVIDIA  19[ ]. It  has  up
to 512 PUs  distributed  among  16  main  cores, which  NVIDIA  calls  streaming
multiprocessors. It has a two-level cache hierarchy and very fast double-precision  
floating-point math operations [56]. Fermi is a good fit for some HPC applications,  
and NVIDIA offers the    Tesla line of products    as  dedicated  GPGPUs  to  be  used  as
accelerators in HPC supercomputers. In October 2010, after being upgraded with   
more than 7000 Fermi-based Tesla GPGPUs, Tianhe-1A became the fastest         
supercomputer in the world, as ranked by the TOP500 list.

Fermi has a transistor count of more than 3 billions that are used to create 16 main    
cores, a shared L2 cache, 6 memory (DRAM) controllers, a hardware thread           
scheduler (called GigaThread) and the host interface (Fig 1.12). However, not all of       .      
these resources are always activated.

Each main core consists of 32 very simple PUs, capable of performing integer or 
floating-point operations. All PUs share a single      -register file, 16 load/store units, 4     

Figure 1.12
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ARM Mali T604, simplified block diagram.

special function units (for advanced math like square root or sine), 2 thread sched-
ulers and dispatch units and an L1 cache. The main core can been seen as a 32-issue 
superscalar processor. This main core design, coupled with the GigaThread sched-
uler, allows a Fermi-class GPU to switch very fast between threads and to handle 
more than 24.000 parallel threads in an efficient way.

In order to improve the HPC performance, Fermi uses a more standard memory      
hierarchy which includes a shared L2 cache. Since the memory penalty is greater      
with GPUs than with CPUs, NVIDIA added new keywords to its CUDA imple-    
mentation that allow a programmer to specify where data will be stored. Also, in       
order to make it more programmer friendly, NVIDIA improved Fermi’s ISA (im-
proved atomic integer instructions [41]) and added support for C++ object-oriented 
programming.

1.4.2.3 ARM(R) Mali TM -T604  GPU  The ARM Mali-T604 GPU is a licensable, 
low-power multicore GPU targeting system-on-chip (SoC) providers and a broad 
range of applications including mobile, digital TV, gaming and navigation. It is the 
first GPU from ARM with an architecture designed to enhance GPU computing 
through, for example, the KhronosTM OpenCLTM API. This is in addition to graphics 
standards such as Khronos OpenGL ESTM and OpenVGTM.

The ARM multicore design philosophy previously used with CPUs has been ap-
plied to ARM Mali GPUs, and the result is the Mali-T604. This multicore GPU has 
a customer-configurable number of cores that share a coherent Level 2 memory sub-
system. A single job manager handles the host CPU interface and load balancing on 
the GPU, while a hierarchical tiler (HT) accelerates the tile-based graphics pro-
cessing and a memory management unit (MMU) handles virtual address translation 
and processes separation (see Fig. 1.13).

The Level 2 memory subsystem can maintain full coherency between cores thr-
ough a Snoop Control Unit (SCU). This approach is inspired by ARM multipro-
cessor CPUs and is different from traditional GPUs where local memory is 
noncoherent. Each shader core is a multipipeline, multithreaded unit with the ability 
to execute hundreds of threads simultaneously. This is particularly beneficial for 
throughput-oriented computing with an abundance of data-level parallelism. The 

Figure 1.13
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processor supports a wide range of data types, including integer and IEEE-754 
floationg point up to 64-bit allowing for algorithms requiring single and double 
precision. Support for 64-bit integer arithmetic is provided.

Computing on the Mali-T604 GPU is highly efficient compared to high-end desk-   
top or server GPUs. The moving of data between CPU and GPU memory is avoided   
by the use of a unified memory system coherent between the GPU and CPU, such     
as the ARM CortexTM-A15 CPU. Fast atomic operations with Mali-T604 mean that
algorithms requiring interthread communication will be much more efficient than on
a traditional GPU.

1.5 CONCLUDING REMARKS

Current trends in multi- and many-core architectures are increased parallelism, in-  
creased heterogeneity, use of accelerators and energy efficiency as a first-order de-
sign constraint. The '5 P’s of parallel processing: performance, predictability, 
power efficiency, programmability and portability' are all important goals that we 
strive to meet when we build or program multicore systems. To meet the challenge
of partly conflicting goals, we need more research in parallel programming models
that adopts a holistic view – covering aspects from hardware and power consump-
tion through system software and up to the programmers wish for programmability   
and portability.

A challenge is that optimizing for one of these goals very often will reduce the      
possibility of achieving some of the others. The present state of the art is very di-        
verse and dynamic and in many ways less stable than 10 years ago. As an example,   
heterogeneous processors with explicitly managed memories like the Cell processor
have achieved outstanding results for power efficiency [51] at the cost of reduced 
programmability. However, researchers are continuously looking for ways to
achieve many of these goals at the same time. Power efficiency innovations in
runtime systems is one of the many promising directions. Borkar and Chien [7] 
outline a hypothetical heterogeneous processor consisting of a few large cores and
many small cores, where the supply voltage and frequency of each core are 
controlled individually. This fine-grained power management improves energy  
efficiency without burdening the application programmer, since it is controlled by
the runtime system. However, significant breakthroughs are needed on the software
level to make such systems practical.

To end the chapter, we would like to quote the recent and highly motivating paper
Computing Performance: Game Over or Next Level? [18]: the era of sequential 
computing must give way to an era in which parallelism holds the forefront.

Trademark Notice

Product or corporate names may be trademarks or registered trademarks and are  
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CHAPTER 2

PROGRAMMING MODELS FOR
MULTICORE AND MANY-CORE
COMPUTING SYSTEMS

Ana Lucia Varbanescu, Rob V. van Nieuwpoort, Pieter Hijma,

Henri E. Bal, Rosa M. Badia and Xavier Martorell

2.1 INTRODUCTION

Many hardware and software vendors, as well as many groups in academia, are
actively working on programming models able to cope with the diversity of plat-
forms and applications. These efforts have generated a large variety of programming

29

Writing massively parallel applications for many-cores is difficult because it is a problem 
with multiple constraints: we want applications to deliver great performance, to be easy 
to program and to be portable between architectures. The perceived levels of these para- 
meters – performance, productivity and portability – combine into a measure of platform 
programmability, which is a good indicator for the success of an architecture. In reality, 
the programmability gap (i.e. the difference between the theoretical performance offered 
by the platform and the performance achieved when programming it) remains the major 
concern for the use of many cores.
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models, each with its own characteristics. This makes the search for a suitable pro-
gramming model for a specific workload a very difficult task.

In this work, we discuss a comprehensive set of programming models currently
used for the most popular families of many-cores. Our survey includes both models
specifically developed for many-cores (thus addressing specific architectural con-
cerns), as well as classical parallel models that are also used to develop parallel
applications for these platforms. To evaluate these models, we introduce four classes
of reference features: usability, design support, implementation support and progr-
ammability. Thus, for each model, we discuss how the model is used for parallel
application development, what type of support it offers to the user, and how it addresses
performance, portability and productivity concerns, and finally, we evaluate its over-
all impact on platform programmability.

Using this detailed analysis, we provide a multidimensional comparison of the
surveyed models. Our goal is not to determine a best programming model for
many-core platforms but rather to identify the essential characteristics that separate
or cluster these models. To conclude, we comment on the influence that the choice
of a programming model can have on the application design and implementation,
and we give a few guidelines for finding a programming model that matches the
application characteristics.

This chapter is organized as follows. In Section 2.2, we introduce the classes
of many-core platforms we target in this work. Section 2.3 introduces the features
we use to evaluate the programming models. Section 2.4 presents an overview of
the programming models. Section 2.5 presents a multidimensional overview of the
presented models, while Section 2.6 presents our conclusions and sketches the future
work directions.

2.2 A COMPARATIVE ANALYSIS OF MANY - CORES

In this section we discuss three classes of many-core architectures used for high per-
formance computing: general purpose multicore processors (GPMCs), graphical1

processing units (GPUs) and the Cell Broadband Engine (Cell/B.E.) processor. We
briefly highlight the key differences between the architectures. Our final goal is to
demonstrate which architectural properties impact the accompanying programming
models (Section 2.4) and how.

Since 2006, GPMCs have been replacing traditional single-core CPUs in
both personal computers and servers. GPMCs are homogeneous platforms with
complex cores, based on traditional processor architectures. They are typically
shared  memory architectures, with multiple levels of caches. We emphasize
the diversity of the spectrum of GPMCs by showing the characteristics of multi
cores from different vendors in Tables 2.1 and 2.2: the Intel Nehalem EX (Xeon
7500 series), the AMD Magny-Cours, the IBM POWER7 and the Sun Niagara II

1We generically call all these platforms many-cores due to their relatively large numbers of hardware
threads. However, we preserve the name multicores as traditional for general  purpose many-cores.

‘ ’
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(UltraSPARC T2+). Many-core programming models should be retargetable to all
these architectures.

The large-scale use of GPUs for general purpose computing started in 2006. Since
then, the state-of-the-art GPU architectures target HPC markets directly, by adding
computation-only features to their graphics pipelines. GPUs are shared memory
machines, with a complex memory hierarchy, combining different types of caches
and scratchpads at each level. Because they are typically used as computational
accelerators (linked to the host system via the PCI express bus), GPUs have fairly
simple control flow hardware but provide high memory throughput and massive
computation capabilities. We show properties of GPUs from NVIDIA (the Fermi
architecture) and AMD/ATI (the Cypress).

Finally, the Sony, Toshiba  and  IBM (STI) Cell/B.E. is a hetero geneous architecture
with one general purpose processor (the power processing element (PPE)) and eight

Table 2.1 Computing properties of many-core hardware.

Platform Cores/threads Vectors ALUs Types Scheduling Par levels

Intel Nehalem EX 8/16 4 wide 64 HO OS 2
AMD Magny-Cours 12/12 4 wide 48 HO OS 2
IBM POWER 7 8/64 4 wide 256 HO OS 2
Sun Niagara II 8/64 No 64 HO OS 1
NVIDIA Fermi 16  32 No 512 HO + host Hardware 3
ATI Cypress 20  16 1600 HO + host Hardware 4
Cell/B.E. 9/10 36 HE User/ pp 5

HO = homogeneous; HE = heterogeneous.

Table 2.1 focuses on the computing properties of the many-core hardware, that
is, how the parallelism is achieved. The table clearly shows that each processor has –
relative to its own architecture – a large number of hardware parallelism available.
Programming models can handle this explicitly or implicitly, trading performance
for programmability. We will come back to this in Section 2.4.

In Table 2.2, we summarize the memory properties of the many-cores. The mem-
ory subsystems of many-cores are increasing in complexity. This happens because
they have to compensate for the inherent decrease in memory bandwidth per core
with the increase in the number of cores and ALUs. More and more complex mem-
ory and caching hierarchies are needed to solve this problem. One of the key differ-
ences between multicore CPUs on the one hand and the GPUs and the Cell/B.E. on
the other is that the memory hierarchy is more exposed and often explicitly handled

a
4 wide
4 wide

Note:

×
×

compute processors (the synergestic processing elements (SPEs)), each one with its 
own private local memory (local store (LS)). Each one of the nine Cell cores can 
be programmed independently. Physically, the Cell/B.E. is a distributed memory  
machine, as SPEs can access only their own local memories and have to program 
DMA transfers to fetch data from or send data to the main memory. This combination 
of heterogeneous cores and fullyuser-managed memory makes Cell a real challenge 
in terms of programmability.
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in the latter. This has a clear impact on the programming effort that is needed to
achieve good performance.

Table 2.2 Memory properties of many-core hardware.

Platform Space(s) Access Cache

Intel Nehalem EX Shared R/W Transparent L1-3
AMD Magny-Cours Shared R/W Transparent L1-3
IBM POWER7 Shared R/W Transparent L1-3
Sun Niagara II Shared R/W Transparent L1-2
NVIDIA Fermi Shared; device; host R/W; R/W; DMA App-controlled shared store; transparent L1-2
ATI Cypress Shared; device; host R/W; R/W; DMA App-controlled shared store; transparent L1-2
Cell/B.E. PPU, SPU R/W; DMA App-controlled local store

2.3 PROGRAMMING MODELS FEATURES

This section discusses the features we use to evaluate programming models. Our goal
is to define programmability in terms of productivity, portability and performance
and further extract the features that programming models use to improve platform
programmability.

2.3.1 Programmability

The programmability gap is the difference between the theoretical performance of a
platform and the observed performance of the applications running on that platform.
The advent of many-cores widens the programmability gap because platform peak
performance is only achievable if applications are able to extract and express mul-
tiple layers of parallelism, at par with those offered by the hardware platform. In
this context, platform programmability is a measure of how easy it is for (generic)
applications to express enough parallelism to match the hardware offer.

Typically, the native programming model of a platform exposes its bare progr-
ammability, as it provides users with the means to express parallelism in a platform
-specific form, and it has minor limitations on achievable performance. Higher-level
programming models aim to improve programmability, by (i) offering users easier
abstractions for designing and building parallelism and (ii) building better back-end
components (i.e. compilers and runtime systems) to minimize the impact on perfor-
mance.

We judge the impact a programming model can have on platform programmability
as a combination of its productivity, portability and performance. Productivity is a
measure of the development effort (typically, the time spent by the user when de-
signing and developing the application). A model’s portability indicates the poten-
tial reusability of the solutions built using it. A model’s performance indicates the
achievable performance of a solution; from the model’s perspective, the performance

 ‘ ’



PROGRAMMING MODELS FEATURES 33

potential is usually measured as efficiency (i.e. how much of the platform’s peak
performance is achievable when using the chosen model).

Note that productivity, portability and performance are strongly interconnected.
For example, obtaining maximum performance might increase development time,
thus decreasing productivity; similarly, a highly portable solution can use no
hardware-specific optimizations, thus limiting achievable performance. Therefore, a
programming model has a positive impact on platform programmability if it can
increase productivity and portability without (negatively) affecting the achievable
performance.

2.3.2 Classes of Models

Based on their approach to application parallelization, we define three different
classes of models:

Parallelism-centric models are built to allow users to express typical parallelism
constructs in a simple and effective way and at various levels of abstraction.
The higher the level of abstraction is, the less (explicit) parallelism constructs
are available, and the less the flexibility and expressibility of the model
are. Parallelism-centric models are typically used to express complex parallel
algorithms (i.e. the design of the parallel solution for the application and its
implementation are decoupled).

Hardware-centric models are designed to replace native platform programming
(typically supported by a low-level programming model) with higher-level,
user-friendly solutions. These models aim to hide some of the low-level pe-
culiarities of platforms, offering a clearer interface to the programmer. These
models are typically used when the platform is chosen and portability (which
may or may not be supported by the model) is of less importance compared
with the potential performance. These models require users to understand the
chosen platform and parallelize applications for it.

Application-centric models tackle application parallelization from design to im-
plementation. Some of them also include several generic optimizations. These
models have less explicit parallelism constructs. Their goal is to help users to
find an effective, (partially) platform-agnostic parallel solutions for their ap-
plications, and implement them using a limited set of concurrency, granularity
and parallelism constructs.

2.3.3 Features

We discuss three categories of features we use to evaluate the programming models:
usability, design support and implementation support. The following paragraphs
briefly explain the features we consider representative for each category, as well as
their expected impact on platform programmability (if any):
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Usability We include here a set of practical features that programming models
offer; these features are linked to the ease of use of a programming model, ultimately
aiming at increased programmer productivity:

Class Models are parallelism-centric, hardware-centric or application-centric. A
model’s class can have impact on productivity because the initial application
has to be expressed differently depending on the chosen class. For example, to
use parallelism-centric models, one needs to parallelize applications in such a
way that they use the right parallel constructs.

Problem specification Programming models require different ways of exposing the
problem to be solved. We distinguish here models that start from the sequen-
tial code (typically enhanced with parallelism by the programmer), models
that start from an algorithm and apply model-specific parallelization (this usu-
ally requires finding a new, parallel algorithm) and models that start from
application specification. Note that for hierarchical models (e.g. CUDA), the
problem specification may differ between layers.

Problem specification is important for productivity: using the right initial de-
scription helps with correct solution design and minimizes the time spent in
design, thus making the process more efficient. For example, if sequential
code is not available for a given application, choosing a model that requires the
sequential code algorithm to design the parallel version is counterproductive.

Actions The actions to be performed to transform the problem specification into
a parallel solution, as well as the way they are done (by the user or (semi-)
automated), are essential in increasing productivity. Typical actions are spe-
cific parallelization, where the user parallelizes the given algorithm to fit the
target model; loop-level parallelization, usually done by the compiler; ker-
nel isolation and fine-grain parallelization, where the users need to isolate the
highly parallel regions in the code and exploit loop-like parallelism within the
model space and data clustering, where users specify collections of data to be
processed in parallel, and a compiler or runtime system uses these elements as
concurrency units.

Note that models that require a detailed application specification and com-
plex actions to be performed by the user have good performance potential,
but their impact on productivity is negative; by contrast, models that rely on
automated transformations of application specification typically show both
improved productivity and performance limitations.

Implementation Programming models may be constructed as programming lan-
guages (and using compilers) or as collections of keywords or pragmas added
to existing languages (and using preprocessors and libraries for implemen-
tation). Some models also include runtime systems, allowing more control
over the parallel execution of their concurrency units. The implementation of
a model does not necessarily have an objective impact on programmability.
However, models that are based on known programming languages or use
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familiar programming constructs, as well as models that use libraries of pre-
optimized components, are proven to be more productive than models that use
new abstractions and languages.

Design support We investigate four features that programming models offer to
their users for designing parallel applications:

Algorithm view The algorithm view [9] of a programming model can be fragmented
or global. The parallelism constructs of a fragmented-view model are usu-
ally explicit and interleaved with the processing constructs. In this case, the
processing appears as fragmented, like in the classical example of Message
Passing Interface (MPI) [22]. In contrast, a global-view model typically uses implicit
communication and synchronization constructs, resulting in little interference with
the processing, thus preserving the global view of the algorithm. Examples of
such models are OpenMP [2] and Cilk [23]. The model’s algorithm view [9]
influence on programmability is application specific: applications with complex
synchronization patterns usually benefit from fragmented-view solution, while
applications with massive data parallelism are more suitable for mixed- or
even global-view models. Overall, global-view algorithms are easier to rea-
son about, while fragmented-view models make debugging slightly easier.

Parallelism A model can support multiple types of parallelism. At a lower level,
models can offer support for single instruction, multiple data (SIMD) (typ-
ically known as vectorization) or single instruction, multiple thread (SIMT) 
(–also known as lock-step execution), targeting fine-grain parallelism. At a
higher level, models can offer single process, multiple data/multiple process, multiple
data (SPMD or MPMD) [11] – targeting coarse-grain parallelism. Finally, at the
highest level, models can offer one or several patterns for both SPMD and
MPMD, such as divide-and-conquer, map/reduce, pipelining or streaming.
The influence of the supported types of parallelism on productivity is appl-
ication dependent. Therefore, a good match of the application parallelism with
the programming model parallelism leads to a programmability boost, while
a mismatch typically requires a lot of empirical changes on the algorithm, de-
creasing productivity.

Concurrency units and granularity The control over granularity of the concur-
rency units can contribute not only to performance but also to portability. A model
that allows explicit granularity definition without changing the program may con-
tribute to performance. In addition, applications can be ported to an architec-
ture which needs more fine-grained or coarse-grained parallelism. Available
models range from those which do not have abstractions for granularity con-
trol, other than changing the program (the majority), to programming models
that offer automatic and/or dynamic granularity control.

Data layout A model can provide ways to specify the data layout, thus increasing
productivity. A model that allows users to define how data is partitioned or



36 PROGRAMMING MODELS FOR MULTI-CORE AND MANY-CORE COMPUTING SYSTEMS

distributed among the concurrency units can reduce unneeded communication
and simplify future mapping and scheduling decisions.

Implementation support There are several features that offer implementation
-level support and impact overall platform programmability. We discuss here four
such features:

Mapping and scheduling By mapping and scheduling, we refer to the way the con-
currency units are placed on the platform resources and executed to improve
concurrency. Using explicit mapping and scheduling increases solution com-
plexity, while the implicit alternatives typically affect performance. Therefore,
models choose one of the following solutions: (i) require users to make an ex-
plicit mapping, (ii) determine the mappings automatically or even dynamically
(using their own runtime system) or (iii) rely on either the operating system
(OS) or the hardware schedulers for a default mapping.

Data transfers Due to their complex memory hierarchies, many-cores need data
transfers between memory levels. The way data transfers between concur-
rency units (and, eventually, concurrency layers) are done impacts both per-
formance and productivity. Requiring data transfers to be made explicitly
affects portability and increases the complexity of the solution, while mak-
ing them implicit (i.e. transparent) without performance penalties requires the
programming model to know the concurrency units mapping. Due to the large
variety in memory hierarchies, hybrid solutions (where some transfers are ex-
plicit, while the rest are taken care of by either the hardware (shared memories)
or a runtime system) are likely to prevail.

Communication and synchronization Transparent communication between cores
reduces development time, but explicit communication enables overlapping of
computation and communication which may improve performance.

Optimizations Programming models can simplify certain types of optimizations. If
such optimizations can be performed automatically (without users tweaking
the code), their positive influence on performance translates into a positive
impact on programmability. However, optimizations are typically low level
and platform  specific (see memory coalescing for GPUs and SIMD extensions
for the Cell/B.E. or the GPMCs), requiring user’s intervention and diminishing
solution portability and productivity.

Among the models that require users’ intervention for optimization are those
models that encourage the users to freely apply low-level optimizations (by
simply altering the code) and those which limit or even obstruct this action
– mainly because such interventions on code lower the ability of the model’s
analyzers to parse and extract other parameters and/or parallelization opportu-
nities.

‘ ’

‘ ’
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2.4 PROGRAMMING MODELS FOR MANY-CORES

In this section, we present a survey of representative multicore programming models
for each of the three classes of platforms discussed in Section 2.3.2.

2.4.1 Parallelism-Centric Programming Models

We list here four traditional models which have been adapted and adopted for many-
core processors: threads, MPI, OpenMP and Cilk, together with Intel Threading
Building Blocks (TBB), a newer, multicore-induced model that started as a hardware-
centric approach and evolved into a parallelism-centric one.

Note that two other classes of programming models – namely, partitioned global
address space (PGAS) models and high-productivity languages – can be considered
of interest in the context of parallelism-centric programming. However, these target
first and foremost large-scale distributed systems and are only recently starting to
respond to the requirements of multi- and many-cores [38, 37, 39]. Therefore, they
are not part of our study. However, more details about such models can be found
in [30].

2.4.1.1 Threads with Shared Memory Threading libraries such as POSIX threads [21]
or the Java thread class extend the sequential imperative programming model in a
natural way to obtain parallelism. Functions are spawned as new threads that globally
share data.

Threads provide mechanisms on the lowest level of abstraction of parallel pro-
gramming and are very flexible. It is natural to spawn threads with different func-
tions to obtain task parallelism, but threads can also be spawned in a loop, with the
same function operating on different data, which results in data parallelism. There
is extensive synchronization support, such as joins, barriers and condition variables.
Threads offer a fragmented view as programmers need to divide data among threads
and join for the results. Algorithms expressed in this model are not portable to other
architectures, and there is no concept of tasks that can be sized or resized other than
functions. Users have no control over mapping and scheduling, and the model has no
specific means to change the data layout. Threads do allow other low-level optimiza-
tions.

The flexibility of threads provides programmers lots of control over task creation
and synchronization. Threads are well suited for coarse-grained tasks that need much
synchronization. Because threads are so low-level, programmers have many oppor-
tunities to optimize on for example synchronization.

2.4.1.2   MPI MPI [22] targets both distributed memory systems and shared
memory machines but is normally used for distributed memory. An application
consists of multiple processes that communicate with messages. MPI gives
much control due to the strong separation of communication and computation
and is not suitable for fine-grain parallelism.
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MPI is the typical example of a fragmented-view programming model. The user
is responsible for all communication and synchronization. Explicitly parallel algo-
rithms are needed, which result in algorithms being not easily portable to another
family of platforms or even other platforms of the same family. There is no way to
size MPI tasks other than changing the program. Data transfer and layout is explicit
but only on a high granularity. Communication and synchronization is explicit by
means of messages, and the user has no control over how processes are scheduled.
However, it allows other optimizations at a later stage. For example, MPI can be
mixed with OpenMP [2].

MPI is well suited for applications where the input and communication is static,
for example, a regular data structure that can be divided in regular coarse-grained
blocks that each are computed on different processors.

2.4.1.3   OpenMP OpenMP [2] comprises a set of compiler directives and a library.
Programmers can annotate sequential C, C++ or Fortran code for parallel execution on
a shared memory machine. It originally targeted structured parallelism in for loops,
but as of version 3.0, it also supports the concept of tasks, making it easier to walk
lists and trees and to deal with parallelism in recursive functions. OpenMP uses a re-
laxed consistency model in which each thread has its own temporary view of shared
variables.

OpenMP offers a global-view programming model. Algorithms remain general
as sequential algorithms are parallelized incrementally with compiler directives. Op-
enMP supports both task and data parallelism and focuses on parallelization of loops.
Granularity can be controlled manually by adjusting loop chunks in combination
with a scheduling type, such as . Communication and syn-
chronization is mostly implicit, and OpenMP does not provide anything to adjust the
data layout. It obstructs other optimizations as this can break the parallelization.

OpenMP is mainly used for parallelizing loops in an already existing sequential
program. The goal is to parallelize an application by adding only compiler directives
and without restructuring the application.

2.4.1.4   Cilk The language Cilk [23] allows programmers to write parallel divide-and-
conquer programs. It extends C and C++ with keywords such as spawn and sync. A
spawn in front of a function call creates a nonblocking function call that is executed
in its own thread and may spawn other (possibly recursive) functions. Multiple con-
secutive spawn function calls create parallelism in the program. The keyword sync
blocks the calling thread until the results of the spawned function calls are available.

Cilk offers a global view of the algorithm. Syntactically, a sequential divide-and-
conquer algorithm is very similar to a parallel divide-and-conquer algorithm. The
language is limited to divide-and-conquer parallelism. The model gives no control
over tasks. Programmers often control the granularity of the recursive task by man-
ually choosing between a sequential version or parallel version based on the size of
the data that needs to be processed.

Data is communicated to threads by using parameters of spawn function calls. The
model offers several ways to obtain more control over synchronization. For example,

static or dynamic
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the abort keyword aborts other spawned threads. A typical use case is a parallel
search where one thread finds an item and aborts the others. Another example is
the use of inlets that guarantee that results of spawned threads are treated atomically
with respect to the other spawned threads.

The Cilk system dynamically schedules threads and dynamically maps them to
hardware.

2.4 .1.5    Intel Threading Building Blocks ( TBB) Intel TBB [31, 16]
is a C++ library with a strong focus on data parallelism. It centers around the concept
of tasks instead of threads where tasks are performed on data in parallel. The library
provides scalability by means of recursive subdivision of data and tasks that perform
work stealing. It is flexible enough to allow building higher-level languages such as
concurrent collections [14, 7]. The library has three types of building blocks. It
contains built-in constructs like that can be composed recur-
sively, container classes that are thread-safe and locking classes (although the usage
of these is discouraged).

With the predefined constructs, TBB offers a global view, and ensures that al-
gorithms remain general. TBB is rather flexible and offers both task and data par-
allelism and good control over task creation and granularity. TBB does not offer
mechanisms to specify data layout, task mapping or data transfers, but it is possible
to control task scheduling. It is also possible to perform communication and synchro-
nization by hand, but it is not recommended. The model allows other optimizations
at a later stage.

TBB can be used to parallelize parts of an existing C++ program. It provides
parallelism at a level of abstraction that is above threads, with support for concurrent
container classes and reduction constructs. However, it is still a flexible framework
where programmers can also use lower-level constructs.

2.4.2 Hardware-Centric Programming Models

We further discuss these models per platform, according to the original platform
they have been designed for. We include here models for GPMCs, GPUs and
Cell/B.E. processor.

2.4.2.1 GPMC Programming Models The native parallelism model of GPMCs
is symmetrical multithreading as we deal with homogeneous architectures. GPMCs
target coarse-grain MPMD or SPMD workloads. Programmers cannot control sched-
uling and mapping; this is typically done by the OS. Memory consistency
and contention are other problems. Consistency problems may impact correctness,
and memory contention often limits performance.

Given the generic nature of GPMCs, many of the programming models they use
are actually at the border between hardware-centric and parallelism-centric – see, for
example, pthreads or Intel TBB. Therefore, we only include here Intel Array Building Blocks
(ArBB), and we mention that Intel TBB can also be seen as GPMC-centric, but due to its

parallel_reduce
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comprehensive parallelism constructs, we have chosen to list it among the parallelism-
centric models (see Section 2.4.1).

Intel Array Building Blocks ArBB [15] is a continuation of C for throughput
(Ct [12]) with some features from RapidMind. It extends C++ with a library,
JIT compiler and ArBB-specific constructs such as special for and while
statements. The programming model centers around special data containers
with support for regular data (dense or sparse) and irregular data. Through the use of
these data types, ArBB supports data and nested data parallelism. Operations, such
as reductions on these data types, are logically performed in a separate memory space
and garbage collected to obtain a deterministic programming model. ArBB targets
GPMCs using vector instructions and aims to be scalable when the number of cores
on a chip increases or vector instructions becomes wider.

There are special copy in and copy out instructions to logically define the data
in the ArBB memory space. This does not mean that the data is actually copied,
but from the programming model point of view, this results in a fragmented view of
algorithms. The users have no control of task granularity as the dynamic compilation
phase of ArBB operations takes care of this. Users have control over data layout by
specifying their data structures in a different way.

ArBB is well suited to parallelize data intensive parts with numerical computa-
tions in an existing C++ program.

2.4.2.2 GPGPU Programming Models Programming GPUs is based on of-
floading and fine-grain mass parallelism: the host CPU offloads the data-parallel
kernels as large collections (blocks) of threads on the GPU. GPUs are typically used
for highly data-parallel workloads, where hundreds to thousands of threads can com-
pute concurrently.

The most common parallelism models are SIMD/SIMT, with medium and low
granularity. For GPUs, the features with the highest impact on programmability are
the very large number of threads, the uncontrollable hardware-based mapping and
scheduling, the limited amount of fast memory, the different types of memories and
their large performance imbalance (orders of magnitude) and the different memory
spaces (host and device). Finally, since registers are dynamically partitioned between
running threads, there is a trade-off between using more registers per thread and more
threads with less local data stored in registers.

NVIDIA CUDA NVIDIA’s native programming model is called CUDA [25]. Based
on C, CUDA uses language extensions for separating device (i.e. GPU) from host
code and data, as well as for launching CUDA kernels. An advantage of NVIDIA
hardware and CUDA is that the application does not have to do vectorization, since
all cores have their own address generation units. All data parallelism is expressed
by using threads. The programmer has to explicitly group threads in thread blocks.
All threads in a block run on the same streaming multiprocessor. Thread blocks are
in turn grouped in a grid.
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While considered a fairly simple programming model, CUDA is still a low-level
tool and requires a lot of programmer’s insight and experience to claim impressive
performance results. With CUDA, one essentially explicitly subdivides the work
over the streaming multiprocessors and has to define correct and suitable grid confi-
gurations. In addition, the programmer has to consider many details such as memory
coalescing, the texture cache, etc.

CUDA allows for a global algorithm view, while kernels need to be separated (us-
ing special constructs) from the host code and explicitly launched. The model uses
kernels as the main concurrency unit for the overall application and data elements
for the SIMT/SIMD parallelization of the kernels themselves (finer granularity). The
application data layout is also specified in two layers: the data structures used by the
kernels are simply moved when and where they are needed, and for the kernels them-
selves, the data layout results from the access patterns of the threads. Mapping and
scheduling are performed by the hardware, and the data transfers from host to device
are explicit. Low-level optimizations are left to the user.

Stanford Brook/AMD Brook+ In terms of workloads, ATI GPUs are targeting
similar applications as NVIDIA’s processors: highly data-parallel applications, with
medium and low granularity. Therefore, choosing between the two becomes a matter
of performance and ease of programming. For high-level programming, ATI adopted
Brook, which was originally developed at Stanford [6]. ATI’s extended version is
called Brook [1]. In contrast to CUDA, Brook+ offers a programming model that is
based on streaming. Therefore, a paradigm shift is needed to port CPU applications
to Brook+, making this a more difficult task than porting applications to CUDA.

With Brook+, the programmer has to do the vectorization, unlike with NVIDIA
GPUs. Brook+ provides a feature called swizzling, which is used to select parts of
vector registers in arithmetic operations, improving readability.

Brook is a fragmented-view model, which uses explicit data transfers between
host and device and implicit data layouts and transfers on the device itself. The con-
currency units are kernels (coarse granularity) and stream elements (fine granularity).
These are both controllable through the code, using language constructs. Mapping
and scheduling are implicit. The model allows low-level optimizations.

In our experience, the high-level Brook+ model does not achieve acceptable per-
formance. The low-level CAL model that AMD also provides does, but it is difficult
to use. Recently, AMD adopted OpenCL as a high-level programming model not
only for their GPUs but also for the CPUs.

PGI Fortran and C Accelerator Programming Model  Using PGI Accelerator
compilers [32], programmers can accelerate applications by adding OpenMP-like
compiler directives to existing high-level Fortran and C programs. In this respect,
PGI’s programming model is similar to PathScale’s. Compute-intensive kernels are
offloaded to the GPU, using two levels of explicit parallelism. There is an outer forall
loop and an inner synchronous SIMD loop level.

Based on sequential code reuse, PGI Accelerator is a global-view model which
uses pragmas to separate the potential kernels (its main concurrency units). Data

+
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layouts and transfers are both implicit, as kernels are automatically offloaded and
parallelized. As the model uses CUDA as back end, most of the implementation
features – hardware-based mapping and synchronization, SIMT-based granularity
etc. – are inherited from CUDA. Still, the model does not allow hand-tuning or
architecture-specific optimizations on potential kernel code, as these interfere with
the ability of the compiler to automatically parallelize the kernel loops.

PathScale ENZO The PathScale compiler company [29] has recently released
a GPU software suite called ENZO. Although the programming model is device
independent, it initially targets NVIDIA GPUS and GPMCs, as well as hybrid com-
binations between these two. ENZO comes with its own hardware device drivers,
which focus on computing and do not support graphics. This way, PathScale expects
to achieve better performance than CUDA.

With ENZO, programmers annotate their code with directives to indicate which
code regions should be parallelized on the GPU. The C with annotations approach
is similar to the OpenMP and PGI Accelerator models, preserving their advan-
tages (e.g. portability, relatively high level and starting from sequential code), as
well as their drawbacks (e.g. important architecture-specific optimizations cannot
be expressed).

ENZO is a global-view model, using pragmas for kernels’ granularity control and
mapping/scheduling. It relies on hardware-based mapping and scheduling at kernel
level. Data transfers are automatically generated and performed, and there are no
special constructs for data layouts. To compensate for the lack of low-level opti-
mizations, the model uses preoptimized libraries, code generators and autotuning
to improve kernel performance.

2.4.2.3 Cell/B.E. Programming Models Cell/B.E. programming is based on
a simple  multithreading model: the PPE spawns threads that execute asynchronously
on SPEs, until interaction and/or synchronization is required. The communication
between the SPEs and the PPE is bidirectional and on demand. The difficulty of
programming the Cell/B.E. resides in its multiple layers of parallelism. The archi-
tecture is suitable for coarse-parallel workloads, allowing both SPMD and MPMD
parallelism; additionally, to achieve peak performance, the SPEs require SIMD par-
allelism.

Cell’s performance depends mainly on the way an application is partitioned and
on how the SPE s potential is leveraged. The platform’s features with the highest im-
pact on programmability are the heterogeneous cores, the intercore communication
and synchronization, the work and data distribution, the task scheduling (including
thread management), the vectorization for the PPE and especially for the SPEs and
the DMA operations.

IBM Cell SDK The SDK [5, 17] is the native Cell/B.E. programming model, de-
veloped to allow full flexibility for any workload. The model offers all the needed
constructs to define the PPE and the SPE codes and their interaction. With the SDK,
programmers design and develop the main control flow on the PPE (using simple C

’
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or C++ code) and the computation kernels for the SPEs (using C and special intrin-
sics for optimized processing). Both SPMD and MPMD executions are supported for
the SPE kernels. The SPE kernels are managed and coordinated by the PPE. Data
layout is implicit – the SPEs and the PPE collaborate in data transfers. There are no
special constructs for data layouts, as most of these are settled through programmed
DMA to the main memory.

To summarize, the SDK is a fragmented-view model, with kernels as main con-
currency units. Granularity is derived from code (no special constructs are provided),
and concurrency is achieved by running different threads on the SPEs. Data transfers
are all explicit and programmed by the user using DMAs so are synchronization and
communication, which use special channels, but still require code to manage the pro-
tocol. Mapping and scheduling are performed by the user via the PPE code. Low
-level optimizations (mostly vectorization and SIMD operations) are also explicitly
performed by the user.

ALF Accelerated Library Framework [13, 8] (ALF) provides a set of function-
s/APIs for the development of data-parallel applications following an SPMD model
on a (multilevel) hierarchical host-accelerators system (PPE-SPEs and/or hos t
Cell’s). In ALF, the host runs the control task and the accelerators run the compute
tasks. The same program runs on all accelerators at one level. ALF provides data
-transfer management, task management, double buffering support and data parti-
tioning. Further, the model uses three types of code: (i) accelerator-optimized code
(compute tasks optimized for a specific accelerator), (ii) accelerated libraries (kernels
and their interfaces, including the data management and buffering) and (iii) applica-
tions (user-defined aggregation of compute tasks).

ALF is also a fragmented-view model, with coarse, task-level granularity. The
model is hierarchical but focuses on SPMD parallelism. Kernels are defined by
the programmer as concurrency units. Kernel mapping and scheduling are solved
transparently by the runtime system; the same holds for communication and syn-
chronizations. Data layout can be preset for the SPMD tasks, and data transfers,
communication and synchronization are implicit. Mapping and scheduling are per-
formed by the runtime system. Optimizations are typically performed by the user
in the kernel code, but the model can use imported kernel from preoptimized li-
braries. Overall, ALF is an elegant high-level model which offers high productivity
and, provided with the right libraries, also very good performance.

Cell Superscalar CellSs (short for Cell Superscalar) is a pragmatic model, suit-
able for quick porting of existing sequential applications to the Cell/B.E. [4]. CellSs
uses a compiler and a runtime system. The compiler separates an annotated sequen-
tial application in two: a PPE part (the main application thread) and the SPEs part (a
collection of functions to be offloaded as SPE tasks). The runtime system maintains
a dynamic data dependency graph with all active tasks. When the PPE reaches a task
invocation, it requests the CellSs runtime to add a new task to the execution list.

When a task is ready for execution (i.e. all its data dependencies are satisfied
and there is an SPE available), the DMA transfers are transparently started (and
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optimized), and the task itself is started on the available SPE. Various scheduling
optimizations are performed to limit communication overhead. Additionally, CellSs
provides execution tracing, a mechanism included in the runtime system to allow
performance debugging by inspecting the collected traces.

When starting from suitable sequential code, CellSs is a very productive global
view model for first-order implementations of Cell applications. As mapping and
scheduling are dynamically optimized, the performance depends on the kernels’ per-
formance. As kernels are generated from sequential user-written functions, low-level
optimizations need to be performed by hand, and some manual (re)sizing might be
needed to avoid task imbalance.

Note that CellSs is a flavor of OmpSs for the Cell/B.E. – see Section 2.4.3 for
more details.

2.4.3 Application-Centric Programming Models

Finally, we discuss six application-centric models, which run on more than one fam-
ily of many-core processors. These models start with a clear design phase that trans-
forms a generic application into a parallel one. The implementation phase which
follows uses dedicated or generic back ends:

SP@ CE SP@CE [35, 24] is a generic model that targets streaming applications.
The SP@CE framework is composed from an application design front end, an inter-
mediate representation of the expanded application dependency graph and a runtime
system with various back ends. A SP@CE application is designed as a graph of com-
putation kernels, connected by data streams (the only data communication mecha-
nism). Kernels are sensitive to events, and the overall graph can be reconfigured
at runtime. This graph is expanded into a complete application dependency graph,
optimized and dynamically scheduled (using a job queue) on the hardware platform
by the runtime system.

The low-level code optimizations are left to the programmer, but optimized ker-
nels can be easily added to the already provided library of functions and/or reused.
Using SP@CE for streaming applications boosts productivity, but its restricted appli-
cability domain diminishes its portability. Performance-wise, both the SPE runtime
system and the SP@CE scheduler are competitive.

SP@CE is a fragmented-view model. Its design phase requires the applications
to be expressed in streaming fashion, using kernels and data streams. Parallelization
is based on components, which are typically kernels or agglomerations of kernels
which work on the same data instance from a stream. Components are controllable
at design time and can be resized and removed from or added to the application at
runtime. Data layout is implicit, as it is automatically generated by the streaming
discipline. Mapping and scheduling are solved dynamically by the runtime and
optimized for data reuse. Optimizations at kernel level are allowed and encouraged,
while data transfer optimizations are performed automatically.
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Sequoia Sequoia [10] is a model that requires the programmer to reason about a
parallel application focusing on memory locality. A Sequoia application is a tree-like
hierarchy of parametrized tasks; running tasks concurrently leads to parallelism. A
tree has two different types of tasks: inner nodes, which spawn children threads, and
leaf nodes, which run the computation itself. The task hierarchy has to be mapped
on the memory hierarchy of the target machine by the programmer. Tasks run in
isolation, using only their local memory, while data movement is exclusively done
by passing arguments (no shared variables). One task can have multiple implemen-
tation versions, which can be used interchangeably; each implementation uses both
application and platform parameters, whose values shall be fixed during the map-
ping phase. For the Cell/B.E. processor, all inner nodes run on the PPE, while the
leaf nodes are executed by the SPEs. The PPE runs the main application thread and
handles the SPE thread scheduling. Each SPE uses a single thread for the entire lifes-
pan of the application, and it continuously waits, idle, for the PPE to asynchronously
request the execution of a computation task.

As a generic model, Sequoia uses a fragmented algorithm view. Based on coarse-
level granularity SPMD parallelism, the model requires applications to be designed
using a divide-and-conquer approach. The granularity can be controlled at both com-
pile time and runtime. Data transfers are implicit. The special feature of the model is
its user-defined mapping and scheduling (by user file), which also results in implicit
yet automated data layouts. Optimizations are allowed as different versions of the
same kernel can be used interchangeably during the lifespan of the application.

Still, Sequoia has limited productivity, as the model is difficult to use for non
-divide-and-conquer applications. The application and machine decompositions are
independently reusable. The manual application-to-machine mapping offers a flex-
ible environment for tuning and testing application performance.

Charm++ and the Offload API Charm++ [19, 20] is an existing parallel pro-
gramming model adapted to run on accelerator-based systems. A Charm++ pro-
gram consists of a number of chares (i.e. the equivalents of tasks) distributed across
the processors in the parallel machine. These chares can be dynamically created and
destroyed at runtime and can communicate with each other using messages. For
the Cell/B.E. processor, a chare can offload work requests, which are computation-
intensive kernels to be accelerated by the SPEs. On the PPE side, the Offload API
manages each work request, coordinating data movement to/from the SPE, execu-
tion and completion notifications. Each SPE runs an SPE Runtime, which handles
the work requests it receives and optimizes their execution order.

Charm++ is a fragmented view-model, with coarse parallelism expressed by cha-
res. The model supports both SPMD and MPMD. The granularity is controlled at
design time, by defining the chares; data distribution is implicitly defined by the
data usage of these chares, and data transfers are automated. The dynamic mapping
and scheduling, together with the highly optimized data transfers, contribute to high
performance potential.
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OmpSs OmpSs [3] addresses the programmability of heterogeneous architectures
extending task-level parallelism of OpenMP with task dependencies. Based on prag-
mas, the model uses a source-to-source translator to separate the code in dedicated
kernels for the different components of the heterogeneous system. The runtime sys-
tem maintains a dynamic data dependency graph with all active tasks; furthermore,
the runtime system schedules tasks to execution, preserving and optimizing the de-
pendencies among tasks.

The system is based on incremental parallelization of a single-source code, al-
lowing step-by-step restructuring and optimization, and a separation of the imple-
mentation from the platform-specific details (which are, of course, encapsulated in
the runtime system). OmpSs is also portable, as the same code (typically, a sequen-
tial C/C++ or FORTRAN application with pragmas) runs on any machine where
the back end is ported. Programmers may choose to apply platform-specific opti-
mizations (i.e. design and implement platform-specific versions of the tasks), but
they may also choose to ignore them, preserving portability at the expense of perfor-
mance.

For heterogeneous systems, data transfers are transparently managed by the run
time system. Other type of optimizations include locality-aware scheduling policies
that reduce the amount of data that needs to be transferred or data prefetching. Ad-
ditionally, OmpSs provides execution tracing, a mechanism included in the runtime
system to allow performance analysis and debugging.

To summarize, OmpSs is a global-view model with coarse granularity, MPMD
(and SPMD) parallelism, implicit data transfers, pragmas for data distribution and
runtime-based dynamic mapping and scheduling. High-level optimizations (i.e. at
the level of the sequential code) are not encouraged, to prevent them from interfering
with the automated parallelization, but low-level (i.e. kernel-level) optimizations can
and should be applied to improve the overall performance of the application.

Pattern-Based Models: OPL Pattern-based models allow users to focus entirely
on application analysis. An application is built as a composition of nested patterns.
Once all these patterns are available for each platform, their composition, also a
pattern, leads to a complete application. Pattern languages are composed from dif-
ferent classes of patterns, applied at different stages of application design. First, the
high-level application structure is described in terms of structural patterns – its task
graph is mapped on a collection of task-graph patterns – and computational patterns.
Further, the tasks are mapped on existing computational patterns.

Once the parallel design of the application has been established, the algorithm
strategies patterns are required – essentially, these patterns identify and exploit the
application concurrency. The way the program and data are organized is specified by
implementation strategies patterns, which are ways of implementing each algorith-
mic pattern. Finally, the low-level parallelism support, matching both the application
and the target architecture, is included in the so-called parallel execution patterns.

To extend to new platforms, these languages have to implement/retarget the
platform-specific pattern implementations to the new platforms. Based on the as-
sumption that the number of patterns used often is limited to less than 20, the effort
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might not be very large. Overall, pattern-based models are very elegant, generic,
systematic and allow feedback loops and incremental redesign. However, the
first and last categories of patterns – the structural and the parallel execution – are not
trivial to apply. Structural mistakes can significantly affect both productivity and
performance.

One example of a pattern-based language is Our Pattern Language (OPL) [28],
developed at Berkeley. OPL has five categories of patterns: (i) structural patterns,
which describe the overall organization of the application and the way the compu-
tational elements that make up the application interact; (ii) computational patterns,
which describe the essential classes of computations that make up the application;  (iii)
algorithm strategies, which define the high-level strategies to exploit concurrency; (iv)
implementation strategies, which show how the program itself is organized and writ-
ten; and (v) parallel execution patterns, which support the execution itself. Details
on the way these patterns can be further detailed and used are presented in [18], but
real implementation details are currently missing; therefore, we consider that the
practical side of this solution is yet to be proven.

OpenCL OpenCL [26, 27] was proposed as a standard in 2008 (by the Khronos
group), aiming to tackle the platform diversity problem by proposing a common
hardware model for all multicore platforms. The user programs this virtual plat-
form, and the resulting source code is portable on any OpenCL compliant platform 2.

The OpenCL platform model consists of a host connected to one or more OpenCL
compute devices. A compute device is divided into multiple compute units (CUs);
CUs are divided into multiple processing elements (PEs); PEs perform the compu-
tations. Each PE can behave either as a SIMD or as a SPMD unit.  The main
difference between SIMD and SPMD is whether a kernel is executed
concurrently on multiple PEs each with its own data and a shared program
counter or each with its own data but its program counter.  In the SIMD case
all PEs execute a strictly identical set of instructions which cannot be always
true for the SPMD case due to possible branching in a kernel. Each OpenCL
application runs on a host according to the hosting platform models and
submits commands from the host to be executed on the PEs within a device.

An OpenCL program has two parts: the compute kernels that will be executed
on one or more OpenCL devices and a host program that defines the context for the
kernels and initiates and manages their execution.

Kernels can run either in order or out of order, depending on the parameters
passed to the system when submitting the kernel for execution. Events allow check-
ing the status of outstanding kernel execution requests and other runtime requests.
The execution domain of a kernel is defined by an dimensional computation do-
main. This lets the system know how large of a problem the user would like the
kernel to be applied to. Each element in the execution domain is a work item, and

2Currently (July 2010), these devices have hardware drivers and compiler back ends: ATI’s and NVIDIA’s
GPUs, AMD’s multicores, and the Cell/B.E.

N-

‘ ’
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OpenCL provides the ability to group together work-items into work-groups for syn-
chronization and communication purposes.

OpenCL defines a multilevel shared memory model, featuring four distinct mem-
ory spaces: private, local, constant and global. Depending on the hardware memory
subsystem, different memory spaces are allowed to be collapsed together. Private
memory is memory that can only be used by a single CU. This is similar
to registers in a single CU or a single CPU core. Local memory is memory
that can be used by the work-items in a work-group. This is similar to the local data
share that is available on the current generation of AMD GPUs. Constant memory
is memory that can be used to store constant data for read-only access by all of the
CUs in the device during the execution of a kernel. The host processor
is responsible for allocating and initializing the memory objects that reside in this
memory space. This is similar to the constant caches that are available on AMD
GPUs. Finally, global memory is memory that can be used by all the CUs
on the device. This is similar to the off-chip GPU memory that is available on AMD
GPUs.

OpenCL supports two main programming models: the data-parallel programming
model and the task parallel programming model. Hybrids of the two models are
allowed, though the driving one remains the data parallel. OpenCL maps data to
work-items and work-items to work-groups. The data-parallel model is implemented
in two possible ways. The first or explicit model lets the programmer define both the
number of work-items to execute in parallel and how work-items are divided among
work-groups. The second (implicit) model requires the programmer to specify the
number of work-items but OpenCL to manage the division into work-groups.

In summary, OpenCL provides a fragmented view of the algorithm (it needs to
express it in kernels). The model supports both data and task parallelism, at virtually
any granularity set by the programmer. Mapping is done in two steps: it is explicit be-
tween the application and the virtual OpenCL platform and implicit (i.e. performed
by the driver) between the OpenCL platform and the real hardware. Following this
final mapping, scheduling is automatic and transparent to the user. OpenCL pro-
vides no data distribution constructs – all data transfers and mappings are done by
coding. However, there are various efforts to improve on OpenCL’s front end, and it
is expected that data distribution would be addressed with priority.

Overall, despite its CUDA resemblance, we believe OpenCL is an application-
centric model because of its approach to parallelization: while CUDA programmers
need to think of their application as mapping on the NVIDIA hardware (thus ex-
pressing the code in platform-specific elements), OpenCL allows its users to express
the application in parallelism units. In practical terms, for the moment, these par-
allelism items, as given by the OpenCL model, and the hardware parallelism, as
given by the NVIDIA platforms, are very similar. However, OpenCL has multiple
opportunities to raise the level of abstraction (i.e. by tuning the underlying virtual
platform), while CUDA, in its current approach, is inseparable from the machine it
runs on.
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2.5 AN OVERVIEW OF MANY-CORE PROGRAMMING MODELS

In this section, we present the overall evaluation of all surveyed programming mod-
els. For this comprehensive evaluation, we use the features described in Section 2.3.3.
Our results are presented in the form of several tables, each focused on one class of
features: usability, design-level support and implementation-level support. Finally,
we add a brief qualitative comparison of the model encountered so far from the per-
spective of their impact on programmability.

2.5.1 A Pragmatic View on Usability

Table 2.3 presents an overview of the practical, usability-related features of the sur-
veyed models. Class specifies the class of model: parallelism-centric, hardware
-centric or application-centric (P, H and A, respectively). Platform indicates the
family of platform for which the model is available. Starts from describes the start-
ing point the model takes for solving a problem: when a model starts from an Algo-
rithm, programmers need to design a model-specific parallelization; when a model
starts from any type of Sequential code, the code needs to be available; finally,
models that start from application specification require, in theory, only a high-level
description of the application functionality. The column Action lists the main ac-
tions required for parallelization in the studied model, and Performed by specifies
who is doing these actions. Finally, Implementation describes the components
used to build the programming model: language, library, preprocessor, compiler
and runtime (L, lib, pP, C and RT, respectively); NA stands for Not Applicable.

Based on the results presented in the previous table, we make the following obser-
vations:

1. The starting point for most models is either an algorithm or simply sequential
source code; a notable exception is OPL, which uses real application specifi-
cation.

2. The user is always responsible for the design phase of the complete parallel
application, while lower-level parallelization can be done/aided by tools.

3. In terms of usability, the surveyed models differ in the action the user must
perform to design a parallel solution that matches the problem and the plat-
form.

2.5.2 An Overview of Design-Support Features

Table 2.4 presents an overview of the design-support features offered by the pro-
gramming models under survey. The column Algo view shows whether the model
provides a global or fragmented view of the algorithm (see Section 2.3.3). Paral-
lelization support shows how does the model expose parallelism while the, Par-
allelism column lists the types of parallelism the programming model supports.
The Granularity column lists the granularity of the parallelism, and the Concurrency
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Table 2.3 An overview of the usability-related features of the programming models.

Model Type Supported Starts from Action Performed Implementation
platform(s) by

Threads P GPMCs,Cell Algorithm Specific parallelization User L,lib
MPI P GPMCs,Cell Algorithm Specific parallelization User lib,RT
OpenMP P GPMCs,Cell Sequential code Loop parallelization User,compiler lib,C
Cilk P GPMCs Sequential code Recursive division of work Runtime L,C,RT
TBB H GPMCs Algorithm Loop parallelization, User,compiler C,RT

Data clustering (containers) User

ArBB H GPMCs Algorithm Data clustering User L,RT

CUDA H GPUs Algorithm Kernel isolation User L,lib,C
(NVIDIA) Sequential kernel code Fine-grain parallelization User

Brook+ H GPUs Algorithm Kernel isolation User L,lib,C
(AMD/ATI) Sequential kernel code Fine-grain parallelization User

Data clustering (in streams) User
PGI accelerate H GPUs Sequential code Kernel isolation User pP,C

(NVIDIA) Sequential kernel code Fine-grain parallelization Compiler
ENZO H GPU+GPMC Sequential code Kernel isolation User pP,C

Sequential kernel code Fine-grain parallelization Generator

SDK H Cell Algorithm Specific parallelization User lib,C
ALF H Cell+GPMC Algorithm Task isolation User lib,C,RT,

Sequential task code Fine-grain parallelization User lib
CellSs H Cell Sequential code Task isolation User lib,RT

SP@CE A Cell,GPMCs Algorithm Filter,streams isolation User pP
Sequential filter code SPMD parallelization RT

Sequoia A Cell,GPMCs Algorithm Task definition and mapping User L,C
Task interconnection Compiler

Charm++ A Cell,GPMCs Algorithm Chares definition/isolation User lib,RT
Chare code SPMD parallelization User

OmpSs A Cell,GPMCs,GPUs Sequential code Task isolation User lib,RT
Task code Parallelization User

OPL A [any] Application Identify patterns User NA
(pattern-based) Patterns Pattern implementation User NA
OpenCL A Cell,GPMCs, Algorithm Kernel isolation User lib,C

GPUs Sequential kernel code Fine-grain parallelization User

units lists the name of the concurrency units each model uses, while the Control
column specifies if and how does a model allow the user to control granularity at
compile time or at runtime.

Finally, Data distribution specifies if and how the data distribution needed for
an application is specified in a programming model. If a model offers no explicit
data layout primitives, we list none in this column. For models with explicit data
distributions (i.e. models where programmers need to explicitly define the data lay-
out), we differentiate the models by the way the data layout can be specified.

Our results can be summarized in the following observations:

1. The diversity of the parallelization support values shows that multiple par-
allel solutions can be designed for the same application, by simply choosing a
different parallelization dimension: some models focus on computation-based
parallelization (see MPI, Cilk or OmPSs), while others focus on data-driven
parallelization (see ArBB or Sequoia).

2. The concurrency units are fairly diverse, ranging for one data collection ele-
ment (for models like OpenMP and CUDA) to whole functions (for threads
and OmPSs) and tasks (MPI).

3. The granularity control is not strictly defined by any of the models – rather,
they seem to rely on the underlying hardware for finding out its limitations.
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4. Several models (SP@CE, Sequoia and Cilk) offer higher-level parallelism
(streaming and divide-and-conquer). Most of the models that work at coarse
granularity allow both SPMD and MPMD parallelism. Models that work at
fine granularity focus on SIMD and/or SIMT parallelism and provide no sup-
port (other than the typical offload) for coarser parallelism.

5. The data distribution features of programming models are difficult to evaluate,
as they are highly dependent on the chosen parallelism, on the assumed mem-
ory model (shared or distributed) and on the granularity of the concurrency
units. Note, however, that most languages do not have explicit constructs for
data layout (in the traditional way of HPF) but allow for simple data distri-
bution techniques, either explicitly (indicated by the programmers using prag-
mas) or implicitly (generated by the SPMD/MPMD parallelization).

Overall, we conclude that there is significant overlap in the way various models
approach parallel application design, but there are no two models, from the one pre-
sented here, that match completely. We also note that in terms of parallel design,
application-centric models can offer more flexibility and higher-level abstractions
than the hardware-centric ones (see Sequoia and OPL). An exception is OpenCL
which, despite its application-centric view, is a low-level, fragmented model that
requires significant algorithmic transformation in the design phase.

2.5.3 An Overview of Implementation-Support Features

Table 2.5 presents an overview of the implementation-support features that the stud-
ied models offer. Mapping indicates how do programming models map the con-
currency units of the parallel solution on the hardware platform. The notation is as
follows: I and E stand for implicit and explicit, respectively; unitA:unitB indicates
what concurrency unit is mapped on what hardware parallelism unit. For example,
E→ processes:nodes means that the model requires explicit mapping of processes

to nodes. Scheduling indicates how are the parallel units scheduled for concurrent
execution. Here, OS stands for the operating system, HW indicates mapping
done by a hardware engine, RT indicates dynamic mapping at runtime, C indi-
cates static mapping at compile time and user indicates that mapping is left to be
done explicitly by the user. The Data transfer column indicates whether the data
transfers have to be programmed or they are generated from the parallel design and
the implicit/explicit mapping. The Comm/Sync mentions how are the communi-
cation and synchronization among the concurrency units performed: I (implicit) is
used when the model generate the required code, while E (explicit) is used to mark
that users need to explicitly address the issue. Finally, Optimizations includes
information on how models address low-level optimizations.

The evaluation of the implementation support for the surveyed programming mod-
els leads us to the following observations:

1. Mapping and scheduling support are very hardware dependent. Therefore, the
models map concurrency units with some sort of abstraction of an execution
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Table 2.5 An overview of the implementation-support features that the models under
survey offer (see Section 2.3.3 for more explanations).

Model Mapping Scheduling Data transfer Comm/Sync Optimizations

Threads E→ functions:threads OS NA (shared memory) E/E Allows
MPI E→ processes:nodes OS Programmed E/E Allows
OpenMP I→ iteration:threads (C) OS NA (shared memory) I/I Limits
Cilk I→ tasks:threads (RT) OS NA (shared memory) E/E Limits
TBB I→ tasks:threads (RT) OS NA I/I Allows

ArBB I→ items:threads (RT) OS Generated I/E Limits

CUDA I→ elements:threads HW Programmed Host-device/E Allows
Brook+ I→ elements:threads HW Generated Host-device/E Limits
PGI I→ tasks:accelerators RT Generated I/I Limits
ENZO I→ tasks:accelerators RT Generated I/I Limits

SDK E→ kernels:threads User Programmed E/E Allows
ALF E→ kernels:threads RT Generated I/I Supports
CellSs I→ kernels:threads RT Generated I/I Limits

SP@CE E→ components:threads RT Generated I/I Allows
Sequoia E→ tasks:threads User Generated I/I Limits
Charm++ I→ chares:nodes RT Programmed E/E Supports
OmpSs I→ kernels:threads RT Generated I/I Limits
OPL E→ patterns:threads User Generated Patterns Preoptimized
OpenCL E→ elements:threads HW Programmed E/I Supports

unit (typically a thread or a processor), allowing scheduling to work more
or less independently with a unique abstraction. The exception is the Cell
SDK – which requires the users to map and schedule the threads on the cores
explicitly.

2. The models auto-generate the bulk data transfers inferred by mapping and
scheduling – the exceptions are the native programming models (CUDA, SDK
and OpenCL) which require these transfers to be explicitly programmed.

3. Communication and synchronization show the largest variety among the stud-
ied models: some models choose to leave these operations to be explicitly
performed by the user, while others (especially higher-level models) prefer
to hide these error-prone operations and generate them implicitly. Note that
some many-core architectures (like the GPUs and the Cell) use multiple syn-
chronization layers, with different performance consequences; for those, ap-
plications that require fine-grain synchronization (like linked lists or graph
traversals) often need explicit synchronization and communication tricks, or
they simply require different hardware targets.

4. Low-level optimizations are not really part of the programming model con-
cerns – they are usually left to the user and/or to the compiler without any
incentive from the programming model itself. The only minor exception is
ENZO, which includes kernel code generators and auto tuning as part of the
model.
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2.5.4 Impact on Programmability

Table 2.6 presents a qualitative view on the way the models under study influence
portability, performance and productivity and what is their impact on platform porta-
bility. The estimation is based on the assessments given by the programming mod-
el designers, the inspection and benchmarking of available sample codes (released
as part of the models themselves), and independent application studies using
various models and developed by medium and expert programmers (e.g. studies
like [34, 36, 33]).

Table 2.6 A qualitative comparison of the surveyed programming models. For each
feature, we use one of five qualifiers, ++ (very good) to −− (very bad).

Model Productivity Portability Performance Programmability
impact

Threads −− −− + −
MPI −− + + −
OpenMP + ∼ + +
Cilk + − + ∼
TBB ∼ − + −

ArBB + ∼ + +

CUDA ∼ − ++ ∼
Brook+ + ∼ ∼ ∼
PGI accelerate ∼ + ∼ +
ENZO + − + +

SDK −− −− ++ −−
ALF + ∼ + ∼
CellSs ++ + ∼ +

SP@CE + ∼ + +
OmpSs ++ + ∼ ++
Sequoia ∼ + + ∼
Charm++ ∼ ∼ + ∼
OPL (pattern-based) + ++ ? ++
OpenCL ∼ ++ ++ +

This qualitative analysis leads us to the following observations:

1. None of the models we have studied seem to deteriorate the achievable per-
formance of the (application, platform) pair. Even the usual suspects – the
application-centric models, built for platform-agnostic parallel application de-
velopment – allow users to tweak the code (or use preoptimized code) and
gain the performance from low-level, hardware-specific optimizations.

2. In terms of productivity, some of the models are able to simplify the job of
the programmer, while others make it slightly more difficult (e.g. SDK, TBB
or even OpenCL), as they require significant changes at the algorithm level in
order to make use of the abstractions that the programming model uses.

3. Most models do not score high for portability. The best cases are OPL (which
has no real implementation, and therefore it is only evaluated on paper) and
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OpenCL (which enables portability by using common platform models as
virtual intermediate hardware) – these two models promise to be portable by
construction. Models that score + are models based on runtime which are (or
could be) easily ported on other architectures – this is the case of OpenMP,
OmPSs and Sequoia. The other models, scoring ∼ and below, might require
not only changes in the back end of the programming model but also sig-
nificant changes for the application parallel design or implementation. These
models are not considered portable.

4. In terms of programmability impact, the few models which score below ∼
should be avoided (unless very high performance is the overall goal of the
application) – these are threads, MPI, SDK and TBB. Other models, such as
CUDA, Brook, Sequoia, Charm++ and ALF are usable, but their programmability
boost is not significant. Languages like OpenMP, ENZO, OmPSs and CellSs of-
fer a significant boost to platform programmability, but they are all based on
available sequential code – if such code is not available, writing it might be-
come an expensive detour. OpenCL is a good alternative in case an application
needs to be developed from scratch.

2.6 CONCLUDING REMARKS

Many-core processors are here to stay, bringing along a huge demand for parallel
applications. The software community is (suddenly) faced with a large problem: vir-
tually every application will have to run on a parallel machine, rather sooner than
later. Trying to use native programming models for each platform or even each fam-
ily of platforms might deliver the expected performance, but it will never deliver
the required productivity. The alternative solution is to use high-level many-core
programming models that are able to increase programmers’ productivity and ap-
plications’ portability, without affecting the achievable platform performance. Such
models have a positive impact on platform programmability, ultimately leading to
quicker many-core adoption and faster application development.

In this chapter, we presented a comprehensive set of many-core programming
models belonging to three classes: parallelism-centric, hardware-centric and appl-
ication-centric. For each class, we have presented several instances, briefly describ-
ing their architecture, parallelism model and functionality. Furthermore, to provide
a clear overview of all these models, we focused on three categories of features: us-
ability, design-support features and implementation-support features. We provide a
clear overview of these features for all surveyed models and discuss our findings for
each category of features. We show that the diversity of models covers a lot of design
cases, but we were unable to find a model that excels for all categories. Therefore,
choosing the matching platform(s) and programming model(s) remains an important
first step when a new application needs a many-core port.

Finally, we have summarized all the results of our analysis in a qualitative anal-
ysis, aiming to determine how do these models respond to the challenges of porta-
bility, productivity and performance; our end goal was to determine how do these
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models impact platform programmability. We see that none of the studied models
significantly deteriorate the achievable performance of the (application, platform)
pair. However, only some of the models are able to simplify the job of the program-
mer, while others make it slightly more difficult (e.g. SDK, TBB or even OpenCL).
In terms of portability, only OPL and OpenCL are portable by construction; others
score reasonably well due to portable back ends. In terms of programmability impact,
low-level programming models score pretty bad (but compensate with performance),
models based on sequential code are very productive, and OpenCL is a good alter-
native in case an application needs to be developed from scratch.

Overall, we conclude that available programming models cover a large variety of
feature and combinations thereof – in fact, we could not find a desirable combination
of features that is not yet covered by an existing model. In this context, building
new programming models from scratch does not seem entirely justified – we be-
lieve a more focused approach toward improving existing models (e.g. OpenCL,
OPL, ENZO or Sequoia), port and runtime systems, compilers, and debugging/
profiling/analysis tools will give better results in the near future.
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CHAPTER 3

LOCK-FREE CONCURRENT DATA
STRUCTURES

Daniel Cederman, Anders Gidenstam, Phuong Ha,   Sundell,
Marina Papatriantafilou and Philippas Tsigas

Algorithms + Data Structures = Programs
—Niklaus Wirth

3.1 INTRODUCTION
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Concurrent data structures are the data sharing side of parallel programming. Data struc-
tures not only give the means to the program to store data but also provide operations 
to the program to access and manipulate these data. These operations are implemented 
through algorithms that have to be efficient. In the sequential setting, data  structures 
are crucially important for the performance of the respective computation. In the 
parallel programming setting, their importance becomes more crucial because of the 
increased use of data and resource sharing for utilizing parallelism. In parallel pro-
gramming, computations are split into subtasks in order to introduce parallelization 
at the control/computation level. To utilize this opportunity of concurrency, subtasks 
share data and various resources (dictionaries, buffers and so forth). This makes 
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it possible for logically independent programs to share various resources and data
structures. In a subtask that wants to update a data structure, say, add an element into
a dictionary, that operation may be logically independent of other subtasks that use
the same dictionary.

Concurrent data structure designers are striving to maintain consistency of data
structures while keeping the use of mutual exclusion and expensive synchronization
to a minimum, in order to prevent the data structure from becoming a sequential
bottleneck. Maintaining consistency in the presence of many simultaneous updates
is a complex task. Standard implementations of data structures are based on locks in
order to avoid inconsistency of the shared data due to concurrent modifications. In
simple terms, a single lock around the whole data structure may create a bottleneck
in the program where all of the tasks serialize, resulting in a loss of parallelism
because too few data locations are concurrently in use. Deadlocks, priority
inversion and convoying are also side effects of locking. The risk for deadlocks
makes it hard to compose different blocking data structures since it is not always
possible to know how closed source libraries do their locking. It is worth noting that

data structures. GPUs prior to the NVIDIA Fermi architecture do not have writable
caches, so for those GPUs, repeated checks to see if a lock is available or not require
expensive repeated accesses to the GPU’s main memory. While Fermi GPUs do
support writable caches, there is no guarantee that the thread scheduler will be fair,
which can make it difficult to write deadlock-free locking code. OpenCL explicitly
disallows locks for these and other reasons.

Lock-free implementations of data structures support concurrent access. They do
not involve mutual exclusion and make sure that all steps of the supported operations
can be executed concurrently. Lock-free implementations employ an optimistic con-
flict control approach, allowing several processes to access the shared data object at
the same time. They suffer delays only when there is an actual conflict between oper-
ations that causes some operations to retry. This feature allows lock-free algorithms
to scale much better when the number of processes increases.

An implementation of a data structure is called lock-free if it allows multiple pro-
cesses/threads to access the data structure concurrently and also guarantees that at
least one operation among those finishes in a finite number of its own steps regard-
less of the state of the other operations. A consistency (safety) requirement for
lock-free data structures is linearizability [45], which ensures that each operation on
the data appears to takeeffect instantaneously during its actual duration and the effect
of all operations is consistent with the object’s sequential specification. Lock-free
data structures offer several advantages over their blocking counterparts, such as be-
ing immune to deadlocks, priority inversion and convoying, and have been shown to
work well in practice in many different settings [92, 84]. They have been included
in Intel’s threading building blocks framework [75], the NOBLE library [84] and
the Java concurrency package [57] and will be included in the forthcoming parallel
extensions to the Microsoft . NET framework [69]. They have also been of interest
to designers of languages such as C++ [12] and Java [57].

in graphics processing units (GPUs), locks are not recommended for designing concurrent

,
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This chapter has two goals. The first and main goal is to provide a sufficient
background and intuition to help the interested reader to navigate in the complex
research area of lock-free data structures. The second goal is to offer the programmer
familiarity to the subject that will allow her to use truly concurrent methods.

The chapter is structured as follows: First we discuss the fundamental and com-
monly–supported synchronization primitives on which efficient lock-free data struc-
tures rely. Then we give an overview of the research results on lock-free data struc-
tures that appeared in the literature with a short summary for each of them. The
problem of managing dynamically allocated memory in lock-free concurrent data
structures and general concurrent environments is discussed separately. Following
this is a discussion on the idiosyncratic architectural features of graphics processors
that are important to consider when designing efficient lock-free concurrent data
structures for this emerging area.

3.2 SYNCHRONIZATION PRIMITIVES

To synchronize processes efficiently, multi-/many-core systems usually support cer-
tain synchronization primitives. This section discusses the fundamental synchroniza-
tion primitives, which typically read the value of a single memory word, modify the
value and write the new value back to the word atomically.

3.2.1 Fundamental Synchronization Primitives

The definitions of the primitives are described in Figure 3.1, where x is a memory
word, v,old and new are values and op can be operators add, sub, or, and and xor.
Operations between angle brackets 〈〉 are executed atomically.

Figure 3.1 Synchronization primitives.

Note that there is a problem called the ABA problem that may occur with the 
Compare-And-Swap (CAS) primitive. The reason is that the CAS operation cannot 
detect if a variable was read to be A and then later changed to B and then back to 
A by some concurrent processes. The CAS primitive will perform the update even 

TAS(x) /* test-and-set, init: x← 0 */
〈oldx← x; x← 1; return oldx; 〉

FAO(x, v) /* fetch-and-op */
〈oldx← x; x← op(x, v); return oldx; 〉

CAS(x, old, new) /* compare-and-swap */
〈 if(x = old) {x← new; return(true); }

else return(false); 〉

LL(x) /* load-linked */
〈return the value of x so that
it may be subsequently used
with SC 〉

SC(x, v) /* store-conditional */
〈 if (no process has written to x
since the last LL(x)) {x← v;

return(true)};
else return(false); 〉
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3.2.2 Synchronization Power

The primitives are classified according to their synchronization power or consensus
number [42], which is, roughly speaking, the maximum number of processes for
which the primitives can be used to solve a consensus problem in a fault tolerant
manner. In the consensus problem, a set of n asynchronous processes, each with a
given input, communicate to achieve an agreement on one of the inputs. A primitive
with a consensus number n can achieve consensus among n processes even if up to
n− 1 processes stop [93].

According to the consensus classification, read/write registers have consensus
number 1, that is, they cannot tolerate any faulty processes in the consensus setting.

3.2.3 Scalability and Combinability

As many-core architectures with thousands of cores are expected to be our future
chip architectures [5], synchronization primitives that can support scalable thread
synchronization for such large-scale architectures are desired. In addition to synchro-
nization power criterion, synchronization primitives can be classified by their scala-
bility or combinability [55]. Primitives are combinable if their memory requests to
the same memory location (arriving at a switch of the processor-to-memory intercon-
nection network) can be combined into only one memory request. Separate replies
to the original requests are later created from the reply to the combined request (at
the switch). The combining technique has been implemented in the NYU Ultracom-
puter [30] and the IBM RP3 machine [73] and has been shown to be a scalable
technique for large-scale multiprocessors to alleviate the performance degradation
due to a synchronization hot spot . The set of combinable primitives includes TAS,
FAO (where op is an associative operation or boolean operation), blocking full–empty
bits [55] and nonblocking full–empty bits [36]. For example, two consecutive requests
fetch-and-add(x, a) and fetch-and-add(x, b) can be combined into a single request
fetch-and-add(x, a + b). When receiving a reply oldx to the combined request
fetch-and-add(x, a+ b), the switch, at which the requests were combined, creates a
reply oldx to the first request fetch-and-add(x, a) and a reply (oldx+ a) to the
successive request fetch-and-add (x, b).

though this might not be intended by the algorithm’s designer. The Load-Linked/
Store-Conditional (LL/SC) primitives can instead detect any concurrent update on 
the variable between the time interval of an LL/SC pair, independent of the value of 
the update.

There are some primitives with consensus number 2 (e.g. test-and-set (TAS) 
and fetch-and-op (FAO)) and some with infinite consensus number (e.g. CAS and 
LL/SC). It has been proven that a primitive with consensus number cannot imple-
ment a primitive with a higher consensus number in a system of more than pro-
cesses [42]. For example, the TAS primitive, whose consensus number is two, cannot 
implement the CAS primitive, whose consensus number is unbounded, in a system 
of more than two processes. 

‘ ’

n
n
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The CAS primitives are not combinable since the success of a CAS(x, a, b)
primitive depends on the current value of the memory location x. For m-bit locations
(e.g. 64-bit words), there are 2m possible values and therefore, a combined request
that represents k CAS(x, a, b) requests, k < 2m, must carry as many as k different
checking-values a and k new values b. The LL/SC primitives are not combinable
either since the success of an SC primitive depends on the state of its reservation bit
at the memory location that has been set previously by the corresponding LL prim-
itive. Therefore, a combined request that represents k SC requests (from different
processes/processors) must carry as many as k store values.

3.2.4 Multiword Primitives

Although the single-word hardware primitives are conceptually powerful enough to
support higher-level synchronization, from the programmer’s point of view, they are
not as convenient as multiword primitives. The multiword primitives can be built in
hardware [53, 16, 11] or in software (in a lock-free manner) using single-word hard-
ware primitives [3, 20, 34, 51, 71, 79]. Sun’s third-generation chip-multithreading
(CMT) processor called Rock is the first processor supporting transactional memory
in hardware [11]. The transactional memory is supported by two new instructions
checkpoint and commit, in which checkpoint denotes the beginning of a transaction
and commit denotes the end of the transaction. If the transaction succeeds, the mem-
ory accesses within the transaction take effect atomically. If the transaction fails, the
memory accesses have no effect.

Another emerging construct is the advanced synchronization facility (ASF), an
experimental AMD64 extension that AMD’s Operating System Research Center de-
velops to support lock-free data structures and software transactional memory [16].
ASF is a simplified hardware transactional memory in which all memory objects
to be protected should be statically specified before transaction execution. Proces-
sors can protect and speculatively modify up to eight memory objects of cache line size.
There is also research on new primitives aiming at identifying new efficient and pow-
erful primitives, with the nonblocking full/empty bit (NB-FEB) being an example
that was shown to be as powerful as CAS or LL/SC [36].

3.3 LOCK-FREE DATA STRUCTURES

The main characterization on which one can classify the various implementations
of lock-free data structures available in the literature is what abstract data type
that it intends to implement. For each abstract data type, there are usually numerous
implementations, each motivated by some specific targeted purposes, where each
implementation is characterized by the various properties that it fulfills to different
amounts. As many of these properties are orthogonal, for each specific implementa-
tion, one or more properties are often strengthened at the cost of some others. Some
of the most important properties that differentiate the various lock-free data structure
implementations in the literature are:

,
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Due to the complexity of designing lock-free data structures,
it might not be possible to support all operations normally associated with a certain
abstract data type. Hence, some algorithms omit a subset of the normally required
operations and/or support operations with a modified semantics.

Whether an operation can terminate in a time (without consider-
ing concurrency) that is linearly or logarithmically related to, for example, the size
of the data structure, can have significant impact on performance. Moreover, whether
the maximum execution time can be determined at all or if it can be expected in
relation to the number of concurrent threads is of significant importance to time-critical
systems (e.g. real-time systems).

Scalability means showing some performance gain with increasing num-
ber of threads. Synchronization primitives are normally not scalable in themselves;
therefore it is important to avoid unnecessary synchronization. Israeli and Rappoport
[51] have defined the term disjoint-access parallelism to identify algorithms that do
not synchronize on data that is not logically involved simultaneously in two or more
concurrent operations.

In situations where it can be difficult to determine the maximum
number of items that will be stored in a data structure, it is necessary that the data
structure can dynamically allocate more memory when the current capacity is about
to be exceeded. If the data structure is based on statically allocated storage, capacity
is fixed throughout the lifetime of the data structure.

Some algorithms can guarantee an upper bound of memory re-
quired, while some others can transiently need an indefinite amount depending on
the concurrent operations’ invocation order and can thus not be deterministically
determined.

Due to the limitations (e.g. consensus number) of the
chosen synchronization primitives, some or all operations might not allow more than
a certain number of concurrent invocations.

Contemporary multicore and many-core systems typi-
cally only support single-word CAS or weak and nonnestable variants of LL/SC (cf.
Section 3.2). However, many algorithms for lock-free data structure depend on more
advanced primitives as, for example, double-word CAS (called e.g. DCAS or CAS2),
ideal LL/SC or even more complex primitives. These algorithms then need (at least) one
additional abstraction layer for actual implementation, where these more advanced
primitives are implemented in software using another specific algorithm. The LL/SC
primitives can be implemented, for example, by CAS [51, 3, 70, 52, 65]. Multiword
CAS (called e.g. MWCAS or CASN) can be implemented, for example, by CAS [38,
82] or by LL/SC [51, 3, 79, 71, 34].

Some algorithms try to avoid the ABA problem by the means of, for example,
version counters. As these counters are bounded and can overflow, there is a potential
risk of the algorithm to actually perform incorrectly and possibly cause inconsisten-
cies. Normally, by design this risk can be kept low enough that it fits for practical
purposes, although the risk increases as the computational speed increases. Often,
version counters can be removed altogether by the means of proper memory man-
agement.

Semantic fulfillments

Time complexity

Scalability

Dynamic capacity

Space complexity

Concurrency limitations

Synchronization primitives

Reliability
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Some algorithms only work together with cer-
tain memory allocators and reclamation schemes, specific types (e.g. real time) of
system-level process scheduler, or require software layers or semantic constructions
only found in certain programming languages (e.g. Java).

3.3.1 Overview

The following sections include a systematic overview of the research result in the
literature. For a more in-depth look and a case study in the design of a lock-free data
structure and how it can be used in practice, we would like to refer the reader to our
chapter in GPU Computing Gems [10], which describes in detail how to implement
a lock-free work-stealing deque and the reasoning behind the design decisions.

3.3.2 Producer–Consumer Collections

A common approach to parallelizing applications is to divide the problem into sepa-
rate threads that act as either producers or consumers. The problem of synchronizing
these threads and streaming of data items between them can be alleviated by utiliz-
ing a shared collection data structure.

Bag The bag abstract data type is a collection of items in which items can be
stored and retrieved in any order. Basic operations are Add (add an item) and TryRe-
moveAny (remove an arbitrary chosen item). TryRemoveAny returns the item re-
moved. Data structures with similar semantics are also called buffer, unordered col-
lection, unordered queue, pool and pile in the literature.

All lock-free stacks, queues and deques implicitly implements the selected bag
semantics. Afek et al. [1] presented an explicit pool data structure. It is lock-free,
although not linearizable, utilizes distributed storage and is based on randomization
to establish a probabilistic level of disjoint-access parallelism.

In [26, 27] a data structure called flat sets was introduced and used as a building
block in the concurrent memory allocation service. This is a bag-like structure that
supports lock-free insertion and removal of items as well as an interobject opera-
tion, for moving an item from one flat set to another in a lock-free and linearizable
manner, thus offering the possibility of combining data structures.

In [83] a lock-free bag implementation is presented; the algorithm supports mul-
tiple producers and multiple consumers, as well as dynamic collection sizes. To
handle concurrency efficiently, the algorithm was designed to optimize for disjoint
- access parallelism for the supported semantics.

Stack The stack abstract data type is a collection of items in which only the most
recently added item may be removed. The latest added item is at the top. Basic
operations are Push (add to the top) and Pop (remove from the top). Pop returns
the item removed. The data structure is also known as a last-in, first-out or LIFO
buffer.

Treiber presented a lock-free stack (aka IBM freelist) based on linked lists,
which was later efficiently fixed from the ABA problem by Michael [64]. Also
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Valois [95] presented a lock-free implementation that uses the CAS atomic primitive.
Hendler et al. [41] presented an extension where randomization and elimination are
used for increasing scalability when contention is detected on the CAS attempts.

Queue The queue abstract data type is a collection of items in which only the
earliest added item may be accessed. Basic operations are Enqueue (add to the tail)
and Dequeue (remove from the head). Dequeue returns the item removed. The data
structure is also known as a first-in, first-out or FIFO buffer.

Lamport [56] presented a lock-free (actually wait-free) implementation of a queue
based on a static array, with a limited concurrency supporting only one producer
and one consumer. Giacomoni et al. [23] presented a cache-aware modification
which, instead of using shared head and tail indices, synchronizes directly on the array
elements. Herman and Damian-Iordache [47] outlined a wait-free implementation of
a shared queue for any number of threads, although nonpractical due to its high time
complexity and limited capacity.

Gong and Wing [29]and later Shann et al. [78] presented a lock-free shared queue
based on a cyclic array and the CAS primitive, though with the drawback of using
version counters, thus requiring double-width CAS for storing actual items. Tsigas
and Zhang [90] presented a lock-free extension of [56] for any number of threads
where synchronization is done both on the array elements and the shared head and
tail indices using CAS, and the ABA problem is avoided by exploiting two (or more)
null values.

Valois [94, 95] makes use of linked lists in his lock-free implementation which is
based on the CAS primitive. Prakash et al. [74] also presented an implementation us-
ing linked lists and the CAS primitive, although with the drawback of using version
counters and having low scalability. Michael and Scott [68] presented a lock-free
queue that is more efficient, synchronizing via the shared head and tail pointers as
well via the next pointer of the last node. Moir et al. [72] presented an extension
where elimination is used as a back-off strategy when contention on CAS is noticed,
although elimination is only possible when the queue contains very few items. Hoff-
man et al. [48] take another approach for a back-off strategy by allowing concurrent
Enqueue operations to insert the new node at adjacent positions in the linked list if
contention is noticed. Gidenstam et al. [28] combine the efficiency of using arrays
and the dynamic capacity of using linked lists, by providing a lock-free queue based
on linked lists of arrays, all updated using CAS in a cache-aware manner.

Deque The deque (or doubly ended queue) abstract data type is a combination of
the stack and the queue abstract data types. The data structure is a collection of items
in which the earliest as well as the latest added item may be accessed. Basic oper-
ations are PushLeft (add to the head), PopLeft (remove from the head), PushRight
(add to the tail) and PopRight (remove from the tail). PopLeft and PopRight return
the item removed.

Large efforts have been put on the work on so called work-stealing deques. These
data structures only support three operations and with a limited level of concurrency
and are specifically aimed for scheduling purposes. Arora et al. [4] presented a

‘ ’
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lock-free work-stealing deque implementation based on the CAS atomic primitive.
Hendler et al. [40] improved this algorithm to also handle dynamic sizes.

Several lock-free implementations of the deque abstract data type for general pur-
poses, although based on the nonavailable CAS2 atomic primitive, have been pub-
lished in the literature [31, 2, 13, 58, 6]. Michael [63] presented a lock-free deque
implementation based on the CAS primitive, although not supporting any level of
disjoint-access parallelism. Sundell and Tsigas [88] presented a lock-free implemen-
tation that allows both disjoint-access parallelism and dynamic sizes using the standard
CAS atomic primitive.

Priority Queue The priority queue abstract data type is a collection of items
which can efficiently support finding the item with the highest priority. Basic opera-
tions are Insert (add an item), FindMin (finds the item with minimum (or maximum)
priority) and DeleteMin (removes the item with minimum (or maximum) priority).
DeleteMin returns the item removed.

Israeli and Rappoport [50] have presented a wait-free algorithm for a shared pri-
ority queue that requires the nonavailable multiword LL/SC atomic primitives.
Greenwald [31] has presented an outline for a lock-free priority queue based on the
nonavailable CAS2 atomic primitive. Barnes [7] presented an incomplete attempt
for a lock-free implementation that uses atomic primitives available on contempo-
rary systems. Sundell and Tsigas [87] presented the first lock-free implementation
of a priority queue based on skip lists and the CAS atomic primitive.

3.3.3 Lists

The list abstract data type is a collection of items where two items are related only
with respect to their relative position to each other. The data structure should ef-
ficiently support traversals among the items. Depending on what type of the un-
derlying data structure, for example, arrays or linked lists, different strengths of
traversal functionality are supported.

Array List implementations based on the fundamental array data structure can sup-
port traversals to absolute index positions. Higher-level abstractions as extendable
arrays are in addition supporting stack semantics. Consequently, the array abstract
data type would support the operations ReadAt (read the element at index), WriteAt
(write the element at index), Push (add to the top) and Pop (remove from the top).
Pop returns the item removed.

A lock-free extendable array for practical purposes has been presented by Dechev
et al. [12].

Linked List In a concurrent environment with list implementations based on
linked lists, traversals to absolute index positions are not feasible. Consequently,
traversals are only supported relatively to a current position. The current position is
maintained by the cursor concept, where each handle (i.e. thread or process) main-
tains one independent cursor position. The first and last cursor positions do not refer



68 LOCK-FREE CONCURRENT DATA STRUCTURES

to real items but are instead used as end markers, that is, before the first item or after the
last item. Basic operations are InsertAfter (add a new item after the current), Delete
(remove the current item), Read (inspect the current item), Next (traverse to the item
after the current) and First (traverse to the position before the first item). Additional op-
erations are InsertBefore (add a new item before the current), Previous (traverse to
the item before the current) and Last (traverse to the position after the last item).

Lock-free implementations of the singly linked list based on the CAS atomic
primitive and with semantics suitable for the dictionary abstract type rather than the
list have been presented by Harris [39], Michael [61] and Fomitchev and Ruppert
[18]. Greenwald [32] presented a doubly linked list implementation of a dictionary
based on the nonavailable CAS2 atomic primitive. Attiya and Hillel [6] presented
a CAS2-based implementation that also supports disjoint-access parallelism. Valois
[95] outlined a lock-free doubly linked list implementation with all list semantics ex-
cept delete operations. A more general doubly linked list implementation supporting
general list semantics was presented by Sundell and Tsigas [88].

3.3.4 Sets and Dictionaries

The set abstract data type is a collection of special items called keys, where each key
is unique and can have at most one occurrence in the set. Basic operations are Add
(adds the key), ElementOf (checks if key is present) and Delete (removes the key).

The dictionary abstract data type is a collection of items where each item is as-
sociated with a unique key. The data structure should efficiently support finding the
item associated with the specific key. Basic operations are Insert (add an item as-
sociated with a key), Find (finds the item associated with a certain key) and Delete
(removes the item associated with a certain key). Delete returns the item removed.
In concurrent environments, an additional basic operation is the Update (reassign
the association of a key with another item) operation.

Implementations of sets and dictionaries are often closely related in a way that
most implementations of a set can be extended to also support dictionary semantics in
a straightforward manner. However, the Update operation mostly needs specific care
in the fundamental part of the algorithmic design to be linearizable. Nonblocking
implementations of sets and dictionaries are mostly based on hash tables or linked
lists as done by Valois [95]. The path using concurrent linked lists was improved by
Harris [39]. Other means to implement sets and dictionaries are the skip list and tree
data structures.

Skip List Valois [95] outlined an incomplete idea of how to design a concurrent
skip list. Sundell and Tsigas presented a lock-free implementation of a skip list in
the scope of priority queues [85, 87] as well as dictionaries [86, 81] using the CAS
primitive. Similar constructions have appeared in the literature by Fraser [19] and
Fomitchev and Ruppert [18].

Hash Table Michael [61] presented a lock-free implementation of the set abstract
data type based on a hash table with its chaining handled by an improved linked
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list compared to [39]. To a large part, its highefficiency is thanks to the memory
management scheme applied. The algorithm was improved by Shalev and Shavit
[77] to also handle dynamic sizes of the hash table’s underlying array data structure.
Greenwald [32] has presented a dictionary implementation based on chained hash
tables and the nonavailable CAS2 atomic primitive.

Gao et al. [21] presented a lock-free implementation of the dictionary abstract
data type based on a hash table data structure using open addressing. The hash table
is fully dynamic in size, although its efficiency is limited by its relatively complex
memory management.

Tree Tsay and Li [89] present an approach for designing lock-free implementa-
tions of a tree data structure using the LL/SC atomic primitives and extensive copying
of data. However, the algorithm is not provided with sufficient evidence for showing
linearizability. Ellen et al. [17] presented a lock-free implementation of the set ab-
stract data type based on a binary tree data structure using the CAS atomic primitive.
Spiegel and Reynolds [80] present a lock-free implementation of the set abstract
data type based on a skip tree and the CAS atomic primitive.

3.4 MEMORY MANAGEMENT FOR CONCURRENT
DATA STRUCTURES

The problem of managing dynamically allocated memory in a concurrent environ-
ment has two parts, keeping track of the free memory available for allocation and
safely reclaim allocated memory when it is no longer in use, that is, memory allocation
and memory reclamation.

3.4.1 Memory Allocation

Some of the most important properties that distinguish memory allocators for
concurrent applications in the literature are

To minimize fragmentation is to minimize the amount of free mem-
ory that cannot be used (allocated) by the application due to the size of the memory
blocks.

False sharing is when different parts of the same cache line are al-
located to separate objects that end up being used by threads running on different
processors.

The concurrent memory allocator should be as fast as a
good sequential one when executed on a single processor, and its performance should
scale with the load in the system.

A memory allocator manages a pool of memory (heap), for example, a contigu-
ous range of addresses or a set of such ranges, keeping track of which parts of that 
memory are currently given to the application and which parts are unused and can 
be used to meet future allocation requests from the application. A traditional (such 
as the ‘libc’ malloc) general-purpose memory allocator is not allowed to move 
or otherwise disturb memory blocks that are currently owned by the application.

Fragmentation

False-sharing

Efficiency and scalability
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Here we focus on lock-free memory allocators, but there is also a considerable
number of lock-based concurrent memory allocators in the literature.

Early work on lock-free memory allocation is the work on nonblocking operat-
ing systems by Massalin and Pu [60, 59] and Greenwald and Cheriton [33, 31].

Dice and Garthwaite [15] presented LFMalloc, a memory allocator based on the
architecture of the hoard lock-based concurrent memory allocator [8] but with re-
duced use of locks. Michael [66] presented a fully lock-free allocator, also loosely
based on the hoard architecture. Gidenstam et al. [26] presented NBmalloc, another
lock-free memory allocator loosely based on the hoard architecture. NBmalloc is
designed from the requirement that the first-remove-then-insert approach to mov-
ing references to large internal blocks of memory (superblocks) around should be
avoided, and therefore introduces and uses a move operation that can move a ref-
erence between different internal data structures atomically. Schneider et al. [76]
presented streamflow, a lock-free memory allocator that has improved performance
over previous solutions due to allowing thread local allocations and deallocations
without synchronization.

3.4.2 Memory Reclamation

To manage dynamically allocated memory in nonblocking algorithms is difficult due
to overlapping operations that might read, change or dereference (i.e. follow) refer-
ences to dynamically allocated blocks of memory concurrently. One of the most
problematic cases is when a slow process dereferences a pointer value that it previ-
ously read from a shared variable. This dereference of the pointer value could occur
an arbitrarily long time after the shared pointer holding that value was overwritten,
and the memory designated by the pointer removed from the shared data structure.
Consequently it is impossible to safely free or reuse the block of memory designated
by this pointer value until we are sure that there are no such slow processes with
pointers to that block.

There are several reclamation schemes in the literature with a wide and varying
range of properties:

For local references, which are stored in private vari-
ables accessible only by one thread, to be safe the memory reclamation scheme must
guarantee that a dynamically allocated node is never reclaimed while there still are
local references pointing to it.

Additionally, a memory reclamation scheme could
also guarantee that it is always safe for a thread to dereference any shared references
located within a dynamic node the thread has a local reference to. Property I alone
does not guarantee this, since for a node that has been deleted but cannot be reclaimed,
yet any shared references within it could reference nodes that have been deleted and
reclaimed since the node was removed from the data structure.

A dynamically allocated node could either be
reclaimed automatically when it is no longer accessible through any local or shared
reference, that is, the scheme provides automatic garbage collection, or the user
algorithm or data structure could be required to explicitly tell the memory reclama-

,
I. Safety of local references

II. Safety of shared references

III. Automatic or explicit deletion
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Property II Property III Property IV Property V

Michael [62, 64] No Explicit Yes Yes
Herlihy et al. [44] No Explicit Yes No
Valois et al. [95, 67] Yes Automatic No Yes
Detlefs et al. [14] Yes Automatic Yes No
Herlihy et al. [43] Yes Automatic Yes No
Gidenstam et al. [24, 25] Yes Explicit Yes Yes
Fraser [19] Yes Explicit Yes Yes
Herlihy et al. [46] Yes Automatic Integrated Yes
Gao et al. [22] Yes Automatic Integrated Yes

Properties of different approaches to nonblocking memory reclamation.

tion scheme, when a node is removed from the active data structure and should be
reclaimed as soon as it has become safe. While automatic garbage collection is con-
venient for the user, explicit deletion by the user gives the reclamation scheme more
information to work with and can help to provide stronger guarantees, for example,
bounds on the amount of deleted but yet unreclaimed memory.

Some memory reclamation schemes
require special properties from the memory allocator, for example, that each
allocable node has a permanent (i.e. for the rest of the system’s lifetime) reference
counter associated with it. Other schemes are compatible with the well-known and
simple allocate/free allocator interface where the node has ceased to exist after the
call to free.

Some memory reclamation schemes are
defined using synchronization primitives that few if any current processor architec-
tures provide in hardware, for example, double-word CAS, which then have to
be implemented in software often adding considerable overhead. Other schemes
make do with single-word CAS, single-word LL/SC or even just reads and writes
alone.

The properties of the memory reclamation schemes discussed here are summa-
rized in Table 3.1. One of the most important is Property II, which many lock-
free algorithms and data structures need. Among the memory reclamation schemes
that guarantee Property II, we have the following ones, all based on reference count-
ing: Valois et al. [95, 67], Detlefs et al. [14], Herlihy et al. [43] and Gidenstam et
al. [24, 25] and the potentially blocking epoch-based scheme by Fraser [19].

On the other hand, for data structures that do not need Property II, for exam-
ple, stacks, the use of a reclamation scheme that does not provide this property
has significant potential to offer reduced overhead compared with the stronger sch-
emes. Among these memory reclamation schemes, we have the nonblocking ones
by Michael [62, 64] and Herlihy et al. [44].

A fully automatic garbage collector pro-
vides Property I, II and III with automatic deletion.

IV. Requirements on the memory allocator

V. Required synchronization primitives

Fully Automatic Garbage Collection.

Table 3.1
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There are some lock-free garbage collectors in the literature. Herlihy and Moss
presented a lock-free copying garbage collector in [46]. Gao et al. [22] presented a
lock-free mark and sweep garbage collector, and Kliot et al. [54] presented a lock-free
stack scanning mechanism for concurrent garbage collectors.

3.5 GRAPHICS PROCESSORS

Currently the two most popular programming environments for general-purpose
computing for graphics processors are CUDA and OpenCL. Neither provides any
direct support for locks, and it is unlikely that this will change in the future. Con-
current data structures that are used on graphics processors will therefore have to be
lock-free.

While graphics processors share many features with conventional processors, and
many lock-free algorithms can be ported directly, there are some differences that are
important to consider, if one also wants to maintain or improve the scalability and
throughput of the algorithms.

3.5.1 Data Parallel Model

A graphics processor consists of a number of multiprocessors that can execute the
same instruction on multiple data, known as SIMD computing. Concurrent data
structures are, as the name implies, designed to support multiple concurrent op-
erations, but when used on a multiprocessor, they also need to support concurrent
instructions within an operation. This is not straightforward, as most have been de-
signed for scalar processors. Considering that SIMD instructions play an instrumen-
tal role in the parallel performance offered by the graphics processor, it is imperative
that this issue be addressed.

Graphics processor has a wide memory bus and a high memory bandwidth,
which makes it possible to quickly transfer data from the memory to the proces-
sor and back. The hardware is also capable of coalescing multiple small memory
operations into a single large atomic memory operation. As a single large memory
operation can be performed faster than many small, this should be taken advantage
of in the algorithmic design of the data structure.

The cache in graphics processors is smaller than on conventional SMP processors
and in many cases nonexistent. The memory latency is instead masked by utilizing
thousands of threads and by storing data temporally in a high-speed multiprocessor
local memory area. The high number of threads reinforces the importance of the data
structure being highly scalable.

The scheduling of threads on a graphics processor is commonly being performed
by the hardware. Unfortunately, the scheme used is often undocumented; thus there
is no guarantee that it will be fair. This makes the use of algorithms with blocking be-
havior risky. For example, a thread holding a lock could be indefinitely swapped out
in favor of another thread waiting for the same lock, resulting in a livelock situation.
Lock-freeness is thus a must.
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Of a more practical concern is the fact that a graphics processor often lacks stacks,
making recursive operations more difficult. The lack of a joint address space between
the GPU and the CPU also complicates the move of data from the CPU to the graph-
ics processor, as all pointers in the data structure have to be rebased when moved to
a new address.

3.5.2 New Algorithmic Design

The use of SIMD instructions means that if multiple threads write to the same mem-
ory location, only one (arbitrary) thread can succeed. Thus, allowing threads that
will be combined to an SIMD unit by the hardware to concurrently try to enqueue an
item to the same position in a queue will with all likelihood be unnecessarily expen-
sive, as only one thread can succeed in enqueing its item. Instead, by first combining
the operations locally and then trying to insert all elements in one step, this problem
can be avoided. This is a technique used by XMalloc, a lock-free memory allocator
for graphics processors [49]. On data structures with more disjoint memory access
than a queue, the problem is less pronounced, as multiple operations can succeed
concurrently if they access different parts of the memory.

An example of a way to take advantage of the SIMD instructions and memory
coalescing is to allow each node in a tree to have more children. Allowing a node
in a tree to have more children will have the effect of making the tree shallower and
lower the number of nodes that needs to checked when searching for an item. As a
consequence, the time spent in each node will increase, but with coalesced memory
access and SIMD instructions, this increase in time spent can be limited by selecting
the number of children to suit the SIMD instruction size. The node can then be read
in a single-memory operation, and the correct child can be found using just two SIMD
compare instructions.

Another suggestion is to use memory coalescing to implement lazy operations,
where larger read and write operations replace a percentage of expensive CAS op-
erations An array-based queue for example does not need to update its tail pointer. ,
using CAS every time an item is inserted. Instead it could be updated every x:th op-
eration, and the correct tail could be found by quickly traversing the array using large
memory reads and SIMD instructions, reducing the traversal time to a low static cost.
This type of lazy updating was used in the queue by Tsigas and Zhang [91].

The coalescing memory access mechanism also directly influences the synchro-
nization capabilities of the graphics processor. It has, for example, been shown that it
can be used to facilitate wait-free synchronization between threads, without the need
of synchronization primitives other than reads and writes [35, 37].

When it comes to software-controlled load balancing, there have been experi-
ments made comparing the built-in hardware scheduler with a software managed
work-stealing approach [9]. It was shown that lock-free implementations of data
structures worked better than lock based and that lock-free work stealing could out-
perform the built-in scheduler.

The lack of a stack can be a significant problem for data structures that require
recursive helping for lock-freeness. While it is often possible to rewrite recursive

,
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code to work iteratively instead, it requires that recursive depth can be bounded to
lower the amount of memory that needs to be allocated.
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CHAPTER 4

SOFTWARE TRANSACTIONAL
MEMORY

Sandya Mannarswamy

4.1 INTRODUCTION

One of the most serious challenges in writing concurrent code is coordinating ac-
cess to shared data accessed by multiple threads concurrently. Mutual exclusion in
the form of locks has been used in shared-memory parallel programming to prevent
the concurrent use of shared data, and thus locks remain among the fundamental
building blocks of concurrent programs. However lock-based synchronization has
proven to be complicated and error prone. Furthermore, lock-based synchroniza-
tion mechanisms lack composability, which often precludes the modular design of
concurrent components.

Software transactional memory (STM) has been proposed as a promising pro-
gramming paradigm for shared-memory multithreaded programs as an alternative
to conventional lock-based synchronization primitives. STM is intended to facilitate
the development of complex concurrent software by reducing the burden of program-
ming complexity involved in writing concurrent code. STM is an active and evolving
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area of research with a large number of STM implementations having been proposed
and evaluated over the past twenty years. In this chapter, we provide a background
on STM. First we examine STM from a programmer’s perspective. We
then discuss briefly the different semantic models associated with some of
the current STM proposals. We then provide a quick overview of the various
STM design dimensions, and the evolution of STM over the years followed by
a short overview of STM performance.

4.2 STM: A PROGRAMMER’S PERSPECTIVE

4.2.1 Atomic Sections

STM allows programmers to express synchronization at higher level of  
abstraction than traditional locks [14]. Programmers can specify what code has
to execute atomically by simply enclosing the desired block of code with the 
keyword atomic. The atomic section delimits a block of code that should execute
in a transaction. Using STM relieves the programmer from explicitly having 
to remember which locks protect what shared data. The programmer simply
encloses the code block which needs to be executed atomically inside an 
atomic block as a transaction. He does not need to explicitly name the locks that
need to be acquired when this block of code is executed. This shifts considerable
programming complexity from programmer to the underlying STM system which
ensures that the locks associated with the shared data accessed inside the atomic sec-
tion are acquired and released accordingly without having to be specified explicitly.
This allows STM implementations to support higher levels of abstraction than
lock-based synchronization.

From the perspective of the programmer, the code specified inside the atomic
block executes as a transaction. Hence from his/her perspective, a transaction can
have one of the three possible outcomes. A terminating transaction either completes
successfully in entirety making its state changes visible to the rest of the program
known as a transactional commit or aborts, leaving the program state unchanged
known as a transactional abort. If the transaction does not terminate, its behavior is
undefined.

While code within an atomic region is being executed, we refer to the dynamic
instance of the atomic section as an active transaction. When the thread leaves the
atomic region, the transaction is considered as committed. If two active transactions
attempt to access the same data and at least one active transaction is attempting to
write that data, then there is a conflict between the two transactions. Conflicts im-
pose an ordering on the transactions that are involved in the conflict. Conflicts are
dynamically detected and resolved by the underlying TM runtime, either by means of
appropriately reordering the transactions if they are serializable (in informal terms,
serializable means that the execution of a set of concurrent transactions is equivalent
to some serial order of execution of the transactions. We discuss serializability in
detail later) or if they are not serializable, by allowing only one out of the group
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of conflicting transactions to proceed while aborting all the other conflicting trans-
actions. When a transaction aborts, the STM runtime will roll back the transaction’s
local state and restart execution from the beginning of the atomic block.

4.2.2 Optimistic versus Pessimistic Concurrency Control

STM systems are typically optimistic: they achieve concurrency by pursuing
transactions in parallel and then aborting and rolling back in the event of conflict.
This is unlike lock-based programming where a critical section protected by a lock
is entered only after obtaining exclusive ownership of the lock, which means that no
two threads could be inside the same critical section at the same time. Optimistic
concurrency is driven by the assumption of disjoint access parallelism among con-
currently executing transactions. It supposes that shared data accessed/updated by
concurrent transactions are expected to be disjoint, and hence conflicts among threads
in accessing shared data is typically infrequent.

An atomic section which exhibits disjoint access parallelism is executed by con-
currently executing transactions as long as there are no conflicts among the transac-
tions. On the other hand, if the concurrently executing transactions often access/up-
date data which is not disjoint access parallel, then the data accesses conflict with
each other. Transactional conflicts require the conflicting concurrent transactions to
be serialized if they are serializable. If the concurrent conflicting transactions are
not serializable, it leads to aborts for all conflicting transactions except one which
commits. Aborting transactions lead to wasted work and hence are a major source of
performance overheads in STM systems.

Aborts can be triggered in two ways, either by the STM runtime or by the appl-
ication program itself. STM runtime typically triggers a transactional abort if a trans-
action’s access to a resource conflicts with another concurrently executing transac-
tion or if the transaction deadlocks waiting to acquire a resource. In such a case,
the STM runtime aborts the transaction and reexecutes it. These aborts are invisible
to the programmer except for their impact as lowered STM performance. It is also
possible for the STM application to invoke abort programmatically or through an
exception in the program. Such application program-induced aborts, control passes
to the statement after the atomic block or to an exception handler.

A pessimistic concurrency control (PCC) implemented using lock-based pro-
gramming is based on the premise that shared data accessed/updated within the 
critical section is expected to be nondisjoint across threads. Hence it is nec-
essary to obtain exclusive ownership of the data before executing the critical 
section since conflicts are definitely expected during the data accesses. PCC and 
optimistic concurrency control (OCC) are similar to asking permission (exclu-
sive ownership before entering the atomic section) and apologizing if there is 
a  conflict (execute assuming data is disjoint; if conflict occurs apologize , and 
retry) [12].
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4.2.3 Properties of Transactions

Code enclosed inside the atomic sections and hence executed transactionally is guar-
anteed to have the following three properties satisfied by the underlying STM imple-
mentation without any effort from the programmer:

Failure atomicity: This property guarantees that a transaction either executes to
completion successfully or appears not to have executed at all to the rest of
the program.

Consistency: This property guarantees that a transaction always leaves the program
in a consistent state. Consistency is an inherent property of the program and
hence is an application-dependent characteristic. STM guarantees to the pro-
grammer that a transaction operates on a consistent application state and leaves
the resulting application state also consistent.

Isolation: This property guarantees that an executing transaction does not appear
to have any effect on any other transactions which are executing concurrently.
This allows the programmer to reason about a transaction as if it executes in
isolation with respect to any other transaction thereby reducing the complexity;
hence he can reason locally without having to worry about the effects due to
any other concurrent transactions.

Guaranteeing of the atomicity, consistency and isolation (ACI) properties by the
underlying STM implementation simplifies writing concurrent code for the program-
mer while shifting the burden to the underlying STM implementations. Next we
discuss the transactional semantics supported by the various STM implementations.

4.3 TRANSACTIONAL SEMANTICS

Transactional memory semantics describe the expected or allowed outcomes of var-
ious memory operations on shared data accessed by concurrent threads of a tran-
sactional memory application. Unlike database transactions where shared data in the
database is exclusively accessed through transactions, STM systems do  not
explicitly forbid the access of the shared data outside of transactions in 
nontransactional code regions. Therefore any transactional semantic
specification of the STM also needs to cover the behavior of the STM with respect
to interaction of shared data accesses both inside transactional code and outside tran-
sactional code.

While a clean and simple semantics facilitates easy adoption of the STM by the
programmer due to its ability to support simpler reasoning, it is also important
that the semantics supported should allow efficient implementation While.
there has been no standard STM specification published nor has there been a de facto
STM standard so far, there has been some attempts on formalizing the semantics that
need to be supported by an STM implementation [18, 13, 9, 8 and 22]. Next we 
discuss a few of the popular semantic models for STMs.



TRANSACTIONAL SEMANTICS 85

4.3.1 Serializability

Since STM has its roots in database transactions, many of the STM implementations
simply adopt the correctness criteria from the database world, namely,  
serializability [1]. Serializability means that the result of executing a set 
of concurrent transactions must be identical and equivalent to an execution in
which the transactions are executed and committed serially one after another. Guar-
anteeing the ACI properties in an STM implementation ensures that the serializability
criterion is satisfied. Note that while serializability is a useful model for understand-
ing the behavior of transactional code, it falls short of completely specifying the
complete STM semantics since it does not specify the interaction of transactional
code and nontransactional code. Also it does not say anything about the state
accessed by live (or aborted) transactions and considers only the committed
transactions.

4.3.2 Single Global Lock (SGL) Semantics

One of the simplest and most intuitive STM semantics is to consider transactions as if
executed under a single global lock (SGL) [18]. With this model, we can define the
semantics of a transactional program to be equivalent to a corresponding nontransactional
program where every transactional region is converted such that it is protected by a
single global program-wide lock, which needs to be acquired before the transactional
region can be entered and released at the end of the transactional region. Therefore
from the SGL perspective, it is as if only one atomic block can be executed
transactionally at a time, which means that the total number of concurrent
transactions at any time is only one.

SGL semantics is appealing and intuitive because it matches our natura l
understanding of transactions. It provides complete isolation and serializability
over all transactions. However it does not explicitly capture the failure atomicity
property of the transactions. Also this model cannot be directly employed as an
STM implementation strategy since it precludes any concurrency. SGL semantics 
can be used to reason about the interaction between transactional and non
transactional code. Under this semantic model, the SGL enforces synchronization
among transactions. Nontransactional code does not acquire the global lock.
Therefore there can be data races between transactional and nontransactional
code if they contain conflicting data accesses. The behavior of a program that uses
transactions is well defined if the program does not exhibit data races when the trans-
actions are expressed using a SGL semantic model. The behavior of program
containing data races is undefined. Data races in a transactional memory
program can expose details of the transactional memory implementation and so may
produce different results on different systems.
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4.3.3 Linearizability

Linearizability is another alternate correctness criterion that has been used for STM
implementations [13]. While serializability criterion is described in terms of low-
level memory accesses, linearizability is defined at the higher-level abstraction in
terms of operations on an abstract data type. Linearizability means that, intuitively,
every transaction should appear as if it took place at some single, unique point in
time during its lifespan.

Serializability provides the same guarantees as linearizability; however, it does not
impose any restrictions based on the execution order of transactions. That is, the final
state of the execution can be equivalent to any serial execution of transactions, no
matter which transaction completes earlier. Also note that linearizability is restricted
to the specification of the semantics of the transactional code regions and does not
specify the interaction between transactional and nontransactional code.

While linearizability would be appropriate as a TM correctness criterion if the
transactions were external to the application executing to them in the sense that only
the end result of a transaction is significant, in real life, it is not so. A transaction does
not appear as a black box to the application containing it, but instead every operation
performed inside the transaction on a shared object is accessible and accessible to
the user. Hence it has been suggested that linearizability is not very useful as a
correctness criterion for TM since it is prone to division by zero errors. A detailed
discussion on why linearizability is not very useful as a TM correctness criterion can
be found in [9].

4.3.4 Opacity

The various correctness criteria we have discussed previously suffer from a major short-
coming. None of them captures exactly the important requirement that every transac-
tion including those that are live (i.e. not yet completed) accesses only a consistent
state, that is, a state produced by a sequence of previously committed transactions.
Opacity is an STM correctness criterion proposed to address this issue [9]. In sim-
ple terms, opacity can be considered as an extension of the database serializability
property with the additional requirement that even noncommitted transactions are
prevented from accessing inconsistent states.

Many of the current STM implementations satisfy the opacity criterion. They
ensure this by combining traditional database concurrency and recovery control sch-

×

Linearizability can be applied as a correctness criterion for transactional 
memory by defining transaction method operations on a logical object represent-
ing the shared memory. Linearizability guarantees that the state of the concurrent 
system after the execution of transactions is equivalent to a state wherein the 
trans actions had been executed one after the other in some serial order. How-
ever, this serial order should match the actual execution order of transactions at 
runtime. That is, if a transaction T 1 completes before another transaction T 2 
starts executing, the final state of the execution should be equivalent to a serial 
execution of transactions in which T 1 comes before T 2.

×

× ×
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emes with additional validation strategies. These validation strategies ensure that
each operation of a transaction does not access an inconsistent state and that each
return value of an operation inside a transaction is consistent with the return values
of all previous operations of the same transaction aborting the transaction in case
this condition cannot be met. A detailed description of opacity can be found in [9].

4.4 STM DESIGN SPACE

Over the past decade, a number of STM implementations have been developed, each
with different design choices. A wide variety of STM techniques, mainly inspired by
database algorithms, have been explored in order to determine the right combination
of strategies that suit the requirements of concurrent applications. Next we present a
brief overview of the various design dimensions of modern STM implementations.

4.4.1 Strong versus Weak Transactional Isolation

Strong transactional isolation means that nontransactional memory accesses are
analogous to single-instruction transactions and are prevented from violating the iso-
lation of transactions. In this model, transactions are strictly more restrictive than
locks and, thus, provide programmers with sufficiently strong guarantees. However,
strong isolation typically requires either specialized hardware support available on
existing systems, a sophisticated type system that may not be easily integrated with
languages such as Java or C++, or runtime barriers on nontransactional reads or
writes that can incur substantial cost on programs that do not use transactions [14].

An alternative to strong isolation is weak isolation where there is no general guar-
antee made on nontransactional code. In such a case, a shared data access occur-
ring inside nontransactional code and conflicting with a concurrent correctly coded
transaction can return an inconsistent value or result in incorrect transaction behav-
ior. The exact behavior is implementation dependent. However many of the STM
implementations which support weak isolation ensure that well-known programming
idioms such as publication and privatization behave as they would behave in a lock-
based implementation to help ease programming effort [14]. Note that many of the
STM papers use the terms strong atomicity and weak atomicity instead of the terms
strong isolation and weak isolation.

4.4.2 Nonblocking versus Blocking (Lock-Based) STM Implementation

Since initial research on transactional memory grew out of nonblocking atomic op-
erations, early STM implementations were nonblocking implementations based on
nonblocking atomic operations such as compare-and-swap (CAS). A couple of the
popular state-of-the-art nonblocking STMs are RSTM [17] and ASTM [16]. In non-
blocking STMs, arbitrary delays in some transactions in the system would not in-
terfere with forward progress of other transactions. They do not use any blocking
mechanisms such as locks and guarantee progress even when some of the trans-
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actions are delayed. Nonblocking STMs avoid various problems such as delays
due to preemption, priority inversion and thread faults associated with lock-based
implementations. However nonblocking STM implementations also have consider-
able performance overheads, and, hence of late, there has been considerable focus on
developing lock-based STM implementations.

Lock-based STMs implement some variant of the two-phase locking protocol.
Lock-based STMs use time-outs to detect and abort deadlocked or blocked transac-
tions. Lock-based STMs, while themselves being prone to the various pitfalls asso-
ciated with lock-based synchronization, are quite complex to build and reason about
for STM implementers. Nevertheless they can provide higher performance while
maintaining strong forward progress guarantees for users of an STM system. Two
of the state-of-the-art popular STMs TL2 [3] and TinySTM [6] are lock-based STM
implementations.

4.4.3 Lazy-versus Eager Update STMs

There are two major classes of STM implementations based on their update policy,
namely, lazy update versus eager update. Eager update STM is also referred to as direct
or in-place update STM, whereas lazy update STM is referred to as deferred-update
STM. In an eager update STM, the transaction directly modifies the shared data
object itself, and the STM uses contention management mechanisms to prevent other
concurrent transactions from either concurrently modifying the object or committing
if they have read the updated value. If the transaction which has modified the object
in place needs to abort, then the original value of the shared data object needs to be
restored. Hence eager update STM typically maintains an undo log where the old
values of the modified objects are recorded during the transaction and are used to
restore the program state in case the application rolls back.

In a lazy update STM, the transaction modifies a private copy of the shared data
object, and the modifications are updated to the actual shared data object only at the
time of commit. Hence no other concurrent transactions can see the modified values
from an uncommitted transaction. The updates made by the transaction are main-
tained in a redo log which is used to apply the modifications to the shared copy at the
time of commit. On an abort, a transaction simply discards the local modifications it
has made.

As can be seen from our previous discussion, an eager update STM increases the
amount of work that needs to be done on an abort (since it needs to undo its changes),
whereas a lazy update STM increases the amount of work that needs to be done on a
commit (since it needs to apply the changes from the redo log to the shared object).
On the other hand, an eager update STM performs less work on a commit, whereas a
lazy update STM performs less work on an abort.

Also maintaining undo or redo logs can have subtle issues in enforcing transact-
ional correctness in weakly isolated STM systems [14]. For example, a lazy update
weakly isolated STM on a commit needs to ensure that the modified locations are
updated in the same program order as they were encountered in the transactional
execution. Else it is possible that a nontransactional conflicting access can see in-
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consistent values. A similar issue occurs for an eager update weakly isolated STM
during a transactional abort.

4.4.4 Eager versus Lazy Locking

STMs allow for optimistic execution by permitting multiple atomic sections to run
concurrently assuming they will not conflict. However, in case a conflict does occur,
STMs employ a mechanism to detect and recover from such conflicts. Most STMs
employ the single-writer-multiple-readers strategy; two concurrent transactions con-
flict when they access the same location and at least one of the accesses is a write
(update). In order to commit, a transaction must eventually acquire write locks for
every memory location that is written by it.

Locks can be acquired eagerly, that is, at the time of the first update operation by
the transaction on the memory location, or lazily, that is, when the transaction is about
to commit. Eager locking is also known as encounter time locking, whereas lazy
locking is also referred to as commit time locking. Encounter time locking facil-
itates early conflict detection, whereas commit time locking facilitates late conflict
detection.

Detecting conflicts eagerly helps avoid wasting work of transactions that are do-
omed to abort after a conflict. Lazy conflict detection, however, is more optimistic
and gives transactions more possibilities to commit. While early STMs favored ei-
ther a wholly eager locking or lazy locking, of late there has been work on using
mixed mode locking policies [5]. For instance SwissTM [5] applies a combination
of both strategies. SwissTM detects write/write conflicts eagerly and read/write con-
flicts lazily. This combined strategy is beneficial for complex workloads with long
transactions because it prevents transactions with write/write conflicts from running
for a long time before detecting the conflict while at the same time it allows short
transactions having a read/write conflict with longer ones to proceed, thus increasing
parallelism. However for mostly read-dominated STM workloads, it has been shown
that a lazy locking policy is effective in handling conflicts [3].

4.4.5 Visible versus Invisible Reads

In an STM transactions execute speculatively. Reads and writes done by the transac-
tion are speculative and can be rolled back if the transaction aborts. Reads done by
STM transactions are typically optimistic in that the transaction may proceed with
execution without performing locking for the read objects, under the assumption that
transactional conflicts for the read objects will be rare. Reads to shared data can
be either visible or invisible to other transactions accessing the same data.

In an STM which supports invisible reads, a transaction reading a shared datum
x needs to detect any possible conflicts on x with other transactions that write x
concurrently, that is, validating its read-set. Validation is the process of verifying that
no object in its read-set has been modified by a concurrent transaction; if validation
fails, the transaction must abort. Thus, reads are essentially invisible to concurrent
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transactions at runtime, and such transactions with invisible reads must explicitly bear
the cost of validation of their read-set.

It is also possible for STMs to support visible reads wherein readers of a shared
data are tracked explicitly and informed by any concurrent writing transaction which
conflicts with it. While visible reads avoid the read-set validation cost penalty paid
by the transactions, tracking the readers for each shared data objects imposes high
overheads, leading to significant cache contention in multiprocessor systems and

fore employ invisible reads.

4.4.6 Time Stamp-Based versus Value-Based Validation Mechanisms

Ensuring consistency in an STM with invisible reads requires the system to vali-
date the read-set during transactional execution in order to prevent it from observing
inconsistent states. To avoid entering an inconsistent state, a transaction needs to
validate the objects it has read at appropriate times in program execution. Validation
ensures that the object that has been previously read is still valid and has not been
modified by a concurrent committed transaction at the point of validation. Valida-
tion can be done based on the value held by the object in question known as
value-based validation or by associating a timestamp/version with each modification of
the shared object and using a global timestamp or version clock [3] known as time
stamp-based validation.

Incremental validation is a value-based validation strategy that validates all past
invisible reads every time the transaction reads a new object. If any change in the
past is detected, the validation fails. This strategy guarantees a consistent state but
imposes a substantial overhead, since it is essentially an O(n2) operation where n is
the number of objects newly read in a transaction.

Timestamp-based validation strategies guarantee the consistency of the past reads
by simply checking whether the timestamp of the object being read is in the transac-
tion’s validity range. Each transaction reads the global timestamp counter at the start
of the transaction. If the timestamp of the object being currently read is larger than
the transaction’s starting timestamp, then read-set validation fails, and the transaction
aborts. This reduces the validation to a couple of comparisons, greatly reducing the
overhead introduced by incremental validation.

4.4.7 Access Tracking Granularity of STM

To enable conflict detection, STMs associate metadata/locks for shared data accessed
inside an atomic section. Conflict detection consists of examining the metadata/locks

write–write conflict. Each lock typically contains a bit indicating whether the shared
data associated with the given lock has been locked, and the remaining bits are used
to represent a version number for the associated shared data. STMs typically support
a global fixed-size lock table, and shared data is tracked/mapped to the lock table
elements using a hash function [3].

thus impacting scalability [15]. Most of the state-of-the-art STMs [3, 6, 5] there-

corresponding to the shared reads and writes to check if there has been a read–write or
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The granularity at which shared data is tracked/mapped to the metadata/locks is
the access tracking granularity for an STM implementation. This is basically the
number of consecutive words of shared data that map to a single lock entry in the
STM’s global lock table and is the basic unit of tracking shared data items by the
STM. Shared data items which fall within a single unit of access tracking granularity
are treated as a single entity by the STM for conflict detection and validation since
a single lock covers all the data items lying within a unit granularity region. Access
tracking granularity can be a word, a strip of memory region or an object. Many of
the state-of-the-art STMs such as TL2 [3] and TinySTM [6] are word-based STMs.

Increasing the access tracking granularity reduces locking and validation time,
due to the data access locality, but increases abort rates by introducing false conflicts
due to multiple shared data items located contiguously getting mapped to the same
lock. A false conflict occurs in an STM when two different addresses are mapped to
the same metadata or lock, and this results in two transactions which are accessing
truly disjoint data, getting falsely diagnosed as conflicting when they are not. Hence
the selection of access tracking granularity that results in higher performance needs
to factor in these complex and conflicting requirements while taking into account
the data access patterns of a given STM application.

4.4.8 Contention Management

The main task of an STM is to detect conflicts among concurrent transactions and
resolve them. If a transaction T 1 encounters a conflict with a concurrent transaction
T 2, it can either wait for T 2 to complete, abort itself or abort T 2. The STM
runtime can consult a contention manager to make an informed decision. STMs
typically provide a contention manager which decides what to do when transactional
conflicts arise. Contention manager implements contention resolution policies that
decide which one of the conflicting transactions should be allowed to proceed while
aborting others. A wide variety of contention managers have been proposed and
evaluated in STM literature [20].

4.4.9 Handling of Nested Transactions

A nested transaction is a transaction whose dynamic execution is properly contained
in the dynamic extent of another transaction. STMs support nested transactions in
three different ways, namely:

Flattened nesting The simplest form of transaction nesting is flat nesting. When a
TM uses flat nesting, operations of child transactions of a transaction Tk be-
come part of Tk, and an abort of any child transaction of Tk results in Tk being
also aborted. However committing of a child transaction has no impact until
the outer transaction commits at which point all the modifications made by
the outer transaction and all its children become visible to all other concurrent
transactions. Flattened transactions are quite easy to implement. However
they deprive the programmer from easily expressing composition and can im-

×
×× ×
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pact performance since aborting an inner transaction leads to aborting all sur-
rounding outer transactions.

Open nesting In an open nesting model STM, when an open-nested transaction com-
mits, its changes become visible to all other transactions in the system, even
if the enclosing transaction is still executing. Moreover, even if the enclos-
ing transaction aborts, the results of the nested, open transactions will still
remain committed. Open transactions permit a transaction to make perma-
nent modifications to a program’s state, which are not rolled back if a sur-
rounding transaction aborts. In addition, they permit unrelated code, such as a
garbage collector, to execute in the middle of a transaction and make perma-
nent changes that are unaffected by the surrounding transactions. These uses
of open transactions can help improve performance of applications on STM.

Closed nesting In a closed nesting model STM, a closed-nested transaction aborts
without terminating its enclosing transaction. When a closed inner transac-
tion commits or aborts, control passes to its enclosing transaction. If the inner
transaction commits, its modifications become visible to the surrounding trans-
action. However, nonenclosing transactions see these changes only when the
outermost enclosing transaction commits.

4.4.10 Programming Language Support for Transactions

Some of the STM systems are implemented as an external library whose interfaces
can be invoked from within programs just as an external library function calls, while
other STM systems integrate transactions in to the syntax of the programming lan-
guage. One of the state-of-the-art STMs, namely, TL2 [3] simply provides transactional
support through an external library, whereas Intel C/C++ compiler provides language-
level support for transactions with an STM-aware compiler and runtime. A closer
integration between the language, compiler and STM runtime enables to provide of
cleaner STM semantics and allow for language and compiler-specific optimiza-
tions which can help enhance application performance on STMs.

4.5 STM: A HISTORICAL PERSPECTIVE

A large number of STM implementations exist today [14]. Since it would be im-
possible for us to describe here the complete history of STM evolution due to space
constraints, we restrict ourselves to a brief description of the evolution of STM point-
ing out some of the major STM proposals over this period. A detailed history of the
STM evolution and the operational details of each of the STMs can be found in [14].

Shavit and Touitou proposed a software equivalent of transactional memory, 
the STM [21], in the year 1995. They used the term transaction for a nonblock-
ing operation. In their system, threads may access shared memory using trans-
actions. Each word in the shared memory is protected by a unique ownership 
record. A transaction must have predetermined knowledge of the set of locations 
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it will access. These locations are accessed in some global total order. A transac-
tion may modify a location by acquiring exclusive ownership of that location, via its
ownership record. Ownership acquisition of locations is also done in the global total
order. On completion, the transaction releases all acquired ownership records. A
transaction aborts whenever it comes across a location whose ownership record has
been acquired by another transaction.

The disadvantages of the static STM were overcome in the dynamic software
transactional memory system (DSTM) [11]. DSTM did not require a programmer
to specify a transaction’s memory usage in advance. DSTM was a nonblocking STM
implementation which used obstruction freedom as the nonblocking progress con-
dition for transactions. Obstruction freedom criterion guarantees that a halted thread
does not prevent active threads from making progress. At a conflict, the STM system
has the freedom to choose which of the two conflicting transactions should be ter-
minated (or delayed) and which transaction should be allowed to allow to continue.
DSTM provides a general interface that allows a contention manager to implement
a wide variety of policies. DSTM supported deferred updates, eager locking and
object-based access granularity tracking with a flattened transaction model. DSTM
was a library-based STM implementation for usage in C++/Java programs.

DSTM also proposed an early release mechanism which allows the transaction
to release an object from its read-set before committing so that it need not be con-
sidered for further read-set validations. This requires programmer support, since
the programmer decides whether an object in the read-set can be released early. Early
release mechanism can help in reducing the read-set validation costs since it shrinks
the size of the read-set.

WSTM described in [10] was the first STM implementation to be closely inte-
grated with a programming language, namely, Java. ASTM [16] is a nonblocking
object-based STM which uses a deferred update policy. It has an explicit contention
manager which is based on DSTM [11]. ASTM also adapts its conflict resolution
at runtime from eager acquire to lazy acquire for transactions with a small num-
ber of memory writes and a large number of reads. RSTM [17] is a nonblocking
obstruction-free STM system implemented as a C++ class library with early or late
conflict detection selectable by the programmer. It is an object-based STM with an
explicit contention manager and a flattened transaction model. RSTM has support
for both visible and invisible readers.

In 2006, Dice and Shavit proposed a lockbased blocking STM implementation 
known as transactional locking 2 (also known as TL2) [3]. TL2 is a state-of-the-
art librarybased STM implementation supporting unmanaged environments like 
C/C++. TL2 is a deferred update STM, with support for flattened transaction 
model. TL2 uses the simple and passive contention management scheme, where-
in the requester always aborts on a conflict. TL2 also uses a simple back-off 
scheme, wherein an aborting transaction has a short time delay before it is re-
started. TL2 supports invisible reads with global version number (timestamp)-based 
validation. It uses versioned write locks to protect shared-memory locations. Ti-
nySTM [6] and SwissTM [5] are a couple of other lock-based  STM implementa-
tions proposed recently.
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McRT-STM is another popular lock-based STM which supports C/C++ and Java [19].
Unlike other popular lock-based STMs like TL2, McRT-STM is a direct update
STM with an undo log to roll back the transactional updates in case of an abort.
McRT-STM supports both object and cache line granularity access tracking. McRT
-STM exports interfaces that can be used from C/C++ programs directly or as a target
for compilers translating higher-level linguistic constructs.

Our discussion so far on the evolution of STMs has briefly touched upon some
of the significant STM proposals over the past 20 years. However there are various
other important and novel STM proposals that we do not discuss here due to space
constraints. A detailed survey of the different STM implementations can be found
in [14].

4.6 APPLICATION PERFORMANCE ON STM

There has been considerable research into developing STMs for unmanaged envi-
ronments like C/C++, since much of the performance-critical enterprise applications
are still written in them. State-of-the-art STM implementations for unmanaged en-
vironments have been developed [3, 6]. However adoption of STM in mainstream
software has been quite low. The overheads incurred by STMs are often quoted
as the main reasons for the above view. While STM offers the promise of being
a programming paradigm which is less error prone and more programmer friendly
compared to traditional lock-based synchronization, it also needs to be competitive
in performance in order for it to be adopted in mainstream software.

4.6.1 Factors Impacting STM Performance

There has been considerable work in understanding the factors which impact the
application performance on STM [4, 2]. The major factors impacting application
performance on STM adversely are as follows:

Transactional conflicts Conflicts are a major source of overheads in STM imple-
mentations. Since transactions execute optimistically and typically roll back
if a conflict is detected, there may be lot of wasted work done by transactions
which eventually abort. Aborted transactions reduce performance, scalability
and waste computing resources. Therefore reducing transactional aborts is an
important consideration in improving the performance of the STMs. Conflicts
can be either true data conflicts or false conflicts. While true data conflicts are
an application artifact, STMs can also suffer from false conflicts. A false con-
flict occurs in an STM when two different addresses are mapped to the same
metadata or lock, and this results in two transactions which are accessing truly
disjoint data, getting falsely diagnosed as conflicting when they are not. Such
false conflicts result in increased number of aborts/rollbacks and hence can
impact the performance.

Based on how false conflicts occur, they are classified into two types, namely,
intraconflicts and interconflicts. Intraconflicts occur wherein two different
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data items getting accessed in independent transactions are mapped to the same
lock due to both of them falling within the same unit granularity region which
gets mapped to a single lock. Interconflicts occur wherein two different data
items getting accessed in independent transactions are mapped to the same
lock, even when they are not in the same unit granularity region. This happens
due to the limited size of the lock table. Since the number of locks is often
fewer than the numbers of shared data (grouped at a fixed access tracking
granularity), multiple uncorrelated data items can get mapped to the same lock.
This is known as lock aliasing. When such uncorrelated data items which
have been mapped to the same lock are accessed in concurrently executing
transaction, they cause interconflicts between the transactions.

Poor cache behavior While STMs support increased parallelism by their basic per-
formance premise of OCC, supporting optimistic concurrency can
have significant impact on the cache behavior of applications running
on STM. Fine-grained locking employed by the STM while improving
concurrency impacts the cache behavior adversely due to the increased
number of lock accesses required. An atomic section which accesses words
of shared data will contain an additional programmer invisible lock word
accesses on a word-based STM, increasing the pressure on the cache. To sup-
port optimistic concurrency, STMs also need to perform considerable book-
keeping activity such as maintenance of read/write sets, maintenance of the
global version clock to enable validation of transactional data, redo/undo
logs and so on. Such activities being memory intensive can also impact the
cache behavior adversely.

Overinstrumentation Overinstrumentation occurs when the compiler generates
excessive read/write shared data references due to its lack of application level
knowledge. This in turn results in many data references which are private be-
ing treated as shared data references and hence requiring lock accesses associ-
ated with them. In general, excessive lock accesses incur more false conflicts
(due to the limited size of lock table), which again brings about significant
performance degradation.

Transaction start-up and termination overheads There are fixed costs associated
with supporting transactions such as transaction start-up and termination costs.
Start-up costs occur due to STM library having to initialize various bookkeep-
ing data structures associated with that transaction, whereas transaction termi-
nation costs occur due to commit time activities such as updating the global
timestamp or abort time activities such as releasing the resources associated
with the transaction. When transactions are extremely short, these fixed costs
of transaction startup and termination are poorly amortized over the length of
the transaction, adversely impacting performance.

N
N
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4.6.2 Techniques to Improve STM Performance

major contributor to poor STM performance, there has been considerable work on
reducing the transactional abort overheads [20, 7]. Contention management sch-
emes have been studied widely in the context of improving the performance of STM
implementations in order to reduce the number of aborts caused by data conflicts
encountered in high-contention scenarios. Contention managers try to maximize
the performance by effectively handling the contention after it has been detected.
Rather than to take action after the contention has been detected, techniques have
been proposed to perform proactive transaction scheduling to prevent transactional
conflicts [24]. In order to reduce false conflicts, a number of improvements to STM’s
lock assignment schemes have been proposed [4].

Other than false conflicts, true data conflicts can also impact adversely STM per-
formance in case of atomic sections with low or zero disjoint access parallelism.
In applications which were written without keeping OCC in mind, there may
exist certain data structures or constructs which do not exhibit disjoint access
parallelism. Such data structures can be accessed inside atomic sections whose
instances when executed concurrently by more than one thread always conflict.
Executing such atomic sections using OCC has a negative impact on performance
because of increased aborts due to conflicting transactions. Regions of low
or zero disjoint access parallelism are better served by PCC since it avoids
wasteful work due to aborting transactions. A number of techniques have
been proposed to perform selective execution of atomic sections under PCC 
in order to reduce transactional conflicts [23].

4.7 CONCLUDING REMARKS

While there are considerable performance overheads associated with STM
implementations, their most notable attraction lies in the fact that they simplify
writing concurrent software by shifting the burden of programming complexity
from the programmer to the STM runtime library. The various pitfalls associated
with conventional lock-based programming such as data races, atomicity
violations, deadlocks and poor scalability are no longer an issue in programming
with STM. STM offers a mechanism that allows portions of a program to execute in
isolation, without regard to other concurrently executing tasks. This facilitates local
reasoning. Unlike locks, transactions are composable [14].

Addressing the performance bottlenecks and improving the application perfor-
mance on STM continue to be a major focus for STM researchers. While STM is a
programmer friendly and less error-prone alternative to lock-based synchronization,
it is not a single panacea to all the concurrency issues. STM is still evolving and
has a number of issues to overcome such as the high-performance overheads and
low industry adoption. However given the fact that multicore revolution is well on

There has been considerable work on addressing the various performance bot-
tlenecks [3, 15, 17]. Since conflicts and the resulting transactional aborts are a 
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its way, STM is here to stay coexisting with traditional lock-based synchronization
mechanisms.
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5.1 INTRODUCTION

Multicore architectures alleviate several problems that are related to single-core pro-
cessors but at the same time raise the programmability wall: experienced application
developers find it hard to extract reasonable performance from shared memory ho-
mogeneous multicore architectures, and the situation is even worse when considering
heterogeneous multicore architectures, distributed memories and explicitly managed
memory hierarchies. In order to overcome the new programming challenges, pro-
gramming models need to evolve to include features that offer a simple and portable
path to migrate applications to homogeneous and heterogenous architectures.

The majority of proposals for heterogeneous architectures assume a host-directed
programming and execution model with attached accelerator devices. The bulk of a
user application executes on the host, while user-specified code regions are offloaded
to the accelerators. In general, the specifics of the different accelerators make pro-
gramming extremely difficult (and nonportable) if one plans to use the vendor-
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provided SDKs (CUDA TM for Nvidia R© GPUs, libspe for Cell/B.E.TM , etc.). The at-
tempt of OpenCLTM to unify the programming models for accelerator-based architec-
tures tries to ensure portability, low-level access to the hardware and performance
portability. However, OpenCL still exposes much of the low-level details, making it
cumbersome to use for nonexperts.

Our thesis is based on the key importance of asynchrony as well as incremental
parallelization, modularity and portability of applications. The programmer should
only be concerned with decomposing the application into tasks and describing the
usage pattern of the variables in that task. It should be the responsibility of the runtime
system to orchestrate the execution of tasks, dynamically detecting dependencies,
scheduling work to the heterogeneous set of processors and managing the memory
hierarchy in a transparent and portable way. Our proposal in this direction is the
OmpSs programming model, an evolution of the current OpenMP R© 3.0 standard
with ideas inherited from the StarSs concept, a dataflow set of extensions which have
been demonstrated with mature implementations for different target architectures
(SMPSs [8] for homogeneous shared memory and ccNUMA architectures, CellSs
[10] for the IBM R© Cell/B.E. and GPUSs [2] for Nvidia GPUs).

This chapter describes how OmpSs extends the OpenMP 3.0 node programming
model and how it leverages MPI and OpenCL/CUDA, mastering the efficient pro-
gramming of the clustered heterogeneous multi-/many-core systems that will be
available in current and future computing systems. A clean way to express the
dataflow requirements for tasks [5] is the basis for deriving task dependencies at 
runtime and to implement locality-aware dataflow scheduling policies, in which data
movement between different levels of the memory hierarchy or different address spaces
is optimized. Also, the programming model allows [1] a portable and incremental spec-
ification of architecture (and code) heterogeneity which provides enough information
to the runtime to take scheduling decisions with different trade-offs in mind (core het-
erogeneity, availability of resources and data being accessed, etc.). The hybrid use of
OmpSs and OpenCL/CUDA allows the portable specification of computational ker-
nels to be executed on accelerators, using the high-level data types and operators to
achieve portable performance. The hybrid use of MPI and OmpSs achieves a global
asynchronous dataflow execution of both communication and computation tasks, al-
lowing the programmer to both easily introduce the asynchrony necessary to overlap
communication and computation and accelerate the execution of the computation
critical path.

In addition to describing the language extensions, this chapter describes the im-
plementation of OmpSs, focusing on the intelligence that needs to be embedded in
the runtime system to effectively lower the programmability wall and the opportuni-
ties to implement new mechanisms and policies. Finally this chapter reasons about
the overheads related with task management (detecting intertask data dependencies,
identifying task-level parallelism and executing tasks out of order) in OmpSs exam-
ining how far a software implementation can go to cope with fine-grain parallelism
and opening the door to novel hardware mechanisms for emerging multicore archi-
tectures.
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5.2 THE OMPSS PROPOSAL

This section first provides a brief description of the OmpSs execution model, neces-
sary to understand the programming model extensions that are proposed afterward.
A two-dimensional (2D) FFT code illustrates the use of the programming model.
Additional details about the implementation of the execution model in the supporting
runtime library are described later in Section 5.3.

5.2.1 Execution Model

Rather than implementing the basic OpenMP fork–join model, OmpSs defines a
thread-pool model where all the threads exist from the beginning of the execution.
Of these threads, only one, the master thread, starts executing the code in the main
function, while the other threads remain ready to execute work when available. The
pool, which is still considered a team of threads in the OpenMP sense, is the enabler
for implementing asynchronous dataflow execution engines that hide the complex-
ities and dynamic heterogeneities in the core and memory architectures, as well as
adapt to dynamic changes in resource availability and workloads.

Since the team of threads exists from the beginning of the execution, there is no
need for an explicit parallel construct. The master thread can generate work for
the other threads by means of the regular OpenMP worksharing or task constructs.
Another difference with OpenMP is that these work generation constructs can be
nested, so all threads can eventually become work generators; therefore there is no
need for nested teams of threads. The parallel construct is deprecated in OmpSs.

5.2.2 Dataflow Extensions

1An lvalue is an expression that refers to an object, that is, a named region of storage.

The original OpenMP 3.0 task construct:

#pragma omp task [omp_clauses] [ss_clauses]
task_block

is leveraged with ss_clauses that express the intended usage of data in the task:
input, output, inout and concurrent. In OmpSs, functions can be anno-
tated to be a task, a la Cilk [3]. In this case, any call to the function is treated as
spawning a task that will execute the task code:

#pragma omp task [omp_clauses] [ss_clauses]
function definition | function header

The four ss_clauses accept a list of expressions that must evaluate to a set of 
lvalues1 and that is used by the runtime system to build the task dependency graph:

• If a created task has an input clause that evaluates to a given lvalue, then
the task will not be eligible to run as long as a previously created task with an
output clause applying to the same lvalue has not finished its execution.
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• If a created task has an output clause that evaluates to a given lvalue, then
the task will not be eligible to run as long as a previously created task with
an input or output clause applying to the same lvalue has not finished
its execution. This is in fact a false dependence that could be removed using
object renaming, as later described in Section 5.3.3.

• If a created task has an inout clause that evaluates to a given lvalue, then it is
considered as if it had an input clause and an output clause that evaluated
to that same lvalue.

• If a created task has a concurrent clause that evaluates to a given lvalue,
then it is considered as if it had an inout clause that evaluated to that same
lvalue except t o it will not create dependences with other tasks with a con-
current clause evaluating to the same lvalue.

The C/C++ expressions in these new clauses are extended inside the context of the
clause to allow other forms: array ranges and shaping expressions. Since neither C nor C++
has any way to express ranges of an array, we have borrowed the array-section
syntax from Fortran 90. These array sections, with syntax a[e1:e2], designate
all elements from a[e1] to a[e2] (both ends are included and e1 shall yield a
lower or equal value than e2). Multidimensional arrays are eligible for multidi-
mensional array sections (like a[1:2][3:4]). While not technically naming a
subobject, nonmultidimensional array-section syntax can also be applied to point-
ers (i.e. pA[1:2] is valid for int *pA, but note that pB[1:2][3:4] is invalid
for int **pB (because the size of the inner dimension is not known at compile
time). Also note that pC[1:2][3:4] is valid for int (*a)[N] and so it is
pD[1:2][3:4][5:6] for int (*a)[N][M]).

Shaping expressions are a sequence of dimensions, enclosed in square brackets,
and a data reference that should refer to a pointer type (like ). These
shaping expressions are aimed at those scenarios where an array-like structure has
been allocated but only a pointer to its initial element is available. The goal of shap-
ing expressions is to return such unavailable structural information back to the com-
piler.

Figure 5.1 shows the skeleton of a sequential 2D FFT in which the main
functions are annotated as OmpSs tasks with the appropriate dependence cl-
auses (lines 1, 3, 7, 9 and 11). Figure 5.2 shows the blocks and the order they are
accessed by the tasks of each phase, assuming the matrix is divided in 4 by 4 blocks
(i.e. FFT_BS = TR_BS = N/4). Colors represent tasks, and numbers represent their
sequential instantiation order. The transpositions have been implemented in place by
blocks. The trsp_blk tasks transpose the contents of a block in the diagonal, while the
rest are transposed in opposite pairs by the trsp_swap task. The merged twiddle and
transpose phase (tw_trsp_blk) has the same structure as the transposition phases, but
the tasks also multiply by the twiddle factors. The fft1d task performs in-place FFTs
over the rows of a horizontal panel. Figure 5.3 shows the task graph dynamically
generated by the OmpSs runtime system for the same problem size.

,

“ ”

[10][20] p
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1 #pragma omp task i n o u t ( [N] [N] b l k [ 0 : TR_BS−1][0 :TR_BS−1])
2 void t r s p _ b l k ( double _Complex b l k [N] [N] ) ;
3 #pragma omp task i n o u t ( [N] [N] b lk1 [ 0 : TR_BS−1][0 :TR_BS−1] , \
4 [N] [N] b lk2 [ 0 : TR_BS−1][0 :TR_BS−1])
5 void t r s p _ s w a p ( double _Complex b lk1 [N] [N] ,
6 double _Complex b lk2 [N] [N] ) ;
7 #pragma omp task i n o u t ( p a n e l )
8 void f f t 1 d ( double _Complex p a n e l [ FFT_BS ] [N] ) ;
9 #pragma omp task input ( I ) i n o u t ( [N] [N] p a n e l [ 0 : TR_BS−1][0 :TR_BS−1])

10 void t w _ t r s p _ b l k ( long I , double _Complex p a n e l [N] [N] ) ;
11 #pragma omp task input ( I , J ) i n o u t ( [N] [N] b lk1 [ 0 : TR_BS−1][0 :TR_BS−1] ,

\
12 [N] [N] b lk2 [ 0 : TR_BS−1][0 :TR_BS−1])
13 void t w _ t r s p _ s w a p ( long I , long J , double _Complex b lk1 [N] [N] ,
14 double _Complex b lk2 [N] [N] ) ;
15 void f f t ( double _Complex A[N] [N] ) {
16 / / 1 . Transpose
17 f o r ( i =0 ; i <N; i +=TR_BS ) {
18 t r s p _ b l k (&A[ i ] [ i ] ) ;
19 f o r ( j = i +TR_BS ; j <N; j +=TR_BS )
20 t r s p _ s w a p (&A[ i ] [ j ] , &A[ j ] [ i ] ) ;
21 }
22 / / 2 . F i r s t FFT round
23 f o r ( j =0 ; j <N; j +=FFT_BS )
24 f f t 1 d (&A[ j ] [ 0 ] ) ;
25 / / 3 & 4. Twiddle and Transpose
26 f o r ( i =0 ; i <N; i +=TR_BS ) {
27 t w _ t r s p _ b l k ( i , &A[ i ] [ i ] ) ;
28 f o r ( j = i +TR_BS ; j <N; j +=TR_BS )
29 t w _ t r s p _ s w a p ( i , j , &A[ i ] [ j ] , &A[ j ] [ i ] ) ;
30 }
31 / / 5 . Second FFT round
32 f o r ( j =0 ; j <N; j +=FFT_BS )
33 f f t 1 d (&A[ j ] [ 0 ] ) ;
34 / / 6 . Transpose
35 f o r ( i =0 ; i <N; i +=TR_BS ) {
36 t r s p _ b l k (&A[ i ] [ i ] ) ;
37 f o r ( j = i +TR_BS ; j <N; j +=TR_BS )
38 t r s p _ s w a p (&A[ i ] [ j ] , &A[ j ] [ i ] ) ;
39 }
40 }

Figure 5.1 FFT example with OmpSs task dependencies.

Figure 5.2 Block distribution for the arrays in the FFT example (4 4 blocks) with task
instantiation numbers.

×
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Figure 5.4 shows a trace for the execution of this code with 8 threads and a matrix
divided in 16 by 16 blocks (i.e., FFT_BS = TR_BS = N/16). Task colors match those
of Figure 5.2. Note that the different phases which are separated in the code actually
overlap during the execution, escaping from the barrier synchronization that would
be needed, for example, in OpenMP and reducing the potential load unbalance that
could occur.

These same clauses can also be applied to OpenMP loop worksharings. When the
expression in the dependence clause is not dependent on the loop induction variable,
then, it applies to loop as a whole, and it will be considered as if the whole loop was
a task for this matter. However, if the expression is dependent on the induction
variable, then, the expression applies per iteration, and it will be evaluated as if each
chunk of the loop was a task with the dependence expressions being evaluated with
the appropriate chunk ranges. When a loop worksharing has any of the dependence
clauses expressing output, it will be considered as if it had an OpenMP nowait
clause on it:

#pragma omp for [omp_clauses] [ss_clauses]
for_block

Figure 5.5 shows a fragment of the same FFT shown in Figure 5.1. Some of
the inout dependences in the loop in the first FFT phase match with the inout
dependence of the task that executes trsp_blk and some with the inout dependence
in the loop in the transpose phase; since these dependences in the loops involve the
induction variable, finishing the execution of chunks in the first loop will release the
execution of chunks of the second loop. So, the single trsp_blk and the different
chunks of the first and second loop can be executed concurrently.

5.2.3 Heterogeneity Extensions

To support heterogeneity OmpSs introduces the target construct, which can be
applied to either task or worksharing constructs or functions:

#pragma omp target [clauses]
task construct | worksharing construct |
function definition | function header

The intent of the target is to specify that a given computation can be run in a
set of devices (core types, accelerators, etc.), the data movement necessary to offload
that computation and possible optimized implementations for the devices. The valid
clauses for the target construct are:

device It allows to specify on which devices should be targeting the construct (e.g.
cell, cuda, smp, etc.). If no device clause is specified, then the target
devices are decided by the implementation.

copy_in It specifies that a set of shared data may be needed to be transferred to the
device before the associated code can be executed.



Figure 5.3 Dynamically generated task
graph for the FFT example (4 4 blocks).

Figure 5.4 Task execution timeline for
the FFT (16 16 blocks) example with 8
threads.

×
×
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1 #pragma omp task i n o u t ( [N] [N] b l k [ 0 : TR_BS−1][0 :TR_BS−1])
2 void t r s p _ b l k ( double _Complex b l k [N] [N] ) ;
3

4 void t r s p _ s w a p ( double _Complex b lk1 [N] [N] , double
5 _Complex b lk2 [N] [N] ) ;
6 void f f t 1 d ( double _Complex p a n e l [ FFT_BS ] [N] ) ;
7 . . .
8

9 void f f t ( double _Complex A[N] [N] ) {
10 / / 1 . Transpose
11 f o r ( i =0 ; i <N; i +=TR_BS ) {
12 t r s p _ b l k (&A[ i ] [ i ] ) ;
13 #pragma omp f o r s c h e d u l e ( s t a t i c , 1 ) \
14 i n o u t ( [N] [N] A [ i : i +TR_BS−1][ j : j +TR_BS−1] , \
15 [N] [N] A [ j : j +TR_BS−1][ i : i +TR_BS−1])
16 f o r ( j = i +TR_BS ; j <N; j +=TR_BS )
17 t r s p _ s w a p (&A[ i ] [ j ] , &A[ j ] [ i ] ) ;
18 }
19 / / 2 . F i r s t FFT round
20 #pragma omp f o r s c h e d u l e ( s t a t i c , 1 ) \
21 i n o u t ( [N] [N] A [ j : j +FFT_BS−1][0 :N−1])
22 f o r ( j =0 ; j <N; j +=FFT_BS )
23 f f t 1 d (&A[ j ] [ 0 ] ) ;
24 . . .
25 }

Figure 5.5 Example of OmpSs task and loop worksharing dependencies

copy_out It specifies that a set of shared data may be needed to be transferred from
the device after the associated code is executed.

copy_inout This clause is a combination of copy_in and copy_out.

copy_deps It specifies that if the attached construct has any dependence clauses,
then they will also have copy semantics (i.e. input will also be considered
copy_in, output copy_out and inout copy_inout).

implements It specifies that the code is an alternative implementation for the target
devices of the function name specified in the clause. This alternative imple-
mentation can be used instead of the original one if the runtime considers it
appropriate.

Figure 5.6 shows, for the same FFT example in Figure 5.1, the specialization
of the task computing the fft1d. In this case, the programmer has chosen to use
the CUFFT library and build an alternate implementation for this task. Since its
execution targets a device with private memory, the copy_* clause is also used, in
this case the shortcut to indicate the natural data movement implied by the dataflow
clauses in the original task pragma.

The different copy_* clauses are advisory and not mandatory. This allows the
implementation to take advantage of devices with access to the shared memory or
implement different caching techniques. To make sure that data, which could have
moved to a device, is valid again in the host, the SMP code must also use the copy
clauses or appear after an OpenMP flush (either explicit or implicit). These clauses

.
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1 #pragma omp task i n o u t ( p a n e l )
2 void f f t 1 d ( double _Complex p a n e l [ FFT_BS ] [N] ) ;
3

4 #pragma omp t a r g e t d e v i c e ( cuda ) copy_deps imp lemen t s ( f f t 1 d )
5 void f f t 1 d _ s p e c i a l i z e d ( double _Complex p a n e l [ FFT_BS ] [N] ) {
6 c u f f t H a n d l e p l a n ;
7 C u f f t P l a n 1 d (& plan , FFT_BS∗B , CUFFT_C2C , 1 ) ;
8 CufftExecC2C ( plan , Cuff tComplex ∗) pane l ,
9 Cuff tComplex ∗) pane l , CUFFT_FORWARD) ;

10 C u f f t D e s t r o y ( p l a n ) ;
11 }

Figure 5.6 FFT example with specialized task using CUFFT library for Nvidia GPUs.

can be checked at runtime for debugging purposes. We are developing a Valgrind-
based tool to help programmers verify their correctness.

5.2.4 Hybrid MPI/OmpSs

OmpSs can also be used to leverage existing MPI codes so that the dataflow execu-
tion model in OmpSs can also be effectively used to exploit the distant parallelism
that may exist between tasks in different regions separated by MPI calls. In order to
achieve this, MPI calls need to be encapsulated in OmpSs tasks. From the local point
of view of a process, tasks sending data to another process should receive the buffer
as an input argument. Tasks receiving data from other processes should specify the
buffer as an output of the task. With this encapsulation, the OmpSs scheduler is able
to reorder the execution of communication tasks relative to the computational tasks,
just guaranteeing that the dependences are fulfilled. In this way, the programmer
is relieved from the responsibility to schedule the communication requests. At the
global application level, MPI will impose synchronization between matching com-
munication tasks. The fact that each of these tasks can be reordered with respect to
the computation tasks enables the propagation of the asynchronous dataflow execu-
tion within each node to the whole MPI program.

Figure 5.7 shows two MPI communication calls encapsulated as OmpSs tasks
and annotated with device(comm_thread); this informs the runtime about the
possible blocking nature of the code executed inside the task. Section 5.3 provides
additional details about how these tasks are handled.

5.3 IMPLEMENTATION

Our implementation of OmpSs is built on two components: the Mercurium source-
to-source compiler and the Nanos++ runtime library. In this section we provide the
general idea for these two components and provide additional insight into the key
modules in the runtime library (dependences detection, scheduler and the memory
coherence) and their implementation for different architectures.
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1 #pragma omp t a r g e t d e v i c e ( comm_thread )
2 #pragma omp task input ( buf , c o u n t )
3 void send ( double buf [ c o u n t ] , i n t c o u n t )
4 {
5 MPI_Send ( buf , count , MPI_DOUBLE, n e x t _ p r o c , . . . ) ;
6 }
7

8 #prama omp t a r g e t d e v i c e ( comm_thread )
9 #pragma omp task input ( c o u n t ) output ( buf )

10 void r e c v ( double buf [ c o u n t ] , i n t c o u n t )
11 {
12 MPI_Recv ( buf , count , MPI_DOUBLE, p rev_proc , . . . . )
13 }

Figure 5.7 Hybrid MPI/OmpSs example.

5.3.1 Mercurium Compiler

The compiler plays a relatively minor role on the implementation of the OmpSs
model. On one side, the compiler recognizes the constructs and transforms them
into calls to the Nanos++ runtime library. The dataflow clauses are transformed
by generating a set of expressions that will be evaluated when the application is
executed. These expressions will generate addresses of memory that will be passed
to the runtime library to build the task dependency graph.

On the other side, the compiler manages code restructuring for different target
devices. When the compiler is going to generate the code for a task construct,
it look as if it were prepended with a target directive or if another target
directive were linked to this task construct by means of an implement clause.
If so then, the appropriate internal representation for the task is passed onto a device-
specific 'handler' for each non-SMP device.

These 'handlers'generate the device-dependent data that must go associated with
the task. They also, if necessary, generate a specialized outline for the device which
may need to be generated in a separate file. This additional file is reintroduced in the
compiler pipeline usually following a different compilation profile that will invoke
different backend tools (e.g. the nvcc for cuda devices).

The binary output for these different files are merged together into a single object
file that contains additional information about the different subobjects. This allows
the compiler to maintain the traditional behavior of generating one object file per
source file to enable compatibility with other tools (i.e. makefiles). The information
is recovered at the linkage step to generate the final binary with all the objects.

5.3.2 Nanos++ Runtime Library

The Nanos++ runtime library is an extensible library for task-based programming
models. The basic unit of work is called work descriptor. Both tasks and workshar-
ing constructs are translated into work descriptors.
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Figure 5.8 Nanos++ flow overview.

Figure 5.8 shows an overview of the flow of execution of a work descriptor. When
created by the compiler generated code, work descriptors are composed of the fol-
lowing independent data: a data environment for its execution (including data that
must be copied in/out the device before/after the task is executed), a list of data de-
pendences and some properties (e.g. whether the task is tied or not, etc.). Each2

work descriptor is attached with a list of device-dependent data. The list has as many
elements as the number of devices where the task can run on. The information that
each element contains depends on the specific device, but in general it contains the
information needed to run the code associated to the work descriptor in the given de-
vice (e.g. a pointer to an outlined function). The runtime is oblivious to the contents
of this list until it gets to the architecture-dependent layers where it is adequately

2 An OpenMP tied task will keep executing on the same thread context after its first execution.
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interpreted. This allows most of the policies and methods of the runtime system to
be architecture-independent.

5.3.3 Detection of Task Dependencies

After creation, work descriptors are submitted into the runtime library. The first
thing to be done is dependence checking. For this, the runtime maintains a directed
acyclic graph where existing tasks are linked together based on the data dependences
they have. For efficiency, instead of a global dependency graph, each task has a graph
where dependencies of its children tasks are recorded (dependencies between tasks
not related by a parental relation may result in deadlock and are explicitly forbidden
in OmpSs).

To detect dependencies, the runtime computes the addresses of all arguments in
the dependency clauses. The current implementation of dependency tracking for
Nanos++ creates a graph edge for read after write (RAW), write after read (WAR) 
and write after write (WAW) dependencies that result from the evaluation of the
addresses specified in the dependency clauses. WAW and WAR dependencies are
false dependencies resulting from storage reuse. Both the compiler and the runtime
system can eliminate such false dependencies. It is our decision to do this at runtime.
The runtime system detects and removes them by allocating additional storage and
making each work descriptor work with a different storage location. This is the
same technique used in current superscalar processors and optimizing compilers to
remove false dependencies due to the reuse of registers. In OmpSs the renaming
may apply to whole regions of memory passed as arguments to a work descriptor.
The runtime is responsible for properly handling the actual storage instance passed
to each work descriptor. Also if necessary, it copies back the data to its original
position. This renaming mechanism has the potential to use available memory to
increase the actual amount of parallelism detected. An excessive use of renaming
may result in swapping and may introduce a high-performance penalty. A parameter
in a configuration file limits the size of memory that can be used for renaming.

Currently, the Nanos++ runtime does not support dependence checking between
disjoint array sections. But this support has already been developed in other en-
vironments [9]. For contiguous data objects, checking dependencies is as easy as
comparing their initial address and size. However, when discontiguous data objects
are considered, this check may become very complex. A naive solution based on
an address-by-address comparison would give exact answer although it would be
unmanageable in terms of space and time. A compact representation for a set of
addresses is proposed [9]. This solution consists of a linearized representation based
on the actual addresses of the covered elements. This representation is not exact
and will represent only with total precision certain sets of addresses (e.g. regions
aligned and with dimensions with sizes power of two). Generating this low level-
compact representation can be very time consuming as well; for this reason an algorithm
with linear cost is proposed.

To represent regions, a low-level representation is used. This representation is
an ordered sequence of digits such that the value of each digit can be either 0, 1 or
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X [9]. To give an idea, the low-level representation is a superset of the addresses
contained in the region. Another data structure important in this approach is the
region tree [9] that contains information for all the regions accessed in an application.
The region tree indexes the information about the regions accessed by an application
using the low-level representation as index. Each edge is labeled with one of the
possible digit values in the low-level representation, and the sequence of edge values
from the root node to each leaf determines the low-level representation of the region.
Given a region to look up all intersecting regions on a tree, the tree must be traversed
following the edges that could lead to intersecting regions. If the region overlaps
totally or partially with an existing region, it means that a dependency exists and this
is updated in the task dependency graph and in the region tree.

Both the computation of the low-level representation of a region and the traversal
and update of the region tree have a significant overhead. However, these overheads
are compensated by the potential parallelism that can be discovered. For example,
in the case of the FFT shown in Figure 5.1, in the absence of regions, the programmer
would be forced to use a barrier synchronization between the transposition tasks and
the FFT tasks, precluding the overlap between these phases.

5.3.4 The Scheduler Component

Once all the data dependencies are satisfied, the work descriptor passes to the sched-
uling module. The scheduling module is divided in two different parts. On one
hand there are the different mechanisms like context switching, idling, blocking
and queueing. On the other hand there is the scheduling policy. All mechanisms
are oblivious of the actual policy in use which can be adjusted for each execution.
Nanos++ supports different task scheduling policies, but we used here a locality-
aware policy that minimizes the amount of data transfers in an execution environment
like the GPUs, or the cluster version is critical to obtain good performance.

The locality-aware scheduling policy favors moving code to data and not data to
code. A global directory stores a map with the location of all data in the system.
When a new task is ready, the scheduler computes an affinity score for each device
based on the data that the task will use and the size of that data. This score is used to
place the work descriptor in the queue of the device with the highest affinity. If no
device has the highest affinity, it is placed in a global queue which is accessed by all
devices and the main host.

When a thread looks for work, it looks first into its device queue. If the queue is
empty, then it looks into the global queue. If also empty, it tries to steal work from
the queues of the other devices to prevent the load imbalance of the execution. Also,
when the execution of a work descriptor finishes, the scheduler tries to select first a
successor in the dependency graph before looking in the ready queues. The idea be-
hind this is that it will further improve data locality. Ready queues are implemented
using spinlock synchronization.

The scheduler component is also responsible for deciding the device best suited
to execute the task (if it can run in more than one). Different policies can be impl-
emented, including simple ones based on the order in the device clause, based on
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the availability of the device, based on performance predictions for each device or,
for example, based on the current location of the data accessed by the task.

5.3.5 Memory Consistency Component

Once the scheduler selects which thread (and device) should run a task, the runtime
calls the memory coherence subsystem to ensure that the data specified by the program-
mer is available in the device (or host). To do this, the runtime maintains a directory
with information about where data is in the system and its status (this is similar to that used   
for the locality scheduling). For efficiency reasons this directory is implemented in
a hierarchical fashion where each work descriptor knows about the data referenced
by its children. Using this directory, the runtime decides if for the work descriptor
to be executed data needs to be moved or not. The directory is also used at flush
points to invalidate the data (and thus force a flush to main memory if it is dirty) on
the different devices. Because of the hierarchical design of the directory, we are able
to flush only the dirty contents of each work descriptor context, without needing to
flush all the devices memory which would result in too many memory transfers. It
is important to notice that the coherence mechanisms assume program correctness.
Applications where tasks write the same data simultaneously without specifying the
correct synchronization (e.g. by means of dependencies) result in an undetermined
behavior.

If data needs to be moved, it calls the architecture-dependent copy mechanisms.
This allows to use optimized data movement and caching techniques for every device
while the general coherence logic is shared across all devices. For most devices
Nanos++ maintains a cache with the data that is currently alive in the device, along
with its location in the device and a version number. This version number is matched
against the version number of the same data in the directory to check if the data on
the device is still valid.

For example, in the implementation for Nvidia GPUs, the runtime maintains two
per-GPU structures: a GPU memory arena and a data cache. The memory arena is
created at the beginning of the execution by calling cudaMalloc to obtain a large
chunk of GPU memory. Afterward, instead of using the slow CUDA calls for al-3

location/deallocation, our simpler (and faster) routines are used. They are lock-free
because each GPU has a single host thread acting as representative, and only this
thread can allocate and deallocate memory from the GPU. The data cache is invoked
every time data is supposed to go into the device. If the data already exists in the
device, then a pointer to it is returned. Otherwise, storage is allocated if necessary
(storage can be reused even if the data is no longer valid) and the data transferred
into the device. This step may involve communication with another device if that
device holds the latest version of a piece of data. The cache ensures that this device-
to-device communication is done correctly. The cache will also decide, depending
on the configured policy, whether to synchronize the GPU data after each work de-

3We reserve 80% of the memory by default. The remaining allows user applications to still use CUDA on
their own up to a point.
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scriptor finish (write-through policy) or delay it as much as possible (write-back
policy).

For clustered architectures, there exists as well a cache per node and a preal-
located arena of remote memory to be used as the cache storage. As in the GPU
case, the cache is invoked when data needs to go into the device. The cache manages
the transfers from main memory to the remote nodes, memory, avoiding unnecessary
data movement and implementing different cache policies. By the default, the node
caches use a write-back policy to avoid usage of the network as much as possible.

Note that even work descriptors that are going to execute in the host need to
check the coherence mechanisms as the last valid version of the data it is going to
use could be in a GPU or a remote node. Therefore, it needs to be transferred back
to main memory and invalidated in the corresponding device.

5.3.6 Task Execution on the Target Device

Finally, the work descriptor is passed down the architecture-dependent thread layer that
extracts the device-dependent information of the work descriptor and executes it.
Architecture-specific optimizations are performed at this level.

For example, the execution of work for GPUs in its most basic form consists of
only invoking the CUDA kernel that is contained in the device-dependent data of
the work descriptor and calling cudaThreadSynchronize to ensure the kernel has
finished. The Nanos++ runtime, between these two actions, can also prefetch the
next work descriptor and start transferring the data it may need or overlap the output
data of a previously executed work descriptor. These optimizations are disabled
by default as our experience indicates that in most applications and modern GPUs,
there is a penalization in the kernel execution time when prefetch or double buffering
techniques are used (resulting in a slowdown of the total execution time).

In the cluster architecture, besides the master image, there is a slave image in
each remote node. A special communication thread handles the execution of work
descriptors in the remote nodes. The remote execution of tasks is a straightforward
process. The master image sends a control message with the task information to the
remote node that just needs to execute it. The slave images are constantly waiting
for upcoming requests, and they will start the execution of the task as soon as the
request arrives. When the task finishes, another message is sent back to the master
to notify about the completion of the task. All low-level communications for control
information and data transfers are implemented using active messages. We used
GASNet [4] for this functionality since it offers a network-independent API with
native support for various network technologies.

Tasks executed in a remote node can create new tasks that use the data transferred
or created by their parent task. Local task creation improves scalability by distribut-
ing the overhead across remote nodes. Tasks created locally will be executed by any
thread available in the node, before searching for work on the master node.
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5.3.7 Handling Communication Tasks

With the encapsulation of MPI communication primitives in OmpSs tasks, the sched-
uler is able to reorder the execution of communication tasks relative to the com-
putational tasks, just guaranteeing that the dependences are fulfilled. In this way,
the programmer is relieved from the responsibility to schedule the communication
requests. At the global application level, MPI imposes synchronization between
matching communication tasks. The fact that each of these tasks can be reordered
with respect to the computation tasks enables the propagation of the asynchronous
dataflow execution within each node to the whole MPI application.

Tasks that encapsulate blocking MPI calls have an unpredictable execution time
(depending on the MPI synchronization with the matching call in the remote pro-
cess). This may cause deadlock if we actually devote processors to these tasks and
not to advance computational tasks. In order to solve this problem, we need to en-
sure that every process can always devote resources to the computational task such
that local progress is guaranteed. A second effect of communication tasks is that
they do not make an efficient use of processor time, wasting resources while they
are blocked. It would be interesting to maximize the amount of actual computation
performed while the data transfer activities are overlapped with it.

The implementation in [7] instantiates as many threads as cores in the node to
execute computational tasks plus one additional thread that only executes tasks that
encapsulate MPI calls. When the MPI call blocks, the thread releases the core and
thus as many computation threads as cores can be active during most of the time (if
the applications has sufficient parallelism at the node level). When the blocking of MPI
call completes, the blocked thread will wake up and thus contend for a core with
the other threads. It is important to minimize such contention and also accelerate
the execution of the communication threads as this would free local dependences,
progress to the next communication task and block again. The sooner these activities
are done, the faster the application will be able to progress globally. An easy solution
to achieve this is to reduce the priority of the computing threads (through a setpriority
call at initialization time) and leave the communication thread at a higher priority.
In this way, when the communication thread blocks, all computation threads can
proceed. When the communication thread unblocks, it gets to execute rapidly.

5.4 TASK GRANULARITY

Task granularity presents a fundamental trade-off between performance and progr-
ammability. While smaller tasks could be more intuitive to the programmer, the
overhead of decoding task dependencies can prevent models such as OmpSs from
scaling. Following the creation of a task, its data dependencies must be identified,
so it can be added to the task graph. Effective utilization of resources thus requires
that detecting those dependencies is done faster than they are consumed by the de-
vices. As a baseline, we have measured the average decode rate for a highly tuned
decoder of OmpSs, to be just over 700 ns, running on a 2.66 GHz Intel Core Duo.
We consider this a performance indicator for software-based task decoders as other
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Task superscalar is an abstraction of an instruction-level out-of-order pipeline that
operates at the task level. Like ILP pipelines, which uncover parallelism in a sequen-
tial instruction stream, the proposed task superscalar architecture uncovers task-
level parallelism among tasks generated from an annotated OmpSs application. As
done by its software counterpart, the task superscalar pipeline dynamically detects
intertask data dependencies, identifies task-level parallelism and executes tasks out
of order. In [6] the design for a distributed task superscalar pipeline front end, which
can be embedded into any many-core fabric and manages cores as functional units,
is proposed. The mechanism is capable of driving hundreds of cores simultaneously
with nonspeculative tasks, which allows the pipeline to sustain work windows con-
sisting of tens thousands of tasks (for a 7 MB of on-chip eDRAM). Such a large 
task window enables the pipeline to uncover distant parallelism and manage large
multicores as a unity. Furthermore, results in that paper show that task superscalar
provides fast decoding of data dependencies and adds new tasks to the task win-
dow in less than 60 ns on average. As shown in Figure 5.9, this decode rate enables
programs employing fine-grain 10 task to scale up to ∼256 processor cores.

Finally, other architectural parameters may impose secondary effects on the exe-
cution model. For example, if the task runtime is shorter than the time required to
transfer the task data and code to the designated device, overlapping communica-
tion with computation becomes impossible as memory latencies prevail, thereby
imposing a minimal task granularity.

5.5 RELATED WORK

Current hardware designs targeting from embedded products to high-performance
computing incorporate multi- and many-core processors. Both homogeneous pro-
cessors and heterogeneous solutions (Cell/B.E., GPUs) are presented in this book
(chapter 'Multi- and Many-cores, Architectural Overview for Programmers'). In
parallel, a growing number of programming and execution environments are being
proposed to reduce the productivity gap between the possibilities available from the
hardware and their reasonable exploitation from the programmer side. The chapter
on programming models for many cores presents a useful classification of parallel
programming models and environments, some of them related to our OmpSs pro-
posal.

5.6 FUTURE WORK

We are currently porting a number of production applications and benchmarks to
OmpSs. The goal is to learn what are the current limitations of the OmpSs program-
ming model and the ability it has to better exploit the parallelism available on them.
Regarding the runtime implementation, we are currently exploring novel scheduling
policies (e.g. locality aware) and the use of autotuning to decide the appropriate
mapping of tasks to resources available in the target architecture. Fault tolerance is a

μs
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feature being included in the OmpSs runtime; transactional memory support is being
leveraged to support this new feature and to provide speculative task execution.

The potential of modern parallel programming models, and specifically that of
OmpSs, in alleviating much of the programming burden imposed by existing parallel
programming models, should serve as a catalyst to explore novel control mechanisms
for emerging multiprocessors and identify new programming abstractions that must
be explicitly supported by the hardware, in order to overcome both programmability
and scalability facing the parallel programming landscape.

5.7 CONCLUDING REMARKS

This chapter has presented one of the novel programming models that has been pro-
posed to address the productive exploitation of parallelism in heterogeneous archi-
tectures. The proposal is based on a few extensions to the OpenMP 3.0 programming
and execution models. In terms of programming model, a clean way to express the
dataflow requirements for tasks is the basis for deriving task dependencies at run
time and to implement locality-aware dataflow scheduling policies, in which data
movement between different levels of the memory hierarchy or different address
spaces is optimized. Also, the programming model allows a portable and incremen-
tal specification of architecture heterogeneity which provides enough information
to the runtime to take scheduling decisions with different trade-offs in mind. We
believe that the proposal is sufficiently generic to cover current homogeneous and
heterogeneous architectures but also future ones. Finally, OmpSs easily leverages
current practices based on the use of MPI and low-level extensions for specifying
optimized kernels relieving the programmer from injecting computation and com-
munication/data movement scheduling decisions.

The chapter describes the implementation of the proposed OmpSs programming
model, backed up by previous proof-of-concept implementations for different target
architectures. A unified runtime architecture provides support for clusters composed
of heterogenous accelerator and multicore nodes. Although visible overheads are
introduced when supporting all OmpSs features, we have observed that the potential
parallelism that can be discovered and the better resource utilization easily compen-
sate them.
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CHAPTER 6

SKELETON PROGRAMMING
FOR PORTABLE MANY-CORE
COMPUTING

Christoph Kessler, Sergei Gorlatch, Johan Enmyren, Usman Dast-

geer, Michel Steuwer and Philipp Kegel

6.1 INTRODUCTION

The general trend toward multi- and many-core-based systems constitutes a disrup-
tive change in the fundamental programming model in mainstream computing and
requires rewriting of sequential application programs into parallel form to turn the
steadily increasing number of cores into performance. Worse yet, there are a num-
ber of very different architectural paradigms such as homogeneous SMP-like multi-
cores, heterogeneous multicores like Cell Broadband Engine or hybrid CPU/GPU

TM

systems, sometimes with a very high complexity of programming such systems ef-
ficiently. Moreover, we observe a quick evolution process on the hardware side,
pushing new architecture generations and variations on the market with short time
intervals. The lack of a universal parallel programming model immediately leads to
a portability problem. OpenCL

TM
is an attempt to establish portability across a larger

scope of architectures, but it works at a very low level of abstraction.

121Programming Multicore and Many-core Computing Systems,
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In this chapter we show that skeleton programming can, to a large degree, solve
the portability problem and also raise the level of abstraction in multi-and many-core
programming.

We first revisit the concept of algorithmic skeletons in Section 6.2. Sections 6.3
and 6.4 give a detailed description of two recent approaches for programming emerg-
ing heterogeneous many-core systems, namely, SkePU and SkelCL. Basic concepts
of these frameworks are presented as well as some application examples. Section 6.5
summarizes some other skeleton programming frameworks, which share some ideas
with SkePU and SkelCL but address a more narrow range of architectures or are
used in industrial application development.

6.2 BACKGROUND: SKELETON PROGRAMMING

Skeletons are predefined generic components derived from higher-order functions
that can be parameterized in sequential problem-specific code and for which effi-
cient implementation for a given target platform exists. Skeleton programming con-
strains the programmer to using only the given set of skeletons for the code that is
to be parallelized or ported automatically – computations that do not fit any prede-
fined skeleton (combination) still have to be rewritten manually. In turn, parallelism
and synchronization, as well as leveraging the target architectural features, come
almost for free for skeleton-expressed computations: skeleton instances can easily
be expanded or bounded to equivalent expert-written efficient target code that en-
capsulates all low-level platform-specific details such as managing parallelism, load
balancing, communication, utilization of SIMD instructions, etc. Hence, as long as a
computation can be expressed in terms of the available skeletons, parallel program-
ming is not harder than well-structured sequential programming.

Based on the main source of parallelism to be exploited, skeletons can be clas-
sified into data-parallel and task-parallel skeletons. In the following, we introduce
a few important representatives of each category, including those that we will use
later in example codes. We put more emphasis on the data-parallel skeletons here be-
cause our skeleton systems described later mainly target GPU-based systems, which
traditionally only support data parallelism.

6.2.1 Data-Parallel Skeletons
Data-parallel skeletons operate on sequences of data structures in a parallel manner.
While existing language-specific data types such as arrays or lists could be 
applied, these aggregated operands are technically often represented in generic
container data types such as vector that can hide implementation details internally
and improve portability. The data-parallel skeletons draw their main source
of parallelism from applying the same function in an element-wise manner.  The
most fundamental and well-known data-parallel skeletons are Map, Reduce, Scan  
and variations and combinations of these.

In the Map skeleton, every element in the result vector v0 is a function f of the
corresponding elements in one or more input vectors v1 . . . vk. Formally, v0[i] =
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f(v1[i], . . . , vk[i]) ∀i ∈ {0, . . . , N − 1} where the k input vectors v1, ..., vk and
the output vector v0 are assumed to all have the same length N , that is, number
of elements. An example of the Map skeleton in SkelCL is shown in Listing 6.3. Some
skeleton frameworks use different skeleton names for Map with different arity, and
most frameworks limit the number of operands to a small constant.

The MapOverlap skeleton is a generalization of Map where each element v0[i] of
the result vector is a function of several adjacent elements of one input vector v that
reside at a certain constant maximum distance d from i in that input vector. Formally,
v0[i] = f(v[i − d], v[i − d + 1], . . . , v[i + d]) ∀i ∈ {0, . . . , N − 1}. Image filters
such as convolution are examples for calculations that fit into this pattern. An exam-
ple for such a function f for a Gaussian blur filter used with a MapOverlap skeleton
in SkePU is shown in Figure 6.2. Especially for nonshared memory systems, the
(maximum) value for the overlap d is an important design parameter because it im-
plies the required amount of temporary buffering for data to be communicated at
boundaries between regions of v that are mapped to different execution units.

By using additional arguments in SkelCL (see Listing 6.4), the MapOverlap skele-
ton can also be implemented using the Map skeleton.

Reduction is another common data-parallel pattern. The scalar result r is com-
puted by applying a commutative associative binary operator ⊕ across all N ele-

+ as operator would, for example, yield the global sum of the input vector elements.
Such an instantiation of the Reduce skeleton in SkePU is shown in the first line of
Figure 6.4.

Different skeleton instances can be composed serially in a straightforward way
using data flow, by feeding the result value of one skeleton invocation as an input
argument of a subsequent one. In certain cases it makes sense to define new skele-
tons for frequently occurring combinations, because the computation and buffering
of intermediate results can be specially optimized and internal synchronization con-
straints can be relaxed. For instance, when executed on an accelerator such as a GPU,
intermediate results could be kept in device memory, and the combined skeleton com-
putations could share the same computation kernel, leading to reduced overhead. A
typical example of such a combination is the MapReduce skeleton, whose behavior
is the same as if one would first apply a Map on one or more input vectors to produce
an intermediate result vector and then do a reduction on that intermediate vector.

f =mult for mapping and ⊕ =plus for reduction, computes the dot product of
two vectors.

Scan or prefix sums is a generalization of reduction where the partial sums of the
first i elements, for all i = 0, ..., N − 1, should be returned in a vector. For a binary
associative operation ⊕, the prefix-⊕ vector v0 of operand vector v1 is thus defined
by v0[i] =

⊕i
j=0 v1[j] ∀i ∈ {0, ..., N − 1}. Scan is an important building block of

scalable parallel algorithms such as parallel integer sorting.

ments of the input vector v: r = v[0] ⊕ v[1] ⊕ . . . ⊕ v[N − 1]. A reduction using

Formally, r = f(v1[0], . . . , vk[0]) ⊕ . . . ⊕ f(v1[N − 1], . . . , vk[N − 1]). An
example of MapReduce in SkePU is shown in Listing 6.1 which, instantiated with
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6 2 2 Task-Parallel Skeletons. .  
A task farm is a set of independent tasks that are to be executed. Generally,
the computational load of the tasks may vary and is not known before runtime,
which requires parallel implementations that apply dynamic load balancing to
map the tasks to execution resources. A common special case of task farming
holds if the task code is the same for all task instances. A typical case is a
parallel loop, that is, a loop that has no interiteration dependences. Skeleton
programming frameworks sometimes provide a parallel loop skeleton such as Forall
for this important special case.

Pipelining denotes a task-parallel pattern that operates on one or several input
streams, where tasks are generally dependent for the same input element but in-
dependent for different input elements. Pipelines of tasks are represented by task
graphs where edges show the forwarding of intermediate results from producing to
consuming tasks in the pipeline. For frequent cases such as a linear pipeline, some
skeleton frameworks provide a specific pipe construct.

6.3 SKEPU: A TUNABLE SKELETON PROGRAMMING LIBRARY

SkePU [6] is a skeleton programming framework for multicore CPU and multi-GPU
systems. It currently provides six data-parallel algorithmic skeletons, two container
types, and support for execution on multi-GPU systems both with CUDA

TM
and

OpenCL
TM

. SkePU is a C++ template library that provides a simple and unified in-
terface for specifying data-parallel computations with the help of skeletons on GPUs
using CUDA and OpenCL. The interface is also general enough to support other ar-
chitectures, and SkePU implements both a sequential CPU and a parallel OpenMP

TM

backend.
As a simple way of defining functions that can be used with the skeletons regard-

less of the target architecture, SkePU provides a macro language where preprocessor
macros expand, depending on the target selection, to the right kind of structure that
constitutes the function. The SkePU user functions generated from a macro-based
specification are basically a struct with member functions for CUDA and CPU
and strings for OpenCL. Figure 6.1 shows one of the macros and its expansion.

6.3.1 Skeletons and Containers

6.3.1.1 Skeletons SkePU provides Map, Reduce, MapReduce, MapOverlap,
MapArray and Scan skeletons with sequential CPU, OpenMP, CUDA and OpenCL
implementations. A program using SkePU needs to include SkePU header file(s) for
skeleton(s) and container(s) used in the program that are defined under the names-
pace skepu.

In the object-oriented spirit of C++, the skeleton functions in SkePU are repre-
sented by objects. By overloading operator() they can be made to behave in
a way similar to regular functions. All of the skeletons contain member functions
representing each of the different implementations, CUDA, OpenCL, OpenMP and
CPU. The member functions are called CU, CL, OMP and CPU, respectively. If the

,
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BINARY_FUNC(plus, double,
a, b, return a+b; )

⇓ EXPANDS TO: ⇓

struct plus
{
skepu::FuncType funcType;
std::string func_CL;
std::string funcName_CL;
std::string datatype_CL;
plus()
{
funcType = skepu::BINARY;

(continues in right column)

(continued from left column)

funcName_CL.append("plus");
datatype_CL.append("double");
func_CL.append(
"double plus(double a, double b)\n"
"{\n"
" return a+b;\n"
"}\n");
}
double CPU(double a, double b)
{
return a+b;
}
__device__ double CU(double a,
double b)
{
return a+b;
}
};

Figure 6.1 User function, macro expansion.

skeleton is called with operator(), the library decides which one to use depend-
ing on the execution plan used (see Section 6.3.3). In the OpenCL case, the skele-
ton objects also contain the necessary code generation and compilation procedures.
When a skeleton is instantiated, it creates an environment to execute in, containing
all available OpenCL or CUDA devices in the system. This environment is created
as a singleton so that it is shared among all skeletons in the program. As an example,

skepu::Reduce<plus> globalSum(new plus);

creates a skeleton instance called globalSum by instantiating the Reduce skeleton
with the user function plus (as described in Fig. 6.1) as a parameter. In the
current version of SkePU, it needs to be provided both as a template parameter and
as a pointer to an instantiated version of the user function (remember that the user
functions are in fact structs).

6.3.1.2 Multi-GPU Support SkePU has support for carrying out computations with
the help of several GPUs on a data-parallel level. By default, SkePU will utilize as
many GPUs as it can find in the system; however, this can be controlled by defining
SKEPU_NUMGPU. Setting it to 0 makes it use its default behavior. Any other number
represents the number of GPUs it should try to use.

6.3.1.3 Containers  In addition to the skeletal functions, SkePU also includes an
implementation for the containers Vector and Matrix (where Matrix currently
does not yet support all six skeletons).

The skeletons can be called with whole containers as arguments, doing the opera-
tion on all elements of the container, or with iterators specifying start and end of an
access range, which allows to apply the skeleton on parts of a vector.
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The Vector container represents a vector/array type, designed after the STL
container vector. Its implementation uses the STL vector internally, and its
interface is mostly compatible with STL vector. For instance,

skepu::Vector<double> input(100,10);

creates a vector of size 100 with all elements initialized to 10.
Matrix is a 2D container that internally uses a 1D container (std::vector).

Its interface and behavior are similar to the SkePU Vector but with some additions
and variations. It provides methods to access elements by row and column index
and is resizable. Furthermore, it provides an iterator for row-wise access, while for
column-wise access, matrix transpose is to be used to provide read-only access.

6.3.1.4 Lazy Memory Copying The SkePU containers hide GPU memory manage-
ment and internally use lazy memory copying to avoid unnecessary memory transfer op-
erations between main memory and device memory. A SkePU container keeps track
of which parts of it are currently allocated and uploaded to the GPU. If a computa-
tion is done, modifying the elements in a container in the GPU memory, these are
not immediately transferred back to the host memory. Instead, the container waits
until an element is accessed on the host side before any copying is done (eg.,
through the [] operator for Vector). This lazy memory copying is of great
use if several skeletons are called one after the other, with no modifications of the
container by the host in between. In that case, the payload data of the containers
is kept on the device (GPU) through all the computations, which greatly improves
performance. Most of the memory copying is done implicitly, but the containers also
contain a flush operation which updates a container from the device and deallo-
cates its memory.

6.3.1.5 A Small Example Listing 6.1 shows a complete example using SkePU using
the MapReduce skeleton. The MapReduce skeleton is instantiated with two user func-
tions, one for the mapping part and one for reduction. Two parameters are needed
at instantiation time: first the function for mapping and then the function for reduction.
Here, a MapReduce skeleton is created which will map two vectors with mult and
then reduce the result with plus, thus implementing the dot product of the two
vectors. The result value computed in this example is 4000.

6.3.2 Application Examples

We present two example applications implemented with SkePU: a Gaussian blur
filter and a Runge–Kutta ODE solver.

6.3.2.1 Gaussian Blur Filter The Gaussian blur filter is a common operation in
computer graphics that convolves an input image with a Gaussian function producing ,
a new smoother and blurred image. The method basically calculates the new value
of each pixel based on its own and its surrounding pixels’ values.
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1 # i n c l u d e < i o s t r e a m >
2 # i n c l u d e "skepu/vector.h"
3 # i n c l u d e "skepu/mapreduce.h"
4

5 BINARY_FUNC( p lus , double , a , b ,
6 re turn a+b ;
7 )
8

9 BINARY_FUNC( mult , double , a , b ,
10 re turn a∗b ;
11 )
12

13 i n t main ( )
14 {
15 skepu : : MapReduce<mult , p lu s > d o t P r o d u c t ( new mult , new p l u s ) ;
16

17 skepu : : Vector <double > v0 ( 1 0 0 0 , 2 ) ;
18 skepu : : Vector <double > v1 ( 1 0 0 0 , 2 ) ;
19

20 double r = d o t P r o d u c t ( v0 , v1 ) ;
21

22 s t d : : cou t <<"Result: " << r <<"\n" ; re turn 0 ;
23 }

Listing 6.1 A MapReduce example that computes the dot product.

1 OVERLAP_FUNC( b l u r _ k e r n e l , i n t , 19 , a ,
2 re turn ( a [−9] + 18∗a [−8] + 153∗ a [−7] + 816∗ a [−6] + 3060∗ a [−5]
3 + 8568∗ a [−4] + 18564∗ a [−3] + 31824∗ a [−2] + 43758∗ a [−1]
4 + 48620∗ a [ 0 ] + 43758∗ a [ 1 ] + 31824∗ a [ 2 ] + 18564∗ a [ 3 ]
5 + 8568∗ a [ 4 ] + 3060∗ a [ 5 ] + 816∗ a [ 6 ] + 153∗ a [ 7 ]
6 + 18∗a [ 8 ] + a [ 9 ] ) > >18;
7 )

Listing 6.2 User function used by MapOverlap when blurring an image.

It can be done either in two dimensions, for each pixel accessing a square halo
of neighbor pixels around it, or in one dimension by running two passes over the
image: one row-wise and one column-wise. For simplicity, we use here the second
approach, which allows to use Vector as container for the image data. When cal-
culating a pixel value, the surrounding pixels are needed but only within a limited
neighborhood. This fits well into the calculation pattern of the MapOverlap skele-
ton. MapArray (a variant of MapOverlap without the restriction to a constant-sized
overlap) was also used to restructure the array from row-wise to column-wise data
layout. The blurring calculation then becomes a MapOverlap to blur horizontally,
then a MapArray to restructure the image and another MapOverlap to blur vertically. 
The image was first loaded into a vector with padding between rows.

Timing was only done on the actual blur computation, not including the loading
of images and creation of vectors. For CUDA and OpenCL, the time for transferring
the image to the GPU and copying the result back is included. The filtering was
done with two passes of a 19-value filter kernel which can be seen in Listing 6.2. For
simplicity, only grayscale images of quadratic sizes were used in the benchmark.
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Figure 6.2 Average (100 runs) time of blurring quadratic grayscale images of different sizes.

Figure 6.2(a) shows the time when applying the filter kernel once to the image,
and Figure 6.2(b) when applying it nine times in sequence, resulting in heavier blur.
We see that while faster than the CPU variant, CUDA and OpenCL versions are
slower than the one using OpenMP on 8 CPU cores for one filtering. This is due
to the memory transfer time being much larger than the actual calculation. In Fig-
ure 6.2(b), however, filtering is done nine times which means more computations and
less memory I/O due to the lazy memory copying of the vector. Then the two single
GPU variants outperform even the OpenMP version.

Since there is a data dependency in the MapOverlap skeleton when running on
multiple GPUs, we also see that running this configuration loses a lot of performance
when applying MapOverlap several times in a row because it needs to transfer data
between the GPUs, via the host.

6.3.2.2 ODE Solver A sequential Runge–Kutta ODE solver was ported to GPU using
the SkePU library. The original code used for the porting is part of LibSolve, a library of
various Runge–Kutta solvers for ODEs by Korch and Rauber [15]. LibSolve contains
several Runge–Kutta implementations, iterated and embedded ones, as well as imple-
mentations for parallel machines using shared or distributed memory. The simplest
default sequential implementation was used for the port to SkePU; however other
solver variants were used unmodified for comparison. One of the ODE test sets
provided in LibSolve, BRUSS2D-MIX, was used for evaluating SkePU.

Four different grid sizes (problem sizes) were evaluated: 250, 500, 750 and 1000.
The porting was fairly straightforward since the default sequential solver in Lib-

Solve is a conventional Runge–Kutta solver consisting of several loops over arrays
sized according to the problem size. These loops were replaced by calls to the Map,
Reduce and MapReduce skeletons. The right-hand-side evaluation function was
implemented with the MapArray skeleton. In all tests the integration interval was
0–4 ( =4), and time was measured with LibSolve internal timer functions, which on
UNIX systems use gettimeofday(). The different solver variants used in the
testing were the following:

ls-seq-def: The default sequential implementation in LibSolve.

(a) Gaussian kernel applied once to the image. (b) Gaussian kernel applied nine times to the image.

H
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ls-seq-A: A slightly optimized variant of ls-seq-def.

ls-shm-def: The default shared memory implementation in LibSolve. It uses Pthreads and
was run with 8 threads, one for each core of the benchmarking computer.

ls-shm-A: A slightly optimized variant of ls-shm-def, using Pthreads and run with 8 threads.

skepu-CL: SkePU port of ls-seq-def, OpenCL as backend, running on one Tesla
TM

C1060
GPU.

skepu-CL-multi: SkePU port of ls-seq-def, using OpenCL as backend, running on two
C1060 GPUs.

skepu-CU: SkePU port of ls-seq-def, CUDA as backend, running on one Tesla C1060 GPU.

skepu-OMP: SkePU port of ls-seq-def using OpenMP as backend, using 8 threads.

skepu-CPU: SkePU port of ls-seq-def using the default CPU backend.

CU-hand: A hand -implemented CUDA variant, similar to the SkePU ports, but no SkePU
code was used. Instead, CUBLAS functions were used where applicable, and some
handmade kernels.

The result can be seen in Figure 6.3. The two slowest ones are the sequential
variants (ls-seq-def and ls-seq-A), with ls-seq-A of course performing slightly better
due to the optimizations. LibSolve shared memory solvers (ls-shm-def and ls-shm-
A) show a great performance increase compared to the sequential variants, being
almost five times faster for the largest problem size ( =1000).

We also see that the SkePU CPU solver is comparable to the default LibSolve
sequential implementation and the OpenMP variant is similar to the shared memory
solvers. The SkePU OpenCL and CUDA ported solvers are however almost 10 times
faster than the sequential solvers for the largest problem size. The reason for this is
that all the calculations of the core loop in the ODE solver can be run on the GPU,
without any memory transfers except once in the beginning and once at the end.
This is done implicitly in SkePU since it is using lazy memory copying. However,
the SkePU multi-GPU solver does not perform as well; the reason here also lies in
the memory copying. Since the evaluation function needs access to more of one
vector than what it has stored in GPU memory (in multi-GPU mode, SkePU divides
the vectors evenly among the GPUs), some memory transfers are needed: first from
one GPU to host and then from host to the other GPU; this slows down the calculations
considerably.

Comparing the hand -implemented CUDA variant, we see that it is similar in
performance to skepu-CU with CU-hand being slightly faster ( 10%).  This is both
due to the extra overhead when using SkePU functions and some implementation
differences.

There is also a start-up time for the OpenCL implementations during which they
compile and create the skeleton kernels. This time (≈5–10 s) is not included in the
times presented here since it is considered an initialization which only needs to be
done once when the application starts executing.

N

≈
‘ ’

‘ ’
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Figure 6.3 Times for running different LibSolve solvers for N =250,500,750 and 1000
with the BRUSS2D-MIX problem.

skepu::Reduce<plus> globalSum(new plus);
skepu::ExecPlan plan;
plan.add(1,3500, skepu::CPU_BACKEND);
plan.add(3501,3200000, skepu::OMP_BACKEND);
plan.add(3200001,5400000, skepu::CL_BACKEND);
plan.add(5400001,skepu::INFTY, skepu::CLM_BACKEND);
globalSum.setExecPlan(plan);

Figure 6.4 Defining an execution plan and applying it to a Reduce skeleton.

6.3.3 Tuning Potential

SkePU contains multiple backend implementations for each skeleton definition, in-
cluding CPU, multi-CPU, GPU and multi-GPU backends. Tuning which backend to
use for which problem sizes is supported in SkePU by the concept of an execution
plan [5]. An execution plan is an object containing different parameters that will
affect the execution time of a skeleton. The parameters include a list of vector sizes1

and adjoining backends, which is used to decide which backend to use at certain
input sizes. Other tuning parameters are group and grid size for the GPU backends.

All skeletons include an execution plan and also support for changing it manu-
ally. A default execution plan is created at skeleton instantiation time, containing
default parameters chosen by the implementation. Figure 6.4 shows how to define
an execution plan and apply it to a skeleton.

1At the time of writing, execution plans are configured to be used with SkePU Vector, as the corre-
sponding support for Matrix is not implemented yet.

N
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Figure 6.5 Vector sum with Reduce on target architecture 1 (a) and architecture 2 (b). TUNE
uses an empirically determined execution plan for each architecture.

6.3.3.1 A Tuning Example To explain tunability support in SkePU, we consider a
simple vector sum computation, expressed by a single Reduce skeleton instance, which
is repeated 100 times for the measurements. We consider two different GPU-based
target architectures to demonstrate performance portability2 that can be achieved
with SkePU just by configuring the execution plan for each new target. The first
one is a dual-quadcore Intel R© Xeon R© E5520 server clocked at 2.27 GHz with 2
NVIDIA R© GT200 (Tesla C1060) GPUs. For this platform, the following empirically
determined execution plan was used:

skepu::ExecPlan plan;
plan.add(1,3500, skepu::CPU_BACKEND);
plan.add(3501,3200000, skepu::OMP_BACKEND);
plan.add(3200001,5400000, skepu::CL_BACKEND);
plan.add(5400001,skepu::INFTY, skepu::CLM_BACKEND);

Figure 6.5(a) shows the behavior on the dual-quadcore Xeon server with 2
T C1060 GPUs. Here, OpenMP generally uses 8 threads. Note that, for technical
reasons, it is not possible (without major effort) to mix OpenCL and CUDA code
within the same program. Here we decided to use OpenCL as it allows better support
for multi-GPU computing. The tunable version (TUNE) selects the OpenMP Reduce
for small problem sizes, OpenCL on a single GPU for medium sizes and OpenCL
on two GPUs for large sizes.

We now consider a different target system, an Intel R© Core R© 2 Duo E6600 with
one GeForce

TM
GTS250 GPU, to demonstrate the potential for performance porta-

bility. For this platform, we preset the following execution plan:

skepu::ExecPlan plan;
plan.add(1,3500, skepu::CPU_BACKEND);
plan.add(3501,900000, skepu::OMP_BACKEND);
plan.add(900001,skepu::INFTY, skepu::CL_BACKEND);

2A mechanism for automated tuning of skeleton programs toward a given target architecture or system
configuration extends portability to performance portability, that is, a best-effort adaptation for performance
optimization for a new target system without touching the source code.

(a) (b)
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Note that the plan does not contain an entry for dual-GPU computing because the
target system only has a single GPU. Figure 6.5(b) shows the resulting performance
with the new plan on the new target architecture.

6.4 SKELCL: A LIBRARY FOR HIGH-LEVEL MULTI-GPU
PROGRAMMING

SkelCL [26] is a high-level programming framework for single- and multi-GPU sys-
tems. It greatly simplifies the development of real-world applications while pro-
viding high performance close to optimized OpenCL implementations. SkelCL is
built on top of OpenCL and provides a C++ API that shields the programmer from
boilerplate code (e.g. for program initialization) and recurrent tasks such as explicit
data transfer between CPU and GPU. GPU programming is simplified by using algo-
rithmic skeletons and a container data type that allows for high-level memory man-
agement. For maximal flexibility, SkelCL can also be used in combination with
low-level OpenCL code.

6.4.1 Skeletons and Containers

6.4.1.1  Skeletons There are four basic skeletons provided by SkelCL: Map, Zip,
Reduce and Scan. To instantiate a skeleton, a customizing kernel function is specified
and passed to it. The kernel must match the selected skeleton: for example, a unary
function is specified for a Map skeleton as shown in line 1 of Listing 6.3. Instead of
providing the kernel as a string, the user may also load the source code from a file.

1 Map< f l o a t > neg ("float main (float in) { return -in; }" ) ;
2 Vector < f l o a t > a ( p t r , s i z e ) ;
3 Vector < f l o a t > b = neg ( a ) ; / / execute ske le ton ’ neg ’

Listing 6.3 Creation of a simple Map skeleton in SkelCL.

An arbitrary OpenCL code can be used within the kernel function, including mul-
tiple function definitions or include statements. This allows for sharing common
header files between the host application and the device code. The only prerequisite
is that the function called by the skeleton is named main. It is not required to declare
the kernel with a special OpenCL qualifier like __kernel. A skeleton is executed
like an ordinary function: the user specifies the input arguments in parentheses, thus
passing them to the skeleton. The skeleton calculates the result and returns it.

The kernel function is used by the SkelCL implementation to generate a valid
OpenCL kernel and merge it with preimplemented skeleton code. The resulting
OpenCL code is compiled at runtime by OpenCL and can be executed on arbitrary
devices. To reduce the time for compiling OpenCL kernels, SkelCL saves already
compiled kernels on disk and loads them later if the same kernel is used again.

6.4.1.2  Vectors To free the user from the low-level memory management of traditional
GPU computing, SkelCL offers the container type Vector that provides a unified
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memory abstraction, that is, a vector is accessible by both host and device. Data is ex-
changed implicitly between host and device, freeing the user from low-level memory
operations. Vectors are the input and output of all skeletons, except for the Reduce
skeleton which returns a scalar. In Listing 6.3, a vector is created and passed to the
skeleton. When executed, a skeleton ensures that all input vectors’ data is available
on the device. This may result in implicit data transfers from host to device memory.
After execution, the calculated data resides in the device memory and is not copied
back to the host. SkelCL performs data exchanges in a lazy manner: it keeps track if
a vector’s data is up to date on the host and device side. Thereby, it avoids redundant
data transfers: for example, if an output vector is used as the input of another skeleton,
no further data transfer is performed.

6.4.1.3 Additional Arguments In general, a skeleton implies a fixed arity for its
customizing kernel function, for example, a Map skeleton requires a unary kernel. To
loose this restriction, SkelCL allows the user to pass an arbitrary number of arguments
directly to the kernel. For this, the function definition is changed to expect the
additional arguments; these arguments are prepared and passed to the skeleton upon
execution Listing 6.4 shows the Map skeleton using one additional argument to
specify the scalar of a scalar multiplication.

1 Map< f l o a t > s m u l t ("float main(float in, float num){ return in * num; }" ) ;
2 Arguments a rgumen t s ; a rgumen t s . push ( 2 . 5 ) ; / / prepare a d d i t i o n a l arguments
3 s m u l t ( input , a rgumen t s ) ; / / execute ske le ton

Listing 6.4 Implementation of a scalar multiplication using a Map skeleton and
additional arguments.

The additional arguments (e.g. vectors) are collected in an Arguments object
which is passed to the skeleton. Arbitrary types can be passed by providing a pointer
and the size of the type. The arguments are passed to the skeleton in the order of the
function definition.

6.4.1.4 Multi-GPU Support SkelCL has been particularly designed for multi-GPU
systems, to free the user from the additional challenges that arise in low-level pro-
gramming environments, like CUDA or OpenCL, which handle multiple devices
manually. For managing memory on multiple devices, SkelCL offers the concept of
distribution: either SkelCL automatically sets the distribution of the input and output
vectors or the user selects a distribution to optimize performance. SkelCL provides
three distributions: single, block and copy. With single distribution, only
one device stores the vector’s data; this device can be specified or the first device
is taken as default. The block distribution splits and distributes the vector evenly
among all available devices. The copy distribution copies the entire vector to all
devices.

It is possible to change a distribution at runtime: either implicitly by a skeleton
or explicitly by the programmer. This triggers a data exchange between multiple
devices: data is downloaded to the host and then, according to the new distribution,
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1 SkelCL : : i n i t ( ) ;
2 Complex ∗p l a n e = new Complex [WIDTH ∗ HEIGHT ] ; / / c reate complex numbers
3 SkelCL : : Vector <Complex > i n ( p lane , WIDTH ∗ HEIGHT) ;
4 SkelCL : : Vector <RGBColor> o u t (WIDTH ∗ HEIGHT) ;
5 SkelCL : : Map<Complex , RGBColor> m a n d e l b r o t ( k e r n e l _ s t r e a m ) ;
6 m a n d e l b r o t ( in , o u t ) ; / / execute map ske le ton
7 w r i t e _ i m a g e ( o u t ) ;

Listing 6.5 Computing a Mandelbrot fractal using SkelCL.

redistributed among the devices. The upload to the devices is performed lazily, that is,
it is deferred until the data is actually needed on the devices.

The number and activity of devices that are used for a skeleton execution depend
on the distribution of the input vectors. For example, if the input vector of aMap skeleton
is block distributed, the skeleton is executed in parallel by multiple devices: each
device processes a chunk of the input vector’s data.

The Map skeleton selects the block distribution by default. The distribution
of the output vector is determined from the input vectors’ distribution. For the
Reduce and Scan skeletons, special multidevice implementations are implemen-
ted and used instead of the single-device implementation if the input vector is block
distributed.

6.4.2 Application Examples

We present two example applications to demonstrate the flexibility of SkelCL. While
the first example – calculation of a Mandelbrot fractal – is a rather simple, embar-
rassingly parallel benchmark, the second one is a real-world application for medical
imaging that requires the use of almost all of SkelCL’s features.

6.4.2.1  Mandelbrot Fractals The computation of a Mandelbrot fractal is a popular
benchmark for embarrassingly parallel computations as all fractal’s pixels can be
computed independently [27]. Since the Map skeleton naturally supports this kind
of parallelism, a parallel SkelCL implementation for computing a Mandelbrot fractal is
simple (see Listing 6.5). After initializing SkelCL, we put a set of complex numbers
into a Vector that is used as input for a Map skeleton; we also create an empty
output Vector for the skeleton. The Map skeleton is instantiated with an input
file stream, from which it reads a customizing kernel function. This function takes
a complex number as input, performs an iterative calculation for this number and
returns the color of the Mandelbrot fractal’s corresponding pixel. For execution, the
input and output vectors are passed to the Map skeleton. The computed Mandelbrot
fractal resides in the output vector and can, for example, be written to a file.

6 4 2 2 Medical Image Reconstruction. . .  list-mode ordered subset expectation maxi-
mization (LM OSEM) [21] is a compute-intensive algorithm for image reconstruc-
tion in positron emission tomography (PET). During a PET scan, a huge data set
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of so-called events is acquired and has to be processed to reconstruct a 3D image
of the patient. With LM OSEM, the data set is split into equally sized subsets that
are processed successively. The following steps are performed iteratively for each
subset: (i) read a subset, (ii) compute an error image from the subset’s events and (iii)
update the reconstruction image using the error image.

While LM OSEM cannot be parallelized as a whole because of its iterative struc-
ture, the processing of subsets is well parallelizable. LM OSEM has been ported
to different parallel architectures including GPUs [19, 25, 24] using low-level pro-
gramming models like MPI, OpenMP and CUDA. Most implementations exploit
two partitioning strategies: partitioning the subset and partitioning the image; stick-
ing to a single partitioning approach leads to performance decrease [2].

To implement LM OSEM with SkelCL, we parallelize the computation of the er-
ror and reconstruction image using a Map and a Zip skeleton, respectively (see List-
ing 6.6). SkelCL’s Vector data type is used to save the error and the reconstruction
image, as well as the subset which is read at the beginning of each iteration. In a
straightforward implementation, one could apply a Map skeleton to the subset to
process all its events in parallel. However, such an implementation is not feasible
on GPUs, as it would exceed the capacity of the GPU’s memory (e.g. 4.4 GB for
a typical subset containing 106 events). To avoid this memory bottleneck, we use a
modified approach: we create an index Vector, with each element corresponding
to a sub-subset of events. Moreover, we create a kernel function for the Map skele-
ton that processes one such sub-subset given by its index. With these preparations,
we compute the error image by passing an index vector to the Map skeleton; the
size of the index vector limits the number of GPU threads and thus the number of
concurrently processed events.

Our SkelCL program remains unchanged for single- and multi-GPU cases. We
use this feature by distributing the subset block-wise to all devices (line 11 in List-
ing 6.6), such that each device computes a local error image. We copy the recon-
struction and the (empty) error image to all devices by setting the copy distribution.
The Map skeleton only passes an index from the index vector to its kernel. However,
the kernel also accesses the subset, the reconstruction image (input arguments) and
the error image (output argument): these arguments are passed using SkelCL’s addi-
tional arguments feature. The skeleton has no output but returns the error image via
side effect, such that SkelCL is not able to detect these modifications of the error im-
age. Therefore, we explicitly indicate this using the dataOnDevicesModified
method.

In order to employ all available devices for updating the reconstruction image,
we distribute both error and reconstruction image to all devices. With SkelCL we
can easily change the images’ distribution. In particular, we specify a merging op-
eration (add in line 25) for the local error images to obtain a global error image
before distributing it to the devices. Finally, we call the Zip skeleton to update the
reconstruction image with the error image.

“ ”
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1 s t d : : i f s t r e a m e r r _ p r o j _ k n l ("err_proj.cl" ) ;
2 s t d : : i f s t r e a m u p d a t e _ k n l ("update.cl" ) ;
3 SkelCL : : Map<unsigned > e r r _ p r o j ( e r r _ p r o j _ k n l , SCL_INPLACE ) ;
4 SkelCL : : Zip < f l o a t > u p d a t e ( u p d a t e _ k n l ) ;
5

6 f o r ( l =0 ; l < num_subse t s ; ++ l ) {
7 Vector <Event > s u b s e t = Vector <Event >( r e a d _ s u b s e t ( ) ) ;
8 Vector <unsigned > i n d e x _ v e c t o r = Vector <unsigned >( i n d i c e s ) ;
9

10 /∗ d i s t r i b u t e subset to devices ∗ /
11 s u b s e t . s e t D i s t r i b u t i o n ( D i s t r i b u t i o n : : b l o c k ) ;
12 /∗ copy index vec to r and images to a l l devices ∗ /
13 i n d e x _ v e c t o r . s e t D i s t r i b u t i o n ( D i s t r i b u t i o n : : copy ) ;
14 image . s e t D i s t r i b u t i o n ( D i s t r i b u t i o n : : copy ) ;
15 e r r o r . s e t D i s t r i b u t i o n ( D i s t r i b u t i o n : : copy ) ;
16

17 /∗ prepare arguments and compute e r r o r image ∗ /
18 Arguments a rgumen t s ;
19 a rgumen t s . push ( s u b s e t ) ; a rgumen t s . push ( s u b s e t . s i z e ( ) ) ;
20 a rgumen t s . push ( image ) ; a rgumen t s . push ( e r r o r ) ;
21 e r r _ p r o j ( i n d e x _ v e c t o r , a rgumen t s ) ; / / compute e r r o r image (map ske le ton )
22 e r r o r . d a t a O n D e v i c e s M o d i f i e d ( ) ; / / mark e r r o r image as modi f ied
23

24 /∗ merge and re−d i s t r i b u t e ∗ /
25 e r r o r . s e t D i s t r i b u t i o n ( D i s t r i b u t i o n : : b lock , add ) ;
26 image . s e t D i s t r i b u t i o n ( D i s t r i b u t i o n : : b l o c k ) ;
27

28 /∗ update r e c o n s t r u c t i o n image ( z ip ske le ton ) ∗ /
29 u p d a t e ( image , e r r o r , image ) ; }

Listing 6.6 Implementation of LM OSEM using SkelCL.

6.4.2.3 Experimental Results In order to show the impact of using skeletons and
implicit data management on programming effort, we compare the SkelCL-based
implementations of our example applications with OpenCL and CUDA versions.

Regarding lines of code (LOC; see Figures 6.6 and 6.7), the Mandelbrot appl-
ication requires most programming effort with OpenCL (host: 90, kernel: 28), while
CUDA (21, 28) and SkelCL (31, 26) require a smaller number of LOC. For the LM
OSEM example, SkelCL is most efficient requiring only 283 LOC (kernel: 248, host:
35), while the CUDA and OpenCL require 335 or even 510 LOC, respectively.

We measured the runtime of all implementations on a quad-core Intel Xeon E5520
server clocked at 2.26 GHz, connected to an NVIDIA Tesla S1070 computing sys-
tem with four GPUs. The Mandelbrot application computed a fractal of 4096×3072
pixels. Its runtime results are shown in Figure 6.6. We observe that when using only
one GPU, the OpenCL-based implementation (25 s) is slightly faster than the
one based on SkelCL (26 s). The CUDA-based implementation (18 s) provides
the best performance. However, the SkelCL-based implementation can directly
use multiple GPUs of our test system, such that we achieved speedups of 1.5 or
2.2 when using two and four GPUs, respectively.

For LM OSEM, we compared our SkelCL implementation to implementations
based on OpenCL and CUDA for multiple GPUs (see Figure 6.7). We measured the
average runtime of a single iteration of the algorithm when processing a small but
representative PET data set of about 107 events obtained by scanning a mouse. The
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Figure 6.6 Mandelbrot example: comparison of runtime (a) and lines of code (b) of
implementations using OpenCL, CUDA and SkelCL on a platform with one GPU.
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Figure 6.7 LM OSEM example: comparison of runtime (a) and lines of code (b) of
implementations using OpenCL, CUDA and SkelCL on a platform with four GPUs.

CUDA-based implementation performs best, while the OpenCL- and SkelCL-based
implementations are about 20% slower. However, the OpenCL version is only 5%
faster than the SkelCL version. These results also hold for two and four GPUs: we
obtained speedups of about 1.84 and 3.15, respectively.

Our application examples demonstrate that SkelCL shields the application devel-
oper from the low-level details of GPU programming and requires considerably less
boilerplate code. As compared to implementations of the same applications using
CUDA or OpenCL, SkelCL provides competitive performance and scalability.

6.5 RELATED WORK

Introduced by Cole for the purpose of structured parallel programming [3], the skele-
ton programming approach has been intensively developed in the 1990s and 2000s,
mainly in Europe, to provide higher-level abstractions for parallel and distributed
programming. Surveys are provided, for example, in books by Pelagatti [18] and
Rabhi and Gorlatch [20]; for a recent survey and classification of skeleton programming
frameworks, we refer to González-Vélez and Leyton [8].

(a) (b)

(a) (b)
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Parallel programming with skeletons has been successfully applied to various ar-
chitectures and with different libraries as backends [17, 7, 16, 4]. With the appear-
ance of multicore CPUs in mainstream computing systems, skeleton programming
concepts are, since the early 2000s, also being increasingly adopted by software in-
dustry in the form of new language constructs in concurrent, parallel and distributed
programming frameworks.

Threading Building Blocks (TBB) is a library developed by Intel R© for program-
ming multicore processors. It extends C++ with a task-based parallel programming
model including high-level parallel algorithm templates, concurrent containers, mu-
texes and atomic operations (see a comparison to OpenMP in [13]). TBB is based
on a sophisticated task scheduling mechanism, which completely shields the pro-
grammer from threads. Unlike other parallel programming models, for example,
Pthreads, parallelism is expressed by fine-grained tasks rather than threads. At runtime,
TBB creates tasks and assigns them to threads which are scheduled to cores by the
operating system.

On top of its scheduling mechanism, TBB offers parallel algorithm templates, sim-
ilar to skeletons, which can be nested to increase parallelism.

Besides task-parallel templates such as pipeline, TBB also provides data-
parallel templates which resemble the skeletons presented in Section 6.2, for example,
parallel_for is similar to a map or zip skeleton.

The body objects of TBB are more coarse-grained than GPU kernels to better fit
the capabilities of general-purpose cores.

TBB is also used for implementing Intel’s new OpenCL SDK [12].
Thrust is a C++ template-based library developed at NVIDIA R© Research [10].

It enables the programming of GPUs using an interface similar to the C++ Standard
Template Library (STL). As dynamic containers, a host_vector and a device_
vector are provided, which reside in host memory and in GPU device memory,
respectively. Both types can be used like an STL vector: elements can be accessed
directly using the standard bracket notation or using iterators.

By assigning a host_vector to a device_vector, the host_vector’s
data is copied all at once to the GPU device memory.

Besides the dynamic containers, Thrust offers common parallel algorithms with
implementations for host and device. They include searching, sorting, reordering,
reductions, prefix sum calculations (a. k. a. scans) and transformations.

Some algorithms accept functions as arguments, similar to algorithmic skeletons.
For instance, the transform algorithm (a. k. a. map) applies an unary or binary
functor to an input range or a pair of input ranges, respectively. So far, Thrust sup-
ports single-GPU systems only and makes no use of multiple GPUs. Thrust is based
heavily on CUDA, which restricts the user to GPUs of NVIDIA R©.

CUDPP is a library of data-parallel algorithm primitives such as parallel prefix
sum (scan), parallel sort and parallel reduction [9]. However, it does not provide
higher-order functions that could take user-defined functions as input.

Sato and Iwasaki [23] describe a more generic skeleton framework for GPGPU
programming. Instead of providing a library, they introduce the skeletons as func-
tions in C; these skeletons are transformed to CUDA code by a precompiler and
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so, in a way, constitute a new programming language. The compiler can also gen-
erate equivalent C code using macros and is therefore entirely C compatible. One
advantage of using a separate compiler is that optimizations can be built in.

Kirschenmann et al. [14] describe an implementation of the Parallel_for
skeleton designed to work on both CPU and GPU.

BlockLib [1] is a C-based skeleton programming library for simplifying Cell/
B.E.

TM
programming by encapsulating memory management, doubly buffered DMA

communication, SIMD optimization and parallelization across the SPE cores in ske-
letons.

Map, MapOverlap, Reduce and MapReduce have been implemented.
The library consists of compiled code and macros and requires no extra tools

besides the C preprocessor and compiler.
The parameterization in problem-specific user code can be done in different ways

that, on Cell, differ very much in performance and ease of use.
BlockLib provides the user with a simple function definition language, implemen-

ted as C preprocessor macros, which generates SIMD-optimized inner loops.
Many macros have a close mapping to one or a few Cell SIMD instructions or to
functions in the IBM SIMD Math library [11].
A skeleton library for Cell/B.E. based on C++ templates, called Skell BE, was

proposed by Saidani et al. [22].

6.6 CONCLUDING REMARKS AND FUTURE WORK

We have presented two recent skeleton programming frameworks, SkePU and SkelCL,
that can provide portability across a range of multi- and many-core platforms includ-
ing multi-GPU systems. We also demonstrated tunability for performance portabil-
ity.

The systems and examples considered in this chapter focus on data-parallel ske-
letons as data parallelism is the main source of parallelism provided by current GPU
systems. However, recent GPUs such as NVIDIA Fermi

TM
, multi-GPU systems and

GPU clusters allow to also exploit task parallelism at a much larger extent in the near
future. Adding support for portable task parallelism, such as farm skeletons, will
thus be an important issue for future work.
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CHAPTER 7

DSL STREAM PROGRAMMING ON
MULTICORE ARCHITECTURES

Pablo de Oliveira Castro, Stéphane Louise and Denis Barthou

7.1 INTRODUCTION

The advent of multicore processors raises new programmability challenges. Complex
applications are hard to write using threads, since they do not guarantee a determin-
istic execution, and are difficult to optimize because the programmer must carefully
tune the application by hand.

Stream languages are a powerful alternative to program multicore processors for
two main reasons: (i) they offer a deterministic execution based on a sound mathe-
matical formalism (synchronous data flow (SDF) [21]), and (ii) the expression of the
parallelism is implicitly described by the stream structure, which leverages compiler
optimizations that can harness the multicore performance without having to tune the
application by hand.

The stream programming model emphasizes the exchange of data between fil-
ters. To properly express and optimize stream programs, it is crucial to capture the

Programming Multicore and Many-core Computing Systems, 143
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Figure 7.1 Excerpt of a StreamIt program for matrix multiplication.

data access patterns in the stream model. We can distinguish two families of stream
programming languages:

• Languages in which the data access patterns are explicitly described by the
programmer through a set of reorganization primitives

• Languages in which the data access patterns are implicitly declared through a
set of dependencies between tasks

We present in the following a brief overview of related works concerning these lan-
guage families and then expose the principle of a two-level approach combining the
advantages and expressivity of both types of languages.

7.1.1 Explicit Manipulations of Streams

7.1.1.1 StreamIt StreamIt [4] is both a streaming language and a compiler for
RAW and SMP architectures. StreamIt revolves around the notion of filters. A filter
takes a stream of input elements, performs a computation and produces the result of
the computation on an output stream, thus capturing the producer–consumer pattern
often used in signal applications.

Filters are assembled in a flow graph by using a set of connectors: pipes form
chains of consumers and producers, split/joins allow to dispatch the elements inside
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a stream to a group of filters (parallelizing the computation) and reassemble the
results, and feedback loops allow to introduce cycles in the flow graph. Using these
connectors constraints the structure of the StreamIt graphs to a series–parallel hierar-
chical organization. This is a conscious design choice of the StreamIt designers [27]
since it simplifies the textual description of the graph. The use of these connectors is
demonstrated in Figure 7.1 where a program implementing the matrix multiplication
in StreamIt is provided.

StreamIt adapts the granularity and communication patterns of programs through
graph transformations [17], belonging to one of these three types: fusion transforma-
tions cluster adjacent filters, coarsening their granularity; fission transformations par-
allelize stateless filters, decreasing their granularity; and reordering transformations
operate on splits and joins to facilitate fission and fusion transformations. Comple-
mentary transformations have also been proposed. For example, optimizing transfor-
mations proposed in [1] take advantage of algebraic simplifications between consec-
utive linear filters. On cache architectures, fusion transformations proposed in [25]
optimize filters to instruction and data cache sizes.

7.1.1.2 Brook Brook is a stream programming language that targets different
architectures: Merrimac, Imagine, and graphic accelerators. The Brook syntax is
inspired by the C language and implements many extensions for stream manipula-
tion. Streams are typed and possess an arbitrary high number of dimensions. To the
best of our knowledge, current Brook compilers are limited to primitive types on
streams (no composite or arrays types).

Filters in Brook are normal C functions but preceded with the keyword kernel
which indicates they accept streams as parameters. Side effects between filters must
be strictly confined to stream communications. The access rights of kernels to stream
parameters can be specified as write only, read only or random access, which allows
the compiler to optimize memory handling.

To express data reorganizations, Brook introduces a set of functions that reorder
the elements within a stream:

• streamStencil extracts blocks of data inside a stream by moving a stencil
inside its shape.

• streamStride allows to select the elements in a stream that are separated
with a given stride factor.

• streamRepeat allows to duplicate elements in a stream.

• streamMerge combines elements from multiple streams.

In [22] an optimization method is proposed to leverage the affine partitioning frame-
work. To do this it translates the aforementioned data reorganization functions into a
set of dependences that can be optimized in the polyhedral model. The dependence
equations are not necessarily affine, but according to the authors, in many cases they
can be reduced to a set of equivalent affine equations.
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Figure 7.2 Matrix multiplication in Array-OL as viewed in the IDE Gaspard2 [8].

7.1.2 Expressing Streams through Dependencies

7.1.2.1 Array-OL Array-OL [16] is a language that specifically targets signal
applications. Data is represented using multidimensional arrays which can have one
infinite dimension (e.g. to represent time). Arrays are toroidal avoiding border effects
in many applications.

In Array-OL, programs are composed of filters that can exchange data arrays
through streams. The program description is done at two levels:

• The global level describes connexions between filters using an oriented acyclic
graph. A filter can have multiple input and output streams. The absence of cycle
forbids feedback loops but simplifies scheduling.

• The local level describes dependences between filter inputs and outputs. Each
input has an associated tiler describing the order in which the filter consumes
its elements. A tiler is composed of an origin point, a shape, a paving matrix
and a fitting matrix. Each time the filter is executed, it consumes a stencil of
elements inside the input arrays, determined by the tilers, shape. The stencil
is then translated according to the origin point and paving and fitting matrix.
Just like a tiler determines the dependences for each input stream, each output
stream also possesses a tiler describing the order of the elements produced by
the filter.

Array-OL programs can be developed in a visual IDE called Gaspard [12] which
eases the visualization of the local and global model. Figure 7.2 shows a matrix mul-
tiplication program as seen in Gaspard.

Array-OL programs can be transformed into a Kahn process network [3] which
enables a concurrent execution of the tasks. Recent works on Array-OL compilation
propose a set of optimizations that fusions Array-OL filters to coarsen the grain of
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parallelism and factor producer–consumer dependencies to increase reuse in pipelines
[13, 15]. But to the best of our knowledge, there is no automatic framework to decide
when these transformations should be applied.

7.1.2.2 Block Parallel Block Parallel [6] also targets signal applications. The
author argues that the multidimensional formulations proposed, for example, by
Array-OL are difficult to optimize since each new dimension increases the number
of possible data traversals. He pushes for a compromise between expressivity and
ease of compilation by allowing only data shapes of one or two dimensions and
restricting the input programs to acyclic graphs. He combines the input and output
filter dependencies proposed by Array-OL with the splitter and joiners proposed by
StreamIt (used to introduce data parallelism in the application). The author proposes
a set of optimizations to increase reuse in the filters and optimize the order of access.
Yet these transformations are very limited since they only work on the programs
that can be expressed using Block Parallel filter dependencies. For example, matrix
multiplication of fast Fourier transformation are out of the scope of Block Parallel
optimizations.

7.1.3 A Two-Level Approach

Brook and StreamIt propose a low-level language to manipulate streams: StreamIt
uses joiners and splitters that route and copy data through the graph, while Brook
manipulates the streams using primitives that reorder and select elements on streams.
StreamIt and Brook propose efficient optimizations. StreamIt uses fusion, fission and
reordering transformations to optimize the throughput, and Brook leverages the opti-
mizations offered by affine partitioning [22]. Array-OL and Block Parallel on the
other hand propose a high-level description of data dependences [6, 16]. Neverthe-
less the high-level description comes at a price: optimizations in these languages are
harder to implement, in particular optimization regarding the routing of data through
the application. As pointed in [14, 15], the formalism underlying Array-OL depen-
dences (ODT) makes difficult to express some transformations: since the result of the
optimizations must be a valid ODT Array-OL dependence set, the palette of available
transformation is limited.

Instead of using a single language to both describe and optimize the application,
we propose a two-level language approach. A high-level typed DSL, called SLICES,
is used to describe the data dependencies. SLICES is then converted to an intermedi-
ary stream language, SJD, which can be efficiently optimized with a set of semanti-
cally preserving stream graph transformations. The use of different levels of abstrac-
tion allows a clean separation of concerns and a modular compilation chain. The
expressivity problematic is addressed by a domain-specific high-level typed language
which can grow more complex to accommodate the users’ demands. The optimization
problematic is addressed by a simple and restricted language easier to optimize.

Recent works have also considered intermediary stream representation to cap-
ture the parallelism and flow of data information. Erbium [24] proposes a data flow
intermediary representation enabling mainstream compilers to better optimize stream
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Figure 7.3 SLICES program that captures a matrix multiplication communication pattern.
First the raw stream inputs are casted to shape to view them as matrices. Then the rows of A
are paired with the columns of B in the iterator loop and pushed to the output. In the graphical
examples we have chosen x0 = 5 and y0 = 4.

applications. FastFlow [2] is a parallel programming runtime based on skeletons that
also advocates a multilayered approach. The high-level layer is a library of very gen-
eral parallel patterns (Farm, Pipeline, etc.) that are build upon the simple but efficient
lock-free queues of the lower layers.

7.2 A HIGH-LEVEL DSL: SLICES

The high-level domain-specific language SLICES enables to model the multidimen-
sional data dependencies of filters in signal applications. For this, the domain of
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each filter is described as a combination of multidimensional slicings over the input
streams. The language is built around five concepts: shapes, grids, blocks, iterators
and zippers. We are going to present the language through a practical example: the
data dependencies of a matrix multiplication filter. To multiply two matrices, as in
Cy0,x1 = Ay0,x0 × By1,x1, we must extract the lines of A and pair them with the
columns of B, before processing them through a dot-product filter.

Lines 1 and 2 of the program in Figure 7.3 instantiate a datafilter embedding
SLICES code. The filter has two stream inputs with float values containing the
elements of each matrix and is parametrized with the matrix dimensions.

7.2.1 Shapes

SLICES allows us to restructures input streams into multidimensional views using
shape types. In line 3, we cast the raw input of the first matrix to a type shape
[x0,x1]. This produces a viewA, whereinput(0) is seen as a stream of matrices.
In practice we can use an arbitrary number of dimensions in a shape type.

7.2.2 Blocks

Blocks are used to select a set of elements inside a shape view. A block is defined by a
d-dimensional box parametrized by its min and max coordinates on each dimension:
(a1 :b1, . . . ad :bd) with ai, bi ∈ Z. In our example we want to extract from view A
each horizontal line. To achieve this we define in line 5 the block (0:x0-1, 0:0).

7.2.3 Grids

To select each and every horizontal line from A, we must apply the previous block to
each row. To define a set of anchor points where a block is applied, SLICES provide
the grid constructor. A grid is defined by three parameters for each dimension i: the
lower bound of the grid li, the upper bound of the grid hi and the stride δi. This triplet
describes for each dimension i, the set of points Gi =

{
δi.k.�ei : ∀k ∈

[∣∣ li
δi

; hi
δi

∣
∣]}.

The elements of a grid are constructed by computing the Cartesian product of the
Gi in lexicographical order. The grid operator uses a standard slicing notation where
li, hi, δi are separated by colons and each dimension is separated by commas. For
example, V[0:10:2] would describe the points in V that are between position 5
and 10 with a stride of 2. Out of simplicity, it is possible to omit one or more values
of the triplet; missing values are replaced by sensible default values (0 in place of li,
the size of the dimension in place of hi, 1 in place of δi). For instance, the previous
example could be rewritten B[:10:2].

A block can be applied upon a grid with the grid × block operator. This returns
the set of points produced by centering the block around each point of the grid. For
example, to extract the rows of A, we must apply the previous block to every point in
the first column of A in line 5. Indeed the grid A[0:1:, 0:y0:1] defines the first
column as a set of anchor points and is combined with the (0:x0-1,0:0) block.

When applied to a grid, successive blocks may overlap which is convenient to
write filters working on sliding windows of data (e.g. FIR or Gauss filter). Blocks
may also partially fall outside of the view shape to handle border effects.
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7.2.4 Iterators

shape, grid and block return instances of the iterator type that we can interleave
using nested ‘for v in iterator’ loops. A loop iterates over the elements of the given
iterator, binding each returned set of points to the variable v. In lines 5 and 6 we
iterate over the rows of A and the columns of B and produce each pair to the output
using the push keyword.

For a complete presentation of the language and of its underlying type system,
please refer to [10]. SLICES is able to capture frequently used data reorganization pat-
terns in signal applications: de Oliveira Castro [9] presents the design with SLICES
of a Sobel filter, a Gauss filter, a Hough filter and the odd–even mixing stage of a fast
Fourier butterfly transformation.

7.3 INTERMEDIARY REPRESENTATION SJD

The intermediary representation must provide a framework for the efficient optimiza-
tion of applications. To accomplish this objective, two requirements must be satisfied:
first, the representation must be simple enough to enable a well-understood set of opti-
mizations, and second, the representation should capture all the possible static data
reorganizations (we cannot optimize what we cannot model). A high-level multidi-
mensional representation like Array-OL and Block Parallel does not satisfy the first
requirement, since the optimization complexity grows with the number of dimensions
[6]. A simple graph language like StreamIt is much easier to optimize. Nevertheless,
by design StreamIt imposes a hierarchical series–parallel structure on the applica-
tion graphs that cannot model all the possible static data reorganization. As a simple
example, [27] shows that StreamIt can never alter the position of the first element of
a stream. Therefore, in StreamIt to reverse the order of a vector of elements, we can-
not use splitters and joiners and must hide the communication pattern inside a filter.
Another limitation of the hierarchical graph restriction is that it cannot capture all the
optimizing transformations we propose (UnrollRemove or BreakJS in Section 7.4.2
cannot be expressed with a series–parallel graph). To build our intermediary repre-
sentation, we have removed the hierarchical restriction from StreamIt graphs that
hampers the expressivity of the language.

Source (I) and Sink (O) nodes model the program inputs and outputs, respectively.
The source produces a stream of inputs elements, while the sink consumes all the
elements it receives. A source producing always the same element is a constant source
(C). If the elements in a sink are never observed, it is a trash sink (T).

Functions in the imperative programming paradigm are replaced by filter nodes
(F(c1, p1)). Each filter has one input and one output and an associated pure function
f (i.e. with no internal state). Each time there are at least c1 elements on the input, the
filter is fired: the function f consumes the c1 input elements and produces p1 elements
on the output.

Another category of nodes dispatch and combine streams of data from multiple fil-
ters, routing data streams through the program and reorganizing the order of elements
within a stream.
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Figure 7.4 Example of data reorganizations
enabled by SJD. (The split and join consump-
tions and productions are always 1 in this
graph.)

Figure 7.5 Multidimensional grids and
blocks extraction.

Join J(c1 . . . cn): A join node has n inputs and one output. Each time it is fired,
it consumes ci elements on every ith input and concatenates the consumed elements
on its output.

Split S(p1 . . . pm): A split node has m outputs and one input. A split consumes∑
ipi elements on its input and dispatches them on the outputs (the first p1 elements

are pushed to the first output, then p2 elements are pushed to the second, etc.).
Dup D (m) has one input and m outputs. Each time this node is fired, it takes one

element on the input and writes it to every output, duplicating its input m times.
By breaking the hierarchical constraint of StreamIt and introducing trash nodes,

SJD is able to capture all the finite static data reorganizations in the application: for
example, a vector can be easily reversed without using filters. In [9] we prove the
following result.

Theorem 7.1 (Expressivity) SJD graphs without filters exactly capture the reorga-
nizations [iφ(1), . . . , iφ(m)] where [i1, . . . , in] are the elements being reorganized
and φ is an application from [1, . . . ,m] to [1, . . . , n].

In other words, SJD graphs enable any finite permutation, reordering, duplication
or pruning of elements. Figure 7.4 demonstrates those features on a simple example.

Like StreamIt, our intermediate representation is built upon the SDF computation
model [21] where nodes are actors that are fired periodically and edges represent
communication channels. We can schedule an SDF graph in bounded memory if it
has no deadlocks and is consistent. A consistent SDF graph admits a repetition vector
�qG = [q1, q2, . . . , qNG

] where qN is the repetition number of node N. A schedule
where each actor N is fired qN times is called a steady-state schedule. Such a schedule
is rate matched: for every pair of actors (U, V) connected by an edge e, the number
of elements produced by U on e is equal to the number of elements consumed by V
on e during a steady-state execution (data dependencies are satisfied). The number of
elements exchanged in a steady state through edge e is noted β(e).

7.3.1 Compiling SLICES to SJD

To be able to optimize programs written using SLICES, we must compile SLICES
programs to the intermediate representation SJD. A detailed description of the
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Figure 7.6 Compiling 1D blocks that partially overlap (1 < w
δ < 2).

compilation process is outside the scope of this chapter, (please see [10]); however,
the main steps are as follows:

1. Each SLICES datafilter is parsed and type checked. For every SLICES program
that type checks, the compiler is able to generate a correct reentrant SJD graph
without deadlocks.

2. Multidimensional grids and blocks are by construction Cartesian products of
their 1D counterparts. For instance, the following grid and block 2D expression,

[l1 : h1 : δ1, l2 : h2 : δ2] × (a1 : b1, a2 : b2),

can be decomposed as shown in Figure 7.5 into

([l1 : h1 : δ1] × (a1 : b1)) ⊗ ([l2 : h2 : δ2] × (a2 : b2))

3. We compile each 1D constituent to an equivalent SJD graph using a set of
simple patterns. As an example, in the case of partial overlapping blocks
(1 < w

δ < 2), the SJD graph produced is given in Figure 7.6.

4. Our compiler analyzes the nested for loops, duplicates and reorders (inserting
appropriate Dup and Join nodes in the final graph) according to the iterators
length and the nesting depth of push instructions.

We prove in [9] that the number of nodes in the SJD graph produced by this com-
pilation process is O(p.d.w), where p is the number of push instructions, d is the
maximum number of dimensions used and w is the largest width in any dimension
of the extracted blocks. Thus the complexity of the generated graphs is independent
of the size of the input shapes. This means that working on large sets of data will not
increase the number of nodes in the intermediate representation.

When we compile the SLICES program from matrix multiplication of Figure 7.3,
our compiler generates the SJD graph in Figure 7.7. The matrix B is transposed using
the first S–J pair and then the rows of A and columns of B are duplicated with the
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Figure 7.7 Intermediate SJD representation equivalent to the SLICES matrix multiplica-
tion program (Fig. 7.3). The intermediate representation was automatically generated by our
SLICES to SJD compiler.

D–J pairs and paired together with the final J node, before being sent through the
dot-product filter.

7.4 OPTIMIZING THE INTERMEDIATE REPRESENTATION

The way we optimize the intermediate representation is through a set of transforma-
tions of the program. These transformations alter the communication patterns and
the degree of parallelism in the SJD representation of the original program while
preserving its semantics.

We follow the formulation given in [5]: a transformation T applied on a graph G,

generating a graph G′, is denoted G
T−−→G′. It is defined by a matching subgraph

L ⊆ G and a replacement graph R ⊆ G′. It operates by deleting the match subgraph
L from G and replacing it by the replacement subgraph R. The part of graph that
remains untouched (G \ L) is called the context of the transformation.

7.4.1 Soundness of Transformations

An optimizing transformation can only be applied if it preserves the semantics of the
original program, preserves consistency and does not introduce deadlocks.

In [9] we prove the following sufficient condition where L(I) are the output traces
of subgraph L for given input traces I and L(I) is the length of the output traces. For
simplicity we consider that L and R have only one input and output, but the sufficient
condition stands for multiple input/output subgraphs.

Lemma 7.1 (Local correction) If a transformation G
T−−→G′ satisfies

∀I ⇒ L(I) is a prefix of R(I)

∃b ∈ N,∀I ⇒ R(I) − L(I) ≤ b

L is consistent ⇒ R is consistent

then the transformation T is correct.
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This lemma establishes the correction of a transformation independently of the
context. A transformation that verifies Lemma 7.1 can be applied to any input SDF
program. In particular such a transformation is legal inside a feedback loop in the
SJD graph without introducing deadlocks or breaking consistency.

7.4.2 Transformations

Using the previous lemma we have constructed a set of correct transformations on
SJD graphs. In Figure 7.8 a subset of these transformations is presented. The transfor-
mations split or reorder the streams of data and modify the expression of concurrency,
and they can be separated in three groups according to their effect.

7.4.2.1 Node Removal These transformations rewrite communication struc-
tures that use less nodes, for example, by removing nodes whose composed effect
is the identity.

RemoveJS/RemoveSJ/RemoveD These transformations (not shown in the figure)
are very simple and remove nodes whose composed effect is the identity: a Split
and a Join of identical consumption and productions, a single branch Dup, a
single branch Split, etc.

CompactSS/CompactDD/CompactJJ (Fig. 7.8(f)) CompactSS (resp. JJ, DD)
fuses together a hierarchy of Split (resp. Join, Dup) nodes.

7.4.2.2 Synchronization Removal These transformations remove synchro-
nization points inside a communication pattern, usually by decomposing it into its
smaller constituents.

Constant propagation(Fig. 7.8(e)) When a constant source is split, we can elim-
inate the Split duplicating the constant source.

Dead code elimination(Fig. 7.8(g)) This eliminates nodes whose outputs are
never observed.

BreakJS(Fig. 7.8(i)) This breaks join–split junctions into smaller constituents, and
it often triggers Synchronization Removal (Fig. 7.8(h)) which tries to find two
matching groups in the productions/consumptions of the junction. This allows
to break a join–split junction into two smaller junctions.

7.4.2.3 Restructuring These transformations restructure communication pat-
terns. They find alternative implementations which may be more efficient in some
targets and sometimes trigger some of the previous transformations.

SplitF (Fig. 7.8(a)) This transformation splits a filter on its input. SplitF introduces
split–join parallelism in the programs. Because filters are pure, we can compute
each input block on a different filter concurrently.

InvertDN (Fig. 7.8(d)) This transformation inverts a duplicate node and its chil-
dren, if they are identical. This transformation eliminates redundant computa-
tions in a program.
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Figure 7.8 Set of transformations considered. Each transformation is defined by a graph
rewriting rule. Node N is a wild card for any arity compatible node.
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UnrollRemove (Fig. 7.8(b)) This transformation inverts the order between join
and split nodes. The transformation is admissible in two cases:

1 - Each pj is a multiple of C =
∑

ici, and the transformation is admissible,
choosing pij = ci.pj/C, cji = ci.

2 - Each ci is a multiple of P =
∑

jpj , and the transformation is admissible
choosing pij = pj , cji = pj .ci/P.

ReorderS/ReorderJ (Fig. 7.8(c)) ReorderS (resp. ReorderJ) creates a hierarchy
of Split (resp. Join) nodes. In the following we will only discuss SplitS. The
transformation is parametric in the Split arity f. This arity must divide the
number of outputs, m = k.f. In the figure, we have chosen f = 2. As shown
in Figure 7.8(c), the transformation works by rewriting the original Split using
two separate stages: odd and even elements are separated; then odd (resp. even)
elements are redirected to the correct outputs. We have omitted some more
complex transformations for simplicity sake. For an in-depth description of the
transformation set, please see [9, 11].

7.5 REDUCING INTERCORE COMMUNICATION COST

The previous set of transformations change the degree of parallelism and the com-
munication patterns of the original program. In this section we will demonstrate how
they can be used to reduce the intercore communication cost in a parallel program.

7.5.1 Measuring Intercore Communication Cost

To execute an SJD program on a multicore target, we partition the nodes in the
SJD graph among the available cores. For a given partitioning P of G, we define
inter(G, P) as the set of edges that connect nodes in different partitions.

The Hockney [18] model distinguish two cost factors in a point-to-point communi-
cation: (i) a fixed cost equal to the latency c0 and (ii) a variable cost that increases with
the number of streamed elements and depends on the bandwidth bw. The communi-
cation cost during a steady-state schedule execution is noted ce = c0 + β(e).s(e)

bw , where
β(e) is the number of elements exchanged during a steady state and s(e) is the size in
bytes of each element. The intercore communication cost is computed by aggregating
the costs of all the edges that link different cores, C(G,P) =

∑
e∈inter(G,P)ce.

7.5.2 Exploring the Optimization Space

We can improve the intercore communication cost by optimizing two factors: par-
titioning of the SJD nodes among the processors and the communication patterns
between filters.

To partition the SJD nodes among the processors, we solve the following opti-
mization problem: (i) reduce the intercore communication cost C and (ii) under the
constraint that the work imbalance among the cores is less than a small threshold (5%
in our setup). The work imbalance is the difference of load between the core which
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BEAMSEARCH(G) algorithm

Partition Gi Optimize C(Gi,Pi)

Exit: fixed-point or
max. number of itera-
tions reached

G0

Pi

Gi+1

1: T ← {RemoveSJ, RemoveI, . . .}
2: Gbest, Cbest ← G, C(G)
3: visit ← {G}
4: while visit = ∅ do
5: beam ← SortedList[beamsize]
6: for all G ∈ visit do
7: for all T ∈ MATCHING(G, T ) do
8: if C(T (G)) < Cbest then
9: Gbest = T (G)

10: Cbest = C(T (G))

11: end if
12: beam.INSERTifC(T (G))better(T (G))

13: end for
14: end for
15: visit ← beam
16: end while
17: return Gbest

Figure 7.9 Reducing the intercore communication through an iterative process.

is busiest and the core with the less work. To solve this problem we use the graph
partitioner METIS [19]. The threshold makes the balancing constraint a bit more
flexible, opening opportunities for the partitioner to improve the communication cost.

To optimize the communication patterns between filters, we use the set of trans-
formations presented in Section 7.4.2. Given an SJD graph G0, a derivation is a chain

of transformations that can be successively applied to G0 : G0
To−−→G1 · · ·

Tn−−→ · · ·.
Each derivation produces a new variant, semantically equivalent to G0 but with differ-
ent communication patterns. Given an initial graph G0, the number of derivations that
exist is very large, how should we pick one? In [9] we prove that for any given graph
there are no infinite derivations, that is to say, the optimization space is bounded. To
choose which transformations to apply, we use the Beamsearch [23], search heuris-
tic which is tuned with a constant parameter beamsize ∈ N. The algorithm explores
the optimization space recursively by applying all the possible transformations to
the initial graph G0, sorting the produced first-generation variants by their intercore
communication costs and discarding all but the first beamsize ones. The algorithm is
then applied recursively on the selected best first generation variants. Beamsearch
is guaranteed to terminate since the optimization space is finite. These two passes,
partitioning and communication optimization, are interleaved in an iterative process,
depicted in Figure 7.9, similar to [7].

7.6 EVALUATION

We have evaluated the intercore communication reduction technique on two sets of
signal application benchmarks: a first set of SLICES programs, matrix multiplication,
Gauss filter and Sobel filter which are first compiled to the SJD intermediate repre-
sentation and a second set of programs from the StreamIt benchmarks [26], Bitonic
sort, FFT, DES and DCT which are directly translated to the SJD representation.
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Table 7.1 Intercore communication cost reduction. ‘original’ and ‘optimized’ represent the
intercommunication volume per steady state for the original program and the optimized
program in Bytes. ‘C reduction’ is the reduction percentage of intercore communications
computed as Coriginal−Coptimized

Coriginal
× 100.

MM-COARSE GAUSS BITONIC HOUGH FFT DES DCT

Original (B) 18,864 10,563,200 384 48,480,000 384 192 3072
Optimized (B) 6624 7,340,000 256 401,624 192 192 1956

C reduction (%) 64.9 30.5 33.4 99.2 50 0 36.3
Opt. cost (s) 5 18 925 411 10 66 10

‘opt. cost’ is the time spend optimizing the SJD representation in seconds.

The target architecture is quadcore SMP Nehalem (Xeon© W3520 at 2.67 GHz)
with 256 KB of L2 cache and a shared 8MB L3 cache. The communications between
cores happen through the L3 cache with a very low latency (here we suppose that
c0 = 0).

We have measured the communication cost for two versions of the programs: the
original one is mapped with METIS to reduce the communication cost but graph
transformations are not applied to it; the optimized one is mapped with METIS and
optimized using the graph transformation set.

Table 7.1 summarizes the intercore communication reductions achieved by our
optimization framework. The mean percentage of reduction among all the programs
is 49.9%, and the mean time spend optimizing the programs is 3.4 min.

The DES encryption program shows no gains at all: the program admits very few
graph transformations that have no impact on the global layout of communications.

The gains in MM-COARSE can be attributed to several transformations of the flow
graph that can be seen in Figure 7.10. After optimization, the synchronization bottle-
necks (nodes J 8 and S15) have been removed. The transposition of matrix B has been
decomposed in blocks and distributed among the four cores. Finally, duplications are
made locally which reduce the volume of intercore communications.

The GAUSS filter is a bidimensional sliding-window filter that extract overlapping
3 × 3 windows of data from the input image. Our transformations are able to break
the sliding-window extraction among the different cores and reorganize the Split,
Join and Dup nodes to increase the horizontal reuse of data among filters, reducing
intercore communication.

The HOUGH filter computes the Hough transformation in a tight loop. Our opti-
mization framework breaks this loop in three smaller loops that are distributed among
the cores, making the state in the loop local to each processor.

The FFT and DCT filters possess many synchronizations points that are removed
by our transformation process allowing a better partitioning among the cores.

7.6.1 Impact on the Execution Time

We have implemented [9] a complete backend that compiles the intermediate SJD
representation to C code running on an SMP architecture. The compilation process
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Figure 7.10 Optimizations applied to MM-COARSE. In the original program the inter-core
communication cost is high since the program presents many synchronizations points: for
example, at runtime J 8 and S15 quickly become communication bottlenecks. After optimiza-
tion, J 8 and S15 have been split; the transposition of matrix B has been divided in blocks and
distributed among the four cores; duplicate nodes (nodes D205, D208, etc.) have also been
distributed among the cores; since the consumers of the duplicate streams are all in the same
core, duplications can be compiled to multiple reads to the same buffer and are not added to
the intercore traffic (a) Partitioning of original MM-COARSE on 4 cores, (b) Partitioning of
optimized MM-COARSE on 4 cores.
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Figure 7.11 Impact of the communication reductions on the performance: speedups of the
original program and the optimized program on an SMP Nehalem quadcore. The executions
times are normalized to the reference (StreamIt original program execution time on a single
core).
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can be broken in a series of steps: partitioning, scheduling, task fusion, communica-
tion fusion and code generation.

Our compiler takes into account two types of parallelism: (i) task or data paral-
lelism which is explicit in the SJD graph and (ii) pipeline parallelism which allows to
overlap successive executions of consumers and producers in a Stream Graph Mod-
ulo scheduling [20]. In the Stream Graph Modulo scheduling, a node execution can
be overlapped with its communications, hiding the cost of the cheaper operation. In
this context, the performance of a program is determined by the maximum between:
(i) the time needed to complete a schedule tick of a node execution and (ii) the time
needed to copy the productions of the node to the consumer.

Reducing the intercore communication cost should therefore have an impact on
performance on communication-bound programs. To verify this hypothesis we have
selected among the previous benchmarks the programs for which we had a reference
implementation (StreamIt) and for which our intercore communication reduction was
successful.

Our baseline is the execution time of the StreamIt version of the program compiled
on a single core with the command strc -O3. The speedups presented are normal-
ized by the StreamIt single-core performance. Then we have measured the execution
time of the SJD original program and the SJD optimized program using our backend
on four cores. Figure 7.11 presents the results obtained. The mean speedup without
applying optimizations is ×1.85, while the mean speedup with intercore communi-
cation reductions is ×3.2.

7.7 CONCLUSION

The challenge for stream programming on multicore architectures is to describe
stream manipulation, dependent on the application, and adapt this stream to complex
and changing multicore architectures. In particular, the program has to adapt to the
parallelism of the target architecture and to the bandwidth limitation and limited
cache (or buffer) sizes.

Stream transformations and optimizations are the key to this adaptation, and both
parallelism and communication metrics can be evaluated on a flow graph describ-
ing the stream. Being able to explore different stream formulation according to the
metrics to be optimized is essential to obtain high-performance stream programs. So
far, research efforts in stream-specific languages have focused on two language cat-
egories: languages such as Array-OL and Block Parallel describe streams through
dependences between filters, and languages such as StreamIt and Brook explicitly
manipulate stream operators. While it is more natural to the developer to describe
its program as a set of filters communicating through dependences, stream optimiza-
tions are hampered by the strong constraints imposed by the underlying dependency
model. For languages explicitly manipulating stream objects, the range of possible
optimizations is larger but suffers from the difficulty to describe complex flows.

We have presented in this chapter a novel approach for stream programming.
Based on the fact that the description of the stream and its optimization are separate
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concerns, we proposed an approach based on two domain-specific languages, one
for each concern. This approach retains both the expressivity of high-level languages
such as Array-OL and Block Parallel and the rich optimization framework, similar to
StreamIT and Brook.

SLICES manages to retain a high-level multidimensional expression of programs
while enabling an efficient compilation to the intermediary language. The SJD inter-
mediary language extends the expressivity of StreamIt by allowing nonhierarchical
graphs, extending the range of possible optimizations. We introduce a formal frame-
work for building correct transformations of SJD programs and an iterative explo-
ration algorithm to optimize a program according to a metric. This method achieves
a mean 49.9% reduction of the intercore communication cost among a set of sig-
nificant benchmarks. We expect our results to be even more relevant as the number
of cores increases, but this will be shown as future work. A limited exploration of
the space of solutions seems to be difficult to overcome so far: the metrics such as
intercore communication or memory consumption are nonlinear metrics.
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CHAPTER 8

PROGRAMMING WITH
TRANSACTIONAL MEMORY

Vincent Gramoli and Rachid Guerraoui

8.1 INTRODUCTION

The transactional memory (TM) paradigm simplifies concurrent programming by
hiding all synchronizations from the standpoint of the application programmer. Basi-
cally, it relieves the programmer of the lock management burden; therefore the pro-
grammer does no longer have to explicitly acquire and release locks but simply has
to delimit regions of sequential code that should appear as atomic, the transactions.

Transactions cannot block each other, hence guaranteeing deadlock-free
executions. In contrast, purely lock-based systems are known to be complex, and,
for example, in [4] the authors identified that 34% of Linux bugs [4] were due
to synchronization, while in [9] the authors thought having found eight potential
deadlock bugs in the Linux kernel v2.5. TM provides a transaction abstraction
appealing for it remedies numerous concurrency problems.

It is the role of the TM to execute transactions concurrently yet guaranteeing that
their execution is equivalent to an execution in which they would be serialized. The

Programming Multicore and Many-core Computing Systems, 165
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synchronization mechanics are thus still present but transferred to the TM program
underlying the applications. TM greatly simplifies concurrent programming by hiding
these complex mechanics from the application programmer.

More specifically, the TM program provides a basic high-level interface for the
programmer to convert a sequential program into a concurrent one: begin, read,
write, commit. The begin and commit delimit the transaction, that is, the
region of code that should appear as being executed atomically in isolation from the
rest of the system. Theread andwrite calls are wrappers to usual memory accesses
that are used to redirect memory loads and stores that belong to a transaction. Besides
making sure that the transaction executes the corresponding load (resp. store), the
read (resp. write) maintains the metadata defining the transaction state.

This chapter sheds some light on the current programming advances in the con-
text of TM and describes how a programmer can exploit them to write simply effi-
cient concurrent programs. For more general concepts on TM, the interested reader
may refer to [14, 17]. Section 8.2 illustrates the simplicity of transactions to solve
a common concurrency problem. Section 8.3 summarizes TM support in existing
programming languages and presents the transactional constructs for C, C++ and
Java. Section 8.4 introduces TM implementations by discussing hardware support
and presenting a running example for software support. Section 8.5 outlines causes
for performance limitations TMs may suffer from, and Section 8.6 introduces recent
solutions to cope with these limitations.

8.2 CONCURRENCY MADE SIMPLE

The TM paradigm initiated a complexity shift between the development of the con-
current applications and the development of the TM programs. This section illustrates
the simplicity of writing a TM-based concurrent program with the dining philosopher
problem.

Figure 8.1 The five chopsticks
shared by the five dining
philosophers to eat rice.

The dining philosopher problem is a common
concurrency control problem proposed by Dijk-
stra and reformulated by Hoare [23], in which
five philosophers sitting around a table with a rice
bowl in front of each of them and a single chop-
stick between each pair of consecutive bowls (see
Fig. 8.1) alternate between thinking and eating. A
philosopher can eat only if he acquires the two chop-
sticks near his bowl; hence not all philosophers can
eat at the same time. Solving the dining philosopher
problem relies in designing an algorithm that avoids
starvation so that each philosopher is guaranteed to
eat eventually.

A naive spinning lock-based solution that consists of acquiring the left chopstick
before trying to acquire the right one suffers from deadlocks, as all philosophers could
potentially acquire the left one and wait forever for the right one to be released by his
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right neighbor. Djikstra solution consists of acquiring and releasing all chopsticks in a
predetermined order; however, if the placement of the chopstick is not adequate, then
the solution may be very costly forcing many philosophers to release their chopstick
to let a single one eat. Other deadlock-free solutions are not starvation-free as they
may suffer from livelocks, where philosophers keep acquiring and releasing chopstick
without being able to eat.

This algorithm depicts a transaction-based try-to-eat procedure that shows how
TM can simply solve the dining philosopher problem. Let us focus on the first
transaction – the second transaction is simply used to ensure that safety is preserved
even though transactions do not execute in isolation from nontransactional accesses.
The all-or-nothing transaction semantics guarantees that the transaction either
acquires both chopsticks or none of them. If the transaction commits, the philosopher
can eat. Conversely, if the transaction aborts, then the philosopher does not prevent
another philosopher from eating, granting additional time to his neighbors to finish
eating. Note that another solution would be to write a transaction that wraps the
whole try-to-eat procedure. Although it would be perfectly correct, the resulting
program would have enabled less concurrency. A general guideline for programmers
is to write transactions that are as short as possible. If the transactions are too
long, then it is likely that one of them may have to abort and restart. A separate
contention manager plays the role of avoiding livelocks in which a transaction gets
repeatedly aborted. For instance, contention managers either map a high priority to
aborting transactions [32] or make aborting transactions back off some time before
restarting [21].

The simplicity comes from the fact that synchronization complexities are trans-
ferred to the TM itself and are hidden from the programmer. In fact, the exposed syn-
chronization is reduced to begin and commit delimiters, the rest being bare sequential
code. No locking primitives are exposed to the programmer, and deadlock freedom
is inherently guaranteed by the hidden TM. TM implementations are detailed in
Section 8.4.
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8.3 TM LANGUAGE CONSTRUCTS

Several compilers support transaction language constructs. For instance, there exist at
least three compilers that compiles transactions in C at the time of writing: the proto-
type DTMC,1 the TM branch of gcc,2 and the Intel® C++ STM compiler (icc).3 The
Glasgow Haskell Compiler provides support for transactions in Haskell [18]. Multi-
verse offers support for TM in Java and has been used in Scala [2]. Fortress supports
transactional language constructs, and Pugs compiles and interprets transactions in
Perl 6. .NET Framework 4 supports software transactional memory (STM). Multi-
ple third-party programs allow also to support transactions in other languages, like
STMlib for OCaml and Durus for Python.

8.3.1 C/C++ Programming Languages

The first attempts to support TM in production compilers led to the definition of
dedicated transactional language constructs in a C++ specification draft [34],
resulting originally from the collaboration of Intel®, IBM® and Sun® Microsystems
(Oracle®). This draft describes the constructs to delimit a compound statement that
is identified by the compiler as a transaction, in addition to several subtleties we list
here. For several years now, this specification has been reviewed and discussed by
academicians and other industrials on the TM-language mailing list,4 for the sake
of language expressiveness and compliance with existing TM systems and other
languages.

In C, a transaction is simply delimited using the block

__tm_atomic{ ... }

while in C++ a transaction is delimited by a__transaction{...} block where
__transaction{ (or equivalently__transaction[[atomic]]{) indicates
the point in the code where the corresponding transactionbegin should be called. The
closing bracket } indicates the point in the code where the corresponding transaction
commit should be called. Within this block, memory accesses are instrumented by
the compiler to call the transactional read and writewrappers. More precisely, the
binary files produced by the compiler call a dedicated TM runtime library through
an appropriate application binary interface (ABI) specified in [24]. This ABI is used
for both C and C++ and has been optimized for the Linux OS and x86 architectures
to reduce the overhead of the TM calls and to allow fast accesses to thread-specific
metadata shared by existing TMs.

1http://www.velox-project.eu/software/dtmc.
2http://www.velox-project.eu/software/gcc-tm.
3http://software.intel.com/en-us/articles/intel-c-stm-compiler-
prototype-edition/.
4http://groups.google.com/group/tm-languages.
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Transaction nesting, which consists in encapsulating a transaction block into
another, is allowed, and the [[outer]] keyword is explicitly used to indicate that
a transaction cannot be nested inside another. Generally, it is not allowed to redirect
the control flow to some point in the context of a transaction, but exceptions can
be raised within the context of transaction to redirect the control flow outside the
transaction context by propagating the exception.

Irrevocable transactions do not execute speculatively and are used to execute
actions that cannot be rolled back once executed; this is typically necessary in
cases where an action has some external side effects like I/O have. Attribute in
C++1x-style indicates whether the transaction executes speculatively as by default
__transaction[[atomic]]{} or has to execute without being aborted
__transaction[[relaxed]]{}, say, in irrevocable mode. Only irrevocable
transactions can execute calls with irrevocable side effects, and, for example,

[[transaction_unsafe]] void fire_missile{};

declares afire_missile function that can only be called in an irrevocable transac-
tion. The attribute [[transaction_safe]] void do_work{}; is especially
used to indicate the opposite – that function do_work does not have to be called in
an irrevocable transaction and can execute speculatively as part of a transaction prone
to abort.

8.3.2 JavaTM Programming Language

In Java, TM supports has been initially proposed using the combination of Java anno-
tations for identifying transactional accesses and a corresponding bytecode instru-
mentation framework that instruments transactional accesses either at load-time or
statically prior to execution. Multiverse5 and Deuce [26] are two such JVM agents
that instrument transactional accesses of the annotated bytecode resulting from a con-
current program.

Multiverse distinguishes @TransactionalObject and @Transac-
tionalMethod annotations that apply, respectively, to Java objects and methods.
All instance methods of an annotated object are thus instrumented transactions,
and annotated methods allow to specify which methods of a non-annotated object
are transactions. Additionally, annotating a method of an already annotated objects
allows to differentiate explicitly read-only methods from update methods using
@Transactional (readonly = true). Such differentiation is useful for
the underlying TM to optimize the validation of a read-only transaction that commits.

Deuce instruments methods annotated with the @Atomic keyword and
uses a clear interface a TM should provide: begin (viz. init), read (viz.
onReadAccess), write (viz. onWriteAccess) and commit methods and
additional beforeReadAccess and abort (viz. rollback) methods. The

5http://multiverse.codehaus.org.
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current distribution features classical transactions of state-of-the-art software TMs
developed collaboratively like TL2 [7], LSA [30], NOrec [5] and E-STM [10] that
combine classical and elastic transactions, as described in Section 8.6.2.2.

Unlike C/C++ compilers, the aforementioned bytecode instrumentation frame-
works cannot consider an arbitrary compound statement as a transaction because they
rely on annotation mechanisms. The Java precompiler TMJava6 remedies this limita-
tion by extending Java with transactional blocks. More specifically, TMJava supports
the __transaction{...} language construct in Java and outputs a purely Java
annotated program whose bytecode can be instrumented with Deuce.

It is noteworthy that TMs have recently found other applications in Java, including
coordinated exception handling [16]. In this case, the failure atomicity guaranteed by
transactions is useful for recovering from an inconsistent state even in a concurrent
environment.

8.4 IMPLEMENTING A TM

Programming with transactions shifts the synchronization complexity from the appli-
cation to the TM. This section discusses the TM implementations in hardware and
then in software, illustrating different design choices.

8.4.1 Hardware Support

Hardware transactional memory (HTM) has already shown promising results for
leveraging parallelism in the Linux OS [31] where transactions are combined with
spinlocks. HTMs scale better than locks in some scenarios. For example, if a single
lock is protecting multiple elements of a data structure, then concurrent transactions
accessing these elements may not abort each other. Finally, transactions are inher-
ently compositional and deadlock-free, an additional reason for using HTMs over
locks.

The scheme of the MetaTM [31] is similar to LogTM [27]. When a thread exe-
cuting a transaction executes a modification, the modification becomes immediately
visible, and the old value is recorded into an undo-log. If the transaction aborts, it
then rolls back by reverting the value to the old value. A thread can stop a transac-
tion and restart it afterwards which facilitates interrupt handling. HTMs have been
applied to bus-based systems in which the network-on-ship communications have to
be diminished. In [25], the authors propose an HTM that targets object-oriented pro-
gramming. This object-aware HTM attempts to avoid the high abort ratio induced by
considering conflicts at the level of objects that can be arbitrarily large. The key idea
is to provide an object cache with object address and field offset that are cached.

HTMs suffer, however, from some limitations. For example, some HTMs require
transactions to be of limited size [19] because of the limited hardware resource,
like bounded cache size. Some HTMs require specific system events or instructions

6http://tinystm.org/tmjava.
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to be executed outside transactions [6, 27]. Despite being dedicated to OSes, some
others cannot support transaction suspension, migration or context switches [15, 25].
Finally, transactions must be small enough to provide responsive irrevocable
I/O despite their speculative behaviors. The development of the Rock processor
[6], which provided a best-effort HTM, has been canceled. This processor used
aggressive speculation to provide high single-thread performance in addition to high
system throughput. For these reasons, it is unlikely that future TM implementations
will be purely hardware, and upcoming TMs are expected to contain a software
component.

8.4.2 Software Support

We present a running example of STM that does not need special hardware support – it
is implemented in software. First, we present a 2-phase-locking STM by giving the
pseudocode of its begin, read, write and commit functions, and then we derive
four variants that enable greater concurrency among transactions.

8.4.2.1 Two-Phase Locking We first present a naive STM algorithm whose
transactions use two-phase locking. Each read and write access of a transaction t
tries to acquire a lock on the accessed memory location. If t succeeds in acquiring
all the locks, t is granted an exclusive access to these locations, and t commits. If t
cannot acquire a lock, it detects a conflict and may abort. Upon commit or abort, t
releases all the locks it acquired. The TM presented in the algorithm in the following
serializes transactions that access common locations as its transaction semantics is
two-phase locking with no distinction on the type of accesses: acquiring locks on all
accessed locations (first phase) and releasing them all in a row (second phase).

This algorithm depicts the pseudocode of the 2-phase-locking TM algorithm that
lets a transaction commits only if it obtains exclusive accesses. Such a transaction
is likely to detect a conflict preventing it from committing. As the contention man-
agement policy simply aborts and restarts the transaction upon conflict detection
(Lines 8 and 15), the same scenario will likely occur later. For brevity, we omit-
ted the description of the abort-and-restart() procedure that consists of resetting the
shared locations and thread-private metadata to their default value (abort) and redi-
recting the control flow to the begin() of the transaction (restart). In the following
text, we explore several modifications of such naive TM algorithm that leads to better
performance.

8.4.2.2 Read Sharing For the previous TM to enable greater concurrency, one
can allow read sharing to let concurrent transactions read the same memory location.

This algorithm presents the modifications to obtain a TM with read sharing. The
idea is simply to change the mutex locks into read/write locks. The read operation
acquires a read lock on location x only if the write lock on x is not acquired, that is,
lock(x) is w-unlocked (Line 7); the write operation acquires a write lock on x only
if neither the read nor the write lock on x is acquired, that is, lock(x) is unlocked
(Line 3).
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8.4.2.3 Time of Update The previous TM algorithms execute update in-place,
meaning that each modification of a write access is immediately reported in memory.
Another approach, called deferred update, aims at recording each write access into a
redo-log and to report their logged modifications to the memory at commit time. The
algorithm in the following presents the changes to make to the previous one to obtain
a TM with deferred update transactions. Note that by postponing the time of memory
update, there is no need to maintain an undo-log with the old version, w-log (Line 5),
as no value has to be reverted in case of abort.

In-place update transactions have a lightweight commit phase but a costly abort
phase. They require to record all their write accesses into an undo-log to revert the
memory appropriately upon abort. Moreover, they have to protect their modifications
until commit time to preserve their isolation. Otherwise the TM could suffer from
cascading aborts: a transaction t that aborts forces the transactions that have read t’s
modifications to abort as well, provoking, in turn, additional aborts.

Problems due to the lack of isolation can be even more dramatic: division by
zero, infinite loops, etc. A TM copes with these issues if it ensures opacity [14],
that is, any execution it produces is equivalent to an execution where transactions
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execute sequentially, respecting the order of nonconcurrent transactions in the origi-
nal execution, and where all transactions, including aborting ones, do not observe a
noncommitted state.

Deferred update transactions have to replay the redo-log at commit time but do
have a lightweight abort phase as no modifications have to be reported in memory
in case the transaction aborts. Additionally, a deferred update transaction may make
its modifications invisible from concurrent transactions until it commits, which may
represent a waste of effort as running transactions that will eventually abort keep
cores busy. Invisible write transaction t has, however, the advantage of letting other
transactions access same locations and commit before t reaches its commit phase. We
discuss in the next section how to make write invisible.

8.4.2.4 Write Invisibility A TM with in-place updates cannot have invisible
writes, as by modifying the shared location before it commits; other concurrent trans-
actions accessing the same location are guaranteed to see the modification. Con-
versely in a deferred update transaction, the writes can be invisible until commit time.
Deferred update transactions can also have visible writes, by changing the metadata
associated with some locations. For example, the TM resulting from modifications
of the previous algorithm have visible writes as it locks a location x at the time the
write on x is executed and before commit time. While accessing the same location x,
concurrent transactions detect that the lock on x has been acquired.
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As illustrated in the algorithm earlier, the TM has simply to postpone the locking
of x from the write time to the commit time to make writes invisible from concurrent
transactions.

8.4.2.5 Time-Based Implementations In 2006, time-based TM algorithms
[7, 30] were suggested as an alternative to purely lock-based TMs.

The aforementioned lock-based TM implementations rely on locks that simply
indicate whether a memory location is protected. Typically, a transaction t1 locks a
memory location between the time it reads it and the time it commits preventing a
concurrent transaction t2 from overwriting the read value during this time interval.
This prevention is however restrictive as t1 could still be serialized before t2 even if t2
is allowed to write. An alternative is to use a global counter so that each transaction
and each memory location get assigned an associated version, whose comparison
indicates whether memory locations can be read by the transaction.

Transaction t calls try-update when it reads a memory location whose version t
is more recent than the time ts the transaction started, indicating that the location
has been concurrently updated. The try-update tries to update ts by checking if all
previously read locations have not been overwritten since t has started. Upon failure,
the transaction aborts.

8.4.2.6 Read Invisibility A TM that executes invisible read transactions ensure
that no transactions can detect read accesses of pending transactions. If transaction t
executes invisible reads, then no concurrent transactions can detect related conflicts;
thus it is the role of t to validate its set of read accesses, r-set, at commit time to make
sure that all these remain consistent. Although a monomorphic TM algorithm with
exclusive read accesses cannot have invisible reads, allowing shared read accesses
from two concurrent transactions, as we did in modifications of Section 8.4.2.2,
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permits having invisible reads. (Transaction monomorphism and polymorphism are
discussed in Section 8.6.2.) We now present the additional modifications necessary
to obtain a TM with invisible reads.

The read no longer acquires locks so that concurrent transactions cannot observe
that a location has been read-locked. The reading transaction could check that the
current location is locked by updating transactions and abort if so, but it does not
have to check whether its read is consistent at the time it reads, if all transactions have
invisible writes. The validation of an invisible read transaction is done at commit time
by checking that all its read accesses are still valid at the commit time, if not a conflict
is detected (Line 8).

8.5 PERFORMANCE LIMITATIONS

TM has become very popular these past ten years. Few years ago however, several
researchers expressed their skepticism about this programming paradigm. This ten-
dency follows the well-known Gartner Hype Cycle and seems to indicate that TM,
after having been on the peak of inflated expectations, is reaching the trough of dis-
illusionment. This reveals a critical period after which TM becomes a mature idea.

8.5.1 Trough of Disillusionment

This disillusionment was expressed in an experimental paper, invited for publications
in the October 2008 issue of CACM, questioning the capability of STM-based con-
current applications to even speedup the performance one could obtain from a single-
threaded sequential application [3]. Differing results [8], which appeared recently
also in CACM, state that STM is finally a mechanism that scales significantly the
performance of various applications as the level of parallelism increases, provided
that the underlying multicore machine features enough hardware parallelism.

A more theoretical paper shed some light on some formal appealing properties,
like read invisibility and strict disjoint-access parallelism, TM implementations fail in
guaranteeing [1]. Disjoint-access parallelism properties may present a lighter impact
when placed in the shared memory context where accessing shared data is fast and
where the TM bottleneck is more susceptible to come from the lack of concurrency
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contains(z)

size()

r(u) r(v) r(w) r(y)

r(u) r(v) r(w) r(y)

u v w y

Figure 8.2 Sorted (lexicographically) linked list example in which two operations with same
accesses have distinct semantics: contains(z) is a parse operation whereas size() is a
snapshot operation.

or the ignorant contention management policy than the sharing of centralized counter
metadata. Recently, a workshop outlined a potential gap between recent theoretical
concerns about TM and its practical concerns [29].

To conclude, as TM has become more and more popular for the challenging goal of
simplifying concurrent programming, several researchers expressed their skepticism
about the adoption of such paradigm mainly due to the overhead of their software
implementations. After this trough of disillusionment, TM have finally won its spurs,
perhaps already reaching the slope of enlightenment that is common to mature ideas.

8.5.2 Classical Transactions Limit Concurrency

In a concurrent environment, two operations may look very similar even though they
do not share the same semantics as explained in [13]. For example, this is the case
for a contains(z) operation parsing a linked list of data structure and failing in
finding element z and another operation size() capturing an atomic snapshot of the
number of elements of this data structure. Both operations have the same sequence
of read/write accesses, yet they have distinct semantics. Figure 8.2 depicts the read
r(*) and write w(*) of these operations.

The contains(z) is consistent even though y is concurrently inserted after r(x)
occurs. Identifying the modification of the next pointer of x to insert y as a conflict
with r(x) would unnecessarily limit concurrency: we thus refer to such a conflict as
a false-conflict. Conversely, the size() requires, for example, that x and y, which
are both counted, be both present in the linked list at the same time. Hence, con-
tains(z) enables theoretically more concurrency than size() as it tolerates con-
current updates, and a fine-grained locking technique (e.g. hand-over-hand locking)
could naturally exploit this additional concurrency. To implement these two different
operations with transactions, the programmer encapsulates all accesses within trans-
action delimiters. The semantics of the transactions has of course to be strong enough
to support both semantics. The drawback is that transaction-based contains does
not enable greater concurrency than size; thus classical transactions abort in an
overconservative manner.

Despite having the appealing property of composition, transaction-based
algorithms are known to execute generally slower than lock-based and lock-free
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alternatives, in part for this aforementioned reason. In the next section we present
how an average programmer can use a TM library to implement a concurrent
application that overcomes these issues.

8.6 RECENT SOLUTIONS

We describe two different techniques: exposing commutativity and using transaction
polymorphism. The former technique exploits concurrency between operations by
letting the expert programmer explicitly ignore ordering constraints between com-
mutative operations. The latter technique exploits operation concurrency by using
polymorphic transactions for various operation semantics.

8.6.1 Exposing Commutativity

Novel TM models [10, 20, 28] have been proposed to overcome the lack of concur-
rency. The idea common to these models is to let the TM ignore the false read–write
conflicts when executing high-level operations that are commutative. As a drawback
of exploiting commutative operations, delimiting transactions within a sequential pro-
gram is no longer sufficient to obtain a concurrent program.

8.6.1.1 Open Nesting The open nesting model [28] allows a transaction to
commit and report its changes to the memory while being nested inside a transac-
tion that has not committed yet. The key idea is to enable higher concurrency by
splitting high-level operations into transactions and to define appropriate abort han-
dlers that would compensate the effect of committed inner transactions if their parent
transaction aborts. To enable higher concurrency, each transaction keeps track of the
high-level operations that they have executed. In some cases though, they also have
to keep track of lower-level operations to be able to compose.

8.6.1.2 Transactional Boosting Transactional boosting [20] aims at trans-
forming a linearizable object into a transactional object by implementing transactions
that call the high-level operations from an external thread-safe library. These oper-
ations do not have to execute speculatively, and can, for example, be implemented
using lock-free primitives. As the library operations apply directly their low-level
changes in memory without keeping track of them, the library can only provide invert-
ible operations and must accordingly provide their respective inverses.

The commutativity-based transaction models are more complex to use than other
transaction models as a sequential program cannot be converted into a concurrent
program by simply using transaction delimiters. The application programmer has to
identify the pairs of commutative operations and must implement specific compen-
sating actions or complex abort handlers for each transaction.
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8.6.2 Transaction Polymorphism

A recently suggested synchronization technique, called transactional polymorphism
[13], provides transaction control to the average programmers to improve perfor-
mance of their concurrent applications. The key idea is to provide transactions of
distinct semantics that can execute concurrently while preserving their respective
semantics.

The average programmer can exploit these various semantics to implement
high-level linearizable operations without annihilating their concurrency, whereas
the novice can ignore these semantics and use the default transaction semantics
for all operations. Although the programmer needs to have some understanding
of the various transaction semantics to enhance concurrency of all operations, the
novice programmer can straightforwardly implement a potentially slower but safe
concurrent program using only transactions with default semantics.

We present how the average programmer can enable greater concurrency by imple-
menting contains(z) and size() operation presented in Figure 8.2 using trans-
action polymorphism. First we present two potential relaxed transaction semantics,
early release and elastic transaction, and then present complementary form of trans-
actions.

8.6.2.1 Early Release The early release mechanism extends the traditional TM
interface with a release action. The release [22] is the action of forgetting past reads
during the execution of their transaction. This mechanism enhances concurrency by
decreasing the number of low-level conflicts for some pointer structures: some of
the unnecessary low-level conflicts involving contains(z) can thus be ignored. As
opposed to the explicit Select For Update that strengthens snapshot isolation
in database systems, early release provides an explicit release that weakens seri-
alizability. It requires the programmer to carefully determine when and which objects
in every transaction can be safely released [33]: if an object is released too early, then
inconsistencies may happen.

Such a technique exposes additional calls to the programmer; hence to benefit from
early release the programmer cannot simply delimit regions of a sequential program
to obtain a concurrent one. The simple TM interface as well as the ABI mentioned in
the introduction do not support such explicit calls.

8.6.2.2 Elastic Transactions Elastic transactions enable transaction polymor-
phism without the need to change the TM interface. The programmer simply has to
delimit regions of sequential code to obtain a concurrent program.

Syntactic Sugar Elastic transaction [10] is a transactional model that respects the
classical ABI but enables greater concurrency than classical transactions. Two ver-
sions (in C and Java) of E-STM, combining elastic and classical transactions, have
been released,7 and the Java version is currently part of the distribution of Deuce [26],
the bytecode instrumentation framework described in Section 8.3.2.

7http://lpd.epfl.ch/gramoli/php/estm.php.
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The key idea is that an elastic transaction is a particular form of transaction that
executes begin/read/write/commit events differently from classical trans-
actions. The programmer has simply to add a parameter to the begin delimiter to
differentiate an elastic transaction from a classical transaction. As the begin delim-
iters already support parameters in icc and gcc, there is no need to change the ABI
to support elastic transactions. Similarly, the Deuce bytecode instrumentation frame-
work also supports metainformation given as parameters to begin delimiters. As
an example Deuce annotates methods that represent transactions with parameterized
annotations and supports elastic transactions. As an example the following addAll
method adds multiple elements to a Collection, atomically:

Semantics We now present the semantics of elastic transactions. An elastic trans-
action executes its read-only prefix in a hand-over-hand style by recording the ith,
i + 1st, . . . , i + kth read locations before discarding the ith one. In the linked list
example of Figure 8.2, if p1 executes the contains(z) operation in an elastic trans-
action with k = 1, then a concurrent transaction can execute w(x) between r(y) and
r(z) as the potential conflicts involving the r(x) start being ignored. An elastic trans-
action executes the accesses following its read-only prefix as in a default transaction,
keeping track of all conflicts with its read accesses for later validation. In Section
8.6.2.2, all modifications performed by the series of add are hence part of the same
default transaction.

Elastic transactions are compatible with classical transactions, in the sense that
the TM providing elastic transactions also provides classical transactions that can all
run concurrently while preserving their respective semantics. Due to this polymor-
phism, the elastic transaction model allows composition as opposed to usual relaxed
transaction models.

For example, one could try to reuse contains and add operations by compos-
ing them to implement an addIfAbsent(x, y) operation, which inserts x given that
y is absent. However, because the relaxed contains ignores some low-level con-
flicts to enhance concurrency, the concurrent execution of addIfAbsent(x, y) and
addIfAbsent(y, x) leads to an inconsistent state where both x and y are present.
The elastic transaction model solves this issue by letting an elastic transaction check
whether it is nested inside another transaction and if so determines the type of its
enclosing transaction to determine its own type. Hence, if the enclosing transaction
is regular, it can switch its type to regular to prevent inconsistencies. If the enclosing
transaction is elastic, then the nested one does not have to change its type.

8.6.2.3 Other Aspects Transaction polymorphism has been shown to enable
more concurrency than monomorphic STMs in [13], hence conveying the intuition
that transactions may achieve comparable performance to other synchronization
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techniques. Experimentations have confirmed these thoughts by showing that
transaction polymorphism is more efficient than lock-based and lock-free syn-
chronization techniques to implement atomic Collections in Java [12], where
snapshot operations and parse operations use distinct forms of transactions. Finally,
other appealing features of transaction polymorphism lies in the way the contention
manager could associate priority to each transaction depending on their form.

8.7 CONCLUDING REMARKS

After years of investigation, TM has become a mature technique that allows to greatly
simplify concurrent programming. A complete TM stack has been released [11]; it
features TM-based applications, TM language extensions for Java, C and C++, ×86
instruction set extension8 for TM support in hardware as well as hybrid mechanisms
that combine both software and hardware mechanisms. The major limitations having
caused skepticism of users have been addressed: I/O are now supported by compilers,
and with polymorphism a TM compensates its performance limitations at high level
of parallelism.

Building on top of the current advances on the topic of TM, the notions we have
presented here aim at giving any programmer of concurrent applications the pos-
sibility to exploit the power of TM. As opposed to other concurrent programming
paradigm, TM does not require specific programming skills. Expert programmers
could certainly extend polymorphic TMs with very specific forms, average program-
mers could adequately choose the right form of transaction to improve the perfor-
mance of their applications, but novice programmers will always be able to exploit
the default TM settings to write easily safe and live concurrent programs.
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CHAPTER 9

OBJECT-ORIENTED STREAM
PROGRAMMING

Frank Otto and Walter F. Tichy

This chapter presents an approach unifying the concepts of object-orientation (OO)
and stream programming. OO provides a high degree of modularity and reusability,
which makes it the de facto standard in mainstream software development. However,
OO languages such as C++ or Java address parallelism at an abstraction level that is
too low. Programmers have to create and manage threads and synchronize accesses
to shared resources. This is an error-prone process that may result in hard-to-find
synchronization bugs such as data races or deadlocks. In addition, programmers have
to consider performance aspects and make applications adaptable to different plat-
forms. In sum, programming parallel mainstream applications significantly increases
complexity and work for developers.

The arising question is: How can the OO model be extended to simplify
general-purpose parallel programming, aiming for both better programmability and
performance gains? The model should provide straightforward syntax that is capable
of easily implementing parallel design patterns. Synchronization and performance
tuning should happen automatically wherever possible. Object-oriented stream
programming (OOSP) can serve as a solution.

Programming Multicore and Many-core Computing Systems, 185
First Edition. Edited by Sabri Pllana and Fatos Xhafa.
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9.1 STREAM PROGRAMMING

Stream programming follows a paradigm exposing parallelism in a way that is
suitable for multicore architectures. A stream program consists of interconnected
computational units, also called actors or filters, that process a large (theoretically
infinite) sequence of data items. The connected filters form a stream graph, des-
cribing how data flows through actors.

In contrast to thread-based languages, the stream programming model allows for
efficient implementations of different types of parallelism:

• Pipeline parallelism. A pipeline is a chain of actors a1, . . . , an that are directly
connected in the stream graph. Each pair (ai, ai+1), i ∈ {1, . . . , n − 1} has a
producer/consumer relationship, that is, ai consumes items produced by ai−1
and produces items that serve as input for ai+1.

• Task parallelism. Two actors a1, a2 are task parallel if they are on different
branches of the stream graph. In contrast to pipelines, there are no input/output
dependences between a1 and a2.

• Data parallelism. The stream programming domain defines data parallelism
as the property of an actor to have no dependences between one execution and
the next. If this property holds, the actor is stateless and thus can be replicated.
Data parallelism uses multiple instances of an actor.

Figure 9.1 shows a stream graph for a simple equalizer based on band-pass filters.
A stream of input signal values is passed to different band-pass filters; the resulting
values are added and form the output signal stream. Each dimension corresponds to
one type of parallelism, that is, data, task or pipeline parallelism. In the example, there
are three types of actors: duplicate, bandpass(i) and add (in the following denoted as
d, bi, a). As illustrated, d, (b1, . . . , bn), a build a pipeline. b1, . . . , bn are task parallel
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Figure 9.1 A stream graph.
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since they do not depend on each other. The actors bi are stateless and thus can run
in data parallel mode by replicating them.

A characteristic of the stream programming paradigm is that input/output depen-
dences between actors are modeled explicitly. Actors are typically lightweight com-
ponents that can execute independently from each other due to data locality. The
stream graph of a program with compute and communication estimates for each actor
enables compilers to determine and optimize schedules of execution.

9.2 OBJECT-ORIENTED STREAM PROGRAMMING

The synthesis of object-orientation and stream programming is a programming model
suitable for mainstream software development [13–15]. It provides intuitive syntax
for parallelism based on stream concepts while preserving the flexibility and expres-
siveness of object-orientation. The benefits are:

1. Higher productivity and lower risk for bugs through abstraction

2. Code that is easier to understand and maintain

3. What-you-see-is-what-you-get parallelism through an appropriate syntax for
expressing parallel patterns such as pipelines, master/worker or divide and
conquer

4. Significantly reduced need for platform-specific performance tuning, leading
to higher performance portability

The following sections illustrate these benefits from the perspectives of language,
compiler and runtime system concepts.

9.3 XJAVA

XJava is a prototype OOSP language and a superset of Java. It consists of a compiler
xjavac and a runtime system xjavart. xjavac transforms XJava to Java code (either
source code or bytecode), generates code variants and inserts parameters and
context information for performance tuning (cf. Section 9.4.3). xjavart executes
that generated code and adjusts runtime parameters according to the target platform
(cf. Section 9.4.4).

Syntactically, the two central extensions are tasks and parallel statements. Tasks
are basically OO actors; they are specialized methods that define potentially parallel
activities. Parallel statements finally create parallelism by combining task calls with
operators.

Before going into details, Example 9.1 illustrates these basic language features
with a simple file indexing application as it could be used for desktop search. The
program employs a pipeline indexing text files in a given directory, accordingly updat-
ing a global index. This first example will be extended in the course of this chapter
to introduce more language concepts.
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� EXAMPLE 9.1 File indexing in XJava

The program’s main class Indexer declares three tasks read, index,
update. read produces a stream of files contained in a given directory dir.
index accepts a stream of files and produces a stream of word sets. Finally,
update accepts a stream of word sets and accordingly updates the global index.

Inside the mainmethod, parallelism is introduced by calling these tasks and com-
bining them with the pipeline operator =>. This expression abstracts from threads,
synchronization and the actual execution behavior. After the pipeline statement, there
is an implicit barrier. That is, the ‘Done!’ message is printed when all data in the
pipeline has been processed. Now, after the introducing example, we approach the
extensions more formally.

9.3.1 Tasks

Tasks are specialized methods and are declared in classes or interfaces. Tasks and
methods have several things in common. A task declaration consists of a signature
(i.e. name and parameters) and a body. Properties can be specified with modifiers
such as public, final, static or abstract. A task can be inherited or
overridden.

9.3.1.1 Input and Output Types In contrast to methods, tasks do not have a
return type, but input and output types. These define the types of stream elements the
task expects and produces. If there is no input or output, the corresponding type is
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void. In Example 9.1, the update task’s output type is void since it only receives
a stream of Set objects and updates the index, producing no output stream.

9.3.1.2 Task Bodies Unless a task is declared abstract, it has a body. In
general, the body may contain any regular Java code. In order to receive and produce
data streams according to the task’s specified input and output types, there are work
blocks and push statements.

Work blocks. A work block is a loop defining how to process the incoming stream
elements. It is repeatedly executed as long as there is input available at the task’s
input port. Before each iteration, the received stream element is assigned to a
local variable declared after the work keyword. The compiler ensures that the
type of that local variable matches the task’s input type. In Example 9.1, the
index task assigns the current stream element to the local variable f of type
File.

Push statements. A push statement puts a value or object reference on the output
stream. The type of that value or reference must match the task’s output type.
In Example 9.1, the read task repeatedly pushes File objects to the output
stream; the update task does not contain a push statement since its output
type is void.

9.3.2 Parallel Statements

In order to create parallelism, tasks need to be called and connected with operators
to parallel statements. There are operators for pipeline and task parallelism.

Example 9.1 already showed how to create pipelines using the pipeline operator
‘=>’. The operator connects tasks via their input/output ports. The compiler checks
if the corresponding input and output types match.

The task parallel operator ‘| | |’ creates task parallel statements. Other than for
pipeline statements, there are no input/output dependences between the called tasks.
We extend Example 9.1 by assuming two different implementations to compute
indices in the Index class. That is, the stream of File can be indexed by either
computeIndexA or computeIndexB. These methods could use different
algorithms, data structures or handle different file formats such as text or PDF
files. Then, the main class Indexer can be extended by two corresponding tasks
indexA and indexB:
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In order to concurrently apply both tasks indexA and indexB, the index task’s
body uses the corresponding task parallel statement instead of a work block. Parallel
statements inside task bodies allow for (arbitrary) parallel nesting and refinement of
parallel structures. The input and output types of a nested parallel statement must
match the input and output types of its surrounding task. The index task’s input and
output types are File and Set<String>. Therefore, both tasks in the nested task
parallel statement, indexA and indexB, must match the input and output types of
the surrounding task index.

9.3.3 Variants of Task Calls

As we have seen, tasks are basically called like methods. They can be combined with
operators to create pipeline and task parallelism. In addition, there are variants of
task calls to enable data parallelism as well. Given a task t, it can be called in the
following ways:

• t(): Using the standard call will create exactly one instance of t.

• t():[n]: Combining the call with some integer expression n will create n
instances of t. That is, the expression t(): [3] is equivalent to t() |||
t() ||| t().

• t():[+]: Using the ‘+’ wild card will create at least one instance of t. The
number is constant and determined at runtime.

• t()+: This expression also creates a certain default number of instances of
t but allows for dynamically adjusting this number, depending on workload
distribution in the whole application. This is a feature relevant for online per-
formance tuning that will be discussed in Section 9.4.4.

For illustration, to fully automate the replication of the indexA and indexB tasks,
we can modify the index task in the following way:
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public File => Set<String> index() {
indexA()+ ||| indexB()+;

}

In this case, it will be determined at runtime how many replica to use for each task.

9.3.4 Splitting and Joining Streams

Whenever a data stream is split according to task or data parallelism, we need to spec-
ify splitting and joining semantics, that is, the logical order in which stream elements
have to be distributed and merged. By default, this is done in a round-robin fashion
to keep the stream’s original order. Sometimes the order in which stream elements
are processed is not important, or elements need to be broadcasted to all following
tasks. For these situations, the pipeline operator ‘=>’ can be further refined in the way
J =>S, where J := {?} and S := {?, *} are optional join and split modifiers according
to Table 9.1.

Table 9.1 Splitting and joining streams.

Split modifier Usage Semantics

None ... => t() : [3] ... Round-robin
? ... =>? t() : [3] ... First come–first serve
* ... =>* t() : [3] ... Broadcast

Join modifier Usage Semantics

None ... t() : [3] => ... Round-robin
? ... t() : [3] ?=> ... First come–first serve

9.3.5 Implementing Parallel Patterns

When developing software systems, the use of design patterns is essential. Design
patterns provide concepts and solutions to recurring design problems, thus increas-
ing productivity and maintainability. In the context of parallel programming, several
parallel design patterns help implement parallel code for specific problem structures.
This section shows with the example of XJava how OOSP can simplify implementing
parallel patterns.

9.3.5.1 Pipeline One important pattern is the pipeline, which has already been
discussed in the file compression example. As a chain of interconnected tasks, we
distinguish linear and nonlinear pipelines. A pipeline is nonlinear if at least one stage
is task or data parallel, requiring the stream to be split and joined. Both types of



�

� �

�

192 OBJECT-ORIENTED STREAM PROGRAMMING

pipelines can be efficiently implemented with OOSP in general and XJava in partic-
ular. Using abstract tasks in classes or interfaces or refinement by inheritance allows
for defining flexible pipelines in an elegant way.

9.3.5.2 Producer/Consumer A producer/consumer configuration can be seen
as a nonlinear pipeline with two stages: a producer stage and a consumer stage. The
following generic class declares the tasks produce and consume:

Given an object pc of type ProducerConsumer, a configuration with p
producers and c consumers can be written as

pc.produce ():[p] =>? pc.consume ():[c]

Note that both tasks can be arbitrarily refined by overriding. The order in which items
are consumed is typically not important in the producer/consumer pattern, so we use
the variant ‘=>?’ of the pipeline operator.

9.3.5.3 Master/Worker The master/worker pattern is a widely used pattern for
distributing and concurrently processing work units. This pattern can be implemented
in XJava by combining two task calls with variants of the ‘=>’ operator. Assume a
class declaring master and worker tasks:
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Then, given a MasterWorker object mw, a master/worker pattern can be imple-
mented by

mw.master() => mw.worker()+;

In this context, the number of workers is set dynamically; this number may increase
and decrease with the workload. To make the number of workers (1) constant or (2)
set it to a concrete number n, we can write

mw.master() => mw.worker():[+]; // (1)
mw.master() => mw.worker():[n]; // (2)

Using the ‘=>’ operator feeds the workers in a round-robin fashion with elements
from the stream. Alternatively, the ‘=>?’ operator variant distributes elements
dynamically on a first-come–first-serve basis. If each element should be sent to all
workers, we use the ‘=>*’ operator instead.

9.3.5.4 Divide and Conquer Divide-and-conquer algorithms offer paralleliza-
tion potential by solving subproblems concurrently. XJava can exploit this potential
in a simple way. For example, consider a sequential merge sort algorithm:

In order to parallelize this algorithm with XJava, two small changes are required.
First, the method mergesort is made a task. Then, to make the recursion step par-
allel, we use a concurrent statement combining the calls of mergesort with the
‘|||’ operator:

This implementation abstracts from synchronization, the number of threads used
for execution and the question when to switch from parallel to sequential execu-
tion. Note that this example does not necessarily need to operate on streams. A fully
stream-based alternative would be the following:
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We assume arrayToStream converts an array to a stream while streamToAr-
ray does the opposite. In addition, sort (int n) receives and sorts a stream of
n elements; merge(int n) merges two ‘sorted’ streams of size n/2 each to a
sorted stream of size n. Finally, to sort an array a and write the result to array b, we
use the nonlinear, recursive pipeline:

arrayToStream(a) => msort(a.length) => streamToArray(b)

9.4 PERFORMANCE

The previous sections focused on programmability aspects when developing
general-purpose software. This section addresses aspects of performance tuning.
We first approach these aspects from a more general perspective. Then we describe
the potential of OOSP with respect to performance tuning, including compiler and
runtime system concepts.

Adapting parallel applications to the underlying hardware is crucial to achieve
good performance. A large number of performance-relevant program parameters
need to be considered, for example, how many threads are used for calculation, how
to set the size of data partitions, how many stages a pipeline requires or how to
accomplish load balancing for worker threads. These parameters are called tuning
parameters.

Consider a parallel program P(p1, p2, . . . , pn), where p1, . . . , pn are tuning param-
eters with possible value domains dom(p1), . . . , dom(pn). The challenge is to find a
configuration (x1, . . . , xn) ∈ dom(p1) × · · · × dom(pn) that provides the best per-
formance for a specific target platform.

9.4.1 Search-Based Auto-Tuning

Manual optimization is hard and time consuming due to large parameter search
spaces. Therefore, search-based approaches for automatic performance tuning
(auto-tuning) [1, 18, 20, 22] have been developed to automate optimization. The
auto-tuning process consists of several tuning iterations. Each iteration can be
divided into three basic steps: (i) applying a parameter configuration to the program,
(ii) program execution and performance monitoring and (iii) generation of a new
parameter configuration. The new parameter configuration can be computed by
optimization algorithms such as hill climbing or simulated annealing.

Since multicore systems differ in many respects (e.g. in number or type of cores,
cache architecture, available memory or operating system), there is a diversity of
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Figure 9.2 Search-based auto-tuning of a program P for three different machines
M1, M2, M3.

targets to optimize for. Optimizations for one machine cannot generally be ported
to another machine. That is, a program usually has to be retuned for each platform.
Figure 9.2 illustrates auto-tuning of a program P with tuning parameters a, b, c for
three different machines.

A very simple example is a parallel program with one tuning parameter t that
adjusts the number of concurrent threads. The best configuration for t on a quadcore
machine is most likely a value close to 4. However, this value seems to be a bad
choice when using a machine with 16 cores. For the auto-tuner, t is nothing more than
a variable associated with a set of values to choose from. However, if the purpose of
t was known, t could be directly set according to the number of available cores.

OOSP can simplify the whole performance tuning process [15]: the compiler
can infer tuning parameters and context information from code, which provides a
higher level of abstraction for the programmer. The knowledge of parameters and
their semantics and contexts enables the concept of parameter prediction, achieving
a high degree of performance portability by reducing the need for platform-specific
retuning (cf. Fig. 9.3).

9.4.2 Essential Tuning Parameters

This section describes important types of tuning parameters that are of special rel-
evance for parallel applications in general and streaming applications in particular.
One application can contain several parameters of the same type.

Thread count (TC). The performance of a parallel application is strongly affected
by the total number of threads used for computations. An insufficient number
might result in idle cores, thus limiting the speedup. Using too many threads
might add too much synchronization overhead and memory consumption, caus-
ing slowdowns.
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Figure 9.3 Inferring tuning parameters and context information to enable parameter predic-
tion on different machines.

Load balancing strategy (LB). The load balancing strategy decides how to dis-
tribute workload to execution threads or CPU cores. Strategies can be static,
for example, performing round-robin distributions, or dynamic, for example,
first-come–first-serve policies or work stealing.

Cutoff depth (CO). Complex parallel applications often make use of parallelism
on different abstraction levels. Especially low-level parallel code sections may
cause slowdowns if synchronization costs outweigh the possible speedup. That
is, there is a level where sequential execution is preferable to parallel execution.
The cutoff depth denotes this level.

Stage replica (SR). The bottlenecks of pipelines are slow stages, limiting through-
put and therefore the overall speedup. If a stage is stateless, it can be safely
executed by more than one thread. Stage replication creates several instances
of the same stage. The number of instances is defined by the parameter SR.

Stage fusion (SF). Given a pipeline consisting of n stages s1, . . . , sn, the stan-
dard way of execution is to assign each stage one thread. However, it can be
worthwhile to fuse some stages to reduce the overhead for buffering data. That
is, stage fusion represents functional composition of stages. The parameter SF
defines whether to fuse a stage with the previous stage.

Data size (DS). When parallel applications process a large amount of data, it often
needs to be decomposed into smaller data partitions. The sizes of the partitions
usually influence performance.

9.4.3 XJava Compiler

Based on high-level OOSP syntax, the XJava compiler infers tuning parameters, their
semantics (i.e. their purpose) and information about the contexts they refer to. In
addition, tunable code alternatives are generated. The XJava extensions conceptually
compile as follows:

• A task declaration task compiles to a class ctask as well as a method smtask for
sequential execution.
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a b c d p q

Figure 9.4 Inferring tuning parameters and context information from XJava code.

• Parallel statements basically consist of a set of task calls. A call of a task task
compiles to:

1. The creation of an instance of ctask that is enriched with context informa-
tion and passed to the runtime system xjavart, which is responsible for
handling parallelism

2. A call of the corresponding sequential method smtask

With each call of task at runtime, it is determined whether to use the
parallel version ctask or sequential version smtask to cut off parallelism (cf.
Section 9.4.4).

9.4.3.1 Inferring Tuning Parameters The XJava compiler generates Java
code and adds relevant tuning parameters. Each parallel statement is instrumented
with parameters thread count (TC) and load balancing strategy (LB). In addition, task
parallel statements get another parameter cutoff depth (CO) indicating whether to
execute that statement in parallel or sequentially. A pipeline statement consisting of
n stages s1, . . . , sn is instrumented with stage fusion parameters SFi, i ∈ {2, . . . , n},
where SFi indicates whether to fuse stages si − 1 and si. Finally, the parameter stage
replica (SR) is added to each replicable stage.

Figure 9.4 illustrates inferred tuning parameters and context information for a
pipeline and a task parallel statement.

• A pipeline a() => b() + => c() + => d() compiles to a set of
four task instances a, b, c and d that build the pipeline stages. Stages b and
c are replicable, so a tuning parameter SR is added to both. Then, b, c and
d get a Boolean parameter SF defining whether to fuse that stage with the
previous one.

• A task parallel statement p() ||| q() is instrumented with a parameter
CO. This statement executes concurrently if the cutoff depth has not been
reached. Otherwise, p and q run sequentially.
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9.4.3.2 Inferring Context Information In addition to tuning parameters, the
XJava compiler exploits context information for tasks and associated parameters.
This knowledge is used by xjavart for adequately setting tuning parameters while
the program executes. Important context information is the following:

1. Purpose. Is the task call part of a pipeline or a task parallel section?

2. Periodicity. Does the task perform a single operation or repeated work? The lat-
ter case enables measurement loops for online tuning, allowing to vary param-
eters and observe performance impacts.

3. Dependences. Which input/output dependences to other tasks are known?

4. Level of parallelism. On which level of parallelism does the task call happen?
This information is needed for setting cutoff parameters (CO).

5. Workload. Monitoring the current workload of a task helps avoiding bottle-
necks by preferably executing tasks with more workload. Currently, the work-
load is approximated by the number of elements at the task’s input port.

Context information can be static or dynamic. For example, a task’s purpose is
constant, while its workload may change over time. Figure 9.4 illustrates context
information for pipelines and task parallelism.

9.4.4 XJava Runtime System

Object-oriented stream programs can be efficiently executed on multicore systems.
xjavart uses an executor service for tasks to control the number of threads and enable
workload-aware scheduling, that is, tasks with higher workload have a higher priority.

To ensure performance portability, xjavart uses the concept of context-based
parameter prediction. Beyond that, OOSP enables on-the-fly auto-tuning, that is,
dynamic adjustments of parameters.

An auto-tuner typically has a black-box view of an application, only knowing
adjustable parameters and their value range. With OOSP, context information can
be extracted and used for suggesting good values for those parameters. If the pur-
pose of a parameter is known as well as the context it refers to, its value range can be
drastically reduced, leading to a high probability that a chosen value will be close to
optimum. XJava can currently infer and predict five essential types of parameters:

• Thread count (TC). xjavart employs a number of executor threads and moni-
tors the numbers of running and idle threads at any time. The total number of
threads is initially set 1.5 · n, where n is the number of CPU cores on a system.
TC may increase during execution. In particular, tasks that perform blocking
operations due to I/O or lock acquisition may be assigned to separate executor
threads in order to reduce the overall blocking time and avoid deadlocks.

• Load balancing (LB). Based on available context information, xjavart pro-
vides different load balancing strategies. For nested task parallelism such as
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Figure 9.5 Fusing replicable stages of a pipeline reduces the overhead for splitting and join-
ing data streams. (a) Stage replication without fusion. (b) Fusing replicable stages.

divide-and-conquer algorithms, xjavart applies work stealing, similar to the
Java fork/join framework [9]. For pipelines, xjavart uses a dynamic load bal-
ancing strategy that prioritizes stages with higher workloads.

• Cutoff depth (CO). The cutoff depth for nested parallelism is determined
dynamically. Assume that a parallel statement S has to be executed on nested
level l. If idle executor threads are available, xjavart sets CO = ∞. That is,
S will be executed in parallel mode. On the other hand, if there are no idle
executor threads, the cutoff depth is set to CO = l, that is, the level on which
S appears. In this case, S is executed sequentially. However, it is possible to
switch back from sequential to parallel execution to avoid load imbalances.

• Stage replica (SR). If a task is declared replicable, xjavart sets SR = i for that
task, where i is the number of idle executor threads. That is, i instances of
that task will be initially created. This number may be adapted during program
execution.

• Stage fusion (SF). The more stages a pipeline consists of, the more buffer
operations between stages are required. Especially subsequent replicable stages
introduce overhead for splitting and joining streams. Therefore, xjavart iden-
tifies chains of replicable stages and fuses them into a single replicable stage.
Figure 9.5 illustrates this heuristic for a pipeline a() => b() + => c()
+ => d(): the longest chain of replicable stages is (b, c), which is converted
into a single replicable stage bc.

9.4.4.1 Online Adaption of Parameters Although heuristics for tuning
parameter prediction lead to good performance results, it may be necessary to adjust
them during execution. Parameter prediction alone can result in performance that
is close to optimum, but it can be further improved. An even more interesting case
where parameter adjustment might be useful is changing workload.

Figure 9.6 illustrates a scenario with two master/worker configurations MW 1 and
MW 2 running in parallel. For each configuration, we focus on the tuning param-
eter SR1 and SR2 indicating the number of workers. Using parameter prediction,
that number is initially set to a default value SR1 = SR2 = 3 (Scenario S0). After
some time, the workload may have changed, since the work units passed to workers
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Figure 9.6 Tuning two master/worker configurations depending on workload w.

may have different complexities, requiring different amounts of time to complete. In
Scenario S1, the workload w1 of MW1 has increased to 15, while w2 has decreased
to 5. Given that context information, the runtime system knows that MW 1 is obvi-
ously currently more complex than MW 2 and can adjust the values to SR1 = 4 and
SR2 = 2. In Scenario S2, the situation may have changed again, resulting in new
parameter configurations SR1 = 2 and SR2 = 4.

9.5 EXPERIENCES

XJava has been evaluated with applications of different sizes and from different
domains, for example, algorithms, the JavaGrande benchmark suite [19], applica-
tions for video processing and cryptography as well as different desktop search
engines [12]. Smaller programs such as sorting algorithms or single JavaGrande
benchmark programs mostly employ simple task parallelism, divide and conquer
or master/worker patterns. These programs expose two or three relevant tuning
parameters each. More realistic applications such as video processing, cryptography
and desktop search consist of more complex, often nonlinear pipelines. For these
applications, we identified up to 14 relevant tuning parameters.

We compared XJava with threaded Java with respect to code structure and per-
formance. The code structure was measured in terms of lines of code, the amount of
manual synchronization needed and the number of tuning parameters that have to be
declared and tuned manually. In order to quantify the effectiveness of context-based
parameter prediction, we compared the achieved performance to the best known static
parameter configuration found by an offline auto-tuner. Experiences can be summa-
rized as follows:
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• Code is up to 40% shorter compared to threaded Java and contains 80–100%
fewer synchronization primitives such as locks, joins or wait–notify operations.
However, some applications contained a few shared variables that had to be
locked in order to prevent data races.

• Exposing parallel patterns results in code that is easier to implement and under-
stand and less error prone.

• On average, 90% of the relevant tuning parameters can be inferred and set
automatically and therefore are invisible to the programmer. The only param-
eter type that had to be optimized manually was the size of data blocks passed
between pipeline stages.

• The need for auto-tuning can be considerably reduced. On three different plat-
forms, the performance of XJava applications was only 5–9% lower on average
than the best solution found by an auto-tuner. The lower performance typically
was due to suboptimal numbers for threads or stage replicas, resulting in either
throughput bottlenecks or inefficient cache usage. However, we plan to further
improve performance by incorporating more efficient feedback-driven run time
tuning mechanisms.

9.6 RELATED WORK

XJava is mainly inspired by the pure stream-based language StreamIt [7, 21]. We
extended its concepts and adapted them for object-oriented programming. Other
examples for stream languages are Brook [2] and Cg [11], mainly targeting GPUs.
The application domain of stream languages is data-centric computations such as
signal processing or graphics. This class of programs typically operates on primitive
data types and homogeneous data streams. In addition, stream languages do not
provide the power and expressiveness of OO features.

Aside from stream languages, there is a large body of work on parallel program-
ming models in general. Libraries such as java.util.concurrent [10] or TBB [17] have
been developed to provide constructs for high-level parallelism in Java or C/C++.
Chapel [3], Cilk [16] and X10 [4] are parallel languages that focus on fine-grained
task and data parallelism and numerical computations.

In contrast to the aforementioned languages and models, XJava incorporates
auto-tuning as a key component of the programming language and runtime system.
Auto-tuning as a stand-alone tool has mainly been studied in the context of
numerical algorithms and high-performance computing. For example, FFTW [6]
employs auto-tuning specifically tailored to Fourier transformations. Datta et al. [5]
introduce optimization strategies for stencil computations. Active Harmony [20] is
an automated runtime tuning system targeting program algorithmic libraries.
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9.7 FUTURE WORK

XJava is a prototype OOSP language demonstrating the usefulness of streaming con-
cepts in general-purpose programming languages. Current and future research topics
address runtime performance tuning and correctness issues.

Although the concepts of parameter inference and context-based parameter pre-
diction show promising results, we plan to support user-defined tuning parameters in
addition to the parameters mentioned in Section 9.4.4. Also, we are currently integrat-
ing a runtime kernel auto-tuner [8] into XJava, allowing for interprocess application
optimization and faster parameter adjustments.

Since OOSP allows for shared variables among tasks, data races may occur. There-
fore, we are investigating ways to prevent these defects. Currently, the XJava compiler
employs static analysis determining potential conflicts between tasks and gives warn-
ings to the programmer. Alternatively, this information can be used to automatically
protect critical code with locks or software transactional memory.

9.8 SUMMARY

Integrating the concepts of stream programming into the object-oriented paradigm
offers great potential for both programmability and performance of parallel applica-
tions. The intuitive stream syntax provides an elegant way to express different types
of parallelism on different layers. Important parallel patterns such as pipelines, mas-
ter/worker or divide and conquer can be efficiently implemented. The stream-based
syntax abstracts from threads, most synchronization, and performance-critical param-
eters. This chapter illustrated these benefits with the example of XJava, a prototype
OOSP language extending Java.

In terms of the average programmer, OOSP reduces the risk of hard-to-find syn-
chronization bugs as well as the need for performance optimizations while improving
productivity and code maintainability. OOSP compilers can generate code alterna-
tives and, as they know the language features’ semantics, infer tuning parameters and
context information about the parallel application. Thus, a runtime system has a more
transparent and detailed view of the applications and its structure. Tuning parameter
values can be predicted and dynamically adjusted, allowing for efficient execution on
multicore systems.
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CHAPTER 10

SOFTWARE-BASED SPECULATIVE
PARALLELIZATION

Chen Tian, Min Feng and Rajiv Gupta

10.1 INTRODUCTION

Extracting thread-level parallelism from sequential programs is very important for
improving their performance on widely available multicore processors. Since manual
code parallelization by programmers is a time-consuming and error-prone process,
compiler-based parallelization techniques have drawn much attention of researchers.
Many early works on DOALL parallelism [9, 12] focus on identifying loops with-
out cross-iteration dependences and executing their iterations in parallel. However,
most sequential programs cannot be parallelized using the previous approach by the
compiler due to the potential presence of cross-iteration dependences. To handle
such dependences, DOACROSS parallelism techniques [1, 13] have been considered.
Using explicit communication operations (i.e. sends and receives), values are passed
between threads, and cross-iteration dependences are correctly enforced. However,
due to the high communication costs and the serialization resulting from communi-
cation operations, the benefits of DOACROSS parallelism are quite limited.

Programming Multicore and Many-core Computing Systems, 205
First Edition. Edited by Sabri Pllana and Fatos Xhafa.
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Thread-level Speculative Parallelization (SP) is another approach that has been
proposed for parallelizing sequential programs. It allows dynamic parallelism that
may be present in a sequential program to be aggressively exploited. The idea behind
this technique is as follows. Let P denote a sequential program containing a pair of
subcomputations C and C′ such that the execution of C precedes the execution of
C′ during P’s sequential execution (e.g. C and C′ may represent consecutive itera-
tions of a loop). Thus, the results computed during the execution of C are available
during the execution of C′. The goal of SP technique is to relax the strict ordering
imposed on the execution of C and C′ by speculatively executing C′ while C is still
executing. During the speculative execution of C′, if a data value is read prematurely
(i.e. it is read before it has been computed by C), then misspeculation occurs, and
thus the results computed during speculative execution of C′ must be discarded and
C′ must be nonspeculatively reexecuted. On the other hand, if misspeculation does
not occur, the execution time of the program is reduced due to parallel execution of
C and C′. Of course, speculative execution is only beneficial if the misspeculation
occurs infrequently. Opportunities for speculative execution arise because the depen-
dences from C to C′ may arise from infrequently executed code, or even if they do
arise, they may be deemed harmless (e.g. dependences may arise due to silent stores).
The aforementioned approach naturally extends to multiple levels of speculation.
Given a series of dependent computations C1 → C2 → · · ·Cn, while C1 executes
nonspeculatively, C2 through Cn can be speculatively executed in parallel with C1 on
additional cores.

SP is usually applied to loops and performed at compile time. The compiler ignores
cross-iteration dependences and optimistically parallelizes sequential loops. When
the speculatively parallelized program is executed, the runtime system or special-
ized hardware is used to detect misspeculation (i.e. manifestation of ignored depen-
dences) and recover from it. While hardware-based techniques have been extensively
researched, the specialized hardware structures (e.g. versioning cache [6], version-
ing memory [5], etc.) on which these techniques rely have not been incorporated in
commercial multicore processors. On the other hand, software-based techniques have
also drawn attention from researchers, and they have the advantage that they can be
used to exploit the multicore systems available today.

SP techniques require minimal help from the programmer who may be required
to identify loops to which SP is to be applied. An alternative is to profile the pro-
gram and identify loops that are found to contain significant levels of parallelism due
to infrequent occurrences of cross-iteration dependences. The compiler performs the
tedious task of generating parallelized code, and the runtime system ensures the cor-
rectness of speculative execution. The main challenge of employing this approach is
designing and implementing a sound and efficient runtime system to support SP.

To design and implement an SP system, several issues need to be addressed. A
computation model that supports speculative execution and allows for misspeculation
detection and recovery capabilities must be designed. Efficient techniques for han-
dling misspeculations must be developed; otherwise, when the misspeculation rate
is high, the performance achieved through parallelism will be nullified. Programs
that make extensive use of pointer-based dynamic data structures pose additional
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challenges to SP systems. However, for wide applicability of SP, these challenges
must be addressed. Finally, techniques for identifying parallelizable regions must be
developed. The rest of the chapter addresses the aforementioned issues. Some ongo-
ing projects that focus on SP techniques are also briefly discussed followed by future
work and conclusions.

10.2 SPECULATIVE EXECUTION IN CORD

During the execution of a sequential program, only a single execution entity, a pro-
cess or a thread, exists. However, when the SP technique is used, multiple execution
entities must be employed to aggressively exploit parallelism. Different design deci-
sions can be made. For example, should threads or processes be used? How should
the created processes or threads coordinate their execution?

This section presents the copy-or-discard (CorD) execution model [18] which sup-
ports speculative execution. CorD is a thread-based model which employs one main
thread and multiple speculative parallel threads. The advantage of using threads is
that the entire memory space is accessible for all threads within the process. Thus,
thread interactions are lightweight in comparison to the process-based model.

A computation is divided into sequential (nonparallelized) regions and specula-
tively parallelized regions. The main thread and multiple parallel threads execute
these regions as follows. The main thread executes all sequential regions, and when it
reaches a speculatively parallelized region, it spawns a number of speculative threads
and assigns a piece of work taken from the parallelized region to each of them. After
task assignment, it simply waits for the speculative threads to finish their assigned
tasks. When a speculative thread finishes a task, it notifies the main thread so that
the main thread can detect misspeculations and ask the speculative thread to redo the
same task or assign a new task to it. This pattern continues until the entire parallelized
region has been executed. After that, if the next region is sequential, the main thread
executes it; otherwise, all existing speculative threads are reused to perform the com-
putation in the next parallel region. These speculative threads will terminate when
the last parallel region has finished executing. Thus, while the speculative threads
perform computations in speculatively parallelized regions, the main thread executes
all sequential regions, coordinates activities of speculative threads, detects misspec-
ulations and so on.

10.2.1 State Separation

One of the key issues of the SP technique is to distinguish the speculative results from
nonspeculative results. In SP techniques, there are two typical schemes to update the
computation results, eager update and lazy update. In the eager update scheme, each
speculative thread commits its results before the speculation check. If a misspecula-
tion is detected at a later point, the system must have the ability to roll back to an
earlier correct state. This requires a design that allows the system to distinguish spec-
ulatively committed results. In contrast, lazy update does not allow any speculative
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results to be committed unless they pass the misspeculation check. Therefore, state
separation is employed to maintain nonspeculative state separately from the specu-
lative state of the computation. Most existing SP techniques adopted the lazy update
scheme because the execution of each thread (or process) is isolated from execution
of all other threads (or processes). Thus, if the execution of one thread results in
misspeculation, it does not necessarily force the reexecution of all other threads.

To achieve state separation, CorD divides the entire memory space of a specu-
latively parallel execution into three disjoint partitions <D, P, C> such that each
partition contains a distinct type of program state (see Fig. 10.1).

D state

memory

Main

thread

P state
memory

C state
memory

P state
memory

C state
memory

Speculative
thread 1

Speculative
thread n

Figure 10.1 Maintaining memory state.

10.2.1.1 Nonspeculative State D memory is the part of the address space
that reflects the nonspeculative state of the computation. Only the main computa-
tion thread Mt performs updates of D. If the program is executed sequentially, Mt
performs the entire computation using D. If speculative threads are used, then Mt
is responsible for updating D according to the results produced by the speculative
threads.

10.2.1.2 Parallel or Speculative State P memory is the part of the address
space that reflects the parallel computation state, that is, the state of the speculative
threads Ts created by Mt to boost performance. Since speculative threads perform
speculative computations, speculative state that exists is at all times contained in P
memory. The results produced by the speculative threads are communicated to Mt
that then performs updates of D. Note that P memory is further divided into a number
of disjointed spaces. Each speculative thread uses one of these spaces as its own P
Space. To avoid execution interference, a speculative thread is not allowed to access
any other speculative thread’s P Space.

10.2.1.3 Coordinating State C memory is the part of the address space that
contains the coordinating state of the computation. Since the execution of Mt is
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isolated from the execution of speculative threads Ts, mechanisms are needed via
which the threads can coordinate their actions. The coordinating state provides
memory where all state needed for coordinating actions (e.g. actions in control
component) is maintained. Similar to P memory, C memory is further divided into a
number of C spaces, each corresponding to one speculative thread.

10.2.2 Copying Operations

When a speculative thread starts a speculative computation, it requires the input data
and the values of context variables (i.e. variables that are used before being defined)
to be present in its P space. When a parallel thread finishes a speculative computation
and the results are validated, all produced data needs to be moved back to D space.
Therefore, a mechanism is needed to transfer data between D space and P space. This
mechanism is implemented through a copying operation in CorD. In particular, copy
in refers to the operation that copies data values from D space to a P space and copy
out refers to the operation that copies data values from a P space to D space.

When copying operations are performed to transfer data, certain information has
to be maintained for consistency. In particular, when a data value is copied in, both
its source and destination address have to be remembered. Thus, when this value is
changed by a speculative thread, copy-out operation can update the correct memory
location in D. To achieve this, the mapping table is required for the copying opera-
tion. It is allocated by the main thread for every speculative thread. As shown in the
following, an entry in the mapping table contains five fields.

The D_Addr and P_Addr fields provide the corresponding addresses of a variable
in the D state and P state memory, while Size is the size of the variable. Version is
the version number of the variable when the value is copied from D state to P state
memory. It is used during misspeculation detection which will be described later. The
WriteFlag is initialized to false when the value is initially copied from D state to P
state memory. However, if the parallel thread modifies the value contained in P_Addr,
the WriteFlag is set to true by the speculative thread. During the result-committing
stage, this flag is examined to determine which variables need to be copied out.

Note that copying operations can be highly optimized [18]. The main idea is to
identify the access patterns of data values by combining dynamic and static analysis.
For example, if a data is read only or thread local, no copying operations should be
performed. The optimization can greatly reduce copying operations and thus improve
the performance.

10.2.3 Misspeculation Detection and Recovery

A misspeculation occurs when a speculative computation reads a data value before it
is produced by an earlier computation. The misspeculation check is performed by the
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1: foreach variable v that has an entry e in the mapping table {
2: if (e.version != v.global_version){
3: discard all results and ask t to reperform the task;
4: return SpeculationFail;
5: }
6: }
7: foreach variable v that has an entry e in the mapping table {
8: if (e.WriteFlag){
9: copy-out v;
10: v.global_version++;
11: }
12: }
13: return SpeculationSuccess;

Figure 10.2 Misspeculation detection.

main thread in sequential order. In particular, the main thread performs the misspec-
ulation check for a speculative thread performing the earliest task among all tasks
being currently performed by all the speculative threads.

Misspeculation detection algorithm considers each data value speculatively read
by a committing speculative thread. The main thread examines if any such value is
updated during the execution of an earlier committed task to detect misspeculation.
Thus, a global version of each variable in D state memory that is potentially read and
written by speculative threads needs to be maintained. This version is incremented
every time the value of the variable in D state memory is modified during the commit-
ting of results produced by speculative threads. For each variable in D state memory,
if it is copied into a speculative thread’s P space, its global version is also copied into
the version field of the corresponding entry in the mapping table.

When a speculative thread t informs the main thread that it has completed a spec-
ulative task, the main thread performs the misspeculation check by consulting the
mapping table and accordingly taking the actions shown in Figure 10.2. The main
thread compares the current version numbers of variables with the version numbers
of the variables in the mapping table. If a version number does not match, then the
main thread concludes that misspeculation has occurred (lines 1–5). It discards the
results and asks the speculative thread to reperform the task. If all version numbers
match, then speculation is successful. Thus, the main thread commits the results by
copying the values of variables for which the WriteFlag is true from P state memory
to D state memory by using P_Addr and D_Addr stored in the mapping table. The
global version of the copied variable is also incremented by one (lines 6–12). Note
that if the WriteFlag is not true, then there is no need to copy back the result as the
variable’s value is unchanged.

Note that the results produced by speculative threads are also committed in
sequential order. If a misspeculation occurs for a thread, the main thread waits for
this thread to finish the nonspeculative reexecution before committing the correct
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results to D space. Next, the main thread moves to the misspeculation check for
the next speculative thread. This is important for eliminating the need for extra
synchronizations on shared data structures and ensuring that the results of the
parallelized program are consistent with the results of the sequential program.

10.2.4 Identifying Parallelizable Regions

10.2.4.1 Program Profiling Offline profiling can be used to identify the par-
allelizable regions of a program. The high-level loop structures of the program can
be first identified. Then the dynamic dependence graph, which represents the runtime
dependences of the variables used within loops, is constructed through profiling run.
This graph is used to determine if a loop is a good candidate for SP. The original
proposal of CorD system follows this approach. It requires a loop iteration to be par-
titioned into the prologue, speculative body and the epilogue. In CorD, prologue and
epilogue are executed by the main thread, and the speculative body is executed by
speculative threads.

The algorithm for performing the partitioning first constructs the prologue, and
then the epilogue and finally everything that is not included in the prologue or the
epilogue is placed in the speculative body. The construction of the prologue and the
epilogue is as follows:

• (Prologue) The prologue is constructed such that it contains all the input
statements that read from files. This is because such input statements should
not be executed speculatively. In addition, an input statement within a loop
is typically dependent only upon its execution in the previous iteration – this
loop-carried dependence is needed to preserve the order in which the inputs
are read from a file. Therefore input statements for multiple consecutive loop
iterations can be executed by the main thread before the speculative bodies of
these iterations are assigned to speculative threads for execution. Loop index
update statements are also included into the prologue, as the index variables
can be considered as the input of each iteration and hence should be executed
nonspeculatively.

• (Epilogue) The epilogue is made up of two types of statements. First the out-
put statements are included in the epilogue because output statements cannot be
executed speculatively. If an output statement is encountered in the middle of
the loop iteration or it is executed multiple times, then the code is transformed
so that the results are stored in a memory buffer and the output statements that
write the buffer contents to files are placed in the epilogue which is later exe-
cuted nonspeculatively by the main thread. Second a statement that may depend
(i.e. determined by profiling results) upon another statement in the preceding
iteration is placed in the epilogue if the probability of this dependence mani-
festing itself is above a threshold. In addition, any statements that are control
or data dependent upon statements already in the epilogue via an intraiteration
dependence are also placed in the epilogue.
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Figure 10.3 Partitioning a loop into prologue, speculative body and epilogue.

Figure 10.3 illustrates the partitioning of a loop body. In the for loop shown on the
left, the first statement is a typical input statement as it reads some data from a file and
stores it into a buffer. Hence, it is placed into the prologue. Then the epilogue of this
loop is constructed. First, all output statements (lines 5 and 12) are included. Since the
profiling information reveals that a loop dependence at line 10 is exercised very often,
this statement is also put into the epilogue. Otherwise, all speculative executions of
iterations will fail because of this dependence. Thus, the epilogue of this loop has
three statements, as shown by the code segment to the right in Figure 10.3. Note that
in this example, all three statements appear in the middle of the loop. Thus, a buffer
is used to store the information of epilogue statements such as the PC of statements
and values of the arguments. When the epilogue is executed by the main thread, the
information stored in this buffer is referenced.

10.2.4.2 Language Support Another approach to identify parallelizable
region is to use language support. Recent work [4] has proposed a portable standard
for writing parallel programs while hiding the complexity of parallel programming
from developers. The standard contains a set of directives. The compiler directives
enable the programmer to mark and parallelize a section of code that is meant to be
run in parallel just as is the case in OpenMP [2]. A compiler directive in C/C++ is
called a pragma. Compiler directives specific to CorD model in C/C++ start with
#pragma. The compiler directives are summarized as follows:

#pragma parallel CorD is used to specify the potential parallel region of
the program. The parallel region must be a loop, written in for, while or do
. . . while form. The specified region will be used CorD model.

#pragma subregion [name] [order] [speculative] is used to
specify a subregion in the parallel region. Developers can assign a name to
the subregion and specify the execution order of different instances of the
sub-region or different subregions. A subregion can be specified to be executed
speculatively. By default, the whole loop body of the parallel region is one
subregion.
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#pragma commit [order] is used to call the commit operation, which
commits all variables that are updated in the subregion to the D space. Devel-
opers can specify whether to perform misspeculation check before the commit
operation. If the misspeculation check fails, the subregion is reexecuted.
Developers can also specify the execution order of the commit operation
which can be used to enforce the sequential semantics of the parallel region.
In particular, [order] specifies execution order between execution instances
of code regions and commits. The format [order] is order_after(ITER-NUM,
REGION)), where ITER is a keyword, NUM is a positive integer and REGION
is the name of a user-defined subregion. It means that the execution of the
associated region/commit of iteration ‘i’ must wait until the execution of
subregion REGION of iteration ‘i-NUM’ is finished.

Figure 10.4 shows the kernel of benchmark telecomm-CRC32 in MiBench suite.
The program calculates 32-bit error-detecting code of cyclic redundancy check
(CRC) for a set of strings and put the results into the error variable. The update
of error depends on the value of error from previous iterations. Therefore,
the subregion R2 has a cross-iteration dependence on itself. However, since the
function calculate_crc usually returns 0 that represents success in real runs,
the cross-iteration dependence is rarely manifested. The program can be parallelized
by speculating on the absence of the dependence. In the example, the program
is parallelized using CorD. The loop body is divided into two subregions. The
subregion R1 is executed sequentially since there is a cross-iteration dependence
due to the file pointer in the read function. The subregion R2 is executed in parallel
but the commit operation in R2 is performed sequentially to ensure the sequential
semantics of the loop. Before the commit operation, a misspeculation check is
performed to detect if the cross-iteration dependence occurred. If the dependence

error=0;
i=0;
#pragma parallel CorD {

for(i=0;i<n;i++) {
#pragma subregion R1 order_after(ITER-1, R1) {

string = read();
#pragma commit

}
#pragma subregion R2 no_order speculative {

ret = calculate_crc(string);
if (ret != 0)

error |= ret;
#pragma commit order_after(ITER-1, R2)

}
}

}

Figure 10.4 Kernel of benchmark telecomm-CRC32.
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is detected, then the whole subregion R2 is reexecuted. Otherwise, R2 can commit
its results safely. Subregion is designed for programmers to specify synchronization
(i.e. execution order) between execution instances of code regions.

10.2.5 Experimental Results

To demonstrate the potential of SP techniques, experiments are presented. The results
of an experiment that uses four SPEC programs [21] and one MiBench program
[7] are presented. The main loops in these programs, which contain cross-iteration
dependences, were successfully parallelized by CorD. Since these dependences infre-
quently manifest themselves at runtime, they cannot be embarrassingly parallelized
and have to use the speculation feature provided by CorD [18].

In the experiment, the baseline which is the sequential execution time is first mea-
sured. Then the time of executing this loop in the model with different numbers of
speculative threads is measured. Figure 10.5 shows the speedups. Figure 10.5 shows
when the number of speculative threads increases, the speedup for all benchmarks
goes up linearly. The highest speedup achieved ranges from 4.1 to 7.8 across the
benchmarks when 8 speculative threads are used. The misspeculation rates observed
in this experiment are less than 10%. More experimental results and detailed discus-
sions can be found in [18].
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Figure 10.5 Execution speedups for SPEC and MiBench programs on a dual quadcore
3.0 GHz Xeon server.

10.3 ADVANCED FEATURES OF CORD

10.3.1 Handling High Misspeculation Rate

10.3.1.1 Multiple Speculations The presence of cross-iteration dependences
in a sequential loop causes misspeculations when loop iterations are speculatively
executed in parallel. If such dependences frequently take place at runtime, the spec-
ulations fail very often and thus benefits of parallelism are wiped out.

To address this problem, the frequent cross-iteration dependences must be
resolved. A typical solution is to use value prediction. Specifically, the values of
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live-in variables (i.e. variables involved in cross-iteration dependences) can be
predicted in a later iteration before they are produced by an earlier iteration. If the
prediction is correct, these two iterations can still be executed in parallel. To increase
the accuracy of predictions, the predictions can be performed in a path-sensitive
manner, that is, the values of live-ins can be predicted in different ways for different
paths. By assigning different prediction methods to different control flow paths, high
prediction accuracy is achieved.

Figure 10.6 shows a SP example where the loop iterations can be speculatively
executed in parallel. Specifically, there is a cross-iteration dependence on variable
latest_config between statements at lines 1 and 9. If the condition cond1 is always
or frequently true at runtime, using SP technique cannot speed up the execution as
misspeculations occur frequently. The dependence carried by variable latest_config
causes the loop iterations to be executed sequentially. Moreover, the overhead of the
technique such as isolating speculative states and dealing with misspeculation could
make the performance even worse.

This problem can be addressed by using the multiple speculations technique [16].
In particular, if both cond1 and cond2 are always true, then predicting latest_config
to be config[var1] enables SP to succeed and leads to a better performance. How-
ever, a single predicted value may not be very accurate. For instance, consider the
scenario for Figure 10.6 in which cond1 and cond2 keep evaluating alternately to
true and false. Thus, a single prediction for the value of latest_config is not effec-
tive as it is not frequently successful. To solve this problem, multiple predictions are
employed, each giving rise to a distinct version of the second iteration. The idea is
that among all predictions that are chosen, it is highly likely that one prediction will
turn out to be correct and the corresponding version will generate the correct result.
More importantly, the correct result is computed in parallel with the execution of the
first iteration. In other words, parallelism is exploited by executing two consecutive
iterations in parallel.

Figure 10.7 shows the thread execution model. The original sequential execu-
tion, which consists of 4 iterations, is shown on the left. The corresponding parallel

var1=...;
var2=...;

while (...) {
1 compute (..., latest_config);
2 if (cond1){
3           if (cond2){

...

4
5
6
7
8

x = var1; 

x = var2; 

}

}

}

}

else{

latest_config = config[x];9
10

...

...

Figure 10.6 A speculation example.

Figure 10.7 Thread execution model.
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execution is shown on the right. There is one main thread and multiple speculative
threads. The main thread executes iteration 1 and 3 while speculative threads execute
different versions of the iterations 2 and 4. The speculative thread that generates the
correct result is also called the winner. Figure 10.7 shows that speculative threads P2
and P3 are the winners for iterations 2 and 4, respectively. In this execution model,
every two dependent iterations can be executed in parallel, and hence the theoretical
speedup for the parallel execution is 2.

Generating Multiple Versions To construct a speculative version of the second
iteration, the value prediction code of live-in variables needs to be inserted before
the original loop iteration code. The most accurate value prediction for a variable
is to compute the value by executing its full slice extracted from the first iteration.
However, the size of the full slice (i.e. including all control and data dependences)
can be as large as the computation of the whole iteration. Using such a slice to obtain
the value is the same as executing the two iterations sequentially.

To construct small prediction code and take advantage of the multiple value pre-
diction model, the following steps are used to generate multiple versions of the sec-
ond iteration. First, only the backwards data slices of a live-in variable needs to be
computed. All the control dependences and the dependence chains of predicates are
removed. Since different control flow paths may be taken in the first iteration, the
data slice is computed on each different path. Consequently, multiple data slices are
obtained for a live-in variable. At this point, multiple versions can be created for
the second iteration based on different control flow paths taken by the first iteration.
Specifically, each path corresponds to one version, and the data slice on that path
is used to predict the live-in variable. The data slice and path information can be
computed based on the profiling trace.

Note that when certain paths are seldom taken, the possibility of the corresponding
version being correct is also very low. In that case, the versions that correspond to the
hot paths for the third iteration or even later iterations should replace those versions
that are unlikely to be correct. As a result, the speedup can exceed two in the best case.

The effectiveness of multiple speculations technique has been evaluated by using
a set of SPEC 2000 benchmarks. Experimental results show that 1.7x speedup can be
achieved across all used benchmarks. More benchmark descriptions and experimental
results are presented in [16].

10.3.1.2 Incremental Recovery Although the previous section proposes
a value-prediction-based approach to deal with high misspeculation rate, its
effectiveness is determined by the accuracy of value prediction. The fundamental
reason for the performance loss upon a misspeculation is that all results generated
are assumed to be incorrect and hence discarded. However, it is observed that a
misspeculation on a live-in variable may not necessarily cause all speculatively
computed results to be incorrect. Based on this observation, this section describes
an approach for Incremental Recovery that mitigates the performance loss caused by
high misspeculation rate [19].
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Speculatively read (v1, v2, v3, ..., vn) and
starts the execution

Check for misspeculations. If any, nonspeculatively read
(v1, v2, v3, ..., vn) and starts nonspeculative reexecution

Figure 10.8 Discard-all recovery.
Figure 10.9 Incremental recovery.

In the basic CorD model, recovery from misspeculations is achieved by discard-
ing all speculatively computed results. This process is shown in Figure 10.8. Before
starting speculative execution of a computation (e.g. a loop iteration), the input val-
ues or live-ins needed for its execution are speculatively read from nonspeculative
state and copied into the speculative state for the thread. The reads of values (v1, v2,
v3, . . . , vn) are speculative because the values are read while execution of one or more
earlier iterations is in progress; if any of these values is changed by these earlier iter-
ations, then misspeculation occurs. After reading, the computation is performed, and
then the misspeculation check is executed. If the check fails, misspeculation occurs.
To recover from misspeculation, the values of live-ins are now read again, this time
nonspeculatively, and the entire computation is repeated. This strategy for recovery is
called discard-all as all results computed are discarded, and computation is performed
again in its entirety.

It should be noted that even if the misspeculation occurs due to any one of the
live-ins, all results are discarded. While this approach is simple to implement, dis-
carding all speculatively computed results is a suboptimal solution. It is possible that
a subset of speculatively computed results may be correct, and thus there may not
be a need to perform the entire computation again. Discarding all results can be very
wasteful, especially when the misspeculation rate is relatively high because the cost
of recovery begins to add up.

Achieving Incremental Recovery To efficiently support the speculation system,
an incremental recovery technique is proposed. As shown in Figure 10.9, the key
idea is to delineate the computation into many sections according to the points at
which the earliest reads of the live-ins are encountered. In the figure it is assumed
that the first speculative read of vi appears before the first speculative read of vi+1
for all i. Therefore, the live-ins (v1, v2, . . . , vn) cause the computation to be divided
into n + 1 sections. Now let us assume that of all the values among (v1, v2, . . . , vn)
that cause misspeculation, vi is the one that is read the earliest. In this case the entire
computation performed by the sections of code preceding the first read of vi can
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Figure 10.10 Decoupling space allocation from thread creation.

be certainly reused. Thus, the recovery can be performed by simply repeating the
execution of code starting from the point at which vi was first read. If vi happens to
be v1, the reuse achieved is minimum. On the other hand, if vi happens to be vn, the
reuse is the maximum.

To achieve the incremental recovery, the creation of a speculative thread that per-
forms speculative execution needs to be decoupled from the creation of the spec-
ulative space that it uses for saving results. At each point which represents a first
read of a speculative value, a new version or copy of the speculative space is created.
Figure 10.10 illustrates the idea. In the figure, a speculative thread creates three spec-
ulative spaces S1, S2 and S3 instead of just one space during the speculative execution.
Space S2 is created when the first access of live-in variable a is encountered, and S3 is
created when the first access of live-in variable b is encountered. If a misspeculation
is found to have occurred due to a, the results stored in S2 and S3 are discarded and
recomputed using the correct value of a. However, if the misspeculation is caused by
b, only the results in S3 are recomputed. The results in S1 are only computed once
and are never discarded during recovery because the computation does not use any
speculative variable.

Experiments have been conducted to evaluate incremental recovery technique in
prior work [19]. The results show that for a set of programs with inputs causing around
40% and 80% misspeculation rates, applying incremental recovery technique can
achieve 1.2–3.3× and 2.0–6.6× speedups, respectively, in comparison to the original
discard-all recovery scheme. More evaluation results are described in work [19].

10.3.2 Handling Dynamic Data Structures

A dynamic data structure consists of large number of nodes such that each node con-
tains some data fields and pointer fields. The pointer fields are used to link together
the nodes in the data structure (e.g. link lists, trees, queues etc.). Such data structures
are also called dynamic data structures because the shape and size of the data structure
can change as the program executes.



�

� �

�

ADVANCED FEATURES OF CORD 219

Applying SP technique in applications that make extensive use of dynamic data
structures is much more challenging than in those using scalar variables or static data
structures such as arrays, because complexities of pointer analysis make it difficult
to identify the portion of the dynamic data structure that is referenced by the spec-
ulative computation. Moreover, if a large number of nodes are referenced, tracking
the copying operations (also referred to as access check) using a mapping table is
very expensive. To address these challenges, two different schemes, namely, meta-
data storage and fat pointer have been proposed lately [4, 17].

10.3.2.1 Metadata Storage When a data item is first accessed by some specu-
lative thread, an entry is setup in this thread’s mapping table so that future reference
in the speculative execution does not invoke duplicated copies of the same data. How-
ever, this requires a walk through the entire table. To efficiently perform the access
checks metadata can be associated with each node that tracks certain information
related to accesses of the node. This metadata is called heap prefix.

n bytes, one byte for each
thread

n bytes, one byte for each
thread

Original pointer P

Heap dataStatus byte for thread iMetadata byte for thread i

Status byte stores the thread i’s using status of heap data

Metadata byte stores either the index in thread i’s mapping table
or the thread i’s task version

... ...

Figure 10.11 Heap prefix format.

For each memory chunk allocated on the heap, 2 * n additional bytes are allo-
cated in front of it where n is the total number of speculative threads. These bytes
are called heap prefix and used to store important information to assist in access
checks. The format of the heap prefix is shown in Figure 10.11. The first n bytes
immediately before the program’s original heap data are the status bytes. The addi-
tional n bytes are metadata bytes. In the status byte, byte i represents the status for
speculative thread i, and it can represent four different possible status values. Status
NOT_COPIED means the heap data has not been copied into thread i’s speculative
state. Status ALREADY_COPIED means the heap data has been copied into thread
i’s speculative space, and the index of this entry in thread i’s mapping table is stored
in the corresponding metadata byte. Status ALREADY_READ means the heap data
has been read by thread i, and the corresponding metadata bytes store the task ID of
thread i. Status INTERNAL indicates that the node is already in the speculative state.
Therefore, status NOT_COPIED, ALREADY_COPIED and ALREADY_READ
only appear in heap elements of nonspeculative state, and status INTERNAL only
appears in heap elements in speculative state. In the metadata bytes, metadata byte i
stores either an index number of the mapping table of thread i or the task ID of thread i.

With the status bytes and metadata bytes in the heap prefix, the access check for
a heap node access in thread i can be implemented as follows. First, the thread i’s
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status s in the node ’s prefix is examined. If s is NOT_COPIED and the access is a
read, s will be updated to ALREADY_READ, and the task ID of thread i is stored in
the metadata byte i.

If the access is a write, s is updated to ALREADY_COPIED. A new local copy of
the node is then created with the corresponding status byte to be set to INTERNAL.
After that, a mapping entry is added into the mapping table to reflect this copy oper-
ation, and the index of the entry is stored in the metadata byte i. Finally, the pointer
is pointing to the newly created node.

If s is ALREADY_COPIED, then that means the node has been copied, so address
translation is needed. Fortunately, the mapping entry can be quickly located through
metadata byte i, and there is no need to adjust the pointer to point to the address of the
local copy. Finally, if s is ALREADY_COPIED and the access is a write, then the
copy-in operation is performed as when s is NOT_COPIED. Otherwise, the access
would be a read or s is INTERNAL. In both cases, no further actions are required.

In summary, there are two main advantages of using heap prefix to implement
access checks. First, the status byte can tell the access checks whether or not a node
has been copied. Second, the metadata bytes allows the speculative thread to find the
mapping entry in O(1) time, which can speed up the process of address translation
for copy-in operations.

10.3.2.2 Fat Pointer Different from metadata storage, the fat-pointer scheme
presents an augmented representation for pointers because the nodes in dynamic
data structures are always referenced via pointers. To enable fast access checks for
dynamic data structures, the current pointer representation is extended with four
fields: D space address of the data structure, P space address of the
data structure; thread ID and iteration ID. In the sequential region of
the program, only D space address field is used. When an extended pointer in the
parallel region is being dereferenced, it has to be checked whether the P space
address field is valid (i.e. whether the dynamic data structure has a copy in the
P space at the specified address). This is done by checking whether the pointer’s
thread ID and iteration ID fields match the current thread and iteration.
If they match, the P space address is valid, and it can be directly used. Otherwise,
the P space address stored in the pointer is invalid. In this case, it has to be further
checked whether the pointed to data structure has been copied into the P space due
to the dereference of other pointers.

When a dynamic data structure and its pointers in the P space are committed to
the D space, all these pointers need to be redirected to the copy of the dynamic data
structure in the D space. This usually results in high runtime overhead for searching
the pointers and translating the addresses. The fat-pointer scheme eliminates the need
for altering pointers during the commit procedure. The extended pointer contains two
address fields: one for D space address and the other for P space address. The D space
address field always contains the D space address of the data structure no matter in
which space the pointer is. When a pointer is assigned to another pointer, both address
fields are copied. The D space address field of a pointer is used when the copy of the
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data structure in the D space is referred to. Therefore, there is no need to translate the
addresses.

Experiment shows that these techniques can significantly improve the performance
of the programs that make extensive use of heap-based dynamic data structures. In
prior work [17], seven benchmarks are used to make quantitative evaluation, and max-
imum speedups from 1.56 to 3.2 can be observed. More experimental results about
these techniques can also be found in [4].

10.4 RELATED WORK

This section gives a brief introduction to other parallelization projects. All of these
projects mainly employ compiler-based techniques for parallel region identification,
loop transformation and misspeculation check. Some techniques rely on hardware or
OS support for better performance.

10.4.1 Process-Based Speculation

While CorD is a thread-based software SP system, there also exist process-based
systems such as behavior-oriented parallelization (BOP) [3, 8]. Similar to CorD,
BOP is also based on state separation. In other words, speculative computations
are performed in a separate memory space. The results are not committed to the
nonspeculative space until the speculation succeeds. BOP provides simple program-
ming constructs for specifying possible parallel region. Due to the use of processes,
data copying operations can be performed at page level. In particular, speculative
writes can be captured and tracked by OS and customized page fault handler. How-
ever, the disadvantage is that significant amount of memory pages need to be copied
when speculation succeeds. The execution model of BOP is different from CorD. In
BOP the work is assigned to the cores round by round, and the next round cannot start
until all work in the previous round is finished successfully. If speculation with respect
to a process fails, the work by following processes in the same round is completely
discarded. BOP uses nonspeculative understudy to guarantee its basic efficiency.

10.4.2 Worklist-Based Speculation

The Galois system [11] is a parallelization system to exploit the data parallelism
in applications with irregular parallelism. It mainly features two programming con-
structs called optimistic iterators for expressing worklist-based data parallelism. It is
supported by a runtime system that performs parallelization of these iterators, mis-
speculation checks and rolling back operations as needed. Parallelization requires
speculation with respect to data dependences. The Galois system allows users to
specify the commutativity of the method invocations in a loop. When speculation
fails, user supplied code is executed to perform rollback. The Galois system has
been extended to use data partitioning for optimizing worklist-based parallelism [10].
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It requires the data partition to be known before starting a computation. Computations
are distributed to threads based on the data partition. This increases the data locality
and reduces the chances of data conflicts. Based on the data partition, lock coarsening
is used to further reduce the parallelization overhead.

10.4.3 Speculative Software Pipelining

One commonly used approach for parallelization of loops is software pipelining. This
technique partitions a loop into multiple pipeline stages where each stage is exe-
cuted on a different processor. Decoupled software pipelining (DSWP) [14, 15, 20]
is a technique that targets multicore processors. DSWP partitions a loop based on its
dependence graph. Each pipeline stage of the loop is a strongly connected subgraph
of the dependence graph. The loop code is split into different threads based on the
pipeline stages. DSWP hides the communication latency by overlapping communica-
tion with computation. Speculative DSWP [20] adds speculation to DSWP. It allows
partitioning a strongly connected dependence graph into multiple stages by speculat-
ing on certain dependence edges. Speculative DSWP makes pipelining applicable to
more loops and allows more balanced loop partitioning. The proposed DSWP tech-
niques require two kinds of hardware support that is not commonly supported by
current processors. First, hardware support is used to achieve efficient message pass-
ing between different cores. Second, hardware support is versioned memory which is
used to support speculative DSWP parallelization. Since DSWP requires the flow of
data among the cores to be acyclic, in general, it is difficult to balance the workloads
across the cores. Raman et al. [15] address this issue by parallelizing the workload
of overloaded stages using DOALL techniques. This technique achieves better scal-
ability than DSWP but it does not support SP which limits its applicability.

10.5 FUTURE WORK

10.5.1 Energy Consumption

This chapter mainly focuses on improving performance of sequential program by
exploiting multiple cores. While performance is important for computing, power con-
sumption may become a big concern in resource-constrained environment. In the
future work, SP technique should address the energy consumption issue. In particu-
lar, the number of speculative tasks should be controlled so that a balance between
performance improvement and energy consumption can be better achieved.

10.5.2 Parallelization Enhancement

The parallelization algorithm proposed in this chapter is based on the profiling results
or language supports. In the former case, the accuracy of profiling largely affects the
performance of software TLS. Since the input of the profiling run and the input of the
real run are different, the information gathered in the profiling run may not lead to
efficient parallelization. To address this problem, future work should consider online
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profiling. Based on the results, the code should be re-transformed to better exploit
frequently observed parallelism.

If parallelization is performed by using new language extensions, the performance
and correctness will rely on how well programmers use these extensions. Future work
should consider new compiler analysis to avoid possible errors introduced by pro-
grammers.

10.5.3 Emerging Architectures

This work considers the multicore processors of today as the target architecture.
In the future, heterogeneous processors and 3D multicore processors may become
prevalent. Future work should consider adapting software TLS system to such new
architectures.

10.6 CONCLUDING REMARKS

This chapter discusses several design principles and issues of software-based TLS
system. A thread-based speculative execution model called CorD is proposed. It con-
tains one main thread and several speculative threads, and the main thread controls the
entire execution. The memory state is divided into three disjoint partitions such that
the execution of each thread is isolated. In particular, the main thread maintains the
nonspeculative state, and speculative threads perform speculative computations on
the speculative state. Coordinating state provides memory for bookkeeping impor-
tant information needed to support speculation. In CorD the data communications
between the main thread and speculative threads are performed through copying
operations. The misspeculation is checked by the main thread, which also commits
the speculatively computed results if the speculation is successful. If a misspecula-
tion is detected, the speculative results are simply discarded, and the failed task is
performed again.

This chapter also presents several advanced features of CorD. To deal with high
misspeculation rate, two different approaches, multiple speculations and incremental
recovery, are proposed. In the first approach, the values of live-in variables are pre-
dicted, and multiple speculative versions of the same task are created and executed
with a nonspeculative task in parallel. If one of these versions is correct, parallelism
between these two tasks is achieved. The second approach decouples the creation of
each parallel thread from the creation of its speculative state. It allows speculatively
computed results to be reused as long as they are not using the live-in variables that
are the cause of misspeculations. Finally, challenges of applying CorD in the presence
of dynamic data structures are addressed.
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CHAPTER 11

AUTONOMIC DISTRIBUTION AND
ADAPTATION

Lutz Schubert, Stefan Wesner, Daniel Rubio Bonilla and

Tommaso Cucinotta

11.1 INTRODUCTION

It has been noted multiple times in this book how the future development trend of
processor architecture goes toward heterogeneous mixed many-/multicore systems,
such as already demonstrated by IBM’s Cell processor1 or the OMAP5 by Texas
Instruments.2 It is thereby also obvious that future software (and implicitly software
developers) has to exploit parallelism in order to improve the efficiency of execution
or even just to enable additional features and functions. The main problem however
consists in the complexity of the according programming models and the degree of
knowledge required about program behavior for its effective parallelization. In order
to execute tasks and functions in parallel, their dependencies have to be identified

1http://www.research.ibm.com/cell/.
2http://www.ti.com/ww/en/omap/omap5/omap5-platform.html.
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and work or data segmented in a fashion that improves rather than reduces the overall
execution performance.

Most programming models originate however from the purely sequential comput-
ing area and offer little support for writing parallelized applications. With the rise of
high-performance computing (HPC) and hence heavily parallel environments, these
classical models were extended with features to offer some support for parallelism
that mostly consist of explicit or implicit means for controlling communication. As
the HPC domain has so far been a restricted usage area, compared with common
day-to-day programming and application development, developers in this domain
typically pursue(d) a very specific interest and therefore spend the time and effort on
learning dedicated programming extensions and in particular on parallelizing their
code and taking additional precautions to achieve maximum performance. With the
entry of parallelism into the desktop domain, this additional effort is however no
longer justifiable, and more usable models are required in order to enable ‘mainstream
parallelism’.

This chapter describes an approach for increasing the scalability of applications
by exploiting inherent concurrency in order to parallelize and distribute the code.
We thereby focus specifically on concurrency in the sense of reduced dependencies
between logical parts of an application. Concurrency forms a crucial part in any par-
allelization approach, as the degree of dependencies across potential threads defines
the delay due to messaging and synchronization overhead. For example, loop unroll-
ments show best performance improvement if they are highly concurrent and thus
vectorizable.

What is even more important, though, is the fact that concurrency can be exploited
for parallel execution of sequential (i.e. unparallelizable) code logic. In other words,
if multiple, independent sequential segments can be identified, they can be executed
in parallel to each other. Thus concurrency exploitation directly affects the limiting
factor of Amdahl’s [1]. We will show how graph analysis methods can be employed
to assess the dependencies on code level, so as to identify concurrent segments
and to relate them to the specific characteristics of the (heterogeneous, large-scale)
environment.

11.2 PARALLEL PROGRAMMING MODELS

As the need for parallel applications increases, so does the demand for efficient and
yet easy to use programming models and languages that enable scalable and – in the
long run – portable behavior over heterogeneous infrastructures. In the following, we
will provide an overview over some of the existing parallel programming models and
their strengths and weaknesses with respect to the following specific goals.

11.2.1 Explicit Communication and Synchronization

The most classical approach to parallelization consists in enabling the development
(and parallel execution) of ‘threads’, for example [6]. Like processes, threads are
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effectively nothing else but independent applications that however can identify each
other in order to exchange data through dedicated communications. As the descrip-
tion indicates, the classical thread enhancements do not offer an explicit means for
data synchronization or sharing. In other words, the developer has to identify com-
munication points in his program and explicitly specify the data to be transmitted – in
order for one thread to share data with a second thread, it is therefore necessary for the
first thread to explicitly select and send the respective data set to the second thread
which in turn will have to wait for reception of this data. In the case of explicitly
shared data, this means furthermore that the according data set will have to be send
back and forth in order to maintain consistent state. Accordingly it is easy to introduce
synchronization and hence performance issues.

It can therefore be generally noted that thread-based programming models are only
efficient given the right expertise of the developer and a use case where data needs
only be shared at clear, discrete points in time. If the according knowledge is miss-
ing, or should the synchronization points not be obvious enough, this approach can
lead not only to significant performance losses but also to locking and unpredictable
behavior. Many parallelization methods can raise this condition, such as write before
read across iterations in a parallelized loop. What is more, the approach as such does
not support addressing the heterogeneity issue of computing systems, which not only
affects how these threads need to be compiled but in particular also leads to devia-
tions in the synchronization behavior, if, for example, the execution speed between
resources deviates from one another.

With the introduction of the Message Passing Interface3 (MPI), an attempt was
made to standardize the communication between threads (and processes) in order to
principally allow message-based data synchronization across infrastructures. Using
MPI it is thus possible to execute different threads and/or processes in different
environments and nonetheless communicate with each other, as long as all involved
systems share information about the thread IDs. Since MPI promotes a specification
and therefore a general strategy rather than an explicit execution model or frame-
work, it could be easily integrated into existing programming models and compiler
models.

MPI provides all the essential capabilities needed to deal with large-scale and
heterogeneous infrastructure. However, its efficiency depends almost completely on
the capabilities of the developer. Furthermore, MPI was developed for multiprocessor
systems with an explicit communication framework between these units – in other
words, MPI does not cater for indirect communication or shared memory systems.
Most modern multicore processors however build on some form of hardware-based
cache coherency (ccNUMA) for which MPI is not suitable or at least generates
unnecessary overhead. Even though future many-core systems will most likely
not share memory across all processing units, we must nonetheless assume that at
least some cores will share memory across or at least grant remote access to this
memory [8].

3See http://www.mpi-forum.org/.
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As opposed to real distributed systems, where each processing unit/node con-
tains its own full environment, machines in which multiple units share a common
memory – either physically or through a hardware-based protocol – are compara-
tively easy to program for. This is simply due to the fact that the developer does
not explicitly have to cater for sharing and distributing state-related data but instead
can assume ‘global’ state across all threads so that all processes can handle the data
as if local. The simplest example to parallelizing work in a shared-memory envi-
ronment therefore consists in loop unrollments where the individual iterations of
a loop are executed in parallel. Notably, the loops may not have any dependencies
across iterations, that is, no access to previous values n[i] = f(n[i − 1]) as this will
cause conflicts if n[i], n[i + 1], . . . n[i + j] are calculated in parallel. The Open
Multi-Processing4 (OpenMP) API is the classical programming extension to develop
such shared-memory applications.

However, OpenMP does not cater for heterogeneous architectures as they actually
may arise in future multicore systems, even if it is not necessarily to be expected that
cores of different types will not directly share cache or memory. As different cores
will have different execution performance with respect to the same tasks, even in a
straightforward work segmentation, such as in the aforementioned loop unrollment,
the individual processes may deviate, leading to similar locking and read–write issues
as in the thread-based case.

As noted, future processors will not solely rely on shared- or cache-coherent mem-
ory architectures, as these approaches do not scale to the degree needed and cause
performance loss due to the maintenance overhead. Instead, the microarchitecture
will have to rely on combined models of shared-memory tiles connected with other
tiles over a network-on-chip communication infrastructure – in principle very sim-
ilar to modern days’ cluster architectures that effectively integrate a large amount
of processors with multi-cores in a high-performance network environment. Accord-
ingly, most modern day HPC developers already employ a mixture of OpenMP and
MPI programming models to realize large-scale applications that scale across the
heterogeneous hierarchical infrastructure.

Obviously, this makes usage just more complicated for the average developer.
What is more, the heterogeneity of future systems is expected to increase even beyond
the point where it can still be handled with this approach.

11.2.2 Implicit Communication

Rather than having the user/developer deal directly with the specifics of the hardware,
most modern programming models approach the problem by abstracting the system
and having the middleware and the compiler deal with the actual architectural
details: for example, the partitioned global address space5 (PGAS) model builds
on the simplicity of programming shared-memory machines and therefore exposes
capabilities of (virtually) shared-memory spaces that the API converts into message

4http://openmp.org/wp/.
5http://www.pgas-forum.org/.
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calls or actual shared-memory usage, basing on the specifics of the architecture.
However, this requires that the according infrastructure information is provided
to the compiler – as we will discuss later, this is currently not generally possible,
and compilers will instead base on generic assumptions about the infrastructure
characteristics.

Even though the PGAS approach has the big advantage of being comparatively
easy to use, in particular for more skilled developers, most actual implementations
of PGAS still suffer from performance issues. This is due to the fact that the
compiler effectively still converts the shared-memory access requests into a set of
message-based transactions, disregarding the infrastructure. As noted, currently
hardware descriptions are not used for the purposes of steering compilation though.
Without this, even the PGAS model cannot avoid running into similar problems as
the OpenMP and MPI combined approach, that is, the inability to handle the large
scope of heterogeneity we are about to face in day-to-day development.

It should not be disregarded thereby that even shared-memory programming is still
too complicated for many developers and in particular is not applicable to all develop-
ment and use cases. In fact, most applications do not even execute complex algorithms
that would benefit from the shared-memory approach a require complete rethinking
on the developer’s side. Accordingly, many manufactures pursue a more user-centric
approach which essentially tries to take over parallelization tasks for the developer.
However, optimal parallelization actually belongs to the class of NP complete prob-
lems [3] so that the ‘automagic’ parallelization can (and should) not be expected. On
the other hand, suboptimal parallelization still can improve performance of common
code and thus provide an acceptable solution for the average developer.

11.2.3 Automated Parallelization

The main goal of modern programming models consists in simplifying usage of the
increasingly complex modern infrastructures – in particular in order to overcome the
problems of scale and heterogeneity. As it cannot be expected that developers deal
with all types of future infrastructures by themselves, the programming model has to
abstract from the hardware and still make best use of it in terms of performance – most
current approaches thereby base on some form of virtualization technique in order to
hide the infrastructure complexity.

The general principle behind these approaches consists in identifying algorithmic
patterns which indicate parallelizable functions, such as loops, queries, etc. Simi-
larly, some libraries offer functionalities which are implemented in a parallel fashion,
thereby replacing the sequential implementation as provided by the standard exten-
sions. The latter approach is particularly popular for mathematical libraries in HPC
environments. The main problem with both approaches however consists in poten-
tial errors introduced through parallelizing an otherwise sequential invocation, for
example, by neglecting time-dependent read–write operation on a specific memory
space. To reduce this problem, almost all models require the developer to provide
additional information or, more frequently, to explicitly invoke parallel versions of
the according functionalities, such as ‘Parallel.For’. The parallel .NET extensions,
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for example, provide a series of parallel database queries and functions as part of the
LINQ instruction set.

This approach essentially leaves all performance-related decisions to the devel-
oper, that is, whether to use a parallel or sequential implementation of a specific
functionality. Inexperienced developers will, for example, often select a parallel loop
even for simple computational tasks, thus creating overhead for thread instantiation,
distribution and communication that reduces performances below the pure sequential
execution. In large-scale systems, such a degradation of performance can easily arise
due to the high communication overhead introduced by wide distributions of code.
What is more, due to the nature of this approach, only specific parts of the code can
be parallelized in the first instance, leaving many parts of the code sequential. The
performance gain therefore strongly depends on the type of algorithms to be executed
and the expertise of the developer.

11.3 CONCURRENT CODE

The keyword for further parallelization, in particular of common work tasks that do
not adhere to the typical parallel patterns mentioned earlier, is therefore ‘concur-
rency’. It also determines whether a loop or a pattern can be effectively executed
in parallel in the first instance.

Concurrency in this specific context reflects the dependencies of a given code seg-
ment or function on other functions or parts of the code. The higher the degree of
concurrency, that is, the less dependencies exist, the more effective is its parallel exe-
cution and the less likely delays occur due to synchronization overhead. In the ideal
case, such as in embarrassingly parallel tasks, the concurrency reaches a maximum
that implies that there are virtually no dependencies between the processes.

Obviously, a high degree of concurrency does not necessarily imply that the
according segment can be executed in full parallel. A single shared variable can
stall the full execution, if the seemingly concurrent code has to wait for the first
thread to finish its calculation before the variable is free for access. At the same
time, this obviously depends on the read–write order of the respective segments.
Accordingly, and as discussed in more detail later, it is difficult to automatically
identify concurrency in a given code efficiently. More realistic approaches, such
as the Star Superscalar programming model, [7] therefore require the developer
to explicitly annotate data dependencies across their code and functions. This
information can then be exploited by the compiler to generate a dependency graph
which provides implicit information about the execution order and potential points
for parallelization and task distribution.

Star Superscalar is thereby still very coarse granular and expects specific function
calls to exhibit concurrency rather than, for example, direct workload in a loop. It
furthermore does not assess the execution speed of individual function blocks so that
resources may not be used to their full optimum – nonetheless the model provides an
easy method to increase the overall execution performance.
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Essentially, even classical parallelization measurements base on the principle of
maximizing concurrency between threads, so as to minimize dependencies and thus
communication and synchronization overhead. Concurrency identification can there-
fore be regarded as the key factor in (semi-)automated parallelization and in address-
ing the requirements for future programming models. As indicated, however, concur-
rency cannot be reliably identified automatically.

11.3.1 Concurrency Analysis and Exploitation

There is an extensive literature on automated parallelization which deals with multi-
ple aspects of concurrency analysis in order to identify dependencies. In general, the
stronger such a dependency, the less parallelizable the according function. However
this furthermore depends on the sequence of read–write statements in the code and
on frequency of such occurrences. As a rule of thumb, the gain achieved through the
concurrent execution must be higher than the loss introduced this way. While this
may sound trivial, it has multiple implications.

The major performance loss occurs by latency introduced through any delays – the
most obvious are (i) waiting for data to become available and (ii) passing it to the
respective thread and returning results. Similarly, additional delay arises through
access to shared-memory spaces. Less obvious however is the fact that many implicit
operations will cause additional delays – this ranges from the overhead for creating
the thread to executing system calls. In the first case, additional operations need to
be executed in order to perform a seemingly simple task – this however involves a
high degree of additional message passing. In the latter case, the major reason for
delay is not so much the communication overhead but the fact that in all setups lim-
ited resources exist. This includes not only exclusive devices (such as hard drive or
keyboard) but also the operating system – most modern OS architectures are mono-
lithic and hence centralistic in nature (see e.g. [4]). System calls will build up with
the increasing number of threads, and processes being executed concurrently, thus
affecting the scalability of the operating system drastically.

A particularly relevant limited resource is the underlying network itself: not only
does it introduce physical limitations in term of bandwidth and latency, but also more
importantly, it will also be used by multiple processes at the same time, thus lead-
ing to further reduction of the bandwidth and implicitly to further delays. ccNUMA
architectures particularly suffer from this reduction of bandwidth introduced by the
consistency maintenance tasks of the cache coherency protocol. In other words, con-
currency analysis must respect the dependencies not only within the code but also
across the infrastructure, and in order to achieve efficient execution, this system infor-
mation must be fed back to the mechanisms for thread distribution and instantiation.

The most general approach to identifying concurrency in a given code consists in
analyzing variable usage throughout the code logic and all its invocations. If two seg-
ments share a parameter, they become codependent according to the type of actions
executed on the variable (i.e. read or write actions). The main problems consist obvi-
ously in reassigning the same variable name in different contexts and in passing the
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content to other variables. Similarly, we need to distinguish between global and local
usage scope, as well as between references and copied instances.

Most strategies focus less on individual variables, as their impact is comparatively
low, rather than larger data or address spaces, that is, memory ranges. In most pro-
grams, they are represented as arrays over which the algorithm acts. Arrays and in
particular indexes of arrays are thus the primary interest of most concurrency analysis
mechanism. The principle itself is straightforward: depending on the access pattern
and in particular the index relationships across iterations; specific parallelization tech-
niques can be employed. For example:

• No dependencies:

S: A(i) = A(i) + C(i)

T: B(i) = B(i) − C(i)

• True dependency (same iteration):

S: A(i) = A(i) + C(i)

T: B(i) = B(i) − C(i) + A(i)

• True dependency (with previous iteration):

S: A(i) = A(i) + C(i)

T: B(i) = B(i) − C(i) + A(i − d)

• Antidependence (WAR):

S: A(i) = A(i) + C(i) − B(i)

T: B(i) = B(i) + C(i)

• Antidependence (WAR) (with increased index):

S: A(i) = A(i) + C(i)

T: B(i) = B(i) − C(i) + A(i + d)

Obviously this approach concentrates on concurrency in loops rather than general
occurrences of concurrent segments. The principle nonetheless may also be applied
across different logical segments, given that the parameters, that is, the array, in ques-
tion can be uniquely identified.

This source code level analysis however neglects two crucial aspects: (i) most
code behavior depends on the data, that is, the concurrency may alter given a specific
data set, and (ii) the execution speed and actual memory usage of the code cannot
be assessed correctly so that potential synchronization issues cannot be detected,
unless the concurrent segments are essentially uniform, as is the case in loop
unrollment.

What is more, the analysis is generally restricted to the source code at hand, leaving
aside aspects of implicit dependencies that arise, for example, from system calls,
resource access and similar.

In other words, the approach is comparatively restrictive in comparison to the
techniques and means applied by expert parallel developers. Accordingly, there is
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Figure 11.1 A dependency graph derived from code behavior analysis. Edges on the left
denote dataflow and on the right workflow (simplified).

no guarantee for improved execution performance following this approach, even if
resources are generally exploited better (Fig. 11.1).

An alternative to source code level analysis consists in monitoring the actual
execution behavior of a program on machine code level. The Service-oriented
Operating Systems project6 (S(o)OS) promotes this approach to gain more
fine-granulated data-specific information about not only the actual dataflow but also
the workflow of the code. The (runtime) behavior provides additional information
about the actual connectivity between the individual segments and thus its require-
ments toward the communication model, that is, the relationship of latency versus
bandwidth.

Implicitly, runtime behavior effectively provides more information about the
potential code distribution than the programmer can currently encode in the source
code. This is simply due to the fact that this is not in-line with our current way
of writing programs and is implicitly not directly supported by programming
models. The foundation is however laid out by integration of remote processes (web
services) and dedicated synchronization points in parallel processes, and this does
not always reflect the best distribution though, as the according invocations are
mainly functionality – rather than communication driven.

By integrating a memory monitor into the kernel, the operating system can acquire
information about the memory access behavior of the full scope of the code, that
is, including jumps, data access and, interestingly, system calls. Like in the source
code model, the system can use this information to generate a dependency graph,
not unlike the one generated in Star Superscalar (see previous text). Accordingly, the
information can be used in a similar fashion by analyzing this dependency graph with
respect to the concurrent segments and potential parallel execution.

Due to the nature of runtime code analysis, however, the dependency information
is much more fine granulated, leaving little room for ‘obvious’ concurrency.
Instead, the graph has to incorporate additional information that, for example,

6http://www.soos-project.eu.
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the Star Superscalar model and the source code level analysis do not consider,
in particular:

• Access frequency (of invocations or read/write actions)

• Type of action (jump, read, write)

• Access order in time

• Size of the code/data accessed

With this information, we can derive a graph where the strength of the relationship
and the size of the underlying code/data is encoded as weights (or distances) of ver-
tices and edges. The dependency information in this graph can be used to extract dif-
ferent segments in the form of subgraphs according to nearness (connection strength)
and combined size, in other words, according to the number of memory accesses with
fewer accesses implying a potentially good cutting point. Segmenting the graph is
thereby similar to the problem of identifying the maximum flow in a flow network and
thus the max-flow min-cut theorem which is often also applied for segmentation pur-
poses in image analysis (see e.g. [5]). The minimum cut in our case therefore reflects
the segments that share the least dependencies. This means that the created segments
can principally be distributed over multicores, if the timing dependencies (i.e. syn-
chronization delays) between the individual functions are respected (Fig. 11.2).

Figure 11.2 Potential segmentation of the reduced graph (simplified).

Dependent segments thereby can nonetheless still be executed in parallel if the
according communication and synchronization means are provided, as discussed ear-
lier. The maximum execution speedup through this form of parallelization is thereby
directly related to the maximum degree of execution overlap that can be achieved
without affecting consistency of the program. The overlap should thereby be ideally
identical to the maximum delay created by communication.

What is more, by applying similar pattern analysis approaches as in the source
code analysis, potential points for parallelization rather than just concurrent execu-
tion can be identified. As such, it can be, for example, shown that the graph of an
antidependence loop iterates across memory in line with the index and that the cross
dependency between S and T is depicted by a read access prior to a write access on
the same memory space so that both S and T can execute in full parallel by overwrit-
ing memory (for B) from S with data from T after execution or by first executing S
in full parallel before unrolling T.
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Figure 11.3 Code to infrastructure mapping principles.

While the benefits of this approach are obvious, the method nonetheless suffers
from two strongly related issues: as the code behavior may be impacted by the
environmental conditions, ranging from dynamic sources (such as a keyboard) to
data-specific behavior (e.g. reacting to specific occurrences in a data stream), the
actual dependencies may alter over time. Accordingly, the segmentation at a given
point in execution may not be static itself but subject to changes over execution time
(Fig. 11.3).

11.3.2 Mapping and Adaptation

It was already mentioned in the beginning of this chapter how the architecture of
future processors is going to change and deviate drastically from today’s more or less
homogeneous and uniform setups. Already setups such as Intel’s Many Integrated
Core7 (MIC) architecture clearly show the tendency toward nonuniform connectivity
between processing units, that is, network-on-chip connections between cores. Texas
Instrument and IBM on the other hand show how future processors will integrate
various processing types in a single chip.

Accordingly, it will become more than ever important to respect the actual hard-
ware specifics for parallel code distribution. In particular, this relates to the following
main criteria (Fig. 11.4):

• Cache size

• Connectivity (bandwidth and latency)

• ISA/capabilities

7http://www.intel.com/technology/architecture-silicon/mic/index.htm.
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Figure 11.4 Rearrangement of concurrent logical segments for maximum speedup.

These criteria specify how individual code segments should be deployed relative
to one another within a single processor so as to reduce unnecessary overhead and
exploit the given specifics to their most. For example, many applications contain log-
ical parts that can be easily vectorized or at least executed efficiently on a single
instruction, multiple data (SIMD) unit, such as stream processing tasks. If such a unit
is available in the processing infrastructure, it should therefore ideally be exploited
for the according logic. Similarly, two threads communicating frequently should be
placed next to each other in a network-on-chip structure, so as to exploit the com-
munication linkage between the two rather than far apart with multiple concurring
threads in between which will lower the bandwidth and increase latency.

The according information for exploiting code specifics can be easily derived from
the code analysis as described earlier. For example, the best communication layout
relates directly to the connectivity weight between code segments in the behavior
graph. Mapping this relationship information to the network layout is obviously an
NP complete tasks, yet classical graph matching strategies can be applied to this prob-
lem (see e.g. [9]).

More problems however are posed by the specific capabilities of a given pro-
cessing unit: in order to fully exploit (and to cope with) the heterogeneity of the
infrastructure, compiler and ideally execution manager (such as the operating system)
of the respective code should be capable of identifying, interpreting and using the
hardware-specific characteristics. In the example provided earlier, this would mean
that the SIMD core is retrieved and the specific criteria and capabilities toward the
code are identified. It would furthermore mean that the infrastructure uses this infor-
mation to prepare the code accordingly.

As long as the processing units in question adhere to the same instruction set
architecture (ISA), conversion (in the sense of potential rearrangement of code) can
be easily adhered to. It must be expected however that future models will not even
maintain compliant ISAs anymore – accordingly, a porting request of a specific code
segment to a noncompliant unit will implicitly require conversion of the underlying
ISA. Obviously, this is easily achieved at source code level by providing the according
compiler directives – on machine code level, this however is nearly impossible with-
out major loss of efficiency. Implicitly, the information gained from machine code
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monitoring can only be indirectly be exploited, by feeding it back to the source code
level and hence the compiler.

What is more, however, is that no current hardware description method allows
to identify capabilities in the required fashion. The most widely used description
language for hardware – the Very High Speed Integrated Circuit Hardware Descrip-
tion Language8 (VHDL) – is too detailed to allow such information extraction and is
furthermore too complicated for easy adaptation to the arising scope of new infras-
tructures. Baaij et al. therefore promote a hardware description language basing on
functional declarations that would allow more abstract queries over the structure so
as to derive capability information, such as processor type (cf. [2]).

11.4 CONCLUSIONS

The advances in heterogeneous multicore systems has taken the software industry and
the programming language community essentially unprepared. Already the advances
made on hardware level progress faster than the ones on software and programming
level so that by now processor architectures start to offer more capabilities than a
developer can sensibly exploit. Within this chapter we have highlighted which spe-
cific obstacles hinder the developer from making use of such new systems and which
specific obstacles are yet to overcome in order to enable the broad scope of developers
that will have to make use of these systems in the near future.

A promising approach thereby consists in exploitation of concurrency rather than
‘automagic’ parallelization which can only lead to very suboptimal solutions. Con-
currency can be analyzed on multiple code levels, thus providing information of
different granularity – however, all approaches so far still base on the programmer
providing the according dependency information. So far this information cannot even
be properly validated against the code, thus making it error prone.

What makes the exploitation of concurrency so specifically interesting in this con-
text is not only its ability to support the developer though. Even more important is the
capability that proper exploitation of concurrency can further reduce the limitations
posed by Amdahl’s law: next to the classical means of parallelization (segmentation
of work or data), it can also affect the ‘unparallelizable’ part of the code, that is, which
is denoted as ‘sequential part’ in Amdahl’s law. This is achieved by executing mul-
tiple sequential logical parts at the same time rather than parallelizing the respective
code itself. Due to the nature of this type of parallelization, however, the scalability is
restricted not only by the number of available processing units but also by the number
of concurrent segments that can be identified. In other words, if only 10 concurrent
segments can be identified, the maximum theoretically possible speedup is 10 – even
if more processing units are available.

Not only the high degree of scalability will pose issues to future programming
models but also in particular the large variance of processor architectures with
increasing deviations even on the ISA level. So far, the developer must be well aware

8http://www.vhdl-online.de/.
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of these differences in order to give according compiler instructions. To enable
compilers or even the execution infrastructure to automatically detect and exploit
the hardware specifics, new description languages are needed that can expose the
respective unit’s characteristics and capabilities in a fashion that can be interpreted
according to the infrastructure’s needs. Functional languages thereby show high
promise, as they are more intuitive and flexible than traditional models and enable
abstract queries from which additional information about the specifics can be
derived.
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PEPPHER takes a pluralistic and parallelization agnostic approach to programma-
bility and performance portability for heterogeneous many-core architectures. The
project develops methodology, framework and guidelines for constructing software
(including paths to migration of existing, parallel software) that can be ported
between different, possibly in themselves, heterogeneous many-core systems under
preservation of specific quantitative and qualitative performance aspects.

PEPPHER introduces a flexible and extensible compositional metalanguage for
expressing functional and nonfunctional properties of software components, their
resource requirements and possible compilation targets, as well as providing abstract
specifications of properties of the underlying hardware. This enables the PEPPHER
framework to compile variants of the software components and direct the supporting,
adaptive libraries. It furthermore provides handles for the PEPPHER run-time system
to schedule the components well on the available hardware resources. Performance
predictions can be (automatically) derived by combining the supplied performance
models. Performance portability is aided by guidelines and requirements to ensure
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that the PEPPHER framework at all levels chooses the best implementation of a given
component or library routine among the available variants, including settings for tun-
able parameters, prescheduling decisions and data movement operations.

12.1 INTRODUCTION AND BACKGROUND

With the proliferation of multi-/many-core architectures,1 as the design space for effi-
cient and programmable parallel processors is being explored, application portability
is evidently one of the major challenges facing the software industry. To address the
problem, which is intimately linked to the problem of multicore programmability in
general, several (new) factors have to be taken into account:

• Many-core architectures are parallel architectures that need to be programmed
as such. Even within the same architecture class, key characteristics can be
different from one instance to the next, for example, number of cores, size of
caches and structure of memory system. Manageable and efficient parallel pro-
gramming model, adequate compiler support and adaptive support libraries that
can statically or dynamically adjust to the concrete architecture characteristics
are some of the means to cope with these factors.

• The spectrum of multicore architectures is large, spanning general- and
special-purpose processors, shared or distributed memory architectures and
MIMD to SIMD, each of which call for their own programming model,
language, methodology and library support. An abstract model covering even
a part of this spectrum and allowing for efficient compilation to such different
target architectures may not be feasible or even desirable.

• Heterogeneous multicore architectures consisting of cores of such different
architecture types are already prominent in many application domains where
extreme performance and/or low-power consumption for dedicated subtasks
is called for. For general-purpose computing, striving to exploit the potential
of heterogeneous multicore designs, difficult load balancing, scheduling and
memory management problems arise.

• Efficiency criteria are changing from pure concerns with processor utilization,
scalability and throughput, towards best overall, most power-efficient utiliza-
tion of available resources.

A few examples substantially illustrate these observations: Intel’s Larrabee
(cache-coherent, shared-memory, homogeneous general-purpose many-core) [30]
and SCC (homogeneous, general purpose, many-core for on-chip message-passing,
CPU power domains) [19] architectures; Tilera’s embedded, mesh-connected many
cores [7]; Sun’s Niagara processors (homogeneous, simultaneous multi-threading)
[22]; the IBM/Sony/Toshiba Cell processor (general-purpose, heterogeneous,
local memory cacheless multicore) [21]; NVIDIA Tesla/Fermi and AMD ATI

1The terms multi- and many-core are used interchangeably.
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(special-purpose, highly parallel, idiosyncratic processors with general-purpose pro-
cessing appeal); and ClearSpeed CSX700 (special-purpose numerical accelerator).
Also in the embedded space, heterogeneous multicore processors are prevalent,
for example, Texas Instruments’ OMAP ARM/DSP, Qualcomm’s Snapdragon
ARM/DSP and Movidius SABRE RISC/VLIW multimedia coprocessor. See Ref.
[8] for an extended overview.

We expect that this architectural diversity will prevail, for better or for worse, for
the coming years. There is therefore an acute need to develop means to port code
developed for one type of parallel multicore architecture as seamlessly as possible
to any or another type of architecture and especially to understand how performance
characteristics are affected in this process. The latter is captured in the vague concept
of performance portability. Performance portability could mean that ways of charac-
terizing and translating performance aspects of algorithms and code between different
architectures are provided. This descriptive approach can take the form of traditional
performance models but could also include higher level, more qualitative proper-
ties of implementations and their inputs. On the other hand, a prescriptive approach
to performance portability would pose requirements to applications, language and
library implementations and the run-time that would guarantee that certain perfor-
mance aspects are preserved when porting code between different architectures. Such
requirements would be partly fulfilled by calibration and algorithmic autotuning in a
setup phase. The prescriptive approach aims to ensure a ‘best possible’ performance
of any supported architecture relative to the available basic libraries and run-time.

Rather than suggesting a uniform programming model and rely on compiler,
library and run-time support to ensure portability and performance, PEPPHER
takes a pluralistic approach to the programmability and performance portability
challenges. Many-core applications are viewed as collections of components [34]
that can be be written in different styles for different target architectures, with
explicit or implicit dependencies. Performance and other properties of components
are expressed using PEPPHER’s flexible and extensible annotation metalanguage
and are used to guide both the compilation process and the run-time responsible
for scheduling the compiled components to the available resources according to
given performance requirements. The richer the set of components and the more
informative the annotations, the better the quality of the code that can be generated
(including code variants for different types of architectures) and the better the
scheduling decisions that can be made. In the following we outline this approach in
more detail.

12.1.1 Related Work

A large number of projects are currently concerned with aspects of multicore pro-
grammability as mentioned earlier. In contrast to many of these (e.g. HyVM, SARC,
AppleCore), PEPPHER is not focusing on providing a common programming model
or portability layer. Instead the application programmer provides performance
information by annotating components and describing characteristics of the actual
environment/architecture. Likewise PEPPHER is not concerned with automatic
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parallelization per se. PEPPHER will extend work on algorithmic autotuning by
considering algorithms’ libraries for different types of architectures.

The overall project goals are somewhat similar to those of the Merge project,
although this project was focused on using MapReduce [12] as the programming
model [25, 37].

A related, ambitious autotuning project is PetaBricks [1], which by autotuning
provides (performance) portability across different, mainly homogeneous, parallel
architectures. In contrast, PEPPHER aims to support also heterogeneous architectures
with different parallelization models, which requires run-time support in addition to
what can be achieved by algorithmic autotuning.

A longrunning effort in adaptive algorithm selection is STAPL [35, 39]. An inter-
esting aspect of STAPL is that algorithms and implementations are classified by more
qualitative properties that can be matched at run-time against similar properties of the
input to select the best performing implementation variant [39] and is thus not relying
on a traditional, input-oblivious performance models.

12.2 THE PEPPHER FRAMEWORK

The PEPPHER framework consists of three main parts:

• A flexible and extensible composition metalanguage for describing perfor-
mance and other (functional and nonfunctional) properties of components. By
a component we mean an implementation of a specific algorithmic solution
for a well-defined functionality. Components may be parameterized with
tunable parameters such as blocking factors or buffer sizes, allowing multiple
component variants to be generated from the same (generic) component, even
for the same target architecture.

• Adaptive algorithm libraries that implement the same basic functionality
[26, 31, 32] across different architectures. Autotuning techniques are used at
PEPPHER installation and calibration time and even dynamically to generate
the best possible library for each target architecture.

• An efficient run-time that schedules compiled component variants (so-called
codelets) across the available resources, using performance information pro-
vided by the components layer as well as other execution history-based perfor-
mance information.

The challenge of the project is to make these linguistic, algorithmic and run-time
elements fit together to provide for efficient portability across a variety of typical
heterogeneous and homogeneous multicore architectures. The PEPPHER framework
is sketched in Figure 12.1.

A new or existing application is described as a collection of components with
either implicit (program order) or explicit interactions and dependencies. This purely
functional interface is extended in PEPPHER by metadata (annotations) to capture
important nonfunctional component properties (e.g. information and qualitative
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Figure 12.1 The PEPPHER framework for creating performance portable software across a
variety of heterogeneous many-core systems. The application is described as a set of (generic)
components with annotations specifying performance and other nonfunctional properties (left).
A set of component variants is generated (e.g. by source-to-source transformation) or chosen
(from expert-written libraries) for different architectures and configurations (middle). For each
concrete, heterogeneous architecture, appropriate component variants are selected and com-
piled into codelets that are scheduled efficiently at run-time (right) using static and dynamic
performance information. Performance models are derived from abstract hardware descriptions
and component annotations.

descriptions of input and output data distribution) and may be coupled with a param-
eterized performance model. The annotation framework is extensible, and absence
of information is handled by default rules (sequential composition, no specialization,
no performance information for the run-time system). For each component Ci
different variants C′

i, C
′′
i , C

′′′
i , . . . tailored for specific architectures (general-purpose

cores, different types of specialized accelerator cores) and environments (number
of cores, memory system) and/or specialized for specific input data are compiled
automatically, guided by the supplied metainformation. Functionally equivalent but
algorithmically different, variants C′′′′

i can in addition be provided by the expert
programmer.

Components will typically make use of expert-written libraries of algorithms
and data structures that at configuration time (but also dynamically) are adapted to
the given set of target architectures. The component metadata that is usually not
available in conventional component frameworks allows for automatic generation
of dispatch code that at run-time selects the most appropriate compiled component.
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The automatic generation of such executables is guided by performance models,
meta-data information on application input and dynamic feedback from hardware
captured during execution, and the resulting codelets contain this information
in a form that can be used by the PEPPHER run-time system. Components can
implement parallel algorithms and be expressed with any convenient parallelization
model/interface, for example, OpenMP, native threads, Threading Building Blocks,
Cilk, Ct, a message-passing framework, OpenCL or other. Obviously, the chosen
framework may make a given component instance unsuitable for some target
architectures and would limit portability. A reasonable completeness requirement
to parallel PEPPHER components is therefore that a sequential variant can always
be generated, either by enabling execution on a single core or providing explicitly
a functionally equivalent sequential component. Parallelism in the PEPPHER
framework arises from parallel (malleable) components, independent components
that may be scheduled simultaneously (perhaps on different resources) and parallel
libraries, for example, parallel STL [32]. At the user level, PEPPHER is in this sense
substrate agnostic.

As described the PEPPHER framework provides a path for gradually paralleliz-
ing legacy C++ codes (use of components, annotation, automatic code generation)
and making such codes (performance) portable to completely unforeseen classes of
new architectures. Components and application code are compiled to a set of sup-
ported target architectures HW A1, . . . , HW Am, for instance, by compiling to OpenCL
that is likely to be supported by a large set of (somewhat similar) architectures.
Compilation to other low-level substrates is also possible, though. The amount of
performance portability between the supported architectures depends on the qual-
ity of the decision/glue code binding the components together and the quality of
the compilation process. However, for very different architectures where different
algorithmic approaches are needed, additional support is required. This is provided
by a set of basic algorithms and data structures, as used widely in high-level appli-
cation development [26, 31]. Application portability is enhanced by relying exten-
sively on standard library algorithms, and performance portability can therefore be
gradually improved by enhancements (some of which can be automatic) to the algo-
rithms’ layer. Finally, the PEPPHER run-time is responsible for choosing among
the possible codelets at execution time for the most efficient execution at the avail-
able cores under the given load of the multicore processor. Orchestration of data
transfers between different memory systems is required and also handled by the
PEPPHER run-time. The run-time relies on synchronization mechanisms and data
structures suitable to the supported target architectures. To support new architec-
tures that may emerge in coming years, the algorithms and run-time layers of PEP-
PHER have to be likewise augmented. This is done gradually following the PEPPHER
methodology.

The PEPPHER framework is in principle language independent but focuses on
supporting C++ code with PEPPHER-specific annotations as pragmas or external
annotations. The framework is open and extensible; the PEPPHER methodology
details how new architectures are incorporated.
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1 template<typename T>
2 PEPPHER_interface Sorting {
3 void sort (inout T *a,
4 in problemsize unsigned int n);
5 }

Figure 12.2 Generic PEPPHER component interface for a sorting component.

12.2.1 An Example of Component-Based PEPPHER Programming

As an initial example of the PEPPHER framework in action, we consider sorting.
The functionality is declared in a generic PEPPHER interface Sorting as shown
in Figure 12.2 and can be implemented by different components each realizing a par-
ticular sequential or parallel sorting algorithm. Components adhering to the interface
in question are considered functionally equivalent and have the same input/output
behavior. For clarity we have here used pseudocode and assumed convenient language
extensions for C++. The final PEPPHER framework strives for a more nonintrusive
style to better facilitate migration of legacy code.

As shown in Figure 12.2, an interface declaration can contain information on what
is considered a problem size, which is important for building performance models for
the different components.

The optimization goal is chosen at component deployment time. Here we simply
assume an optimization for expected execution time (time), but other objectives are
possible and relevant, for example, energy. Furthermore, time is an appropriate mea-
sure only if execution resources, especially processor cores, are managed explicitly
at user level, as is the case in many SPMD programming frameworks [28, 29]. If this
is not the case, PEPPHER delegates resource management to the run-time system,
in which case total work may be a more suitable objective. Sorting components can
announce their expected time behavior by a prediction function time_sort with
the same parameters as sort and additional parameters for resource usage such as
the number of cores p to be used on, for instance, a homogeneous, NUMA multicore
architectures; see Figure 12.3. If no such prediction function is given, PEPPHER uses
a default function.

A specialized sorting component for GPU architectures, for example [9], also
implementing the component interface, is finally shown in Figure 12.4. Such spe-
cialized components that cannot be derived automatically from the base component
implementations are likely to be contributed by expert programmers.

By adding metainformation about target machine usage, the component becomes
resource aware. By adding metacode for microbenchmarking code segments on the
target machine (not shown here) and for time prediction (the time function), the
component becomes performance aware [15, 29]. In this sorting example there are
no tunable component parameters; more complex components would typically have
such parameters.
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1 template <typename T>
2 PEPPHER_component ParMS implements Sorting<T>
3 requires Merging<T> uses HOM, NUMA
4 // uses/requires homogeneous NUMA architecture
5 // not applicable e.g. to GPU since
6 // implementation is recursive
7 {
8 void sort (T *a, unsigned int n)
9 { ... // many details omitted

10 @PEPPHER_taskgraph {
11 // composition point: pre-scheduling/resource pre-allocation
12 @PEPPHER_task (T1, Sorting<T>, sort (a, n/2));
13 @PEPPHER_task (T2, Sorting<T>, sort (a+n/2, n-n/2));
14 // no precedence constraints given - the tasks are independent
15 }
16 @PEPPHER_task (T3, Merging<T>, merge (a, n));
17 ... // many details omitted
18 }
19

20 // The following code is used at deployment time:
21 float time_par1; // some basic timing param. for time_sort
22 ...
23 void perf_calib (void) { ... } // Basic performance param.:
24 // time, energy comsumption, ...
25 // Time prediction function for ParMS<T>::sort:
26 float time_sort (unsigned int n, unsigned int p)
27 { ... // simplified
28 float tmrg = @PEPPHER_lookup(Merging<T>, merge(n, p));
29 float trec =
30 (p>1) ? @PEPPHER_lookup(Sorting<T>, sort(n/2, p/2))
31 : 2 * @PEPPHER_lookup(Sorting<T>, time_sort(n/2, 1));
32 return time_par1 + tmrg + trec;
33 }
34 }

Figure 12.3 Implementation of a PEPPHER sorting component by a merge sort algorithm.
The pseudocode notation with C++ language extensions used in this example is one of sev-
eral possibilities considered for the PEPPHER annotation framework. Alternatives keep the
annotations separate to the actual code.
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1 template<typename T>
2 PEPPHER_component GPUsort implements Sorting<T>
3 uses GPU
4 { ... // host code with CUDA code encapsulated here,
5 details omitted.
6 // No further component calls inside
7 ... // perf_calib(), time_sort() etc. omitted
8 }

Figure 12.4 A specialized GPU sorting component.

A two-stage approach is adopted for performance prediction:

1. To keep the prediction cost at a moderate level and controlled by the com-
ponent programmer, a hybrid approach is used for static performance predic-
tion which allows to use microbenchmarking for calibrating parameters in the
programmer-supplied prediction functions. Predictions are used in the deploy-
ment phase to initialize time and dispatch tables as described later.

2. At run-time table entries are refined with actually measured values and can thus
automatically adapt to typical workload situations.

At deployment time the component variants are processed by the PEPPHER
composition tool, which has access to (performance models of) the target machine.
Nonapplicable components are automatically discarded. The composition tool
first derives the dependence graph between the interfaces from the union of the
implementing components’ requires relations. All components implementing
the same interface are processed together in reverse topological order. In the
example in Figure 12.3, the Merging components must be processed before
the Sorting components, etc. Microbenchmarking on the target machine to
gather basic prediction parameters for a component, such as time_par1 used in
ParMS<T>::time_sort, is done before evaluating time_sort for the first
time and is factored out into a separate perf_calib routine.

For each processed interface, the composition tool inspects all components and
from interpreting their time functions builds (sparse) data structures that can be
indexed by problem sizes and resources:

• A time table, for example, Tsort, that lists for selected call contexts consisting
of a problem size (n) and resource configuration (p) the predicted expected
execution time (Tsort [n, p])

• A dispatch table, for example, Vsort, that lists for selected call contexts a refer-
ence to the expected fastest component

Finally, the composition tool patches the marked-up composition points in
the component implementations (such as the @PEPPHER_task and @PEP-
PHER_taskgraph constructs in Figure 12.3, lines 8–11) by dispatch code that at
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run-time uses the V table to call the expected fastest variant, as dispatch as outlined
here is done by table lookup run-time overhead will be low.

The patched component code is processed further by native compilers for the target
systems.

12.3 THE PEPPHER METHODOLOGY

The PEPPHER methodology consists of rules for how to extend the framework for
new architectures. This mainly concerns adaptivity and autotuning for algorithm
libraries, the necessary hooks and extensions for the run-time system and any sup-
porting algorithms and data structures that this relies on. The methods for annotation
and composition, automatic generation of glue code and so on as described earlier
are also used when augmenting the supporting layers of the PEPPHER framework.
To aid performance portability it is important that performance requirements
and guidelines are followed. The methodology also gives rules and advice to the
mainstream programmer for how to write new and port existing code to PEPPHER.

12.4 PERFORMANCE GUIDELINES AND PORTABILITY

One conception of performance portability is that no (high-level) application restruc-
turing is necessary when porting code from one architecture to another [20]. This is of
course untenable for radically different architectures where different algorithms are
called for, but for algorithms that can be constructed from standardized library func-
tionality, it is a reasonable approach to try to delegate the performance portability
requirements to such libraries. Requirements, constraints and guidelines on building
blocks are defined towards this goal.

Such (meta)requirements and guidelines would for instance prescribe that no
building block (library component) can be improved just by expressing the same
functionality by means of other related library components. This would also imply
that the PEPPHER framework does the best possible selection among different
available implementations of a library component, a highly nontrivial guarantee in
a heterogeneous, dynamic setting which would relieve the user from the temptation
to try and do better and write such selection code himself. Similar monotonicity
metarules govern the use of annotations: the more (noncontradictory) information
is provided, the better PEPPHER can do at all levels; providing more information
must not worsen the resulting performance. If no information is provided for the
components, the PEPPHER framework produces default code (that maybe only
runs on a single processor). There is thus an incremental road to performance
(portability). PEPPHER will explore in detail the formalization and implementation
of such performance requirements, such that they could ideally be verified and
enforced during the calibration phase for each new architecture. For more specific
performance prediction, user and framework-supplied performance models can be
automatically composed (when available) and possibly be verified against historical
performance data gathered at run-time [27, 28].
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12.5 FURTHER TECHNICAL ASPECTS

12.5.1 Compilation Techniques and Parallel Language Extensions

As shown in Section 12.2.1, a PEPPHER (sub-)component may benefit from the
explicit use of specialized, nonportable code to provide an implementation for a spe-
cific platform. Such specialized components are typically provided (gradually) by
expert programmers and further contribute to the overall performance portability of
the given application.

Offloading is a specific technique for programming heterogeneous platforms that
can sometimes be applied with high efficiency. Offload as developed by the PEP-
PHER partner Codeplay [10, 14] is a particular, nonintrusive C++ extension allow-
ing portable C++ code to support diverse heterogeneous multicore architectures
in a single code base. Compile-time techniques using automatic call-graph dupli-
cation and pointer-type inference allow compilation of portable, nonannotated code
on heterogeneous multicore architectures with distinct memory spaces. The com-
piler generates routines appropriate for the used target processor and memory space
combination. Essentially, offload blocks embedded in host code are compiled into
kernels (e.g. OpenCL kernels) to run on accelerator processors. At run-time upon
entering such a block, an instance of the corresponding kernel is created and sub-
sequently invoked by the PEPPHER run-time facilitating its wealth of performance
features, advanced scheduling strategies and supported hardware. The availability of
the PEPPHER run-time for various platforms and the integration with the offload sys-
tem enable the prompt adoption of portable programming models across a wide range
of different heterogeneous processors.

Specialized components written explicitly using Offload C++ support a vari-
ety of parallel implementation strategies, from multithreading on shared-memory
homogeneous multiprocessors to offloaded threads across accelerators in heteroge-
neous multiprocessors with private memory and execution on both accelerator and
host cores. Sequential execution can also be supported, either on a host or accelera-
tor core.

The run-time system may invoke and schedule appropriately compiled component
implementations on various subsets of the available hardware resources, for example,
single or multiple accelerators, accelerators and host processors combined or host
CPUs alone.

12.5.2 Algorithmic Support

The PEPPHER framework is supported by algorithm libraries capturing essential,
frequently used functionality. Libraries with standardized interfaces enhance code
portability across different architectures and since typically developed by expert
programmers can contribute significantly also towards performance portability.
The parallel, multicore MCSTL library [32], for instance, contains parallel
implementations where applicable of the C++ STL algorithms and data structures,
tuned toward efficient execution on standard multicore architectures. MCSTL is
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part of the g++ system. This approach will be extended with autotuning techniques
for improved automatic (static and dynamic) adoption to parameterized classes
of multi-core architectures, which extends conventional work on autotuning for
numerical kernels [16, 24, 38]. Complementing the example in Section 12.2.1, the
first case study will be sorting [9, 23, 36].

Other essential types of algorithmic (library) support consist in lock-free algo-
rithms and data structures for efficient concurrent interprocess synchronization, espe-
cially when generalized to different types of architectures [17, 18]. A rich library
of fundamental nonblocking algorithms and data structures that can be used in the
PEPPHER framework is NOBLE [33].

Further, essential algorithmic support for the PEPPHER framework consists in
methods for efficient dispatch and online algorithm selection, construction of dispatch
tables as outlined in Section 12.2.1 and efficient run-time scheduling strategies.

12.5.3 The PEPPHER Run-Time System

For exploiting the potential of hybrid systems consisting of general-purpose
multi-core processors and special-purpose accelerators, offloading approaches alone
will not suffice to utilize the available resources concurrently. Instead, application
sub-tasks must be scheduled at run-time across the various resource. The PEPPHER
run-time system which constitutes an essential part of the framework is based on the
StarPU task-scheduling engine [3, 5], initially developed by the PEPPHER partner
INRIA.

The compiled version of a PEPPHER component is a set of codelets which
the run-time can dynamically assign as appropriate to the available compute
units. In addition to performance estimations and other information generated
from component annotations and static machine performance models, codelets
contain explicit references to their input and output. This enables the scheduler to
automatically fetch the input data of a task before execution. To minimize data
transfers data are kept where last used, and multiple (read-only) copies on different
memory systems are allowed. StarPU implements a relaxed consistency model with
data replication capabilities.

The scheduler uses performance prediction models as provided by the composi-
tional layer to estimate the completion time of each ready task over each comput-
ing unit. In addition to or absence of explicit component performance models, the
run-time can attempt performance prediction based on codelet performance history.
For some applications this has been shown to quickly achieve useful performance
estimations when the granularity of codelets remains constant [4] and can sometimes
even outperform a priori performance models.

We now use LU decomposition of dense matrices to illustrate how these techniques
can exploit heterogeneous hardware efficiently. We consider a blocked LU decompo-
sition with TRSM and GEMM BLAS3 kernels. Our experiments were performed on an
E5410 quadcore 2.33 GHz Xeon with 4 GB of memory equipped with an NVIDIA
Quadro FX 5800 graphics card with 4 GB of memory. We used the ATLAS3.6 and
CUBLAS2.3 implementations of the BLAS kernels. Performance is given in GFlops.
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Figure 12.5 Impact of different StarPU scheduling policies (greedy, heft-tm,
heft-tm-pr and heft-tmdp-pr) on the LU decomposition example.

Results are given in Figure 12.5 for varying problem size and different scheduling
policies. The greedy strategy simply assigns the codelets to the available computing
units in FIFO order. The heft-tm strategy is an implementation of the Heteroge-
neous Earliest Finish Time algorithm using the aforementioned history-based perfor-
mance prediction mechanism. One can observe that it significantly outperforms the
greedy strategy and thus illustrates the benefits of using carefully tuned performance
models on such hardware. The heft-tm-pr policy is a further enhancement that
masks the cost of memory transfers by overlapping them with computations by use
of aggressive prefetching. Finally, the heft-tmdp-pr strategy further penalizes
nonlocal data accesses and thus favoring data locality. This has a strong impact on
the total amount of data transfers which drops almost by half.

More interestingly, Table 12.1(a) shows that the speed achieved by our schedul-
ing policy on a hybrid platform exceeds the sum of the speeds of the components
of the system and demonstrates a superlinear efficiency. This is possible because
the LU decomposition is composed of different types of tasks, with different relative
speedups between their ATLAS/CPU and their CUBLAS/GPU implementations. The
second column of Table 12.1(b) shows that the different tasks of the LU decomposi-
tion do not perform equally: matrix products (GEMM) are particularly efficient on the
GPU, while the pivoting is quite inefficient with a mere speedup of 1.2. The use of
per-task performance models allows the heft-tm strategy to distribute tasks with
respect to their actual efficiency on the different types of compute units (third and
fourth column of Table 12.1(b)).

The efficiency of such run-time techniques depends not only on the quality of
codelets generated from the component and algorithm layers (and their associated
scheduling hints) but also on the tight cooperation between the run-time and upper
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Table 12.1 Example of acceleration on a double precision LU
decomposition with partial pivoting (DGETRF) on a 3.2 GB matrix.

(a) Performance of DGETRF on a 3.2 GB problem

(3CPUs + 1GPU) 3 CPUs 1 GPU

GFlop/s 79.5 ± 0.4 17.4 ± 0.3 61.0 ± 0.1
efficiency (%) 101.4 = 79.5/(17.4 + 61.0)

(b) Relation between speedup and task distribution

Kernel Relative speedup Task balancing (%)

(1 GPU vs 1 CPU) 3 CPUs GPU

Pivot 1.2 94.7 5.3
dgetrf 6.7 0.0 100.0
dtrsm (lower) 6.0 46.3 53.7
dtrsm (upper) 6.2 45.3 54.7
dgemm 10.8 21.7 78.3

layers in order to dynamically adjust task granularity. Experiments showing that task
granularity should vary dynamically even for regular applications such as LU decom-
position have been conducted. Autotuning of such parameters in a heterogeneous
context is one of the most challenging aspects of PEPPHER.

12.6 GUIDING APPLICATIONS AND BENCHMARKS

Eventually the feasibility of the PEPPHER approach will be demonstrated by
applying the methodology and framework to real-world applications and/or kernels
abstracting properties of applications from various computing domains. More
concretely, application kernels will be taken from the following domains:

• CFD simulations, as an example using OpenFOAM (see www.openfoam
.com)

• Iterative solvers [6]

• Weather and climate simulation, for example, ECHAMP5 or WRF (see
www.wrf-model.org)

• GROMACS for molecular dynamic simulation (see www.gromacs.org)

• Game AI (e.g. line-of-sight calculations; see aigamedev.com, route plan-
ning [13]).

• Physics engine (e.g. Tokamak, see www.tokamakphysics.com or ODE;
see www.ode.org)

• Visual computing, for example, ray tracing and volume rendering
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These cover applications from technical (high-performance) computing, multimedia
(embedded) computing and consumer and commercial enterprise computing.

As the project progresses we will validate and showcase the PEPPHER framework
for different types of parallelism such as data parallelism, task parallelism, dataflow,
dispatcher–worker and MapReduce. Here mainly common basic kernels and indus-
try benchmarks will be utilized, for example, common basic BLAS operations, sig-
nal/image processing operations, network-edge processing, sorting, kernels from the
heterogeneous computing platform benchmark [11] and the Berkeley dwarfs [2].

As part of the PEPPHER-supported parallel and heterogeneous many-core
platforms, we will establish baseline references for all applications and kernel
implementations and tests based on industry standard x86 multicore systems to act
as a validation, development, portability and many-core proxy system and platform
vehicle.

12.7 CONCLUSION

We motivated the PEPPHER approach to performance portability and programma-
bility for heterogeneous many-core architectures and described some of the initial
steps that have been taken in the project. We think the approach is unique and
promising, combining a compositional software framework, algorithmic autotuning,
specific compilation techniques and an efficient run-time and thereby maintaining
independence of specific programming models, virtual machines and architectures.
The combination of component-based adaptation with a run-time system provides
for flexibility not found in many other autotuning projects, where scheduling
decisions are hard coded at an early stage. In addition to the main thrust as described
here, PEPPHER aims at generating feedback on enhanced hardware support for
performance portability and parallel algorithmics.
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CHAPTER 13

FASTFLOW: HIGH-LEVEL AND
EFFICIENT STREAMING ON
MULTICORE

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick and

Massimo Torquati

Computer hardware manufacturers have moved decisively to multicore and are cur-
rently experimenting with increasingly advanced many-core architectures.

In the long term, writing efficient, portable and correct parallel programs targeting
multi- and many-core architectures must become no more challenging than writing
the same programs for sequential computers. To date, however, most applications run-
ning on multicore machines do not exploit fully the potential of these architectures.

This situation is in part due to the scarcity of good high-level programming tools
suitable for multi- /many-core architectures and in part to the fact that multicore pro-
gramming is still viewed as a kind of exotic branch of high-performance computing
(HPC) rather than being perceived as the de facto standard programming practice for
the masses.

Some efforts have been made to provide programmers with tools suitable for
mapping data-parallel computations onto both multicores and GPUs – the most pop-
ular manycore currently available. Tools have also been developed to support stream
parallel computations [28, 30] as stream parallelism de facto represents a pattern
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characteristic of a large class of (potentially) parallel applications. Two major issues
with these programming environments and tools relate to programmability and effi-
ciency. Programmability is often impaired by the modest level of abstraction provided
to the programmer. Efficiency more generally suffers from the peculiarities related to
effective exploitation of the memory hierarchy.

As a consequence, two distinct but synergistic needs exist: on the one hand,
increasingly efficient mechanisms supporting correct concurrent access to shared
memory data structures are needed; on the other hand there is a need for higher
level programming environments capable of hiding the difficulties related to the
correct and efficient use of shared memory objects by raising the level of abstraction
provided to application programmers.

To address these needs we introduce and discuss FastFlow, a programming frame-
work specifically targeting cache-coherent sharedmemory multicores. FastFlow is
implemented as a stack of C++ template libraries.1 The lowest layer of Fast-Flow
provides very efficient lock-free (and memory fence-free) synchronization-based
mechanisms. The middle layer provides distinctive communication mechanisms
supporting both single-producer–multiple-consumer and multiple-producer–single-
consumer communications. These mechanisms support the implementation of
graphs modeling various kinds of parallel/concurrent activities. Finally, the top
layer provides, as programming primitives, typical streaming patterns exploiting the
fast communication/synchronizations provided by the lower layers and supporting
efficient implementation of a variety of parallel applications, including but not
limited to classical streaming applications.

In our opinion the programming abstractions provided by the top layer of
Fast-Flow represent a suitable programming model for application programmers.
The efficient implementation of these programming abstractions in terms of the
lower layers of the FastFlow stack also guarantees efficiency. Moreover, the
possibility of accessing and programming directly the lower layers of the FastFlow
stack to implement and support those applications not directly supported by the
FastFlow high-level abstractions provides all the processing power needed to
efficiently implement the most existing parallel applications.

In this Chapter we adopt a tutorial style: first we outline FastFlow design and then
show sample use of the FastFlow programming environment together with perfor-
mance results achieved on various state-of-the-art multicore architectures. Finally, a
related work section concludes the Chapter.

13.1 FASTFLOW PRINCIPLES

The FastFlow framework has been designed according to four foundational
principles: layered design (to support incremental design and local optimizations);
efficiency in base mechanisms (as a base for efficiency of the whole framework);

1FastFlow is distributed under LGPLv3. It can be downloaded from SourceForge at http://
sourceforge.net/projects/mc-fastflow/.
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support for stream parallelism (intended as a viable solution for implementing
classical stream parallel applications and also data parallel, recursive and Divide
& Conquer (D&C) applications); and a programming model based on design
pattern/algorithmic skeleton concepts (to improve the abstraction level provided to
the programmer).

Layered Design FastFlow is conceptually designed as a stack of layers that pro-
gressively abstract the shared memory parallelism at the level of cores up to the defini-
tion of useful programming constructs supporting structured parallel programming on
cache-coherent shared-memory multi- and many-core architectures (see Fig. 13.1).
These architectures include commodity, homogeneous, multicore systems such as
Intel core, AMD K10, etc. The core of the FastFlow framework (i.e. run-time sup-
port tier) provides an efficient implementation of single-producer-single-consumer
(SPSC) first in, first out (FIFO) queues. The next tier up extends from one-to-one
queues (SPSC) to one-to-many (SPMC), many-to-one (MPSC), and many-to-many
(MPMC) synchronizations and data flows, which are implemented using only SPSC
queues and arbiter threads, thus providing lock-free and wait-free arbitrary dataflow
graphs (arbitrary streaming networks). These networks exhibit very low synchro-
nization overhead because they require few or no memory barriers and thus few
cache invalidations. The upper layer, that is, high-level programming, provides a pro-
gramming framework based on parallel patterns (see Section 13.1). The FastFlow
pattern set can be further extended by building new C++ templates. Programs written
using the abstractions provided by the FastFlow layered design may be seamlessly
ported across the full range of architectures supported. The run-time tier has spe-
cific conditional compilation parts targeting the different shared memory and cache
architectures in the various target architectures. Extra fine-tuning possibilities will be
provided in future FastFlow releases, in particular, to allow users to allocate memory

Applications and problem solving environments
Directly programmed applications and further abstractions

targeting specific usage (e.g., accelerator and self-offloading)

SPMC

SPMC

MPSC

MPSC

Farm

W1

Wn

E C

CP C-P

FastFlow Composable parametric patterns
of streaming networks

Arbitrary streaming networks

Linear streaming networks

Skeletons: pipeline, farm, D&C, etc.

Lock-free SPMC, MPSC, MPMC queues,
nondeterminism, cyclic networks

Lock-free SPSC queues and threading
model, Producer–consumer paradigm

Multicore and many-core
cc-UMA or cc-NUMA

High-level
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Low-level
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Run-time
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Figure 13.1 FastFlow-layered architecture with abstraction examples at the different layers
of the stack.
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Table 13.1 Average latency time and standard deviation (in nanoseconds) of a push/pop
operation on a SPSC queue with 1024 slots for 1M insert/extractions, on the Intel 8 core 16
context and on AMD 48 core.

Same core and
different contexts

Same CPU and
different cores

Different
CPUs

8 core 48 core 8 core 48 core 8 core 48 core

Average 14.29 – 11.23 19.73 9.6 20.21
standard deviation 2.63 – 0.29 2.23 0.1 1.9

in one of the ‘banks’ sported by the target architecture. This, along with the possibility
offered to pin a thread to a specific core, will provide the user full locality control.

Efficiency of Base Mechanisms FastFlow SPSC queues represent the base
mechanisms in the FastFlow framework. Their implementations are lock-free and
wait-free [16]. They do not use interlocked operations [13]. Also, they do not make
use of any memory barrier for total store order processors (e.g. Intel core) and use a
single memory write barrier (in the push operation) for processors supporting weaker
memory consistency models (full details on FastFlow SPSC can be found in [31]).
The SPSC queue is primarily used as a synchronization mechanism for memory
pointers in a consumer–producer fashion. SPSC FIFO queues can be effectively used
to build networks of communicating threads which behave in a dataflow fashion. The
formal underpinning of these networks dates back to Kahn process networks (KPNs)
[18] and dataflow process networks [19]. Table 13.1 shows the average latencies
involved in the use of the SPSC queues on different configurations of producers and
consumers on state-of-the-art Intel and AMD multicore architectures.

Stream Parallelism We chose to support only stream parallelism in our library
for two basic reasons: (i) supporting just one kind of parallelism keeps the Fast-
Flow implementation simple and maintainable, and (ii) stream parallel patterns, as
designed in FastFlow, allow different other parallelism forms to be implemented (see
following text), including simple data parallelism, parallelism in recursive calls and
D&C. Stream parallelism is a programming paradigm supporting the parallel execu-
tion of a stream of tasks by using a series of sequential or parallel stages. A stream
program can be naturally represented as a graph of independent stages (kernels or
filters) that communicate explicitly over data channels. Conceptually, a streaming
computation represents a sequence of transformations on the data streams in the pro-
gram. Each stage of the graph reads one or more tasks from the input stream, applies
some computation and writes one or more output tasks to the output stream. Paral-
lelism is achieved by running each stage of the graph simultaneously on subsequent
or independent data elements. Local state may be either maintained in each stage or
distributed (replicated or scattered) along streams.

Streams processed in a stream parallel application are usually generated (input
streams) and consumed (output streams) externally to the application itself. However,
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streams to be processed may also be generated internally to the application. For
example, an embarrassingly data-parallel application may be implemented as a
pipeline with three stages: the first generates a stream of tasks, each representing one
of the data-parallel tasks that can be independently processed to compute a subset
of the application results; the second processes in parallel this input stream of tasks,
producing an output stream of results; and the last stage processes the output stream
to rebuild the final (nonstream) result. We refer to the first kind of streams – those
produced/consumed outside the application, as exo-streams – and the second, those
produced/consumed internally, as endo-streams.

Parallel Design Patterns (algorithmic Skeletons) Attempts to reduce the
programming effort by raising the level of abstraction date back at least three
decades. Notable results have been achieved by the skeletal approach [10, 11]
(a.k.a. pattern-based parallel programming). This approach appears to be becom-
ing increasingly popular after being revamped by several successful parallel
programming frameworks [8, 12, 30, 32].

Algorithmic skeletons capture common parallel programming paradigms (e.g.
MapReduce, ForAll, D&C, etc.) and make them available to the programmer
as high-level programming constructs equipped with well-defined functional
and extrafunctional semantics [2]. Some of these skeleton frameworks explicitly
include stream parallelism as a major source of concurrency exploitation [2, 17,
30, 32]: rather than allowing programmers to connect stages into arbitrary graphs,
basic forms of stream parallelism are provided to the programmer in high-level
constructs such as pipeline (modeling computations in stages), farm (modeling
parallel computation of independent data tasks) and loop (supporting generation
of cycles in a stream graph and typically used in combination with a farm body to
model D&C computations). More recently, approaches such as those followed in
algorithmic skeletons but based on parallel design patterns have been claimed to be
suitable to support multi- and many-core programming [8, 21]. Differences between
algorithmic skeletons and parallel design patterns lie mainly in the motivations
leading to these two apparently distinct concepts and in the research environments
where they were developed: the parallel programming community for algorithmic
skeletons and the software engineering community for parallel design patterns.

In FastFlow we chose to adopt an algorithmic skeleton/parallel design-pattern-
based approach to address the problems outlined in the introduction, and we restricted
the kind and the number of skeletons implemented to keep the size of the implemen-
tation manageable while providing a useful skeleton set. This choice allows us to
provide full support for an important class of applications, namely, streaming appli-
cations [7, 28].

13.2 FASTFLOW μ-TUTORIAL

The FastFlow parallel programming framework may be used in at least two distinct
ways. A first classic usage scenario is related to development ‘from scratch’ of brand
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new parallel applications. In this case, the application programmer logically follows
a workflow containing the following steps:

Step 1 Choose the most suitable skeleton nesting that models the parallelism
paradigm that can be exploited in the given application

Step 2 Provide the parameters needed to correctly instantiate the skeleton(s),
including the sequential portions of code modeling the sequential
workers/stages of the skeleton(s)

Step 3 Compile and run the resulting application code, consider the results and
possibly go back to step 1 to refine the skeleton structure if it becomes
apparent that there is a better combination of skeletons modeling the par-
allelism exploitation paradigm in mind

The workflow just mentioned can be used also to parallelize existing applications.
In this case, rather than choosing the most suitable skeleton nesting for the whole
application, the programmer will analyze the application, determine which kernels are
worth parallelizing and finally enter the aforementioned three-step process, with step
one being performed only on targeted portions of the code. As a result, the sequential
flow of control of a given kernel will be substituted by the parallel flow of control
expressed by the skeleton nesting.

A second scenario, relating to the use of software accelerators, is particularly tar-
geted to low-effort parallelization of existing applications.

In this case programmers identify independent tasks within the application. Then
they choose a representation for the single task, declare a FastFlow accelerator – for
example, a farm accepting a stream of tasks to be computed – and use the acceler-
ator to offload the computation of these tasks, much in the sense of OpenMP tasks
being executed by the thread pool allocated with the scoped #pragma parallel
directive. This scenario is distinct from the first in that the application programmer
using FastFlow in this way does not necessarily need any knowledge of the skele-
ton framework implemented in FastFlow. Tasks to be computed are simply sent to
a generic ‘parallel engine’ computing some user-supplied code. Once the tasks have
been submitted, the program can wait for completion of their computation while pos-
sibly performing other different tasks needed to complete application execution.

13.2.1 Writing Parallel Applications ‘From Scratch’

When designing and implementing new parallel applications using FastFlow, pro-
grammers instantiate patterns provided by FastFlow to adapt them to the specific
needs of the application at hand. In this section, we demonstrate how the principal
FastFlow patterns may be used in a parallel application.

13.2.1.1 Pipeline A very simple FastFlow pipeline code is sketched in
Figure 13.2. A FastFlow pipeline object is declared in line 4. In line 5 and 6
nStages objects of type Stage are added to the pipeline. The order of the stages
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Figure 13.2 Hello world pipeline.

in the pipeline chain is given by the insertion order in the pipe object (line 6).
The generic Stage is defined from line 11 to line 23. The Stage class is derived
from the ff_node base class, which defines three basic methods, two optional,
svc_init and svc_end and one mandatory svc (pure virtual method). The
svn_init method is called once at node initialization, while the svn_end
method is called once when the end of stream (EOS) is received in input or when
the svc method returns NULL. The svc method is called each time an input task is
ready to be processed. In the example, the svc_init method just prints a welcome
message and returns. The svc method is called as soon as an input task is present
and prints a message and returns the task which will be sent out by the FastFlow
runtime to the next stage (if present). For the first stage of the pipeline, the svc
method is called by the FastFlow runtime with a NULL task parameter. The first
node (the one with id 0 in line 17) generates the stream sending out each task (in this
simple case just one long) by using Fast-Flow’s run-time method ff_send_out
(line 19). The ff_send_out allows for queueing tasks without returning from the
svc method. The pipeline can be started synchronously as in the example (line 7)
or asynchronously by invoking the method run without waiting for the completion,
thus allowing overlap with other work. It is worth noting that the ff_pipeline
class type is a base class of ff_node type, so a pipeline object can be used where
an ff_node object has to be used.

13.2.1.2 Farm A farm paradigm can be seen as a two- or three-stage pipelines,
the stages being an ff_node called the emitter, a pool of ff_nodes called workers,
and – optionally – an ff_node called the collector. A FastFlow farm pattern can be
declared using the ff_farm<> template class type as in Figure 13.3 line 4. In line
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Figure 13.3 Hello world farm.

6 and 7, a vector of nWorkers objects of type Worker is created and added to
the farm object (line 8). The emitter node, added in line 9, is used in the example
code to generate the stream of tasks for the pool of workers. The svc method is
called by the FastFlow runtime with a NULL task parameter (since, in this case, the
emitter does not have any input stream) each time a new task has been sent out and
until a NULL value is returned from the method. Another way to produce the stream
without entering and exiting from the svc method each time would be to use the
ff_send_out to generate all the tasks.

The emitter can also be used as sequential preprocessor if the stream is coming
from outside the farm, as is the case when the stream is coming from a previous node
of a pipeline chain or from an external device.

The farm skeleton must have the emitter node defined: if the user does not add it to
the farm, the run-time support adds a default emitter which acts as a stream filter and
schedules tasks in a round-robin fashion toward the workers. In contrast, the collector
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is optional. In our simple example, the collector, added at line 10, gathers the tasks
coming from the workers, writes a message and deletes the input task allocated in the
emitter. Each time the svc method is called and the work completed, the collector,
being the last stage of a three-stage pipeline, returns the tag GO_ON task which tells
the run-time support that further tasks must be awaited from the input channel and
that the computation is not finished. The GO_ON tag can be used in any ff_node
class. Finally, as for the pipeline, the farm base class is ff_node.

13.2.1.3 Farm and Pipeline with Feedback In the farm paradigm the col-
lector can be connected with a feedback channel to the emitter. It is also possible
to omit the collector by having, for each worker thread, a feedback channel toward
the emitter. For the pipeline paradigm it is possible to link the last stage of the chain
with the first one in a ring fashion. In general, several combinations and nestings of
farm, pipeline, and feedback channels are possible without any particular limitations
to build complex streaming networks. For example, it is possible to have a farm skele-
ton whose workers are pipelines or a farm skeleton whose workers are other farms,
each with a feedback channel.

When a feedback channel is present in the farm paradigm, the performance may
strongly depend on the scheduling policies of tasks. FastFlow offers two predefined
scheduling policies: dynamic round robin (DRR) and on demand (OD). The DRR
policy schedules a task to a worker in a round-robin fashion, skipping workers with
full input queue. The OD policy is a fully dynamic scheduling, that is, a DDR policy
where each worker has an input queue of a predefined small size (typically 1 or 2
slots). Furthermore, in the farm skeleton, the emitter may also be used to implement
user-defined scheduling policies, that is, it is possible to add new scheduling policies
tailored to the application behavior by subclassing the ff_loadbalancer and
redefining the method selectworker. The new scheduling class type should be
passed as template parameter to the farm object. In this way it is possible, for example,
to define weighted scheduling policies by assigning weights to tasks and to schedule
the tasks directly to the worker that has the lowest weight at scheduling decision time
(i.e. ff_send_out).

13.2.2 Using FastFlow as an Accelerator

FastFlow can also be used as a software accelerator to accelerate existing sequential
code. An accelerator is defined by a skeletal composition augmented with an input
and an output stream that can be, respectively, pushed and popped directly from the
sequential code. Accelerating sequential code differs slightly from plain paralleliza-
tion of existing code such as that sketched at the end of Section 13.2.1. In that case,
more extensive application knowledge is needed in order to choose the most suitable
parallel pattern composition for the whole application. Instead, when the accelerat-
ing methodology is used, programmers have to identify potentially concurrent tasks
and request their execution (by explicit task offloading) onto the FastFlow skeletal
composition in order to let those tasks be computed in parallel. As a consequence,
the programmer has only to identify the concurrent tasks in the code and provide



�

� �

�

270 FASTFLOW: HIGH-LEVEL AND EFFICIENT STREAMING ON MULTICORE

a suitable representation of those tasks to be submitted through the accelerator input
stream. A detailed description of the FastFlow software accelerator and its usage can
be found in [5].

13.3 PERFORMANCE

The FastFlow framework has been validated using a set of very simple benchmarks,
starting from low-level basic mechanisms up to the simplest FastFlow patterns: farm
and pipeline. Furthermore, a brief description of some significant real-world applica-
tions is reported pointing out, for each application, the kind of parallelization used.

Two platforms are used in the evaluation: 8-core: Intel workstation with 2 ×
quad-core Xeon E5520 Nehalem (16 HyperThreads) @2.26 GHz; 48-core: AMD
Magny-Cours 4 × 12-core Opteron 6174 @2.2 GHz. Both run Linux × 86_64.

13.3.1 Base Mechanism Latencies

Table 13.1 shows the results obtained when running a synthetic microbenchmark con-
sisting in a simple two-stage pipeline in which the first stage pushes 1 million tasks
into a FastFlow SPSC queue (of size 1024 slots) and the second stage pops tasks from
the queue and checks for correct values. In the table are reported three distinct cases
obtained by changing the physical mapping of the two threads corresponding to the
two stages of the pipeline: (i) the first and second stages of the pipeline are pinned
on the same physical core but on different HW contexts (only for the Intel 8-core
architecture), (ii) are pinned on the same CPU but on different physical cores (for the
AMD 48-core architecture we pinned the two threads on 2 cores of the same die), and
(iii) are pinned on two cores of two distinct CPUs. On the 8-core box (Intel), Fast-
Flow’s SPSC queue takes on average 9.6–11.23 ns per queue operation with standard
deviations of less than 1 ns when the threads are on distinct physical cores. Since
threads mapped on different contexts of the same core share the same ALUs, the
performances are a little bit worse in this case. On the 48-core box (AMD), Fast-
Flow’s SPSC queue takes on average 19.7–20.2 ns per queue operation with standard
deviations around 2 ns.

It is well known that dynamic memory allocation and deallocation can be very
expensive, especially for the management of very small objects. The FastFlow frame-
work offers a lock-free dynamic memory allocator specifically optimized for the
allocation/deallocation of small data structures. It is used to allocate FastFlow’s tasks
(which are usually small) flowing through the FastFlow network, which are frequently
allocated and deallocated by different nodes. Figure 13.4 reports the execution time,
on both architectures, of a very simple farm application where the emitter allocates
10 million tasks each of size 32 bytes (4 long) and the generic worker deallocates
them after a synthetic computation of 1μs. We compare the standard libc-6 allocator
(glibc-2.5-42), TBB’s scalable allocator v.3.0 (30_20101215) and FastFlow’s allo-
cator. FastFlow’s allocator achieves the best performance for all numbers of threads
on the 8-core box (Intel), whereas on the 48-core machine, FastFlow’s allocator and
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(a) (b)

Figure 13.4 Execution time of the farm pattern with different allocators: libc versus TBB
versus FastFlow allocator on 8-core Intel (a) and 48-core AMD (b) using a computational
grain of 1 μs.

(a) (b)

Ideal
0.5 us

1 us
5 us

0.5 us
1 us
5 us

Figure 13.5 Speedup of the farm (a) and throughput in thousands of messages per second
(Kmsg/s) of the pipeline (b) paradigms for several computational grains.

TBB’s allocator achieve almost the same performance, much better than the standard
libc-6 allocator which performs poorly on this architecture.

13.3.2 Efficiency of High-level Streaming Abstractions

To evaluate the overhead of the communication infrastructure for the FastFlow farm
and pipeline paradigms, we developed two simple synthetic microbenchmark tests. In
the microbenchmarks neither dynamic memory allocation nor access to global data
is performed.

For the farm paradigm, the stream is composed of a sequence of 10 million tasks
which have a synthetic computational load associated. By varying this load it is
possible to evaluate the speedup of the paradigm for different computation grains.
Figure 13.5(a) shows the results obtained for three distinct computation grains: 0.5,
1 and 5 μs. The speedup is quite good in all cases. We have almost linear speedup
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starting from a computation grain of about 1 μs. Larger computation grains give better
results, as expected.

For the pipeline paradigm, the test consists in a set of N stages where the last
stage is connected to the first, forming a ring. The first stage produces 1 million tasks
in batch mode, that is, apart from the first 1024 tasks sent out at starting, for each
input task received from the last stage, it produces a batch of 256 new tasks. Each
task has a synthetic computational load associated, so that the throughput expressed
in thousands of messages per second (Kmsg/s) for the entire pipeline can be
evaluated using different computational grains. The results obtained are sketched in
Figure 13.5(b).

13.3.3 Real-World Applications

Several real-world applications have been developed using the FastFlow framework.
Here we report some of them: the Smith–Waterman biosequence alignment, the par-
allelization of the YaDT decision tree builder, the parallelization of a stochastic sim-
ulator, an edge-preserving denoiser filter and an extension of the pbzip2 parallel
compressor. Table 13.2 summarizes the types of FastFlow patterns and streams used
in these applications.

Biosequence Alignment: SWPS3-FF Biosequence similarities can be deter-
mined by computing their optimal local alignments using the Smith–Waterman
algorithm [27]. SWPS3 [29] is a fast implementation of the Striped Smith–Waterman
algorithm extensively optimized for Cell/BE and ×86/64 CPUs with SSE2 instruc-
tions. SWPS3-FF is a porting of the original SWPS3 implementation to the FastFlow
framework [4]. The pattern used in the implementation is a simple farm skeleton
without the collector thread. The emitter thread reads the sequence database and
produces a stream of pairs: 〈query sequence, subject sequence〉. The query sequence
remains the same for all the subject sequences contained in the database. The generic
worker thread computes the Smith–Waterman algorithm on the input pairs using the
SSE2 instruction set in the same way as the original code and produces the resulting
score. Figure 13.6 reports the performance comparison between SWPS3 and the
FastFlow version of the algorithm for ×86/SSE2 executed on the Intel test platform.
The scoring matrix used is BLOSUM50 with 10–2k gap penalty.

Table 13.2 Patterns and streams used in real-world applications.

BioAlign DecTreeBuild StocSimul Denoiser File compressor

Pattern(s) Farm Farm + Loop Farm Farm Pipe(farm)×2
Stream(s) Exo Endo Endo Endo Exo + Endo

Tasks from DB Recursive calls sim no. DP tasks shell+file chunks
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10–2k gap penalty

Figure 13.6 SWPS3 versus SWPS3-FF performance for 102k gap penalties evaluated on
release 57.5 of UniProtKB/Swiss-Prot.

As can be seen, the FastFlow implementation outperforms the original SWPS3
×86/SSE2 version for all the sequences tested.2

Decision Tree Builder: YaDT-FF Yet another Decision Tree (YaDT) builder
implementation [25] is a heavily optimized, efficient C++ version of Quinlan’s C4.5
entropy-based algorithm [24]. It is the result of several optimizations and algorithm
redesigns with respect to the original C4.5 induction algorithm and represents an
example of extreme sequential algorithmic optimization. YaDT-FF is the porting of
YaDT onto general purpose multicore architectures.

The decision tree growing strategy is a top-down breadth-first tree visit algorithm.
The porting consists in the parallelization of the decision tree visit by exploiting
stream parallelism, where each decision node is considered a task of the stream that
generates a set of subtasks corresponding to the child nodes. In order to obtain addi-
tional parallelism, the computation of the information gain of attributes associated
with each node has also been parallelized. The overall parallelization strategy is
described in detail in [6].

The pattern used is a farm-with-feedback skeleton which implements the D&C
paradigm.

Initially the computation is started by off-loading the tree root node task so that
the stream can be initiated. The emitter gets as input the root node task and produces
as output the subtasks corresponding to the children of the node, scheduling those
tasks to a number of worker threads using an application-tailored scheduling policy.

2The Giga-Cell Updates Per Second (GCUPS) is a commonly used performance measure in bioinformatics
and is calculated by multiplying the length of the query sequence by the length of the database divided by
the total elapsed time.



�

� �

�

274 FASTFLOW: HIGH-LEVEL AND EFFICIENT STREAMING ON MULTICORE

Ideal
Forest cover

Census PUMS
KDD cup 99
SyD10M9A
US census

Figure 13.7 YaDT-FF speedup using several standard training sets. Superlinear speedup is
due to the fact that the farm emitter performs a minimal amount of work contributing to the
final result, but the parallelism degree given is related to the worker threads only.

The workers process the tasks independently and in parallel and eventually return the
resulting tasks to the emitter.

The speedup of YaDT-FF is shown in Figure 13.7 for a set of reference datasets
that are publicly available from the UCI KDD archive, apart from SyD10M9A which
is synthetically generated using function 5 of the QUEST data generator.

Stochastic Simulator: StochKit-FF StockKit [23] is an extensible stochastic sim-
ulation framework developed in the C++ language. It aims at making stochastic
simulation accessible to practicing biologists and chemists while remaining open
to extension via new stochastic and multiscale algorithms. It implements the popu-
lar Gillespie algorithm, explicit and implicit tau-leaping and trapezoidal tau-leaping
methods.

StockKit-FF extends StockKit version 1 with two main features: support for the
parallel run of multiple simulations on multicores and support for the on-line par-
allel reduction of simulation results, which can be performed according to one or
more user-defined associative and commutative functions. StockKit-FF exploits the
FastFlow basic farm pattern. Each farm worker receives a set of simulations and pro-
duces a stream of results that are gathered by the farm collector thread and reduced
into a single output stream. Overall, the parallel reduction happens in a systolic (tree)
fashion via the so-called selective memory data structure, that is, a data structure sup-
porting the on-line reduction of time-aligned trajectory data by way of user-defined
associative functions. More details about StockKit-FF and the selective memory data
structure can be found in [1].

As shown in Figure 13.8, StockKit-FF exhibits good scalability when compared
with the sequential (one-thread) version of StockKit.
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Figure 13.8 (a) scalability of StockKit-FF(n) against StockKit(1), where n is the number of
worker threads. (b) execution time (T) and speedup (Sp) over bzip2 in the case of a stream of
1078 files: 86% small (0–1 MBytes), 9% medium (1–10 MBytes), 4% large (10–50 MBytes)
and 1% very large (50–100 MBytes). pbzip2 uses 16 threads. pbzip2_ff uses 16 threads for
each accelerator. Comp stands for compression and Dec for decompression.

Stream File Compressor: pbzip2-FF This application is an extension of an
already parallel application: pbzip2 [14], that is, a parallel version of the widely
used sequential bzip2 block-sorting file compressor. It uses pthreads and achieves
very good speedup on SMP machines for large files. Small files (less then 1 MB) are
sequentially compressed. We extend it to manage streams of small files, which can
be compressed in parallel. The original pbzip2 application is structured as a farm:
the generic input file is read and split into independent parts (blocks) by a splitter
thread; then each block is sent to a pool of worker threads which compress the
blocks. The farm is hand coded using pthread synchronizations and is extensively
hand tuned.

The FastFlow port of pbzip2 (pbzip2_ ff) was developed by taking the original
code of the workers and including it in a FastFlow farm pattern. Then, a second Fast-
Flow farm, whose workers execute the file compression sequentially, was added. The
two farms are run as two accelerators and fed by the main thread which selectively
dispatches files to the two accelerators depending on the file size. Logically the appli-
cation is organized as two 2-stage pipelines.

The table in Figure 13.8 compares the execution times of sequential bzip2, the
original pbzip2 and pbzip2_ff on files of various sizes showing the improved speedup
of pbzip2_ff against pbzip2. Compression and decompression performance for a sin-
gle large file show no performance penalty for pbzip2_ff against hand-tuned pbzip2.

Edge-Preserving Denoiser We also implemented an edge-preserving denoiser, a
two-step filter for removing salt-and-pepper noise, which achieved good performance
on the 48-core platform (AMD). Sequential processing for the test images grows
linearly with noise ratio: from 9 to 180 s with 10% to 90% noise ratio. The parallel
version speeds them up to a range of 0.4–4 s (further details may be found in [5]).
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13.4 RELATED WORK

Structured parallel programming models have been discussed in Section 13.1. Fast-
Flow high-level patterns appear in various algorithmic skeleton frameworks, includ-
ing Skandium [20], Muesli [9] and Muskel [3]. The parallel design patterns presented
in [21] also include equivalents of the FastFlow high-level patterns. These program-
ming frameworks, however, do not specifically address stream programming and so
FastFlow outdoes them in terms of efficiency. Also, most of the algorithmic skeleton
frameworks afore mentioned and in Section 13.1, with the exception of Skandium,
were designed originally to target cluster and networks of workstations, and multi-
core support has been–in some cases, for example, in Muesli and Muskel–only a later
addition.

Stream processing is extensively discussed in the literature. Stream languages are
often motivated by the application style used in image processing, networking and
other media processing domains.

StreamIt [30] is an explicitly parallel programming language based on the
synchronous data flow model. A program is represented as a set of filters, that is,
autonomous actors (containing Java-like code) that communicate through FIFO data
channels. Filters can be assembled as a pipeline, possibly with a FeedbackLoop,
or according to a SplitJoin data-parallel schema. S-Net [26] is a coordination
language to describe the communications of asynchronous sequential components
(a.k.a. boxes) written in a sequential language (e.g. C, C++, Java) through typed
streams. The overall design of S-Net is geared toward facilitating the composition
of components developed in isolation. Streaming applications are also targeted by
TBB [17] through the pipeline construct. However, TBB does not support any kind
of nonlinear streaming network, which therefore has to be embedded in a pipeline
with significant programming and performance drawbacks.

OpenMP is a very popular thread-based framework for multicore architectures. It
chiefly targets data-parallel programming and provides means to easily incorporate
threads into sequential applications at a relatively high level. In an OpenMP pro-
gram data needs to be labeled as shared or private, and compiler directives have to be
used to annotate the code. Both OpenMP and TBB can be used to accelerate serial
C/C++ programs in specific portions of code, even if they do not natively include
farm skeletons, which are instead realized by using lower-level features such as the
task annotation in OpenMP and the parallel_ for construct in TBB. OpenMP does
not require restructuring of the sequential program, while with TBB, which provides
thread-safe containers and some parallel algorithms, it is not always possible to accel-
erate the program without some refactoring of the sequential code.

FastFlow falls between the easy programming of OpenMP and the powerful mech-
anisms provided by TBB. The FastFlow accelerator allows one to speed up execution
of a wide class of existing C/C++ serial programs with just minor modifications to
the code.

The use of the lock-free approach in stream processing is becoming increasingly
popular for multicore platforms. The FastForward framework [13] implements a
lock- and wait-free SPSC queue that can be used to build simple pipelines of threads
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that are directly programmed at low level; arbitrary graphs of threads are not directly
supported. The Erbium [22] framework also supports the streaming execution model
with lock- and fence-free synchronizations. Among cited works, Erbium is the only
framework also supporting the MPMC model. In contrast to FastFlow, scheduling
of tasks within MPMC queues is statically arranged via a compilation infrastructure.
The trade-off between overhead and flexibility of scheduling is as yet unclear.
González and Fraguela recently proposed a general schema (i.e. a skeleton) for D&C
implemented via C++ templates and using as synchronization library the Intel TBB
framework [15].

13.5 FUTURE WORK AND CONCLUSIONS

The FastFlow project is currently being extended in several different directions.
Fast-Flow currently supports cyclic graphs, in addition to standard, noncyclic
streaming graphs. We are using a formal methods approach to demonstrate that the
supported cyclic graphs are deadlock-free, exploiting the fact that each time a loop
is present, unbounded queues are used to implement point-to-point channels. A
version of FastFlow running on standard windows framework is being finalized.

We are currently planning further developments of FastFlow: (i) to increase
memory-to-core affinity during the scheduling of tasks in order to be able to
optimize consumer–producer data locality on forthcoming many-core architectures
with complex memory hierarchy; (ii) to provide programmers with more parallel
patterns, including data-parallel patterns, possibly implemented in terms of the
stream parallel patterns already included and optimized; and (iii) to provide simpler
and more user-friendly accelerator interfaces.

The emergence of the so-called power wall phenomenon has ensured that any
future improvements in computer performance, whether in the HPC center or on the
desktop, must perforce be achieved via multiprocessor systems rather than decreased
cycle time. This means that parallel programming, previously a specialized area
of computing, must become the mainstream programming paradigm. While in the
past its niche status meant that ease of development was a secondary consideration
for those engaged in parallel programming, this situation is changing quickly: pro-
grammability is becoming as important as performance. Application programmers
must be provided with easy access to parallelism with little or no loss of efficiency.
Traditionally, for the most part, abstraction has been bought at the cost of efficiency
and vice versa. In this work we have introduced FastFlow, a framework delivering
both programmability and efficiency in the area of stream parallelism.

FastFlow may be viewed as a stack of layers: the lower layers provide efficiency
via lock-free/fence-free producer–consumer implementations; the upper layers
deliver programmability by providing the application programmer with high-level
programming constructs in the shape of skeletons/parallel patterns. FastFlow is
applicable not only to classical streaming applications, such as video processing, in
which the stream of images flows from the environment, but also applications in
which streams are generated internally – covering areas such as D&C, data-parallel
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execution, etc. While FastFlow has been created primarily to target developments
from scratch, provision has also been included for a migrating existing code to
multicore platforms by parallelizing program hot spots via self-offloading using
the FastFlow accelerator. The applicability of FastFlow has been illustrated by a
number of studies in differing application domains including image processing, file
compression, and stochastic simulation.

REFERENCES

1. M. Aldinucci, A. Bracciali, P. Liò, A. Sorathiya, and M. Torquati. StochKit-FF: efficient
systems biology on multicore architectures. In Euro-Par ‘10 Workshops, Proc. of the 1st
Workshop on High Performance Bioinformatics and Biomedicine (HiBB), volume 6586 of
LNCS, pages 167–175. Springer, Ischia, Italy, September 2010.

2. M. Aldinucci and M. Danelutto. Skeleton based parallel programming: functional
and parallel semantic in a single shot. Computer Languages, Systems and Structures,
33(3–4):179–192, October 2007.

3. M. Aldinucci, M. Danelutto, and P. Kilpatrick. Skeletons for multi/many-core systems.
In Parallel Computing: From Multicores and GPU’s to Petascale (Proc. of PARCO 2009,
Lyon, France), volume 19 of Advances in Parallel Computing, pages 265–272. IOP Press,
September 2009.

4. M. Aldinucci, M. Danelutto, M. Meneghin, P. Kilpatrick, and M. Torquati. Efficient
streaming applications on multi-core with FastFlow: the biosequence alignment test-bed.
In Parallel Computing: From Multicores and GPU’s to Petascale (Proc. of PARCO 09,
Lyon, France), volume 19 of Advances in Parallel Computing, pages 273–280. IOP press,
September 2009.

5. M. Aldinucci, M. Danelutto, M. Meneghin, P. Kilpatrick, and M. Torquati. Accelerating
code on multi-cores with FastFlow. In Proc. of 17th Intl. Euro-Par ’11 Parallel Processing,
LNCS. Springer, Bordeaux, France, August 2011. To appear.

6. M. Aldinucci, S. Ruggieri, and M. Torquati. Porting decision tree algorithms to multicore
using FastFlow. In Proc. of European Conference in Machine Learning and Knowledge
Discovery in Databases (ECML PKDD), volume 6321 of LNCS, pages 7–23. Springer,
Barcelona, Spain, September 2010.

7. S. Amarasinghe, M. I. Gordon, M. Karczmarek, J. Lin, D. Maze, R. M. Rabbah, and W.
Thies. Language and compiler design for streaming applications. International Journal of
Parallel Programming, 33(2):261–278, 2005.

8. K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,
D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A view of the parallel
computing landscape. CACM, 52(10):56–67, 2009.

9. P. Ciechanowicz and H. Kuchen. Enhancing Muesli’s data parallel skeletons for multi-core
computer architectures. In Proc. of the 10th Intl. Conference on High Performance Com-
puting and Communications (HPCC), pages 108–113. IEEE, Los Alamitos, CA, USA,
September 2010.

10. M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computations.
Research Monographs in Par. and Distrib. Computing. Pitman, 1989.



�

� �

�

REFERENCES 279

11. M. Cole. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel
programming. Parallel Computing, 3(30): 389–406, 2004.

12. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In
Usenix OSDI ‘04, pages 137–150, December 2004.

13. J. Giacomoni, T. Moseley, and M. Vachharajani. Fastforward for efficient pipeline paral-
lelism: a cache-optimized concurrent lock-free queue. In Proc. of the 13th ACM SIG-PLAN
Symposium on Principles and practice of parallel programming (PPoPP), pages 43–52,
New York, NY, USA, 2008.

14. J. Gilchrist. Parallel data compression with bzip2. In Proc. of IASTED Intl. Conf. on Par.
and Distrib. Computing and Sys., pages 559–564, 2004.

15. C. H. Gonzalez and B. B. Fraguela. A generic algorithm template for divide-and-conquer
in multicore systems. In Proc. of the 10th Intl. Conference on High Performance Com-
puting and Communications (HPCC), pages 79–88. IEEE, Los Alamitos, CA, USA,
September 2010.

16. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124–149, 1991.

17. Intel Threading Building Blocks, 2011.
http://www.threadingbuildingblocks.org/.

18. G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld,
editor, Information processing, pages 471–475, Stockholm, Sweden, Aug 1974. North
Holland, Amsterdam.

19. E. Lee and T. Parks. Dataflow process networks. Proceedings of the IEEE, 83(5):773–801,
May 1995.

20. M. Leyton and J. M. Piquer. Skandium: multi-core programming with algorithmic skele-
tons. In Proc. of Intl. Euromicro PDP 2010: Parallel Distributed and network-based Pro-
cessing, pages 289–296. IEEE, Pisa, Italy, February 2010.

21. T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming.
Addison-Wesley Professional, first edition, 2004.

22. C. Miranda, P. Dumont, A. Cohen, M. Duranton, and A. Pop. Erbium: a deterministic, con-
current intermediate representation to map data-flow tasks to scalable, persistent streaming
processes. In Proc. of the 2010 Intl. Conference on Compilers, Architecture, and Synthe-
sis for Embedded Systems (CASES), pages 11–20. ACM, Scottsdale, AZ, USA, October
2010.

23. L. Petzold. StochKit: stochastic simulation kit web page, 2009. http://www
.engineering.ucsb.edu/~cse/StochKit/index.html.

24. J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993.

25. S. Ruggieri. YaDT: yet another decision tree builder. In 16th IEEE Int. Conf. on Tools with
Artificial Intelligence (ICTAI 2004), pages 260–265. IEEE, 2004.

26. A. Shafarenko, C. Grelck, and S.-B. Scholz. Semantics and type theory of S-Net. In Proc.
of the 18th Intl. Symposium on Implementation and Application of Functional Languages
(IFL’06), TR 2006-S01, pages 146–166. Eötvös Loránd Univ., Faculty of Informatics,
Budapest, Hungary, 2006.



�

� �

�

280 FASTFLOW: HIGH-LEVEL AND EFFICIENT STREAMING ON MULTICORE

27. T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Jour-
nal of Molecular Biology, 147(1):195–197, March 1981.

28. R. Stephens. A survey of stream processing. Acta Informatica, 34(7):491–541, July 1997.

29. A. Szalkowski, C. Ledergerber, P. Krähenbühl, and C. Dessimoz. SWPS3 – fast
multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and x86/SSE2, 2008.
http://www.scientificcommons.org/39542148.

30. W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: a language for streaming
applications. In Proc. of the 11th Intl. Conference on Compiler Construction (CC), pages
179–196, London, UK, 2002.

31. M. Torquati. Single-Producer/Single-Consumer Queues on Shared Cache Multi-Core
Systems. Technical Report TR-10-20, Dept. Comp. Science, Univ. of Pisa, Nov. 2010.
http://compass2.di.unipi.it/TR/Files/TR-10-20.pdf.gz.

32. M. Vanneschi. The programming model of ASSIST, an environment for parallel and dis-
tributed portable applications. Parallel Computing, 28(12):1709–1732, December 2002.



�

� �

�

CHAPTER 14

PARALLEL PROGRAMMING
FRAMEWORK FOR H.264/AVC VIDEO
ENCODING IN MULTICORE SYSTEMS

Nuno Roma, António Rodrigues and Leonel Sousa

14.1 INTRODUCTION

Among the several multimedia applications that have emerged along the past decade,
video encoding has gained a particular relevance in a vast set of domains, however, it
is also one of the most computational demanding. In particular, the recognized suc-
cess of the latest generation of video standards, such as the H.264/MPEG-4 Part 10
(or AVC), is mainly due to its remarkable encoding performance in what concerns the
relation between the output video quality and resulting bit rate, at the cost of a signifi-
cant increase of the computational complexity. As a consequence, real-time encoding
by exploiting the whole set of offered encoding mechanisms is still far beyond the
capabilities of most computational systems.

To cope with such difficulties, several approaches have been proposed that try to
take advantage of current parallel platforms to accelerate the encoding [5, 6, 10, 18].
Nevertheless, most of such proposals represent specific optimizations to the
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considered platforms, requiring the rewrite of the encoder software (SW) whenever
a new target hardware (HW) platform or parallelization model is considered.

To circumvent such limitations, a new parallel programming framework is pre-
sented. This framework allows to easily and efficiently implement high-performance
H.264/AVC video encoders in a wide set of different parallel platforms. The offered
modularity and flexibility make this framework particularly suited for efficient imple-
mentations either in homogeneous or heterogeneous parallel platforms, providing a
suitable set of fine-tuning configurations and parameterizations that allow a fast pro-
totyping and implementation, thus significantly reducing the developing time of the
whole video encoding system.

14.1.1 H.264/AVC Video Standard

The H.264/AVC standard has been widely adopted by most recent video applications
to address the consumers’ needs and the most demanding encoding requirements. The
standard is divided in several profiles to define the applied encoding techniques, tar-
geting specific classes of applications. For each profile, several levels are also defined,
specifying upper bounds for the bit stream or lower bounds for the decoder capabil-
ities, such as processing rate, capacity of multipicture buffers, video rate, motion
vector range, etc. [21].

To achieve the offered encoding performance, this standard incorporates a set of
new and powerful techniques (see Fig. 14.1), namely, 4 × 4 integer transforms,
variable block-size inter-frame prediction, quarter-pixel motion estimation (ME),
in-loop deblocking filter, improved entropy coding based on context-adaptive
variable-length coding (CAVLC) or on content-adaptive binary arithmetic coding
(CABAC), and new intraframe prediction modes. Moreover, the adoption of
bipredictive frames (B-frames), along with the previous features, provides a
considerable bit rate reduction with negligible quality losses. As a result, when
compared with other previous standards (such as H.263, MPEG-1/2 Video or
MPEG-4 Visual), the H.264/AVC has proved to provide greater coding efficiency
levels, with an excellent trade-off between the output video quality and bit rate.

However, the simultaneous exploitation of those new features significantly
increased the encoder computational cost. As an example, a direct execution of a
straight compilation of the JM reference SW [14] in a latest generation processor
(running at 2.7 GHz), leads to frame-rate performance levels as low as a single or
at most a couple of 4CIF frames per second. At this respect, several complexity
analyses have shown that the Inter prediction module is usually the most time
consuming—about 80%–followed by the Interpolation module [1].

14.1.2 Parallel Architectures and Platforms for Video Coding

To account for the complexity problem of the H.264/AVC video standard, several
different approaches have been adopted, either from the SW point of view (e.g.
application of low-complexity ME algorithms [13]) or from the HW point of view. In
particular, with the vast set of parallel processing platforms that are now available,
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further levels of parallelism are now worth exploiting, either on homogeneous
parallel platforms composed by multicore processing systems with several identical
CPUs sharing the same chip (see Fig. 14.2(a)) or on heterogeneous platforms [12].
These last alternatives are often implemented either with dedicated processing struc-
tures integrated in an embedded system on chip (SoC) [8] (see Fig. 14.2(b)) or even
with accelerators composed by graphics processing units (GPUs) interconnected to
off-the-shelf general purpose processors (GPPs) (see Fig. 14.2(c)).

In the particular domain of video coding, homogeneous parallel platforms
are usually applied in the exploitation of data-level parallelism techniques, by
distributing the video data to be encoded/decoded across several similar parallel
computing nodes. Moreover, with the advent of single-instruction multiple-data
(SIMD) vector extensions to the ISA of current processors, these techniques have
been even complemented with the exploitation of a subword parallelism level, by
simultaneously processing several data elements with a single instruction. In contrast,
heterogeneous platforms often adopt functional/task parallelism techniques, where
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the several modules of the video encoder/decoder are independently implemented
by the different parallel computing nodes. In particular, many of such architectures
adopt a pipeline processing scheme, where the video data is sequentially processed
by the several different and independent stages of the pipeline.

Until very recently, most parallelization efforts around the H.264 standard have
been mainly focused on the decoder implementation [2, 3, 5, 20], where the com-
plex data dependencies that characterizes the encoding loop are not observed. When
the most challenging and rewarding goal of parallelizing the encoder is concerned,
it has been observed that a significant part of the efforts were devised in the design
of specialized and dedicated systems [9, 15, 16]. Most of these approaches are based
on parallel or pipeline SoC topologies, using dedicated HW structures to implement
some of the most demanding parts of the encoder and leaving the remaining sequential
and less complex code to be executed in a GPP. In most of such implementations, the
corresponding segments of the original SW code are simply replaced by instantiations
of the accelerated procedures in the proper HW structures. Other similar approxima-
tions make use of heterogeneous structures composed by digital signal processors
(DSPs) or very long instruction word (VLIW) processors to accelerate the implemen-
tation of the encoding procedure. Some examples of such approach are the TriMedia
processors from NXP Semiconductors (former Philips Semiconductors™) [20] and
the OMAP processors from Texas Instruments™ [3]. Nevertheless, independent of
the adopted accelerating structure, difficult challenges still often arise in what con-
cerns the transfer of the processed data, as well as the concurrent access to the shared
frame memory by the GPP and the several accelerators, usually requiring complex
and platform-specific implementation issues and optimizations.

On the other hand, when pure-SW approaches are considered, fewer parallel solu-
tions have been proposed. Most of them are based on the exploitation of data-level
parallelism, in order to simplify the schedule and the synchronization of the sev-
eral processing cores. One popular parallelization approach is based on the massive
use of similar and concurrent threads, by exploiting the several CPUs that are cur-
rently available in multicore chips [5]. As it will be seen in Section 14.2.1, frames
can be divided in several independent slices, and an individual thread is assigned to
each slice. Some of such strategies even make use of Intel™hyper-threading (HT)
technology to increase the number of concurrent threads [6, 10]. Furthermore, some
proposals have even complemented the exploited parallelization by also using SIMD
multimedia vector instructions currently available in MMX and SSE extensions [5].
Other parallelization approaches based on a heavy exploitation of similar and concur-
rent threads make use of the OpenMP pragmas for their implementation [19]. They
mostly combine the use of thread queues to process the several segments of pixels,
together with the exploitation of HT to further speed up the encoding.

Another approach is based on the use of message passing communication pro-
tocols (e.g. MPI), namely, on clusters composed by several independent comput-
ers [18]. One common strategy is to implement the encoder architecture in parallel,
where an independent group-of-pictures (GOP) can be assigned to each cluster node.
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Furthermore, each node can even be implemented by a multicore CPU, allowing
further parallelization. However, these solutions often present, as their main disad-
vantage, significant communication overheads that can even surpass the computation
time. Moreover, they also require greater amounts of memory to accommodate the
several encoded sub-streams at the same time.

Meanwhile, other parallelization approaches have also arisen by exploiting some
recent heterogeneous architectures that emerged in the market [11, 17]. One of such
proposals includes the implementation of a pipeline encoding structure in the Cell
Broadband Engine [11]. In such implementation, the SPEs are used to exploit both
slice-level and macroblock (MB)-level (see Section 14.2.1) parallelism, achieving
real-time processing for high-definition image formats.

Other acceleration approaches have also emerged by using the capability of current
GPUs to speed up certain parts of the encoder with data-level parallelism [7]. As an
example, in [4] the implementation of the ME module by using the GPU support and
providing a speedup of about 12 is presented.

Independent of the adopted strategy, the innumerous data dependencies imposed
by this complex video standard frequently inflict a very difficult challenge to effi-
ciently take advantage of the several possible parallelization strategies that may be
applied. Moreover, the use of the vast set of powerful parallel platforms that are now
available has been often refrained by the absence of a unified parallel encoding frame-
work that easily adapts to and efficiently exploits the set of variable resources offered
by such concurrent platforms. In this scope, a flexible and highly modular parallel
programming framework for pure-SW or HW-accelerated H.264/AVC encoders is
now presented. The aimed challenge is to speed up the encoding procedure without
sacrificing the output video quality or increasing the resulting bit rate. The conducted
evaluations, by using different instantiations of the framework, have shown that lin-
ear and close to optimal speedup values, in what concerns the achieved frame rate,
can be obtained in current homogeneous parallel platforms. Moreover, the provided
modularity and flexibility attested its configurable attributes, in order to easily and
better adapt it to the targeted parallel platform.

14.2 PARALLEL PROGRAMMING FRAMEWORK FOR H.264/AVC
VIDEO ENCODING

To circumvent the recognized need for a generic and highly modular SW architecture
that can be used to efficiently implement H.264/AVC encoders in a vast set of differ-
ent parallel structures, an innovative parallel programming framework is presented.
With such framework, the programmer or system integrator is given the capability to
easily configure and adapt the SW architecture to several different platforms, ranging
from the homogeneous solutions composed by several GPPs that extensively exploit
data-level parallelism to distinct heterogeneous solutions where functional-level con-
currency can be exploited in different pipeline/data-flow topologies (see Fig. 14.2).
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14.2.1 Data-Level Parallelism

Several parallelization models have been considered to improve the performance of
H.264/AVC encoders [5, 10, 18]. Due to the encoder’s nature, many of these paral-
lelization approaches exploit concurrent execution at frame level, slice level, and MB
level. However, careful design methodologies in what concerns its parameterization
and modularity have to be considered, in order to avoid the introduction of perfor-
mance losses in terms of the final bit rate and peak signal to noise ratio (PSNR).

At frame level, the input video stream is usually divided in GOPs. Since GOPs are
usually made independent from each other, it is possible to develop a parallel archi-
tecture where a controller is in charge of distributing the GOPs among the available
cores (see Fig. 14.3(a)). The advantages of this model are clear: PSNR and bit rate
do not change, and it is easy to implement, since GOPs’ independency is assured
with minimal changes in the SW code. However, the memory requisites significantly
increase, since each encoder must have its own decoded picture buffer (DPB), where
all GOPs’ references are stored. Moreover, real-time encoding is hard to implement
using this approach, making it more suitable, for example, for video storage pur-
poses. As a consequence, this solution has been mainly used in cluster systems [18].
Other parallelism levels usually have to be exploited in order to further improve the
speedup.
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In slice-level parallelism, frames are divided in several independent slices,
making the processing of MBs from different slices completely independent (see
Fig. 14.3(b)). In the H.264 standard, a maximum of sixteen slices are allowed in each
frame. This approach allows to exploit parallelism at a finer granularity, which is
suitable, for example, for multicore computers where parallel encoding of the several
defined slices may be concurrently executed in multiple threads for each individual
frame [10]. Moreover, the resulting increase of the allocated memory is smaller,
because only one DPB is required. The main issues of this alternative are concerned
with the limited number of slices per frame (sixteen in the H.264 standard), together
with a greater parallelization effort in order to ensure a good performance and the
need to redesign some data structures and algorithms in order to avoid caching
of unnecessary data. Furthermore, this model often restricts the exploited spatial
prediction within a frame, thus leading to a moderate increase of the resulting bit rate.

The parallelism at MB level allows independent MBs to be encoded at the same
time [2]. According to the standard, a given MB is predicted using its left and upper
three neighbors, which can be performed by following a wave-front approach, as
depicted in Figure 14.3(c). Any two MBs are said to be independent if there isn’t any
data dependency in their prediction. As it will be seen in Section 14.4.3, this strategy
may be used as a viable alternative to complement the exploited parallelism level.
The main design issues of this approach are concerned with the need of a centralized
control, to guarantee that only independent MBs are processed in parallel, and with
the nonuniform distribution of the computational weight that may arise among the
cores. However, in middle- and high-resolution video sequences, as well as when a
great number of processors is available, this model may be preferable to the slice
level, since the parallelism is only limited to �N/2�, where N denotes the number of
MBs in the diagonal of the frame/slice (see Fig. 14.3(c)).

14.2.2 Functional-Level Parallelism

To ensure the maximum flexibility of the framework, several modules of the encoder
were carefully structured and implemented in independent routines. With such
approach, it becomes possible to easily exploit functional-level parallelism, by
using pipeline or data-flow topologies where each available core/accelerator may
implement a different encoder module. Such feature is particularly important in
heterogeneous configurations, where distinct parts of the encoder may be easily
migrated to dedicated or specialized architectures.

With such SW architecture, three different topologies are made available:

• Pipeline

• Straight parallel

• Mixed

In the pipeline topology, illustrated in Figure 14.4(a), the encoding procedure is
divided in several different stages. Each of these stages implements an individual or
a particular set of encoding modules. The number of concurrent stages is determined
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Figure 14.4 Parallel topologies to implement the encoding modules depicted in Figure 14.1
by using functional-level parallelism. (a) Pipeline. (b) Straight parallel. (c) Mixed.

by the number of cores/accelerators available in the system. Nevertheless, for each
specific concretization of this topology, three main issues need to be carefully ana-
lyzed: how the stages communicate, how they are synchronized, and how the several
modules are distributed among the stages.

Since it is impossible to guarantee that all stages have the same processing time,
it is important to ensure that this SW pipeline only advances when all stages have
finished their processing. To achieve this synchronization, barrier instances have been
adopted in the SW architecture. As soon as all parallel execution flows reach these
barriers, they resume executing in parallel the code that follows the barrier. Hence,
to better balance the pipeline stages, it is also important to evaluate the processing
time corresponding to all subfunctions. Only then should they be grouped in pipeline
stages.

Table 14.1 depicts one example configuration. Considering that interframe predic-
tion represents the most demanding part of the encoder, this example illustrates one
possible configuration where the ME corresponding to the eight possible prediction
modes were implemented in a homogeneous architecture using a pipeline topology,
by considering the usage of 2, 3, 4, 6, and 8 cores.

The design principle corresponding to the straight parallel topology is particularly
targeted for the exploitation of data-level parallelism, where the slices are assigned to
similar concurrent threads that are independently executed. By assuming that slices
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Table 14.1 Example configuration using a pipelined architecture to implement the eight
interprediction modes in a variable number of cores.

Number of Number of pipeline stages
cores

1 2 3 4 5 6 7 8

2

16 × 16 8 × 8
16 × 8 8 × 4
8 ×16 4 × 8
DIR 4 × 4

3
16 × 16 8 × 16, 4 × 8,
16 × 8 DIR, 8 × 8 4 × 4

8 × 4

4
16 × 16 16 × 8 8 × 8, 4 × 8,

8 × 16 8 × 4 4 × 4
DIR

6
16 × 16 16 × 8 8 × 16 DIR, 8 × 8 4 × 4

8 × 8 4 × 8

8 16 × 16 16 × 8 8 × 16 DIR 8 × 8 8 × 4 4 × 8 4 × 4

approximately have the same size, it can be expected that all threads finish their tasks
at the same time in homogeneous systems.

Figure 14.4(b) illustrates one possible configuration of this topology. In this setup,
each available core implements the whole encoding loop, in order to process one
particular slice of the video frame. Subsequently, all slice buffers are joined together
to supply an external entropy encoding (CABAC/CAVLC) module, in order to form
the output stream packet.

The mixed topology can be seen as an extension of the pipeline solution, where
more than one single core is assigned to implement the most demanding modules of
the encoder. Figure 14.4(c) illustrates one hypothetical configuration of this topology.
In this setup, the eight available cores were distributed among the several modules
of the encoder, according to their relative computational requirements: 4 cores to
implement the prediction module, 2 cores to compute the transform and quantiza-
tion (and their corresponding inverses), 1 core to implement the deblocking filter
and interpolation modules and 1 core to implement the entropy encoding (CABAC)
module.

14.2.3 Scalability

As it was referred before, while pipeline topologies can be particularly adapted to
heterogeneous architectures, straight parallel configurations, based on a massive
exploitation of slice-level parallelism, are often more suited to be implemented
in homogeneous systems, composed by several identical CPUs. Nevertheless,
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according to the H.264/AVC standard, such parallelism is limited by a maximum
of 16 slices (threads). Hence, to further increase the exploited concurrency, this
SW framework allows to complement the applied slice-level parallelism with a
simultaneous exploitation of MB-level parallelism. In such configuration (illustrated
in Fig. 14.5(a)), a team of threads is allocated to the processing of each slice.
For each team, independent MBs are distributed among the set of cores that were
assigned to the processing of that slice. At the end, entropy coding is performed
separately and at slice level.

Figure 14.5 Simultaneously exploitation of slice and macroblock parallelism levels. (a)
Thread allocation. (b) Thread synchronization.

The synchronization between the several concurrent threads is guaranteed by using
appropriate synchronization barriers. Only threads belonging to the same team are
blocked in these barriers. This mechanism is used before and after the execution of the
control mechanism that assigns the set of MBs processed by each slice (Fig. 14.5(b)).
While the first barrier guarantees that all threads have finished their tasks, the last
barrier assures the correct MB assignment. Only after the team master thread has exe-
cuted the assignment procedure that controls the set of MBs that will be processed
in the next run can the rerunning threads of the team start executing. No further syn-
chronization is needed.

Another considered option to increase the exploited concurrency is to adopt slice
scattering, where slices are divided into several subslices located in nonadjacent
areas of the frame (see Fig. 14.6). The application of this technique introduces an
added level of data independency among the MBs of different subslices, allowing
them to be processed in different threads. When compared with the previously
referred approaches, the extra parallelization level provided by slicescattering is
offered at the cost of an eventual degradation characterized by a slight increase of
the resulting bit rate and a reduction of the output PSNR levels (due to the presence
of more blocking effect). As a consequence, this parallel approach is regarded
to be more appropriate to encode higher video resolutions, where the spatial
redundancy can be exploited without seriously compromising the resulting encoding
efficiency.
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Figure 14.6 Possible slice-scattering distribution in a multi-core architecture.

14.2.4 Software Optimization

The presented parallel SW framework is based on JM [14] reference SW, thus main-
taining full compliancy with the original encoder. In order to achieve an efficient
parallel execution, the conducted research was focused on (i) code profiling, (ii)
performance improvement through structural redesign and code optimization, (iii)
definition of the concurrent modules set and (iv) parallelization.

Code profiling was extensively performed in the first step, in order to identify the
most time-consuming operations. Several 4CIF standard test video sequences were
used for more accurate results (see Fig. 14.7): Soccer and Crew, characterized by
higher amounts of movement; and Harbour and City, with a higher spatial detail. As
expected and according to the results presented in Table 14.2, Inter Prediction is the

(a) (b) (c) (d)

Figure 14.7 Considered set of test video sequences. (a) Soccer. (b) Harbour. (c) Crew.
(d) City.

Table 14.2 gprof profiling results of the H.264/AVC reference SW.

Function Video sequences (4CIF)

Soccer Harbour Crew City

Inter prediction (%) 89.1 86.0 88.4 87.7
Intra prediction (%) 0.9 1.1 0.9 1.1
Transf. & quant. (%) 1.4 1.7 1.6 1.7
Interpolation (%) 2.3 2.9 2.4 2.7
Deblocking filter (%) 0.4 0.7 0.5 0.5
CABAC (%) 0.4 0.8 0.6 0.3
Others (%) 6.9 8.5 7.2 7.8
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most computational demanding component of the encoder [1], making it the must
suited target for parallelization.

An important step to increase independency and improve the flexibility was the
redesign of the original data structures, not only to provide more efficient ways to
manipulate and correlate information but also to save time when fetching them from
the memory system, by efficiently exploiting the cache access patterns. On one hand,
spatial locality can be further exploited by appropriately resizing the structures, since
the probability to store the whole processed data in cache is higher, thus reducing
the conflict and capacity misses. On the other hand, temporal locality can also be
exploited by data resizing and by joining together the information needed to process
wide data sets in each particular module of the encoder. Such resizing was mainly
accomplished by removing nonused or duplicated parameters in certain modules and
by adjusting their size to their effective range. As it will be seen in Section 14.4,
when compared with the original data structures, the mutual combination of the con-
ducted optimizations allows a reduction of the required memory space as high as
85.5%.

The conducted code optimization also took into account that many signal
processing functions of the encoder can be decomposed into a set of vector
operations [5], where the same operation is simultaneously applied to several data
elements. By considering that most current processor families and embedded cores
already include some multimedia extensions to the instruction set (e.g. MMX, SSE1,
SSE2, SSE3, etc.), such optimization allows to exploit an added degree of SIMD
parallelization. In the presented framework, the optional usage of SSE2 SIMD
instructions can be activated through a simple compilation option. The usage of these
instructions was mainly exploited in the implementation of the most demanding
modules, namely, the computation of the sum of absolute differences (SAD) in
MB prediction by ME, the Transformation-Quantizer (and corresponding inverses)
modules and the Interpolation module (see Fig. 14.1).

To allow the implementation of the presented framework in HW-restricted
platforms, some additional optimizations and optional configurations were also
made available. In this scope, all data structures were statically allocated in
memory, allowing this framework to be easily executed in embedded systems that
do not necessarily include a dynamic memory allocation system. Furthermore,
to ease the implementation in systems with strict memory restrictions, another
optimized configuration was also made available, which interchanges the order
of the DPB and the Interpolation modules (see Fig. 14.1) for the half-pixel
resolutions (keeping the original order for the quarter-pixel resolution frames),
thus conferring an extra configurable trade-off between the required memory
resources and the involved computational cost. Such option is particularly suited
for pipeline topologies implemented with dedicated accelerators in heterogeneous
platforms.
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14.3 PROGRAMMING PARALLEL H.264 VIDEO ENCODERS

14.3.1 Framework Parameterization

The modularity and flexibility provided by this framework allows an easy customiza-
tion in order to suit it to distinct types of multicomputer, multicore, or even embedded
systems. Such customization can be easily accomplished during source compilation
(through the supplied Makefile) by properly choosing the most suitable options to the
target system. As an example, the following parameters define the type of data-level
parallelism that is exploited:

• CORES—number of considered parallel slices

• NESTED_CORES—number of considered parallel MBs within each slice

Likewise, the desired optimization can be selected by the following options:

• SSE_SUPPORT—enables the exploitation of SIMD SSE instructions

• LOW_MEMORY—enables low memory usage

Furthermore, thanks to the performed code simplification and division of the
encoder into functional modules, the end user can still easily add, remove, and
modify the sources with minimum effort.

14.3.2 Implementation Platforms and APIs

The main aim of the presented framework was to develop a highly modular SW archi-
tecture to implement parallel encoders of the latest generation of video standards. To
achieve such objective, the several modules of the encoder were implemented with
“objects” of self-contained code segments and data structures, in order to provide an
easy and efficient migration of such “objects” to several homogeneous or heteroge-
neous parallel platforms.

A direct consequence of such strict premise is the provided easiness to implement
a vast set of different parallel video encoding structures, by using any of the several
parallel application programming interfaces (APIs) currently available, such as MPI,
POSIX Threads, OpenMP, OpenCL, and CUDA.

Hence, after selecting the data-level and functional-level parallel topology that is
most suitable for the considered HW platform, the programmer only has to take care
of the migration of the parallelized modules and of the data transfer mechanisms,
according to the selected API. Then, proper concretizations of the restricted set
of adopted communication structures should be selected. At this respect, several
alternatives can be adopted, such as explicit shared memory systems with uniform
memory access (UMA) (e.g., homogeneous multicore systems implemented either
with POSIX Threads or OpenMP), distributed memory systems with nonuniform



�

� �

�

294 PROGRAMMING FRAMEWORK FOR H.264/AVC VIDEO ENCODING IN MULTICORE SYSTEMS

Table 14.3 Specifications of the considered parallel computational platform.

Platform Intel™ AMD™

Processor 2 × Intel Xeon Quad-Core E5530 8 × AMD Quad-Core 8384
#Cores 8 32
Frequency 2.40 GHz 2.7 GHz
Caches Individual L1 with 128 KB Individual L1 with 512 KB

Individual L2 with 256 KB Shared L2 with 6 MB
Shared L3 with 8 MB –

Memory 24 GB 64 GB
O.S. 64-bits SuSE Linux 64-bits Ubuntu Linux
API OpenMP OpenMP

memory access (NUMA) (e.g., cluster encoding systems implemented with MPI),
heterogeneous or nonshared memory systems (e.g., GPU accelerating systems
implemented with CUDA or OpenCL), or even dedicated embedded architectures,
implemented with specialized HW structures. Finally, all implicit synchronization
mechanisms that are integrated within the framework should be implemented
according to the adopted API.

14.4 EVALUATION OF PARALLEL H.264 VIDEO ENCODERS

To demonstrate the feasibility and the advantages provided by the presented frame-
work, several parallel instantiations based on currently available multicore structures
were considered and compared with a sequential implementation of the reference SW
running in one core. In particular, considering the specificity and the wide variabil-
ity presented by most heterogeneous architectures, eventually composed by possibly
different accelerating structures, it was decided to adopt a homogeneous structure to
demonstrate the performance offered by the proposed framework in an easily repro-
ducible parallel platform. Table 14.3 depicts the characteristics of the considered
computational systems. Furthermore, considering that most SW-based and nondedi-
cated parallel encoders that have been presented up until now make use of homoge-
neous solutions implemented with POSIX Threads or OpenMP APIs [5, 6, 10, 19], it
was decided to evaluate the proposed framework by using a similar environment, in
order to achieve fair and correlatable comparisons. As such, straight-parallel configu-
rations, exploiting either slice-level and MB-level parallelism will be considered. The
whole evaluation procedure was conducted by considering the encoding parameters
presented in Table 14.4.

To achieve the most efficient parameterization of the framework, the time con-
sumption profiling results presented in Table 14.2 were carefully considered. From
such analysis, it was clear that the Inter Prediction module, which includes ME and
motion compensation functions, represents the most computational demanding block.
As a consequence, the conducted parallelization approach primarily focused on this
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Table 14.4 Considered H.264/AVC encoding parameters.

Parameter Value

GOP structure One I frame followed by thirty B-B-P frames
Intra prediction All prediction modes
Inter prediction All prediction modes
Reference frames 3 backward and 1 forward references
ME search algorithm Simplified UMHexa
ME precision Quarter-pixel precision
ME error metric SAD
Entropy coding CABAC
In-loop deblocking filter Enabled

particular module. Nevertheless, the whole end-to-end encoder structure was imple-
mented in each instantiation.

14.4.1 Baseline Optimizations

As it was referred in Section 14.2.4, extensive SW optimizations were considered
in order to increase the efficiency of the presented framework. When the memory
resources of a particular instantiation of the presented H.264 parallel framework are
compared with those of the reference (original) SW, the result of such code improve-
ments becomes clear, leading to a global memory usage reduction of about 93%
(see Table 14.5). Such reduction is particularly important when the encoding sys-
tem is implemented in embedded systems with memory and power consumption
restrictions, as well as in parallel configurations that require replication of data in the
memory system. Moreover, such optimizations (including the conducted cleaning of
the code, reutilization of shared functions, and static allocation of data structures)
provided a baseline speedup by a factor of 2, even without the exploitation of any
level of parallelism.

Besides such optimizations, some of the most computational intensive modules
were wholly redesigned in order to also exploit an SIMD parallelism level, by simul-
taneously processing several data elements with a single instruction. As an example,
the application of MMX vector instructions to the ME (SAD) and the transform mod-
ules (DCT) led to partial speedup values of about 1.56 and 1.54, respectively.

14.4.2 Exploiting Slice-Level Parallelism

To evaluate the performance that is offered by the presented framework when
slice-level parallelism is exploited, each frame of the video sequence under
processing was divided into several slices, which were subsequently assigned to an
individual core, as described in Figure 14.4(b).

The results obtained with the Intel platform are illustrated in Figure 14.8 for
the several different parameterizations that are offered by this framework. With
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Table 14.5 Memory allocation for the reference and optimized SW versions.

Data structure Reference software Optimized software

Regular Low memory

Image parameters 82433 B 248 B 248 B
Input parameters 5.9 kB 6.1 kB 6.1 kB
Picture parameters set 248 B 152 B 152 B
Sequence parameters set 2.1 kB 1.7 kB 1.7 kB
Slice 2.3 MB 2.4 MB 2.4 MB
Macroblock 171.7 kB 74.3 kB 74.3 kB
Decoded picture buffer 203.1 MB 22.4 MB 6.6 MB
Intra processing – 2.0 MB 2.0 MB
Inter processing – 2.8 MB 2.8 MB

Total 205.7 MB 29.7 MB 13.9 MB

Memory saved – 85.5% 93.2%

the exception of the setup that made use of 16 threads, all the considered cases
evidence a speedup gain very close to the theoretical optimal acceleration. In fact,
considering that this platform only incorporates 8 independent CPUs, the observed
exception corresponds to a particular setup where the number of running threads
was extended by using the HT technology. Nevertheless, all the observed results
are entirely similar to those that were also obtained with dedicated SW frameworks
[6, 10].

In the whole, it is observed that the slice independency allows a parallel execution
with little data sharing between the several threads, thus minimizing the inherent
segmentation and scheduling overheads. However, since the H.264 standard lim-
its this frame division to a maximum of 16 slices, other levels of parallelization
will have to be applied in order to avoid this constraint and allow greater levels of
scalability.

14.4.3 Exploiting Macroblock-Level Parallelism

As it was observed by Gerber et al. [10], the data independency that is achieved by
dividing the frame into several slices often introduces a negative impact on the amount
of spatial prediction that is exploited within a frame, with a consequent decrease of
the resulting encoding efficiency. A direct consequence of such effect is a natural
increase of the output bit rate and a subsequent decrease of the resulting video quality,
as a result of the application of the output buffer control mechanism. According to
Gerber et al. [10], such effect is particularly observed as soon as the number of slices
is greater than 4 (see Fig. 18.6 of [10]). Hence, not only is the maximum number of
independent slices low but also its increase gives rise to a consequent decrease of the
encoding efficiency (see shaded region in Fig. 14.8).
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Figure 14.8 Provided speedup in Intel platform using slice-level parallelism.

To circumvent such undesirable effect, the added level of parallelism at MB level
(see Fig. 14.5(a)) that is also offered by the presented framework allows the several
cores from the same group to cooperate in the concurrent processing of independent
MBs, in order to further accelerate the encoding of the same slice without sacrificing
the resulting bit rate and encoding quality.

In the presented evaluation of this topology, this extra level of concurrency
was implemented with nested threads. As soon as the slices are assigned to the
primary threads, they are responsible to create other threads, in order to form
teams of threads. Then, the set of independent MBs within each slice is distributed
among the remaining available cores in each team. At the end, entropy encoding is
performed separately and at slice level, to avoid memory bottlenecks and the usage of
shared data.

The results presented in Table 14.6 illustrate the speedup levels that can be
obtained either by an isolated or mutual exploitation of the slice and MB parallelism
levels. Contrasting with the close-to-optimal results that were obtained with the
slice-level model, the speedup values that are provided with an exclusive exploitation
of the MB level (Slice = 1) are somewhat more modest, achieving a maximum
value of about 4.4 and 3.2 when using 8 threads in Intel’s platform and 32 threads
in AMD’s platform, respectively. Data sharing between the several cores of these
multiprocessors is the main reason for this limitation, leading to a memory bottleneck
and higher latency times.

An evaluation of the conceived capability to enhance the scalability of the
parallel framework is also presented in Table 14.6. The simultaneous exploitation
of slice and MB parallelism levels was assessed by using a set of configurations
characterized by a different (but fixed) amount of threads: 1, 2, 4, 8, . . . When
compared with the previous results, it can be observed that the MB parallelism
level, that is now possible to exploit as a complement to the slice-level parallelism,
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Table 14.6 Provided speedup using slice and macroblock parallelism levels,
by considering a maximum of 4 slices (to avoid bit-rate degradation [10]).

Number of concurrent
macroblocks within each slice

1 2 4 8

Intel™

E5530
(8 cores)

Number of
concurrent
slices

1
2
4

1.01

1.92

3.64

1.72

3.34

5.38

3.04

5.08

6.316

4.48

4.616

–

AMD™

8384
(32 cores)

Number of
concurrent
slices

1
2
4

1.01

2.32

3.74

1.62

4.14

4.68

2.54

3.78

5.316

3.28

4.516

6.832

NOTES:
Number of concurrent threads represented in superscript, above the speedup value; Intel’s configurations using 16 threads
make use of hyper-threading technology.

provides an extra speedup space beyond the slice-level baseline. Contrary to
other highly specific and dedicated SW implementations [5, 6, 10, 18], such
capability is now easily exploited by simply parameterizing the presented SW
framework.

14.5 CONCLUDING REMARKS

A new open-SW framework to implement parallel H.264/AVC encoders was pre-
sented in this chapter. Such framework significantly eases the exploitation of the
parallel processing capabilities offered by current homogeneous and heterogeneous
multicore architectures, as an efficient means to increase the resulting encoding per-
formance.

Three different functional-level topologies are supported and easily parameter-
ized by the presented SW framework: pipeline, straight parallel, and mixed. In what
concerns the exploitation of data-level parallelism, two models are particularly sup-
ported, besides the trivial frame-level partition model: slice level and macroblock
level.

Despite the limitations imposed by the H.264 standard, slice-level parallelism
proved to be the most efficient approach, with speedup gains quite close to the the-
oretical maximum. On the other hand, the macroblock-level parallelism model has
shown to offer an extra and quite viable speedup margin that can be exploited as a
complement to the slice-level parallelism, in order to improve the scalability of the
parallel implementation, in particular, when the number of available cores is greater
than 16.
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CHAPTER 15

PARALLELIZING EVOLUTIONARY
ALGORITHMS ON GPGPU CARDS
WITH THE EASEA PLATFORM

Ogier Maitre, Frederic Kruger, Deepak Sharma,

Stephane Querry, Nicolas Lachiche and Pierre Collet

15.1 INTRODUCTION

Artificial evolution algorithms raise great interest in their ability to find solutions
that are not necessarily optimal, but adequate for complex problems. The quality of
obtained results depends on various factors, including the available computing power.
Increasing this power is interesting, as it would allow to explore usually immense
search spaces more widely and deeply, for better results.

In 2004, massively parallel general-purpose graphics processing unit (GPGPU)
processors became available, with hundreds of cores and very fast memory. In 2011,
these processors typically offer 1 teraflop for a couple hundred dollars.

Evolutionary algorithms (EAs) are inherently parallel, because they evolve a pop-
ulation of distinct individuals in a generational loop. These algorithms are therefore
very good candidates to be ported on massively multicore architectures. Indeed, many
works take this direction, but in order to obtain good results, the user must be an expert
both in EAs and in GPGPU programming.

Programming Multicore and Many-core Computing Systems, 301
First Edition. Edited by Sabri Pllana and Fatos Xhafa.
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Figure 15.1 Basic evolutionary algorithm.

EAsy Specification of Evolutionary Algorithm (EASEA) is a software platform
dedicated to EAs that allows to exploit parallel architectures, which range from a
single-GPGPU equipped machine to multi-GPGPU machines and, to a cluster or even
several clusters of GPGPU machines. The EASEA software is available on Source-
Forge or on the dedicated EASEA platform web site.1

Parallel algorithms implemented by the EASEA platform are presented in this
chapter for EAs and evolution strategies, genetic programming (GP) and multiobjec-
tive optimization (MOO). Finally, a set of problems is presented that contains artificial
and real-world problems. These approaches were tested and presented in different
papers [18, 21, 23, 24].

15.1.1 Evolutionary Algorithms (EAs)

An EA optimizes a problem by successively evolving generations of populations of
potential solutions to a given problem. The initial population is usually created at
random by the initialization function, and all individuals are evaluated in order to
determine how well they solve the problem. Parents are selected (with a bias toward
the best) to create children by applying crossover and/or mutation operators. This
offspring population is then evaluated, and a replacement operator gets the temporary
population (parents + offspring) back to the original population size (cf. Fig. 15.1).
For a more thorough description of EAs and GP, please refer to [4, 6, 7].

From a parallelization point of view, these algorithms are very interesting, because
many computations are applied to independent objects. There are two main ways
to parallelize EAs: parallelization of one EA over several cores (or even several
machines) and getting several interconnected EAs to run in parallel (island model).

15.1.2 Some Hardware Considerations

Compute Unified Device Architecture (CUDA) is the first released framework for
the exploitation of a unified GPU architecture that was supplied by the NVIDIA

1http://lsiit.u-strasbg.fr/easea.
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manufacturer in 2004. CUDA abstracts GPGPU architecture to allow portability
between different models of the brand. For further information, the reader is invited
to refer to the official CUDA documentation [25].

CUDA views a GPGPU processor as a set of cores (called SPs for streaming pro-
cessors) grouped together in a single-instruction, multiple-data (SIMD) bundle of 8 or
32 multiprocessors (MPs). An MP decodes and executes an instruction on 32 threads,
which are always performed together. This bundle of threads is called a warp. The
cores of an MP access a private extremely fast shared memory, whose size varies
between 16 and 64 KB. Then, each core can access a large global memory (up to 6
GB), whose bandwidth is high, but suffers from high latency.

Shared memory can be used to replace the L1 cache (absent from the first mod-
els and implemented in the fast 64 KB on the new ones) where data reuse avoids
reloading. On memory stalls, MPs implement a hardware scheduler similar to a hyper-
threading mechanism, which exchanges the warp with another one that is ready for
execution. This mechanism allows to hide memory latencies, if enough threads are
loaded on an MP and if hardware constraints (such as free registers) are met.

15.2 EASEA PARALLELIZATION OF EA ON GPGPU

The approach used in the EASEA platform has been more deeply presented in
[21, 23]. Although different trends exist in EAs, in [8, 9] the authors propose
a unified vision, focusing on common points and differentiating evolutionary
engines thanks to parameters only. Deeper differences are embedded in individual
representation (as in the case of GP) or special ranking mechanisms (as in MOO, for
instance).

The EASEA platform was initially designed to assist users in the creation of
EAs [5]. It is designed to produce an EA from a problem description. This descrip-
tion is written in a C-like language, which contains code for the genetic operators
(crossover, mutation, initialization and evaluation) and the genome structure. From
these functions, written into a .ez file, EASEA generates a complete EA with poten-
tial parallelization of evaluation over GPGPUs, or over a cluster of heterogeneous
machines, thanks to the embedded island model discussed in the following text.

The generated source file for the EA is user readable. It can be used as is, or as a
primer, to be manually extended by an expert programmer.

For single-objective algorithms, it was chosen to parallelize the evaluation step
only, because this phase is often the most time consuming in the whole algorithm.
It means that the parallel and sequential versions of an algorithm can be completely
identical for the evaluation step.

For multiobjective evolutionary algorithms (MOEAs), a specific stochastic rank-
ing method has been developed, which can be parallelized without impacting quality.

An EASEA EA is defined by problem-specific pieces of code provided by the
user. The genome structure is, of course, the first piece that is needed, followed
by genetic operators such as the initialization operator (which constructs a new
individual), the crossover operator (which creates a child out of two parents), the
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mutation operator and finally the evaluation function that returns a value proportional
to how well an individual does on the problem to be solved (fitness). An EASEA
source code (.ez file) consists in several sections, many of which are dedicated
to these problem-specific operators. Different papers explain how this is done,
including [5, 18, 21–23].

15.2.1 EASEA Parallelization Standard EAs

Various attempts at porting EAs onto GPGPU have been made. All these implementa-
tions were done early in the maturity cycle of these cards [12, 20, 31] using graphical
programming languages and showing poor performance. EASEA uses more standard
C/C++ syntax and benefits from the CUDA sdk.

15.2.1.1 EASEA Implementation of Evolutionary Algorithms For single-
objective EAs, it was decided to use GPGPUs for population evaluations only for
several reasons:

1. Porting the whole code on a GPGPU multicore architecture is quite complex
and would result in an algorithm that would behave differently than standard
EAs implemented on CPUs.

2. In most cases, population evaluation is considered to be the most computation-
ally intensive part of an EA.

3. Keeping the evolutionary engine on the host machine allows to access individ-
uals in the GPU in read only: the new population needs to be transferred to the
GPU at each generation, but only fitness values need to be copied back.

The population to be evaluated is distributed into blocks that are assigned to all
MPs. In order to ensure good load balancing and efficient scheduling, some hardware
constraints must be respected (no block should use more registers than available on
an MP). The following algorithm distributes the population onto the card:

Algorithm 15.1

Input: N : PopulationSize, w: WarpSize, M: number of MPs, s: max number of
schedulable tasks, e: max number of tasks Output : b: number of blocks, t: number
of threads per block
Repeat b := b + M t := Min(s, e, N/(b × M)))/w w; until b × t
>N ∧ e > t ∧ s > t

The number of blocks should be ≥ M (number of MPs). Then, the minimum num-
ber of threads per block is w (the minimum number of SIMD threads), or the thread
limit (e,s) that is given by the maximum scheduling capacity (s) or the number of tasks
that an MP can execute (e). The last limit is related to task complexity (the number
of registers used by a thread and the number of available registers per MP). As the
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number of threads that are really executed is a multiple of w, the first multiple of w
which is greater than this minimum is taken.

For evaluation, the population is sent to the GPGPU memory, and the evaluation
function is applied, using the distribution mechanism described in the preceding text.
Finally fitness values are returned to the CPU memory, so that the standard algorithm
can continue.

To avoid multiple memory transfers between the card and the host system, indi-
viduals are collected in a single buffer before being transferred to the memory card.

15.2.1.2 Evaluation Step In the general case, the evaluation of individuals is
done independently and can therefore be parallelized. Each evaluation takes place in
a thread and all threads execute the same function. Thus, threads running at the same
time on a set of SIMD processors do not suffer from divergence (SIMD means that
all processors must execute the same instruction at the same time).

15.2.2 EASEA Implementation of Genetic Programming

GP [4] typically evolves functions represented by trees that are evaluated on all points
of a training set.

It is interesting to note that where EAs execute an identical evaluation on different
data (different individuals), GP does the opposite: different individuals are executed
on identical data (the training set). In order to evaluate different individuals in an
efficient way on SIMD hardware, it is therefore necessary to think differently.

15.2.2.1 Related Works To our knowledge, the first work on GP was published
in 2007 by Chitty [2]. This implementation evaluates a population of GP-compiled
individuals, using the Cg (C for graphics) programming language.

Then, Harding and Banzhaf published a first implementation of interpreted GP in
2007 [16], where they use the GPU card to evaluate a single individual on every core.

Another implementation of interpreted GP is done by Langdon et al. [19] where
the authors use RapidMind to do a complete implementation of a GP population eval-
uation. Each core runs an individual and the interpreter computes all the operators
contained in the function set for every node, picking up the interesting result and dis-
carding the others. This is equivalent to assuming the worst divergence case for each
node and to using the GPGPU card as a fully SIMD processor (which it is not).

In 2008 and 2009 [26, 27], Robilliard et al. present an implementation using
CUDA that takes into account the hardware structure of NVIDIA cards by
conducting the evaluation of several individuals over several fitness cases at the
same time. But some hardware tools are left unused, in particular the MP scheduling
capability.

15.2.2.2 EASEA Implementation of GP The approach used in EASEA was
published in [22, 24]. As with the implementation of Robilliard et al., individuals are
trees that are flattened in reverse Polish notation (RPN) before they are transferred on
the GPGPU for evaluation.
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15.2.2.3 Evaluation Step In GP, the fitness of an individual is generally a sum
of errors, obtained when comparing the values produced by the individual with an
expected value on a training set element. The execution of individuals on these train-
ing cases is an independent task. Only the sum of errors for all training cases requires
a synchronization.

The RPN interpreter presented here is inspired from Robilliard’s paper [26], but a
special emphasis has been put onto maximizing the number of tasks assigned to MPs.
This difference allows to benefit from the MP hardware scheduler, which allows to
overlap memory latencies.

It is necessary to load k/4 MP tasks in order to maximize scheduling ability
(k = 768 or 1024 depending on the GPGPU version) and to use k/4 training cases in
parallel in order to assign one case to each thread.

However, if the warps are executed in SIMD, it is possible to execute differ-
ent instructions in each warp [25], which allows to evaluate different individuals
simultaneously and to maximize scheduling, if the training set contains more than
32 cases.

An interpreter stores the results of the nodes in a stack stored in global memory
that cannot be shared between tasks.

15.2.3 Island Model

The island model is a well-known way to parallelize EAs [1], as it often allows
to obtain superlinear speedup over one machine and linear speedup over several
machines. On a cluster of computers, every node runs a complete EA, which can
be seen as an island. A migration mechanism is added that allows to periodically
export some individuals to other nodes.

The island model thus allows to parallelize an EA on several machines. Exchanges
between nodes are limited to the migration of one individual every n generations,
which is a very lightweight asynchronous communication.

EASEA implements islands using a loosely connected model based on UDP,
which allows to parallelize over neighbor or distant machines (cluster or grid
computing).

15.2.4 Multiobjective Evolutionary Algorithm

Real-world problems often need to optimize multiple different goals simultaneously.
This can be done either by converting these goals into a single objective or by using
MOO techniques, among which MOEAs are very efficient, as they can find (Pareto
optimal solutions) in one run [3, 10]. Interesting MOEAs are designed on the con-
cept of dominance which can be categorized as dominance rank, dominance count
and dominance depth. NSGA-II [11] sorts individuals according to dominance depth,
using the concept of nondominated sorting [15], and SPEA2 [32] assigns rank based
on dominance depth and dominance count, where the count of dominated individu-
als by an individual is used. These efficient dominance-based methods evaluate rank
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serially in a deterministic way (except NPGA), with a quadratic ranking complexity
on the population size (O(mn2) for NSGA-II, where m is the number of objectives
and n is the population size).

15.2.4.1 Related Works A large population is often required when solving
many-objective problems [3, 10] or GP with more than one objective (error mini-
mization and parsimony) in which case MOEAs become computationally expensive.
The first appreciable effort of parallelizing MOEA on GPUs is shown in [30]. In this
study, the dominance comparison of NSGA-II has been implemented on GPU, but
the sorting of individuals in different fronts is still done on CPU.

This chapter presents the Archive-based Stochastic Ranking Evolutionary Algo-
rithm (ASREA) [28], which has been developed for MOO with an O(man) ranking
complexity (where a is the size of an archive that depends on the number of objec-
tives m) which breaks the O(mn2) complexity while yielding improved results over
NSGA-II (discussed in Section 15.3.3). Furthermore, ASREA has been designed so
that the ranking and function evaluations can be done in parallel on GPGPUs [29].

15.2.4.2 Implementation Figure 15.2 shows the flowchart of G-ASREA,
which starts with evaluating a random initial population (ini_pop) on GPGPUs.
An archive is maintained in G-ASREA according to an archive updating algorithm

parent_pop

child_pop

Is the stopping
criterion met?

Choose the
non dominated

solutions 

Terminate

Archive
updating

rules

Archive (arch_pop)

mixed_pop = child_pop +
arch_pop

Selection strategy

mixed_pop = child_pop +
updated   arch_pop

Yes

No

Random initial population   (ini_pop)

Stochastic ranking of   child_pop

with respect to archive

Evaluate   ini_pop

Copy ini_pop to parent_pop Copy non dominated solutions
to archive with some rules

Evaluate child_pop

Random selection
of parent_pop

Mutation

Crossover

Figure 15.2 ASREA flowchart.
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15.2.4.2 where the distinct nondominated individuals of ini_pop are copied. Before
starting the standard EA loop, ini_pop is copied to parent_pop and a termination
criterion is then checked. If the criterion is not met, then child_pop is created
by repeatedly selecting randomly two parents from the parent_pop and creating
children through a crossover, followed by a mutation, after which the child_pop is
evaluated on GPGPU.

Algorithm 15.2 

If Number of non-dominated solutions ≤ archive size Copy distinct non-dominated
solutions to archive else Copy the extreme solutions of non-dominated front to
archive and evaluate crowding distance (CD [11]) of rest of the non-dominated solu-
tions. Fill the remaining archive with the sorted CD-wise individuals in descending
order

G-ASREA now ranks the child_pop on GPGPU by comparing individuals of
child_pop with the members of the archive. The rank of individual (A) of child_pop
is calculated on the following dominance rank criterion:

rank(A) = 1 + number of arch pop members that dominate A (15.1)

Note that in G-ASREA, the lower rank is better, with best rank = 1.
To perform the ranking on GPGPU, CR, an integer array of size n (allocated in the

global GPU memory) is used for storing the rank of child_pop. Suppose the thread
processor idx computes the rank of a child_pop individual using equation (15.1);
then it stores the calculated rank at position idx of CR.

During the ranking on GPU, each thread processor also keeps track of the dom-
ination count of arch_pop, independently. For this, another single integer array AR
of size a × n is allocated in the global GPU memory before execution. Note that the
array is initialized to value 1 because all members of arch_pop are rank 1 solutions.
When an individual of thread processor idx dominates the Kth member of arch_pop,
then the thread processor increments AR[(a × idx) + k] by 1. This dominance check
information is used later to update ranks in the archive.

After parallel stochastic ranking is finished on the GPU, ranks of the child_pop
are updated by copying CR back to the CPU. The rank of the archive is also modified
using array AR in the following manner: suppose that the modified rank of the Kth
member of the archive is evaluated. Then, for i = 0 to n − 1, the integer value of
every AR[(i × a) + k] is added and finally subtracted by n. If the Kth member is still
nondominated, then its modified rank is 1. Otherwise, the rank of the Kth member
depends on the number of child_pop individuals who dominated it.

The next step of ASREA is then to update the archive and propagate good individ-
uals to the next generation. First, the ranked child_pop and arch_pop with modified
ranks are mixed together to form mixed_pop. Now, the archive is updated from the
set of nondominated solutions (rank = 1) of mixed_pop as given in algorithm 15.2.
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Algorithm 15.3 

The next generation (new parent population) is also selected from mixed_pop
according to the strategy discussed in Algorithm 15.3. Here, 20% of the new parent
population is filled from the updated archive with randomly picked members. The
rest of parent_pop is filled from child_pop individuals using tournament selection.
The EA loop is then completed and can start again by checking whether a termination
criterion is met (e.g. number of generations) as in Figure 15.2.

15.3 EXPERIMENTS AND APPLICATIONS

15.3.1 Weierstrass/Mandelbrot

To evaluate the ES/GA implementation, it was chosen to minimize the Weierstrass/
Mandelbrot function, which is a difficult problem because it has a very irregular
fitness landscape. It has parameters that can increase the irregularity of its fitness
landscape (Hölder coefficient h) and its computation time (the approximation of the

Weierstrass iteration 120
Weierstrass iteration 70
Weierstrass iteration 10

Weierstrass  Cpu iteration 10
Weierstrass 40 B  data iteration 10
Weierstrass 2 KB  data iteration 10
Weierstrass 4 KB  data iteration 10

Figure 15.3 Impact of population size, number figure of iterations and dimensions on execu-
tion time and overhead. (a) Impact of population size and evaluation complexity on execution
time. (b) Impact of individual size on transfer time overhead.
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infinite sum is done by a number of iterations that can be modified). Finally, the
number of dimensions can also be increased, in order to test larger genome sizes:

Wb,h(x) =
∑n

j=0

∑iteration

i=1
b−ih sin(bixj)

with b > 1 and 0 < h < 1

These experiments were performed with the EASEA platform on an old Pentium
IV 3.6GHz computer with an early 8800GTX card of the same era, running under
Linux. Different population sizes are tested along with different iteration values (10,
70 or 120) and with different individual sizes (10–1000 dimensions).

Figure 15.3(a) shows that under 2000 individuals, the computing time does not
increase linearly (even though it should, as it should take twice more time to evaluate
2000 individuals than 1000). This means that the increase in computation time comes
from the sequential part of the algorithm (evolution engine without the evaluation
step). Evaluations are done in parallel as the card is being loaded. Beyond 3000 indi-
viduals, evaluation time becomes linear with the population size. It is interesting to
note that the slope for 10 iterations is virtually identical under 2000 individuals and
beyond 3000 individuals, meaning that evaluation time is negligible. This is ideal
to test parallelization overhead, which is studied in Figure 15.3(b) where one sees
that even with a huge genome size corresponding to 1000 parameters to optimize
(4 KB), parallelization overhead is overcome for population sizes beyond 600 indi-
viduals. Transfer time plus initiation of the computation on the GPU takes 0.12 s only
(Fig. 15.4).

For speedup measurements, the EASEA platform has been used to create a
(standard) sequential algorithm to be run on a very fast core of an Intel i7-950
processor and check the speedup obtained with different generation cards (from a
2006 8800GTX to a 2010 GTX480). The architecture of the cards is different, but
EASEA performed the load balancing automatically using the algorithm presented
in Section 15.2.1.1.

Finally, evolution of the fitness of the best individual is observed on 1, 5, 10 and
20 machines using the embedded EASEA island parallelization. It is interesting to

Figure 15.4 Speedup on an average of 10 runs for several GPGPUs cards versus an Intel
i7-950 on a 10-dimension 120-iteration Weierstrass benchmark.
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Figure 15.5 Speedup obtained with the island model on Weierstrass 1000 dimensions,
h = 0.35 for 81200 individuals.

note that the same population size was used for the different runs, that is, 81,920
individuals on one machine, 16384 individuals on each of the 5 machines, 8192 on
each of the 10 machines and 4096 individuals on each of the 20 machines. Speedup is
roughly linear with the number of machines until the single-machine implementation
gets stuck in a local optimum (after value 500). Speedup then becomes superlinear
with reference to one machine but still roughly linear between multi-island configu-
ration (Fig. 15.5).

The cluster of machines used for this test being equipped with GTX275 cards
yielding a speedup of around 100× over a Core-i7-950, the speedup for 20 machines
is therefore of about 2000×, meaning that a one hour run on this cluster is equivalent
to a 83-days run for a similar sequential algorithm on a top-notch workstation.

15.3.2 Symbolic Regression

To test the EASEA implementation of Genetic Programming on GPGPU, we used a
symbolic regression benchmark from Koza’s book [24]: x3 − 3x2 + x. Several learn-
ing set sizes have been tried as well as several tree sizes to find out what kind of
speedup factors could be obtained.

Figure 15.6(a) shows the speedup obtained between an Intel Quad Core Q8200
and a GTX275 card on the evaluation function implementation described in Section
15.2.2.3.

A first point that can be seen from this figure is that the speedups reach a plateau
fairly quickly, with only 32 fitness cases, confirming that scheduling is a real gain.
Secondly, in terms of speedup, the influence of tree size is much less important than
the fact that the number of fitness cases is greater than 32.

A second parameter that can influence the speedup is the computational intensity
of the function set used in the tree construction. Two function sets are listed with
different intensities: F1 = {+, −, /, ×} and F2 = {+, −, /, ×, cos, sin, log, exp}.
Using F2 increases the computation/memory access ratio and improves the speedup
as shown in Figure 15.7. Furthermore, it is possible to use special function units (SFU)
in the card in order to compute approximations for trigonometric functions, which
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Figure 15.6 Speedup factor for symbolic regression wrt different parameters. (a) Speedup
wrt tree depth and learning set size, for the evaluation function only. (b) Speedup wrt number
of fitness cases.
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Figure 15.7 Influence of function set computational intensity.

further reduces the evaluation time for populations containing SFUs at the cost of
reduced computing accuracy. Using different function sets, speedups range between
50× and 200× and up to 250× using SFUs.

Figure 15.6(b) shows the speedup achieved on the complete regression algorithm
using the F2 function. Even if the speedup is much larger than 1 on the evaluation
function only, even with a small number of training cases, it is to be noted that the
speedup of the complete algorithm is lower. Indeed, the volume of data is quite high
here compared to the cost of the population evaluation. For a large number of training
cases, speedup becomes more attractive especially on a large population. This can
also be attributed to the overhead of the tree flattening step, which is more easily
overcome in these extreme cases.

It is nice to see that speedup for GP is greater than for other EAs. This comes from
the fact that GP is very computation intensive and parallelizing evaluation of the same
individual over different test cases in SIMD mode is very efficient.
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15.3.3 Performance of G-ASREA on Multiobjective Test Functions

Paper [28] compares the behavior of ASREA on several Zitzler–Deb–Thiele (ZDT)
test functions [33] with other MOEAs on CPU. ZDT functions are executed with iden-
tical parameters of MOEAs on Intel(R) Core(TM)2 Quad CPU Q8200 @ 2.33 GHz
computer with one of the 2 GPUs of a GTX295 card.

15.3.3.1 Solution Performance Nondominated fronts of ASREA, NSGA-II
and SPEA2 are compared for the ZDT3 function. For 25 different runs, MOEAs start
with a population of 100 and terminate after 500 generations. 0% attainment plots
[13, 14] are shown in Figure 15.8 for MOEAs at different function evaluation stages.

Initially (103 EVAL), ASREA shows the closest proximity to the front and main-
tains a very good spread. At (104 EVAL), ASREA and NSGA-II have converged on
the theoretical Pareto front, while SPEA2 is lagging behind (see [28] for tests and
curves on more functions).

On 100 individuals, the O(mn2) ranking complexity of most MOEAs is not an
issue. However, this is not the case on population sizes that must be used for massive
parallelism to be effective.

Figure 15.9 shows that for 100 individuals, a speedup of 4.95 is obtained by
ASREA ranking over NSGA-II ranking and only 4.14 by G-ASREA (the parallel
version) over NSGA-II, because of the parallelization overhead.

Things are different for 1000, 10,000 and 100,000 population sizes, where
NSGA-II uses 3.8910−2 s, 4.54 s and 19 h, respectively, where ASREA takes 1.01
10−3 s, 9.97 10−3 s and 9.86 10−2 s and where G-ASREA 1.62 10−4 s, 8.34 10−4 s
and 7.11 10−3 s.

For 1 million individuals, ASREA takes 0.992 s and G-ASREA 0.0661 s for rank-
ing, where NSGA-II and other deterministic ranking MOEAs would take days, if not
years, to compute, this time not even including evaluation time of the individuals.

Overall, the advantage of CPU and GPGPU versions of ASREA over other algo-
rithms is twofold: a first speedup comes from the smaller ranking complexity, and
another one comes from GPU parallelization.
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Figure 15.8 Attainment surface plots of ASREA, NSGA-II and SPEA2 for ZDT functions.
(a) ZDT3 at 1000 EVAL. (b) ZDT3 at 10,000 EVAL.
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Figure 15.9 Speedup for ZDT3 function on population sizes 100, 1000 and 10000.

15.3.4 Real-World Problem: Aircraft Model Regression

Finally, benchmark testing is great but rarely reflect real-world problems where things
never work as planned. Here is an example taken from automation science, whose
principle is to describe the evolution of a controlled system using first-order differ-
ential equations, which are function of physical variables and control inputs.

Systems can have different complexities, and so the number of physical variables
(called state variables) which are necessary to describe the evolution of the complete
system can vary. In a similar way, the number of control inputs which are used for
the purpose of proper system control can be different.

Usually, state variables cannot be directly measured, and system outputs corre-
spond to installed sensor measurements. In such cases, state estimators (or observers)
are used to estimate the state variable values from the sensor output values.

In multi-input, multioutput (MIMO) systems, a control vector contains several ele-
ments, meaning that several equations for what is called a state-space representation
that can use linear or nonlinear representations.

Most of the automation tools are designed to be used with a linear representation
(matrix products) for which a linearization is performed around the equilibrium point.
Unfortunately, nonlinear systems controlled by a linear state-space representation do
not perform very well, as the system diverges quite fast. It would be much better to
use equations representing a nonlinear state space, but unfortunately, such equations
are much more difficult to determine and to use.

If we consider the following state vector X and control vector U:

xT = [x1x2x3 . . . xn] uT = [u1u2u3 . . . um]

Then, the nonlinear state-space representation is
⎧
⎪⎨

⎪⎩

.
x1(t) = f1(t, x1(t), . . . , xn(t), u1(t), . . . , um(t))
. . .
.
xn(t) = fn(t, x1(t), . . . , xn(t), u1(t), . . . , um(t))
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For aircraft control, the state variable vector contains 14 elements, and the control
input vector contains 4 elements. All the state variables are supposed to be known, due
to the proper application of an extended Kalman filter (EKF) dedicated to navigation.

The choice of the state vector is

xT = [V, α, β, p, q, r, q1, q2, q3, q4, N,E, h, T]

where V is the airspeed, α the angle of attack, β the heeling angle, p the x-axis
rotation rate, q the y-axis rotation rate, r the z-axis rotation rate, q1 q2 q3 q4 the attitude
quaternions, N the latitude, E the longitude, h the altitude and T the real thrust.

The choice of the control vector is uT = [Tc δe δa δr], where Tc is the commanded
throttle, δe the commanded elevator, δa the commanded ailerons and δr the com-
manded rudder. The nonlinear state-space representation then becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.

V(t) = f1(t, V(t), α(t), . . . , T(t), Tc(t), . . . , δr(t))
.
α(t) = f2(t, V(t), α(t), . . . , T(t), Tc(t), . . . , δr(t))
. . .
.
q1 = f7(t, V(t), α(t), . . . , T(t), Tc(t), . . . , δr(t))
.
q2 = f8(t, V(t), α(t), . . . , T(t), Tc(t), . . . , δr(t))
.
q3 = f9(t, V(t), α(t), . . . , T(t), Tc(t), . . . , δr(t))
.
q4 = f10(t, V(t), α(t), . . . , T(t), Tc(t), . . . , δr(t))
. . .
.

h(t) = f13(t, V(t), α(t), . . . , T(t), Tc(t), . . . , δr(t))
.

T(t) = f14(t, V(t), α(t), . . . , T(t), Tc(t), . . . , δr(t))

A model is necessary for the development of an autopilot system. Some experts
are often required to determine this model. But from a telemetry file, recorded during
a human commanded flight, a GP algorithm might be able to find such equations,
sufficiently accurately for the autopilot to fly the aircraft.

15.3.4.1 Considered Functions The attitude quaternions are the 4 functions
which are more often used in the navigation field, because they cover the entire angle
domain, without exception. As a real-world application, it was chosen to try to regress
the 4-quaternion equations, which are given by the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

.
q1 = f7 = 0.5(q4p − q3q + q2r)
.
q2 = f8 = 0.5(q3p + q4q − q1r)
.
q3 = f9 = 0.5(−q2p + q1q + q4r)
.
q4 = f10 = 0.5(−q1p − q2q − q3r)

A telemetry file, containing the necessary [V, α, β, p, q, r, q1, q2, q3, q4, N, E, h, T]
state variables as well as the uT = [Tc δe δa δr] and time) control variables, has been
created through a nonlinear state-space system of a small F3A airplane performing a
simulated flight of several minutes. The learning set contains 51,000 points, that is,
around 8 min of flight.
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Figure 15.10 Speedup obtained on the airplane problem with EASEA tree-base GP
implementation.

Four EASEA GP runs have been launched in order to find the equations for the
four quaternions.

Figure 15.10 shows the obtained speedups for a population size of 40,960 indi-
viduals over 100 generations, F1 function set, x[1] . . . x[17], [ERC]{0, 1} terminal
set and 51,000 values in the training set. In this case, the time spent in the evolu-
tion engine is negligible compared with evaluation time. Because of the simple F1
function set, the speedup is lower than shown in Section 15.3.2 for more complex
function sets. In the current experiment, the terminal set is larger (random constant
and 17 variables), meaning that the GPU interpreter has to perform more memory
accesses than on the test bench, where the only variable can be stored in a register by
the optimizer. These drawbacks, as well as the evolutionary process, can be blamed
for the drop in speedup.

However, the obtained speedup on one machine is still very nice given the size of
the problem. A real run takes hours of computation on CPU, but just several minutes
on GPU. This is very important, because 14 different functions need to be found to
solve the complete problem.

Figure 15.11 Difference between original and reconstructed trajectory.
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Figure 15.11 shows the original trajectory and trajectories obtained by evolved
quaternions at different generations. The original and last trajectory shows a negligi-
ble difference.

15.4 CONCLUSION

Tianhe-1A is currently the most powerful supercomputer on Earth, with a peak per-
formance of 4.7 petaflops. It is made of 112 clusters of GPU computers, which are
horrendously difficult to use efficiently, unless one uses several levels of paralleliza-
tion, such as described in this chapter.

The EASEA platform can efficiently parallelize generic evolutionary optimization
problems at a very low level on one GPU card or at a slightly higher level on sev-
eral cards in one computer (by dividing the population to be evaluated among the
cards). Then, it can also parallelize at a higher level between machines of a same
cluster using an island model and even over several clusters by exchanging individu-
als between clusters (runs have been made using 20 machines in Strasbourg, France,
and 32 machines in St John’s, Newfoundland, Canada).

By their parallel and independent nature, EAs are perfectly suited to run on current
petaflop machines and future exaflop machines, provided that all levels of parallelism
are efficiently mastered, which is what the EASEA platform attempts to do.
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CHAPTER 16

SMART INTERLEAVINGS FOR
TESTING PARALLEL PROGRAMS

Eitan Farchi

16.1 INTRODUCTION

In this chapter we consider the problem of testing programs that execute several
parallel tasks. We’ll refer to all such programs as parallel programs. Parallel pro-
grams might be distributed on different machines and synchronize through some
message passing mechanism, or they might reside on a single machine and commu-
nicate through shared memory. In order to synchronize tasks and protect shared data,
parallel programs might use different flavors of synchronization primitives such as
locks, conditional variables, wait-on-event and compare-and-swap. These primitives
provide different guarantees on synchronization between the tasks and different atom-
icity guarantees. The tasks themselves might come in different flavors such as threads
and processes.1 Regardless of the type of task, allocation of tasks to machine and

1Many good textbooks on concurrent and distributive programming [1] cover the construction of parallel
programs.

Programming Multicore and Many-core Computing Systems, 323
First Edition. Edited by Sabri Pllana and Fatos Xhafa.
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synchronization primitive used, parallel programs suffer from similar testing chal-
lenges. We will tackle these challenges in this chapter.2 In what follows we’ll assume
familiarity with parallel programming paradigms and will use the terms threads, pro-
cesses and tasks interchangeably. For our purpose, distinguishing between these terms
will not be necessary.

Parallel programs are hard to test. Given a set of inputs to a parallel program,
many orders of task execution are possible. Moreover, because program tasks are
not executed atomically, many orders of program execution are possible as well. To
thoroughly test a parallel program, the set of possible orders of program execution
needs to be covered. Different environment events, such as node or network failures,
should be covered as well, and their timing may influence the result of the program
execution. Thus, the challenge of parallel program testing includes the definition and
coverage of this huge space of possible orders of tasks and environment events. In
what follows, for a parallel program P and for a given set of P’s inputs, we refer to
the space of possible orders of task execution and environment events as the space
of program interleavings, I(P). As we’ll see shortly, the number of possible orders of
execution grows quickly with the number of tasks, making testing even more difficult
in modern many-core environments.

This chapter is organized around the process of developing parallel programs with
a focus on their testing. Once a program is defined, it can be reviewed to validate
its correctness. Classical review techniques are at a loss when it comes to handling
the review of parallel programs. Instead, parallel bug pattern-based reviews and dis-
tributed reviews are introduced. The review stage enables the design of a test plan for
the parallel program that is then implemented in unit testing. Thus, the parallel pro-
gram is well tested when it reaches function and system test (with some exceptions
that are discussed in what follows), and many of the problems related to the testing
of such programs are eliminated.

16.2 REVIEWS OF PARALLEL PROGRAMS

Reviews are known to be an effective way to find defects early in the development
process. Review techniques were originally developed for sequential programs. In a
typical review meeting, the code is projected on the screen, and the owner paraphrases
the code and explains what it is doing and why. The reviewers ask questions, raise
concerns and find problems in the code. Several inherent parallel program traits hinder
the effectiveness of this approach. Given that many tasks are executing in parallel,
the state of the program includes each task’s program counter, each task’s state, the
global state of the memory and the state of the messages sent from one task to another.
As a result, it is much harder to understand the parallel program’s behavior from a
paraphrase that is (necessarily) associated with a single program location. In other
words, the state of a parallel program is not localized and is much harder to grasp
and review. In addition, the space of possible interleavings is huge. The reviewer’s

2We don’t tackle the challenge of debugging parallel programs.
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challenge is to identify a problematic interleaving out of this huge space. Doing so
is also hard because the program is nondeterministic: at each stage of the execution,
any active task that is not blocked can advance.

Two approaches are used to overcome this challenge. The first approach is to
expose developers to parallel bug patterns [8], that is, types of parallel bugs that occur
repeatedly but never in exactly the same way. The developers will look for signs of
these bugs that will facilitate their identification in reviews. The second approach is
the distributive review approach [7], in which a special new role called the devil’s
advocate is introduced. The devil’s advocate is familiar with parallel bug patterns.
As a suspect scenario is reviewed, the devil’s advocate maximizes the chance that
a problem will be identified by advancing the tasks that are most likely to cause a
parallel bug to occur. The two approaches are complementary.

We proceed as follows. We first introduce a set of parallel bug patterns. This set
is not meant to be comprehensive. In practice, the bug patterns that are applicable
to one given environment and program paradigm might not be applicable to another,
and customization is required to arrive at the optimal set. For example, under one
programming paradigm, a lock can be obtained within its own scope, something that
is not possible under another programming paradigm. One environment might use
a reliable message passing mechanism and another an unreliable one. Another envi-
ronment might have several layers of memory, so that a write to memory by one task
may not be immediately visible to another task. These differences naturally lead to
different types of bugs. Nevertheless, parallel bugs have a commonality that is inde-
pendent of the programming paradigm. It is this commonality that we will attempt to
highlight here.

After discussing parallel bug patterns, we will present the distributive review
technique. It will then be much easier to explain the decisions made by the devil’s
advocate using the set of parallel bug patterns. We will also touch briefly on
the test design review activity, which leads to the choice of a particular scenario
to review.

16.2.1 Parallel Bug Patterns

Some definitions are required to facilitate the discussion. One way of viewing a paral-
lel bug pattern of a given concurrent program P is to look at the relationship between
the space of possible interleavings, I(P), and the maximal space of inter-leavings for
P under which the program is correct, C(P). A parallel bug pattern can be viewed
as defining interleavings in I(P) − C(P). We will sometimes refer to C(P) as the
programmer view of the program P and to I(P) − C(P) as the bug pattern gap.

As an example, consider n threads executing x++ in parallel on a shared variable
that is initialized to 0. We assume that the intended result of the program is n. Further
assume that each thread i executes x + + by copying the value of x to a memory
location xi that is only manipulated by that thread, incrementing the value in the local
copy, xi, by one and then copying the value back to the shared location x. Thus, each
thread, i, executes, in sequence, the following operations: xi = x; xi + +; x = xi. An
interleaving in I(P) is any permutation of xi = x; xi + +; x = xi, i = 1 . . . n that
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respects the order of operations xi = x, then xi + + and then x = xi. Thus, for n = 3,
the following is a legal interleaving in I(P), x1 = x; x2 = x; x3 = x; x1 + +; x2 + +;
x3 + +; x = x1; x = x2; x = x3. The result of the program execution in this case is 1,
while the intended result is 3. Thus, the previously mentioned interleaving is in I(P)
− C(P). We recommend that the reader now attempt to solve Problem 16.1 at the end
of this chapter.

An operation or set of operations is atomic if it appears to the rest of the system to
occur instantaneously. A parallel bug pattern occurs when an operation or set of oper-
ations is incorrectly assumed to be atomic. This is the first category of bug patterns
that we consider. Our previous example is an instance of this bug pattern. Indeed,
the source of the programmer’s mistake in our previous example is the erroneous
assumption that x + + is an atomic operation. If x + + were an atomic operation, only
interleavings in C(P) would have been possible (i.e. only atomic execution of x++
by each thread in any order), and the only possible outcome of the program would
have been n. As x + + is not atomic, a bug pattern is created and more interleavings
are possible.

There are two additional categories that create a bug pattern gap in I(P) − C(P).
One is an incorrect assumption that a certain execution order of concurrent events
is impossible, and the other is an incorrect assumption that a code segment is non-
blocking. In what follows we provide examples of parallel bug patterns to highlight
these general categories. The list is not intended to be complete, but the three general
categories mentioned earlier probably are.

16.2.1.1 Atomicity Bug Patterns The most trivial instance of this bug pat-
tern occurs, as we said, when an operation is incorrectly assumed to be atomic. A
harder-to-spot problem occurs when the scope of atomicity defined by the program
is incorrect. Naturally, the correct scope of atomicity could be longer or shorter than
the one defined by the programmer. For example, adding and removing operations are
performed concurrently by first accessing a database table to translate from key1 to
key2. Then key2 is used to access another table and add or remove the data. Accesses
to both tables are implemented atomically (possibly using a lock). However, the code
segment that accesses the two tables is left ‘unprotected’ between the access to the
first and the second table. This causes a parallel bug. After a thread obtained key2
from the first table, and before the second table is accessed, other threads may access
and change the two tables, making key2, obtained in the first table access, obsolete.
An interleaving that makes key2 obsolete after it was obtained was not intended by
the programmer and resides in I(P) − C(P).

Atomicity is typically implemented through some access protocol. An access pro-
tocol mandates that some code will be executed before and after the set of operations
that should be executed atomically. An instance of this could be that a lock is obtained
before the operations are executed and then released afterward. Another instance
could be that a transaction, distributive or not, is started before the set of opera-
tions is executed and committed at the end of the execution of that set. Regardless
of the access protocol, it must be followed by all tasks; otherwise, atomicity will
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be broken.3 Consider, for example, a case in which the even threads in our previous
example obtain a lock, execute x + + and then release the lock while the odd threads
continue to execute x + + as before. The program remains incorrect as thread one
may perform x1 = x, wait until all other threads terminate and then execute x1 + +;
x = x1. The end result of this execution is x == 1 and not n. Naturally we assume
that n > 1. The reader can now attempt to solve Problem 16.2 at the end of this
chapter.

The concept of high-level data races [2] is noteworthy in this context. To define a
high-level data race, a view is introduced. For a given program run and a given thread,
a view is a set of variables that were accessed under the scope of a lock. For example,
the following thread execution

lock(m); x = y; z = x; unlock(m); lock(m); z = t; unlock(m);

has two views, {x, y, z} and {z, t}. A high-level data race exists if a view indicated
by one thread is broken into several views by another thread. This can be seen in the
following example, where another thread executing

lock(m); x = y; unlock(m); lock(m); z = x; unlock(m);
lock(m); z = t; unlock(m);

will break the view {x, y, z} created by the first thread into two views, {x, y} and
{x, z}. Runtime identification of high-level data races can be used to identify some
of the atomicity bug patterns discussed in this section. We recommend attempting
problem 16.3 at the end of this chapter.

16.2.1.2 Some Interleavings Can Never Occur In this bug pattern, the pro-
grammer assumes that a certain interleaving never occurs because of the relative
execution length of the different threads or because of some assumptions on the
underlying hardware or some order of execution ‘forced’ by explicit delays, such
as sleep()s, introduced in the program. In other words, interleavings in I(P) − C(P)
are considered impossible in practice, or not considered at all, by the programmer.

Imagine, for example, that the programmer assumes network operations are always
slower than I/O operations on the current hardware. As a result, the programmer
assumes that a write to a local disk will complete before a remote write to another
node’s disk is performed over the network when the local and remote writes are pre-
formed in parallel. This works for a few years, but then the hardware changes, and the
network remote write operation becomes faster than the local disk write operation.
The original assumption about the hardware’s relative speed is no longer correct, and
a new interleaving occurs in which a write to the disk completes after the remote write
to another node completes. The application is now broken.

Another instance of this bug pattern occurs when a parent process spawns sev-
eral child processes and needs to wait until they complete their operations before it

3This requirement can be mitigated if an atomicity primitive is available.
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inspects the result. To ensure that the child processes completed their operations, the
programmer introduces a long enough delay in the parent process before the result is
inspected. Instead the programmer should have introduced a barrier that waits for the
child threads to complete. The delay might work in a certain environment, but be sen-
sitive to any change in the software stack or hardware configuration. Thus, changes
to the software stack or hardware configuration may result in the parent inspecting
the result before it is ready for inspection. This interleaving is considered impossible
by the programmer during program design.

Yet another problem might occur in the implementation of the read–copy–update
(RCU) lock. In this case, writers to the shared data update all the global references
to the updated data with a new copy and use the callback scheme to free the old copy
after all the CPUs have lost local references to it. If this is not done in the right order
or some mistakes are made about memory update visibility, the implementation of
the RCU lock will have a bug.4

16.2.1.3 Blocking Threads In this bug subcategory, some interleaving in
I(P) − C(P) contains a blocking operation that blocks indefinitely. There may be
several reasons for this:

• A classic cyclic dependency deadlock occurs when a task that blocks and waits
for another task to complete some operation is part of a cycle of such blocking
dependencies. Say, for example, that the first thread obtains lock m and then
the second thread obtains lock n, after which the first thread tries to obtain lock
n but blocks because that lock is held by the second thread, while the second
thread tries to obtain lock m but blocks because it is held by the first thread.
The program will thus halt indefinitely. The cyclic dependency here is of
length two: thread one is waiting for thread two to complete the lock operation,
but thread two will never complete its lock operation as it is waiting for thread
one to do the same! Environments may assist in debugging such problems. For
example, the Linux kernel DEBUG_RT_MUTEXES, DEBUG_SPINLOCK,
DEBUG_MUTEXES and PROVE_LOCKING configuration options will help
detect such cycles.

• A task may terminate unexpectedly, leaving the system in an inconsistent state.
Let’s say some event should have been but wasn’t triggered by a task. Other
tasks will thus wait indefinitely for this event to occur. If, for example, a thread
obtains a lock and then takes an exception, it is, under certain programming
paradigms, the programmer’s responsibility to release this lock. But if the pro-
grammer forgets to do so, the lock is never unlocked, and waiting threads will
wait on that lock forever.

• A task is assumed to eventually return control, but it blocks and never does.
This situation may occur in a critical section protocol. The requirement of

4In the Linux kernel environment, the CONFIG_RCU_TORTURE_TEST can be used to test the imple-
mentation of the RCU lock.
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a critical section protocol is to have only up to a predefined n tasks execute
some code segment in parallel. A task enters the critical section by starting to
execute the critical section code and is assumed to eventually exit it by complet-
ing the execution of that section. But if the task executing within the critical
section performs some blocking I/O operation (file, socket or GUI interface
waiting for an event), it may never exit. As a result, the system may hang
or its performance degrade as fewer tasks are allowed in the critical section
in parallel. If the critical section is executed in kernel mode, the Linux CON-
FIG_DETECT_SOFT_LOCKUP and CONFIG_DETECT_HUNG_TASK con-
figuration options may help detect this bug as it will print the stack when the
task stays in the kernel for more than some threshold or in the interruptible ‘D’
state indefinitely. In addition, if the CONFIG_DEBUG_SPINLOCK_SLEEP
Linux kernel configuration option is turned on, routines that may block and are
called under the scope of a spin lock will notify the programmer.

Another instance of this bug pattern occurs when a server receives require-
ments for operations from a queue. The server’s main loop repeatedly removes
a requirement for an operation from the queue and then executes it by calling
a service. A service called in the same thread is assumed to eventually return,
but again, for the reasons mentioned earlier, this might never happen and the
server will hang as a result. Another variation of this bug pattern occurs when a
server’s service method, known to be nonblocking, is overwritten by the incor-
rect use of inheritance with a blocking method. In addition, service methods
can be long or written by different project members (or by a third party, which
is even worse from a testing perspective). Thus it is hard to guarantee that the
service method is nonblocking.

• A task may wait for an event that happened in the past but was not registered.
As a result, the task will block indefinitely. This bug actually occurs in Java
if a notify() on an object occurs before a wait() on that object. In this case the
object notification is lost, and the wait() will not return as a result of the object
notification.

What all of the aforementioned cases have in common is a thread waiting for an
event that never occurs. This thread is blocking, and the fact that it is blocking might
cause the system to hang or its performance to degrade.

16.2.2 Distributed Desk Checking

Equipped with an understanding of parallel bug patterns, we turn our attention to
distributed reviews. As mentioned in the beginning of this section, the distributed
review method assists in dynamically and efficiently exploring the space of possible
program interleavings. This is done through appropriate test design of the high-level
scenarios to be reviewed and the detailed exploration of a given scenario or inter-
leaving to review through the introduction of a new role: the devil’s advocate. The
devil’s advocate has to be an expert in parallel bug patterns. He or she increases the
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chance a problem will be found when reviewing a specific interleaving by making
appropriate scheduling decisions according to this expertise.

Next we briefly review the desk checking review technique and then extend
it to obtain the distributive review technique and handle the review of parallel
programs.

16.2.2.1 Desk Checking Desk checking of sequential programs consists of
selecting the input test data and manually executing the program. There is a large
body of work on test data selection (e.g. Chapter 23 on defect selection in [15]). We
will thus assume that some appropriate input was chosen. Next, a review meeting is
set, and the selected input (or inputs) is manually exercised. Naturally, a debugger
may be used if available to alleviate some of the tediousness of the process. In addi-
tion, assumptions are made on the behavior of parts of the program that are assumed
to be correct in order to keep the review process at the intended abstraction level.
For example, as the program is manually executed in the review meeting, we might
assume that when a certain function is called with a given input, it will return the
expected output that it was designed to return. Manual execution of the function body
can thus be skipped, meaning that we are not concerned that this function will exhibit
incorrect behavior in the current scenario being reviewed.

As the manual desk checking progresses, the reviewers record the following:

• Input data as it is read

• Successive values of the variables

• Results as they are generated

• Program conditions as they are evaluated

• Faults found

The following program segment is used to give an example of desk checking5:

while(x > 0)
{

x = obtainNextNumber();
if(x%2 = 0)

print(”even”);
else

print(”odd ”);
}

We assume that x = 2 at the beginning of the execution of the program and that
obtainNextNumber() will alternate returning 1 and then 2. Note that we can conduct
this type of review even if the function obtainNextNumber() has not yet been imple-
mented (or is an interface to hardware that is not yet available). A clear advantage

5Code samples are given in self-explanatory, high-level imperative language pseudocode.
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of desk checking is that it can be used to dynamically review the behavior of code
whose environment is not yet available or whose environment behavior is hard to
set up (pooling of a plug or a certain network failure behavior). In the review meet-
ing, the code is manually executed using the aforementioned assumed inputs, and the
following program intermediate states are recorded:

program state - x = 2
control - while(x > 0) condition evaluates to true
control - x = obtainNextNumber();
program state - x = 1
control - if (x%2 = 0) condition evaluates to false
print(”odd ”);
control - while(x > 0) condition evaluates to true
control - x = obtainNextNumber();
program state - x = 2
control - if (x%2 = 0) condition evaluates to true
print(”even”);

and so on and so forth. The reviewers will quickly see that the program segment
contains an infinite loop that is probably unintentional.

16.2.2.2 Distributed Desk Checking But desk checking parallel programs is
not so simple: reviewing a single interleaving associated with the run of a concurrent
program P with input I in order to determine the correctness of P with I is not enough.
To make things worse, the number of possible interleavings can, as already discussed,
be very large. Given N processes, each executing M concurrent events in some fixed
order, the number of possible interleavings is exponential in N * M. See Section 16.2.1
for an example that illustrates the size of the interleaving space.

The distributed desk checking methodology includes methods for the selection of
the interleavings to be reviewed, the formal review procedure and the participants’
roles. Like sequential desk checking, distributed desk checking requires no prepara-
tion other than the selection of inputs and interleavings to review and the assignment
of roles to review participants. The assigned roles are the program counter, devil’s
advocate and stenographer. The program counter is responsible for determining the
control flow of the program during the review process. Usually this role is given to
the program owner unless the interleaving being reviewed is owned by more than one
person. The devil’s advocate is responsible for making choices about the schedule,
network delays and environment behavior, in order to maximize the probability that
bugs will be found in the review. In other words, for a given input, the devil’s advocate
chooses an interleaving to review. That choice is based on knowledge of parallel bug
patterns. The stenographer is responsible for the clear and concise representation of
system states during the review. As a parallel program execution description includes
timing dependencies between different tasks, the representation is more complicated
than in the sequential case. This is why a separate role is designated. Various stan-
dard representation schemes, such as sequence or time diagrams and tools that support
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their representation, may be used.6 As in sequential desk checking, here too the for-
mal review protocol includes the manual execution of the chosen program input and
interleaving. We next discuss the selection of input and interleaving.

The parallel program might not exhibit any external parallel behavior. For
example, the program may perform matrix multiplication. Externally, the sequential
operation of matrix multiplication is performed while internally parallelism is used
to increase the speed of the multiplication operation. In that case, standard test
design techniques are applied for the design of the program inputs to be reviewed.
We’ll thus focus on the case in which the parallel program exhibits external parallel
behavior and illustrate how test design is conducted in this case. As an example of
such a parallel program, consider a multiple-reader/single-writer protocol in which
we are given a critical section7 and two types of tasks, readers and writers. Several
reader tasks can access the critical section simultaneously, but only one writer task
can access it at any given time and only when no readers are present in the critical
section. The protocol will typically manipulate two variables, one that counts the
number of readers, cr, and another that counts the number of writers, cw. In addition,
the protocol has an entry and exit section to be executed by readers and writers
before entering the critical section and when exiting it. The protocol entry and exit
sections manipulate the readers’ and writers’ counters to reflect the number of tasks
currently in the critical section. This is typically done in a nonatomic manner to
improve the performance of the protocol.8 The entry and exit protocols are typically
exposed to the protocol user through a read/write lock. We will use this example to
illustrate the process of test selection for parallel programs that exhibit parallelism
externally.

The first step in the design of interleavings to review, as in any testing design activ-
ity, is based on specific concerns about the correctness of the programs. For parallel
programs, typical concerns pertain to parallel bug patterns. In general, we would like
to see appropriate contention on resources, synchronization of interleavings exercised
and interface agreements met. These three broad concerns correspond to the three
parallel bug pattern categories introduced previously, in Sections 16.2.1.1–16.2.1.3,
respectively. Each concern leads to a different choice of interleavings to review. We
will briefly discuss the type of interleavings typically designed as a result of each
concern. We will then focus on the atomicity concern for an in-depth illustration of
how to design interleavings for review.

Interleavings that contend on resources are introduced to determine if atomicity
is handled correctly. The synchronization concern typically leads to the design of
specific interleavings in which critical events such as message sending/receiving and
shared memory access occur in a certain order. For example, in the case of message
sending, we would like to review an interleaving in which the message is sent before a
thread is there to receive it and an interleaving in which it is sent after another thread

6Any Unified Modeling Language (UML) reference may be reviewed to get ideas on how to represent
timing relations.
7A code section designated as a critical section.
8See Nancy A. Lynch’s book on distributed algorithms [12].
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is there to receive it (see Section 16.2.1.2). The third concern leads to a review of
whether or not users of the protocol meet the protocol assumptions. For example,
do tasks using a critical section eventually return control to the critical section? This
type of review is sometimes referred to as a contract review and leads to specific
interleaving to review, as explained next.

In contract reviews you define the obligation that needs to be met after a certain
program location is executed and check that it is met along any possible execution
path of the program after that program location was executed. For example, if mem-
ory is allocated at a certain program location, we check that it is freed along any path
that can occur after that program location was executed. In our case, once a task is in
the critical section, regardless of whether it is a reader or a writer, it is obligated to
eventually exit the critical section and return control to the exit protocol of the critical
section. This should occur along any possible path in the critical section, including
error paths and paths that are taken by the program due to an arriving exception or
signal. In such an event, control might change to an exception or signal handler or
be altered in some other way, depending on the particular programming paradigm.
Thus, checking that obligations are met suggests particular interleavings to review.
For example, the following interleaving checks whether running the exit protocol
is met by the task in the critical section. A writer obtains entrance to the critical
section, a reader attempts to obtain entrance to the critical section but is correctly
blocked, and then a signal arrives and is handled by the writer in the critical section.
If the code handling the signal exits the critical section, it is obligated to call the
exit protocol of the critical section. If this is not done, the reader is blocked indefi-
nitely, and we have found a bug (see Section 16.2.1.3 for detailed discussion of this
bug type).

Next we focus on the atomicity concern and analyze the interleaving test design
process in detail. Our reader/writer protocol handles the shared access of tasks of
different types to a shared resource, the critical section. As the readers’ and writ-
ers’ counters are accessed nonatomically to facilitate performance, contention on
resources might occur. To address this concern, we want readers’ and writers’ tasks to
access the critical section in parallel, thus creating the appropriate contention. Note
that requiring that two writers enter the critical section simultaneously may not be
enough to identify a bug in the entrance protocol. It is the role of the devil’s advo-
cate to further specify the exact interleaving being executed during the actual review
and thus actually reveal the bug. Consider the following buggy entrance protocol.
The protocol is clearly buggy as no synchronization is applied when accessing the
readers’ and writers’ counters:

//Critical section entrance protocol
while(true){
if (cw = 0) {

cw + +
exit the while loop and enter the critical section

}
}
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The test design choice of two writers entering the critical section in parallel may
lead to the review of an interleaving that is perfectly correct. For example, the fol-
lowing (correct) interleaving has two writers enter the critical section in parallel.
Indeed, one writer is blocked as the result of the other writer entering the critical
section:

program state - cr = cw = 0
first writer - while(true) condition evaluates to true
first writer - if (cw = 0) condition evaluates to true
first writer - cw + +
program state - cr = 0 and cw = 1
first writer - enters the critical section
second writer - while(true) condition evaluates to true
second writer - if (cw = 0) condition evaluates to false
secondwriter is blockinguntil firstwriter leaves the critical section (i.e. until cw is
set to 0)

It’s an easy exercise in this case to find an interleaving in which both writers enter
the critical section at the same time. The devil’s advocate role is to further guide
the review during the review session so that this possibility is indeed revealed. At
this point the reader may choose to stop reading and attempt to find an interleav-
ing that lets both writers enter the critical section simultaneously. In addition, before
reading the next paragraph, the reader may choose to try and define the different
reader and writer contentions that should be reviewed as a result of the atomicity
concern.

With regard to the contention concern, we can intuit that the following interleav-
ings are of interest:

1. Several writers arrive and attempt to enter the critical section concurrently.

2. Several readers arrive and enter the critical section concurrently.

3. Several readers arrive and enter the critical section; a writer attempts to
enter the critical section but waits; several readers arrive, attempt to enter the
critical section and wait; eventually the writer enters the critical section and
exits.

4. Several writers arrive and one enters the critical section; several readers arrive,
attempt to enter the critical section and wait.

The Cartesian product technique is used to determine whether there are other inter-
esting interleavings to review. For instance, in the aforementioned example, we define
two attributes, readerIn and writerIn, which indicate whether a reader or a writer is
attempting, not attempting or currently accessing the critical section.9 We assume two

9Can you suggest another attribute value?
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readers and two writers and thus have four cases to consider. A typical element in the
considered Cartesian product is
(attempting, attempting, not attempting, not attempting),
which means that two readers are attempting to access the critical section and two
writers are not attempting to access it. This event will probably occur at least in
the previous scenario two. We thus obtain 3*3*3*3 = 81 possible events in the
Cartesian product that we would like to observe when reviewing the selected set
of interleavings. Note that some of these events, for example, any event where two
writers simultaneously access the critical section, should turn out to be impossible.
Some of the 81 events are not interesting as they do not contend for the critical
section:
(not attempting, not attempting, not attempting, not attempting),
for example. Next, the aforementioned 81 combinations are systematically reviewed
to see whether they are covered by at least one of the four scenarios mentioned earlier,
or do not represent contention on the critical section, or are considered impossible.
To facilitate the process, tools such as FoCuS10 can be used. The reader may pause
at this stage to consider some of the 81 combinations and determine whether they are
possible, whether they represent contention and whether they are covered by the four
scenarios mentioned earlier.

This Cartesian product is sometimes referred to as a functional coverage model.
It can be further utilized during the testing phase to check that the parallel program
is tested. Out of the 81 combinations previously mentioned, all of the events that
are possible and represent contention should occur, and none of those that break the
critical section requirements and have more than one writer in the critical section
simultaneously should occur. Thus, a by-product of the distributed review is a test
design for the parallel program, utilized in the testing phase. In the next section we
will see how the testing task of parallel program is approached and the test design we
just completed is utilized.

16.3 TESTING OF PARALLEL PROGRAMS

This section will describe how to test parallel programs and the state-of-the-art tech-
niques that make their testing possible. Testing parallel programs is like finding a
needle in a haystack if not done skillfully. Imagine that one task is executing 100,000
instructions, one of which is a load followed immediately by a store and a second
task is executing a load. Further assume that the first task should have executed the
consecutive pair of load and store instructions atomically. For the program to exhibit
an incorrect behavior, the load of the second task should occur after the load of the
first task and before the store of the first task. This is only one out of 100,000 possible
schedules, and the probability that the program will exhibit wrong behavior is slim.
Thus, a fundamental objective of parallel program test design is to reduce the space
of possible interleavings that needs to be tested.

10See www.alphaworks.ibm.com/tech/focus.



�

� �

�

336 SMART INTERLEAVINGS FOR TESTING PARALLEL PROGRAMS

Contrary to the common practice of parallel bug removal by stress testing of the
parallel program at system test, we reduce the space of possible interleavings by mov-
ing the parallel program testing activity to as early as possible in the development
cycle. This means that the ideal time for testing parallel programs is, whenever possi-
ble, at unit test. The space of possible interleavings is further reduced by isolating the
business code, that is, code not related to synchronization, from the code that handles
synchronization. The program thus obtained is referred to as the isolated parallel pro-
gram. For example, in our single-writer/multiple-reader running example, we could
test the atomicity (Section 16.2.1.1) and synchronization concerns (Section 16.2.1.2)
by removing the business code and having the readers and writers do nothing when
they enter the critical section. This will not address the interface concern (Section
16.2.1.3), and problems may still arise from tasks not meeting the contract by not
executing the exit protocol eventually once they obtained entry to the critical section.
But it will serve to further reduce the space of possible interleavings to be tested.
This example is characteristic of the situation in general. Typically, only testing for
atomicity and synchronization can be moved up to the unit test stage. The interface
concern can only be tested later on in the development cycle, when the system is inte-
grated and the interfaces are exercised. Thus, the application of the contract review
is the most effective approach for early detection of interface issues.

Next, we reuse the test designed during the distributed review stage (Section
16.2.2.2) and create tests for the isolated parallel program. In order to determine if
the test is strong enough, we use an empty implementation of the parallel program
under test. An empty implementation is an implementation of the parallel program
interfaces that manipulates shared resources and synchronization messages but
drops any synchronization guarantees. We next illustrate the concept of removing
the business code and the empty implementation using our multiple-reader/single-
writer running example. Assume the writer is buggy and is implemented as follows:

//cw counts the number of writers in the critical section
//cr counts the number of readers in the critical section

//writer calls the critical section writer entrance protocol
while(true){
if (cw = 0 && cr = 0) {

cw + +
//exit the while loop and enter the critical section

}
}
//writer enters the critical section

//writer add an entry to some shared structure
//For example, add new employees to an employ table.
//Another example, is to add a file representation to a
//kernel table of current files being accessed.
//This is referred to as the business code –
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//although it deals with shared resources it
//does not handle their protection
if(insertNewRecord(new˙record) == failed)
reportInsertFailure();

//writer exit the critical section by calling the exit protocol
cw − −
//end of writer exit protocol

As mentioned earlier, we drop the business code and create an empty implementa-
tion for the protocol. In addition, in order to check the protocol, we print the number
of readers and writers in the critical section. We thus obtain the following program
which we run our tests against. The empty implementation is buggy and we expect
to see readers and writers in the critical section at the same time. This will give us an
indication that the tests are strong enough:

//writer calls the critical section writer entrance protocol
cw + +

//writer enters the critical section

//print number of readers and writers
print(xw, xr);

//writer exit the critical section by calling the exit protocol
cw − −
//end of writer exit protocol

The reader is encouraged at this stage to define the empty and isolated reader
implementation and implement five readers and five writers accessing the critical
section in parallel. This can be done using any programming language. To the sur-
prise of many, in some environments we will never observe, even after repeating
the test many times, writers and readers in the critical section simultaneously. The
following heuristic is now applied to make the test stronger. We examine critical
events, that is, events used to synchronize between processes such as access to shared
variables and message passing, and randomly add delays before and after the criti-
cal events to increase the chance that the interleavings we are concerned about will
occur. This activity is similar to what the devil’s advocate does during a distributed
review (Section 16.2.2.2) and is done using knowledge of parallel bug patterns. In the
aforementioned isolated empty implementation example, the introduction of a delay
after a writer enters the critical section will increase the chance that other writers
or readers enter the critical section while that writer is still in it. Once this delay is
introduced and we manage to fail the isolated and empty implementation using our
tests, we reinstate the implementation and repeat the aforementioned heuristic. The
reader may choose to do exactly that with his/her tests and see that he/she can fail
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an erroneous implementation of the reader/writer protocol. If the tester is lucky and
working with Java, the ConcurrentTesting11 tool can be used instead to automate this
stage. The ConcurrentTesting tool automatically instruments the critical events and
randomly introduces delays before and after the critical event in a biased manner,
using knowledge of parallel bug patterns. We’ll cover the ConcurrentTesting tool in
the next section.

At this stage the tests are run many times (e.g. overnight). We measure that the
functional coverage model developed during the distributed review stage (Section
16.2.2.2) actually occurs. For instance, we make sure that many readers and a
single writer access the critical section simultaneously and so on for the rest of
the possible events previously defined during the review stage. As the tests are
going to be run many times, it’s a best practice to implement the protocol invariant
so that we will get a failure message only if the test failed. In our case we would
substitute the following count of the number of readers and writers in the critical
section:

//print number of readers and writers
print(xw, xr);

with

//print number of readers and writers
//only if the protocol failed12−
if not ((cr = 0 ‖ cw = 0) && cw <= 1) print(xw, xr);

If the aforementioned steps are followed, the parallel program is probably
bug-free, at least with regard to bugs of the atomicity (Section 16.2.1.1) and
synchronization (Section 16.2.1.2) category. Interface concerns might still surprise
us but can be mitigated through appropriate contract reviews. With respect to the
later stages of testing, there is another technique worth mentioning. Synchronization
coverage [5] is a general coverage model aimed at measuring contention on
resources. For example, we want to see that each lock in the system is contended on
(i.e. that there are two processes attempting to obtain the lock at a given program
location simultaneously, one task obtaining it and the other waiting for the lock to be
released). Note that this meets the requirements of a coverage model because we can
enumerate the coverage tasks (one task for each program location that attempts to
obtain a lock), and we expect all coverage tasks to be possible during some execution
of the program. If a coverage task cannot occur during a run of the program, then the
lock is redundant as it is impossible to contend on it. Such general-purpose coverage
models are useful at later stages of testing, as it is interesting to determine which
locks are not contended on in system test.

11See www.alphaworks.ibm.com/tech/contest.
12Can you spot what might be wrong with this statement?
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16.3.1 Smart Interleaving Testing

In this section we describe the basic ideas that underline the Java-based concur-
rentTesting13 tool [6]. The objective of the tool is to explore the space of possible
interleavings and thus increase the probability that a parallel bug materializes. In
addition, such a technology is required to avoid false alarms and not produce impos-
sible interleavings. As a result, all interleavings created by the tool should be possible
in some legal environment of the parallel program being tested. To meet these require-
ments, the following design guidelines are followed:

• The testing tool should, in principle, be able to create any possible interleaving.
Thus, the tool must be able to intercept critical events that otherwise could have
been used to replay14 [10] a parallel program before and after their execution.
Critical events include all program events that have to do with synchronization,
such as shared memory access, locking and message passing. The exact set of
critical events will change from one programming paradigm to another and is
expected to evolve over time.

• As mentioned before, the testing tool should only produce legal interleavings.
That typically boils down to the testing tool code executing before and after
critical events not having any side effects. For example, the testing tool should
never consume signals [10].

• Synchronization coverage captures contention on resources. The testing tool
strives to make this contention occur [5]. As such, the tool can be viewed as
a test generation tool. Test generation is a subject of a long line of research.15

The objective of a test generation problem is often a coverage model, such as
statement coverage, requiring that each statement in the program be exercised,
and the tests are generated on the set of possible program inputs. In contrast,
the objective of the test generation problem in the parallel program case is to
cover the synchronization coverage model, and the explored space is the space
of possible interleavings. The same techniques used for classical test genera-
tion might be applicable. Note that the exact definition of the synchronization
coverage model will differ according to the programming model.

• The number of critical events that produce a parallel bug is small [3, 4, 16]. As
a result, the testing tool should focus on identifying events related to a known
bug pattern and changing the order in which these events occur by introducing
delays.

• The tool should strive to minimize the intercepted critical events. Static analysis
may sometimes be used to minimize the number of events that are intercepted.

13See www.alphaworks.ibm.com/tech/contest.
14By replay we mean capturing the temporal dependences of the program in such a way the program can
be deterministically rerun, producing the parallel bug in each run.
15Review the International Symposium on Software Testing and Analysis (ISSTA) and other such venues
for literature on test generation.
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For example, variables that are not on the stack may be shared by more than
one thread. Static analysis may help avoid intercepting more heap variables
than necessary by identifying heap variables that are actually shared by more
than one thread.

The aforementioned general design guidelines may be applied whenever the
implementation of a testing environment similar to the ConcurrentTesting tool for
Java is attempted.

16.4 RELATED WORK

This work tackles the problem of testing concurrent programs through specialized
review and test techniques. Others have attempted to define a set of reusable concur-
rent design patterns [11] and thus avoid the problem of testing concurrent programs
altogether. Still others have formally approached the problem through modeling and
manual or automatic verification of the correctness of the concurrent program [1,
12, 14]. The reusable concurrent design pattern approach is challenged when the
off-the-shelf design pattern does not readily apply to the problem at hand while the
formal approach, although making great steps forward in the automatization of for-
mal verification [9, 13], is severely challenged by its scalability and the skill set it
requires from the programmer.

16.5 FUTURE WORK

Current commercial systems include hundreds or thousands of clients interacting
with several servers. The servers run databases and interact with storage components.
Many-core architectures are used by the different system nodes. Thus, correctly con-
structing concurrent programs on an unprecedented scale is becoming an urgent need.
Future work will further develop the techniques defined in this chapter to deal with the
scaling challenge. How do you review and test when there are thousands of interacting
tasks expected to run a multitude of environments? Clustering approaches are called
for. One must be able to reason about a small set of tasks and have the result apply
to the large scale as well. Similarly, in order to make the testing feasible, one should
be able to simulate, in its entirety, the typical complex commercial system with its
thousands of clients and expensive server and storage components. The current state
of the art needs to grow to meet these challenges.

16.6 CONCLUDING REMARKS

A fundamental principle of software engineering is hiding. Typically it applies to
the hiding of data manipulated by a given interface from the rest of the system. The
system design process is thus simplified in that only a small set of data needs to be
considered at any given time. In the context of the design of concurrent programs,
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a simpler principle applies, but it does not necessarily apply to the hiding of data.
Rather, you want to ‘hide’ concurrency from the rest of the system. One way of doing
so is by using an interface that provides concurrency guarantees such as atomicity to
the rest of the system. Otherwise, it is very hard to create a correct system that uses
concurrency.

Once such an interface is designed, its validation begins. If the test planning and
review techniques outlined in this chapter are applied from day one and the reviewed
test scenarios are then tested, we can be confident that the interface does not have
concurrency bugs. Debugging such bugs when the interface is integrated with the
entire system is incredibly hard, and thus the extra effort incurred by following this
chapter approach is worthwhile.
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PROBLEMS

16.1 Given a parallel program with n threads, each executing x + +, and an intended
result at the end of its execution of n, characterize the interleavings in C(P) and I(P)
− C(P) and determine if any value between 1 and n can be obtained as an end result
of the program execution.

16.2 Given a parallel program with n threads where an even thread obtains a lock,
execute x + + and release the lock and an odd thread executes x + +, determine the
possible end result of the program execution.

16.3 Give an example of an atomicity bug pattern that is not a high-level data race.
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CHAPTER 17

PARALLEL PERFORMANCE
EVALUATION AND OPTIMIZATION

Hazim Shafi

Improving application performance is the raison d’être of parallel programming
on shared-memory multicore processor systems. Unfortunately, achieving good
speedup and scalability on such systems can be challenging for all but a small class
of relatively simple applications. These challenges are usually the result of some
well-understood phenomena such as cache coherence overheads and delays due to
contention for synchronization objects. In this chapter, we will cover the most impor-
tant aspects of shared-memory parallel programming that impact performance. We
will also give guidance for diagnosing such issues in order to assist in performance
tuning. By paying attention to the main impediments to performance during appli-
cation design, developers can increase the chances of achieving good performance.

Although parallel program performance is also governed by the same issues
that affect serial programs, such as choice of algorithm and instruction and data
locality, we limit our discussion to topics that are specific to parallel programs.
The parallel performance advice presented here is applicable to a large spectrum of
shared-memory multicore programs and is not limited to a single application domain.

Programming Multicore and Many-core Computing Systems, 343
First Edition. Edited by Sabri Pllana and Fatos Xhafa.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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Our goal is to introduce all the important concepts and lead the reader to learn more
details about specific topics. Although many references are made to Windows®APIs,
the concepts described are applicable to many platforms, and readers are encouraged
to find the equivalent APIs for their specific parallel programming environment.

17.1 SEQUENTIAL VERSUS PARALLEL PERFORMANCE

There are many issues affecting performance that are different between a parallel
implementation and a sequential one. In this chapter, when we refer to a sequential
implementation, we imply an application running with a single thread of execution.
Conversely, a parallel implementation refers to an application written to run on a
multicore processor-based system with shared-memory support in order to leverage
all its processor cores to improve performance.

First, to ensure correctness in the presence of hardware caches, modern
multi-processors implement a cache coherence mechanism. Cache coherence results
in additional memory latency due to coherence cache misses. These overheads are
incurred when memory locations – or more accurately, cache lines – are shared
among processors in the system. This sharing can be true when memory locations
are shared among threads or false when different threads access different locations
that happen to reside on the same cache line. We will discuss the implications of
cache coherence in more detail in Section 17.3. Second, many shared-memory
programming models use the abstraction of a thread to allow developers to express
parallelism in their applications. Operating systems schedule these threads on a
system’s processor cores. Threads come with some inherent costs including memory
resources and context switch overheads. These costs can have a detrimental impact
on performance. We will discuss these costs and possible mitigations in Section 17.2.
Third, when a sequential application is parallelized, synchronization has to be added
to enforce data dependences and resolve data race conditions. Synchronization
introduces overheads that do not exist in the serial implementation, resulting
in potential performance degradation. We will discuss synchronization in more
detail in Section 17.4. Fourth, memory latency is one of the primary performance
bottlenecks in computers today. Although caches, simultaneous multithreading
and hardware- or software-controlled prefetching mechanisms have been used
extensively to reduce or hide memory latency, reducing memory latency remains a
very effective performance optimization. Many multicore processor-based systems
today implement nonuniform memory access (NUMA) memory hierarchies. This
means that memory latency as measured at a processor core can vary depending
on the physical memory location being accessed and the topological relationship
between the processor performing the access and the memory controller that owns
the memory address. We will cover NUMA issues in Section 17.5. Fifth, latency
hiding and asynchronous programming can be valuable tools for improving parallel
application performance because they allow an increase in the degree of concurrency
and processor efficiency for an application. We cover this topic in more detail in
Section 17.6.
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An important component of performance optimization is diagnostic tools.
Section 17.7 gives an overview of some tools and techniques that are effective for
identifying parallel performance bottlenecks.

17.2 THREAD OVERHEADS

Threads are similar to lightweight processes in the sense that they represent a proces-
sor core context (e.g. register contents), an area of memory used as a stack, and access
to resources owned by its parent process, such as file handles and the process’s mem-
ory address space. Many modern operating systems support kernel-level threads. This
means that the kernel is responsible for managing thread state and the scheduling of
threads on processor resources. This allows a single process to instantiate multiple
threads that execute in parallel in a multiprocessor system to improve performance.
When the kernel stops one thread running on a processor core and replaces it with
another, we refer to that as a context switch operation.

17.2.1 The Cost of Context Switches

A context switch involves saving an executing thread’s processor context and restor-
ing another thread’s context on the processor core on which the operation is taking
place. On architectures that have virtually indexed and tagged caches, a context switch
may also need to flush the caches to avoid threads from accessing cache lines belong-
ing to other processes. In addition, since a context switch may involve switching
process address spaces, again depending on the architecture, cached page table entries
in translation lookaside buffers (TLBs) may also need to be flushed.1 The direct per-
formance cost of a context switch is usually pretty small – on the order of a few
thousand CPU cycles. The direct costs can often be dwarfed by indirect costs. Indirect
costs of context switches include the following:

1. Memory latency: If a thread is switched out for a long period of time or
migrated to another processor core, then it will incur additional cache misses
when it is switched in. This is a natural consequence of other threads running on
the core and bringing in their working sets into the cache hierarchy, potentially
replacing the cache lines of threads that previously ran there. When a thread is
migrated, these effects are usually exacerbated since the thread’s working set
may not have been loaded into the caches to begin with. The degree of cache
miss increases, and the resulting memory latency is a function of many vari-
ables, including the system topology, the identity of the threads sharing the
processor cores and the degree to which the threads share data and instruc-
tions. For example, a thread that is migrated to a core that shares a cache
with the thread’s previous core might incur less cache miss latency overheads

1Cache and TLB flushes on context switches are rare on modern systems. This information is included for
completeness.



�

� �

�

346 PARALLEL PERFORMANCE EVALUATION AND OPTIMIZATION

compared to being migrated to a core that shares no caches with the previous
core.

2. Address translation: Just as caches keep recently accessed memory locations
close to the processor to reduce memory latency, TLBs keep address trans-
lation entries close to the processor to reduce the latency of translating virtual
addresses to physical addresses. This address translation has to happen on every
load or store instruction that is issued by the processor and often needs to
complete before the access may be presented to the cache hierarchy because
many modern caches are physically tagged. When a thread is switched out,
the address translation entries belonging to it (or more precisely, to its process
address space) may be replaced by those of the incoming threads. The degree to
which this occurs is a function of many variables, such as whether previously
running threads shared memory with the incoming thread, but the likelihood
that more TLB entries will be missing in the TLB usually increases when a
thread is migrated across cores or sockets. When a TLB lookup fails to find
an entry for a virtual address, a time-consuming page table walk has to take
place to find the correct entry. This page table walk, which may be performed
by the hardware or software, may involve multiple memory accesses, each of
which, assuming that page tables are cacheable, may result in a cache miss.
This makes TLB misses particularly costly to performance.

3. Interference with power management: Excessive context switches, espe-
cially those that transition a core to and from the idle state, can be even more
expensive. That is because it is often more energy efficient to switch a core to
a lower power state when it is idle or to even turn it off completely in certain
cases. When a core in a low power state has to transition back to running a
thread at full speed, there is extra latency in that transition. Reducing the num-
ber of executing threads to the minimum necessary increases the opportunities
for power reduction.

Because of the costs of context switches, it is recommended that developers avoid
situations that increase the number of context switches in their applications.

17.2.2 Guidance and Mitigation Techniques

This section describes suggested best practices to reduce context switch overheads.
We will not cover all techniques, rather, we will attempt to summarize those that we
believe are the most important based on experience:

• Create only the number of threads that are necessary to achieve best per-
formance. This may sound somewhat nebulous but is an extremely important
concept in many scenarios. The simplest example to illustrate this point is a
CPU-intensive application that is parallelized by partitioning its dataset across
n threads, where n is the number of cores in the system. This guideline suggests
that you should not create >n threads when this application executes. The rea-
soning is simple: creating additional threads does not improve performance
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since you can only run n threads at a time in parallel on the system, but you
are introducing more overheads due to an increase in context switches. In fact,
you might degrade performance significantly due to load balancing and non-
determinism introduced by the operating system’s scheduler. For example, if
the size of the dataset is p and you divide it equally among n threads, assum-
ing a linear relationship between data size and execution time, the algorithm
should complete in O(p/n); however, if you divided the data across n + 1
threads, the execution time, depending on scheduling, could become as high
as O(2p/(n + 1)) because only n threads may execute simultaneously, and
all of them will have to wait for the last thread to complete before the program
may terminate. A common class of programs where introducing more threads
can degrade performance due to context switch overheads is server applications
that use threads to hide latency. In such applications having more threads than
the number of cores makes sense if threads often block (e.g. due to input/output
(I/O)) while handling requests. In order to increase CPU utilization, program-
mers typically inject more threads to keep the processor cores busy. But, if
this is not done carefully, performance can degrade when more threads than
necessary to maximize CPU utilization are introduced. In such a case, context
switch overheads, including cache and TLB effects, may reduce the CPU time
used to execute the workload and throughput degrades. In addition, synchro-
nization overheads may increase due to higher contention (see Section 17.4).
Many server applications of this ilk use thread pool abstractions to dynamically
manage the number of threads. Unless the pool implementation monitors the
right performance metrics for a given application (e.g. throughput or latency)
to ensure that adding threads is improving performance, thread injection may
result in worse performance.

• Avoid excessive thread creation/destruction. Thread creation and destruc-
tion can be time consuming because the kernel has to create and tear down
thread-related data structures. Whenever possible, threads created to execute a
task should be reused and assigned additional tasks rather than terminated.

• Watch out for thread memory usage. Each thread owns a private stack that
consumes process address space. For example, the default stack size for a Win-
dows Win32 or .NET user application thread is 1 MB. Although the system is
clever about committing memory for the thread’s stack, 1 MB of virtual address
space will be reserved to ensure that the stack resides in contiguous addresses.
When hundreds of threads are created, hundreds of megabytes of address space
are consumed. One way to mitigate this cost is to tune the stack size, but this
can be tricky and stack overruns may be difficult to diagnose.

• Carefully use thread affinity to minimize thread migration overheads.
Operating system schedulers may implement policies to minimize thread
migration penalties by restricting specific threads to execute on a specific set
of processor cores. Even when a thread needs to be migrated, the scheduler
might attempt to minimize the penalty by using another core on the same
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die or socket; however, the scheduler usually does not know the relationship
among threads and data, so it can easily choose a suboptimal core. One way
of mitigating this is to inform the operating system of the set of cores that a
thread’s execution should be constrained to in order to optimize performance.
The operating system treats such instructions as a contract, meaning that it
will not schedule a thread on a core that is not specified in that thread’s set of
cores as specified by the programmer. The reason why we caution against the
widespread use of thread affinity is that applications are often not aware of the
resource requirements of other workloads running on the system. If all appli-
cations request thread affinity on a certain set of cores while other cores are
idle, performance can degrade. That is why we typically discourage the use of
processor affinity unless the application in question has full knowledge of the
load on the system and the distribution of resources. In practice, this implies
that affinity should only be considered in server-like or high-performance
computing environments. Using affinity for client applications should be
avoided. Another drawback of affinity is that it can introduce load-balancing
problems where some cores are oversubscribed while others are experiencing
significant idle periods. Since the operating system’s scheduler is aware
of resource utilization in the whole system, it can often do a better job
distributing work across the system’s processors. Finally, thread affinity can
also prevent the system from distributing work in a manner that reduces
energy consumption by putting one or more cores into low power states.

17.3 CACHE COHERENCE OVERHEADS

Before discussing the performance implications of cache coherence, it is worthwhile
to introduce the motivation for implementing cache coherence.

Table 17.1 Example of cache coherence problem.

Time Core 0 Core 1

t = 0 ld r0, [x] ld r0, [x]
t = 1 incr r0
t = 2 st[x], r0
t = 3 ld r1, [x]

Table 17.1 illustrates a simple cache coherence problem using pseudoassembly
code. Assume that memory location x contains 0 at time t = −1 and that both cores
contain private caches that are empty. At t = 0, two threads from the same process
(i.e. sharing the same address space) load the contents of address x into their respec-
tive caches. The thread on Core 0 proceeds to increment the value and store it back
to the same memory location. This store overwrites the previous cached value of x in
Core 0’s cache. When Core 1 performs a read of location x at t = 3, in the absence
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of a cache coherence mechanism, it will read the old cached value of 0 instead of
1. Most developers would rather program on a machine where a load always returns
the last value written. That is what cache coherence provides, namely, ensuring that
a load from a memory location returns the last value written to it. Note that for this
to work, the memory operation has to be seen by the cache subsystem, so stores that
are buffered within the core are not subject to cache coherence mechanisms.

The performance implications of cache coherence become obvious when we study
how it is achieved. Most systems today implement a form of invalidation-based cache
coherence [5]. In such systems, each cache line implements a state machine based on
activity by the owning core(s) and memory transactions involving the cache line in the
system. When a processor performs a write to a cache line, that operation is delayed
until all other copies of the target cache line are invalidated in all other caches in
the system, ensuring that subsequent reads will have to wait to fetch the up-to-date
version of the cache line. So, in our example shown in Table 17.1, when the store
operation is performed on Core 0 at t = 2, it will only proceed after the copy of the
cache line in Core 1’s cache is invalidated. This ensures that Core 1 will see the new
value at t = 3 since the read will miss in the cache due to the invalidation and the
latest copy of the cache line will be fetched in. This additional cache miss due to
invalidation is referred to as a coherence miss and is the primary performance impact
of cache coherence. The delay incurred by Core 0 as the invalidation of Core 1’s cache
line takes place may also degrade performance, but many techniques are implemented
in hardware to minimize the impact of write latency [2].

17.3.1 Guidance and Mitigation Techniques

Now that we have given an overview of the performance impact of cache coherence,
we present the following guidelines for minimizing these overheads:

• Minimize write sharing. From the aforementioned description of cache
coherence mechanisms, it becomes clear that one primary goal of parallel
performance tuning is to avoid coherence misses. Coherence misses only occur
as a result of cache line invalidations triggered by store operations. Loads due
to read-only sharing do not cause coherence overheads. So, minimizing the
negative impact of cache coherences implies reducing the number of stores to
shared data structures that are followed by load misses at other processors that
would otherwise be cache hits. This optimization requires a careful choice
of algorithms, data partitioning and data layout strategies to minimize these
shared read–write access patterns.

• Avoid false sharing. The worst scenario related to cache coherence
overheads is when applications suffer the penalty of cache coherence misses
on data structures that are not shared. This can occur when thread-private data
structures from multiple threads happen to reside on the same cache line. Store
operations to the cache line by one or more of the threads causes excessive
coherence misses. This problem can be identified by observing excessive
cache misses on accesses to private (nonshared) data structures. Avoiding false
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sharing requires identifying the data structures that can reside on the same
cache line and may require padding, alignment and/or restructuring of data
structures to eliminate this behavior. A similar problem occurs when multiple
contended-for shared structures reside on the same cache line (e.g. multiple
locks), which exacerbates contention and degrades performance further.

17.4 SYNCHRONIZATION OVERHEADS

Synchronization is one of the main causes of performance and scalability degrada-
tion in shared-memory parallel programs because it introduces serialization and CPU
overheads. Serial code is detrimental to scalability as illustrated by Amdahl’s law [3].
Synchronization is required by parallel applications to ensure correctness for two pri-
mary reasons. First, when serial programs are parallelized, a mechanism is needed to
ensure that all data dependences that exist between memory operations performed by
different threads are enforced. This mechanism comes in the form of explicit syn-
chronization APIs that are inserted by the application developer. Second, when two
or more threads may simultaneously access the same memory location and at least
one of these accesses is a store, it is necessary to serialize accesses to ensure cor-
rectness. This is addressed using either locks or atomic fetch-and-op operations. In
both cases, ensuring correctness through synchronization primitives or atomic oper-
ations introduces execution time overheads. The main sources of synchronization
overheads are:

1. Cache coherence traffic on the data structures of the synchronization object
itself, which causes an increase in memory latency delays experienced by the
application program.

2. Contention for synchronization objects introduces queuing delays and exacer-
bates cache coherence overheads due to contention on cache lines containing
those synchronization objects. The nature of contention can vary depending on
the usage of the synchronization operation, its frequency, duration for which a
primitive is held by a thread and the number of threads/cores participating in
computation.

3. Fairness of the synchronization primitive’s implementation plays an important
role in synchronization object acquire time distribution which may impact load
balancing.

4. Interactions with the operating system scheduler can also increase the over-
heads of synchronization. For example, if a thread is preempted while holding
a synchronization object, all other threads waiting on that object will incur
longer synchronization acquire overheads. When threads of varying priority
synchronize, a low-priority thread that is holding a lock can delay the exe-
cution of higher-priority threads, especially when the low-priority threads are
preempted. This phenomenon is often referred to as priority inversion. On MS
Windows operating system, priority inversion may occur as a result of implicit
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priority boosts when certain synchronization events (see the documentation for
the Win32 SetThreadPriorityBoost() function for more information).

5. Interactions with memory ordering optimizations implemented by the proces-
sor can increase synchronization delays. This is because synchronization oper-
ations typically include either memory serializing or barrier/fence instructions.
Such instructions reduce the processor’s ability to hide memory latency. For
example, a memory barrier/fence might cause the processor to wait for any
buffered store operations to become globally visible before the synchronization
memory operation can complete. This adds more memory latency costs to the
application and may increase the effective synchronization object’s hold time.

17.4.1 Types of Synchronization Primitives

Synchronization operations fall into four categories:

1. Locks: These are constructs used to ensure mutual exclusion or serialize access
to shared objects, typically for solving race conditions. Win32 critical sections,
slim reader/writer locks, mutexes, and semaphores are examples.

2. Flags: These are primitives used to preserve data dependence constraints, for
example, in a producer–consumer relationship among threads. Win32 events
and condition variables are examples of flag synchronization objects.

3. Barriers: These are primitives used to ensure that multiple threads have
reached a certain point in their execution and to notify all participating threads
of that fact. There are no barrier synchronization objects in Win32. A slightly
different form of a barrier, often called a join, allows a thread to wait for other
threads to terminate. This is accomplished by waiting on thread handles using
the WaitForMultipleObjects() API in Win32. The use of joins is discouraged
because it relies on threads terminating. It is more efficient to reuse threads
when possible across barrier synchronization operations.

4. Atomic or interlocked operations: These are a set of atomic operations on
memory locations that provide serialization without needing locks. They are
implemented using atomic instructions such as compare and exchange or load
linked/store conditional in the processor’s instruction set. They require special
hardware support to ensure atomicity. The InterlockedCompareExchange() and
InterlockedIncrement() APIs in Win32 are examples.

17.4.2 Guidance and Optimizations

Before providing guidance on the choice of primitives, it is important to discuss
some of the performance aspects of synchronization object implementations that will
inform the guidance provided in the following text. There are four things to consider:
waiting mechanism, kernel-mode versus user-mode actions, fairness and reader ver-
sus writer differentiation. We describe these aspects next.
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17.4.2.1 Blocking versus Spin-Waiting An important decision when choos-
ing or implementing a synchronization primitive is the mechanism used for waiting
when a thread cannot immediately acquire the object. There are two basic choices:
either to block the thread or to spin-wait (poll). A potential third alternative is to pro-
vide a nonblocking means of checking whether the object is free or can be acquired
without blocking. That gives the thread the option of doing other useful work while
the object is busy. Blocking usually implies that the thread will cease execution and
block either in the kernel or in a user-mode threading library waiting on a signal to
awaken it. The advantage of this option is that the thread does not consume any CPU
cycles while waiting, allowing other threads with useful work to proceed. A block-
ing thread will also not constantly read the cache line containing the object, which
reduces contention, memory interconnect bandwidth and energy consumption. The
disadvantage is that additional latency will be incurred from the time that a synchro-
nization object becomes free until the thread is awakened and rescheduled, so it can
acquire the object. In fact, depending on the fairness of the implementation (see fol-
lowing text) the thread may not wake up in time to successfully acquire the object.
The alternative, which is spin-waiting, affords the minimum latency between a syn-
chronization object freeing up and the waiting threads being notified. Unfortunately,
spin-waiting comes with many disadvantages. The obvious one is that spin-waiting
wastes CPU cycles and memory interconnect bandwidth that can be used to perform
work, so it can degrade performance. It also increases the energy consumption of the
system. When there is no other useful work that can be scheduled, spin-waiting pre-
vents the CPU from switching to a low power state. Some efficient synchronization
implementations use a short spin-waiting loop before blocking a thread to capture
cases where acquisition delays are usually very short, thereby capturing the benefits
of spin-waiting while avoiding the negative side effects just mentioned. This is the
strategy employed by critical sections in Win32, for example. Some synchronization
operations use sleeps or yields in the spin-wait loop. A sleep usually blocks a thread
for a given period of time. Using sleeps while spinning is almost never wise because it
causes context switches while not ensuring the low latency benefits of spin-waiting.
In contrast, yields (e.g. using the SwitchToThread() API in Win32) are operations
that invoke the operating system’s scheduler to preempt the executing thread if other
threads are ready to run. Although this might mitigate some of the bad effects of
spin-waiting by allowing other threads to perform useful work, it does not negate
the power management concerns since it will keep the spin-waiting thread running
when there is no other work pending. Some architectures include special instruc-
tions that improve the performance and reduce the power consumption of spin-wait
loops. For example, the Intel x86 architecture defines the PAUSE instruction for this
purpose.

17.4.2.2 Kernel Mode versus User Mode In the previous section, we
discussed how hybrid short spin and block implementations of some synchronization
variables can be an effective compromise to achieve short acquire latencies while
minimizing wasted CPU cycles and energy consumption. When synchronization
primitives implement blocking through operating system calls, the kernel has to be
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invoked, which is an expensive operation. One way of reducing kernel involvement
is to use user-mode threading libraries such as the Concurrency Runtime (ConcRT)
or the user-mode scheduling (UMS) packages from Microsoft®. Such user-mode
runtime systems reduce the need to invoke the kernel by allowing a transition from
a blocking thread (or a task in ConcRT terminology) to another task that is ready
to execute without involving the kernel. This reduces overheads while allowing the
running process to use its complete scheduling quantum which is another benefit of
such techniques.

Some synchronization primitives allow synchronization across processes. The
mutex and semaphore objects in Win32 are examples of such synchronization prim-
itives. In order to support interprocess synchronization, the kernel has to play a role
in communicating across the different address spaces. This makes such primitives
expensive compared to others that do not support interprocess synchronization, such
as the Win32 critical sections. Lightweight synchronization primitives like critical
section only invoke the kernel when a thread needs to block but otherwise operate
completely in user mode. Developers should be aware of these implementation
details when choosing appropriate synchronization primitives for their applications.

17.4.2.3 Fairness The question of fairness in synchronization primitives is an
important one. Fairness in this context refers to whether a synchronization primitive
implements provisions to ensure that the thread that has been waiting the longest to
acquire a synchronization object will be given priority to acquire it when it becomes
free. The concern here is whether some threads can starve others, which can eventu-
ally lead to load imbalance and performance degradation. In other cases, starvation
can ruin the user experience if the thread being starved is the user interface (UI) thread
for instance. So, the fairness of synchronization primitives used by an application is
another important characteristic that one should keep in mind when implementing
parallel programs.

Fairness usually requires implementing a queue abstraction that tracks the order
in which threads block waiting on a synchronization object. When the synchroniza-
tion object is released, the thread at the head of the queue is awakened, allowing it to
acquire the object and make forward progress. When blocking is used, this unfortu-
nately introduces a source of inefficiency due to the delay between the object being
freed and the thread getting scheduled in order to acquire the object. This delay can be
significant and results in exacerbating queuing delays and contention for the object in
question. This is the strongest reason for not implementing high levels of fairness. For
spin locks, it is possible to implement fairness while minimizing scheduling delays
and contention for the spin variable as is the case with MCS locks [6]. In Windows
Win32, critical sections do not implement fairness, thus reducing scheduling delays,
but one needs to be careful if starvation can be detrimental to performance in the
particular use cases. Win32 mutexes and semaphores are fair.

17.4.2.4 Reader versus Writer Differentiation Generic lock implementa-
tions do not differentiate between threads that acquire a lock to read memory locations
protected by it and others that write to the same locations. Since race conditions
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require at least one writer to exist, it is perfectly legal to allow multiple reader threads
to acquire a lock simultaneously while requiring writers to obtain exclusive access
to the lock. This is the motivation for using so-called reader–writer locks. Imple-
menting such locks efficiently is nontrivial because of certain challenges that arise.
For example, the lock has to implement a policy with respect to writer threads to
avoid starving them when a constant stream of readers continuously acquires the
lock. Addressing these concerns results in reader–writer lock implementations that
are inherently more time consuming than generic locks. This implies that one needs
to use such locks with care by ensuring that the ratio of readers to writers is high
enough to reap the benefits of the increase in concurrency despite the increase in lock
acquire and release overheads.

17.4.2.5 Synchronization Guidelines Here are some rules that can help
improve the performance of your parallel algorithm by reducing synchronization
overheads:

• Avoid synchronization when possible. The best way to minimize synchro-
nization overhead is to avoid synchronization altogether. This often means
thinking about your algorithm and finding ways of reducing or eliminating
synchronization. Data privatization is often very useful for this. This refers to
a class of transformations that allow multiple threads to compute and update
partial results that are frequently generated in thread-private memory while
minimizing the frequency that such results get reflected in globally shared
data structures. Careful design and consideration prior to implementation can
greatly reduce the need for synchronization.

• Avoid spin-waiting. Pure spin-waiting synchronization primitives almost
never make sense unless you are dealing with low-contention environments
or operating system operations where blocking is not allowed. The costs in
terms of wasted CPU cycles and power consumption usually far outweigh
any responsiveness benefits. Hybrid spin-wait then block implementations are
often a good compromise.

• Use reader–writer locks when effective. If the sharing pattern for variables
protected by a lock exhibits a high reader to writer thread ratio, you should
consider using reader–writer locks. The exact ratio of readers to writers beyond
which such locks improve performance is implementation dependent, so you
should guide your decision by measurements. Beware that such optimizations
only benefit situations with lock contention.

• Understand fairness requirements. Synchronization primitives may or may
not guarantee fairness, and you should consider to what degree fairness is
required for your application. Beware that fairness often comes at a perfor-
mance penalty, so you should only strictly enforce it when necessary.

• Cautiously consider lock-free algorithms. Lock-free algorithms attempt to
improve performance by replacing high-level synchronization objects such as
locks with atomic (interlocked) operations. This exposes such algorithms to
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memory ordering issues, potentially requiring the insertion of memory bar-
rier/fence instructions. In addition, such algorithms may result in performance
degradation if excessive interlocked operations are required for correctness. In
general, lock-free algorithms are considered difficult to program and verify to
be correct, so one needs to be careful before considering them.

17.5 NONUNIFORM MEMORY ACCESS

Memory latency continues to be a major performance bottleneck for CPU-bound
application phases. Many modern multicore processor implementations integrate
memory controllers on chip, reducing the latency to main memory. To support
multisocket multiprocessors, systems today implement point-to-point intercon-
nection networks that allow any thread running on any socket to access physical
memory attached to either the local memory controller or a controller on a remote
socket while supporting cache coherence. In multisocket systems, this configuration
unfortunately results in variable memory latencies depending on the source of the
data. Further, the ratio of latency differences can vary depending on the system
topology and identity of communicating sockets. Performance measurements on an
Intel Nehalem-EX-based two-socket system show approximately a 50% increase
in memory latency when accessing a remote cache line. Systems that exhibit
this phenomenon are referred to as cache-coherent non-uniform memory access
(ccNUMA) systems. We will use NUMA for short. Most modern multisocket
computer systems today fall into this category. One or more memory controllers on
a single package in a NUMA system are often referred to as a node. A node usually
has a group of processor cores associated with it, but that is not necessarily the case
(i.e. there can be nodes that do not contain processor cores).

NUMA systems present a challenge to application performance because, depend-
ing on where a thread is running and which memory address it’s accessing, the per-
formance of the application may vary. This presents developers with the additional
burden of ensuring that their applications do not suffer from NUMA latency effects.
This section describes how this may be accomplished.

Optimizing performance on NUMA systems is simple in principle. To improve
performance, threads should access data that is allocated from the memory controller
that is closest in latency to the processor core(s) on which they execute. Achieving
this simple task can be difficult in practice, but the next section presents some useful
guidance.

17.5.1 Guidelines and Optimizations

This section gives an overview of NUMA-specific optimizations to improve applica-
tion performance on such systems.

17.5.1.1 Data Partitioning and Allocation When designing a parallel pro-
gram that runs on a NUMA system, care must be taken to ensure that private or
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shared-memory data structures that are mostly accessed by a thread or groups of
threads running on a given node are allocated from the nearest memory controller.
Data structures shared equally among threads on different nodes should be distributed
among the nodes in order to achieve reasonable average latency behavior.

In order to accomplish the aforementioned, the operating system’s memory man-
ager and the programming APIs need to implement NUMA support. Standard heap
managers usually provide a means for allocating and freeing virtual addresses; how-
ever, here we are concerned with physical memory allocation. Often, when a portion
of a process’ address space is touched for the first time, the memory manager allocates
physical memory (usually at the granularity of a page) and creates a corresponding
address translation entry. Unless the programmer provides the memory manager with
a hint to ensure that physical memory is allocated from a specific node, the memory
manager will use its own heuristics for allocation which might not be ideal for the
application. As of Windows Vista and Windows Server 2008, there are APIs that allow
applications to request that physical memory be allocated from a specific node. The
memory manager does its best to comply with the request when allocating physical
pages to back the requested virtual addresses.

One complicating factor is the degree of NUMA awareness in runtime systems
and operating systems. For example, the standard C/C++ heap manager is usually
not NUMA aware. The same applies to the .NET Framework and Java, although there
has been some recent work to improve this. Operating system memory managers try to
compensate for this by implementing heuristics such as a first-touch physical mem-
ory allocation policy where a page is allocated from the node on which a memory
address was accessed first. Although such heuristics help, they do not replace inten-
tional actions by the developers who best understand application behavior. It will take
some time for NUMA awareness to permeate all systems, programming languages,
libraries and runtimes. In the meantime, you should leverage whatever support exists
to improve memory allocation locality.

17.5.1.2 Computational Affinity Ensuring that memory is allocated from a
specific node will not improve performance unless some assurances are in place that
the thread(s) accessing that memory will run on cores in the same node. This requires
a means of conveying this requirement to the operating system’s scheduler. In Section
17.2, we discussed setting thread affinity in the context of techniques to reduce thread
migration. We also discussed that setting affinity may interfere with power manage-
ment or cause interference or conflict when different applications affinitize many
threads on the same core while other cores are idle or lightly loaded. The type of
affinity we were assuming in that section is referred to as hard affinity because the
scheduler will always schedule a thread on a core that is in that thread’s specified affin-
ity set. The same arguments against hard affinity apply here, except for very specific
environments such as high-performance computing or server applications where a
single process effectively has full ownership of all compute and memory resources in
the system. In contrast, soft affinity is a compromise that provides reasonable guaran-
tees for computational locality while reducing bad effects. This form of affinity allows
the developer to specify a preferred core as a hint to the operating system scheduler,
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but it allows the scheduler to override that hint based on the load on the system and
current resource utilization. The scheduler may also exercise some NUMA aware-
ness by trying to keep a thread on cores that share the same NUMA node – often a
multicore processor – as the preferred core. This minimizes thread migration over-
heads while keeping the thread close to its preferred memory controller. If cores in a
NUMA node share a cache, the overhead incurred by migrating a thread to a core on
the same node is further reduced.

17.5.1.3 Understanding System Topology The previous advice regarding
computation and memory allocation locality implicitly requires a good understanding
of system topology. In addition, it requires a good understanding of processor and
memory utilization across NUMA nodes. The Windows operating system includes
provisions for retrieving the topology of the system in terms of the number of cores,
whether the system supports simultaneous multithreading on each core, the cache
hierarchy, how each cache level is shared as well as the socket and node that each core
and cache belongs to. It also includes APIs to query the amount of free memory on
each NUMA node. By using these APIs in conjunction with the memory management
and thread affinity APIs, good performance can be achieved on a NUMA system.

17.6 OVERLAPPING LATENCY

I/O latency can be a major source of serialization in a parallel application. The best
way to deal with I/O is to overlap it with other work when possible. Modern oper-
ating systems include support for overlapped (or asynchronous) I/O. This support
often eliminates the complexity of creating dedicated application I/O worker threads
in order to overlap I/O latency to avoid blocking. Overlapped I/O minimizes the
resource and context switch overheads associated with threads covered previously.
In Windows, for example, the I/O completion port facility can be used to support
asynchronous I/O. This is a construct that allows programmers to manage I/O inten-
sive application phases while providing reasonable bounds on the number of threads
simultaneously handling I/O completions. For example, imagine an application that
receives requests from a network. At any given point in time, the application needs
to post receive buffers on a socket and perform work on the data received while
minimizing thread context switches. An I/O completion port delivers I/O comple-
tion notifications to threads waiting on the port and allows the specific degree of
thread concurrency indicated by the developer to limit the number of threads actively
working at a given point in time. You should familiarize yourself with such asyn-
chronous I/O facilities in your runtime environment if your application’s concurrency
is affected by serialization due to disk or network I/O. A key to success is to achieve
the right balance between fully utilizing the bandwidth of I/O devices by generating a
sufficient number of concurrent I/O requests and finding enough CPU-intensive work
to hide the latency resulting from the I/O requests.

Just as I/O latency can be hidden, so too can memory latency. This is done through
software- [8] or hardware-controlled [4] prefetching. The former is usually performed
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by hand or through compiler optimizations. Special instructions are inserted into the
instruction stream by the compiler in order to prefetch cache lines in anticipation of
future reads or writes. Hardware-controlled prefetching is performed by the cache
hierarchy of the processor when cache misses with detectable patterns are identified.
The interested reader should refer to the following reference for more information on
this topic [5].

17.7 DIAGNOSTIC TOOLS AND TECHNIQUES

Diagnostic tools are critical to achieving good performance in parallel applications.
That is borne out of the significant cognitive load necessary to track the complex
interactions between hardware and software that can affect performance in a multi-
core processor-based computer system. In this section, we give a brief description of
tools used in many aspects of parallel performance tuning.

17.7.1 Synchronization Overheads

The techniques used to understand synchronization overheads depend on the waiting
mechanism used. For spin-waiting synchronization primitives, the best tool is usu-
ally a profiler. There are various profilers that may be used with varying degrees of
runtime overhead and fidelity of data. Some Microsoft Visual Studio editions include
one profiler based on sampling and another based on instrumentation. In order to
identify whether synchronization overheads are high, it is possible to search for the
signature of the synchronization function in the output of the profiler. We usually rec-
ommend starting with the sampling profiler in order to catch obvious issues. Switch
to the instrumentation profiler for detailed analysis of specific binary objects. If you
use the instrumentation profiler across an entire application, it is likely that the output
data, analysis time and runtime overheads will become excessive. The instrumenta-
tion profiler provides function call counts and other more fine-grained metrics about
synchronization routines. Note that the Win32 API set does not offer a user-mode
spin lock, so analysis of spin-waiting is usually related to a user’s own synchroniza-
tion library. However, contention for some system structures that may use spin locks
may be exposed and solved using such profilers.

For analysis of blocking synchronization APIs, including critical sections, events,
condition variables, mutexes, slim reader–writer locks and semaphores, we suggest
using the Concurrency Visualizer (CV) tool that first appeared in Visual Studio®2010
Premium and Ultimate [11]. This tool is based on Event Tracing for Windows (ETW)
[9] and was designed for performance analysis of multithreaded applications. Using
this tool, one can determine the amount of time spent by threads waiting for syn-
chronization objects as well as the resulting impact on CPU utilization or effective
thread concurrency during an application’s execution. The tool relates synchroniza-
tion delays to application source code, thereby enabling efficient performance tuning
through integration with the editor and compiler in the Visual Studio integrated devel-
opment environment.
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Other processes
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sqlserver (PID = 5272)

Figure 17.1 CPU Utilization view in CV showing poor concurrency in execution.

Here’s an example illustrating how CV can be used to discover and fix synchro-
nization issues in a commercial workload. In this case, the throughput and CPU
utilization of the benchmark was very low, so we used the CV to analyze performance.
Figure 17.1 shows the CPU Utilization view in CV. The graph shows time on the
x-axis and the number of cores on the y-axis. There are three shaded areas. The bot-
tom area shows the average number of cores being utilized by the process under anal-
ysis (SQL Server in this case) on a system with 160 logical cores. The middle region
corresponds to average number of idle cores at a given time. The top area shows cores
being utilized by other processes (predominantly an application server process in this
case). To understand the root cause of the lack of CPU utilization by the database
system, we switched to the Threads View shown in Figure 17.2. In this figure, thread
states are depicted using colors in horizontal channels representing time. In the figure,
you will notice that most threads spend a significant amount of time blocked on syn-
chronization (black areas), while a single thread is always running (light-shaded line
near the top). By clicking on one of the black blocking segments for a given thread,
the blocking segment highlighting (wider middle-shaded rectangle) the application
call stack where the current thread is blocked is shown in the window at the bot-
tom. A white arrow (hard to see in the figure) connecting to another thread shows the
thread that was holding the synchronization object, and another report tab (not shown)
can show the call stack of that thread when it released the synchronization object.
Using such tools, it was easy to determine that most threads were blocked on a single
CPU-bound thread, and we were able to address this bottleneck in the application.

Another powerful ETW-based tool is the Windows Performance Analyzer
(WPA) [7]. WPA is a free tool that can be used to perform blocking analysis similar
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Figure 17.2 Thread synchronization analysis using the Concurrency Visualizer.

to CV. Both tools support an ETW-based sample profiler, which makes them a good
starting point for both spin-waiting and blocking synchronization analysis. However,
the Visual Studio profiler has more fine-grained control of parameters such as the
sampling rate.

17.7.2 Thread Context Switches and Migration

Both CV and WPA provide excellent information about thread context switches via
the ETW context switch provider in the Windows kernel. CV has a specific visual-
ization and set of statistics to illustrate thread migration issues (not shown here). The
Windows Performance Monitor (perfmon.exe) tool also has per-thread context switch
rate counters (located under the Thread performance counter object), but we recom-
mend an ETW-based approach because it can provide call stacks at context switches,
making the data more actionable by the developer.

17.7.3 Processor and Memory Utilization

Per-core processor utilization information is provided by the Processor Information
performance counter object in the Windows Performance Monitor. These counters
may be interrogated by application programs to dynamically assess processor uti-
lization. The Win32 APIs include support for determining the amount of memory
available per NUMA node. The WPA tool has good support for computing and dis-
playing CPU utilization versus time based on kernel context switch information. WPA
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allows filtering data by specific segments of time and generation of reports for various
events of interest during specific time periods.

17.7.4 Caching, Sharing and NUMA Effects

The best tools to reason about cache effects as well as the impact of NUMA mem-
ory access delays require accessing hardware-specific performance counters. Current
processors include a significant amount of performance instrumentation for tracking
a wide variety of events, such as cache misses. Some processors also include sophis-
ticated instrumentation to determine the latency of cache misses, which is highly
valuable for NUMA system analysis.

Since hardware vendors know the details of their hardware well before external
tool developers, the hardware vendor tools are often the first to adopt new perfor-
mance instrumentation features. For Intel®IA32 or IA64, Intel®’s VTune™ [10]
and the Performance Tuning Utility (PTU) tools are probably your best option. For
AMD®processors, we recommend using CodeAnalyst™ [1]. There is also a large set
of utilities that performance engineers have built and shared, so it is worth doing a
quick tool search on the internet.

When looking for a good tool, you should choose one that not only informs you
of the count of events, but also provides the instruction and data addresses when
appropriate. At the very least, the tool should be able to resolve symbols to correlate
instruction pointer values to your source code. Without this information, such tools
may still be useful for self-relative comparisons during performance tuning, but they
are not nearly as valuable as tools that can pinpoint specific application constructs
that cause performance issues.

17.7.5 Input/Output Overheads

The Windows operating system includes a significant amount of instrumentation for
I/O operations. Both WPA and CV have good support for analyzing disk I/O over-
heads, including latencies, associated thread delays, file names accessed, reads versus
writes and I/O sizes. That’s a great starting point for understanding the impact of
I/O. Because the tools can provide call stacks, they can greatly assist in correlating
performance bottlenecks to the responsible source code.

17.8 SUMMARY

In this chapter we gave a summary of many issues that can limit the performance
and scalability of shared-memory parallel programs. We also provided guidance to
aid programmers in making good choices to improve the performance of their appli-
cations. Finally, we provided some pointers to performance analysis tools that can
significantly reduce the burden of identifying and understanding performance bot-
tlenecks. We hope that you will find enough guidance here to navigate some of the
challenges of designing and implementing efficient parallel programs.



�

� �

�

362 PARALLEL PERFORMANCE EVALUATION AND OPTIMIZATION

REFERENCES

1. Advanced Micro Devices, Inc., AMD CodeAnalyst Performance Analyzer, http://
developer.amd.com/cpu/CodeAnalyst/Pages/default.aspx

2. S. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial. IEEE
Computer, 29.12: 66–76, 1996.

3. G. M. Amdahl. Validity of the single processor approach to achieving large-scale comput-
ing capabilities. In AFIPS Conference Proceedings, pages 483–485, 1967.

4. T.-F. Chen and J.-L. Baer. Reducing memory latency via non-blocking and prefetching
caches. In Proceedings of the Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 51–61, 1992.

5. D. E. Culler, J. Pal Singh, and A. Gupta. Parallel Computer Architecture: A Hardware/
Software Approach. Morgan Kaufmann Publishers, Inc., San Francisco, 1999.

6. J. M. Mellor-Crummey and M. Scott. Algorithms for scalable Synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9.1: 21–65,
1991.

7. Microsoft Corporation, Windows Performance Analysis Tools, January 2011. http://
msdn.microsoft.com/en-us/performance/cc825801.aspx

8. T. C. Mowry. Tolerating Latency through Software-Controlled Data Prefetching. Ph.D.
dissertation, Computer Systems Laboratory, Stanford University, 1994.

9. I. Park and R. Buch. Improve debugging and performance tuning with ETW. MSDN Mag-
azine, April, 2007.

10. J. Reinders. VTune Performance Analyzer Essentials: Measurement and Tuning Tech-
niques for Software Developers. Intel Press, 2005.

11. H. Shafi. Performance tuning with the concurrency visualizer in visual studio 2010. MSDN
Magazine, 2010.



�

� �

�

CHAPTER 18

A METHODOLOGY FOR OPTIMIZING
MULTITHREADED SYSTEM
SCALABILITY ON MULTICORES

Neil Gunther, Shanti Subramanyam and Stefan Parvu

18.1 INTRODUCTION

The ability to write efficient multithreaded programs is vital for system scalability,
whether it be for parallel scientific codes or large-scale web applications. Scalability
is about guaranteeing sustainable size, so it should be incorporated into initial system
design rather than retrofitted as an afterthought. That requires a complete methodol-
ogy which combines controlled measurements of the multithreaded platform together
with a scalability modeling framework within which to evaluate those performance
measurements.

In this chapter we show how scalability can be quantified using the universal
scalability law (USL) [9, 10] by applying it to controlled performance measurements
of memcached (MCD), J2EE and WebLogic. Commercial multicore processors
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are essentially black boxes, and although some manufacturers do offer specialized
registers to measure individual core utilization [14, 25], not just overall processor
utilization, the most accessible performance gains are primarily available at the appli-
cation level. We also demonstrate how our methodology can identify the most signifi-
cant performance tuning opportunities to optimize application scalability and provide
an easy means for exploring other aspects of the multicore system design space.

The typical performance focus is on tools and techniques to profile and compile
fine-grained parallel codes for scientific applications executing on many-core and
multicore processors. Here, however, we shall be concerned with performance
at the other end of that spectrum, namely, system performance of concurrent,
multithreaded applications as employed by commercial enterprises and large-scale
web sites. Economies of scale dictate that these systems eventually be migrated to
many-core and multicore platforms.

Why is the emphasis on system performance important? Whatever the perfor-
mance gains attained at the individual processor level, the impact of those gains must
also be evident at the integrated system level so as to justify the cost of the effort.
A fortiori, optimizing a local processor subsystem does not guarantee that the total
system will also be optimized.

The claimed benefits of the various tools used for programming multicore appli-
cations [15, 17, 22] need to be evaluated quantitatively, not merely accepted as qual-
itative prescriptions [16, 18]. It often happens that applications which are heralded as
being multithreaded and scalable turn out not to be when measured correctly [11]. To
avoid setting incorrect expectations, system performance analysis should be incorpo-
rated into a comprehensive methodology rather than being done as an afterthought.
We provide such a methodology in this chapter.

The organization of this chapter is as follows: In Section 18.2 we establish some
of the terminologies used throughout and the basic procedural steps for assessing sys-
tem scalability. In Section 18.3 we review what it means to perform the appropriate
controlled measurements. The design and implementation of appropriate load test
workloads for such controlled measurements is discussed in Section 18.4. Section
18.5 presents the universal scalability model that we use to perform statistical regres-
sion on the performance data obtained from controlled measurements. In this way we
are able to quantify scalability. In Section 18.6 we present the first detailed applica-
tion of our methodology to quantify MCD scalability. In Section 18.7 we give some
idea on how to extend our methodology to a multithreaded Java application. Section
18.9 discusses some ideas about quantifying GPU and many-core scalability. The
importance of our methodology for the often overlooked validation of complex per-
formance measurements is presented in Section 18.8. Finally, Section 18.11 provides
a summary and possible extensions to our methodology.

Although we shall focus on the broader issues of general-purpose, highly concur-
rent, multithreaded, and multicore [17] applications [23], we anticipate that readers
who are more involved with scientific applications will also be able to apply our
methodology to their systems.
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18.2 MULTITHREADING AND SCALABILITY

We begin by presenting the context and terminology for comparing multithreaded
applications that either scale out or scale up.

Much of the FOSS stack used for running web applications, for example, MCD,
MySQL, and Ruby on Rails, has scalability limitations that are masked by the
widespread adoption of horizontal scale-out. As traffic growth forces the necessity
for more and cheaper multicore servers, multithreading scalability becomes a
significant issue once again.

Most web deployments have now standardized on horizontal scale-out in every
tier–web, application, caching, and database–using cheap, off-the-shelf, white boxes.
In this approach, there are no real expectations for vertical scalability of server appli-
cations like MCD or the full LAMP stack. But with the potential for highly concurrent
scalability offered by newer multicore processors, it is no longer cost-effective to
ignore the potential under utilization of processor resources due to poor thread-level
scalability of the web stack.

Our USL methodology quantifies scalability using the following iterative proce-
dure:

1. Measure the system throughput (e.g. requests per second) for a configuration
where either the number of user threads is varied on a fixed multicore platform
or the number of physical cores is varied using a fixed number of user threads
per core.

2. Measurements should include at least half a dozen data points in order to make
the regression analysis statistically meaningful.

3. Calculate the capacity ratio C(N) and efficiency E(N) defined in Section 18.5.

4. Perform nonlinear statistical regression [19] to determine the USL scalability
parameters α and β defined in Section 18.5.

5. Use the values of α and β to predict Nc, where the scalability maximum is
expected to occur. Nc may lie outside any physically attainable system config-
uration.

6. The magnitude of the α parameter is associated with system contention effects
(in the application, the hardware or both), and the β parameter is associated
with data coherency effects. This step provides the vital connection between the
numerical output of the USL model and the identification of likely candidates
for further performance tuning in software and hardware. See Sections 18.6
and 18.8.

7. Repeat these steps with a new set of measurements until any differences
between data and the USL projections are optimized.

We elaborate on each of these steps in the subsequent sections.
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18.3 CONTROLLED PERFORMANCE MEASUREMENTS

When doing scalability analysis of multithreaded applications, it is important to col-
lect the data using controlled measurements. Controlled measurements require:

1. A controlled hardware platform that faithfully represents the real system being
analyzed. The load test platform that we used to perform the measurements
presented in Section 18.6 is shown schematically in Figure 18.1.

2. A well-designed workload together with tools that produce accurate data
resulting in measurements that are repeatable. The workloads that we used are
described in Section 18.4.

The throughput results from a typical performance test are shown in Figure 18.2.
A performance test is characterized by a ‘ramp-up’ period in which load is increased
on the system, a ‘steady-state’ period during which performance data is gathered, and
a ‘ramp-down’ period as the load diminishes.

It is important to ensure that the ramp-up period is sufficiently large to get the
server performing operations in a normal manner, for example, all data that is likely
to be cached has been read in. This can require times ranging from a couple of minutes
to several tens of minutes, depending on the complexity of the workload.

The steady-state time should be sufficiently long to include all of the activity that
may occur on the system during normal operations (e.g., garbage collection, writing
to logs at some regular interval, etc.)

Scalability tests should ensure that the infrastructure is well tuned and does not
have inherent bottlenecks (e.g., incorrect network routes). This implies active mon-
itoring of the test infrastructure and analysis of the data to ascertain it is accurate.
Repeating the tests can also help to validate measurements.

Figure 18.1 Schematic of scalability load measurement configuration.
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Figure 18.2 Steady-state measurement of instantaneous throughput, for a particular load
value N , represented as a time series to show the ramp-up and ramp=-down phases.

18.4 WORKLOAD DESIGN AND IMPLEMENTATION

Data collected from controlled performance measurements are only as good as the
workload used to run the tests. A poorly designed workload can result in irrelevant
measurements and wrong conclusions [23]. A well-designed workload should have
the following characteristics:

Predictability: The behavior of the system while running the workload should be
predictable. This means that one should be able to determine how the workload
processes requests and accesses data. This helps in analyzing performance.

Repeatability: If the workload is run several times in an identical fashion, it
should produce results that are statistically identical. Without this repeatability,
performance analysis becomes difficult.

Scalability: A workload should be able to place different levels of load in order to
test the scalability of the target application and infrastructure. A workload that
can only generate a fixed load or one that scales in an haphazard fashion that
does not resemble actual scaling in production is not very useful.

These characteristics can be realized using the following design principles:

Design the interactions: Define the actors and their use cases. The use cases help
define the operations of the workload. In a complex workload, the different
actors may have different use cases, for example, a salesperson entering an
order and an accountant generating a report. Combine use cases that are likely
to occur together into a workload. For example, batch operations run at night
should be a separate workload from online, interactive operations.
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Define the metrics: Typical metrics include throughput (number of operations
executed per unit time) and response time. Response time metrics are usually
specified as average 90th or 95th percentiles.

Design the load: This means defining the manner by which the different oper-
ations associated with the metrics offer load onto the servers. This involves
deciding on the operation mix, mechanisms to generate data for the requests
and deciding on arrival rates or think times. This step is crucial to get right
if the workload needs to emulate a production system and/or is being used for
performance testing of the important code paths in the application. A slow oper-
ation that is executed only 1% of the time can sometimes be ignored, whereas
even a 5% drop in performance of an operation that occurs 50% of the time
may be not tolerable.

Define scaling rules: This step is often overlooked, leading to overly optimistic
results during testing. Complex workloads need a means by which to scale
the workload depending on the actual deployment hardware. Often, scaling is
done by increasing the number of emulated users/threads. Any data-dependent
application also needs to have the data set scaled in order to truly measure the
performance impact of a large number of concurrent users.

With regard to workload implementation, there exist several open-source and com-
mercial tools that aid in developing workloads and running them. Available tools vary
considerably in functionality, ability to scale and their own performance overhead.
Some preliminary investigations may be necessary to ensure that a given choice of
tool can meet the anticipated requirements.

18.5 QUANTIFYING SCALABILITY

There are many well-known techniques for achieving better scalability: collocation,
caching, pooling and parallelism, to name a few. But these are only qualitative
descriptions. How can one decide on the relative merits of any of these techniques
unless they can be quantified? This is clearly a role for performance modeling.
Performance models are essential not only for prediction but also, as we discuss in
Sections 18.6 and 18.8, for interpreting scalability measurements.

Many performance modeling tools, such as event-based simulators and analytic
solvers, are based on a queueing paradigm that requires measured service times as
modeling inputs. More often than not, however, such measurements are unavailable,
thereby thwarting the use of these modeling tools. This is especially true for multi-tier,
web-based applications. A more practical intermediate approach is to apply nonlinear
regression [19] to performance measurements that are more accessible, the major
advantage being that service time measurements are not required.
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Table 18.1 Interpretation of M/M/1/N/N queueing metrics.

Metric Repairman Multicore Multithread

N Machines Virtual processors User threads
Z Up time Execution period Think time
S Service time Transmission time Processing time
W Wait time Interconnect latency Scheduling time
X Failure rate Bus bandwidth Throughput

18.5.1 Queueing Model Foundations

The universal scalability model (or USL model) that we present in this section is a
realization of the approach alluded to in the previous section. The USL is a nonlinear
parametric model [9, 10] derived from a well-defined queue-theoretic model known
as the machine–repairman model [5, 8].

Elementary M/M/m queueing models [8] of multicores and multithreaded
systems are too simple because they allow an unbounded number of requests to
occupy the system and they cannot account for processor-to-processor interactions.
Machine–repairman models, like M/G/m/N/N, are defined to have only a finite
number of requests [8]. That constraint can be used to reflect the finite number of
threads in a load test platform, as discussed on Sections 18.3 and 18.4. Alternatively,
M/G/m/N/N models can represent the interactions between N processors [2].
Indeed, the machine–repairman model can be further generalized in terms of
queueing network models to analyze the performance of parallel systems [21],
including architectures with multiple latency stages [7], provided the requisite
service times can be measured.

Here, we restrict ourselves to the M/M/1/N/N queueing model where the single
Markovian server represents the interconnect latency between N processors and
cores. Since the components of this queue have a consistent physical interpretation
with respect to multicore performance metrics (Table 18.1), we also avoid mere
curve-fitting exercises with ad hoc parameters.

To motivate our choice of performance model, we briefly review the key physical
attributes of scalability. Referring to Figure 18.3:

1. Ideal parallelism: Linear scaling corresponds to equal bang for the buck com-
putational capacity where each increment in the load, ΔN on the x-axis, pro-
duces a constant increment in throughput, ΔX on the y-axis, as indicated by the
dashed inclined line in Figure 18.3. Such linearity in capacity can be written
symbolically as

C(N) = N (18.1)

This includes scaled sizing of the workload [9].
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2. Resource sharing: Accounts for the fallaway from linear scaling due to wait-
ing for access to shared resources. This loss of linearity due to resource con-
tention is associated with the USL model parameter

0 < α < 1 (18.2)

3. Resource limitation: Even if such linear scaling is achievable, it cannot exceed
the finite capacity of the system resources. This is defined by an asymptotic
bound from above:

lim
N→∞

C(N,α) =
1
α

(18.3)

This saturation limit is shown as the dashed horizontal line in Figure 18.3. This
bound could be lower due to execution-time skew in components of the work-
load [1, 6].

4. Retrograde scaling: Worse than saturation, this effect arises from the
additional latency due to pairwise interprocessor communication, for example,
exchange of data between caches, and is given by the binomial coefficient

(
N
2

)
=

N(N − 1)
2

(18.4)

and is associated with a USL parameter β.

Another useful metric is the efficiency

E(N) =
C(N)

N
(18.5)

which defines the scalability (18.11) per core or per thread. We shall apply this metric
to data validation in Section 18.8.

Figure 18.3 Physical components of scalability.
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18.5.2 Universal Scalability Model

The following theorem allows us to combine each of the physical scalability compo-
nents of Section 18.5.1 into a parametric model:

Definition 1 (Universal Scalability Law)

C(N,α, β) =
N

1 + α(N − 1) + βN(N − 1)
(18.6)

where the factor of 2 in (18.4) has been absorbed into the β coefficient.

Theorem 18.1 (Queueing Bound) The USL model (18.6) is equivalent to the syn-
chronous bound on the throughput of a machine–repairman queueing model with a
service time that is linearly load dependent on N.

The formal proof is too long to reproduce here. A pivotal observation [9] is that
for M/M/1/N/N, the throughput X(N) is bounded below by

X(N) ≥ N

NS + Z
(18.7)

in the notation of Table 18.1. It also excludes super-linear scaling [1, 21].

Proof 1 (Sketch) When the first request is in service (at the repairman), the mean
waiting time for the remaining requests is

W = (N − 1)S (18.8)

where N is the number of requests in the system. Let the service time be linearly load
dependent:

S(N) = cNS

with c a constant of proportionality. For synchronous queueing all requests are
enqueued simultaneously, so we can rewrite (18.8) as

W = cN(N − 1)S (18.9)

Expressed as relative throughput, (18.9) appears in the denominator of (18.6) as the
corresponding quadratic term. �

The interested reader is referred to Ref. [10] for details and Ref. [13] for supporting
simulation results.

Perhaps the most important point for our methodology is that (18.6) is a mean
value equation in the queueing variables and, in that sense, accounts for the possibility
of fluctuations in the size of workload components and subtasks. In particular, the
machine–repairman model has been proven to be robust to fluctuations in these queue
variables [5].
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Corollary 18.1 (Duality) The scaling variable N in the parametric model (18.6) can
be interpreted equally as representing a finite number of threads (software view) or a
finite number of core processors (hardware view) because it is a bound on the same
M/M/1/N/N queueing model.

Setting β = 0 in (18.6) produces the standard parametric version of Amdahl’s
law with (18.2) the serial fraction of the workload. However, by virtue of Theorem
18.1, Amdahl’s law can be interpreted as a limiting case (zero coherency delays) of
the USL.

Corollary 18.2 (Amdahl’s Law) Amdahl’s law corresponds to the relative through-
put (speedup) due to synchronous queueing in the standard machine–repairman
queueing model with constant mean service time.

Amdahl’s law is the synchronous throughput bound on an M/M/1//N queue
having a load-independent mean service time S.

Proof 2 (Sketch) The proof relies on the identity

α =
S

S + Z
→

{
0 as S → 0,with Z = constant
1 as Z → 0,with S = constant

(18.10)

between the queueing metrics in Table 18.1 and the parameter α in (18.2). �

See Appendix A of Refs [9, 10] for a more detailed discussion.
An important point to note from the preceding is that Amdahl’s law represents

worst-case queueing effects [4, 12]. This is consistent with the notion that syn-
chronous requests have longer delays than asynchronous requests, the latter being
the mean value throughput for M/M/1//N. Other examples of applying (18.6) to
both hardware and software scalability can be found in [9].

The capacity ratio for measured data is defined as the normalization:

C(N) =
X(N)
X(1)

(18.11)

Since the capacity ratio has two definitions–one empirical (18.11) and the other ana-
lytical (18.6)–the optimization goal is to match them in such a way that the adjusted
USL coefficients provide the best fit of performance data.

The key distinction is that, unlike Amdahl’s law, (18.6) possesses a maximum at

Nc =
√

1 − α

β
(18.12)

the location of which is controlled by the USL coefficients according to:

(a) Nc → 0 as α → 1

(b) Nc → 0 as β → ∞
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(c) Nc →∞ as β → 0

(d) Nc → β−1/2 as α → 0

The important implication for our methodology is that beyond Nc the throughput
becomes retrograde. See Figure 18.3. This effect is commonly observed in applica-
tions that involve shared-writable data.

Summarizing the steps for application optimization:

1. Steady-state measurements of throughput X(N) for each load point N.

2. At least half a dozen N values are required in order to be statistically significant
for USL fitting.

3. Calculate the capacity ratio (18.11) for each N value.

4. Use nonlinear statistical regression [19] to determine the USL coefficients α
and β.

5. Optimize the complete scalability function (18.6) for any desired N value.

The same methodological procedure can be applied to hardware scalability optimiza-
tion although, as we had pointed out in the introduction, most commodity hardware is
now a silicon black box, which means the hardware performance tuning opportunities
are far fewer.

The use of the term ‘universal’ in this context refers not only to the general applica-
bility of (18.6) to both multicore hardware and multithreaded software scalability but
also to the fact that no more than two coefficients are needed to accommodate the pos-
sibility of reaching saturation limits (Amdahl scaling) or thrashing limits (coherency
delays). In the latter case, there is little virtue on modeling such degraded perfor-
mance; better try and improve it.

We now present some case studies that demonstrate how this methodology has
been successfully applied.

18.6 CASE STUDY: MEMCACHED SCALABILITY

As mentioned in Section 18.2, most large-scale web sites have standardized on hori-
zontal scale-out in every tier as a simple way to achieve high degrees of scalability. A
ubiquitous application used in this context is MCD. In this section, we demonstrate
how our analysis leads to improved thread scalability of MCD [10].

Figure 18.4 shows controlled MCD throughput as a function of N ≤ 12 threads
for three releases: 1.2.8, 1.4.1, and 1.4.5, measured in thousands of operations/sec
(KOPS). Each release has a very similar retrograde throughput profile, peaking
between N = 6 and N = 7 threads.

Whereas the lines in Figure 18.4 merely associate data points belonging to the
same MCD release, the curve in Figure 18.5 is generated by statistically fitting (18.6)
to those data and is not required to pass through every data point.
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Figure 18.4 Throughput of three MCD releases up N = 12 threads.

Figure 18.5 USL regression analysis of memcached 1.2.8 data (dots) in Figure 18.4.

Table 18.2 Memcached scalability parameters.

Version α β Nc

1.2.8 0.0255 0.0210 6.8121
1.4.1 0.0821 0.0207 6.6591
1.4.5 0.0988 0.0209 6.5666

The USL regression analysis of MCD 1.2.8 reveals a contention parameter value
of α = 0.0255 and a coherency parameter value of β = 0.0210. Repeating this pro-
cedure with the other MCD versions results in the USL coefficients summarized in
Table 18.2. In this way, the scalability of MCD is now fully quantified. It is also clear
that it would be desirable to move the estimated maximum at Nc ≈ 6 to a higher
value.

Figure 18.6 shows how scalability improved after various code changes were
applied. This is where the procedural steps of our USL methodology, outlined in
Section 18.2, actually pay off.

Access to the MCD cache is controlled by a single-mutex lock. When running with
greater than 6 threads, contention for this mutex increases dramatically. A partitioned
cache was implemented with each partition controlled by its own mutex. In addition,
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Figure 18.6 Comparison of scalability data for standard MCD (lower curve) and patched
MCD (upper curve).

Figure 18.7 USL model of patched MCD data in Figure 18.6 extended out to N = 100
threads.

contention for the stats lock was identified. This lock controls access to the stats struc-
ture that is updated on every request. The stats structure was redesigned to hold stats
on a per-thread basis. This fix was applied in release 1.4.5, and it greatly improved
scalability.

The USL fit to the patched MCD data in Figure 18.6 is extended out to N = 100
threads in Figure 18.7. The original scalability peak at Nc = 22 threads (lower curve)
is now moved out to Nc = 48 threads (upper curve).

At this point, the reader may be dumb struck as to how the actual changes made to
the application code are determined from the seemingly abstract numerical output of
the USL model. First, it is important to recall that the role of the performance analyst
is to measure and validate, not to modify hardware or software for which he or she
was not responsible in the first place. That is the role of the hardware engineer or the
software developer.

Second, the interpretation of the USL analysis and the choice of performance tun-
ing optimization arise from discussions between the performance analyst and the
appropriate engineers. Since the latter are the real experts, it is helpful if the model-
ing analysis can point to specific types of effects that may be contributing to inferior
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scalability. This is precisely what the USL does by virtue of its parameters having
explicit physical meaning, namely, the respective degrees of concurrency (N), con-
tention (α) and coherency (β).

In this way, step 6 of the USL methodology in Section 18.2 can evoke a ‘light
bulb’ moment for engineers. In practice, we have seen this synergy occurring time
and again. Moreover, the corrective action taken is usually something we, as perfor-
mance analysts, could never have foreseen because we were not in possession of the
implementation details. Although we have presented an example of improvements
made to MCD software, Corollary 18.1 implies it could also have been that scalabil-
ity improvements came from hardware changes, such as memory resizing or more
recent revisions to the multicore architecture. That said, no matter what insights are
favored or what tuning actions are adopted, the ultimate arbiter is the next iteration
of the USL methodology.

18.7 OTHER MULTITHREADED APPLICATIONS

We focused on MCD scalability in Section 18.6 to demonstrate how the USL method-
ology is applied in detail. In this section, we show how the same methodology can be
applied to other multithreaded applications.

Java 2 Platform, Enterprise Edition (J2EE) applications are extremely popular
in enterprises because the J2EE platform is known to be robust, secure, and
scalable [24].

Figure 18.8 shows how the application throughput scales when load is added to a
J2EE server. The circled and squared points show different data sets to exhibit how
the USL regression values change accordingly. See Table 18.3.

When the USL is applied to the circled data points, it results in the upper curve
in Figure 18.9, which indicates excellent scalability up to more than Nc ≈ 12, 000
users. This modeling result is reasonable as the initial data set shows almost linear
scalability through N = 800 users.

Figure 18.8 Initial J2EE throughput data (left) and subsequent data (right) measured in
requests per second (RPS).
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Table 18.3 J2EE application scalability
parameters.

Load α β Nc

Low 1.49 × 10−5 6.7 × 10−9 12216.90
High 0.0 2.4 × 10−7 2041.24

Figure 18.9 USL models of J2EE scalability for initial data (upper curve) and subsequent
data (lower curve).

However, consider what happens when the data set changes. As the load was
increased and the red data points in Figure 18.8 were measured, the corresponding
USL parameters change accordingly resulting in the lower curve of Figure 18.9. The
larger β value in Table 18.3 reflects a substantial decrease in predicted scalability.
However, even that scalability is still extremely good (cf. the corresponding α and β
for MCD in Table 18.2), but instead of simply appealing to qualitative descriptions
like ‘highly scalable’, or ‘great performance’, the USL coefficients provide us with
true quantification of J2EE scalability.

We want to underscore that what looks like a bad prediction is, in fact, precisely
how our methodology should work. Based on the initial data, maximum scalability
was estimated to occur at Nc ≈ 12, 000 user threads. Further measurements, however,
show that this maximum occurs at Nc ≈ 2, 000 user threads instead. It is not that the
original USL projections were wrong, but that those initial data did not contain any
information about a subsequent scaling limitation present in the JVM. The impor-
tant point is that the USL sets expectations and then forces performance engineers to
explain subsequent deviations at each stage of the measurement process.

18.8 CASE STUDY: DATA VALIDATION

Another simple and immediate practical benefit of applying the methodology is val-
idation of performance data.
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Figure 18.10 Web application scalability data.

Consider a test environment, similar to that described in Sections 18.4 and 18.7,
where test scripts are developed using different test cases for a particular application.
In this case, the test configuration used Apache Jakarta JMeter as a load injector for a
J2EE application [23] running on Java 6 with a WebLogic application server. We are
not interested in what this application was doing internally but rather in examining
and validating the load testing procedure.

Several tests were run against this J2EE application, and the reported JMeter values
were recorded. As usual, we were interested in the throughput and response time
metrics. Following Section 18.5.2, throughput was the primary metric of interest for
determining application scalability. Figure 18.10 shows an example of the throughput
data. It appears acceptable because:

• The data points are monotonically increasing. A sequence of numbers is mono-
tonically increasing if each element in the sequence is larger than its predeces-
sor. Notice that the profile appears to decrease slightly beyond N = 300. The
USL is designed to model such a characteristic.

• The sequence is linearly rising up to N = 200 virtual users.

• The throughput reaches saturation around N = 300. This is exactly what we
expect for a closed queueing system [8] with a finite number of active requests
(as is true for any load testing or benchmarking system). In this case, the onset
of saturation looks rather sudden as indicated by the discontinuity in the gra-
dient (‘sharp knee’) at N = 200. This is usually a sign of significant internal
change in the dynamics of the combined hardware–software system.

These data seem to pass the visualization test, and most performance testing would
stop here. Unfortunately, visualization alone is not always sufficient proof of optimal
scalability. Applying our USL methodology, we modeled these data to evaluate the α
and β coefficients and determine if application scalability could further be improved.
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Table 18.4 Preparation for
USL analysis of the data in
Figure 18.10.

N C(N) E(N)

1 1.00 1.00
5 5.67 1.13

10 11.33 1.13
25 27.50 1.10
50 55.83 1.12

100 107.50 1.08
150 153.33 1.02
200 198.33 0.99
250 204.17 0.82
300 210.00 0.70
350 209.67 0.60

In setting up the USL model to perform statistical regression, we detected some
efficiencies (18.5) that were greater than 100%. In particular, Table 18.4 exhibits
E(N) > 1 for test loads in the range N = 5–150 virtual users.

From a logical standpoint, we cannot have more than 100% of anything.
Sometimes, however, there are conventions in performance analysis where quantities
exceeding 100% have a particular interpretation, for example, 3200% processor
capacity might be shorthand for a maximal machine utilization of 32 cores running at
100% busy. Conventions notwithstanding, any numbers that are out of bounds should
be flagged for explanation by performance engineers or application developers.

Axiom 18.1 Data + Models = Insight

All measurements contain errors, and the more complex the measurement sys-
tem, the more prone it will be to generating erroneous performance data. Without a
validation framework, how can it be known when the data are wrong? The USL pro-
vides a simple mathematical reference framework for detecting anomalies like those
in Table 18.4. We encapsulate this observation in Axiom 18.1.1

So, what was causing the excessive efficiencies in this case? Since we had not even
invoked statistical regression at that point, we knew that the culprit could not be the
USL model. Instead, it became clear that something was amiss with the measurement
process (not the usual conclusion). The performance engineers then set about elimi-
nating one factor at a time. Eventually, it emerged that the JMeter tool itself was the
only remaining explanation for the source of the erroneous measurements. Without

1A hybridization of the book Algorithms + Data Structures = Programs by N. Wirth and R. Hamming’s
observation that computing is about insight, not numbers.
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being forced by the USL modeling framework to resolve this unforeseen issue, further
load testing would have been a waste of time and resources.

18.9 SCALABILITY ON MANY-CORE ARCHITECTURES

Tools for writing applications for CPU–GPU many-cores are constantly improving.
Measuring and quantifying many-cores scalability of such applications is the next
step and that requires a methodology, not just tools. In this section we indicate how the
USL methodology can be applied to workloads running on many-core architectures.

18.9.1 Trends in Multiprocessing, Multicores, and Many-cores

In recent years, vendors have been considering multicore architectures and how
applications can be migrated from single processors to multiple processors. In this
paradigm, the multicore forces the application programmer to focus on maintaining
and maximizing execution speed of a sequential workload but replicating it across
multiple processing units inside the same physical processor [15].

A different approach, using many-cores, focuses on how to maximize the
aggregate throughput, an essential requirement for the gaming industry and anything
else involving 3D graphics. This many-core approach deploys a much higher number
of cores per physical processor unit, without the need for internal cache memories,
logic control unit for executing instructions and other complexities associated with
multicore processors.

These alternative paradigms allow developers to consider which is the best option
for their applications. Recent improvements offer additional mechanisms to select
and direct parts of the application to either CPU or GPU, depending on its intended
usage. Compute-intensive sections can be dynamically directed to a many-cores pro-
cessor, while single-threaded sections can be assigned to a multicore processor. Such
combinations of CPU and GPU let the workloads run optimally by taking intelligent
advantage of the type of processor hardware available.

However, not all applications are written to take advantage of these new archi-
tectures. For example, legacy single-threaded workloads typically cannot make use
of these new options. When executed on many-core processors, such workloads will
underperform.

Without significant modification and porting effort, legacy workloads cannot scale
well. Testing and analyzing these workloads in a controlled fashion (see Section 18.3)
is a necessity and presents another opportunity for our USL methodology.

18.9.2 USL Methodology for GPUs

Since the USL methodology is generic, it should be applicable to quantifying
the scalability of many-core applications. In this vein, we have applied it to data
kindly provided to us by Prof. Frank Dehne and Kumanan Yogaratnam at Carleton
University [3].
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Figure 18.11 USL fit to NVIDIA Tesla GPU data.

They compare the speedup of different parallel graph algorithms running on an
NVIDIA GeForce 260 with 216 2.1 GHz GPU cores and 896 MB of RAM. The par-
allel speedup is logically equivalent to C(N,α, β) in the USL formalism.

Their choice of parallel graphing algorithms reveals irregular data access patterns
(shown as dots in Fig. 18.11) that are different from regular data access patterns found
in typical parallel processing workloads for image processing, linear algebra, or sci-
entific computing. More importantly, significant speedup degradation is observed for
N > 15 threads.

18.10 FUTURE WORK

Applying USL regression analysis to the data in Section 18.9 produces the curve in
Figure 18.11, which has a contention parameter value of α = 0.1008 and a coherency
parameter value of β = 0.00405, with an estimated maximum at Nc = 14.89 threads.
The interpretation of these coefficients is still under investigation for potential ways
to improve GPU scalability. In the meantime, the important point is that these con-
trolled measurements are being compared with the USL performance model, thereby
reinforcing Axiom 18.1.

Another avenue of research is using multicores to model multicores. The USL
model is an excellent candidate for running thousands of simultaneous regressions
in parallel and then selecting an optimal set of coefficients from the simulation
results. Moreover, since the foundations of the USL lie in queue-theoretic models,
this approach could be extended to Monte Carlo simulations [20] of Markov models.
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18.11 CONCLUDING REMARKS

In this chapter, we have presented a performance methodology for quantifying
application scalability on multicore and many-core systems. With potentially
massive computational horsepower now being delivered in low-cost silicon black
boxes, the remaining opportunities for improving performance lie mostly in the
application layers.

Our methodology, based on the USL, emphasizes the importance of validating
scalability data through controlled measurements that use appropriately designed test
workloads. These measurements must then be reconciled with the USL performance
model. It is this synergy between measuring and modeling that provides the key to
achieving successful scalability on multicore platforms.

In Section 18.5 we presented the USL model and showed how it can be com-
bined with nonlinear statistical regression to analyze controlled performance mea-
surements. In this way, we are able to truly quantify scalability and thereby assess
the cost–benefit of multithreaded applications running on multicore or many-core
architectures. The USL methodology also provides data validation as a side effect of
preparing for the more sophisticated regression analysis.

In Section 18.9 we presented some initial results from quantifying GPU and
many-core scalability using the USL methodology. Possible confounding effects
between the USL coefficients due to these fine-grained parallel workloads suggest
an analysis based on the concept of scalability zones [13].

With ever-increasing economies of scale offered by commodity multicore to
many-core systems, we anticipate that cost–benefit analysis tools, such as the
USL-based methodology described here, will play an increasingly important role in
the future of computing.
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CHAPTER 19

IMPROVING MULTICORE SYSTEM
PERFORMANCE THROUGH DATA
COMPRESSION

Ozcan Ozturk and Mahmut Kandemir

19.1 INTRODUCTION

As applications become more and more complex, it is becoming extremely important
to have sufficient compute power on the chip. Multicore and manycore systems have
been introduced to address this problem. While multicore system performance and
power consumption are greatly affected by application data access characteristics, the
compiler optimizations can make a significant difference. Considering that cost of
off-chip memory accesses is continuously rising in terms of CPU cycles, it is critical
to cut down the number of off-chip memory accesses.

Accessing off-chip memory presents at least three major problems in a multi-
core architecture. First, off-chip memory latencies are continuously increasing due to
increases in processor clock frequencies. Consequently, large performance penalties
are paid even if a small fraction of memory references go off chip. Second, the band-
width between the multicore processor and the off-chip memory may not be sufficient
to handle simultaneous off-chip access requests coming from multiple processors.

Programming Multicore and Many-core Computing Systems, 385
First Edition. Edited by Sabri Pllana and Fatos Xhafa.
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Third, frequent off-chip memory accesses can increase overall power consumption
dramatically. Note that power consumption is a critical issue for both embedded sys-
tems and large-scale high-performance server platforms.

In order to alleviate these problems, in this chapter we propose an on-chip mem-
ory management scheme based on data compression [5]. Our proposal compresses
data in memory to (i) reduce access latencies since the compressed data blocks can be
accessed faster than the uncompressed blocks; (ii) reduce off-chip bandwidth require-
ments since compression can allow on-chip memory to hold more data, cutting the
number of off-chip accesses; and (iii) increase the effective on-chip storage capacity.
A critical issue in this context however is to schedule compressions and decompres-
sions intelligently so that they do not conflict with ongoing application execution.
In particular, one needs to decide which processors should participate in the com-
pression (and decompression) activity at any given point during the course of exe-
cution. While it is conceivable that all processors can participate in both application
execution and compression/decompression activity, this may not necessarily be the
best option. This is because in many cases some processors are idle (and therefore
cannot take part in application execution anyway) and can be utilized entirely for
compression/decompression and related tasks, thereby allowing other processors to
focus solely on application execution. Therefore, an execution scheme that carefully
divides the available computing resources between application execution and online
compression/decompression can be very useful in practice.

One might envision two different strategies for such a division: static and dynamic.
In the static scheme, the processors are divided into two groups (those performing
compression/decompression and those executing the application), and this group-
ing is maintained throughout the execution of the application (i.e. it is fixed). In the
dynamic scheme, the execution starts with some grouping, but this grouping changes
during the course of execution, that is, it adapts itself to the dynamic requirements
of the application being executed. This is achieved by keeping track of the wrongly
done compressions at runtime and adjusting the number of processors allocated for
compression/decompression accordingly. Our main goal in this chapter is to explore
these two processor space partitioning strategies, identify their pros and cons and
draw conclusions.

We used a set of five array-based benchmark codes to evaluate these two processor
partitioning strategies and made extensive experiments with a diverse set of hardware
and software parameters. Our experimental results indicate that the most important
problem with the static scheme is one of determining the ideal number of processors
that need to be allocated for compression/decompression. Our results also show that
the dynamic scheme successfully modulates the number of processors used for com-
pression/decompression according to the dynamic behavior of the application, and
this in turn improves overall performance significantly.

The rest of this chapter is structured as follows: Section 19.2 gives the details
of our approach. Section 19.3 presents the results obtained from our experimental
analysis. Section 19.4 gives the related work and Section 19.5 describes the future
work. Section 19.6 concludes the chapter with a summary of our major observations.
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Figure 19.1 The multicore architecture considered in this chapter and the off-chip memory
space.

19.2 OUR APPROACH

19.2.1 Architecture and Code Parallelization

The multicore architecture we consider in this chapter is a shared multiprocessor-
based system, where a certain number of processors (typically, of the order of 4–32)
share the same memory address space. In particular, we assume that there exists an
on-chip (software-managed [4, 10, 12, 19]) memory space shared by all processors.
We keep the subsequent discussion simple by using a shared bus as the interconnect
(though one could use more sophisticated interconnects as well). The processors
also share a large off-chip memory space. It should be noted that there is a trend
toward designing domain-specific memory architectures [6, 8, 9, 15, 20]. Such
architectures are expected to be very successful in some application domains, where
the software can analyze the application code, extract the regularity in data access
patterns and optimize the data transfers between on-chip and off-chip memories.
Such software-managed memory systems can also be more power efficient than
a conventional hardware-managed cache-based memory hierarchy [4, 6]. In this
study, we assume that the software is in charge of managing the data transfers
between the on-chip memory space and the off-chip memory space, though, as
will be discussed later, our approach can also be used with a cache-based system.
Figure 19.1 shows an example multicore with four parallel processors along with
an off-chip storage. We assume that the CPUs can operate only on the data in the
on-chip memory.

We employ a loop nest-based code parallelization strategy for executing
array-based applications in this multicore architecture. We focus on array-based
codes mainly because they appear very frequently in scientific computing domain and
embedded image/video processing domain [6]. In this strategy, each loop nest is par-
allelized for the coarsest grain of parallelism where the computational load processed
by the processors between global synchronization points is maximized. We achieve
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this as follows. First, an optimizing compiler (built on top of the SUIF infrastructure
[3]) analyzes the application code and identifies all the data reuses and data depen-
dences. Then, the loops with data dependences and reuses are placed into the inner
positions (in the loop nest being optimized). This ensures that the loop nest exhibits a
decent data locality and the loops that remain into the outer positions (in the nest) are
mostly dependence-free. After this step, for each loop nest, the outermost loop that
does not carry any data dependence is parallelized. Since this type of parallelization
tends to minimize the frequency of interprocessor synchronization, we believe that
it is very suitable for a multicore architecture. We use this parallelization strategy
irrespective of the number of processors used for parallel execution and irrespective
of the code version used. It should be emphasized, however, that when some of
the processors are reserved for compression/decompression, they do not participate
in parallel execution of loop nests. While we use this specific loop parallelization
strategy in this work, its selection is actually orthogonal to the focus of this work. In
other words, our approach can work with different loop parallelization strategies.

19.2.2 Our Objectives

We can itemize the major objectives of our compression/decompression based on the
following on-chip memory management scheme:

• We would like to compress as much data as possible. This is because the more
data are compressed, the more space we have in the on-chip memory available
for new data blocks.

• Whenever we access a data block, we prefer to find it in an uncompressed
form. This is because if it is in a compressed form during the access, we need
to decompress it (and spend extra execution cycles for that) before the access
could take place.

• We do not want the decompressions to come into the critical path of execution.
That is, we do not want to employ costly algorithms at runtime to determine
which data blocks to compress, or use complex compression/decompression
algorithms.

It is to be noted that some of these objectives conflict with each other. For example,
if we aggressively compress each data block (as soon as the current access to it termi-
nates), this can lead to a significant increase in the number of cases where we access
a data block and find it compressed. Therefore, an acceptable execution model based
on data compression and decompression should exploit the trade-offs between these
conflicting objectives.

Note that even if we find the data block in the on-chip memory in the compressed
form, depending on the processor frequency and the decompression algorithm
employed, this option can still be better than not finding it in the on-chip storage at
all and bringing it from the off-chip memory. Moreover, our approach tries to take
decompressions out of the critical path (by utilizing idle processors) as much as
possible, and it thus only compresses the data blocks that will not be needed for some
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time. Also, the off-chip memory accesses keep getting more and more expensive
in terms of processor cycles (as a result of increased clock frequencies) and power
consumption. Therefore, one might expect a compression-based multicore memory
management scheme to be even more attractive in the future.

19.2.3 Compression/Decompression Policies and Implementation
Details

We explore two different strategies, explained below, for dividing the available pro-
cessors between compression/decompression (and related activities) and application
execution.

• Static Strategy: In this strategy, a fixed number of processors are allocated
for performing compression/decompression activity, and this allocation is not
changed during the course of execution. The main advantage of this strategy
is that it is easy to implement. Its main drawback is that it does not seem easy
to determine the ideal number of processors to be employed for compression
and decompression. This is because this number depends on several factors
such as the application’s data access pattern, the number of total processors
in the multicore and the relative costs of compression and decompression and
off-chip memory access. In fact, as will be discussed later in detail, our exper-
iments clearly indicate that each application demands a different number of
processors (to be allocated for compression/decompression and related activi-
ties). Further, it is conceivable that even within an application the ideal number
of processors to employ in compression/decompression could vary across the
different execution phases.

• Dynamic Strategy: The main idea behind this strategy is to eliminate the opti-
mal processor selection problem of the static approach mentioned above. By
changing the number of processors allocated for compression and decompres-
sion dynamically, this strategy attempts to adapt the multicore resources to the
dynamic application behavior. Its main drawback is the additional overhead it
entails over the static one. Specifically, in order to decide how to change the
number of processors (allocated for compression and decompression) at run-
time, we need a metric that allows us to make this decision during execution. In
this chapter, we make use of a metric, referred to as the miscompression rate,
which gives the rate between the number of accesses made to the compressed
data and the total number of accesses. We want to reduce the miscompression
rate as much as possible since a high miscompression rate means that most of
data accesses find the data in the compressed form, and this can degrade overall
performance by bringing decompressions into the critical path.

Irrespective of whether we are using the static or dynamic strategy, we need to keep
track of the accesses to different data blocks to determine their access patterns so that
an effective on-chip memory space management can be developed. In our architec-
ture, this is done by the processors reserved for compression/decompression. More
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specifically, these processors, in addition to performing compressions and decom-
pressions, keep track of the past access histories for all data blocks, and based on
the statistics they collect, they decide when to compress (or decompress) and when
not to. To do this effectively, our execution model works on a data block granular-
ity. In this context, a data block is a rectilinear portion of an array, and its size is
fixed across the different arrays (for ease of implementation). It represents the unit of
transfer between the off-chip memory and the on-chip memory. Specifically, when-
ever we access a data item that resides in the off-chip memory, the corresponding data
block is brought into the on-chip memory (note that this can take several bus cycles).
By keeping the size of the data blocks sufficiently large, we can significantly reduce
the amount of bookkeeping information that needs to be maintained. A large data
block also reduces the frequency of off-chip memory accesses as long as we have a
reasonable level of spatial locality.

In more detail, the processors reserved for compression and decompression main-
tain reuse information at the data block granularity. For a data block, we define the
interaccess time as the gap (in terms of intervening block accesses) between two suc-
cessive accesses to that block. Our approach predicts the next interaccess time to be
the same as the previous one, and this allows us to rank the different blocks accord-
ing to their next (estimated) accesses. Then, using this information, we can decide
which blocks to compress, which blocks to leave as they are and which blocks to
send to off-chip memory. Note that it is possible to use various decision metrics in
implementing a compression/decompression scheme, such as usage frequency, last
usage or next usage. In our implementation, we use next usage or interaccess time as
the main criteria for compressions/decompressions. We have also experimented with
other metrics, but next usage generates the best results.

Consider Figure 19.2(a) which depicts the different possible cases for a given data
block. In this figure, arrows indicate the execution timeline, that is, the time appli-
cation spends throughout its execution. Each point in this timeline is an execution
instance where various actions are being taken. Assuming the starting point of this

Next use (3)Next use (2)Next use (1)

(b)

(a)

Decompress (2) Decompress (1)

Use

Send off-chip

Current use

Keep on-chip
Do not compress

Keep on-chip
compress

Figure 19.2 (a) Different scenarios for data when its current use is over. (b) Comparison of
on-demand decompression and predecompression. Arrows indicate the execution timeline of
the program.
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arrow is indicating the current use of the block, we estimate its next access. If it is
soon enough (relative to other on-chip blocks) – denoted Next use (1) – we keep the
block in the on-chip memory as it is (i.e. without any compression). On the other
hand, if the next access is not that soon (as in the case marked Next use (2)), we com-
press it (but still keep it in the on-chip memory). Finally, if the next use of the block
is predicted to be really far (see Next use (3) in Fig. 19.2(a)), it is beneficial to send it
to the off-chip memory (the block can be compressed before being forwarded to the
off-chip memory to reduce transfer time/energy).

Our implementation of this approach is as follows. When the current use of a
data block is over, we predict its next use and rank it along with the other on-chip
blocks. Then, using two threshold values (Th1 and Th2) and taking into account the
size (capacity) of the on-chip memory, we decide what to do with the block. More
specifically, if the next use of the block is (predicted to be) Tn cycles away, we proceed
as follows:

• Keep the block in the on-chip memory uncompressed, if Tn ≤ Th1, or else

• Keep the block in the on-chip memory compressed, if Th1 < Tn ≤ Th2, or
else

• Send the block to the off-chip memory, if Tn > Th2.

It is to be noted that this strategy clearly tries to keep data with high reuse in
on-chip memory as much as possible (even doing so requires compressing the data).
As an example, suppose that we have just finished the current access to data block
DBi and the on-chip memory currently holds s data blocks (some of which may be in
a compressed form). We first calculate the time for the next use of DBi (call this value
Tn). As explained above, if Tn ≤ Th1, we want to keep DBi in the on-chip memory in
an uncompressed form. However, if there is no space for it in the on-chip memory, we
select the data block DBj with the largest next use distance, compress it and forward it
to the off-chip memory. We repeat the same procedure if Th1 < Tn ≤ Th2 except that
we leave DBi in the on-chip memory in a compressed form. Finally, Tn > Th2, DBi

is compressed and forwarded to the off-chip memory. This algorithm is executed after
completion of processing any data block. Also, a similar activity takes place when we
want to bring a new block from the off-chip memory to the on-chip memory or when
we create a new data block.

While this approach takes care of the compression part, we also need to decide
when to decompress a data block. Basically, there are at least two ways of handling
decompressions. First, if a processor needs to access a data block and finds it in the
compressed form, the block should be decompressed first before the access can take
place. This is termed as on-demand decompression in this chapter, and an example
is shown in Figure 19.2(b) as Decompress (1). In this case, the data block in ques-
tion is decompressed just before the access (use) is made. A good memory space
management strategy should try to minimize the number of on-demand decompres-
sions since they incur performance penalties (i.e. decompression comes in the critical
path). The second strategy is referred to as predecompression in this chapter and is
based on the idea of decompressing the data block before it is really needed. This is
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akin to software-based data prefetching [16] employed by some optimizing compilers
(where data is brought into cache memory before it is actually needed for compu-
tation). In our implementation, predecompression is performed by the processors
allocated for compression/decompression since they have the next access informa-
tion for the data blocks. An example predecompression is marked as Decompress
(2) in Figure 19.2(b). We want to maximize the number of predecompressions (for
the compressed blocks) so that we can hide as much decompression time as pos-
sible. Notice that during predecompression the processors allocated for application
execution are not affected; that is, they continue with application execution. Only the
processors reserved for compression and decompression participate in the predecom-
pression activity.

The compression/decompression implementation explained above is valid for both
the static and the dynamic schemes. However, in the dynamic strategy case, an addi-
tional effort is needed for collecting statistics on the rate between the number of
on-demand compressions and the total number of data block accesses (as mentioned
earlier, this is called the miscompression rate). Our current implementation maintains
a global counter that is updated (within a protected memory region in the on-chip
storage) by all the processors reserved for compression/decompression. An impor-
tant issue that is to be addressed is when do we need to increase/decrease the number
of processors allocated for compression/decompression and related activities. For
this, we adopt two thresholds Mr1 and Mr2. If the current miscompression rate is
between Mr1 and Mr2, we do not change the existing processor allocation. If it is
smaller than Mr1, we decrease the number of processors allocated for compression/
decompression. In contrast, if it is larger than Mr2, we increase the number of pro-
cessors allocated for compression/decompression. The rationale for this approach is
that if the miscompression rate becomes very high, this means that we are not able
to decompress data blocks early enough, so we put more processors for decompres-
sion. On the other hand, if the miscompression rate becomes very low, we can reduce
the resources that we employ for decompression. To be fair in our evaluation, all the
performance data presented in Section 19.3 include these overheads as well.

It is important to measure miscompression rate in a low-cost yet accurate man-
ner. One possible implementation is to calculate/check the miscompression rate after
every T cycles. Then, the important issue is to select the most appropriate value for T.
A small T value may not be able to capture miscompression rate accurately and incurs
significant overhead at runtime. In contrast, a large T value does not cause much run-
time overhead. However, it may force us to miss some optimization opportunities (by
delaying potential useful compressions and/or decompressions). In our experiments,
we implemented this approach and also measured the sensitivity of our results to the
value of the T parameter. Finally, it should also be mentioned that keeping the access
history of the on-chip data blocks requires some extra space. Depending on the value
of T, we allocate a certain number of bits per data block and update them each time
a data block is accessed. In our implementation, these bits are stored in a certain
portion of the on-chip memory, reserved just for this purpose. While this introduces
both space and performance overhead, we found that these overheads are not really
excessive. In particular, the space overhead was always less than 4%. Also, all the
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performance numbers given in the next section include the cycle overheads incurred
for updating these bits.

19.3 EXPERIMENTAL EVALUATION

19.3.1 Setup

We used Simics [18] to simulate an on-chip multiprocessor environment. Simics is
a simulation platform for hardware development and design space exploration. It
supports modifications to the instruction set architecture (ISA), architectural perfor-
mance models and devices. This allows designers to evaluate evolutionary changes
to existing systems with a standard software workload. We use a variant of the LZO
compression/decompression algorithm [14] to handle compressions and decompres-
sions; the decompression rate of this algorithm is about 20 MB/s. It is to be empha-
sized that while, in this particular implementation, we chose LZO as our algorithm,
our approach can work with any algorithm. In our approach, LZO is executed by the
processors reserved for compression/decompression. Table 19.1 lists the base simu-
lation parameters used in our experiments. Later in the experiments we change some
of these values to conduct a sensitivity analysis.

We tested the effectiveness of our approach using five randomly selected
array-based applications from the SpecFP2000 benchmark suite. For each appli-
cation, we fast-forwarded the first 500 million instructions and simulated the next
250 million instructions. Two important statistics for these applications are given in
Table 19.2. The second column in Table 19.2 (labeled Cycles-1) gives the execution

Table 19.1 The base simulation parameters used in our experiments.
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Table 19.2 The benchmark codes used in this study and important statistics.
In obtaining these statistics, the reference input sets are used.

Benchmark Cycles-1 Cycles-2

swim 91,187,018 118,852,504
apsi 96,822,310 127,028,682

fma3d 126,404,189 161,793,882
mgrid 87,091,915 96,611,130
applu 108,839,336 139,955,208

time (in terms of cycles) of the original applications. The values in this column were
obtained by using our base configuration (Table 19.1) and using 8 processors to
execute each application (without any data compression/decompression). In more
details, the results in the second column of this table are obtained using a parallel
version of the software-based on-chip memory management scheme proposed in
[12]. This scheme is a highly optimized dynamic approach that keeps the most
reused data blocks in the on-chip memory as much as possible. In our opinion, it
represents the state of the art in software-managed on-chip memory optimization if
one does not employ data compression/decompression. The performance (execution
cycles) results reported in the next subsection are given as fractions of the values
in this second column, that is, they are normalized with respect to the second
column of Table 19.2. The third column (named Cycles-2), on the other hand, gives
the execution cycles for a compression-based strategy where each processor both
participates in the application execution and performs on-demand decompression. In
addition, when the current use of a data block ends, it is always compressed and kept
on-chip. The on-chip memory space is managed in a fashion which is very similar to
that of a full-associative cache. When we compare the results in the last two columns
of this table, we see that this naive compression-based strategy is not any better than
the case where we do not make use of any compression/decompression at all (the
second column of the table). That is, in order to take advantage of data compression,
one needs to employ smarter strategies. Our approach goes beyond this simplistic
compression-based scheme and involves dividing the processor resources between
those that do computation and those that perform compression/decompression-
related tasks.

19.3.2 Results with the Base Parameters

Figure 19.3(a) shows the behavior (normalized execution cycles) of the static
approach with different |C| values (|C| = n means n out of 8 processors are used
for compression/decompression). As can be seen from the x-axis of this graph, we
changed |C| from 1 to 7. One can observe from this graph that in general the different
applications prefer different |C| values for the best performance characteristics. For
example, while apsi demands 3 processors dedicated for compression/decompression
for the best results, the corresponding number for applu is 1. This is because each
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(a) (b)

Figure 19.3 (a) Normalized execution cycles with the static strategy using different |C|
values. (b) Comparison of the best static strategy (for each benchmark) and the dynamic
strategy.

application has typically a different degree of parallelism in its different execution
phases. That is, not all the processors participate in the application execution (e.g.
as a result of data dependences or due to load imbalance concerns), and such
otherwise idle processors can be employed for compression and decompression. We
further observe from this graph that increasing |C| beyond a certain value causes
performance deterioration in all applications. This is due to the fact that employing
more processors for compression and decompression than necessary prevents the
application from exploiting the inherent parallelism in its loop nests, and that in turn
hurts the overall performance. In particular, when we allocate 6 processors or more
for compression and decompression, the performance of all five applications in our
suite becomes worse than the original execution cycles.

The graph in Figure 19.3(b) gives a comparison of the static and dynamic strate-
gies. The first bar for each benchmark in this graph gives the best static version, that
is, the one that is obtained using the ideal |C| value for that benchmark. The sec-
ond bar represents the normalized execution cycles for the dynamic scheme. One
can see from these results that the dynamic strategy outperforms the static one for all
five applications tested, and the average performance improvement (across all bench-
marks) is about 13.6% and 21.4% for the static and dynamic strategies, respectively.
That is, the dynamic approach brings additional benefits over the static one. To better
explain why the dynamic approach generates better results than the static one, we
give in Figure 19.4 the execution behavior of the dynamic approach. More specif-
ically, this graph divides the entire execution time of each application into twenty
epochs, and, for each epoch, shows the most frequently used |C| value in that epoch.
One can clearly see from the trends in this graph that the dynamic approach changes
the number of processors dedicated to compression/decompression over the time, and
in this way it successfully adapts the available computing resources to the dynamic
execution behavior of the application being executed.

Before moving to the sensitivity analysis part where we vary the default values of
some of the simulation parameters, let us present how the overheads incurred by our
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Figure 19.4 Processor usage for the dynamic strategy over the execution period.
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Figure 19.5 Breakdown of overheads into three different components for the static and
dynamic schemes.

approach (effects of which are already captured in Figs 19.3(a) and (b)) are decom-
posed into different components. In the bar chart given in Figure 19.5, we give the
individual contributions of three main sources of overheads: compression, decom-
pression and reuse updates, threshold checks and other bookkeeping activities. We
see from these results that, in the static approach case, compression and decompres-
sion activities dominate the overheads (most of which are actually hidden during
parallel execution). In the dynamic approach case, on the other hand, the overheads
are more balanced, since the process of determining the |C| value to be used currently
incurs additional overheads. Again, as in the static case, an overwhelming percentage
of these overheads are hidden during parallel execution.
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Figure 19.6 Sensitivity of the dynamic strategy to the starting |C| value for the swim bench-
mark.

19.3.3 Sensitivity Analysis

In this subsection, we change several parameters in our base configuration
(Table 19.1) and measure the variations on the behavior of our approach. Recall
that our dynamic approach (whose behavior is compared with the static one in
Fig. 19.3(b)) starts execution with |C| = 2. To check whether any other starting
value would make a substantial difference, we give in Figure 19.6 the execution
profile of swim for the first eight epochs of its execution. One can observe from this
graph that no matter what the starting |C| value is, at most after the fifth epoch all
execution profiles converge. In other words, the starting |C| value may not be very
important for the success of the dynamic scheme except maybe for applications
with very short execution times. Although not presented here, we observed a similar
behavior with the remaining applications as well. Consequently, playing with the
initial value of |C| generated only 3% variance in execution cycles of the dynamic
scheme (we omit the detailed results).

Up to this point in our experimental evaluation we have used the T, Th1,
Th2, Mr1 and Mr2 values given in Table 19.1. In our next set of experiments,
we modify the values of these parameters to conduct a sensitivity analysis. In
Figure 19.7, we present the sensitivity of the dynamic approach to the threshold
values Th1 and Th2 for two applications: apsi (a) and mgrid (b). We see that the
behavior of apsi is more sensitive to Th2 than to Th1, and in general small Th2
values perform better. This is because a large Th2 value tends to create more
competition for the limited on-chip space (as it delays sending data blocks to the
off-chip memory), and this in turn reduces the average time that a data block spends
in the on-chip memory. However, a very small Th2 value (12,500) leads to lots
of data blocks being sent to the off-chip storage prematurely, and this increases
the misses in on-chip storage. The other threshold parameter (Th1) also exhibits
a similar trend; however, the resulting execution cycles do not range over a large
spectrum. This is because it mainly influences the decision of compressing (or not
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(a) (b)

Figure 19.7 Sensitivity of the dynamic strategy to Th1, Th2 values. (a) apsi. (b) mgrid.

compressing) a data block, and since compression/decompression costs are lower
than that of off-chip memory access (Table 19.1), the impact of Th1 on the behavior
of the dynamic scheme is relatively small. Similar observations can be made with
the mgrid benchmark as well. This application, however, benefits from a very low
Th2 value mainly because of its poor data locality; that is, once a data block has
been processed, it does not need to be kept on-chip.

The next parameter we study is the miscompression rate thresholds Mr1 and Mr2.
Figure 19.8 depicts the normalized execution cycles for two of benchmark codes: apsi
(a) and mgrid (b). Our main observation from these graphs is that the best Mr1, Mr2
values are those in the middle of the spectrum experimented. Specifically, as long as
the Mr1 value used is 0.2 or 0.3 and the Mr2 value used is 0.6 or 0.7, we are doing
fine, but going outside this range increases the overall execution cycles dramatically.

(a) (b)

Figure 19.8 Sensitivity of the dynamic strategy to Mr1, Mr2 values. (a) apsi. (b) mgrid.
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Figure 19.9 Sensitivity of the dynamic strategy to the sampling period (T ).

This can be explained as follows. When the difference between Mr1 and Mr2 is very
large, the dynamic scheme becomes very reluctant in changing the value of |C|. As a
result, we may miss some important optimization opportunities. In comparison, when
the difference between Mr1 and Mr2 is very small, the scheme can make frequent
changes to |C| based on (probably) short-term data access behaviors (which may
be wrong when considering larger periods). In addition, frequent changes to |C| also
require frequent comparisons/checks, which in turn increase the overheads associated
with our scheme.

We next study the impact on the effectiveness of the dynamic strategy when the
sampling period (T) is modified. The graph in Figure 19.9 indicates that each appli-
cation prefers a specific sampling period value to generate the best behavior. For
example, the best T value for swim is 10,000 cycles, whereas the best value for fma3d
is 20,000. We also observe that working with larger or smaller periods (than this opti-
mum one) generates poor results. This is because if the sampling period is very small,
we incur a lot of overheads and the decisions we make may be suboptimal (i.e. we
may be capturing only the transient patterns and make premature compression and/or
decompression decisions). On the other hand, if the sampling period is very large, we
can miss opportunities for optimization. While it is also possible to design an adap-
tive scheme wherein T is modulated dynamically, it is not clear whether the associated
overheads would be negligible.

The sensitivity of the dynamic approach to the block size is plotted in Figure 19.10.
Recall that block size is the unit of transfer between the on-chip and the off-chip
memory, and our default block size was 2 KB. We see from this graph that the aver-
age execution cycle improvements with different block sizes range from 18.8% (with
8 KB) to 23.3% (with 1 KB). We also observe that different applications react differ-
ently when the block size used is increased. The main reason for this is the intrinsic
spatial locality (or block level temporal locality) exhibited by the application. In swim
and fma3d, there is a reasonable amount of spatial locality. As a result, these two
applications take advantage of the increased block size. In the remaining applica-
tions, however, the spatial locality is not as good. This, combined with the fact that
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Figure 19.10 Sensitivity of the dynamic strategy to the block size.

Figure 19.11 Sensitivity of the static and dynamic strategies to the processor counts.

a small block size allows our approach to manage data space in a finer-granular man-
ner, makes a good case for the small block sizes for such applications. Therefore, we
witness a reduction in the execution cycles when the data block size is decreased.
We next evaluate the impact of the processor count on the behavior of the static and
dynamic schemes. Recall that the processor count used so far in our experiments was
8. Figure 19.11 plots the normalized cycles for the best static version and the dynamic
version for the benchmark fma3d with different processor counts. An observation that
can be made from these results is that the gap between the static and dynamic schemes
seems to be widening with increasing number of processors. This is mainly because
a larger processor count gives more flexibility to the dynamic approach in allocating
resources.

While our focus in this work is on software-managed multicore memories, our
approach can work with conventional cache-based memory hierarchies as well. To
quantify the impact of our approach under such a cache-based system, we performed
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Figure 19.12 Results with a hardware-based cache memory.

a set of experiments by modeling a 16 KB two-way associative L1 cache for each
of the eight processors with a block (line) size of 128 bytes. The results shown in
Figure 19.12 indicate that our approach is successful with conventional cache mem-
ories as well. The base scheme used (against which the static and dynamic schemes
are compared in Fig. 19.12) in these experiments is from [11]. The reason that the
savings are not as large as in the software-managed memory case is twofold: First, the
unit of transfer between off-chip and on-chip is smaller with the cache-based system
(as it is controlled by the hardware). Second, it is more difficult with the cache-based
system to catch the stable values for the threshold parameters (Th1, Th2, Mr1 and
Mr2). However, we still observe average 3.1% and 14.8% reductions in execution
cycles due to the static and dynamic schemes, respectively.

19.4 RELATED WORK

Data compression has been investigated as a viable solution in the context of
scratchpad memories (SPMs) as well. For example, Ozturk et al. [17] propose a
compression-based SPM management. Abali et al. [1] investigate the performance
impact of hardware compression. Compression algorithms suitable for use in the
context of a compressed cache are presented in [2]. Zhang and Gupta [22] propose
compiler-based strategies for reducing leakage energy consumption in instruction
and data caches through data compression. Lee et al. [13] use compression in an
effort to explore the potential for on-chip cache compression to reduce cache miss
rates and miss penalties. Apart from memory subsystems, data compression has also
been used to reduce the communication volume. For example, data compression is
proposed as a means of reducing communication latency and energy consumption
in sensor networks [7]. Xu et al. [21] present energy savings on a handheld device
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through data compression. Our work is different from these prior efforts as we
give the task of management of the compressed data blocks to the compiler. In decid-
ing the data blocks to compress and decompress, our compiler approach exploits
the data reuse information extracted from the array accesses in the application
source code.

19.5 FUTURE WORK

As has been indicated, there are many parameters that influence the performance
of the memory system. In our current implementation, we explore different dimen-
sions and different parameters manually. As the next step, we would like to extend
our current approach in order to automatically find the most beneficial parameters.
Toward this end, we are currently building an optimization framework to handle these
parameters in the most effective way.

19.6 CONCLUDING REMARKS

The next-generation parallel architectures are expected to accommodate multiple
processors on the same chip. While this makes interprocessor communication less
costly (as compared to traditional parallel machines), it also makes it even more crit-
ical to cut down the number of off-chip memory accesses. Frequent off-chip accesses
do not only increase execution cycles but also increase overall power consumption,
which is a critical issue in both high-end parallel servers and embedded systems.
One way of attacking this off-chip memory problem in a multicore architecture is to
compress data blocks when they are not predicted to be reused soon. Based on this
idea, in this chapter, we explored two different approaches: static and dynamic. Our
experimental results indicate that the most important problem with static strategies is
one of determining the ideal number of processors that need to be allocated for com-
pression/decompression. Our results also demonstrate that the dynamic strategy suc-
cessfully modulates the number of processors used for compression/decompression
according to the needs of the application, and this in turn improves overall perfor-
mance. Finally, the experiments with different values of our simulation parameters
show that the proposed approach gives consistent results across a wide design
space.
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CHAPTER 20

PROGRAMMING AND MANAGING
RESOURCES ON
ACCELERATOR-ENABLED
CLUSTERS

M. Mustafa Rafique, Ali R. Butt and Dimitrios S.

Nikolopoulos

20.1 INTRODUCTION

Computational accelerators are positive catalysts for high-end computing systems.
Heterogeneous parallel architectures that integrate general-purpose processors with
computational accelerators are rapidly being established on emerging systems as the
sine qua non for high performance, energy efficiency and reliability. Acceleration
through heterogeneity has been realized in several asymmetric multicore processors,
where a fixed transistor budget is distributed between many simple, specialized
tightly coupled cores and few complex, general-purpose cores. The specialized cores
provide custom features that enable acceleration of computational kernels operating
on vector data. These cores are controlled by the relatively few general-purpose
cores, which run system services and manage off-chip communication. In addition
to heterogeneous processors, it is now common for processor vendors to deliver
teraflop-capable, single-chip multiprocessors by integrating many simple cores
with single-instruction multiple data (SIMD) or single-instruction multiple threads

Programming Multicore and Many-core Computing Systems, 407
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(SIMT) datapaths. Cell [12], NVIDIA GPUs [30], Larrabee [38] and the Single-chip
Cloud Computer [21] are representatives of this class of processors, both homoge-
neous and heterogeneous, with significant market interest and demonstrated potential
[2, 6, 20, 22, 23, 33, 40]. Teraflop-capable processors accelerate computation by
design, while staying within a reasonable power and cost budget. Therefore, they
are considered as one of the most promising computational workhorses [5, 7, 9, 10,
13, 14, 17, 19, 26, 34] for high-performance computing (HPC).

Large-scale data centers typically employ commodity off-the-shelf components
to yield a cost-efficient setup. While commodity hardware has been common place
in HPC setups for almost two decades, large-scale data centers of commercial inter-
est, for example, Google [8], Amazon’s EC2 [1], etc., follow the same approach to
building efficient systems at scale to meet their HPC and data processing needs. The
commoditization of many-core computational accelerators renders these computa-
tional engines prime candidates for deployment in large-scale systems. Furthermore,
the vector processing capabilities of accelerators makes them natural candidates for
massive data processing. Although these indicators are promising, designing and pro-
gramming large-scale parallel systems with heterogeneous components is an open
challenge. Hiding architectural asymmetry and system scale from parallel program-
ming models is desirable for parallel programming models [4]; however it is challeng-
ing to implement on heterogeneous systems, where exploiting the custom features
and computational density of accelerators is a first-order consideration. At the same
time, provisioning general-purpose resources and custom accelerators to achieve a
balanced system is a nontrivial exercise.

20.1.1 Types of Accelerator-Based Systems

The asymmetry of resources on accelerator-enabled clusters introduces imbalances
in resource management and provisioning. Addressing those imbalances, while hid-
ing the associated complexity from users, is key to achieving high performance and
high productivity. Although designing for all possible resource configurations and
types of accelerators is very complicated, we can identify four representative design
patterns for realizing asymmetric accelerator-based clusters. We characterize these
patterns based on the general-purpose computing and system management capa-
bilities of the accelerators. More specifically, we consider the following classes of
accelerators:

20.1.1.1 Self-Managed Well-Provisioned Accelerators These acceler-
ators, shown in Figure 20.1(a), have high compute density, along with on-chip
capabilities to efficiently run control code and self-manage I/O and communication.
For example, an accelerator coupled with several general-purpose processor cores
on the same chip falls into this category. The on-chip computational power of
the general-purpose cores and the amount of memory attached to the accelerators
are assumed to be sufficient for self-management, in the sense that the control code
running for scheduling tasks and performing communication on the general-purpose
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Figure 20.1 Resource configurations for enabling asymmetric clusters. (a) Conf
I: Self-managed well-provisioned accelerators (b) Conf II: Resource-constrained
well-provisioned accelerators (c) Conf III: Resource-constrained shared-driver accelerators
(d) Conf IV: Mixed accelerators.

cores does not become the major performance bottleneck. Asymmetric multicores,
such as IBM Cell [12] processors, fall under this category.

20.1.1.2 Resource-Constrained Well-Provisioned Accelerators These
accelerators, shown in Figure 20.1(b), have high compute density but insufficient
on-chip general-purpose computing capability for running control code and/or
insufficient onboard memory for self-managing I/O and communication. I/O and
communication are managed by an external dedicated node with general-purpose
cores, which acts as a driver for the accelerators. Programmable FPGAs or GPGPUs,
such as CUDA-enabled NVIDIA and OpenCL™ -enabled AMD/ATI GPUs, fall
under this category. A conventional host processor is required in these settings
to run the operating system and provide general-purpose I/O and communication
capabilities to the accelerators, which communicate with the host over the I/O bus.

20.1.1.3 Resource-Constrained Shared-Driver Accelerators These
accelerators, shown in Figure 20.1(c), are similar to the previous case; how-
ever drivers are shared among several accelerators to yield a potentially more
cost-efficient design. Advanced multichip programmable GPUs, such as NVIDIA®
GeForce® GTX 295 [32], or installations with multiple programmable accelerators
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or FPGAs on a single driver node fall under this category. Note that the driver
for these accelerators can itself support heterogeneous accelerators within a single
compute node.1 This driver organization in effect creates an additional level of
asymmetry in the system.

20.1.1.4 Mixed-Mode Accelerators These accelerators, shown in Figure
20.1(d), use a mix of well-provisioned and shared-driver accelerators. A large-scale
cluster using variety of accelerators, such as IBM Cell, GPUs and FPGAs, in the
same setting falls under this category.

20.1.2 Challenges in Using Accelerators on Clusters

While the potential of many-core accelerators to catalyze HPC systems and data
centers is clear, attempting to integrate accelerators seamlessly in large-scale
computing installations raises challenges, with respect to resource management and
programmability. There is an inherent imbalance between general-purpose cores
and accelerators in asymmetric settings. The trend toward integrating relatively
simple cores with extremely efficient vector units leads to designs that are inherently
compute efficient but control inefficient. General-purpose cores are efficient in
executing control-intensive code; therefore they tend to be employed primarily as
controllers of parallel execution and communication with accelerators. Accelerators
on the other hand are efficient in executing data-parallel computational tasks. To
address this problem, large-scale system installations use ad hoc approaches to pair
accelerators with more control-efficient processors, such as ×86 multicore CPUs [7],
whereas processor architecture moves in the direction of integrating control-efficient
and compute-efficient cores on the same chip [38].

Similarly to approaches for resource provisioning, current approaches for pro-
gramming accelerator-based clusters are either ad hoc or specific to an installation [1,
7], thus posing several challenges when applying to general setups. Further challenges
arise because of heterogeneity, which manifest both in the programming model and
in resource management. Implementing an accessible programming model on sys-
tems with many cores, many processors, multiple instruction set architectures (ISAs),
and multiple compilation targets requires drastic modifications of the entire soft-
ware stack. Suitable programming models that adapt to the varying capabilities of the
accelerator-type components have not been developed yet. This deficit forces appli-
cation writers who want to use accelerators on clusters to micromanage resources.
Managing heterogeneous resources and matchmaking computations with resource
characteristics is a long-standing problem. Using architecture-specific solutions is
highly undesirable, as it compromises productivity, portability and sustainability of
the involved systems and applications. The effects of alternative workload distribu-
tions between general-purpose processors and accelerators are also not well under-
stood. Accelerators also typically have limited capabilities for managing external sys-
tem resources, such as communication and I/O devices, thus requiring support from

1In this chapter we refer to ‘accelerator-based compute node’ as ‘compute node’.
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general-purpose processors and special consideration while designing the resource
management software. To ensure overall high efficiency, resource management on
accelerator-based systems needs to orchestrate carefully data transfers and work dis-
tribution between heterogeneous components.

20.2 PROGRAMMING ACCELERATORS ON LARGE-SCALE
CLUSTERS

Accelerators provide much higher performance to cost ratio compared with conven-
tional processors. Thus, a properly designed accelerator-based cluster has the poten-
tial to provide high performance at a fraction of the cost and operating budget of a
traditional symmetric cluster. Unfortunately, accelerators also pose challenges to pro-
gramming and resource management. Programming accelerators requires working
with multiple ISAs and multiple compilation targets. Mapping a high-level parallel
programming model to accelerators while hiding the details of accelerator hardware
is extremely challenging and even undesirable if raising the level of abstraction comes
at a performance cost. To further investigate this problem, we study the implemen-
tation of MapReduce, a high-level parallel programming model for large-scale data
processing, on asymmetric accelerator-based clusters.

MapReduce is a widely used programming model for large-scale data processing
on parallel architectures [15, 16, 18, 36]. A MapReduce application processes data
with two simple data-parallel primitives: a map primitive that maps an input of (key,
value) pairs to an output of intermediate (key, value) pairs- and a reduce primitive-
that merges the values associated with each key. The runtime system partitions the
output of the map stage between nodes and sorts the input to each node before apply-
ing the reduction. This programming model borrows from functional languages to
provide a very high level of abstraction and hide most of the complexities of parallel
programming, such as partitioning, mapping, load balancing and tolerating faults.

MapReduce is ideal for massive data searching and processing operations. It has
shown excellent I/O characteristics on traditional clusters and has been successfully
applied in large-scale data search by Google [16]. Current trends show that the model
is considered a high-productivity alternative to traditional parallel programming
models for a variety of applications, ranging from enterprise computing [1, 3]
to petascale scientific computing [15, 35, 36]. Several research activities have
engaged in porting MapReduce to multicore architectures [15, 18, 36], whereas
recently, MapReduce has been chosen as a programming front end for Intel’s
Pangea architecture and Exoskeleton software environment [25, 40]. Pangea is an
asymmetric multicore processor integrating Intel® Core™ Duo cores with graphic
accelerators.

MapReduce typically assumes homogeneous components where any work item of
map and reduce tasks can be scheduled to any of the available components. While this
approach is friendly to the programmer, it adds complexity to the runtime system, if
the latter is to manage heterogeneous resources with markedly variable efficiency in
executing control-intensive and compute-intensive code. Recent implementations of
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MapReduce do consider and address the issue of heterogeneity [1, 41]; however, they
consider heterogeneity as an aftereffect of variation in external workload and not as
an inherent hardware property. Inherent architecture heterogeneity remains a prob-
lem when the cluster components include specialized accelerators, as the mapping
function needs to be extended to factor in differences in the individual component
capabilities and limitations. Another complication arises because of the assumption
that data is distributed between processors before a MapReduce computation begins
execution [3]. Given limited I/O capabilities of accelerators, this assumption may not
hold, thus posing the challenge of providing components with the necessary data in a
distributed setting. On distributed systems with accelerators, accelerators use private
address spaces that need to be managed explicitly by the runtime system. These pri-
vate spaces create effectively an additional data distribution and caching layer – due
to their typically limited size – which is invisible to programmers but needs to be
implemented with the utmost efficiency by the runtime system.

20.3 MAPREDUCE FOR HETEROGENEOUS CLUSTERS

We introduce enhancements in three aspects of the MapReduce programming model
and the associated runtime support [16]: (i) We exploit accelerators with techniques
that improve data locality and achieve overlapping of MapReduce execution stages.
(ii) We introduce runtime support for exploiting multiple accelerator architectures
(Cell and GPUs) in the same cluster setup and adapting workload task execution
to different accelerator architectures at runtime. (iii) We introduce workload-aware
execution capabilities for virtualized application execution setups. The latter exten-
sion is important in data centers and clouds comprising heterogeneous computa-
tional resources, where effective and transparent allocation of resources to tasks is
essential.

We arrange our resources as shown in Figure 20.2. A general-purpose
well-provisioned multicore server acts as a dedicated front-end manager for the
cluster. The server manages a number of back-end accelerator-based nodes and is
responsible for scheduling jobs, distributing data, allocating work between compute
nodes and providing other support services at the front end of the cluster. The brunt of
processing load is carried by the Cell-based and GPU-based accelerator nodes. The
manager divides the MapReduce tasks (map, reduce, sort, etc.) in small workloads
and assigns these workloads to the attached accelerator-based nodes. Irrespective of
the type of back-end nodes, the manager transparently distributes and schedules the
workload to them. If the back end is a self-managed accelerator, its general-purpose
core uses MapReduce to map the assigned workload to the accelerators. In contrast,
if the back end is driver based, the driver components further distribute the assigned
workload to the attached accelerator node(s). Note that the manager differs from
a driver. Drivers execute control tasks for communication and I/O on behalf of
accelerators, whereas the manager controls work and data distribution for the entire
cluster. This model can be thought of as a hierarchical MapReduce: each level maps
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Figure 20.2 High-level overview of an accelerator-based asymmetric-distributed system.

the workload to the next level of nodes, until it reaches the compute node where the
generic on-chip core maps the workload to the accelerators.

20.3.1 Extending the MapReduce Model for Heterogeneous
Resources

In a typical MapReduce setting, Map and Reduce tasks are scheduled separately on
potentially distinct sets of cluster nodes. In our enhanced MapReduce runtime, a data
segment is assigned to a compute node, and the entire sequence of MapReduce opera-
tions on the data segment is executed on the same assigned compute node. This does
not require classifying cluster resources as mappers or reducers; the data segment
stays on the assigned node, and both operations (map and reduce) are performed on
the data segment on the same node, thus improving data locality. One of the disad-
vantages of having separate mappers and reducers is that the reducers cannot start
the reduce process before the completion of all mappers. In our MapReduce runtime,
the manager does not wait for all nodes to complete their processing before a global
merge operation is executed. Instead, the manager starts to merge the results as soon
as results are received from more than one compute nodes.

Our framework uses a transparently optimized accelerator-specific binary for
each type of accelerator. The runtime system hides the asymmetry between available
resources. Nevertheless, a given application component will exhibit variation in
performance on the different combinations of processor types, memory systems
and node interconnects available on the cluster. To improve resource utilization and
matchmaking between MapReduce components and available hardware resources,
the runtime system monitors the execution time of tasks on hardware components
and uses this information to adapt the scheduling of tasks to components so that
each task ends up executing on the resource that is best suited for it. The application
programmer may also guide the runtime by providing an affinity metric that indicates
the best resource for a given task, for example, a high affinity value for a GPU
implies that an application component would perform best on a GPU, whereas
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an affinity of zero implies that the application should preferably execute on other
types of processors. The runtime system takes these values into consideration when
making its scheduling decisions.

20.3.2 Execution Model for Asymmetric MapReduce

Once an application begins execution, the associated manager and accelerator soft-
ware is started on the respective components, and the manager initiates MapReduce
tasks on the available accelerator nodes. Once assigned, the tasks self-schedule their
work by reading data from the distributed file system, processing it and returning
the results back to the manager in a continuous loop. Once the manager receives
the results, it merges them to produce the final result set for the application. After
a particular MapReduce task has been completed by a self-managed node, the man-
ager assigns another task to that node. This process continues until the entire input
data has been processed by the accelerators. The manager handles the driver nodes
similarly.

For driver-based resources, each driver loads a portion of input data into its mem-
ory, to ensure that sufficient data is readily available for the accelerator nodes. The
driver then initiates the required MapReduce tasks on the accelerator nodes and sends
the necessary data to the corresponding resource-constrained accelerators. When all
the in-memory loaded data has been processed by the accelerators, the driver loads
another portion of the input data into memory, and the whole process continues until
the entire MapReduce task assigned to the particular driver has been completed by
the attached resource-constrained accelerators. The driver also merges the result data
produced by the accelerators, and the merged result sets are sent back to the manager.

20.3.3 Using Asymmetric MapReduce

Our framework leverages accelerator-specific tools to generate binaries that our
runtime orchestrates. To facilitate automatic generation of such binaries, we develop
an extended programming model based on MapReduce. From an application
programmer’s point of view, irrespective of the resource configuration employed,
MapReduce is used on asymmetric resources as follows. The application is divided
into three parts: (i) The code to initialize the runtime environment. This code runs
outside of the MapReduce data processing stages and includes initialization, data
distribution and finalization. This part is unique to our design and does not have a cor-
responding operation in prior MapReduce implementations. (ii) The code that runs
on the accelerator cores and does the actual data processing for the application. This
is similar to a standard MapReduce application setup running on a small portion of
the input data that has been assigned to the compute node. This code includes a map
phase to distribute the workload between the accelerator cores and a reduce phase to
merge the data produced from accelerators. (iii) The code that runs on the manager
to merge partial results from each compute node into a complete result. This code is
invoked every time a result is received from a compute node and executes a global
merge phase that is functionally identical to the reduce phase on each compute node.
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All map, reduce and merge functions are application specific and should be provided
by the programmer using the APIs exposed by our framework. Our framework
requires that these operations are specified for all the accelerator types used in a
particular setting, so that any given task can be executed on any available accelerator.
Once identified, the binaries for the aforementioned components are generated for all
the available targets (different accelerators and conventional multicore processors)
in the system. The availability of these binaries enables our system to transparently
schedule tasks at any time, on any type of accelerator, and hide heterogeneity
and asymmetry. Furthermore, it frees the programmer from system-level details
such as managing the memory subsystems of accelerators, orchestrating data
transfers between the manager and the compute nodes and implementing optimized
communication mechanisms between cluster nodes. Therefore, the programmer
focuses exclusively on the application-specific part of code.

20.4 RESOURCE CONFIGURATION

20.4.1 Alternate Resource Configurations for Asymmetric Clusters

We consider four resource configurations for the target asymmetric clusters as shown
in Figure 20.1. The configurations are driven by the type of the back-end components
used as well as by economical constraints and performance goals. In all cases, the
manager and all back-end nodes are connected via a high-speed commodity network,
for example, Gigabit Ethernet. Application data is hosted on a distributed file system
(NFS [37] in our implementation).

The first configuration (Fig. 20.1(a)) we consider is that of self-managed
well-provisioned accelerators (Conf I), connected directly to the manager. A blade
with Cell processors [28] including multigigabyte DRAM and high-speed network
connectivity would fall into this category. Small-scale academic settings may also
adopt such a configuration, using, for example, Cell-based Sony PlayStation® 3
(PS3™) nodes and scaling down the workload per PS3 so as to not exceed the
limited DRAM capacity and not stress the limited general-purpose processing
capabilities of the PS3. The compute nodes execute directly all MapReduce tasks,
and the manager merges partial results from the computes nodes.

The next configuration (Fig. 20.1(b)) uses resource-constrained well-provisioned
accelerators (Conf II). Each driver provides large memory space and communication
and I/O capabilities to an individual resource-constrained accelerator, for example, a
PS3. The manager distributes input data to the driver nodes in large chunks. The driver
nodes proceed by streaming these chunks to the attached accelerators. Accelerators
execute the MapReduce tasks; however, partial results produced by accelerators are
merged at the corresponding driver nodes, and the manager executes the global merge
operation on the results received from the driver nodes.

A single driver per resource-constrained accelerator is not always justifiable as
one accelerator may not be able to fully utilize the driver’s resources. In contrast, a
single manager may not be sufficient to match the data demands of many accelerators
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simultaneously. We address this by using a hierarchical setup (Conf III) so that each
driver node manages multiple accelerator nodes (Fig. 20.1(c)).

Finally, an asymmetric system may employ a mix of the aforementioned configu-
rations based on particular requirements. We capture this mix in our last configuration
(Conf IV) (Fig. 20.1(d)). In this case, the manager is agnostic of the class of the
attached compute nodes and simply divides the input workload between available
compute nodes. The execution of MapReduce tasks and merging of partial results
are managed automatically at each component, while the final result is produced
by the manager, which performs the global merge of the results received from the
attached drivers.

20.4.2 Asymmetric Component Operations/Responsibilities

Traditional MapReduce designs do not consider individual component capabilities
since they assume homogeneous components as compute nodes. An efficient design,
however, has to factor in the capabilities of back-end resources when allocating tasks.
For self-managed resources or drivers in other configurations, this task is straightfor-
ward. The manager divides the input data and hands it over to the nodes being directly
managed. The actual assignment is done by either copying the data to the nodes’ local
storage or providing them with pointers to the files on the distributed file system. This
approach is easy to implement and lightweight for the manager, as the manager does
not need to micromanage data allocation to accelerators.

However, data handover cannot be used for resource-constrained nodes due to
potential limitations such as inability to directly retrieve the data, bottlenecks on the
central file system or lack of sufficient storage and memory for holding local copies.
An alternative, which we adopt, is to divide the input data into chunks, with sizes
based on the capabilities of compute nodes. Our runtime environment controls the
size of these chunks so that each chunk can be efficiently processed at the compute
nodes without overwhelming their resources, for example, without memory thrash-
ing. Instead of a single division of data, the runtime environment streams chunks
(work units) to the compute nodes until all data has been processed. The concern
is that such an approach improves performance on the compute nodes at the cost
of increasing the load of the manager. The runtime environment balances the load
between the manager and the compute nodes, by controlling the resources dedicated
to processing communication with each compute node on the manager and continu-
ously adapting the chunk size on the compute nodes.

In addition to addressing I/O diversity, the manager faces different memory
and computation pressures depending on the type of back-end resources. For
self-managed nodes, the manager is also responsible for merging the results
repeatedly for the entire input data. This process can be resource consuming. By
contrast, for well-provisioned resources, the resource or driver does most of the
merging for the accelerators, and the manager simply has to perform a global merge.
These factors have to be considered when designing asymmetric clusters, taking also
into account workload-specific characteristics.
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Figure 20.3 Interactions between manager and compute node components.

20.4.2.1 Manager Operation The manager is responsible for job queu-
ing, scheduling, data hosting and managing compute nodes. We assume that
well-established standard techniques can be used for such manager tasks and focus
on the compute node management role. Once an application begins execution (Step 1
in Fig. 20.3), the manager loads a portion of the associated input data from the file
system (NFS in our implementation) into its memory (Step 2). This ensures that
sufficient data is readily available for compute nodes and avoids any I/O bottleneck
that can hinder performance. For well-provisioned compute nodes with drivers, this
step is replaced by direct prefetching on the drivers.

Next, client tasks are started on the available compute nodes (Step 3). These tasks
self-schedule their work by requesting input data from the manager, processing it
and returning the results back to the manager in a continuous loop (Step 4). For
well-provisioned nodes, the result data is directly written to the file system, and the
manager is informed of task completion. Once the manager receives the results, it
merges them (Step 6) to produce the final result set for the application. When all the
in-memory loaded data has been processed by the clients, the manager loads another
portion of the input data into memory (Step 2), and the whole process continues until
the entire input has been consumed. This model is similar to using a large number of
small map operations in standard MapReduce.

The design described so far may suffer from two potential I/O bottlenecks: the
manager may stall while reading data from the distributed file system (NFS in our
case), or the compute nodes may stall while data is being transferred to them either
from the manager or from the file system. At both levels, we employ double buffering
to avoid delays. At the manager, an asynchronous prefetch thread is used to preload
data from the disk into a buffer, while the data in an already-loaded buffer is being
processed, and the previously computed buffer is written back. Similarly, the driver,
if used, and the compute nodes use double buffering to overlap data transfer with
computation.
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20.4.2.2 Compute Node Operation Application tasks are invoked on the
compute nodes (Step 3) and begin to execute the request, process and reply (Steps
4a–4d) loop as stated earlier. We refer to the amount of application data processed
in a single iteration on a compute node as a work unit. With the exception of an
application-specific Offload function2 that performs computation on the incoming
data, the framework on the compute nodes provides all other necessary functions,
including communication with the manager and preparation of data buffers for input
and output. Each compute node has three threads that operate on multiple buffers for
working on and transferring data to/from the manager. One thread is responsible for
requesting and receiving new data to work on from the manager (Step 4a). The data
is placed in a receiving buffer. When the thread has received the data, it hands off
the receiving buffer to an offload thread (Step 4b) and then requests more data until
all free receiving buffers have been filled. The offload thread invokes the Offload
function (Step 5) on the accelerator cores with a pointer to the receiving buffer, the
data type of the work unit (specified by the User Application on the manager node)
and the size of the work unit. Since the input buffer passed to the Offload function
is also its output buffer, all of these parameters are read–write parameters. This is
to allow the Offload function to resize the buffer, change the data type and change
the data size depending on the demands of the output. When the Offload function
finishes, the recent output buffer is handed off to a writing thread (Step 4c), which
returns the results back to the manager and frees the buffer for reuse by the receiving
thread (Step 4d). Note that the compute node supports variable size work units and
can dynamically adjust the size of buffers at runtime.

As pointed out earlier, the driver interacts with the accelerator node similarly as the
manager interacts with the compute nodes. The difference between the manager and
the driver node is that the manager may have to interact and stream data to multiple
compute nodes, while the driver only manages a single accelerator node. The driver
further splits the input data received from the manager and passes it to the compute
node in optimal size chunks as discussed in the following section.

20.5 RESOURCE MANAGEMENT ON CLUSTERS WITH
ACCELERATORS

20.5.1 Capability-Aware Workload Distribution Alternatives

Efficient allocation of application data to compute nodes is a central component in
our design. This poses several alternatives. A straw man approach is to simply divide
the total input data into as many chunks as the number of available processing nodes
and copy the chunks to the local disks of the compute nodes. The application on the
compute nodes can then get the data from the local disk as needed and write the

2The Offload function is a user-specified function that processes each work unit on the accelerator-type
cores of the compute node. The result from the Offload function is merged by the general-purpose processor
to produce the output data that is returned to the manager.
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results back to the local disk. When the task completes, the result data can be read
from the disk and returned to the manager. This approach is easy to implement and
lightweight for the manager node as it reduces the allocation task to a single data
distribution.

Static decomposition and distribution of data among local disks can potentially
be employed for well-provisioned compute nodes. However, for nodes with small
memory, there are several drawbacks: (i) it requires creation of additional copies of
the input data from the manager’s storage to the local disk and vice versa for the
result data, which may quickly become a bottleneck, especially if the compute node
disks are slower than those available to the manager; (ii) it requires compute nodes
to read required data from disks, which have greater latency as compared with main
memory or other alternatives; (iii) it entails modifying the workload to account for
explicit copying, which is undesirable as it burdens the application programmer with
system-level details, thus making the application nonportable across different setups;
and (iv) it entails extra communication between the manager and the compute nodes,
which may slow the nodes down and affect overall performance. Hence, this is not a
suitable choice for use with small-memory accelerators.

A second alternative is to divide the input data as before, but instead of copy-
ing a chunk to the compute node’s disk as in the previous case, map the chunk
directly into the virtual memory of the compute node. The goal here is to leverage the
high-speed disks available to the manager and avoid unnecessary data copying. How-
ever, for small-memory nodes, this approach can create chunks that are very large
compared with the physical memory available, thus leading to memory thrashing
and reduced performance. This is exacerbated by the fact that available MapReduce
runtime implementations [15] require additional memory reserved for the runtime
system to store internal data structures. Hence, static division of input data is not a
viable approach for our target environment.

The third alternative is to divide the input data into chunks, with sizes based on
the memory capacity of the compute nodes. Chunks should still be mapped to virtual
memory to avoid unnecessary copying, whereas the chunk sizes should be set so that
at any point in time, a compute node can process one chunk while streaming in the
next chunk to be processed and streaming out the previously computed chunk. This
approach can improve performance on compute nodes, at the cost of increasing the
manager’s load as well as the load of the compute node cores that run the operating
system and I/O protocol stacks. Therefore, we seek a design point which balances the
manager’s load, I/O and system overhead on compute nodes and raw computational
performance on compute nodes.

20.5.2 Adapting Workload Size

Efficient utilization of compute nodes is crucial for overall system performance. A
key observation is that a compute node’s performance can be increased manyfold by
reducing memory pressure, which is in turn tied to the work unit size. The intuition is
that if a smaller than optimal size is assigned to an accelerator, it would underutilize
available resources and needs more scheduling iterations on the manager. In contrast,
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using a larger size would result in increased iteration time due to memory thrashing
and resource saturation on accelerators. The challenge is to find an optimally sized
work unit, which offers the best trade-off between the compute node performance
and manager load.

An optimum work unit for running an application on a particular cluster can be
manually determined by hard coding different work unit sizes, executing the appli-
cation and measuring the execution time for each size. The best unit size is the one
for which the application execution time is minimized. However, this is a tedious and
error-prone process. It requires unnecessary ‘test’ access to resources, which may be
difficult to obtain given the ever increasing need for executing ‘production’ tasks on
a cluster to maintain high serviceability. Our framework adaptively and dynamically
matches the workload assigned to a compute node to its capabilities. To this end,
we define an optimal work unit size to be the largest amount of data assigned per
accelerator that results in minimum execution time for a given application.

The optimal work unit size can be determined either statically or dynamically
using an autotuning heuristic. We adopt an autotuning scheme where the driver or
manager sends varying size work units to accelerator nodes at the start of the appli-
cation and records the completion time corresponding to each size. For each size,
the processing rate is calculated as the fraction (work unit size)/(execution time). The
size corresponding to the maximum processing rate is selected as the optimal work
unit size and is employed for the rest of the application’s execution time. The same
process is repeated at the drivers to find the optimal work unit size allocated from
each driver to the attached compute nodes.

All available compute nodes participate in finding the optimal work unit size.
Increasing work units are sent to multiple compute nodes simultaneously, although
one size is sent to at least two compute nodes to determine average performance. Once
an optimal work unit size is determined, it can also be reported to the application user
to possibly facilitate optimization for a future run.

20.5.3 Capability-Aware Workload Distribution Algorithm

We consider two types of accelerators, Cell processors and CUDA-enabled GPUs, in
designing capability-aware workload distribution schemes for multiple concurrently
executing applications on heterogeneous resources. Concurrently executing applica-
tions are commonplace in virtualized execution environments, such as data centers.
Our scheduler handles both stand-alone and virtualized execution of applications. In
the latter case, applications share resources in space and/or time. The scheduler takes
two parameters as input: (i) the number and type of compute nodes in the hetero-
geneous cluster and (ii) the number of simultaneously running applications on the
heterogeneous cluster.

Figure 20.4 shows the different states representing the learning process and the
execution flow of the scheduler. Initially, the scheduler starts with a static assignment
of tasks to nodes and cores, based on the user-provided affinity metric and the perfor-
mance of the resources in terms of time spent per byte of data or if no information is
available, by simply dividing the tasks evenly between resources. The scheduler then
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Figure 20.4 State machine for scheduler learning and execution process.

enters its learning phase, where it measures the processing times for different applica-
tion components on the resources on which they are initially scheduled. Based on the
processing time of the workload on each of the available compute nodes, the sched-
uler then computes the processing time per byte for each of the available compute
nodes. Once a processing rate is known, the scheduler moves to the adaptation phase,
where the schedule is adjusted to greedily maximize the processing rate. Note that,
even in this phase, the scheduler continues to monitor its performance and adjust its
scheduling decisions accordingly.

For multiple concurrently executing applications, the scheduler must decide which
application to run on what particular accelerator. For this purpose, the scheduler tries
different assignments, for example, starting by scheduling an application A on the
Cell processor and application B on the GPU for a prespecified period of time Tlearn,
then reversing the assignment for another Tlearn, then determining the assignment
that yields higher throughput and finally using that assignment for the remaining exe-
cution of the application. The time to determine a best schedule will increase with
the number of applications executing simultaneously; however, it can be reduced by
using user input or information from past application runs. If one of the applications
completes earlier than the other, the scheduler enters the learning phase and attempts
to assign the recently released resources to either applications waiting in the queue
or the running application if the queue is empty. It is not always possible to assign
the applications to the most suitable nodes, for example, when multiple applications
need the same type of accelerators and only a limited number of accelerators of the
requested type is available. Nonetheless, our approach ensures that all compute nodes
are kept busy and that the assignment of the applications to compute nodes is optimal
in that the overall completion time for the scheduled applications is minimized for
the given resources and applications.

The algorithm describes how our capabilities-aware dynamic scheduling scheme
works. Since the scheduler does not have any information about how the available
compute nodes perform for the given tasks, a static schedule is chosen in the begin-
ning. The schedule is adjusted dynamically as the tasks execute, and their perfor-
mance on the assigned compute nodes can be measured. Note that if there are more
accelerators available than the number of applications, each application is scheduled
on a separate accelerator during the learning phase. This eliminates any resource
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conflicts between different applications and allows for determining accurate process-
ing rates. For example, if applications A and B are assigned to a cluster with four of
each of Cell- and GPU-based compute nodes, the system assigns half of the nodes
(2 Cells and 2 GPUs) each to A and B during the learning phase. The assignment is
then readjusted using the performance measurements to improve the overall execu-
tion time.

20.5.4 Managing Manager-Accelerator I/O Mismatch

Even with adaptive scheduling and programmer-supplied affinity metrics, the inher-
ent asymmetry between cluster components may lead to performance degradation,
especially due to communication delays associated with data distribution and collec-
tion by the manager. Thus, it is critical to handle all communication with different
components of the system asynchronously. This design choice needs careful consid-
eration. If chunks from consecutive input data are distributed to multiple compute
nodes, time-consuming sorting and ordering operations would be required to ensure
proper merging of the results from individual compute nodes into a consolidated
result set. We address this issue by using a separate handler thread on the manager for
each of the compute nodes. Each handler works with a consecutive fixed portion of
the data and avoids costly ordering operations by exploiting data locality. Each han-
dler thread is also responsible for receiving all the results from its associated compute
node and for performing the application-specific merging operation on the received
data. This design leverages multicore or multiprocessor head nodes effectively. More-
over, we use well-established techniques such as prefetching and double buffering to
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avoid I/O delays when reading data from the disks and transferring the data between
manager and compute nodes.

Instead of statically dividing the input data between the available compute nodes,
we adopt a streaming approach in our design. Statically allocating workloads to
compute nodes, as is the case in standard MapReduce setups, may saturate the
noncompute-efficient resources of accelerators that handle communication (e.g.
the PowerPC® core of the Cell or the I/O bus on nodes with GPUs) and erase the
performance gains that accelerators can provide. Instead, we slice the input into
work units with sizes based on the memory, communication and control capabilities
of the accelerators and stream the slices to compute nodes while attempting to
overlap computation with data streaming.

20.5.5 Communication between Cluster Nodes

In our implementation, we have isolated the communication functionality from other
functions of our framework in a custom-built communication library. This library uses
LAM–MPI [11, 39] to communicate between the cluster nodes; however, it can be
easily replaced with other communication libraries and primitives, such as network
sockets or remote procedure calls.

In some cases applications may require setting up specific environments for their
tasks to run on compute nodes. Certain parameters such as network paths or file names
may need to be distributed to all compute nodes. We provide an API to add all the
parameters to a special buffer. The parameters are defined in the application initial-
ization code provided to the manager. Once execution begins, the manager broadcasts
this buffer of parameters to compute nodes, allowing all compute nodes to be initial-
ized as needed by the application.

20.6 EVALUATION

We implemented our capabilities-aware MapReduce framework in lightweight
user-level libraries for each of our experimental platforms, including x86-based
nodes acting as managers, nodes with IBM Cell processors where we provide
libraries for the PowerPC® core and the Synergistic Processing Elements (SPEs)
and heterogeneous CPU–GPU compute nodes. All our libraries are implemented
for Linux-/Unix-based operating systems and use the POSIX threads [29] library.
Our libraries provide programmers with all necessary MapReduce programming
primitives to program a heterogeneous cluster.

We present results from an experimental test-bed using 4 Sony PlayStation® 3
(PS3™) nodes, 4 GPU-enabled Toshiba Qosmio® laptop nodes and a manager node
with dual quadcore Intel® Xeon® processors. All cluster components are connected
via 1 Gbps Ethernet and are arranged in the configuration shown in Figure 20.1(d)
(Conf IV) where Cell-based well-provisioned accelerators are directly connected with
the manager, and GPU-based resource-constrained accelerators are connected with
the manager through general-purpose multicores in Toshiba laptops. The manager has



�

� �

�

424 PROGRAMMING AND MANAGING RESOURCES ON ACCELERATOR-ENABLED CLUSTERS

 0

 2

 4

 6

 8

 10

 12

14

 0  100  200  300  400  500

E
xe

cu
tio

n 
tim

e 
(s

)

Input size (MB)

Dynamic
Static

Figure 20.5 Execution time of linear
regression with increasing input size.
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while simultaneously executing histogram.
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Figure 20.7 Execution time of histogram while simultaneously executing word count.

two quadcore Intel® Xeon® processors with 3 GHz clocks and 16 GB main memory
and runs Linux Fedora Core 8 (kernel version 2.6.26). The PS3 has eight SPEs, out
of which six are available to user-level programs [24, 26], 256 MB of main memory
(of which about 200 MB is available for applications and the rest is reserved for the
operating system and a proprietary hypervisor) and runs Linux Fedora Core 7 (kernel
version 2.6.24). The GPU-enabled Toshiba Qosmio® laptops have one Intel dual-core
processor with a 2.0 GHz clock and 4 GB of DRAM and run Linux Fedora Core
9 (kernel version 2.6.27). Each of the laptops also has one NVIDIA® GeForce®

9600M GT CUDA-enabled GPU device [31], with 32 cores and 512 MB of memory.
We program the GPU using the CUDA toolkit 2.2.

In our evaluation, we use three representative MapReduce benchmarks, namely,
word count, histogram and linear regression to study the effects of various design
decisions on overall system performance. We compare the performance of our
dynamic scheduling scheme with a static scheduling scheme. The static scheme
takes into account the overall performance of the assigned workloads on Cell
and GPU nodes, which in essence incorporates all the performance parameters of
Cell and GPU architectures, thus providing the best static scheduling scheme for
the given applications on the studied platforms. Figure 20.5 shows the execution
time for the linear regression benchmark using static and dynamic scheduling
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schemes, while increasing the input size. Our evaluation shows an average system
performance improvement of 26.9% with dynamic capability-aware scheduling over
static scheduling.

We also evaluate the performance of our capability-aware scheduling scheme
with multiple simultaneously running applications on available heterogeneous
resources. We invoke multiple applications on the manager node to simulate a cloud
computing environment where multiple applications are assigned to the cluster and
computational resources are shared transparently between applications. We compare
our dynamic scheduling with a static scheduling scheme that simultaneously
schedules all applications to be executed on all compute nodes. The static scheduling
scheme uses knowledge about how the applications would perform on each type of
the compute nodes and how much data can be handled by the nodes at a time. In
contrast, our dynamic scheduler has no prior knowledge of the nodes’ capabilities
and learns and adapts as the applications proceed in their execution. Figures 20.6 and
20.7 show the execution times of concurrent execution of word count and histogram
benchmarks using the static and dynamic scheduling with increasing input sizes.
For static scheduling, both benchmarks are executed on all available resources, and
completion of an application does not affect the allocation of resources for other
applications. For dynamic scheduling, although the benchmarks start to execute
together, histogram completes quickly, leaving word count to utilize all the available
resources for its remaining execution. Overall, compared with static scheduling, our
dynamic scheduling scheme performs 31.5% and 11.3% better for word count and
histogram, respectively.
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Figure 20.8 Framework scalability.

We also observe how the performance of
our benchmarks (linear regression, word count,
histogram and h-means) scale with the number
of compute nodes using Conf I [27]. Figure 20.8
shows the speedup in performance normalized
to the case of 1 node in Conf I. Although we
are only able to evaluate scaling on the rela-
tively modest scale of 8 nodes, our results show
that our framework scales almost linearly as the
number of compute nodes increases and this behavior persists for all the benchmark.
However, we observe that the improvement trend does not hold for all benchmarks
when the eighth node is added. We find that the network bandwidth utilization for
such cases is quite high, as much as 107 MB/s compared with the maximum observed
value of 111 MB/s on our network, measured using remote copy of a large file. High
network utilization introduces communication delays even with double buffering and
prevents our framework from achieving a linear speedup. However, if the ratio of time
spent in computation compared with that in communication is high, which is the case
in scientific applications, we can obtain near linear speedup. We test this hypothesis
by artificially increasing our compute time for linear regression by a factor of 10,
which results in a speedup of 7.8.
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20.7 CONCLUSION

This chapter explored system design alternatives for clusters with computational
accelerators and capability-aware task scheduling strategies for large-scale data
processing on accelerator-enabled clusters. We presented an implementation and
adaptation of the MapReduce programming model for asymmetric clusters. Our
contribution features runtime support for utilizing multiple types of computational
accelerators in MapReduce, via runtime workload adaptation and methods for
adaptively mapping MapReduce workloads to virtualized execution environments
with accelerators. Based on these extensions, we were able to integrate two modern
multi-/many-core accelerators, the Cell and NVIDIA GPUs, on academic-scale
cost-efficient clusters, for processing realistic data-intensive applications. We
find that MapReduce can effectively utilize heterogeneous clusters with multiple
coexisting accelerator architectures, while preserving its transparency, simplicity and
portability as a programming model. Furthermore, adaptively matching application
execution properties to the computational capabilities of accelerators improves both
application and system performance.

In future work, we plan to leverage the lessons learned from developing an
extended MapReduce model to design generic and domain-specific programming
models for accelerator-based distributed systems. Furthermore, we intend to extend
our framework to develop design optimization tools and models for large-scale dis-
tributed systems, to allow future system developers to achieve performance–budget
balanced configurations.
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CHAPTER 21

AN APPROACH FOR EFFICIENT
EXECUTION OF SPMD APPLICATIONS
ON MULTICORE CLUSTERS

Ronal Muresano, Dolores Rexachs and Emilio Luque

21.1 INTRODUCTION

The increasing use of multicore processors in high-performance computing (HPC) is
evident in the top 5001 list, in which most of today’s clusters are set up with multicore
nodes using a hierarchical communication architecture, which has to be handled care-
fully if programmers want to improve parallel application performance metrics [2].
Also, the adoption of multicore nodes in HPC has allowed more parallelism within the
nodes; however, this parallelism has to be managed properly when the programmer
wishes to enhance the performance metrics. The most relevant problems found on
multicore nodes are related to number of cores per chip, data locality, shared cache,
bus interconnection, memory bandwidth and communication congestion [13].

1TOP500: a list which provides a rank of parallel machines for HPC www.top500.org. This book
chapter has been supported by the MICINN Spain under contract TIN2007-64974.

Programming Multicore and Many-core Computing Systems, 431
First Edition. Edited by Sabri Pllana and Fatos Xhafa.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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The need for improving performance metrics in these hierarchical communication
environments is an obstacle that parallel computing is striving to overcome. Met-
rics such as efficiency, speedup, execution time and strong application scalability
are influenced in a different manner when parallel applications are executed in these
heterogeneous environments. In this sense, we consider multicore clusters as hetero-
geneous due to their different communication paths, which present different speeds
and bandwidths, [17] and these differences may cause degradations in the applica-
tion performance [5, 9]. For example, on multicore clusters some communications
are realized through network links such as local area networks (LAN), and others are
established by internal processor buses, for example, intercore and interchip commu-
nication travel through the internal architecture of the node (Fig. 21.1).

Another issue that parallel programmers have to consider is that many traditional
Message Passing Interface (MPI) parallel applications were designed to be executed
in clusters comprised of single core nodes, in which communication within the node is
not present. However, when these applications are executed on multicore clusters, the
processes will be exchanging their information with other processes that are located
in the same node or in different nodes. This communication exchange can generate
communications imbalances that can create delays in the execution.

An additional aspect to be contemplated for an efficient execution is the parallel
paradigm. Master/worker, single program, multiple data (SPMD), pipeline, divide
and conquer are examples of parallel paradigms, and each of these paradigms has a
different behavior and communication pattern that need to be managed properly. This
chapter is mainly centered on studying applications using message passing libraries
with high synchronicity through tile dependencies and communication volumes such
as SPMD applications on multicore clusters. The SPMD paradigm has been selected
due to its behavior, which is to execute the same program in all processes but with a
different set of tiles [3]. An SPMD tile is executed in a similar computational time,
but the communication processes among neighbors are performed by different links
depending on the location of the SPMD processes. These communication links can
vary their communication speed in an order of magnitude according to the links, and
these variations are a limiting factor to improve performance.

Despite these communications issues and the behavior of MPI applications, we can
take advantage of the computational power that these clusters offer with the aim of
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running applications faster and more efficiently [11]. The applications selected have
to meet three characteristics: static, where the communication process is maintained
during the entire execution; local, without collective communications; and regular,
communications are repeated for several iterations. Also, the SPMD applications used
are 2D grid problems with high communication volumes.

An example of the problem concerning these applications and multicore clusters
is shown in Figure 21.1. This figure illustrates how a tile can be assigned to each
core and what are the influences of the communication processes. The computation
processes have to wait until the slowest communications link finishes receiving its
information to start the new iteration. These waiting times are translated into system
inefficiency.

The main objective of this chapter is focused on describing an efficient execution
methodology for multicore clusters, which is based on achieving a suitable applica-
tion execution with a maximum speedup achievable while the efficiency is maintained
over a defined threshold. This methodology allows us to calculate the maximum num-
ber of cores that maintain strong application scalability while sustaining a desired
efficiency for SPMD applications. It also calculates the ideal number of tiles that have
to be assigned to each core with the objective of maintaining a relationship between
speedup and efficiency.

This methodology assigns each SPMD tile of the application to a group called a
supertile (ST), each of which is in turn assigned to a core. The tiles of these STs belong
to one of two types: internal tiles (communication processes are made in the same
core) and edge tiles (communication processes are performed with tiles allocated to
other core). This division allows us to apply an overlapping method that permits us
to execute the internal tiles while the edge communications are being performed.
The methodology has been designed in four phases as follows: the characterization
(application and environment), tile distribution (we determine the number of tile and
number of cores necessary to execute efficiently and with the maximum speedup),
mapping strategy (distribution of tiles over cores) and scheduling policy (define the
execution order of assigned tiles). This efficient execution methodology has been
tested with different scientific applications, and we have reached an improvement of
around 40% in efficiency when applying our method.

This chapter is organized as follows. Section 21.2 describes the problems of
SPMD applications on multicore clusters. Section 21.3 presents a methodology
for efficient execution of SPMD applications on multicore clusters. Section 21.4
illustrates how to combine the efficiency and strong scalability of SPMD applica-
tions. Section 21.5 is focused on showing the improvements achieved in efficiency
and speedup. Section 21.6 presents the related works, and finally, Section 21.7
summarizes and draws the main conclusions.

21.2 SPMD APPLICATIONS ON MULTICORE CLUSTERS

It is important to define the kind of SPMD applications that our methodology attempts
to improve. The SPMD applications selected present a synchronicity through task or
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Figure 21.2 Examples of SPMD applications and communications patterns.

tile dependencies, and they do not include a process synchronicity as was established
by Valiant [18] in the BSP model.

The behavior of some examples of SPMD applications can be detailed in
Figure 21.2. The figure illustrates different communication patterns, which can vary
according to the objective of the parallel application. In some cases, the communica-
tions can be executed in two, four, six or more bidirectional communications. These
communication patterns are established at the beginning of the SPMD application
execution, and these patterns are kept until the application finishes. For this reason,
we have to manage the communication imbalance of the multicore architecture
because it can create dramatic inefficiencies in the parallel execution that will
be repeated during all the application’s iterations. As mentioned previously, the
applications used to apply our methodology have to be designed with static, local
and regular characteristics. There are different kinds of benchmarks and applications
of diverse fields that accomplish all these characteristics. One example of a suitable
benchmark can be found in the NAS parallel benchmark in the CG, BT, MG, and
SP applications [20]; all these benchmarks have been designed for 2D and in some
case for 3D grid problem. Also, there are examples of real applications such as heat
transfer and wave simulation, Laplace’s equation and fluid dynamics (mpbl suite)
[7]. In all these applications efficiency is mainly affected by the communications
imbalances of these multicore environments.

An example of this inefficiency is illustrated in Figure 21.3, where the SPMD
tiles are executed in similar time due to the homogeneity of the cores, but the com-
munication process has different times depending on the communication links that
are used between them. Also, the figure illustrates the idle time generated by slower
communication links, for example, core 5 is communicating from node 1 with core
9 of node 2 through the internode link. These communications have a bigger delay
than communication performed by core 5 with core 6 of the same node. The slowest
communication is a limiting factor because core 5 cannot begin to calculate the next
iteration as all the information transfer has not completed. These issues are translated
into inefficiencies that are repeated until the application ends.
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Figure 21.3 SPMD applications on multicore cluster.

However, these idle times allow us to establish suitable strategies in order
to organize how SPMD tiles could be distributed on multicore clusters with the
aim of managing these communications in an efficient manner. It is important to
understand that the latency of the slower link will determine an SPMD iteration as
is observed in Figure 21.3. For this reason, the communication inefficiencies have
to be managed if we wish to execute the SPMD applications faster, while retaining
efficiency and scalability. In order to solve these inefficiency problems, we use the
problem size of the SPMD application that is composed by a number of tiles and
we create the ST. The problem of finding the optimal ST size is formulated as an
analytical problem, in which the ratio between computation and communication of
the tile has to be founded with the objective of improving the relationship between
efficiency and speedup. The ST is calculated maintaining the focus on obtaining
the maximum speedup while the efficiency is maintained over a defined threshold.
From this ST, we apply our method that is centered on characterization, mapping
and scheduling strategies. The mapping strategy is focused on minimizing the
communication effects, and the scheduling policy allows us to apply an overlapping
strategy (Fig. 21.4).

Finally, we can use a set of tiles to form an ST of (K ∗ K). Where K is the square
root of the number of tiles that has to be assigned to each core in order to maintain
the relationship between efficiency and speedup. This ideal scenario is found when
we apply our method to maintain the efficiency. The goal of our method is to find
both the maximum number of tiles and cores that allows us to achieve the maximum
speedup with a desired efficiency.
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Figure 21.4 Supertile creation and methodology objective.

21.3 METHODOLOGY FOR EFFICIENT EXECUTION

This methodology is focused on managing the communications heterogeneities
present on multicore clusters with the objective of improving both efficiency and
speedup. This improvement process is realized through four phases (Fig. 21.5):
characterization, tile distribution model, mapping strategy and scheduling policy.
These phases allow us to handle the latencies and the communication imbalances
generated by different communication paths [12].

21.3.1 Characterization Phase

The main objective of this phase is to gather the necessary parameters of SPMD
applications and the execution environment in order to calculate the tile distribution
model. The characterization parameters are classified as being part of one of three
groups: application parameters, parallel environment characteristics and defined effi-
ciency. To develop this phase, we evaluate computation and communication behavior
of SPMD applications with the aim of obtaining the parameters with the closest rela-
tionship between the machine and the application.

The application parameters offer the necessary information about the application:
problem size, number of tiles, iteration number, communication pattern, communica-
tion volume per tile and distribution. Also, these parameters allow us to determine, for
example, if an SPMD communication pattern of a tile has been designed to communi-
cate with one, two, three, four or more neighboring tiles. Moreover, an SPMD appli-
cation can consider different distribution schemes, for example, one-dimensional and
two-dimensional blocks, column based or unconstrained [14].

The environment characterizations consist of evaluating the behavior of the
SPMD application on a specific multicore parallel machine. The parameters allow
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Figure 21.5 Methodology for efficient execution of SPMD applications.

us to establish the communication and computational ratio time of a tile inside the
hierarchical communication architecture. This relationship values will be defined as
λ(p)(w), where p determines the link where the communication of one tile to another
neighboring tile has been performed, for example, links A, B or C (Fig. 21.1). The
value of λ determines the communication and computation ratio of a tile, and w
describes the direction of the communication processes (e.g. up, right, left or down
in a four-communication pattern). This ratio is calculated with equation 21.1, where
Commt (p)(w) determines the time of communicating a tile for a specific link p, and
Cpt is the value of computing one tile on a core. This characterization process has
to be done in a controlled and monitored manner:

λ(p)(w) = Commt(p)(w)/Cpt (21.1)

Finally, once all parameters have been found through the characterization phase,
we have to include the efficiency value in the model. The efficiency value is given by
the variable effic which defines the threshold for a given execution.

21.3.2 Tile Distribution Model Phase

The main objective of this phase is to determine the optimal size of the ST. The first
step is to determine the behavior of the execution time of these kinds of SPMD appli-
cations. To calculate this value, we use equation 21.2. This equation represents the
behavior of SPMD application using an overlapping strategy with the characteristic
explained before. As can be detailed in equation 21.2, the first part calculated is the
edge tile computation (EdgeCompi), and then we add the maximum value between
internal tile computation (IntCompi) and edge tile communication (EdgeCommi).
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This process will be repeated for a set of iterations (iter ). In equation 21.2, the n
value determines the number of an individual iteration, and i represents the num-
ber of a specific core inside the multicore cluster. This model is only done for the
communication exchanging part of the SPMD application:

Texi =
iter∑

n=1

(

EdgeComp(i) + Max

{
IntComp(i)

EdgeComm(i)

)

(21.2)

The values of (EdgeCompi), (IntCompi) and (EdgeCommi) are in function of
the variable K as can be observed in equations 21.3, 21.4 and 21.5, respectively. This
K value represents the square root of the ideal ST size

EdgeComp(i) = 4 ∗ (K − 1) ∗ Cpt (21.3)

IntComp(i) = (K − 2)2 ∗ Cpt (21.4)

EdgeComm(i) = K ∗ Max (Comt(p)(w)) (21.5)

In addition, the edge communication (21.5) has to be for the worst communica-
tion case. This means that we have to use the slowest communication time to estimate
the number of tiles necessary for maintaining the efficiency. We chose to apply our
method using the worst case because SPMD iterations are bounded by the slowest
communication as was explained previously. These communications may cause other
cores to have to wait until the slowest communications finish due to the data synchro-
nization. Therefore, we have to find the maximum communications time using the
maximum value of the λ(p)(w) ratio (21.1). On the other hand, the sum of the compu-
tational time of the edge and the internal computation (21.3 and 21.4) represents the
total computational time of the region of K2, that is assigned to each core.

The next step is to determine the ideal value for K which represents the condi-
tions of our objective of finding the maximum speedup while the efficiency (effic)
is maintained over a threshold defined by user. We start from the overlapping strat-
egy, where internal tile computation and the edge tile communication are overlapped.
Equation 21.6 represents the ideal overlapping that allows us to obtain the objective
stated:

K ∗ Max (Commt(p)(w)) >= ((K − 2)2 ∗ Cpt)/effic (21.6)

However, this equation has to consider a constraint defined in equation 21.7. In this
sense, the model can allow for EdgeComm(i) being bigger than IntComp(i) over the
defined efficiency (21.6), but EdgeComm(i) has to be slower than the IntComp(i)
without any efficiency definition. In this last case, when the edge communication and
the internal communication are equal, the efficiency is close to the maximum value:

K ∗ Max (Commt(p)(w)) <= ((K − 2)2 ∗ Cpt) (21.7)
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Next step is to determine the value of K from equation 21.6. To calculate the
optimal value of K which represents the conditions of our objective, we start from
λ(p)(w) (21.1) and solve for Commt , which can be calculated with respect to λ(p)(w)
multiplied by computational time Cpt of a tile. This process is performed with the
aim of equalizing both internal computation and edge communication equations in
function of Cpt. This new value in function of Cpt is replaced in equation 21.6, and
we obtain equation 21.8:

effic ∗ K ∗ Cpt ∗ Max (λ(p)(w)) = ((K − 2)2 ∗ Cpt) (21.8)

The final step is to find the value of K. To do this we divide by Cpt and set the
equation equal to zero to obtain a quadratic equation that has two solutions for K
(21.9). These two solutions may or may not be distinct, and for our case we have to
replace these two solutions in equations 21.6 and 21.7, and we have to validate if the
K value accomplishes the initial conditions:

K2 − (4 + effic ∗ Max (λ(p)(w)) ∗ K + 4 = 0 (21.9)

Once the optimal value of K has been calculated, we calculate the ideal num-
ber of cores (21.10) which are needed to execute the application with the maximum
speedup and with an efficiency over the defined threshold. To do this, we start with
the initial consideration that establishes that one ST will be assigned to each core.
For this reason, we defined the problem size as M2, and we divided by K2 that rep-
resent the ideal size of the ST. With equation 21.10, we can obtain the ideal number
of cores that determine the inflection point up to which the application will have a
strong scalability:

Ncores = M2/K2 (21.10)

Finally, we can determine the theoretical behavior of the SPMD application
for a lower number of core that the optimal calculated and predict its behavior.
Equation 21.11 calculates the new values of K for a specified number of cores with
the objective of determining the execution time using equation 21.2 and calculating
the speedup and efficiency for these values:

K =
√

M2/Ncores (21.11)

21.3.3 Mapping Phase

The objective is to design a strategy of allocating the STs to each cores. The ST
assignations are made applying a core affinity which allows us to allocate the set of
tiles according to the policy of minimizing the communications latencies [10]. This
core affinity permits us to identify where the processes have to be allocated and how
the ST must be assigned to each core in order to create a logical distribution to identify
neighbor communications.
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Figure 21.6 Mapping and tile distribution.

This is done using a cartesian topology of the processes that give to each process
two coordinates in the grid distribution. These two coordinates identify the cores, in
which the processes have to be allocated. Also, we can coordinate the communica-
tion order with the objective of minimizing the saturation of the links. For example,
Figure 21.6 shows how an ST is allocated onto a multicore node; this allocation means
that some processes have a different number of communication paths according to the
tile distribution and core assignation.

The last step is to create and distribute the STs, where an incorrect distribution of
the tiles can generate different application behaviors. One example is when the com-
putational time of the tiles assigned is larger than the slower communication time. In
this case, the SPMD application has a computation bound behavior and could improve
speedup, whereas its efficiency is around the maximum value. This case allows us to
add more cores to the execution. Another example is determined, when communi-
cation time bigger than computational time in this case has a communication bound
behavior, and we can add more tiles to each core in order to balance the execution.
Then, the model finds the ideal overlap as can be detailed in Figure 21.6, where all
the cores end their execution at a similar time.

21.3.4 Scheduling Phase

The main objective of this phase is to determine the execution order of the tiles. This
scheduling phase is divided into two main parts: the first is the development of an exe-
cution priority, which determines how the tile will be executed inside the core. The
tile execution priority assigns to each tile the priority where the highest priorities are
established for tiles which have communications through slower paths. Figure 21.7
shows the priority assignments of an ST. These assignments have the following poli-
cies: the tiles with external communications are selected with priority 1 because these
can create imbalance issues when they are communicated. These edge tiles are saved
in buffers with the aim of executing these first, and these buffers are updated in each
iteration. The second assignation is made for internal tiles that are overlapped with
the edge communications, and they have the priority 2.

The second purpose of this phase is focused on applying an overlapping strat-
egy between internal computation and edge communication tiles. This overlapping
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Figure 21.7 Scheduling phase.

process uses two threads, one of them to perform the internal computation and the
other to establish the edge communication. We utilize asynchronous communica-
tions that enable us to perform the internal computation and the edge communication
together. Both processes should finish at roughly similar time if we want to improve
the application efficiency.

21.4 SCALABILITY AND EFFICIENCY OF SPMD APPLICATIONS

The efficient execution methodology attempts to find the number of core that achieves
the maximum strong scalability with a defined efficiency. These performance metrics
can be affected by communication heterogeneity, and our methodology includes the
necessary strategies for enhancing these two metrics (scalability and efficiency).

However, an aspect to take into consideration is the scalability definition. There
are two distinct definitions of scalability in HPC. One definition is weak scalability
that is considered when the problem size and the number of processing elements are
expanded. The main goal of this scalability is to achieve constant time to solution for
larger problems, and the computational load per processor stays constant [16]. The
second definition is the strong scalability in which the problem size is fixed, and the
number of processing elements is increased. The goal in this scalability is to minimize
the time to solution. Hence, scalability means that speedup is roughly proportional to
the number of processing elements (cores or nodes) [6].

Under these two definitions, our methodology searches for a combination
of strong scalability and efficiency. This combination means that our analytical
model has to determine the number of cores that allows us to obtain the ideal
relationship between speedup and the defined efficiency. In this sense, we must fix
a specific problem, and we have to find the ideal number of cores that maintains
the relationship between both metrics. This number of cores can be calculated using
the model, and this number allows us to determine the maximum systems capacity
growth when a problem size is fixed.
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Finally, when the ideal number of core is found, we can determine the theoreti-
cal behavior of the application in speedup and efficiency with equation 21.10. This
equation allows us to find the value of K that has to be assigned to each core. The
analytical model only finds one ideal value to maintain the ideal overlapping. How-
ever, we can calculate values for another number of cores with the aim of evaluating
the application performance.

21.4.1 A Theoretical Example

In order to understand how this methodology works, this numerical example illus-
trates how the efficiency and the strong scalability concept can be combined. Suppose
the following application characteristics: a defined problem of M = 1585, a defined
efficiency (effic) of 95% and a four-communication neighbors patterns, with three
different communication links (quadcore architecture). Then, we have to determine
the λ(p)(w) using equation 21.1. This ratio has to be calculated for each link, and we
use the maximum value obtained. In this sense, we assume that the computational
time of a tile is equal to a one unit of time, and the maximum communication time
for the slowest communication link is equal to 100 time units.

Afterward, we apply our analytical model with the aim of finding the ideal number
of cores and the ST size that allow us to achieve the maximum speedup while the
efficiency is maintained over a defined threshold. Equation 21.9 determines the ideal
ST, and equation 21.10 discovers the ideal number of cores. The number of cores
calculated represents the maximum combining strong scalability and efficiency for
this example. Once the analytical model has been applied, the ideal value of K is equal
to 98.95, and this value is rounded to the nearest value (K = 99), and the number of
cores for this execution is equal to 256 (21.10). The next step is to obtain the speedup
and the efficiency for this point. To obtain both values, we have to determine the
serial execution time of the application. This theoretical time is estimated using the
multiplication of the problem size with the computational time of one tile. For this
specific problem size, this example has a serial time of 2.512.225 time units; this
value is for one iteration.

The analytical model results are shown in Table 21.1 where we can observe the
ideal case calculated; Table 21.1 shows the result obtained for a different distribution
of cores. The number of core has been increased in a logarithmical manner (Log2)
with the aim of visualizing the efficiency and speedup curve for this example. Using
Equation 21.11, we can calculate K for a specific number of core.

The last step is to determine the parallel execution time of the application for a
specific number of cores with the aim of calculating the speedup and efficiency for
these executions. Figure 21.8 illustrates the performance behavior for different num-
bers of cores. As can be detailed, the ideal number of cores calculated with the model
has an efficiency around the optimal value defined, and the speedup up to this point
has a roughly linear growth. In this sense, this point is the maximum strong applica-
tion scalability under a desired efficiency. After this ideal point, we can observe that
speedup increases but not proportionally to the number of core. Also, we can see that
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Table 21.1 Efficiency, speedup and scalability analysis for an SPMD app.

N cores K Edge Cp Int Cp Edge comm Exec time Sp Effic (%)

16 396 1,580 155,236 39,600 156,816 16 100
32 280 1,176 77,284 28,000 78,400 32 100
64 198 788 38,416 19,800 39,204 64 100

128 140 556 19,044 14,000 19,600 128 100
(256) 99 392 9,409 9,900 10,292 244 95
512 70 276 4,624 7,000 7,276 345 67

Figure 21.8 Performance evaluation theoretical example.

the efficiency begins to decrease considerably. This decrease in execution efficiency
is motivated by the communication-bound behavior. This means that after this point
the edge communication is bigger than internal communication (Table 21.1). In addi-
tion, we can observe in Figure 21.8 that the behavior of efficiency and speedup before
the ideal point, and in these specific case the efficiency, is around the maximum val-
ues. This example is a representation of an SPMD application with four neighbors
but with computational and communication values adapted for this example.

21.5 SPMD APPLICATIONS AND PERFORMANCE EVALUATION

This section explains some practical examples with the aim of validating this method-
ology. We have chosen the following applications: heat transfer app, Laplace applica-
tion and application integrated in the MP-Labs suite (LL-2D-STD-MPI). Also, these
performance evaluations have been done in a multicore DELL cluster with 8 nodes,
each node having 2 Quadcore Intel Xeon E5430 of 2.66 GHz processors and 6 MB
of cache L2 shared by each two core 12 GB RAM memory per blade and a gigabit
Ethernet network.
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21.5.1 Characterization Analysis

The first step is to analyze the different communication links present on multicore
cluster. Figure 21.9 illustrates the behavior of each link when the same packet size is
sent by the different communication paths present on these multicore environments.
There are differences between each communication that in some cases is around one
order of magnitude for the same packet size. Also, we can observe that when we incre-
ment the packet size, some links begin to become saturated and this saturation has
to be considered, when we are designing our mapping strategy. Another character-
ization that can be studied is related to the computation and communication-bound
relationship. In this sense, Figure 21.10 shows an example of how a tile behaves
with respect to the computation and communication ratio. The behavior shown in
this figure allows us to visualize differences in the tile behavior of each communi-
cation link. These differences enable us to design strategies for allocating more tiles
with the aim of eliminating the delays generated by communications.
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21.5.2 Tile Distribution Model Analysis

The next step is to apply the analytical model in order to find the ideal number of cores
to maintain the relationship between speedup and efficiency. An example is shown in
Tables 21.2 and 21.3, where the characterization and analytical values are shown for
a specific problem size.

Table 21.2 Characterization values.

App. Cpt (μs) Commt (μs) M (Problem size) Effic (%)

Heat transfer 0.021 58.8 9500 × 9500 85
LL-2D-STD 0.24 60.7 1400 × 1400 95

Table 21.3 Analytical values (time expressed in seconds).

App. K Edge Cp Int Cp Edge comm Exec T N cores

Heat transfer 2384 1.99E − 4 1.18E − 1 1.40E − 1 0.139 16
LL-2D-STD 244 2.36E − 4 1.44E − 2 1.50E − 2 0.015 32

This process is carried out in a similar manner to the theoretical example that
was explained before. The possible solution for K and N cores represents the min-
imum value that maintains the efficiency over the defined threshold. This solution
is evaluated in order to obtain the overlap between internal computation and edge
communication time. Both times have to be as close as possible with the objective of
obtaining an ideal execution. As can be shown in Table 21.3, we calculate an approx-
imate value for the edge and internal computation and the edge communication, and
also, we determined the ideal values for K and N cores for these specific applications
and problem sizes.

21.5.3 Performance Evaluation

This performance evaluation illustrates two examples using the values obtained in the
characterization phase and with the analytical model (Tables 21.2 and 21.3). Then,
we analyzed the efficiency and speedup between the application without using our
methodology and, then again, using our methodology. Figure 21.11 shows the effi-
ciency behavior of the heat transfer application with a specific problem size with
100 iterations. In this figure, we can detail a considerable improvement in efficiency,
around 42%, when we applied our methodology. This improvement is found when
we execute with the number of cores determined by our model (Table 21.3). Also, in
Figure 21.11, we can observe how the application behaves similarly to the analytical
model values when using our methodology. The error rate is around 5% when the
number of core is below to the maximum obtained with our model.
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Figure 21.11 Efficiency evaluation heat transfer app.

Figure 21.12 Speedup evaluation heat transfer application.

Figure 21.12 illustrates the speedup behavior. In this figure, we can see that
speedup increases when we add more core, but this speedup does not scale linearly
after the maximum number of core that we have determined with our model. Hence,
we can observe that the number of core calculated with the model allows us to obtain
the maximum speedup, the strong scalability point and the efficiency over a defined
threshold for a specific problem size.

A similar example is shown in Figure 21.13, where the efficiency of
LL-2D-STD-MPI is evaluated. This application is formed of three main parts,
prestep, poststep and the main module where the communication and computation
processes are performed. We applied our methodology to the last module, because
the other two only compute and do not have any communication. This performance
analysis is only for the part of the code in which the information has to be exchanged,
run using 1000 iterations.

Finally, Figure 21.14 shows the behavior of speedup and strong scalability, where
we can obtain a linear speedup until the number of core calculated with the model.
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Figure 21.13 Efficiency evaluation LL-2D-STD application.

Figure 21.14 Speedup evaluation LL-2D-STD App.

This allows us to conclude that our methodology can determine the maximum strong
scalability combining the maximum speedup while maintaining efficiency over a
defined threshold. These two examples show an approximation of our method and
how the maximum speedup is reached with a defined efficiency. The figures have
shown the maximum strong scalability value with a defined efficiency. These exper-
iments have shown how our methodology can improve the SPMD applications on
multicore clusters.

21.6 RELATED WORKS

There are different works developing methodologies which are focused on improv-
ing some performance metrics in multicore environments. Mercier et al. [10] have
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designed a method to efficiently place MPI processes on multicore machines in order
to establish an adequate placement policy to improve applications efficiency. How-
ever, this work does not include the combination of scalability that is very important
when we wish to execute faster and more efficiently.

Liebrock [8] defines a method for deriving a performance model for SPMD hybrid
parallel applications. This work was focused on improving three specific performance
metrics: adaptability, scalability and fidelity using mapping, scheduling and synchro-
nization of overhead strategies designed for hybrid message passing and distributed
memory applications. On the contrary, our work evaluates pure MPI applications, and
similarly, we develop a methodology centered on mapping and scheduling strategies,
which also includes an efficient execution.

Some works have developed mapping strategy for SPMD applications, which
are centered on improving the application efficiency [19]. Another technique was
designed by Brehm et al. [2], in which the main objective was to map the application
using its characteristics. Similarly, our mapping maintains the efficiency using the
machine and application characteristics, but we add an affinity process that allows
us to minimize the communication effect in multicore environments.

Moreover, there are works centered on studying and improving the efficiency
[4] or enhancing the speedup on multicore clusters [19] separately. In contrast, we
developed a methodology centering on mapping and scheduling strategies, and we
searched for an improvement in both speedup and efficiency performance metrics on
these clusters [12]. In this previous work, we have defined the methodology phases
that permit us to find the number of tiles which achieves the maximum speedup while
defining a desired efficiency for an SPMD application. However, this book chapter
searches for a combination of strong scalability and efficiency, in which we can pre-
dict the number of core that maintains the relationship between both metrics.

Also, there are some scheduling strategies for SPMD applications [1] that are
based on finding the minimum execution time, which is part of our objective. Nev-
ertheless, we analyzed and evaluated the model defined by Panshenskov et al. [15],
and we chose some characteristics such as tiles divided into blocks, asynchronous
communications, and computation and communication overlapping, with the aim
of minimizing the communication overhead and improving the efficiency of SPMD
applications.

21.7 CONCLUSION AND FUTURE WORKS

This book chapter addresses a novel methodology for efficient execution of SPMD
application on multicore clusters. This method is based on characterization, a tile
distribution model, mapping strategy and scheduling policies. Our methodology is
focused on determining the ideal number of tiles which has to be assigned to each ST,
as well as the ideal number of cores which maintains the execution efficiency. This
is performed using an efficient manner to manage the hierarchical communication
architecture present on multicore clusters.
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Also, this work addresses how we can combine efficiency and strong and weak
scalability in parallel applications. In this sense, using our method we can observe
how SPMD applications with some specific characteristics behave with a specific
problem size while the number of cores is incremented. This is the main purpose of
finding the maximum point that allows the SPMD application to scale linearly. On
the other hand, if the problem size is increased according to the relationship of the
ST, we can maintain a linear speedup while the number of cores is increased.

Experimental evaluation makes it clear that to achieve a better performance in
SPMD applications, we have to manage the communication heterogeneities. In this
sense, the experimentation has demonstrated that this optimal size can achieve the
conditions of maximum speedup and efficiency over a defined threshold. To achieve
this, we have proposed an appropriate manner to manage the inefficiencies generated
by different communications links presented on multicore clusters, as was described.

Future works are focused on working with heterogeneous computation on mul-
ticore environment with the aim of executing the SPMD applications efficiently in
communication and computation heterogeneous environments.
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CHAPTER 22

OPERATING SYSTEM AND
SCHEDULING FOR FUTURE
MULTICORE AND MANY-CORE
PLATFORMS

Tommaso Cucinotta, Giuseppe Lipari and Lutz Schubert

22.1 INTRODUCTION

Computing systems are experiencing nowadays a complete paradigm shift. On the
old-fashioned single-processor platforms, sequential programming used to constitute
an easy and effective way of coding applications, and parallelism was used merely
to easily realize independent or loosely coupled components. True parallel and dis-
tributed programming used to constitute a domain reserved to only a relatively small
number of programmers dealing with high-performance computing (HPC) systems
and commercial high-end mainframes. However, recently, multicore systems have
become the de facto standard for personal computing and are being increasingly
used in the embedded domain as well. Furthermore, in the context of servers, it
is more and more common to see multiprocessor and multicore systems realizing
up to 8–12 cores. The according process just continues: already experimental
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multicore processors, such as the Polaris by Intel, reach up to 80 cores and
specialized processors, such as the Azul Vega, go up to 54 cores, yet the mass market
commercial exploitation of these processors will still take a few years. Along that
line, high-performance and massively parallel systems are undergoing a tremendous
architectural shift that promises to move toward an unimaginable number of
interconnected cores and other hardware elements such as local memory/cache
elements, within the same chip. As a consequence, in the short future, parallel and
distributed programming paradigms need to become more and more widespread and
known across the whole base of developers, comprising not only the HPC domain
but also the general-purpose one.

However, the entire ensemble constituting the software stack of nowadays comput-
ing systems, comprising operating systems (OSes), programming languages, libraries
and middlewares, is still too much influenced by the former nonconcurrent era and
is slow at adapting to the new scenario. Furthermore, when dealing with real-time
and more generally time-sensitive applications, the support of a general-purpose(GP)
OS suffers various drawbacks: it is often merely limited to priority-based schedul-
ing and some kind of priority inheritance mechanism, it does not provide temporal
isolation across concurrently running applications, it cannot properly deal with inter-
active tasks with performance and end-to-end latency requirements, etc. On the other
hand, the use of a full real-time operating system (RTOS) for complex time-sensitive
applications (e.g. multimedia) is prohibitive due to the lack of complex and com-
monly needed functionality (e.g. high-level communication protocols, middleware,
encoding, etc.).

A few GP OSes (e.g. Linux) have been extended for addressing the requirements
of complex, distributed real-time applications. However, being developed in
the domain of real-time and embedded systems, they lack essential scalability
capabilities needed for coping with large-scale systems. Also, various OS extensions
and middle-ware components have been proposed to cope with large-scale dis-
tributed systems designed for Grid, high-performance or cloud computing domains.
However, these approaches usually rely on traditional kernel architectures which are
not capable of handling many-core nodes.

In this chapter, an overview is made on the limitations of the nowadays OS support
for multicore systems, when applied to the future and emerging many-core, massively
parallel and distributed platforms. Also, an overview is done of the most promising
approaches which have been proposed to deal with such platforms. The discussion is
strongly focused on the kernel architecture models and kernel-level mechanisms and
the needed interface(s) toward user-level code.

22.1.1 Organization of This Chapter

This chapter is organized as follows: In Section 22.2, various works proposed in the
literature about OS architectures and kernel models for multicore and many-core sys-
tems are overviewed. In Section 22.3, the focus is specifically on the critical problem
of scheduling in multiprocessor and distributed systems, comprising scheduling of
applications with precise timing requirements.



�

� �

�

OPERATING SYSTEM KERNEL MODELS 453

22.2 OPERATING SYSTEM KERNEL MODELS

Various models of OSes and kernels have been proposed in the literature. In what
follows, an overview of the most significant works is provided.

22.2.1 Linux Scalability

It must be noted that the Linux kernel developers’ community is focusing more and
more on the issue of scalability of the kernel in the number of underlying cores.
This is witnessed by the announcement1 by Linus Torvalds accompanying the 2.6.35
kernel release, mentioning the imminent merge of the VFS scalability patch by Nick
Piggin into the mainline kernel. This patch aims to remove many bottlenecks at the
kernel level that hinder the performance of Linux file system operations when being
deployed on multi-/many-core machines. Also, the scheduler subsystem is already
designed since long ago with scalability in mind: distributed per-core runqueues and
cpusets [22] allow for keeping a limited sharing of data among different cores.

Furthermore, there exist various projects for improving the Linux scalability of
the kernel even further. The Linux Scalability Effort project,2 running within years
2001 and 2004, aimed to improve scalability of various subsystems of the kernel.
More recently, during the 2006 Kernel Summit,3 Christoph Lameter gave a com-
prehensive talk about the current status of scalability issues on the Linux kernel,
highlighting the importance of robustness to failures. On a related note, Deputovitch
et al. [21] presented a mechanism that allows one core to recover a kernel panic
occurred onto another core, with applications potentially able to recover seamlessly
from kernel crashes. During the Linux Kongress 2009, Kleen [39] presented vari-
ous known bottlenecks for the scalability of the kernel and workarounds for avoiding
them. Boyd-Wickizer et al. [13] investigated on scalability issues of the Linux OS
on a 48-core machine, identifying various related bottlenecks at the kernel level aris-
ing from the use of seven different application benchmarks. Interestingly, the authors
conclude: ‘a speculative conclusion from this analysis is that there is no scalabil-
ity reason to give up on traditional operating system organizations just yet’. On a
related note, Lelli and coworkers [25] showed how to improve the scalability of a
deadline-based scheduler in Linux by using proper data structures and lock-based
synchronization.

22.2.2 Microkernels

Microkernels have been proposed in the research literature as an alternative to
monolithic kernels [47, 67, 80]. In this architecture, a small code base (microkernel)
provides essential services, such as physical memory management and protection,
interrupt handling and task scheduling. Most of the classical services provided

1More information is available at http://lwn.net/Articles/398371/.
2More information is available at http://lse.sourceforge.net/.
3More information is available at http://lwn.net/Articles/191929/.
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by a monolithic OS, like network protocols, I/O device drivers, file systems and
virtual memory management, are provided by special server processes running
in user space. In this way, the OS is extremely modular, robust and secure. In
microkernel-based OSes, all services interact with each other and with applications
through message passing.

Several microkernel architectures have been proposed in the research literature,
most notably the Minix system by the A. Tanenbaum Group4 and the L4 microker-
nels [47]. Unfortunately, only a few researchers have investigated the performance
and scalability of microkernels on multicore systems. In L4 [47], the basic IPC mech-
anism is designed to be highly optimized for uniprocessors. Moreover, it is not clear
how to make the sharing of internal-shared data structures, namely, interrupt forward-
ing and virtual memory, scalable in many-core environments.

Uhlig [80] presented an adaptive mechanism for sharing data structures between
microkernels running on different cores, which is a combination of coarse and fine
grain locking and remote procedure call (RPC). Also, remote resources are treated
differently from local resources.

The use of microkernel-based OSes has been investigated also in the domain
of supercomputing on multiprocessor systems, like what happened with the
Amoeba [79], Mach [67] and Chorus [68] OSes. These investigations were born
from the observation that monolithic OSes used to carry on lot of unneeded
functionality on each and every node of a parallel machine, introducing unneeded
overheads. Also, the standard communication primitives used on traditional OSes
used to be highly inefficient in the context of a multiprocessor machine. On the other
hand, the approach typical of the HPC domain used to consist in not having a real OS,
but rather a small run-time environment provided in the form of libraries. This was
too minimalistic and used to lack potentially useful capabilities. So, the adoption of
a microkernel-based OS was considered a good trade-off between these worlds [78].

A few commercial OSes were inspired by the microkernel architecture. Windows
NT borrowed some of the ideas from the microkernel environment [57]; however, NT
should be considered a hybrid between a monolithic kernel and a microkernel. Also,
the Mac OS-X kernel, a.k.a. XNU [74], derives from the fusion of the Mach [67]
and FreeBSD kernels.5 However, only some kernel-level primitives and paradigms
of Mach were kept, while the microkernel architecture has been dropped.

QNX Neutrino [65] was one of the first RTOSes to be available on embedded mul-
ticore platforms with a structure similar to a microkernel, with some of the essential
scheduling services implemented directly by the kernel for efficiency reasons. OSE6

is another microkernel-based RTOS. OSE was developed by ENEA, a spin-off of
Ericsson AB. In OSE, real-time tasks are implemented as processes that communicate
among them mainly through message-passing paradigm. Since memory protection
is enforced between processes, the OSE kernel is known for its fault-tolerant and
high-availability features, and it is widespread in telecommunication applications.

4More information is available at http://www.minix3.org.
5More information is available at http://www.freebsd.org/.
6More information is available at http://www.enea.com.
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22.2.3 Single-System Image

Single-system image (SSI) OSes have been designed in the context of cluster com-
puting for the purpose of making the usability and programmability of clusters easy.
An SSI OS gives the application programmer the illusion that a cluster is a single
computing system with a higher performance. The programmer writes parallel appli-
cations composed of many processes which communicate to each other by means of
standard IPC mechanisms. Actually, the OS is capable of seamlessly distributing the
workload over a distributed set of homogeneous machines interconnected by a net-
work, migrating applications, and data as required in order to make an efficient use
of the underlying physical resources. The SSI OS concept has been implemented, for
example, in Kerrighed [59], openMosix7 (initially based on MOSIX [5], the project
was officially closed in 2008) and OpenSSI.8 All of them constitute variants of Linux,
which add to the kernel the fundamental lacking features. A comparison among these
approaches can be found, for example, in [51].

SSI systems aim to realize HPC clusters preserving a local programming model
that is unaware of the actual distribution of the load within the network. This allows
parallel applications initially thought for multiprocessor (or multicore) systems to
easily take advantage of the additional computing resources made available across
the network, without any need to explicitly code the distribution logic. While being
one of the main advantages of this kind of systems, it also constitutes its very limi-
tation. The actually obtainable performance speedup depends strongly on the com-
munication patterns among the processes composing an application. However, the
assumptions of the programmer about locality of data and processes are subverted
when the application is deployed in an SSI cluster. The interaction overheads (now
implying networking latencies) may sometimes nullify the potential advantages due
to the increased available overall computing power, unless the application is care-
fully coded considering the deployment environment. These kind of problems may
be mitigated by proper monitoring and migration strategies at the SSI kernel level,
for example, by trying to keep those processes which interact too frequently on the
same machine.

It is also noteworthy to mention that there are approaches to exposing a SSI
run-time to applications in a cluster which do not require any specific OS/kernel adap-
tation. For example, this has been done for the Java language, to allow for the seamless
deployment of large parallel Java applications, with many threads but non-necessarily
distributed, over a cluster of physical machines [2, 84, 85]. These approaches require
the realization of proper mechanisms into the run time of the language itself, and
they usually do not require any special support from the OS/kernel.

22.2.4 Operating Systems for Multi/Many Cores

Research on multiprocessor OSes is active since a long time, much before the multi-
core paradigm became so successful. Two broad classes of kernel organization have

7More information is available at http://www.openmosix.org.
8More information is available at http://www.openssi.org.
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been proposed by Lauer and Needham [44]: message-based and procedure-based
approaches. In a procedure-based kernel, there is no fundamental distinction
between a process in user space and kernel activities: each process performs kernel
operations via system calls, and kernel resources are represented by shared data
structures between processes. Conversely, in a message-based kernel, each major
kernel resource is handled by a separate kernel process, and typical kernel operations
require message exchanges. The procedure-based approach closely mimics the
hardware organization of symmetric Multiprocessors (SMP) with Uniform Memory
Access (UMA): this is the basic organization underlying monolithic kernels. The
message-based approach closely mimics the hardware organization of a distributed
memory multicomputer, and this is the basic organization of microkernels. Chaves
et al. [16] compared remote memory access versus remote invocation for kernel–
kernel communication in a NUMA machine without cache coherency. In the first
case, access to shared resources is performed by accessing remote memory using
a remote locking mechanism; in the second case, it is achieved through invoking
an operation on the remote node. The work is outdated, because of the advances in
hardware architectures; however, some of the basic findings are of general validity:
in particular, remote invocation is preferable for long operations, while remote
memory access is preferable for short critical sections.

Many different papers [16, 44] have insisted on the tension between lock-based
communication and synchronization versus remote invocation. Depending on the
underlying hardware architecture and on the different structure of the OS and depend-
ing on the requirements of the applications (performance, security, scalability, etc.),
sometimes the lock-based approach seems to be the most appropriate and sometimes
the remote-invocation approach proves to be the best approach.

Andrew Baumann et al. recently proposed that an OS model called Multiker-
nel [11], which advocates for independent kernel instances on the individual cores,
allowed to interact solely via message passing. All kernel-level information and status
data that need to be shared among multiple cores is therefore replicated between them
and kept synchronized by explicit protocols. This way all communications among
cores and processors need to be explicitly coded, and this naturally leads to asyn-
chronous communication patterns, largely used in distributed systems, which enhance
the possibility for the system to parallelize, and pipeline activities rather than having
cores stall waiting for implicit cache coherence protocols run by the underlying hard-
ware. Interestingly, in the Multikernel view, the fact that the OS does not rely on
shared data does not preclude applications to be developed with a shared memory
paradigm.

Also, Multikernel envisions a hardware-neutral OS model, where, for example, the
part of a CPU driver in charge of handling the communications between different core
may actually take advantage of available low-level information about the core topol-
ogy and their interconnection infrastructure. For example, different hardware-level
mechanisms may be exploited in order to send messages among cores sharing an L3
cache, as compared with the ones needed to send messages among cores that do not
share such a cache or reside on different processors.
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The Multikernel model has been implemented as the Barrelfish9 prototype, and
preliminary measurements seem promising, especially on the side of scalability of
certain critical operations involving all the cores (e.g. TLB shootdown). However,
the experimental results available so far are to be considered as preliminary, due to
the still incomplete implementation of the Multikernel concept.

Yuan et al. proposed GenerOS [83], a variation of the Linux kernel explicitly
addressing heterogeneous multicore systems. In GenerOS, the cache contention on
the same core due to different types of activities going on within a system is reduced
by means of partitioning the activities among the available cores: application cores,
dedicated to running applications and exclusively user space code; kernel cores, ded-
icated to running exclusively the kernel-space part of the system calls invoked by the
applications; and interrupt cores, dedicated to servicing interrupt requests. A set of
modifications to the kernel are required to allow system calls to execute on a core
different from the application core invoking the functionality. Also, kernel cores run
one or more kernel servers. Each kernel server is dedicated to one or more system
calls; it waits continuously for requests of that particular set of system calls from the
application cores and serializes their execution, avoiding any context switches among
requests from different applications.

The fact that kernel-space code is handed over to different cores than the
ones where the main application code is running, together with the serialization
of kernel-space system call executions by the kernel servers, causes a decrease
of the contention in accessing the cache, when compared with a plain Linux
system, as shown by the experimental results performed by the authors. However,
the serialization of system calls execution is somewhat against the current trend
in the Linux kernel: from the ancient ages in which the kernel-space code was
nonpreemptible; in recent years a lot of effort has been dedicated just for increasing
preemptibility of kernel code, which is well-known to reduce latencies and improve
responsiveness of the system. Even if the presence of multiple cores may mitigate
such problem, the situation is not expected to be tremendously different when high
workloads are in place with a nearly saturated system. Therefore, more investigations
would be needed in order to understand what is the impact of the proposed OS
model on various application classes, especially on interactive and real-time ones.
An issue of the GenerOS model is constituted by the proper OS configuration in
terms of balancing among the various types of cores, as well as the number of kernel
servers and how system calls are distributed across them. In the initial prototype,
the authors used a static configuration, but they also observed that this is one of the
troublesome issues to be faced in their proposed OS model.

Boyd-Wickizer et al. proposed Corey [12], an OS designed from scratch around the
need for allowing applications to make an efficient use of massively parallel and mul-
ticore hardware. The authors highlight that kernel-level shared data structures may
cause unneeded overheads when accessed from multiple cores, even when the appli-
cations that are being run would not need to share any data. For example, process and

9More information is available at http://www.barrelfish.org.
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file descriptor tables are potentially at risk of being contended among multiple cores,
even when the applications running on them are accessing independent processes and
files. Therefore, it is proposed to delegate the responsibility to decide what is shared
across which cores as much as possible to the application. This is done via a special-
ized API allowing applications to define and control three main elements: shares are
areas of scope either local to a core or global for a set of identifiers; address ranges
are memory segments explicitly assigned to shares; kernel cores are cores dedicated
to the execution of kernel code, that is, interrupt handlers and the kernel-side part of
system calls (which are handed over from the application cores to the kernel cores).
Experimental results seem promising, in that a reduction of the overheads due to con-
tentions on kernel-level data structures is achievable, at the cost of a little complexity
for the application developer, who needs to properly set up shares and address ranges.

Wentzlaff and Agarwal proposed the factored operating systems (fos) [82], an
OS model that builds on concepts taken from the distributed computing world, in
order to reduce contention on kernel-level shared data structures. Specifically, the
fos architecture foresees the partitioning of cores between applications and kernel
services. Each kernel service is implemented by one or more specialized servers that
run on kernel cores, and bits of service-based computing are reused for allowing each
kernel service in distributing its workload to the available kernel servers, similarly to
load-balancing techniques in web servers. The fos is still under development, and it is
being entirely redesigned from scratch, based on a microkernel structure, where the
concept of relegating OS functionality within specialized servers that communicate
by message-passing mechanisms to each other and to applications is already in place.
Also, in fos, each kernel core runs a single kernel server that enqueues requests in an
input queue and services them in a serialized, nonpreemptible way. This removes (in
the opinion of the authors of this approach) the need for having traditional temporal
scheduling of kernel cores. Actually, it is foreseen to have a form of cooperative
scheduling, by which a kernel core, while serving a request, can yield explicitly the
core so that it can serve other requests, while it waits for some device and/or other
kernel servers to respond. The way kernel servers service application requests is
planned to be based on stateless protocols so that subsequent requests of the same
application can be potentially handed over to different kernel servers for a better
load distribution across kernel cores.

Interesting investigations in this area have also been carried out recently by
Schubert et al. [69–72]. In [69], a service-oriented operating system (SOOS) model
is proposed, constituting an enabling technology for future distributed collaboration
scenarios called Future Workspaces. In this work, it is suggested that the OS should
possess a distributed and heterogeneous nature. A main OS instance is the one
offering the most complex services to applications, comprising process management,
virtual memory management, I/O, networking and a graphical user interface, while
other OS instances exhibit a limited set of functionality focused/specialized on the
capabilities locally available on the nodes they are running on. Specifically, it is
envisioned that an embedded micro OS instance should be used to directly control
remote resources and devices, while a standalone micro OS instance should be
used to expose access to virtualized resources made available through virtualization
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technology by some further OS. This structure will enable an unforeseen enhanced
level of experience for mobility, where the actual resources (computational power,
storage, and data) will be maintained remotely through dedicated corporate server
farms, thus greatly reducing administration efforts.

One advantage of such a structure is that the OS may easily embed the additional
features needed by Grid applications [70], which usually are made available today by
means of specialized extensions to the OS. SOOS introduces a novel resource provi-
sioning concept [71] that differs from existing approaches of Grids and clouds, in that
it aims for making applications and computers more independent of the underlying
hardware and for increasing mobility and performance.

One of the ideas that is stressed in the SOOS concept is that the programs
do not necessarily need to be written in a parallel nor distributed way, like it
happens in the MPI approach. Rather, it should be possible in principle to take a
sequential application and automatically identify those portions of the program
code that may be run remotely, then migrate them on a more powerful embedded
OS instance for a faster execution. The additional latency due to the distribution of
the functionality would be largely compensated by the increased performance of
the code when running remotely. For example, this would be easily the case for a
laptop designed for mobility running the main OS instance, whose code is partially
remotely executed on a high-performance remote machine. In order to achieve this,
sophisticated monitoring mechanisms will need to be built into the OS, such as
monitoring the memory access patterns, building statistics on the frequency of access
to the various pages, and tracking dependencies and interactions among various code
segments.

Also, in a cloud environment, a vast amount of computational resources will be at
reach of each process across the web or locally. Therefore, the SOOS concept calls
for deep investigations into dynamic and intelligent processes (re)distribution policies
according to resource availability and demand, and it proposes [72] a micro-kernel
OS architecture model designed to compensate these deficits.

All these elements are under investigation in the context of the SOOS European
project.10

All of the aforementioned approaches to the (re)engineering of the OS kernel
model for dealing with massively parallel systems are extremely interesting.
However, these approaches are at a quite preliminary and conceptual stage, with
only some of them having experimental prototype implementations. Therefore, these
do not constitute consolidated approaches proved to be industrially viable, feasible
and understandable for a wide audience. More research needs to be performed on
this side, addressing scalability, efficiency and programmability issues for all of
the sub-components of an OS kernel and investigating on the achievable trade-offs
between overall system and individual applications performance and responsiveness.

Finally, still there are researchers showing how traditional OS kernel architectures,
for example, as found in Linux, can be improved from a scalability viewpoint (see
Section 22.2.1).

10More information is available on the project website http://www.soos-project.eu/.
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22.2.5 Operating Systems for Grids

Proposals have appeared in the literature for OSes specifically targeted at support-
ing Grid systems. For example, Padala and Wilson proposed [62] a Grid OS that
has the goal of providing a minimum set of services which are common to all Grid
middleware infrastructures, still building on a traditional OS like Linux with as few
changes as possible (in fact, additional features required at the kernel level are pro-
vided through Linux loadable kernel modules). The core functionality that needs to be
added to the OS, according to the authors, is high-performance I/O and networking,
for example, relying on copy-free communication primitives and fine-tuning of net-
work stack parameters such as the TCP/IP window size; communication primitives
with a better support for such mechanisms as MPI; resource management features
allowing for resource discovery, allocation, and monitoring; and process management
capabilities supporting, for example, global identifiers for processes, which may be
used in the mentioned communication primitives for distributed IPC. The point that
is made by the authors, and validated by the presented experimental results, is that
implementing such services merely at the middleware level, outside the kernel, as
commonly done in existing Grid middleware solutions, constitutes a bottleneck in
the potentially achievable performance.

More recently, Puri and Abbas conceptualized [64] a Grid OS aimed to support
Grid applications, by means of embedding within the OS itself such capabilities as
fault tolerance and checkpointing, transparent access to distributed resources in a
location-independent fashion, load balancing by means of migration of processes and
virtualization and scalability. However, the paper remains at a very abstract level, and
it does not discuss practical implications of the envisioned architecture, such as what
is required to be supported at the kernel level and what can be delegated to the OS
middleware.

The XtreemOS European project11 produced XtreemOS [58], a variation of the
Linux OS enhanced with Grid capabilities. The XtreemOS extensions to Linux
include LinuxSSI, an SSI version of Linux based on Kerrighed [59] which allows to
register into the XtreemOS Grid a cluster of systems virtually seen as a single, more
powerful machine; XtreemFS [35], a networked file system supporting automatic
replication and high availability of data; process checkpointing, a middleware
for management of Grid nodes and submission of tasks; and XOSAGA [38], an
application-level API for Grid applications which constitutes an implementation of
the abstract language-independent SAGA [28] specification, with some XtreemOS
specific extensions.

Starting from release 10.4, the Mac OS-X embeds a simple Grid management
middleware called Xgrid [56], which is immediately available on all installations of
the OS, if the corresponding service is activated. Xgrid has a three-tier architecture:
clients submit jobs to controllers, which in turn hand them over to agents for the actual
processing. Clients may submit jobs to the Grid by means of either a command-line
tool or a dedicated API which is part of the OS foundation API. In order to share

11More information is available at http://www.xtreemos.eu/.
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large amounts of data among Grid tasks, it is possible to use one of the available
distributed file systems, such as NFS. Xgrid is targeted to an easy setup of Grids
with no strong requirements on the number of interconnected nodes and complexity
of the submitted jobs. For example, only linear work flows are supported, whereas
for more complex Grid settings, one can install on the OS one of the other more
complex Grid management middleware solutions. Mac OS-X 10.5 introduced Xgrid
2, with some enhancements on the job scheduling decisions, such as the so-called
scoreboard, that is, a customizable scoring script that may be provided by clients in
order to drive the decisions made by controllers about what agent nodes to choose
when multiple ones are available. The script may base its score on the availability
of particular capabilities of the agent node or the connection/connectivity conditions.
This is useful for increasing the performance of the deployed applications.

22.2.6 Operating Systems for HPC

As detailed in Section V on HPC, in classical cluster systems, each processor (in the
sense of smallest compute unit) hosts its own OS environment. HPC jobs typically run
on the system in an exclusive way, in order to achieve maximum performance. This
means that the respective execution environment does not have to deal with schedul-
ing issues, scale management, etc. Essentially, the OS therefore primarily serves the
same purpose as a virtualization system, that is, it abstracts from the underlying hard-
ware and deals with I/O of the system, in particular for accessing shared resources
and communication between threads and processes. This means implicitly that many
of the functions in a GP OS are obsolete for HPC usage and can (should) be removed
from the kernel, in order not to produce unnecessary overhead.

As noted, it is thereby of particular relevance for efficient parallel computing that
the specific characteristics of the hardware are exploited to their maximum poten-
tial, such as the memory architecture of the systems. Therefore, the OS is typically
specifically adapted to the environment, so as to reduce performance loss due to mis-
alignment.

Essentially, most HPC providers therefore reduce the OS to an essential mini-
mum and adapt the kernel to the specific environment. Obviously, Linux is the pri-
mary choice in such cases, due to its open source nature. Microsoft Windows and
even Apple Mac OS-X have been demonstrated to work for HPC clusters, too,12

yet their performance and the overhead for adaptation typically do not fulfill the
expectations – as such, there are, for example, 475 Linux-UNIX-based systems on
the Top50013 list (in which systems are ranked by their performance on the LIN-
PACK Benchmark [24, 63]) but only 5 Windows-based ones (and none for Mac
OS-X).14 With the increasing heterogeneity and hence divergence between supercom-
puter setups and at the same time the growing scale of affordable high performance
machines, it is likely that this distribution will change slightly in the near future.

12More information is available at http://hpc.sourceforge.net/.
13More information is available at http://www.top500.org/.
14More information is available at http://www.top500.org/stats/list/35/osfam.
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Currently, the most widely used Linux distributions are probably15 Red Hat Linux,
SUSE Linux Enterprise, Scientific Linux and CentOS. Red Hat Linux16 and SUSE
Linux Enterprise17 are widely used18 mainly due to the range of system architectures
they support (namely, x86 32 and 64 bit, Itanium IA-64, and PowerPC 32 and 64 bit),
even though official Red Hat Linux releases are comparatively rare (latest official
release was in 2003). The Scientific Linux19 distribution is typically preferred over
the Red Hat distribution, which is 100% compatible with Red Hat Linux. As opposed
to the Red Hat version, Scientific Linux however is available for free, and adaptations
to individual systems are maintained by the community rather than by Red Hat. Even
though reliability is decreased this way, the distribution adapts quicker to new sys-
tems. Scientific Linux supports the following architectures: x86 32 and 64 bit and
Itanium IA-64. CentOS20 is another popular Linux distribution which bases on Red
Hat Linux and is available free of charge. Like Scientific Linux it is mainly main-
tained by the community, yet the latest versions only support the x86 architectures
thus making it less interesting in the future. At the time of writing, 7 machines in the
top500 made use of CentOS.

Even UNIX-based OSes are still in use on HPC clusters, as they generally scale
quite well. With a few exceptions, they are mostly commercially distributed which
makes them less attractive than Linux in particular in academic circles. The number
of UNIX systems in the top500 basically decreases, with the particular exception of
AIX which ships with the IBM machines and supports in particular the PowerPC and
the IA-64 architecture, making it attractive for the according clusters.

Though Lameter claims that Linux scales well enough for future large-scale plat-
forms [43], it must be noted that this is mostly true for the number of processes but
not the number of processors [11, 72]. The authors furthermore claim that due to
messaging overhead, a microkernel approach is not a feasible alternative to Linux,
yet as Barham et al. could show, the messaging approach scales better than the Linux
monolithic structure [11].

22.3 SCHEDULING

One of the core features of an OS is its ability to multiplex the access to the avail-
able physical resources to multiple processes/threads that run at the same time onto
the system. Some resources may be managed in an exclusive way, that is, only one
application at a time is granted access to it. Other resources, and particularly pro-
cessor(s) and disks, are managed in a shared way so that the competing applications
alternate in accessing the resource(s) according to some scheduling policy. For the

15More information athttp://www.clusterbuilder.org/software/operating-system
.php.
16More information is available at http://www.redhat.com.
17More information is available at http://www.novell.com/linux.
18At the time of writing this, 18 machines in the top 500 use either distribution.
19More information is available at http://www.scientificlinux.org.
20More information is available at http://www.centos.org.
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CPU, GP OSes usually provide round-robin-based scheduling, where the ready tasks
alternate each other after a certain time slice which may be fixed or dynamically
changing. GP OSes have usually scheduling policies designed so as to achieve a high
overall system throughput and to serve processes on a best-effort (BE) basis, that
is, no guarantees can be provided to the individual applications. On the other hand,
real-time(RT) OSes have usually scheduling policies which are capable of provid-
ing precise scheduling guarantees to the competing applications. To this purpose,
RTOSes undertake an admission-control phase, in which a new process is accepted
into the system only if its timing requirements may be fulfilled, and the ones of the
already accepted processes are not disrupted.

22.3.1 Scheduling on Multiprocessor

When deciding which kind of scheduler to adopt in a multiple processor system, there
are two main options: partitioned scheduling and global scheduling. In a partitioned
scheduler, there are multiple ready queues, one for each processor in the system, and
it is possible to leave a processor in idle state even when there are ready tasks needing
to be executed. The placement of tasks among the available processors is a critical
step, and doing it optimally is equivalent to the bin-packing problem, which is known
to be NP-hard in the strong sense [4, 42]. This complexity is typically avoided using
suboptimal solutions provided by polynomial and pseudo-polynomial time heuristics
(e.g. First Fit, Best Fit, etc.) [23, 45, 46, 50].

With a global scheduler, tasks are extracted from a single system-wide queue and
scheduled onto the available processors. The load is thus intrinsically balanced, since
no processor is idled as long as there is a ready task in the global queue. A class
of algorithms, called Pfair schedulers [6], is able to ensure that the full processing
capacity can be used but unfortunately at the cost of a large run-time overhead.

Complications in using a global scheduler mainly relate to the cost of inter-
processor migration and to the kernel overhead due to the necessary synchronization.
Even if there are mechanisms that can reduce the migration cost, it could nevertheless
cause a significant schedulability loss when tasks have a large associated context
(i.e. data overhead). Therefore, the effectiveness of a global scheduler is rather
dependent on the application characteristics and on the architecture in use.

In addition to the aforementioned classes, there are also intermediate solutions,
like hybrid- and restricted-migration schedulers [9, 14], that limit the number of pro-
cessors among which a task can migrate or the possibilities that a task has to migrate
(by disabling preemption). This way, fewer cache misses are expected, and the cost
of migration and context changes is lower.

22.3.2 Real-Time Scheduling

The traditional real-time scheduling research area focuses mainly on hard real-time
systems, where deadlines are considered to be critical, in the sense that deadline
misses cannot be tolerated, because they lead to the complete system failure and
possible catastrophic consequences (i.e. losses of life).

However, real-time theory and methodologies are gaining applicability in the field
of soft real-time systems, where applications possess precise timing and performance
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requirements, but occasional failures in meeting them may be easily tolerated by the
system, causing a graceful degradation in the quality of the provided service.

22.3.2.1 Scheduling Real-Time Task Sets on Multiprocessor Platforms
Only recently multiprocessing is receiving a significant attention from the real-time
community, thanks to the increasing industrial interest in such platforms. While
the scheduling problem for uniprocessor systems has been widely investigated for
decades, few of the results obtained for a single processor generalize directly to the
multiple processor case [49].

Unfortunately, predicting the behavior of a multiprocessor system requires in
many cases a considerable computing effort. To simplify the analysis, it is often
necessary to introduce pessimistic assumptions. This is particularly needed when
modeling globally scheduled multiprocessor systems, in which the cost of migrating
a task from a processor to another can significantly vary over time. The presence
of caches and the frequency of memory accesses have a significant influence on the
worst-case timely parameters that characterize the system. To bind the variability
of these parameters, often real-time literature focuses on platforms with multiple
processors but with no caches or whose cache miss delays are known. Also, the cost
of preemption and migration on multiprocessor systems is a very important issue that
still needs to be properly considered in real-time methodologies. Some research in
the domain of hardware architectures moves toward partially mitigating such issues.
Recently, a few architectures have been proposed that limit penalties associated to
migration and cache misses, for example, the MPCore by ARM. Some researchers
have recently proposed hardware implementations of some parts of the OS, allowing
one to reduce the scheduling penalties of multiprocessor platforms [75].

22.3.2.2 Soft Real-Time Scheduling Different scheduling algorithms have
been proposed to support the specific needs of soft real-time applications. A first
important class approximates the generalized processor sharing concept of a fluid
flow allocation, in which each application using the resource marks a progress pro-
portional to its weight. Among the algorithms of this class, we can cite Proportional
Share [76] and Pfair [6]. Similar are the underlying principles of a family of algo-
rithms known as resource reservation schedulers [66]. In the resource kernels project
[66], the resource reservation approach has been successfully applied to different
types of resources (including disk and network). The resource reservation framework
has been adapted to partitioned multiprocessor systems in [7] and [8] for the Constant
Bandwidth Server (CBS) and the Total Bandwidth Server (TBS) algorithms, respec-
tively. Also, it has been proposed to let the scheduler automatically self-tune the best
parameters for a running real-time application [17].

22.3.2.3 Scheduling of Distributed Real-Time Applications The problem
of designing scheduling parameters for distributed real-time applications has received
a constant attention in the past few years. In [3], the authors introduce a notion
of transaction for real-time databases characterized by periodicity and end-to-end
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constraints and propose a methodology to identify periods and deadlines of interme-
diate tasks. In [26], the activation periods of the intermediate tasks that comply with
end-to-end real-time requirements are found by an optimization problem. In [37],
the authors use performance analysis techniques to decide the bandwidth allocated
to each task that attain a maximum latency and a minimum average throughput for a
chain of computations.

Concerning modeling of timing requirements of real-time applications, usually
models similar to synchronous data-flow networks [61] are used. As shown in [10],
these models lend themselves to an effective code generation process, in which an
offline schedule is synthesized that minimizes the code length and the buffer size.
The models used in [19, 20] and [27] are also special cases of synchronous data-flow,
but, due to the inherently distributed and dynamic nature of the considered appli-
cations, the aim is not an optimized offline scheduling of activities but rather an
efficient on-line (run-time) scheduling mechanism. Finally, in [40] the problem of
optimum deployment, over a physical heterogeneous network, of distributed real-
time applications with computing and networking requirements subject to end-to-end
response-time constraints is tackled by introducing a formalization in terms of a
mixed-integer nonlinear programming optimization program, both in a deterministic
and a probabilistic form.

22.3.3 Scheduling and Synchronization

Synchronization is an essential problem of concurrent programming, and it has
received a great attention from the research community. The problems of concurrent
access and of providing a consistent view of shared data structures can be solved
in different ways, depending on the abstraction level and on the basic organization
of the OS and programming paradigm. The basic properties that correct concurrent
programs must possess were described by Herlihy and Wing [34], and solutions have
been proposed both for shared memory and message passing. Also, synchronization
is tightly coupled with scheduling.

When multiple tasks need to access a shared resource or data structure, they need
to synchronize each other, in order to avoid performing the access at the same time.
The basic synchronization means is constituted by a binary semaphore, which, if
already taken, causes the process attempting to acquire the lock to be suspended by
the scheduler and be woken up later when the lock owner exits the critical section.
However, a great research effort has been done in two very important domains: in the
literature of real-time scheduling, it is important to ensure that the amount of time
a process has to wait before acquiring a lock may be somehow kept under control;
also, in multiprocessor and multicore scheduling, if the acquired resource is held
by a task on another processor and the critical section is expected to be very short
(like it happens quite often in the kernel of an OS), then suspending the current task
and performing a context switch might lead to unnecessary overheads, while other
policies may be more convenient (e.g. spinlocking). Interestingly, the PREEMPT_RT
branch of the Linux kernel has an option [52] for turning (almost) every spin-lock
primitive used inside the kernel into a mutex.
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In the shared-memory paradigm, all processors can access the same memory, uni-
formly (UMA machines) or nonuniformly (NUMA machines). A lot of work has
been done to improve the basic locking mechanisms. Mellor-Crummey and Scott
[55] solved the problem of reducing contention on the shared bus by using separate
spin variables for each processor on which each core performed busy waiting. Many
papers have proposed improvements on this basic mechanism, for example, to intro-
duce time-out [73], to reactively change the lock behavior [48], and to balance over-
head versus latency using a mixed-coarse/fine-grain locking strategy [81]. Mukherjee
and Schwan [60] proposed an adaptive locking protocol that chooses between mutex
locks and spin locks depending on the characteristics of the application.

A different approach consists in making a local copy of the data structure (or of
part of it), modifying it and later trying to commit the changes in the global copy
without disrupting the linearizability property [34]. This class of approaches is usu-
ally referred to as lock-free or nonblocking or wait-free [32]. Many wait-free algo-
rithms have been proposed for common data structures, like priority queues [77] or
stacks [31]. Transactional memory has been proposed as a hardware-level support for
wait-free mechanisms [33].

For data structures where reading is more frequent than writing/updating, special
mechanisms have been proposed to reduce contention, such as the read-copy-Update
(RCU) mechanism [54], widely adopted within the Linux kernel for accessing critical
shared lists. McKenney [53] provides a comparison of several locking techniques in
the form of patterns, from different points of view: latency, memory bandwidth, mem-
ory size, granularity, fairness and read–write ratio. There is no clear winning strategy
and every mechanism has its advantages and disadvantages. A similar comparison
has been carried out by Anderson [1].

In the message-passing paradigm, each resource is assigned a server thread which
exclusively performs operations on the data structures of the resource. Other threads
(clients) must request the operation by issuing a remote invocation via an IPC. This
organization mimics distributed systems where nodes do not share memory. The MPI
interface [29] is based on this paradigm.

Chaves et al. [16] perform a comparison of shared-memory communication based
on spin locks versus remote invocation in a NUMA multiprocessor architecture.
Another comparison has been proposed by Chandra et al. [15]. They highlight that
the performance is highly dependent on the underlying hardware structure and
memory hierarchy (UMA or NUMA, presence of cache coherency, etc.). However,
it can be generally said that message passing is more adequate for long critical
operations on processors with high-memory access delay, while shared memory is
preferable on short critical section on local data structures. Clearly, it is possible to
mix shared-memory locking and remote invocation [30, 41]. Recently, Uhlig [80]
proposed to use IPC or shared-memory locking depending on the locality of the data
structure with respect to the current node and to use an adaptive locking mechanism
depending on the level of contention.

Due to space reasons, we cannot overview the protocols to arbitrate the exclusive
access to shared resources for real-time task sets. However, the interested reader can
refer to [18] for more information.
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22.3.4 Shared Resources Protocol in the Linux Kernel

The design criteria and performance metrics mainly adopted by Linux kernel develop-
ers are overall system throughput and fairness. However, although real-time behavior
and predictability have not been a primary concern until now, Linux embeds a few
features that are commonly included in real-time kernels, and the synchronization
subsystem does not constitute an exception to that.

In a Linux system, support for mutual exclusive access to shared-memory areas is
provided at both kernel and user levels. In the latter case, this is achieved by means
of system libraries (e.g. the glibc and pthreads libraries).

Inside the kernel, critical sections can be protected mainly by spinlocks, mutexes
and RT-mutexes. There are other means of regulating the access to sensible code,
such as read–write locks and RCU locks, but describing them in details is out of the
scope of this chapter.

The Linux kernel includes the POSIX [36] RT-mutexes, which support the priority
inheritance (PI) protocol for avoiding priority inversion, a well-known problem of
systems scheduled under priority-based policies.

In mainline Linux, the only subsystem which uses RT-mutexes is the fast userspace
mutexes (futex) interface. A futex is a special implementation of locking primitives
which, exploiting atomic instructions and memory coherence available on the under-
lying hardware, manages to handle the synchronization entirely at the user-space
level in those cases in which there is no contention. When, instead, task blocking
and unblocking is needed, then futexes involve kernel-level operations.

In PREEMPT_RT, a kernel branch maintained by a small developer group led by
Ingo Molnár, with the aim of making the kernel suitable for very low latency and
real-time applications, things are quite different: in fact, when this patch is applied,
most of the spinlocks and mutexes are turned into RT-mutex. Basically, at the cost of
sacrificing part of the overall system performance, this branch of the kernel reduces
significantly the duration of nonpreemptible sections and enforces priority inversion
avoidance, reducing the performance and predictability gap between Linux and clas-
sical real-time kernels.

REFERENCES

1. T. E. Anderson. The performance of spin lock alternatives for shared-memory multipro-
cessors. IEEE Transactions on Parallel and Distributed Systems, 1:6–16, January 1990.

2. Y. Aridor, M. Factor, and A. Teperman. cjvm: a single system image of a jvm on a cluster.
In Proceedings of the 1999 International Conference on Parallel Processing, ICPP ’99,
pages 4–11. IEEE Computer Society, Washington, DC, USA, 1999.

3. N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Data consistency in hard
real-time systems. Informatica (Slovenia), 19(2): 223–234, 1995.

4. N. C. Audsley and K. Bletsas. Fixed priority timing analysis of real-time systems with
limited parallelism. In 16th Euromicro Conference on Real-Time Systems (ECRTS 2004),
pages 231–238, Catania, Italy, 2004.



�

� �

�

468 OPERATING SYSTEM AND SCHEDULING FOR FUTURE MULTICORE AND MANY-CORE PLATFORMS

5. A. Barak, S. Guday, and R. Wheeler. The mosix distributed operating system, load bal-
ancing for unix. In Lecture Notes in Computer Science, volume 672. Springer-Verlag,
1993.

6. S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: a
notion of fairness in resource allocation. In Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, STOC ’93, pages 345–354. ACM, New York, NY,
USA, 1993.

7. S. Baruah and G. Lipari. Executing aperiodic jobs in a multiprocessor constant-bandwidth
server implementation. In Proceedings of the 16th Euromicro Conference on Real-Time
Systems, pages 109–116. IEEE Computer Society, Washington, DC, USA, 2004.

8. S. Baruah and G. Lipari. A multiprocessor implementation of the total bandwidth server.
Parallel and Distributed Processing Symposium, International, 1:40a, 2004.

9. S. K. Baruah and J. Carpenter. Multiprocessor fixed-priority scheduling with restricted
interprocessor migrations. Journal of Embedded Computing, 1:169–178, April 2005.

10. S. S. Battacharyya, E. A. Lee, and P. K. Murthy. Software Synthesis from Dataflow Graphs.
Kluwer Academic Publishers, 1996.

11. A. Baumann et al. The multikernel: a new os architecture for scalable multicore systems.
In SOSP, 2009.

12. S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris, A. Pesterev, L.
Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: an operating system for many cores.
In 8th USENIX Symposium on Operating Systems Design and Implementation, 2008.

13. S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. Frans Kaashoek, R. Morris,
and N. Zeldovich. An analysis of linux scalability to many cores. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation, OSDI’10, pages
1–8. USENIX Association. Berkeley, CA, USA, 2010.

14. J. M. Calandrino, J. H. Anderson, and D. P. Baumberger. A hybrid real-time scheduling
approach for large-scale multicore platforms. In Proceedings of the 19th Euromicro Con-
ference on Real-Time Systems, pages 247–258. IEEE Computer Society, Washington, DC,
USA, 2007.

15. S. Chandra, J. R. Larus, and A. Rogers. Where is time spent in message-passing and
shared-memory programs? In Proceedings of the sixth international conference on Archi-
tectural support for programming languages and operating systems, ASPLOS-VI, pages
61–73. ACM, New York, NY, USA, 1994.

16. E. M. Chaves, P. Ch. Das, Th. J. Leblanc, B. D. Marsh, and M. L. Scott. Kernel-kernel com-
munication in a shared-memory multiprocessor. Concurrency: Practice and Experience,
5(3):171–191, 1993.

17. T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli. Self-tuning schedulers for legacy
real-time applications. In Proceedings of the 5th European Conference on Computer
Systems (Eurosys 2010), Paris, France, April 2010. European chapter of the ACM
SIGOPS.

18. T. Cucinotta, G. Lipari, D. Faggioli, F. Checconi, S. Kumar, R. Aguiar, J. Paulo Barraca,
B. Santos, J. Zarrin, J. Kuper, C. Baaij, L. Schubert, H.-M. Kreuz, and V. Gramoli.
S(o)os project deliverable d6.1 - state of the art. Available on-line on the S(o)OS website:
http://www.soos-project.eu/., 7 2010.



�

� �

�

REFERENCES 469

19. T. Cucinotta and L. Palopoli. Feedback scheduling for pipelines of tasks. In Proceedings of
the 10th international conference on Hybrid systems: computation and control, HSCC’07,
pages 131–144. Springer-Verlag, Berlin, Heidelberg, 2007.

20. T. Cucinotta and L. Palopoli. Qos control for pipelines of tasks using multiple resources.
IEEE Transactions on Computers, 59:416–430, 2010.

21. A. Depoutovitch and M. Stumm. Otherworld: giving applications a chance to survive os
kernel crashes. In Proceedings of the 5th European conference on Computer systems,
EuroSys ’10, pages 181–194. ACM, New York, NY, USA, 2010.

22. S. Derr, P. Jackson, C. Lameter, P. Menage, and H. Seto. Cpusets. Available on-line at:
http://www.kernel.org/doc/Documentation/cgroups/cpusets
.txt.

23. S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Research,
26(1):127–140, 1978.

24. J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart. LINPACK Users Guide. SIAM,
Philadelphia, 1979.

25. D. Faggioli, T. Cucinotta, J. Lelli, and G. Lipari. An efficient and scalable implementation
of global edf in linux. In Proceedings of the 7th International Workshop on Operating Sys-
tems Platforms for Embedded Real-Time Applications (OSPERT 2011), Porto, Portugal,
7 2011.

26. R. Gerber, S. Hong, and M. Saksena. Guaranteeing real-time requirements with
resource-based calibration of periodic processes. IEEE Transactions on Software Engi-
neering, 21:579–592, July 1995.

27. S. Goddard and K. Jeffay. Managing latency and buffer requirements in processing graph
chains. The Computer Journal, 44:200–1, 2001.

28. T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. von Laszewski, C. Lee, A.
Merzky, H. Rajic, and J. Shalf. Saga: a simple api for grid applications. High-level appli-
cation programming on the grid. Computational Methods in Science and Technology,
12(1):7–20, 2006. Available online at: Onlineat:http://wiki.cct.lsu.edu/
saga/.

29. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable imple-
mentation of the mpi message passing interface standard. Parallel Comput., 22:789–828,
September 1996.

30. J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta. Integration of message passing and
shared memory in the stanford flash multiprocessor. SIGPLAN Not., 29:38–50, November
1994.

31. D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In Pro-
ceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and archi-
tectures, SPAA ’04, pages 206–215. ACM, New York, NY, USA, 2004.

32. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13:124–149, January 1991.

33. M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for lock-free
data structures. ACM SIGARCH Computer Architecture News, 21:289–300, May 1993.



�

� �

�

470 OPERATING SYSTEM AND SCHEDULING FOR FUTURE MULTICORE AND MANY-CORE PLATFORMS

34. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concur-
rent objects. ACM Transactions on Programming Languages and Systems, 12:463–492,
July 1990.

35. F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo, J. Marti, and
E. Cesario. The xtreemfs architecture - a case for object-based file systems in grids.
Concurrency and Computation: Practice and Experience, 20:2049–2060, December
2008.

36. IEEE standard for information technology Ãć portable operating system interface (posix),
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GLOSSARY

Advanced Synchronization Facility (ASF) Experimental AMD64 extension to
support lock-free data structures and software transactional memory

Amdahl’s law Describes how the sequential fraction of an application limits the
maximum available speedup of a parallel implementation

Auto-tuning Automatic performance tuning of applications. Given a set of tuning
parameters with corresponding value domains, the goal of auto-tuning is to find a
parameter configuration that optimizes the application’s performance

BlockLib A C-based skeleton programming library for the Cell Broadband Engine

C(P) The maximal space of interleavings for a parallel program P under which the
program is correct

Cache A component of the memory system that is located very close to the
processor. It transparently stores data so that future requests for that data can be
served faster

Cache line The smallest unit of memory that can be transferred between the main
memory and the cache

Cell Broadband Engine (Cell/B.E.) A heterogeneous multicore processor devel-
oped by Sony/Toshiba/IBM

Chip multiprocessor A processor that uses multiple processor cores on a single
chip

Programming Multicore and Many-core Computing Systems, 475
First Edition. Edited by Sabri Pllana and Fatos Xhafa.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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Compare-and-swap (CAS) Atomic primitive that replaces the value of a variable
iff it currently the value supplied as a parameter

Container A wrapper object of generic data type that encapsulates aggregated
pay-load data such as elements of an array, stores the corresponding metadata
and provides access operations

Copying-in operation Operation that transfers data from a D space to a P space

Copying-out operation Operation that transfers data from a P space to a D space

Critical event Critical events are the minimal set of program events that are needed
to replay the parallel program. Examples of critical event types are shared memory
access, message passing and obtaining or releasing of locks

D space Part of the address space that reflects the nonspeculative state of the com-
putation. It is only updated by the main thread

Data interaccess time The gap between two successive accesses to the same data
block

Data parallelism Parallelism that arises from the concurrent application of the
same operation to the elements of a parallel data container

DCAS or CAS2 Compare-and-swap operation performed on two different words

Deadlock State of a concurrent execution where multiple processes wait for one
another to release a resource, hence preventing progress

Dresden Transactional Memory Compiler (DTMC) An experimental compiler
for transactional memory that supports transactional language constructs in
C/C++ developed at the University of Dresden

Edge tiles Are defined as tiles that communication processes are performed with
tiles allocated to other cores

Execution plan A list of expected best implementation variant and values for tun-
able parameters for the efficient execution of a skeleton or component invocation,
depending on the actual problem size and possibly other context conditions

False conflict A conflict between two concurrent transactions that does not affect
the correctness of the application

Filter Task consuming and producing elements in a stream fashion

Flynn’s taxonomy A classification of computer architectures based on the concur-
rency of the instruction and data streams

GNU Compiler Collection (GCC) Developed by the GNU project, GCC is a com-
piler system for various programming languages including C

Heterogeneous multicore A processor that uses more than one type of processor
core on a single chip

Homogeneous multicore A processor that uses identical processor cores on a sin-
gle chip

I(P) For a parallel program P and for a given set of P’s inputs, we refer to the space
of possible orders of task execution and environment events as the space of pro-
gram interleavings, I(P)
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Internal tiles Are defined as tiles that communication processes are made in the
same core

Irrevocable mode The mode of a transaction that never aborts

LAMP Stack of FOSS software based on Linux, Apache, MySQL and Perl/
Python/PHP to create a web server

Livelock State of a concurrent execution where processes keep changing states
without progressing

Load-linked/store-conditional (LL/SC) Two atomic primitives. Load-linked
reads the value of a variable and store-conditional stores another value in the
variable if it has not been changed since the read

Lock-free An algorithm is lock-free if, for all possible executions, at least one con-
current operation will succeed in a finite number of its own steps

Map A data-parallel skeleton that expresses the element-wise application of a func-
tion to each element of a collection of data elements, accessing in each element
computation only a single element per operand collection

Mapping A distribution process where the tiles are assigned to each core

Mapping table A data structure that assists the result-committing stage. It is
updated when a copying-in operation is performed and referred to by copying-out
operations and during misspeculation check. Each speculative thread has its own
mapping table

Memcached (MCD) A scalable distributed memory caching scheme to reduce
backend database requests. The ‘d’ stands for demon

Miscompression rate The rate between the number of accesses made to the com-
pressed data and the total number of accesses

Misspeculation check A process that detects any dependence violations that have
occurred in a speculative task. It is always lazily performed (i.e. when a speculative
task has finished) by the main thread

Misspeculation rate The percentage of tasks that fail to pass a misspeculation
check

Moore’s law Predicts that the number of transistors on a chip doubles approxi-
mately every two years

Multiprocessor A computer with two or more physical processors

Multithreading A technique that allows multiple processes or threads to share the
functional units of one processor by using overlapped execution

Mutual exclusion Synchronization mechanism in which only a single processing
unit may access the protected resource at any given time

MWCAS, CASN Multiword compare-and-swap operations. Compare-and-swap
performed on multiple words

NOBLE Commercial library of lock-free data structures

Nonblocking full/empty bit (NB-FEB) Experimental synchronization primitive
shown to be as powerful as CAS or LL/SC
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Object-orientation (OO) Programming model providing a high degree of modu-
larity and reusability. Central concepts of this model are classes, objects, fields,
methods, encapsulation, inheritance, and others

Object-oriented stream programming (OOSP) Programming model unifying
the concepts of stream programming and object-orientation

On-demand decompression Data block decompression per request
Open Computing Language (OpenCL) programming model A standard for

portable programming of accelerator-based multi- and many-core systems,
defined by the Khronos Group

Open Multiprocessing (OpenMP) A standard for portable shared memory parallel
programming, defined by the OpenMP Architecture Review Board

Overlapping strategy Is to execute the internal computational tiles and the edge
communications together

P space Part of the address space that reflects the state of the speculative threads.
Each speculative thread has its own P space

Parallel pattern Design pattern for structuring and implementing parallelism.
Important patterns are pipelines, master/worker or producer/consumer

Performance portability A property of a programming system that uses automated
tuning of programs toward a given target architecture or system configuration in
order to provide a best-effort adaptation for performance optimization for a new
target system without touching the source code

Pipelining Assembling an object by parts such that the output of one partial assem-
bly is fed as input to the next step

Predecompression Decompression of a data block before it is accessed
Prefetching Loading an item either by software or by hardware on the assumption

that it is going to be used shortly
Process An instance of a computer program that is executed
Profiling run An execution of a program in which runtime information is collected.

An instrumentation tool is usually used to gather the information
Recovery A process in which a speculative thread reexecutes its task due to mis-

speculation
Reduce A data-parallel skeleton that expresses reduction computations
Reduction A generic computation pattern that accumulates the elements of a col-

lection of data into a single scalar result by applying addition or some other binary
associative operation for accumulation

Result commit A process that copies out all values produced in a speculative task
to D space. It must be done after misspeculation check has passed

Scalar processor A processor that operates on one computer word at a time
Scan A data-parallel skeleton that expresses prefix-sum computations
Scheduling An execution process where the tiles are executed in order to apply an

overlapping strategy
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Single Global Lock (SGL) A form of STM semantics which models transactional
execution as critical sections protected by a single global lock

Single instruction multiple data (SIMD) Architectural paradigm of parallel exe-
cution control with a single instruction stream and multiple data streams. The same
instruction is performed on multiple words concurrently.

SkelCL A C++-based OpenCL-based skeleton programming system for GPU and
multi-GPU systems developed at Münster University, Germany

Skeleton A predefined generic component derived from a higher-order function
that denotes a computation matching a certain data and control flow pattern, which
can be parameterized in problem-specific sequential code and for which efficient
implementations on various target platforms may exist

Skeleton programming Expressing the potential parallelism in a program in terms
of skeletons

SkePU A C++-based multi-backend skeleton programming system for GPU and
multi-GPU systems developed at Linköping University, Sweden

Speculative task A task that is executed by a speculative thread. Data values in the
task may not be up to date during the execution and thus need to be verified when
the task is finished

Speculative thread A thread that is created by the main thread. Several specula-
tive threads can perform different speculative tasks simultaneously. A speculative
thread is also called parallel thread or Pthread

Starvation The status of an execution in which some request (resp. transaction)
may never terminate (resp. commit)

STI An alliance between Sony, Sony Computer Entertainment, Toshiba and IBM
formed to develop Cell microprocessor architecture

Standard Template Library (STL) for C++ A collection of container data types
and operations on them

Software transactional memory (STM) A software implementation of the trans-
actional memory

Stream Continuous flow of data

Stream graph Graph capturing stream communications among a set of filters

Superscalar processor A processor that can issue several instructions at the same
time (during one clock cycle)

Supertile A group of data that will be assigned to each core and it is composed by
internal and edge tiles

Task parallelism Parallelism that arises from executing independent different parts
or instances of code (e.g. function calls) in parallel

Intel Threading Building Blocks (TBB) Commercial/open-source library used to
create task-based parallel applications

The main thread The default thread that executes all sequential regions. It also
creates and control parallel threads
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Thread The smallest unit of processing that can be scheduled by an operating sys-
tem. One or more threads run in the context of a single process

Thrust A generic C++ library for GPU programming developed by NVIDIA
Research

Tile A unit of division of work that has communication dependency

Transactional memory (TM) A concurrent programming paradigm consisting of
delimiting regions of sequential code whose execution should look as atomic

Tuning heuristic Approximation or model for setting a tuning parameter to an
appropriate value without having to test the entire value range of that parameter

Tuning parameter Program variable that influences the program’s performance,
but not its semantics. Examples are the number of threads, the number of pipeline
stages or data size

Uniprocessor A computer with only one physical processor

Vector A container data type storing a one-dimensional array and its metadata

Warp Number of threads that are simultaneously executed onto a multiprocessor

Zip A data-parallel skeleton like Map with two input operands



�

� �

�

INDEX

A
aborts, 83
adaptive locking protocol, 466
adaptive scheduling, 422
algorithmic skeleton, 263
algorithm view, 35
allocation, 418
all-or-nothing transaction, 167
Amdahl’s law, 372
analytical model, 442
application-centric models, 44
array, 67
Array-OL, 146
atomicity, 84, 326
automated parallelization, 233
auto-tuning, 194–195

B
bag, 65
bandwidth, 425

Programming Multicore and Many-core Computing Systems,
First Edition. Edited by Sabri Pllana and Fatos Xhafa.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

benchmarks, 118, 314, 386, 425
block access, 4
BlockLib, 139
Brook, 145, 201
bus interconnection, 431

C
CABAC, 282
cache, 72, 237
cache behavior, 95
cache coherence, 348
cascading aborts, 172
CAVLC, 282
Cell/B.E. processor, 39
Cell Superscalar, 43
Charm++, 45
Cilk, 37
cloud computing, 452
cluster, 113, 311
code optimization, 292
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code profiling, 291
collector, 268
combinability, 62
communication, 36
communication congestion, 431
communication links, 444
commutativity, 177
compiler, 109, 388
computational accelerators, 407
computing performance, 3
concurrency, 36, 228, 232
concurrent code, 81
concurrent conflicting transactions, 83
concurrent data structures, 59
concurrent program, 325
concurrent programming, 465
ConcurrentTesting, 340
concurrent transactions, 91, 173
conflicts, 94
connectivity, 237
consensus problem, 62
consistency, 84
containers, 125
contention manager, 91
context switch, 345
Corey, 457
CPU cycles, 352
CPU-intensive application, 346
crossover operator, 303
CUDA, 41, 302
CUDPP, 138
CUFFT library, 108
cyclic dependency deadlock, 328

D
data block, 390
data compression, 386
data exchanges, 133
data layout, 35
data locality, 431
data parallelism, 186
data-parallel skeletons, 122
data transfers, 36, 133
deadlocks, 166
debugging, 341
decoder, 284
decompressions, 388
deque, 66
desk checking, 330

diagnostic tools, 358
dictionary, 68
dining philosopher, 166
distributed desk checking, 331
distributed programming, 451
distributed real-time applications, 464
distributive review, 325
DOACROSS parallelism, 205
DOALL parallelism, 205
dynamic data structure, 218
dynamic scheduling, 421

E
eager update, 88, 207
efficiency, 432
elastic transactions, 179
embarrassingly parallel applications, 13
emitter, 268
encoder, 284
energy consumption, 352
evolutionary algorithms, 301
execution flow, 420
execution plan, 130
execution time, 432

F
fairness, 353, 466
false conflicts, 94, 176
farm paradigm, 271
FastFlow, 148, 262
fat-pointer, 220
Flynn’s taxonomy, 5
fragmentation, 69
frame level, 286
functional-level parallelism, 287
functional parallelism, 4

G
garbage collection, 70
GenerOS, 457
genetic programming, 302
global scheduler, 463
global scheduling, 463
GPGPU, 301
GPMCs, 39
GPUs, 39
granularity, 466
graphics processor, 72
Grid, 452
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Grid middleware, 460
Grid OS, 460
Grid systems, 460

H
hash table, 68
H.264/AVC, 282
heterogeneous architectures, 101
heterogeneous multicores, 19
high-performance computing, 431, 451
H.264/MPEG-4, 281
homogeneous components, 411

I
ILP wall, 11
instruction set architecture, 238
Intel TBB, 39
interconflicts, 94
intercore communication, 156
interleaving, 333
intraconflicts, 94
invisible reads, 89
invisible read transactions, 174
I/O latency, 357
island model, 306
isolated parallel program, 336
isolation, 84
iterator, 150

J
Java, 169
JavaGrande, 200
J2EE, 363
joining, 191

K
kernel, 345
kernel function, 132

L
LAMP stack, 365
latency, 264, 369, 465, 466
layered design, 262
lazy update, 88, 207
linearizability, 60, 86
linked lists, 67
Linux, 170, 453
Linux kernel, 465
list, 67

load balancing, 73
local data structures, 466
lock-free, 60
lock-free data structure, 63
locking strategy, 466
lock table, 95
loosely coupled components, 451

M
many-core accelerators, 410
many-core architectures, 30
many-cores scalability, 380
Map, 139
MapOverlap, 139
mappers, 413
mapping, 36, 52
mapping strategy, 435
MapReduce, 139, 246, 411
Map skeleton, 122
massively parallel applications, 29
master, 115
master/worker pattern, 192, 432
memory allocator, 69
memory bandwidth, 431, 466
memory hierarchy, 466
memory latency, 345–346, 355
memory reclamation, 70
memory wall, 10
Mercurium, 109
Message Passing Interface (MPI), 37, 102,

229, 432
message passing libraries, 7
message-passing paradigm, 466
metadata storage, 219–220
microkernels, 453
miscompression rate, 392
MPI. See Message Passing Interface (MPI)
MPI applications, 432
MPI communication, 116
multicore architectures, 9, 101
multicore clusters, 432
multicore nodes, 431
multiobjective evolutionary algorithms, 303
multiobjective optimization, 302
Multiple Instruction Multiple Data, 6
Multiple Instruction Single Data, 6
multiprocessors, 5
multiprogramming, 5
multithreaded applications, 366
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multithreading, 8
mutation operator, 304
mutual exclusion, 60, 81

N
Nanos++, 109
nested transaction, 91
NUMA, 355

O
object-orientation, 185
off-chip communication, 407
offline profiling, 211
offload function, 418
offloading, 253
off-the-shelf components, 408
OmpSs programming model, 46, 102
on-chip memory, 391
opacity, 86
OpenCL, 47, 129
OpenCL/CUDA, 102
OpenMP, 37, 102, 212, 230
OPL, 46
optimistic concurrency control, 83
optimizations, 36

P
parallel bug patterns, 325
parallel design patterns, 191, 265
parallel implementation, 344
parallelism, 3
parallel performance, 343
parallel statements, 189
partitioned scheduling, 463
performance, 32
performance aware, 249
performance bottlenecks, 96
performance metrics, 432, 467
performance optimization, 344
performance portability, 243
performance predictions, 243
pessimistic concurrency control, 83
PetaBricks, 246
pipeline parallelism, 186
pipelining, 4, 124
polymorphism, 177
population, 305
portability, 32, 121
POSIX, 293, 467

power wall, 10
predictability, 367
prefetching, 4
priority queue, 67
productivity, 32
programmability, 143
programmability gap, 32
programming models, 6, 32

Q
queue, 66

R
read sharing, 171
read-write ratio, 466
real-time applications, 467
real-time scheduling, 463, 465
Reduce, 139
reducers, 413
Reduction, 123
region tree, 113
regression analysis, 381
repeatability, 367
resource aware, 249
resource configurations, 415
review techniques, 324
runtime system, 102

S
scalability, 228, 363, 367, 432
scalability tests, 366
scalar processor, 4
scheduling, 36, 52
semantics, 84
sensitivity analysis, 395
sequential implementation, 344
Sequoia, 45
serializability, 85
set, 68
shared cache, 431
shared memory, 8, 303
shared-memory communication, 466
shared-memory locking, 466
shared-memory multicore processor, 343
shared memory multiprocessor, 6
shared-memory paradigm, 466
shared-memory parallel programming,

343
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shared-memory programming, 231
Simics, 393
single global lock, 85
Single Instruction Single Data, 5
single-system image, 455
skeletal approach, 265
skeleton, 104
skeleton programming, 122
skip list, 68
SLICES, 161
socket, 348
software accelerators, 266
software pipelining, 222
software transactional memory, 81
SP@CE, 44
SpecFP2000, 393
speculative computation, 209
speculative parallelization, 206
speculative thread, 207
speedup, 310, 381, 432, 435
splitting, 191
SPMD applications, 433
stack, 65
STAPL, 246
Star Superscalar, 232
state separation, 208
stream graph, 186
StreamIt, 144, 201
stream parallelism, 263
stream programming, 143, 185
superscalar processor, 4
symmetric multiprocessors, 7
synchronization, 60, 61, 114, 185, 339, 344,

350, 465
synchronization APIs, 358
synchronization overheads, 358
synchronization primitives, 353
synchronous data flow, 143
system performance, 364

T
task dependency graph, 113
task farm, 124
task graph, 116

task parallelism, 186
test environment, 378
testing, 323
thread-based programming, 229
Threading Building Blocks, 138
thread-level parallelism, 205
threads, 37, 345
throughput, 380, 465
timing requirements, 465
trace, 106
transaction, 166
transactional abort, 82
transactional boosting, 177
transactional commit, 82
transactional isolation, 87
transactional memory, 119, 165
transactional polymorphism, 178
transaction models, 177
transaction nesting, 169
transformation, 153
tree, 69
try-to-eat procedure, 167
tuning, 185
two-phase locking, 171

U
unified runtime architecture, 119
unit of transfer, 390

V
video encoding, 281

W
waiting mechanism, 351
WebLogic, 363
work block, 189
work descriptors, 112
worksharings, 106
work unit, 418
write-back policy, 115

X
XJava, 187
XtreemOS, 460
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