
Lecture Notes in Computer Science 4587
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Richard Cooper Jessie Kennedy (Eds.)

Data Management

Data, Data Everywhere

24th British National Conference on Databases,
BNCOD 24
Glasgow, UK, July 3-5, 2007
Proceedings

13

Volume Editors

Richard Cooper
University of Glasgow
Dept. of Computing Science
17 Lilybank Gardens, Glasgow G12 8QQ, UK
E-mail: rich@dcs.gla.ac.uk

Jessie Kennedy
Napier University
School of Computing
10 Colinton Road, Edinburgh, EH10 5DT, UK
E-mail: j.kennedy@napier.ac.uk

Library of Congress Control Number: 2007929676

CR Subject Classification (1998): H.2, H.3, H.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl.
Internet/Web and HCI

ISSN 0302-9743
ISBN-10 3-540-73389-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73389-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12085071 06/3180 5 4 3 2 1 0

Preface

BNCOD has, for the past 27 years, provided a forum for researchers world-wide
to gather to discuss the topical issues in database research. As the research chal-
lenges have evolved, so BNCOD has changed its topics of interest accordingly,
now covering data management more widely. In doing so, it has evolved from a
local conference mostly attended by British researchers to a truly international
conference that happens to be held in Britain. This year, for instance, signifi-
cantly less than half of the presentations are from UK or Irish authors, other
contributions coming from continental Europe, Asia and the USA.

Currently, one of the most pressing challenges is to find ways of evolving
database technology to cope with its new role in underpinning the massively
distributed and heterogeneous applications built on top of the Internet. This
has affected both the ways in which data has been accessed and the ways in
which it is represented, with XML data management becoming an important
issue and, as such, heavily represented at this conference. It has also brought
back issues of performance that might have been considered largely solved by
the improvements in hardware, since data now has to be managed on devices of
low power and small memory as well as on standard client and powerful server
machines.

We therefore invited papers on all aspects of data management, particularly
related to how data is used in the ubiquitous environment of the modern Internet
by complex distributed and scientific applications. Of the 56 submissions from 14
countries we selected 15 full papers, 3 short papers and 7 posters for presentation,
all of which appear in this volume along with 2 invited papers.

In recent years, BNCOD has been expanded to include workshops held be-
fore the main conference. This year saw the fifth running of the workshop on
Teaching Learning and Assessment of Databases (TLAD). This workshop has
attracted authors interested in novel ways of teaching and assessing the subject.
We also saw the first BNCOD workshop on the Web and Information Manage-
ment (WEBIM). As this topic was in the same area as the main conference, it
was interesting to see that the bulk of the papers also concentrated on XML re-
trieval and query processing, but also included papers on Web application design
and Web site usage.

We were also very fortunate in attracting two internationally renowned re-
searchers in the area of distributed data management. Stefano Ceri is a full
professor of Database Systems at the Dipartimento di Elettronica e Informazione,
Politecnico di Milano and was a visiting professor at the Computer Science De-
partment of Stanford University between 1983 and 1990. He is chairman of Lau-
reaOnLIne, a fully online curriculum in Computer Engineering, and is a member
of the Executive board of Alta Scuola Politecnica.

VI Preface

He is responsible for severalEU-fundedprojects at thePolitecnico diMilano, in-
cluding W3I3: “Web-Based Intelligent Information Infrastructures” (1998-2000),
WebSI: “Data Centric Web Services Integrator” (2002-2004), Cooper: “Coopera-
tive Open Environment for ProjectCentered Learning” (2005-2007)and ProLearn
“Network of Excellence in Professional Learning” (2005-2008). In 2006 he won an
IBM Faculty Award and led a joint team of scholars who won the Semantic Web
Challenge.

He was Associate Editor of ACM-Transactions on Database Systems and
IEEE-Transactions on Software Engineering, and he is currently an associated
editor of several international journals. He is co-editor-in-chief of the book series
“Data Centric Systems and Applications” (Springer-Verlag).

He began his research career in the area of distributed databases and his
work not only resulted in a large number of influential research papers, but also
in the standard textbook in the area. He then proceeded to carry out extensive
research in deductive and active rule-based databases. In looking to enhance the
programming interfaces to such systems, he incorporated object orientation in
the way in which such databases could be designed and programmed against. He
also evolved methods of designing databases and produced a standard textbook
on Database Design co-authored with Carlo Battini and Shamkant Navathe.
Work followed on data mining and querying systems for XML.

All of this led, seemingly inevitably, to work on design methodologies for Web
applications, since such applications are distributed, involve object oriented pro-
gramming and XML. His main research vehicle, Web ML (US Patent 6,591,271,
July 2003), has become the de facto standard for disciplined conceptual Web
application design. The commercialisation of WebML was achieved by the Po-
litecnico di Milano start-up company, Web Models, of which he was co-founder.
The product WebRatio is the outcome of the work. Stefano’s talk described
extensions of WebML.

Norman Paton is a professor in the School of Computer Science at the
University of Manchester. Previously he was a lecturer at Heriot-Watt University
and a research assistant at Aberdeen University, from which he graduated with a
BSc in 1986 and a PhD in 1989. He is co-leader of the Information Management
Group in Manchester and co-chair of the Global Grid Forum Database Access
and Integration Services Working Group.

His research interests initially centred on styles of programmatic interface to
databases, initially concerning a functional approach and then merging deductive
and object-oriented mechanisms in the research prototype, ROCK & ROLL. He
moved on to work on active databases and spatio-temporal databases, producing
the research prototype Tripod. He also worked on attempts to bring discipline
to the design of user interfaces to database systems.

Much of his work is based on managing biological and scientific informa-
tion, a theme that has run through his work since his PhD. He has produced a
considerable body of work in the area of Genome Data Management, including
the projects: CADRE: Central Aspergillus Data Repository; COGEME: Consor-
tium for the Functional Genomics of Microbial Eukaryotes; e-Fungi: Comparative

Preface VII

Functional Genomics in the fungi; GIMS: Genome Information Management Sys-
tem; and MCISB: Manchester Centre for Integrated Systems Biology.

He is heavily involved in the UK e-Science initiative to provide grid support
to scientists and co-ordinates the E-Science North West Centre. His research
projects in this area include: myGrid: Supporting the e-Scientist; vOGSA-DAI:
Database Access and Integration Services for the Grid; OGSA-DQP: Service-
Based Distributed Query Processing on the Grid; and DIAS-MC: Design, Im-
plementation and Adaptation of Sensor Nets.

Much of the work described above was first presented at previous BNCOD
conferences, and we were delighted to invite him back to give a keynote presen-
tation this year. The talk concentrated on the need to manage data in a more
efficient way since it may now be used by a wide variety of applications in a wide
variety of contexts. Careful and costly design and redesign methodologies may
not be sustainable across so many uses, and so a degree of automation in the
processes of data management may be required. Norman described some of the
autonomic processes available.

The rest of the conference was organised into six paper presentation sessions
and a poster session. Three of the sessions centred around the use of XML,
which is unsurprising considering the way in which the W3C has made XML
the central mechanism for describing internet data making it virtually a layer
in its own right. The other sessions concerned database applications, clustering
and security, and data mining and extraction.

The first session concerned a variety of database applications. Ela Hunt pre-
sented a new facet of her work in using databases to accelerate searching biologi-
cal data, in this case searching for short peptide strings in long protein sequences.
Hao Fan’s paper described techniques for finding derivations of integrated data
from a collection of repositories. Loh et al. describe techniques for speeding up
the recognition of Asian characters, while Jung and Cho describe a Web service
for storing and analysing biochemical pathway data.

Session two, the first XML session, concentrated on searching XML doc-
uments. He, Figeras and Levine described a new technique for indexing and
searching XML documents based on concise summaries of the structure and con-
tent by extending XPATH with full-text search. Kim, Kim and Park discussed
an XML filtering mechanism to search streamed XML data, while Taha and
Elmasri described OO programming techniques for answering loosely structured
XML queries.

The third session followed with more papers on XML querying. Böttcher and
Steinmetz discussed techniques for evaluating XPATH queries on XML data
streams, while Archana et al. described how to use interval encoding and meta-
data to guide twig query evaluation. Boehme and Rahm presented a new ap-
proach for accelerating the execution of XPATH expressions using parameterised
materialised views.

Session four, the final XML session, was more general and contained a paper
by Roantree et al. describing an XML view mechanism, followed by Wang et al.
discussing order semantics when translating XQuery expressions into SQL.

VIII Preface

The poster session included posters on a transport network GIS by Lohfink
et al.; a neural network agent for filtering Web pages (Adan-Coello et al.); a
healthcare management system from Skilton et al.; and a mechanism for esti-
mating XML query result size suitable for small bandwidth devices (Böttcher
et al.). Other posters described: a partitioning technique to support efficient
OLAP (Shin et al.); a mining technique to find substructures in a molecular
database (Li and Wang); and a technique for querying XML streams (Lee, Kim
and Kang).

The fifth paper session, entitled Clustering and Security, started with a paper
describing the use of clustering for knowledge discovery from Zhang et al. This
was followed by the paper of Loukides and Shao, which described a clustering
algorithm used to group data as a precursor to using k-anonymisation to add
security. The final paper in the session from Zhu and Lu presented a fine grained
access control mechanism that extends SQL to describe security policies.

The final session centred on data mining and information extraction. It
started with a paper by Cooper and Manson extending previous work on ex-
tracting data from syntactically unsound short messages to cover the extraction
of temporal information. The second paper of this session discussed the mining
of fault tolerant frequent patterns from databases (Bashir and Baig) and the
final paper from Le-Khac et al. discussed data mining from a distributed data
set using local clustering as a start point.

The contents of this volume indicate that there is no sign of research chal-
lenges to the database community running out. Rather new areas open up as
we develop new ways in which we want to use computers to exploit the wealth
of information around us. Next year’s BNCOD will be the 25th and we look
forward to yet more exciting work to help us celebrate our silver jubilee.

Acknowledgements

We would like to thank Robert Kukla for help with the conference submission
system, and the Glasgow University Conference and Visitor Services for help with
registration. The Programme Committee were very prompt with the reviews
for which we are also thankful. We would also like to thank John Wilson for
organising the workshops and Karen Renaud and Ann Nosseir for assistance
and support of various kinds.

April 2007 Jessie Kennedy
Richard Cooper

BNCOD 24

Conference Committees

Steering Committee

Alex Gray (Chair) University of Wales, Cardiff
Richard Cooper University of Glasgow
Barry Eaglestone University of Sheffield
Jun Hong Queen’s University Belfast
Anne James Coventry University
Keith Jeffery CLRC Rutherford Appleton
Lachlan McKinnon University of Abertay Dundee
David Nelson University of Sunderland
Alexandra Poulovassilis Birkbeck College, University of London

Organising Committee

Conference Chair Richard Cooper (University of Glasgow)
Programme Chair Jessie Kennedy (Napier University)
Workshops John Wilson (University of Strathclyde)
Committee Karen Renaud (University of Glasgow)

Ann Nosseir (University of Strathclyde)

Programme Committee

David Bell Queen’s University Belfast
Albert Berger Heriot-Watt University
Richard Connor University of Strathclyde
Richard Cooper University of Glasgow
Barry Eaglestone University of Sheffield
Suzanne Embury University of Manchester
Alvaro Fernandes University of Manchester
Mary Garvey Wolverhampton University
Alex Gray University of Wales, Cardiff
Jun Hong Queen’s University Belfast
Mike Jackson University of Central England
Anne James Coventry University
Keith Jeffery CLRC Rutherford Appleton
Kevin Lu Brunel University
Sally McClean University of Ulster
Lachlan McKinnon University of Abertay Dundee
Nigel Martin Birkbeck College, University of London
Ken Moody University of Cambridge

X Organization

Fionn Murtagh Royal Holloway, University of London
David Nelson University of Sunderland
Werner Nutt Free University of Bozen-Bolzano
Norman Paton University of Manchester
Alexandra Poulovassilis Birkbeck College, University of London
Karen Renaud University of Glasgow
Mark Roantree Dublin City University
Alan Sexton University of Birmingham
Paul Watson Newcastle University
John Wilson University of Strathclyde

Table of Contents

Invited Papers

Design Abstractions for Innovative Web Applications 1
Stefano Ceri

Automation Everywhere: Autonomics and Data Management 3
Norman W. Paton

Data Applications

Exhaustive Peptide Searching Using Relations . 13
Ela Hunt

Data Lineage Tracing in Data Warehousing Environments 25
Hao Fan

Fast Recognition of Asian Characters Based on Database
Methodologies . 37

Woong-Kee Loh, Young-Ho Park, and Yong-Ik Yoon

SPDBSW: A Service Prototype of SPDBS on the Web 49
Tae-Sung Jung and Wan-Sup Cho

Searching XML Documents

Indexing and Searching XML Documents Based on Content and
Structure Synopses . 58

Weimin He, Leonidas Fegaras, and David Levine

PosFilter: An Efficient Filtering Technique of XML Documents Based
on Postfix Sharing . 70

Jaehoon Kim, Youngsoo Kim, and Seog Park

OOXSearch: A Search Engine for Answering Loosely Structured XML
Queries Using OO Programming . 82

Kamal Taha and Ramez Elmasri

Querying XML Documents

Evaluating XPath Queries on XML Data Streams . 101
Stefan Böttcher and Rita Steinmetz

XII Table of Contents

PSMQ: Path Based Storage and Metadata Guided Twig Query
Evaluation . 114

M. Archana, M. Lakshmi Narayana, and P. Sreenivasa Kumar

Parameterized XPath Views . 125
Timo Böhme and Erhard Rahm

XML Transformation

Specifying and Optimising XML Views . 138
Mark Roantree, Colm Noonan, and John Murphy

Isolating Order Semantics in Order-Sensitive XQuery-to-SQL
Translation . 147

Song Wang, Ling Wang, and Elke A. Rundensteiner

Poster Papers

Representation and Management of Evolving Features in OS
MasterMap ITN Data . 160

Alex Lohfink, Tom Carnduff, Nathan Thomas, and Mark Ware

Hopfilter: An Agent for Filtering Web Pages Based on the Hopfield
Artificial Neural Network Model . 164

Juan Manuel Adán-Coello, Carlos Miguel Tobar,
Ricardo Lúıs de Freitas, and Armando Marin

A New Approach to Connecting Information Systems in Healthcare 168
Alysia Skilton, W.A. Gray, Omnia Allam, and Dave Morrey

XML Query Result Size Estimation for Small Bandwidth Devices 172
Stefan Böttcher, Sebastian Obermeier, and Thomas Wycisk

An Efficient Sheet Partition Technique for Very Large Relational Tables
in OLAP . 176

Sung-Hyun Shin, Hun-Young Choi, Jinho Kim,
Yang-Sae Moon, and Sang-Wook Kim

A Method of Improving the Efficiency of Mining Sub-structures in
Molecular Structure Databases . 180

Haibo Li, Yuanzhen Wang, and Kevin Lü

XFLab: A Technique of Query Processing over XML Fragment
Stream . 185

Sangwook Lee, Jin Kim, and Hyunchul Kang

Table of Contents XIII

Clustering and Security

Knowledge Discovery from Semantically Heterogeneous Aggregate
Databases Using Model-Based Clustering . 190

Shuai Zhang, Sally McClean, and Bryan Scotney

Speeding Up Clustering-Based k-Anonymisation Algorithms with
Pre-partitioning . 203

Grigorios Loukides and Jianhua Shao

Fine-Grained Access Control for Database Management Systems 215
Hong Zhu and Kevin Lü

Data Mining and Extraction

Extracting Temporal Information from Short Messages 224
Richard Cooper and Sinclair Manson

Max-FTP: Mining Maximal Fault-Tolerant Frequent Patterns from
Databases . 235

Shariq Bashir and Abdul Rauf Baig

A New Approach for Distributed Density Based Clustering on Grid
Platform . 247

Nhien-An Le-Khac, Lamine M. Aouad, and M-Tahar Kechadi

Author Index . 259

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 1–2, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Design Abstractions for Innovative Web Applications

Stefano Ceri

Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza L. Da Vinci, 32. I20133 Milano, Italy

Stefano.ceri@polimi.it

Extended Abstract

Web Modelling Language (WebML) [1-2] was defined, about 8 years ago, as a
conceptual model for data-intensive Web applications. Early deployment technologies
were very unstable and immature; as a reaction, WebML was thought as a high level,
implementation-independent conceptual model, and the associated design support
environment, called WebRatio [7], has always been platform-independent, so as to
adapt to frequent technological changes. WebML is based upon orthogonal separation
of concerns: content, interface logics, and presentation logics are defined as separate
components. The main innovation in WebML comes from the interface logics, that
enables the computation of Web pages made up of logical components (units)
interconnected by logical links (i.e., not only the units but also the links have a formal
semantics); the computation is associated with powerful defaults so as to associate to
simple diagrams all the required semantics for a full deployment, through code
generators.

While the Web has gone through waves of innovation, new application sectors
have developed, and revolutionary concepts – such as enabling the interaction of
software artefacts rather than only humans – are opening up. While the foundations of
the WebML model and method are still the same, the pragmatics of its interpretation
and use has dramatically changed through the last years [3-6]. A retrospective
consideration of our work shows that we have addressed every new challenge by
using a common approach, which indeed has become evident to us during the course
of time, and now is well understood and consolidated. For every new research
directions, we had to address four different kinds of extensions, respectively
addressing the development process, the content model, the hypertext meta-model,
and the tool framework.

• Extensions of the development process capture the new steps of the design that
are needed to address the new functionalities, providing as well the
methodological guidelines and best practices for helping designers.

• Extensions of the content model capture state information associated with
providing the new functionalities, in the format of standard model, e.g. a
collection of entities and relationship that is common to all applications; this
standard model is intertwined with the application model, so as to enable a
unified use of all available content .

• Extension of the hypertext meta-model capture the new abstractions that are
required for addressing the new functionalities within the design of WebML

2 S. Ceri

specifications, through new kinds of units and links which constitute a
functionality-specific “library”, which adds to the “previous” ones.

• Extensions of the tool framework introduce new tools in order to extend those
modelling capability falling outside of standard WebRatio components (content,
interface logics, presentation logics), or to empower users with new interfaces
and wizards to express the semantics of new units and links in terms of existing
ones, or to provide direct execution support for new units and links (e.g. invoking
a web service).

In this talk, I first illustrate the common approach to innovation, and then show
such approach at work in two contexts. One of them, dealing with “Service-Oriented
Architectures” (SOA), has reached a mature state; the other one, “Semantic Web
Services” (SWS), is at its infancy, but promises to deliver very interesting results in
the forthcoming years.

Acknowledgement

I wish to recall and thank all the people who work in the WebML framework: the
WebML group at Politecnico di Milano (and particularly Piero Fraternali), the
WebRatio staff (and particularly Aldo Bongio), the CEFRIEL Semantic Web
Activities group (and particularly Emanuele della Valle). Work on SOA was
performed together with Piero Fraternali, Ioana Manolescu, Marco Brambilla, and
Sara Comai; work on SWS was performed together with Marco Brambilla, Emanuele
della Valle, Federico Facca, Christina Tziviskou, Dario Cerizza, Irene Celino and
Andrea Turati.

References

[1] Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. WWW9 / Computer Networks 33 (2000)

[2] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, San Francisco (2002)

[3] Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-Driven Design
and Deployment of Service-Enabled Web Applications. ACM TOIT, 5(3) (2005)

[4] Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web
Applications. ACM TOSEM, 15(4) (2006)

[5] Ceri, S., Daniel, F., Matera, M., Facca, F.: Model-driven Development of Context-Aware
Web Applications, ACM TOIT, 7(1) (2007)

[6] Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.: A Software
Engineering Approach to Design and Development of Semantic Web Service
Applications. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

[7] WebRatio: http://www.webratio.com/

Automation Everywhere: Autonomics and Data
Management

Norman W. Paton

School of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, UK

npaton@manchester.ac.uk

Abstract. Traditionally, database management systems (DBMSs) have
been associated with high-cost, high-quality functionalities. That is, pow-
erful capabilities are provided, but only in response to careful design,
procurement, deployment and administration. This has been very suc-
cessful in many contexts, but in an environment in which data is available
in increasing quantities under the management of a growing collection
of applications, and where effective use of available data often provides
a competitive edge, there is a requirement for various of the benefits of
a comprehensive data management infrastructure to be made available
with rather fewer of the costs. If this requirement is to be met, automa-
tion will need to be deployed much more widely and systematically in
data management platforms. This paper reviews recent results on au-
tonomic data management, makes a case that current practice presents
significant opportunities for further development, and argues that com-
prehensive support for automation should be central to future data man-
agement infrastructures.

1 Introduction

Database management systems provide an impressive list of capabilities; they
can answer complex declarative questions over large data sets, exhibit well de-
fined behaviours over mixed workloads of queries and updates, present a con-
sistent interface in the context of many changes to how or where data is being
stored, etc. However, the development, deployment and maintenance of database
applications remains a lengthy and complicated process. As a result, there are
ongoing activities, in particular within the database vendors, to improve sup-
port for, or even to automate, tasks that have traditionally been carried out by
skilled database administrators (e.g. [1,10,36]). In addition, as query processors
are increasingly used in less controlled environments, there has been a growing
interest in adaptive query processing, whereby queries can be revised during
their evaluation to compensate for inappropriate assumptions about the data
(e.g. [3,26]) or to react to changes in the environment (e.g. [28]).

Several of these activities can be related to a broader activity in autonomic
computing, which seeks to reduce the total cost of ownership of complex com-
puting systems. Autonomic systems are often characterised by whether or not

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 3–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

4 N.W. Paton

they support self-configuration, self-optimization, self-healing or self-protection
[20]. However, although several techniques recur in autonomic computing (e.g.
[16,34]), and there are even preliminary proposals for toolkits that can be ap-
plied to multiple problems (e.g. [17]), it cannot yet be said that there are well
established methodologies for the development of autonomic systems. Relating
this work to the state-of-the-art in databases, several basic techniques have been
adopted in both areas, such as the use of control theory where it is applicable
[35], but many proposals for autonomic behaviours seem to be developed largely
in isolation, and to address specific problems rather than to make automation a
central design goal in the development of complex infrastructures.

This is somewhat in contrast with the software architectures that underpin
high-profile internet applications, such as Google or Yahoo. In such contexts,
highly scaleable architectures have been designed that are less often associated
with challenging systems management issues. Such scaleability is often achieved
through the provision of judiciously selected functionalities, but raises the ques-
tion as to whether there are interesting middle grounds between current data
management and information retrieval systems that provide some of the benefits
of both without incurring the design and management costs of classical database
applications. This paper reviews current work on autonomic data management
in Section 2, where it will be shown that there are a wide range of proposals,
but that these can rarely be felt to integrate seamlessly to provide intrinsically
adaptive data management infrastructures. Section 3 highlights several recurring
limitations of current activities in autonomic data management, and makes some
suggestions as to how they might be addressed. More speculatively, Section 4
suggests that automation should be a central tenant in the design of data man-
agement infrastructures, and that where this is the case, new areas may open
up for the application of database technologies.

2 Examples: Automation in Data Management

Autonomic computing is motivated by the observation that computing systems
are increasingly capable, pervasive and distributed, and that the cost of manag-
ing systems cannot be allowed to grow in line with their number and complexity.
The same motivation underlies the desire to increase the role of automation in
data intensive infrastructures, both to reduce management costs and to make
performance more dependable in uncertain environments.

Much work in autonomic computing involves a control loop, in which feedback
obtained by monitoring a system or the environment in which it is deployed leads
to focused changes in the behaviour of the system. Such a model can be applied in
general terms to a wide range of data management activities, and many aspects
of data management are associated with some measure of autonomic behaviour.
The following are examples of work to date:

Database Administration: The responsibilities of a database administrator
include the classical self-management goals of autonomic computing men-
tioned in Section 1, namely configuration, optimization, healing and protec-

Automation Everywhere: Autonomics and Data Management 5

tion [11]. For self-configuration, a system may determine dynamically where
to construct indexes, how to allocate memory to different functions, or which
views to materialize (e.g. [36]). For self-optimization, a system may dynam-
ically update the parameters used by cost functions, or automatically re-
organise indexes to reduce fragmentation (e.g. [23,25]). For self-protection,
a system may dynamically limit the resources provided to a long-running
query to reduce the impact of any one request on others. Overall, there is
a substantial body of work on automating administrative tasks in database
systems, and the major commercial products all provide tools to support
and to automate various aspects of database administration.

Query Evaluation: Classically, query processing involves two distinct phases,
namely optimization and evaluation. In optimization, alternative query plans
are explored using a range of equivalence rules, and ranked on the basis of
a cost model so that a preferred plan can be identified. In evaluation, the
preferred plan is executed to yield the results of the query. However, this
two-phase approach may yield significantly sub-optimal plans, for example
if the cost model is based on partial or out-of-date statistics, or if the data is
skewed in a way that is not taken into account by the optimizer. In adaptive
query processing, decisions made by the query optimizer at compile time
may be revised in the light of feedback obtained at query runtime [2,13]. For
example, specific proposals have been made that reoptimize queries, reusing
at least some of the results produced to date, when selectivity estimates are
shown to be inaccurate (e.g. [18,33,3]), or to rebalance load in parallel query
evaluation (e.g. [14,30,31]). Overall, there is a substantial body of work on
adaptive query processing, but at present few of the techniques have been
incorporated into commercial database systems.

Data Integration: Most emphasis within the database community on data in-
tegration has sought to support the description of precise mappings between
independently developed databases. Such mappings may be represented in
many different ways (e.g. [8,27,32]), but are typically constructed and main-
tained manually. Both activities have proved challenging in practice, and at
least partly as a result, database centred data integration products are not as
ubiquitous as might have been anticipated. Various researchers have sought
to develop schemes that automate the identification of mappings between
models (e.g. [29]) or for change detection (e.g. [22]), in part accepting that
the resulting mappings may be associated with different levels of confidence,
in turn opening up the possibility that database integration technologies are
used to provide lower cost and lower quality data integration, as in the vi-
sion for dataspaces [15]. However, there is wider interest in and benefit to be
gained from inferring metadata in a distributed setting – for example, ser-
vice descriptions are inferred from workflows in [5] – and higher-level data
services such as discovery and integration often lean heavily on metadata,
for which some measure of automatic creation and maintenance could signif-
icantly increase uptake. However, while there is now a growing body of work
on automatic metadata capture, there has been less emphasis on incremental
maintenance and refinement, as required by truly autonomic infrastructures.

6 N.W. Paton

3 Limitations

Although, as argued in the previous section, work on automation in data manage-
ment is widespread, for the most part this work is quite fragmented. As a result,
automation per se is not a major theme in the database community (the call for
papers for VLDB in 2007 contains no mention of autonomic topics, although both
SIGMOD and ICDE mention database tuning as an area of interest). A conse-
quence is that there is little emphasis within the community on recurring pitfalls
or potentially generic solutions. This section identifies some limitations in the
state-of-the-art in the use of autonomic techniques in the database community.

Predictability: Autonomic behaviours involve intervention in the progress of
an activity. As such interventions commonly incur some cost, may block on-
going activities while changes are made, and may discard partially completed
tasks when changing the state of a system, there is certainly the potential for
more harm to be done than good. For example, [3] describes circumstances
in which an adaptive query processor may thrash by repeatedly identifying
alternative strategies during the evaluation of a query, sometimes resorting
to a previously discarded plan. An earlier proposal contains a threshold on
the number of adaptations it may carry out with a view to limiting the con-
sequences of repeated adaptations in an uncertain setting [26]. Both [3] and
[26] make particularly well motivated decisions as to when to adapt, and
thus may be felt to be less prone to unproductive adaptations than many
proposals. A comparison of several adaptive load balancing strategies [28]
revealed circumstances in which all of the adaptive strategies did more harm

0 1 2 3 4 5 6
0

5

10

15

20

25

30

Level of Constant Imbalance

T
im

e
(s

)

No Adpt
Adapt−1
Adapt−2
Adapt−3
Adapt−4
Adapt−5

(a)

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

Level of Periodic Imbalance

T
im

e
(s

)

No Adpt
Adapt−1
Adapt−2
Adapt−3
Adapt−4
Adapt−5

(b)

Fig. 1. Comparisons of the response times of several adaptive load balancing strategies
for the same query in environments with different characteristics. (a) The query is
running on three nodes, one of which has a high load for the duration of the run of
the query, the level of which is varied in the experiment. (b) The query is running on
three nodes, one of is subject to load spikes of duration 1s every 2s, the level of which
is varied in the experiment. Most of the adaptive strategies improve significantly on
the static strategy (No Adapt) in (a), but struggle to respond successfully to the much
less stable environment in (b).

Automation Everywhere: Autonomics and Data Management 7

than good, as illustrated in Figure 1, although all the techniques compared
sometimes improved on static oprimization. Overall, however, the design,
control and evaluation of adaptive techniques often seems to be as much
an art as a science; we note, for example, that the developers of several of
the proposals compared in [28] did not have a good understanding of the
circumstances in which their techniques would perform better or worse than
others or the non-adaptive case.

Methodology: Mature development activities tend to apply well defined
methodologies that deliver predictable results. In autonomic systems de-
velopment, a range of generic techniques have been explored, although their
application in data management has been patchy; it is not always obvious
which kinds of problem are most readily addressed by which techniques. Au-
tonomic problems can often be characterised by a functional decomposition
in which monitoring, analysis, planning and execution steps are identified,
and proposals exist for toolkits that implement such components [17]. Such
a framework, however, leaves open how the different components may be
implemented, and in particular how decisions are made as to what changes
are made and when. Applications of control theory to software systems are
increasingly widespread [16], in which a model is developed of the behaviour
of a system in response to changes in specific parameters. The resulting
feedback control loops have been widely deployed for database tuning [35],
but the changes made to an executing query in adaptive query processing
are typically more radical than can be represented by changes to parame-
ter values (e.g. many adaptive query processing strategies reoptimize queries
at runtime, and thus the relationship between the state of the system be-
fore and after an adaptation is complex). Competitive algorithms [19], in
contrast with control loops, focus principally on when to adapt, by trading
off the risks of premature adaptation with the consequences of maintain-
ing the status quo. However, although analyses have been developed that
guarantee worst case performance of some adaptive algorithms relative to
their static counterparts (this is where the word “competitive” comes from
in “competitive algorithm”), it is not yet clear that they can be applied to
typical adaptations proposed in data management. As such, significant work
remains to be done to understand how best techniques developed in other
domains can be applied to support adaptive data management systems.

Composability: Proposals for adaptive techniques in databases tend to ad-
dress individual problems. For example, when automating database admin-
istration, techniques have been developed that determine which indexes to
create or which views to materialise. However, such decisions tend to be
made in isolation, even though the overall performance of a system depends
on complex interplays between these individual decisions. For the examples
described, the need for views to be materialised may be affected by the pres-
ence of indexes, and vice versa. However, as such decisions tend to be made
on the basis of mathematical models of system behaviour, and the design of
the associated utility functions is problematic when multiple criteria must
be taken into account [21], it remains an unsolved problem how to combine

8 N.W. Paton

multiple autonomous components in a way that yields the desired overall be-
haviour [35]. Similarly, in adaptive query processing there may be ordering
dependencies between adaptations. For example, in a parallel database that
supports both partitioned and pipelined parallelism there may be adaptive
techniques that remove imbalance in partitioned parallelism and bottlenecks
in pipelined parallelism. However, a bottleneck may be able to be fixed by re-
moving imbalance, and there may be no point removing an imbalance if there
is a bottleneck elsewhere in the plan. As a result, the decision as to which
adaptation should be applied in a specific context is not one that can always
be made locally, even where specific problems with an evaluating query have
been identified. Much of the state-of-the-art in adaptive databases involves
the use of individual techniques in isolation, and few proposals have explored
decision making for multiple strategies.

Semantics: Adaptive techniques change the behaviour of executing systems. As
the executing systems are complex, and the changes made to their behaviour
may be non-trivial, it may be desirable to have certain guarantees as to
the behaviour of a technique. Such guarantees could, for example, place
bounds on the worst case performance that adaptation could lead to [19], or
demonstrate that the outcome of a request is sure to be unchanged by an
adaptation [12]. However, rather few proposals for adaptive techniques are
accompanied by formal characterisations of their semantics or behavioural
guarantees, and generic techniques for specifying and reasoning about such
systems seem not to be well established [4].

4 Opportunities

The limitations of adaptivity in database systems identified in Section 3 present
certain challenges to the research community. In terms of predictability, a better
understanding of benchmarking for adaptive systems and more comprehensive
comparative studies may identify requirements that can inform the development
of more effective development methods. In terms of methodology, the more sys-
tematic application of generic techniques, such as control loops or utility func-
tions, may lead to a clearer understanding as to which kinds of problems can be
supported by established and well founded techniques, and which stand to ben-
efit from novel adaptive infrastructures. In terms of composability, foundational
work is required to understand how to plan effectively in the context of multiple
adaptive strategies, which in turn might hope to benefit from more systematic
description of the semantics of adaptive behaviours. Such activities may in turn
may be able to be applied to improve existing database systems or to support
the development of new kinds of data management infrastructure:

Increasing the Manageability of Database Technologies: It is widely ac-
cepted that database technologies are labour intensive to administer, and
that a significant portion of the cost of ownership of a database system
is spent on administrators [23]. As discussed in Section 2, various aspects

Automation Everywhere: Autonomics and Data Management 9

of database administration are now able to be automated, or at least sup-
ported by tools that monitor the use being made of a database installation.
Some researchers have argued, however, that current commercial database
systems are too complex, and that there is merit in developing data man-
agement platforms from collections of components, which themselves may
be self-tuning [9]. Such components could include trimmed-down query pro-
cessing capabilities, or storage managers specialised for specific kinds of
data (e.g. video streaming). This proposal seems unlikely to be retrofitted
to existing large-scale database platforms, but seems consistent with the
recognised need for light-weight database systems, such as Apache Derby
(http://db.apache.org/derby/), particularly for embedded use, or in support
of distributed applications. To date, there has been little work on ensuring
that lighter-weight database platforms are self-tuning; identifying the key
features for which self-tuning is of benefit for such platforms, along with
the provision of tools to support integration of self-tuning techniques across
those features, seems like an important but viable activity.

Extending the Reach of Database Technologies: Although database
technologies are dominant in many business sectors, web platforms that sup-
port data with different levels of structure largely ignore database models
for description or languages for querying. Examples of structured data in the
web include data behind web pages in the deep web, annotations in resources
such as Flickr (http://www.flickr.com/), and online storage platforms such
as Google Base (http://base.google.com/). The vision of dataspaces [15]
seeks to bring database style querying to diverse data resources, whether
or not they are managed using database management systems. Subsequent
early proposals vary significantly in their context and emphasis, from inte-
grating structured and unstructured data on a web scale [24], through the
provision of enterprise level data access [6], to the management of an individ-
ual’s data [7]. However, all such proposals share the need for automation in
all the areas identified in Section 2, to enable low-cost data resource admin-
istration, efficient querying in unpredictable settings, and integration of data
from potentially numerous sources. Typically, dataspaces are proposed for
use in settings where certain sacrifices can be accommodated in the quality
of query answers, as long as the cost of maintaining the data management
infrastructure that provides those answers remains low.

5 Conclusions

Database management systems provide comprehensive facilities for creating, us-
ing and evolving potentially huge collections of structured data. As new require-
ments have been reflected in database systems over many years, the principal
database management systems have become increasingly complex, and thus ex-
pensive to manage effectively. As a result, the requirement for greater use of
automation to support data management tasks has become increasingly evident.
In the main, automation has been seen as something of an afterthought in most

10 N.W. Paton

database systems, but the need to reduce the cost of deploying and maintaining
data management infrastructures for data that is everywhere will necessitate a
more central role for automation in future.

This paper has reviewed current practice in autonomic data management;
the situation is that there has been widespread but largely uncoordinated ex-
ploration of the use of adaptive techniques for database administration, query
evaluation, and data integration. Although individual proposals have been shown
to be effective in specific contexts, the development of many adaptive techniques
seems somewhat ad hoc; few proposals provide guarantees as to their worst case
behaviour, and composition of different techniques into a comprehensively adap-
tive infrastructure remains largely unexplored. These characteristics reflect the
fact that autonomic data management is rarely seen as a discipline in its own
right, and to date much less attention has been given to the development of
effective methodologies or to the understanding of good practice than to the de-
velopment of solutions to specific problems. However, future data management
platforms are likely to need to provide ever more robust behaviour in increas-
ingly unpredictable settings, and thus automation is likely to be more central to
their design than in current platforms. If database technologies are to be able
to contribute effectively to the management and querying of ubiquitous data,
automation will need to be ubiquitous too.

Acknowledgement. Research on autonomic data management at Manchester is
supported by the Engineering and Physical Sciences Research Council, whose
support we are pleased to acknowledge.

References

1. Agrawal, S., Bruno, N., Chaudhuri, S., Narasayya, V.R.: Autoadmin: Self-tuning
database systems technology. IEEE Data Eng. Bull. 29(3), 7–15 (2006)

2. Babu, S., Bizarro, P.: Adaptive query processing in the looking glass. In: CIDR,
pp. 38–249 (2005)

3. Babu, S., Bizarro, P., DeWitt, D.: Proactive Re-Optimization. In: Proc. ACM
SIGMOD, pp. 107–118 (2005)

4. Barringer, H., Rydeheard, D.E.: Modelling evolvable systems: A temporal logic
view. In: We Will Show Them (1), pp. 195–228. College Publications (2005)

5. Belhajjame, K., Embury, S.M., Paton, N.W., Stevens, R., Goble, C.A.: Automatic
annotation of web services based on workflow definitions. In: International Seman-
tic Web Conference, pp. 116–129 (2006)

6. Bhattacharjee, B., Glider, J.S., Golding, R.A., Lohman, G.M., Markl, V., Pira-
hesh, H., Rao, J., Rees, R., Swart, G.: Impliance: A next generation information
management appliance. In: CIDR, pp. 351–362 (2007)

7. Blunschi, L., Dittrich, J.-P., Girard, O.R., Karakashian, S.K., Vaz Salles, M.A.:
A dataspace odyssey: The imemex personal dataspace management system. In:
CIDR, pp. 114–119 (2007)

8. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Information
integration: Conceptual modeling and reasoning support. In: Proc. of the 6th Int.
Conf. on Cooperative Information Systems (CoopIS’98), pp. 280–291 (1998)

Automation Everywhere: Autonomics and Data Management 11

9. Chaudhuri, S., Weikum, G.: Rethinking database system architecture: Towards a
self-tuning risc-style database system. In: VLDB, pp. 1–10 (2000)

10. Dageville, B., Dias, K.: Oracle’s self-tuning architecture and solutions. IEEE Data
Eng. Bull. 29(3) (2006)

11. Elnaffar, S., Powley, W., Benoit, D., Martin, P.: Today’s dbmss: Dow autonomic
are they? In: Proc. 14th DEXA Workshop, pp. 651–655. IEEE Press, New York
(2003)

12. Eurviriyanukul, K., Fernandes, A.A.A., Paton, N.W.: A foundation for the replace-
ment of pipelined physical join operators in adaptive query processing. In: EDBT
Workshops, pp. 589–600 (2006)

13. Gounaris, A., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.: Adaptive query
processing: A survey. In: Eaglestone, B., North, S.C., Poulovassilis, A. (eds.) Ad-
vances in Databases. LNCS, vol. 2405, pp. 11–25. Springer, Heidelberg (2002)

14. Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A.A.: Adapting
to Changing Resources in Grid Query Processing. In: Pierson, J.-M. (ed.) Data
Management in Grids. LNCS, vol. 3836, pp. 30–44. Springer, Heidelberg (2006)

15. Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of dataspace systems. In: PODS,
pp. 1–9 (2006)

16. Hellerstein, J.L., Tilbury, D.M., Diao, Y., Parekh, S.: Feedback Control of Com-
puting Systems. Wiley, Chichester (2004)

17. Jacob, B., Lanyon-Hogg, R., Nadgir, D.K., Yassin, A.F.: A Practical Guide to the
IBM Autonomic Computing Toolkit. IBM Redbooks (2004)

18. Kabra, N., DeWitt, D.J.: Efficient mid-query re-optimization of sub-optimal query
execution plans. In: SIGMOD Conference, pp. 106–117 (1998)

19. Karlin, A.R.: On the performance of competitive algorithms in practice. In: Fiat,
A. (ed.) Online Algorithms. LNCS, vol. 1442, pp. 373–384. Springer, Heidelberg
(1998)

20. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Com-
puter 36(1), 41–50 (2003)

21. Kephart, J.O., Das, R.: Achieving self-management via utility functions. IEEE
Internet Computing 11(1), 40–48 (2007)

22. Leonardi, E., Bhowmick, S.S.: Xandy: A scalable change detection technique for
ordered xml documents using relational databases. Data Knowl. Eng. 59(2), 476–
507 (2006)

23. Lightstone, S., Lohman, G.M., Zilio, D.C.: Toward autonomic computing with db2
universal database. SIGMOD Record 31(3), 55–61 (2002)

24. Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.:
Web-scale data integration: You can afford to pay as you go. In: CIDR, pp. 342–350
(2007)

25. Markl, V., Lohman, G.M., Raman, V.: Leo: An autonomic query optimizer for db2.
IBM Systems Journal, 42(1) (2003)

26. Markl, V., Raman, V., Simmen, D.E., Lohman, G.M., Pirahesh, H.: Robust query
processing through progressive optimization. In: Proc. ACM SIGMOD, pp. 659–
670 (2004)

27. McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transfor-
mation rules. In: Proc. ICDE, pp. 227–238 (2003)

28. Paton, N.W, Raman, V., Swart, G., Narang, I.: Autonomic Query Parallelization
using Non-dedicated Computers: An Evaluation of Adaptivity Options. In: Proc.
3rd Intl. Conference on Autonomic Computing, pp. 221–230. IEEE Press, New
York (2006)

12 N.W. Paton

29. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

30. Raman, V., Han, W., Narang, I.: Parallel querying with non-dedicated computers.
In: Proc. VLDB, pp. 61–72 (2005)

31. Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., Franklin, M.J.: Flux: An adap-
tive partitioning operator for continuous query systems. In: Proc. ICDE, pp. 353–
364. IEEE Press, New York (2003)

32. Ullman, J.D.: Information integration using logical views. In: Afrati, F.N., Kolaitis,
P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 19–40. Springer, Heidelberg (1996)

33. Urhan, T., Franklin, M.J., Amsaleg, L.: Cost based query scrambling for initial
delays. In: SIGMOD Conference, pp. 130–141 (1998)

34. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic
systems. In: Proc. ICAC, pp. 70–77. IEEE Press, New York (2004)

35. Weikum, G., Mönkeberg, A., Hasse, C., Zabback, P.: Self-tuning database tech-
nology and information services: from wishful thinking to viable engineering. In:
Proc. VLDB, pp. 20–31 (2002)

36. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M., Storm, A., Garcia-Arellano, C.,
Fadden, S.: Db2 design advisor: Integrated automatic physical database design. In:
Proc. VLDB, pp. 1087–1097 (2004)

Exhaustive Peptide Searching Using Relations

Ela Hunt

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
hunt@inf.ethz.ch

Abstract. We present a new robust solution to short peptide search-
ing, tested on a relational platform, with a set of biological queries. Our
algorithm is appropriate for large scale scientific data analysis, and has
been tested with 1.4 GB of amino-acids. Protein sequences are indexed
as short overlapping string windows, and stored in a relation. To find
approximate matches, we use a neighbourhood generation algorithm.
The words in the neighbourhood are then fetched and stored in a re-
lation. We measure execution time and compare the matches found to
those delivered by BLAST. We report some performance gains in exact
matching and searching within edit distance 1, and very significant qual-
ity improvements over heuristics, as we guarantee to deliver all relevant
matches.

1 Introduction

Biological sequence comparison involves searching large repositories of string
data for approximate matches to a string of interest. Strings use alphabets such
as DNA={A,C,G,T} or the protein alphabet of over 20 letters. Such searches are
now supported by database technologies [5,32] and are based on BLAST [1,2]
and not on indexing. These solutions use the heuristic method, BLAST, and
traverse the entire data set while searching for a string of interest. In relational
terms this might be seen as equivalent of a full table scan, and is slow, as the
complexity of searching is dominated by the size of the data set one searches
against. For a database of size n, it will be O(n) at least. An exhaustive search
using dynamic programming (DP) which builds a comparison matrix aligning
each query letter with each database letter, for a query of length m, has the
complexity of O(mn) [27,31], and is often impractical for that reason.

Since 1995 [7] we have experienced a dramatic increase in the amount of
available biological sequence data, and a simultaneous desire to perform new
forms of searching. This forces us to rethink the assumptions of such work. One
of the new directions is persistent sequence indexing [25,23,13,14]. Another comes
from new sequence analysis requirements involving micro array probe mapping
[8], miRNA mapping[29], and motif searches [6,30,35], which all involve short
query strings and very large databases, often larger than 1GB. Indexing can
reduce search times from linear in n, to, ideally, logarithmic, as an index tree
depth is a logarithm of data size.

This work explores three issues we encountered in the execution of searches
for short peptide strings (length 7) against the background of 1.4GB of protein

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 13–24, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 E. Hunt

sequences. The first issue of interest is search complexity reduction from linear
in n to logarithmic, achieved using indexing. The second issue is the need to
deliver all matches fulfilling a given definition, as BLAST only offers statistical
guarantees of quality, and is not exhaustive. The third is a simplification of the
search algorithms described by Myers [25] and Baeza-Yates and Navarro [3] who
partition a long query into short fragments and then assemble the result from
fragments. Here, short queries directly use the index, with no post-processing.

The contributions of this paper are as follows. We build a protein sequence
index in a commercial database. To our knowledge, this is the first report of
index-based large-scale sequence comparison using a relational platform. We
study the performance of approximate matching on a large repository of protein
sequences and a set of experimentally derived short peptides, and we report on
both time and quality comparison with BLAST.

Our findings are presented as follows. Section 2 motivates the need for ex-
haustive searches on short strings. Section 3 introduces the algorithms. Section
4 describes the implementation and Section 5 presents an experimental evalua-
tion. A discussion is offered in Section 6, along with the context of other research,
and conclusions are presented in Section 7.

2 Motivation

We briefly outline why short queries are of interest. The focus here is on an
experiment called phage display [30,35]. This experiment can be used to under-
stand which proteins have the capacity to interact, and what peptide sequences
mediate their interaction. A phage is a small microorganism, that can be made to
carry attached sequences on its outer surface, and therefore bind to tissues, us-
ing that extra sequence. In this work the sequences added to phages are 7-letter
peptides, representing all the possible 7-letter combinations over the protein al-
phabet. After the experiments, the 7-letter peptides bound to the tissue are
sequenced, and serve as queries. In this work we query for 26 peptides, each
in two directions, so for peptide ’ABCDEFG’ we also query in ’GFEDCBA’. We
are looking for exact matches, matches with one mismatch, and with two mis-
matches. At a later stage all the matches will be clustered with regard to the
sequences and organisms they match. They may also be visualised with regard
to their position in a 3D protein structure.

The second scenario is approximate matching of short DNA or RNA sequences.
RNA alphabet is {A, C, G, U}. Queries may be around 20 to 30 characters in
length, and a small number of mismatches are allowed [29]. Such searches are
performed on a genome scale (around 3 billion letters), and about 1 million
queries may be sent to model a complete experiment [8].

BLAST is not a perfect choice for such queries, as it does not allow one to
define the required match length or stringency, and is not exhaustive. In Section
5 we will come back to this point and show the types of matches returned by
BLAST and by exhaustive matching. In the following we describe the technol-
ogy that satisfactorily performs these approximate matching tasks. Our solution

Exhaustive Peptide Searching Using Relations 15

allows us to both define the match quality, and to return all results with a
guarantee of completeness, as defined by a particular biological scenario.

3 Algorithms

The edit distance Ed [20] is the minimum number of character insertions, dele-
tions or replacements needed to transform string a into b. Ed for a and b is
calculated recursively. Here j and i are the positions of the current characters:
aj is the jth character in a. The following formula is used.

Ed[j, 0] = j, Ed[0, i] = i, Ed[j, i] = if (aj = bi) then Ed[j − 1, i − 1],
else 1 + min{Ed[j − 1, i − 1], Ed[j − 1, i], Ed[j, i − 1]}.

The task of finding all words of length m with up to k mismatches involves a
search for all possible matching words for Ed ≤ k. This can be accomplished in
at least four different ways. (1) Traverse the entire target sequence of n letters
and carry out dynamic programming, to compare query and target exhaustively,
creating an edit distance matrix, and returning positions where E[m, i] ≤ k, for
i ≤ n. This has complexity O(mn). (2) Alternatively, create a data structure
(index) on all possible words over a given alphabet Σ of length m for which
Ed ≤ k. All the words which satisfy the given definition, for instance Ed ≤ k,
are called a neighbourhood and can be indexed in an automaton or a hash table
[25,10] in memory. Use this index while traversing the n characters. This enables
faster execution of the comparison, but is still linearly dependent on n [10,26].
(3) Create a neighbourhood, as in (2), and probe pre-indexed text. This reduces
the dependence on n down to log n. (4) Lastly, perform DP directly on an index
to the text, such as a suffix array or suffix tree [33,10,3].

Methods (1) and (2) are not suitable for large data sets, as all n characters of
the target have to be traversed. However, (2) is used by BLAST, and we use this
program as a benchmark. Currently, database research focuses on variants of (3)
and (4), and the question which method is better is open. (4) was recently ex-
amined for protein sequences [21] and shown to work well in practice. However,
(4) requires the construction of a suffix tree index, which is not part of the com-
mercial database toolkit. It also will work better on a machine with RAM large
enough to hold n characters, as those characters are looked up during the neigh-
bourhood calculation. Our work examines (3), in a relational setting, in order to
minimise memory requirements, and produce a solution easy to implement and
use in any relational system.

We create an index to all protein sequences by traversing all target data once,
and recording all the windows of length m. The data structure is a relation
Protein, listing all (overlapping) text windows of length 7. Each window is a
string over the protein alphabet. Each window, such as AAAAAAA or GRYKADA
is called code and stored in a tuple

Protein(code char(7), sequenceID number(7), position number(5)).

16 E. Hunt

The relation Protein is stored as one table, range-partitioned on code, accord-
ing to the first letter of the corresponding text window, and indexed on code,
sequenceID, and position.

Neighbourhood generation for edit distance k can be performed by generat-
ing all the variants of each query with up to k mismatches, instead of carry-
ing out the full DP calculation. The alphabet Σ = {A, B, C, D, E, F, G, H, I,K,

L, M, N, P, Q, R,S, T, V, W, X, Y, Z} has 23 letters.

Example 1. Query RRRRRRR. For Ed = 0 the neighbourhood U contains
just the query itself. For Ed ≤ 1, it includes 155 words such as RRRRRRR,
ARRRRRR, BRRRRRR, ..., RARRRR, etc., while for Ed ≤ 2, | U |= 10, 319, and
for Ed ≤ 3, | U |= 382, 999.

The number of different words with Ed = k is Ck
m×(|Σ| − 1)k=

(
m
k

)
(|Σ| − 1)k.

This is because k letters can be selected for replacement out of m in
(

m
k

)
ways

and each of those k letters can be replaced with |Σ| − 1 letters.
A neighbourhood is generated recursively [25], as shown in Fig. 1. Array

protChars is initialised to Σ. The neighbourhood is saved in a HashSet
neighbours. The class Neighbourhood accepts a query and an edit distance
value. Then it traverses the query and mutates recursively up to ed letters, us-
ing the protein alphabet array protChars.

Neighbourhood(query, ed) { // ed, edit distance
neighbours.add(query); // add query to neighbourhood
mutate (query, 0, ed);

}

mutate(q, pos, ed) { // pos is position in query q
word = q
if (pos <word.length) {
if (ed>0) {

mutate(word, pos+1, ed);
for (int i=0; i<protChars.length; i++) {

word[pos]=protChars[i]; // mutate the letter
neighbours.add(word);
mutate(word,pos+1, ed-1);

}
}

}
}

Fig. 1. Neighbourhood generation

Alternative spellings of the query, generated by the algorithm, are saved in a
relation, and this relation is joined with the relation Protein on code (7-gram),
to produce the results. The results are written to a table and kept for subsequent
biological and statistical data analysis.

Exhaustive Peptide Searching Using Relations 17

4 BLAST Algorithm

In protein BLAST the query is split into short windows. Each window is ex-
haustively mutated, and at the same time the calculation of similarity between
a query window and all possible mutated windows, which uses DP, is carried
out. Similarity uses a formula similar to Ed, and a cost matrix encoding a sim-
ilarity value for every pair of amino-acid (AA) letters. Windows scoring above
a threshold constitute a neighbourhood, and are saved in a pattern matching
automaton. Those indexed windows are matched exactly to all the strings one
queries against. Then any two exactly matching windows which score highly and
are close together in a target sequence trigger the calculation of DP for the string
between the two exactly matching windows, and extension towards the outside
of the area. Scores are then interpreted statistically, with regard to the size of
the database and target sequence length, and can be output as a table, listing
query, target protein, alignment length, sequence identity, score, and e-value.

5 Implementation

We constructed an index to 1.4GB of amino-acid strings. Window size was 7.
We map each sequenceID to its name, in relation

Sequence (sequenceID number(7), name varchar),

so that results can be compared to those produced by BLAST. The query data
set contained 26 peptides of length 7, and queries and their reverses were placed
in a relation. The matching task was set to search for all strings with up to two
mismatches. We also carried out a search for Ed = 3 but this produced too much
data, and could not be used by our biological collaborators.

Neighbourhood was implemented in Java. This generates all the neighbours
which are passed via JDBC for insertion into a temporary relation. This relation
is joined on code with the relation PROTEIN, and the results are written to an
existing table, specifying the query and every resulting match, with sequenceID,
edit distance and position.

We used an Intel Pentium(R)4 PC, 3 GHz, 1GB RAM, with three disks.
Seagate ST3160021A held the database installation and tmp tables, and two
Western Digital 250GB SATA-300 NCQ, Caviar SE16, 7200RPM, 16MB
Cache held the Protein relation. OS was Windows XP. Oracle version 10.2.0.2
was used. BLAST and Java executions were submitted using Perl [34], with the
query and its reverse submitted separately and time measured in seconds.

AA sequences were taken from www.expasy.org (Swissprot and Trembl)
and www.ensembl.org (human, mouse and rat peptides). Data were processed
in Java, to generate database load files. The total was over 2 mln sequences,
containing 1.4GB of letters, at 1 B/letter.

BLAST was sourced from ftp.ncbi.nih.gov/blast/executables/release/2.2.15,
version 2.2.15. We followed the advice at www.ncbi.nlm.nih.gov/BLAST for
short nearly exact matches and used PAM30, word size 2, and high e-value
of 1000 to 500,000.

18 E. Hunt

6 Results

We first report on the time of matching for BLAST, with various e-value settings,
and database matching with varying edit distance values. Figure 2 shows time in
seconds for BLAST with three expectation values e, 1000, 10,000 and 20,000, for
52 queries. The times registered for e = 50, 000 were similar to those obtained
for e = 20, 000. As e-value grows, BLAST requires slightly more time, and the
fastest execution is for e = 1000. BLAST requires around 28 to 46 seconds per
query (average 39.42 s). In Fig. 3 we show time in seconds, on a log scale, for
the database approximate matching, with Ed ≤ 3. For Ed = 0, the results
are returned within 1 second and this series does not show on the graph for
that reason. For Ed ≤ 1 the execution time is 2-19 s (avg 5.33 s), for Ed ≤ 2

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

 0 10 20 30 40 50 60

ti
m

e
(s

)

peptides (1 to 52)

e= 1000
e=10000
e=20000

Fig. 2. BLAST times for 52 queries and e-values of 1000, 10,000 and 20,000

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

ti
m

e
(s

)

peptides (1 to 52)

ed=0
ed=1
ed=2
ed=3

Fig. 3. DB times for 52 queries and edit distances between 0 and 3

Exhaustive Peptide Searching Using Relations 19

between 84 s and 1208 s (avg 614.25 s), and for Ed ≤ 3, 4342 s on average. Exact
queries and queries with one mismatch are delivered much faster than BLAST.
Queries with Ed ≤ 2 take significantly longer than BLAST, at least twice as long,
and maximum 26 times as long. However, considering the fact that exhaustive
matching is needed, the execution time of 1208 s (20 minutes) is acceptable, as
searching is an important step in data analysis.

 1

 10

 100

 1000

 0 10 20 30 40 50 60

m
a

tc
h

es
 (

co
u

n
t)

peptides (1 to 52)

e= 1000
e=10,000
e=20,000

e=100,000

Fig. 4. Count of BLAST matches for 52 queries and four e-value settings

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0 10 20 30 40 50 60

m
a

tc
h

es
 (

co
u

n
t)

peptides (1 to 52)

ed=0
ed=1

ed=2
ed=3

Fig. 5. Count of DB matches for ED values 0 to 3

We now compare the counts of matches found by both methods. Figure 4
shows the number of matches found by BLAST, for e up to 100,000. With the
increase in e-value, for some queries more matches are found, and for some
fewer. The maximum numbers of matches found by BLAST for the five settings
of e = {1000, 10000, 20000, 100000, 500000} are {64,202,199,198,197}, and the
minimum are {0,0,16,19,19}. The difference in the number of matches between
e = 20, 000 and e = 100, 000 for the same query lies between -18 and 33, which

20 E. Hunt

means that by increasing e to 100, 000, maximally 33 matches are gained, and
18 lost. When e value is increased from 100, 000 to 500, 000, one gains maximum
18 matches and loses maximum 27 matches.

Figure 5 summarises the count of matches for the database method, and
Ed ≤ 3, using log scale on the y-axis. At Ed = 0 we observe up to 36 matches per
query. For Ed ≤ {1, 2, 3} the maxima are 2181, 65,802, and 1,202,545. The last
count represents 1% of the relation Protein and it is common knowledge that
retrieving that much data from the database is bound to be slow, and a sequen-
tial scan of the table, instead of indexed access might be preferable in this case.

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

m
a

tc
h

es
 (

co
u

n
t)

peptides (1 to 52)

BL minus Ed2
BL and Ed2

Ed2 minus BL

Fig. 6. Matches for BLAST e=50,000 and Ed ≤ 2

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

m
a

tc
h

es
 (

co
u

n
t)

peptides (1 to 52)

BL minus Ed0
BL and Ed0

Ed0 minus BL

Fig. 7. Matches for BLAST e=1000 and Ed = 0

We now consider the differences in match quality in BLAST with e = 50, 000
and in the database implementation of approximate matching using Ed ≤ 2.
Since we were looking for matches of length 7, all longer matches delivered by
BLAST are excluded. We count target protein sequences matching the query,

Exhaustive Peptide Searching Using Relations 21

divided into three subsets: shared matches, matches found by BLAST and not
by the DB method, and matches found by the DB method but not by BLAST.
Figure 6 shows the number of matches found by BLAST but not found with
Ed ≤ 2 (as BL minus Ed2), matches found by both methods (BL and Ed2) and
matches found with Ed ≤ 2 but not by BLAST (Ed2 minus BL), using log scale
on the y-axis. For 22 queries Ed ≤ 2 misses no BLAST matches, for 12 it misses
one BLAST match, and for one query 18 BLAST matches are not found using
Ed ≤ 2. This is due to the fact that BLAST uses statistics which are not relevant
in our search scenario. BLAST delivers only a small fraction of results which are
of interest. Database searching with Ed ≤ 2 delivers thousands of matches not
found by BLAST.

In Fig. 7 we summarise a comparison of quality for BLAST with e = 1000
and exact matching, Ed = 0. BLAST misses out a significant number of exact
matches of length 7, with 40 matches missed in one case. On the other hand,
for one of the queries BLAST returns 64 approximate matches, in a situation
where there is no exact match. Very few hits are shared by those two settings:
for 2 queries 3 hits are found by both methods, and for another 2 queries 1
match is common. It is possible that using BLAST with word size set to 7 would
replicate exact matching, but we decided not to pursue this strategy, as the
database method is much faster in this case.

7 Discussion

The comparison of BLAST and edit distance based matching is quite an eye-
opener, especially to our biological colleagues who treat BLAST as a gold stan-
dard. It appears that the two methodologies are currently complementary. Since
it is now possible to run BLAST with indexing support [19], running BLAST
faster is possible, but is not the required solution. Where exhaustivity is needed,
a database implementation of matching based on the edit distance model is su-
perior to BLAST, and performs acceptably. Even with the setting of e = 50, 000
BLAST cannot satisfy the requirements we set out. On the other hand, the edit
model does not model BLAST, and the way to guarantee that all BLAST hits are
returned would be to simply use the PAM30 matrix within the neighbourhood
calculation [25,21].

The method we presented is slower than BLAST for edit distance 2. This
is due to the uneconomical space usage in the database engine. The load files
containing the relation Protein are very large, 26.2GB in total, and this has an
impact on query performance, as the relation will be of that size, and additional
space will be needed to hold the indexes. We would prefer to store the index more
efficiently. Using techniques presented by Myers [25] or Hunt [12] would require
significantly less storage, possibly less than 4GB, as it would not suffer from the
overheads incurred by current database technologies. However, such a solution
would not be easily usable for data interpretation, as it does not support efficient
joins needed in data analysis. The solution presented by Hyyrö [11] is not very
competitive in terms of storage, as it keeps all the text, as well as additional

22 E. Hunt

data needed by the suffix array data structure. We think a different data layout
would be more appropriate, with storage in vertical relations a distinct option.
Also, compression could be used.

An index based solution to sequence searching has to perform well in a server
context. Our solution is disk-limited only during results generation and indepen-
dent of the disk at neighbourhood generation time. It should therefore be easy
to use disk and CPU parallelism to improve performance.

Sequence indexes have been used in a variety of settings in the past, includ-
ing scenarios very similar to ours [23,4,22] but none of these tools have been as
popular as BLAST. SSAHA [28] is a DNA search tool based on an in-memory
index, and BLAT [18] uses a memory-resident index for proteins (indexing non-
overlapping windows) and for DNA, but it finds fewer matches than BLAST.
A recent issue of the IEEE Data Engineering Bulletin (vol 27(3), 2004) pro-
vides a number of recent papers in the area. Approaches to indexing represent a
wide range of techniques. Kahveci and Singh introduced “wavelets” which sum-
marise the statistics of sequence data and filter out unpromising sequence regions
[15,16]. Karakoç and co-authors [17] demonstrate that sequence similarity can
be approximated by a metric supported with metric space indexing, while Mi-
ranker and others focus on sequence management issues, and joins performed on
a data structure similar to the one we present [24]. Improving the performance of
dynamic programming can also be made via the use of FPGA technology [9,36]
which might potentially support a DBMS.

In the future work we will focus on the design and analysis of the algorithms
used to combine partial results into longer alignments, in the database context,
and on the performance of approximate matching. We will also test DP with
biological cost matrices. Another area of research is an extension to DNA and
RNA in genomic context, as outlined in Section 2, and an investigation into
possible combination of search and visualisation technologies in this area. A
further extension still would be to adapt this methodology to searches in protein
structures.

8 Conclusions

This paper presented approximate matching in a relational setting. An index
to over 1.4GB of protein was produced, and we demonstrated that exhaustive
searching is feasible, and produces results within reasonable time frames. Our
solution satisfies the biological data analysis requirement, and falls under the
heading of relational data mining. Our prototype shows that further work in
this direction may hold some promise. Our technique satisfies a scientific require-
ment, and indicates that it will be possible in the near future to use relational
technology for approximate string searching. We believe that performance can
be improved by careful programming, and the use of more efficient storage and
data access schemes.

Exhaustive Peptide Searching Using Relations 23

Acknowledgements. We gratefully acknowledge the following funding: an
EU Marie Curie Fellowship to E.H., a previous MRC fellowship to E.H., and
the Wellcome Trust Cardiovascular Functional Genomics Initiative (066780) to
A.F. Dominiczak.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215, 403–410 (1990)

2. Altschul, S.F., Madden, T.L., Schaeffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lip-
man, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research 25, 3389–3402 (1997)

3. Baeza-Yates, R., Navarro, G.: A Hybrid Indexing Method for Approximate String
Matching. JDA 1, 205–239 (2001)

4. Burkhardt, S., et al.: q-gram Based Database Searching Using a Suffix Array. In:
RECOMB, pp. 77–83. ACM Press, New York (1999)

5. Eckman, B.A., Kaufmann, A.: Querying BLAST within a Data Federation. IEEE
Data Eng. Bull. 27(3), 12–19 (2004)

6. Eidhammer, I., Jonassen, I., Taylor, W.R.: Protein Bioinformatics. Wiley, Chich-
ester (2003)

7. Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F.,
Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M., McKen-
ney, K., Sutton, G., FitzHugh, W., Fields, C., Gocayne, J.D., Scott, J., Shirley,
R., Liu, L.-I., Glodek, A., Kelley, J.M., Weidman, J.F., Phillips, C.A., Spriggs, T.,
Hedblom, E., Cotton, M.D., Utterback, T.R., Hanna, M.C., Nguyen, D.T., Saudek,
D.M., Brandon, R.C., Fine, L.D., Fritchman, J.L., Fuhrmann, J.L., Geoghagen,
N.S.M., Gnehm, C.L., McDonald, L.A., Small, K.V., Fraser, C.M., Smith, H.O.,
Venter, J.C.: Whole-genome random sequencing and assembly of Haemophilus in-
fluenzae Rd. Science 269(5223), 496–512 (1995)

8. Gautier, L., et al.: Alternative mapping of probes to genes for Affymetrix chips.
BMC Bioninformatics, p. 111 (2004)

9. Guccione, S.A., Keller, E.: Gene Matching using JBits. In: Glesner, M., Zipf, P.,
Renovell, M. (eds.) FPL 2002. LNCS, vol. 2438, pp. 1168–1171. Springer, Heidel-
berg (2002)

10. Gusfield, D.: Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge University Press, Cambridge (1997)

11. Hyyrö, H., Navarro, G.: A Practical Index for genome Searching. In: Nascimento,
M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS, vol. 2857, pp.
341–349. Springer, Heidelberg (2003)

12. Hunt, E.: Indexed Searching on Proteins Using a Suffix Sequoia. IEEE Data Eng.
Bulletin 27(3), 24–31 (2004)

13. Hunt, E., Atkinson, M.P., Irving, R.W.: A database index to large biological se-
quences. In: VLDB, pp. 139–148. Morgan Kaufmann, San Francisco (2001)

14. Hunt, E., Atkinson, M.P., Irving, R.W.: Database Indexing for Large DNA and
Protein Sequence Collections. The. VLDB Journal 11, 256–271 (2002)

15. Kahveci, T., Singh, A.K.: An Efficient Index Structure for String Databases. In:
VLDB, pp. 351–360. Morgan and Kaufmann, Washington (2001)

16. Kahveci, T., Singh, A.K.: Progressive searching of biological sequences. IEEE Data
Eng. Bull. 27(3), 32–39 (2004)

24 E. Hunt

17. Karakoç, E., Özsoyoglu, Z.M., Sahinalp, S.C., Tasan, M., Zhang, X.: Novel ap-
proaches to biomolecular sequence indexing. IEEE Data Eng. Bull. 27(3), 40–47
(2004)

18. Kent, W.J.: BLAT: The BLAST-like Alignment Tool. Genome Res. 12(4), 656–664
(2002)

19. Kim, Y.J., Boyd, A., Athey, B.D., Patel, J.M.: miBLAST: Scalable Evaluation of
a Batch of Nucleotide Sequence Queries with BLAST. Nucleic Acids Research 33,
4335–4344 (2005)

20. Levenstein, V.I.: Binary codes capable of correcting insertions and reversals. Sov.
Phys. Dokl. 10, 707–710 (1966)

21. Meek, C., Patel, J.M., Kasetty, S.: OASIS: An Online and Accurate Technique for
Local-alignment Searches on Biological Sequences. In: VLDB 2003, pp. 910–921
(2003)

22. Mewes, H.W., Hani, J., Pfeiffer, F., Frishman, D.: MIPS: a database for protein
sequences and complete genomes. Nucleic Acids Research 26, 33–37 (1998)

23. Miller, C., Gurd, J., Brass, A.: A RAPID algorithm for sequence database com-
parisons: application to the identification of vector contamination in the EMBL
databases. Bioinformatics 15, 111–121 (1999)

24. Miranker, D.P., Briggs, W.J., Mao, R., Ni, S., Xu, W.: Biosequence Use Cases in
MoBIoS SQL. IEEE Data Eng. Bull. 27(3), 3–11 (2004)

25. Myers, E.W.: A sublinear algorithm for approximate key word searching. Algorith-
mica 12(4/5), 345–374 (1994)

26. Navarro. G.: NR-grep: A Fast and Flexible Pattern Matching Tool. Technical re-
port (2000). TR/DCC-2000-3. University of Chile, Departmento de Ciencias de la
Computacion, www.dcc.uchile.cl/∼gnavarro

27. Needleman, S.B., Wunsch, C.D.: A General Method Applicable to the Search for
Similarities in the Amino Acid Sequence of two Proteins. J. Mol. Biol. 48, 443–453
(1970)

28. Ning, Z., Cox, A.J., Mullikin, J.C.: SSAHA: A Fast Search Method for Large DNA
Databases. Genome Res. 11(10), 1725–1729 (2001)

29. Sethupathy, P., et al.: A guide through present computational approaches for
the identification of mammalian microRNA targets. Nat Methods 3(11), 881–886
(2006)

30. Sidhu, S.S. (ed.): Phage Display In Biotechnology and Drug Discovery. Taylor and
Francis (2005)

31. Smith, T.A., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147, 195–197 (1981)

32. Stephens, S., Chen, J.Y., Thomas, S.: ODM BLAST: Sequence Homology Search
in the RDBMS. IEEE Data Eng. Bull. 27(3), 20–23 (2004)

33. Ukkonen, E.: Approximate string matching over suffix trees. In: Apostolico, A.,
Crochemore, M., Galil, Z., Manber, U. (eds.) Combinatorial Pattern Matching.
LNCS, vol. 684, pp. 228–242. Springer, Heidelberg (1993)

34. Wall, L., Schwartz, R.L., Christiansen, T., Potter, S.: Programming Perl. Nutshell
Handbook. O’Reilly & Associates, 2nd edn. (1996)

35. Work, L.M., Bining, H., Hunt, E., et al.: Vascular Bed-Targeted in vivo Gene Deliv-
ery Using Tropism-Modified Adeno-associated Viruses. Molecular Therapy 13(4),
683–693 (2006)

36. Yamaguchi, Y., Miyajima, Y., Maruyama, T., Konagaya, A.: High Speed Homology
Search Using Run-Time Reconfiguration. In: Glesner, M., Zipf, P., Renovell, M.
(eds.) FPL 2002. LNCS, vol. 2438, pp. 281–291. Springer, Heidelberg (2002)

Data Lineage Tracing in Data Warehousing
Environments

Hao Fan

International School of Software, WuHan University, China, 430072
hfan@iss.whu.edu.cn

Abstract. Data lineage tracing (DLT) is to find derivations of integrated data
in integrated database systems, where the data sources might be autonomous,
distributed and heterogeneous. In previous work, we present a DLT approach
using partial schema transformation pathways. In this paper, we extend our DLT
approach to using full schema transformation pathways and discuss the problem
of lineage data ambiguities. Our DLT approach is not limited in one specific data
model and query language, and would be useful in general data warehousing
environments.

1 Introduction

Data from distributed, autonomous and heterogeneous data sources is collected into a
central repository in a data warehouse system, in order to enable analysis and mining of
the integrated information. However, in addition to analyzing the data in the integrated
database, we sometimes also need to investigate how certain integrated information was
derived from the data sources, which is the problem of data lineage tracing (DLT).

AutoMed1 is a heterogeneous data transformation and integration system which
offers the capability to handle data integration across multiple data models. In the
AutoMed approach, the integration of schemas is specified as a sequence of primi-
tive schema transformation steps, which incrementally add, delete, extend, contract or
rename schema constructs, thereby transforming each source schema into the target
schema. AutoMed uses a functional programming language based on comprehensions
as its intermediate query language (IQL).

In previous work [8], we discussed how AutoMed metadata can be used to express
the schemas and the cleansing, transformation and integration processes in heteroge-
neous data warehousing environments. In [7] and [9], we give the definitions of lineage
data in terms of bag algebra, and present a DLT approach using partial schema transfor-
mation pathways, i.e. only considering IQL queries and add and rename transforma-
tions. In this paper, we extend our DLT approach to considering full schema transfor-
mation pathways, which include queries beyond IQL, and delete, extend and contract
transformations, and discuss the problem of lineage data ambiguities, namely the fact
that equivalent queries may have different lineage data for identical tracing data. The
tracing data is the data which lineage should be computed.

1 See http://www.doc.ic.ac.uk/automed/

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 25–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

26 H. Fan

The outline of this paper is as follows. Section 2 gives a review of related work.
Section 3 gives an overview of AutoMed and our DLT approach using partial schema
transformation pathways. Section 4 extends our DLT approach by considering queries
beyond IQL, and delete, extend and contract transformations, and Section 5 discusses
the ambiguity of lineage data. Finally, Section 6 gives our concluding remarks.

2 Related Work

The problem of data lineage tracing in data warehousing environments has been for-
mally studied by Cui et al. in [6,5]. In particular, the fundamental definitions regarding
data lineage, including tuple derivation for an operator and tuple derivation for a view,
are developed in [6], and [5] introduces a way to trace data lineage for complex views
in data warehouses. However, the approach is limited to the relational data model.

Another fundamental concept of data lineage is discussed by Buneman et al. in
[2], namely the difference between “why” provenance and “where” provenance. Why-
provenance refers to the source data that had some influence on the existence of the
integrated data. Where-provenance refers to the actual data in the sources from which
the integrated data was extracted.

In our approach, both why- and where-provenance are considered, using bag seman-
tics. In [7], we define the notions of affect-pool and origin-pool for data lineage tracing
in AutoMed — the former derives all of the source data that had some influence on
the tracing data, while the latter derives the specific data in the sources from which the
tracing data is extracted. In [9], we develop DLT formulae and algorithms for deriving
the affect-pool and origin-pool of a data item along a virtual or partially materialised
transformation pathway, where intermediate schema constructs may or may not be ma-
terialised.

Cui and Buneman in [4] and [2] also discuss the problem of ambiguity of lineage
data. This problem is known as derivation inequivalence and arises when equivalent
queries have different data lineages for identical tracing data. Cui and Buneman discuss
this problem in two scenarios: (a) when aggregation functions are used and (b) when
where-provenance is traced. In this paper, we investigate when ambiguity of lineage
data may happen in our context and we describe how our DLT approach for tracing
why-provenance can also be used for tracing where-provenance, so as to reduce the
chance of derivation inequivalence occurring.

3 Data Lineage Tracing in AutoMed

3.1 Overview of AutoMed

AutoMed supports a low-level hypergraph-based data model (HDM). Higher-level
modelling languages, such as relational, ER, OO, XML, flat-file and multidimensional
data models, are defined in terms of this HDM. An HDM schema consists of a set of
nodes, edges and constraints, and each modelling construct of a higher-level modelling
language is specified as some combination of HDM nodes, edges and constraints. For
any modelling language M specified in this way, via the API of AutoMed’s Model

Data Lineage Tracing in Data Warehousing Environments 27

Definitions Repository [1], AutoMed provides a set of primitive schema transforma-
tions that can be applied to schema constructs expressed in M. In particular, for every
construct of M there is an add and a delete primitive transformation which add to and
delete from a schema an instance of that construct. For those constructs of M which
have textual names, there is also a rename primitive transformation.

In AutoMed, schemas are incrementally transformed by applying to them a sequence
of primitive transformations t1, . . . , tr. Each primitive transformation adds, deletes, or
renames just one schema construct, expressed in some modelling language. Thus, the
intermediate (and indeed the target) schemas may contain constructs of more than one
modelling language.

Each add or delete transformation is accompanied by a query specifying the extent
of the new or deleted construct in terms of the rest of the constructs in the schema. This
query is expressed in a functional query language IQL2. Also available are extend and
contract transformations which behave in the same way as add and delete except that
they state that the extent of the new/removed construct cannot be precisely derived from
the other constructs present in the schema. More specifically, each extend/contract
transformation takes a pair of queries that specify a lower and an upper bound on the
extent of the new construct. The lower bound may be Void and the upper bound may
be Any, which respectively indicate no known information about the lower or upper
bound of the extent of the new construct.

An Example of Data Integration. In this example, we use schemas expressed in a
simple relational data model to illustrate the process of data integration in AutoMed.
However, we stress that these techniques are applicable to schemas defined in any
data modelling language that has been specified within AutoMed’s Model Definitions
Repository, including modelling languages for semi-structured data [1,12].

In the simple relational model, there are two kinds of schema construct: Rel and
Att. The extent of a Rel construct 〈〈R〉〉 is the projection of relation R onto its primary
key attributes k1, ..., kn. The extent of each Att construct 〈〈R, a〉〉 where a is a non-key
attribute of R is the projection of R onto k1, ..., kn, a. We refer the reader to [10] for an
encoding of a richer relational data model, including the modelling of constraints.

Suppose that MAtab(CID, SID, Mark) and IStab(CID, SID, Mark) are two source re-
lations for a data warehouse respectively storing students’ marks for two departments
MA and IS, in which CID and SID are the course and student IDs. Suppose also that
a relation CourseSum(Dept, CID, Total, Avg) is in the data warehouse which gives the
total and average mark for each course of each department.

The following transformation pathway expresses the schema transformation and
integration processes in this example. Due to space limitations, we have not given
the steps for removing the source relation constructs (note that this ‘growing’ and
‘shrinking’ of schemas is characteristic of AutoMed schema transformation pathways).
Schema constructs 〈〈Details〉〉 and 〈〈Details, Mark〉〉 are temporary ones which are cre-
ated for integrating the source data and then deleted after the global relation is created.

Note that the queries appearing in the transformation steps are IQL queries. The IQL
function gc is a higher-order function that takes as its first argument an aggregation

2 IQL is a comprehensions-based functional query language. Such languages subsume query
languages such as SQL and OQL in expressiveness [3].

28 H. Fan

function and as its second argument a bag of pairs; it groups the pairs on their first
component, and then applies the aggregation function to each bag of values formed
from the second components.

addRel 〈〈Details〉〉 [{’MA’,k1,k2}|{k1,k2}←〈〈MAtab〉〉]
++[{’IS’,k1,k2}|{k1,k2}←〈〈IStab〉〉];

addAtt 〈〈Details, Mark〉〉 [{’MA’,k1,k2,x}|{k1,k2,x}←〈〈MAtab, Mark〉〉]
++[{’IS’,k1,k2,x}|{k1,k2,x}←〈〈IStab, Mark〉〉];

addRel 〈〈CourseSum〉〉 distinct [{k,k1}|{k,k1,k2}←〈〈Details〉〉]
addAtt 〈〈CourseSum, Total〉〉 [{x,y,z}|{{x,y},z}← (gc sum

[{{k,k1},x}|{k,k1,k2,x}←〈〈Details, Mark〉〉])];
addAtt 〈〈CourseSum, Avg〉〉 [{x,y,z}|{{x,y},z}← (gc avg

[{{k,k1},x}|{k,k1,k2,x}←〈〈Details, Mark〉〉])];
delAtt 〈〈Details, Mark〉〉 [{’MA’,k1,k2,x}|{k1,k2,x}←〈〈MAtab, Mark〉〉]

++[{’IS’,k1,k2,x}|{k1,k2,x}←〈〈IStab, Mark〉〉];
delRel 〈〈Details〉〉 [{’MA’,k1,k2}|{k1,k2}←〈〈MAtab〉〉]

++[{’IS’,k1,k2}|{k1,k2}←〈〈IStab〉〉];
...

3.2 The DLT Approach

In heterogenous data integration environments, the data transformation and integration
processes can be described using AutoMed schema transformation pathways (see [8]).
Our DLT approach is to use the individual steps of these pathways to compute the
lineage data of the tracing data by traversing the pathways in reverse order one step
at a time. In particular, suppose a data source LD with schema LS is transformed into
a global database GD with schema GS, and the transformation pathway LS → GS is
ts1, ..., tsn. Given tracing data td belonging to the extent of some schema construct in
GD, we firstly find the transformation step tsi which creates that construct and obtain
td’s lineage, dli, from tsi. We then continue by tracing the lineage of dli from the
remaining transformation pathway ts1, . . . , tsi−1. We continue in this fashion, until we
obtain the final lineage data from the data source LD.

Tracing data lineage with respect to a transformation rename(O, O′) is simple —
the lineage data in O is the same as the tracing data in O′. Considering add transfor-
mations, a single add transformation step can be expressed as v=q, in which v is the
new schema construct created by the transformation and q is an IQL query over the
current schema constructs. In our DLT approach, we use a subset of IQL, Simple IQL
(SIQL), as the query language. More complex IQL queries can be encoded as a series
of transformations with SIQL queries on intermediate schema constructs. As we have
developed a method to decompose an IQL query into a sequence of SIQL queries (see
[9]), we assume q in an add transformation is a SIQL query.

In [7], we have developed a DLT formula for each type of SIQL query which, given
tracing data in v, evaluates the lineage of this data from the extents of the schema
constructs referenced in v=q. If these extents and the tracing data are both materialised,
Table 1 gives the DLT formulae for tracing the affect-pool of a tuple t, DL(t), in which
D|t denotes all instances of the tuple t in the bag D (i.e. the result of the query [x|x ←
D; x = t]). Since the results of queries of the form group D and gc aggFun D

Data Lineage Tracing in Data Warehousing Environments 29

Table 1. DLT Formulae

v DL(t)
group D [{x, y}|{x, y} ← D; x = a]
sort D D|t

distinct D D|t
aggFun D D

gc aggFun D [{x, y}|{x, y} ← D; x = a]
D1 ++ D2 ++ . . . ++ Dn ∀i.Di|t

D1 −− D2 D1|t, D2

[x|x1 ← D1; . . . ;xn ← Dn;C] ∀i.[xi|xi ← Di; xi = ((lambda x.xi) t)]
[x|x ← D1; member D2 y] D1|t, [y|y ← D2; y = ((λx.y) t)]

[x|x ← D1; not(member D2 y)] D1|t, D2

map (lambda x.e) D [x|x ← D, e = t]

are a collection of pairs, in the DLT formulae for these two queries we assume that the
tracing tuple t is of the form {a, b}.

If all schema constructs created by add transformations are materialised, a simple
way to trace the lineage of data in the global database GD is to apply the above DLT
formulae on each transformation step in the transformation LS → GS in reverse from
GS, finally ending up with the lineage data in the original data source LD. However, in
general transformation pathways not all schema constructs created by add transforma-
tions will be materialised, and the above simple DLT approach is no longer applicable
because it does not obtain lineage data from a virtual schema construct.

In [9], we have developed a set of DLT formulae using virtual arguments expressing
virtual intermediate schema constructs and virtual lineage data, so that to extend the
DLT formulae to handle the cases of both the tracing data and the source data could be
virtual or materialised. Based on the formulae, our algorithms perform data lineage trac-
ing along a general schema transformation pathway, in which each add transformation
step may create either a virtual or a materialised schema construct.

Since delete and contract transformations do not create schema constructs, in previ-
ous work, they are ignored in the DLT process, and only partial schema transformation
pathways are used in our DLT approach. In this paper, we will discuss how these trans-
formations can also be used for DLT, as well as extend transformations, so that full
schema transformation pathways are used in DLT processes.

4 Extending the DLT Approach

In Section 3.2, only IQL queries, add and rename transformations are considered for
DLT. In practice, queries beyond IQL, delete, contract, and extend transformations
are also used for integrating warehouse data. How these queries and transformations
can be used for DLT should also be considered.

4.1 Using Queries Beyond IQL

In a typical data warehouse, add transformations for warehousing activities, such as
single-source cleansing [8], may contain built-in functions which cannot be handled by

30 H. Fan

our DLT formulae. In order to go back all the steps to the data source schemas, the DLT
process may therefore need to handle queries beyond IQL. In particular, suppose the
construct c is created by the following transformation step, in which f is a function
defined by means of an arbitrary IQL query and s1, ..., sn are the schemes appearing
in the query: addT(c, f(s1, ..., sn)). There are three cases for tracing the lineage of a
tracing tuple t ∈ c:

1. f is an IQL query, in which case the DLT approach described above can be used to
obtain t’s lineage;

2. n = 1 and f is of the form f(s1) = [h x|x ← s1; C] for some h and C, in which case
the lineage of t in s1 is given by: [x|x ← s1; C; (h x) = t]

3. For all other cases, we assume that the data lineage of t in the data source si is all
data in si, for all 1 ≤ i ≤ n.

4.2 Using Delete Transformations

The query in a delete transformation specifies how the extent of the deleted construct
can be computed from the remaining schema constructs.

delete transformations are useful for DLT when the construct is unavailable. In par-
ticular, if a virtual intermediate construct with virtual data sources must be computed
during the DLT process, normally we have to use the AutoMed Global Query Processor
to derive this construct from the original data sources. However, if the virtual interme-
diate construct is deleted by a delete transformation and all constructs appearing in the
delete transformation are materialised, then we can use the query in the delete trans-
formation to compute the virtual construct. Since we only need to access materialised
constructs in the data warehouse, the time of the evaluation procedure is reduced.

This feature can make a view self-traceable. That is, for the data in an integrated
view, we can identify the names of the source constructs containing the lineage data,
and obtain the lineage data from the view itself, rather than access the source constructs.

4.3 Using Extend Transformations

An extend transformation is applied if the extent of a new construct cannot be pre-
cisely derived from the source schema. The transformation extend(c, ql, qu) adds a
new construct c to a schema, where the query ql determines from the schema what is
the minimum extent of c (and may be Void) and qu determines what is the maximal
extent of c (and may be Any) [11].

If the transformation is extend(c, Void, Any), this means that the extent of c is not
derived from the source schema. We simply terminate the DLT process for tracing the
lineage of c’s data at that step.

If the transformation is extend(c, ql, Any), this means the extent of c can be partially
computed by the query ql. Using ql, a part of the lineage of c’s data is obtained.

However, we cannot simply treat the DLT process via such an extend transformation
as the same as via an add transformation by using the DLT formulae described in
Section 3. Since in an add transformation, the whole extent of the added construct is
exactly specified, while in an extend transformation it is not. The problem that arises is

Data Lineage Tracing in Data Warehousing Environments 31

that extra lineage data may be derived because the tracing data contains more data than
the result of the query, ql, in the extend transformation.

For example, transformation extend(c,D1 −−D2, Any), where D1 = [1, 2, 3], D2 =
[2, 3, 4]. Although the query result is list [1], the extent of c may be [1, 2], in which ′′2′′

is derived from other transformation pathways. If we directly use the DLT algorithm
described above, the obtained lineage data of 2 ∈ c are D1|[2] and D2|[2, 3, 4]. While in
fact, the data ′′2′′ has no data lineage along this extend transformation.

Therefore, in practice, in order to trace data lineage along an extend transformation
with the lower-bound query, ql, the result of the query must be recomputed and be used
to filter the tracing data during the DLT process.

If the transformation is extend(c, Void, qu), this means that the extent of c must
be fully computed in the result of the query qu. Although extra data may appear in
qu’s result, it cannot appear in the extent of c. We use the same approach as described
for add transformations to trace lineage of c’s data based on qu. However, we have to
indicate that, extra lineage data may be created.

Finally, if the transformation is extend(c, ql, qu), we firstly obtain the lineage of c’s
data based on these two queries, and then return their intersection as the final lineage
data, which would be much more accurate but still may not be the exact lineage data.

4.4 Using Contract Transformations

A contract transformation removes a construct whose extent cannot be precisely com-
puted by the remaining constructs in the schema. The transformation contract(c, ql,
qu) removes a construct c from a schema, where ql determines what is the minimum
extent of c, and qu determines what is the maximal extent of c. As with extend, ql
may be Void and qu may be Any.

If the transformation is contract(c, Void, Any), we simply ignore the contract trans-
formation in our DLT process. Otherwise, we use the contract transformation similarly
to the way we use delete transformations described above. However, we also have to
indicate that if using ql, only partial lineage data can be obtained; if using qu, extra
lineage data may be obtained; and if using the intersection of the results of both ql and
qu, we can also only obtain an approximate lineage data.

5 Ambiguity of Lineage Data

The ambiguity of lineage data, also called derivation inequivalence [6], relates to the
fact that for queries which are equivalent but different syntactically DLT processes may
obtain different lineage data for identical tracing data. This section investigates how this
problem may happen in our context.

Two queries are equivalent if they give identical results for all possible values of their
base collections. That is, given two queries q1 and q2 both referring to base collections
b1, ...,bn, q1 and q2 are equivalent if q1[b1/I1, ...,bn/In] = q2[b1/I1, ...,bn/In] is
true for all instances I1, ...,In of b1, ...,bn respectively. In this section, we use v1 ≡
v2 to denote that views v1 and v2 are defined by equivalent queries, use APv(t) to
denote the affect-pool of tracing data t in the data source v, and use OPv(t) to denote

32 H. Fan

the origin-pool of t in v. We refer the reader to [7] for the definitions of the affect-pool
and the origin-pool, and the difference between them.

5.1 Derivation for Difference and Not Member Operations

Ambiguity of lineage data may happen when difference (i.e. −− in IQL) and not
member operations are involved in the view definitions.

For example, consider two bags R = [0, 1, 1, 2, 3], S = [−1, 1, 2, 3, 3]. Two pairs of
equivalent views, v1 ≡ v2 and v3 ≡ v4, are defined as follows.

v1 = R−− (R−− S) = [1, 2, 3]
v2 = S−− (S−− R) = [1, 2, 3]
v3 = [x|x ← R; member S x] = [1, 1, 2, 3]
v4 = [x|x ← R; not (member [y|y ← R;not (member S y)] x)] = [1, 1, 2, 3]
The lineage of data in an IQL view can be traced by decomposing the view into a

sequence of intermediate SIQL views. In order to trace the lineage of data in the above
four views, intermediate views are required: for v1, v1’ = (R−−S)=[0, 1]; for v2, v2’

= (S −− R) = [−1, 3]; for v3, no intermediate view needed; and for v4, v4’ = [y|y ←
R;not (member S y)] = [0].

With the above intermediate views, we can now trace the lineage of the views’ data.
For example, the affect-pool of the data item t = 1 ∈ v1 and t = 1 ∈ v2 are as follows.
Here, we denote by D|dl the lineage data dl in the collection D, i.e. all instances of
the tuple dl in the bag D (the result of the query [x|x ← D; x = dl]).
APv1(t) = 〈R|[x|x ← R; x = 1], R−− S〉 = 〈R|[1, 1], v1’〉

= 〈R|[1, 1], R|[x|x ← R;member v1’ x], S〉
= 〈R|[1, 1], R|[0, 1, 1],S|[−1, 1, 2, 3, 3]〉 = 〈R|[0, 1, 1], S|[−1, 1, 2, 3, 3]〉

APv2(t) = 〈S|[x|x ← S;x = 1], S−− R〉 = 〈S|[1], v2’〉
= 〈S|[1], S|[x|x ← S;member v2’ x],R〉
= 〈S|[1], S|[−1, 3, 3], R|[0, 1, 1, 2, 3]〉 = 〈R|[0, 1, 1, 2, 3], S|[−1, 1, 3, 3]〉

We can see that the affect-pool of identical tracing data in v1 and v2 are inequivalent.
The affect-pool of tuple t = 1 ∈ v3 and t = 1 ∈ v4 are:
APv3(t) = 〈R|[x|x ← R; x = 1], S|[x|x ← S;x = 1]〉 = 〈R|[1, 1], S|[1]〉
APv4(t) = 〈R|[x|x ← R; x = 1], v4’〉 = 〈R|[1, 1], R|[y|y ← R; member v4’ y], S〉

= 〈R|[1, 1], R|[0], S|[−1, 1, 2, 3, 3]〉 = 〈R|[0, 1, 1], S|[−1, 1, 2, 3, 3]〉
We can see that the affect-pool of above identical tracing data in v3 and v4 are also
inequivalent.

The reason for the inequivalent affect-pool of the data in views defined by equiva-
lent queries involving the −− and not member operators is the definition of affect-
pool. The affect-pool in a data source D2 in queries of the form D1 −− D2 or [x|x ←
D1;not (member D2 x)], includes all data in D2. So the computed affect-pool in D2
may contain some “irrelevant” data which does not affect the existence of the tracing
data in the view. For example, if the tracing data is t = 1 in the view R −− S, the
irrelevant data in S are [−1, 2, 3, 3], which are also included in t’s affect-pool.

Although origin-pool is defined to contain the minimal essential lineage data in a data
source, ambiguity of lineage data may also occur for tracing origin-pool. For example,
in the case of the above four views, the origin-pool of the tracing data item t = 1 are
also inequivalent (we use D|Ø to denote no lineage data in D):

Data Lineage Tracing in Data Warehousing Environments 33

OPv1(t) = 〈R|[x|x ← R;x = 1], (R−− S)|[x|x ← (R−− S);x = 1]〉
= 〈R|[1, 1], v1’|[x|x ← [0, 1]; x = 1]〉 = 〈R|[1, 1], v1’|[1]〉
= 〈R|[1, 1], R|[x|x ← R;x = 1],S|[x|x ← S;x = 1]〉
= 〈R|[1, 1], R|[1, 1], S|[1]〉 = 〈R|[1, 1], S|[1]〉

OPv2(t) = 〈S|[x|x ← S;x = 1], (R−− S)|[x|x ← (S−− R);x = 1]〉
= 〈S|[1], v2’|[x|x ← [−1, 3]; x = 1]〉 = 〈S|[1], v2’|Ø〉 = 〈S|[1]〉

and
OPv3(t) = 〈R|[x|x ← R;x = 1],S|[x|x ← S;x = 1]〉 = 〈R|[1, 1], S|[1]〉
OPv4(t) = 〈R|[x|x ← R;x = 1],v4’|Ø〉 = 〈R|[1, 1]〉

5.2 Derivation for Aggregate Functions

Ambiguity of lineage data may also happen when queries involve aggregate functions.
Suppose that bags R and S are the same as in Section 5.1. Consider DLT processes over
the following two pairs of equivalent views, v5 ≡ v6 and v7 ≡ v8:

v5 = sum R = 7
v6 = sum [x|x ← R;x �= 0] = 7
v7 = max S = [3, 3]
v8 = max [x|x ← S;x > (min S)] = [3, 3]

The affect-pool of t = 7 ∈ v5 and t = 7 ∈ v6 are:
APv5(t) = 〈R〉 = 〈R|[0, 1, 1, 2, 3]〉
APv6(t) = 〈R|[x|x ← R;x �= 0]〉 = 〈R|[1, 1, 2, 3]〉

and the affect-pool of t = 3 ∈ v7 and t = 3 ∈ v8 are:
APv7(t) = 〈S〉 = 〈S|[−1, 1, 2, 3, 3]〉
APv8(t) = 〈S|[x|x ← S;x > (min S)]〉 = 〈S|[1, 2, 3, 3]〉

The affect-pool of identical tracing data for these equivalent views are inequivalent.
The reason for this ambiguity of affect-pool is that, according to the DLT formulae of

affect-pool in Table 1, the affect-pool of data in an aggregate view includes all the data
in the data source, which can bring irrelevant data into the derivation. In above example,
views v6 and v8 filter off some irrelevant data by using predicate expressions, so that
the computed affect-pool over the two views does not contain this irrelevant data.

Such problems may be avoided in tracing the origin-pool, since the origin-pool is
defined to contain the minimal essential lineage data in the data sources, and any data
item and its duplicates in the origin-pool are non-redundant.

For example, the origin-pool of t = 7 ∈ v5 and t = 7 ∈ v6 are identical:
OPv5(t) = 〈R|[x|x ← R;x �= 0]〉 = 〈R|[1, 1, 2, 3]〉
OPv6(t) = 〈R|[x|x ← [y|y ← R;y �= 0]; x �= 0]〉 = 〈R|[1, 1, 2, 3]〉

and the origin-pool of t = 3 ∈ v7 and t = 3 ∈ v8 are also identical:
OPv7(t) = 〈S|[x|x ← S;x = 3]〉 = 〈S|[3, 3]〉
OPv8(t) = 〈S|[x|x ← [y|y ← S;y > (min S)];x = 3]〉 = 〈S|[3, 3]〉
However, the derivation inequivalence problem cannot always be avoided in tracing

the origin-pool. For example, suppose v9 ≡ v10 are defined as follows:
v9 = sum S = 8
v10 = sum [x|x ← S;not (member [x1|x1 ← S;x2 ← S;x1 = (−x2)] x)] = 8
In order to trace the origin-pool of v10’s data, the intermediate views for v10 are

defined as follows:
v10’ = [x1|x1 ← S;x2 ← S;x1 = (−x2)] = [−1, 1]
v10’’ = [x|x ← S; not (member v10’ x)] = [2, 3, 3]
v10 = sum v10’’ = 8

34 H. Fan

Then, the origin-pool of t = 8 ∈ v9 and t = 8 ∈ v10 are:
OPv9(t) = 〈S|[x|x ← S;x �= 0]〉 = 〈S|[−1, 1, 2, 3, 3]〉
OPv10(t) = 〈v10’’|[x|x ← v10’’;x �= 0]〉 = 〈v10’’|[2, 3, 3]〉

= 〈[x|x ← S;not (member v10’ x)]|[2, 3, 3]〉
= 〈S|[2, 3, 3], v10’|Ø〉 = 〈S|[2, 3, 3]〉

We can see that OPv9(t) 	= OPv10(t). This is because the view v10 is firstly
applying a select operation over the data source S, to eliminate data item d in S and its
inverse d−1, i.e. d + d−1 = 0.

5.3 Derivation for Where-Provenance

The problem of where-provenance is introduced in Buneman et al.’s work [2]. In that
paper, tracing the where-provenance of a tracing tuple consists of finding the lineage of
one component of the tuple, rather than the whole tuple. Also, the where-provenance is
not exact data, but rather a path for describing where the lineage is. That paper describes
that derivation inequivalence may happen when tracing where-provenance.

Examples of where-provenance inequivalence 3

Suppose that w1 is a view over a relational table 〈〈Staff〉〉, where the extent of 〈〈Staff〉〉
table is a list of 3-item tuples containing name, pay and tax information of employ-
ees. The definition of w1 is as following:

w1 = [{name,pay}|{name,pay,tax} ← 〈〈Staff〉〉;pay = 1200]
If {′Tom′, 1200} is a tuple in w1 and the data 1200 in the tuple only comes from the
tuple {′Tom′, 1200, 100} in the extent of 〈〈Staff〉〉, then the where-provenance of 1200
is the path ′′〈〈Staff〉〉.{name : ′Tom′}.pay′′, which means that 1200 comes from the
attribute pay in the relation 〈〈Staff〉〉 where the value of the attribute name is ′Tom′.

However, if we consider the view w2 as following over construct 〈〈Staff〉〉, which is
an equivalent view to w1,

w2 = [{name, 1200}|{name,pay,tax} ← 〈〈Staff〉〉;pay = 1200]
the where-provenance of 1200 in {′Tom′, 1200} is the query (view definition) itself,
since the value is directly appearing in the query expression.

Another example illustrating inequivalent where-provenance is as follows. Suppose
that w3 ≡ w4 where
w3 = [{id,ns}|{id,s,b,ns} ← 〈〈D〉〉;s = b;s = ns]
w4 = [{id,ns}|{id,s,b,ns} ← 〈〈D〉〉;member [{id1,ns1}|

{id1,s1,b1,ns1} ← 〈〈D〉〉;s1 = b1] {id,ns};s = ns]
In the case of w3, the attribute ns in the result view depends on attributes: s, b and

ns, in relational table 〈〈D〉〉. While in the case of w4, the attribute ns in the result view
depends on attributes: id, s, b and ns, in 〈〈D〉〉.

In our DLT approach, we only consider tracing the lineage data of an entire tuple,
which is termed why-provenance in [2]. However, in AutoMed, each extensional mod-
elling construct of a high-level modelling language is specified as an HDM node or edge
and cannot be broken down further. For example, each attribute in a relational table is a
construct in the AutoMed relational schema.

In other words, in our DLT approach, not only the why-provenance but also the
where-provenance has been considered, when the AutoMed data modelling technique

3 The examples illustrated in this section are derived from [2].

Data Lineage Tracing in Data Warehousing Environments 35

is used for modelling data, e.g., using the simple relational data model. In this sense,
we deal with the problem of tracing where-provenance and why-provenance simultane-
ously, so that the problem of inequivalent where-provenance is avoided.

For example, by using the simple relational data model and SIQL queries, the above
four view definitions can be rewritten (denoted as �) as follows. In the simple relational
data model, constructs of the relational table 〈〈Staff〉〉 include: 〈〈Staff〉〉, 〈〈Staff, name〉〉,
〈〈Staff, pay〉〉 and 〈〈Staff, tax〉〉; constructs of the table 〈〈D〉〉 include: 〈〈D〉〉, 〈〈D, id〉〉,
〈〈D, s,〉〉, 〈〈D, b〉〉 and 〈〈D, ns〉〉.
w1 � w1’ = [{name,pay}|{name,pay} ← 〈〈Staff, pay〉〉;pay = 1200]
w2 � w2’ = [{name,pay}|{name,pay} ← 〈〈Staff, pay〉〉;pay = 1200]

w2’’ = map (lambda {name,pay}.{name, 1200}) w2’

Obviously, w1’ and w2’ are identical, and w2’’ uses a lambda expression replac-
ing by the constant 1200 the pay values in the result of w2’. Here, we cannot trace the
lineage data of 1200 separately. If it is required to do that, definitions of w1 and w2 can
be rewritten as:
w1 � w1a’ = [{name,pay}|{name,pay} ← 〈〈Staff, pay〉〉; pay = 1200]

w1a’’ = map (lambda {name,pay}.{pay}) w1a’
w2 � w2a’ = [{name,pay}|{name,pay} ← 〈〈Staff, pay〉〉; pay = 1200]

w2a’’ = map (lambda {name,pay}.{1200}) w2a’
We can see that, although intermediate views w1a’’ and w2a’’ have the same re-

sult in the current specific situation, they have different definitions. In this sense, views
w1 and w2 can be regarded as inequivalent and the problem of derivation inequivalence
does not arise for these two views. However, even we admit that these two views are
equivalent in the current situation, according to the DLT formula in Table 1, the lineage
data of 1200 in w1a’’ and w2a’’ are obtained as follows:

w1a’|[{name,pay}|{name,pay} ← w1a’; pay = 1200]
w2a’|[{name,pay}|{name,pay} ← w2a’; 1200 = 1200]

Since views w1a’ and w2a’ are identical, 1200 over the two views have the same
lineage. As to views w3 and w4, their definitions can be rewritten as follows:
w3 � w3’ = [{id,s}|{id,s} ← 〈〈D, s〉〉; member 〈〈D, b〉〉 {id,s}]

w3’’ = [{id,ns}|{id,ns} ← 〈〈D, ns〉〉;member w3’ {id,ns}]
w4 � w4’ = [{id,ns}|{id,ns} ← 〈〈D, ns〉〉;member 〈〈D, s〉〉 {id,ns}]

w4’’ = [{id,s} |{id,s} ← 〈〈D, s〉〉;member 〈〈D, b〉〉 {id,s}]
w4’’’ = [{id,ns}|{id,ns} ← w4’;member w4’’ {id,ns}]

We can see that tuple {id,ns} in the two views have the same lineage coming from
〈〈D, ns〉〉, 〈〈D, s〉〉 and 〈〈D, b〉〉 constructs.

6 Concluding Remarks

This paper have discussed how queries beyond IQL, and delete, extend and contract
transformations can be used for tracing data lineage. With our previous work of trac-
ing data lineage using add and rename transformations, our DLT approach would be
implemented in a general data warehousing environment.

We also investigated when ambiguity of lineage data may happen in our context —
the problem may happen when tracing the lineage of the data in views defined by IQL
queries involving −−, not member filters and aggregation operations. In Cui et al’s

36 H. Fan

work [6], the definition of data lineage results in the same problem of derivation in-
equivalence. Ambiguity of lineage may also happen when tracing where-provenance.
We observed that the process of tracing where-provenance can be handled by the pro-
cess of tracing why-provenance when AutoMed is used for modelling data, so that the
problem of inequivalent where-provenance can be reduced.

In addition, since our algorithms consider in turn each transformation step in a trans-
formation pathway in order to evaluate lineage data in a stepwise fashion, they are
useful not only in data warehousing environments, but also in any data transformation
and integration framework based on sequences of primitive schema transformations.
For example, [12] present an approach for integrating heterogeneous XML documents
using the AutoMed toolkit. A schema is automatically extracted for each XML docu-
ment and transformation pathways are applied to these schemas. Reference [11] also
discusses how AutoMed can be applied in peer-to-peer data integration settings. Thus,
with the extension in this paper, our DLT approach is readily applicable in peer-to-peer
and semi-structured data integration environments.

References

1. Boyd, M., Kittivoravitkul, S., Lazanitis, C., et al.: AutoMed: A BAV data integration sys-
tem for heterogeneous data sources. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS,
vol. 3084, pp. 82–97. Springer, Heidelberg (2004)

2. Buneman, P., Khanna, S., Tan, W.C.: Why and Where: A characterization of data prove-
nance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330.
Springer, Heidelberg (2000)

3. Buneman, P., et al.: Comprehension syntax. SIGMOD Record 23(1), 87–96 (1994)
4. Cui, Y.: Lineage tracing in data warehouses. PhD thesis, Computer Science Department,

Stanford University (2001)
5. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations. In: Proc.

VLDB’01, pp. 471–480. Morgan Kaufmann, San Francisco (2001)
6. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environ-

ment. ACM Transactions on Database Systems (TODS) 25(2), 179–227 (2000)
7. Fan, H., Poulovassilis, A.: Tracing data lineage using schema transformation pathways. In:

Knowledge Transformation for the Semantic Web, vol. 95, pp. 64–79. IOS Press, Amsterdam
(2003)

8. Fan, H., Poulovassilis, A.: Using AutoMed metadata in data warehousing environments. In:
Proc. DOLAP’03, pp. 86–93. ACM Press, New York (2003)

9. Fan, H., Poulovassilis, A.: Using schema transformation pathways for data lineage tracing.
In: Jackson, M., Nelson, D., Stirk, S. (eds.) Database: Enterprise, Skills and Innovation.
LNCS, vol. 3567, pp. 133–144. Springer, Heidelberg (2005)

10. McBrien, P., Poulovassilis, A.: A uniform approach to inter-model transformations. In: Jarke,
M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 333–348. Springer, Heidelberg
(1999)

11. McBrien, P., Poulovassilis, A.: Defining peer-to-peer data integration using both as view
rules. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases, Information Systems,
and Peer-to-Peer Computing. LNCS, vol. 2944, pp. 91–107. Springer, Heidelberg (2004)

12. Zamboulis, L.: XML data integration by graph restructuring. In: Williams, H., MacKinnon,
L.M. (eds.) Key Technologies for Data Management. LNCS, vol. 3112, Springer, Heidelberg
(2004)

Fast Recognition of Asian Characters Based on

Database Methodologies

Woong-Kee Loh1, Young-Ho Park2, and Yong-Ik Yoon2

1 Department of Computer Science & Engineering, University of Minnesota
200 Union Street SE, Minneapolis, MN 55455, USA

lohw@cs.umn.edu
2 Department of Multimedia Science, Sookmyung Women’s University

53-12 Chungpa-Dong, Yongsan-gu, Seoul 140-742, Korea
{yhpark,yiyoon}@sm.ac.kr

Abstract. Character recognition has been an active research area in
the field of pattern recognition. The existing character recognition algo-
rithms are focused mainly on increasing the recognition rate. However,
as in the recent Google Library Project, the requirement for speeding
up recognition of enormous amount of documents is growing. Moreover,
the existing algorithms do not pay enough attention to Asian charac-
ters. In this paper, we propose an algorithm for fast recognition of Asian
characters based on the database methodologies. Since the number of
Asian characters is very large and their shapes are complicated, Asian
characters require much more recognition time than numeric and Ro-
man characters. The proposed algorithm extracts the feature from each
of Asian characters through the Discrete Fourier Transform (DFT) and
optimizes the recognition speed by storing and retrieving the features
using a multidimensional index. We improve the recognition speed of
the proposed algorithm using the association rule technique, which is a
widely adopted data mining technique. The proposed algorithm has the
advantage that it can be applied regardless of the language, size, and
font of the characters to be recognized.

Keywords: character recognition, Discrete Fourier Transform, multidi-
mensional index, association rule.

1 Introduction

Character recognition has been an active research area since 1980s in the field
of pattern recognition. Many character recognition algorithms have been imple-
mented for various applications including postal services, and many commercial
software packages have been released until recently.

The characters to be recognized can be categorized into two groups: printed
and handwritten characters [7,13]. The printed characters are those in printed
materials such as textbooks, magazines, and newspapers. A lot of research on
recognition of printed characters has been performed historically, and the recog-
nition rate on printed numbers and Roman characters reaches almost up to 100%.

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 37–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

38 W.-K. Loh, Y.-H. Park, and Y.-I. Yoon

The handwritten characters are those written by human hands. Since the vari-
ation in handwritten characters is more salient than the printed characters, the
recognition rate on the former is generally much lower than the latter. Although
the recognition rate on correctly handwritten characters reaches up to 90%, the
recognition on cursive and unsegmented characters is still a tough research issue.
The recognition process of printed characters consists of two phases [13]. In the
first phase, a template is generated for each of characters to be recognized by
extracting abstract feature from the shape of the character, and in the second
phase, given a scanned character as an input, a template with the closest feature
to the character is returned.

The existing character recognition algorithms in the pattern recognition field
are focused mainly on the correctness of recognition, but not on recognition
speed. The requirement on recognition speed was originated by the applications
that recognize enormous amount of documents. An example is Google Library
Project, which digitizes and recognizes the contents of books stocked in big li-
braries and provides the service of searching on the book contents [9]. Moreover,
the existing algorithms do not pay enough attention to Asian characters. In gen-
eral, different character recognition algorithms should be used depending on the
character set and the number, size, and font of the characters to be recognized.
Especially, the number of Asian characters is much more than Roman characters
and their shapes are much more complicated. For example, the number of all
Korean characters is as many as 11,172, and even the number of frequently used
ones goes up to 2,350 [12].

In this paper, we propose an algorithm for fast recognition of printed Asian
characters based on the database methodologies. The proposed algorithm ex-
tracts the feature from each Asian character through the Discrete Fourier Trans-
form (DFT) [1,15], and optimizes recognition speed by storing and retrieving the
features in a multidimensional index [3,5]. We improve the recognition speed of
the proposed algorithm using the association rule technique [2], which is a widely
adopted data mining technique. In the proposed algorithm, an association rule
is a pattern of character sequence that frequently appears in a document, and
is used to improve the recognition speed by reducing the number of unneces-
sary feature comparisons. The proposed algorithm has the advantage that it
can be applied regardless of the language, size, and font of the characters to be
recognized.

This paper is organized as follows. In Section 2, we briefly describe previous
related work. In Section 3, we explain in detail about the proposed algorithm. In
Section 4, we perform experiments to evaluate the performance of the proposed
algorithm. Finally, we conclude this paper in Section 5.

2 Related Work

The algorithms for printed character recognition generate a template for each
character to be recognized by extracting abstract feature from the shape of the
character [13]. Since the performance of the algorithms is highly dependent on

Fast Recognition of Asian Characters Based on Database Methodologies 39

S
1

S
2

S
3

S
1

S
2

S
3

S
3

S
2

S
1

S
3

S
2

S
1

(a) Example 1. (b) Example 2.

Fig. 1. Component Segmentation of Korean Characters

the feature, a lot of research on the features such as moment invariants [4] has
been performed. However, the features were focused on improving the correctness
of recognition, but not on the speed. The algorithm proposed in this paper uses
the feature based on the DFT for fast character recognition.

The number of Asian characters such as Korean, Chinese, and Japanese char-
acters is much larger and their shapes are much more complicated than Roman
characters. Hence, the algorithms for recognizing Roman characters are far from
sufficient for recognizing Asian characters. Due to the complicated shapes of
Asian characters, many algorithms for recognizing them first segment a charac-
ter into a few components and then integrate the recognition result for each of
the components [7,16]. For example, a Korean character can be segmented into
three components: initial, medial, and final sounds. The segmentation approach
does make sense since the total number of components is much smaller than
the number of all characters and the shapes of components are much simpler
than the characters. For example, while the number of all Korean characters is
11,172, the total number of initial, medial, and final sounds is as small as 67
(= 19 + 21 + 27).

However, the approach has a few severe problems as follows. First, it is very
hard to segment an Asian character into components. Figure 1 shows two Korean
character examples segmented into three components, which are represented as
S1, S2, and S3. As shown in the figure, since the sizes and positions of compo-
nents vary with characters, the segmentation itself is prone to error and can be
a reason for degrading recognition speed and correctness. Second, even a recog-
nition error on a component can lead to a recognition error of a whole character.
Supposing the recognition rate for a component is 95%, then the recognition rate
for a Korean character is about 86% (= .95× .95× .95). For Chinese characters
consisting of more components, the recognition rate would be even worse. Third,
it is almost impossible that a segmentation algorithm for a language is applied
to other languages. For example, the segmentation algorithm for Korean char-
acters cannot be used for Chinese characters. The proposed algorithm processes
a character as a whole without segmentation, and thus can be used regardless
of languages.

40 W.-K. Loh, Y.-H. Park, and Y.-I. Yoon

In [1], a one-dimensional time-series of length n was mapped to an n-dimen-
sional vector and transformed into an f -dimensional (f � n) vector through the
DFT for efficient indexing and retrieval. While only one-dimensional time-series
were handled in [1], the proposed algorithm handles two-dimensional characters.
In [14], an algorithm using Harr Discrete Wavelet Transform (DWT) was pro-
posed for similarity search in two-dimensional image databases. Since the DFT
can be used for any length that is not a power of two, the proposed algorithm
chooses the DFT rather than the DWT for extracting features for character
recognition.

They might consider the algorithms based on neural networks [6] or Hidden
Markov Models (HMM) [8] for recognizing printed Asian characters. Since the
number of Asian characters is very large and their shapes are complicated, the
neural network-based algorithms have the following problems. First, the learning
step of the algorithms requires very long time, and thus it is very hard to opti-
mize the network. Second, the network for recognizing Asian characters should
be much more complicated than Roman characters, and thus it can cause degra-
dation of recognition speed and/or correctness. Third, even though the recogni-
tion rate is not satisfactory, it is very hard to find the precise reasons and to fix
them. Actually, there is no guarantee that the recognition rate of neural network-
based algorithms is higher than feature extraction-based algorithms. The HMM
is used mostly in the applications with temporal aspects such as speech recogni-
tion and natural language processing, and is good for recognizing handwritten
characters. However, the number of states of the HMM for recognizing Asian
characters should be much larger than Roman characters, and thus it can also
cause degradation of recognition speed and/or correctness.

3 The Proposed Algorithm

In this section, we explain in detail about the proposed algorithm for fast recog-
nition of Asian characters. First, we define the similarity between characters, and
explain the method for extracting features from the characters. Next, we describe
the method to store and retrieve the extracted features in an index. Finally, we
improve the recognition speed of the algorithm more based on association rules.

In this paper, a character is represented by a two-dimensional bitmap function
c(x, y). The ranges of x and y are the horizontal and vertical lengths of the
rectangle containing the character, respectively (0 ≤ x < w, 0 ≤ y < h). For any
two characters c1(x, y) and c2(x, y), the similarity between them is defined as
the two-dimensional Euclidean distance between two bitmaps as the following:

Definition 1. The similarity D(c1, c2) between any two characters c1(x, y) and
c2(x, y) is defined as follows:

D(c1, c2) =
√ ∑

0≤x<w

∑
0≤y<h

(c1(x, y) − c2(x, y))2 . (1)

The smaller D(c1, c2) value indicates the higher similarity between two charac-
ters c1 and c2. �

Fast Recognition of Asian Characters Based on Database Methodologies 41

The character recognition algorithm proposed in this paper can be summarized
as follows. The proposed algorithm generates a template bitmap function t(x, y)
for each of characters to be recognized and stores the template with the charac-
ter’s unique code. Given a scanned character c(x, y) as an input, the proposed
algorithm returns the most similar template t (∈ T), which satisfies the following
equation:

t = {t | ∀t′ ∈ T , D(t, c) ≤ D(t′, c)} , (2)

where T is the set of all templates. Every template t in the template set T and
the given character c have the same horizontal and vertical lengths.

A naive approach of the sequential scan compares all the templates one by
one with the given character, which would take too much time. For example,
for recognizing Korean characters, whose number is 2,350 ∼ 11,172, it might
take almost a second to recognize two or three characters. To tackle the prob-
lem, we use a multidimensional index such as the R*-tree [3]. A character can
be mapped to a wh-dimensional vector and then stored in the index. However,
this approach also has a problem that the performance of retrieving a multidi-
mensional index would be significantly degraded by managing high dimensional
data. The performance could be even worse than the sequential scan1.

For solving the problem, we transform the templates into f -dimensional vec-
tors through the DFT and store them in an f -dimensional index. In [1], a one-
dimensional time-series of length n was transformed to an f -dimensional (f � n)
feature vector through the DFT. The DFT has the following property2:

D(v1, v2) = D(V1, V2) , (3)

where v1 and v2 are one-dimensional vectors of length n, and V1 and V2 are
the DFT-transformed vectors for v1 and v2, respectively. While V1 and V2 have
lengths n as well as v1 and v2, most of elements in V1 and V2 are very close to
0. Let V ′

1 and V ′
2 be f -dimensional vectors consisting of f elements that are not

close to 0 in V1 and V2, respectively. Then we get the following equation [1]:

D(v1, v2) ≥ D(V ′
1 , V ′

2) , (4)

We show that the properties in Eq. (3) and (4) also hold for two-dimensional
DFT in Lemmas 1 and 2. Before showing that, we briefly summarize the process
of two-dimensional DFT on a two-dimensional function c(x, y). First, for each
row c(., y) (0 ≤ y < h) in c(x, y), the one-dimensional DFT is performed. Let
c′(x, y) be the two-dimensional function obtained through the process. Next,
for each column c′(x, .) (0 ≤ x < w) in c′(x, y), the one-dimensional DFT
is performed. The final two-dimensional function C(x, y) is the result of two-
dimensional DFT on c(x, y).
1 In general, the cost for retrieving a multidimensional index increases exponentially as

the data dimension increases. This phenomenon is called high dimensionality problem
or high dimensionality curse [5].

2 The property is called Parceval’s Theorem.

42 W.-K. Loh, Y.-H. Park, and Y.-I. Yoon

Lemma 1. Any two-dimensional functions c1(x, y) and c2(x, y), and their two-
dimensional DFT-transformed results C1(x, y) and C2(x, y) satisfy the following:

D(c1, c2) = D(C1, C2) , (5)

where D() is the distance between two-dimensional functions given in Eq. (1).

Proof: Let c′1(x, y) be the result of one-dimensional DFT on each of rows
c1(., y) (0 ≤ y < h) in a two-dimensional function c1(x, y), and let c′2(x, y)
be the result obtained with the same transform on c2(x, y). By Eq. (3), we get
the following:

∀y(0 ≤ y < h), D(c1(., y), c2(., y)) = D(c′1(., y), c′2(., y)) .

Since the distance between the corresponding rows is unchanged before and after
the DFT, the following holds for two-dimensional functions c1 and c2:

D(c1, c2) = D(c′1, c
′
2) . (6)

Let C1(x, y) be the result of one-dimensional DFT on each of columns c′1(x, .) (0 ≤
x < w) in a two-dimensional function c′1(x, y), and let C2(x, y) be the result
obtained with the same transform on c′2(x, y). C1 and C2 are the result of two-
dimensional DFT on c1 and c2, respectively. By Eq. (3), we get the following:

∀x(0 ≤ x < w), D(c′1(x, .), c′2(x, .)) = D(C1(x, .), C2(x, .)) .

Since the distance between the corresponding columns is unchanged before and
after the DFT, the following holds for two-dimensional functions c′1 and c′2:

D(c′1, c
′
2) = D(C1, C2) . (7)

By combining Eq. (6) and (7), we get Eq. (5) shown above. �
Lemma 2. Let C1(x, y) and C2(x, y) be the result of two-dimensional DFT on
two-dimensional functions c1(x, y) and c2(x, y), respectively. Let C′

1(x, y) and
C′

2(x, y) be two-dimensional functions obtained by substituting all the elements
in C1(x, y) and C2(x, y) with 0 except f elements whose absolute values are the
largest among the entire elements. Then, we get the following equation:

D(c1, c2) ≥ D(C′
1, C

′
2) , (8)

where D() is the distance between two-dimensional functions given in Eq. (1).

Proof: D(C1, C2) can be expressed as the following according to Eq. (1):

D(C1, C2) =
√ ∑

0≤x<w

∑
0≤y<h

(C1(x, y) − C2(x, y))2 .

Since D(C′
1, C

′
2) is the result of substituting (wh−f) terms in square root above

with 0 and every remaining term is positive, we get the following:

D(C1, C2) ≥ D(C′
1, C

′
2) . (9)

By combining Lemma 1 and Eq. (9), we get Eq. (8) shown above. �

Fast Recognition of Asian Characters Based on Database Methodologies 43

The proposed algorithm performs the two-dimensional DFT on the template
function t(x, y) for each of characters to be recognized, and obtains T ′(x, y)
by keeping only f elements that have the largest absolute values. The f ele-
ment values are called feature values in this paper. The algorithm extracts f
feature values from the same (x, y) positions in every template function. An f -
dimensional feature vector is generated using the feature values and is stored
in an f -dimensional index. The index storing the f -dimensional feature vectors
is called the template index in this paper. Given a scanned character c(x, y) as
an input, the proposed algorithm performs the same transform with the tem-
plates on the character c. The algorithm transforms c(x, y) into an f -dimensional
feature vector C′ and retrieves the template index using the feature vector C′.
Although D(c1, c2) is always larger than D(C′

1, C
′
2) according to Lemma 2, the

ratio between them is not proportional. Hence, we perform the range search
[11] on the template index. The threshold ε for the range search is obtained as
follows:

ε = max{D(C′, T ′)} , (10)

where C′ is the f -dimensional feature vector transformed from a character c, and
T ′ from the template t of the same character c. Let TC be the set of candidate
templates returned by the range search on the template index. The proposed
algorithm compares each of candidate templates one by one with the scanned
character, and returns the template t (∈ TC) with the smallest distance from
the scanned character, which satisfies the following equation:

t = {t | ∀tC ∈ TC , D(t, c) ≤ D(tC , c)} . (11)

Since the proposed algorithm does not use any information on a specific lan-
guage, it can be widely applied for any languages. For example, several Asian
characters such as Korean, Chinese, and Japanese characters can be managed
at the same time using only one template index. In such an application, since
the number of characters managed by the algorithm can increase considerably,
the distance between the closest template t and the second closest template t2
might be very small and thus recognition result could be incorrect. For solving
the problem, a template index of higher dimension should be constructed so
that the inter-template distances should be enlarged. The proposed algorithm
also supports multi-fonts of a language. For different fonts of the same character,
the algorithm manages a separate template for each of the fonts, and stores all
the templates for the same character in the same template index along with font
information. If the documents to be recognized contain characters of only one
font, a separate template index can be constructed for each of different fonts.

Since the algorithm proposed in this paper defines the similarity between
a scanned character and a template as the Euclidean distance between two-
dimensional bitmap functions as in Definition 1, the correctness of the algorithm
is sensitive to displacement of the scanned character. Even when the scanned
character is shifted from the template by a few pixels either horizontally or ver-
tically, the distance between them can be largely increased, since the shapes of

44 W.-K. Loh, Y.-H. Park, and Y.-I. Yoon

Asian characters are complicated. The displacement can be caused by the noise
generated while scanning, and may severely harm the correctness of character
recognition. For solving the displacement problem, the proposed algorithm mea-
sures the distance between a scanned character and a template after aligning
their centers of mass (or centers of gravity) [10]. The center of mass (xC , yC)
of a character c(x, y) can be computed using the following equation:

xC =

∑
0≤x<w

(
x ·

∑
0≤y<h c(x, y)

)
∑

0≤x<w

∑
0≤y<h c(x, y)

,

yC =

∑
0≤y<h

(
y ·

∑
0≤x<w c(x, y)

)
∑

0≤x<w

∑
0≤y<h c(x, y)

. (12)

In the rest of this section, we explain the method to improve the recognition
speed of the proposed algorithm based on association rule technique [2]. In gen-
eral, an association rule is represented in the form of ‘A ⇒ B,’ where A and B
are the sets of one or more objects or items. The meaning of an association rule
A ⇒ B is that, if the items in A appear in a transaction, the items in B are also
likely to appear in the same transaction. In Market Basket Analysis, which is a
representative application of association rule technique, if a customer purchases
the items in A in a market such as Wal-Mart, it is highly probable that the
customer also purchases the items in B at the same time. By adopting the tech-
nique in character recognition, if the character sequence in A is recognized, we
can predict that the next character sequence would be B. Although association
rule technique has no limitation on the number and order of items in A and B,
we assume in this paper that there exists an order among n (≥ 1) characters in
A, and that there is only one character in B. Hence, an association rule in this
paper is represented as ‘A ⇒ b,’ where b is a character.

There are two measures of interestingness for finding association rules A ⇒ B:
support and confidence. The support is the percentage of the number of trans-
actions containing A ∪ B divided by the number of the entire transactions; the
confidence is the percentage of the number of transactions containing B divided
by the number of the transactions containing A. In this paper, support and con-
fidence are defined as follows. The support is defined as the percentage of the
number of character sequences A ∪ b divided by the number of the entire char-
acter sequences of length (n + 1) in a document. Any space and punctuations
are ignored between characters. The confidence is the percentage of the number
of character sequences that end with b divided by the number of character se-
quences that start with A. We deal with only the character sequences of length
(n + 1). In many cases, the confidence is set as 60 ∼ 80%. The support and
confidence in this paper can be represented as follows:

support(A ⇒ b) = P (A ∪ b) ,

confidence(A ⇒ b) = P (b|A) . (13)

The character recognition algorithm based on association rules consists of two
phases as follows. In the first phase, after recognizing a scanned character b given

Fast Recognition of Asian Characters Based on Database Methodologies 45

as an input, if there exist association rules A ⇒ b containing the character b in
right hand side, the distance d = D(tb, b) computed using Eq. (1) is stored in the
template index along with the template tb for b. If a distance d′ is already stored
in the template index along with tb, the larger one between d and d′ replaces the
existing distance in the template index. The first phase is performed on part of
the documents to be recognized and the second phase is performed on the rest
of the documents. In the second phase, if there exists an association rule A ⇒ b
where the character sequence A consists of n characters recognized most recently,
we can predict the next character to recognize should be b. If there exists the
template tb for the character b in the set TC of candidate templates tC obtained
by performing the range search on the template index, the template tb becomes
the first template to be compared with the scanned character c. If the distance
D(tb, c) is less than or equal to the distance d stored in the template index along
with the template tb, we recognize the scanned character c as b. If there exists
no such template tb in TC or the distance D(tb, c) is larger than d, the proposed
algorithm compares c with every candidate template tC in TC , and returns a
template t satisfying Eq. (11). Since the proposed algorithm reduces the number
of bitmap comparisons by skipping comparisons between the scanned character c
and every candidate template tC other than tb in TC based on association rules,
it improves the speed of character recognition.

4 Performance Evaluation

In this section, we measure the execution time and recognition rate of the pro-
posed algorithm while changing parameters such as search threshold ε and fea-
ture dimension f . The hardware platform for the experiments is a PC equipped
with Intel Pentium 4 2.0GHz CPU, 1GB RAM, and 80GB hard disk, and the
software platform is Microsoft Windows XP Service Pack 2. We used the R*-tree
[3] as a multidimensional index for storing templates. We scanned Chapter One
of ‘The Lord of the Rings’ Korean version, which contains more than 20,000
characters, as a document to be recognized.

In the first experiment, we executed the proposed algorithm for parameter
combinations of thresholds ε = 10000, 20000, . . . , 80000 and feature dimensions
f = 2, 4, 6, and 8, and measured execution time and recognition rate. Figure 2
shows the result of the first experiment. In Figures 2(a) and 2(b), the horizontal
axis represents threshold ε, and the vertical axis execution time (in seconds) and
recognition rate (%), respectively. As shown in Figure 2(a), since the size of the
set TC of candidate templates increases as ε increases, the execution time also
increases. Since the distance between templates in the template index increases
as f increases, the size of TC is reduced for a fixed ε, and thus the execution
time decreases. As shown in Figure 2(b), the recognition rate also increases as
ε increases. The reason is that, when ε gets larger, it is more probable that
the template corresponding to the scanned character is contained in TC . In the
experiment, we obtained recognition rate of more than 90% with the threshold
of higher than 50,000.

46 W.-K. Loh, Y.-H. Park, and Y.-I. Yoon

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

1 2 3 4 5 6 7 8

Epsilon (x10000)

E
x
e
c
u
t
io

n
 T

im
e
 (

s
e
c
)

f = 2
f = 4
f = 6
f = 8

(a) Execution Time.

0.0

20.0

40.0

60.0

80.0

100.0

1 2 3 4 5 6 7 8

Epsilon (x10000)

R
e
c
o
g
n
it
io

n
 R

a
t
e
 (

%
)

f = 2
f = 4
f = 6
f = 8

(b) Recognition Rate.

Fig. 2. Result of First Experiment: Comparison of Execution Time and Recognition
Rate While Changing the Combination of Thresholds and Feature Dimensions

In the second experiment, we measured the ratio of improvement in recogni-
tion speed of the proposed algorithm based on association rules. As in the first
experiment, we used the same parameter combinations of thresholds ε = 10000,
20000, . . . , 80000 and feature dimensions f = 2, 4, 6, and 8. The support and
confidence for finding association rules were set as 0.1% and 60%, respectively.
Figure 3 shows the result of the second experiment. In the figure, the horizontal
axis represents threshold ε, and the vertical axis the improvement ratio (%). As
shown in Figure 3, the improvement ratio increases as ε increases. The reason is
that, since the size of the set TC of candidate templates increases as ε increases,
the number of candidate templates not to be checked based on association rules
also increases. The improvement ratio based on association rules is closely re-
lated with recognition rate. If the character sequence A in an association rule

Fast Recognition of Asian Characters Based on Database Methodologies 47

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 3 4 5 6 7 8

Epsilon (x10000)

I
m

p
r
o
v
e
m

e
n
t
 R

a
t
io

 (
%

)

f = 2
f = 4
f = 6
f = 8

Fig. 3. Result of Second Experiment: Comparison of Execution Improvement Ratio
While Changing the Combination of Thresholds and Feature Dimensions

A ⇒ b cannot be correctly found due to low recognition rate, the association
rule cannot be applied for improving the recognition speed. The reason that the
improvement ratio goes higher than 10% even with much smaller support value
0.1% is that there are a large number of association rules satisfying the support.
There was almost no change in recognition rate after applying association rules.

As the result of our experiments, the proposed algorithm recognized about
500 characters per second with recognition rate of more than 90%. We tried
to compare the performance of the proposed algorithm with the commercial
software for Asian character recognition such as Readiris Pro for Windows3.
However, the recognition rate for Korean characters of the software was far
below expectation. In the worst case, the recognition rate was less than even
10%. Thus, we concluded it was meaningless to compare the proposed algorithm
with the commercial software.

5 Conclusions

In this paper, we proposed an algorithm for fast recognition of printed Asian
characters based on the database methodologies. Since the number of Asian
characters is very large and their shapes are complicated, Asian characters re-
quire much more recognition time than numeric and Roman characters. The
proposed algorithm extracts feature from each of Asian characters through the
DFT, and optimizes recognition speed by storing and retrieving the features in
a multidimensional index. The recognition speed of the proposed algorithm is
improved more based on association rule technique. The proposed algorithm has
the advantage that it can be applied regardless of the language, size, and font
of the characters to be recognized.

3 http://www.irislink.com/

48 W.-K. Loh, Y.-H. Park, and Y.-I. Yoon

Acknowledgement

This Research was supported by the Sookmyung Women’s University Research
Grants 2006.

References

1. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient Similarity Search in Sequence
Databases. In: Proc. Int’l Conf. on Foundations of Data Organization and Algo-
rithms (FODO), Chicago, Illinois, pp. 69–84 (October 1993)

2. Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets
of Items in Large Databases. In: Proc. Int’l Conf. on Management of Data, ACM
SIGMOD, Washington, D.C. pp. 207–216 (May 1993)

3. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An Efficient
and Robust Access Method for Points and Rectangles. In: Proc. Int’l Conf. on
Management of Data, ACM SIGMOD, pp. 322–331. Atlantic City, New Jersey
(May 1990)

4. Belkasim, S.O., Shridhar, M., Ahmadi, M.: Pattern Recognition with Moment
Invariants: a Comparative Study and New Results. Pattern Recognition 24(12),
1117–1138 (1991)

5. Berchtold, S., Keim, D.A., Kriegel, H.-P.: The X-tree: An Index Structure for
High-Dimensional Data. In: Proc. Int’l Conf. on Very Large Data Bases (VLDB),
Mumbai, India, pp. 28–39 (September 1996)

6. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1996)

7. Bunke, H., Wang, P.S.P.: Handbook of Character Recognition and Document Im-
age Analysis, World Scientific Publishing Company (1997)

8. Cho, W., Lee, S.-W., Kim, J.H.: Modeling and Recognition of Cursive Words with
Hidden Markov Models. Pattern Recognition 28(12), 1941–1953 (1995)

9. Google Book Search Library Project (2006) http://books.google.com/

googleprint/library. html

10. Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics, 7th edn. Wiley,
Chichester (2004)

11. Kamel, I., Faloutsos, C.: On Packing R-trees. In: Proc. Int’l Conf. on Information
and Knowledge Management (CIKM), Washington, D.C. pp. 490–499 (November
1993)

12. KS C 5601-1992, Code for Information Interchange (in Korean) (1992)
13. Mori, S., Nishida, H., Yamada, H.: Optical Character Recognition. Wiley, Chich-

ester (1999)
14. Natsev, A., Rastogi, R., Shim, K.: WALRUS: A Similarity Retrieval Algorithm

for Image Databases. IEEE Trans. Knowledge & Data Engineering (TKDE) 16(3),
301–316 (2004)

15. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes
in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cam-
bridge (1992)

16. Sim, D.-G., Ham, Y.-K., Park, R.-H.: On-Line Recognition of Cursive Korean Char-
acters Using DP Matching and Fuzzy Concept. Pattern Recognition 27(12), 1605–
1620 (1994)

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 49–57, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SPDBSW: A Service Prototype of SPDBS on the Web*

Tae-Sung Jung1 and Wan-Sup Cho2

1 Dept. of Information Industrial Engineering, Chungbuk National University, 361763
Cheongju, Chungbuk, Korea
mispro@chungbuk.ac.kr

2 Dept. of Management Information Systems, Chungbuk National University, 361763
Cheongju, Chungbuk, Korea
wscho@chungbuk.ac.kr

Abstract. As the amount of pathway information for various organisms is
increasing very rapidly, performing various analyses on the full network of
pathways for even multiple organisms can be possible and therefore developing
an integrated database for storing and analyzing pathway information is
becoming a critical issue. Until now analyzing these networks is not easy
because of the nature of the existing pathway databases, which are often
heterogeneous, incomplete, and/or inconsistent. We presented a database
system called SPDBS to solve this problem. However, application-oriented
systems like SPDBS have some limitations on the extension and integration of
the heterogeneous databases.

In this paper, we extend previous SPDBS into a web service prototype
(SPDBSW) where all functions can be serviced on the web environment. The
web services include pathway database integration/search, import/export of
SBML documents, pathway reconstruction/visualization. SPDBSW has been
implemented by the combination SPDBS and external web services such as
OLS, KEGG and NCBI. And user can get more confidential and delicate
information from KEGG or NCBI through their web services. The system can
be extended or modified immediately by replacing its component web services.
We provide SPDBSW at the website http://database.chungbuk.ac.kr/SPDBSW.

1 Introduction

Biochemical pathways can be viewed as interconnected processes including an
intricate network of interactions between molecular compounds in the cell[1]. There
are three kinds of biochemical pathways: metabolic, regulatory, or signal transduction
pathways[1]. Metabolic pathways are responsible for carrying out the chemical
reactions that provide basic biological functions (DNA, RNA, protein synthesis and
degradation, energy metabolism, fatty acid synthesis, and many others). Regulatory
pathways are responsible for converting genetic information into proteins (gene
products). Signal transaction pathways are concerned with coordinating metabolic

* “This work was supported by the Korea Research Foundation Grant funded by the Korean

Government(MOEHRD)" (The Regional Research Universities Program/Chungbuk BIT
Research-Oriented University Consortium).

50 T.-S. Jung and W.-S. Cho

processes with transcription and protein synthesis. Each of these pathways has been
kept in a separate (independent) database with distinct attributes even though they are
related each other.

Pathway databases contain data of biochemical pathways which consist of two
kinds of information: biochemical components (e.g., substrates, enzymes, products)
and their interactions [1]. Most existing pathway databases focus on specific types of
pathways rather than an integrated one: e.g., Transpath[2] for protein-DNA
interactions, KEGG for metabolic pathways, EcoCyc and MetaCyc[6] for E. coli and
other organisms’ metabolic pathways, BIND[2] for signal transduction pathways,
PathFinder[3], WIT[8], PathMAPA[9], BioJAKE[11], and MPW[12] for metabolic
pathways. Pathway databases raise many important and challenging computational
and bioinformatics issues, such as querying, navigation, and visualization of the
pathways; seamless integration/analysis of the heterogeneous pathway data
distributed in diverse sources.

We proposed the SPDBS [14] (SBML-based Biochemical Pathway Database
System: http://database.chungbuk.ac.kr/SPDBS/) for the integration and management
of heterogeneous biochemical pathways. Systems Biology Markup Language (SBML)
is an XML-based language for describing simulations in systems biology. The
language is oriented towards representing biochemical networks common in research
on a number of topics, including: cell signaling pathways, metabolic pathways,
biochemical reactions, gene regulation, and many others[4]. We developed an object
database for implementing SBML data model[4]. SPDBS provides dynamic pathway
reconstruction or estimation by using an orthologous database[7] for a genome
sequence data. However, it is impossible to integrate all of databases in the internet
and there are some limitations in the maintainability and extensibility.

Web services provide a standard means of interoperating between different
software applications, running on a variety of platforms and/or frameworks [18]. Web
services are characterized by their great interoperability and extensibility, as well as
their machine-processable descriptions thanks to the use of XML [18]. They can be
combined in a loosely coupled way in order to achieve complex operations [18].
Programs providing simple services can interact with each other in order to deliver
sophisticated added-value services [18]. For example, Google, a popular Internet
search engine, provides the web service called the Google Web API. The service
enables users to develop software that accesses and manipulates a massive amount of
web documents that are constantly refreshed. In the field of genome research, a
similar kind of web service called DAS [17] (distributed annotation system) has been
used on several web sites, including Ensembl, Wormbase, Flybase, SGD and TIGR
[17]. And some of the conventional systems such as KEGG, NCBI and GeneCruiser
are providing the web service already.

In this paper, we propose a service prototype (SPDBSW) which integrates the
functions of SPDBS and external systems such as KEGG and NCBI by using web
services. Many well-known bioinformatics databases, such as OLS (Ontology Lookup
Service) [10], KEGG, NCBI, EMBL, and DDBJ, provide web services to the users.
SPDBSW provides the functions of SPDBS on the web and other functions of
external web services. At the result, it allows to integrate data from external database
such as KEGG, MetaCyc using SBML with semantic lookup service of OLS,
reconstruction of metabolic pathway for protein sequences and visualization of the

 SPDBSW: A Service Prototype of SPDBS on the Web 51

result pathway on the web. In addition, it provides the retrieval service from KEGG
and NCBI on the same environment. The proposed system is more flexible in the
extensibility. In other words, SPDBSW can be integrated with another web services.
Also, SPDBSW provides more interactive and refreshness user interface which was
involved Ajax development method.

The paper is organized as follows. In Section 2, we present related work. In Section
3, we describe the service architecture of the SPDBSW. In Section 4, we present the
special features of SPDBSW in detail. In Section 5, we conclude our paper.

2 Related Work

In this section, we discuss technical environments in developing SPDBSW. We first
describe Ajax, web service, and SPDBS in detail. We then introduce external web
services such as KEGG, NCBI, and GeneCruiser which are invoked in the SPDBSW.

2.1 Ajax and Web Service [5,16]

The traditional web application works as follows [5]: Most user actions in the
interface trigger an HTTP request back to a web server. The web server does some
processing such as retrieving data, talking to various legacy systems and then returns
an HTML page to the user-side. This approach makes a lot of technical sense, but it
doesn’t make for a great user experience [5]. While the server is doing some things,
users have to wait. And the users have to wait some more at every step in a task.
Figure 1 show the difference of the traditional web application mode and the Ajax
model[5].

Fig. 1. Comparison of classic web application model and the Ajax model [5]

52 T.-S. Jung and W.-S. Cho

But with Ajax, instead of loading a webpage the browser loads an Ajax engine at
the start of the session. This Ajax engine is responsible for both rendering the user
interface and communicating with the web server. The Ajax engine allows the user’s
interaction with the application asynchronously; communicate with the web server
independently. So the user is never waiting around for the server to do something.

And web service technique is a base technique for SOA(Service-Oriented
Architecture)[16]. SOA is an integrated software infrastructure and design approach
to the development and integration of service-oriented applications. The concept of
service orientation has been around for some time, based on the use of earlier forms
of technology, such as message-oriented middleware (MOM), CORBA, and more
recently, integration platform solutions. The most significant new enabler of SOA is
the maturation of Web services standards that provide another, more flexible and open
way of implementing service-oriented applications [16].

2.2 SPDBS (SBML-Based Biochemical Pathway Database System)[14]

SPDBS is an integrated biochemical pathway analysis system developed by
Chungbuk National University. SPDBS consists of several databases and tools. The
databases include a sequence database for 88 species, an orthologos database
extracted from KO[7], a biochemical pathway database (which contains about 13,000
pathways information from KEGG), and the ontology database from GO (Gene
Ontology). In addition, SPDBS includes a pathway reconstruction system (PRS), an
SBML management system(SMS)[13], and a visualization system.

2.3 External Web Services: OLS, KEGG, NCBI and GeneCruiser

The OLS (Ontology Lookup Service: http://www.ebi.ac.uk/ontology-lookup/) was
developed for the integration of available biomedical ontologies into a single database
and a programmatic interface is available to query the webservice using SOAP. The
service is described by a WSDL descriptor file available online. All OLS source code
is available under the open source Apache Licence.

The web service of NCBI provides a retrieval service for Entrez, and can download
information from NCBI web site (http://www.ncbi.nlm.nih.gov/entrez/query/static/
esoap_help.htm). E-Utilities is one of the web services which provides 15 methods to
search from many databases. And user can get some data from all of KEGG's
databases through the web service of KEGG. KEGG provides 60 web service
methods to the users. Figure 2 shows a part of the web service methods provided by
NCBI and KEGG.

One of the representative biological information analysis systems which based on
web service technique is GeneCruiser [15]. GeneCruiser provides a web application
and a web service for microarray analysis. GeneCruiser is freely available in
http://genecruiser.org. GeneCruiser is a system allowing users to annotate their
genomic data by mapping microarray feature identifiers to gene identifiers from
databases, such as UniGene, while providing links to web resources [15].

 SPDBSW: A Service Prototype of SPDBS on the Web 53

Fig. 2. A part of the web service methods from NCBI and KEGG

3 SPDBSW: SPDBS on the Web

In this section, we will describe the service architecture and prototype of SPDBSW.
Figure 3 show the service architecture of SPDBSW. As shown in the figure, SPDBS
is the core module for the web service. Several functions of SPDBS have been

Fig. 3. Architecture of SPDBSW

54 T.-S. Jung and W.-S. Cho

published as web service. The web service pool contains the external web service
such as KEGG and NCBI. In SPDBSW, various biological information analysis
processes can be done by the combination of the internal or external web services.

We constructed a local pathway database from KEGG database [5] and the
MetaCyc [6] database. But these databases may use different terminology (i.e.,
synonym) for the same information. Figure 4 shows two terminologies in the different
SBML documents. These synonym terminologies should be converted into the
standardized ones according to the gene ontology before the database construction
and querying to database. Without this process, the result database may have severe
duplication, which brings data inconsistency. To solve this problem, we use the gene
ontology database from GO consortium. An important problem in using GO database
is refreshment problem. Since all modified ontologies of GO are updated weekly, we
should update our gene ontology database synchronously. Web service of OLS solves
this refreshment problem. In SPDBSW, OLS web service has been adopted for the
ontology refreshment.

Fig. 4. An example of synonym between SBML documents

Figure 5 shows a sample web service provided by SPDBSW. The service
reconstructs metabolic pathway on the web from a genome sequence. The progress of
the service is as follows. The first web service is the invocation of the BLAST web
service. The next one is Orthologos web service. And the last one is the pathway
database web service. Figure 5 shows the results from SPDBS web service.

An important advantage of the system is easier integration of the web services
from different systems. For example, SPDBSW can be integrated with the web
services from external systems such as KEGG and NCBI. As a result, user can utilize
the services from KEGG and NCBI simultaneously on the same web environment
(SPDBSW). In the Figure 3, we can see the results from various systems: (a) from
SPDBS, (b) and (d) from KEGG, and (c) from NCBI. Note that Figure 3(c) shows the
list of article's ID of PubMed which related to EC-NUMBER ‘5.3.1.9’.

 SPDBSW: A Service Prototype of SPDBS on the Web 55

Fig. 5. A integrated service prototype using Web services

However, a fundamental problem of web based user interfaces is the slow response
time when some item on a page has to be updated. Usually, the whole page needs to
be reloaded. To solve this problem we involved the Ajax which recently developed
web development method [8]. Ajax allows transferring data between the client side
and server side asynchronously in the background using XMLHttpProtocol. For
example, the service of pathway reconstruction needs several processes. These
processes take about 5~10 seconds in usually. In worst case, it may take about 1
minute. In this condition, SPDBSW users can enjoy other services such as retrieval
service, SBML service, and visualization service while progressing pathway
reconstruction.

56 T.-S. Jung and W.-S. Cho

4 Special Features

4.1 Web Service and Integration

Conventional biological information systems and databases were constructed by each
specific purpose usually. But these systems should be integrate for more efficient and
various analysis. Unfortunately, physically integration of these systems is impossible
because of these systems are heterogeneous and distributed as we know. The web
service is base technique of SOA (Service Oriented Architecture). It provides a basis
to integrate the numerous existing applications more flexibly. Especially, the web
service make possible to exchange information and data integration between the
variety systems through XML (Web service using SOAP based on XML). SPDBSW
was developed based on web service technique. SPDBSW consists of several web
services of SPDBS and external systems such as blast, orthologs search, database
retrieval and ontology lookup. From this prototype, we can integrate heterogeneous
and distributed systems at the service level. But there are reminded some problems
such as semantic inconsistencies, syntactic inconsistencies and language differences.

4.2 Development of New Service

This approach makes able to develop new biological service through the combination
of legacy system and external systems. For example, it allows to makes new service
to estimate a metabolic pathway for FASTA sequence through the combination of the
pathway reconstruction service in SPDBS and the sequence annotation system. This
kind of service will be very useful to biologists.

4.3 Interactive and Refreshness User Interface

While the server is doing some things, users have to wait in traditional web
applications. But, SPDBSW was implemented using Ajax development method which
one of the method in web 2.0 paradigm. Web 2.0 paradigm appeared for more
interactive interaction with user on the web asynchronously. Ajax use
XMLHttpProtocol which support the information exchanging between user and
server-side with XML. So we can provide all of service on the only one web page
without refreshing/reloading. In other words, users don’t have to wait anymore while
the server doing something.

5 Conclusions and Future Work

Web services describes a standardized way of integrating Web-based applications
using the XML, SOAP, WSDL and UDDI open standards over an Internet protocol
backbone. Web services allow organizations to communicate data without intimate
knowledge of each other's IT systems behind the firewall. Because of this level of
application integration (service level integration), Web services have grown in
popularity and are beginning to improve business processes.

SPDBSW has been devised for the integration of numerous biological information
systems at the service level. The system integrates not only the service functions of

 SPDBSW: A Service Prototype of SPDBS on the Web 57

SPDBS but also those of external systems such as KEGG and NCBI. Of course, the
system adds or replaces new services without modification of the current system.
SPDBWS shows service results from several systems on a web page by using Ajax
and web services. We ensure that SPDBSW will become a basis to develop a new
biological information analysis service.

In the future, we will develop complex biological business processes using the web
services provided by the local or global systems. BPM and SOA will be the core
technology for the development of the biological business process management.

References

[1] Deville, Y., et al.: An overview of data models for the analysis of biochemical pathways.
Briefings in Bioinformatics 4(3), 246–259 (2003)

[2] Schacherer, F., et al.: The TRANSPATH signal transduction database: a knowledge base
on signal transduction networks. Bioinformatics 17(11), 1053–1057 (2001)

[3] Goesmann, A., et al.: PathFinder: reconstruction and dynamic visualization of metabolic
pathways. Bioinformatics 18, 124–129 (2002)

[4] Hucka, M., et al.: The Systems Biology Markup Language (SBML): A Medium for
Representation and Exchange of Biochemical Network Models. Bioinformatics 19(4),
524–531 (2003)

[5] Garrett, J. J.: AJAX: A new approach to web applications (February 18, 2005)
http://www.adaptivepath.com/publications/essays/archives/000385.php

[6] Karp, P.D., et al.: The MetaCyc database. Nucleic Acids Res. 30, 59–61 (2000)
[7] Oh, J.S., et al.: Othologous Group Clustering System based on the Grid Computing. In:

Proc. of the International Joint Conference on InCoB, AASBi, and KSBI (BioInfo 2005),
pp. 72–77 (2005)

[8] Overbeek, R., et al.: WIT: integrated system for high throughput genome sequence
analysis and metabolic reconstruction. Nucleic Acids Res. 28, 123–125 (2000)

[9] Pan, D., et al.: PathMAPA: a tool for displaying gene expression and performing
statistical tests on metabolic pathways at multiple levels for Arabidopsis. BMC
Bioinformatics 4, 56 (2003)

[10] Cote, R.G., et al.: The Ontology Lookup Service, a lightweight cross-platform tool for
controlled vocabulary queries. BMC Bioinformatics, 7(97) (2006)

[11] Salamonsen, W., et al.: BioJAKE: a tool for the creation, visualization and manipulation
of metabolic pathways. In: Proc. Pac. Symp. Biocomput. pp. 392–400 (1999)

[12] Selkov, E., et al.: MPW: the Metabolic Pathways Database. Nucleic Acids Res. 43–45
[13] Jung, S.-H., Jung, T.-S., et al.: An Efficient Storage Model for the SBML Documents

Using Object Databases. In: Dalkilic, M.M., Kim, S., Yang, J. (eds.) VDMB 2006. LNCS
(LNBI), vol. 4316, pp. 94–105. Springer, Heidelberg (2006)

[14] Jung, T.-S., et al.: SPDBS: An SBML based Biochemical Pathway Database Systems. In:
Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS (LNBI), vol. 4115, pp. 543–
550. Springer, Heidelberg (2006)

[15] Liefeld, T., et al.: GeneCruiser: a web service for the annotation of microarray data.
Bioinformatics 21(18), 3681–3682 (2005)

[16] Vollmer, K., et al.: Integratio. In: A Service-Oriented World. Forrester Research (2004)
[17] DAS: The Distributed Annotation System, http://biodas.org/
[18] Web service. http://www.w3.org/2002/ws/Activity

Indexing and Searching XML Documents Based

on Content and Structure Synopses

Weimin He, Leonidas Fegaras, and David Levine

University of Texas at Arlington, CSE
Arlington, TX 76019-0015

{weiminhe,fegaras,levine}@cse.uta.edu

Abstract. We present a novel framework for indexing and searching
schema-less XML documents based on concise summaries of their struc-
tural and textual content. Our search query language is XPath extended
with full-text search. We introduce two novel data synopsis structures
that correlate textual with positional information in an XML document
and improves query precision. In addition, we present a two-phase con-
tainment filtering algorithm based on these synopses that improves the
searching process. Our experimental evaluation shows that our data syn-
opses indexing scheme outperforms the standard XML indexing scheme
based on inverted lists; the query evaluation based on our data synopses is
more accurate than related approximate approaches that do not consider
positional information; our two-phase containment filtering algorithm is
more efficient than a single-phase brute force algorithm.

1 Introduction

As XML has become the de facto form for representing and exchanging data,
there is an increasing interest in indexing and searching text-centric XML docu-
ments. Recently, XML query languages, such as XPath and XQuery, have been
extended with full-text search capabilities. These queries are potentially more
precise than simple IR-style keyword-based queries, not only because each search
keyword can be associated with a structural context, which is typically the path
to reach the keyword in a document, but structural constraints can also be used
to specify the structural relationship between multiple search keywords.

Consider, for example, the running query Q used throughout the paper:

//auction//item[location ~ "Dallas"]
[description ~ "mountain" and "bicycle"]/price

against a pool of indexed XML documents. It searches for the prices of all auc-
tion items located in Dallas that contain the words “mountain” and “bicycle” in
their description. When searching for documents that satisfy this query, we do
not want to waste any time by considering those that do not match the struc-
tural constraints of the query or those that do not contain the search keywords
at relative positions as specified by the structural relationships in the query. For

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 58–69, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Indexing and Searching XML Documents 59

example, we do not want to consider a document that, although has items lo-
cated in Dallas, none of these items has both “mountain” and “bicycle” in their
descriptions, even though there may be other items in this document, which are
not located in Dallas but have both “mountain” and “bicycle” in their titles.

Current XML indexing techniques, such as [6], combine structure indexes and
inverted lists extracted from XML documents to fully evaluate a full-text query
against these indexes and return the actual XML fragments that answer the
query. This is accomplished by performing containment joins over the sorted
inverted lists derived from the element and keyword indexes. Since all elements
and keywords have to be indexed, such indexing schemes may consume a con-
siderable amount of disk space and may be time-consuming to build. More im-
portantly, the query evaluation based on these indexes may involve many joins
against very long inverted lists that may consider many irrelevant documents at
the early stages. Although many sophisticated techniques have been proposed
to improve these joins by skipping the irrelevant parts of these lists, it is still an
open research problem to make them effective for a large document pool.

In this paper, we present a new framework for indexing and searching schema-
less XML documents based on condensed summaries extracted from the struc-
tural and textual content of the documents. Instead of indexing each single
element or term in a document, we extract a structural summary and a small
number of data synopses from the document, which are indexed in a way suit-
able for query evaluation. The result of a query evaluation is a list of document
locations that best match the query. A document location includes meta infor-
mation about the document, such as the document URL, structural summary,
and description. Based on the retrieved meta information, the client can choose
some of the returned document locations and request a full evaluation of the
query over the chosen documents using any existing XML query engine and re-
turn the XML fragments as query answers. To find all indexed documents that
match the structural relationships in a query, the query footprint is extracted
from the query and is converted into a pipelined plan to be evaluated against
the indexed structural summaries. The resulting document locations that match
the query footprint are further filtered out using the data synopses associated
with the search predicates in the query and returned to the client.

2 Related Work

There is an increasing interest in recent years for full-text search over XML
documents. Khalifa et al [1] propose a bulk algebra called TIX, which inte-
grates simple IR scoring schemes into a traditional pipelined query evaluator for
an XML database. TeXQuery [2] supports a powerful set of fully composable
full-text search primitives, which can be seamlessly integrated into the XQuery
language. In [3], the authors present a framework that relaxes a full-text XPath
query by dropping some predicates from its closure and scoring the approxi-
mate answers using predicate penalties. XRank [5] extends Google-like keyword
search to XML. The authors propose an algorithm for scoring XML elements that

60 W. He, L. Fegaras. and D. Levine

takes into account both hyperlink and containment edges. A recent work, XK-
Search [7], introduces the concept of smallest lowest common ancestors (SLCAs)
and proposes two efficient algorithms, Indexed Lookup Eager and Scan Eager,
for keyword search in XML documents according to the SLCA semantics. How-
ever, all these proposals consider fully indexing and querying XML documents,
which may involve costly containment joins among long inverted lists to evaluate
a full-text XML query.

3 Query Language and Meta-data Indexing

Our query language is XPath extended with a full-text search predicate e ∼ S,
where e is an XPath expression. This predicate returns true if at least one element
from the sequence returned by e matches the search specification, S. A search
specification is a simple IR-style boolean keyword search that takes the form

“term” | S1 and S2 | S1 or S2 | (S)

where S, S1, and S2 are search specifications. A term is an indexed term that
must be present in the text of an element returned by the expression e.

As an XML document is indexed, all essential meta-data are extracted from
the document. In particular, three kinds of meta-data are indexed: Structural
Summary (SS), Content Synopses (CS), and Positional Filters (PF).

3.1 Structural Summary

A structural summary is a tree that describes the structural make-up of the
XML data in a document. It concisely captures all unique paths in an XML
document. For example, the structural summary of an XML document related
to auctions is shown in Figure 1(a). Each node in an SS has a tagname and Id
and one SS node may be associated with many elements in the actual document.

1

2 8

3

4

5
6

7

9 10

auction

item sponsor

description address name

location name
payment price

(a) Structural Summary

Term

Document
Position

0 1 2 20

0
1

2
29

Hash(mountain) = 2 Hash(bicycle) = 11

11

CS for /auction/item/description

Document
Position

0
1

2
29

PF for /auction/item

(b) Data Synopses

Fig. 1. Structural Summary & Data Synopses Examples

Indexing and Searching XML Documents 61

3.2 Content Synopses

A node in a structural summary is called a text node if the node contains text
in the document. To capture the textual content of a document, for each text
node k in the structural summary S of the document D, we construct a content
synopsis (CS) HD

p to summarize the textual data associated with k, where
the path p is the unique simple path from the root of S to the node k in S.
HD

p is a bit matrix of size L × W , where W is the number of term buckets
and L is the document positional ranges of the elements that directly contain
terms associated with node k. The positional information is represented by the
document order of the begin/end tags of the elements. More specifically, for
each term t contained directly in an element associated with k, whose begin/end
position is b/e, we set all matrix values HD

p [i, hash(t)mod W] to one, for all
�b×L/|D|� ≤ i ≤ �e×L/|D|�, where ‘hash’ is a string hashing function and |D|
is the document size. That is, the [0, |D|] range of tag positions in the document
is compressed into the range [0, L]. HD

p is implemented as a B-tree index with
index key p because during the query processing, we need to retrieve the content
synopses of all documents for a given path p. For example, the content synopsis
for SS node description is illustrated on the right in Figure 1(b). Each dark cell
represents a bit set to one. As we can see, after the term “bicycle” is hashed to the
term bucket 11, we obtain a bit vector that has 4 one-bit ranges (displayed with
black color). Each one-bit range represents a description element that directly
contains “bicycle” in the document. The start/end of a range corresponds to
the document order of begin/end tag of a description element. Since a node
in a structural summary may correspond to many elements in a document, the
positional dimension is very useful information when evaluating search predicates
in a query. In our running query example, both “mountain” and “bicycle” have to
be in the same description element in a document to satisfy the query Q. If we had
used one-dimensional Bloom filters [4], to check whether the bits for both terms
are on, we may have gotten a prohibitive number of false positives. For instance,
Q may have returned an unqualified document that has an item whose description
contains “mountain”, and another item whose description contains “bicycle”. As
such, term positional information is crucial in increasing the search precision.
With our content synopses, we can evaluate the search predicate description
∼ “mountain” and “bicycle” by bitwise anding the vectors H3[“mountain”] and
H3[“bicycle”], which are the two black-bit vectors extracted from the content
synopsis in Figure 1(b). If all bits in the resulting bit vector are zeros, the
corresponding document does not have both terms in the same description
element and thus does not satisfy the search predicate.

3.3 Positional Filters

Although the positional information in CS enforces the constraint that the terms
in a single search predicate must be in the same element associated with the
predicate, it can not ensure that different elements associated with different
search predicates are contained in the same element in a document. For example,

62 W. He, L. Fegaras. and D. Levine

given the relevant bit vectors H3[“mountain”], H3[“bicycle”], and H4[“Dallas”]
only, we can not enforce the containment constraint in Q that the item whose
location contains “Dallas” must be the same item whose description contains
“mountain” and “bicycle”. To address this problem, for each non-text node n
in the structural summary of a document, we construct another type of data
synopsis, called Positional Filter (PF), denoted by FD

p . As we did for HD
p , FD

p

is also implemented as a B-tree with index key p. FD
p is a bit matrix of size

L × M , where L is the document positional ranges of the elements associated
with node n that is reachable by the label path p, and M is the number of
bit vectors in FD

p . Here, the value of M should be no less than 2 because we
want to map consecutive elements in a document to different bit vectors, thus
reducing the bit overlaps of consecutive elements when their mapped begin/end
ranges intersect. The positional filter for SS node item is demonstrated on the
left in Figure 1(b). The 7 one-bit ranges indicate there are 7 item elements in
the document.

Item
(F2)

location
Dallas A B

description

mountain bicycle

CF(F2,
 H4[“Dallas”])

CF(A,
 and(H3[“mountain”,
 H3[“bicycle”]))

Fig. 2. Testing query Q Using Data Synopses

3.4 Containment Filtering

With positional filters, we can enforce the element containment constraints in
the query using an operation called Containment Filtering. Let F be a positional
filter of size L×M and V be a bit vector extracted from a content synopsis whose
size is L × W . The Containment Filtering CF (F, V) returns a new positional
filter F ′. The bit F ′[i, m] is on iff:

∃k ∈ [0, L] : V [k] = 1 ∧ ∀j ∈ [i, k] : F [j, m] = 1

Basically, the Containment Filtering copies a continuous range of one-bits from
F to F ′ if there is at least one position within this range in which the correspond-
ing bit in V is one. Figure 2 shows how the data synopses are used to determine
whether a document is likely to satisfy the query Q (here M = 2). First, we do
a containment filtering between the initial positional filter F2 and the bit vector
H4[“Dallas”]. In the resulting positional filter A, only 5 one-bit ranges out of 7
in F2 are left. Counting from bottom to top, the 2nd and 4th one-bit ranges

Indexing and Searching XML Documents 63

in F2 are discarded in A because there is no any one-bit range in H4[“Dallas”]
that intersects with the 2nd or 4th range, which means that neither the 2nd nor
4th item element contains a location element that contains the term “Dallas”.
Similarly, we can do containment filtering between A and the resulting bit vector
derived from the bitwise anding between H3[“mountain”] and H3[“bicycle”]. The
3 one-bit ranges in B indicate that 3 items out of 7 in F2 satisfy all element
containment constraints in the query. Thus, the document is considered to satisfy
the query.

4 Query Processing

In this section, we briefly present the query processing in our framework. The
first step in evaluating a full-text XPath query is deriving a query footprint from
the query. A query footprint captures the essential structural components and all
the entry points associated with the search predicates. In our running example,
the query footprint of Q is:

//auction//item:1[location:2][description:3]/price

The numbers 1, 2, and 3 are the numbers of the entry points in the query
footprint that indicate the places where data synopses are needed for query
evaluation (one positional filter for the label path associated with entry point 1
and two content synopses for the label paths associated with the entry points 2
and 3). We have developed a general footprint derivation algorithm but, due to
the space limitation, the algorithm is not presented in the paper.

Our numbering scheme, which is similar to that in [8], encodes each node
k in a structural summary S by the triple (b, e, l), where b/e is the begin/end
numbering of k and l is the level of k in S. Structural summaries are indexed as
the mapping: Mss : tag → {(S, k, b, e, l)}, where tag is the tagname of the node
k in S, and b,e,l are as defined above. Thus, the key operation in the structural
summary matching is a structural join between two tuple streams corresponding
to two consecutive location steps in the query footprint. We leverage the iterator
model in relational databases to form a pipeline of iterators derived from the
query footprint to retrieve all matching structural summaries.

Let QF be the structural footprint of a query. The structural summary
matching is accomplished by the function SP [[QF]] that returns a set of tu-
ples (ρ, S, k, b, e, l), where (S, k, b, e, l) is similar to that of Mss and ρ is a vector
of node numbers, such that ρ[i] gives the node number in S corresponding to
the ith entry point in QF . The function SP [[QF]] is defined recursively based
on the syntax of QF , generating structural joins for each XPath step. From the
node numbers in ρ, we can derive the label paths from the structural summary
that match the entry points in QF . In our running example, the label paths are
/auction/item, /auction/item/location, and /auction/item/description.
Based on the retrieved label paths, documents that have data synopses associ-
ated with these label paths are retrieved and filtered using the containment
filtering, and qualified documents are filtered out and returned to the client.

64 W. He, L. Fegaras. and D. Levine

5 Hash-Based Query Optimization

Using paths only as keys for data synopses indexing is not efficient because a
popular path may be contained in a large number of documents and thus is
associated with a large number of data synopses in the indexes. These retrieved
long data synopsis lists may lead to an expensive join operation between two large
lists at each step of the containment filtering. Based on the above observations,
we refine our indexing scheme for data synopses and propose a hash-based two-
phase containment filtering algorithm to improve query processing.

In order to reduce the number of content synopses and positional filters re-
trieved from the local indexes for a full label path during the containment fil-
tering, as a document D is indexed, instead of using a full label path p as the
key, we employ (p, hc) as the key to store a content synopsis HD

p or a positional
filter FD

p , where p is the full label path associated with HD
p or FD

p , and hc is
an integer value, which is the hash code of the document ID when mapped to
a bit vector, called the Document Mapping Vector (DMV). Basically, a DMV
groups all the documents containing path p by the hash value of their document
ID. Combined with another data structure called Document Synopsis, the above
indexing scheme can reduce the number of data synopses retrieved for the path
p during the containment filtering.

5.1 Document Synopses

In the first phase of the containment filtering, the goal is to quickly identify
the documents that may contain all the path-term pairs derived from the struc-
tural summary matching and prune unqualified documents that contain only
partial path-term pairs. This information derived from the first phase will guide
the actual containment filtering in the second phase. To summarize, for all the
documents that contain a path-term pair in the corpus, we construct a data
structure called Document Synopsis, denoted by DSp. Basically, for each text
label path p, a document synopsis is a bit matrix of size DL×DW , where DW
is the number of term buckets and DL is the size of the hash table(DMV) for the
document ID mapping. As a document containing the path-term pair (p, t) is
indexed, p is first used as the key to find the corresponding DSp in the indexes.
Then, the term t is mapped to some bucket along the Term axis of DSp to
obtain the bit vector V along the Document ID axis, that summarizes all the
documents containing (p, t). Finally, the ID of the document is mapped to some
bit in V and the bit is set to one if it is zero.

The structure of a document synopsis is shown in Figure 3. The dark cells
represent the one-bits. Suppose that the document synopsis is associated with
the path /biblio/book/paragraph, since document 12 contains the path-term
pair (/biblio/book/paragraph, “XML”), the corresponding bit is set to one,
which is emphasized by a black cell in the figure. Note that different documents
may be mapped to the same document ID slot and different terms may be hashed
to the same term bucket.

Indexing and Searching XML Documents 65

Term

Document ID

0 1 2 20
0

1
2

15

hash(“XML”) = 2

doc 12 mod 16 = 12

doc 105 mod 16 = 9
doc 121 mod 16 = 9
doc 137 mod 16 = 9

hash(“science”) = 11
hash(“computer”) = 11

11
9

12

Fig. 3. A Document Synopsis Example

5.2 Two-Phase Containment Filtering

Based on the new indexing scheme and document synopses, we propose a two-
phase containment filtering strategy to optimize our query processing, which
is given in Algorithm 1. The first phase is a pre-processing stage that prunes
unqualified documents that do not contain all the path-term pairs. The resulting
bit vector Vf is a filter that carries information about all the documents that may
contain all the path-term pairs (p1, t1), (p2, t2), ..., (pn, tn), which is indicated by
the one-bits in Vf . In the second phase, the real containment filtering is carried
out with the guide of Vf . Basically, at each step of the containment filtering,
(pi, hci) is used as the key to retrieve all content synopsis hits or positional filter
hits, where pi is the corresponding path derived from SS matching, and hci is
the index number of the one-bit in Vf . The goal is using Vf to avoid accessing
unqualified data synopses and retrieve only the data synopses of the documents
that contain all the path-term pairs, thus effectively reducing the number of data
synopses retrieved from the indexes before the join operation.

6 Experimental Evaluation

We have implemented our framework using Java (J2SE 5.0) and Berkeley DB
Java Edition 1.7.1 was employed as the storage manager. Our experiments were
conducted on a WindowsXP machine with 2.8GHz CPU and 512M memory. The
two datasets we used were synthetically generated from the XBench [10] and
XMark benchmarks. The main characteristics of our datasets and data synopses
size are summarized in Table 1. The query workload over each dataset is shown
in Table 2. For the indexing scheme comparison experiment, we chose XBench
as the dataset because the dataset size is the key factor for this experiment. To
measure the query precision and our optimization algorithm, we chose XMark
as the dataset because the number of documents is the key factor for these two
experiments.

66 W. He, L. Fegaras. and D. Levine

Algorithm 1: Two-phase Containment Filtering

Input: 0p /* the path associated with positional filter */

),(11 tp ,),(22 tp , … ,),(nn tp /* n path-term pairs associated with content synopses */

Output: PFL /* the list of positional filter hits of qualified documents */

1: ;: emptyListLPF =

2: /* Obtain the filtering vector fV in phase one */

3: for i = 1 to n do

4: Use ip as the key to retrieve
ipDS in local indexes;

5: Map it along the Term axis in
ipDS to obtain the bit vector i

i

t
pV ;

6: end for;

7: �
n

i

t
pf

i

i
VV

1

:
=

= ; /* bitwise anding all bit vectors */

8: /* Do actual containment filtering with the guide of fV in phase two */

9: for each one-bit jb in fV do

10: k : = the index number of jb in fV ;

11: jb
L0 := the positional filter list retrieved using),(0 kp as the key;

12: for i = 1 to n do

13: jb
iL := the positional filter list retrieved using),(kpi as the key;

14:);,(: 00
jjj b

i
bb

LLCFL =

15: end for;

16: ;: 0
jb

PFPF LLL ∪=

17: end for;
18: return PFL ;

Table 1. Data Set Characteristics and Data Synopses Size

Data Set Data Size
(MB)

Files Avg. File Size
(KB)

Avg. SS Size
(Byte)

Avg. CS Size
(Byte)

Avg. PF Size
(Byte)

XBench 1050 2666 394 432 20564 178
XMark 55.8 11500 5 417 306 16

6.1 Indexing Scheme Comparison

To demonstrate the efficiency of our Data Synopses Indexing (DSI) scheme,
we implemented the standard inverted list-based XML indexing scheme(ILI) [8]
using Berkeley DB and compared DSI with ILI in terms of space and time cost.
Figure 4 shows that, since DSI avoids indexing each single element and keyword
in the database, DSI consumes less than 8% index build time than ILI and the
index size of DSI is only about 3% of that of ILI. The query response time of
DSI is over 40 times faster than that of ILI because the query evaluation is over
concise data synopses instead of over full inverted lists.

6.2 Query Precision Measurement

Since our data synopsis correlates content with positional information, we call it
Two-Dimensional Bloom Filter (TDBF). We implemented the traditional One-
Dimensional Bloom Filter (ODBF) [4] in our framework and compared the query
precision of our TDBF with that of ODBF. The result is shown in Figure 5. The
false positive rate of a query is defined as (1 - the relevant set size/the answer
set size). We exploited XQuery engine Qizx/open [9] to evaluate each XMark

Indexing and Searching XML Documents 67

Table 2. Query Workload over Each Dataset

Dataset Query Query Expression
XMark Q1 /site//item[location ~ "United"][payment ~ "Creditcard" and "Check"]/description
XMark Q2 //regions//item[location ~ "States"][payment ~ "Creditcard" or "Cash"]/name
XMark Q3 /site//item[location ~ "United"][payment ~ "Creditcard"]/description
XMark Q4 //regions//item[location ~ "States"][payment ~ "Check"]/quantity
XMark Q5 /site//item[description//text ~ "gold"]/name
XMark Q6 /regions//item[description//text ~ "character "]/payment
XMark Q7 //closed_auction[type ~ "Regular"][annotation//text~ "heat"]/date
XMark Q8 //closed_auction[annotation//text~ "heat" or "country"]/seller
XMark Q9 //closed_auction[annotation//text~ "heat" and "country"]/buyer
XMark Q10 //closed_auction[annotation//text~ "country"]/type
XBench Q11 /article//body[abstract/p ~ "hockey"][section/p ~ "hockey" and "patterns"]/section
XBench Q12 //article//body[section/p ~ "regular"][abstract/p ~ "hockey" or "patterns"]/abstract
XBench Q13 /article//body[section/subsec/p ~ "hockey"][abstract/p ~ "hockey"]/abstract
XBench Q14 /article//body[section/subsec/p ~ "regular"][abstract/p ~ "patterns"]/section
XBench Q15 /article//body[section/p ~ "patterns"][abstract/p ~ "patterns"]/abstract
XBench Q16 /article//body[section/p ~ "hockey"][abstract/p ~ "patterns"]/abstract
XBench Q17 //prolog[keywords/keyword ~ "bold" or "regular"][title~ "regular"]/authors
XBench Q18 //prolog[keywords/keyword ~ "bold"][title~ "bold"]/title
XBench Q19 //prolog[genre ~ "Travel"] [keywords/keyword ~ "bold" or "stealth"]//author/name
XBench Q20 //prolog[genre ~ "Travel"] [keywords/keyword ~ "bold"]/title

query over the dataset to obtain the accurate relevant set for the query. From
Figure 5, we can see that for queries Q1, Q2, Q3, Q4 and Q7, the false posi-
tive rate of ODBF is over two times higher than that of TDBF because each of
these queries contains multiple search predicates and the positional dimension
in TDBF can effectively remove false positives during the containment filtering.
For queries Q5, Q6, Q8 and Q10, two approaches produce the same false pos-
itive rate because each query contains only a single search predicate and the
search predicate contains only one term or the boolean operator is “or”. In that
case, TDBF performs only a bitwise oring operation and the positional informa-
tion is not helpful to reduce the false positives. For query Q9, TDBF is better
than ODBF because although it contains a singe search predicate, the boolean

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Xbench

Dataset

In
d

e
x

 B

u
il
d

 T

im
e
(s

)

ILI

DSI

(a) Index Build Time

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Xbench

Dataset

In
d

e
x

 S

iz
e
(M

B
)

ILI

DSI

(b) Index Size

0

100

200

300

400

500

600

700

Xbench

Dataset

A
V

G

Q

u
e
r
y

R

e
s
p

o
n

s
e

T

im
e
(s

)

ILI

DSI

(c) Query Response Time

Fig. 4. Comparison between ILI and DSI

68 W. He, L. Fegaras. and D. Levine

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query

Fa
lse

 P
os

itiv
e

 Ra
te

ODBF

TDBF

Fig. 5. Query Precision Comparison with One Dimensional Bloom Filter

operator is “and”, in which case the positional information can reduce the false
positives during the containment filtering. The above result shows that TDBF
is superior to ODBF when multiple predicates are presented in the query or a
single predicate contains multiple disjunctive terms.

6.3 Efficiency of Optimization Algorithm

To examine the efficiency of our Two-Phase Containment Filtering(TPCF) al-
gorithm, we implemented One-Phase Containment Filtering(OPCF) algorithm
in our framework. Then we evaluated all the XMark queries in Table 2 and
compared the query response times between TPCF and OPCF. As we can see
from Figure 6, for queries Q1, Q2, Q3, Q4 and Q7, TPCF is one time faster than
OPCF because these queries contain more search predicates, which may involve
more containment filtering steps and more joins between long data synopsis lists
during the query evaluation. In that case, TPCF can effectively prune the un-
qualified document locations in the first phase, thus reduce the overall query
response time. For the remaining queries, since each query only contains one
search predicate and only one containment filtering step is needed in the query
evaluation, the query efficiency improvement from TPCF is not very significant.
This result indicates that our two-phase containment filtering algorithm is more
efficient when multiple search predicates are present in the user query.

0

20

40

60

80

100

120

140

160

180

200

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query

Qu
ery

 R
esp

on
se

 Ti
me

(s)

OPCF

TPCF

Fig. 6. Efficiency of Two Phase Containment Filtering Algorithm

Indexing and Searching XML Documents 69

7 Conclusion

We have presented a framework for indexing and searching XML documents
based on condensed summaries extracted from the structural and textual con-
tent of the documents. Our indexing scheme is more efficient than traditional
indexing schemes based on full inverted lists. Our data synopses correlate content
with positional information and result in a more accurate evaluation of textual
and containment constraints in a query. Our two-phase containment filtering al-
gorithm can accelerate the searching process.

Acknowledgments. This work is supported in part by the National Science
Foundation under the grant IIS-0307460.

References

1. Al-Khalifa, S., Yu, C., Jagadish, H.V.: Querying Structured Text in an XML
Database. In: Proc. of ACM SIGMOD, San Diego, USA, pp. 4–15 (2003)

2. Amer-Yahia, S., Botev, C., Shanmugasundaram, S.: TeXQuery: A Full-Text Search
Extension to XQuery. In: Proc. of the 13th Int. Conference on World Wide
Web(WWW), New York, USA, pp. 583–594 (2004)

3. Amer-Yahia, S., Lakshmanan, L.V.S., Pandit, S.: FleXPath: Flexible Structure and
Full-Text Querying for XML. In: Proc. of ACM SIGMOD, Paris, France, pp. 83–94
(2004)

4. Bloom, B.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Com-
munications of the ACM 13, 422–426 (1970)

5. Guo, L., Shao, F., Botev, C., Shanmusundaram, J.: XRANK: Ranked Keyword
Search over XML Documents. In: Proc. of ACM SIGMOD, San Diego, USA, pp.
16–27 (2003)

6. Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ramakrishnan, R.: On the Inte-
gration of Structure Indexes and Inverted Lists. In: Proc. of ACM SIGMOD, Paris,
France, pp. 779–790 (2004)

7. Xu, Y., Papakonstantinou, Y.: Efficient Keyword Search for Smallest LCAs in XML
Databases. In: Proc. of ACM SIGMOD, Maryland, USA, pp. 537–538 (2005)

8. Zhang, C.: On Supporting Containment Queries in Relational Database Manage-
ment Systems. In: Proc. of ACM SIGMOD, Santa Barbara, USA, pp. 425–436
(2001)

9. Qizx/open. http://www.axyana.com/qizxopen/
10. XBench. http://se.uwaterloo.ca/∼ddbms/projects/xbench/

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 70–81, 2007.
© Springer-Verlag Berlin Heidelberg 2007

PosFilter: An Efficient Filtering Technique of
XML Documents Based on Postfix Sharing

Jaehoon Kim1, Youngsoo Kim2, and Seog Park1

1 Department of Computer Science, Sogang University
1-1 Shinsu-Dong Mapo-Gu Seoul Korea 121-742

jhkimygk@gmail.com, spark@dblab.sogang.ac.kr
2 Samsung Electronics CO. LTD.,

Maetan-3-Dong Yeongtong-gu Suwon Kyungki-do Korea 443-742
Youngsoo.kim@samsung.com

Abstract. XML message filtering is to evaluate the path matching of a large
number of registered path queries over a continuous stream of XML messages
in real time. For this purpose, YFilter system has been suggested to exploit the
prefix commonalities that exist among path expressions. Sharing such com-
monality gives the benefit of improving filtering performance through the tre-
mendous reduction in filtering machine size. However, postfix sharing also can
be useful for an XML filtering situation. For example, if a stream of XML mes-
sages does not have any defined DTD (or XML schema), the XPath queries be-
ginning with the ancestor-descendant axis (‘//’) can be used often, e.g.,
‘//buyer/name’, ‘//seller/name’, and ‘//name’, and such query type is most likely
to have the postfix sharing. Therefore, in this paper, we propose a bottom up fil-
tering approach exploiting postfix sharing against the top down approach of
YFilter exploiting prefix sharing. Some experimental results show that our
method has better performance in the postfix-shared scenario.

1 Introduction

RSS (Really Simple Syndication) is defined as a service for a web content syndication
[3]. The current architecture of RSS dissemination is based on a pulling scheme,
where the RSS reader of each user periodically pulls RSS files from a contents server
and checks the renewal status. However, this architecture tends to lose scalability
when the publication of RSS files suddenly explodes. In addition, the renewal status
cannot be immediately alerted and unnecessary pulling operation makes the RSS
feeder and reader waste resources [2, 9]. In order to resolve this problem, efforts to
apply a publish/subscribe scheme to RSS system have been made [7]. In the pub-
lish/subscribe scheme, users subscribe their profile to the system and data, generated
by a publisher, which matches the registered profile, are delivered to the interested
users [8].

Recently, XML message filtering systems have been studied to support the pub-
lish/subscribe scheme: XFilter [6], YFilter [11], XMLTK [10], AFilter [5], etc. In
such systems, a user profile is represented as XPath query language [12] and a given

 PosFilter: An Efficient Filtering Technique 71

set of registered XPath queries is continuously evaluated over XML message streams
in real time. Among researches above, YFilter has been especially proposed to exploit
commonality that exists among path expressions. The commonality is for prefixes
sharing. For example, for the registered queries ‘/a/b’, ‘/a/b/c’, and ‘/a/b/d’, the partial
path expression ‘/a/b’ is shared. YFilter combines all XPath queries into a single Non-
deterministic Finite Automaton (NFA) to exploit such prefix commonality. This ap-
proach brings about the tremendous reduction in filtering machine size and as a result,
it gives the benefits of higher filtering performance and scalability. However, YFilter
does not consider postfix sharing, e.g., the path expressions ‘//b/c’ and ‘//c’ are shared
for the queries ‘/a/b/c’, ‘//b/c’, and ‘//c’. Our experimental results showed that if the
postfix-shared query pattern appears more often in the total query set, the throughput
of YFilter degrades. Thus, in this paper, we introduce a novel bottom-up filtering
approach exploiting the common postfixes in the NFA-based scheme, opposed to the
top-down approach of YFilter. We name the new method as PosFilter. The key idea
of our method is that the state transition in the NFA execution is performed at the
end-of-element event to exploit the common postfixes of XPath queries. However, the
execution of YFilter is performed at the start-of-element event.

Similar to our concept, AFilter [5] has been recently proposed for the postfix shar-
ing. Moreover, the approach was intended to benefit from prefix commonalities, while
simultaneously leveraging postfix commonalities. However, in conclusion, we think
that they fail to suggest the adaptable filtering. Because in the reference [5], they do
not show how it can be defined the concrete threshold for the unfolding condition (i.e.,
the switch from postfix sharing to prefix sharing) and how deep is the overhead of
calculating the threshold, which is able to significantly affect the overall filtering per-
formance. In addition, AFilter is not an automata-based scheme. It uses its own spe-
cific memory organization and a path matching algorithm. Hence, although the scheme
of AFilter can give further improvement of path matching speed, we think that the
substantial benefits of expressiveness and incremental maintenance provided by the
NFA model outweigh the speed improvement as mentioned in the reference [11].

This paper is organized as follows. In Section 2, we review other researches related
to our method. Section 3 presents the basic idea of this paper, and Section 4 describes
the proposed PosFilter technique. Section 5 presents some experimental results for the
throughput comparison of PosFilter, YFilter and AFilter. Section 6 finally concludes
this paper.

2 Related Work

XFilter system [6] may be an early study on an automata-based XML filtering. The
research point of the system is to use Finite State Machine (FSM) and an inverted
index on all the subscribed XPath queries. XFilter converts each XPath query to a
FSM and an inverted index (called Query Index) is built over the states of all FSMs.
When a start-of-element event is triggered, the related SAX event handler looks up
the element name in the Query Index and it is checked whether there are matched
queries. Using the Query Index gives the benefit of achieving high performance filter-
ing. The features of XFilter system are the simple construction and maintenance of
the filtering machine and the assurance of high performance filtering and scalability.

72 J. Kim, Y. Kim, and S. Park

However, XFilter does not consider exploiting the commonality that exists among
path expressions. Exploiting the commonality can bring about the reduction of redun-
dant processing. Thus, to eliminate such redundancy, YFilter system [11] has been
proposed. YFilter combine all queries into a single Nondeterministic Finite Automa-
ton (NFA). As such, the common prefixes of queries are represented only once in the
NFA. For example, for the registered XPath queries ‘/a/b/c’ and ‘/a/b/d’, the state
transitions labeled by ‘a’ and ‘b’ are represented only once. However, there can be a
situation where postfix sharing is useful (e.g., the labels ‘b’ and ‘c’ are shared for the
queries ‘//a/b/c’, ‘//b/c’, and ‘//c’). YFilter does not consider the postfix sharing and in
this paper, we investigate an NFA approach based on postfix sharing. Although using
an NFA can lead to performance degradation due to the multiple transitions from each
state, the research result showed that applying the NFA to XML filtering system is
reasonable. The reason is that the cost of path evaluation using the NFA is not the
dominant cost of filtering and rather, other costs such as document parsing are more
expensive. Therefore, YFilter is valuable in that it provides the substantial benefits of
expressiveness and incremental maintenance provided by the NFA model along with
assuring the reasonable speed of path matching.

In fact, in order to avoid the performance degradation by the multiple transition of
the NFA, a technique changing the NFA to Deterministic Finite Automata (DFA)
such as XMLTK [10] was studied. However, the XML filtering technique basically
using the NFA-to-DFA conversion has the following problems. If XPath queries are
often inserted, deleted, and updated, the maintenance cost of changing NFA to DFA
becomes significant. In addition, if a large number of XPath queries include the an-
cestor-descendant axis (“//”), it has the shortcoming that memory usage increases
rapidly due to the explosion in the number of states.

Recently, AFilter system [5] has been suggested to leverage both prefix and postfix
commonalities for reducing overall filtering time. Their basic idea is to exploit the
postfix sharing as well as the prefix sharing similar to our research work and further-
more, they introduce a novel technique for the adaptive processing of prefixes and
postfixes sharing. However, the scheme is not an automata-based approach. They
contrived their own specific memory organization (AxisView, PRLabel-tree, SFLa-
bel-tree, and StackBranch) and a path matching algorithm. Although they suggested
the late unfolding approach of postfix clusters for the adaptive processing of prefixes
and postfixes sharing, they did not show how it can be defined the concrete threshold
for the unfolding condition (i.e., the switch from postfix sharing to prefix sharing) and
how deep is the overhead of calculating the threshold, which is able to significantly
affect the overall filtering performance. They only mentioned that the unfolding con-
dition is in the following cases: (1) the postfix clusters are small or (2) the prefix
cache hit rate is low.

3 Motivation

YFilter shares the common prefixes of registered XPath queries to efficiently handle
similar, but not exactly identical queries. However, postfixes sharing also can
be useful for an XML filtering situation. For example, let us consider a situation
where although any Document Type Definition (DTD) (or XML Schema) is not

 PosFilter: An Efficient Filtering Technique 73

defined, streaming XML documents have similar tag names and tag structure like
Figure 1(a)(b). In this situation, the primary query type of the registered XPath que-
ries may be a partial matching path query of Figure 4(a), because users are most
likely to subscribe XPath queries based on their own experience and knowledge, that
is, remembering the previously familiar tag names and structure.

<auctions>
<auction>

<seller>
<person>

<name>Youngsoo</name>
<email>Youngsoo@samsung.com</email>

</person>
</seller>
<buyer>

<person>
<name>Jaehoon</name>
<email>Jaehoon@sogang.ac.kr</email>
<phone>02-333-4444</phone>

</person>
</buyer>
<item>

<name>toy</name>
<link>http://www.toy.com</link>

</item>
<price>10000</price>
<payment>

<date>2004/10/22</date>
<money>10000</money>

</payment>
</auction>

:: :: ::
</auctions>

(a) A document published from site A

<closed_transactions>
<seller>

<name>Youngsoo</name>
<email>Youngsoo@samsung.com</email>

</seller>
<bidder>

<name>Jaehoon</name>
<email>Jaehoon@sogang.ac.kr</email>
<tel>02-333-4444</tel>

</bidder>
<items>

<item>
<name>toy</name>
<price>10000</price>
<homepage>http://www.toy.com</homepage>

</item>
</items>

:: :: ::
</closed_transactions>

(b) A document published from site B

Fig. 1. A stream of similar XML documents not having any shared schema

Definition 1 (Partial matching path query). This query type begins with the ances-
tor-descendant axis (‘//’). For example, the query Q4 of Figure 4(a) has the same
query result as full path queries, which begin with the root element (‘/’),
‘/auctions/auction/seller/person/name’ and ‘/auctions/auction/buyer/person/name’.

If the partial matching path queries occur often, there can be a situation where the
postfix sharing can be more advantageous than the prefix sharing. Figure 2 shows the
NFA of YFilter exploiting the prefix sharing, which corresponds to our postfix shar-
ing scheme of Figure 4(d). First, we can observe that the XPath queries in Figure 4(a)
tend toward the postfix sharing. Next, the machine size of our PosFilter is smaller
than that of YFilter, because Q1, Q2, Q3, and Q4 queries share the path ‘//name’ and
‘//person/name’. Therefore, it can be expected that the number of automata states in a
runtime stack should be smaller in our PosFilter method and the throughput should
increase. In the next section, we will introduce this bottom up filtering approach based
on the postfix sharing in detail.

74 J. Kim, Y. Kim, and S. Park

In order to assure the semantic interoperability of the given queries against the
XML document of Figure 1(b), we can consider a translation technique such as
OBSERVER [14] and OntoMorph [4]. That is, the statement of a given query can be
translated into another statement using the vocabularies of Figure 1(b). However,
since the investigation is beyond the scope of this paper, we will not deal with the
problem.

82
*3seller

name

person

person 4 name 5

6 name 7

1
[Q1]

[Q4]
[Q3] 9 10 [Q2]name

82
*3seller

name

person

person 4 name 5

6 name 7

1
[Q1]

[Q4]
[Q3] 9 10 [Q2]name

Fig. 2. YFilter exploiting the prefix sharing

4 PosFilter: An NFA-Based Approach Exploiting Postfix Sharing

4.1 Incremental Construction of a Combined NFA

Prior to introducing the PosFilter construction, let us consider representing each
XPath query as a non-deterministic finite automaton. Figure 3 shows the four basic
location steps in our subset of XPath: “/a”, “//a”, “/*”, and “//*”. The symbol “*” (or
called wildcard operator) matches any one XML element. The symbol “ε” (or called
empty string) is used to mark a transition that requires no input, and it has the follow-
ing properties: uε = u = εu and uεv = uv for arbitrary XML elements u and v. Note that
the automata of Figure 3 are represented bottom up so that the common postfixes of
subscribed queries can be shared.

When a path expression begins with the ancestor-descendant axis (“//”), the ε-
transition and the state with a self-loop in Figure 3 can be omitted. The reason is that
when the path matching is evaluated bottom up, the last evaluation of the ancestor-
descendant axis does not affect the query result. For example, the automaton of the
query Q1 of Figure 4(a) is represented as Figure 4(b). In fact, such benefit by our
bottom up approach is important in that it can reduce the state explosion in the run-
time stack of an NFA machine.

a
*/a :

//a :

/* :

//* :

a

*

a
*

a
*/a :

//a :

/* :

//* :

a

*

a
*

*

Fig. 3. NFA representation for basic location steps

 PosFilter: An Efficient Filtering Technique 75

We now describe the incremental construction of our PosFilter. Let NFAp denote
the non-deterministic finite automaton for a path expression and combined-NFAp
denote a single NFA which all NFAps are combined into.

(step 1) Create a single initial state (state 1) shared by all NFAps.

(step 2) If an XPath query is first inputted, create the initial combined-NFAp starting
from the state 1.

(step 3) Whenever a new XPath query is subscribed, add the NFAp for the query into
the combined-NFAp.
 – Match up the NFAp to the combined-NFAp starting from each initial state.

– If the final state of the NFAp is reached or a state is reached for which there
is no transition matched, make the final state an accepting state in the com-
bined-NFAp, add the query ID to the matching query set associated with the
accepting state, or create a new branch from the last state reached in the
combined-NFAp.

[Q1] //seller/person/name
[Q2] //seller/*/name
[Q3] //name
[Q4] //person/name
[Q5] //buyer//email
[Q6] //person/email
[Q7] //email
[Q8] //seller/person
[Q9] //seller/person/name

(a)

name 2 seller 41 person 3 {Q1}name 2 seller 41 person 3 {Q1}
(b)

name 2 seller 41 person 3 {Q1}

*
5 6 {Q2}

name 2 seller 41 person 3 {Q1}name 2 seller 41 person 3 {Q1}

*
5 6 {Q2}

(c)

seller

name 2 seller 41 person 3 {Q1}

*
5 6 {Q2}

{Q3} {Q4}
name 2 seller 41 person 3 {Q1}

*
5 6 {Q2}

{Q3} {Q4}

(d)

seller

Fig. 4. Sample XPath queries and combining the NFA of each query

For the illustration, let us see the example of Figure 4. When the XPath query Q1
of Figure 4(a) is subscribed first, the initial combined-NFAp is constructed like Figure
4(b). Next, when the query Q2 is subscribed, a new transition (wildcard operator)
from the last matched state (state 2) is added like Figure 4(c). When the queries Q3
and Q4 are subscribed, the final states (state 2 and 3) are marked as an accepting state
(denoted by two concentric circles) like Figure 4(d). For the duplicate query Q9, the
query ID Q9 will only be added into the matching query set {Q1}.

4.2 Executing the PosFilter

PosFilter is executed in an event-driven fashion using SAX parser. When an arriving
XML document is parsed, events raised by the parser callback the event handlers and
drive the transitions in the combined-NFAp. The following three events are defined.

76 J. Kim, Y. Kim, and S. Park

startDocument. This event is raised when an XML document is arrived. At this time,
the execution of the combined-NFAp begins at the initial state. That is, the state_id of
the common initial state (state 1) is pushed to a runtime stack as the active state.

startElement. This event is raised when a new element name is read from the docu-
ment. At this time, the state_id 1 is pushed onto the top of the runtime stack as the
active state.

endElement. This event is raised when an end-of-element name is read from the
document. PosFilter uses the end-of-element for the state transition from currently
active states. The following NFA execution is performed at this time.

(1) The state_ids of all active states at the top of the runtime stack are popped off
and the state_ids of target states of all matching transitions from the active states
are added to the top of the runtime stack as new active states. At this time, if any
state_id at the top of the stack corresponds to the state 1 or a final state in the com-
bined-NFAp, it is removed.

(2) Especially, for the state transition with a self-loop (this represents the ancestor-
descendant axis (‘//’)), its own state_id is always added to the top of the stack.

Figure 5(b) shows the stack state change in the combined-NFAp of Figure 5(a)
when the XML document of Figure 1(a) is inputted. First, the initial state of the run-
time stack is set to the state 1 at the startDocument event. When the elements <auc-
tions>, <auction>, <seller>, <person>, and <name> are inputted, the state_id 1 is
pushed onto the top of the stack five times. Next, when the first end-of-element
</name> is inputted, the state_id of the currently active state (state 1) is popped off
and it is checked whether the state transition of ‘name’ from the state 1 exists. Since
the state transition exists, the state_id 2 of the target state is added to the ID set {1} at
the top of the stack. But, the state_id 1 is removed according to the above rule (1). At
this time, the query result of Q3 is returned, because the state 2 is an accepting state.

Again, when the start-of-element <email> is inputted, the state_id 1 is pushed onto
the top of the stack. Then, when the end-of-element </email> is inputted, the state_id
1 is popped off, and the state_id 7 is added to the top of the stack, i.e., {2, 7}, because
the state transition of ‘email’ from the state 1 exists. At this time, the query result of
Q7 is returned. When the end-of-element </person> is inputted, it is checked whether
the state transition of ‘person’ from the state 2 or 7 exists. Since the transitions to the
target states 3, 5, 8, and 10 are matched, the state_ids are added to the top of the stack.
The query Q4 and Q6 are matched. For the end-of-element of </seller>, the state_id 4,
6, and 8 are added to the top of the stack and the query Q1, Q2 and Q9 are matched.
In the stack, the state_id 4 and 6 will be removed, because the states are a final state
in the combined-NFAp. The state_id 8 is added again according to the above rule (2).
The processing for the remaining elements follows the same procedure.

It is important to understand that our PosFilter execution follows the state transi-
tion at the endElement event to share the common postfixes of XPath queries. This
bottom up filtering approach restricts the streaming XML document to being bounded
and not huge size, because surely the endless stream of XML data cannot be buffered

 PosFilter: An Efficient Filtering Technique 77

1 2name person 3 4seller
*

email
8
* buyer 9

{Q1, Q9}
{Q4}{Q3}

{Q5}7
{Q7}

5 6seller {Q2}

10
person

{Q6}

12
11

person

seller
{Q8}

1 2name person 3 4seller
*

email
8
* buyer 9

{Q1, Q9}
{Q4}{Q3}

{Q5}7
{Q7}

5 6seller {Q2}

10
person

{Q6}

12
11

person

seller 12
11

person

seller
{Q8}

(a) The combined- NFAp for the sample queries

2

1
1
1
1
2

1
1
1
1

Read
</name>

2, 7

1
1
1
1

2, 7

1
1
1
1

Read
</email>

Match [Q7]

5, 3,
8, 10

1
1
1

5, 3,
8, 10

1
1
1

Read
</person>
Match
[Q4][Q6]

1
1

4,6,8

1
1

4,6,8

Read
</seller>
Match
[Q1][Q2][Q9]

1
2

1
1
1
1

1
2

1
1
1
1

Read
<email>

Match [Q3]

11
Initialization

1
1

1
1
1
1

1
1

1
1
1
1

Read
<name>

(b) The runtime stack operation

Fig. 5. PosFilter execution

until an end-of-element is reached. Although this restriction makes the PosFilter not
applicable to an environment having unbounded XML data stream, we believe our
method to be reasonable. Because we can also consider many application domains
having the bounded XML data stream such as online news, online auction, and online
stock sites.

5 Performance Evaluation

In this section, we will present the results of some experiments to analyze the per-
formance of our PosFilter system. We have compared PosFilter with YFilter and
partially AFilter with respect to the postfix sharing.

5.1 Experimental Setup

We have implemented PosFilter in Java (JDK 1.4). For the comparison of YFilter, we
used the implementation provided at the website [13] and we could measure the filter-
ing time of both methods. All experiments were performed on a Windows XP com-
puter with 512MB of memory and 1.7 GHz Pentium IV CPU.

78 J. Kim, Y. Kim, and S. Park

For the test data, we used the auction data generated by the xmlgen of XMark [1]
and for the test queries, we used the queries generated by the query generator of YFil-
ter [13]. The test data size is approximately 100 MB.

5.2 PosFilter vs. YFilter

First, to see whether or not the partial matching path query affects the filtering per-
formance of PosFilter and YFilter, we performed the throughput comparison of both
methods for the query sets consisting of only partial matching path queries. The graph
of Figure 6 shows the results in the cases that the number of queries is each 100, 500,
and 1,000. Here, the throughput is defined as the number of filtered elements per one
second. We can see that PosFilter has a higher throughput than YFilter in all the
cases. As indicated in Section 3, this result reflects that our PosFilter approach is
advantageous to the partial matching path query with postfix sharing.

Fig. 6. Throughput comparison according to the number of partial matching path queries

Next, to analyze how deep is the impact of the partial matching path query, we
performed the throughput comparison of PosFilter and YFilter according to the occu-
pying proportion of partial matching path queries to the total query set. The number

0
5000

10000
15000
20000
25000
30000

0% 20% 40% 60% 80% 100%

Occupying proportion of partial matching path queries

(e
le

m
en

ts/
se

c)

YFilter PoSFilter

Fig. 7. Throughput comparison according to the occupying proportion of partial matching path
queries

 PosFilter: An Efficient Filtering Technique 79

of total queries is 100 and the proportion is varied from 0% to 100%. The graph of
Figure 7 shows that the throughput of YFilter gets worse according to the increase of
the proportion. Even at the proportion of 20%, the throughput of YFilter is lower than
PosFilter.

Particularly, we can see that the decrease of YFilter is slow and that of PosFilter is
even horizontal. This is because we allowed duplicate path queries in our experi-
ments. That is, if a subscribed XPath query is duplicated, the query ID is only added
to the matching query set of an accepting state (as mentioned at the end of Subsection
4.1) and the automaton does not need to be changed. Hence, the throughput is steady.

5.3 PosFilter vs. AFilter

AFilter as introduced in the related work of Section 2 exploits the postfix sharing
similar to our method. However, unlike state machine-based schemes (such as PosFil-
ter and YFilter), it uses its own specific memory organization and path matching
algorithm. In this experiment, we compare our PosFilter with especially the suffix-
clustering method of AFilter.

Since we could not obtain the optimized implementation of AFilter, we performed
the performance analysis through measuring the number of states pushed into the
runtime stack of each filtering method. The number of states pushed into a stack
should be associated closely with the throughput. The reason is that newly inputting
one state into a stack means that there are many related operations such as the stack
operation of push and pop, the automata operation of state transition, and memory-
related operations. Therefore, we can roughly compare the filtering performance of
each method by counting the number of the pushed states.

Especially, in AFilter [5], it is separately required the traversal of pointers from a
stack object to a root object in order to identify the corresponding matching of given
queries. Such traversal cost is no less significant than the cost of state transition.
Therefore, for the measurement of AFilter, we counted the number of the pointer
traversal in addition to the number of pushed states. The number of pushed states for
AFilter in Figure 8 represents the sum of both measurements.

0

2000000

4000000

6000000

8000000

10000000

0% 20% 60% 80% 100%
Occupying proportion of partial matching path queries

N
um

be
r o

f p
us

he
d

sta
te

s

YFilter PosFilter AFilter

Fig. 8. The number of pushed states according to the occupying proportion of partial matching
path queries

80 J. Kim, Y. Kim, and S. Park

The graph of Figure 8 shows that PosFilter and AFilter exploiting the postfix shar-
ing have a higher throughput than YFilter; note that the larger the number of pushed
states, the longer the filtering time. In addition, we can see that the throughput of
PosFilter is similar to that of AFilter. However, as mentioned in the introduction of
Section 1, although the scheme of AFilter can give further improvement of path
matching speed, our NFA-based scheme should have more substantial benefits in
terms of the expressiveness and the incremental maintenance.

6 Conclusions

In this paper, we have introduced a bottom up filtering approach of continuous XML
messages. The suggested PosFilter exploits the postfix commonalities across regis-
tered XPath queries. Some experimental results showed that our PosFilter approach is
more efficient than YFilter under the circumstance that the primary query type of
subscribed queries is the partial matching path query and the postfix-shared query. As
considered in Section 3, if streaming XML messages do not have any shared DTD (or
an XML schema) or there is semantic heterogeneity from multiple data sources, the
partial matching path queries with the postfix sharing are most likely to be subscribed
often. Therefore, our PosFilter approach is useful in such XML filtering situation. As
compared to AFilter which is a recent study on the postfix sharing, our experiment
shows that there is no significant difference between two methods. Furthermore, since
our PosFilter basically follows the NFA model, we believe that it should provide the
benefits of better scalability and simpler maintenance along with assuring the high
performance filtering.

Acknowledgements. This study is supported in part by the Second Stage of BK21. In
addition, this work was supported by the Korea Science and Engineering Founda-
tion(KOSEF) grant funded by the Korea government(MOST) (No. R01-2006-000-
10609-0).

References

1. Schmidt, A.R., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.: XMark: a
benchmark for XML data management. In: Proceedings of VLDB, Hong Kong, China, pp.
974–985 (2002)

2. Dickerson, C.: RSS Growing Pains (2004). available at http://www.infoworld.com/article
/04/07/16/29OPconnection_1.html

3. Winer, D.: RSS 2.0 Specification (2005). available at http://blogs.law.harvard.edu/tech/rss
4. Chalupsky, H.: OntoMorph: a translation system for symbolic knowledge. In: Proceedings

of 7th international conference on knowledge representation and reasoning (KR), Brecken-
ridge (CO US), pp. 471–482 (2000)

5. Candan, K.S., Hsiung, W., Chen, S., Tatemura, J., Agrawal, D.: AFilter: Adaptable XML
Filtering with Prefix-Caching and Suffix-Clustering. In: Proc. of VLDB, Seoul, Korea, pp.
559–570 (2006)

6. Altinel, M., Franklin, M.J.: Efficient Filtering of XML Documents for Selective Dissemi-
nation of Information. In: Proc. of VLDB, Cairo, Egypt, pp. 53–64 (2000)

 PosFilter: An Efficient Filtering Technique 81

7. Petrovic, M., Liu, H., Jacobsen, H.: G-ToPSS: Fast Filtering of Graph-based Metadata. In:
Proc. of the International Conference on World Wide Web, pp. 539–547 (2005)

8. Eugster, P.Th., Felber, P.A., Guerraoui, R., Kermarrec, A.: The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

9. Miller, R.: RSS Traffic Burdens Publisher’s Servers (2004). available at
http://news.netcraft.com/archives/2004/07/19/rss_traffic_burdens_publishers_servers.html

10. Green, T.J., Miklau, G., Onizuka, M., Suciu, D.: Processing XML Streams with Determi-
nistic Automata. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS,
vol. 2572, pp. 173–189. Springer, Heidelberg (2002)

11. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.: Path Sharing and Predicate
Evaluation for High-Performance XML Filtering. ACM Transactions on Database Sys-
tems 28(4), 467–516 (2003)

12. XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath
13. YFilter 1.0 release, http://yfilter.cs.umass.edu/code_release.htm
14. Mena, E., Kashyap, V., Illarramendi, A., Sheth, A.: Domain Specific Ontologies for Se-

mantic Information Brokering on the Global Information Infrastructure. In: Proc. of the In-
ternational Conference on Formal Ontology in Information Systems, pp. 269–283 (1998)

OOXSearch: A Search Engine for Answering
Loosely Structured XML Queries Using OO

Programming

Kamal Taha and Ramez Elmasri

Department of Computer Science and Engineering
The University of Texas at Arlington, USA

kamal.taha@cse.uta.edu, elmasri@cse.uta.edu

Abstract. There has been extensive research in XML keyword-based and
loosely structured querying. Some frameworks work well for certain types
of XML data models and fail in others. The reason is that the proposed
techniques are based on finding relationships between solely individual
nodes while overlooking the context of these nodes. The context of a leaf
node is determined by its parent node, because it specifies one of the char-
acteristics of its parent node. Building relationships between individual
leaf nodes without consideration of their parents may result in relation-
ships that are semantically disconnected. Since leaf nodes are nothing but
characteristics of their parents, we observe that we could treat each parent-
children set of nodes as one unified entity. We then find semantic relation-
ships between the different unified entities. Based on those observations,
we propose an XML semantic search engine called OOXSearch, which an-
swers loosely structured queries. The recall and precision of the engine
were evaluated experimentally and compared with two recent proposed
systems [1, 2] and the results showed marked improvement.

Keywords: Canonical Tree, Ontology Label, Relevant Canonical Tree,
Search Term Context.

1 Introduction

The spectrum of users who interact with XML and their levels of skill have sig-
nificantly widened due to the popularity and widespread use of XML. Since that
spectrum includes naïve users, extensive research in XML keyword-based query-
ing has been done. Even sophisticated users who are not aware of the XML
document’s schema may find keyword-based and loosely structured querying
helpful. The studies that have been done could be categorized into four groups.
The first expands structured query languages [15, 16]. The second uses keyword-
based search techniques for ranking results based on importance and relevance
[9,10, 24]. The key drawback of those ranking techniques is that they do not con-
sider search semantics. The third employs search techniques based on semantic
relationships between individual nodes [1, 2, 3]. The fourth proposes modeling
the XML document as a graph and processing the graph based on driven schema

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 82–100, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

OOXSearch: A Search Engine 83

Fig. 1. A graduate school’s authors and coauthors bibliography XML tree with sample
data instances (student.xml doc)

Fig. 2. Canonical Trees graph of the XML tree presented in Figure 1

[22, 23, 26]. While each of these proposed techniques has advantages, it also has
drawbacks, such as returning redundant and/or wrong answers. The reason is
that they propose frameworks based on finding relationships between individual
nodes while overlooking the "context" of those nodes. The context of a leaf node
is determined by its parent node because a leaf node is a characteristic of its
parent. If for example a node is labeled "title", we cannot determine whether
the node refers to a book title or a job title without referring to the parent of
the node. The techniques proposed by [1] and [2] for example may return wrong
answers as a result of not considering leaf nodes contexts. In [1], the authors pro-
pose that if the relationship tree that connects nodes a and b does not include
two or more nodes that have the same label, then nodes a and b are related. In
Figure 1, for example, the relationship tree of nodes 2 and 4 contains nodes 2,

84 K. Taha and R. Elmasri

Fig. 3. Fragments of XML docs taken from the following sources: A) Taken from the
Use Cases [11]. B) Taken from the Use Cases [11]. C) A fragment of XML document
taken from [10]. D) Taken from the Use Cases [11]. E) A fragment of XML doc taken
from the web.

1, 3, and 4. Since the relationship tree doesn’t contain two or more nodes with
the same label, then nodes 2 and 4 are related. Applying this technique may
return wrong answers if a data model contains two or more nodes with the same
label but having different types or if it contains two or more nodes with different
labels that belong to the same type (see section 2). In [2], two nodes "a" and
"b" are meaningfully related if their LCA (least common ancestor), node ’c’ is
not an ancestor of some node "d", which is a LCA of node "b" and another node
that has the same label as "a". This technique may return wrong answers if the
data model contains two or more nodes with the same label but having different
types (see sec. 2).

In this paper, we propose OOXSearch, an XML search engine that answers
schema-aware as well as loosely structured queries. It is built on top of an XQuery
Processor. It accepts loosely structured queries, whose search terms have the
form "label = keyword" and returns elements have the form "label". If a user
for example wants to know the year of a publication titled XML, he could sub-
mit a query, whose search term is "title = XML" and return element is "year".
Thus, the user does not have to be aware of the schema.

Our proposed framework employed by OOXSearch is inspired by the following
observations. If we fragment an XML data model to the simplest semantically
meaningful fragments, we will find that each fragment will consist of a parent
node and its leaf children nodes. We call each such fragment a Canonical Tree.
Thus, a Canonical Tree is a union of a parent node and its leaf children nodes
(see Figure 2). Leaf children nodes represent the characteristics of their parent
node. For instance the leaf children nodes "title" and "year" of publication rep-
resent some of the characteristics of their parent node "book". Therefore, the
"book", "title", and "year" nodes represent a meaningful union. We can treat
each Canonical Tree as one entity. A data model is a metaphor of real-word en-
tities. Two real-word entities may have different names but belong to the same
type (e.g. a book and an article belong to the same publication type), or may
have the same names but refer to two different types (e.g. a "name" of a student
and a "name" of a school). To overcome that labeling ambiguity, we observe that

OOXSearch: A Search Engine 85

if we cluster Canonical Trees based on the reduced essential characteristics and
cognitive qualities of their parent nodes, we will identify a number of clusters.
Each cluster contains Canonical Trees whose parent nodes belong to the same
ontological concept. For example, we can have a cluster that contains a Canonical
Tree whose parent node is "book" and also a Canonical Tree whose parent node
is "article", since both "book" and "article" fall under the same "publication"
ontology concept. Thus, though "book" and "article" have different labels, they
belong to the same type. On the other hand, a Canonical Tree, whose parent
node is "student" falls under the "person" cluster (ontology concept), and the
Canonical Tree whose parent node is "school" falls under the "institution" clus-
ter; therefore, the "name" node in the "student" Canonical Tree and the "name"
node in the "school" Canonical Tree are not semantically identical; rather, they
are two distinct nodes referring to two different types of entities. If we consider
the ontology label of each cluster as a supertype and the label of each Canonical
Tree that falls under the cluster as a subtype, then any characteristic that de-
scribes the supertype can also describe all its subtypes (a form of inheritance).
For instance, the "publication" supertype could be characterized by "title" and
"year" of publication, and likewise its subtypes "book" and "article". This be-
havior is analogous to the concept of a subclass that inherits attributes from its
superclass in Object Oriented models (see sec 6).

Our work is motivated by the following conclusions, which are based on the
above observations:

(1) Fragmenting a data model to Canonical Trees enables us to compute speedily
and efficiently off-line for each Canonical Tree Ti, the Canonical Trees that are
related and relevant to Ti.
(2) If Canonical Tree Tj is related and relevant to C. Tree Ti, all leaf children
nodes of Tj are also related to all the leaf children nodes of Ti. Thus, the same
computational overhead used for determining a relationship between two indi-
vidual nodes can be used for determining relationships between groups of nodes.
(3) Constructing a framework for determining the semantic relationships be-
tween nodes based on their ontology works well in all types of data models;
unlike determining the relationships based on solely the labels of the nodes.
(4) The structure of Canonical Trees is analogous to the modular fashion of
Object Oriented models, which enables us to use Object-Oriented techniques to
locate the answer return element nodes and to extract instance values contained
in those nodes. If we incorporate behaviors (methods) into a Canonical Tree en-
tity, this entity would have all the characteristics and behaviors of an OO object.
Thus, each Canonical Tree could be viewed as an object and its nodes as the
object’s attributes. We can associate every Canonical Tree object with a class.
The attributes of the class are the Canonical Tree’s leaf nodes and its methods
operate on those attributes. If we construct a class for an ontological label of a
cluster, this class could be considered a superclass, and if we construct a class
for each Canonical Tree that falls under this cluster, each of these classes could
be considered a subclass. Subclasses inherit the attributes and methods of their

86 K. Taha and R. Elmasri

superclass e.g. "article" and "book" subclasses inherit the "title" attribute from
their superclass "publication".

This paper is organized as follows. In section 2 we present Related Work. In
section 3 we present the preliminary notation used in the paper. In section 4,
we show how related Canonical Trees are determined. In section 5, we show how
related Canonical Trees are determined for complex queries that have more than
one search term. In section 6 we present the prototype system implementation.
Section 7 presents the experimental results and section 8 presents our conclusion.

2 Related Work

Keyword querying in Relational Databases has been studied extensively
[6, 8, 7]. These approaches model the database as a graph, where tuples are
regarded as the graph’s nodes and the relationships between tuples are regarded
as the graph’s edges. Then, a keyword query is answered by returning a subgraph
that satisfies the search keyword. A number of studies have been done in key-
word search in XML docs [9,10, 24]. Those studies employ techniques for ranking
results based on importance and relevance. Their key drawback is that they do
not consider search semantics. They may return answers that are semantically
unrelated.

Some studies [22, 23, 26] propose modeling the XML document as a graph and
processing the graph based on driven schema. The problem with the proposed
techniques is that they are rather complex and don’t guarantee correct results.

There have been a number of recent studies employing semantic search over
XML documents [1, 2, 3]. The common underlying technique for these studies is
the computation of Least Common Ancestor (LCA) node of the search terms and
returning element nodes. While [1] is based on the computation of pure LCA,
[2] and [3] refines the selection of LCA. Even though those techniques employ
semantic search, they suffer significant drawbacks. We are going to take [1] as
a representative for the systems that employ pure LCA semantic search and [2]
as a representative for the systems that employ refined LCA semantic search. In
[1] if the relationship tree of two nodes doesn’t include two or more nodes with
the same label, then those nodes are related. The subtree rooted at the Least
Common Ancestor (LCA) node of those two nodes is returned as the context of
the query evaluation. In [2], nodes "a" and "b" are NOT meaningfully related if
their LCA, node ’c’ is an ancestor of some node "d", which is a LCA of node "b"
and another node that has the same label as "a". Consider for example nodes 5,
23, and 24 in Figure 1. Node 24 (year) and node 5 (title) are not related, because
their LCA (node 4) is an ancestor of node 22, which is the LCA of nodes 24 and
23, and node 23 has the same label as node 5. Therefore, node 24 is related to
node 23 and not to node 5. Node 22 is considered the Meaningful Least Common
Ancestor (MLCA) of nodes 23 and 24.

In [28] we present example scenarios that cause [1] and [2] to return faulty
recall (the ratio of the number of relevant records retrieved to the total number
of relevant records in the database) and precision (the ratio of the number of

OOXSearch: A Search Engine 87

relevant records retrieved to the total number of irrelevant and relevant records
retrieved). Each example scenario represents a sample of the types of data models
and queries that cause each of them to return faulty answers.

3 Preliminaries

In this section we present definitions of key notations and basic concepts used
in this paper. We model XML docs as rooted and labeled trees. A node in a tree
represents an element in an XML document. The nodes are numbered for easy
reference. Leaf nodes contain keywords. OOXSearch accepts loosely structured
queries that have the following XQuery[15] format:

for δd in doc("XML document name") where δd//node’s label = "keyword"
return δd//node’s label

We call each label-keyword pair in the where clause a search term and we call
each label in the return clause a return element. The where clause may contain
more than one search term and the return clause may contain more than one
answer return element. As we can see, a loosely structured query doesn’t require
a user to be aware of the schema. The user needs to know only the label(s) of the
search term element(s) and the label(s) of the return element(s). We call a node
in a data model that matches a query’s return element and satisfies its search
term an answer return element node.

Definition 3.1 Ontology Label: If we cluster parent nodes in a data model
based on their reduced characteristics and cognitive qualities, the label of each
of these clusters is an Ontology Label. Table 1 shows the Ontology Labels and
their clusters of parent nodes in the XML tree shown in Figure 1.

Definition 3.2 Canonical Tree: If we fragment an XML tree to the simplest
semantically meaningful fragments (subtrees), each fragment is called a Canon-
ical Tree and it consists of a parent node and its leaf children nodes. That is, if
a parent node has a leaf child/children, the leaf children along with their parent
node constitute a Canonical Tree. The leaf children nodes represent the charac-
teristics of their parent. Each parent node in a Canonical Tree is labeled with the
Ontology Label of the cluster that the parent node belongs to, and this Ontology
Label represents the label of the Canonical Tree. Figure 2 shows the Canonical
Trees of the XML tree presented in Figure 1.

Definition 3.3 Ti: Ti is an identifier and denotes Canonical Tree number i,
where 1 ≥ i ≥ |T |. The upper Canonical Tree in Figure 2, for example, whose
Ontology Label is "person", is identified by the unique identifier "T1".

Definition 3.4 OLTi: OLTi denotes the Ontology Label of Canonical Tree Ti.
In Figure 2 for example OLT1 is person.

Definition 3.5 Relevant Canonical Trees (RCT): Each Canonical Tree Ti

has few other Canonical Trees that are relevant and closely related to it. Those
relevant Canonical Trees are most likely to contain the answer return element

88 K. Taha and R. Elmasri

node(s) of ANY query, whose search term(s) is contained in Ti. We call those
Canonical Trees the Relevant Canonical Trees (RCT) of Ti.
Definition 3.6 RCTTi: RCTTi denotes the set of Canonical Trees that are
relevant and related to Canonical Tree Ti.

Definition 3.7 Search Term Context (STC): A Search Term Context (STC)
is a Canonical Tree(s) that contains a query’s search term(s). If there is only
one search term or there are several search terms but they are all contained in
one Canonical Tree Ti, then Ti is the STC. If for example the search term is
"title = XML", then T3 is the STC (see Figure 2). If however, there is more
than one search term and they are contained in different Canonical Trees, the
STC consists of all the Canonical Trees located in the Canonical relationship
tree, which connects the Canonical Trees that contain the search terms (see
section 5).

Table 1. Ontology Labels of parent nodes in Figure 1

Ontology Label Parent nodes and their numbers

publication paper (4, 13), article (16, 25), book (22), publications (3, 12, 21)
person student (1), contributor (8), reviewingProf(19)
field researchInterest (10, 35), expertise (28)
affiliation university (31), company (34)

4 Computing the RCT of Each Canonical Tree

The process of computing the RCT of Canonical Tree Ti is done by eliminating
all Canonical Trees that are unlikely to contain a query’s return element node(s)
if Ti is the STC. The remaining Canonical Trees are the RCT of Ti, which
contain the answer return element nodes of ANY query, whose search term(s)
is/are contained in Ti (Ti is the STC). In section 5 we present the mechanism of
determining the RCT of a STC that consists of more than one Canonical Tree,
which is used when a query has more than one search term and the nodes that
satisfy those search terms are contained in more than one Canonical Tree.

We have to distinguish between two types of queries, query type A and query
type B. In query type A, the search term element’s label is different than the
return element’s label (e.g. the search term element is "name" and the return
element is "title"). In query type B, both the search term element and the return
element have the same label (e.g. the search term element is "name" and the
return element is "name").

4.1 Computing RCT of a Canonical Tree for Query Type A

We are going to present properties, which are rules for eliminating (removing)
Canonical Trees that are unlikely to contain query type A answer return element

OOXSearch: A Search Engine 89

node(s). Thus, these properties are used to construct RCTs that answer query
type A exclusively (see section 4.2 for queries of type B). For each Canonical Tree
Ti, these properties compute the RCT of Tiwhen Ti is an STC. The properties
are defined based on lemmas, for which we are going to sketch the proofs.

Lemma 1: Let Spi denote a set of Canonical Trees located in the same path
from a STC (path Pi). Each Canonical Tree in set Spi is denoted by T j

pi
, where

j is its distance from the STC and pi is the path number where the Canonical
Tree is located. The distance of a Canonical Tree is defined as the number of
Canonical Trees located between it and the STC.

If ∃T x
pi

∈ Spi : ∀T y
pi

∈ Spi : |Spi | ≥ x, y ≥ 0 : x �= y , then only T x
pi

in path
pi may contain an answer return element node for a query, T y

pi
will not, and

1 ≥ |T x
pi

| ≥ 0 . That is, in each path from a STC, there is at most one Canonical
Tree that contains a valid answer return element node for a query type A.

Proof: See [28].

Lemma 2: Consider the same notations used in lemma 1. Let RCT Pi

STC denote
a set that contains the RCT of the STC in path pi. Thus, RCT Pi

STC ⊆ Spi .
If ∃T x

pi
∈ RCT Pi

STC : ∀T y
pi

∈ RCT Pi

STC : |RCT Pi

STC | ≥ x, y ≥ 0: x �= y, then
OLT x

pi
�= OLT y

pi
(the Ontology Label of T x

pi
is different than the Ontology Label

of T y
pi

). That is, in each path from a STC, all Canonical Trees located in this
path, which are part of the RCT of the STC should have distinct Ontology
Labels.

Proof: See [28].

Property 1: This property is based on lemma 2. When computing the RCT of
T for query type A, a Canonical Tree T∼ should be eliminated (pruned) if there
is another Canonical Tree T∼ located between T∼ and T whose Ontology Label
is the same as T∼.

Lemma 3: Let Canonical Tree T be a STC. T∼ can be one of the Canonical
Trees that comprise the RCT of T in a meaningful and intuitive query type A
if and only if OLT �= OLT ∼ . That is, a Canonical Tree T∼ can be one of the
Canonical Trees that comprise the RCT of a STC in a meaningful and intuitive
query type A if and only if its Ontology Label is different than the Ontology
Label of the STC.

Proof: See [28].

Property 2: This property is based on lemma 3. When computing the RCT
of a Canonical Tree T for query type A, any Canonical Tree, whose Ontology
Label is the same as the Ontology Label of T should be eliminated (pruned).

Lemma 4: Let Trem denote: Canonical Tree T has been pruned by either prop-
erty 1 or property 2. Let ATi

Trem
denote: Canonical Tree Ti is an ancestor of

Canonical Tree Trem. Let DTi

Trem
denote: Canonical Tree Ti is a descendant of

Canonical Tree Trem. Let ¬ATi

STC denote the negation of: Canonical Tree Ti is

90 K. Taha and R. Elmasri

an ancestor of the STC. Let ¬DTi

STC denote the negation of: Canonical Tree
Ti is a descendant of the STC. Ti should be eliminated (pruned) if (ATi

Trem

and ¬DTi

STC) or if (DTi

Trem
and ¬ATi

STC). That is, when computing the RCT, a
Canonical Tree should be pruned if it is an ancestor of a Canonical Tree that has
been pruned by either property 1 or property 2 and is also not a descendant of
the STC. It should also be pruned if it is a descendant of a Canonical Tree that
has been pruned by either property 1 or property 2 and is also not an ancestor
of the STC.

Proof: See [28].

Property 3: This property is based on lemma 4. When computing RCT, if
there is any ancestor Canonical Tree of a Canonical Tree that has been pruned
by either property 1 or 2, it should be pruned, if it is not a descendant of the
STC. Also, if there is any descendant Canonical Tree of a Canonical Tree that
has been pruned by either property 1 or 2 it should be pruned, if it is not an
ancestor of the STC.

The following examples show how RCTs for query type A are determined: (Note:
recall Definition 3.6 and Figure 2 for these examples)

Examp1e 1: Determination of RCTT1 : By applying property 2, T9 and T4 are
pruned. By applying property 3, T10, T11, T12, and T13 are pruned, because they
satisfy (DTi

T9
and ¬ATi

T1
). Also, T5, T6, and T7 are pruned, because they satisfy

(DTi

T4
and ¬ATi

T1
). See Figure 4.

Examp1e 2: Determination of RCTT11 : By applying property 1, T1 is pruned,
because it is located in path T1, T3, T9, T11 and its Ontology Label is the same
as T9, which is closer to T11 than T1. By applying property 2, T10, T3, T6, and
T7 are pruned. By applying property 3, T2, T4, and T5 are pruned, because they
satisfy (DTi

Trem
and ¬ATi

T11
). See Figure 5.

Examp1e 3: Determination of RCTT5 : By applying property 1, T1 is pruned,
because it is located in path T1, T3, T4, T5 and its Ontology Label is the same as
T4, which is closer to T5 than T1. By applying property 1, T9 is pruned, because
it is located in path T5, T4, T3, T9 and its Ontology Label is the same as T4,
which is closer to T5 than T9. By applying property 3, T10, T11, T12, T13, and T2
are pruned. So, RCTT5 consists of T3, T4, T6, and T7.

Examp1e 4: Determination of RCTT9 : Property 2: T1 and T4 are pruned. Prop-
erty 3, T2, T5, T6, and T7 are pruned. So, RCTT9 consists of T3, T10, T11, T12,
and T13.

Examp1e 5: Determination of RCTT3 : By applying property 2, T6, T7, T10,
and T11 are pruned. So, RCTT3 consists of T1, T2, T4, T5, T9, T12, and T13.

Examp1e 6: Determination of RCTT12 : After applying properties 1 and 3, we
find that RCTT12 consists of T3, T9, T10, T11, and T13.

OOXSearch: A Search Engine 91

Fig. 4. RCTT1 Fig. 5. RCTT11

The following examples show how answer return element nodes are extracted
from RCTs (Note: recall Figures 1 and 2 for these examples):

Examp1e 7: for δd in doc("student.xml") where δd//title = "XQuery" return
δd//name, δd//area. The query asks for the name of the author who authored
an article titled "XQuery", and also asks for his areas of expertise. Since the
keyword "XQuery" is contained in Canonical Tree T11, we use RCTT11 (see
Figure 7). The answer return element nodes "name" and "area" are contained
in T9 and T12 respectively. The answer is nodes 20 and 29.

Examp1e 8: for δd in doc("student.xml") where δd//name = "John" return
δd//title. The query asks for all title of publications, which are either authored
or coauthored by an author, whose name is "John". Since the keyword "John"
is contained in T9 , we use RCTT9 (see example 4). The answer return element
"title" is contained in C. Trees T10 , T11 , and T3 . The answer is nodes 5, 23,
and 26.

Examp1e 9: for δd in doc("student.xml") where δd//title = "XML" return
δd//name. The query asks for the names of the author and coauthors of a pub-
lication titled "XML". Since the keyword "XML" is contained in T3 , we use
RCTT3 (see example 5). The return element node "name" is contained in T1, T4,
and T9. So, the answer is nodes 2, 9, and 20.

Examp1e 10: Consider that the label of node 32 in Figure 1 is changed from
"unName" to "name". The Canonical Trees in RCTT3 , that contain a node
labeled "name" will be (T1, T4, and T9) whose Ontology Labels are "person"
and also T13 whose Ontology Label is "affiliation". Now, consider the query
presented in Example 9. The query could be interpreted as either "find the
name of authors" or "find the name of the affiliation". The user expects only
one of the two sets of answers, but not both. In this case the system should
return to the user the two sets of answers with description of each set and have
the user selects one of them. But, the system should not combine the nodes of the
two sets as a collective answer and return them to the user. We note that most
proposed schema unaware-based systems, such as [1, 2] can’t determine whether
or not two nodes belong to the same type if these nodes have the same label.
Consequently, they may provide the user with answer consisting of a mixture
of correct and incorrect data. This problem is shown in sections 2 and 7 with
regard to [1] and [2]. We now introduce property 4 based on this notion.

Property 4: Let N denote the set of nodes in an XML document. Let R denote
the set of nodes that satisfy a query’s search term and their labels are the same
as the query’s return element label: R ⊆ N . Let Ans denote the set of nodes

92 K. Taha and R. Elmasri

that are valid answer return element nodes for the query: Ans ⊆ R . Let ∃ni,
∀ni ∈ Ans , where i and j are indexes that indicate the position of node n
in set Ans: 1 ≤ i, j ≤ |Ans|. Let ni ∈ Tx and nj ∈ Ty, where Tx and Ty

denote Canonical Trees number x and y respectively and x �= y. Then, the set
of answer return element nodes may be correct if and only if OLTx = OLTy

.That is, all answer return element nodes should have the same Ontology Label.
If for example there are m nodes that have the same label as a query’s return
element and they all satisfy its search term, and if each of these nodes belongs
to a different type (Ontology Label), then m different sets of answers should be
provided to the user with description of each set and have him select the set he
wants (see example 10).

4.2 Computing RCT of Canonical Trees for Query Type B

Query type B concerns the types of queries where the user knows some informa-
tion about something and wants additional information. In this type of query,
the search term element and return element have the same labels. For example
a user who knows that "XML" is a title of one of the books authored by "John"
and wants to know the titles of the other books and articles authored by him
could submit a loosely structured query consisting of the search term "title =
XML" and return element "title". When answering this query, we ONLY look for
Canonical Trees, whose Ontology Labels are "publication". So, when answering
query type B, we look only for Canonical Trees, whose Ontology Labels are the
same as the Ontology Label of the Canonical Tree that contains the search term.

Property 5: When a query’s search term and return elements have the same
label, we get the answer return element node(s) as follows. We look at the Canon-
ical Trees graph (e.g. Figure 2) and the set of RCTs (e.g. computed from section
4). In the C. Trees graph and starting from the C. Tree Ti that contains the
search term node we search ascending and descending Ti for the closest C. Tree,
whose RCT contains Ti and also contains at least one more C. Tree, whose On-
tology Label is the same as Ti. We call this Canonical Tree the pivoting entity
and its RCT contains the query’s answer return element node.

Example 11: for δd in doc("student.xml") where δd//name = "John " return
δd//name.

The query asks for the names of the other authors of the "publication" authored
by John. The keyword "John" is contained in T9. The closest C. Tree to T9, whose
RCT contains T9 and also contains another C. Tree(s), whose Ontology Label(s)
is/are the same as T9, is C. Tree T3. So, the pivoting entity is T3. Therefore, we
use RCTT3(see example 5). The answer is nodes 2 and 9 contained in T1 and T4.

Example 12: for δd in doc("student.xml") where δd//title = "XQuery" return
δd//title.

The query asks for the other publication titles of the "author", whose one of his
publication’s titles is XQuery. The keyword "XQuery" is contained in T11. The

OOXSearch: A Search Engine 93

closest Canonical Tree to T11, whose RCT contains T11 and also contains another
Canonical Tree(s), whose Ontology Label(s) is/are the same as T11, is Canonical
Tree T9. So, the pivoting entity is T9 "person". Therefore, we use RCTT9(see
example 4). So, the answer would be nodes 23 and 5 contained in T10 and T3
respectively.

Canonical Trees whose Ontology Labels are the same behave as rivals. They
either cooperatively did something to the pivoting entity or something was done
to them collectively by the pivoting entity. In Example 11, Canonical Trees T1
, T9, and T4 cooperatively authored the pivoting entity T3. In example 12, T3,
T10 , and T11 are collectively authored by the pivoting entity T9.

The algorithm that computes the RCT of each Canonical Tree (algorithm
ComputeRCTs) is found in [28].

5 Computing RCT for STC Consisting of More Than
One Canonical Tree

Let Ti...Tj denote the Canonical Trees that satisfy the search terms of a query,
when the query has more than one search term. Let STi...Tj denote a set that
contains the Canonical Trees located in the canonical relationship tree that con-
nects Ti...Tj . If there are no two or more Canonical Trees in set STi...Tj whose
Ontology Labels are the same, then the Canonical Trees in set STi...Tj collectively
constitutes the STC of the query. Consider for example that the search terms of
a query are "area = databases" and "name = Sam" (See figure 2). The keyword
databases is contained in two Canonical Trees (T2 and T12), and the keyword
Sam is contained in T1. There are two sets of canonical relationship trees. The
first connects T1 with T12 and the second connects T1 with T2 as follows: ST1,T12

= T1, T3, T9, T12 and ST1,T2 = T1, T2. Set ST1,T12 contains Canonical Trees T9 and
T1, whose Ontology Labels are the same; therefore, the set is not a valid STC.
Since set ST1,T2 doesn’t contain Canonical Trees, whose Ontology Labels are the
same, it is a valid STC. Thus, T2 and T1 collectively constitute the STC of the
query. The rationale behind that is as follows. Consider Canonical Tree Tb is
located in the canonical relationship tree that connects Canonical Trees Ta and
Tc. Tb is related to both Ta and Tc and it semantically relates Ta to Tc. Thus,
without Tb, the relationship between Ta and Tc is semantically disconnected.
Therefore, if Ta and Tc satisfy the search terms of a query, the STC of the query
should also include Tb. So, the STC will consist of Ta, Tb, and Tc.

To compute the RCT, we first merge the RCTs of all Canonical Trees located
in a relationship tree. That is, we get the RCT of each Canonical Tree located in
the relationship tree from the set of RCTs computed in section 4 and then merge
them. Then, we apply properties 1, 2 and/or 3 on the merged Canonical Trees.
When applying these properties, we have to consider that the STC consists of all
Canonical Trees contained in the relationship tree. For example, when applying
property 2, we prune any Canonical Tree, whose Ontology Label is the same as
ANY of the Canonical Trees comprising the STC.

94 K. Taha and R. Elmasri

Example 13: for δd in doc("student.xml") where δd//name ="Sam" and δd//
title = "XML" return δd//area. The query asks for the research interest area of
the author whose name is "Sam" and who authored a paper titled "XML". The
keywords "Sam" and "XML" are contained in T1 and T3 respectively. So, T1
and T3 collectively represent the STC. Therefore, we merge RCTT1 and RCTT3

(see Fig 6 and example 5). The merged RCTs look the same as RCTT1 . We
then apply property 2 and prune T9 and T4, since their Ontology Labels are the
same as T1. When applying property 3, we prune T12, T13, T5. See Figure 6. The
answer return element node is node 36 (see Figure 1).

Example 14: for δd in doc("student.xml") where δd//area = "databases" and
δd//title = "XML" return δd//uNname. The query is interpreted as "in what
university did the author, whose area of expertise is "databases" and who coau-
thored a paper titled "XML" use to work". The keywords "databases" and
"XML" are contained in T12 and T3 respectively. The relationship tree that
connects T12 and T3 contains T9. So, T9 is also part of the STC. Therefore, we
combine RCTT3 , RCTT9 , and RCTT12 . All Canonical Trees contained in RCTT9

are contained in RCTT3 except for RCTT10 and RCTT11 ; therefore, we only at-
tach RCTT10 and RCTT11 to RCTT3 . All Canonical Trees contained in RCTT12

are contained in RCTT3 + RCTT9 We then apply property 2 and prune T1 and
T4, since their Ontology Labels are the same as the Ontology Label of T9. We
prune T5, since its Ontology Label is the same as T12. When applying property
3, we prune T10 and T11, since their Ontology Labels are the same as T3. We
apply property 3 and prune T2. The answer is node 32. See Figure 7.

6 System Implementation

6.1 Locating RCTs

For each Canonical Tree, we compute its RCT off line. We create a hash table
called RCT-TBL. For each Canonical Tree, we store in table RCT-TBL its ID
and the IDs of the Canonical Trees that constitute its RCT. The table entries
are the IDs of the Canonical Trees. We then cache the RCT-TBL.

We also construct a Keyword Index Table. For each keyword, we save in this
table the Canonical Tree(s) that contains that keyword. The Keyword Index
Table helps in locating STCs efficiently. We populate part of this table off-
line with keywords that are most likely to be used, since on-line population
is expensive [1]. If a query’s keyword is not found in the table, we search the
XML doc on-line to locate the Canonical Tree that contains it, and we then
save this information in the Keyword Index Table for future references. So, we
locate a STC from the Keyword Index Table and then locate its RCT from the
RCT-TBL.

6.2 Getting Answers Using OO Programming

Due to the nature and construct resemblance of an object in OO programming
and a Canonical Tree, OO programming is the most efficient mechanism to ex-

OOXSearch: A Search Engine 95

tract answer return element nodes from RCTs and to also extract instance values
contained in those nodes. As stated previously, if we incorporate behavior (meth-
ods) to a Canonical Tree entity, this entity will have all the characteristics of
an object in OO programming. The relationship between a STC and its RCT is
similar to the relationships between objects in OO. A class in OO programming
is the general template we use to define and create specific instances or objects.
Every Canonical Tree object is associated with a class. Figure 8 shows the En-
tity Relationship Diagram of the Canonical Trees comprising RCTT1 . Each of
the 3 Canonical Trees in the Figure has a class. Class T3 for instance contains
attributes title and year (see Figure 8). As the Figure shows, class T1 (the STC)
contains methods to extract answer return element nodes from the objects of T2
and T3 .

Classes of Canonical Trees, whose Ontology Labels are the same behave as
subclasses. Those subclasses inherit common attributes and methods from the
superclass, which is a class that has the name of the Ontology Labels of the
subclasses.

We can use the methods of a STC class (e.g. class T1 in Figure 8), to extract
both the answer return element nodes and the instance values contained in those
nodes. To do that we can construct a hash table object for each attribute (leaf
node) and populate it with the instance values contained in this node. Each
attribute will contain a pointer to its hash table e.g. attribute "title" in Figure
8 contains a pointer to the hash table that contains the instance values of node
5 "title" (see Figures 1 and 2). Since populating a hash table for each attribute
is very expensive especially when the XML document is large, we only popu-
late hash tables for attributes that appear in Frequently Used Queries (FUQ).
There are a number of studies that propose mechanisms to efficiently determin-
ing FUQ, such as [12], where efficient mechanisms to dynamically construct a list
of FUQs were investigated. If a query is a FUQ, the system will first determine
the query’s answer return element nodes and then extract the result values from
the hash table. This process is done using OO programming. For example, if the
STC is T1 and the query’s return element is title (see Fig 8), class T1 will use its
method getTitle() to extract the "title" instance values contained in the hash
table pointed to by attribute "title". If, however, the query is not a FUQ, the
system will first extract the return element nodes and then get the data from the
XML doc using XQuery processor. The system architecture in Figure 9 shows
these processes. The arrows show the flow of information.

7 Experimental Results

We implemented OOXSearch and all its techniques described in this paper using
Java. The experiments were carried out on a AMD Athlon XP 1800+ processor,
with a CPU of 1.53 GHz and 736 MB of RAM, running the Windows XP operat-
ing system. To fully evaluate the system, we used data models from four different
sources. We note that there are no XML benchmarks designed for testing loosely

96 K. Taha and R. Elmasri

Fig. 6. RCTT1+T3 Fig. 7. RCTT3+T9+T12

Fig. 8. Entity Relationship Diagram for
Canonical Trees of RCTT1

Fig. 9. System Architecture

structured query-based systems. We examined and compared the recall, preci-
sion, and search performance of OOXSearch with Schema-Free XQuery [2] and
XSEarch [1]. The implementation of [2] has been released as part of the TIM-
BER project [21]. So, we used TIMBER for the evaluation of [2]. We note that
we contacted one of the authors of [2], who helped us in the evaluation process.
As for [1], we implemented the entire proposed system, since its demo hasn’t
been released to the public domain. Since we were aware of the types of data
models and queries that cause [1] and [2] to yield low recall and precision, we
gave the test data models to four computer science PhD students, who were not
aware of the functionalities and techniques of neither OOXSearch nor [1] and [2]
and we asked them to construct loosely structured queries based on those data
models. The following are the four sources of our test data models:

XML Query Use Cases provided by W3C [11]: Each use case query is accom-
panied by a DTD and sample data. Some of these queries and data models em-
phasize textual content rather than node selection, because they are not designed
for testing loosely structured query-based systems. The four students selected
11 data models from the use cases along with their accompanying queries that
they thought are suitable for testing loosely structured query-based systems.
They also constructed 9 additional queries based on those data models. We then
generated 11 XML documents based on the 11 data models using [14]. The sizes
of the docs ranged from 100 to 300 MB.

XMark Benchmark [19]: There are 20 queries written in schema aware XQuery
accompanied by a 100 MB XML document.

XML Validation Benchmark from Sarvega [20]: The four students selected 14
out of the 25 provided XML docs that are suitable for testing loosely structured
query-based systems. The sizes of the docs are small, but some of them are
deeply nested.

OOXSearch: A Search Engine 97

OOXSeach Schema Free XQuery [2] XSEarch [1]

ł
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Queries

Re
cal

l

˚
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Queries

Pre
cisi

on

ł

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Queries

Re
cal

l

˚
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Queries

Per
cisi

on
Fig. 10. The top tow Figures show the Recall/ Precision on W3C Use Cases queries
and the bottom tow Figures show the Recall/ Precision on XML Validation Benchmark

ł

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System

Re
cal

l

˚
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Systems

Per
cisi

on

Fig. 11. Average Recall/ Precision on ALL the test data

Heterogeneous data models collected from the web: We collected 20 different
data models from the web.

7.1 Recall and Precision Evaluation

Figures 10 shows the recall and precision of the three systems on the W3C Use
Cases [11] and XML Validation Benchmark [20] respectively. In all the Figures,
OOXSearch achieved 100 percent recall and precision in all the queries, except
for query number 15 of the XML Validation Benchmark, where it achieved 0
percent recall and precision. [2] Achieved 0 percent recall and precision in four
of the W3C Use Cases and in one of the XML Validation Benchmark queries, as
the Figures show. As for [1], it achieved poor results. OOXSearch outperformed
[2] and [1] while [2] Outperformed [1]. The recall and precision results of [1] and
[2] on XMark are shown in the paper [2] (Figure 9). OOXSearch and [2] achieved
100 percent recall and precision on all XMark’s 20 queries, while [1] achieved
poor results (Figure is not shown due to space limitation). Figure 11 shows the
average recall and precision of the three systems using ALL the test data and
queries from the four sources of data stated previously. Based on the different
experimentation results, we constructed a table to summarize the criteria of data
models and queries that caused each of the three systems to achieve good or bad
results (see Table 2).

98 K. Taha and R. Elmasri

Table 2. Behavior of OOXSearch, [1], and [2] under different criteria of data models
and query types

7.2 Search Performance Evaluation

We compared the execution time of OOXSearch, XQuery [13], and [2] using
XMark’s ready-made 100 MB doc and its 20 accompanied queries. The 20
queries are written in schema aware XQuery language. We rewrote them us-
ing the formats accepted by OOXSearch and [2]. Note that since OOXSearch
can get answers of FUQs from cached results and that lowers the execution time
significantly, we considered each of the 20 queries as non-FUQ, and computed
the execution times based on that. The results showed that the execution times
of OOXSearch ranged from 121 percent to 232 percent of the execution times of
[13], while the execution times of [2] ranged from 147 percent to 387 percent of
the execution times of [13] (see [28]).

To evaluate the execution times of OOXSearch under different document
sizes, we ran queries using different doc sizes (150, 200, 250, and 300 MB) of
XMark, XQuery Use Cases, and XML Validation Benchmark. For each of the
four doc sizes, we ran 60 random queries and computed the average execution
time. We repeated the same process using XSEarch and Schema-Free XQuery.
The results showed that OOXSearch outperformed [1] and [2] in ALL the tests
(see [28]).

8 Conclusion

Using two recent works [1, 2] as samples we demonstrated how systems that em-
ploy semantic relationships between individual nodes are likely to return wrong
and/or redundant answers. The reason is that a label of a node by itself isn’t
sufficient to convey the semantics of the node. We proposed an alternative frame-
work solution, which takes into consideration the context of a node (its parent).
The main contribution of this paper is the employing of semantic relationships
between nodes based on their contexts and also the use of OO programming
to extract data from those nodes. The proposed framework is efficient, robust,
and works in heterogeneous data models. As shown in our experimental results,

OOXSearch: A Search Engine 99

there is only 1 out of 7 data model criteria that causes our framework to return
faulty recall and precision. In our future work we will expand OOXSearch and
investigate a way to correct this single faulty criterion.

References

1. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A Semantic Search Engine
for XML. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases, Informa-
tion Systems, and Peer-to-Peer Computing. LNCS, vol. 2944, Springer, Heidelberg
(2004)

2. Li., Y., Jagadish, H.: Schema-Free XQuery. In: VLDB 2004 (2004)
3. Xu, Y., Papakonstantinou, Y.: Efficient Keyword Search for Smallest LCAs in XML

Databases. In: SIGMOD 2005 (2005)
4. Amer-Yahia, S., Deutsch, A.: Flexible and Efficient XML Search with Complex

Full-Text Predicates. In: SIGMOD 2006 (2006)
5. Al-Khalifa, S., Yu, C., Jagadish, H.: Querying Structured Text in an XML

Database. In: SIGMOD 2003 (2003)
6. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in Relational

Databases. In: Bressan, S., Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.)
CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, Springer, Heidelberg (2003)

7. Chaudhuri, S., Das, G., Agrawal, S.: DBXplorer: a System for Keyword-Based
Search Over Relational Databases. In: ICDE 2002 (2002)

8. Aditya, B., Sudarshan, S.: BANKS: Browsing and Keyword Searching in Relational
Databases. In: Bressan, S., Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.)
CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, Springer, Heidelberg (2003)

9. Balmin, A., Hristidis, V., Koudas, N.: A System for Keyword Proximity Search on
XML Databases. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases,
Information Systems, and Peer-to-Peer Computing. LNCS, vol. 2944, Springer,
Heidelberg (2004)

10. Shao, F., Guo, L., Botev, C., XRANK,: Ranked Keyword Search over XML Doc-
uments. In: SIGMOD 2003 (2003)

11. XML Query Use Cases, W3C Working Draft 8 (June 2006). Available at
http://www.w3.org/TR/xquery-use-cases/

12. Elmasri, R., Taha, K.: Caching: An Efficient XML Query Mechanism in Client-
Server Architecture. SWDIM’06 (2006)

13. XQEngine version 0.69, downloaded from
http://sourceforge.net/projects/xqengine

14. ToXgene, a template-based generator for large XML documents. Available at:
http://www.cs.toronto.edu/tox/toxgene/

15. Boag, S.: XQuery 1.0: An XML Query Language. W3C Recommendation 2006.
http://www.w3.org/TR/2006/CR-xquery-20060608/

16. Florescu, D., et al.: Integrating keyword search into XML query processing. Com-
puter Networks 33, 119–135 (2000)

17. Bray, T.: Extensible Markup Language (XML). W3C. At:
http://www.w3.org/TR/2004/REC-xml11-20040204/

18. Berglund, A.: XML Path Language (XPath) 2.0. W3C Working Draft 15 (Septem-
ber 2005)

19. XMark - An XML Benchmark Project. Available at
http://monetdb.cwi.nl/xml/downloads.html

100 K. Taha and R. Elmasri

20. XML Validation Benchmark, Sarvega (an Intel company),
http://www.sarvega.com/xml-validation-benchmark.html

21. TIMBER: http://www.eecs.umich.edu/db/timber/
22. Hristidis, V., Balmin, A.: Keyword Proximity Search on XML Graphs. In: ICDE

2003 (2003)
23. Sara Cohen, B.: Kimelfeld. Interconnection Semantics for Keyword Search in XML.

In: CIKM 2005 (2005)
24. Amer-Yahia, S., Deutsch, A.: Flexible and Efficient XML Search with Complex

Full-Text Predicates. In: VLDB 2006 (2006)
25. Pradhan, S.: An Algebraic Query Model for Effective and Efficient Retrieval of

XML Fragments. In: VLDB’06 (2006)
26. Balmin, A.: Authority Based Keyword Search in Databases. In: VLDB’04
27. Castor is an Open Source data-binding framework for Java. Available at

http://www.castor.org/
28. The complete version of this paper is available at:

//students.uta.edu/ks/kst0035/

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 101–113, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Evaluating XPath Queries on XML Data Streams

Stefan Böttcher and Rita Steinmetz

University of Paderborn (Germany)
Computer Science

Fürstenallee 11 D-33102 Paderborn
stb@uni-paderborn.de, rst@uni-paderborn.de

Abstract. Whenever queries have to be evaluated on XML data streams - or
when the memory that is available to evaluate the XML data is relatively small
compared to the document - DOM based approaches that have to load and store
large parts of the document in main memory will fail. In comparison, we pre-
sent an approach to evaluate XPath queries on SAX streams that supports all
axes of core XPath, including the sibling axes. Starting from the XPath query,
our approach generates a stack of automata that uses the SAX stream as input
and generates the result of the query as an output SAX stream. An evaluation of
our implementation shows that in general our approach needs less main
memory, but at the same time is faster than both, Saxon and YFilter.

1 Introduction

1.1 Motivation and Paper Organization

XML is becoming the de facto standard for information exchange and, as the amount
of XML data is steadily growing, a key challenge is to process XML documents fast
within the available main memory.

Our contribution focuses on scenarios, in which a system has to evaluate queries
fast on documents that are multiple times larger than the main memory available to
the system. One typical scenario is an XML news stream provided by a news agency
using one of the typical XML formats NewsML [16] or NITF [17] to broadcast their
news, and users who want to receive only parts of the news based on queries that re-
present their interests. Another typical scenario is that devices with a small amount of
main memory (as e.g., mobile phones) shall work on large XML documents.

Whenever a scenario requires that the main memory available to evaluate queries
on XML data is relatively small compared to the XML data size, approaches that are
based on DOM will fail. These approaches have to load the complete XML document
as a DOM tree into main memory, and as they need at least 4 pointers for each XML
element (name, parent, first child, and next sibling) they yield a memory consumption
that covers multiple times the size of the XML data.

Therefore, we propose a SAX based approach to the evaluation of XPath queries.
Each input query is translated into an automaton that consists of only four different
types of transitions, the treatment of which is described in Section 2. The small size of

102 S. Böttcher and R. Steinmetz

the generated automata allows for a fast evaluation of the input XML data stream
within a small amount of memory.

This paper is organized as follows: The remainder of the first section outlines the
query language, summarizes the underlying assumptions, and outlines the problem
definition. Section 2 summarizes the fundamental concepts used to describe our ap-
proach to evaluate XPath queries. The third section outlines some of the experiments
that show the space efficiency and time efficiency of our prototype. Section 4 gives an
overview on related work and is followed by the Summary and Conclusions.

1.2 Query Language

The subset of XPath expressions supported by our approach conforms to the set of
core XPath as defined in [11]. This set is defined by the following EBNF grammar:

cxp ::= `/' locationpath
locationpath ::= locationstep ('/' locationstep)*
locationstep ::= x `::' t | x `::' t `[' pred `]'
pred ::= pred `and' pred | pred `or' pred

 | `not' `(' pred `)' | locationpath
 | locationpath ‘=’ const |`(' pred `)'

“cxp” is the start production, “x” represents an axis (attribute, self, child, parent,
descendant-or-self, descendant, ancestor-or-self, ancestor, following, preceding,
following-sibling, preceding-sibling), “const” represents a constant, and “t” represents
a “node test" (either an XML node name test or “*”, meaning “any node name”).

Note that our system supports the sibling axes, whereas other approaches like
XMLTK[1], χαοζ[4], AFilter[6], YFilter[9], XScan[14], SPEX[18], and XSQ[20] are
limited to the parent-child and ancestor-descendant axes.

1.3 General Assumptions and Problem Definition

As our system is designed to efficiently evaluate XPath queries on a possibly infinite
XML data stream, one requirement that our system has to meet is that each SAX
event can be read only once, i.e., the stream has to be parsed in a single pass in docu-
ment order. As we cannot jump backwards within the data stream, we have to rewrite
user queries that use backward axes (i.e., ancestor-or-self, ancestor, preceding-sibling,
and preceding) into equivalent queries containing only forward axes as described in
[19]. The rewriting might lead to equivalent rewritten queries that are exponentially
longer than the original queries, but as usually queries are rather short compared to
the XML data, the growth of query length will usually not extend the runtime too
badly.

Problem description: After rewriting queries, the remaining problem examined in
this paper is the following. The input consists of a core XPath query containing only
the forward axes and of an XML data stream in form of a SAX input event stream.
The desired output is a SAX event stream of query results in document order. The
main requirements of our system are to use as little main memory as possible in order
to reach data throughput rates comparable to those of data streams.

 Evaluating XPath Queries on XML Data Streams 103

2 Our Solution

In this section, we first explain how to transform the SAX input stream into a binary
SAX event stream, containing firstchild::*, nextsibling::*, and parent::* events, and
supporting self::a node tests. We then discuss how XPath queries are normalized,
such that they contain only firstchild::*, nextsibling:*, and self::a location steps plus
filters, and how normalized queries are transformed into XPath automata. Afterwards,
we show how to evaluate the binary SAX event stream on an evaluation stack of an
XPath automaton, which represents core XPath queries without any predicate filters.
Finally, we extend the approach to queries with predicate filters.

2.1 Binary SAX Event Streams

We transform the SAX event stream of the input XML document into a stream of bi-
nary SAX events firstchild::*, nextsibling::*, parent::*, and self::a. Here, ‘a’ can be an
element name, @ followed by an attribute name, or = followed by a constant. Trans-
forming the SAX stream is done in two phases.

Fig. 1. Example XML document with the resulting SAX and binary SAX streams

Phase 1: The SAX event character(T) generated for a text value T found in the XML
document is transformed into a binary SAX event sequence start-element(=T), end-
element(=T). Similar, each attribute/value pair A=AV found in the XML document is
transformed into a binary SAX event sequence

start-element(@A), start-element(=AV), end-element(=AV), end-element(@A) .

As the symbols ‘@’ and ‘=’ have to be chosen to uniquely identify attributes and
text nodes respectively, they are not allowed as an initial character for element-names.

104 S. Böttcher and R. Steinmetz

Finally, we replace the SAX event start-document with an event start-ele-
ment(“root”), and we replace the SAX event end-document with an event end-ele-
ment(“root”). At the end of Phase 1, the transformed SAX event stream contains only
two kinds of events: start-element(…) and end-element(…).

Phase 2: For the replacement of all the start-element and end-element events with
first-child::*, next-sibling::* or parent::* events, we regard the four different kinds of
consecutive pairs of start-element and end-element events:

1. A start-element(x) followed by a second start-element(a) corresponds to the
firstchild axis, i.e., ‘a’ is the first child of ‘x’. Therefore, the event sequence
firstchild::* self::a is created.

2. An end-element(x) followed by a start-element(a) corresponds to the nextsibling
axis, i.e., ‘a’ is the next sibling of ‘x’. Therefore, the event sequence nextsib-
ling::* self::a is created.

3. Furthermore, an end-element(x) followed by a second end-element(y) corre-
sponds to the parent axis. Therefore, the event parent::* is created.

4. When a start-element(x) is followed by an end-element(x), no binary SAX event
is created.

Altogether, Phase 1 and Phase 2 together transform a SAX stream into a binary
SAX stream of firstchild::*, nextsibling::*, parent::*, and self::a events. Figure 1 pre-
sents an example of an XML document and the generated binary SAX event stream.

The binary SAX events are used as input ‘symbols’ for a stack of XPath automata
that is constructed for an XPath query as described in the following sub-sections.

2.2 Decomposition and Normalization of XPath Query Expressions

We decompose each XPath query into a set of filter-free path queries, and,
corresponding to the transformation of the SAX input stream, rewrite each path query
into an equivalent XPath expression, called normalized XPath expression, that
contains only the location steps firstchild::*, nextsibling::*, and self::a. Here, ‘a’ can
be an element name, @ followed by an attribute name, or = followed by a constant as
in binary SAX events, but ‘a’ can also be the wildcard ‘*’ for an arbitrary node name.

Step 1 (Decomposition): We recursively decompose each XPath query Q into a set of
filter-free sub-queries, called query paths, by decomposing Q into the main path M
and predicate paths P1,…, Pn. A predicate path Pi of the form path = const is
rewritten to path/text::const.

For example, an XPath query
Q=/descendant::a[child::b=xyz]/child::c[child::d/child::e]/f is

decomposed into 3 query paths: the main path
M=/descendant::a/child::c/child::f
and the predicate paths P1=child::b/text::xyz and

P2=child::d/child::e.

Step 2 (Normalization): After decomposing Q, each of its query paths M,P1,…,Pn is
normalized separately as follows. We replace the axes following, descendant-
or-self, attribute, and text according to the following rewrite rules:

 Evaluating XPath Queries on XML Data Streams 105

(1) following::a ancestor-or-self::*/following-sibling::*
 /descendant-or-self::a
(2) descendant-or-self::a descendant::a | self::a
(3) attribute::a child::@a
(4) text::v child::=v

Note, that the disjunction (|) in rule (2) does not lead to an exponential growth of
the query size, but only to one additional edge in the XPath automaton (c.f. Figure 2).

As the rewrite rule (1) which replaces the following axis leads to an ancestor-or-
self axis, we eliminate the backward axis ancestor-or-self according to the rewrite
rules (13)-(22) provided in [19]. As the result of Step 2, we get an equivalent XPath
query that contains only the axes self, child, descendant, and following-sibling.

2.3 Transforming a Filter-Free XPath Query into an XPath Automaton

In order to evaluate a query path, we first build an XPath automaton and then start the
XPath evaluation stack using this automaton and the binary SAX stream as input.

Definition 1 (XPath automaton): An XPath automaton of a query path is a NFA
XP = (Q, ∑, q0, δ, f), where

• Q is the finite set of states
• ∑={firstchild::*, nextsibling::*} ∪ {self::a | a is an element name, @ fol-

lowed by an attribute name, = followed by a constant or ‘*’ } is the set of
input symbols

• q0∈Q is the start state
• δ : Q x ∑ x Q is a relation of transitions (q1,e,q2) where q2 is a successor

state of q1 if the event e is sent to the NFA,
• f∈Q is the final state

Fig. 2. Atomic XPath Automata

106 S. Böttcher and R. Steinmetz

In order to build the XPath automaton for a given query path, we normalize each
location step as described in Step 2 of Section 2.2. After normalization, we compute
the so-called atomic XPath automaton for each location step. The atomic XPath
automata for the location steps ‘/child::a’, ‘/descendant::a’, ‘/descendant-or-self::a’,
and ‘/following-sibling::a’ are shown in Figure 2.

An atomic XPath automaton of the child axis, the descendant axis or the following-
sibling axis location step (c.f. Figure 2) is an automaton that is equivalent to the
regular expression that forms the right-hand-side of the following rewrite rules (which
were inspired by [11]) for the corresponding location step.

(5) child::a firstchild::*/
(self::*/nextsibling::*)i/ self::a 0≤i<∞

(6) descendant::a firstchild::*/ (self::*/(firstchild::* |
 nextsibling::*)) i/self::a 0≤i<∞
(7) following-sibling::a nextsibling::*/
 (self::*/nextsibling::*)i/self::a 0≤i<∞

The right hand sides of the rules (5)-(7) correspond to regular expressions over the
alphabet ∑ of input symbols given in Definition 1, and the exponent ‘i’ corresponds to
the kleene star operator in regular expressions. We have used the exponent i to avoid
disambiguities between the kleene star operator for regular expressions and the
(wildcard) *-operator in XPath expressions.

Note that the location step ‘self::*’ is inserted into the right hand sides of the rules
(5)-(7), such that both the ‘firstchild::*’ and the ‘nextsibling::*’ location steps are
followed by a self axis location step, which corresponds to the sequence of events of a
binary SAX event stream as described in Section 2.1.

The complete XPath automaton of a query path is built by concatenating the
atomic XPath automata of all the query path’s locations steps in the order given by the
location steps. To concatenate the atomic XPath automata ALS1 and ALS2 of two
location steps LS1 and LS2 into a new XPath automaton XLS means to combine the
final state of ALS1 with the start state of ALS2 to a single state. The start state of the
XLS is the start state of ALS1 and the final state of XLS is the final state of ALS2.

Whenever the final state of the XPath automaton representing the main path is
reached, we have reached a part of the answer, and the current “sub-tree” of the bi-
nary SAX stream is written to the SAX output stream.

2.4 Evaluating Filter-Free XPath Queries Using XPath Automata

Definition 2 (XPath evaluation stack): An XPath evaluation stack of an XPath
automaton XP is a triple

XPE = (XP, ∑, Δ) with

• XP is used as the initial stack symbol
• ∑ = {firstchild::*, nextsibling::*, parent::*} ∪ {self::a | a is an element

 name, @ followed by an attribute name, = followed by a constant or ‘*’}
 is the set of input symbols

• Δ(∑) is an evaluation function that performs for a given input symbol a

 Evaluating XPath Queries on XML Data Streams 107

sequence of operations
Δ(firstchild::*) = {push(top()); top().event(firstchild::*);}
Δ(nextsibling::*) = {top().event(nextsibling::*);}
Δ(parent::*) = {pop();}
Δ(self::a) = { closure(top().event(self::a)); }

The operation ‘XP Stack. top()’ returns the XPath automaton on top of the stack,
and the operation ‘void XP.event(InputSymbol)’ fires the event InputSymbol on the
XPath automaton XP. The operation ‘void Stack.push(XP)’ puts the XPath automaton
XP on top of the stack, such that Δ(firstchild::*) pushes a copy of the XP automaton
that is the top stack element on top of the stack and passes the event firstchild::* to
this copy. The operation ‘void Stack.pop()’ deletes the XPath automaton on top of the
stack. Finally, the closure-operator in Δ(self::a) sends an event self::a to the automa-
ton stored at top of stack as often as the state of this automaton changes.

Evaluation of filter-free XPath queries: Each filter-free XPath query X is evaluated
on a stream of binary SAX events S as follows. We compute the XPath automaton XP
of X and start the XPath evaluation stack with XP as initial stack symbol and with S
as input. Each binary SAX event is passed as input symbol to the stack, and the Δ(∑)
function is performed for this input symbol which eventually causes stack operations
and events on an automaton stored in the stack.

Whenever a final state of an XPath automaton that is stored on top of stack is
reached, the XML sub-tree with the root element that corresponds to the SAX event
last parsed is written to the SAX output stream.

Optimized implementation: As all XPath automata stored on the stack share the
same structure, i.e., Q, ∑, q0, δ, and f are identical for all automata of the stack, in our
implementation, we do not store and copy automata. Instead, there exists one global
XPath automaton, and the stack stores only the set of active states on each level.

2.5 Evaluation of Automata for XPath Expressions with Predicate Filters

Whenever a location step LS contains a predicate filter, after query decomposition, a
filter automaton F is created for the predicate path P corresponding to the filter, and F
is attached to the final state fls of the atomic automaton of LS. A filter automaton F is
an XPath automaton, but F’s final state does not cause any output.

Whenever the state fls is reached by firing a transition, a so-called reservation is
created and attached to fls and the start state of the attached filter automaton becomes
active too, i.e., all binary SAX events are regarded as input for both the main
automaton and the filter automaton. Each reservation is a Boolean variable, which
will evaluate to either true as soon as the filter automaton has reached its final state or
to false as soon as the automaton in which this filter automaton became active is
popped from the stack.

More precisely, reservations are computed as follows. Let R, R1, R2 be sets of
reservations, and let res: Q x ℘(R) be a mapping of XPath automaton states to sets of
reservations. Each XPath automaton XP used in the XPath evaluation stack is
initialized without any reservations, i.e., ∀ q∈XP.Q: res(q, {}). Whenever a state q is

108 S. Böttcher and R. Steinmetz

reached in XP, and a filter automaton F is attached to q, the mapping is changed from
res(q,R) to res(q,R∪{r}), where r is a new reservation generated for F. Furthermore,
when a transition of the form δ(q1,inputSymbol,q2) is fired, all reservations R1 for a
state q1 become also reservations of the state q2 of XP. To summarize, the set of
reservations R2 of q2 is R2=R1∪{r1,…,rf}, where r1,…,rf are the newly created
reservations for the filter automata attached to q2.

If the final state f of an XPath automaton of the main path of the given XPath
query is reached, and there exists a reservation r that is attached to f that is not yet
evaluated, the output of the current sub-tree is queued and delayed until the
reservation r is evaluated; the current sub-tree becomes an output candidate. Finally,
when r is evaluated to true, the sub-tree is written to the output and deleted from the
queue. If on the other hand r is evaluated to false, the sub-tree is deleted from the
queue without writing it to the output.

A reservation r evaluates to true, if the corresponding filter automaton F reaches a
final state. In this case, r is set to true, possibly queued sub-trees can be written to the
output. If the automaton in which F became active is popped from the stack and no
final state of F has been reached in the meantime, the reservation r for F evaluates to
false, and possibly queued sub-trees that carry the reservation r are deleted without
being written to the output and all active states s with res(s,R), r∈R, become inactive.

As a predicate filter can not only contain a single comparison path=value, but can
be a composition of comparisons involving nested negations, disjunctions or
conjunctions of comparisons, reservations can be logical compositions of sub-
reservations, too. For example, a predicate filter [(comp1 or comp2) and not comp3],
where comp1, comp2 and comp3 are comparisons or path expressions, results in a
composed reservation r = ((r1 or r2) and not r3) and a filter automaton being created
for each sub-reservation r1, r2, and r3.

Simple and composed reservations are administrated in a lemma table. Whenever a
reservation is evaluated, the result is reported to the lemma table. The lemma table is
used for checking whether a composed reservation can be evaluated completely, i.e.,
whether the lemma table knows enough results of sub-reservations to decide, whether
the value of the composed reservation is true or false. The lemma table reports the
value of the evaluated reservation back to the XPath automaton XP waiting for the
reservation, such that XP can continue processing, and finally the main automaton can
check the output queue, and output candidates might be written to the output.

3 Evaluation of Our Prototype Implementation

We have implemented a prototype of our solution (XPA) in Java 1.5 and have evalu-
ated and compared it with two other systems on a Pentium 4 with 2.4 GHz Windows
XP system with 1 GB of RAM running Java 1.5. On the one hand, we have compared
XPA with the static XPath evaluator Saxon[21] that is DOM based, and therefore is
not capable to evaluate data streams. On the other hand, we have compared XPA with
YFilter[9], a system for information dissemination that is designed to evaluate a set of
queries on large XML data streams.

 Evaluating XPath Queries on XML Data Streams 109

Our test data set was generated by the XML generator of the XML Benchmark
XMark[22]. The sizes of the documents of our data set can be seen in Table 1. A docu-
ment Dn was created by the XMark generator providing the factor n/1000, i.e., D32
was generated by the XMark generator with the factor 0.032. This leads to a dataset
with documents starting from the size of 116 kB to the size of more than 650 MB.

Table 1. Document sizes of the test collection (generated by XMark)

Document
name

D1 D2 D4 D8 D16 D32 D64 D128 D256 D512 D1024 D2048 D4096 D6000

Document
size (kB)

116 211 458 901 1,881 3,728 7,259 14,949 29,693 59,114 118,767 238,164 477,018 697,657

On our dataset, we have evaluated queries that were inspired by the queries
Q1,…,Q5 of the XPath benchmark XPathMark[10] (we have omitted all backward
axes in advance). The test queries can be seen in Table 2.

Table 2. XPathMark queries used for the evaluation of the XPath evaluation system XPA

Name Query
Q1 /child::site/child::regions/child::*/child::item
Q2 /child::site/child::closed_auctions/child::closed_auction/child::annotation/

child::description/child::parlist/child::listitem/child::text/child::keyword
Q3 /descendant::keyword
Q4 /descendant-or-self::listitem/descendant-or-self::keyword
Q5 /child::site/child::regions/child::*[self::namerica]/child::item

Our tests have shown that our system outperforms the other two systems. Espe-
cially for large documents, our system is more than 2 times faster than Saxon and 20
times faster than YFilter. Table 3 shows the concrete figures for the query Q5. A
visualization of the figures for the query Q5 can be seen in Figure 3(a), whereas
Figure 3(b) and 3(c) show the evaluation times for all queries for document D1 or
D1024 respectively.

Our tests have as well shown that our system consumes far less main memory than
Saxon and than YFilter. Saxon consumes 4 times the document size on average,
which is typical for DOM based systems, YFilter needs only 2 times the document
size. In comparison, XPA consumes from 20% of the document size on average for
simples XPath queries without predicate filters (Q1-Q4) up to 50 % of the document
size on average for paths with predicate filters (Q5). In our experiments, an
OutOfMemory-Exception for YFilter occured from D2048 on and for Saxon from
D4096 on with 1 GB of heap space assigned to Java.

On average, we have measured a data throughput rate of more than 40MBit/s for
our system. In comparison, ADSL2+, the fastest ADSL standard currently available,
reaches a data download throughput rate of at most 24 MBit/s.

110 S. Böttcher and R. Steinmetz

(a) Q5

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 50,000 100,000 150,000 200,000 250,000

document size (kB)

e
v

a
lu

a
ti

o
n

 t
im

e
 (

m
s

)

Saxon

XPA

Yfilter

(b) D1

0

50

100

150

Q1 Q2 Q3 Q4 Q5
query

ti
m

e
 (

m
s

)

Saxon

200

250 XPA
Yfilter

(c) D1024

0

100,000

Q1 Q2 Q3 Q4 Q5
query

ti
m

400,000

500,000

200,000

300,000
e

 (
m

s
)

Saxon
XPA
YFilter

Fig. 3. (a) Evaluation time for different document sizes (query: Q5). (b) Evaluation time for
document D1 for all queries. (c) Evaluation time for D1024 for all queries.

Table 3. Evaluation time for different document sizes (query Q5) (� = OutOfMemory)

D1 D2 D4 D8 D16 D32 D64 D128 D256 D512 D1024 D2048 D4096 D6000

XPA 92 123 136 219 383 688 1,204 2,288 4,194 8,623 16,983 32,945 109,471 186,282

Saxon 168 171 257 366 651 898 1,511 2,482 4,500 9,515 40,403 111,862

YFilter 99 159 256 422 778 1,387 2,640 5,102 10,115 30,914 367,790

4 Relation to Other Works

There exist several different approaches to the evaluation of XPath queries on XML
data streams. They can be divided into categories by the subset of XPath they support.
Nearly all of them are based on automatons (X-scan[14], XMLTK[1], YFilter[9], [12],
[13], AFilter[6], XSQ[20], SPEX[18]) or parse trees ([3], [4], [7], [8]). All of them
support the axes child and descendant-or-self and most of them support predicate
filters and wildcards, but none of them support the sibling-axes as our solution does.

X-scan[14], XMLTK[1], and YFilter[9] support XPath queries containing the child
and descendant-or-self axes and wildcards using finite state automata. [12] (for the
main path) and [13] (for the predicates) propose to construct deterministic finite auto-
mata (DFA) in a lazy way, i.e., the DFA is not generated completely at the beginning,
but additional states are added only when needed.

 Evaluating XPath Queries on XML Data Streams 111

AFilter[6] is an adaptable XPath query evaluation approach that needs a base
memory requirement that is linear in query and data size. If more memory is provided
to AFilter, AFilter uses the remaining main memory for a caching approach to
evaluate queries faster than with only the base memory. AFilter is mainly based on a
lazy DFA and it supports wildcard, but does not support predicate filters. Similar to
YFilter[9], AFilter is designed to evaluate a large set of queries.

XSQ[20] and SPEX[18] use a hierarchical arrangement or network of transducers,
i.e., automata extended by actions attached to the states, extended by a buffer to evalu-
ate XPath queries. The XPath queries supported by XSQ contain predicates with the
restriction that each query node can contain at most one predicate and each predicate
can contain path-to-value comparisons with paths of size 1 containing only the axes
child, text or attribute. The main idea is that a nondeterministic push-down transducer
(PDT) is generated for each location step in an XPath query, and these PDTs are
combined into a hierarchical pushdown transducer in the form of a binary tree.

The approach presented in [15] discusses how to handle the child and descendant-
or-self axes, predicates (including functions and arithmetics) and wildcards in XQuery
using TurboXPath. The input query is translated into a set of parse trees. Whenever a
matching of a parse tree is found within the data stream, the relevant data is stored in
form of a tuple that is afterwards evaluated to check whether predicate- and join
conditions are fulfilled. The output is constructed out of those tuples the conditions of
which have been evaluated to true.

χαοζ[4] and [3] build a parse tree as well (plus a parse-dag in [4], as they support
the parent and the ancestor axis in addition). These parse tree is used to ‘predict’ the
next matching nodes and the level in which they have to occur. For example, consider
the query //a/b and a matching of ‘a’ in level 3. Then the next interesting matching
would be a node ‘b’ in level 4.

The approach discussed in [7] is mainly based on parse trees, but it collapses the
parse tree into a prefix trie as follows. Common prefix sequences of child-axis loca-
tion steps of different queries are combined into a leaner single path of the prefix trie.

The approach presented in [8] uses a structure which resembles a parse tree with
stacks attached to each node. These stacks are used to store XML nodes that are solu-
tions to the parse tree nodes subquery (or to store XML nodes that are candidates for a
solution in case of predicate filters).

In comparison to all these approaches, we additionally support the ‘sibling’-axes
following and following-sibling. Furthermore, beyond [15] and [20], our approach is
capable to parse streams of recursive XML, i.e., data in which the same element
names do occur repeatedly along a root-to-leaf path.

5 Summary and Conclusions

Query processing on massive XML data streams and query processing of XML data
on small mobile devices require a query processor to meet two conditions at the same
time: the query processor shall consume a small amount of main memory and shall
reach data throughput rates that are not smaller than the arrival rate of the XML data
using today’s broadband communication technologies.

112 S. Böttcher and R. Steinmetz

In this paper, we have presented an XPath query processor that reaches data
throughput rates that are higher than the download rates of ADSL2+ while at the same
time consuming only 20%-50% of the document size in main memory. Furthermore,
in comparison to most of the other query processors, our query processor supports all
the axes of core XPath including the sibling axes.

Our query processor decomposes and normalizes each XPath query, such that the
resulting path queries contain only three different types of axes, and then converts
them into lean XPath automata for which a stack of active states is stored. The input
SAX event stream is converted into a binary SAX event stream that serves as input of
the XPath automata.

As XPath is used as data access standard in XSLT and XQuery, we are optimistic
that the technology proposed in this paper can be used within XSLT processors or
XQuery processors too.

References

[1] Avila-Campillo, I., Green, T.J., Gupta, A., Onizuka, M., Raven, D., Suciu, D., XMLTK,:
An XML Toolkit for Scalable XML Stream Processin. In: Proceedings of PLANX
(October 2002)

[2] Bar-Yossef, Z., Fontoura, M., Josifovski, V.: Buffering in query evaluation over XML
streams. PODS 2005, pp. 216–227 (2005)

[3] Bar-Yossef, Z., Fontoura, M., Josifovski, V.: On the Memory Requirements of XPath
Evaluation over XML Streams. PODS 2004, pp. 177–188 (2004)

[4] Barton, C., Charles, P., Goyal, D., Raghavachari, M., Fontoura, M., Josifovski, V.:
Streaming XPath Processing with Forward and Backward Axes. ICDE 2003, pp. 455–466
(2003)

[5] Bry, F., Coskun, F., Durmaz, S., Furche, T., Olteanu, D., Spannagel, M.: The XML
Stream Query Processor SPEX. ICDE 2005, pp. 1120–1121 (2005)

[6] Candan, K.S., Hsiung, W.-P., Chen, S., Tatemura, J., Agrawal, D.: AFilter: Adaptable
XML Filtering with Prefix-Caching and Suffix-Clustering. VLDB 2006, pp. 559–570
(2006)

[7] Chan, C.Y., Felber, P., Garofalakis, M.N., Rastogi, R.: Efficient Filtering of XML
Documents with XPath Expressions. ICDE 2002, pp. 235–244 (2002)

[8] Chen, Y., Davidson, S.B., Zheng, Y.: An Efficient XPath Query Processor for XML
Streams. In: Proceedings of 22nd International Conference on Data Engineering (ICDE)
(to appear, 2006)

[9] Diao, Y., Rizvi, S., Franklin, M.J.: Towards an Internet-Scale XML Dissemination
Service. In: Proceedings of VLDB 2004 (August 2004)

[10] Franceschet, M.: XPathMark: An XPath Benchmark for the XMark Generated Data. In:
Bressan, S., Ceri, S., Hunt, E., Ives, Z.G., Bellahsène, Z., Rys, M., Unland, R. (eds.)
XSym 2005. LNCS, vol. 3671, pp. 129–143. Springer, Heidelberg (2005)

[11] Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing XPath Queries.
VLDB 2002 (2002)

[12] Green, T.J., Gupta, A., Miklau, G., Onizuka, M., Suciu, D.: Processing XML Streams
with Deterministic Automata and Stream Indexes Published in ACM TODS, vol. 29(4),
pp. 752–788 (December 2004)

[13] Gupta, A., Suciu, D.: Stream Processing of XPath Queries with Predicate. In: Proceeding
of ACM SIGMOD Conference on Management of Data (2003)

 Evaluating XPath Queries on XML Data Streams 113

[14] Ives, Z.G., Halevy, A.Y., Weld, D.S.: An XML query engine for network-bound data.
VLDB J. 11(4), 380–402 (2002)

[15] Josifovski, V., Fontoura, M., Barta, A.: Querying XML streams. VLDB J. 14(2), 197–210
(2005)

[16] NewsML 1.2: News Markup Language (October 2003) http://www.newsml.org/
[17] NITF 3.3: News Industry Text Format, http://www.nitf.org/
[18] Olteanu, D., Kiesling, T., Bry, F.: An Evaluation of Regular Path Expressions with

Qualifiers against XML Streams. ICDE 2003, pp. 702–704 (2003)
[19] Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking Forward. EDBT Workshops

2002, pp. 109–127 (2002)
[20] Peng, F., Chawathe, S.S.: XPath Queries on Streaming Data. In: Proceedings of the ACM

SIGMOD International Conference on Management of Data. June 9-12 2003, San Diego,
California (2003)

[21] SAXON - XSLT and XQUERY Prozessor Version 8.8.0.4. 2006
http://saxon.sourceforge.net/

[22] Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.: XMark: A
Benchmark for XML Data Management. VLDB 2002, pp. 974–985 (2002)

PSMQ: Path Based Storage and Metadata
Guided Twig Query Evaluation

M. Archana, M. Lakshmi Narayana, and P. Sreenivasa Kumar

IIT Madras, Chennai,
India - 600036

archana.maram@gmail.com,lokesh512@gmail.com,psk@cs.iitm.ernet.in

Abstract. Efficient evaluation of queries on XML data is a major re-
search issue. Structural join based techniques are well known for XPath
evaluation. For the long path expressions, join techniques are not effi-
cient as they increase the number of joins and disk I/O cost. Path based
techniques try to reduce the number of joins. In this paper, we propose a
metadata guided query evaluation technique which uses path based stor-
age. We use interval encoding for the nodes. In addition, we use Strong
DataGuide to assign integer path labels to distinct root-to-node label
paths in the data tree. An element list is maintained for each distinct path
consisting of nodes that can be reached by that path. The Element-Map
gives the one-to-many mapping between element names (or tag names)
to element lists with nodes having that tag-name. The Path-Map gives
the root-to-leaf path for a given path label. Using these structures, we
can combine top-down path matching and bottom-up path selections to
efficiently evaluate linear path expressions. For twig queries, we perform
structural joins at branch points. Through experimental evaluation on
standard datasets, we show that our approach outperforms the existing
path-index based approaches which in turn outperform structural join
methods.

Keywords: DataGuide, XPath, structural summary, structural join.

1 Introduction

Many query languages such as XPath [4] and XQuery [9] have been proposed
to query XML data. In this paper, we consider only the tree structured XML
data i.e. data which does not include IDs and IDREFs and XPath queries are
considered. We consider the queries that can be represented in the form of trees,
called the twig queries.

Efficient processing of XPath expressions is one of the major recent research
issues. Many techniques have been proposed to process path expressions effi-
ciently. Some of the well known query evaluation techniques include join based
algorithms [8,14], structural summary techniques [12] and path-ID based algo-
rithms [17,5,10].

The structural join approaches [8,14] split the query into a set of binary struc-
tural join operations. The intermediate results of these joins are merged to get

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 114–124, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

PSMQ: Path Based Storage and Metadata Guided Twig Query Evaluation 115

the final result of the query. All the above mentioned structural join algorithms
use interval encoding as the node identification scheme. To evaluate all the XPath
axes, Staircase Join Algorithm [15] which uses pre-post node encoding scheme is
proposed. In join approaches computation cost due to the style of one-join-per-
location-step becomes unacceptably huge, especially when the path expression
is long.

Unlike join approaches, structural summary based approaches restrict the
search to only relevant portion of XML data. Examples of such approaches
include DataGuide [12] and Index Fabric [6]. These techniques can efficiently
process the absolute paths.

To reduce the number of joins and disk accesses, path based techniques such
as BLAS [17] and MQEB [5] are proposed. These algorithms assign pid(path
id also called P-Label) to each element and also to all the possible paths in the
document. The pid of a node encodes the root-to-node path(also called as source
path of the node) for that node. When compared to structural join techniques,
these approaches reduce the number of joins and disk I/O cost. BLAS needs
joins at each ancestor-descendant step and branching points but MQEB needs
joins only at branching points. For non-branching path expressions, MQEB does
not need any joins. But both of these approaches fail to assign pid values to
elements in case of XML documents that are deep and have large number of
distinct elements. As the P-Label calculation depends on the number of distinct
tags information they need to reassign the P-Labels if a new tag-name is added.

The other path based technique XRel [10] is a relational system. XRel converts
the given XML document into four tables: Element, Attribute, Text and
Path. The schema of the tables is as follows:

Element(docID, pathID, start, end, index, reindex)
Attribute(docID, pathID, start, end, value)
Text(docID, pathID, start, end, value)
Path(pathID, pathexp)

This system also uses interval encoding to assign start and end values to all
the elements, attributes and text in the document. Given XPath queries are
converted to SQL and executed on relational tables.

BLAS and MQEB perform better than join approaches but have difficulties
in assigning P-Labels. The XRel system has the additional overhead of query
conversion. To overcome the problems with existing path based approaches, we
propose a system called as PSMQ(Path Based Storage and Metadata Guided
Query Evaluation). We use interval encoding for node identification and strong
DataGuide to assign P-Labels (or path labels) efficiently. We keep path sum-
maries in the form of metadata to reduce the search effort while evaluating
queries. Unlike BLAS and MQEB, we do not need to reassign the P-Labels, if a
new tag-name gets added to the existing document.

Contributions of this paper are,

– Proposing a storage scheme which uses interval encoding as the node iden-
tification scheme and strong DataGuide approach to assign path labels.

116 M. Archana, M. Lakshmi Narayana, and P. Sreenivasa Kumar

– Introducing two forms of metadata Element-Map and Path-Map, which guide
the query evaluation and are useful in reducing the number of joins.

– Introducing a query evaluation strategy which uses string matching tech-
niques. The proposed query evaluation technique does not need joins to
evaluate linear path expressions. To evaluate twig queries, joins are required
at branching points.

– Experimental evaluation on standard benchmark data sets is done to show
that the proposed technique performs better than the other path-ID based
approaches, namely BLAS, MQEB and XRel. We have considered only these
three existing path based systems because these systems outperform join
approaches and other path based approaches.

The rest of the paper is organized as follows. Section 2 provides required
background material. Proposed storage scheme and query evaluation technique
for both linear path expressions and twig queries are explained in Section 3.
Implementation details and results of the extensive experimental evaluation are
shown in Section 5. We conclude in Section 6.

2 Background

2.1 Interval Encoding

In interval encoding scheme [14], each node is assigned a tuple (start, end). The
value of start(end) for an element e can be generated by counting the number
of tags from the beginning of the document to the start(end) tag of e. We can
leave some gaps while assigning end value to handle updates. Using the interval
encoding scheme, finding all the tree structured relationships between two nodes
is very easy. Here, tree structured relationships could be ancestor-descendant,
parent-child, preceding-following or sibling relationships.

2.2 DataGuide

DataGuide [12] describes every unique label path of the source document exactly
once, regardless of the number of times it appears in the source document.
In the DataGuide, if each object is reachable by a unique label path then it
is considered as a strong DataGuide. Strong DataGuide induces a one-to-one
correspondence between source paths and DataGuide nodes. An example XML
tree and its corresponding Strong DataGuide are shown in Figure 1 and Figure 2
respectively. From the figure it is clear that a new node is created whenever we
encounter a new path.

3 Proposed System: PSMQ

The storage of elements is based on the source paths of the elements. Each ele-
ment is assigned a tuple (start,end), and stored in an appropriate element list,

PSMQ: Path Based Storage and Metadata Guided Twig Query Evaluation 117

book

author title chapter

titlesection

titlesection

title text

book

author title chapterchapter

section title section titlesection

titlesection

title text

bib

title

Fig. 1. An example XML tree

0

1

2

3 4 5

author chaptertitle

book

bib

6 7

title section

8 9

title section

10 11

title text

Fig. 2. Strong DataGuide

where an element list is the list of all elements with the same source path, where
source path of a node n is the root-to-node label path of n. Unlike the other
path-ID based algorithms, we do not store pid value for each element along with
start and end values. The number of the element list in which a particular ele-
ment e is present, acts as path-ID of e. Note that we may have many different
element lists corresponding to an element name e, if e-nodes are reachable from
many different paths. Each node in the strong DataGuide of Figure 2 corre-
sponds to an element list and the node number corresponds to distinct path
label in the document. Storing the elements in this way assures that, each path
will have only one element list corresponding to it. As we shall see later, this is
helpful in reducing the number of elements scanned and the disk I/O performed
while evaluating the query. We also find that unnecessary elements(which do
not contribute to the result) will not be considered while evaluating simple path
expressions(path expressions with only parent-child axis) and complex path ex-
pressions(path expressions with mixture of ancestor-descendant and parent-child
axes).

To access the value information efficiently in PSMQ, all values are stored in
a B+-tree called Value B+-tree. We use a hash function h(value) to hash the
value. We use the pair (hash value, path label) as the key and start and end
values as the data for the B+-tree. We can also store the value without hashing
but this will increase the size of the B+-tree.

Two forms of metadata is maintained in order to guide the query evaluation.
These two forms help in getting the relevant paths while evaluating the query.

1. Element-Map:
As we can have different element lists corresponding to a tag-name, this
metadata provides the necessary mapping of tag-names to element lists.
Given a tag-name t, this metadata helps in finding the set of element list

118 M. Archana, M. Lakshmi Narayana, and P. Sreenivasa Kumar

numbers corresponding to the tag t. The Element-Map for the example tree
will be: author-3, bib-1, book-2, chapter-5, section-7,9, text-11 and title-
4,6,8,10. This information will be sorted on tag-name.

2. Path-Map:
Another form of metadata is also maintained which helps in finding the
source path if we know the path label. Each tuple in this metadata contains
path label1 (or path-ID) and the source path corresponding to it. This in-
formation is sorted in the order of path labels. Path-Map for the example
XML tree will be like 1 - /bib, 2 - /bib/book, , 3 -bib/book/author and so
on. From the Figure 2 it is clear that the example XML document contains
11 distinct paths so Path-Map will also have 11 entries.

4 Query Evaluation

We model XML path query evaluation problem as a string matching problem.
Here we assume the last element in the path query as the output node. If any
other element is the output node then the query is treated as a twig query with
one branch. We use combination of both bottom-up and top-down approaches
for query evaluation.

Given a query, we consider the element name of the last location step in the
query and get all element list numbers corresponding to this element name from
the Element-Map. (If the element of the last location step is a wildcard, then
all possible element names need to be considered.) These element list numbers
are denoted by set S. Some of the elements in these element lists will contribute
to the final result. Then we consider the source path corresponding to each
member of the set S and try to string match the query to the retrieved paths. If
a path satisfies the query then we store it in set P and corresponding element list
number in set Res. To match the query with paths, string matching is used. At
the end of query matching process we will retain only the element list numbers
and their corresponding source paths in sets Res and P respectively. Finally,
elements from the element list numbers in set Res are merged to produce the
final result.

The query evaluation process for the query a0q1a1q2a2 . . . an−1qn, where
a0, a1 . . . an−1 are either ‘/’ or ‘//’ and q0, q1 . . . qn are the tag-names, is as fol-
lows: First we split the query at each ancestor descendant step and consider each
segment as one string to be matched. The query after splitting is Q1, Q2, . . . , Qk.
We proceed to match these segments one after the other in the chosen path. First
we match Q1 and in the subsequent part of the path, we match Q2 and so on.
When we match Qi, we ensure that the last tag name in Qi is matched to a
complete tag name, rather than a prefix of it. For instance, “book” can not be
matched to “books”.

The process is illustrated with the help of an example query bib/book//section
/title. This query retrieves titles of all sections in the books in bibliography. First,
all element list numbers corresponding to the tag-name title are retrieved from
1 Note that path label and element list number are same in our system.

PSMQ: Path Based Storage and Metadata Guided Twig Query Evaluation 119

the Element-Map. Now set S = {4, 6, 8, 10}. We retrieve paths corresponding
to these element lists from Path-Map and check whether they match the query
using string matching. For all the paths, first bib/book is matched and then
section/title is matched. We find that only the paths corresponding to element
lists 8 and 10 match the query. Hence, elements in these element lists are merged
to produce the final result.

If the query has value predicate and if we got path label t as the result after
evaluating the path expression without considering the predicate, then we need
to retrieve only the elements satisfying the value predicate in element list t. We
use h(value) and t as the key for the Value B+-tree to retrieve only the elements
with the given value. Using this Value B+-tree we can evaluate only the queries
with equality predicates. To extend this to evaluate inequality predicates we
need to build one more B+-tree which uses start value as the key and the leaf
value as the data.

To evaluate twig queries, we split the query at branching point and eval-
uate each branch separately and join the results. Consider an example twig
query shown in Figure 3. This query is split as bib//chapter till the branch-
ing point and the two branching paths are bib//chapter/section/section and
bib//chapter/title. First, we evaluate till the branching point i.e. bib//chapter
and store this result in a temporary element list res1. Let us say the path
which satisfies this part of the query is bib/book/chapter. Now we evaluate the
first branching path bib//chapter/section/section. When we evaluate branch-
ing paths we substitute bib/book/chapter for bib//chapter and do the match-
ing process as we know the result till the branching point. The result of the
first branching path is stored in a temporary list called as res2. Now we join
res1 and res2 elements as res2/ancestor :: res1, which gives ancestors of res2
present in the set res1. Join result is stored in res1. Now second branching path
bib//chapter/title is evaluated and the result is stored in res3. We then per-
form join res1/descendants :: res3, which gives the final result. Many of the

bib

chapter

section

section

title

Fig. 3. Query: bib//chapter[section/section]/title

well known structural join algorithms [14,11] give pairs of nodes that join as the
output but in our context, pairs are not required as the join output. Hence, we
have used staircase algorithm [15] which gives only one set as the output.

120 M. Archana, M. Lakshmi Narayana, and P. Sreenivasa Kumar

4.1 Comparisons with BLAS and MQEB

The proposed system PSMQ has advantages when compared to the storage sys-
tem of BLAS [17] and MQEB [5].

– The pre-processing overhead is less in PSMQ as it needs only one parsing,
whereas, existing systems parse the document twice. The BLAS system needs
two parses as the path labelling process requires to know the height of the
data tree and the number of distinct element names. These are determined
in the first parse.

– PSMQ does not suffer from the problem of running out of integer values for
generating path labels. The number of digits in P-Label for different datasets
is shown in Table 1. Existing systems might cross the available range of values
while handling the datasets like TREEBANK which are deep. TREEBANK

Table 1. Space usage for different datasets

Dataset Size B+-tree EM PM pathCount TS BLAS LP
NASA 23MB 11MB 988B 4.6KB 94 16.4MB 30MB 17digits

SWISSPROT 109MB 62MB 1.2KB 3.4KB 116 97M 226MB 12digits
DBLP 128MB 98MB 939B 2.4KB 98 138MB 195MB 10digits

TREEBANK 83MB 62MB 3.4MB 17MB 338747 2.4GB N/A 90digits

dataset needs 90-digit P-Label which none of the data types support. In
this case, BLAS and MQEB fail to assign P-Labels. As we follow strong
DataGuide approach for assigning path labels we can handle any kind of
documents.

– If any new tag is added, existing systems need to reassign the P-Labels for
all the nodes again. In our system if new tag is added then we need to just
add entries in the metadata and create one element list for the new element.

– When compared to BLAS number of joins in evaluating complex and twig
queries is reduced in our system. However number of joins in our system and
MQEB is same.

4.2 Comparisons with XRel

– The XRel [10] system has the overhead of converting XML document into
relational tables and also the overhead of converting XPath queries into SQL.
PSMQ does not have this overhead.

– XRel needs one join for evaluating non-branching path expressions, two joins
for non-branching path expressions with value predicates and three joins for
each branching point in a twig query. We do not need joins to evaluate non-
branching path expressions even in case of value predicates also. Our system
PSMQ needs two joins at each branching point in a twig query.

PSMQ: Path Based Storage and Metadata Guided Twig Query Evaluation 121

5 Implementation Details

5.1 Offline Processing

Offline processing involves parsing the XML document, building two forms of
metadata and creating Value B+tree. SAX [1] parser which is written in Java, is
used for parsing the XML document. Parsing phase assigns a tuple (start,end)
to each element. If an element has value, then the value information is stored
in a different file along with the element’s start and end values. After we finish
parsing, we construct Value B+tree from this file. If the element to be added
exists in one of the already seen paths then it is simply added to the proper
element list based on its source path. If a new path comes, then a new element list
is created and Path-Map is updated accordingly. We do not need extra parsing
to build the metadata, it is built while parsing the document.

In the Table 1, columns EM(Element-Map) and PM(Path-Map) show the
space occupied by two forms of metadata. The pathCount column shows the
number of distinct paths in each of the datasets. The column B+tree shows the
size of the Value B+tree. For query evaluation only the NASA and SWISSPROT
datasets are used. However to check the metadata size, other datasets TREE-
BANK and DBLP are also used. All the datasets are taken from [2]. We see that
metadata size is small and it can be fit in the main memory easily. The columns
TS and BLAS show the total storage, including metadata and Value B+-tree,
taken by our system and BLAS respectively. Last column shows the maximum
number of digits needed for BLAS P-Labels. In case of TREEBANK dataset
BLAS fails to assign P-Labels as it needs 90 digit number.

5.2 Experimental Setup

Experiments are conducted on a machine with 2.66GHz Intel Celeron processor
having 512MB RAM. We have compared our system with BLAS [17], MQEB [5]
and XRel [10]. We have used a machine running Fedora core 3 and the other ma-
chine with same configuration running Windows XP. For comparing our system
with XRel, we have used both Windows and Linux machines. For comparing
with BLAS and MQEB we have used Linux machine. String class provided by
GNU C++ have been used to perform string matching functions. OS files are
used to store element lists and the meta data, namely the Path-Map and the
Element-Map and Berkeley DB [3] B+-trees are used to create Value B+-tree.

5.3 Performance Evaluation

Comparison with BLAS and MQEB: The example queries are shown in
Table 2. Performance results for the example queries are shown in Tables 3 and 4
respectively. In these tables, columns PSMQ, BLAS and MQEB show the time
taken in milliseconds for query evaluation in our system, BLAS and MQEB
respectively.

122 M. Archana, M. Lakshmi Narayana, and P. Sreenivasa Kumar

Table 2. Queries for NASA and SWISSPROT(SP) datasets along with number of
joins

Sl.No Query Dataset BLAS PSMQ
Q1 //dataset//astroObjects/astroObject/name NASA 1 0
Q2 /datasets//textFile/name=‘adc.doc’ NASA 1 0
Q3 /datasets/dataset/identifier NASA 0 0
Q4 //dataset[//reference/source//year]//tableHead//tableLink/title NASA 3 2
Q5 /datasets//source//other//author[/lastName=‘Jackson’]/initial NASA 5 2
Q6 root/Entry/Ref/MedlineID SP 0 0
Q7 root//Ref/Author=‘Baumeister H’ SP 1 0
Q8 root[//Features/CARBOHYD/Descr=‘POTENTIAL’]//FLYBASE SP 2 2
Q9 root/Entry[/Features/CONFLICT]/MENDEL SP 2 2
Q10 root//Features/METAL/Descr SP 1 0

Table 3. Query evaluation time in ms
for NASA(23MB) dataset

Query PSMQ BLAS MQEB
Q1 9 25 21
Q2 8 8 8
Q3 9 29 31
Q4 67 128 110
Q5 11 30 16

Table 4. Query evaluation time in ms
for SWISSPROT(109MB) dataset

Query PSMQ BLAS MQEB
Q6 21 250 200
Q7 8 8 8
Q8 22 23 22
Q9 21 35 33
Q10 11 248 200

Before evaluating the query, BLAS and MQEB systems calculate P-Labels of
the given query. In the above comparison, the P-Label calculation time is not
taken into consideration. From the Tables 3 and 4, it is clear that the evaluation
of simple and complex path queries is efficient in our system. The precomputed
P-Labels reduces the query evaluation time. If P-Label calculation time is also
taken into account, then our system performs better in all cases. The size of the
index structure is almost double for SWISSPROT when compared to our system
as shown in Table 1. So the time taken to traverse the index structure will also
be high which is clear from the results of queries Q6 and Q10 in Table 4.

Comparison with XRel: We have implemented PSMQ and XRel on a machine
running Windows XP, Oracle 9i(with JDBC). We followed the algorithm for
query translation proposed in XRel to manually convert the XPath query to
SQL. These SQL queries are run on the Oracle database having NASA dataset
tables. Table 5 shows the query evaluation time of XRel and PSMQ. The time
shown in Table 5 does not include query translation time needed by XRel. Even
then it is clear that PSMQ is performing significantly better than XRel. We
repeated the experiments on a Linux system(Oracle 9i with JDBC) also. We
have not experimented with larger datasets as the results with NASA(23MB)
dataset are conclusive of the fact that PSMQ performs much better than XRel.

PSMQ: Path Based Storage and Metadata Guided Twig Query Evaluation 123

Table 5. Query Evaluation time in ms for NASA dataset

Query Windows Linux
PSMQ XRel PSMQ XRel

/datasets/dataset/title 16 266 9 103
/datasets/dataset/tableHead/fields/field/definition/footnote/para 109 312 11 115

//dataset//astroObjects/astroObject/position 31 78 10 1064
/datasets/dataset[/title]/altname 125 812875 249 4441509

/datasets//textFile[/name]/description 78 844 93 690147
/datasets/dataset[//journal/title]/history/ingest 171 272235 183 1468061

/datasets//source//other//author[/lastName]/initial 78 844 66 670694
//dataset//other[/title]/date 46 843 23 494355

//dataset/history//revision[/date]/para 62 843 70 163896

6 Conclusions

In this paper, a storage system which is a combination of interval encoding and
path based storage has been proposed. Unlike other path ID based techniques,
our system can parse any large document and can assign path labels. We use
strong DataGuide to assign path labels to distinct paths in the XML document.
A novel system to evaluate XPath expressions using string matching techniques
has been given. Proposed query evaluation technique does not need joins to eval-
uate non-branching path expressions. To evaluate twig queries, joins are required
at branching points. We have built a Value B+-tree to efficiently evaluate value
predicates with equality condition. This can be easily extended to handle value
predicates having inequality condition.

References

1. http://sax.sourceforge.net/
2. http://www.cs.washington.edu/research/xmldatasets
3. http://sleepycat.com/
4. Berglund, A., Boag, S., Chamberlin, D., Simon, J., Fernandez, M.F., Kay, M.,

Robie, J.: XML Path Language (XPath) 2.0. Technical report, W3C Working Draft
(2001), Available at http://www/w3/org/TR/XPath20/

5. Rajesh, A., Sreenivasa Kumar, P.: MQEB: Metadata-based Query Evaluation of
Bi-labeled XML data. In: COMAD, pp. 53–60 (2005b)

6. Cooper, B.F., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon, M.: A Fast
Index for Semistructured Data. In: VLDB, pp. 341–350 (2001)

7. Chung, C.-W., Min, J.-K., Shim, K.: APEX: an adaptive path index for XML data.
In: SIGMOD Conference, pp. 121–132 (2002)

8. Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.: On Supporting
Containment Queries in Relational Database Management Systems. In: SIGMOD
Conference, pp. 425–436 (2001)

9. Chamberlin, D., Robie, J., Florescu, D., Simeon, J., Stefanescu, M.: XQuery: A
Query Language for XML. Technical report, W3C Working Draft (February 2001),
Available at http://www/w3/org/TR/xquery/

124 M. Archana, M. Lakshmi Narayana, and P. Sreenivasa Kumar

10. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: a path-based ap-
proach to storage and retrieval of XML documents using relational databases.
ACM Trans. Internet Techn. 1(1), 110–141 (2001)

11. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern
matching. In: SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, New York, NY, USA, pp. 310–321. ACM Press,
New York (2002)

12. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In: Jarke, M., Carey, M.J., Dittrich, K.R.,
Lochovsky, F.H., Loucopoulos, P., Jeusfeld, M.A. (eds.) VLDB’97, Proceedings
of 23rd International Conference on Very Large DataBases, pp. 436–445. Morgan
Kaufmann, Washington (1997)

13. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.L.: The Lorel Query
Language for Semistructured Data. Int. J. on Digital Libraries 1(1), 68–88 (1997)

14. Al-Khalifa, S., Jagadish, H.V., Patel, J.M., Wu, Y., Koudas, N., Srivastava, D.:
Structural Joins: A Primitive for Efficient XML Query Pattern Matching. In:
ICDE ’02: Proceedings of the 18th International Conference on Data Engineering
(ICDE’02), Washington, DC, USA, pp. 141–152. IEEE Computer Society, Wash-
ington (2002)

15. Grust, T., van Keulen, M., Teubner, J.: Staircase Join: Teach a Relational DBMS
to Watch its (Axis) Steps. In: VLDB, pp. 524–525 (2003)

16. Cheng, J., Yu, G., Wang, G., Yu, J.X.: PathGuide: An Efficient Clustering Based
Indexing Method for XML Path Expressions. In: DASFAA, pp. 257–64 (2003)

17. Chen, Y., Davidson, S.B., Zheng, Y.: BLAS: an efficient XPath processing system.
In: SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, New York, NY, USA, pp. 47–58. ACM Press, New York
(2004)

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 125–137, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Parameterized XPath Views

Timo Böhme and Erhard Rahm

Database Group
University of Leipzig

{boehme,rahm}@informatik.uni-leipzig.de

Abstract. We present a new approach for accelerating the execution of XPath
expressions using parameterized materialized XPath views (PXV). While the ap-
proach is generic we show how it can be utilized in an XML extension for rela-
tional database systems. Furthermore we discuss an algorithm for automatically
determining the best PXV candidates to materialize based on a given workload.
We evaluate our approach and show the superiority of our cost based algorithm
for determining PXV candidates over frequent pattern based algorithms.

1 Introduction

With XML as the lingua franca for data exchange and an increasingly popular storage
format for structured data there is a growing demand for natively storing and querying
of XML. Consequently native XML database systems evolve and relational database
systems have been augmented with XML support. Query optimization is a main
challenge for these systems due to the high flexibility and ordered structure of XML
and the complexity of its query languages.

XPath is a crucial component of XML query languages such as XQuery or XSLT
and thus has been an essential part for improving query performance. Work on this topic
ranges from indexing techniques [15, 21, 22], structural join algorithms [3, 12],
containment, equivalence and intersection of XPath expressions [10, 13] to cardinality
estimation [20, 25]. Despite the large amount of work on XPath processing, running
complex queries on large XML data sets is still a challenge. Moreover, several of the
proposed algorithms are not applicable in certain environments like implementations
using a relational database system (RDBS) back-end for storing the XML tree structure.

It was shown that caching techniques [4, 14] and materialized views [1, 18, 23]
could be used to address these performance problems. However we found that the
proposed solutions were not flexible enough to adapt to specific workloads. We
therefore propose to enhance the materialized view approach in two directions. First,
we parameterize the view definition in order to use materialized views for queries
with different comparison values. Second, our views contain extra information to
efficiently use them as a replacement for query fragments which do not start at the
query root.

With the enhanced flexibility of our views a manual selection of the most profit-
able views to materialize for a given workload, database and space constraint is
not feasible. We therefore developed a method to automate this important decision

126 T. Böhme and E. Rahm

process and show how this can be implemented in an XML extension for RDBS
called XMLRDB.

The rest of the paper is organized as follows. Next we discuss related work.
Section 0 details our enhancements to materialized views called PXV. The integration
of PXVs in XMLRDB is described in Section 4. In Section 5 we present our method
for automatically determining the most valuable view candidates to materialize.
Section 6 evaluates experimentally the performance gains obtained by employing
PXVs. Finally Section 7 concludes the paper.

2 Related Work

Grust et al. proposed efficient implementations for XPath [7] and XQuery [8] based
on a RDBS with a generic storage of XML data. The most efficient variant utilized a
specific numbering scheme as well as a special join operator. A general problem of
RDBS usage is that they need many expensive join operations for complex XPath
expressions (see Section 0). This also holds for the related work on XQuery-to-SQL
translation. The optimizations proposed in the present paper can complement these
previous approaches.

A general framework for materialized XPath views is described in [1]. The views
may contain XML fragments, typed data values, references to nodes in the actual data
and full paths. The paper covers the XPath query rewriting process. Our work differs
from this paper in the following points. We enhanced the view concept by
parameterizing comparison values and added information for simplified view
application. Furthermore we propose an algorithm to automatically determine
valuable views to materialize.

[14] creates materialized views on the fly for query caching. The sampled work-
load is parameterized on comparison values. Each view stores its data as an XML
fragment. Only the information which parameter values were used to build the frag-
ment are kept. Therefore if comparison predicates are used in a query which should be
answered by a view, the view must be pruned by a compensation query. Since the
view only contains the result of its defining query qv it is only possible to restrict on
predicates of the last step in qv because the corresponding node is the root node of the
stored XML fragment.

Materialized XML views are used to improve performance of an XML interface of
a RDBS in [18]. Instead of translating each query to SQL and transforming the
relational result to XML it caches frequently accessed data as materialized XML
views. This approach differs greatly from ours, as it is based on relational data
whereas we depend on XML node based storage.

Query rewriting using views has been extensively discussed for RDBS [9]. Later
this problem was studied for semistructured data [6, 17] and recently it was examined
for the XML domain with the specialities of the XML data model and XML query
languages. [11, 23] focus on subsets of XPath for polynomial time algorithms. [16]
covers query rewriting using XQuery based views. In our approach we focus on a
query rewriting to find an identical match (cf. Fig. 1) of the view definition within the
query which can be achieved in O(#steps(q)·#steps(qv)) time complexity.

Finding frequent XML query patterns as candidates for caching or materialization
is targeted in [24]. The proposed algorithm FastXMiner finds frequent query patterns

 Parameterized XPath Views 127

of a set of XPath queries. Its limitations however are that it does not support predi-
cates and that the root of a query pattern has to be the root of a query. So it cannot
find frequent patterns starting either at the second or a later step of an XPath query or
within predicates. FastXMiner as well as other work on mining frequent query pat-
terns from trees [5] consider only workload data but do not rank the patterns accord-
ing to real or estimated query costs. [14] considers only complete XPath queries from
a given workload as view candidates. For each query a template is created by parame-
terizing all constants. Queries with the same template and templates which contain
each other are grouped together.

3 Parameterized XPath Views

We first define some terms to be used in the sequel. A node is short for XML node
and describes an XML element, attribute or another XML node type. It is part of an
XML document stored in the database and is the smallest unit which can be accessed.
A node reference is a link pointing to a node within the database. Typically a node
reference will be a value which uniquely identifies a node. Modelling an XML docu-
ment as a tree of nodes td〈Vd,Ed,rd〉 with Vd the set of nodes, Ed the edges between the
nodes and rd ∈ Vd the document element, we can define an XML fragment as a sub-
tree tf〈Vf,Ef,rf〉 with rf ∈ Vd and Vf ⊆ Vd the descendant nodes of rf and Ef ⊆ Ed the
edges between nodes of Vf.

We will first describe materialized XPath views as found in the literature. After-
wards we discuss two limitations of them and our solution. Materialized XPath views
contain precomputed query results and can thus be used to quickly answer queries
without the need to query the actual data. A materialized view v can be described by
v〈qv, Rv〉 with qv being the query the view represents, and Rv the query result. A view v
can be used to answer query q if the result of q can be obtained by executing a so-

called compensation query c on Rv that is q=c qv. Following [1] Rv may contain XML

fragments, typed data values, node references or a combination thereof. If it contains
XML fragments the compensation query has to be based on the fragment data since
only the result nodes and their descendants can be accessed. When only typed data
values are stored in the view no compensation (besides restricting the value range) is
possible. Storing node references in Rv represents the most flexible variant for com-
pensation and postprocessing the results. Here Rv can be seen as the set of context
nodes to run a further XPath expression on.

Examining this standard view concept we found two deficiencies which limit the
envisioned flexible applicability of views. To overcome these limitations we propose
two enhancements which will be described in the following: support for
parameterized comparison values and support for inner query fragments.

3.1 Parameterized Views

The standard definition of view queries assumes fixed specification of XPath
expressions. This makes it difficult to efficiently support queries with comparison
predicates like /world/country[@name=’Germany’]/history/entry. For such a query

128 T. Böhme and E. Rahm

we would like to utilize a view of history entries of all countries. It would be possible
to define a view /world/country/history/entry which contains node references and
rewrite the query to use a compensation ancestor::country[@name=’Germany’].
However this postprocessing, especially for queries with more complex predicates,
largely reduces the utility of the materialized view.

To overcome this problem we propose the use of an enhanced view definition
supporting parameterized view queries. The main focus is on equality expressions
since they occur very frequently. For example, in our workloads we observe common
patterns of queries which only differ in a constant value like in

/world/country[@name=’Germany’]/history/entry

and /world/country[@name=’France’]/history/entry.

To generalize a view we allow constants within predicates containing only an
equality expression to be replaced by a parameter. So in our example we would define
the view query as /world/country[@name=$1]/history/entry.

The materialized view contains for each result node reference all parameter as-
signments yielding this node. Since the number of possible assignments per node
could become quite large the constants to be replaced by parameters should be se-
lected carefully.

Parameterizing of constants in view definition queries was also proposed in [14].
Unlike our approach the parameters can only take values from a fixed set taken from
the workload. Furthermore the parameter assignments are only used when materializ-
ing the view. Query rewritings cannot use the parameters to restrict the view result.

3.2 Support for Inner Query Fragments

The standard views are primarily tuned for queries which exhibit a similar query
prefix as the view query. Otherwise the compensation operations, if possible, would
be quite costly. To extend the applicability of materialized views we also want to
utilize a materialization of “inner” query fragments which occur after a certain query
prefix1. This extension is motivated by the observation that different complex queries
often use the same inner fragments for different query prefixes. Hence optimizing the
execution of such fragments by materialized views is likely to be very effective as it
can reduce the number of query steps to be processed. Such a step reduction will
improve query performance especially in systems with a relational backend like ours
(cf. Section 0) where each step results in an extra join operation.

Example Consider the following two queries
/world/country/history/entry[@year=1990]/text()
//town[@name=’Leipzig’]/../history/entry[@year=1990]/author

Both share the inner fragment history/entry[@year=1990] which could be material-
ized as //history/entry[@year=1990]. Using this view would need a possibly costly

1 We define as an XPath query fragment each continuous sequence of steps from the query.

Even steps within a predicate can make up a query fragment.

 Parameterized XPath Views 129

compensation check for each view entry for both queries. [1] proposes to remedy this
problem by storing full paths2 in the view with each node reference, so that no data
has to be accessed for the prefix check. However this will not work in cases like query
two since the full path can only be used to test for ancestor element nodes.

To support materialization of inner fragments views where the definition starts
with ‘//’ are extended by storing the references of the starting nodes, i.e. the nodes
identified by the first step after “//”. To restrict the number of possible starting node
references the first step should have a name test. In the above example with the view
definition //history/entry[@year=1990], all history elements within the stored XML
document are starting nodes. The materialized view not only contains references to
the result nodes, i.e. entry elements which have history elements as parent and a year
attribute with value ‘1990’ but also a reference to the history parent for each of these
entry result references. Depending on the view definition a result node may have
several starting nodes.

q = /A1/../At/b1[p1,1]..[p1,n][p1,n+1]..[p1,m]/B2/../Bp/bq[pq,1]..[pq,r][pq,r+1]..[pq,s]/C1/../Cu

qv = //b1[p1,1]..[p1,n]/B2/../Bp/bq[pq,1]..[pq,r]
qrw = /A1/../At/b1[p1,n+1]..[p1,m]/vqv

[pq,r+1]..[pq,s]/C1/../Cu.

Fig. 1. XPath query rewriting using PXV with q – source query, qv – query defining view,
qrw – rewritten query using view vqv

The query //town[@name=’Leipzig’]/../history/entry[@year=1990]/author can
now be answered using the materialized view. Its result nodes are selected by the
constraint that starting nodes must be contained in the set defined by
//town[@name=’Leipzig’]/../history. So we can now treat the view as a special XPath
step which replaces a fragment within an XPath query. It takes the context nodes from
the previous step, generates the intersection with its starting node references and pro-
duces a new set of context nodes from its result node references.

We can define this process more formally as shown in Fig. 1. Ax, By, Cz are com-
plete steps comprised of axis, node test and predicates and b1, bq are complete steps
without predicates. It is depicted that a query fragment qf can be replaced by a view v
if qf and qv have identical steps whereas qf may have further predicates in its first and
last step. Steps are identical if they either exactly match or the step from the view
definition contains a parameter whereas the other step has a constant. Furthermore the
sequence of predicates may be different between two identical steps if no positional
predicates are involved.

The application of our view concept which we call PXV (parameterized XPath
views) is described in the next two sections. First we show its implementation in an
XML extension for RDBS. This is followed by a proposal to automatically determine
a reasonable set of PXVs based on a given workload.

2 A full path is the sequence of element nodes from the document element to the actual view

result.

130 T. Böhme and E. Rahm

4 Implementation of PXV

We have implemented PXVs in an XML database system named XMLRDB. We
developed this system as an XML extension for RDBS to evaluate schema-
independent and document-centric XML processing. XMLRDB stores XML
documents generically in a RDBS and translates XPath expressions into SQL. This
translation leads to complex SQL statements with a join operation for each XPath step
and subexpression. However, this results in performance problems since even
relational optimizers of commercial DBMS reach their limit with queries containing
many join operations (>10). Hence reducing the number of joins is key to good query
performance. Since most proposed XPath processing algorithms depend on fast
navigations within the XML tree they are not an option for this kind of system where
each navigational step has to be translated and executed as an SQL query. Path
oriented index structures are of limited use as well for XPath expressions with
predicates. Hence we mainly rely on PXVs to materialize hot spots in our query
workload and thus reduce the number of joins. We first briefly introduce XMLRDB
and discuss PXV implementation later on.

VTABLE3

viewId :
startId : int
resultId : int
param1 : int
…

VTABLE3

viewId :
startId : int
resultId : int
param1 : int
…

VTABLE2

viewId :
startId : int
resultId : int
param1 : int
…

VTABLE2

viewId :
startId : int
resultId : int
param1 : int
…

NODE

document : int
dlnId : long
gId : int
parent : int
rightSibling: int
name : int
value : string
dblValue : double
valType : int
nodeType : char

ATTR

document : int
dlnId : long
gId : int
name : int
value : string
dblValue : double
valType : int

TEXT

document : int
dlnId : long
gId : int
value : string

NAMEMAP

nameId : int
name : string

DOCMAP

docId : int
docURL : string

NAMESPACE

prefix : string
nsURL : string

VMETA

viewId : int
xpath : string
vTable : string

VTABLE1

viewId : int
startId : int
resultId : int
param1 : string
…

VTABLE1

viewId : int
startId : int
resultId : int
param1 : string
…

Fig. 2. Relational schema of XMLRDB with PXV tables

4.1 XMLRDB

With XMLRDB we want to evaluate how existing relational database systems without
vendor specific XML extensions can be used for XML data processing. We therefore
developed an XML layer which transforms XML documents and queries into their
relational counterparts and vice versa. The XPath query transformation module em-
ploys multiple stages for query optimization like XPath transformation or query re-
writing using XML index and views which are managed by the XML layer. We use a
generic structure oriented mapping to transform the XML tree structure into prede-
fined relations (see Fig. 2). This kind of mapping was best suited to meet the goals:
(1) independence of application-specific XML schemas, (2) support for all kinds of
XML documents especially document-centric ones and (3) efficient insert, update and
query operations using XML interfaces. In order to support efficient query operations

 Parameterized XPath Views 131

we use an improved version of the node labelling scheme DLN introduced in [2]. It
supports efficient evaluation of XPath axes and allows for fast document reconstruc-
tion and insert operations.

SELECT DISTINCT x3.docId, x3.dlnId
FROM node x1, attr a1, node x2, node x3
WHERE x1.name=’country’ AND
 a1.name=’name’ AND
 a1.gid=x1.gid AND
 a1.value=’Germany’ AND
 x2.name=’history’ AND
 x2.parent=x1.gid AND
 x3.name=’entry’ AND
 x3.parent=x2.gid
ORDER BY x3.doc,x3.dlnId

INSERT INTO vtable1
SELECT DISTINCT x1.gid, a1.value, x3.gid
FROM node x1, attr a1, node x2, node x3
WHERE x1.name=’country’ AND
 a1.name=’name’ AND
 a1.gid=x1.gid AND
 x2.name=’history’ AND
 x2.parent=x1.gid AND
 x3.name=’entry’ AND
 x3.parent=x2.gid

Fig. 3. Generated SQL for //country[@name=
’Germany’]/history/entry

Fig. 4. Generated SQL to materialize //country
[@name=$p1]/history/entry

4.2 Integration of PXVs in XMLRDB

Making XMLRDB PXV-aware we had to implement a PXV management component
and to enhance the XML query processor. The management component stores the
materialized views and their metadata within the relational database and uses them
during query translation. Table vmeta contains the view id, the parameterized XPath
view definition and the materialization table names. While it is possible to materialize
views with the same number of parameters within the same table it is not advisable.
The reason is that views will have different ratios of starting nodes and result nodes.
Thus the sampling algorithms of the relational optimizers to gather statistical data
typically yield a wrong picture of the distribution of a specific view.

When a view has to be materialized by the management component it can reuse the
standard XPath-to-SQL transformation component (XtoS) with only small changes.
For an XPath expression, XtoS creates a single SQL query with join operations for
each step, even for nested predicates. To generate the view data we only have to spec-
ify additional returning node ids from the first step and parameter values. This is illus-
trated in Fig. 3 and Fig. 4. Fig. 3 shows the generated SQL for a standard XPath query
returning node references using the DLN labeling scheme. For enhanced readability
we provide real element and attribute names instead of ids here. Fig. 4 shows how the
same query is translated for view materialization with the constant value replaced by a
parameter. It was generated by the same XtoS component changing only the select
clause to return database-wide unique node ids for starting node, result node and
value assignments for the parameters. Storing further attributes like DLN id or node
value of the result nodes within the view can additionally reduce the number of joins
in queries using this view.

132 T. Böhme and E. Rahm

We extended the XMLRDB query optimizer to utilize PXVs for rewriting XPath
queries. For a given query we first try to apply usable PXVs before considering
XMLRDB-maintained indices3. Normally the algorithms for finding suitable views
for query rewriting exhibit a high complexity [1, 23]. With the PXV concept of
replacing query fragments and the parameterization of the views we can greatly
simplify the search for relevant views to exact matches since the compensation is
given by the remaining part of the original query.

The query rewriting algorithm for PXVs works as follows. Take the first PXV
from the list of available views and try to find a query rewriting according to Fig. 1. If
it was successful this can be repeated for the remaining fragment of the query. Now
repeat these steps for each remaining PXV using the rewritten or, in case no
replacement was possible, the unchanged query. So with each iteration more
fragments may get replaced by PXVs. Potentially a query can have several different
rewritings depending on the order query fragments are replaced by PXVs. In order to
ensure that our algorithm finds a good rewriting the list of available views is ordered
according to the complexity of the view definition (e.g. number of steps, with steps in
predicates counted as well). Thus replacing a small fragment of a query will not
prevent replacing a more rewarding, larger one. Generally the view definitions should
not overlap to a great extent4. The proposed algorithm for automatically generating
PXVs (cf. Section 5) respects this property. Alternatively the view list could be sorted
according to potential savings of using the views determined during view creation (cf.
Section 5.2).

PXV support also required extending the XPath-to-SQL transformation
component. Whenever it encounters a special view step, which was inserted during
the query rewriting phase, it inserts an equijoin with the table containing the
materialized view using the starting node reference attribute. The parameter values
given in the view step are added as selection predicates. The result node reference
attribute is used to add further steps. Fig. 5 shows the SQL generated for the query

/world/country[@name=’Germany’]/history/entry/@year

which was rewritten using view

//country[@name=$p1]/history/entry.

The view contains not
only the global id for the
result nodes but document id
and DLN id as well. So we
save an additional join with
the node table. Compared to
the SQL expression result-
ing from the original query
we reduced the number of
joins from 6 to 4.

3 According to [1] most of these index structures can also be seen as a kind of materialized

views.
4 Two view definitions qv1 and qv2 overlap if they share at least one common XPath step.

SELECT DISTINCT a1.value
FROM node x1, node x2, vtable1 v1, attr a1
WHERE x1.name=’world’ AND x1.parent IS NULL AND
 x2.name=’country’ AND x2.parent=x1.gid AND
 v1.startId=x2.gid AND v1.p1=’Germany’ AND
 a1.name=’year’ AND a1.gid=v1.resId
ORDER BY v1.resDoc,v1.resDlnId

Fig. 5. Generated SQL for /world/country/view::v1[@p1=
’Germany’]/@year

 Parameterized XPath Views 133

5 Automated PXV Creation

While PXVs can be manually created it is a challenging task to find a nearly optimal
set of PXVs for a given workload over a database and a maximum space constraint.
Therefore we have developed a PXV wizard which suggests a ranked list of PXVs for
a given database and workload. Given a constraint on the maximum storage space for
materialized views the wizard automatically determines the most promising PXVs for
improving query performance.

There exist some previous work on mining frequent query patterns in tree-like
structures [5, 24]. However these algorithms consider only the workload data but not
the processing costs of the individual patterns. Hence good materialization candidates
with high savings on accumulated query time may be missed when their pattern is less
frequent than other patterns. Furthermore most of these algorithms are applicable only
for a subset of XPath. We therefore implemented our own algorithm which uses a cost
estimation to find rewarding view candidates. We will first describe the general idea
and discuss later on how we can obtain a good cost estimation in XMLRDB.

5.1 General Approach

The formal notation of the following description is shown in Fig. 6. We assume the
workload to be optimized consists of unique queries which may be weighted according
to their execution frequency. For each query
we generate successively all possible frag-
ments. Since view definitions should exhibit
some complexity in order to be relevant sim-
ple fragments are filtered out. Per query we
now determine the cost saving potential savf/q
for each fragment if it would be materialized.
This involves using a cost model and depends
on the implementation. We will show this for
XMLRDB in the next section.

We use a hash table frags to maintain the
parameterized query fragments (cf. Section
3) together with their parameter values,
query ids and potential savings multiplied by
the query weights. If a fragment already
exists in frags only the query id and poten-
tial saving multiplied by the query weight
are added. Furthermore it is recorded if pa-
rameter values differ. After all queries and
their fragments have been processed we
check each parameter if only the same val-
ues were assigned to it. In this case and if the
corresponding fragment was contained in at
least two queries the parameter is replaced
back by the constant value. Thus we only
keep the required parameters. Now a list

FOREACH q ∈ workload {
 F ← fragments(q)
 F ← removeSimpleFrag(F)
 FOREACH f ∈ F {
 s ← getSaving(f, q) * weight(q)
 if contains(frags, f)
 e ← getEntry(frags, f)
 addQuery(e, q, s)
 else addEntry(frags, f, q, s)
} }
adjustParameters(frags)
filterMinSupport(frags)
rankedFrag ← descSort(frags)
FOREACH e ∈ rankedFrags {
 FOREACH q ∈ e {
 FOREACH er ∈ rankedFrag\e {
 removeQuery(er, q)
 if queryCount(er) = 0
 removeEntry(rankedFrag, er)
 } }
 descSort(rankedFrag)
}

Fig. 6. Algorithm to create view
candidate list

134 T. Böhme and E. Rahm

rankedFrag with all entries from frags sorted by their potential savings in descending
order is built.

To obtain a practically reasonable ranking we need to adjust the potential savings in
rankedFrag. At the current stage we may have several top-ranked fragments of the
same costly query. However since they typically will overlap it makes little sense to
materialize all of them. We rather assume heuristically that only one view will be used
for query rewriting. Thus we adjust the potential saving with the following algorithm.
From the top entry in rankedFrag each query id is checked whether it occurs in the
other list entries. For each entry containing such a query id this id is removed and the
potential savings are reduced according to the share the query had. After all entries are
processed rankedFrag is sorted again and the algorithm starts over with the next entry.
In the end, the top listed entries are the best candidates for materialization under the
assumption that in most cases only one view will be used for query rewriting.

The algorithm described so far has the possible limitation that the fragments of the
top view candidates may be helpful for only a single query. Thus materializing such a
candidate could benefit only a relatively small number of queries. To circumvent this
we additionally require that the support of a query fragment f, supp(f), should exceed
a threshold minSupp [5]. Here, supp(f) is simply the number of workload queries
containing f divided by the absolute number of workload queries (0 < supp(f) ≤ 1).
The minSupp filter restriction has to be applied to rankedFrag before the potential
savings are adjusted.

5.2 Determining Savings in XMLRDB

In the previous section we argued that the potential saving of a materialized fragment
for a query depends on the implementation and its cost model. We will now discuss
the approach we use in XMLRDB. From a series of experiments we learned that a
system independent, general relational cost model does not work because different
relational databases may produce highly varying query plans.

Since an external cost model was not an option as explained before, we decided to
utilize the explain facility of the relational database system. We only had to provide
realistic queries to receive suitable cost estimations. Temporarily materializing all
query fragments as views was not an option because of the large fragment number.
Therefore we materialized dummy views with different cardinality and different ratios
between the number of start nodes and result nodes. To calculate the potential saving
savf/q for a materialized fragment f and a query q we replace f by a corresponding
dummy view vd. The decision which dummy view will be used is based on a
cardinality estimation component. This component maintains statistical data about the
stored XML documents like child count per element type, minimum and maximum
height within the document tree etc. For the fragment to be replaced we can now
retrieve the estimated input and output cardinality and choose an appropriate dummy
view. The query q as well as the rewritten query qrw are translated to SQL. Using the
explain facility we can calculate the potential saving as savf/q=explain(toSQL(q)) –
 explain(toSQL(qrw)).

 Parameterized XPath Views 135

6 Evaluation

We evaluated the introduced PXV concept with our prototype XMLRDB in
comparison with the standard configuration which only uses relational index
structures but no special XML access structures. Furthermore we wanted to assess the
quality of our automated PXV creation algorithm. We were especially interested in
the benefit we can gain from using the cost based approach in comparison to a simple
frequent pattern matching approach like [24].

Our test environment consists of a computer with 1 GB of main memory and a 2.4
GHz Pentium IV processor. We used the data set from XMark benchmark [19] with a
scaling factor of 1 resulting in a raw XML document size of ca. 110 MB. It contains
2,8 million text and element nodes and 380,000 XML attributes. In order to create a
reasonable workload we first translated the XMark set of queries which is formulated
in XQuery into XPath as far as possible. Additional, more complex queries were
generated by an XPath creation tool. It traverses the document and generates queries
with multiple and recursive predicates as well as value comparisons. The complete
workload consists of 50 queries with a maximum of 14 steps and a mean of 7 steps.

Fig. 7 and Fig. 8 show the execution times for the whole workload. The given
values only contain the query execution time without materialization of the results.
First (NoPXV) we run all workload queries without using PXVs. For the next run
(PXV_cost) we run our automated PXV creation algorithm (took 6 minutes) and
materialized the first 10 view candidates resulting in approx. 200,000 tuples in view
tables which were created in 113 seconds. We choose the first 10 candidates because
the potential savings of the following candidates were two orders of magnitude lower.
Two additional runs were conducted to evaluate a purely frequency-based view
selection. For these runs we ignored the cost estimations and sorted the view
candidates according to their frequency in the workload queries. Thus we modelled a
pure frequent pattern based approach. For PXV_Pattern_10 we materialized the top
10 view candidates as we did it for the cost based variant. Since the number of tuples
materialized were only a third in comparison to PXV_cost we materialized further
view candidates until we reached the same number. PXV_Pattern_14 denotes this
configuration utilizing 14 materialized views.

Fig. 7 shows that the overall execution time improved by an order of magnitude
using our proposed PXV concept. The pattern based candidate selection approach is
5 times slower. Note that adding more materialized views does not need to improve
query time. Looking at the ignored saving values from the candidates we could see
an estimated negative impact. Fig. 8 shows mean and maximum execution time of
single queries within the workload. Here again we can see that the PXVs selected by
our proposed algorithm can decrease the maximum execution time by an order of
magnitude while the PXVs selected by the pattern based approach have no real
impact on maximum execution time. The rewriting of the workload queries took
typically less than a millisecond and is thus negligible compared to the query
execution time.

136 T. Böhme and E. Rahm

0

100

200

300

400

500

600

700

NoPXV

PXV_c
os

t

PXV_p
att

er
n_

10

PXV_p
att

er
n_

14

1

10

100

1000

NoPXV

PXV_c
os

t

PXV_p
att

er
n_

10

PXV_p
att

er
n_

14

max

mean

Fig. 7. Execution time in seconds for a work-
load of 50 queries with and without PXVs

Fig. 8. Maximum and mean execution time in
seconds for a workload of 50 queries with and
without PXVs

7 Conclusion

We have introduced parameterized XPath views, PXVs, as a new concept for utilizing
materialized views for efficient XML query processing. With its parameterization it
enables to utilize a view for a broader range of similar queries. The additional
information of starting node references stored within the view simplifies the adoption
in queries without a costly calculation of compensations. We further showed how
PXVs can be implemented in an XML database system like our XMLRDB prototype.
Creating a rewarding set of materialized views is a complex task which is hardly
feasible to do manually. Therefore we discussed an algorithm for automating it.
Unlike other approaches which only take workload data into account for finding
common query patterns we base our solution on a cost model and utilize the idea of
materialized dummy views. With our evaluation we could verify that the PXV
concept can be used to improve execution time of complex XPath queries
considerably. Furthermore we showed that our cost based algorithm to automatically
create PXVs achieves far better results than a pure workload pattern based approach.

Further work may address the view update problem and study the applicability of
proposed solutions for the PXV concept.

References

[1] Balmin, A., Özcan, F., Beyer, K.S., Cochrane, R.J., Pirahesh, H.: A Framework for Using
Materialized XPath Views in XML Query Processing. In: Proc. 30th VLDB Conf 2004
(2004)

[2] Böhme, T., Rahm, E.: Supporting Efficient Streaming and Insertion of XML Data in
RDBMS. In: Proc. 3rd Int. Workshop Data Integration over the Web (DIWeb) 2004
(2004)

 Parameterized XPath Views 137

[3] Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D., Candan, K.S.:
Twig2Stack: Bottom-up Processing of Generalized-Tree-Pattern Queries over XML
Documents. In: Proc. 32nd VLDB Conf., 2006 (2006)

[4] Chen, L., Rundensteiner, E.A.: ACE-XQ: A Cache-aware XQuery Answering System. In:
Proc. 5th Int. Workshop on the Web and Databases (WebDB) (2002)

[5] Feng, J., Qian, Q., Wang, J., Zhou, L.: Exploit sequencing to accelerate hot XML query
pattern mining. In: Proc. ACM Symposium on Applied Computing (SAC) (2006)

[6] Grahne, G., Thomo, A.: Query Containment and Rewriting Using Views for Regular Path
Queries under Constraints. In: Proc. 22nd ACM Symposium on PODS (2003)

[7] Grust, T., van Keulen, M., Teubner, J.: Accelerating XPath evaluation in any RDBMS.
ACM Trans. Database Syst. 29, 91–131 (2004)

[8] Grust, T., Sakr, S., Teubner, J.: XQuery on SQL Hosts. In: Proc. 30th VLDB Conf., 2004
(2004)

[9] Halevy, A.Y.: Answering Queries Using Views: A Survey. VLDB Journal, 10(4) (2001)
[10] Hammerschmidt, B.C., Kempa, M., Linnemann, V.: On the Intersection of XPath Expres-

sions. In: Proc. 9th Int. Database Eng. and App. Symposium (IDEAS) (2005)
[11] Lakshmanan, L.V.S., Wang, H., Zhao, Z.: Answering Tree Pattern Queries Using Views.

In: Proc. 32nd VLDB Conf., 2006 (2006)
[12] Mathis, C., Härder, T.: Hash-Based Structural Join Algorithms. In: Proc. 2nd Int. Work-

shop on Database Techn. for Handling XML Inform. on the Web (DataX) (2006)
[13] Miklau, G., Suciu, D.: Containment and Equivalence for a Fragment of XPath. ACM

Journal 51(1) (2004)
[14] Mandhani, B., Suciu, D.: Query caching and view selection for xml databases. In: Proc.

31st VLDB Conf., 2005 (2005)
[15] O’Connor, M., Bellahsene, Z., Roantree, M.: An Extended Preorder Index for Optimising

XPath Expressions. In: Bressan, S., Ceri, S., Hunt, E., Ives, Z.G., Bellahsène, Z., Rys, M.,
Unland, R. (eds.) XSym 2005. LNCS, vol. 3671, Springer, Heidelberg (2005)

[16] Onose, N., Deutsch, A., Papakonstantinou, Y., Curtmola, E.: Rewriting Nested XML
Queries Using Nested Views. In: Proc.ACM SIGMOD Int. Conf. Mgmt. of Data. 2006
(2006)

[17] Papakonstantinou, Y., Vassalos, V.: Query Rewriting for Semistructured Data. In: Proc.
ACM SIGMOD Conf., 1999 (1999)

[18] Shah, A., Chirkova, R.: Improving Query Performance Using Materialized XML Views:
A Learning-Based Approach. In: Jeusfeld, M.A., Pastor, Ó. (eds.) Conceptual Modeling
for Novel Application Domains. LNCS, vol. 2814, Springer, Heidelberg (2003)

[19] Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.: XMark: A
Benchmark for XML Data Management. In: Proc. 28th VLDB Conf., 2002 (2002)

[20] Wang, W., Jiang, H., Lu, H., Yu, J.X.: Bloom Histogram: Path Selectivity Estimation for
XML Data with Updates. In: Proc. 30th VLDB Conf., 2004 (2004)

[21] Wang, H., Park, S., Fan, W., Yu, P.S.: ViST: a dynamic index method for querying XML
data by tree structures. In: Proc. ACM SIGMOD Conf., 2003 (2003)

[22] Wang, W., Wang, H., Lu, H., Jiang, H., Lin, X., Li, J.: Efficient Processing of XML Path
Queries Using the Disk-based F&B Index. In: Proc. 31st VLDB Conf., 2005 (2005)

[23] Xu, W., Özsoyoglu, Z.M.: Rewriting XPath Queries Using Materialized Views. In: Proc.
31st VLDB Conf., 2005 (2005)

[24] Yang, L.H., Lee, M.L., Hsu, W.: Efficient Mining of XML Query Patterns for Caching.
In: Proc. 29th VLDB Conf., 2003 (2003)

[25] Zhang, N., Özsu, T., Aboulnaga, A., Ilyas, I.: XSeed: Accurate and Fast Cardinality Es-
timation for XPath Queries. In: Proc. 22nd Int. Conf. on Data Engin (ICDE) (2006)

Specifying and Optimising XML Views

Mark Roantree, Colm Noonan, and John Murphy

Interoperable Systems Group, Dublin City University, Ireland
{mark,cnoonan,jmurphy}@computing.dcu.ie

Abstract. Many of today’s middleware solutions employ XML to re-
solve heterogeneities and to create an interoperable layer between sources
and systems. However, XML performs poorly when queried in its native
format, and local and global views are not supported by current XML
products. In this paper, we support the concept of data everywhere by
providing a view mechanism for XML together with a highly-optimised
query processing strategy.

1 Introduction

In today’s computing environment, it is often the case that database informa-
tion supports a more globally connected computing infrastructure and is accessed
through a variety of network architectures. This distribution or multi-sourced
data requires an interoperable infrastructure, while the representation of data
has changed through the emergence of XML to describe both stored and trans-
mitted data. Subsequently, many of the solutions proposed for the necessary
integration in the ubiquitous computing environment involve XML. The impact
of this approach is the construction of large XML stores and often there is a
need to query XML databases. The work presented in this paper supports the
ubiquitous computing environment by ensuring that this canonical representa-
tion (XML) of data can be efficiently processed regardless of potentially complex
structures. In this paper, we provide a metamodel to support the definition and
manipulation of XML views together with a supporting optimisation strategy.

In this paper, we present a view mechanism for XML databases supported by
an XML metamodel to describe both the database and view constructs. This
metadata is then exploited to provide a powerful query optimisation engine to
materialise views. For a more complete version of both metamodel and meta-
data structures, please refer to [8]. The paper is structured as follows: in §2, we
provide some background, concepts and terminology used in our approach; in
§3, we describe our view definitions and operators; a brief overview of the query
optimisation method is presented in §4; in §5, we describe the results of our
experiments while in §6 we discuss similar approaches; before concluding in §7.

2 System Terminology

We refer to the XML data tree as the database; the schema tree as the schema;
and later in the paper, we describe a higher level of abstraction: the meta-schema.

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 138–146, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Specifying and Optimising XML Views 139

XML schemas are tree structures containing paths and nodes, with the root
node at the top of the tree. A tree-path that begins at the root node, continuing
to some context node is called a FullPath in our model. A tree-path that begins
at the root node and continues to some leaf node is called a LeafPath. This dis-
tinction is necessary because a FullPath may not be unique in an XML schema,
whereas the LeafPath is unique.

Property 1. A Schema S contains a set of FullPaths S = {P1,P1,P2,..,Pn}.
The schema is divided into levels with the root at the topmost level (level 0).
Each node has 0 or more child nodes, with child nodes also having 0 or more
children (with the level incrementing). As the term sub-tree is rather abstract,
we use the term Family to refer to a context node and all its descendants.

Property 2. A Family F is a sub-tree of a Schema S.

Furthermore, every node within the Family F represents a sub-family f of F.

Property 3. Where node n is a member of family F, f(n) is contained in F.

Thus, the Family for the root is the entire database, with all other nodes repre-
senting sub-families.

Property 4. Each Node N at level(x) is the context node for a Family F of
connected nodes at levels (x+1),(x+2),...(x+n).

The term Twig is used to refer to a Family with some members missing (a pruned
Family). This is useful where a Family is very large and one wishes to reduce
the size of the Family sub-tree (perhaps for querying performance reasons).

Property 5. A Twig T is a Family F with 0 or more sub-families removed.

An XML View is a set of Twigs. XML databases are instances of XML schemas.
Specifically, they have one or more instances of the FullPath construct, and by
extension contain Families and Twigs.

3 View Definitions

In this section, we describe the specification, storage and processing of views. If
we follow traditional database theory, then a view is stored query. The XPath
language maintains closure by ensuring that the output of a query on an XML
document is another XML document. Thus, a View is a new (virtual) XML
document comprising some elements of the base document. Furthermore, we
provide flexibility in specifying the new document by allowing heterogeneous
sub-trees (referred to as Twigs) form part of the new document.

3.1 Specifying Views

A View is a set of families, each with zero or more sub-families removed (clipped).
Where a View contains a single Twig (a clipped family), it is referred to as a Ho-
mogeneous View, and where the View contains multiple Twigs, it is a Heteroge-
neous View. Thus a View comprises a Name and one or more Twig Descriptions.

140 M. Roantree, C. Noonan, and J. Murphy

As the Twig component is the core of the View definition, we will concentrate on
how a Twig is defined. Note that a twig may be a family with zero sub-families
removed, in which case the twig is equivalent to the family it is derived from.

A Twig is formed using a clip operation (which is a type of expression defined
here). The clip operation specifies a Twig node and a set of clip nodes. The
Twig node identifies a context node and the clip node represents a sub-family
which will be removed from context node family.

Definition 1. Twig
A Twig T is derived from a family F with zero or more sub-families removed. T
is derived from F (T(F)), and we use T where the origin of T is obvious. T may
be equivalent to F (zero families removed) in which case T ≡ F. We say that a
proper twig T is derived from a family F with at least one sub-family removed.

The clip operation comprises a Twig node (XPath expression) and zero or more
clip operations (set of XPath expressions representing nodes to be removed) to
respectively identify a context node for the Twig and the nodes to be clipped.
Once defined, each sub-family represented by the clip nodes is eliminated from
the Twig.

Definition 2. Clip
{XPath} Twig T ::= (clip(ContextNode [,LeafPath]))*

Whereas a Family can be defined in a single XPath expression, a Twig may
comprise a set of XPath expressions. We can now define the View construct in
terms of Twig expressions.

Definition 3. View
{XPath} View V ::= {Twig expr}+

3.2 Sample View

Using the DBLP database, assume that we wish to create a new XML document
containing information from all proceedings and in the case of articles, only those
from 1998. Structurally, we require all journal data, and only one sub-tree from
proceedings (normally defined as /dblp/inproceedings[title/i/sub]).

We begin by defining the Families in Example 1, using an XPath expression
in each case. XPath provides a very efficient means of expressing a Family as by
default, the location path (XPath expression) returns the context node and all
descendants. In this case, there is no need for a LeafPath as context nodes are
unique across the database.

Example 1. Family1 = Family(//dblp/article[year = ’1998’])
Family2 = Family(//dblp/inproceedings)

In the first case, the predicate [year = ’1998’] makes the expression slightly
longer but the Twig derived from this Family requires no clipping. In the second
case, there is no predicate but we must clip 4 nodes to form the second Twig.
Furthermore, it is necessary to provide the LeafPath as all four context nodes
are ambiguous.

Specifying and Optimising XML Views 141

Twig1

article

yeartitleauthoryeartitleauthor
yeartitleauthor

‘Gordon B.
Davis’

‘1998’‘AIS.’ ‘Bernard C.
Glasson’

‘IFIP.’
‘1998’ ‘Fabio Casati’ ‘Workflow

Evolution.’
‘1998’

article article

Twig2

inproceedings

‘I’ i

title

‘DDQ’ sub

‘Enhanced
Controllability for ’

‘Construction
of Secure ‘

inproceedings

‘Fault Simulation of’ title

i

sub

inproceedings

title

i‘C’

sub‘ab’

‘I’

‘DDQ’

Fig. 1. Sample View comprising 2 Twigs

Example 2. Twig1 = Family1()
Twig2 = Family2(clip(//dblp/inproceedings/cite, //dblp/inproceedings/cite),
(clip(//dblp/inproceedings/cite, //dblp/inproceedings/cite/label),
(clip(//dblp/inproceedings/title, //dblp/inproceedings/title/sup),
(clip(//dblp/inproceedings/title, //dblp/inproceedings/title/sup/i))

Note that this example was designed to illustrate the Twig and clip functions.
For this particular example, the easier option is to specify a smaller Family
(//dblp/inproceedings[title/i/sub) and thus, no clip operations are re-
quired. However, this would not be possible should there be less than 4 clips
required. The view definition is illustrated in Example 3.

Example 3. View1 = (Twig1, Twig2)

4 View Optimisation

This section describes our strategy for materialising views by evaluating location
steps along each axis relative to a given set of context nodes. In brief, the strategy
comprises five processes that prune the search space using query structure, axis
properties and preorder encoding logic. Briefly, each XPath expression can be
divided into a series of location steps separated by slashes (/). The role of each
location step is to retrieve a set of nodes based on the context node and this
node set provides the input to the next location step.

– Process 1: Context Prune by Axis. This step prunes the current set of
context nodes using Axis logic. For example, if the location step includes
the child axis, then context nodes without children are pruned. The initial

142 M. Roantree, C. Noonan, and J. Murphy

input (first pass) to this process is the entire set of nodes in the tree. The
input to all remaining passes is the output from Process 5 below.

– Process 2: Arbitrary Prune by Structure. This Process prunes the set
of arbitrary nodes for the current location step. Firstly, it is necessary to
generate the set of arbitrary nodes based upon the context node set. This
will differ for all axes and in the case of some axes (eg. following) may
be very large as it will include all nodes after the first context node. Our
index provides a starting and ending preorder for the arbitrary node path
and thus, provides a very fast pruning mechanism.

– Process 3: Arbitrary Axis Test. The input is the set of arbitrary nodes
generated by Process 2 and the axis type for the location step. While the
node set contains all required arbitrary nodes, it may also contain nodes
that are not allowed under a given axis definition. Therefore the axis filter
provides a secondary pruning step.

– Process 4: Structure Filter. The role of this step is to prune the arbitrary
node set by removing nodes with different names. This step is ignored in
wildcard cases eg. return all children of the given node.

– Process 5: Predicate Filter. The filter reduces the set of arbitrary nodes if
the location step has a predicate.

In related work, we developed a strategy for each of the XPath axes and used
the DBLP database to execute real queries in each case. Our indexing strategy
provides a preorder value and level ranking for each node with the full preorder
set for the DPLP database being {0,1,2,...,3736375,3736376} (just short of 4
million nodes). We describe the processing for one of the views (View 9 in the
experiment set) now.

4.1 Preceding Axis View

The Preceding axis returns nodes that occur before the context node, providing
they are not ancestors of the context node. Suppose one wanted to view all
book chapters (incollection) by the author Amit Sheth that preceded a specified
publication by Mark Roantree. This may happen if one wanted to examine those
works by Sheth that may have contributed to the paper published by Mark
Roantree. A preceding query can be used in this case.

Example 4 (Retrieve book chapters by Sheth before articles by Roantree).
/descendant::article[author=’Mark Roantree’]/preceding::incollection[author=’Amit P.
Sheth’]

To explain the strategy we move directly to location step 2. The input to
this step (set of nodes generated by the first location step) is the node set
{3676350,3678812,3686988,3687576}.

– Process 1: Context Prune by Axis. For a preceding axis, this process
reduces context node set to a single context node (the last context node).
The set of context nodes becomes {3687576}.

Specifying and Optimising XML Views 143

– Process 2: Arbitrary Prune by Structure. The set of arbitrary nodes
will always return all nodes prior to the context node. The arbitrary node’s
fullpath is then used to reduce this set by providing starting and ending
preorder values for the set. Note that ancestors are still in the node set at
this point. For example 4, the set of arbitrary nodes is 2399330,..,2419224.
The cardinality of this set at this point is 19,895 nodes.

– Process 3: Arbitrary Axis Test. This process filters the set of arbitrary
nodes by removing all namespace and attribute nodes as they are not allowed
for this axis type. Additionally, it is used to eliminate all nodes that are
ancestors of the (single) context node. This process results in a more compact
arbitrary node set i.e. {2399330,2399332,..,2419224} (15,562 nodes).

– Process 4: Structure Filter. This process filters the set of arbitrary nodes
to remove all nodes whose node name does not match ‘incollection’ and
this provides a dramatic reduction to {2399330,2399339,..,2419214,2419224}
(1,009 nodes).

– Process 5: Predicate Filter. The predicate filter is used to select only
book chapters for ‘Amit Sheth’, resulting in the arbitrary node set:
{2406333,2407129,2407542,2413654,2416555}. For example 4, this set forms
the final view result as all the location steps have been evaluated (5 nodes).

5 Details of Experiments

Experiments were run using a 3.2GHz Pentium IV machine with 1GB of RAM
on a Windows XP operating system. Our View Processor was deployed using

Table 1. DBLP Views

View Query Match eXist ESR Comp.
V1 //inproceedings[author = ‘Jim Gray’] 6 1,666 300 5.53

[year = ‘1990’]/@key
V2 //www[./editor]/url 5 194 49 3.96
V3 //book/author[text() = ‘C. J. Date’] 13 411 39 10.54
V4 //inproceedings[title/text() = 2 13,443 344 39.08

‘Semantic Analysis Patterns’]/author
V5 //article[./month = ‘August’][./year = ‘1994’] 12 350 59 5.93
V6 //inproceedings[year = ‘1998’][title]/author 40,226 7,885 1,506 5.24
V7 //proceedings[publisher = ‘Springer’][title] 2,109 526 125 4.21
V8 /dblp/article/title 111,609 6,542 3,081 2.12
V9 /descendant::article[author = ’Mark Roantree’] 5 n/a 35,135 n/a

/preceding::incollection[author = ’Amit P. Sheth’]
V10 /dblp/article[year = ‘1991’]/@key 4,189 3004 227 13.23
V11 //mastersthesis[./author][./year] 5 366 33 11.09
V12 //proceedings[./isbn][./url] 2,708 456 159 2.87
V13 //inproceedings[url]/title 212,270 12,839 6,312 2.03
V14 //article[number]/author 213,539 12,490 6,263 1.99

144 M. Roantree, C. Noonan, and J. Murphy

an Oracle 10G database, running on a Windows XP professional platform, with
a 3.0GHz Pentium IV processor and 1GB memory. The eXist database runs on
a machine with an identical specification to that of the Oracle 10G server to
ensure parity. However, we altered the default JVM settings of the eXist server
from -Xmx128MB to -Xmx768MB in order to maximise eXist’s efficiency. All
experiments were executed using the DBLP dataset [9].

Table 1 illustrates our 14 sample views, together with: the number of instance
matches in the DBLP database; eXist responses times; the Extended Schema
Repository (ESR) response times; and the comparison between both systems.
Views were mainly generated from queries used by other authors and each view
is evaluated 11 times for both query engines (the first, cold run is ignored) with
times recorded in milliseconds and warm cache results averaged. The Compar-
ison divides the times of the eXist output by those of our optimisation engine,
indicating that a value of 1 represents an equal score; any figure less than 1
represents a slower run for our approach; and figures greater than 1 represents
an improvement using our approach. For this series of experiments, all views are
homogeneous with Twigs unclipped as eXist does not have the facility to return
heterogeneous result sets or drop nodes.

Query evaluation commences for a specific location step, by limiting the search
space of the target database we achieved superior results over eXist. The eXist
query processor on the other hand, fails to limit the search space as it queries
nodes that cannot form part of the query result. For example, view V14 selects
all author elements and that are children of article elements that have a child
named number. The eXist query processor selects all article, number, author
elements then joins these lists using their path join algorithm. The Fullpath
index allows us to only select number and author elements that are children of
a article node, thus dramatically reducing the search space and the size of our
joins.

The ESR performs best for queries with highly selective predicates i.e. queries
that query a small portion of the target database i.e. V1, V3, V4, V5, V7 and
V10. For low selectivity queries our results were less promising as these queries
potentially require a join between two large lists of nodes and currently we are
using standard relational join mechanisms. View V9 is relatively slow because
the preceding axis initially has a large search space (see process 2) and secondly,
we must check that all 1,009 nodes identified by process 4 support the predicate.
However, the eXist database is unable to process this view.

6 Related Research

In [1] they argue that XML view technology should leverage object database
view technology and they strongly emphasise that distributed aspects should
be addressed in a declarative fashion (replication, change notification). In their
discussion of XML views, consideration is given to relational technology and
on Object Database Views based on experience with the O2 Object Database
developed at INRIA. They identify a range of important issues including: exten-

Specifying and Optimising XML Views 145

sions to standard database view technology for XML; object database views as
a foundation for XML views; the exchange of structured data in XML as per
relational and ODMG modes; and the control of updates. Our metamodel ap-
proach provides the foundation for all of these properties, with a particular focus
on applying traditional database foundations to the management of semistruc-
tured data. In [2], they consider XML Views to be fragments of the database; a
list of typed data values; node references; fullpaths; or any combination of the
four. While they do not focus on optimisation of views, they utilise stored view
results to optimise subsequent queries. There is considerable evidence presented
to demonstrate that a major improvement in query performance is achieved,
however unlike our approach, they provide no mechanism for defining views.

One of the earliest efforts at building schema repositories for semi-structured
sources was in [3] where the authors introduced the concept of a DataGuide. In
relation to our work, a DataGuide could be regarded as a form of materialised
view. They are used by query processing strategies to limit or prune the search
space of the target database. However, DataGuides do not provide any informa-
tion about the parent-child relationship between database nodes and unlike our
approach, they cannot be used for axis navigation along an arbitrary node.

7 Conclusions

In this paper, we introduce our XML Views for the first time, providing a clear
understanding of how a Twig is formed, and how this concept is used to comprise
a View. The metamodel for views [8] supports our query optimisation for view
processing. Our experiments demonstrate that we compare favourably against
eXist, one of the market leaders. Although we can also query views, we have no
optimisation of this process. As a consequence, our current focus is the optimi-
sation of view queries using metadata mappings to XPath location steps.

References

1. Abiteboul, S.: On Views and XML. SIGMOD Record 28(4), 30–38 (1999)
2. Balmin, A., Ozcan, F., Beyer, K., Cochrane, R., Pirahesh, H.: A Framework for

using Materialized XPath Views in XML Query Processing. In: Proceedings of 30th
Conference on Very Large Databases, pp. 60–71. Morgan Kaufmann, Washington
(2004)

3. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimisa-
tion in Semisztructured Databases. In: Proceedings of the 23rd VLDB Conference,
pp. 436–445. Morgan Kaufmann, Washington (1997)

4. Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting Local Similarity for
Indexing Paths in Graph-Structured Data. In: Proceedings of ICDE, 2002 (2002)

5. Meier, W.: eXist: An Open Source Native XML Database. In: Chaudhri, A.B.,
Jeckle, M., Rahm, E., Unland, R. (eds.) Web, Web-Services, and Database Systems.
LNCS, vol. 2593, pp. 169–183. Springer, Heidelberg (2003)

6. Qun, C., Lim, A., Ong, K.: D(k)-Index: An Adaptive Structural Summary for Graph-
Structured Data. In: Proceedings of the 29th VLDB Conference, Morgan Kaufmann,
Washington (2003)

146 M. Roantree, C. Noonan, and J. Murphy

7. Roantree, M., Noonan, C.: A Metamodel Approach to XML Query Optimisation
(Submitted for publication) (March 2007)

8. Roantree M., Noonan C., Murphy J.: Metadata For Optimising XML Views.
Technical Report ISG-06-04, Dublin City University (December 2006) at: URL
http://www.computing.dcu.ie/∼isg/technicalReport.html

9. Suciu D., Miklau, G.: University of Washington’s XML Repository (2002) at: URL
http://www.cs.washington.edu/research/xmldatasets/

Isolating Order Semantics in Order-Sensitive
XQuery-to-SQL Translation

Song Wang, Ling Wang, and Elke A. Rundensteiner

Worcester Polytechnic Institute, Worcester, MA 01609, USA
{songwang|lingw|rundenst}@cs.wpi.edu

Abstract. Order is essential for XML query processing. Efficient XML
processing with order consideration over relational storage is non-trivial,
especially for complex nested XQuery expressions. The order semantics
may impede efficient query rewriting for nested query blocks. We propose
a general order-sensitive XQuery processing approach involving three
steps. First an algorithm is proposed for inferencing about and then
isolating the order semantics in XQuery expressions specified over virtual
XML views. This turns an ordered XQuery plan into an unordered one
decorated with minimized order context annotations. Then without loss
of semantics, logical optimization via XQuery rewriting can be easily
applied to this transformed query plan. As last step, the translation
of the optimized logical plan into SQL now correctly incorporates the
order context annotations to assure the original order semantics. Our
experiments illustrate the performance gains achievable by our order
handling strategy.

1 Introduction

Since XQuery semantics are order sensitive, order awareness has been identified
as critical for XQuery processors. Order-sensitive XML query processing has
been studied for native XQuery engines, such as TIMBER [10], Natix [6] and
Rainbow [1, 20]. There has also been considerable work on extending relational
query engines to process XQueries over XML documents. See [5] for a survey.

Several aspects of supporting order-sensitive XQuery processing over rela-
tional storage have been successfully tackled in the literature. XML document
order encoding strategies during XML loading, such as Dewey order [15], ORD-
PATH [9], and preorder ranks [3], have been proposed. The order-sensitive XPath
to SQL translation has been studied for these different order encodings [3,9,15].
However, the order semantics in general impede efficient query rewriting for
nested query plan blocks. We thus propose a general order-sensitive XQuery
processing approach which overcomes this problem. Our solution does not rely
on any specific relational order-encoding.

Our work relates to recent work on the order processing and duplication re-
moval of matched pattern trees for the native XQuery engine Timber [10,11]. The
authors propose to use hybrid collections of matched pattern trees to capture
the order semantics of XQuery expressions. Although the proposed techniques
are sufficient for native XQuery processing, their adoption to an XQuery engine
with relational storage faces new challenges, as shown below.

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 147–159, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

148 S. Wang, L. Wang, and E.A. Rundensteiner

Motivation Example 1: XML nodes matched by XQuery expressions can be
heterogeneous, due to the wildcard “*” navigation step in XPath expressions
or the union operations in the For and Let clauses. In Figure 1(a), four XML
nodes (b0 to b3) match the given XPath expression for $b. The intermediate
result of the translated SQL thus contains four tuples1. We observe that every
XML node in the matched pattern is represented in a column in the result table
shown at the bottom of the figure. No simple sorting on any individual column
can achieve the ordering of the order by clause, no matter what order encoding
is used. Instead, we have to build an extra ordering column to record the order
information corresponding to the runtime execution.

for $b in document(“B.xml")/B
order by $b/(C|D)[1]
return $b

b2

c1

b1

d3

b3

c2 d4

nullnullb0
nullc1b2
d4c2b3
d3nullb1

DCB

b0

(a)

for $b in document(“B.xml")/B
order by $b/C[1]
return <result>$b,

{for $c in $b/C
order by $c
return $c} </result>

b1

c2 c4

c2b1
c4b1

c1b2
c3b2

CB

b2

c1 c3

b1

c2 c4

b2

c3 c1

c2b1
c4b1

c3b2
c1b2

CB

(b)

Fig. 1. Motivation Examples: (a) XQuery with Heterogeneous Matched XML Nodes;
(b) Sorting in Nested XQuery Expressions

Motivation Example 2: We may need to group and sort the results of the
translated SQL queries to achieve correct semantics of nested XQuery expres-
sions. Adding simple sortings into the SQL may not be adequate. As shown in
Figure 1(b), the XQuery expressions first sort the “$b” bindings by the first
“C” child, and then all “C” children of each “$b” binding. The XML nodes and
corresponding tuples on left show the orderings for the outer XQuery expression,
while the right ones show the effect of the inner XQuery expression. Obviously we
cannot achieve the correct ordering by a simple translated SQL order by clause.

The ordering problems shown above are unique to XQuery processing on re-
lational XML views where order can only appear at the top-level of an SQL
query. The naive approach to guarantee the correct order processing in the SQL
translation is to build an extra order column for each level of the result construc-
tion. Such columns are used to capture the runtime order semantics in each of
the intermediate results. Those columns can be combined and treated as Dewey
order of the result XML. Then a sort at the top-level SQL query can achieve the
correct ordering of the tuples. The OLAP amendment row number() with parti-
tion by and optional order by clauses in SQL99 can be used to achieve this [17].

1 For ease of illustration, bi, ci and di are used for both the XML nodes and the
atomized values.

Isolating Order Semantics in Order-Sensitive XQuery-to-SQL Translation 149

However, such operations tend to be expensive. In fact in many cases they may
be redundant, since ordering at all levels of the nesting may not be required.

Our approach tackles the above open problem. We propose a general frame-
work to process XQuery expressions on virtual XML views of relational databases.
Our approach first isolates the order semantics in the combined query composed
of the user XQuery and the XML view query. Then by identifying and reason-
ing about essential order information, we minimize the usage of the expensive
row number() functions. As result we produce a succinct SQL translation of order-
sensitive XQuery expressions. Correctness of the translated SQL is achieved by
“attaching” back the order semantics identified as “essential”.

Contributions. Our contributions include: (1) We propose a general framework
for processing order-sensitive XQuery over virtual XML views defined on rela-
tional databases. (2) We introduce order propagation techniques for the XQuery
algebra [20] to support order isolation in the XQuery plan. (3) We discuss the
strategies for SQL translation with ordered semantics. (4) We implement the
order propagation and isolation approach in the Rainbow XQuery Engine [20].
(5) We report experimental studies illustrating the tradeoff among different SQL
translation strategies.

Outline. The rest of this paper is organized as follows. Section 2 reviews related
work, while Section 3 shows preliminaries. Section 4 enhances the XAT algebra
with order context annotations. Section 5 describes order propagation and order
isolation for order-sensitive XQueries. Different SQL generation strategies are
presented in Section 6. Section 7 provides our experimental study and Section 8
concludes this paper.

2 Related Work

XQuery-to-SQL translation can be broadly classified into two scenarios: XML
Publishing and XML Storage [5]. Since the relational data model is unordered,
XML Publishing of relational data need not consider order semantics [2,12]. For
XML storage of existing XML data, various order encoding methods have been
proposed in [15, 17].

Order inference has been used for relational query optimization in [13, 19,
14, 8, 7] to reason about the physical tuple order of intermediate results during
execution. We now use similar ideas for the new purpose of logical order inference
in virtual XML views focusing in addition on the hierarchical XML data.

In [4], removing unnecessary duplication elimination and sorting operations
in Galax is discussed for processing complex XPath expressions with backwards
axes. This is orthogonal to our problem. However the approach is complimentary
and could fit into our framework for the purpose of syntax level normalization.

[11] addresses order-sensitive XQuery processing in a pattern tree based na-
tive XQuery engine. Instead different optimization opportunities exist for order-
sensitive XQuery processing over relational XML views, as illustrated by the
motivation examples in Section 1.

150 S. Wang, L. Wang, and E.A. Rundensteiner

3 Preliminaries

3.1 The XQuery Subset

In this paper, we deploy a subset of the XQuery language [16], including nested
FLWOR expressions and order-sensitive functions (e.g., the position function).
With syntax rewriting, such XQuery subset covers a large set of XQuery expres-
sions used in practice. Formal definition of the XQuery subset is in [22].

3.2 A Running Example of Order-Sensitive XQuery Processing

Given a relational database, a view query defines an XML view over the rela-
tional database bridged through the default XML view [12]. We assume that the
relational constraints are:

PLAY(IID,NAME): Primary Key(IID), Unique(NAME)
MPLAY(IID,PID,NAME): Primary Key(IID), Unique(NAME)
SONG(IID,PID,NAME): Primary Key(IID), Unique(NAME)

P303
P202
P101

NAMEIID
PLAY

S5025

S10011
S20012

S6036

S4014
S3013

NAMEPIDIID
SONG

MP303003
MP202002
MP101001

NAMEPIDIID
MPLAY

(a)

<RECORDLIST>
{for $play in doc("dxv.xml")/PLAY/ROW
return

<PLAY>
<BAND> {$play/NAME} </BAND>
{for $song in doc("dxv.xml")/SONG/ROW
where $song/PID = $play/IID
order by $song/IID
return
<SONG> {$song/NAME} </SONG>

}
{for $mplay in doc("dxv.xml")/MPLAY/ROW
where $mplay/PID = $play/IID
return
<MPLAY>
{for $song in doc("dxv.xml")/SONG/ROW
where $song/PID = $mplay/IID
order by $song/NAME
return <SONG> {$song/NAME} </SONG>
}</MPLAY>

}</PLAY>
}</RECORDLIST>

(b)

recordlist

play
*

song

*

Order by
Song.name

mplay

*

song

*

Order by
Song.IID

Unordered

Unordered

(c)

<recordlist>

<play>

<band> <mplay><song>

<play> <play>

<band> <band>

“p1” “p2” “p3”

<song><song>

“s3” “s4” “s5”<song> <song>

“s1” “s2”

<mplay> <mplay><song>

“s6”

(d)

for $uPlay in document(“record.xml")/PLAY
order by $uPlay/SONG[1]
return $uPlay/BAND,

{for $uSong in $uPlay/SONG
order by $uSong
return $uSong}

(e)

for $song in document(“record.xml")//SONG
return $song

(f)

Fig. 2. (a) Relational Tables; (b) Default XML View Query; (c) XML View Schema
with Order Information; (d) Order-sensitive XML View; (e) Q1: XQuery with Nested
Orderings; (f) Q2: XQuery with Heterogeneous Matched Patterns

Isolating Order Semantics in Order-Sensitive XQuery-to-SQL Translation 151

Figure 2(b) shows the default XML view query, containing explicit order by
clauses. Such an XML view is ordered. Figure 2(c) shows the simplified schema
tree (with “BAND” omitted) of this view, highlighting the order semantics.
Edges are marked as “Unordered” whenever the view query does not impose any
order by clauses there. We call such an XML view “partially ordered”. Figure 2(d)
shows one “possible” view result. That is, the order among the play elements
can be different from that in Figure 2(d).

Order-sensitive user XQueries can be launched over the default XML view.
Figure 2(e) shows a user query using position function and nested orderings. Fig-
ure 2(f) shows another user query with a complex XPath containing “//”. Since
the XPath expression matches multiple paths in the XML view, this complicates
the order of the retrieved SONG elements. We will use these two XQueries to
show our approach of order-sensitive SQL translation.

3.3 The XQuery Algebra: XAT

Our approach uses the XAT algebra [20] as internal representation of the view
query, user query and their composition. A complete discussion of the XAT
algebra is in [22]. The intermediate results of an XAT operator is a sequence
of tuples, named XATTable. An XAT operator is denoted as opout

in (R), where
op is the operator symbol, in represents input parameters, out newly produced
output column and R the input XATTable(s). Figure 3 shows the composition
of the decorrelated XAT trees capturing the user query Q1 and the view query.

The XAT algebra inherits operators from the relational algebra, extended
with order semantics (see Section 4.1). For example, the GroupBy operator

[||$play O$sIID >SONG]
GroupBy $play

Combine $dataSongTag

Navigate $song, NAME
$sData

OrderBy $sIID

GroupBy $play

Source “dxv.xml”
$S

Navigate $S, SONG/ROW
$song

Navigate $song, PID
$sPID

ThetaJoin $pIID=$sPID

Source “dxv.xml”
$P

Navigate $P, PLAY/ROW
$play

Navigate $play, IID
$pIID

Combine $dataPlayTag

Tagger <RECORDLIST/> $dataPlayTag
$record

Tagger <PLAY/> $dataBandTag,$dataSongTag
$dataPlayTag

Tagger <SONG/>$sData
$dataSongTag

Navigate $play, NAME
$bData

Tagger <BAND/>$bdata
$dataBandTag

GroupBy $uPlay

Combine $uSong2

Navigate $uPlay, SONG
$uSong

Select $uNumPos=1

Navigate $P, PLAY
$uPlay

OrderBy$uSong2

Source “record.xml”
$P

$P=$record

POS $uSong
$uNumPos

1

2

3

4

5

6

7

8
9

11

10

12

13

14

15

16

17

18

19

20

26

27

21

23

24

29

28

[]

[]

[]

[]

[]

[G$play,O$sIID]

[O$uSong]

[]

[O$sIID][O$sIID]

[O$sIID]

[G$play,O$sIID]

[G$play ||$play O$sIID > SONG]

[||null G$play > PLAY O$sIID > SONG]

[G$uplay,O$sIID]

[]

Navigate $song, IID
$sIID

[]

[G$play,O$sIID]

[G$play,O$sIID]

[O$sIID]

[G$play ||$play O$sIID > SONG]

[G$play ||$play O$sIID > SONG]

[G$play ||$play O$sIID > SONG]

[||RECORDLIST G$play > PLAY O$sIID > SONG]

[G$uplay ||PLAY O$sIID > SONG]

[]

OrderBy$uSong

Navigate $uPlay, BAND/text()
$ubData

25

Navigate $uPlay, SONG
$uSong2

GroupBy $uPlay

30
[G$play,O$sIID]

[G$uplay]

[O$uSong2]

[O$sIID]
[G$uplay,O$sIID]

NaturalJoin
[G$uplay||$uPlay O$uSong2 >SONG]

[O$uSong ||$uPlay O$uSong2 >SONG]
31

Combine $uPlay
32

Fig. 3. Composed XAT of View Query and User Query Q1

152 S. Wang, L. Wang, and E.A. Rundensteiner

is generated during XAT decorrelation of nested XQuery expressions [18]. The
GroupBy operator groups the tuples of the input XATTable by certain col-
umn(s), and then performs the embedded functions on each group of tuples.
For example, the GroupBy$uPlay embedded with POS$uSong (Nodes 22 and 23
in Figure 3) will change the input: < (p1, s3), (p1, s4), (p2, s5) > into output:
< (p1, s3, 1), (p1, s4, 2), (p2, s5, 1) >. The XAT algebra also introduces new op-
erators to represent XQuery semantics, such as Navigate, Tagger, Combine and
POS. The Navigate operator extracts destination XML nodes from each entry
of XML fragments according to a given XPath expression. Assume the input
column $uP lay of Node 21 in Figure 3 includes two plays p1 and p2, which
have songs s3, s4 and s5 respectively; the output of the Navigate operator is
a sequence of tuples: < (p1, s3), (p1, s4), (p2, s5) >. The Tagger operator con-
structs new XML elements by applying a tagging pattern to each tuple in the
input XATTable. A tagging pattern (e.g., <SONG/> $sData in Node 12 of
Figure 3) is a template for the XML fragment. The Combine operator projects
out certain columns from the input XATTable and merges the contents of the
remaining columns into one tuple. The POS operator captures the semantics of
the position() function. It assigns a row number to each input tuple.

4 Enhancing XAT with Order Context

4.1 Order Context for XATTable

The order context in [13, 19] represents the tuple order of flat relational tables.
We extend the order context to represent tuple order and XML fragment order
in XAT tables. This extension is essential because: (i) hierarchical XML views
are defined with multiple level sortings; and (ii) XML view queries define only
partial orders in XML views. Figure 2(c) shows a partial order example which
captures the order information in a schema graph. The PLAY and MPLAY nodes
are not ordered, while SONG nodes are ordered according to different columns.

The order context of an XATTable is composed of two parts, denoted as
[TupleOrder||XMLOrder]. TupleOrder captures the tuple ordering and group-
ing properties of an XATTable, while the XMLOrder captures the document
order for an XML fragment. Both parts can be optional. TupleOrder is a se-
quence of order properties: Pi. Each Pi can be either an ordering denoted as
O$c or a grouping denoted as G$c, where $c is a column of the XATTable (the
grouping could be on multiple columns). The tuples in the XATTable are or-
dered (or grouped) first according to P1, with ties broken by P2, and so on. For
each Pi, O$c implies G$c, but not vice versa. The semantics of grouping on mul-
tiple columns G$ci,$cj

are not equal to G$ci
followed by G$cj

. The order context
[G$ci

, G$cj
] implies the order context [G$ci,$cj

], but not vice versa. XMLOrder
is attached to the schema tree of the associated XML fragments. For example,
the XMLOrder of the XATTable after the Tagger operator (Node 19) is shown
in Figure 42.

2 For ease of illustration, the XAT tree and order contexts shown in Figure 4 include
only part of the XML view query.

Isolating Order Semantics in Order-Sensitive XQuery-to-SQL Translation 153

RECORDLIST

PLAY

SONG MPLAY

SONG

G$play

O$sIID G$mplay

O$sName

Fig. 4. The XMLOrder in the output XATTable of Node 19

4.2 Functional Dependencies and Keys

We use the functional dependencies of the base relational tables to propagate
the order context through the XAT tree. The constraints of an XATTable can
be determined utilizing rules similar to those in [13,19]. We omit the details here
due to space limitation. We use the constraints for the following purposes:

– Minimize the order context by removing redundant orderings (groupings).
– Retrieve trivial orderings and groupings if needed during order propagation.

“Trivial” [13] implies that it can be omitted. For example, a key constraint
implies a trivial grouping on the key column(s).

– Check the compatibility of order contexts.

5 Order Propagation and Isolation

The identification and isolation of the order semantics of the XAT tree is accom-
plished in two traversals. First the bottom-up traversal (complete order propa-
gation) computes the order contexts of all intermediate XATTables. Second the
top-down traversal (selective order isolation) identifies the operators that indeed
require the order context to produce correct results, i.e., the essential ones.

5.1 Order Context Propagation

The order contexts of XATTables originate from explicit sorting in the XML
view query. They then are propagated through the operators in the XAT tree to
form the ordered XML view and the ordered user XQuery result. We call the pro-
cedure of determining the order contexts of the XATTables Order Propagation.
Figure 3 illustrates the propagation of the order context through the composed
XAT tree. The order context is associated with each XATTable and attached
to edges between operators. During the propagation, the XMLOrder part of
the input order context will always be carried on to the output, except when
the corresponding XML fragments are navigated into or are projected out. The
propagation of TupleOrder of the XATTable depends not only on the operator
semantics but also the constraints in the XATTable.

Select, Project and Tagger. The TupleOrder in the output XATTable of most
unary operators, such as Select, Project and Tagger, inherits the TupleOrder of
the input XATTable. If one column in the TupleOrder of the input XATTable is
projected out, it is also removed from the output order context.

154 S. Wang, L. Wang, and E.A. Rundensteiner

Join. Suppose OCL and OCR denote the order contexts of the left and right
input XATTables of a Join operator. Then the TupleOrder of the output order
context inherits the TupleOrder in OCL. The TupleOrder of OCR is attached to
the output order context if the TupleOrder of the OCL is not empty. Otherwise,
the TupleOrder of OCR is discarded.

Here all ordering and grouping properties in the left input XATTable, even if
trivial, need to be included in OCL for the empty test and order propagation. For
example, suppose the left input XATTable has a unique identifier (c1, c2) (i.e.
key constraint), then Gc1,c2 is trivial since all groups consist of only one tuple.
But it is no longer trivial in the Join output since a 1 to m joining between the
left and right input tuples may exist.

OrderBy. An OrderBy operator sorting on c1, c2, ... will generate a new or-
der context [Oc1 , Oc2 , ...]. The propagation of the order context associated with
its input XATTable through the OrderBy operator is determined by the com-
patibility of the order contexts. For example, [Gc1 , Gc2] is not compatible with
the explicit sorting on c2. Thus the explicit sorting overwrites the output or-
der context as [Oc2] only. But [Gc1 , Gc2] is compatible with ordering on (c1) or
on (c1, c2, c3) with the output order context then being set to [Oc1 , Gc2] and
[Oc1 , Oc2 , Oc3] respectively. In Figure 3 the OrderBy operator (Node 25) sorts
by $uSong. The input order context [G$play] is compatible with this sorting,
since G$play is implied by O$uSong due to the selection (Node 24).

GroupBy. Similar with OrderBy, the propagation of TupleOrder through the
GroupBy is also determined by the compatibility between the input order context
and the generated order context. For example, if the input tuples have been
sorted on column $c1 and the grouping is done on column $c2, where $c2 is a
key column, then the output order context of the GroupBy operator is [O$c1],
with G$c2 being a trivial grouping. For example in Figure 3 the generated order
context G$uPlay of the GroupBy operator (Node 23) is compatible with the input
order context [G$uPlay , O$sIID], since $uP lay is a key.

Navigate. The Navigate operator passes the TupleOrder of its input order con-
text to its output order context. If the input TupleOrder including the trivial
groupings (if any) is not empty, the extracted order from the XML fragment
will be attached to the end of the input TupleOrder. Otherwise the output
TupleOrder is empty. Different permutations of the same set of Navigates may
result in different order contexts. For example, consider two Navigate operators
$a/b and $a/c. If we perform $a/b before $a/c , then the final order context will
be [Oa, Ob, O$c]. If we perform the two Navigates in the opposite order, then the
output tuple order will be [Oa, Oc, O$b]. This illustrates the limitation of han-
dling order using query plan rewriting. Our effort of order isolation in Section 5.2
is thus necessary. The output order context of the Navigate operator includes the
XMLOrder extracted from its input order context. For example in Figure 3 the
Navigate operator (Node 21) extracts the XMLOrder: (PLAY

O$sIID−−−−−→ SONG)
from the XML fragment. The output order context is [G$uPlay , O$sIID].

Isolating Order Semantics in Order-Sensitive XQuery-to-SQL Translation 155

Combine. The Combine operator forms the XMLOrder in the output or-
der context. In case that Combine is embedded in a GroupBy operator, the
formed XMLOrder will use the grouping column(s) as the relative column(s).
If Combine is not in a GroupBy operator, null will be used for the relative
column. For example, in Figure 3, the Combine operator (Node 13) forms:

$play
O$sIID−−−−−→ SONG.

5.2 Isolating Ordered Semantics in XAT Tree

In the query plan of the user XQuery, if the semantics of an operator are defined
based on the tuple order of its input XATTable, we classify this operator as
an order essential operator. The order context associated with the input
XATTable is called an essential order context.

In a top-down traversal of the XAT tree representing the user XQuery, we
now identify all order-essential operators and bind them with their input order
context for possible relocation in future rewriting steps. This denotes the Order
Isolation phase. In Figure 3, the Combine operator (Node 30), which originates
from the user XQuery, is an order-essential operator, since all tuples must be
sorted correctly before being “packed” into a collection in the result XML. All
operators capturing order sensitive functions are also order-essential operators,
e.g., the POS operator (Node 22). An XAT tree, with all OrderBy operators
removed and essential order contexts attached to the associated operators, is
called an Order Annotated XAT Tree.

Navigate $song, NAME
$sData, $sData2

Source “dxv.xml”
$S

Navigate $S, SONG/ROW
$song

Navigate $song, PID
$sPID

ThetaJoin $pIID=$sPID

Source “dxv.xml”
$P

Navigate $P, PLAY/ROW
$play

Navigate $play, IID
$pIID

Navigate $play, NAME
$bData

GroupBy $pIID

Select $uNumPos=1

POS $sIID
$uNumPos

1

2

4

5

6

9

10

7

83

13

11

12

[O$sIID]

Navigate $song, IID
$sIID

GroupBy $pIID

Combine $sData2

[O$sData2]

NaturalJoin

[O$sData ||$uPlay O$sData2 >SONG]

Combine $uPlay
17

14

15

16

Fig. 5. Optimized XAT Tree

WITH Q1 (bData, pIID, sData, sData2, sIID) AS
(SELECT P.NAME, P.IID, S.NAME, S.NAME, S.IID

FROM PLAY P, SONG S WHERE P.IID = S.PID)

WITH Q2 (bData, pIID, sData, uNumPos) AS
(SELECT Q1.bData, Q1.pIID, Q1.sData, row_number()
OVER (PARTITION BY Q1.pIID ORDER BY Q1.sIID)
uNumPos FROM Q1)

WITH Q3 (bData, pIID, sData) AS
(SELECT Q2.bData, Q2.pIID, Q2.sData FROM Q2
WHERE Q2.uNumPos = 1)

WITH Q4 (bData, pIID, sData, sData2) AS
(SELECT Q1.bData, Q1.pIID, Q3.sData, Q1.sData2 FROM Q1,Q3
WHERE Q1.pIID=Q3.pIID ORDER BY Q3.sData, Q2.sData2)

SELECT * FROM Q4

Fig. 6. SQL Translation for Q1

Intuitively the order-essential operators determine the only positions in the
query tree where the order context has to be enforced. By enforcing the essen-
tial order contexts, the ordered semantics of XQuery are captured. The XAT
tree can be optimized now ignoring all OrderBy operators during the subse-
quent rewriting phase. After applying order-insensitive XQuery rewriting rules,
the correct order semantics is restored by inserting explicit sorts below each or-
der essential operator. The optimized annotated XAT tree is shown in Figure 5.

156 S. Wang, L. Wang, and E.A. Rundensteiner

Details of the XAT rewriting are beyond the scope of this paper and can be
found in [21].

6 Order-Aware SQL Translation

XML-to-SQL translation based on XML algebra usually assumes some XML
middle-ware above the relational engine. For this a simple middle-ware having
limited processor and memory resources is commonly desired [12]. We follow the
same trend here and limit the computation in the middle-ware to be achievable
in a single pass over the SQL results. Many operators of the XAT algebra can
be achieved in the middle-ware, such as Tagger, Combine, Select, Position and
their combinations. The OrderBy and GroupBy operators can clearly not be
evaluated by such one-pass middle-ware, unless the input has been sorted by the
SQL engine correspondingly.

6.1 SQL Translation for Incompatible Result Orderings

In Figure 5, we can see that the ordering of the left and right branches of the
query plan are incompatible with each other. That is, the left branch requires the
intermediate result being sorted first on $pIID then on $sIID, while the right
branch requires first on $pIID then on $sData2. For such cases, an additional
order column, which can be the $sData2 column after the selection, must be
used for the top-level sorting in SQL. The ordering compatibility checking rules
of intermediate results are the same as the rules for order context checking.

The SQL generation is conducted in a bottom up fashion along the XAT tree.
Each time we try to include the parent operator in the current SQL block. Nested
SQL statements will be generated otherwise. For the example Q1, the generated
SQL is shown in Figure 6. We use the with clause in SQL99 for clarity.

6.2 SQL Translation for Multiple Path Matching

We use the example XQuery Q2 for illustration of the order-sensitive SQL trans-
lation for complex XPath expressions. Q2 retrieves all SONG elements with an
XPath matching multiple paths in the XML view. Then each path can be inde-
pendently translated into an SQL query. Instead of simply combining the results
of the SQL queries, order-sensitive query translation needs to sort the XML el-
ements from different paths correctly according to the ordered semantics of the
XML view. The ordered semantics of the XML view include the following three
categories of parent-child orders in the schema tree:

– Sorting Order: If the child node Nc is sorted under the parent node Np,
we call the parent-child order sorting order, denoted as S(Np, Nc) = $col,
with $col as the sorting column(s).

– Grouping Order: If the child node Nc is grouped under the parent node Np,
we call the parent-child order grouping order, denoted as G(Np, Nc) = $col,
with $col as the grouping column(s).

Isolating Order Semantics in Order-Sensitive XQuery-to-SQL Translation 157

– Edge Order: The order among the sibling nodes Nc below a parent node
Np in the schema tree is called the edge order, denoted as E(Np, Nc) = i,
i ∈ N, which means Nc is the ith child of Np.

In the XML schema tree in Figure 2(c), sorting order is: S(PLAY, SONG)
= $sIID; grouping order is G(PLAY, MPLAY) = $mplay; and edge order is
E(PLAY, SONG) = 1. These orders determine the ordering of the XML el-
ements retrieved by the XPath expressions. In Q2 there are two paths in the
XML view schema matching the XPath expression: “//SONG”. We can con-
struct a new order column for the SONG elements using concatenation of the
parent-child orders along the path in a root-to-leaf direction. In case that both
edge order and sorting order (or grouping order) exist for a parent-child pair, the
edge order is concatenated prior to the sorting order. Sorting by the constructed
order column after the union operations can achieve the correct ordering of the
SONG elements. We show the translated SQL for Q2 in Figure 7(a)3.

SELECT NAME
FROM (SELECT S.NAME, P.IID||’.’||’1’||’.’||S.IID as song_order

FROM PLAY P, SONG S
WHERE P.IID = S.PID
UNION ALL
SELECT S.NAME, P.IID||’.’||’2’||’.’||M.IID||’.’||S.NAME as song_order
FROM PLAY P, MPLAY M, SONG S
WHERE P.IID = M.PID AND M.IID = S.PID

) Q1
ORDER BY Q1.song_order

(a)

QLeft:

SELECT S.NAME
FROM PLAY P, SONG S
WHERE P.IID = S.PID
ORDER BY P.IID, S.IID
QRight:

SELECT NAME
FROM (SELECT S.NAME, P.IID, M.IID||’.’||S.NAME as song_order

FROM PLAY P, MPLAY M, SONG S
WHERE P.IID = M.PID AND M.IID = S.PID

) Q1
ORDER BY Q1.IID, Q1.song_order

(b)

Fig. 7. Translated SQL for Merging Multiple Matched Paths

Alternative Computation Separation Strategies
The union operator can be achieved using sorted merge on common columns in
the middle-ware by one scan of the pre-sorted result sets. More precisely, one
union operator is attached above every parent node that has multiple children
(matching paths) in the XML view schema tree. Thus according to different al-
locations of the union operations in or out of the relational engine, alternative
computation pushdown strategies are achievable. Figure 7(b) shows one alter-
native SQL translation. QLeft and QRight provide the two sorted inputs for the
sorted merge union in the middle-ware.

The SQL is generated as follows: 1) separate the schema tree into upper
part and lower part, all the union operators of the upper part are done in the
middle-ware; 2) for each path, the parent-child orders below the lowest union
operator done in the middle-ware are used to construct the new order column
using concatenations; 3) sort by the parent-child orders top-down along each
path and the order column constructed (if any).

Pushing more union operators into the relational engine will have a smaller
number of SQL queries but suffer from sorting on order columns constructed
at runtime. Performing sorted merge union operators in the middle-ware will
require a large number of cheap SQL queries, since the sorting can be done

3 We assume that the length of the strings for the IIDs are the same for one table.

158 S. Wang, L. Wang, and E.A. Rundensteiner

utilizing indices. This results in a performance tradeoff. The search space for
identifying optimal strategies is linear in the number of possible union operators.

7 Experimental Study

We have implemented the order-sensitive XQuery processing over XML views in
the RainbowCore [20] system. We have conducted the performance comparisons
among the different order-sensitive SQL translation strategies (Section 6). The
experiments are done on a Linux machine with two P3 1GHz CPUs and 1GB
memory running Oracle 9.

We compare the performance of the computation separation strategies for the
union operators attached to the schema tree formed by multiple matching paths.
We compare the execution costs based on the two SQL translations depicted in
Figure 7(a) and 7(b). The dataset used includes 1000 to 10000 PLAYs having on
average 50 SONGs and 10 MPLAYs per PLAY. Each MPLAY has on average 50
SONGs. The performance comparison of SQL translation in Figure 7(a) versus
Figure 7(b) is shown in Figure 8(a) (without any index) and Figure 8(b) (with
an index on the primary key).

0
10
20
30
40
50
60
70
80

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Number of PLAY Tuples

E
xe

cu
ti

o
n

 T
im

e
(s

)

Fig. 7(a): More Pushing

Fig. 7(b): Less Pushing

(a) Without Any Index

0
10
20
30
40
50
60
70
80

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Number of PLAY Tuples

E
xe

cu
ti

o
n

 T
im

e
(s

)

Fig. 7(a): More Pushing
Fig. 7(b): Less Pushing

(b) With Index on Primary Key

Fig. 8. Cost Comparison of SQL Translation for Multiple Matching Paths

When no index is used, the two strategies perform similarly. When an index is
present, pushing less union operators into the relational engine outperforms the
alternative. The performance difference is increasing with the growth in the size
of the relational tables. This experiment demonstrates that pushing less union
operators into the relational engine is better than other strategies when indices
are deployed.

8 Conclusions

The order semantics of XQuery are crucial for many application domains. We
propose a generic approach for inference and isolation of the order semantics
in virtual XML views. Our approach turns the order-sensitive XQuery plans
into unordered plans by utilizing order context annotations. Alternatives for

Isolating Order Semantics in Order-Sensitive XQuery-to-SQL Translation 159

SQL translation with order context are also discussed. Performance differences
among them are illustrated through an experimental study.

References

1. El-Sayed, M., Dimitrova, K., Rundensteiner, E.A.: Efficiently Supporting Order in
XML Query Processing. In: WIDM, pp. 147–154 (2003)

2. Fernandez, M.F., Morishima, A., Suciu, D., et al.: Publishing Relational Data in
XML: the SilkRoute Approach. IEEE Data Eng. Bulletin 24(2), 12–19 (2001)

3. Grust, T., van Keulen, M., Teubner, J.: Staircase join: Teach a relational dbms to
watch its (axis) steps. In: VLDB, pp. 524–525 (2003)

4. Hidders, J., Michiels, P.: Avoiding Unnecessary Ordering Operations in XPath. In:
DBPL, pp. 54–70 (2003)

5. Krishnamurthy, R., Kaushik, R., Naughton, J.F.: XML-SQL Query Translation
Literature: The State of the Art and Open Problems. In: Xsym, pp. 1–18 (2003)

6. May, N., Helmer, S., Moerkotte, G.: Nested queries and quantifiers in an ordered
context. In: ICDE, pp. 239–250 (2004)

7. Neumann, T., Moerkotte, G.: A combined framework for grouping and order opti-
mization. In: VLDB, pp. 960–971 (2004)

8. Neumann, T., Moerkotte, G.: An efficient framework for order optimization. In:
ICDE, p. 461 (2004)

9. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:
insert-friendly XML node labels. In: SIGMOD, pp. 903–908 (2004)

10. Paparizos, S., Al-Khalifa, S., Chapman, A., Jagadish, H.V., et al.: TIMBER: A
Native System for Querying XML. In: SIGMOD, p. 672 (2003)

11. Paparizos, S., Jagadish, H.V.: Pattern tree algebras: sets or sequences? In: VLDB,
pp. 349–360 (2005)

12. Shanmugasundaram, J., Kiernan, J., Shekita, E.J., Fan, C., Funderburk, J.: Query-
ing XML Views of Relational Data. In: VLDB, pp. 261–270 (2001)

13. Simmen, D.E., Shekita, E.J., Malkemus, T.: Fundamental Techniques for Order
Optimization. In: SIGMOD, pp. 57–67 (1996)

14. Slivinskas, G., Jensen, C.S., Snodgrass, R.T.: Bringing order to query optimization.
SIGMOD Record 31(2), 5–14 (2002)

15. Tatarinov, I., Viglas, S., Beyer, K.S., et al.: Storing and querying ordered XML
using a relational database system. In: SIGMOD, pp. 204–215 (2002)

16. W3C. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/
17. Wang, L., Wang, S., Rundensteiner, E.: Order-sensitive XML Query Processing

over Relational Sources: An Algebraic Approach. In: IDEAS, pp. 175–184 (2005)
18. Wang, S., Rundensteiner, E.A., Mani, M.: Optimization of Nested XQuery Expres-

sions with Orderby Clauses. In: ICDE Workshops:XSDM, p. 1277 (2005)
19. Wang, X., Cherniack, M.: Avoiding Sorting and Groupin In Processing Queries.

In: VLDB, pp. 826–837 (2003)
20. Zhang, X., K.D., et al.: Rainbow: Multi-XQuery Optimization Using Materialized

XML Views. In: SIGMOD, pp. 671 (2003)
21. Zhang, X., Pielech, B., Rundensteiner, E.A.: Honey, I Shrunk the XQuery! — An

XML Algebra Optimization Approach. In: WIDM, pp. 15–22 (2002)
22. Zhang, X., Rundensteiner, E.A.: XAT: XML Algebra for the Rainbow System.

Technical Report WPI-CS-TR-02-24, Worcester Polytechnic Institute (July 2002)

Representation and Management of Evolving
Features in OS MasterMap ITN Data

Alex Lohfink, Tom Carnduff, Nathan Thomas, and Mark Ware

Faculty of Advanced Technology, Dept. of Computing and Mathematical Sciences,
University of Glamorgan, Pontypridd

1 Background

At the heart of any geographic information system (GIS) is a database system.
Data representing geographic entities and spatial features are stored in these
GIS and manipulated and visualised according to the user’s input. The rapid
emergence of GIS has demanded the evolution of database systems to support
these spatial data, and to provide powerful analysis operations and functions
to assist in decision support, projections, predictions, and simulations in a wide
variety of problem domains. The research reported on in this paper investigates a
specific area of interest in geospatial database systems, that of the management
and representation of evolving features. Features in a GIS group together entities
or areas that are of particular interest from a specific viewpoint, such as counties,
population, or in this case, roads.

(This project is funded by an EPSRC CASE award and is carried out in
collaboration with the Ordnance Survey (OS), and as such will utilise Oracle
Spatial and OS MasterMap Integrated Transport Network (subsequently referred
to as ITN) data).

2 Project Aims

The aims of the research are as follows:

• to apply object versioning techniques to ITN data within an object-relational
data model

• to extend the Oracle Spatial data type to implement spatiotemporal data
• to devise and implement a spatiotemporal data model for ITN data
• to enable the retrieval and manipulation of spatiotemporal ITN features

3 ITN Data

The ITN layer provides a topologically structured representation of the UK’s
driveable roads. Each road link is supplied with a unique topographic identifier,
or TOID, that can be shared with other users across different applications and
systems. ITN data is continually updated, capturing real-world change as part

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 160–163, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Representation and Management of Evolving Features 161

of the national geographic database. The data is increasingly used in commer-
cial markets by organisations requiring a variety of information regarding Great
Britain’s road network. The data supports applications for routing, tracking,
scheduling and fleet management and informs traffic analysis and accessibility
studies.

4 Object Versioning

The versioning of objects in database systems [7, 4] has been developed within
the design engineering environment in CAD systems to represent the evolution
of complex design artifacts (composite objects)[6]. Here versions can be defined
both at the component level and at the composite object level. The proliferation
of configurations of composite objects in CAD versioning has led to the devel-
opment of versioning models that represent a configuration as a generic object,
containing no specific versions of its components. The generic object stores refer-
ences to its components’ types, and specific versions are resolved at run-time by
a process called Dynamic Reference Resolution (DRR)[6, 3, 2, 5]. DRR thus min-
imises version percolation, (where an update to a component triggers cascading
updates in the configurations) and allows the free combination of components
to create new configurations.

4.1 The Structure of ITN Data

The basic unit of the road feature is the roadlink. Roadlink objects are comprised
of a polyline geometry with a roadnode object at each end. A road feature
is an aggregate of roadlink objects (see Figure 1). The road feature does not
contain the road’s geometry, only a reference to its constituent roadlink objects.
A roadlink’s nodes are marked as ‘start’ and ‘end’ to maintain topology.

Fig. 1. Road features are comprised of links and nodes

162 A. Lohfink et al.

5 The Static Feature Histories Model

Although road features can be regarded as composite objects, their structure
represents a single configuration in the system, and this negates the benefits of
DRR. The Static Feature Histories model (see Figure 2)is therefore based on the
following features

• the road feature is discreetised as a user defined type (UDT)
• aggregation of links is achieved through static references, not DRR
• version descriptors [2] record version information, and are stored as a history

attribute of a Road Feature History object
• invariant attributes are stored in the generic object [1]

Fig. 2. The Static Feature Histories model ‘hard-wires’ version references

6 Current Progress and Future Work

The Static Feature Histories model has been implemented in Oracle, and work is
now focusing on entering and manipulating data using JDBC strongly typed in-
terfaces, which allow Oracle objects to be mapped to corresponding Java classes,
thus preserving object-orientation.

References

[1] Ahmed, R., Navathe, S.B.: Version management of composite objects in cad
databases. In: SIGMOD ’91: Proceedings of the 1991 ACM SIGMOD international
conference on Management of data, New York, NY, USA, pp. 218–227. ACM Press,
New York (1991)

Representation and Management of Evolving Features 163

[2] Chou, H.-T., Kim, W.: Versions and change notification in an object-oriented
database system. In: DAC ’88: Proceedings of the 25th ACM/IEEE conference
on Design automation, Los Alamitos, CA, USA, pp. 275–281. IEEE Computer
Society Press, Los Alamitos (1988)

[3] Dittrich, K.R., Lorie, R.A.: Version support for engineering database systems. IEEE
Transactions on Software Engineering 14(4), 429–437 (1988)

[4] Golendziner, L.G., dos Santos, C.S.: Versions and configurations in object-oriented
database systems: A uniform treatment. In: Proceddings of the 7th International
Conference on Management of Data, pp. 18–37 (1995)

[5] Goonetillake, J.: The Management of Evolving Constraints and Integrity Validation
in a Computerised Engineering Design System. Phd, University of Wales Institute,
Cardiff (2004)

[6] Katz, R.H.: Toward a unified framework for version modeling in engineering
databases. ACM Computing Surveys (CSUR) 22(4), 375–409 (1990)

[7] Sciore, E.: Versioning and configuration management in an object-oriented data
model. The VLDB Journal 3(1), 77–106 (1994)

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 164–167, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Hopfilter: An Agent for Filtering Web Pages Based on
the Hopfield Artificial Neural Network Model

Juan Manuel Adán-Coello1, Carlos Miguel Tobar1, Ricardo Luís de Freitas1,
and Armando Marin2

1 PUC-Campinas, Rod. Cx. P. 317, CEP 13012-970, Campinas, SP, Brazil
{juan, tobar, rfreitas}@puc-campinas.edu.br

2 Senac Ribeirão-Preto, Ribeirão Preto, SP, Brazil
amarin@sp.senac.br

Abstract. With the expansion of the Internet, the amount of information avail-
able is continuously reaching higher growth rates. This fact leads to the neces-
sity of developing new advanced tools to collect and filter information that
meets users' preferences. This paper presents an agent that uses automatic in-
dexing, concept space generation, and a Hopfield artificial neural network to fil-
ter web pages according to users' interests. The experiments that were con-
ducted to evaluate the agent show that it has very satisfactory precision and
coverage rates.

1 Introduction

With the expansion of the Web, users face increasing difficulties to fulfill their infor-
mation needs. The unstructured nature of the data stored in the Web and its dynamic
nature contribute to this scenario, which requires users to check frequently for new
documents of interest. This situation has motivated the development of personal soft-
ware agents for continuous information gathering and filtering.

Information needs change from user to user. Therefore, information filtering sys-
tems have to be personalized, playing the real role of personal assistants. Such per-
sonalized information filtering system has to satisfy three requirements:

1. Specialization: the system selects only documents relevant to the user;
2. Adaptation: information filtering is an iterative process that is performed for long

periods of time, during which user’s interests change;
3. Exploration: the system should be able to explore new domains, in order to find

new information potentially interesting to the user.

A number of different models have been implemented for information retrieval and
filtering. Typically, these implementations consist of three main components: docu-
ment representation, user’s interest representation, and algorithms used to match
user’s interests to documents representations [1] [2].

This paper presents and evaluates the architecture of Hopfilter, a personal agent
that mines Web information sources and retrieves documents according to user’s

 Hopfilter: An Agent for Filtering Web Pages 165

interests. It is organized as follows. In section 2 the structure of the Hopfiter agent is
presented. Section 3 presents the results of some experiments conducted to evaluate
the agent. Section 4 closes the paper with some final remarks.

2 The Architecture of Hopfilter

The filtering agent is composed by User interface (UI), Web interface (WI), Docu-
ment Preprocessing (DPP), Automatic indexing (AI), Generation of the Space of
Concepts (GSC), Artificial Neural Net (ANN). The UI and WI modules interface with
the user and with the Web, as the names suggest, and are not the focus of this paper.

The filtering agent can operate in two modes: "concept space generation" and
"document filtering". During the concept space generation mode, the DPP, AI, and
GSC modules are used. The document filtering mode involves the DPP, AI, and ANN
modules. During the document filtering mode, a concept space (CS) for the consid-
ered domain must be available. Each mode of operation is briefly described below
together with each module.

2.1 Automatic Indexing

When a document is indexed, the result is a list of terms or indexes that represents the
document content. AI consists of three operations: stopword removal, work stem-
ming, and term formation.

Removing stopwords. After identifying the words in the input document, using the
DPP module, the words that are not relevant for characterizing the document content
are removed. To assist this process it is used a dictionary with some 46,000 entries,
which can be manually marked by the user as stopwords. All input document words
not found in the dictionary are kept in a table for posterior analysis. They can be in-
cluded in the dictionary if desired.

Word stemming. This step purpose is to reduce the number of cognate words to be
indexed. The implemented algorithm is adapted from the Lancaster Stemming Algo-
rithm [3] for the Portuguese language, which only removes words suffixes.

Term formation. A term can be formed by one, two or three adjacent words. For
each term, it is computed a term frequency, tf, that represents the number of times the
term appears in the document. When the agent operates in the concept space genera-
tion mode, it is also calculated the document frequency for the term, df, that repre-
sents the number of documents, in the collection, where the term appears.

2.2 Generation of a Concept Space

The objective of the GSC module is to calculate asymmetric coefficients of similarity
for each pair of terms, generating a matrix containing the terms and the respective
coefficients, or relationship degrees. This matrix, also called similarity matrix, repre-
sents the concept space.

166 J.M. Adán-Coello et al.

Asymmetric coefficients represent the relationship between two terms better than
symmetric coefficients since the probability of co-occurrence of terms i and j can be
different from the probability of co-occurrence of j and i, in the same document.

Term selection. Usually, the amount of terms generated by the AI module is very
high. To reduce the time needed to compute the coefficients of similarity, only the
most important terms should be considered. Term selection is based on the term im-
portance in a document collection.

Computing the asymmetric coefficients of similarity. The asymmetric coefficients
of similarity for each pair of terms are calculated by the asymmetric clustering func-
tion described in [4].

The result of this step is a similarity matrix that represents the concept space and
can be represented by a neural network, where terms represent neurons and the coef-
ficients of similarity the weights of the links that connect the neurons.

2.3 Hopfield Neural Network

The Hopfilter agent is used to filter documents by means of a Hopfield neural net-
work [5] that represents the ideas discussed before. Initially the document to be fil-
tered is submitted to the DPP and AI modules, in order to be represented by a set of
terms. These terms will define the elements of an input vector x to the net, for a con-
cept space. Each element is 1 if the correspondent term of the concept space is present
in the document to be filtered and 0 otherwise.

Initialization of the net. At the beginning, each neuron of the net (representing a
given term) will assume its corresponding value in vector x.

Activation and iteration. Network activation and iteration are done by a transfer
function. The implemented artificial neural network executes the neuron update con-
currently.

Convergence. The previous step is repeated until no significant output alterations are
detected in the neurons between consecutive iterations.

When the net converges, the number or active neurons is counted. The higher the
number of active neurons, the higher the relevance of the document, according to the
concept space stored in the memory of the net.

3 Experimental Evaluation

Hopfilter was evaluated using documents related to the Brazilian Tax Legislation A
collection of 59 documents was read and selected by an expert user, after verifying
the relevance of each document. The concept space was constructed using 22 docu-
ments, dealing with the subject “income tax”. For the filtering experiment, 37 docu-
ments were chosen randomly, of which only 17 were relevant for the chosen subject.

To measure the agent effectiveness in filtering documents, the precision and recall
metrics [6] were employed. A perfect retrieval mechanism will have precision and
recall rates equal to 1.0.

 Hopfilter: An Agent for Filtering Web Pages 167

We verified that four parameters are decisive to produce satisfactory results: the
number of neurons in the net, the energy, Ε, the bias, θ1, and the curvature, θ0. We
got good results with the following values: 25 neurons, θ0 = 0.01; θ1 = 0.7 and Ε =
0.025. With these parameters, we got precision and recall rates of 83.33% and
88.23%, respectively. A good performance if compared with a similar system, an
information dissemination agent using genetic algorithm and user feedback that was
evaluated using a documents collection on the same domain, reaching a precision of
86%, associated with a recall of 30%; and a recall of 45%, associated with a precision
of 69% [6].

4 Concluding Remarks

The textual nature of Web pages presents semantic characteristics that make it very
difficult to construct mechanisms for automatic information retrieval, filtering and
extraction.

The use of concept spaces seems to be an interesting option to represent document
content. However, the selection of terms to compose the concept space is a decisive
factor for a good performance of this technique.

During the experimental evaluation of Hopfilter, briefly described in this paper, we
verified that the use of terms that are very common in the considered domain can
substantially reduce the filtering precision rate. Thus, the process of identifying stop-
words must be refined to guarantee that are generated terms with high-level of de-
scriptive power. The use of ontologies is also an approach to be explored to face the
difficulties presented by synonymy and polysemy.

References

1. Salton, G., McGill, M.J.: The SMART and SIRE Experimental Retrieval Systems. In: Read-
ings in Information Retrieval, pp. 381–399. Morgan Kaufmann Publishers, San Francisco
(1997)

2. Yan, T.W., Garcia-Molina, H.: The SIFT Information Dissemination System. ACM Trans-
actions on Database Systems 24(4), 529–565 (1999)

3. Paice, C.D.: Another Stemer. SIGIR Forum 24(3), 56–61 (1990)
4. Chen, H., Hsu, P., Orwig, R., Hoopes, I., Nunamaker, J.F.: Automatic Concept Classifica-

tion of Text from Electronic Meetings. C ACM 37(10), 56–73 (1994)
5. Hopfield, J.J.: Neural Network and Physical Systems with Collective Computational Abili-

ties. In: Proceedings of the National Academy of Science, USA, 1982, 79(4), pp. 2554–
2558 (1982)

6. Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)
7. Vallim, M.S., Adán Coello, J.M.: An Agent for Web Information Dissemination Based on a

Genetic Algorithm. In: Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics (October 5-8, 2003)

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 168–171, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A New Approach to Connecting Information Systems in
Healthcare

Alysia Skilton1, W.A. Gray1, Omnia Allam1, and Dave Morrey2

1 Department of Computer Science, Cardiff University, Cardiff, CF24 3AA, UK
2 Clinical Information Unit, Velindre NHS Trust, Cardiff, CF14 2TL, UK

1 Introduction

A novel approach to managing the information needed by healthcare practitioners
working collaboratively to care for a patient is described. Traditionally, healthcare
information systems have been disease focused, containing patient data related only to
a specific function or concern, such as laboratory results or a particular disease. As
healthcare is moving toward a collaborative, patient-centric approach which involves
care teams comprising a range of health professionals with different needs, skills and
working practices, they require up to date, reliable access to more comprehensive
patient data; Data which is currently spread through databases at several treatment
centres including hospitals, GP’s surgeries and palliative care centres. Additionally,
this information must be accessible without disrupting the current systems and
services provided by each institution from these systems. A new approach to data
sharing based on Virtual Organisations (VO) with a Service Oriented Architecture
(SOA) which will allow patient-relevant data to be accessed from the diverse sources
available is presented. Preliminary requirements and challenges that such an approach
will need to meet are presented, and the approach is compared with existing
approaches to illustrate its applicability to this domain. Finally, results and future
work are covered.

2 Background

Traditionally, healthcare information systems have been organised around
departments and services (such as oncology or laboratory test requests and
reporting)[1]. While this served the needs of a healthcare professional working in
isolation, the move towards a collaborative approach has led to the creation of
multidisciplinary care teams (MDTs) working at different organisations [2, 3]. Each
MDT will be different, and the composition of the MDT (people and roles) may
change over time as treatment progresses. Similarly, the information requirements of
the team will vary with stages of treatment and be specific to the patient. The
information required by a member will be unique and will vary with time. An MDT
approach results in increased communication needs between team members [4],
which current systems cannot readily support [5]. Thus, information provision must
change to meet these new requirements without affecting current working practices
too radically.

 A New Approach to Connecting Information Systems in Healthcare 169

3 Challenges

The move towards a MDT approach introduces several information challenges [6]:

• The secure handling of highly sensitive personal data;
• The location of a particular piece of data cannot be pre-determined.
• Handling any number of information systems, practitioners and patients, where

each patient has a distinctive care pathway (no one data model can be expected to
serve all practitioners’ needs);

• Provision of data from heterogeneous databases in a secure environment;
• Provision of required information in the right time without disrupting existing

services provision (current systems should remain autonomous).
• The need for a flexible approach accommodating the dynamic nature of health

services;
• The need to access historical as well as recent patient data; and
• The need to access external data sources e.g. information about adverse drug

reactions.

4 Virtual Organisation Approach

A Service Oriented VO (SOVO) approach is proposed to meet these challenges. This
approach supports local autonomy through a modified federation of databases.
Identified data is supplied to the VO through a wrapper. Each legacy system has an
individualised wrapper, allowing data structures to be adjusted within the wrapper.
This means that the VO does not require an enrolled system to conform to a particular
data model.

This consists of an access management database, a software component, and
constituent databases. The management database records care teams, practitioners,
patients, and their relationships. The software component accesses both the
management and constituent databases and presents an appropriate view of that data
to each user. Constituent databases consist of existing healthcare databases currently
in use at care facilities, which have been enrolled in the system.

An individual VO is created for each MDT, which allows limited access to the
databases associated with the team’s members. Specifically, the system only allows
team members to access data about their patients, and can further limit access
depending on the individual’s information needs, so providing additional security to a
patient's data.

Information required by each team member depends on his/her role, hence,
developing a ‘universal’ internal data model to meet everyone’s needs is not
appropriate. Also, forcing all data into a common data model ignores the diversity of
current systems. Hence, our architecture uses several distinct internal data models,
which reflect the information system being accessed and the role of the team member.
That is, each view will have its own data model, and each system contributes to the
views differently. In order to achieve this goal, information requirements need to be
determined for each team role, and interfaces designed accordingly. Also, since the

170 A. Skilton et al.

system must be able to support the differing viewpoints of practitioners1 and patients’
right to limit access to their data, additional ‘limits’ are included in the access
management system. In this way, access can be defined on a patient by patient and
member by member basis.

The approach is flexible and extensible, and does not restrict team management
aspects (i.e. teams may be of any size and consist of any combination of members
from any participating site who may join or leave a team at any time).

The VO approach provides additional benefits, for example:

• It extends the systems currently used at healthcare sites, and does not interfere with
the normal operation of nor require significant changes to these systems;

• By accessing these regularly updated systems, care team members can access the
most up to date patient information;

• Members of staff not assigned to MDTs can continue to work with the existing
systems, so will not require additional training, which reduces training costs; and

• As databases are enrolled in the system, incremental implementation is supported.

5 Future Work

An embryonic prototype has been developed incorporating three ‘sample’ health
information systems [7]. However, this work is still in its early stages. This section
highlights some of the most pressing areas for further study.

Since the trend towards collaborative working in healthcare is recent and
continuing, requirements specification is still emerging and will likely evolve over
time. A full definition of the requirements and expected usage should be the next step
to development so that the system can be tailored to the specific needs of its users.

Determining how permissions will be assigned to users is also critical. The original
prototype assigned access rights by user role. However, this may not be adequate. The
access management system must evolve to allow for permissions and views to be
defined individually and adjusted over time as treatment progresses.

Finally, the incorporation of additional, external medical databases must be
considered (e.g. databases listing medication interactions, etc.). These databases will
cause an additional level of heterogeneity in that they will not store patient data at all.
However, they will provide care team members with patient specific information
relevant to their patient’s treatment, and so should be considered within the VO
system.

6 Critical Analysis and Conclusions

Communication and coordination among healthcare providers is an increasingly
important issue in modern medicine. The proposed use of a SOVO approach to
combine heterogeneous legacy systems in the healthcare industry facilitates
communication among multidisciplinary care team members in their work of treating
patients.

1 For example, some practitioners may wish to receive automatic notification that lab results

have been returned, while others would consider this ‘information overload’.

 A New Approach to Connecting Information Systems in Healthcare 171

By accessing the existing, regularly updated systems, the SOVO approach does not
suffer from the update and data duplication issues of a data warehousing approach,
while the lack of a centralised data store provides increased security as it is handled
by the local databases. The use of wrappers to access data in the diverse databases
offers the benefits of a traditional federated approach (such as supporting local
autonomy of constituent databases) without requiring a common data model.
However, there are still many challenges that will need to be addressed including
implementation of access privileges and the ability to evolve as provision of care
changes over time.

Overall, the proposed SOVO approach has been shown to hold promise in its
ability to combine existing autonomous, heterogeneous systems without requiring re-
design of those systems. It has the added benefit of providing full access to essential
data contained within those systems while simultaneously limiting access on an
individual basis. These benefits make it particularly well suited for the healthcare
domain.

The implementation of a prototype system allowed investigation into some of the
challenges confronting development of a full scale system. It also demonstrated that a
system of this type can be created. While the research is still in its early stages, it
provides a starting point for further exploration into the design of a full scale system.

References

1. Informing Healthcare. Informing Healthcare (2006). [cited 2006 10/11/2006]
http://www.wales.nhs.uk/IHC/

2. Department of Health. The New NHS (1997). [cited 10/01/2007] Available from:
http://www.archive.official-documents.co.uk/document/doh/newnhs/forward.htm

3. White Paper: Quality Care and Clinical Excellence; NHS Wales, W. Office (ed.) (1998)
4. Allam, O., et al.: Benefits from accessing the cancer patient pathway in Wales. In:

Healthcare Computing 2004 (2004)
5. Griffith, S.M., Kalra, D., et al.: A Portable Communicative Architecture for Electronic

Healthcare Records: the Good European Healthcare Record Project. MEDINFO 1, 223–226
(1995)

6. Allam, O.: A Holistic Analysis Approach to Facilitating Communication Between GPs and
Cancer Care Teams. In: Computer Science. 2006, Cardiff University: Cardiff (2006)

7. Skilton, A.: The Design and Implementation of a Virtual Organisation to Support
Healthcare Teams. In: Computer Science, Cardiff University: Cardiff (2006)

XML Query Result Size Estimation for Small
Bandwidth Devices

Stefan Böttcher, Sebastian Obermeier, and Thomas Wycisk

University of Paderborn
Fürstenallee 11

33102 Paderborn, Germany
{stb,so,thwycisk}@upb.de

Abstract. Whenever mobile ad-hoc networks are used as a large data storage, a
huge number of queries requesting the same information again and again can slow
down the network and drain battery power. In this paper, we introduce an example
application, the query classes that are required to be supported, and show up two
possible caching methods. The two caching methods are based on the concept
of query shipping and data shipping, respectively. Since our caching strategies
can be used simultaneously, the decision for doing data shipping depends among
other aspects on the overhead of transferred data. We explain why an XML Query
Result Size Estimator can assist the application in the question of which mech-
anism should be used for a certain query, and point to other related estimation
techniques.

1 Introduction

Today, ad-hoc networks are researched and used in different contexts for different pur-
poses. Whenever database functionality is needed, the property that ad-hoc networks
consist of multiple devices offers new possibilities in terms of interpreting the whole
network as a distributed database. This gives each mobile device the possibility to own
a local data store, where gathered data can be collected and offered to other devices.
In addition, devices may search and query other data stores for certain data. However,
besides the limited bandwidth of mobile ad-hoc networks, the limited battery power of
devices causes the problem that frequently requested data may have a high effect on
up-time of the ad-hoc network. In such a case, caching is considered as a good means
to save bandwidth and energy. However, the success of caching depends among other
issues on the used caching method. We investigate two possible caching strategies and
show why a Query Result Size Estimator that gives estimations on the query result size
is helpful for setting up a query that reduces the amount of transferred data.

The remainder of the paper is organized as follows. We introduce our application
scenario and the supported query classes in Section 1.1. Furthermore, in Section 2,
we describe the alternative querying technologies query shipping and data shipping,
and explain why the query result size is important in order to decide between these
querying technologies. Then, we list the requirements to a query size estimator (Section
3) and compare these requirements with existing estimators (Section 4). Finally, Section
5 concludes the paper.

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 172–175, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

XML Query Result Size Estimation for Small Bandwidth Devices 173

1.1 Example Application Scenario

We focus on the following mobile auction application, where the mobile devices form a
mobile ad-hoc network on a flea market. Each participant of the flea market may offer,
buy, and search articles with his mobile device. Articles are either services or goods.
Since the articles can contain details like descriptions, pictures, or videos, we choose
the flexible XML format for representation. Whenever users search for items or bid, a
multi-hop routing will enable a wide physical area to be covered.

When we look closer at the issued XPath queries in such a scenario, we can see
that no arbitrary queries are executed. Instead, the application GUI supports the user
when he starts searching for certain items. This means that only a small number of
query classes following a few query templates must be supported in the context of this
application. We identified the following query classes that are executed in a mobile
ad-hoc flea market application:

Q1: simple path expressions, e.g. searching for product title, current price, description,
etc.

Q2: simple path expressions containing existential filters, e.g. queries searching for
items with a picture.

Q3: queries containing category filters, e.g. filters selecting items of the category music
or DVD.

Q4: queries containing range filters, e.g. filters selecting items of a certain price range.

Q5: queries containing functions, e.g. a substring function for returning items contain-
ing a certain keyword.

2 Query Shipping vs. Data Shipping

Whenever a user U of our mobile auction application issues an XPath query Qx for a
certain data store DS, the following two possibilities exist

Query shipping means the query Qx is sent to DS via multiple hops. The result is
calculated and sent back to U , who can directly display the result.

Data shipping means that the XML document owner splits the document into pairwise
disjunct segments S1 . . . Sn, and informs all clients beforehand about this segmen-
tation schema. When U issues the query Qx, the client U itself identifies which
XML segments are required to answer the query locally by U , and requests these
segments. In this case, the network functions as a large file server, since U , and not
the database, is responsible for the evaluation of Qx.

Query shipping has the advantage that transferring a calculated result often involves
less data transfer than transferring the data that is necessary to calculate the result lo-
cally.

The advantage of data shipping concerns the simple re-use of cached data. A node
that routes a request for a certain XML segment must only compare its cached segments

174 S. Böttcher, S. Obermeier, and T. Wycisk

with the requested ones. Performing complex logical XPath tests, e.g. [1]), is not nec-
essary for this kind of query processing. Furthermore, a segment Si may be useful for
a variety of different queries, while a concrete query instance that is cached may only
help to answer similar queries.

Since both approaches, query shipping and data shipping, can be used concurrently, the
decision of which approach should beused depends among other aspects on the estimation
of the query result in comparison to the size of the data needed to answer the query.

3 Requirements

Within the scenario outlined in Section 1.1, we can identify the following requirements
to a query result size and cardinality estimator. The result size estimator must

– estimate size and cardinality of the nodes returned by a given query
– support the query classes Q1 to Q4, explained in Section 1.1
– support filter functions Q5 that are dynamically invoked during the application ex-

ecution
– support queries containing a wildcard (∗) or a descent-or-self axis location step (//)
– be based on meta data that is distributable to the mobile clients in order to avoid

database access.
– limit meta data size to a predefined constant, e.g. 15kB
– be adaptable to frequent query patterns such that the accuracy increases for frequent

queries.

4 Related Work

Existing solutions for estimating the query result size are proposed mainly for two kinds
of databases: relational databases and XML databases. However, estimators are mainly
used for query optimization, e.g. when the number of intermediate results should be
kept small. An example for such optimizers can be found in [2], where histograms are
used for relational databases. When we look closer at XML/XPath based estimators,
XSKETCH [3, 4] and FXSKETCH [5] are proposals that use the idea of the Path Tree
and extend it by using id/idref constructs (e.g. XLink) to generate a graph like data
structure. The use of this approach is mainly to estimate selectivity of structural joins,
e.g. X/Y: i.e. how many child nodes Y has a parent node X, but not to give precise
estimation on the result size.

[6], for instance, suggests the use of two data structures, namely Path Trees and
Markov Tables. The concept of Path Trees is inspired by methods for estimating se-
lectivity of substring predicates, e.g. [7]. A Markov Table contains all sub paths with
their frequencies. A similar concept was described in [8] for the Lore DBMS. Both data
structures allow a selectivity estimation of simple path expressions. However, query
class Q3 containing category filters is not supported by this approach.

In comparison to all other approaches, our requirement to a size estimator is that
is must be able to deal with all query types Q1 . . . Q5 introduced in Section 1.1. This
means, it is not a requirement to our estimator that it must deal with arbitrary XPath

XML Query Result Size Estimation for Small Bandwidth Devices 175

queries, since no user types in arbitrary queries. Our requirement is that the estimator
must be adjustable to that set of queries that the concrete underlying mobile ad-hoc flea
market application requires.

5 Summary and Conclusion

We introduced a mobile flea market as an example application for mobile networks, and
outlined the requirements concerning the supported query classes. Furthermore, we have
presented two possible querying strategies for mobile ad-hoc networks, namely query
shipping and data shipping, and explained why a requirement for reducing the overall
data transfer with data shipping is that the overhead of data shipping can be estimated.
Therefore, we have pointed out our demands on a query result size estimator, and have
compared these demands with existing solutions. However, we have seen that current
approaches do not take the concrete underlying application into consideration. Doing
so results in the observation that only a limited set of queries following a few query
templates are posed by the application, and that no arbitrary queries are generated. Our
conclusion is that the need for a query result size estimator that can be tailored to a specific
application still exists, and that we plan to focus our research efforts in this direction.

References

1. Mandhani, B., Suciu, D.: Query caching and view selection for xml databases. In: VLDB ’05:
Proceedings of the 31st international conference on Very large data bases, VLDB Endowment,
pp. 469–480 (2005)

2. Ioannidis, Y.E.: The History of Histograms (abridged). In: VLDB 2003, Proceedings of 29th
Intl. Conference on Very Large Data Bases, September 9-12, Berlin, Germany, pp. 19–30
(2003)

3. Polyzotis, N., Garofalakis, M.: Statistical Synopses for Graph-Structured XML Databases. In:
SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD international conference on Manage-
ment of data, pp. 358–369. ACM Press, New York (2002)

4. Polyzotis, N., Garofalakis, M.N.: Structure and Value Synopses for XML Data Graphs. In:
VLDB ’02: Proceedings of 28th Intl. Conference on Very Large Data Bases, pp. 466–477
(2002)

5. Drukh, N., Polyzotis, N., Garofalakis, M.N., Matias, Y.: Fractional XSketch Synopses for
XML Databases. In: Bellahsène, Z., Milo, T., Rys, M., Suciu, D., Unland, R. (eds.) XSym
2004. LNCS, vol. 3186, pp. 189–203. Springer, Heidelberg (2004)

6. Aboulnaga, A., Alameldeen, A.R., Naughton, J.F.: Estimating the Selectivity of XML Path
Expressions for Internet Scale Applications. In: VLDB ’01: Proceedings of the 27th Interna-
tional Conference on Very Large Data Bases, pp. 591–600. Morgan Kaufmann, San Francisco
(2001)

7. Jagadish, H.V., Ng, R.T., Srivastava, D.: Substring Selectivity Estimation. In: PODS ’99: Pro-
ceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pp. 249–260. ACM Press, New York (1999)

8. McHugh, J., Widom, J.: Query Optimization for XML. In: Atkinson, M.P., Orlowska, M.E.,
Valduriez, P., Zdonik, S.B., Brodie, M.L. (eds.) VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pp.
315–326. Morgan Kaufmann, San Francisco (1999)

An Efficient Sheet Partition Technique
for Very Large Relational Tables in OLAP

Sung-Hyun Shin1, Hun-Young Choi2, Jinho Kim2, Yang-Sae Moon2,
and Sang-Wook Kim1

1 College of Information & Communications, Hanyang University, Korea
2 Department of Computer Science, Kangwon National University, Korea

{shshin, hychoi, jhkim, ysmoon}@kangwon.ac.kr, wook@hanyang.ac.kr

1 Introduction

Spreadsheets such as Microsoft Excel are OLAP (On-Line Analytical Process-
ing) [2] applications to easily analyze complex multidimensional data. In gen-
eral, spreadsheets provide grid-like graphical interfaces together with various
chart tools [4,5]. However, previous work on OLAP spreadsheets adopts a naive
approach that directly retrieves, transmits, and presents all the resulting data at
once. Thus, it is difficult to use the previous work for very large relational tables
with millions of rows or columns due to the communication and space overhead.

In this paper we propose an efficient spreadsheet-based interface to incremen-
tally browse the query result on very large relational tables. The proposed inter-
face exploits the sheet partition technique that selectively browses small parts of
the resulting table. Our sheet partition technique first divides a large resulting
table into many small-sized sheets, called partitions, and then browses the par-
titions one by one according to the user’s request. More precisely, the technique
works as follows: (1) the client, i.e., the user requests a query with a specific
column (or row); (2) the server stores the query result on the given column (or
row) as the temporary data; (3) the server provides an initial partition, which
are constructed by using the initial column (or row) range of temporary data;
and (4) the client repeatedly interacts with the server to browse more partitions.
Since the sheet partition technique enables us to use a few small-sized partitions
instead of a single large-sized sheet, we can reduce the communication and space
overhead. Also, we can easily analyze large relational tables by exploiting the
concept of divide and conquer in spreadsheet applications.

2 The Proposed Sheet Partition Technique

There have been many efforts to provide spreadsheet-like views for easy analysis
on multidimensional data. In [5], Witkowski et al. defined spreadsheet-typed
tables in relational databases by extending standard SQL statements. In [6],
Witkowski et al. also proposed an Excel-based analysis method to exploit various
powerful Excel functions in handling the original relational data. These works,
however, do not consider very large relational tables with millions of rows or

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 176–179, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Efficient Sheet Partition Technique for Very Large Relational Tables 177

columns [1] in presenting the tables as the spreadsheets. Therefore, in this paper
we focus on the spreadsheet interface for the large relational tables.

The sheet partition technique enables us to analyze a few small-sized sheet par-
titioned from a single large-sized sheet. Figure 1 shows an overall working frame-
work for our sheet partition technique. In Step (1) a user indicates column-based
or row-based partitions by providing a specific column or row together with a
query. In Step (2), the server evaluates the query and stores the result as tempo-
rary data. In Step (3), the server provides an initial partition to the user as the
form of a spreadsheet. Finally, in Steps (4) and (5) the client repeatedly interacts
with the server to get more partitioned sheets for the user’s additional request.
Likewise, by using the sheet partition technique, we do not need to handle a
large-sized table at once, but we can incrementally process the table with a few
small-sized partitions that are selected by the continuous user interactions.

Temporary Data
(on a Column or Row)

Database
(Source Tables)

RDBMS
Engine

Sheet
Partition
Engine

Partitioned
Sheets

• • •

(1) Column or row
with a query

(3) Sheets

(4) Request more

(5) More sheets

(2)

(3)~(5)

(2)

(3)
~

(5)

* (2): Build the temporary data based on the given column or row

Fig. 1. An overall query processing framework using the sheet partition technique

We first explain the column-based sheet partition. This method uses a user-
specified column to partition a large table into small sheets, and provides a few
selected sheets as the resulting views. Figure 2 shows an algorithm StoreAColumn
that retrieves the distinct values of the user-specified column and stores them in
a temporary array, which will be used to construct the partitions based on the
column values. In Line 1, we first declare a temporary array ColValues[1..count]
to store the values of the given column. Here, count is the total number of distinct
values of the column. In Line 2, we then declare Cursor as the select statement
that retrieves values of the specific column. Since the column may have duplicate
values, we explicitly specify the quantifier distinct. In Lines 3 to 6, we finally
store the resulting values obtained by Cursur in ColValues[]. Eventually, the
array ColValues [] contains the distinct values of the given column.

Figure 3 shows an algorithm ColumnBasedSheet that retrieves tuples whose
column values in the user-specified range. We note that the algorithm uses the
array ColValues[] obtained by StoreAColumn in Figure 2. The inputs to the
algorithm are from and to of a sheet (Line 1). Using them as indexes of ColVal-
ues[] we select the tuples from the table (Line 2). We then store the tuples in
result (Line 3), and return them as the partitioned sheet (Line 5). Therefore,
using ColumnBasedSheet we can interactively and repeatedly access the parti-
tioned sheets by changing the input range (i.e., from and to).

178 S.-H. Shin et al.

Algorithm StoreAColumn(Table table, Column column)

1 declare string ColValues[1..count];

2 cursor Cursor is select distinct column from table order by column;

3 open Cursor; i : = 1;

4 while Cursor is not null

5 fetch Cursor into ColValues[i++];

6 close Cursor;

Fig. 2. An algorithm StoreAColumn for retrieving distinct values of the given column

Algorithm ColumnBasedSheet(int from, int to)

1 for i := from to to

2 select ∗ from [table name] where [column name] = ColValues[i];

3 store the selected tuples into result;

4 end-of-for

5 return result as the current column-based sheet;

Fig. 3. An algorithm ColumnBasedSheet for constructing a column-based sheet

We now briefly explain the row-based sheet partition. The method inserts an
additional index attribute to the source table (or the join table) to generate serial
numbers to be accessed. We consider five methods of assigning an index attribute
to the table: (1) adding an index attribute to the source table, (2) creating a
duplicated table containing an index attribute, (3) creating a virtual source table
using a cursor, (4) creating a join table using primary keys of source tables, and
(5) creating a virtual join table using two or more cursors. These row-based
methods are more complex than the column-based ones due to using an index.
We omit the details on the row-based sheet partition algorithms due to space
limitation. We are now trying to find an optimal strategy by implementing all
the five methods.

3 Implementation of the Sheet Partition Technique

The hardware platform is an Intel Pentium IV PC. The software platform is
Microsoft Windows XP and Microsoft SQL Server 2005 DBMS [3]. As the ex-
perimental data, we use a fact table sales fact 1988 of FoodMart2000 provided
in SQL Server 2005.

Figure 4 shows an example of screen captures obtained by the sheet partition
technique. Figure 4(a) shows a screen capture caused by the column-based sheet
partition. The sheet in Figure 4(a) is obtained from a value ‘Apple’ with respect
to the column ‘fruit.’ Figure 4(b) shows a screen capture caused by the row-
based sheet partition. The sheet in Figure 4(b) is obtained by dividing a large
source table into small sheets, each of which contains ten tuples.

An Efficient Sheet Partition Technique for Very Large Relational Tables 179

(a) Column-based sheet partition (b) Row-based sheet partition

Fig. 4. An example of screen captures for the partitioned sheets

4 Conclusions

Spreadsheets are widely used in OLAP for efficient and easy analysis on complex
data. In this paper we have proposed the sheet partition technique that divides
a large-sized table into small-sized sheets and incrementally browses only a few
selected sheets. Our sheet partition technique employs the column-based or row-
based methods. The column-based method partitions a large table based on
ranges of the given column, and the row-based method does based on serial
numbers of an index attribute. We have designed and implemented the parti-
tion algorithms to confirm practical effectiveness of our technique. We are now
performing various experiments to find an optimal strategy for the row-based
partition method.

Acknowledgements

This work was supported by the Ministry of Science and Technology (MOST)/
Korea Science and Engineering Foundation (KOSEF) through the Advanced In-
formation Technology Research Center (AITrc).

References

1. Agrawal, R., et al.: Storage and Querying of E-Commerce Data. In: Proc. the 27th
Int’l Conf. on Very Large Data Base, Roma, Italy, pp. 149–158 (September 2001)

2. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology.
SIGMOD Record 26(1), 65–74 (1997)

3. Microsoft SQL Server (2005) http://www.microsoft.com/sql/
4. Raman, V., et al.: Scalable Spreadsheets for Interactive Data Analysis. In: Proc.

ACM SIGMOD Workshop on DMKD, Philadelphia (May 1999)
5. Witkowski, A. et al.: Spreadsheets in RDBMS for OLAP. In: Proc. Int’l Conf. on

Management of Data, ACM SIGMOD, San Diego, California, pp. 52–63 (June 2003)
6. Witkowski, A., et al.: Query By Excel. In: Proc. the 31st Int’l Conf. on Very Large

Data Bases, Trondheim, Norway, pp. 1204–1215 (September 2005)

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 180–184, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Method of Improving the Efficiency of Mining
Sub-structures in Molecular Structure Databases

Haibo Li1, Yuanzhen Wang1, and Kevin Lü2

1 Department of Computing Science, Huazhong University of Science and Technology,
Wuhan 430074, China

lihaibo.wh@gmail.com
2 BBS, Room76, Tin Building, Brunel University, Uxbridge, UK UB8 3PH

Abstract. One problem exists in current substructure mining algorithms is that
when the sizes of molecular structure databases increase, the costs in terms of
both time and space increase to a level that normal PCs are not powerful
enough to perform substructure data mining tasks. After examining a number of
well known molecular structure databases, we found that there exist a large
number of common loop substructures within molecular structure databases,
and repeatedly mining these same substructures costs the system resources sig-
nificantly. In this paper, we introduce a new method: (1) to treat these common
loop substructures as some kinds of “atom” structures; (2) to maintain the links
of the new “atom” structures with the rest of the molecular structures, and to re-
organize the original molecular structures. Therefore we avoid repeat many
same operations during mining process and produce less redundant results. We
tested the method using four real molecular structure databases:
AID2DA’99/CA, AID2DA’99/CM, AID2DA’99 and NCI’99. The results indi-
cated that (1) the speed of substructure mining has been improved due to the re-
organization; (2) the number of patterns obtained by mining has been reduced
with less redundant information.

1 Introduction

There have been several efficient substructure mining algorithms by now, such as
AGM [1], FSG [2], gSpan [5] and Gaston [4] etc. But as the size of the molecular
structure database increasing, the costs in terms of both time and space are increasing
so greatly that these algorithms can process no longer. For example, on normal PCs,
all of the above algorithms can process the Predictive Toxicology database (PTE),
which contains 340 molecular structures. But for the database consisted of 422 con-
firmed active compounds from AIDS antiviral screen database, only FSG, gSpan and
Gaston can do mining. When aiming at the whole AIDS antiviral screen database,
which contains 42689 compounds, only gSpan and Gaston can accomplish mining.
Finally, for the whole NCI database which contains all 250,251 compounds, none of
the above four algorithms can process substructure mining on PCs, excepting Gaston
running on SMP servers.

 A Method of Improving the Efficiency of Mining Sub-structures 181

To solve this problem, we need to reduce redundant information obtained in mining
progress besides to improve performance of substructure mining algorithm. After ex-
amining a number of well known molecular structure databases, we found that there
are a large number of common loop substructures in molecular structures. We can
reduce redundant information greatly in molecular structure databases. If we didn’t
break these loops, we can avoid perform many same operations during mining process.

The specific method introduced in this paper is: (1) we regard most common loops
in molecular structures as some kinds of “atom” structure; (2) we consider common
edges and vertexes between loops in condensed cyclic structures as some kinds of
“bond” edges. Finally, we maintain the vertexes and edges which are not in any loops.
According to these rules, we reorganize molecular structure databases to new ones.

After the reorganization, the number of candidate substructures generated during
mining will be decreased, and most of these candidate substructures are tree structures
and will spend less time to do graph isomorphism testing. The efficiency of mining
will be improved greatly. Finally, we won’t get many redundant frequent substruc-
tures in the mining result. The performance testing proves the conclusion.

The remaining of this paper is arranged as following. Section 2 takes some statis-
tics and analysis on loops in chemistry molecular structure databases to confirm the
regenerating method is feasible. Section 3 introduces the algorithm of reorganizing
molecular structures based on atomizing of loops. In section 4, we give the perform-
ance testing result on various databases. And section 5 draws a conclusion.

2 Statistics on Loops in Molecular Structure Database

In this paper, we’ll mine substructures in four molecular structure databases:
AID2DA’99/CA, AID2DA’99/CI, AID2DA’99 and NCI’99 [4]. The sizes of these
databases are list in Table 1. The loops’ shapes are list in Table 2 to Table 5.

Table 1. Molecular structure databases to be mined

Database Number of compounds
AID2DA’99/CA 422
AID2DA’99/CM 1081
AID2DA’99 42689
NCI 250251

Table 2. Loops in AID2DA’99/CA Table 3. Loops in AID2DA’99/CM

Loops Freq. Cumulative Freq.
6-edge loops 76.3% 76.3%
5-edge loops 21.3% 97.6%
7-edge loops 1.2% 98.8%
3-edge loops 0.7% 99.5%
4-edge loops 0.06% 99.56

Loops Freq. Cumulative Freq.
6-edge loops 74.9% 74.9%
5-edge loops 22.6% 97.5%
7-edge loops 1.2% 98.7%
4-edge loops 0.5% 99.2%
3-edge loops 0.2% 99.4%

182 H. Li, Y. Wang, and K. Lü

As shown by statistics, unlabeled loops in molecular structure databases are mainly
6-edges loops and 5-loops, which sum up more than 90% of total loops. In labeled
loops, almost 50% are benzene ring. If we change these loops into “atoms”, we can
avoid most loops and independent cycles in databases and reduce redundant informa-
tion of molecular structure databases greatly.

Table 4. Loops in AID2DA’99 Table 5. Loops in NCI’99

Loops Freq. Cumulative Freq.
6-edge loops 73.3% 73.3%
5-edge loops 22.3% 95.6%
7-edge loops 1.5% 97.1%
3-edge loops 1.2% 98.3%
4-edge loops 0.7% 99.0%

Loops Freq. Cumulative Freq.
6-edge loops 77.0% 77.0%
5-edge loops 19.1% 96.1%
3-edge loops 1.8% 97.9%
7-edge loops 0.8% 98.7%
4-edge loops 0.6% 99.3%

3 Reorganizing Molecular Structure Databases

According to the above statistics, we only change 6-edge loops and 5-edge loops into
“atom” structures.

If we avoid break these loop structures, we’ll not only reduce the complexity of
mining, but also obtain a concise mining result.

For example, in the molecular structure t as

N

, if we are according to the regu-
lar substructure mining rules, we may get pattern substructures such as C C , C C ,

C C C , C C C

N

, etc. In fact, these molecular fragments are greatly different from
the original molecular structure t and can’t well represent the structural features of t.
Contrastively, if we regard the benzene ring in t as a “atom” structure, then the pattern

substructures only are , N , and

N

. Molecular fragment in this result are
related with t closely, and the mining result is concise with no redundancy.

Given a labeled graph of a molecular structure g, we can divide its vertexes of g
into two sets VH and VH’, where VH includes all vertexes in any loops of G, and VH’
contains the remaining vertexes. In the same way, the edges of g will be divided into
EH containing edges in loops of g, and EH’ containing edges not in any loops of g. For
any elements in VH , VH’ , they will be put into the new graph. For an edge e from EH’,
if a vertex of e is in VH’, then this vertex will be maintained with no changes; other-
wise, if the vertex is in a loop hi of g, we need change the vertex into the new “loop
atom” corresponding to hi. The algorithm 1 describes the framework of the reorganiz-
ing procedure on a molecular structure. The function Search_loops accomplished the
task of finding out all loops and the types of these “loop atoms”.

 A Method of Improving the Efficiency of Mining Sub-structures 183

Algorithm 1 Generate_new_graph(g, newg)
Input: a molecular structure graph g.
Output: the new structure graph newg.
1: Search_loops(g, loops, loop_types);
2: divide the vertexes of g into set VH and set VH’;
3: for each hi in loops do
4: change hi into new loop atom vhi;
5: put vhi into newg;
6: for each two loops hi and hj in loops
7: if there is common element between hi and hj then
8: get the ”loop atom bonds” ehi between vhi and vhj;
9: put ehi into newg;
10: for each vertex vi in VH’
11: put vi into newg;
12: for each edge ei in EH’
13: check vertexes of ei, and put ei into newg;

4 Performance Test

We do our performance testing on a 1.6 GHz Pentium-4 PC with 512MB main mem-
ory, running WinXP.

We use four real molecular structure databases AID2DA’99/CA, AID2DA’99/CM,
AID2DA’99 and NCI’99 to do performance testing. We reorganize these four data-
bases into four new structure databases: new AID2DA’99/CA, new AID2DA’99/CM,
new AID2DA’99 and NCI’99. Then we use the Gaston algorithm to do substructure
mining in every database. The contrast results are shown in Fig. 1 and Table 6.

10
100

1000
10000

100000
1000000

10000000

0 0.05 0.1 0.15 0.2

minimum surppot

nu
m

be
r

o
f

su
bs

tr
uc

tu
re

s

AID2DA'99/CA

New AID2DA'99/CA

0.01

0.1

1

10

100

1000

0 0.05 0.1 0.15 0.2

minimum support

ru
nt

im
e(

se
c)

AID2DA'99/CA

New AID2DA'99/CA

0.01

0.1

1

10

100

0 0.05 0.1 0.15 0.2

minimum support

ru
nt

im
e(

se
c)

AID2DA'99/CM

New AID2DA'99/CM

1

10

100

1000

0 0.05 0.1 0.15 0.2

minimum support

ru
nt

im
e(

se
c)

AID2DA'99

New AID2DA'99

10

100

1000

10000

100000

1000000

0 0.05 0.1 0.15 0.2

minimum support

nu
m

be
r

o
f

su
bs

tr
uc

tu
re

s

AID2DA'99/CM

New AID2DA'99/CM

10

100

1000

10000

100000

0 0.05 0.1 0.15 0.2

minimum support

nu
m

be
r

o
f

su
bs

tr
uc

tu
re

s

AID2DA'99 New AID2DA'99

Fig. 1. Result of substructure mining in various database

184 H. Li, Y. Wang, and K. Lü

From the testing result, we found that after reorganizing in every regular molecular
structure databases, the speed of the substructure mining has been improved and the
number of patterns obtained by mining has been reduced significantly. The mining in
the regular NCI’99 can’t be processed on the testing PCs, but the new NCI’99 can
accomplish the task.

Table 6. The mining result in new_NCI’99 database

Mininum Support Runtime(s) Number of frequent substructure
40% 125 14
30% 285 34
20% 639 77

5 Conclusion

In this paper, we introduce a method to consider the most frequent 6-edge loops and
5-edge loops in molecular structures as new kinds of “atoms”, and reorganizing the
regular molecular structure database on this point. This method can improves the
efficiency of the substructure mining greatly by avoiding expensive repeat mining
operation in cyclic structures and obtain a concise mining result with less redundant
pattern substructures. By performance testing in different databases, we prove this
improvement.

References

1. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent sub-
structures from graph data. In: Zighed, A.D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD
2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)

2. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proc. 2001 Int. Conf. Data
Mining (ICDM ’01), San Jose, CA (November 2001)

3. National Cancer Institute (NCI). Dtp/2d and 3d structural information (1999),
http://cactus.nci.nih.gov/ncidb2/download.html

4. Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a difference. In:
Proceedings of the 10th ACM SIGKDD International Conference on knowledge Discovery
and Data Mining (KDD2004), Seattle, USA (August 2004)

5. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In UIUC-CS Tech. Re-
port: R-2002-2296, A short version published. In: Proc. 2002 Int. Conf. Data Mining(ICDM
’02), Maebashi, Japan (2002)

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 185–189, 2007.
© Springer-Verlag Berlin Heidelberg 2007

XFLab: A Technique of Query Processing over XML
Fragment Stream∗

Sangwook Lee, Jin Kim, and Hyunchul Kang

School of Computer Science and Engineering, Chung-Ang University
Seoul, 156-756, Korea

{swlee,jkim}@dblab.cse.cau.ac.kr, hckang@cau.ac.kr

Abstract. We investigate XML query processing in a portable/handheld client
device with limited memory in ubiquitous computing environment. Because of
memory limitation in the client, the source XML data possibly of large volume
is fragmented in the server and streamed in fragments over which query proc-
essing is done in the client. The state-of-the-art techniques employ the hole-
filler model in fragmenting XML data and processing queries over XML frag-
ment stream. In this paper, we propose a new technique where an XML labeling
scheme is employed instead of the hole-filler model. Through preliminary ex-
periments, we show that our technique outperforms the state-of-the-art tech-
niques both in memory usage and in query processing time.

1 Introduction

In ubiquitous computing environment, there could be a number of heterogeneous
portable/handheld client devices deployed. Those include cellular phones, PDAs, and
smart cards to name just a few. Despite the rapid advancement of memory technol-
ogy, it is still usual that memory capacity of such devices is very limited. As such,
naïve practice would be that the client sends its query to the server when its source
data is of large volume, and the server processes it and ships the result. Such a con-
ventional client-server computing is obviously not scalable.

In this paper, we investigate XML query processing in a client device with limited
memory. The source XML data against which the client queries are to be processed
could be in large volume. Thus, the whole of it could not be downloaded to the client.
Besides, in ubiquitous computing environments, the server data is usually transmitted
over a wireless network with limited bandwidth. As such, it is infeasible to transmit a
large XML data in its entirety. Rather, it is partitioned into manageable fragments,
and they are transmitted as a stream. Their arrival at a client may not be in proper
order, and yet the stream query processing over them should return the correct result.

The first proposed system with such capability is XFrag [3]. It employs the hole-
filler model [1,2] in fragmenting XML data and pipelined query processing over
XML fragment stream. The hole-filler model is simple and clean in representing

∗ This work was supported by the Basic Research Program of the Korea Science & Engineering

Foundation (grant No. R01-2006-000-10609-0).

186 S. Lee, J. Kim, and H. Kang

XML fragmentation. Each XML fragment could contain holes, which are supposed to
be filled with other XML fragments possibly with other holes. For each hole and its

corresponding filler, a value is assigned.
It is called a hole ID (for the hole) or a
filler ID (for the filler). The main ineffi-
ciency inherent in the hole-filler model is
two-fold: (1) The space overhead for the
hole/filler IDs along with accompanying
XML tagging created in XML fragmenta-
tion process could be very huge consider-
ing the typical structure of XML docu-
ments on the Web [4]. (2) Given two
XML fragments that are an ancestor and a
descendant with each other, such a struc-
tural relationship could not be identified
until all the fragments connecting the two
are fully streamed in. Because of this, the
processing of the widely used descendant
axis (//) of XPath would suffer. Due to

these limitations, the amount of memory required for query processing over XML
fragment stream at the client would increase.

XFPro [5] has improved the query processing pipeline of XFrag. However, it is
still based on the hole-filler model, and its improvement is focused on query process-
ing time.

In this paper, we report our on-going efforts for the development of a new tech-
nique called XFLab where an XML labeling scheme replaces the hole-filler model to
improve memory efficiency. Section 2 summarizes the salient features of XFLab.
Section 3 presents preliminary performance results.

2 XFLab

The XML labeling (or numbering) schemes were devised to represent structural rela-
tionship (e.g., parent-child, ancestor-descendant, etc.) among the nodes of XML data
modeled as a tree, and to exploit them in query processing. There were many pro-
posed in the literature and most recent and advanced ones include ORDPATH [6] and
QED [7]. When an XML document modeled as a tree is fragmented, it could also be
represented as a tree, which we call an XML fragment tree. Thus, its fragments could
be labeled as the nodes of the original XML tree are. Figure 1 shows an example of an
XML fragment tree and its labeling with Dewey order encoding.

With our XML fragment labeling, we do not need holes or fillers. Thus, there are
no hole/filler IDs. Only the fragment IDs (i.e., the labels assigned to fragments) will
do. For an XML fragment, there would be only 1 fragment ID needed in our scheme
while with the hole-filler model as many hole IDs as the number of holes in a frag-
ment are needed. For a typical structure of XML documents [4], there would be a
number of holes in a fragment. As such, our XML fragment labeling considerably
reduces the space overhead incurred because of fragmentation. Besides, given any

Fig. 1. Example of XML Fragmentation with
Labeling

 XFLab: A Technique of Query Processing over XML Fragment Stream 187

pair of XML fragments of an XML document, their structural relationship can be
easily decided only with their labels without accessing other relevant fragments. Thus,
it could support efficient processing of the descendant axis (//) of XPath.

The core modules of XFLab consist of two server components, DTD Analyzer and
Fragment Generator, and one client component, Pipelined Query Processor. The
DTD Analyzer takes the DTD of the source XML documents and generates the tag
structure and the fragmentation schema. The former represents the structural informa-
tion of the XML document. It is required in query processing over the fragment
stream in a client. The latter specifies how the source XML document is to be frag-
mented and labeled. The main requirement in this process is to guarantee that the
original XML document could be reconstructed as it was given its fragments and
fragment IDs (though such reconstruction is not really needed in query processing).
Since there could be many element instances of the same tag name in an XML docu-
ment, the labeled fragmentation should not yield any ambiguity in query processing
over the fragment stream (and thus in document reconstruction). Finally, the Pipelined
Query Processor in the client is an XPath processor derived from an XPath expres-
sion. It takes the XML fragment stream, evaluating the XPath expression without
reconstructing the whole XML document out of its fragment stream. There are some
implementation challenges dealt with for the Pipelined Query Processor because
fragment IDs are used instead of the simpler hole/filler IDs.

3 Implementation and Performance Evaluation

We have implemented both XFrag and our proposed XFLab in Java using J2SE De-
velopment Kit 5.0 Update 6 on Windows XP Professional. The performance experi-
ments were conducted in a system with 2.6 GHz CPU and 1GB memory. The source
XML document against which the client queries are processed is auction.xml gener-
ated by xmlgen of XMark benchmark [8]. Its original size is 22.8MB, and the total
size of XML fragments in XFrag is 30.4MB whereas that in XFLab is 27.0MB. The
queries used in the experiments are the same ones used in the evaluation of XFrag in
[3]. They are the following three XPath queries:

Query 1: doc("auction.xml")/site/open_auctions//increase
Query 2: doc("auction.xml")/site/open_auctions/open_auction[initial>"10"]/bidder
Query 3: doc("auction.xml")/site/open_auctions/open_auction/bidder[increase>"200"]

Figure 2 through Figure 4 show the experimental results that were the average of

30 measurements for each query. The x-axis denotes the time marked in the course of
query processing in the client while the y-axis denotes the total memory usage in the
client at those particular moments. For all queries, XFLab outperformed XFrag both
in memory usage and in query processing time. As for the memory usage, it was
measured using the EclipseProfiler plugin [9]. When the maximum amounts of mem-
ory used during the entire course of query processing by XFrag and by XFLab are
compared, the improvement is 24% (Query 1), 48% (Query 2), and 32% (Query 3).
As for the query processing time, the time it took in the client was measured. The

188 S. Lee, J. Kim, and H. Kang

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Tim e(sec)

M
e
m
o
r
y

U
s
a
g
e
(
M
B
)

XFrag

XFLab

Fig. 2. Experimental Result (Query 1)

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Tim e(sec)

M
e
m
o
r
y

U
s
a
g
e
(
M
B
)

XFrag

XFLab

Fig. 3. Experimental Result (Query 2)

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Tim e(sec)

M
e
m
o
r
y

U
s
a
g
e
(
M
B
)

XFrag

XFLab

Fig. 4. Experimental Result (Query 3)

curves of XFLab in the graphs are terminated earlier than those of XFrag, which
means that query processing by XFLab takes shorter than that by XFrag. The im-
provement is 20% (Query 1), 8% (Query 2), and 25% (Query 3).

 XFLab: A Technique of Query Processing over XML Fragment Stream 189

References

1. Bose, S., et al,: A Query Algebra for Fragmented XML Stream Data. In: Proc. DBPL (2003)
2. Fegaras, L., et al.: Query Processing of Streamed XML Data. In: Proc. CIKM, pp. 126–133

(2002)
3. Bose, S., Fegaras, L.: XFrag: A Query Processing Framework for Fragmented XML Data.

In: Proc. Web and Databases (2005)
4. Mignet, L., et al.: The XML Web: a First Study. In: Proc. WWW (2003)
5. Huo, H., et al.: Efficient Query Processing for Streamed XML Fragments. In: Lee, M.L.,

Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, Springer, Heidelberg
(2006)

6. O’Neil, P., et al.: ORDPATHs: Insert-Friendly XML Node Labels. In: Proc. SIGMOD
(2004)

7. Li, C., Ling, T.: QED: A Novel Quaternary Encoding to Completely Avoid Re-labeling in
XML Updates. In: Proc. CIKM (2005)

8. Schmidt, A., et al.: XMark: A Benchmark for XML Data Management. In: Proc. VLDB. pp.
974–985 (2002)

9. http://eclipsecolorer.sourceforge.net/index_profiler.html

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 190–202, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Knowledge Discovery from Semantically Heterogeneous
Aggregate Databases Using Model-Based Clustering

Shuai Zhang, Sally McClean, and Bryan Scotney

School of Computing and Information Engineering, University of Ulster, Coleraine,
Northern Ireland, UK

{zhang-s1,si.mcclean,bw.scotney}@ulster.ac.uk

Abstract. When distributed databases are developed independently, they may be
semantically heterogeneous with respect to data granularity, scheme information
and the embedded semantics. However, most traditional distributed knowledge
discovery (DKD) methods assume that the distributed databases derive from a
single virtual global table, where they share the same semantics and data
structures. This data heterogeneity and the underlying semantics bring a
considerable challenge for DKD. In this paper, we propose a model-based
clustering method for aggregate databases, where the heterogeneous schema
structure is due to the heterogeneous classification schema. The underlying
semantics can be captured by different clusters. The clustering is carried out via a
mixture model, where each component of the mixture corresponds to a different
virtual global table. An advantage of our approach is that the algorithm resolves
the heterogeneity as part of the clustering process without previously having to
homogenise the heterogeneous local schema to a shared schema. Evaluation of
the algorithm is carried out using both real and synthetic data. Scalability of the
algorithm is tested against the number of databases to be clustered; the number of
clusters; and the size of the databases. The relationship between performance and
complexity is also evaluated. Our experiments show that this approach has good
potential for scalable integration of semantically heterogeneous databases.

Keywords: Model-based clustering, Semantically heterogeneous databases, EM
algorithm.

1 Introduction

In fast developing distributed open environments, e.g., the Semantic Web [1], for the
same problem domain, distributed databases may be developed independently by
different organisations using various ontologies. These databases can be semantically
heterogeneous, arising from the use of different terminologies, granularities of data,
schemas (conceptualisation) at which objects and their properties are described, and
embedded heterogeneous context information [2]. This heterogeneity brings a
considerable challenge for distributed knowledge discovery on those databases, for
organisations that have common application interests and are willing to cooperate with
each other. Most DKD methods in the literature assume that the distributed data are
somehow partitioned either horizontally or vertically from a single virtual global table,

 Knowledge Discovery from Semantically Heterogeneous Aggregate Databases 191

where all the data have the same statistical distribution, and share the same semantics.
However, this assumption does not hold in most practical applications [3]. Distributed
data sources contain various underlying semantics due to different backgrounds,
environment and purposes when they were developed. A single global view (table) is
not sufficient to describe all the distributed data; instead, two or more integrated virtual
global tables are needed to capture different data distributions and semantics.

In this paper, we are concerned with heterogeneous databases where the
heterogeneity is caused by different classification schemes. Such data are often
summarised in Data Warehouses. The summaries may be obtained by pre-processing
native databases to provide materialised aggregate views of the information held in
very large databases. The objective of our work is to capture different underlying
characteristics of these distributed databases, while resolving heterogeneity issues
efficiently. We propose a model-based clustering method on the distributed
heterogeneous aggregate counts data that are obtained by data summaries. A mixture
model is constructed where the databases that are in the same cluster share the same
semantics and can be integrated to one virtual global table; and they are different from
databases in other clusters that correspond to different virtual global tables. Our
approach carries out the integration as part of the clustering process, and the
heterogeneity is resolved without previously having to homogenise the heterogeneous
local schema to a shared schema. In this way, all the data information available is used
for carrying out the clustering, which should lead to better results than methods that are
based on data homogenisation. New knowledge can be discovered from the generated
global tables, and latent information in the databases is made explicit. The clusters
represent different signature profiles of the distributed databases based on proportions
(probabilities) of particular values of attributes. For example, for supermarket shopping
data from distributed chain-stores, each cluster contains local stores that have similar
customer shopping patterns. Each cluster of stores may be of course geographically
distributed. The learned clusters contain useful commercial information. When it is
required to classify a new instance, only the relevant cluster information is needed
instead of the whole data for all the stores. In general, the learned clusters can be used
for the construction of Bayesian Belief Networks; alternatively association rules of
interest can be extracted [5].

The proposed algorithm evaluation is carried out on both real and synthetic data.
Scalability is tested against the number of datasets and the size of the dataset. A
clustering complexity measure is designed, and the relationship between the
performance (accuracy, computation time) and complexity is evaluated.

The rest of the paper is organised as follows: the data model is briefly introduced,
followed by an introduction to the principles of model-based clustering. Clustering of
homogeneous data is discussed initially. We then describe our proposed model-based
clustering method for heterogeneous data, with an illustrative example. Finally we
present algorithm evaluation and conclusions.

2 Terminology and Data Models

Definition 1: An ontology is defined as the Cartesian-product of a number of
attributes A1,…,An, along with their corresponding schema. The attributes we are
concerned with are categorical attributes.

192 S. Zhang, S. McClean, and B. Scotney

Definition 2: Each attribute A has its domain D, where the classes of the domain are
given by classes {c1,… cm}. These classes form a partition of the set of base values of
domain D. This partition is called a classification scheme.

Definition 3: Two ontologies are defined to be semantically equivalent if there is a
mapping between their respective schemas. Mappings between the schema values are
represented in the form of correspondence matrices.

In Example 1 we illustrate the concepts of heterogeneous datasets, classification schemes
of the attributes, local ontologies, and mappings to a global ontology. In Table 1, the
cardinalities represent the numbers of people in different categories of ‘Job’ attribute, for
three different datasets, each with their own ontology. The corresponding ontology
mappings are presented in Figure 1.

Example 1:
Attribute: A=Job; Domain: D={Full-time, Part-time, Retired, Unwaged}.

Table 1. Heterogeneous datasets with different classification schemes for attribute “Job”

Working NotWorking Job
Data Full-time Part-time Retired Unwaged

Total

Dataset D1 200 40 20 260
Dataset D2 70 60 110 240
Dataset D3 150 60 25 10 245

The classification schema for attribute “Job” in the three Datasets are as follows:

D1={Working, Retired, Unwaged}, where Working = {Full-time, Part-time}.
D2={Full-time, Part-time, NotWorking}, NotWorking = {Retired, Unwaged}.
D3={Full-time, Part-time, Retired, Unwaged}.

The local ontologies together with the mappings to the global ontology are:

 JOB1

Working
Retired

Unwaged

JOB
Full-Time
Part-Time

Retired
Unwaged

JOB2

Full-Time
Part-Time

NotWorking

Local Ontology O1 Global Ontology OG =O3 Local Ontology O2

Fig. 1. Ontology mappings for Table 1

Dataset D1 D3 contain quite a high proportion of people ‘Working’, while in Dataset
D2, there a much greater proportion of ‘NotWorking’ people who are either ‘Retired’ or
‘Unwaged’. Dataset D1 D3 share the same characteristics and thus can be grouped to
one cluster, while they are different from Dataset D3 so it should be in another cluster.

 Knowledge Discovery from Semantically Heterogeneous Aggregate Databases 193

3 Principles of Model-Based Clustering

A probability is a quantitative description of the likelihood of occurrence of a particular
event. The probability distribution of a random variable is a list of probabilities
associated with each of its possible values. From a statistical standpoint, data is a
random sample from an unknown population represented by probability distribution.
Data analysis is performed to identify the population by a corresponding probability
distribution that is most likely to have generated the data. Maximum likelihood
estimation is a popular statistical method used to reveal parameters of the underlying
probability distribution. Model-based clustering is a principled way of clustering based
on statistical models. Data are seen to be from several different underlying probability
distributions. The approach constructs a mixture model where each component
corresponds to a cluster with its probability distribution. Data class labels are the
‘incomplete’ information to be discovered. The model for the composite of the clusters
is formulated by maximising the mixture model likelihood using the EM
(expectation-maximisation) algorithm [6]. EM is a general effective approach to
maximum likelihood estimation in the presence of incomplete data. Its results provide a
measure of uncertainty about the associated class labels of datasets. Compared with our
previous work in [7], the method uses parameterisation as the basis for a class of
models, and thus it can accommodate data with widely varying characteristics [8].

Given data y with n independent observations nyy ,...,1 , the likelihood of a mixture

model with G components is defined as ∏∑
= =

=
n

r

G

k
krkkGGMIX yfyL

1 1
11)(),...,;,...,(θτττθθ

where kf and kθ are the probability density function and parameters of the kth

cluster; kτ is the probability that a randomly selected datum is in the kth cluster. The

‘complete data’ xr =(yr , zr) can be viewed as consisting of n observations recoverable
from (yr , zr), where yr is the observed data, zr =(zr1,…, zrG) is unobserved portion of
data indicating the conditional probability of the observation r belonging to cluster k.

Assuming that rz is independent and identically distributed according to the

probability distribution function kf drawn from G clusters with probabilities Gττ ,...,1 .

Probability mass function of an observation ry is then∏ =

G

k

z
krk

rkyf
1

)(θ given rz , the

complete-data xr log-likelihood is])(log[),,(
1 1
∑∑

= =

=
n

r

G

k

krkkrkrkkk yfzxzll θττθ .

The EM algorithm alternates between E-step and M-step. Given the observed data
and the current estimated parameters, ‘E-step’ computes the conditional expectations

(membership)for all datasets

∑ =

←
G

c
crcc

krkk
rk

yf

yf
z

1
)ˆ(ˆ

)ˆ(ˆ
ˆ

θτ

θτ
; in ‘M step’, parameters kτ , kθ are

computed the of the kth component that maximise the log-likelihood with the just
updated rkz values. Iteration terminates when the likelihood converges.

194 S. Zhang, S. McClean, and B. Scotney

4 Model-Based Clustering on Homogeneous Data

We start with a discussion of clustering homogeneous datasets that share the same
ontology. This is a special case of heterogeneous databases, where local ontologies are
the same as global ontology. For aggregate counts data, the probability density function
is defined as mx

m
x

mm ppxXxXP ...),...,(1
111 === where mpp ,...,1 is the probability

distribution for attribute values),...,(1 mXX , ix is the cardinality of attribute value iX .

In Example 1, denote 41,..., pp as the probability distribution for the attribute ‘JOB’, the

probability of dataset D3 with global ontology is thus 10
4

25
3

60
2

150
1 pppp .

For a clustering problem with G clusters, the probability distribution for m attribute
values in cluster k is denoted as kmk ππ ,,1 … , where kiπ is the probability for attribute

value iX .The complete-data log-likelihood of mixture model is given by Equation 1.

]log[),,(
1 1 1
∑∑ ∏

= = =

=
n

r

G

k

m

i

n
kikrkrkkki

rizxzll πττπ

where rin is the aggregate count for value iX in dataset r.

(1)

For homogeneous case, the ‘unobserved’ (incomplete) data are just the class labels.

In the E-step, rkz is updated by:

∑ =

←
G

c

n
ck

n
cc

n
km

n
kk

rk
rmr

rmr

z

1 1

1

)ˆ...ˆ(ˆ

)ˆ...ˆ(ˆ
ˆ

1

1

ππτ

ππτ
.

In the M-step, parameters kτ kiπ are estimated (Equation 2) with updated rkz values.

n

nk
k ←τ̂ where ∑

=

←
n

r

rkk zn
1

ˆ ;

∑ ∑

∑

= =

=←
m

r

m

i

rirk

n

r

rirk

ki

nz

nz

1 1

1

)(ˆ

ˆ

π̂ (2)

These estimates are quite intuitive; in each iteration we update the cluster
membership probabilities, followed by calculating the cluster descriptors. The stopping

criteria is that the relative improvement of the log-likelihood which is less than)7(10 − .

5 Model-Based Clustering on Semantically Heterogeneous Data

In an environment with distributed databases, heterogeneity is a very common issue
that needs to be overcome. Data integration has been used to solve heterogeneity issues
with ontology mappings provided ab initio using correspondence matrices [9]. In
clustering of heterogeneous data, except the unobserved class labels, the ‘incomplete’
information also arise from data at coarser granularity that do not hold completely
detailed information on the global ontology level. The EM algorithm is an intuitive
approach to the integration of aggregates to resolve the data heterogeneity issue. This

 Knowledge Discovery from Semantically Heterogeneous Aggregate Databases 195

gives the opportunity to carry out data integration while solving heterogeneity issues
simultaneously in clustering without having to carry out homogenisation beforehand.

5.1 EM for Model-Based Clustering on Semantically Heterogeneous Databases

For the EM algorithm, in the E-step the equation for updating of cluster membership
probabilities rkẑ is given in Equation 3 (left); rg is the number of partitions in dataset r;

s is the index for rg , rgs ,...,1= . isrq is the representation of the mapping from a local

ontology to the shared global. For dataset r, isrq is 1 if there is mapping from category i
of the ontology used by dataset r, to the category s in the global ontology.

In the M step, kτ remains the same as in Equation 2. The calculation of)(n
kiπ is

modified in order to deal with heterogeneity issue. For the coarser category in the
ontology, the algorithm apportions its cardinalities to values of finer categories in
global ontology according to their mappings, based on the probability distribution from
the previous iteration)1(−n

kiπ . It is shown in Equation 3 (right).

∑ ∏ ∑

∏ ∑

=
= =

= =←
G

j

g

s

n
m

u

usrjuj

g

s

n
m

u

usrkuk

rk
r

rs

r

rs

q

q

z

1
1 1

1 1

)ˆ(ˆ

)ˆ(ˆ

ˆ

πτ

πτ

;

∑ ∑

∑∑
∑

= =

= =
=

− ×

←
n

r

g

s

rsrk

n

r

g

s
m

u usrku

isrrsrkn
ki

n
ki

r

r

nz

q

qnz

1 1

1 1
1

)1(

)(

)(ˆ

)
ˆ

ˆ
(ˆ

ˆ
π

π

π (3)

5.2 Determining the Optimal Number of Clusters by Using BIC

Finding an optimal integration model includes both aspects of model structure (e.g., the
number of clusters) and parameters (cluster descriptors). Bayes factors, approximated
by the Bayesian Information Criterion (BIC) [10], have been applied successfully to the
problem of determining the optimal number of clusters [11]. The BIC considers both
the likelihood and the penalisation of the complexity of the data model. The criterion
can be maximised with more parsimonious parameterisations and smaller number of

groups. It is defined as)log()ˆ,(2)(log2 nmxllconstMxpBIC MM −≈+= θ where

)ˆ,(θxllM is the ultimate maximised mixture data log-likelihood; Mm is the number of

independent parameters to be estimated and n is the number of datasets to be clustered.
In our case, with parameters kτ kiπ having (G-1),)1(−× mG independent parameters

respectively, we obtain)1()1(−×+−= mGGmM . The BIC formula for our clustering

model on heterogeneous databases can be obtained straightforwardly, and the optimal
data model is the one that has the largest BIC value.

5.3 An Example

Here, we illustrate our proposed algorithm on datasets in Example 1. Assume we know
there are 2 clusters. 21 ττ indicate the probabilities of clusters 1 and 2. i1π i2π are the

probability distributions over the attribute values i of ‘Full-time’, ‘Part-time’, ‘Retired’

196 S. Zhang, S. McClean, and B. Scotney

and ‘Unwaged’ in the two clusters. The probability distributions need to be initialised
firstly by a uniform distribution, so 4,..,12,14/1)0(=∀=∀= ikkiπ . For easier illustration, we

start with dataset D1 and D2 belonging to cluster1 with probability 1, and dataset D3
belong to cluster 2, in the first iteration. Thus we get 1322111 === zzz . In practical,

rkz can be randomly initialised, kmeans or other efficient methods. Then 3/21 =τ and

3/12 =τ can be obtained because there are 2 datasets in cluster1 and 1 in cluster2.

Next, we obtain the descriptors of clusters—the probability distribution kiπ for

different values of ‘Job’. We illustrate the calculation using as an example,)1(
13π , which

is the probability for attribute value ‘Retired’ in cluster 1. The total cardinality in
cluster 1 is 500245024012601 =×+×+× because datasets D1 and D2, belong to cluster 1
with probability 1, and dataset D3 with probability 0. Now, we need the cardinality for
‘Retired’ in cluster1. It is clear that in dataset D1 and D3, there are 40 and 25 people
‘Retired’. However, we don't know the number in dataset D2 because the value 110 is

the cardinality for people both ‘Retired’ and ‘Unwaged’.
23)0(

14
)0(

13

)0(
13)(n⋅
+ ππ

π is thus taken as

the contribution of dataset2 to value ‘Retied’ in cluster 1. It apportions 85 using
probabilities for categories ‘Retied’ and ‘Unwaged’ from the last iteration.

Thus 19.0
500

250110
25.025.0

25.0
1401

ˆ)1(
13 =

×+×
+

×+×
=π ,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

04.010.024.061.0

15.019.032.034.0
kiπ can be obtained in

the same way. After the M step, the log-likelihood is then -303.0937.
In the 2nd iteration, in the “E step”, given the datasets and the current parameter

values kτ kiπ , we compute the conditional probability rkz . For example, 11z is

calculated by the probability of dataset D1 belonging to cluster1 divided by the sum of
probabilities of dataset D1 belonging to cluster 1 (defined as a) and the probability of D2

belonging to cluster 2 (defined as b). So a])[(
3

2 20
14

40
13

200
1211 ππππ ××+×= because the

cardinality 200 is for combined values ‘Full-time’ and ‘Part-time’; similarly

b])[()3/1(20
24

40
23

200
2221 ππππ ××+×= . Thus, =11z a/(a+b) 3357.0= and 6643.012 =z .

In the same way 1,0,0,1 32311221 ==== zzzz

After obtaining rkz , the M-step updates the parameters kτ and kiπ of the kth cluster

that maximise model log-likelihood, giving ,4452.0
3

)013357.0(
1 =++=τ 5548.02 =τ

and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

06.012.023.059.0

17.023.028.032.0
kiπ . The log-likelihood for this iteration is -298.9032.

The iterations continue until the algorithm converges or the stopping criteria are met.
For this example, the algorithm took 4 iterations to converge. Datasets D1 and D3
belong to the same cluster with probability vector (0.58 0.23 0.13 0.06) for {Full-time,
Part-time, Retired, Unwaged}. Dataset D2 belongs to a different cluster with very
different working status distribution pattern (0.3 0.25 0.26 0.19) with almost as many
people who do not work as people working.

 Knowledge Discovery from Semantically Heterogeneous Aggregate Databases 197

6 Evaluation

6.1 Experimental Framework

The scalability of our proposed algorithm was tested against (i) the size of the datasets
and (ii) the number of datasets. Performance is evaluated for both clustering accuracy
and computation time. For this purpose, a collection of synthetic datasets has been
generated using Matlab© that are based on the probability distributions designed to
represent the clusters, and the required size of the dataset.

A combination of probability distributions, each of which represents a cluster, forms
the basis to generate the synthetic data. The dataset size denoted as NoTrials is the total
cardinality (aggregate counts) over all attribute categories. Values are generated from a
uniform distribution on the unit interval. For a given probability distribution, the
cardinality for an attribute category is the number of the generated values falling into
the corresponding probability interval. For example, if NoTrials=10, and the
probability distribution for categories ‘Full-time’, ‘Part-time’, ‘Retired’ and
‘Unwaged’ are (0.5 0.3 0.1 0.1) for one cluster, then 4 corresponding probability
intervals are [0, 0.5), [0.5, 0.8), [0.8, 0.9), and [0.9, 1] respectively. If 10 values are as
{0.95, 0.23, 0.61, 0.48, 0.89, 0.76, 0.45, 0.01, 0.82, 0.44}, then there are 5 values in the
probability interval [0, 0.5), and thus 5 is the cardinality for category ‘Full-time’.
Similarly, 2, 2, 1 are the cardinalities for categories ‘Part-time’, ‘Retired’ and
‘Unwaged’. A dataset {5, 2, 2, 1} is thus generated for this cluster. Data are generated
in this way for a number of datasets (denoted as NoEvents) in each cluster.

For different probability distribution combinations, the level of difficulty to achieve
accurate clustering is different. The evaluation is to be carried out for a wide range of
clustering complexity from easy to hard. For this purpose, a complexity measure is
proposed in the next section. The algorithm scalability is evaluated from the following
two aspects, each over clustering problems of a wide range of complexity values:

(1) Size of the datasets (NoTrials): the number of datasets (NoEvents) remains the
same, accuracy and computation time is evaluated against different sizes of
datasets, also over different clustering complexity problems.

(2) the number of datasets (NoEvents): the size of the datasets (NoTrials) is kept
constant, and performance is evaluated as the number of datasets is increased.

Clustering accuracy is calculated according to the classes of the synthetic data
labelled generated. Computation time is recorded for the algorithm to converge or to
meet the stopping criteria.

6.2 Complexity Measure

A complexity measure is designed to evaluate how difficult a clustering problem in
terms of achieving accurate clustering. The distance between the clusters has a great
impact on the complexity measure. If clusters are distinct from each other, it is an easier
problem. However, if any two or more of the clusters are similar, it is difficult for an
algorithm to identify and separate them. If C1, C2,...,CG are the G clusters of a clustering

problem, the complexity S is defined as ∑=)
),(

1
(),(,,21

ji
G CCD

CCCS where

198 S. Zhang, S. McClean, and B. Scotney

),(ji CCD is the distance between any two clusters Ci, Cj and summation is over all

combinations of clusters Ci, Cj. Since the probability distributions are the descriptors of
clusters,),(ji CCD can be measured by the distance between the distributions.

Kullback-Leibler information divergence (KL) is the distance measure between two
probability distributions. It has been successfully used in our previous work [5]. Here
we use a symmetric KL-based distance)()(),(PQDQPDCCD KLKLji += , where P and

Q are the probability distributions for clusters Ci and Cj. In Figure 2 are shown the
clustering accuracies of our proposed algorithm against the complexity value of
probability distributions combination (synthetic data are generated with NoTrial=25,
NoEvents=50). The clustering accuracy decreases monotonically as the complexity
increases. This shows that the designed complexity formula is an appropriate measure
for the clustering problem. Other complexity measure using different distances have
been also investigated (e.g., Euclidean, chi-square or log-likelihood ratio), and the
performances are found to be either worse than or similar to using the KL distance.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70

Complexity (S)

A
cc

u
ra

cy

Fig. 2. Accuracy against Complexity measure (S)

6.3 Performance Evaluation

Firstly, we evaluate the performance against the size of the datasets (NoTrials). With
NoTrials remaining constant, for any one clustering problem, the sizes of the datasets
are the same for all clusters. The relationship between clustering accuracy and size of
datasets is evaluated over clustering problems of different complexity values S. From
Figure 3, we can observe that the size of the database plays an important role in the
clustering process. The cardinalities improve the clarity of the clusters. Also, the bigger
size databases speeds up the convergence process (Figure 4).

Figure 5, and 6 describe the algorithm performance as a function of the size of the
clustering problem i.e. the number of datasets, when the dataset sizes do not change
(NoTrials=200). The evaluation is carried out over clustering problems with different
complexity values S. From the results in Figure 5 we observe that, for the same set of
probability distribution combinations, if the size of the dataset remains constant, by just
increasing the number of datasets in the clustering problem, accuracy cannot be
improved very much except in the case of relatively small database sizes of high

 Knowledge Discovery from Semantically Heterogeneous Aggregate Databases 199

complexity. However, the computation time (Figure 6) increases. Therefore, for
large-scale real problems, the clustering problem can be solved by appropriately
scaling it down to a smaller problem to reduce the cost but without affecting the
accuracy.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250

Size of Dataset

A
cc

u
ra

cy

S=57.63

S=45.41

S=32.02

S=22.74

S=12.33

S=5.50

Fig. 3. Accuracy against the size of the dataset, for different complexity values S

0

1

2

3

4

5

6

0 50 100 150 200 250
Size of Dataset

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

S=57.63

S=45.41

S=32.02

S=22.74

S=12.33

S=5.50

Fig. 4. Computation Time against size of the dataset, for different complexity values S

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

10 20 50 75 100 150 200 300 500

Number of Datasets in each Cluster

A
cc

u
ra

cy

S=57.63

S=45.41

S=31.85

S=22.74

S=12.33

S=5.50

Fig. 5. Accuracy against the number of datasets, for different complexity values S

200 S. Zhang, S. McClean, and B. Scotney

0

5

10

15

20

25

30

35

40

45

50

10 20 50 75 100 150 200 300

Number of Databases in each Cluster

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

S=57.63

S=45.41

S=31.85

S=22.74

S=12.33

S=5.50

Fig. 6. Computation Time against the number of datasets, for different complexity values S

6.4 Real Data Evaluation

We complete an evaluation with a real-life example of heterogeneous data. The
national U.S. “gross rent” database for 2000 is composed of 51 state-specific
homogeneous datasets from the U.S. Census Bureau. The cardinality (aggregates) for
each attribute value (category) shows the number of renter-occupied housing units
within each rental value category. A (synthetic) set of heterogeneous databases (Table
2) was then generated by combining data from the homogeneous dataset for a random
selection of states, with 5 different schema structures. The algorithm is tested on the
heterogeneous database with 5 clusters specified, and result is shown in Figure 7. These
results are very encouraging compared with the ranked “States Median Gross Rent”
table. We successfully grouped the states with different levels of units renting prices in
the U.S. These include expensive states group {Hawaii, New Jersey, California,
Alaska, Nevada}, where the medians prices are more than $700. The second cluster
contains less expensive 7 states group of {Maryland, Massachusetts, Connecticut, New
York, Colorado, Washington and Virginia}, whose medians are $650-$699. The
remaining clusters include the states with ranging from $555-$650, $497-$555, and
$400-$496 respectively.

Table 2. A sample heterogeneous Gross Rent database

 Gross rent

($100)

State
≤ 2.49 2.5-4.99 5-7.49 7.5-9.99 10-14.99 15-19.99 ≥ 20

Wyoming 5906 26685 13150 3076 1124 280 95

Connecticut 32102 63966 152735 97511 47845 16522

Arizona 12898 26096 18437 11296 2209 381

Delaware 19979 49972 5688 627 922

…

…

 Knowledge Discovery from Semantically Heterogeneous Aggregate Databases 201

Fig. 7. Clustering US States with Heterogeneous Gross Rent Census Data

7 Conclusion and Future Work

A model-based clustering method has been proposed for distributed heterogeneous
aggregate databases with respect to their classification schemes, using the EM
algorithm. The method carries out data integration while solving the heterogeneity
issues simultaneously in the clustering process without having to carry out
homogenisation beforehand. Unlike traditional DKD methods, data are integrated to
several different virtual global tables in order to capture different underlying semantics
corresponding to different global tables. The evaluation of the algorithm on both real
and synthetic data shows encouraging results. The algorithm is scalable to large sizes of
datasets and large numbers of datasets. It can be further applied to databases distributed
in an open heterogeneous environment like the Semantic Web. The new knowledge
discovered from the clustering can assist the construction of Bayesian Belief Networks
to help build more efficient prediction models and also to enable association rule
mining.

Future work includes employing an appropriate initialisation method for the EM
algorithm; speeding up the convergence of the EM algorithm when dealing with large
datasets; and more extensive evaluation using real data.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5),
34–43 (2001)

2. Doan, A., Halevy, A.Y.: Semantic Integration Research in the Database Community: A
Brief Survey. AI Magazine 26(1), 83–94 (2005)

3. Tsoumakas, G., Angelis, L., Vlahavas, I.: Clustering classifiers for knowledge discovery
from physically distributed databases. Data & Knowledge Engi. 49(3), 223–242 (2004)

>$700

$650-$699

$555-$650

$497-$555

$400-$496

Median rents ($)

202 S. Zhang, S. McClean, and B. Scotney

4. Wirth, R., Borth, M., Hipp, J.: When distribution is part of the semantics: A new problem
class for distributed knowledge discovery. In: Proceeding of 5th ECML and PKDD
Workshop on Ubiquitous Data Mining for Mobile and Distributed Environments, Freiburg,
Germany, pp. 56–64 (2001)

5. McClean, S., Scotney, B., Shapcott, M.: Aggregation of imprecise and uncertain
information in databases. IEEE Transactions on Knowledge and Data Engineering 13(6),
902–912 (2001)

6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via
the EM Algorithm. Journal of the Royal Statistics Society, Series B 39(1), 1–38 (1977)

7. McClean, S.I., et al.: Knowledge discovery by probabilistic clustering of distributed
databases. Data & Knowledge Engineering 54(2), 189–210 (2005)

8. Fraley, C.,, Raftery, A.E.: Model-Based Clustering, Discriminant Analysis, and Density
Estimation. Journal of the American Statistical Society 97(458), 611–631 (2002)

9. McClean, S.I., Scotney, B.W., Greer, K.: A Scalable Approach to Integrating
Heterogeneous Aggregate Views of Distributed Databases. IEEE Transactions on
Knowledge and Data Engineering 15(1), 232–235 (2003)

10. Schwarz, G.: Estimating the Dimensions of a Model. The Annals of Statistics 6(2), 461–464
(1978)

11. Dasgupta, A., Raftery, A.E.: Detecting features is spatial point processes with clutter via
model-based clustering. Journal of the American Statistical Society 93(441), 294–302
(1998)

Speeding Up Clustering-Based k-Anonymisation
Algorithms with Pre-partitioning

Grigorios Loukides and Jianhua Shao

School of Computer Science
Cardiff University

Cardiff CF24 3AA, UK
{G.Loukides,J.Shao}@cs.cf.ac.uk

Abstract. K-anonymisation is a technique for protecting privacy con-
tained within a dataset. Many k-anonymisation algorithms have been
proposed, and one class of such algorithms are clustering-based. These
algorithms can offer high quality solutions, but are rather inefficient
to execute. In this paper, we propose a method that partitions a
dataset into groups first and then clusters the data within each group
for k-anonymisation. Our experiments show that combining partition-
ing with clustering can improve the performance of clustering-based k-
anonymisation algorithms significantly while maintaining the quality of
anonymisations they produce.

1 Introduction

A vast amount of data about individuals is being collected and stored worldwide.
Such data can contain private information about individuals, for example, their
credit card numbers, shopping preferences and medical records. When the data
is released for studies such as lifestyle surveys, business analysis and healthcare
research, privacy protection becomes a serious concern. Unfortunately, simply
removing unique identifiers (e.g. credit card numbers) from data is not enough,
as individuals can still be identified using a combination of non-unique attributes
such as age and postcode [1].

K-anonymisation is a technique that has been proposed to address this issue.
Assume that we have a table T consisting of m attributes (a1, . . . , am). Without
loss of generality we assume that the first q attributes are quasi-identifiers (QIDs)
- they contain information that can potentially be used to identify individuals
(e.g. age and postcode), and the remaining attributes are sensitive attributes
(SAs) - they contain sensitive information about individuals (e.g. their shopping
preferences or diagnosed diseases). K-anonymising T is to derive a view of T
such that each tuple in the view is made identical (through some form of data
generalisation) to at least k − 1 other tuples with respect to QIDs [1]. It is easy
to see that k-anonymised data helps prevent linking sensitive information to
individuals, thereby providing privacy protection.

Many k-anonymisation algorithms have been proposed, employing different
search strategies and optimality criteria [2,3,4,5,6]. Broadly speaking, they all

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 203–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

204 G. Loukides and J. Shao

attempt to maximise data usefulness (by making as little change to a dataset
as possible) and privacy protection (by making individual identification as diffi-
cult as possible). One class of such algorithms are clustering-based [4,6,5]. They
derive k-anonymisations by first grouping data into clusters of at least k tuples
using some quality measures, and then anonymising the data in each group sep-
arately using some form of data generalisation. These algorithms offer flexibility
in k-anonymisation process and produce high quality anonymisations as result,
but they can be rather inefficient to execute, making them not useful for large
datasets.

In this paper, we propose a method that partitions a dataset before clustering
it for k-anonymisation. Our method is based on the following observation: tuples
in a cluster typically belong to a small subspace. Thus, instead of searching the
whole dataset when clustering data, we can first find a partition of a dataset
and then perform the clustering in each subspace separately. Our experiments
show that combining partitioning with clustering can improve the performance
of clustering-based k-anonymisation algorithms significantly while maintaining
the quality of anonymisations they produce.

The paper is organised as follows. Section 2 describes a metric that we use to
measure the quality of k-anonymisations. In Section 3 we introduce two represen-
tative clustering-based algorithms for illustrating our pre-partitioning approach.
Our approach is presented in Section 4 and evaluated in Section 5. Finally, we
conclude in Section 6.

2 Usefulness and Protection Measures

A k-anonymisation of a dataset is commonly derived through some form of data
generalisation. Such a generalisation process can result in information loss. To
see this, consider the generalisation of data in Table 1 to 4-anonymous data in
Table 2, for example.

Table 1. Original
data

Age Height Sal(K)

20 170 20
23 175 21
25 180 22
27 180 25
28 180 60
29 185 61
58 190 62
80 190 65

Table 2. A 4-anonymisation
of Table 1

Age Height Sal(K)

[20-58] [170-190] 20
[20-58] [170-190] 21
[20-58] [170-190] 60
[20-58] [170-190] 62
[25-80] [180-190] 22
[25-80] [180-190] 25
[25-80] [180-190] 61
[25-80] [180-190] 65

Table 3. Another 4-
anonymisation ofTable 1

Age Height Sal(K)
[20-27] [170-180] 20
[20-27] [170-180] 21
[20-27] [170-180] 22
[20-27] [170-180] 25
[28-80] [180-190] 60
[28-80] [180-190] 61
[28-80] [180-190] 62
[28-80] [180-190] 65

Speeding Up Clustering-Based k-Anonymisation Algorithms 205

Suppose that we need to answer query Q1 using Table 2. As the values in Age
and Height are generalised in Table 2, it is obvious that only an approximate
answer to Q1 can be obtained. To illustrate how this can be done, consider the 2D
space depicted on the left chart of Figure 1 where R represents the area covered
by the first group in Table 2 (as no tuples in the second group can satisfy Q1)
and Rq represents the area requested by Q1. Comparing R to Rq and assuming
a uniform distribution of data in R, we can calculate that the probability of a
tuple in Table 2 is in the answer to Q1 is p = Rq∩R

R ≈ 0.033 [7]. As we have 4
tuples in the first group of Table 2, the estimated answer to Q1 is 4× p = 0.132.
Clearly, this estimation is not accurate, as the correct answer to Q1 using the
original data in Table 1 is 2. Now consider another anonymisation of Table 1 as
shown in Table 3. The 2D space depicted on the right chart of Figure 1 shows
that this time the overlap between R and Rq is much larger. Computing p using
the same method again, we obtain a much more accurate approximated answer
of 4 × p ≈ 1.429 for Q1.

Q1:select count(*)
from table
where age < 25
and height
between 170 and 175

Fig. 1. Estimating answers using generalised data

Intuitively, maximising the overlap between answers to queries using original
and anonymised data is desirable, as it can make anonymised data more useful.
However, how data might be queried cannot be assumed to be known in general.
Therefore, it is plausible that we should try to minimise data ranges in each group
w.r.t. QIDs, so that R is kept small, increasing the chance for it to have a large
overlap with Rq. In the case of an interval attribute this is quite straightforward
to achieve, as ranges can naturally be captured using, for example, the Euclidean
distance. In the case of discrete attributes, however, there is no ordering among
the values and thus distance is often defined in terms of semantic relationships
between different values using a hierarchy [5]. For simplicity of presentation, we
assume a flat hierarchy for each discrete QID [3] in this paper . That is, we
assume that the distance between any pair of distinct values is the same, and
the overall distance of a group of discrete values is the number of distinct values
in the group. This then gives us the following definition:

Definition 1 (Attribute diversity). Assume that a is an attribute, the do-
main of a is Da, and Va ⊆ Da is a subset of values obtained from a. The attribute
diversity of Va, denoted by da(Va), is defined as:

206 G. Loukides and J. Shao

da(Va) =

⎧
⎨

⎩

max(Va)−min(Va)
max(Da)−min(Da) interval values

|distinct(Va)|
|Da| discrete values

where max(Va), min(Va), max(Da) and min(Da) denote maximum and mini-
mum values in Va and Da respectively, |distinct(Va)| is the number of unique
values in Va, and |Da| is the size of domain Da.

It is easy to see that for a set of QID values, a small attribute diversity score is
desirable as it implies that the values are close to each other, hence require less
modification in anonymisation. For an SA, however, a large attribute diversity
score is preferred. This is because if the values in an SA are not diverse enough,
then it will still be possible for one to infer their sensitive information [8].

Having a large attribute diversity score to ensure that values in an SA are suf-
ficiently diverse is in principle similar to the idea of l-diversity [8], which suggests
that an SA should have at least l distinct values in each anonymised group. This
will then ensure that the actual sensitive information about an individual can
only be inferred with a probability no more than 1/l. However, in l-diversity, SAs
are considered to be discrete. This is not satisfactory as for interval attributes,
even if there are more than l distinct values in each group, a small range can still
give information away. To see this, consider the salary attribute (Sal) of Table 1.
If data was anonymised as shown in Table 3 then Sal ranges for the first and
second anonymised groups are [20-25] and [60-65] respectively. This allows one
to estimate a quite close salary value for an individual. In contrast, if data was
anonymised as shown in Table 2, then the larger Sal ranges ([20-62] and [22-
65] for the first and second groups respectively) make an accurate estimation
more difficult. Our attribute diversity measure can handle interval values in SAs
better, as it takes the range of interval values into consideration.

We now extend our diversity measure to datasets that consist of more than
one attribute. We measure the diversity of a set of tuples as the sum of attribute
diversities over a set of attributes, assuming attribute independence.

Definition 2 (Tuple diversity). Given a set of tuples τ ⊆ T over a set of
attributes A = {a1, a2, . . . , am}, the tuple diversity of τ w.r.t. A, denoted by
dt(τ, A), is defined as: dt(τ, A) =

∑m
i=1 da(πai(τ)) where πai(τ) denotes the

projection of τ on attribute ai.

This measure has some interesting properties. First, interval and discrete at-
tributes are treated uniformly, therefore datasets with mixed attributes can be
handled. Second, it deals with both data usefulness and privacy protection. This
is particularly useful as it allows each of these properties to be considered and bal-
anced during k-anonymisation. Third, it allows anonymisers to introduce weights
to reflect the importance of some attributes. For example, Age may be consid-
ered to be more important than Height in a particular study and can thus be
given more weight in calculating tuple diversity. Finally, it can support semantic
relationships that may exist among discrete values by extending Definition 1 to
include hierarchies [5,4].

Speeding Up Clustering-Based k-Anonymisation Algorithms 207

Based on tuple-diversity we define usefulness of anonymised data to be the
average tuple diversity of all groups over QIDs, and protection of original data
to be the average of the inverse of tuple diversity of all groups measured over the
SAs. A small usefulness score implies that tuples are close together with respect
to these attributes, therefore incurring little information loss, and a small pro-
tection score means that the values of each SA are far apart, therefore exercising
more protection.

Definition 3 (Usefulness and Protection). Assume that a table T is clus-
tered into groups {g1, g2, . . . , gh}, such that |gi| ≥ k, 1 ≤ i ≤ h, and tuples of gi

will have the same QID value after anonymisation. The usefulness and protection
of T under this clustering are defined as:

usefulness = avg(dt(g1, q), dt(g2, q), . . . , dt(gh, q))

and
protection = avg(

1
dt(g1, s)

,
1

dt(g2, s)
, . . . ,

1
dt(gh, s)

)

where dt(gi, q) and dt(gi, s) denote the tuple diversity of group gi, 1 ≤ i ≤ h,
w.r.t. q (the set of QIDs) and s (the set of SAs), respectively.

3 Grouping Data

Forming “good” groups of data is essential to minimising information loss and
enhancing data utility in k-anonymisation. Using the metrics proposed in Section
2, the problem of finding an optimal grouping of data for k-anonymisation is
formally defined in Definition 4.

Definition 4 (Optimal grouping using tuple diversity). Given a table T
consisting of n tuples and weights wu and wp such that wu, wp ∈ [0, 1] and wu +
wp = 1, an optimal grouping of T is a partition P = {c1, . . . , ch} such that |ci| ≥
k, i = 1, . . . , h,

⋂h
i=1 ci = ∅,

⋃h
i=1 ci = T and

∑ h
i=1(wu×dt(ci,QID)+wp× 1

dt(ci,SA))
h is

minimal.

So an optimal grouping of a dataset T for k-anonymisation w.r.t. the metrics
given in Section 2 is to partition T into groups of at least k tuples such that
the average weighted tuple diversity is minimised. wu and wp are user-specified
weights that allow requirements for data usefulness and privacy protection to
be balanced. However, achieving this grouping using clustering is NP-hard 1. So
heuristic methods are required. In this section, we describe two clustering-based
algorithms, K-Members [4] and Greedy Clustering [6], whose sketches are given
in Figures 2 and 3 respectively.

They both allow interval and discrete attributes to be treated uniformly and
perform greedy clustering to derive groups of at least k tuples. However, these
1 It is straightforward to proove this based on [9].

208 G. Loukides and J. Shao

1. C ← ∅;
2. randomly choose r ∈ T ;
3. while |T | ≥ k do
4. find ti ∈ T s.t. dt({ti, r}, QID)

is maximum;
5. T ← T − {ti};
6. c ← {ti};
7. while |c| < k do
8. find tj ∈ T s.t.

dt({c ∪ {tj}}, QID) is minimum;
9. T ← T − {tj};
10. c ← c ∪ {tj};
11. r ← tj ;
12. C ← C ∪ c;
13.while T �= ∅ do
14. randomly choose ti ∈ T ;
15. find c ∈ C s.t. dt({c ∪ {ti}}, QID)

is minimum;
16. T ← T − {ti};
17. c ← c ∪ {ti};

Fig. 2. K-Members

1. while T �= ∅ do
2. c ← ti ∈ T ;
3. T ← T − {ti};
4. while true do
5. find tj ∈ T s.t. c′ ← c ∪ {tj}

and wu × dt({ti, tj}, QID)
+wp × 1

dt({ti,tj},SA)

is minimum;
6. if (wu × dt(c′, QID)

+wp × 1
dt(c′,SA) > δ);

exit;
7. c ← c′;
8. T ← T − {tj};
9. if |c| ≥ k

k-anonymise(c);
10. else

reject c;

Fig. 3. Greedy Clustering

two algorithms differ along three main dimensions. First, the objective of K-
Members is to maximise usefulness (i.e. setting wu = 1 in Definition 4), while
Greedy Clustering attempts to balance between usefulness and protection. Sec-
ond, they use different heuristics to decide which tuple should be added to a
cluster in each step. K-Members adopts a brute-force approach, examining ev-
ery unclustered tuple and inserting the tuple that results in a minimum increase
in tuple-diversity over QIDs (line 8 of Figure 2), while Greedy Clustering in-
serts the tuple that is nearest to the “seed” tuple of this cluster w.r.t. weighted
tuple-diversity over QIDs and SAs (line 5 of Figure 3, where tj is the seed and
wu and wp are the respective weights). Third, there is a significant difference
between these two algorithms in terms of how a group is deemed to be derived.
K-Members uses a size-based criterion, which restricts the maximum size of
clusters to 2k − 1, while Greedy Clustering uses a threshold δ to avoid creating
clusters with an unacceptably large tuple diversity.

To illustrate the quality of k-anonymisation produced by K-Members and
Greedy Clustering, we compare them to Mondrian [2], a well-known non-
clustering based algorithm, using an example. As shown in Figure 5, when ap-
plied to T , both clustering-based algorithms achieved better usefulness than
Mondrian did (scoring 1.008 and 1.017 compared to 1.117) and Greedy Cluster-
ing also achieved better protection (scoring 2 compared to 2.5). However, both
K-Members and Greedy Clustering have quadratic time complexity with respect
to the size of the dataset [4,6], hence are not scalable to large datasets.

Speeding Up Clustering-Based k-Anonymisation Algorithms 209

4 Pre-partitioning

Attempts to improving clustering performance in general have been reported
in the literature [10,11,5]. Sampling has been used to derive a set of initial
clusters and final clusters are produced by assigning the remaining tuples to
their closest clusters [11]. McCallum [12] suggested a method that derives large
clusters using a similarity measure for categorical attributes first, and then use
the main clustering algorithm to cluster the data. Xu et al. [5] used a top-
down heuristic, which recursively splits data into two groups by choosing two
distant tuples as seeds and assigning all remaining tuples to their closest groups.
However, all of these methods have a quadratic complexity to the size of the
dataset, hence are not efficient when a large number of small clusters are to be
created, as in k-anonymisation. Furthermore, their similarity measures do not
capture data usefulness and privacy protection, thus their results are not directly
useful to k-anonymisation.

Age Height Gender Disease

20 170 M HIV
23 175 F HIV
25 180 M Obesity
27 180 F HIV
28 180 F Cancer
29 185 F Obesity
58 190 M Heart Attack
80 190 F Cancer

Fig. 4. Original data

20 170 M HIV
25 180 M Obesity

80 190 F Cancer
58 190 M Heart Attack

23 175 F HIV
27 180 F HIV

29 185 F Obesity
28 180 F Cancer

(a)

20 170 M HIV
25 180 M Obesity

58 190 M Heart Attack
80 190 F Cancer

27 180 F HIV
29 185 F Obesity

23 175 F HIV
28 180 F Cancer

(b)

20 170 M HIV
23 175 F HIV

58 190 M Heart Attack
80 190 F Cancer

28 180 F Cancer
29 185 F Obesity

25 180 M Obesity
27 180 F HIV

(c)

Fig. 5. Grouping of data in Table 4 using (a) K-Members, (b) Greedy Clustering and
(c) Mondrian

In this section, we propose a method that divides the entire space into a num-
ber of well-organised subspaces in log-linear time to the size of the dataset [13,2]
and maintains the quality of anonymisations that clustering-based algorithms
can produce. We use a kd-tree type of strategy to recursively split the data into
subspaces. That is, we assume a total order for the values in each QID attribute
and split a group of tuples (initially the entire dataset) along the median of a
QID attribute that has the largest domain. This process is repeated (i.e. the two
resultant subspaces from the split are split again using the same criteria) until
all the subspaces are “small” enough w.r.t. a pre-specified size threshold.

210 G. Loukides and J. Shao

Our partitioning strategy can significantly improve the performance of
clustering-based methods. This is because, informally, if we assume that the
average size of subspaces created by pre-partitioning is s, then the complexity of
clustering data within a subspace is O(s2). Since we have roughly n

s number of
subspaces, where n is the size of the dataset, the clustering complexity for the
entire dataset becomes O(n

s × s2) = O(n × s). Thus, a significant speed up can
be achieved if the subspaces created by pre-partitioning are relatively small.

To maintain the high quality of anonymisations that clustering-based algo-
rithms can produce, it is essential that close tuples are put in the same subspace.
We split data along the median of the QID attribute with the largest domain
[14,2]. This heuristic can create “compact” subspaces that contain reasonably
close tuples, especially when clusters are roughly of equal size [15]. For example,
observe the solution produced by K-Members in Figure 6. Table T (the same as
the table given in Figure 4) is partitioned, using this heuristic and a size thresh-
old s = 4 into two subsets T1 and T2. As can be seen, clustering the data using
K-Members in T1 and T2 separately produced the same 2-anonymisation as the
one derived from clustering the whole dataset (compare the result to Figure 5
(a)), but was performed more efficiently.

Fig. 6. Pre-partitioning and clustering dataset T in Figure 4

Obviously, selecting the size threshold in pre-partitioning can affect both the
efficiency and quality of the subsequent clustering. Using a very small size thresh-
old (e.g. one equal to k) can produce solutions very fast but often degrades the
quality of anonymisations. This is because the resultant subspaces offer little
room for clustering to optimise grouping. On the other hand, using a large size
threshold helps produce anonymisations of high quality, but clustering in these
subspaces is not efficient. Our experiments show that partitioning a dataset into
relatively small subspaces is often sufficient to allow the high quality of anonymi-
sations to be produced by the subsequent clustering.

Speeding Up Clustering-Based k-Anonymisation Algorithms 211

Finally, we comment on the effect of pre-partitioning on protection. As dis-
cussed in Section 2, a good k-anonymisation also needs to ensure that values in
SAs are quite diverse, so that protection is enhanced. The proposed partitioning
strategy does not take SAs into consideration, thus the resultant subspaces may
compromise protection. For instance, consider the Disease value in the third
tuple of table T given in Figure 6. If it was ‘HIV’ instead of ‘Obesity’, then
pre-partitioning would create a subspace that consists of tuples having the same
SA value. This does not help protection. However, our partitioning strategy can
easily be modified to incorporate protection as well [16]. For instance, avoid-
ing further splitting a subspace when it causes protection to exceed a specified
threshold will allow clusters with better protection to be formed. Limited by
space we will not discuss such extensions in this paper.

5 Experimental Evaluation

We experimentally evaluated the efficiency and quality of our pre-partitioning
approach by applying it to K-Members and Greedy Clustering (configured to
treat usefulness and protection equally important, i.e. wu = wp in Figure 3). We
used the Adults dataset [14] in our experiments, which has become a standard
benchmark for k-anonymisation. This dataset is comprised of 8 attributes and
30162 tuples, and we configured it as in [6]. All the algorithms were implemented
in Java and ran on a Pentium-D 3GHz machine with 1 GB of RAM under
Windows XP.

Efficiency evaluation. First, the performance of K-Members and Greedy Clus-
tering without pre-partitioning was evaluated. We ran the two algorithms with
k = 10, using random samples with sizes ranging from 500 to 10000. As illus-
trated in Figure 7, these algorithms are not particularly efficient: K-Members
and Greedy Clustering needed more than 18 minutes and 44 seconds to cluster
10000 tuples, respectively.

We then studied the improvement in efficiency that our pre-partitioning
method brings to clustering algorithms. We applied our method to the entire
Adults dataset (30162 tuples) setting k = 10. In this experiment, the number
of subspaces created was reduced by half in each execution and varied from 32
(s = 500) to 1 (s = 30162). Figures 8 and 9 show that the efficiency improve-
ment is significant when pre-partitioning is used. For instance, pre-partitioning
reduced the runtime of K-members from 2.5 hours to 5 minutes when s = 500.

Quality evaluation. In order to examine how pre-partitioning affects the qual-
ity of solutions we performed two sets of experiments. First, we studied the im-
pact of pre-partitioning on the quality of clustering. We partitioned the Adults
dataset using various size thresholds and applied K-Members and Greedy Clus-
tering using k = 10. We experimented with increasingly larger size thresholds,
starting from s = k = 10 (this effectively makes clustering redundant and the
outcome is the same as that produced by Mondrian) and reducing by half the

212 G. Loukides and J. Shao

Fig. 7. Run-time of K-Members and
Greedy Clustering

Fig. 8. Run-time of K-Members vs.
subspace size

Fig. 9. Run-time of Greedy Clustering
vs. subspace size

number of subspaces created in each run. As can be seen from Figures 10, 11
and 12 usefulness and protection measures achieved by combining clustering and
partitioning are substantially better than those achieved by using partitioning
alone (see Figures 10, 11 and 12 for s = 10). This confirms that clustering-based
algorithms are able to generate anonymisations of much higher quality compared
to those produced by partitioning-based methods.

Furthermore, the scores for usefulness and protection are similar after the
number of subspaces reached a certain level, suggesting that the clustering per-
formed by K-Members and Greedy Clustering is not affected by the increase in
the subspace size. We have also conducted experiments using synthetic datasets
and the results were similar. Due to space limitations we do not report the results
here. This means that in practice data can be partitioned into relatively small
subspaces, which will not significantly affect the quality of anonymisations pro-
duced by the subsequent clustering, but can improve its efficiency substantially.

We also investigated how pre-partitioning affects the quality of clustering
when k changes. We applied our method with a fixed size threshold and com-
pared the clustering outcome from K-Members and Greedy Clustering with and
without pre-partitioning. For this experiment we ran pre-partitioning with a
size-threshold of 1000 creating 16 subspaces. Figure 13 presents the results
for K-Members. Observe that the usefulness scores for K-Members with pre-
partitioning are very close to those when the clustering was applied to the
whole dataset. Again, this validated that the quality of anonymisations produced

Speeding Up Clustering-Based k-Anonymisation Algorithms 213

Fig. 10. Usefulness of K-Members with
pre-partitioning

Fig. 11. Usefulness of Greedy Cluster-
ing with pre-partitioning

Fig. 12. Protection of Greedy Cluster-
ing with pre-partitioning

Fig. 13. Usefulness of K-Members with
different k’s

Fig. 14. Usefulness of Greedy Cluster-
ing with different k’s

Fig. 15. Protection of Greedy Cluster-
ing with different k’s

214 G. Loukides and J. Shao

by K-Members w.r.t. usefulness is preserved. Greedy clustering was also tested
with and without pre-partitioning. Figures 14 and 15 illustrate that the result
w.r.t. both usefulness and protection measures was again not affected by pre-
partitioning.

6 Conclusions

As privacy protection is increasingly required by many applications involving
personal data, a high quality anonymisation of a dataset before its releasing
is important. Although clustering-based k-anonymisation algorithms manage to
achieve this goal, they are rather inefficient to execute. In this paper, we pro-
posed a pre-partitioning method to improve the performance of clustering-based
algorithms, and we have shown through experiments that combining partition-
ing with clustering can significantly reduce execution time while maintaining the
quality of anonymisations.

References
1. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on

Uncertainty, Fuzziness and Knowledge-based Systems 10, 557–570 (2002)
2. LeFevre, K., DeWitt, D., Ramakrishnan, R.: Mondrian multidimensional k-

anonymity. In: ICDE ’06, vol. 25 (2006)
3. Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In:

ICDE ’05, pp. 217–228 (2005)
4. Byun, J., Kamra, A., Bertino, E., Li, N.: Efficient k-anonymity using clustering

technique. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds.)
DASFAA ’07. LNCS, vol. 4443. Springer, Heidelberg (to appear, 2007)

5. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.W.C.: Utility-based anonymiza-
tion using local recoding. In: KDD ’06, pp. 785–790 (2006)

6. Loukides, G., Shao, J.: Capturing data usefulness and privacy protection in k-
anonymisation. In: SAC ’07, pp. 370–374 (2007)

7. Thaper, N., Guha, S., Indyk, P., Koudas, N.: Dynamic multidimensional his-
tograms. In: SIGMOD ’02, pp. 428–439 (2002)

8. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity:
Privacy beyond k-anonymity. In: ICDE ’06, vol. 24 (2006)

9. Aggarwal, G., Kenthapadi, F., Motwani, K., Panigrahy, R., Thomas, D., Zhu, A.:
Approximation algorithms for k-anonymity. Journal of Privacy Technology (2005)

10. McCallum, A., Nigam, K., Ungar, L.: Efficient clustering of high-dimensional data
sets with application to reference matching. In: KDD ’00, pp. 169–178 (2000)

11. Guha, S., Rastogi, R., Shim, K.: Cure: an efficient clustering algorithm for large
databases. In: SIGMOD ’98, pp. 73–84 (1998)

12. Oliveira, S., Zaiane, O.: Privacy preserving clustering by data transformation. In:
Proceedings of the XVIII SBBD, pp. 304–318 (2003)

13. Friedman, J., Bentley, J., Finkel, R.: An algorithm for finding best matches in
logarithmic time. ACM Trans. on Mathematical Software 3(3) (1977)

14. Hettich, S., Merz, C.: Uci repository of machine learning databases (1998)
15. Narayan, B., Murthy, C., Pal, S.K.: Maxdiff kd-trees for data condensation. Pattern

Recognition Letters 27, 187–200 (2006)
16. Byun, J., Sohn, Y., Bertino, E., Li, N.: Secure anonymization for incremental

datasets. In: Secure Data Management ’06, pp. 48–63 (2006)

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 215–223, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Fine-Grained Access Control for Database Management
Systems*

Hong Zhu1 and Kevin Lü2

1 Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
2 Brunel University, Uxbridge, UK UB8 3PH

Abstract. A practical approach for developing fine-grained access control
(FGAC) for database management systems is reported in this paper. We extend
SQL language to support security policies. The concept of the policy type for
databases is proposed. We implement the policy reuse through the use of policy
types and policy instances to alleviate the administration workload of
maintaining security policies. The policies for rows and columns can be
expressed with policy types. Moreover, complicated database integrity
constraints can also be expressed by policy types, and no further purpose-built
programs are needed to create specific security control policies. We implement
the fine-grained access control in a relational database management system
DM5 [4]. The performance test results based on TPC-W are also presented.

1 Introduction

With the wide integration of Internet and database technology, the resources in
information systems have been shared by more and more users. The first feature of
these systems is that the number of users is enormous, but the number of roles for
users is relatively small. The second feature is that different users with the same role
may access different data sets. When more and more data is stored in database
systems, privacy and security become important issues in these systems. The privacy
and security concerns mean that Internet-based information systems must provide
fine-grained access control for users, and, in many cases, even single user-based
access control is needed[1][2][8].

However, the current standard SQL language for access control is coarse grained,
in that it grants access to all rows of a table or none at all. It provides access controls
on rows on a table by views. The access control by views is suitable for applications
with a fixed small number of users. It is not applicable to the cases with a large
number of users, such as in the Internet environment. Also, with this method, the
administrators have to manage and maintain many views; this aggravates the
workload. For a long time, the fine-grained access control has been embedded in
application programs according to the requirements of applications. This approach has
several disadvantages. The first is that access control has to be checked at every

* This paper is supported by 863 hi-tech research and development program of China, granted

number: 2006AA01Z430.

216 H. Zhu and K. Lü

user-interface. This increases the overall code size. The second is that the access
control in the application tier can be bypassed easily. The third is that it is easy for
application programmers to create trap-doors with malicious intents, because it is
almost impossible to check every line of code in a large application. For the above
reasons, fine-grained access control should be enforced for database management
systems.

This study focused on the issues of constructing FGAC in database systems. The
main contributions of this paper are:

(1) The concept of policy type for databases is proposed. We extend SQL
statements to support the security policy type. Security policy instances based on the
security policy type can be created to express different security policy requirements.
Moreover, complicated integrity constraints in database can be expressed by policy
types to specify the condition of the policy to take effect.

(2) We implement the FGAC in the relational database management system
DM5. The performance evaluations based on TPC-W benchmark have been
conducted.

This paper is organized as follows: Section 2 describes the related work. Section 3
presents the detailed extension of SQL statements. Section 4 reports performance tests
based on TPC-W and the results. Section 5 presents a summary.

2 Related Work

The first FGAC access control model was proposed by M. Stonebraker in Ingres
system [9]. It is implemented by a “query modification” algorithm. But the algorithm
does not handle rows and columns symmetrically. The Virtual Private Database
(VPD) in ORACLE [11] has provided a PL/SQL procedure function to describe the
security policy. Nevertheless, writing policy functions corresponding to business
policies requires a large amount of work [6]. Also, it is difficult to write predicates
involving cases of cross-ref, joins of tables etc., and no element level security in VPD
is presented.

Based on the access control in System R and Ingres, Motro proposed an FGAC
model for database based on algebraic manipulation of view definitions [7]. That
model has some limitations [8]. The costs of the query optimiser in DBMS are high.
The Non-Truman model [8] is based on authorization views and a validity notion of
queries. Using an inference mechanism, when a query is submitted from a user, the
query is evaluated and rewritten according to the accessible authorization views.
However, in the worst case, the algorithm may not be able to infer validity of some
unconditionally valid queries.

Recently, work on the policy for preserving privacy has boosted the research of
FGAC [1, 3]. Elisa Bertino et al [3] proposed a privacy preserving access control
model for relational databases. Actually, the model proposed needs a basis of FGAC
in a database system. Nevertheless, they did not describe how to implement the model
in a database management system. Agrawal et al [1, 2] proposed a framework for
FGAC implementation in a Hippocratic database system. In their work, the DBMS

 Fine-Grained Access Control for Database Management Systems 217

provides column level, row level, and element level access control. However, that
model is based on the Hippocratic database system and is limited in purpose.

Ponder policy language [5] is a high level language for security policy description.
But they cannot be used to describe the security policy in database management
systems. Motivated by the Ponder policy language, we extend the SQL statement to
describe security policies for database systems.

3 The Extension of the SQL

In order to illustrate our work in detail, we use the following database application in
Example 1 (Figure 1) to explain our concepts and the extension of SQL language.

DEPARTMENT
dep_idPK
dep_name

TRANSACTIONS
emp_id
t_id

FK, PK

t_amount

EMPLOYEE
emp_id

dep_id
PK
FK

Emp_name
emp_position
region

UNIQUE

t_price
t_product_name

Fig. 1. The relationships of the three tables of the corporation

Example 1. A database with three tables is used to record the daily sale activities of a
computer corporation. The DEPARTMENT table records the information about all the
departments in the corporation, for example, department name (dep_name). Every
department has a serial number in dep_id, which is the primary key (PK) of the table.
The EMPLOYEE table records staff personal details, such as emp_id, emp_name,
emp_position, region and the dep_id. The emp_names are unique to each other to
guarantee the employee names are not duplicated in the information system. The
dep_id indicates the department that the employee belongs to and is a nullable foreign
key (FK) of the table. Because some of the employees may not belong to any
department, at this time the dep_id for the employees would be null. The primary key
of the EMPLOYEE is emp_id. The table TRANSACTIONS records the person
(emp_id) dealing with this transaction, and t_id, t_amount, t_price, and
t_product_name for transaction serial number, amount, price, and product name of the
transaction. The emp_id and t_id is the primary key and the emp_id is the foreign key.
Figure 1 shows the relationships among these three tables. The employees of the
corporation are located in different regions. They can be in one of three roles:
DIRECTOR, MANAGER, and SALESPERSON. The security policies for these three
roles are arranged as follows:

218 H. Zhu and K. Lü

(1) DIRECTOR of the corporation can read all the transactions;
(2) MANAGER of department of desktop computer can read the transactions in

department of desktop computer and department of printer; the other MANAGERs can
only read transactions in their own departments;

(3) SALESPERSON can take part in a transaction process only when he/she belongs
to a department, and the salesperson can only read his/her own transactions.

3.1 The Statement for the Creation of Policy Type and Its Instance

We extend the SQL language to express the FGAC security policies. Figure 2 shows
the statements of policy type creation and their instantiation. The create policy
statement creates a policy type with at least two parameters, subject and target to
describe information about subjects and objects and they may not appear in policy
body. The option of or replace is designed to replace the old policy with a new one.
The inst policy statement creates policy instance for a specific policy type. When a
policy type is instantiated, a real subject and an object are bound with the policy type.
In addition, we can add other parameters (in param_list) to express the security
policies more flexibly. We illustrate every component in the policy creation statement
in detail in the following sub-sections.

Fig. 2. The SQL statements for creating the security policy type and instance

3.1.1 The Subjects and Objects
The definitions of subjects and objects are described as follows:

subject_expression:: = user user_name | role role_name | group group_name
target_expression:: = [database.][schema.]table[(col1, col2, …)] |

[database.][schema.]view[(col1, col2, …)]

The key words user, role, and group indicate the subject can be user, role, and
users in a group. The target_expression specifies a table (or view, or columns in the
table) in a database.

The statement of of the policy type creation:
create [or replace] policy policyType(

subject identity ,
target identity ,
param_list)

begin
action action_list

begin filter
filter_list

 end
[when constraint_Expression]

end

The instantiation of the security policy:
inst policy policyName=policyType(subject_expression, target_expression,…)

The symbol [] denotes contents in [] can be omitted, the words in boldface are key words.

 Fine-Grained Access Control for Database Management Systems 219

3.1.2 Operations List
The operation list is in the action clause in the create policy statement. It specifies the
operations on the objects that the security policy restricts. As shown in the following,
‘*’ denotes all the operations on the specific objects.

action_list ::= a_action | a_action, action_list
a_action ::= select | update | insert | delete | *

3.1.3 Filters List
A filter specifies the data to be accessed in specific objects. The fine-grained access
control is implemented through filters. All of the operations in the operations list have
the same list of filters.

filter_list ::= filter | filter, filter_list
filter ::= [if condition] filter_body [endif] | [elseif condition (filter_body) | else (filter_body) endif]
filter_body ::= boolean_Expression | call function_name
condition ::= boolean_Expression

The booeanl_Expression consists of two sub-expressions linked by binary
operators (<, >, >=, <=, =, in, exist). The sub-expressions can be sub-queries or sub-
expressions. The function call is the stored procedures existing in databases, which
can be created by users or system-stored procedures.

One filter consists of two components. One is the optional condition which
describes the restriction condition of the subject. The format is if condition clause or
elseif condition clause. The other is the predicate producer, namely filter_body, for
creating those predicates to filter the data not to be accessed in the object. When the
filter in a policy is evaluated, the optional condition is processed first. If the result of a
condition is TRUE, the filter body corresponding to the condition is executed to
produce a predicate.

Example 2. The policy type and instance describe the security requirements of the
salesperson who can only read his/her own transaction records. In the following
policy type, the font of filter is in italic style and the policy type returns a Boolean
expression with sub-query because the policy type has no restricted condition for the
subjects.

create or replace policy RepPol(subject s, target t)
 begin action select
 begin filter
 (emp_id=(select emp_id from employee where emp_name=USER))
 end

when (select dep_id from employee where emp_name=USER) in (select dep_id from department)
 end;
 inst policy repp1=RepPol(role SALESPERSON, transactions);
inst policy rep2 = RepPol(user ZHU, transaction(t_id, t_amount, t_price));

 inst policy rep3 = RepPol(role SALESPERSON, employee);

USER is a system function which returns the user name of the current sessions. The
expression in When clause denotes the integrity constraint whereby the salesperson
can take part in a transaction process only when he/she belongs to a department.

We can create different policy instances from one policy type. In this example, we
can create another instance rep2 for user ZHU on the columns t_id, t_amount, t_price
in table transactions. Also, we can create the policy instance on another object such
as in instance rep3. In this way, the policy type is reused.

220 H. Zhu and K. Lü

Example 3. The policy type and instance in the following are for the requirement (2)
in Example 1.

create or replace policy ManPol(subject s, target t)
 begin action select
 begin filter
 if ((select dep_name from department where dep_id in

(select dep_id from employee where emp_name = USER)) = ‘desktop computer’)
 (emp_id in (select emp_id from employee where emp_name = USER) and

emp_id in (select emp_id from department, employee where
department.dep_id=employee.dep_id and (dep_name=’desktop computer’ or dep_name=’printer’)))

 else
 (emp_id in (select emp_id from employee where emp_name = USER) and

emp_id in (select emp_id from department, employee where department.dep_id = employee.dep_id))
 endif
 end
 end;
inst policy manp1=ManPol(role MANAGER, transactions);

3.1.4 The Policy Constraint
The policy constraint describes the outer features of the subjects or integrity
constraints in databases. The policy constraint is specified in the When clause in the
policy type creation statement. Only when the policy constraint is evaluated as TRUE,
the policy will be executed; otherwise, the policy will not take effect. The grammar in
constraint definition is shown as follows.

constraint ident = constraint_Expression or constraint_Expression |
constraint_Expression and constraint_Expression

where “constraint_Expression” is defined as:
constraint_Expression ::= const_query | time_constraint | location_constraint
const_query ::= query_expression operator query_expression | scalar_query
operator = in | exist | > | >= | <= | < | and | or
time_constraint ::= Time.operation(actual_param_list)
location_constraint::= IP.operation(actual_param_list)

We divide the constraints for the security policy into two types:

(1) The constraint describes integrity constraints in databases. The query
expressions can be linked by the operator and, or. In this case, the results of every
query expression are scalar sub-query, namely scalar_query, which returns TRUE
when the result of the expression is not NULL and otherwise returns FALSE, or a set
of values in one column from the query expression which the operator can be in, exist.
If the operator is the one in {<, >, >=, <=, =}, then the results of the query
expressions are values of one column in one row.

(2) The constraints based on accessing time (time_constraint) or location
(location_constraint) of the subject are time constraints or location constraints
respectively. The time constraint specifies the time when the policies takes into effect.
It includes the operator: before, after and between for specifying time. The location
constraint specifies the IP address or IP address scope of the current subject. The
operators of IP are between and in.

If a policy constraint is deleted, the policy constraint in policy type would be
NULL in all the instances of the policy type.

 Fine-Grained Access Control for Database Management Systems 221

4 Experimental Results

We implement the fine-grained access control policy in DM5. Then we use the TPC-
W testing tool [12] to test the performance of the DBMS with FGAC. The tool is
developed according to the TPC-W benchmark specification [10]. The TPC-W
evaluates the throughput of a database with an average number of Web interactions
per second (WIPS). We use this tool to test the performance of our system in different
number of users connecting to the database. We compare the system performance
with or without users who are assigned FGAC policy on table orders and order_line
respectively. The test environment is shown in Table 1.

Table 1. The TPC-W testing environment

Client Web server Database Server
OS WINDOWS 2000 SERVER WINDOWS 2000 SERVER WINDOWS 2000 SERVER
Database No No DM5 with /without FGAC

Testing program TPCW Testing program Weblogic No
CPU P4 2.6G×3 computer P4 3G×3 computer P4 2.0G
Memory 2×512M 2×512M 2×512M

Table 2. The roles and their security policies for testing

Role Security policy
Manager:
MAN

create policy orderman(subject s, target t)
begin action select
begin filter
 (o_date = curdate)
 end
end;
inst policy orderp2= orderman(role man, orders);
create policy orderpolicy (subject s, target t)
begin action select

begin filter
(o_c_id = (select c_id from sysdba.customer where c_uname=user))
end
 end;
inst policy orderp1=orderpolicy(role cust, orders);

Customer:
CUST

create policy orderins(subject s, target t)
 begin action insert
begin filter
 (ol_I_ID > 50)
 end

end;
inst policy orderp3 = orderins(role cust, order_line);

Regional
Customer:
REGION

create policy orderreg(subject s, target t)
 begin action insert
 begin filter
 if not exists (select 1 from sysdba.address a,sysdba.customer b,sysdba.country c where a.addr_id

= b.c_addr_id and a.addr_id= c.co_id and b.c_uname=USER and c.co_name = 'United States')
then

 (o_ship_addr_id = (select a.addr_id from sysdba.address a, sysdba.customer b where a.addr_id =
b.c_addr_id and b.c_uname=USER))

 end if
 end
end;
inst policy orderp4 = orderreg(role region, orders);

222 H. Zhu and K. Lü

We create 40 users in the TPC-W testing database, and divide them into three
roles: manager (MAN), customer (CUST), and regional customer (REGION). The
roles and their policy types and instances are described in Table 2. Then we examined
the performance of the system. Figure 3 illustrates the comparison results of the
system performance with and without installing our newly introduced FGAC access
control policies under different numbers of EBSs. We found that although the FGAC
policy indeed affects the performance, the system performance is rational, close to
linear and acceptable.

0

50

100

150

200

250

300

350

400

100 300 500 800 1000 1500 1800 2000 2400 2900

The number of EBS

W
I
P
S with policies

without policies

Fig. 3. The TPC-W test results under different EBSs

5 Summary

Providing efficient and effective fine-grained access control policies for database
management systems has long been an unresolved issue, however, it is critically
important for Internet-based data management systems. Motivated by the Ponder
policy language, this study investigated a practical solution for this problem. We
extended SQL language to describe the security policies and proposed the concept of
the policy type in databases. In comparison with Oracle VPD, our policy has two
features. First, we can create one policy type and then create many policy instances of
that policy type. This alleviates the administration workload for maintaining policies
and reduces errors. Second, we can express complicated database integrity constraint
in policy type, and the policy creator does not need to develop a purpose-built
program to create or modify security policies. We implemented the FGAC policy in
DBMS DM5 and tested the performance by TPC-W testing tools. The test results are
very promising. Our FGAC approach is practical, flexible, and easy to implement and
use. At present, there are some limitations to our approach, for example, it can only
express accessing policy for one object, not for several objects every time. This is one
of the areas that we are currently working on.

References

[1] Agrawal, R., Bird, P., Grandison, T., Kiernan, J., Logan, S., Rjaibi, W.: Extending
Relational Database Systems to Automatically Enforce Privacy Policies. In: Proceedings
of 21st International Conference on Data Engineering (ICDE), pp. 1013–1023 (2005)

 Fine-Grained Access Control for Database Management Systems 223

[2] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases. In: Bressan, S.,
Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002.
LNCS, vol. 2590, pp. 563–574. Springer, Heidelberg (2003)

[3] Elisa, B.: Purpose Based Access Control for Privacy Protection in Database Systems. In:
Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, Springer,
Heidelberg (2005)

[4] Database Management System DM5. http://www.dameng.com
[5] Damianou, N.: A Policy Framework for Management of Distributed Systems, Ph.D.

thesis, Imperial College of Science, Technology and Medicine of London University
(2002)

[6] Santosh, D., Bernard, M., Ashish, S.: Database Access Control for E-Business – A case
study. In: Proceedings of 11th International Conference on Management of Data
COMAD, pp. 168–175 (2005)

[7] Motro, A.: An access authorization model for relational databases based on algebraic
manipulation of view definitions. In: Proceedings of International Conference on Data
Engineering, pp. 339–347 (1989)

[8] Shariq, R., Mendelzon Alberto, S., Prasan, R.: Extending Query Rewriting Techniques
for Fine-Grained Access Control. In: Proceedings of SIGMOD Conference. pp. 551–562
(2004)

[9] Stonebraker, M., Wong, E.: Access control in a relational database management system
by query modification. In: Proceedings of the ACM Annual Conference, pp. 180–186
(1974)

[10] Transaction Processing Performance Council (TPC), TPC BENCHMARK
TM

 W (Web
Commerce) Specification Version 1.8. http://www.tpc.org

[11] The Virtual Private Database in Oracle9ir2: An Oracle Technical White Paper,
http://otn.oracle.com/deploy/security/oracle9ir2/pdf/vpd9ir2twp.pdf

[12] Hong, Z., Xin, F., Hui, L.Q., Kevin, L.: The Design and Implementation of a
Performance Evaluation Tool with TPC-W Benchmark. Journal of Computing and
Information Technology-CIT 14. 2, 149–160 (2006)

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 224–234, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Extracting Temporal Information from Short Messages

Richard Cooper and Sinclair Manson

Computing Science, University of Glasgow, 17 Lilybank Gardens, Glasgow G12 8QQ
rich@dcs.gla.ac.uk

Abstract. Information Extraction, the process of eliciting data from natural lan-
guage documents, usually relies on the ability to parse the document and then to
detect the meaning of the sentences by exploiting the syntactic structures en-
countered. In previous papers, we have discussed an application to extract in-
formation from short (e-mail and text) messages which takes an alternative ap-
proach. The application is lightweight and uses pattern matching rather than
parsing, since parsing is not feasible for messages in which both the syntax and
the spelling are unreliable. The application works in the context of a high level
database schema and identifies sentences which make statements about data de-
scribable by this schema. The application matches sentences with templates to
identify metadata terms and the data values associated with them. However, the
initial prototype could only manage simple, time independent assertions about
the data, such as "Jane Austen is the author." This paper describes an extension
to the application which can extract temporal data, both time instants and time
periods. It also manages time stamps - temporal information which partitions
the values of time varying attributes, such as the monarch of a country. In order
to achieve this, the original data model has had to be extended with a temporal
component and a set of sentence templates has been constructed to recognise
statements in this model. The paper describes the temporal model and the ex-
tensions to the application, concluding with a worked example.

1 Introduction

Information Extraction (or Text Mining) is the process of eliciting data from natural
language documents. An Information Extraction application takes a textual document
and attempts to discover domain-relevant information in the text. Most standard ap-
proaches assume either that the document is in syntactically sound language or, at
least, in the kind of regular structure which typically underpins a formal report. In
these situations, the approach almost always taken is to parse the text first and to use
the syntactic structure to aid in the detection of information-bearing assertions [1, 2].

As explained in [2], the motivation for this work was to extend a collaboratively
developed information system with the ability to gather information sent by corre-
spondents in the form, firstly of electronic mail messages, and later of SMS text mes-
sages. In attempting to extract information from the kinds of message sent via elec-
tronic mail or SMS, the situation is not so simple. The person sending these messages
is interested in brevity not syntax or spelling. As a result, parsing runs into the dual

 Extracting Temporal Information from Short Messages 225

problem of identifying the syntax of the "sentences" and of identifying the syntactic
category of the "words" in the message in the first place. Consequently, parsing be-
comes a much harder, if not impossible task.

Our approach therefore has been to abandon any attempt at a full parse of the mes-
sage, but rather to try to effect the equivalent of a parse by matching each sentence
against a number of a patterns appropriate to the domain [3, 4]. This approach can be
considered lightweight in the sense of Kang et al [5] who take a similar approach to
natural language database querying or template-driven as in the work of Vargas-Vera
[6]. As an example of the original system, the data "author = Jane Austen" is extracted
from the sentence "The author is Jane Austen" by matching the sentence with the pat-
tern "The author is <authorValue>". The patterns available for a domain are created by
instantiating a set of domain independent sentence templates for each component of an
information domain schema, a technique which could well be an additional stage fol-
lowing the generation of a schema from an ontology. The pattern above is generated
from the template "The <attribute> is <<value>>." for the attribute author. The value of
the pattern matching approach is that the system can just as easily recognise “Author :
Jane Austen” given the template “<attribute> : <<value>>”.

Templates are grouped into template types by the information they extract. All
templates of a given type capture the same structure of data and result in the same set
of updates. This template given above belongs to the template type which captures
the value of one attribute of the entity which is currently the focus of attention in the
message and results in a update which modifies the current object by setting the at-
tribute value. Setting up the set of sentence templates is a complex and time consum-
ing task, but as the templates are domain independent, once set up they are available
for use in a wide range of applications.

The system maintains a context of the most recently mentioned entities in order to
disambiguate pronouns and other anaphoric references. The context contains refer-
ences to the most recently mentioned entities and is updated at the end of each sen-
tence. It also has a sophisticated system of synonyms using WordNet [7], vowel
stripping and the user entry of synonyms, so the system can as easily recognise “authr
: Jane Austen”.

An important aspect of the application is the nature of the data model used. Al-
though any data extracted is likely to end up in a relational or XML database, it would
greatly complicate the application to program it against such an implementation
model. Instead the schema is described in terms of a high level model in the certainty
that data captured in this model can easily be stored in either of these forms later. We
start with a basic object model, but enhance it to incorporate various aspects of every-
day discourse. For instance, the gender of any entity referred to is important to the
understanding of a message. Thus the model has a data type gender, applicable to one
attribute of an entity type, its presence indicating that this type of entity can have
different genders. Secondly, the notion of key has to be modified and, in fact, has two
different flavours in the application. A database key (Dkey) is a unique attribute
capable of identifying an object in the database key, while a human detectable key
(Hkey) is an attribute used in natural language to identify an object. These need not
be the same (although in our example they are), and great care is needed in the appli-
cation to turn Hkeys into Dkeys resolving ambiguity as we do so.

226 R. Cooper and S. Manson

One aspect of messages which is not specifically catered for is anything that con-
veys temporal information and, in order to achieve this, we would need to extend our
model in a manner analogous to the addition of gender. For many applications, tem-
poral information is of little or no importance, since they deal with time invariant
information. Returning to our literary example, for instance, the system handles the
sentences "The author is Jane Austen" and "The author was Jane Austen" equally
since they match the templates "The <attribute> is <<value>>." and "The <attribute>
was <<value>>." and, as these templates are both the same type, they both capture the
same information. This is acceptable in this instance since the two sentences are
synonymous in common parlance and because book authorship is invariant over time
and so past and present are taken to have the same meaning.

Where the information varies over time, the equivalence disappears. For instance,
"The Prime Minister is Tony Blair" and "The Prime Minister was Tony Blair." do not
have the same meaning. Furthermore, sentences with temporal information have
systematic ways of conveying that information – for instance, "Clement Attlee was
Prime Minister from 1945 to 1951" explicitly delimits a time period. The way we
could capture this information in the previous version of the application would be to
define an entity type PrimeMinister with attributes name, start date and end date and
then the system would cope with "Clement Attlee was a Prime Minister with start date
1945 and end date 1951." which requires an extremely verbose sentence mapping
onto a semantically poor information structure.

The work described here puts the extraction of temporal information onto a much
firmer footing by extending the data model to include a temporal aspect and by pro-
ducing a set of sentence templates and template types which can match temporal sen-
tences. The paper proceeds as follows. The next section motivates the work by de-
scribing an example domain and is followed by a sentence describing our temporal
model. The following section describes how the application had to be extended and
then provides a full worked example. The paper concludes with some ideas for fur-
thering the work.

2 Example

2.1 Background

To demonstrate the requirements for this work and to exemplify the complexity in-
volved, we sought a domain which uses time information in a variety of ways. We
needed to ensure: that the representation of both time instants and time periods was
required; that time periods could be discontinuous; that partitions of time were used;
that time was used both as an ordinary attribute and as one which essentially identifies
an entity (time stamping); and that the representation of various relationships between
time periods would be needed, including ordering and concurrency.

We chose as our information domain the reigns of British monarchs and the terms
of office of British Prime Ministers. This domain was chosen because it exhibited a
number of features:

1. It contained entities of the same type occupying different time periods – Prime
Ministers effectively partition the historical time domain we are using.

 Extracting Temporal Information from Short Messages 227

2. It contained references to events taking place at single moments of time – the entry
into parliament of a Prime Minister.

3. It contained entities that occupied multiple time periods – the terms of office of a
particular Prime Minister.

4. It contained entities occupying simultaneous time periods – monarch and PM.

We started by eliciting sentences from correspondents with which they would con-
vey the kinds of information we were looking for. After eliminating sentences which
contained extraneous information such as “George V’s wife was Queen Mary” and
sentences which were insufficiently definite “George reigned before Edward”, we
were left with a number of sentences including the following:

John Major was prime minister in 1993
George IV from 1820 – 1830
The prime minister in 1947 was Clement Attlee

Some of the messages string together several informative sentences, such as:

George III was king from 1760 to 1820. George II was king before him. Thomas
Pelham-Holmes was prime minister when George II was king. William Pitt the Elder
and William Pitt the Younger were Prime Minister when George III was king.

2.2 The Schema

The schema to capture this described three entity types as shown in Figure 1 Country is
an entity with a name, one or more monarchs and a prime minister, both of attributes of
Country being time varying.. A monarch has a name, a gender and a reign, while a
prime minister has a name and gender, a term of office and a date for entry into the
parliament. The names are single valued strings and the gender attributes are also single
valued and are identified specially in our model for the reasons given previously. The
others are time attributes. Each line in the schema describes the name and type of an

Database: Political History
Entity Type Attributes
Name Name Type Gen Dkey Hkey Card TV Ttype
Country name string n y y sv n n

 monarch Monarch y n n mv c n

 thePM PM y n n mv u n

Monarch name string n y y sv n n

 reign time n n n sv n pt

 gender gender n n n sv n n

PM name string n y y sv n n

 term time n n n mv n pt

 entparl time n n n sv n i

 gender gender n n n sv n n

Fig. 1. The Political History Schema

228 R. Cooper and S. Manson

attribute, whether it has gender, whether it is a database key or a human detectable key,
whether it is single valued or multi-valued and whether it is time varying and if it is
temporal, what kind of time object it is – see Section 3.2 for more on this.

The date of entry into parliament is a time instant attribute (Ttype=’i’) giving
added information about the PM, but semantically differing little from attributes such
as name or gender. However, term of office and reign are rather different kinds of
attribute. Their value is essential to the entity they are describing in the sense that the
entry of a person into the monarch table is only valid for the duration of the reign, and
the entry of a person into the PM table is only valid for their term of office. We
would therefore say that these two attributes identify their entities as timestamps [8].
In both these cases, the timestamps are periods (shown as Ttype=’pt), but there are
many examples of timestamps as instants. For instance, the time varying entity,
Olympic Champion, is time stamped to a particular year. We speak of the champion
of 1960 and so on.

2.3 Extracting Data

The technique which the original system uses to capture data uses sentence templates
to identify the sentence structure and then matches placeholders in the template with
text strings in the sentence. Contextual information is used to complete the set of data
necessary to generate an update. For instance, if the sentence “John Major was prime
minister.” was encountered in a reduced time-independent version of the schema with
one time invariant prime minister per country, this would be matched with the tem-
plate “<<value>> was <attribute>”. The object that the attribute belonged to would
be found from the context – in this case the country, “United Kingdom” – and the
update would effectively be “update Country set PrimeMinister = ‘John Major’ where
name = ‘United Kingdom’”.

When we add temporal information, we have a much more complex situation. The
sentence “John Major was prime minister in 1993” must be used to add date informa-
tion in the following way.

i) The sentence now matches the template “<<value>> was <attribute> in
<atime>”, where <atime> refers to a slot for a time instant.

ii) The context is examined to get the country “United Kingdom” as before.
iii) The PM, John Major, is sought and if not found, a new PM object is created

and added to the set of PMs for the United Kingdom.
iv) This now needs a time period to use as the term of office. In the sentence,

1993 is matched with <atime> which produces a time instant. This is used to
create a new time period whose start date is 1993 at the latest and whose end
date is 1993 at the earliest. We would hope for more messages extending the
period.

v) This time period is set as the value of term-of-office for this prime minister.

The matching process has to deal with various temporal values which are indicated
by different templates. Thus the sentence “George IV from 1820 – 1830” creates a
time period with different start and end points.

The second sentence of the pair “George III was king from 1760 to 1820. George II
was king before him.” must use the context to identify the meaning of “him”, before

 Extracting Temporal Information from Short Messages 229

creating a new monarch object whose reign is a time period ending in 1760 and which
is before the time period 1760-1820.

To sum up the extraction process must be able to identify time instants and time
period, to be able to define the end points of a period with more or less precision and
to be able to capture relationships between the temporal values.

3 The IE Temporal Data Model

3.1 Requirements for the Model

We seek to capture temporal information concerning assertions in the domain. We
require the ability to record temporal statements about the instant on which something
happened, such as the birth of a person, and about a period during which some prop-
erty held, such as the duration of a monarch's reign. The sentences we expect to cap-
ture include statements about instants, about something beginning, something ending
or about the relative occurrence of two events or time periods. For instance, we
would like to capture sentences such as “Harold Wilson was Prime Minister before
James Callaghan” or “Winston Churchill was Prime Minister at the same time that
George VI was king.”

There has been a lot of research into appropriate data models for temporal informa-
tion. We take most of our inspiration from the Interval-Extended Relational Model
(IXRM) of Lorentzos [8] and TSQL, the temporal extension to SQL of Navathe and
Ahmed [9]. IXRM extends the relational model with domains that record an interval,
where that interval may be spatial, temporal or any other value which has a start point
and an end point and which lies on a continuum. Using this, IXRM can hold cells
whose value is essentially is the whole of an interval from start to finish, e.g. from a
start time to an end time. Time instants are recorded as intervals with coincident start
and end points. By including time interval and time instant attributes, the database
can record the times at which the data in the rest of the tuple is valid – making IXRM
an example of a valid time database. Lorentzos also identifies thirteen ways in which
two intervals can be related which involve which starts first, which ends first, whether
the two overlap and if not, whether their start and end points meet.

TSQL extends SQL with comparison operators for comparing time intervals, the
ability to retrieve data according to timestamps, a special temporal ordering feature,
the ability to query the data a particular point in time and an extension to GROUP BY
to use temporal information to specify the groups.

Whereas, we are not querying the database, we are definitely interested in a data
model based on time intervals and are happy to accept that instants are a special case
of intervals. The sentences we are extracting data from express very much the same
conditions as the queries in TSQL. For instance, a TSQL query might include
“WHERE PM1.termOfOffice PRECEDES PM2 termOfOffice”, we would be looking
to understand “Harold Wilson was prime minister before James Callaghan” and cap-
ture it in very much the same form as the TSQL expression.

However, we do have some different requirements. Firstly, the information we will
have will be uncertain and, at any moment, incomplete, i.e. we might know the time
of an attribute relative to another temporal value, we might only know when a time

230 R. Cooper and S. Manson

periods starts, when it ends or we might know some instant or period within it. Sec-
ondly, the periods we are trying may be discontinuous. The terms of office of some
Prime Ministers – Disraeli, Gladstone and Wilson, for instance, consisted of more
than one period separated by gaps. Moreover, such data exhibits the unusual feature
that the addition of new information can lead to an overall reduction in data, since a
discontinuous period may become continuous by the addition of extra knowledge
filling in a gap. Thus Margaret Thatcher was PM from 1979 to 1983 and 1987-1990
is simplified to one period by the addition of the period between 1982, say, and 1988.

3.2 The Data Model

The original data model allows a simple database of entities to be described. A
schema consists of a set of entity types and these have attributes. Attributes have
either a scalar type or an entity type, and can be single- or multi-valued or unique.
Scalar domains include not only numbers, booleans and strings, but gender as well.

The revised model required no change to the entity structure but did require two
extra qualifiers for attributes: whether their values were time varying and what kind of
time value they were. Each attribute can be either invariant over time, varying with
only one value at any one instant, or varying but potentially with multiple values at
any one moment. This indicated by the TV column in Figure 1, with ‘n’ meaning
time invariant, ‘u’ meaning unique at any given point in time, and ‘c’ meaning poten-
tially having more than one value simultaneously.

There are four possible ways in which an attribute can represent a time value and
these are shown in Figure 1 in the Ttype column. The four values are:

‘i’: It represents an instant which is not used to identify the entity – e.g. date of
birth;

‘p’: It represents a period, also not used for identification purposes – e.g. time at
university;

‘it’: It represents an instant as a timestamp – e.g. an Olympic championship as
mentioned above; or

‘pt’: It can represent a period as a timestamp – holding any role in an organisation
will be an example of this.

To take examples from our domain as shown in Figure 1, the prime minister of a
country is a time varying attribute whose values are unique at a given instant. The
date of entry into parliament of the PM is an instant time valued attribute, not used to
identify the person. The term of office is a period which is used as a timestamp – i.e.
it will be usable in querying the database for the value of the Prime Minister attribute
of a country at a particular time. There is a relationship here between the two qualifi-
ers – a time varying attribute is either a scalar or an entity of a type which has one
timestamp attribute.

3.3 Temporal Operations on the Data

Underlying the schema is a number of classes which represent the various aspects of
the temporal information. On identifying temporal information in the message, these
are used to create data according to the schema. The main class are:

 Extracting Temporal Information from Short Messages 231

IETimePeriodSet holds a set of time periods. It has methods which provide defini-
tive information – set the start or end of a time period – and ones which are less pre-
cise – indicate that the period is after a particular time or that there is a gap in the time
period set.

IETimePeriod objects are the fundamental aspect of the information, since time in-
stants are merely time periods with coincident start and end times. A time period has
a start and an end point and methods to compare itself with other time periods in
terms of the five basic relationships managed by the system:

CAPS – The time period does not start until the other has ended.
CONCURS – The time period overlaps with the other period to some extent.
PRECEDES – The start point of this period is before the start point of the other.
SUCCEEDS – The end point of the period is after the end point of the other.
NON-CONCURS – Either the period is wholly before or wholly after the other

but we don’t know which.

IETime represents a single point of time which may not be known precisely. It
therefore can store possible minimum and maximum values.

IETimePoint is a precise moment in time, while IETimeLength represents a
duration.

Using these classes, the data model supports a number of operations:

i) setStart, setEnd and setDuration specify the detail of a period;
ii) concur and notConcur indicate if two periods coincide;
iii) setAfter, setBefore and setBetween indicate the temporal relationship between

two periods;
iv) setGap sets the duration between periods; and
v) setTime sets the value of a simple temoral attribute.

4 The Revised Application

The application required enhancement in a number of areas. Conceptually, the most
important areas were the extension of the template structure, the template type struc-
ture and the context together with the provision of a module to turn numerical strings
into numbers (“one year” is turned into ?/?/1, a temporal value representing an un-
known number of days and months and one year). The context was extended with a
current time period, permitting the interpretation of clauses such as “at the same
time”.

The template structure provides a method for determining the structure of the sen-
tences which can be recognised. They are strings containing words which must be in
the sentence (constants), placeholders for metadata terms in single angle brackets and
placeholders for data values in double angle brackets. Placeholders for meta-data
include ones for attributes and human keys. There are also placeholders for the vari-
ous kinds of pronoun – for instance, <spronoun> matches subject pronouns. This
structure only had to be extended with new placeholders for a point in time <atime>
and for a length of time <rtime>. For example:

In <<atime1>>, <<value1>> was still <attribute1>.

232 R. Cooper and S. Manson

matches with sentences such as “In 1901, Victoria was still queen.” Since Victoria is
one of the values of the attribute Monarch, the attribute is time varying and so can use
the time value to time stamp the data. The example bellows shows some more com-
plicated templates.

The template structure was more thoroughly extended to include temporal updates.
Whereas the original structure of a template type identified the information type that
would have been extracted by matching a template of that type (e.g. an attribute and
its value), and a set of SQL-like updates, the revised version added a different struc-
ture for temporal updates. Essentially the effect of a match is to create SQL-like
updates including those to set up a temporal attribute. The added temporal updates
add the ability to specify specific or relative information through calls to the
IETimePeriodSet methods – such setStart, setDuration or setAfter.

5 A Final Example

To complete the description, we present an example of the application in action, as it
processes a message. The message is:

Edward VII was king from 1901, one year before Arthur Balfour
was prime minister. Arthur Balfour became an MP in 1874. After
Arthur Balfour was Henry Campbell-Bannerman and then Herbert
Henry Asquith. Herbert Henry Asquith was prime minister before
George V was king in 1910. Herbert Henry Asquith was prime minis-
ter when George V was king in 1910.

The first sentence matches the template:

<<value1>> was <attribute1> from <atime1>, <rtime1> before
<<value2>> was <attribute2>

This extracts: value1 = ‘Edward VII’ and attribute1 = ‘king’

 atime1 = 1901, rtime1 = “one year” which becomes ?/?/1
 value 2 = ‘Arthur Balfour’ and attribute = ‘pm’.

This is tied to the template type which includes the following updates:

i) Update the current object setting attribute1 = value1 and attribute2=value2.
As these are both multi-valued, this amounts to adding them to the set if
they are not there and may involve creating new objects with new temporal
objects for the temporal attributes (null for instants, null start and end
points for periods).

ii) Set the start point for the time period attribute of <<value1>> to <atime1>.
iii) Set the time period attribute for <value1> to precede the time period attrib-

ute of <<value2>> by <rtime1>.

The effect of this is to ensure that monarch, Edward VII, and PM, Arthur Balfour,
both exist in the sets of monarchs and pms belonging to the United Kingdom. Then
the start date for the reign of Edward is set to 1901 and the start date of Balfour’s term
of office is 1902 by the addition of the one year.

 Extracting Temporal Information from Short Messages 233

The second sentence matches the template:

<<hkey1>> <attribute1> in <<atime1>>

This extracts: <<Hkey1>> = Arthur Balfour

 <attribute1> = “entparl” through the use of the synonym “became an MP”
 <atime1> = 1902

The template type here consists of updating <attribute1> of the data object indi-
cated by <Hkey1> to the time found in <atime1> - the effect of this being to set ent-
parl to 1874 for Arthur Balfour.

Briefly, sentence three matches “After <<value1>> was <<value2>> and then
<<value3>>” and this causes the times in office of the three prime ministers to be in
sequence. Sentence four matches “<<value1>> was <attribute1> before
<<value2>> was <attribute2> in <<atime1>>”. This ensures that Asquith and
George V are in the database, sets a concurrency relationship between their time peri-
ods, sets the start point for George’s reign and a precedes relationship on Asquith’s
term of office. The final sentence matches “<<value1>> was <attribute1> when
<<value2>> was <attribute2> in <<atime1>>”. This again confirms the two indi-
viduals in the database, sets concurrency between their periods and the date 1910.

6 Conclusions

We have described the extension of a simple information extraction application to
cope with temporal information. The application uses pattern matching to identify
sentences with templates which describe the structure of the sentence and where ex-
tracted data will be found. The original application coped with simple time invariant
assertions and the extension allows the extraction of both temporal attributes which
are themselves time invariant (such as date of birth) and of time varying data.

We took as our domain information about the monarchs and prime ministers of the
United Kingdom, both of which are time varying attributes of the country. To
achieve the extension, we had to build a sophisticate data model which captured time
instants and (possibly discontinuous) time periods. It had to cope both with creating
new objects and new time periods, but also with updates which are rather more com-
plex than for time invariant data. New values did not merely replace old ones, but
modified them, perhaps merging two time periods for instance. Relationships had
also to be captured which indicated temporal ordering.

The major contribution of the work was the development of the data model. No
model of how to handle a mixture of absolute and relative, precise and imprecise
temporal data was available at the start of the undertaking. However, this project
should be viewed as a good start with a number of improvements necessary.

Firstly, of course, we cannot hope to have captured all of the ways in which Eng-
lish speakers use temporal information in short text messages – we have only 35 tem-
plates. This requires a more thorough investigation of messages in practice than has
so far been possible. A separate project has attempted to learn sentence templates, but
this far from complete. Only a few of the many ways that a date or time may be writ-
ten in a message have been implemented. This is a more extensive version of the
problem that all database systems face when allowing users to enter and display dates

234 R. Cooper and S. Manson

and times, typified by the use of TO_CHAR and TO_DATE in Oracle. However, we
have demonstrated that complex temporal information can be extracted from natural
language in a systematic and extensible fashion.

The technique of extending the data model is itself of interest. Essentially what we
have achieved is to capture a domain independent aspect of natural language in a
structure which describes the semantics. A separate paper [11] considers this more
extensively in the context of other domain independent aspects of language. Starting
with the treatment of gender and time, that paper continues with proposals for dealing
with negation, uncertainty and inference and this seems to lead to a novel account of
semantics in natural language in which syntax plays an unusually minor role.

References

1. Cardie, C.: Empirical Methods in Information Extraction. AI Magazine 18(4), 1–17 (1997)
2. Gaizauskas, R., Wilks, Y.: Information Extraction: Beyond Document Retrieval. the Jour-

nal of Documentation 54(1), 1–34 (1998)
3. Cooper, R., Ali, S.: Extracting Data from Short Messages, Natural Language Processing

and Information Systems. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005.
LNCS, vol. 3513, pp. 388–391. Springer, Heidelberg (2005)

4. Cooper, R., Ali, S.: Extracting Data from Personal Text Messages, Technical Report,
Computing Science, University of Glasgow (2006)

5. Kang, I., Na, S., Lee, J., Yang, G.: Lightweight Natural Language Database Interfaces.
Meziane & Métais, 76–88 (2004)

6. Vargas-Vera, M., Dominque, J., Kalfoglou, Y., Motta, E., Buckingham-Schum, S.: Tem-
plate-driven information extraction for populating ontologies. In: Proceedings of IJCAI’01
Workshop on Ontology Learning, Seattle, WA, USA (2001)

7. Miller, G.: WordNet: A Lexical Database for English. Communications of the
ACM 38(11), 39–4 (1995)

8. Lorentzos, N.: The Interval-extended Relational Model and Its Application to Valid-time
Databases, in [10], pp. 67–91 (1993)

9. Navathe, S., Ahmed, R.: Temporal Extensions to the Relational Model and SQL, in [10],
pp. 92–109 (1993)

10. Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A., Snodgrass, R.: Temporal Data-
bases Theory, Design And Implementation, Benjamin Cummings, 1992 (1993)

11. Cooper, R.: A Strategy for Using More of the Language in Extracting Information from
Short Messages (submitted to NLDB) (2007)

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 235–246, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Max-FTP: Mining Maximal Fault-Tolerant Frequent
Patterns from Databases

Shariq Bashir and A. Rauf Baig

National University of Computer and Emerging Sciences, Islamabad, Pakistan
shariq.bashir@nu.edu.pk, rauf.baig@nu.edu.pk

Abstract. Mining Fault-Tolerant (FT) Frequent Patterns in real world (dirty)
databases is considered to be a fruitful direction for future data mining research.
In last couple of years a number of different algorithms have been proposed on
the basis of Apriori-FT frequent pattern mining concept. The main limitation of
these existing FT frequent pattern mining algorithms is that, they try to find all
FT frequent patterns without considering only useful long (maximal) patterns.
This not only increases the processing time of mining process but also generates
too many redundant short FT frequent patterns that are un-useful. In this paper
we present a novel concept of mining only maximal (long) useful FT frequent
patterns. For mining such patterns algorithm we introduce a novel depth first
search algorithm Max-FTP (Maximal Fault-Tolerant Frequent Pattern Mining),
with its various search space pruning and fast frequency counting techniques.
Our different extensive experimental result on benchmark datasets show that
Max-FTP is very efficient in filtering un-interesting FT patterns and execution
as compared to Apriori-FT.

Keywords: Fault Tolerant Frequent Patterns Mining, Maximal Frequent Pat-
terns Mining, Bit-vector Representation, and Association Rules.

1 Introduction

Mining frequent patterns from transactional or relational datasets with support greater
than a certain user defined threshold, plays an important role in many data mining
applications such as intrusion detection, finding gene expression patterns, web log
patterns etc. In recent years, a number of algorithms have been proposed for efficient
mining of such frequent patterns, on the basis of Apriori property proposed by
Agrawal et al. [1]. These algorithms take a transactional dataset and support threshold
(min_sup) as an input and output those exact matching frequent patterns which
contain support greater than min_sup, with assuming that the dataset is very well pre-
processed and noise free. However, the real world datasets are dirty and contain miss-
ing and noisy values. In such situations, users face difficulties in setting this min-sup
threshold to obtain their desired results. If min-sup is set too large, then there may be
a small number of frequent patterns, which does not give any desirable result. If the
min-sup is set too small, then there may be many redundant short un-useful frequent
patterns, which not only take a large processing time for mining but also increase the

236 S. Bashir and A.R. Baig

complexity of filtering un-interesting frequent patterns. In both situations, the ultimate
goal of mining interesting frequent patterns is undermined.

For handling such situations, J. Pei at el. in [6] introduced a new application of
finding only interesting frequent patterns in a real world dirty datasets, instead of
finding exact patterns. This approach is known as fault-tolerant (FT) frequent pattern
mining. The problem of mining all FT frequent patterns from a dirty transactional
dataset can be considered from the following two conditions [6].

1. Under user defined fault tolerance factor δ, a pattern X with cardinality
greater than δ is called a FT frequent pattern, if it appears in at least k num-
ber of FT-transactions. A transaction t is called a FT-transaction under fault
tolerance factor δ, if it contain at least |X|-δ number of items of X. The num-
ber k is called the frequency of X which must be greater or equal than the
minimum FT support threshold (min_supFT).

2. Each individual single item i of X must be appeared in at least l number of
FT-transaction of X, where l is called the minimum item support threshold
under fault tolerance factor δ (item_supFT

δ).

For example, with min_supFT = 3 and item_supFT
δ = 2, the pattern 〈A, B, C, D〉 is a

FT frequent pattern under fault tolerance factor δ = 1, since 3 out of 4 items are pre-
sent in FT-transaction T1, T3 and T5 which qualifies min_supFT threshold and each
single item A, B, C and D is present in at least 2 transactions with qualifies
item_supFT

δ threshold. In [6] they also proposed an Apriori-FT algorithm for finding
all type of such patterns. The Apriori-FT was extended from the Apriori approach, in
which downward closure property is used for mining FT frequent patterns. Similar to
Apriori algorithm, Apriori-FT applies a bottom-up search that enumerates every sin-
gle FT frequent pattern. This implies that in order to produce a FT frequent pattern of
length l, it must produce all 2l of its subsets, since they too must be frequent FT. This
exponential complexity fundamentally restricts Apriori-FT like algorithms in discov-
ering only useful interesting FT frequent patterns in a reasonable time limit. More-
over, mining FT frequent patterns are very complex than mining all frequent patterns,
in terms of both search space exploration and frequency counting of candidate pat-
terns. In frequent pattern mining, a candidate pattern X is declared to be frequent, by
checking its frequency in only one dataset scan. While in FT frequent pattern mining,
a number of dataset scans are needed to declare a candidate FT pattern X as frequent,
which depends on the cardinality of pattern X. In addition to frequency counting, most
of the search space pruning techniques, such as parent equivalence pruning (PEP) and
2-Itemset Pair of frequent pattern mining can not be applied on mining FT frequent
patterns for filtering infrequent FT patterns.

To overcome these limitations, in this paper we have introduced a novel maximal
or long FT frequent pattern mining (MFPFT) concept. Similar to maximal frequent
pattern mining [3], a pattern X is called a maximal FT frequent pattern, if it has no
superset that is also a maximal frequent FT pattern. Mining only MFPFTs has many
advantages over mining all FT frequent patterns. Firstly, long patterns are very useful
in some very important data mining applications such as biological data from the field
of DNA and protein analysis and clustering. Secondly, different search space pruning
techniques such as FHUT and HUTMFI (Section 5) can be also applied easily on

 Max-FTP: Mining Maximal Fault-Tolerant Frequent Patterns from Databases 237

mining MFPFTs algorithm, which dynamically prune the irrelevant search space dur-
ing mining process. Thirdly, we know MFPFTs are supersets of all FT frequent pat-
terns; therefore Max-FTP output implicitly and concisely represents all FT frequent
patterns. Finally, a single dataset scan can collect all the FT frequent patterns, once
we have MFPFTs.

2 Problem Definition

To consider the problem of mining MFPFTs, let us take a sample transactional dataset
of Table 1. It consists of 8 transactions with 12 different items. Let us take the
min_supFT = 3 and item_supFT

δ = 2 with fault tolerance factor δ = 1. Since some of the
items contain frequency less than item_supFT

δ = 2. Therefore, according to subset-
superset property of Apriori-FT [6], these items can be safely removed from the data-
set transactions and list of single frequent FT patterns, before starting the actual FT
mining algorithm. Column 3 of the Table 1 dataset shows the modified representation
of actual dataset transactions, which consist of only those items which have frequency
greater than item_supFT

δ.
The search space of FT frequent pattern mining can be considered as a lexico-

graphical order [7], where root node contains an empty pattern, and each lower level k
contains all the k-patterns. Figure 1 shows the search space of Table 1 dataset, where

Table 1. A sample transactional dataset with 8 transactions and 12 items

Transaction ID Items Frequent Items
T1 A, B, C, I A, B, C

T2 B, C, E, J, K B, C, E
T3 A, C, D, L A, C, D
T4 A, C, E, G A, C, E
T5 A, B, C A, B, C
T6 D, E D, E
T7 D, E D, E
T8 D, E D, E

each node is composed of head and tail elements. Head denotes the FT frequent pat-
tern of that node, and tail consists of those items which are possible extensions of new
candidate FT patterns. For example node P in Figure 1 contains a head 〈A, B, C〉 and
tail 〈D, E〉, which generates 2 child nodes or candidate FT patterns: node 〈A, B, C, D〉
and node 〈A, B, C, E〉. This FT frequent pattern mining search space can be traversed
using either depth-first-search (DFS) or breadth-first-search (BFS) approach.

The problem of mining FT frequent patterns can be considered as a finding of cut
in the search space, where the patterns above the cut are frequent FT and patterns
below the cut denote infrequent FT. While the problem of mining MFPFTs is to mine
only those frequent FT patterns above the cut, which are not subset of any other fre-
quent FT pattern. For example the node S1 with head 〈A, B, C, D〉 , node S2 with head
〈A, B, C, E〉 and node S3 with head 〈D, E〉 in Figure 1 are those patterns which are not
subset of any other frequent FT pattern.

238 S. Bashir and A.R. Baig

Node S3
Node S2 Node S1

Node P

Frequent FT Cut

Fig. 1. The FT Search Space of Table 1 dataset with min_supFT = 3 and item_supFT
δ = 2 under

fault tolerance factor δ = 1

To decrease the processing time of mining useful FT frequent patterns, different
search space pruning techniques can also be applied during MFPFTs mining on the
basis of known MFPFTs list. The known MFPFTs list at any node n consists of only
those maximal FT patterns which are discovered priori the traversal of n. For example
in Table 1 with min_supFT = 3, item_supFT

δ = 2 and fault tolerance factor δ = 2. Once
a pattern 〈A, B, C, D, E〉 is known to be MFPFT, then using this information the search
space consisting of sub trees 〈A, B, C, E〉, 〈A, B, D〉, 〈A, B, E〉, 〈A, E〉, 〈A, D〉, 〈A, E〉,
〈B〉, 〈C〉, 〈D〉 and 〈E〉 can be safely pruned away. This is because they are all subsets of
known MFPFT 〈A, B, C, D, E〉. Where, a pure Apriori-FT like algorithm will have to
done extra work and will traverse and generate these many short redundant FT fre-
quent patterns.

3 Related Work

Mining FT frequent patterns in a real world dirty datasets has remained as a central
core of attention in last couple of years. The basic concept behind FT frequent pattern
mining is to discover more general and interesting patterns instead of finding exact
frequent patterns. J. Pei et al. in [6] proposed an Apriori like FT pattern mining algo-
rithm. Apriori-FT uses a complete, bottom up search, with a horizontal layout and
prune away infrequent FT patterns using anti-monotone Apriori-FT property heuris-
tic: if any length k FT pattern is not frequent, then all of its length (k+1) supersets will
be also infrequent. The major weakness of Apriori is its difficulty in mining long FT
patterns. For example, to find a frequent FT pattern of X = {1,…, 200} items. Apriori-
FT has to generate-and-test all candidate 2200 FT patterns.

J. L. Koh et al. in [4] proposed their VB-FT-Mine FT patterns mining algorithm. In
their approach, FT appearing vector are designed to represent the distribution of the
candidate FT patterns under fault tolerance factor δ using bit-vector representation
approach. VB-FT-Mine algorithm applies DFS traversal to generate candidate FT
patterns. The major feature of VB-FT-Mine is its fast frequency counting operation.

 Max-FTP: Mining Maximal Fault-Tolerant Frequent Patterns from Databases 239

The algorithm decides quickly that, whether a candidate FT pattern is frequent or
infrequent by performing bitwise operations on appearing vectors.

4 Max-FTP: Algorithmic Description

In this section, we describe our maximal frequent FT pattern mining algorithm Max-
FTP with its various techniques used for search space pruning and performance
improvements. For FT pattern representation at any node, in Max-FTP we use the
vertical bit-vector representation approach. The major advantage of using vertical bit-
vector approach over any other pattern representation approach is that, it is more
efficient in pattern frequency counting. Since the frequency of any candidate FT pat-
tern can be obtained by performing the bitwise-AND operations on head and tail bit-
vectors. Therefore, on a processor which supports 32-bits per AND operation, there
32 transactions are checked for support (frequency) counting in only one bitwise-
AND operation. This optimizes the candidate FT pattern frequency counting cost with
a factor of 1/32. Firstly, we describe a simple DFS traversal algorithm with no prun-
ing. Then, we use this algorithm to motivate the pruning and dynamic reordering of
tail items in section 5.

Max_FTP_SimpleDFS (Node n)

1. for each item X in n.tail
2. m.tail = n.tail X
3. m.tail = n.tail – X
4. n.tail = n.tail – X
5. if (m.head is frequent)
6. Max_FTP_SimpleDFS (m)

 7. if (n is a leaf and n.head in not in list (known MFPFTs))
8. Add n.head in (known MFPFTs)

Fig. 2. Pseudo code of Max-FTP with simple DFS traversal

4.1 Max-FTP with Simple DFS Traversal

In a simple DFS traversal we generate the candidate FT patterns by following simple
lexicographical order [7]. At any node n, the candidate FT patterns or child nodes of n
are generated by performing join operation on n’s head pattern with each item of n’s
tail, and checked for frequency counting. If the frequency of candidate FT pattern {n’s
head ∪ n’s tail item} is less than min_supFT or the frequency of any single item of
pattern {n’s head ∪ n’s tail item} is less than item_supFT

δ. Then we can stop by the
Apriori-FT principle, since the superset of any infrequent FT pattern will be also
infrequent FT. If all of the candidate FT patterns of any node are found to be infre-
quent, then that node is considered to be a candidate maximal FT frequent pattern. To
check whether the current candidate maximal FT pattern X is not subset of any known
MFPFT, we must check its maximality in known MFPFTs list. If none of the known
MFPFT is superset of this candidate pattern X, then X is considered to be a valid

240 S. Bashir and A.R. Baig

MFPFT pattern and added in the known MFPFTs list. The set of all patterns in known
MFPFTs list denotes the required long or maximal frequent FT patterns. Figure 2
shows the pseudo code of Max-FTP with simple DFS traversal.

4.2 Dataset Representation and Fast Frequency Counting

As introduced earlier, in Max-FTP we use the vertical bit-vectors for FT pattern rep-
resentation at any node. In contract to tradition bit-vectors representation used in [2],
Max-FTP associates more than one bit-vectors at each node for FT pattern representa-
tion, depending on the size of fault tolerance factor δ. The first bit-vector at any node
n represents FT transactions containing pattern P of node n under fault tolerance fac-
tor δ, which is called as bitmap(n). This bit-vector representation is almost similar to
pattern representation that was used in [4]. In bitmap(n) there is one bit for each trans-
action of the dataset. If the pattern P of node n does not contain a FT transaction at
position j under fault tolerance factor δ. Then the y bit of bitmap(n) is set to 0, other-
wise to 1.

In addition to the representation of FT transactions containing pattern P of any
node n under fault tolerance factor δ, we also have to count the number of items of
pattern P that are not present at any transaction position j. For example in Figure 1,
the pattern 〈A, B, C, E〉 at node S1 does not contain item 〈E〉 at transaction position 1
and 5, so the count of missing items must be 1 at these position. In Max-FTP we use
the FT bit-vectors FT-bitmap1(n), FT-bitmap2(n), …., FT-bitmapδ(n) for this purpose.
If at any node n, the pattern P does not contain its k≤δ items at transaction position j.
Then the bits at position j of exactly k FT bit-vector (FT-bitmap1(n),…., FT-
bitmapk(n)) are set to 1, which indicates that exactly the k items of pattern P are not
present at this position.

Candidate FT Pattern Frequency Counting. Before considering, how Max-FTP
count the frequency of any candidate FT pattern at any node n by performing the
bitwise operations on n’head and n’tail item bit-vectors, let us consider the following
definition.

Definition 1. Let n’ = n∪{x} denotes a candidate FT pattern at node n, where x is the
tail item and n is the frequent FT pattern. A transaction T contains FT under fault
tolerance factor δ with pattern n’, if at least one of the following two properties holds.

1. T contains FT under fault tolerance factor (δ-1) with pattern n, or
2. T contains x and FT under fault tolerant factor (δ) with pattern n’.

Candidate FT pattern frequency counting using bit-vectors. The property 1 of
definition 1 can be obtained by performing bitwise-AND operations on bit-vectors
bitmap(n) with bitmap(x). While the property 2 of definition 1 can be obtained by
performing bitwise-OR operations on bit-vectors bitmap(n∪x) with FT-
bitmap1(n),…,FT-bitmapδ(n). The number of ones in the resulting bit-vector, after
performing the bitwise-AND and bitwise-OR operations of property 1 and property 2
of definition 1 denotes the frequency of candidate FT pattern n’ = n∪{x}.

 Max-FTP: Mining Maximal Fault-Tolerant Frequent Patterns from Databases 241

Single Item support checking. The procedure that we describe above calculates only
the frequency of FT transactions contain pattern n’ under fault tolerance factor δ. If
this frequency is greater than min_supFT, then the frequency of each individual item i
of pattern n’ can be calculated by performing bitwise-AND operations on bit-vectors
bitmap(n’) with bitmap(i). While, the number of ones in the resulting bit-vector de-
notes the frequency of item i in pattern n’, which should be greater than item_supFT

δ,
otherwise the pattern is declared as infrequent FT pattern.

5 Improving Max-FTP Performance

The depth-first-search traversal algorithm that we present in section 4.1 is ultimately
no better than the Apriori-FT algorithm. Since exactly the same number of candidate
FT patterns are generated and checked for frequency counting. Therefore, for gaining
performance, in Max-FTP we used two search space pruning techniques name as
FHUT (frequent head union tail) and HUTMFPFT (head union tail maximal frequent
FT pattern). In addition to the two search space pruning techniques, Max-FTP also
reorders the tail items using dynamic reordering heuristic. This heuristic was first
used in [3], which keeps the search space as small as possible.

FHUT (Frequent Head Union Tail). In [3], it was observed that the longest pattern
that can be mined using DFS traversal is the head ∪ {all items of tail}. If at any node,
it has been known that the entire head ∪ {all items of tail} or left most sub tree is
found to be frequent. Then a substantial amount of performance can be obtained by
pruning rest of the sub tree of head ∪ {all items of tail}. In Max-FTP we track this
information at each node by using a boolean flag, which determines whether the left
most item of tail is frequent or infrequent FT. If all of the left most childs of any node
n’s subtee is found to be frequent FT, or in other words the left most path of the node
n’s subtee is found frequent, then the pruning can be obtained under the concept of
FHUT.

HUTMFPFT (Head union Tail Maximal Frequent FT Pattern). Before checking
the frequencies of any candidate FT patterns at node n, if it is found that the entire
head ∪ {all items of tail} is already a subset of any known MFPFT. Then by following
the Apriori-FT property [6], we can safely prune away the entire sub tree of head ∪
{all items of tail}. In Max-FTP we found that a substantial amount of performance can
be obtained by using this HUTMFPFT pruning technique.

Dynamic Reordering of Tail Items. If any candidate FT pattern y at any node n is
found to be frequent, then according to the Apriori-FT property all the supersets of y
will be also infrequent FT and can be safely pruned away. For achieving this look
ahead pruning technique, in Max-FTP we calculate the frequency of all the tail items
of node n, before traversing any of them. Then by using this tail items frequencies
information, Max-FTP reorders the node n tail items and removes all those which are
found infrequent FT. Obviously, in one side this creates an additional burden of
counting frequencies of node n’s tail items by two times. First, at the time of reorder-
ing tail items and second, at the time of creating bit vectors of bitmap(n ∪ tail item)

242 S. Bashir and A.R. Baig

Max_FTP_withPruning (Node n, FHUT_Flag)

1. HUT = n.head n.tail
2. if (HUT is in list (known (known MFPFTs))
3. stop searching and return

 4. remove infrequent items from n.tail and recorder them by increasing frequency.
5. for each item X in n.tail
6. m.tail = n.tail X
7. m.tail = n.tail – X
8. n.tail = n.tail – X

 9. FHUT_Flag = true if X is the left most item of n.tail
10. if (m.head is frequent)
11. Max_FTP_SimpleDFS (m)

 12. if (n is a leaf and n.head in not in list (known MFPFTs))
13. Add n.head in (known MFPFTs)
14. if (HUT_Flag and all extensions are frequent)

 15. stop exploring this subtree and go back up tree to where FHUT_Flag was
changed to True.

Fig. 3. Pseudo code of Max-FTP with search space pruning techniques

and FT-bitmap1(n ∪ tail item), …,FT-bitmapδ(n ∪ tail item). However, on the other
side most of the infrequent FT nodes are pruned away using this look ahead pruning
technique.

In addition to the removing of infrequent items from node n’s tail, Max-FTP also
arranged the frequent tail items by increasing support. This heuristic was first used by
Bayardo in [3], which keeps the search space as small as possible. Figure 3 shows the
pseudo of Max-FTP with embedded search space pruning techniques and dynamic
reordering heuristic.

6 Candidate Maximal FT Pattern Maximality Checking

In our opinion efficient mining of MFPFTs depend upon two main factors. First, at the
search space traversal approach and using different search space pruning techniques.
Second, at the maximal candidate FT pattern maximality (superset) checking ap-
proach which takes O(known MFPFTs) in worst case. Let list (known MFPFTs) be the
currently known maximal FT frequent patterns. To check whether pattern P is subset
of any known MFPFT pattern. We must perform a maximal superset checking, which
takes O(MFPFTs) in worst case. In Max-FTP for speeding up the cost of superset
checking, we used the local maximal frequent pattern (LMFI) superset checking ap-
proach with the name (LMFPFT) [5]. LMFPFT is a divide and conquer strategy which
contains only those maximal FT frequent patterns at any node n, in which n’s head
appears as a prefix.

 Max-FTP: Mining Maximal Fault-Tolerant Frequent Patterns from Databases 243

Definition 1. Any MFPFT pattern P can be a superset of P∪ subsets(P) or P∪ freq_ext(P).
The set of P∪freq_ext(P) is called the LMFPFT with respect to P, denoted as LMFPFT

p. To
check whether P is a subset of any existing MFPFTs, we can checked them in only
LMFPFT

p, which takes O(LMFPFT
p) cost which is smaller than O(MFPFTs). If

LMFPFT
p is empty, then P will be our new maximal FT pattern, otherwise it is the

subset of LMFPFT
p.

6.1 Child (LMFPFT) Construction and Representation

Max-FTP used vertical bitmap representation approach for LMFPFT representation. In
a vertical bitmap, there is one bit for each item of known maximal frequent FT pat-
tern. This is the same concept as we have described for candidate FT pattern represen-
tation in section 4.2. If the pattern P at node n is the subset of any existing known
maximal FT pattern at position j, then the bit j of bitmap(LMFPFT

p) is set to one; oth-
erwise zero.

The LMFPFT of tail item X at node n with pattern P (n’s head) can be constructed
simply by taking bitwise-AND of bitmap(LMFPFT

p) with bitmap(X in the known
maximal frequent FT pattern vertical bitmap representation).

bitmap(LMFPFT
(P∪X)) = bitmap(LMFPFT

p) bitwise-AND bitmap(X in the
known maximal frequent FT vertical bitmap representation).

7 Experiments

We performed 3 experiments to evaluate the performance of Max-FTP. In first ex-
periment we compare the number of FT frequent patterns mine from the two different
algorithms Apriori-FT and Max-FTP. The second experiment compares the running
time of Max-FTP and Apriori-FTP. Finally, the effectiveness of different components
of Max-FTP is evaluated in third experiment. All the source code of Max-FTP and
Apriori-FT is written in C language. The experiments are performed on 3.2 GHz proc-
essor with main memory of size 512 MB, running windows XP 2005 professional.
For experiments, we used the benchmark datasets available at http://
fimi.cs.helsinki.fi/data/. These datasets are frequently used in many frequent pattern
mining algorithms. Unfortunately, due to lack of space we could not show our ex-
periments that we have performed on all the available datasets, therefore, we select
the three best datasets from different sparse, dense and large categories. Table 2
shows the description of our experimental datasets.

Table 2. Datasets use in our experimental results

Dataset Items Average Length Records
BMS-POS 1658 7.5 515,597
Mushroom 119 23 8,124
Kosarak 20,753 8.1 900,000

244 S. Bashir and A.R. Baig

 min_supFT = 16000, = 1 min_supFT = 2400, = 1 min_supFT = 2000, = 2

0

2000

4000

6000

8000

10000

12000

14000

8000 9200 10400 11600 12800 14000

F
T

 P
a

tt
e

rn
s

0

50000

100000

150000

200000

250000

1300 1450 1600 1750 1900 2050 2200

F
T

 P
a

tt
e

rn
s

0

50000

100000

150000

200000

250000

300000

350000

450 520 590 660 730 800 870 940

F
T

 P
a

tt
e

rn
s

 item_supFT
 item_supFT item_supFT

 (a) BMS-POS (b) Mushroom (c) Kosarak

Fig. 4. Number of FT patterns mines using Max-FTP and Apriori-FT algorithms

Experiment 1. Figure 4 shows the number of FT frequent patterns mined by the two
algorithms Apriori-FT and Max-FTP with different min_supFT, item_supFT

δ and δ
thresholds. As clear from Figure 4, when the values of these thresholds decreases, the
gap between number of useful FT frequent patterns mined with maximal and all FT
frequent pattern mining algorithms becomes wider. In our experiments we found that
as the average transactional length of dataset increases Max-FTP performs more well
behaved as compared to Apriori-FT, since it mines only long pattern instead of small
redundant patterns.

 min_supFT = 16000, = 1 min_supFT = 2400, = 1 min_supFT = 2000, = 2

1

10

100

1000

10000

100000

1000000

8000 9200 10400 11600 12800 14000

T
im

e
 (

s
e

c
)

1

10

100

1000

1300 1420 1540 1660 1780 1900 2020 2140

T
im

e
 (

s
e

c
)

1

10

100

1000

10000

100000

450 524 598 672 746 820 894 968

T
im

e
 (

s
e

c
)

 item_supFT
 item_supFT item_supFT

 (a) BMS-POS (b) Mushroom (c) Kosarak

Fig. 5. Exectuion Time of Max-FTP and Apriori-FT on different FT thresholds levels

Experiment 2. In this experiment, we evaluate the performance of execution time of
both algorithms with different min_supFT, item_supFT

δ and δ thresholds. As clear from
Figure 5, the Max-FTP outperforms the Apriori-FT algorithm on almost all threshold
levels, due to its effective search space pruning and frequency counting techniques.
The Apriori-FT lacks of these effective search space pruning techniques; therefore, a
much large set of candidate FT patterns are generated in order to build the complete
set of frequent FT patterns. In experiments we found that on sparse datasets allowing

 Max-FTP: Mining Maximal Fault-Tolerant Frequent Patterns from Databases 245

more noise (δ) and smaller item_supFT
δ threshold in Apriori-FT results millions of

frequent FT patterns; but consequently, more candidate FT patterns are explored, and
computational cost increases exponentially with respect to the dimensionality of the
patterns. While, Max-FTP with a very high rate of δ and small threshold values of
min_supFT and item_supFT

δ generates only useful interesting maximal frequent FT
pattern in a very small amount of processing cost.

min_supFT = 16000, = 1 min_supFT = 2400, = 1

1

10

100

1000

8000 8800 9600 10400 11200 12000 12800 13600 14400

T
im

e
 (

s
e
c
)

Max-FTP
Max-FTP (w/o FHUT)
Max-FTP (w/o HUTMFP)
Max-FTP (w/o LMFP)
Max-FTP (w/o dynamic reordering)

1

10

100

1000

1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

T
im

e
 (

s
e
c
)

Max-FTP
Max-FTP (w/o FHUT)
Max-FTP (w/o HUTMFP)
Max-FTP (w/o LMFP)
Max-FTP (w/o dynamic reordering)

 (a) BMS-POS (b) Mushroom

Fig. 6. Performance analysis of Max-FTP components on BMS-POS and Mushroom datasets

Experiment 3. In this experiment, we present a full analysis of each component of
Max-FTP algorithm. There are three types of search space pruning techniques used to
trim the tree: FHUT, HUTMFPFT and dynamic reordering (of tail items). Moreover,
LMFPFT is used for fast maximal superset checking. Figure 6 shows the effects of
each component of Max-FTP on Mushroom (dense) and BMS-POS (sparse) datasets.
As clear from results, each component yields some saving in running time, but
LMFPFT is more effective than other techniques. The effect of FHUT and HUTMFPFT

is more encouraging on dense dataset (Mushroom) than sparse (BMS-POS) dataset;
due to small number of items and larger average transactional length. The advantage
of dynamic reordering is more effective on sparse dataset (BMS-POS) than dense
dataset (Mushroom). Since most of the infrequent tail items are pruned earlier at
lower level nodes of search space.

8 Conclusion

Mining fault tolerant frequent patterns in a real world dirty datasets is considered to
be a fruitful direction for future data mining research. Previous FT frequent patterns
mining algorithms such as Apriori-FT, generates not only long (interesting) FT pat-
terns but also their many redundant short subset (un-useful) patterns. This not only
increases the processing time of pattern mining process but also increases the size of
rules. In this paper, we introduce a new concept of mining only maximal (long) fre-
quent FT patterns. For mining such long patterns, we present a maximal FT pattern
mining algorithm called Max-FTP with its various search space pruning techniques
and fast frequency counting of candidate maximal FT pattern. Our different results on

246 S. Bashir and A.R. Baig

benchmark datasets show that Max-FTP mines not only a small number of interesting
frequent FT patterns as compared to Apriori-FT, but it is also efficient in term of
execution due to limited number of candidate FT patterns generation.

References

[1] Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. Int’l
Conf. Very Large Data Bases, pp. 487–499 (September 1994)

[2] Burdick, D., Calimlim, M., Gehrke, J.: Mafia: A maximal frequent itemset algorithm for
transactional databases. In: Proc. of ICDE Conf, pp. 443–452 (2001)

[3] Bayardo, R.J.: Efficiently mining long patterns from databases. SIGMOD, 85–93 (1998)
[4] Koh, J.L., Yo, P.: An Efficient Approach for Mining Fault-Tolerant Frequent Patterns

based on Bit Vector Representations. In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.)
DASFAA 2005. LNCS, vol. 3453, pp. 17–20. Springer, Heidelberg (2005)

[5] Gouda, K., Zaki, M.J.: Efficiently mining maximal frequent itemsets. In: ICDM, pp. 163–
170 (2001)

[6] Pei, J., Tung, A.K.H., Han, J.: Fault-Tolerant Frequent Pattern Mining: Problems and
Challenges. In: The proceedings of ACM-SIGMOD Int. Workshop on Research Issues on
Data Mining and Knowledge Discovery (DMKD’01) (2001)

[7] Rymon, R.: Search through Systematic Set Enumeration. In: Proc. Of Third Int’l Conf. On
Principles of Knowledge Representation and Reasoning, pp. 539–550 (1992)

A New Approach for Distributed Density Based
Clustering on Grid Platform

Nhien-An Le-Khac, Lamine M. Aouad, and M-Tahar Kechadi

School of Computer Science and Informatics,
University College Dublin, Dublin 4, Ireland

{Nhien-An.Le-Khac,Lamine.Aouad,Tahar.Kechadi}@ucd.ie
http://www.csi.ucd.ie/

Abstract. Many distributed data mining DDM tasks such as distributed
association rules and distributed classification have been proposed and
developed in the last few years. However, only a few research concerns
distributed clustering for analysing large, heterogeneous and distributed
datasets. This is especially true with distributed density-based cluster-
ing although the centralised versions of the technique have been widely
used fin different real-world applications. In this paper, we present a new
approach for distributed density-based clustering. Our approach is based
on two main concepts: the extension of local models created by DBSCAN
at each node of the system and the aggregation of these local models by
using tree based topologies to construct global models. The preliminary
evaluation shows that our approach is efficient and flexible and it is ap-
propriate with high density datasets and a moderate difference in dataset
distributions among the sites.

Keywords: distributed data mining, distributed clustering, density-
based, large dataset, tree topology.

1 Introduction

Today a deluge of data are collected from not only science fields but also indus-
try and commerce fields. Massive amounts of data that are being gathered and
stored in different sites. In this context, distributed data mining (DDM) tech-
niques have become necessary for analyzing these large and multi-dimensional
datasets. Actually, in order to tackle large, graphically distributed, high dimen-
sional, multi-owner, and heterogeneous datasets, some projects have just been
started such as Knowledge Grid[2], Grid Miner[1] and ADMIRE[12]. The last
project is a new DDM framework which is being developed in the Department
of Computer Science at University College Dublin. ADMIRE is not only a plat-
form based on P2P-Grid[5] infrastructure for implementing DDM techniques
but also it provides new distributed algorithms for exploring very large and dis-
tributed datasets. The first step of the development of these algorithms concern
distributed clustering techniques that have few of researches by comparison with
distributed association rules and distributed classification.

R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 247–258, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

248 N.-A. Le-Khac, L.M. Aouad, and M-T. Kechadi

There are two major strands of research into distributed clustering: parallel
clustering and distributed clustering. In the first strand, researchers developed
parallel versions of the centre-based clustering algorithms. The second strand is
based on two principal steps: perform partial analysis on local data at individual
sites and then generate a global model by aggregating these local results. Al-
though this later strand is more appropriate for Grid platforms where datasets
are often geographically distributed and owned by different organisations, there
is more research work in the first strand than in the second[9]. This is especially
true with distributed clustering approaches based on density. In this context,
recent researches[9][10] have proposed a distributed clustering consisted of two
steps: local clustering to build local models and global clustering on these mod-
els to build a global model. Global clustering could not scale well when huge
amounts of data are available in large-scale networks. In this paper, we propose
a new approach of distributed density based clustering. This new approach is
composed of the local clustering and the hierarchical aggregation of local models
to rebuild a global model.

In our approach, the aggregating process is based on a decentralized model
and the local clustering is a density-based. Density-based clustering approaches
have been widely used in mining large dataset. Moreover, density based cluster-
ing algorithms have been recognized to be powerful and capable of discovering
arbitrary shapes of clusters as well as dealing with noise and outliers. There are
some density based algorithms such as DenClue[6] and DBSCAN[4]. In this pa-
per, DBSCAN is chosen because it is simple and efficient in very large databases.
It requires a minimum domain knowledge to determine input parameters and
discover clusters with arbitrary shapes[4]. The rest of this paper is organized as
follow: Section 2 deals with background and related projects then we will present
and discuss our new distributed density based clustering in section 3. Section 4
presents our preliminary evaluations of this approach. Finally, we conclude on
Section 5.

2 Related Works

In spite of a large amount of research conducted in distributed clustering such as
[11][18][16], there are very few algorithms proposed in distributed density based
clustering. Until now, to the best of our knowledge, there are four approaches in
this paradigm that were presented in[17][9][10] and [13]. The former deals with
a parallel approach of DBSCAN algorithm. This approach is appropriate for
shared memory or distributed shared memory systems. The last three approaches
include two main steps: local clustering to create local model and processing
these local models to rebuild a global model.

In [9], authors used DBSCAN as a local clustering algorithm. They extended
primitive elements of this algorithms such as core points, ε, Minpts by adding new
concepts as specific core points, specific εrange to build a local representative at
each site. The global model will be rebuilt by executing the DBSCAN algorithm
on a set of local representatives with two global values: Mintpsglobal and εglobal.

A New Approach for Distributed Density Based Clustering on Grid Platform 249

Mintpsglobal is a function of two local parameters i.e. Mintpsglobal = 2 x Minpts.
εglobal is tunable by the user and its default value is the maximum value of all
εrange values of all local representatives. This approach has some advantages:
firstly, local clustering can be executed rapidly and independently at each site.
Secondly, by using local representatives, it decreases the communication cost by
avoiding to send all datasets and therefore the global clustering can be done
quickly. However, this approach has two crucial problems: it ignores the local
noise and the default value is set to εglobal. There is no representation of noise in
the local representatives. In the global view, local noise from one site can belong
to one or many clusters of other sites. Moreover, a set of local noises from all local
sites can form one or more new clusters. Furthermore, the use of the high and
static value εglobal led to incorrect cluster merging as shown in [9]. In addition,
the location of special core point may also effect the merging process when they
are located at the border of cluster.

Although the approach proposed in [10] has also two main steps as in the
first approach but the definition of local representatives is different. In [10],
a local representative is based on the condensation of datasets via static and
dynamic representation quality. Moreover, this approach added two metrics for
local representatives: covering radius and covering number. The former value is
the maximum distance between a representative and its covered objects with
ε-radius. The later value is the number of these covered objects. Besides, the
number of local representatives at one site that can be tunned by users, global
clustering also uses DBSCAN algorithm on local representatives and their special
metrics from all sites. This DBSCAN uses Minpts in local site and the individual
ε values for each representative ri is defined by ε(ri) = ε + coveringradius(ri).
This approach has same advantages as above. Moreover, it can tackle not only
with the problem of noise but also border problem as mentioned above. However,
choosing a suitable number of local representatives is difficult task.

A density-based clustering for P2P systems was proposed in [13]. The authors
also used DBSCAN-based for mining local dataset mapping. This is followed by
the execution a hierarchical cluster assembly with cluster expansion and clus-
ter merging process. The advantage of this approach is that it can deal with
P2P system and investigate density-based clustering. However, this approach is
based on the Content Addressable Network (CAN)[15] which may cause a huge
communication overhead in large distributed dataset case.

3 Distributed Density Based Clustering

Our new approach is also composed of two important steps: local clustering to
create local models and hierarchical agglomeration of local models to build a
global model. These two steps use different algorithms as in [9][10]. We have
also the pre-processing and post-processing stage. For the convenient, we define
firstly the convention of symbols used in the next sections: (i) the letters x, y,
z are reserved for local sites e.g. site x, site y; (ii) i, j, k, l: index of elements in

250 N.-A. Le-Khac, L.M. Aouad, and M-T. Kechadi

a set; (iii) t, u, v: number of elements in a set; (iv) s, c, n: elements; (v) S, C,
CorC, N, A, L: sets; (vi) ε, δ, θ: value or threshold.

3.1 Local Clustering

All sites carry out a clustering process independently from each other to discover
local models. The local clustering algorithm chosen in our approach is DBSCAN,
because it is strong approach concerning outliers and it can be used for all kinds
of metric data space and vector spaces and it is simpler than other density-based
algorithms e.g. DenClue[6]. At each site, the local model created consists of a
set of representatives. Choosing a set of representative is very important because
it will affect the performance of the merging step as well as the accuracy of
the global model built. This depends normally on local mining algorithm. In
DBSCAN algorithm, core points w.r.t ε and Minpts play an important role in
the determination of different clusters. We can naturally use core points w.r.t ε
and Minpts as representatives. However, the number of core points is not small
enough with regard to the number of data points. Using core points is not efficient
in the case of large amount of local data. We will use, instead a set of absolute
core points Scor w.r.t ε and Minpts as the first part of our representatives. Let
CorCx

i ⊆ Cx
i (cluster Cx

i in a set of cluster Cx at site x) be a set of the core
points belonging to this cluster at site x. The definition of Scor is as follows:
ScorCx

i
⊆ CorCx

i is a set of absolute core object iff (∀sk, sl ∈ ScorCx
i

: sk �= sl ⇒
sk �∈ Nεx(sl)) and (∀c ∈ CorCx

i , ∃s ∈ ScorCx
i

: c ∈ Nεx(s)) with Nεx(pi) of a
point pi is defined as ∀p ∈ Nεx(pi) : ‖pi − p‖ ≤ εx.

The distance used is either Euclidian or Manhattan distance. The concept of
absolute core point was also proposed in [9] where it is called special core point.
In the definition of an absolute core point s, there is at least one core point within
the range of s w.r.t ε and Minpts. So we also add the furthest core point within
the range of s w.r.t ε and Minpts in the first part of our local representative.
Briefly, this first part is Rx which includes clusters representative Rx

i containing
their set of pair (absolute core point s, its farthest touchable core point cs):

Rx = {
⋃

i:1..t

Rx
i | Rx

i =
⋃

j:1..u

{(s, cs) | s ∈ ScorCx
i
}} (1)

The Fig. 1a shows an example of absolute core point. Our approach is different
from [9] as we do not use an ε-range value for each absolute core point. One of
the reasons of using this value is to deal with data points in the range of a core
point (w.r.t. ε and Minpts) and this core point is the furthest of an absolute
core point (Fig. 1b). However, using this value might lead into the problem of
merging clusters that are not similar. It can happen when the absolute core is
on the border of its cluster (Fig. 1c). In order to tackle this problem, we do not
use this value but adding the furthest core point of an absolute core point in our
local representative. The second part of it is the value εx which is the local εx

value and it can be estimated as discussed in [4]. These local values are different
between local sites. Finally, the last part is a set of noise data Nx in this local

A New Approach for Distributed Density Based Clustering on Grid Platform 251

Fig. 1. (a) A & C are Absolute Core points;(b) B is the furthest core point of A;(c)
A is on the border of cluster C1: by using ε-range, two clusters C1, C2 will be merged
;(d) merging of noise from two local sites R1, R2 might create a new cluster

site. The noise at one local site might belong to a cluster at other sites and
moreover the aggregating of noise from all local sites might create one or few
new clusters (Fig. 1d). The noise at a local site is defined as data points that is
not belong to any cluster in this local site.

Nx = {
⋃

j:1..v

dj | dj �∈ Cx
i : ∀Cx

i ∈ Cx} (2)

So, our representative of local model is defined as follows:

LocalModelLx = {Rx, εx, Nx} (3)

In the next sub-section, we present the merging process of local clusters to
obtain global model.

3.2 Hierarchical-Agglomeration of Local Model to Build Global
Model Based on Tree Topology

The process of merging local models is based on tree structure (binary or TreeP[3]
Fig. 2b). At lowest level (leaf-level), each node of a tree is a physical site where a
local model is stored. Nodes at higher levels are virtual sites. At the beginning,
local models of a local site are stored at a leave node. These local models are
merged by binary tree or by group (Tree-P) into sub-global model at its logical
site. For instance, as in Fig. 2a, local models from site X and Y will be merged
into a sub-global model at site z. These sub-global models are at their turn
merged into other logical node at higher levels until we reach the root. At root,

252 N.-A. Le-Khac, L.M. Aouad, and M-T. Kechadi

we have a global model. The group merging is essentially based on merging
two or more local models. By using tree topology, we can implement not only
our approach on P2P Data Grid platforms such as DGET[7] but also avoid
the problem of bottle-neck in traditional client-server approach. Moreover, in
tree-based topology, we can stop the merging process at any level.

Fig. 2. (a) Binary Tree and (b) Tree-P topology

We assume that the local clustering at all of the sites uses the same value
of Minpts. Meanwhile, each site x has its own value of epsilon εx. Normally, the
merging process needs a global epsilon. However, finding a suitable global epsilon
value εglobal is a difficult task. The higher εglobal is the more risk of merging wrong
clusters. In [9], authors proposed a tunable εglobal value depending on ε-range
values of all local representatives. An ε-range value is composed of ε value and
a distance between an absolute core point at its furthest core point. And all of
the local sites use the same ε value. In the Grid environment where datasets are
produced and processed by a large number of different owners, suppose that they
use the same mining algorithm, e.g. DBSCAN it is difficult to have the same
parameter e.g. ε for all sites. Actually, in our approach, we use different value of
epsilon εx for each local site x and the global εaver. This εaver is determined as
shown at the end of this section.

Merging Process. Suppose that at site z, we will merge local models Lx and
Ly from two sites x and y to build a new sub-global model Lz. If z is a root site,
this sub-global model becomes the global model that should be returned. The
term ”cluster” used in this section means a set of representatives of that cluster.

Firstly, we find the minimum value of epsilon ε from two sites as ε = min(εx,
εy). We have also to solve with the problem of the difference δ of epsilon value
between two sites: δ =| εx − εy |. If δ is small enough, we could merge directly
two clusters, this case is called a direct aggregating. If δ is too large, we can
only merge separately representatives of the site for which the epsilon value is
the largest. Some of their representatives might be disaggregated and then will
be merged with other clusters. This case is called a disaggregating of cluster.
We define a threshold of disaggregating θ. If δ is less than θ then we are in the

A New Approach for Distributed Density Based Clustering on Grid Platform 253

first case, else we are in the second case. Moreover, an εaver is be used instead
of ε in the second case. We propose a simple method to determine both θ and
εaver as shown at the end of this section.

We assume that the local model at site x contains the minimum ε value without
loss of generality. The merging process has two important steps: cluster extension
and cluster merging. In the first step, each cluster from site x will be extended
by adding noise data from Ny. A noise di ∈ Ny will be included in the cluster
Rx

i ∈ Rx if:
∃(s, cs) ∈ Rx

i : ‖di − s‖ ≤ ε ∨ ‖di − cs‖ ≤ ε (4)

Let Ax
i be a set of noise data from Ny that belongs to the cluster Rx

i . After
the first step we have a set Ax

i . We execute the same process with each cluster
from site y by adding noise data from Nx if we are in the direct aggregating case
and we will also have a set Ay

i .
In the second step, we have two cases that correspond to aggregating-

disaggregating cases defined above. In the direct aggregating case, we will merge
two clusters Rx

i and Ry
j , if ∀Rx

i ⊆ Rx, ∀Ry
j ⊆ Ry, ∃(sk, csk) ∈ Rx

i , ∃(sl, csl) ∈
Ry

j :
‖sk − sl‖ ≤ ε ∨ ‖csk − sl‖ ≤ ε ∨ ‖sk − csl‖ ≤ ε ∨ ‖csk − csl‖ ≤ ε (5)

The result of this merging will create a new cluster Rz
k ⊆ Rz. Meanwhile, in

the disaggregating case, we only merge separately each representative (sl, csl)
of a cluster Ry

j with cluster Rx
i if it satisfies the equation (5) by using of εaver

instead of ε.
These representatives will be removed from Ry

j and included in the set Ax
i .

After two step of merging the new local model Lz is created:

Lz = {Rz, εz, N
z} (6)

with:

– εz = ε or εaver

– Rz =
⋃

∀(i,j) (Rx
i

⋃
Ry

j)
⋃ ⋃

∀iA
x
i

⋃ ⋃
∀jA

y
j , if Rx

i and Ry
i satisfies equation

(5) and Nz = Nx
⋃

Ny for aggregating case or
– Rz =

⋃
∀i (Rx

i

⋃
Ax

i)
⋃

(∀(sl, csl) ∈ Ry
j) : (sl, csl), Rx

i satisfies equation (5) and
Nz = Nx

⋃
Ny for disaggregating case.

We use this model to continue the merging process with the local model from
another site depending on the topology chosen until we obtain a global model.
Moreover, as we mentioned above, we can stop at any level of the tree topology
and the sub-global models are returned as the final results.

Determination of disaggregating threshold. We propose a simple method
for determining the threshold based on the evaluation of local epsilon values
from all sites as shown in the Fig. 3. These values are sorted in ascending order.

254 N.-A. Le-Khac, L.M. Aouad, and M-T. Kechadi

Fig. 3. Determination of θ and εaver

Using the same curve, we can also determine the εaver value as the average of
all values of local ε in θ range. Note that θ and εaver can be set by users.

4 DDC Algorithm

4.1 Description

This section presents the principal function of our approach: merging process.
The input of this MergingCluster function is the local model from two sites x
and y. Its output is the merging model of them.

Algorithm - MergingCluster
Input: Local model Lx and Ly from site x and site y.
Output: Merging model Lz of this site z.

Step 0: Initialization

ε := min (εx,εy);
merge id := 0;
Determinate θ and εaver;

Step 1: Cluster Extension

∀nk ∈ Ny, ∀Rx
i ⊆ Rx: If ∃(sj , csj) ∈ Rx

i : ‖sj − nk‖ ≤ ε ∨ ‖csj − nk‖ ≤ ε then
Remove nk from Ny and then Add nk in Ax

i

EndIf

If δ ≤ θ then
∀nk ∈ Nx, ∀Ry

i ⊆ Ry:If ∃(sj , csj) ∈ Ry
i : ‖sj − nk‖ ≤ ε ∨ ‖csj − nk‖ ≤ ε

then
Remove nk from Nx and then Add nk in Ay

i

EndIf
EndIf

Step 2: Cluster Merging
Step 2a: Marking

A New Approach for Distributed Density Based Clustering on Grid Platform 255

If δ ≤ θ then
∀Rx

i ⊆ Rx, ∀Ry
j ⊆ Ry:

If ∃(sk, csk) ∈ Rx
i ,∃(sl, csl) ∈ Ry

j : ‖sk −sl‖ ≤ ε ∨ ‖csk −sl‖ ≤ ε ∨ ‖sk − csl‖
≤ ε ∨ ‖csk − csl‖ ≤ ε then
If Ry.status = Merged then

Rx
i .merge id := Ry

j .merge id;
else

merge id := merge id + 1;
Rx

i .merge id := merge id;
Ry

j .merge id := merge id;
Ry

j .status := Merged
EndIf

EndIf
Else

ε := εaver;
∀Rx

i ⊆ Rx, ∀Ry
j ⊆ Ry:

If ∃(sk, csk) ∈ Rx
i ,∃(sl, csl) ∈ Ry

j : ‖sk −sl‖ ≤ ε ∨ ‖csk −sl‖ ≤ ε ∨ ‖sk − csl‖
≤ ε ∨ ‖csk − csl‖ ≤ ε then
Remove (sl, csl) from Ry

j and then Add (sl, csl) in Ax
i

EndIf

Step 2b: Merging

εz := ε
If δ ≤ θ then

Nz := Nx
⋃

Ny

For k:=1 to merge id do
∀Rx

i ⊆ Rx, Rx
i .merge id = k: Rz = Rz

⋃
Rx

i

⋃
Ax

i

∀Ry
i ⊆ Ry, Ry

i .merge id = k: Rz = Rz
⋃

Ry
i

⋃
Ay

i

End For
Else

∀Rx
i ⊆ Rx: Rz = Rz

⋃
Rx

i

⋃
Ax

i

∀Ry
i ⊆ Ry: Rz = Rz

⋃
Ry

j

EndIf
Lz = {Rz, εz, N

z}

4.2 Complexity

We suppose that there is a total of N data points divided equally among m
computing nodes. So, each node has n = N/m data points. We also assume
that the number of representatives in one node is approximately μ% of the
total data points of this node. The complexity of our approach is composed
of two parts: local mining and global aggregating. The local mining is based
on DBSCAN algorithm so its complexity is O(n log n)[4]. The complexity of
global aggregating is (nμ)2 log m). Briefly, the complexity of our approach is

256 N.-A. Le-Khac, L.M. Aouad, and M-T. Kechadi

O(n log n + (nμ)2 log m)). The speedup compared with centralization approach
is:

Sp =
(m − 1) log N

(μ2m − 1) logm
, with(μ2m − 1) ≥ 0 (7)

This speed up depends on μ and number m of computing nodes. The more
nodes we use and the less number of representatives that we can have, the more
speed up that we could gain for the same dataset.

5 Experimental Results

This section presents the preliminary evaluation of our approach. In this simu-
lation, we use datasets from LOCAL project [14]. This datasets includes 322 ob-
jects of two dimensions. We firstly execute DBSCAN algorithm on this datasets
with ε=0.004 and Minpts=4 and there are six clusters as shown in Fig. 4. Next,
we distribute equally by round robin this datasets in two subsets. Then, we exe-
cute separately DBSCAN algorithm on each subset with ε=0.005 and Minpts=4.
The local ε value is chosen based on the local distribution of each subset. As
shown in Fig. 5, there are 7 clusters for the first subset (Fig. 5 left) and 8
clusters for the second (Fig. 5 right).

Fig. 4. Centralization Clustering

In the next step, we build the local representatives for each subset of data.
Then, we execute the merging process based on the algorithm presented in sec-
tion 3 and merging result is shown as in Fig. 6. Note that we obtained the same
number of clusters as in centralized clustering but some data points of cluster
6 became noise points. The reason is that these points were apparently noise
points in local clustering. Moreover we compute the quality of distributed clus-
tering by using the continuous object quality P as proposed in [9](page 100).
The value of P in this simulation is 94.43%. The result shows that our merging
process is efficient.

A New Approach for Distributed Density Based Clustering on Grid Platform 257

Fig. 5. Local clustering at two sites

Fig. 6. Global merging

6 Conclusions and Future Works

In this paper we proposed a new approach of distributed density based cluster-
ing for P2P-Grid environments. This approach will be integrated in ADMIRE
framework[12] in the module of distributed data mining techniques on very large
and distributed heterogeneous datasets. The motivation of this approach as well
as its implementation have been presented. The preliminary evaluation of our
approach shows that it is efficient and flexible.

The deployment of this approach on tree topology will be improved and more
experiments will be executed on ”real” data such as Hurricane Isabel datasets[8].

References

1. Brezany, P., Janciak, I., Woehrer, A., Tjoa, A.: GridMiner: A Framework for
Knowledge Discovery on the Grid - from a Vision to Design and Implementation.
In: Cracow Grid Workshop. Cracow, pp. 12–15 (December 2004)

258 N.-A. Le-Khac, L.M. Aouad, and M-T. Kechadi

2. Cannataro, M., et al.: A data mining toolset for distributed high performance
platforms. In: Proc. of the 3rd International Conference on Data Mining Methods
and Databases for Engineering, Finance and Others Fields. Southampton, UK, pp.
41–50, September 2002, WIT Press (2002)

3. Edi, E., Kechadi, M-T., McNulty, R.: TreeP: A Self-Reconfigurable Topology for
Unstructured P2P Systems. Workshop on State-of-the-Art in Scientific & Parallel
Computing, Ume, Sweden (June 18-21, 2006)

4. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for Dis-
covering clusters in Large Spatial Databases with Noise. In: Proc. 2nd Int. Conf.
on Knowledge Discovery and Data Mining (KDD’96), Portland, OR, pp. 226–231.
AAAI Press, California (1996)

5. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure,
pp. 593–620. Morgan Kaufmann, Elsevier Press (2004)

6. Hinneburg, A., Keim, D.A.: An efficient approach to clustering in large multimedia
databases with noise. In: Proc. 1998 Int. Conf. Knowledge Discovery and Data
Mining (KDD’98), pp. 58–65, New York (1998)

7. Hudzia, B., McDermott, L., Illahi, T.N., Kechadi, M-T.: Entity Based Peer-to-
Peer in a Data Grid Environment. In: the 17th IMACS World Congress Scientific
Computation, Applied Mathematics and Simulation. Paris, France, July 2005, pp.
11–15 (2005)

8. http://vis.computer.org/vis2004contest/data.html#format
9. Januzaj, E., Kriegel, H-P., Pfeifle, M.: DBDC: Density-Based Distributed Clus-

tering. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V.,
Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp.
88–105. Springer, Heidelberg (2004)

10. Januzaj, E., Kriegel, H-P., Pfeifle, M.: Scalable Density-Based Distributed Clus-
tering. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD
2004. LNCS (LNAI), vol. 3202, pp. 231–244. Springer, Heidelberg (2004)

11. Kargupta, H., Chan, P.: Advances in distributed and Parallel Knowledge Discovery,
1st edn. AAAI Press/The MIT Press, London (2000)

12. Le-Khac, N-A., Kechadi, M-T., Carthy, J.: ADMIRE: framework: Distributed data
mining on data grid platforms. In: Proc. 1st Int. Conf. on Software and Data
Technologies ICSOFT’06, pp. 67–72 (2006)

13. Li, M., Lee, G., Lee, W-C., Sivasubramaniam, A.: PENS: An algorithm for Density-
Based Clustering in Peer-to-Peer Systems. In: Proceedings of the 1st international
conference on Scalable information systems, May 30-June 01, 2006, Hong Kong,
pp. 39 (2006)

14. LOCAL Location contexts for location-aware applications:
http://get.dsi.uminho.pt/local/

15. Ratnasamy, S., Francis, P., Handley, M., Karp, R-M., Schenker, S.: A scalable
content-addressable network. In: Proc. of ACM SIGCOMM, pp. 161–172 (August
2001)

16. Silva, J-C., Giannella, C., Bhargava, R., Kargupta, H., Klusch, M.: Distributed
Data Mining and Agents. International Journal of Engineering Applications of
Artificial Intelligence 18(7), 791–807 (2005)

17. Xu, X., Jager, J., Kriegel, H-P.: A Fast Parallel Clustering Algorithm for Large
Spatial Databases. Journal of Data. Mining and Knowledge Discovery 3, 263–290
(1999)

18. Zhang, Bin, Hsu, M., Forman, G.: Distributed Data clustering System and Method.
United States Patent, Patent No.: US 7,039,638 B2, Date of Patent (May 2, 2006)

Author Index

Adán-Coello, Juan Manuel 164
Allam, Omnia 168
Aouad, Lamine M. 247
Archana, M. 114

Baig, Abdul Rauf 235
Bashir, Shariq 235
Böhme, Timo 125
Böttcher, Stefan 101, 172

Carnduff, Tom 160
Ceri, Stefano 1
Cho, Wan-Sup 49
Choi, Hun-Young 176
Cooper, Richard 224

de Freitas, Ricardo Lúıs 164

Elmasri, Ramez 82

Fan, Hao 25
Fegaras, Leonidas 58

Gray, W.A. 168

He, Weimin 58
Hunt, Ela 13

Jung, Tae-Sung 49

Kang, Hyunchul 185
Kechadi, M-Tahar 247
Kim, Jaehoon 70
Kim, Jin 185
Kim, Jinho 176
Kim, Sang-Wook 176
Kim, Youngsoo 70
Kumar, P. Sreenivasa 114

Le-Khac, Nhien-An 247
Lee, Sangwook 185
Levine, David 58
Li, Haibo 180
Loh, Woong-Kee 37

Lohfink, Alex 160
Loukides, Grigorios 203
Lü, Kevin 180, 215

Manson, Sinclair 224
Marin, Armando 164
McClean, Sally 190
Moon, Yang-Sae 176
Morrey, Dave 168
Murphy, John 138

Narayana, M. Lakshmi 114
Noonan, Colm 138

Obermeier, Sebastian 172

Park, Seog 70
Park, Young-Ho 37
Paton, Norman W. 3

Rahm, Erhard 125
Roantree, Mark 138
Rundensteiner, Elke A. 147

Scotney, Bryan 190
Shao, Jianhua 203
Shin, Sung-Hyun 176
Skilton, Alysia 168
Steinmetz, Rita 101

Taha, Kamal 82
Thomas, Nathan 160
Tobar, Carlos Miguel 164

Wang, Ling 147
Wang, Song 147
Wang, Yuanzhen 180
Ware, Mark 160
Wycisk, Thomas 172

Yoon, Yong-Ik 37

Zhang, Shuai 190
Zhu, Hong 215

	Front matter
	Chapter 1
	Design Abstractions for Innovative Web Applications

	Chapter 2
	Automation Everywhere: Autonomics and Data Management
	Introduction
	Examples: Automation in Data Management
	Limitations
	Opportunities
	Conclusions

	Chapter 3
	Exhaustive Peptide Searching Using Relations
	Introduction
	Motivation
	Algorithms
	BLAST Algorithm
	Implementation
	Results
	Discussion
	Conclusions

	Chapter 4
	Data Lineage Tracing in Data WarehousingEnvironments
	Introduction
	Related Work
	Data Lineage Tracing in AutoMed
	Overview of AutoMed
	The DLT Approach

	Extending the DLT Approach
	Using Queries Beyond IQL
	Using $Delete$ Transformations
	Using $Extend$ Transformations
	Using $Contract$ Transformations

	Ambiguity of Lineage Data
	Derivation for Difference and Not Member Operations
	Derivation for Aggregate Functions
	Derivation for Where-Provenance

	Concluding Remarks

	Chapter 5
	Fast Recognition of Asian Characters Based on Database Methodologies
	Introduction
	Related Work
	The Proposed Algorithm
	Performance Evaluation
	Conclusions

	Chapter 6
	SPDBSW: A Service Prototype of SPDBS on the Web
	Introduction
	Related Work
	Ajax and Web Service [5,16]
	SPDBS (SBML-Based Biochemical Pathway Database System)[14]
	External Web Services: OLS, KEGG, NCBI and GeneCruiser

	SPDBSW: SPDBS on the Web
	Special Features
	Web Service and Integration
	Development of New Service
	Interactive and Refreshness User Interface

	Conclusions and Future Work
	References

	Chapter 7
	Indexing and Searching XML Documents Based on Content and Structure Synopses
	Introduction
	Related Work
	Query Language and Meta-data Indexing
	Structural Summary
	Content Synopses
	Positional Filters
	Containment Filtering

	Query Processing
	Hash-Based Query Optimization
	Document Synopses
	Two-Phase Containment Filtering

	Experimental Evaluation
	Indexing Scheme Comparison
	Query Precision Measurement
	Efficiency of Optimization Algorithm

	Conclusion

	Chapter 8
	PosFilter: An Efficient Filtering Technique of XML Documents Based on Postfix Sharing
	Introduction
	Related Work
	Motivation
	PosFilter: An NFA-Based Approach Exploiting Postfix Sharing
	Incremental Construction of a Combined NFA
	Executing the PosFilter

	Performance Evaluation
	Experimental Setup
	PosFilter vs. YFilter
	PosFilter vs. AFilter

	Conclusions
	References

	Chapter 9
	OOXSearch: A Search Engine for Answering Loosely Structured XML Queries Using OO Programming
	Introduction
	Related Work
	Preliminaries
	Computing the RCT of Each Canonical Tree
	Computing RCT of a Canonical Tree for Query Type A
	Computing RCT of Canonical Trees for Query Type B

	Computing RCT for STC Consisting of More Than One Canonical Tree
	System Implementation
	Locating RCTs
	Getting Answers Using OO Programming

	Experimental Results
	Recall and Precision Evaluation
	Search Performance Evaluation

	Conclusion

	Chapter 10
	Evaluating XPath Queries on XML Data Streams
	Introduction
	Motivation and Paper Organization
	Query Language
	General Assumptions and Problem Definition

	Our Solution
	Binary SAX Event Streams
	Decomposition and Normalization of XPath Query Expressions
	Transforming a Filter-Free XPath Query into an XPath Automaton
	Evaluating Filter-Free XPath Queries Using XPath Automata
	Evaluation of Automata for XPath Expressions with Predicate Filters

	Evaluation of Our Prototype Implementation
	Relation to Other Works
	Summary and Conclusions
	References

	Chapter 11
	PSMQ: Path Based Storage and MetadataGuided Twig Query Evaluation
	Introduction
	Background
	Interval Encoding
	DataGuide

	Proposed System: PSMQ
	Query Evaluation
	Comparisons with BLAS and MQEB
	Comparisons with XRel

	Implementation Details
	Offline Processing
	Experimental Setup
	Performance Evaluation

	Conclusions

	Chapter 12
	Parameterized XPath Views
	Introduction
	Related Work
	Parameterized XPath Views
	Parameterized Views
	Support for Inner Query Fragments

	Implementation of PXV
	XMLRDB
	Integration of PXVs in XMLRDB

	Automated PXV Creation
	General Approach
	Determining Savings in XMLRDB

	Evaluation
	Conclusion
	References

	Chapter 13
	Specifying and Optimising XML Views
	Introduction
	System Terminology
	View Definitions
	Specifying Views
	Sample View

	View Optimisation
	Preceding Axis View

	Details of Experiments
	Related Research
	Conclusions

	Chapter 14
	Isolating Order Semantics in Order-Sensitive XQuery-to-SQL Translation
	Introduction
	Related Work
	Preliminaries
	The XQuery Subset
	A Running Example of Order-Sensitive XQuery Processing
	The XQuery Algebra: XAT

	Enhancing XAT with Order Context
	Order Context for XATTable
	Functional Dependencies and Keys

	Order Propagation and Isolation
	Order Context Propagation
	Isolating Ordered Semantics in XAT Tree

	Order-Aware SQL Translation
	SQL Translation for Incompatible Result Orderings
	SQL Translation for Multiple Path Matching

	Experimental Study
	Conclusions

	Chapter 15
	Representation and Management of Evolving Features in OS MasterMap ITN Data
	Background
	Project Aims
	ITN Data
	Object Versioning
	The Structure of ITN Data

	The Static Feature Histories Model
	Current Progress and Future Work

	Chapter 16
	Hopfilter: An Agent for Filtering Web Pages Based on the Hopfield Artificial Neural Network Model
	Introduction
	The Architecture of Hopfilter
	Automatic Indexing
	Generation of a Concept Space
	Hopfield Neural Network

	Experimental Evaluation
	Concluding Remarks
	References

	Chapter 17
	A New Approach to Connecting Information Systems in Healthcare
	Introduction
	Background
	Challenges
	Virtual Organisation Approach
	Future Work
	Critical Analysis and Conclusions
	References

	Chapter 18
	XML Query Result Size Estimation for Small Bandwidth Devices
	Introduction
	Example Application Scenario

	Query Shipping vs. Data Shipping
	Requirements
	Related Work
	Summary and Conclusion

	Chapter 19
	An Efficient Sheet Partition Technique for Very Large Relational Tables in OLAP
	Introduction
	The Proposed Sheet Partition Technique
	Implementation of the Sheet Partition Technique
	Conclusions

	Chapter 20
	A Method of Improving the Efficiency of Mining Sub-structures in Molecular Structure Databases
	Introduction
	Statistics on Loops in Molecular Structure Database
	Reorganizing Molecular Structure Databases
	Performance Test
	Conclusion
	References

	Chapter 21
	XFLab: A Technique of Query Processing over XML Fragment Stream
	Introduction
	XFLab
	Implementation and Performance Evaluation
	References

	Chapter 22
	Knowledge Discovery from Semantically Heterogeneous Aggregate Databases Using Model-Based Clustering
	Introduction
	Terminology and Data Models
	Principles of Model-Based Clustering
	Model-Based Clustering on Homogeneous Data
	Model-Based Clustering on Semantically Heterogeneous Data
	EM for Model-Based Clustering on Semantically Heterogeneous Databases
	Determining the Optimal Number of Clusters by Using BIC
	An Example

	Evaluation
	Experimental Framework
	Complexity Measure
	Performance Evaluation
	Real Data Evaluation

	Conclusion and Future Work
	References

	Chapter 23
	Speeding Up Clustering-Based k-AnonymisationAlgorithms with Pre-partitioning
	Introduction
	Usefulness and Protection Measures
	Grouping Data
	Pre-partitioning
	Experimental Evaluation
	Conclusions

	Chapter 24
	Fine-Grained Access Control for Database Management Systems
	Introduction
	Related Work
	The Extension of the SQL
	The Statement for the Creation of Policy Type and Its Instance

	Experimental Results
	Summary
	References

	Chapter 25
	Extracting Temporal Information from Short Messages
	Introduction
	Example
	Background
	The Schema
	Extracting Data

	The IE Temporal Data Model
	Requirements for the Model
	The Data Model
	Temporal Operations on the Data

	The Revised Application
	A Final Example
	Conclusions
	References

	Chapter 26
	Max-FTP: Mining Maximal Fault-Tolerant Frequent Patterns from Databases
	Introduction
	Problem Definition
	Related Work
	Max-FTP: Algorithmic Description
	Max-FTP with Simple DFS Traversal
	Dataset Representation and Fast Frequency Counting

	Improving Max-FTP Performance
	Candidate Maximal FT Pattern Maximality Checking
	Child (LMFP^{FT}) Construction and Representation

	Experiments
	Conclusion
	References

	Chapter 27
	A New Approach for Distributed Density Based Clustering on Grid Platform
	Introduction
	Related Works
	Distributed Density Based Clustering
	Local Clustering
	Hierarchical-Agglomeration of Local Model to Build Global Model Based on Tree Topology

	DDC Algorithm
	Description
	Complexity

	Experimental Results
	Conclusions and Future Works

	Back matter

