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Preface

The growing complexity of modern software systems increases the difficulty of
ensuring the overall dependability of software-intensive systems. Complexity of
environments, in which systems operate, high dependability requirements that
systems have to meet, as well as the complexity of infrastructures on which they
rely make system design a true engineering challenge.

Mastering system complexity requires design techniques that support clear
thinking and rigorous validation and verification. Formal design methods help
to achieve this. Coping with complexity also requires architectures that are tol-
erant of faults and of unpredictable changes in environment. This issue can be
addressed by fault-tolerant design techniques. Therefore, there is a clear need of
methods enabling rigorous modelling and development of complex fault-tolerant
systems.

This book addresses such acute issues in developing fault-tolerant systems as:

– Verification and refinement of fault-tolerant systems
– Integrated approaches to developing fault-tolerant systems
– Formal foundations for error detection, error recovery, exception and fault

handling
– Abstractions, styles and patterns for rigorous development of fault tolerance
– Fault-tolerant software architectures
– Development and application of tools supporting rigorous design of depend-

able systems
– Integrated platforms for developing dependable systems
– Rigorous approaches to specification and design of fault tolerance in novel

computing systems

The editors of this book were involved in the EU (FP-6) project RODIN (Rig-
orous Open Development Environment for Complex Systems), which brought
together researchers from the fault tolerance and formal methods communi-
ties. In 2007 RODIN organized the MeMoT workshop1 held in conjunction with
the Integrated Formal Methods 2007 Conference at Oxford University. The aim
of this workshop was to bring together researchers who were interested in the
application of rigorous design techniques to the development of fault-tolerant
software-intensive systems.

We proposed to the authors of the best workshop papers to expand their
work and a number of well-established researchers working in the area to write
invited chapters. This book contains the refereed and revised papers that came

1 The proceedings of the Workshop on Methods, Models and Tools for Fault Tolerance
are at http://rodin.cs.ncl.ac.uk/deliverables.htm



VI Preface

in response. Twelve of the papers are reworked from the workshop; three papers
are invited.

The editors would like to thank the reviewers: Elisabeth Ball, Jeremy Bryans,
Joey Coleman, Alan Fekete, Michael Fisher, John Fitzgerald, Michael Harrison,
Alexei Iliasov, Michael Jackson, Linas Laibinis, Qaisar Ahmad Malik, Annabelle
McIver, Larissa Meinicke, Luc Moreau, Luigia Petre, Martha Plaska, Mike Pop-
pleton, Brian Randell, Colin Snook and Divakar Yadav.

We would particularly like to thank Louise Talbot, who has efficiently handled
the collation of this book.

Both in organizing MeMoT 2007 and in publishing this edited book, we are
aiming to build a network of researchers from the wider community to promote
the integration of dependability and formal methods research. We hope that you
will find this volume interesting and encourage you to join the interest group
of the EU FP-7 Deploy project (Industrial Deployment of System Engineering
Methods Providing High Dependability and Productivity) that in particular aims
at establishing closer collaboration between dependability and formal methods
research.

December 2008 Michael Butler
Cliff Jones

Alexander Romanovsky
Elena Troubitsyna
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Graphical Modelling for Simulation and Formal
Analysis of Wireless Network Protocols

A. Fehnker1, M. Fruth2, and A.K. McIver3

1 National ICT Australia, Sydney, Australia�

ansgar@nicta.com
2 Computing Laboratory, Oxford University UK��

m.fruth@comlab.ox.ac.uk
3 Dept. Computer Science, Macquarie University, NSW 2109 Australia,

and National ICT Australia
anabel@ics.mq.edu.au

Abstract. It is well-known that the performance of wireless protocols
depends on the quality of the wireless links, which in turn is affected by
the network topology. The aim of this paper is to investigate the use of
probabilistic model checking in the analysis of performance of wireless
protocols, using a probabilistic abstraction of wireless unreliability.

Our main contributions are first, to show how to formalise wireless
link unreliability via probabilistic behaviour derived from the current
best analytic models [12], and second, to show how such formal models
can be generated automatically from a graphical representation of the
network, and analysed with the PRISM model checker.

We also introduce CaVi, a graphical specification tool, which reduces
the specification task to the design of the network layout, and provides
a uniform design interface linking model checking with simulation. We
illustrate our techniques with a randomised gossiping protocol.

Keywords: Graphical modelling, simulation, lossy communication chan-
nels, probabilistic model checking, wireless networks.

1 Introduction

Wireless networks comprise devices with limited computing power together with
wireless communication. Protocols for organising large-scale activities over these
networks must be tolerant to the random faults intrinsic to the wireless medium,
and their effectiveness is judged by detailed performance evaluation. One of the
major factors impacting on the accuracy of an evaluation method is the under-
lying mathematical model used for the “communication channels”. The most
accurate models account for unreliabilities induced by noise and interference
amongst close neighbours. Conventional analysis methods rely on simulators

� National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council.

�� This work was in part supported by the EPSRC grant EP/D076625/2.

M. Butler et al. (Eds.): Fault Tolerance, LNCS 5454, pp. 1–24, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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[9,8] incorporating some measure of random faults, however simulation in this
context suffers from a number of well-documented problems [7,3] — most notable
is that accurate channel models validated against physical data do not normally
feature. This leads to unrealistic results of performance analyses, which can vary
widely between different simulators.

An alternative to simulation is formal modelling and analysis, which is nor-
mally ideally suited to investigating complex protocols, and gives access to
profiles of performance which exhaustively range over worst- and best-case be-
haviour. Inclusion of realistic models of wireless communication implies appeal
to analytical formulae to determine the effect on performance of the spatial re-
lationships between nodes, such as the distance and density of near neighbours.
These context-dependent details however are not easily added to textual-style
formal modelling languages, and indeed they militate against a clear and mod-
ular specification style.

In this paper we overcome these difficulties by proposing a simple graphical
style of specification. We exploit the observations that (a) the distance between
and density of nodes in a network is the major factor impacting on the integrity of
wireless communication (together with physical parameters such as transmission
strength); that (b) this unreliability can be abstracted to a probability that
packets are lost; and that (c) the simplest way to express the crucial spatial
relationships is graphically, so that the details of the abstracted probabilities are
suppressed, and computed automatically from the graphical representation.

Besides its simplicity, the graphical style has other benefits in that it allows
designers to visualise various performance indicators such as best- or worst-
case signal strength between pairs of nodes, or the nodes’ individual power con-
sumption. Similarly the critical events occurring in a sample experiment may be
“stepped through” in a typical debugging style. Finally — unlike other graphical
visualisation tools — it acts as a “bridge” between formal analysis and the more
conventional simulation, providing the option to investigate performance using
probabilistic model checking, or to carry out more traditional system-wide sim-
ulation experiments. In both cases realistic models for wireless communication
play a fundamental role.

Our specific contributions are

1. CaVi a graphical user interface specialised for modelling networks compris-
ing wireless nodes. The tool gives immediate access to crucial performance
indicators such as signal strength between pairs of nodes;

2. A translation from a CaVi model to either a formal transition-style model
suitable for model checking in the PRISM model checker [10] or as input
to the recently-developed Castalia simulator [1]. Castalia is novel in that it
incorporates an accurate wireless channel model. The PRISM models are
the first such formal models which take network topology into account. At
present both Castalia and PRISM capture only flooding and gossiping pro-
tocols [5,6].

In Sec. 2 and Sec. 3 we describe the context of wireless applications, and the
challenges that arise in their formal modelling. In Sec. 4 we describe a well-known



Graphical Modelling for Simulation and Formal Analysis 3

analytic model for describing unreliability of wireless links and explain how that
can be used to compute the probabilistic abstractions. In Sec. 5 we illustrate
how this can be incorporated in PRISM formal models for wireless protocols,
and illustrate the effect on performance analysis. In Sec. 6 we introduce CaVi the
graphical specification tool, and finally in Sec. 7 we demonstrate the techniques
we have assembled with a case study based on gossiping.

2 Wireless Communication and Performance Modelling

In abstract terms a wireless network consists of a collection of nodes deployed
over a two-dimensional area which together run a combination of protocols in
order to achieve some specific goal. During operation the nodes routinely com-
municate using wireless links which are known to be highly unreliable, and in-
deed can have a significant impact on the overall performance of the system.
In particular not only does the reliability of the wireless links attenuates as the
distance between nodes extends, but it also falls off as the density of closely
clustered nodes increases, since simultaneous broadcasts from separate sources
can interfere and be effectively destroyed.

Thus the operability of the wireless network can depend as much on the topol-
ogy of the network as on the correctness of underlying protocols. In particular
the design of protocols are specifically intended to tolerate or reduce, as much
as possible, the frequency of faults arising due to the unreliability involved in
wireless communication. This paper is concerned with methods and tool support
to help designers understand and evaluate the effectiveness of their designs.

With this goal in mind we set out the three challenges implied by the speci-
fication and performance evaluation of emerging wireless network protocols.

1. Network specification: As mentioned above the network behaviour de-
pends critically on the network topology, suggesting that the topology should
be encoded as part of the specification.
Our first problem is how to incorporate details of distance and relative clus-
tering as part of the specification without leading to an infeasibly complicated
specification language?

2. Realistic mathematical models: Currently simulation is the major tool
for evaluating performance of wireless networks. Whilst emerging simulators
are beginning to account for accurate mathematical models of communi-
cation [1], simulation still suffers from several drawbacks. Aside from the
underlying mathematical model being remote from the specifier, the result-
ing performance analysis is essentially “second order”, in the sense that it
relies on a large number of simulation runs and, by implication, costly and
time consuming.
An alternative approach for protocol analysis is probabilistic model check-
ing, so far under-explored as an evaluation method in the wireless domain.
Model checking appears to overcome some of the problems surrounding sim-
ulation: the constructed models — Markov-style — are under direct control
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of the specifier, and the analysis involves direct algorithmic exploration of
the associated mathematical structure. Thus the effect network parameters
have on performance can be analysed relatively easily. Despite this appeal-
ing access to sensitivity analysis, a typical formal model checking approach
assumes unrealistically that the links are either completely reliable, or uni-
formly unreliable, which is not the case.

Our second problem is how should realistic wireless communication models
be incorporated into formal model checking?

3. Scale versus accuracy: Even if the modelling problem can be solved, the
model checking technique is still only viable for small to moderately-sized
networks, depending on the details of the protocol. Thus simulation is still
the only feasible option for investigating system-wide properties over large
networks. This indicates that if the analysis demands both an accurate eval-
uation of how parameters affect performance and a study of global network
properties that both model checking and simulation are called for, with a
consequent separate modelling effort for each.

Our third problem is how can the benefits of system-wide analyses be com-
bined with the accuracy of model checking without doubling the modelling
effort?

In what follows we address all three problems. For problem (2) we extend prob-
abilistic model checking in a novel way to account for unreliability of wireless
links; for problem (1) we also introduce a graphical specification tool to make
transparent the relevant details of the network topology, whilst still accounting
for them in the analysis; and finally, for problem (3), we explore how the graph-
ical specification can provide a bridge between model checking and simulation
with minimal duplication of modelling effort.

To extend probabilistic model checking, we render the unreliability of wireless
communication as a probability that packets get lost. To ensure that this ab-
straction is as realistic as possible we compute the probabilities using an analytic
formula validated against experimental field data [12]. We show how these prob-
abilities can be translated in the PRISM model checker [10] allowing accurate
formal model checking to be performed after all.

Next, inspired by other graphical tools [9], we propose a graphical style of
specification to reduce the specification effort, exploiting two of the above ob-
servations: specifying topological details can be done most naturally by drawing
a diagram, and the “run time” probabilities of communication failure — ac-
counting for both distance between and density of nodes — can be computed
automatically from the corresponding graphical representation.

Our graphical specification tool CaVi simplifies the specification task of com-
munication details; moreover for simple protocols it can act as a uniform mod-
elling language combining large-scale performance analyses based on simulation
with the accurate sensitivity analysis offered by model checking.

In the remainder of the paper we set out the details.
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2.1 The PRISM Model Checker

The PRISM model checker [10] takes a specification of a system using a mod-
elling language for describing probabilistic state transition systems. In such a
model, a system is regarded as a collection of “communicating” modules, each
one consisting of a set of guarded commands, with each command composed of
the guard (a predicate on the variables) and a probabilistic update relation (the
probabilistic assignment to variables). Modules can communicate by enforcing
the assumption that same-labelled guarded commands must fire simultaneously;
additionally information can be shared between modules by their reading the val-
ues of others’ variables. Once specified the PRISM model checker constructs an
internal representation of the system model — a Markov-style transition system
for the composition of specified modules — which can then be analysed exhaus-
tively relative to a specified property using a suite of numerical algorithms.

Property specification is via probabilistic temporal logic [2], which is expres-
sive enough to describe many performance style properties; PRISM computes
the best- and worst-case probability of satisfaction. In this paper we shall use
that to analyse whether nodes eventually receive a message sent in a network
protocol.

The importance of this approach (as compared to simulation for example) is
that precise probabilistic results are computed exhaustively and are relevant to
the entire set of executions, rather than a simulated subset.

3 Modelling Lossy Wireless Communication

Wireless nodes typically broadcast a message on a particular frequency — in the
case that several nodes broadcast using the same frequency at approximately the
same time, the messages can interfere so that the receiving node only detects
noise. In this section we discuss the effect on performance evaluation of the
precise modelling assumptions used in the formalisation of unreliable wireless
channels.

Consider the simple network in Fig. 2 depicting a four node network. Suppose
now that Source attempts to send a message to Target, but that they are too
far apart to be connected directly by a wireless link. In this case Source must
rely on relaying the message via the intermediate nodes NodeA and NodeB. We
consider a simple communication protocol in which Source broadcasts a message
to be picked up by NodeA and NodeB, both of which then forward the message
on to Target.

Depending on the assumptions in the mathematical model used to handle the
reliability of communication, very different conclusions as to the behaviour of the
system can be drawn. To illustrate this we provide three simple formal models
of Fig. 2, each based on different assumptions, and we discuss the implications
of each one.

We model the behaviour of each node as a simple state transition system; in
this small example we assume that the behaviour of Source, NodeA and NodeB

is given by the systems set out in Fig. 1, leaving the assumptions about the



6 A. Fehnker, M. Fruth, and A.K. McIver

reliability of communications to vary only in the model for Target1, set out
below. Source has only one action, to send a message, whilst each of NodeA and
NodeB receive the message, synchronising on the event recv, and attempt to
forward it to Target. The message is deemed to have been delivered successfully
on the occurrence of either sendA or sendB. The case of messages interference
is modelled by the event clash.

Next we illustrate how the analysis depends crucially on the assumptions used
in the formal model. The definitions below define three possible scenarios, each
one formalising a different assumption concerning simultaneous broadcasts.

Source =̂
(

var t: {sending, sent}
recv : (t = sending) → t: = sent

)

NodeA =̂

⎛
⎜⎜⎝

var fa: {listen, sending}
recv : (fa = listen) → fa: = sending
sendA : (fa = sending) → fa: = listen
clash : (fa = sending) → fa: = listen

⎞
⎟⎟⎠

The definition for NodeB is the same as for NodeA, except that the state variable is fb

and the second event is named sendB.

Fig. 1. Behaviour of Target and intermediate nodes NodeA and NodeB

Source Target

B

A

Fig. 2. Illustrating interference

(1) Worst case interference assumption: A worst case interference assump-
tion implies that if messages are sent (almost) simultaneously from NodeA and
NodeB , then they will certainly interfere with each other. The model for Target1
at Fig. 3 encodes this assumption by the state registering noise on the execution
of the event clash. The whole system is now given by

System1 =̂ Source||NodeA||NodeB ||Target1 ,

with synchronisation between same-named events. Not surprisingly, the proba-
bility of the Target ’s reception of the message is computed as 0.
1 Strictly speaking we should also include the possibility of unreliability in the com-

munications for NodeA and NodeB , but for the moment we assume that Source’s
communications to NodeA and NodeB are fully reliable.
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Target1 =̂

⎛
⎜⎜⎝

var src: {listen, receive, noise}
sendA : ((src = listen) ∧ (sB �= sending)) → src: = receive;
sendB : ((src = listen ∧ (sA �= sending)) → src: = receive;
clash : (src = listen ∧ sA = sb = sending) → src: = noise;

⎞
⎟⎟⎠

Fig. 3. Worst-case interference assumption

(b) Best case interference assumption: Alternatively we could encode the
most optimistic assumption, that the Target receives the message if either one
of NodeA or NodeB forward the message. Target2 in Fig. 4 encodes this best-
case assumption — it does not include an event clash in its repertoire of events,
but rather only the possibility of receiving from either NodeA or NodeB, either
possibility being considered depending on which of NodeA, or NodeB is ready to
send. In this model,

System2 =̂ Source||NodeA||NodeB ||Target2 ,

the Target is certain to receive the message.

Target2 =̂

⎛
⎝ var src: {listen, receive, noise}

sendA : ((src = listen) ∧ (sA = sending)) → src: = receive;
sendB : ((src = listen ∧ (sB = sending)) → src: = receive;

⎞
⎠

Fig. 4. Best-case interference assumption

(c) Average case interference assumption: In reality experiments have
shown that the situation lies somewhere between those worst- and best-case
scenarios, and in fact the precise positioning of the Target relative to NodeA and
NodeB can be crucial to the overall reliability of message relay from Source: if
Target is located close to both the intermediate nodes (for example symmetrically
between them), then their simultaneous forwarding of the message will interfere
and Target will not get it. Conversely if Target is placed too far afield then,
in any case, the signal strength of the received messages will be so weak as to
effectively disconnect Target from the network.

We formalise this average-case assumption in Target3 set out in Fig. 5. Here
on execution of the event clash there is a probability pr of either one of the
messages (from NodeA or NodeB) arriving uncorrupted. The probability that
Target now receives the message in the system defined by

System3 =̂ Source||NodeA||NodeB||Target3

is now at least pr.
As we shall see, the precise value of pr — referred to below as the link prob-

ability — depends on a number of factors, including the distance and spatial
orientation of NodeA and NodeB from Target, and from each other, and thus
pr itself can be thought of as an abstraction for the topological details of the
network. In the next section we describe how that is done.
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Target3 =̂

⎛
⎜⎜⎝

var src: {listen, receive, noise}
sendA : ((src = listen) ∧ (sB �= sending)) → src: = receive;
sendB : ((src = listen ∧ (sA �= sending)) → src: = receive;
clash : (src = listen ∧ sA = sb = sending) → src: = receive pr⊕ noise;

⎞
⎟⎟⎠

The probability pr captures the uncertainty of receiving either one (but not both)
of NodeA or NodeB ’s forwarded message. Its precise value depends on the relative
distances between NodeA, NodeB and Target.

Fig. 5. Average-case interference assumption

4 Formal Abstractions of Signal Strength and
Interference

In this section we discuss how the link probability mentioned above can be cal-
culated more generally within arbitrary networks to take account of the distance
between nodes and their relative clustering. We also discuss the other network
parameters impacting on the probability.2

Consider first the simple case set out at Fig. 6(a) of two nodes i and j a
distance d(i, j) apart, with j sending a message to i. The probability that i re-
ceives j’s message is computed as a function of the signal-to-noise ratio, SNRi,j

which is the ratio of the power of the received message at i (rxi,j), and the
noise (bgNi,j) generated in part by the other activities of the network, as well as
general conditions of the environment. Thus SNRi,j =̂ rxi,j/bgNi,j. We discuss
first the analytic formulae for the latter two quantities.

Power and Noise Levels: The signal strength of the received message rxbBi,j

depends on the distance d(i, j) between i and j, and the power at which j
transmits, txj , and is given by the formula

rxbBi,j =̂ txj − PLd0 − 10(pLE) log10(d(i, j)/d0) , (1)

where pLE is called the path loss exponent, and can be thought of as the rate
at which the signal strength deteriorates with distance, and d0 and PLd0 are
scaling constants determined by the environment. The power at the receiver can
now be computed directly:

rxi,j =̂ 10rxdBi,j/10 (2)

Next we compute the background noise. In the simple case depicted in Fig. 6(a)
where there are no neighbouring nodes, the background noise is assumed to be a
constant nbgN determined by the operating environment. In more complicated
scenarios, depicted in Fig. 6(b), the noise generated by the other nodes in the net-
work must be taken into account. Let sendk be a function which is 1 or 0 according
2 The analytic formulas referred to in this section are all taken from Zuniga and

Krishnamachari [12].
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to whether node k is transmitting a message or not. The total background noise
at receiver i interfering with the message transmitted by j is given by

bgNi,j =̂ nbgN +
∑

k �=i,j

rxi,k ∗ sendk . (3)

With the two quantities bgNi,j and rxi,j given at (2) and (3) respectively we
can now compute the probability that i receives j’s message.

Link Probabilities: The current analytic models for computing the link prob-
abilities predict that there is signal-to-noise threshold below which there is ef-
fectively zero probability that the message can be decoded by the receiver. That
threshold depends on a number of network specific parameters: the data rate
nDR, the noise bandwidth nBW , the threshold probability nTP , the frame length
f of the message, and the modulation type of the transmission. Here, we use
Frequency Shift Keying (FSK) which describes a simple method of encoding
information into the carrier wave using only two states. For FSK modulation,
the threshold is computed as

Δi,j =̂ − 2
nDR

nBW
loge(2(1− nTP 1

8f )) . (4)

with (4) we can finally compute the link probabilities. First we compute the
threshold-free probability that j’s message is received by i

snr2prob(SNRi,j) = (1− 0.5 ∗ exp(−0.5
nBW

nDR
SNRi,j))8f , (5)

where we recall that SNRi,j =̂ rxi,j/bgNi,j, and that bgNi,j is given at (3). And
now taking the threshold into account, we have

precvi,j =̂
{

0 if SNRi,j < Δi,j

snr2prob(SNRi,j) otherwise (6)

Note that since this formula depends on the mutual contribution to the noise
of the surrounding nodes, this is actually a conditional probability, namely the
probability that i receives j’s message given that i does not receive the message
from any of the other nodes. This together with the assumption that if j �= k then
the events “i receives a message from node j” and “i receives a message from
node k” are mutually disjoint, implies that we can can compute the probability
Pi that any message is received by i (from whichever sender) as the sum of the
individual link probabilities:

Pi =
∑
j �=i

precvi,j ∗ sendj , (7)

where sendj was defined above.
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from the senders to the receiver i.

Fig. 6. Signal strength varying with distance and interference

4.1 Translating the Analytic Model to PRISM

In this section we consider a PRISM model for a small example network based
on that illustrated in Fig. 2 with the detailed link probabilities modelled as
probabilistic transitions. The PRISM source file appears in the appendix, and
here we transcribe and explain examples representing each separate section of
that model.

Four nodes are numbered 0, 1, 2, 3, with 0 and 3 corresponding to the Source
and Target respectively. All nodes are either active or inactive; when a node i
is active (activei = 1) it can listen for and/or receive a message, or send one
it received previously. If a node is not active, then it is inactive (activei =
0), in which case it only listens. We use the variable sendi to denote whether
node i is in possession of an uncorrupted message (sendi = 1) which it must
forward, or not (sendi = 0) (either because one was never received, or because it
has already been forwarded). As described above, in this simple protocol, nodes
listen for a message and then forward it; once it has received and sent a message
a node becomes inactive. The following PRISM code formalises this behaviour
for node 3, where recvp3 is the link probability which depends on the state of
the surrounding nodes, and whose calculation we describe below.

module node3

active3:[0..1] init 1;

send3: [0..1] init 0;

[tick] send3=0&active3=1 -> recvp3:(send3’=1)&(active3’=1)+

(1-recvp3):(send3’=0)&(active3’=1);

[tick] send3=1&active3=1 -> send3’=0&active3’=0;

[tick] active3=0 -> send3’=0&active3’=0;

endmodule
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Note that this is a synchronous implementation of the abstract network de-
scribed above in Sec. 3, which though easier to understand, if implemented di-
rectly would have a significant impact on space and model checking times, as
well as the feasibility of automating the generation of PRISM models. In this
synchronous style the nodes all behave in lockstep, synchronising on the action
tick. The difference in behaviour between whether one node or several nodes
broadcast at the same time is all accounted for in the link probabilities (rather
than explicitly by including separate labelled guarded commands for each as it
was explained in Sec. 3).

Next, to incorporate the link probabilities from (6) and (7) in a PRISM model,
we need to compute the various quantities such as the transmission powers, the
signal-to-noise ratios and thresholds for each node, taking into account their ac-
tual pairwise separations. Due to the limitations on the available arithmetical
functions implemented in the current distributed version of PRISM, we precom-
puted rxi,j from (2), the power at the receiver i from message broadcast by j.
These values are denoted in the PRISM model by linRxSignal i j, and ap-
pear as constant declarations for each pair of nodes. For example between nodes
numbered 1 and 3, the reception power between pairs of nodes is:

const double linRxSignal_1_3 = 3.04330129123453E-8;

const double linRxSignal_3_1 = 3.04330129123453E-8;

Next the signal-to-noise ratio SNR(i, j) = rxi,j/bgNi,j between pairs of nodes
can be calculated from the above figures for reception power, given by equations
(1), (2) and (3). As examples we give those quantities for SNR(3, 1).

formula snr_3_1 = (linRxSignal_3_1*send3)/

(linRxSignal_0_1*send0 + linRxSignal_2_1*send2 + 1.0E-10);

Next the conditional link probabilities precvi,j at (7) are calculated from the
precomputed thresholds, and combined in a single PRISM formula, with precv3,2
given as an example,

formula Preceive_3_2 = func(max,0,(snr_3_2>=12.357925578002547)?

func(pow,(1-0.5*func(pow,2.71828,-0.781*snr_3_2)), 8 * 25):0);

Finally the total link probabilities Pi are computed as the sum, as at (7),
where we take the precaution of ensuring that the sum does not exceed 1 (which
sometimes happens due to rounding errors).

formula recvp0 = func(min,1,Preceive_1_0+Preceive_2_0+Preceive_3_0);

formula recvp1 = func(min,1,Preceive_0_1+Preceive_2_1+Preceive_3_1);

formula recvp2 = func(min,1,Preceive_0_2+Preceive_1_2+Preceive_3_2);

formula recvp3 = func(min,1,Preceive_0_3+Preceive_1_3+Preceive_2_3);

5 Performance Analysis with PRISM

In this section we illustrate how our PRISM model captures the unreliability of
wireless links causedbydistance and interference betweenneighbouringnodes.Ob-
serve that once the background noise has been set, the only variables are the node
specific parameters (such as power and signal strength) and the distances between
nodes.
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In this experiment the three nodes 0, 1 and 2 were placed so that 1 and 2
had a high chance of receiving the message broadcast by 0, and the effect on
performance of nodes 3’s position investigated. Thus for various positions of
node 3 we computed the separate probabilities that nodes 1, 2 and 3 obtained
the message. Specifically we used the PRISM model checker to compute the
probability that the following temporal logic properties for strong until were
satisfied:

Pmin=? [send1 = 0 U send1 = 1]
Pmin=? [send2 = 0 U send2 = 1]
Pmin=? [send3 = 0 U send3 = 1]

namely the chance that eventually sendi = 1 for each of the nodes i = 1, 2, 3.
The results appear as three contour plots in Fig. 7.

The right-hand plot, for node 3 illustrates in particular the effects of interfer-
ence and distance. The 0 contour indicates that the distance is the major factor,
with node 3 being far too far from any of the other nodes to receive any message.
The cluster of contours around nodes 1 and 2 however shows clearly the impact
of interference: if node 3 is at position (x, y) =̂ (3.5,−2) say, it has a high chance
of receiving the message from node 2, even it is too far to hear node 0 directly.
As node 3 moves up vertically (increasing its y component), it becomes closer
to node 1, so that interference between nodes 1 and 2 becomes the influential

 0.89

 0.99

0 1 2 3 4 5 6
5

4

3

2

1

0

1

2

3

4

8

 0.89

 0.99

0 1 2 3 4 5 6
5

4

3

2

1

0

1

2

3

4

5

 1 0

0 1 2 3 4 5 6
5

4

3

2

1

0

1

2

3

4

5

The three placements of ⊕ in each diagram indicate the static positions of nodes 0, 1
and 2. The contour plots show the probability that the respective nodes eventually
receive a message. The contour lines for nodes 1 and 2 show the iso-probabilites in
steps of 0.01, and for node 3 in steps of 0.1.

Fig. 7. Analysis of interference
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This diagram illustrates how CaVi interfaces with PRISM for analysing gossiping pro-
tocols. The user develops a graphical representation of the network, from which CaVi
can compute the link probabilities. These are combined with the flooding template to
produce an input file for PRISM describing the model. The PRISM tool can then be
used to analyse performance.

Fig. 8. CaVi and PRISM

factor, and the probability of ever receiving the message falls rapidly. Finally the
high chance of receiving the message when located directly between nodes 1 and
2 is due to node 3 receiving node 0’s broadcast directly.

The plots for nodes 1 and 2 are symetrical, and from them we notice that the
movement of node 3 has only a small effect on either of them eventually receiving
the message, as the most likely scenario is that they receive the message directly
from node 0. In the case that node 3 is placed closer to node 0 than either of
the other two, node 3 actually acts as the intermediary, increasing the chance
that node 1 say receives the message, in the case that it didn’t receive it directly
from the source.

6 CaVi: A Graphical Specification Tool

As we have seen, it is possible to formalise interference by using a probabilis-
tic abstraction, but the detailed calculations required to introduce them into a
PRISM model for example are too intricate to do by hand. To overcome this
problem we have designed and implemented CaVi, a graphical specification tool
which can automate the procedure of preparing a formal PRISM model with
link probabilities computed directly from a graphical representation of a net-
work. This eases considerably the task of specification in situations when the
nodes all execute identical code.

The main feature of CaVi is its graphical interface, with which a user can
design a specific network layout. Nodes may be created in a “drag-and-drop”
fashion, and the properties of individual nodes (such as the power and signal
strength) may be tuned as necessary via individual node menus of parameters.
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During development a user can visualise the worst- and best-case link probabil-
ities, calculated from equation (6).

In Fig. 9 we illustrate two examples of how the graphical interface may be
used in the design and analysis. The figure shows two panes, with the left being
the pane where designers may create and edit a network, and the pane on the
right is for visualising the results of simulation experiments. In the left-hand
pane, for example, a user may indicate which node is the receiving node (in this
case the central node), and the others are assumed to be senders. Colours then
differentiate between nodes whose messages will be almost certainly lost (red),
have a good chance of succeeding (green), or merely a variable chance (yellow).

The pane on the right indicates how the events may be viewed as a result
of a simulation experiment. Simulation allows the user to “step through” an
example execution sequence in a dynamic experiment. In this case the display
shows which of the nodes is sending, to whom they are connected, and with what
strength. In this snapshot the bottom left node is transmitting, and is connected
to all but the top right node. The thickness of the arrows indicate the strength
of the connection, with the vertical connection being somewhat weaker than the
other two.

Fig. 9. CaVi:Visualising network performance indicators

Once the network is specified, the graphical representation forms the basis for
formal models which take account of the effect of the topology in terms of the
link probabilities. Using a template for the per-node behaviour of the protocol,
the functions used to compute the actual probabilities are printed to a PRISM
model file, together with an instantiation of a pre-prepared template for each
numbered node. Currently we only have a template for gossiping- and flooding-
style protocols, although the aim would be to expand that to other common
patterns. An example of the automatically-generated PRISM model for the four
node network is provided in the appendix. This model can then be fed into
PRISM for detailed performance evaluation. The diagram at Fig. 8 illustrates
the relation between CaVi and PRISM.
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Node 0 is the node from which the message originates; the other nodes follow a generic
gossiping protocol. Lines connecting nodes indicate active connections in the network.

Fig. 10. Graphical specification of a 13-node network

CaVi can also generate an input file for the Castalia wireless simulator, which
we discuss briefly in Sec. 7.2 below. Other features of CaVi include some vi-
sualisation techniques of network performance indicators, and simulation runs,
discussed in detail elsewhere [4].

7 Putting It all Together: Randomised Gossiping

In this section we show how to use the CaVi tool for investigating a PRISM
model for a probabilistic gossiping protocol.

We consider the problem of designing a flooding protocol to maximise the
probability that the message is distributed over a network. It is known that
using a simple flooding protocol such as described in Sec. 5, where nodes send as
soon as they receive the message suffers from some serious performance issues,
due to the high likelihood of interference. To mitigate this problem, variations
of this basic scheme have been proposed in which nodes only forward a received
message with probability p. The aim is to choose the value of p to optimise the
probability of the message being received by all nodes.

Using the CaVi tool, we first specify the network topology by placing the
nodes in the arrangement given in Fig. 10. Here node 0 is assumed to be the



16 A. Fehnker, M. Fruth, and A.K. McIver

0.0 0.5 1.0
0.0

0.5

1.0

Psend

pr
oa
bi
lit
y

0.0 0.5 1.0
0.0

0.5

1.0

Psend

pr
oa
bi
lit
y

0.0 0.5 1.0
0.0

0.5

1.0

Psend

pr
oa
bi
lit
y

0.0 0.5 1.0
0.0

0.5

1.0

Psend

pr
oa
bi
lit
y

0.0 0.5 1.0
0.0

0.5

1.0

Psend

pr
oa
bi
lit
y

0.0 0.5 1.0
0.0

0.5

1.0

Psend

pr
oa
bi
lit
y

0.0 0.5 1.0
0.0

0.5

1.0

Psend

pr
oa
bi
lit
y

0.0 0.5 1.0
0.0

0.5

1.0

Psend

pr
oa
bi
lit
y

0.0 0.5 1.0
0.0

0.5

1.0

Psend

pr
oa
bi
lit
y

0.0 0.5 1.0
0.0

0.5

1.0

Psend

pr
oa
bi
lit
y

0.0 0.5 1.0
0.0

0.5

1.0

Psend

pr
oa
bi
lit
y

0.0 0.5 1.0
0.0

0.5

1.0

Psend

pr
oa
bi
lit
y

Each graph represents the probability that node i eventually receives the message. The
top row of graphs correspond to nodes 1, 2, 3, 4 Fig. 10; the second row to 5, 6, 7, 8,
and the third row to 9, 10, 11, and 12.
For each graph the horizontal axis is the probability Psend, and the vertical axis is the
probability of eventually receiving the message.

Fig. 11. Per-node probabilities of eventually receiving the message

originator of the message to be distributed. The other nodes’ behaviour is given
as for the example in Sec. 5, but with an additional parameter, which is the
probability of sending. In the PRISM model that is given by Psend and in this
study it is the same for all nodes throughout the network.

For example, node 1’s behaviour is described by the PRISM model below,
where now the chance of a message being forwarded is combined with the
link probability, so that the overall probability that a message is received is
Psend*recvpi, and the chance of it not being received is (1-Psend)*recvpi.

module node1

active1:[0..1] init 1;

send1: [0..1] init 0;

[tick] send1=0&active1=1 -> Psend*recvp1:(send1’=1)&(active1’=1)+

(1-Psend)*recvp1:(send1’=0)&(active1’=0)+

(1-recvp1):(send1’=0)&(active1’=1);

[tick] send1=1&active1=1 -> send1’=0&active1’=0;

[tick] active1=0 -> send1’=0&active1’=0;

endmodule

As before the probabilities for receiving recvpi are calculated automatically
by the CaVi tool and combined with a node template to create automatically a
PRISM model for gossiping in the network with layout at Fig. 10. Next we used
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the generated gossiping models in PRISM. The dashed bars are the model building
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Fig. 12. Model checking and model building times

PRISM to compute the per-node probabilities of eventually receiving the message.
The results appear at Fig. 11 where we have plotted a separate graph for each node,
with the vertical axes being the probability that the message is eventually received
by that node, and the horizontal axis is Psend, which varies between 0 and 1.

The results show that the nodes 1, 2 and 5 clustered close to the originator
node 0 have a probability of eventually receiving proportional to Psend, since
they receive the message (if at all) directly from node 0, and since there can
be no interference when only node 0 broadcasts. The nodes 3, 4, 7, 8, 11 and
12, all positioned too far away to receive it first-hand however have a non-linear
relationship with Psend. When Psend is too low, then they have a very slim
chance of receiving the message at all, since they are relying on a chain of nodes
to forward their received message, and in this case the forwarding probability
Psend is very low for each. On the other hand these nodes also have a low
chance of ever receiving the message when Psend is high, because although the
intermediate nodes will send with high probability, their messages also have a
high chance of being destroyed by interference. The network-wide optimal value
for Psend appears to be around 0.8.
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Fig. 13. The number of states and transitions

7.1 Discussion

The use of CaVi to include the network topology characteristics to generate
the formal model is an important step. Whilst the formulae for computing the
probabilities are uniform, the task of preparing them by hand would be too time
consuming and prone to error.

The templates for gossiping we use for the subsequent generation of the net-
work models combine receiving and forwarding in a single probabilistic transi-
tion, leading to very compact internal PRISM representations of the constructed
system. Fig. 13 and Fig. 14 for example give some idea as to the growth rate
of the number of states and transitions as the number of network nodes in-
creases. Though the growth is still exponential for substantially-sized networks
(16 nodes) the actual size is still well within the capability of the PRISM. Sim-
ilarly Fig. 12 shows the actual time spent by PRISM to construct and perform
the model checking to produce the plots in Fig. 11. Interestingly the time to
construct these models is an order of magnitude greater than the time to do the
model checking, and this is largely due to the time spent parsing the function
definitions for the calculation of the link probabilities.
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Fig. 14. Memory requirements

7.2 Model Checking and Simulation

Castalia [1] is a recently-developed simulator for wireless networks, whose nov-
elty is that it incorporates an accurate model for wireless communication. It
takes as input a file containing parameters describing the power, signal strength,
“geographical” position of each node; once these have been specified, the simula-
tor executes by effectively stepping through a sequence of possible states. Where
the behaviour depends on the result of a random event, the simulator generates
a random number to resolve the choice. Thus the simulator recreates, as far as
possible, the results that would be obtained from testing the physical system.
Statements about the performance of the system are based on statistical analysis
of a large collection of many simulation runs. The errors in this kind of analysis
come from the statistical analysis as well as from inaccuracies in quantifying the
random events in the simulation model.

The advantages of simulation however are that since it only records the result
of an actual run, it is able to cope with large networks and thus can still give a
performance forecast of a network made up of many nodes.

On the other hand a very large number of simulation are runs required to
obtain the same accuracy as can be obtained with model checking [11] making
the overall enterprise very costly in time.
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Currently we are able to generate both PRISM or Castalia models from the
graphical input to CaVi, and thus we have established it as a single graphical
interface between model checking and simulation. We envisage that one use of
such an interface would be the ability to visualise the results obtained from both
in a uniform way. Such a “bridging language” would allow “counterexamples”
computed via model checking to be validated in the simulator, for example,
although how best to combine model checking and simulation most effectively is
still a topic for research.

8 Conclusions and Future Work

In this paper we have described a prototype tool which supports a uniform mod-
elling approach optimised for specifying wireless protocols. Its main features in-
clude the capabilities to take account of the topology and other parameters of the
network which, experiments have shown, have a major impact on the integrity
of the communication. The CaVi tool allows the specification of a network via
a graphical interface, and the automated generation of formats for simulation
and model checking. Detailed performance indicators may be visualised during
specification of the network, as well as the results of subsequent simulation and
model checking experiments.

The principal difference between CaVi and other specification tools is the link
it provides between simulation and formal model checking. To simplify the details
related to the topology in the formal specification task, we use a translation
directly to link probabilities. Those probabilities are calculated according to a
validated analytic formula.

Currently we only supply templates for gossiping and flooding protocols;
whilst we do not envisage a translation from a CaVi model of an arbitrary
protocol to PRISM, we would aim rather to provide a library of templates for
certain classes of protocol whose precise behaviour can be defined by a number
of parameters, in the same way that models are defined in Castalia.

We have not explored fully the uses of our formal models, for example whether
it could be used to investigate the extent of fault tolerance that needs to be built
into an unreliable network. That remains an interesting topic for future research.

Acknowledgements: We thank Viet Cuong Nguyen and Michael Ma for help
with the implementation of CaVi.
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A Automatically-Generated PRISM Model for a
Four-Node Gossiping Network

probabilistic

const double PsendingNode0 = 1.0;

const double PsendingNode1 = 1.0;

const double PsendingNode2 = 1.0;

const double PsendingNode3 = 1.0;

const double linRxSignal_0_1 = 1.5112050684404692E-9;

const double linRxSignal_0_2 = 1.5112050684404692E-9;

const double linRxSignal_0_3 = 1.0345994570907724E-8;

const double linRxSignal_1_0 = 1.5112050684404692E-9;

const double linRxSignal_1_2 = 1.6211305024389717E-9;

const double linRxSignal_1_3 = 3.04330129123453E-8;

const double linRxSignal_2_0 = 1.5112050684404692E-9;

const double linRxSignal_2_1 = 1.6211305024389717E-9;

const double linRxSignal_2_3 = 3.21510813957935E-8;

http://www.isi.edu/nsnam/ns/
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http://www.prismmodelchecker.org/
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const double linRxSignal_3_0 = 1.0345994570907724E-8;

const double linRxSignal_3_1 = 3.04330129123453E-8;

const double linRxSignal_3_2 = 3.21510813957935E-8;

formula snr_0_1 = (linRxSignal_0_1*send0)/(linRxSignal_2_1*send2

+ linRxSignal_3_1*send3 + 1.0E-10);

formula snr_0_2 = (linRxSignal_0_2*send0)/(linRxSignal_1_2*send1

+ linRxSignal_3_2*send3 + 1.0E-10);

formula snr_0_3 = (linRxSignal_0_3*send0)/(linRxSignal_1_3*send1

+ linRxSignal_2_3*send2 + 1.0E-10);

formula snr_1_0 = (linRxSignal_1_0*send1)/(linRxSignal_2_0*send2

+ linRxSignal_3_0*send3 + 1.0E-10);

formula snr_1_2 = (linRxSignal_1_2*send1)/(linRxSignal_0_2*send0

+ linRxSignal_3_2*send3 + 1.0E-10);

formula snr_1_3 = (linRxSignal_1_3*send1)/(linRxSignal_0_3*send0

+ linRxSignal_2_3*send2 + 1.0E-10);

formula snr_2_0 = (linRxSignal_2_0*send2)/(linRxSignal_1_0*send1

+ linRxSignal_3_0*send3 + 1.0E-10);

formula snr_2_1 = (linRxSignal_2_1*send2)/(linRxSignal_0_1*send0

+ linRxSignal_3_1*send3 + 1.0E-10);

formula snr_2_3 = (linRxSignal_2_3*send2)/(linRxSignal_0_3*send0

+ linRxSignal_1_3*send1 + 1.0E-10);

formula snr_3_0 = (linRxSignal_3_0*send3)/(linRxSignal_1_0*send1

+ linRxSignal_2_0*send2 + 1.0E-10);

formula snr_3_1 = (linRxSignal_3_1*send3)/(linRxSignal_0_1*send0

+ linRxSignal_2_1*send2 + 1.0E-10);

formula snr_3_2 = (linRxSignal_3_2*send3)/(linRxSignal_0_2*send0

+ linRxSignal_1_2*send1 + 1.0E-10);

formula Preceive_0_1 = func(max,0,

(snr_0_1>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_0_1)), 8 * 25):0);

formula Preceive_0_2 = func(max,0,

(snr_0_2>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_0_2)), 8 * 25):0);

formula Preceive_0_3 = func(max,0,

(snr_0_3>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_0_3)), 8 * 25):0);

formula Preceive_1_0 = func(max,0,

(snr_1_0>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_1_0)), 8 * 25):0);

formula Preceive_1_2 = func(max,0,

(snr_1_2>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_1_2)), 8 * 25):0);

formula Preceive_1_3 = func(max,0,

(snr_1_3>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_1_3)), 8 * 25):0);

formula Preceive_2_0 = func(max,0,

(snr_2_0>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_2_0)), 8 * 25):0);
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formula Preceive_2_1 = func(max,0,

(snr_2_1>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_2_1)), 8 * 25):0);

formula Preceive_2_3 = func(max,0,

(snr_2_3>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_2_3)), 8 * 25):0);

formula Preceive_3_0 = func(max,0,

(snr_3_0>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_3_0)), 8 * 25):0);

formula Preceive_3_1 = func(max,0,

(snr_3_1>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_3_1)), 8 * 25):0);

formula Preceive_3_2 = func(max,0,

(snr_3_2>=12.357925578002547)?func(pow,(1-0.5*func(pow,

2.71828,-0.781*snr_3_2)), 8 * 25):0);

formula recvp0 = func(min,1,Preceive_1_0+Preceive_2_0

+Preceive_3_0);

formula recvp1 = func(min,1,Preceive_0_1+Preceive_2_1

+Preceive_3_1);

formula recvp2 = func(min,1,Preceive_0_2+Preceive_1_2

+Preceive_3_2);

formula recvp3 = func(min,1,Preceive_0_3+Preceive_1_3

+Preceive_2_3);

module node0

active0:[0..1] init 1;

send0: [0..1] init 0;

[tick] send0=0&active0=1 -> PsendingNode0:(send0’=1)&(active0’=1)

+(1-PsendingNode0):(send0’=0)&(active0’=0);

[tick] send0=1&active0=1 -> send0’=0&active0’=0;

[tick] active0=0 -> send0’=0&active0’=0;

endmodule

module node1

active1:[0..1] init 1;

send1: [0..1] init 0;

[tick] send1=0&active1=1 -> PsendingNode1*recvp1:(send1’=1)&

(active1’=1)+(1-PsendingNode1)*recvp1:(send1’=0)&(active1’=0)+(1-

recvp1):(send1’=0)&(active1’=1);

[tick] send1=1&active1=1 -> send1’=0&active1’=0;

[tick] active1=0 -> send1’=0&active1’=0;

endmodule

module node2

active2:[0..1] init 1;

send2: [0..1] init 0;
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[tick] send2=0&active2=1 -> PsendingNode2*recvp2:(send2’=1)&

(active2’=1)+(1-PsendingNode2)*recvp2:(send2’=0)&(active2’=0)+(1-

recvp2):(send2’=0)&(active2’=1);

[tick] send2=1&active2=1 -> send2’=0&active2’=0;

[tick] active2=0 -> send2’=0&active2’=0;

endmodule

module node3

active3:[0..1] init 1; send3: [0..1] init 0;

[tick] send3=0&active3=1 -> PsendingNode3*recvp3:(send3’=1)&

(active3’=1)+(1-PsendingNode3)*recvp3:(send3’=0)&(active3’=0)+(1-

recvp3):(send3’=0)&(active3’=1);

[tick] send3=1&active3=1 -> send3’=0&active3’=0;

[tick] active3=0 -> send3’=0&active3’=0;

endmodule
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Abstract. In this paper we outline the main characteristics of a deontic
logic, which we claim is useful for the modeling of and reasoning about
fault-tolerance and related concepts. Towards this goal, we describe a
temporal extension of this formalism together with some of its proper-
ties. We use two different examples to show how some fault-tolerance con-
cepts (like fault-recovery and system degradation) can be expressed using
deontic constructs. The second example demonstrates how contrary-to-
duty reasoning (when a secondary obligation arises from the violation of
a primary obligation) is applied in fault-tolerant scenarios.
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1 Introduction

Fault-tolerance has emerged as an important research field in recent years; the
increasing complexity of software code in current applications has implied that
techniques such as program verification (e.g., Hoare logic) are very expensive to
apply in practice, in part because the total elimination of errors is a hard task
in large programs. This implies that designers have to find other techniques to
develop critical software, which could be used together with formal verification.

Producing fault-tolerant programs (software which is able to recover from
errors) is an interesting option. Although the main techniques for fault-tolerance
have been proposed for the implementation phase, in the past few years some
techniques and formalisms have been proposed for the design phase. We wish
to propose techniques for use in the more abstract design stage and we intend
to take some steps towards this goal; in this paper we introduce a propositional
deontic logic (a detailed introduction is given in [1] and [2]) to specify and to
reason about fault-tolerance at the design level, and then we add some features
to the logic to use it in some examples with fault-tolerance features (we introduce
a temporal extension of the logic).

We give two examples of application of this formal system; in the first exam-
ple we show how the basic constructs of the logic can be used to specify systems
where violations arise, and therefore notions such as fault-recovery and system
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degradation should be formalized; we show in what manner deontic logic can be
used for this. On the other hand, the second example is more complex, and we
introduce it showing that the notion of violation (and some properties related
to it) can be embedded in the logical system, which makes the logic more ap-
pealing for use in fault-tolerance. In addition, contrary-to-duty formulae (which
are inherent in fault-tolerance) impose some relationships between the different
violations in the model, as we illustrate later on.

Although deontic logics (or DL for short) were created to formalize moral and
ethical reasoning, they have been proposed as a suitable formalism for dealing
with fault-tolerance by several authors (for example: [3], [4], [5] and [6]). This
logic has the main benefit of allowing us to distinguish between qualitatively
different scenarios: normative (following the rules, expected, normal) and non-
normative (violating the rules, unexpected, abnormal) situations. In these logics
we have some new predicates: P (permission), O (obligation) and F (forbidden)
which allow us to add norms in the logic. We find different definitions of these
predicates in the literature, and there is no standard definition (and therefore
properties) of permission, obligation and forbidden. (A good introduction to
deontic logic is given in [7].) The logic that we introduce below can be classified
as an “ought-to-do” deontic logic, because the deontic operators are applied to
actions (i.e., we impose norms on actions). Meanwhile, in other deontic logics
the norms are on predicates (e.g, it is forbidden that the housed is painted in
black).

As noted in several sources ([8], [9], [3] and [10]), ought-to-do logics seem to
be more suitable for use in specifying computing systems. However, it is hard
to find a suitable version of deontic logic to apply in practice. Some formalisms
have been described for use in computer science (for example:[8] or [11]), but
most of them are not designed to be used in the context of fault-tolerance. (Some
work has been done about databases and fault-tolerance in [6].) In addition, the
notion of time has been useful for reasoning about program properties, so we
mix both deontic notions and temporal frameworks; and the result is the logic
described in the next section, which is very expressive, allowing us to express
several properties, like those related to fault recovery.

Contrary-to-duty statements (a set of predicates where a secondary obliga-
tion arises from the violation of a primary one) have been studied in the deontic
community (see [12], [13] and [14]), partly because we can obtain “paradoxical”
(contrary to our intuition) properties from these statements, for example: you
should not tell the secret to Reagan or to Gorbachov; if you tell the secret to
Gorbachov, you should tell the secret to Reagan. You tell the secret to Gorba-
chov. (This is called the Reagan-Gorvachov paradox in the literature [15].) In
several deontic logics, we can obtain a logical contradiction from these state-
ments, which, according to our intuition, lacks sense. We argue in section 4 that
these kinds of reasoning are common in fault-tolerance, and we ground this claim
with an example, and then we describe an extension of the logic to deal with
contrary-to-duty reasoning.
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The paper is organized as follows. In section 2 we present a brief description of
our deontic logic. In sections 3 and 4 we describe two examples and an extension of
the logic described ealier. Finally, we present some conclusions and further work.

2 A Temporal Deontic Logic

The logic presented in this section takes some features from the dynamic deontic
logic described by Meyer in [8], and the modal action logic proposed by Maibaum
and Khosla in [10]. In the language, we have a set of atomic (or primitive) actions:

Δ0 = {α, β, γ, ...}
and a set of atomic propositions:

Φ0 = {ϕ, ψ, ϑ, ...}
More complex actions can be constructed from the atomic ones using the fol-
lowing operators: �,�,−, that is: non-deterministic choice, concurrent execution
and action complement. In addition, we consider two special actions: ∅ and U.
The former is an impossible action (an action that cannot be executed), while
the latter is universal choice (the non-deterministic choice between the enabled
actions). The complement operator is particularly useful to specify wrong behav-
ior, for example, to say that if a given system is obliged to perform an action and
it executes another action (this action is in the complement), then we have an
error. We must be very careful with the complement because it can induce unde-
cidability in the logic (for example, if we combine it with the iteration operator,
see [9]).

The intuition behind each construct in the logic is as follows:

– α =act β: actions α and β are equal.
– [α]ϕ: after any possible execution of α, ϕ is true.
– [α � β]ϕ: after the non-deterministic execution of α or β, ϕ is true.
– [α � β]ϕ: after the parallel execution of α and β, ϕ is true.
– [U]ϕ: after the non-deterministic choice of any possible action, ϕ is true.
– [∅]ϕ: after executing an impossible action, ϕ becomes true.
– [α]ϕ: after executing an action other than α, ϕ is true.
– P(α): every way of executing α is allowed.
– Pw(α) : some way of executing α is allowed.

The deontic part of the logic is given by the permission predicates. Note that
we consider two different versions of permission, namely strong permission P(−)
and weak permission Pw(−). Both are useful, in particular since we can define
an obligation operator using them:

O(α) def⇐⇒ P(α) ∧ Pw(α)

That is, an action is obliged if it is strongly permitted (i.e., every way of doing
it is allowed) and the remaining actions are not weakly permitted (you are not
allowed to execute any of them in any context).
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This definition of obligation allows us to avoid several deontic paradoxes (some
of the most well-known paradoxes in deontic logic are described in [12]). An
example is the so-called Ross’s paradox: if we are obliged to send a letter then
we are obliged to send it or burn it. This is a paradox in the sense that we do not
expect this sentence to be valid in natural language. The formalization of this
paradox is as follows: O(send) → O(send � burn). The reader can verify later
that this formula is not valid in our framework.

The semantics of our logic is defined by a labelled transition system, M =
〈W ,R, E , I,P〉, where:

– W is a (non empty) set of worlds.
– E is set of events (each event corresponds to a set of actions that may occur

during system execution).
– R is a E-labelled relation between worlds.
– I is an interpretation which tells us which propositions are true in which

world; in addition, it maps an action to a set of events (the events that this
action participates in during any of its executions).

– the relation P ⊆ W × E tells us which event is allowed in a given world.

Some restriction must be imposed on the models to make it possible to ax-
iomatize the logic; we have introduced these technical details in [2]. The most
important of these restrictions says that maximal parallel execution of actions
must produce an unique event.

The relation � can be defined in a standard way; we have two novel rules for
the two versions of permission:

– w,M � p def⇐⇒ w ∈ I(p)
– w,M � α =act β

def⇐⇒ I(α) = I(β)
– w,M � ¬ϕ def⇐⇒ not w � ϕ.
– w,M � ϕ→ ψ

def⇐⇒ w � ¬ϕ or w � ψ or both.
– w,M � [α]φ def⇐⇒ for every e ∈ I(α) and w′ ∈ W if w e→ w′, then w′,M � φ.
– w,M � P(α) def⇐⇒ for all e ∈ I(α), P(w, e) holds.
– w,M � Pw(α) def⇐⇒ there exists some e ∈ I(α) such that P(w, e).

Here M denotes a model and w a world of that model. These definitions are
a formalization of the intuition explained above. Note that using modalities we
can define the composition of actions, that is:

[α;β]ϕ def⇐⇒ [α]([β]ϕ)

However, we introduce it only as notation. (We can introduce this operator into
the language, but it complicates in several ways the semantics, in particular the
semantics of the action complement.)

We can explain intuitively the deontic operators with some diagrams. Consider
the following model M in figure 1. The dotted arrow means that this transition
is not allowed to be performed. e1, e2 and e3 represent possible events during the
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Fig. 1. Example of a model

execution of the system; we can suppose that they are generated by two actions:
α and β. Suppose that α produces (during its execution) events e1 and e2, and
action β produces event e3. Here we have w,M � P(α), because every way of
executing it is allowed, and also we have w,M � Pw(α), because α is allowed to
be executed in at least one way. On the other hand, we have w,M � ¬P(β) and
also w,M � ¬Pw(β). Finally, since w,M � P(α) and w,M � ¬Pw(α) we obtain
w,M � O(α).

Some interesting properties of the modal and deontic operators are the
following:

P1. [α � α′]ϕ↔ [α]ϕ ∧ [α′]ϕ
P2. [α]ϕ→ [α � α′]ϕ
P3. P(∅)
P4. P(α � β)↔ P(α) ∧ P(β)
P5. P(α) ∨ P(β)→ P(α � β)
P6. ¬Pw(∅)
P7. Pw(α � β)↔ Pw(α) ∨ Pw(β)
P8. Pw(α � β)→ Pw(α) ∧ Pw(β)

P1 says that, if after executing α or β, ϕ is true, then ϕ is true after executing α
and after executing β. P2 says that parallel composition preserves postcondition
properties. P3 says that every way of executing the impossible action is allowed
(because there is no ways of executing it!). P4 and P5 are similar to P1 and
P2 but for strong permission. P6, P7 and P8 are the dual properties for the
weak permission. In particular, P6 says that the impossible action is not weakly
permitted, i.e., there is no (allowed) way of executing it. It is in this sense that ∅
is the impossible action. This explains the seemingly paradoxical nature of P3:
every way of executing the impossible action is allowed (but there is no way!).

Note that we do not have, as in dynamic logic, the iteration as an operation
over actions. Even though it is desirable, it will bring us undecidability. Instead,
we prefer to enrich our logic with temporal operators in a branching time style
(precisely, similar to Computational Tree Logic [16]). We consider the following
temporal formulae:

– ANϕ (in all possible executions ϕ is true at the next moment).
– AGϕ (in all executions ϕ is always true),
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– A(ϕ1 U ϕ2) (for every possible execution ϕ1 is true until ϕ2 becomes true)
– E(ϕ1 U ϕ2) (there exists some execution where ϕ1 is true until ϕ2 becomes

true).

As usual, using these operators we can define their dual versions. It is interesting
to note that iteration and the temporal operators are related; with iteration we
can define: [U∗]ϕ def= AGϕ. But the temporal formulae do not make the logic
undecidable because the temporal operators cannot be mixed with the modal
ones.

In addition, we consider the operator Done(α), which means the last action
executed was α. Using it, together with the temporal operators, we can reason
about the executions of our models. Some useful formulae can be expressed using
the Done() operator; some examples are:

– ANDone(α), the next action to be executed will be α.
– Done(α)→ Done(β), the execution of α implies the execution of β
– Done(α)→ O(β), if you performed α then you are (now) obliged to perform
β.

– A(Done(α1 � ... � αn) U Done(β)), on every path you perform some αi at
each step until you perform β.

Some of these formulae are important to express error-recovery, as we illustrate
in the next section.

The Done(−) operator has some interesting properties:

Done1. Done(α � β)→ Done(α) ∨ Done(β)
Done2. Done(α � β)↔ Done(α) ∧ Done(β)
Done3. Done(α � β) ∧ Done(α)→ Done(β)
Done4. [α]ϕ ∧ [β]Done(α)→ [β]ϕ

Property Done1 says that if a choice between two actions was executed then
one of them was executed. Done2 means that if we execute the parallel compo-
sition of two actions then we have to perform both actions. Done3 allows us to
discover which action of a choice was executed. And the last property is a kind
of subsumption property: if, after executing α ϕ is true, and after doing β, α
was also done, then after β ϕ is also true.

The semantics of the temporal operators can be defined using traces (as usual).
Suppose that π = s0

e0→ s1
e1→ ... is an infinite trace on a given model (note that

we can extend the finite traces to infinite ones, as is usually done in temporal
logics). We says that π′ � π if π′ is an initial segment of π. Then we define the
formal semantics of the temporal operators as follows:

– π, i,M � Done(α) def⇐⇒ i > 0 and ei−1 ∈ I(α).
– π, i,M � ANϕ

def⇐⇒ ∀π′ such that π[0, i] � π′, we have that π′, i+ 1,M � ϕ.
– π, i,M � AGϕ

def⇐⇒ ∀π′ such that π[0, i] � π′, we have that ∀j ≥ i : π′, j,
M � ϕ.

– π, i,M � A(ϕ1 U ϕ2)
def⇐⇒ ∀π′ such that π[0, i] � π′, we have that ∃j ≥ i :

π′, j,M � ϕ2 and ∀i ≤ k < j : π′, k,M � ϕ1.
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– π, i,M � E(ϕ1 U ϕ2)
def⇐⇒ ∃π′ such that π[0, i] � π′, we have that ∃j ≥ i :

π′, j,M � ϕ2 and ∀i ≤ k < j : π′, k,M � ϕ1.

Note that the relation � is now defined with respect to a sequence, an instant
and a model, that is, π, i,M � ϕ means that the formulae ϕ is true at instant i
of the execution π of the model M .

It is important to mention that this formal system is suitable to be used with
a tableaux deduction system (see [17]), which will enable us to do automatic
deduction in relation to our specifications.

3 A Practical Example

We will use a small example to illustrate why the deontic operators are useful
to model fault-tolerance:

Example 1. In a factory which produces some kind of object, the process of
making an object is as follows: we have two mechanical hands (A and B), one
press and one drill; the hand A puts an element in the press and the hand B
takes the pressed element and puts it in the drill. If the hand A fails and does
not put some element in the press, then the hand B should put the element in
the press and then it should continue doing its work. And vice-versa (if hand B
fails). If both hands fail, an alarm sounds and the system is shut down.

The interesting point in the example is how a violation (when a mechanical hand
fails) can be overcome using the other hand (taking advantage of the redundancy
in the system); of course, using only one hand for the whole process implies a
slower process of production, and therefore the entire process is more expensive.

Note that here we have an important difference between prescription and
description of behavior: the hand A should put an element in the press. We need
to model this as a prescription of behavior; that is, what the system is obliged
to do in a given situation. One of the main advantages of deontic logic is that
it allows us to distinguish between the description and prescription of a system
(as established in [10]). For example, if we proceed to say that the hand A puts
an element in the press (in a descriptional way):

¬el2press→ ANDone(A.putselpress)

which means that if there is no element in the press then the hand A puts one
in it (note that ANDone(α) could be thought of as a do operator). On the other
hand, the deontic version:

¬el2press→ O(A.putselpresser)

says that, if there is no element in the press, then the hand A should put one
in the press. The difference is that, in the second case, the obligation could be
violated. Moreover, the violation becomes a state property in terms of which
characterisation of faults, prescription of recovery and analysis can be defined.

Having these facts in mind, we can give a part of the specification:
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A1 ¬Done(U)→ ¬el2press ∧ ¬el2drill ∧ ¬v1 ∧ ¬v2
A2 (¬el2press→ O(A.putselpress)) ∧ (v2 ∧ elpressed→ O(A.putseldrill))
A3 (¬el2drill ∧ elpressed→ O(B.putseldrill)) ∧ (v1 → O(B.putselpress))
A4 ¬v1 ∧O(A.putselpress�A.putseldrill)→ [A.putselpress �A.putseldrill]v1
A5 ¬v2∧O(B.putselpress�B.putseldrill)→ [B.putselpress �B.putseldrill]v2
A6 ¬v1 → [A.putselpress �A.putseldrill]¬v1
A7 ¬v2 → [B.putselpress �B.putseldrill]¬v2
A8 (v1 → [A.fix]v1) ∧ (v1 → [A.fix]¬v1)
A9 (v2 → [B.fix]v1) ∧ (v2 → [B.fix]¬v2)
A10 v1 ∧ v2 → ANDone(alarm)
A11 [alarm]AF(Done(A.fix �B.fix))
Some explanation will be useful about the axioms. We have only shown the
deontic axioms; some other axioms should be added (for example frame axioms
and pre/post condition axioms for individual actions). Axiom A1 establishes the
initial condition in the system: at the beginning (when no action has occurred)
there is no element to press, and no element to drill, and no violations. A2
says that if there is no element in the press, then the hand A should put an
element there; in addition, it says that if the hand B is not working, then A has
to put pressed elements in the drill. A3 says that if there is no element to drill
and there exists a pressed element, then the hand B should put that element
in the drill. Axiom A4 expresses when a violation of type v1 is committed: if
there is no violation v1 and hand A is obliged to put an element in the press,
but the hand does not do it, then v1 becomes true. A5 is the specification of
violation v2: it happens when the hand B does not fulfill its obligation. A6 and
A7 model when normal states are preserved. A8 and A9 express when we can
recover from violation, that is, when some hand is repaired. Finally, A10 and
A11 tell us when the worst situation is achieved, that is, when both hands are
in violation; then an alarm is initiated and the hands are repaired.

It is interesting to analyze the different faults that we can have in the system;
we can see that there exists an order relation between them. The situation is
illustrated in figure 2. The ideal scenario is when ¬v1∧¬v2 is true, that is, when
no hand is faulty. From here, the system can suffer a degradation and then it goes
to violation 1 (v1 is true) or violation 2 (v2 is true); both situations of violation
are incomparable, in the sense that none of them implies the other. Then, the
system can be degraded again and both violations hold; in this case, both hands
are not working correctly and there is no other option than repairing both hands.
Otherwise, the entire process of production will be effected. It is important to
note that, though in violation 1 (or violation 2) the system can work correctly
(because of the redundancy of the hands), though the process of production is
slower (only one hand will do all the work).

On the other hand, from violations v1 ∧ v2, v1 ∧ ¬v2 or ¬v1 ∧ v2 the system
can upgrade itself (going to a better state) when the faulty hand is repaired. The
structure in figure 1 can be thought of as a lattice of violations which characterise
the possible violations in the system, and the relationships between them.

Note that the hand A can try to put an element in the drill. Indeed, if hand
B is working correctly, this scenario is obviously not desirable. We can use the
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v 2 ¬v1

v1 v2

¬v2 v1

¬v 2 ¬v1
system degradation

system degradation

normal trace

degraded trace

critical trace

system upgrades

system upgrades

Fig. 2. ordering violations

forbidden operator to avoid this. The forbidden operator can be defined using
the weak permission or the strong permission; depending on the choice, we get
different results. We define it using the weak permission, as follows:

F(α) def⇐⇒ ¬Pw(α)

That is, an action is forbidden if it is not allowed to be performed. Using this
operator we can include the following formulae:

– ¬v1 → F(A.putseldrill)
– ¬v2 → F(B.putselpress)

Using these new formulae we can define new violations in the case that prohi-
bitions are violated, and therefore, the corresponding recovery actions can be
introduced.

Some properties can be proved from the specification. In particular, some
interesting properties to prove are:

AG(¬v1 ∧ ¬v2) ∧ ¬el2drill ∧ AFel2press→ AFel2drill

if there is no violation, and eventually we have an element to press, then we will
have an element to drill.

AG(v1 ∧ ¬v2) ∧ ¬el2drill ∧ AFel2press→ AFel2drill

if there is a violation of type v1 (but no violation of type v2), then the pressed
elements will be brought to the drill, that is, the system continues working, in a
degraded way.

AG(v1 ∧ v2)→ AF(EG(¬el2drill ∧ ¬el2press))
if both hands are not working correctly, then there exists the possibility that the
elements will not be transported to the press or to the drill.

Of course, a lot of interesting different properties can be proposed, and proven.
We have described another example of an application in [1]. The point to make
here is the way in which system violation and fault recovery are specified; we
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can mix modal and deontic operators to specify these system properties. And
the expressiveness that temporal operators give us allow us to prove important
properties about the specification.

We note that the logic described is decidable and, therefore, techniques such
as model checking could be used to validate specifications and to prove properties
of corresponding programs.

4 Contrary-to-Duty Reasoning and Fault-Tolerance

As the reader may observe in the example given in section 3, we have to specify
when violations occur. A good question is whether we can do this directly in the
logic, observing that if an obligation is not fulfilled then a violation follows; the
problem with this point of view is that we have usually different violations in
our specification, and when each violation occurs should be a design decision.
Another problem is that, as argued in [18], there are cases where a red (forbidden)
transition does not yield a violation (or a faulty state); the example presented in
the referenced work is when we have two different components (or “agents”) and
the component 1 is allowed to perform an action a which yields a green state
(i.e., without violations), and the component 2 is forbidden to perform an action
which yields the same state; in this situation, the status of the action (if it is
allowed or not) does not follow from the status of the resulting state. In other
words, red transition can yield green (normal) states.

However, there is a key observation that we can make:

– If we are not in a violation and we perform an allowed action, we will not
produce a violation.

In other words, allowed actions preserve absence of violations. In several ap-
proaches to deontic action logic ([8] and [9]), the deontic predicates are reduced
to modalities; for example in [8] we have:

F(α) ≡ [α]V

That is, an action is forbidden if and only if it produces a violation (here V is
a predicate which indicates when a violation occurs). As we argued before, we
want to separate the prescription and description of systems. And these kinds
of definitions introduce a strong relationship between the two. In particular, we
observe that (following this definition) an allowed action (that is: ¬F(α)) implies
that there is a way to execute the action so that it terminates and does not cause
a violation. We reject this (in the context of computing systems) because whether
an action must finish or not should be specified in the descriptional part of the
specification.

For example, consider a scenario where a component is allowed to perform an
action, but it cannot perform that action because it is waiting for some resource;
we do not want to impose that there is some way of executing the action. Of
course, that we should keep the permission over time, it is the task of the specifier
(or software engineer) to ensure. Summarizing, we want to establish a minimal
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relationship between deontic predicates and modalities, providing more freedom
for the designer. This basic relationship can be summarized in the following
semantical condition on the models.

C1 w,M � ¬V and P(e, w′) and w e→ w′ implies w′,M � ¬V
The condition characterises the idea that allowed actions do not introduce vi-
olations (but perhaps they may carry on violations); this requirement is called
the GGG (green-green-green) condition in [18].

Some intuition about these facts is illustrated in figure 3, where dashed lines
denote forbidden events in the model. In that example, if we perform event e1
then we do not get a violation, because we perform an allowed action from a state
which is free of “errors”; but if we perform event e2, we get a violation. On the
other hand, if we perform an allowed action from a state with violations, we can
get a violation (as illustrated in figure 4). In other words, whether an allowed
action preserves a violation or not must be specified by the designer. Those
actions which take an error state to a state free of errors are called recovery
actions. Note that, if in our specification we say (perhaps indirectly) that an
allowed action introduces a violation, then this action can only be executed in
error states (otherwise it will be inconsistent with condition C1).

Some remarks are needed regarding the predicate V, which indicates when
a violation is produced; in complex applications, we can divide V into several
violations (as was done in the example presented in section 3) setting:

V = v1 ∨ ... ∨ vn

i.e., V is the disjunction of all the possible violations. Note that with this defini-
tion a recovery action for a violation vi can produces a new violation vj ; however,
it cannot produce the same violation, otherwise it will never recover from the
error! Following this, an important property to prove in our specifications is that
recovery actions do not produce again the same violation (otherwise our design
will be inconsistent).

•w1 � ¬V

•w � ¬V

e1

����������������

e2

��
•w3 � V

Fig. 3. Example of model with violations

• e1 �� •w � V
e2 �� •w′ � V

Fig. 4. An example of allowed action which carries forward violations
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Condition C1 can be established by means of predicates, as follows:

¬V ∧ P(α)→ [α]¬V

We can think of this formula as an extra axiom in the logic, which is sometimes
useful to derive properties; an example is given below. We can refine this condi-
tion, establishing that permitted actions do not introduce new violations; e.g.,
suppose that we are in a state where some of the violation predicates are true,
then executing a permitted action will not introduce new violations, perhaps the
system will not recover from the violations already present in the actual state,
but this action will not take us to a worse state. This refined version of C1 (called
C1′) is expressed by the following set of formulae:

¬vi ∧ P(α)→ [α]¬vi

Note that we have one formula for each predicate vi. Obviously, condition C1′

implies condition C1.
On the other hand, contrary-to-duty structures are a set of predicates where,

from a violation of a primary obligation, a secondary obligation arises. These
kinds of formulae have been problematic in deontic logic because sometimes
from, intuitively correct, contrary-to-duty predicates we can deduce falsehood,
which is paradoxical in some sense (see [12] for a detailed discussion of contrary-
to-duty paradoxes). For example, consider the following predicates (a statement
of the gentle murderer paradox, see [12] for details):

– It is forbidden to kill.
– If you kill, then you have to kill gently.
– You kill.

In standard deontic logic ([7]), these predicates are inconsistent. In the logic
described above we can formalize it as follows:

– F(kill)
– Done(kill)→ O(kill gently)
– Done(kill)

Using modus ponens and the third and second sentences we get: O(kill gently)
and from the first sentence we have: F(kill), which is equivalent to ¬Pw(kill).
And using the definition of obligation, we also obtain P(kill gently). Considering
that kill gently � kill (killing gently is one of the ways to kill), we have that
P(kill gently) and ¬Pw(kill gently), and the only way to have this situation in
a model is when kill gently =act ∅, i.e., killing in a gentle way is impossible.
This is an unexpected property derived from the specification, and in some
sense it is paradoxical. One way to solve this problem (proposed in [12] for
dynamic deontic logic) is to have a convenient collection of different permissions:
P1, ...,Pn and P1

w, ...,P
n
w, every pair i of weak and strong permission related as

explained in section 2. Using these new predicates we can formalize the problem
as follows:
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– F1(kill)
– Done(kill)→ O2(kill gently)
– Done(kill)

where the different violations in this scenario can be specified by:

– F1(kill)→ [kill]v1
– F2(kill gently)→ [kill gently]v2
– ¬v2 → [kill gently]¬v2

That is, killing gently produces violation v2 (and also v1 since it is a way of killing),
and killing ungently produces v1 ∧ ¬v2, which can be thought of as a worse viola-
tion, one which perhaps we cannot recover from. As we point out above, contrary-
to-duty predicates introduce a sort of additional dimension in the structure of the
violations, each vi could be divided in several violations, and therefore giving us a
matrix of two dimensions (or maybe n-dimensions when we have nested contrary-
to-duty reasoning). We illustrate this with an example later on.

Let us introduce the changes in the logic to manage contrary-to-duty struc-
tures; in dynamic deontic logic, the introduction of different permissions is
easier because we only need to add different violation markers for each new
permission. For our logic we must add some structure in our semantic mod-
els. The new semantics of the logic is defined by a labelled transition system,
M = 〈W ,R, E , I,P1, ...,Pn〉, where:

– W is a (non empty) set of worlds.
– E is set of events (the set of events that occurs during system execution).
– R is a E-labelled relation between worlds.
– I is an interpretation which tells us which propositions are true in which

world; in addition, it maps an action to a set of events (the events that this
action participates in during its execution).

– each relationship P i ⊆ W×E tells us which event is allowed in a given world
for permission number i.

Intuitively, P1, ...,Pn are relations that are the interpretation of the different
permissions in the logic. In the language of the logic we have to consider the
predicates:

P1(−), ...,Pn(−),P1
w(−), ...,Pn

w(−)

The number of (strong and weak) permissions may change depending on the
scenario where the logic will be used. Using these predicates, we define n different
obligation predicates Oi as follows:

Oi(α)⇔ Pi(α) ∧ ¬Pi
w(α)

In the same way, conditions C1 and C1′ can be reformulated in this new setting.
Let us present an example to illustrate this new logic in practice.
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Example 2. Consider a microprocessor which is part of a critical system (perhaps
in a space station, where it is not easy to replace it); we have two coolers to keep
the temperature of the processor low, and also we have a sensor to measure
the temperature. The processor could be in a normal state (that is, working
correctly) or on stand by; the latter could occur when the processor is too hot,
maybe because the coolers are not working. It is forbidden that the processor is
on stand by because this can produce some incorrect behavior in the system.

We see that we have standard violations (when the coolers are not working), and
also a contrary-to-duty scenario: the processor is forbidden to be on stand by,
but if the temperature is too high (because of the bad behavior of some cooler),
then we should put the processor on stand by. The vocabulary of the example is
given by the following set of actions and predicates with their intuitive meaning:

– c1.start, turn on cooler 1.
– c2.start, turn on cooler 2.
– c1.stop, cooler 1 stops working.
– c2.stop, cooler 2 stops working.
– p.sb, the processor goes into stand by.
– p.up, the processor wakes up.
– s.getshigh, the sensor detects high temperature.
– s.getslow, the sensor detects low temperature.

and predicates:

– p.on, the processor is working.
– s.high, the sensor is detecting high temperature.
– v1, a violation is produced because cooler 1 should be working and it is off.
– v2, similar than v1 but produced by cooler 2.
– v3, a violation is produced because the processor is on stand by.

The following are some of the axioms of the specification:

Ax1 ¬Done(U)→ ¬v1 ∧ ¬v2 ∧ ¬v3 ∧ p.on ∧ ¬s.high ∧ ¬c1.on ∧ ¬c2.on
At the beginning (of time) there are no violations, the processor is working, the
sensor is low, and the coolers are off.

Ax2 F1(p.sb)

It is forbidden that the processor goes into stand by.

Ax3 ¬s.high→ Pi(p.sb) (for i = 1, 2)

If the sensor is low, then every action, different from putting the processor in
stand by, is allowed.

Ax4 s.high→ O1(c1.on � c2.on)

If the sensor is detecting high temperature, then the two coolers should be on.
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Ax5 s.high ∧ v1 ∧ v2 → O2(p.sb)

If the sensor is detecting a high temperature and both coolers are not working,
then the processor ought to go into stand by.

Ax6 (¬vi ∧ F1(c1.on)→ [c1.on](v1 ∧ ¬vi))
∧(vi ∧ F1(c1.on)→ [c1.on](v1 ∧ vi)) (for i = 2, 3)

Ax7 (¬vi ∧ F1(c2.on)→ [c2.on](v2 ∧ ¬vi))
∧(vi ∧ F1(c2.on)→ [c2.on](v2 ∧ vi)) (for i = 1, 3)

Ax8 (¬vi ∧ F2(ps.sb)→ [ps.sb](v3 ∧ ¬vi))
∧(vi ∧ F2(ps.sb)→ [ps.sb](v3 ∧ vi)) (for i = 1, 2)

Ax9 (v1 → [c1.on]v1) ∧ ([c1.on]¬v1)
Ax10 v2 → [c2.on]v2 ∧ ([c2.on]¬v2)
Ax11 v3 → [p.up]v3 ∧ ([p.up]¬v3)
Formulae Ax6, Ax7 and Ax8 define what forbidden actions cause each vio-
lation, Ax9, Ax10 and Ax11 define the recovery actions for each violation;
although this example is simple, in more complicated examples the designer has
to take care that recovery actions should not cause violations.

In addition we require that if both coolers are off and the sensor is high, then
the processor ought to be on stand by until the sensor is low.

Ax12 AO2(p.sb) U s.low
We add the restriction that if both coolers are on, then it is not possible to have
a high temperature in the processor (the system is well designed in this sense).

Ax13 c1.on ∧ c2.on→ s.low

We need axioms to describe the effects of the action p.up.

Ax14 [p.up]p.on
Ax15 ¬p.on→ [p.up]¬p.on
Similar axioms must be added for the other actions; axiom Ax15 says that no
other action different from p.up turns on the processor.

An interesting point about this description is that having two different kinds
of deontic predicates adds more structure in the violation lattice; the different
violations that may occur in this specification are shown in figure 5. In this
illustration we can see the different violations that can arise in the example;
every node denotes a set of violations which may become true at a certain point
in the execution of the system. At the beginning we have no violations (the
empty set); after that we can go into a violation v1 (when the cooler 1 is not
working and the temperature is high), or to a violation v2 when we have the
same situation but for cooler 2; when both coolers are not working we get the
two violations. Now, when we put the processor on stand by we have a violation
v3 which gives us the second dimension in the picture; this violation is needed in
some situations to prevent the processor from burning out. If we add a formula
saying that having the temperature high for at least three consecutive clock
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Fig. 5. Possible violations of example 2

cycles, when the processor is working, it will burn out, then we can deduce that
a violation of an obligation O2(p.sb) (taking the red transition three consecutive
times) will yield a system crash.

These kinds of specifications seem well suited for the application of model
checking to programs; for example, programs described with the nC+ ([18]) lan-
guage can be checked against these specifications (to determine if the program
satisfies the specification axioms), and then we can know if some deontic con-
straints are violated (if some red transition is taken) by the program, and what
is the severity of these violations. For instance, in the example it is not the same
to violate obligation O1 as to violate obligation O2, the second one being more
dangerous (it may yield a system crash).

In the appendix we shown how this logic can be used to prove properties
about specifications; for example, we provide the proof of v3 → ¬p.on; that is
when we are in violation 3, the processor is on stand by. Note that this property
is not obvious from the specification, and we need the GGG property to deduce
it from the specification. (Note that in the specification we only indicate when
this violation arises and what is the recovery action for this violation; the fact
that no other action causes this violation comes from the deontic part of the
specification.)

We prove some of the properties of this specification in the appendix (where
we also describe an axiomatic system presented in earlier papers).

5 Conclusions

We have shown, using some examples, how deontic action logics can be used to
express some properties of fault-tolerant systems. Though the examples are sim-
ple, they illustrate non-trivial, complex scenarios of failure and recovery, demon-
strating that these ideas themselves are non trivial. For this purpose we have
developed our own version of deontic logic, which has some useful metalogical
properties (like compactness and decidability).

As we demonstrate in the examples, it is possible to formalize the notion of
violation and normal state, which give us the possibility of analyzing how the
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system is degraded and repaired through time, and therefore some interesting
and useful properties can be proved. The utilization of deontic operators allows
us to differentiate between model description and prescription in a natural way.
We have presented another (more complex) example in [1], and we proved several
properties about it; from these examples, it seems possible to conclude that we
can apply the underlying logic calculus in practice; in the appendix of this paper
we show a simple proof to give a taste of the logical machinery in practice.

However, we need to do research about practical decision methods for the
proposed logic. Our final goal is to provide automatic tools which allow designers
to analyze models (and programs) in a practical way. Towards this goal, it is also
interesting to research how we can modularize the deontic specifications, in such
a way that different components have different deontic contracts (obligations
and permissions) and then the system specification could be derived from the
individual ones.

As shown in section 4, another interesting branch of investigation seems to be
contrary to duty reasoning, in particular how this kind of reasoning is applied in
fault-tolerance. Contrary to duty structures are sets of sentences, where there is
a primary obligation and a secondary obligation, which arises from the violation
of the primary one. These kinds of formulae are hard to reason about, as is shown
everywhere in the deontic literature; indeed, several paradoxes are contrary to
duty structures. In this paper we have presented an example which shows how
contrary-to-duty structures can arise in fault-tolerant systems; as shown in this
example, these kinds of formulae add extra structure to the violation lattice.
For dealing with such complexities, we have introduced a modification of the
logic, in such a way that we can introduce different permissions (and therefore
obligations); intuitively this means that we will have more than two colors in
our models (we can think in a broader set of reds). This adds more expressivity
in the logic, but it also complicates the semantic structures.
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Appendix

In this section we show how we can prove properties using the logical machinery
presented above. First, the temporal part of the logic is, basically, a Computation
Tree Logic, and therefore we have the following valid properties:

Temp1. AGϕ↔ ϕ ∧ ANAGϕ
Temp2. ENϕ↔ ¬AN¬ϕ
Temp3. E(ϕ U ψ)↔ ψ ∨ (ϕ ∧ ENE(ϕ U ψ))
Temp4. A(ϕ U ψ)↔ ψ ∨ (ϕ ∧ ANA(ϕ U ψ))
Temp5. [α]Done(α)
Temp6. [α]¬Done(α)
Temp7. ¬Done(∅)
Temp8. ¬Done(U)→ ¬Done(α)

Properties Temp1-Temp4 are classic valid formulae of computational tree log-
ics. Temp5 to Temp8 define the basic properties of the done predicate. Temp5
says that after doing α, Done(α) is true. Temp6 says that after doing something
different from α, the predicate Done(α) is false. Finally, Temp7 expresses that
we cannot do an impossible action, and Temp8 says that at the beginning we
have not performed any action.
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We have also a number of deduction rules, the most important being the
following:

TempRule1. {¬Done(U)→ ϕ,ϕ→ ANϕ} � ϕ
This rule allows us to use a kind of inductive reasoning: if we prove that a
property holds at the beginning, and if we suppose that the property is true,
and we prove that it is true at the next instant, we can conclude that this
property is true always.

Recall the properties P1 − P8 introduced in section 2, there are two further
important properties which relate strong permission and weak permission:

P9. (
∧

[α]BA∧α�α′(Pw(α) ∨ (α =act ∅)))→ P(α′)
P10. P(α) ∧ α �=act ∅ → Pw(α)

P9 says that strong permission implies weak permission for “non-impossible”
actions. P10 says that if every way of executing an action α is weakly permitted,
then α is strongly permitted.

Let us prove the property v3 → ¬p.on using these properties.

1a. ¬Done(U)→ ¬v3 Ax1 & PL
2a. ¬Done(U)→ (v3 → ¬p.on) PL, 1a

This proves the first case of the induction, the other case is as follows:

1b. ¬v3 ∧ ¬s.high → Pi(p.sb) PL, Ax3
2b. ¬v3 ∧ Pi(p.sb) → [p.sb]¬v3 PL, C1’

3b. ¬v3 ∧ ¬s.high → [p.sb]¬v3 PL, 1b, 2b
4b. ¬v3 ∧ s.high → O1(c1.on � c2.on) PL, Ax4
5b. O1(c1.on � c2.on) → F1(c1.on) ∧ F1(c2.on) ∧ P1(c1.on � c2.on) PL, Def.O
6b. ¬v3 ∧ s.high → [c1.on � c2.on]¬v3 PL, P1, 4b, 5b,

Ax6, Ax7
7b. ¬v3 ∧ s.high → [c1.on � c2.on]¬v3 PL, 4b, 5b, C1’
8b. ¬v3 ∧ s.high → [U]¬v3 PL, P1, BA, 6b, 7b
9b. [p.sb]¬p.on Ax15
10b. ¬v3 → [p.sb](v3 → ¬p.on) ML, 9b
11b. ¬v3 → [p.sb](v3 → ¬p.on) PL, P1, BA, 8b, 3b
12b. ¬v3 → [U](v3 → ¬p.on) PL, P1, 10b, 11b
13b. ¬p.on → [p.up]¬p.on Ax15
14b. v3 → [p.up]¬v3 Ax11
15b. v3 ∧ (v3 → ¬p.on) → [U ](v3 → ¬p.on) PL, BA, P1,

13b, 14b
16b. (v3 → ¬p.on) → [U](v3 → ¬p.on) PL, 12b, 15b

The acronyms “BA”, “ML” and “PL” refer to that a property of boolean al-
gebras, modal logic or propositional logic, respectively, are used at that point
of the proof. It is important to remark that we use the condition C1’ during
the proof (line 2b); this condition seems to be useful for proving properties of
deontic specifications, since we can deduce preservation properties from it (i.e.,
when an action preserves the absence of errors).
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1 Introduction

The automated verification of concurrent and distributed systems is a vibrant and suc-
cessful area within Computer Science. Over the last 30 years, temporal logic [10,20]
has been shown to provide a clear, concise and intuitive description of many such
systems, and automata-theoretic techniques such as model checking [7,14] have been
shown to be very useful in practical verification. Recently, the verification of infinite-
state systems, particularly parameterised systems comprising arbitrary numbers of
identical processes, has become increasingly important [5]. Practical problems of an
open, distributed nature often fit into this model, for example robot swarms of arbitrary
sizes.

However, once we move beyond finite-state systems, which we do when we consider
systems with arbitrary numbers of components, problems can occur. Although tempo-
ral logic still retains its ability to express such complex systems, verification techniques
such as model checking must be modified. Abstraction techniques are typically used to
reduce an infinite-state problem down to a finite-state variant suitable for application
of standard model checking techniques. However, it is clear that such abstraction tech-
niques are not always easy to apply and that more sophisticated verification approaches
must be developed.

In assessing the reliability of such infinite-state systems, formal verification is clearly
desirable and, consequently, several new approaches have been developed:

1. model checking for parameterised and infinite state-systems [1,2];
2. constraint based verification using counting abstractions [9,11];
3. verification based on interactive theorem proving [21,22], including that for tem-

poral logic [4,23];
and

4. deductive verification in first-order decidable temporal logics [12,8].

The last of these approaches is particularly appealing, often being both complete
(unlike (1)) and decidable (unlike (2)), able to verify both safety and liveness proper-
ties, and adaptable to more sophisticated systems involving asynchronous processes or
communication delays. It is also (unlike (3)) fully mechanisable and does not require
human interaction during the proof.

Now we come to the problem of verifying fault tolerance in protocols involving an
arbitrary number of processes. What if some of the processes develop faults? Will the

M. Butler et al. (Eds.): Fault Tolerance, LNCS 5454, pp. 44–56, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Temporal Verification of Fault-Tolerant Protocols 45

protocol still work? And how many processes must fail before the protocol fails? Rather
than specifying exactly how many processes will fail, which reduces the problem to a
simpler version, we wish to say that there is some number of faulty processes, and
that failure can occur at any time. Again we can capture this using temporal logics.
If we allow there to be an infinite number of failures, then the specification and veri-
fication problem again becomes easier; however, such scenarios appear unrealistic. In
many cases, correctness of the protocols depends heavily on the assumption of a known
number of failures.

So, we are left with the core problem: can we develop deductive temporal techniques
for the verification of parameterised systems where a finite, but unknown, number of
failures can occur? This question is exactly what we address here.

We proceed as follows. Section 2 gives a brief review of first-order temporal logic
(FOTL) and its properties. In Section 3, we propose two mechanisms for adapting de-
ductive techniques for FOTL to the problem of finite numbers of failures in infinite-state
systems, and in Section 4 we outline a case study. Finally, in Section 5, we provide con-
cluding remarks.

2 Monodic First-Order Temporal Logics

First-order (linear time) temporal logic (FOTL) is a very powerful and expressive for-
malism in which the specification of many algorithms, protocols and computational
systems can be given at a natural level of abstraction [20]. Unfortunately, this power
also means that, over many natural time flows, this logic is highly undecidable (not
even recursively enumerable). Even with incomplete proof systems, or with proof sys-
tems complete only for restricted fragments, FOTL is interesting for the case of param-
eterised verification: one proof may certify correctness of an algorithm for infinitely
many possible inputs, or correctness of a system with infinitely many states.

FOTL is an extension of classical first-order logic by temporal operators for a dis-
crete linear model of time (isomorphic to �, being the most commonly used model
of time). Formulae of this logic are interpreted over structures that associate with each
element n of �, representing a moment in time, a first-order structure Mn = (D, In)
with the same non-empty domain D.

The truth relation Mn |=a φ in the structure M and a variable assignment a is defined
inductively in the usual way under for the following (sample) temporal operators:
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The non-temporal aspects have semantics as follows:

Mn |=a �
Mn |=a P (t1, . . . , tn) iff (In(a(t1)), . . . , In(a(tn))) ∈ In(P )
Mn |=a ¬ϕ iff not Mn |=a ϕ
Mn |=a ϕ ∨ ψ iff Mn |=a ϕ or Mn |=a ψ
Mn |=a ∃xϕ iff Mn |=b ϕ for some assignment b that may differ from

a only in x and such that b(x) ∈ D
Mn |=a ∀xϕ iff Mn |=b ϕ for every assignment b that may differ from

a only in x and such that b(x) ∈ D
M is a model for a formula φ (or φ is true in M) if there exists an assignment a such that
M0 |=a φ. A formula is satisfiable if it has a model. A formula is valid if it is satisfiable
in any temporal structure under any assignment. The set of valid formulae of this logic
is not recursively enumerable. Thus, there was a need for an approach that could tackle
the temporal verification of parameterised systems in a complete and decidable way.
This was achieved for a wide class of parameterised systems using monodic temporal
logic [15].

Definition 1. A FOTL formula is said to be monodic if, and only if, any subformula
with its main connective being a temporal operator has at most one free variable.

Thus, φ is called monodic if any subformula of φ of the form �ψ, ψ, ♦ψ, �ψ, etc.,
contains at most one free variable. For example, the formulae ∀x. ∃y. P (x, y) and
∀x. P (x, c) are monodic, while ∀x, y. (P (x, y)⇒ P (x, y)) is not monodic.

The monodic fragment of FOTL has appealing properties: it is axiomatisable [24]
and many of its sub-fragments, such as the two-variable or monadic cases, are decid-
able. This fragment has a wide range of applications, for example in spatio-temporal
logics [13] and temporal description logics [3]. A practical approach to proving
monodic temporal formulae is to use fine-grained temporal resolution [17], which has
been implemented in the theorem prover TeMP [16]. It was also used for deductive
verification of parameterised systems [12]. One can see that in many cases temporal
specifications fit into the even narrower, and decidable, monodic monadic fragment. (A
formula is monadic if all its predicates are unary.)

3 Incorporating Finiteness

When modelling parameterised systems in temporal logic, informally, elements of the
domain correspond to processes, and predicates to states of such processes [12]. For
example idle(x) means that a process x is in the idle state, ♦∀y. agreement(y) means
that, eventually, all processes will be in agreement, while ∃z. inactive(z) means
that there is at least one process that is always inactive. (See [12] for further details.)

For many protocols, especially when fault tolerance is concerned, it is essential that
the number of processes is finite. The straightforward generalisation to infinite numbers
of processes makes many protocols incorrect. Although decidability of monodic frag-
ments holds also for the case of semantics where only temporal structures over finite
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domains are allowed [15], the proof is model-theoretic and no practical procedure is
known.

We here examine two approaches that allow us to handle the problem of finiteness
within temporal specification:

– first, in 3.1 we consider proof principles which can be used to establish correctness
of some parameterised protocols;

– then in 3.2 we prove that, for a wide class of protocols, decision procedures that do
not assume the finiteness of a domain can still be used.

3.1 Formalising Finiteness Principles

The language of FOTL is very powerful and one might ask if a form of finiteness can be
defined inside the logic. We have found the following principles (which are valid over
finite domains, though not in general) useful when analysing the proofs of correctness
of various protocols and algorithms specified in FOTL (recall: �ϕ means ϕ was true in
the past):

Fin1 (deadline axiom): ♦(∀x. (♦P (x)→ �P (x)))

Fin2 (finite clock axiom): [∀x. (P (x)→ � ¬P (x)]⇒ [♦ (∀x. ¬P (x))]

Fin3 (stabilisation axiom):

[ (∀x. (P (x)→ �P (x))]⇒ [♦ (∀x. ( �P (x)→ P (x))]

Actually the Fin1 principle is a (more applicable) variant of the intuitively clearer
principle [∀x.♦P (x)]⇒ [♦∀x.�P (x)] which is also valid over finite domains.

These principles have the following informal motivation. The deadline axiom prin-
ciple, Fin1, states that there is a moment after which “nothing new is possible”; that
is, if, after the deadline, P (x) becomes true for some domain element a ∈ D, there
already was a moment in the past such that P (x) was true on a at that moment. The
final clock axiom, Fin2, states that if the moments when the predicate P (x) becomes
true on some domain element are interpreted as clock ticks, the clock will eventually
stop ticking. Finally, the stabilisation principle, Fin3, states that if some domain area,
where P (x) is true, is growing then it will stop growing at some point. It can be easily
seen that all these principles hold true in arbitrary finite domain structures.

Now, consider Fini for i = 1, 2, 3 as axiom schemes which can be added to a
reasonable axiomatisation of FOTL (call this, AxFOTL) in order to capture, at least
partially, “finite reasoning”. By a ‘reasonable’AxFOTL, we mean that we assume some
Hilbert-style finitary axiomatic system for FOTL extending a standard, non-temporal,
predicate logic axiomatisation by, at least, the axiom schemata presented in Fig. 1.

We show that all these three principles are actually equivalent modulo any reasonable
AxFOTL (i.e. they can be mutually derived). The principle (an axiom scheme) F1 is said

to be derivable from F2 if, for every instance α of F1, we have AxFOTL + F2 	 α. We
will denote it simply AxFOTL + F2 	 F1.

Theorem 1. The principles Fin1, Fin2 and Fin3 are mutually derivable.
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Future time axioms:

F0. � ϕ → ϕ
F1. � �¬ϕ ↔ ¬ �ϕ
F2. � �(ϕ → ψ) → ( �ϕ → �ψ)
F3. � (ϕ → ψ) → ( ϕ → ψ)
F4. � ϕ → �ϕ
F5. � (ϕ → �ϕ) → (ϕ → ϕ)
F6. � (ϕU ψ) ↔ ψ ∨ (ϕ ∧ �(ϕ Uψ))
F7. � (ϕU ψ) → ♦ψ

Past time axioms:

P1. � ¬ �¬ϕ → �ϕ
P2. � �(ϕ → ψ) → ( �ϕ → �ψ)
P3. � ϕS ψ ↔ ψ ∨ (ϕ ∧ ¬ �¬(ϕS ψ))
P4. � �false

Mixed axiom:

M8. � ϕ → � �ϕ

Interaction axioms:

I1. � ∀x. ( �ϕ(x)) → �(∀x.φ(x))
I2. � ∀x. ( �ϕ(x)) → �(∀x.φ(x))

Fig. 1. AxFOTL: Axioms of FOTL (all except the Interaction Axioms are taken from [18])

Proof

1. AxFOTL + Fin1 	 Fin2.

Assume ∀x. (P (x)→ � ¬P (x)) (∗), which is the assumption of Fin2.

Consider then Fin1 which is ♦(∀x.(P (x) ∨ ♦P (x)→ �P (x))).
In Fin1 assume ♦P (c) for an arbitrary c inside of ♦(. . .), then we have �P (c)
which together with (∗) gives ¬P (c) and contradiction.

That means, we have ♦(∀x.¬(P (x) ∨ ♦P (x))) which implies ♦ (∀x.¬P (x)).

2. AxFOTL + Fin2 	 Fin3.

Define Q(x) to be ¬P (x) ∧©P (x).
Assume (∀x.(P (x)→©P (x))) (∗∗).
Then we have ∀x. (Q(x)→© ¬Q(x)) from the definition ofQ(x) and (∗∗).
Applying Fin2 we get ♦ (∀x. ¬Q(x)) which is equivalent to ♦ (∀x.¬ ©
P (x) ∨ P (x)) and to ♦ (∀x. (©P (x)→ P (x))).
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3. AxFOTL + Fin3 	 Fin1.

Applying to a valid formula, provable in AxFOTL, ∀x(�P (x) → ©�P (x)) the
principle Fin3 we get

♦ (∀x.(©�P (x) → �P (x))) .

This implies [18] ♦ (∀x. ¬(♦P (x)) ∧ ¬�P (x))).
After propositionally equivalent transformations we get ♦ (∀x. (♦P (x)) →
�P (x)), which is Fin1.

This theorem shows that all three principles are equivalent and so can be used inter-
changeably in the proofs. However, the differing syntactical forms may make some
principles more suitable for natural proofs, yet may affect the efficiency of the auto-
mated proof search using these principles.

3.2 Eventually Stable Protocols

In Section 3.1 we highlighted some deduction principles capturing the finiteness of the
domain. Alternatively, we can consider a family of protocols which terminate after a
certain (but unknown) number of steps. For example, if every process sends only a finite
number of messages, such protocol will eventually terminate. Consensus protocols [19],
distributed commit protocols [6], and some other protocols fit into this class. Temporal
models of specifications of such terminating protocols will eventually stabilise, that
is, the interpretations In will be the same for sufficiently large n. We show that for
these eventually stable specifications satisfiability over finite domains coincides with
satisfiability over arbitrary domains.

Let P be a set of unary predicates. The stabilisation principle w.r.t. P is the formula:

StabP = (∀x
∧

P∈P
[P (x) ≡ �P (x)]).

Informally, if StabP is true at some moment of time, from this moment the interpreta-
tion of predicates in P does not change. Let φ be a monodic temporal formula. Let P
be the set of unary predicates occurring in φ. Then the formula

φStab = φ ∧ ♦Stab

is called an eventually stable formula. We formulate the following proposition for
monodic monadic formulae; it can be extended to other monodic classes obtained by
temporalisation by renaming [8] of first-order classes with the finite model property.

Proposition 1. Let φ be a monodic monadic formula. The eventually stable formula
φStab is satisfiable in a model with a finite domain if, and only if, φStab is satisfiable in
a model with an arbitrary domain.

This proposition implies that if a protocol is such that it can be faithfully represented
by an eventually stable formula, correctness of such protocol can be established by a
procedure that does not assume the finiteness of the domain.
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Proof . For simplicity, we prove the proposition for formulae in Divided Separated
Normal Form (DSNF) [8] only. The proof can be extended to the general case by the
consideration of sub-formulae of φ.

A monodic temporal problem P in divided separated normal form (DSNF) is a
quadruple 〈U , I,S, E〉, where:

1. the universal part U and the initial part I are finite sets of first-order formulae;
2. the step part S is a finite set of clauses of the form p ⇒ �q, where p and q are

propositions, and P (x) ⇒ �Q(x), where P and Q are unary predicate symbols
and x is a variable; and

3. the eventuality part E is a finite set of formulae of the form ♦L(x) (a non-ground
eventuality clause) and ♦l (a ground eventuality clause), where l is a propositional
literal and L(x) is a unary non-ground literal with variable x as its only argument.

With each monodic temporal problem 〈U , I,S, E〉 we associate the FOTL formula
I ∧ U ∧ ∀xS ∧ ∀xE . When we talk about particular properties of a temporal
problem (e.g., satisfiability, validity, logical consequences, etc) we refer to properties
of this associated formula. Every monodic temporal formula can be transformed into
divided separated normal form (DSNF) in a satisfiability equivalence preserving way
with only linear growth in size [17].

Let P = 〈U , I,S, E〉 be a monodic temporal problem in DSNF. We only have to
show that if PStab has a model, M = M0,M1, . . ., with an infinite domain, it also
has a model with a finite one. Let N be such that MN |= Stab. Consider now the
temporal structure M′ = M0,M1, . . .MN−1,MN ,MN ,MN , . . . (i.e. from moment
N the structure does not change). It can be seen that M′ is a model for P.

For every predicate, P , occurring in P, we introduce N + 1 new predicates
P 0, P 1, . . . , PN of the same arity. Let φ be a first-order formula in the language of
P. We denote by [φ]i, 0 ≤ i ≤ N , the result of substitution of all occurrences of predi-
cates in φ with their i-th counterparts; (e.g., P (x1, x2) is replaced with P i(x1, x2)).

– Let φI =
∧{[φ]0 | φ is in I}

– Let φU =
∧{ N∧

i=0
[φ]i | φ is in U}.

– Let φS =
∧{N−1∧

i=0

(∀x(P i(x)⇒ Qi+1(x)
) | P (x) ⇒ �Q(x) is in S} ∧∧{∀x(PN (x)⇒ QN (x) | P (x)⇒ �Q(x) is in S}

– Let φE =
∧{[∀xL(x)]N | L(x) is in E}

Let φFO = φI ∧φU ∧φS ∧φE . Note that φFO does not contain any temporal operators.
Consider now a first-order structure N with the same domain D as M, interpreting
constants in the same way, and such that N |= P i(a1, . . . , an), for some a1, . . . , an ∈
D, if, and only if, Mi |= P (a1, . . . , an). It can be seen that that N |= φFO . Since P is
a monodic monadic problem, φFO is a monadic first-order formula, which has a model
with a finite domain. Reversing the process, one can construct a model for P with a
finite domain. �
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4 Case Study: FloodSet Protocol

Next, we provide an example of how both methods described in Section 3 (explicit
finiteness principles, and stabilisation principle for protocols with finite change) can be
used for the proof of correctness of a protocol specified in monodic FOTL.

The setting is as follows. There are n processes, each having an input bit and an
output bit. The processes work synchronously, run the same algorithm and use broad-
cast for communication. Any message sent by a non-faulty process is instantaneously
delivered to all other processes. Some processes may fail and, from that point onward,
such processes do not send any further messages. Note, however, that the messages sent
by a process in the moment of failure may be delivered to an arbitrary subset of the
processes. Crucially, there is a finite bound, f , on the number of processes that may
fail.

The goal of the algorithm is to eventually reach an agreement, i.e. to produce an
output bit, which would be the same for all non-faulty processes. It is required also that
if all processes have the same input bit, that bit should be produced as an output bit.

This is a variant of FloodSet algorithm with alternative decision rule (in terms of
[19], p.105) designed for solution of the Consensus problem in the presence of crash
(or fail-stop) failures, and the basic elements of the protocol (adapted from [19]1) are
as follows.

– In the first round of computations, every process broadcasts its input bit.
– In every later round, a process broadcasts any value the first time it sees it.
– In every round the (tentative) output bit is set to the minimum value seen so far.

The correctness criterion for this protocol is that, eventually (actually, no later than in
f + 2 rounds) the output bits of all non-faulty processes will be the same.

Claim. The above FloodSet algorithm and its correctness conditions can be specified
(naturally) within monodic monadic temporal logic without equality, and its correctness
can be proved in monodic monadic temporal logic, using the above finite clock axiom.

We give a larger specification below, but first note the keys points concerning this:

1. Each process (s) must be categorised as one of the above types:
(∀x(Normal(x) | Failure(x) | Faulty(x)))

here the symbol | means that exactly one of the predicates Normal(x),
Failure(x), and Faulty(x) is true.

2. If we see a ‘0’ (the process has this already, or receives a message with this value)
then we output ‘0’:

(∀x(¬Faulty(x) ∧ Seen(x, 0)→ �Output(x) = 0))
3. If we have not seen a ‘0’ but have seen a ‘1’, then we output ‘1’:

(∀x. (¬Faulty(x) ∧ ¬Seen(x, 0) ∧ Seen(x, 1)→ �Output(x) = 1))

1 In [19], every process knows the bound f in advance and stops the execution of the protocol
after f + 2 rounds, producing the appropriate output bit. We consider the version where the
processes do not know f in advance and produce a tentative output bit at every round.
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4. The condition to be verified, namely that eventually all (non faulty) processes agree
on the bit ‘0’, or eventually all agree on the bit ‘1’:

♦((∀x.¬Faulty(x)⇒ Output(x) = 0) ∨ (∀x.¬Faulty(x)⇒ Output(x) = 1))

We do not include the whole proof here, but will reproduce sample formulae to give the
reader a flavour of the specification and proof.

4.1 Specification

A FOTL specification of the above FloodSet algorithm ϕ is given as a conjunction of
the following formulae, divided for convenience, into four groups as follows

1. RULES:
(1stRound → ©¬1stRound)
(∀x. (Failure(x) → �Faulty(x)))
(∀x. (1stRound ∧ Normal(x) → �(Send(x, Input(x))∧ Seen(x, Input(x)))))
(∀x. (1stRound ∧ Failure(x) → �(Send Failure(x, Input(x)) ∧

Seen(x, Input(x)))))
(∀x.∀y. (¬1stRound ∧ Normal(x) ∧ Received(x, y) ∧ ¬Seen(x, y) →

�Seen(x, y) ∧ Send(x, y)))
(∀x.∀y. (¬1stRound ∧ Failure(x) ∧ Received(x, y) ∧ ¬Seen(x, y) →

�(Seen(x, y) ∧ Send Failure(x, y))))
(∀x.∀y. (Faulty(x) → �(¬Send(x, y) ∧ ¬Send Failure(x, y))))
(∀x.∀y. (¬1stRound ∧ ¬Faulty(x) ∧ (¬Received(x, y) ∨ Seen(x, y)) →

�(¬Send(x, y) ∧ ¬Send Failure(x, y))))
(∀x. (¬Faulty(x) ∧ Seen(x, 0) → �Output(x) = 0))
(∀x. (¬Faulty(x) ∧ ¬Seen(x, 0) ∧ Seen(x, 1) → �Output(x) = 1))

2. FRAME CONDITIONS:
(¬1stRound → ©¬1stRound)
(∀x. (Faulty(x) → �Faulty(x)))
(∀x. (¬Faulty(x) ∧ ¬Failure(x) → �¬Faulty(x)))
(∀x.∀y. (Seen(x, y) → �Seen(x, y)))

3. CONSTRAINTS:
(∀x.∀m. (Send(x,m) → ∀y.Received(y,m)))
(∀x.∀m. (Received(x,m) → ∃y(Send(y,m) ∨ Send Failure(y,m))))
(∀x.∀m.¬(Send(x,m) ∧ Send Failure(x,m)))
(∀x. (Normal(x) | Failure(x) | Faulty(x)))

(∀x. (Output(x) = 0 ∨ Output(x) = 1))
(∀x. (Input(x) = 0 ∨ Input(x) = 1))
(∀x.∀y. (Send(x, y) ∨ Received(x, y) ∨ Seen(x, y)) → (y = 0 ∨ y = 1))

4. INITIAL CONDITIONS:
(start ⇒ 1stRound)
(start ⇒ ∀x. Normal(x))
(start ⇒ ∀x.∀y. ¬Seen(x, y))
(start ⇒ ∀x. (Input(x) = 0 ∨ Input(x) = 1))
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Note. One can get rid of all equalities in this example by using finiteness of the set
of values, which are supposed to be second argument of Seen( , ), Send( , ) and
Send Failure( , ).

Notice that the temporal specification uses, among others, the predicates Normal( )
to denote normal operating processes, Failure( ) to denote processes experiencing
failure (at some point of time), Faulty( ) for the processes already failed. There are
also predicates such as Seen( , ) specifying the effect of communications. Having
these, it is straightforward to write down the temporal formulae describing the above
protocol and correctness condition (i.e. (4) above). In the proof of correctness below,
the finite clock axiom has to be instantiated to the Failure(x) predicate (i.e. replace
P by Failure in Fin2).

4.2 Refutation

In this section we will consider the actual proof concerning the correctness of the above
specification with respect to the conditions we have presented. We will not present the
full proof, but will provide an outline indicating how the major steps occur.

First of all, the clausal temporal resolution approach is a refutation procedure and so
we add the negation of the required condition (i.e. ¬ψ) and attempt to derive a contra-
diction. We note that ¬ψ is

((∃x¬Faulty(x) ∧Output(x) �= 0)

∧
(∃x¬Faulty(x) ∧Output(x) �= 1))

We translate formulae such as ‘Output(x) �= 0’ to ‘¬¬Output(x)’ since the only
values allowed are ‘0’ and ‘1’. Consequently the two temporal formulae derived from
¬ψ are:

C1: (∃x¬Faulty(x) ∧Output(x))
C2: (∃x¬Faulty(x) ∧ ¬Output(x))
Frame conditions and the finite clock axiom applied for the Failure predicate give

C3: ♦ (∀x.¬Failure(x))
From C1 and C3 we have

C4: ♦ (∀x.¬Failure(x) ∧ ∃x(¬Faulty(x) ∧Output(x)))
From C4 and constraints we now have

C5: ♦ (∀x.¬Failure(x) ∧ ∃x(Normal(x) ∧Output(x)))
By rules concerning Output and C5 we get

C6: ♦ (∃xNormal(x) ∧ �Seen(x, 0))
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Next, let us note a useful variant of the induction axiom called the minimal element
principle:

∀x̄([♦ϕ(x̄)]→ [♦(ϕ(x̄) ∧ � ¬ϕ(x̄))])

By the minimum element principle

C7: ♦ (∃xNormal(x) ∧ �(Seen(x, 0) ∧ � ¬Seen(x, 0)))

By rules from C7

C8: ♦ (∃xNormal(x) ∧ �( �Received(x, 0)))

By rules from C8

C9: ♦ (∃xNormal(x) ∧ �( �(Received(x, 0) ∧ ¬Seen(x, 0))))

By rules from C9

C10: ♦ (∃xNormal(x) ∧ �(Normal(x) ∧Received(x, 0) ∧ ¬Seen(x, 0))))

By rules from C10

C11: ♦ (∃xNormal(x) ∧ �(Send(x, 0)))

By rules from C11

C12: ♦ (�∀x. Seen(x, 0)))

From C12

C13: ♦ (∀x. Seen(x, 0))

From C2 and rules

C14: (∃y¬Seen(y, 0))

Finally, from C13 and C14 we get a contradiction. �

4.3 Eventual Stabilisation of FloodSet Protocol

One may also verify the FloodSet protocol using the eventual stabilisation principle
from Section 3.2. To establish the applicability of the principle one may use the fol-
lowing arguments: every process can broadcast at most twice, and taking into account
finiteness of both the numbers of processes and of failures, one may conclude that even-
tually the protocol stabilises. Note that such an analysis only allows us to conclude that
the protocol stabilises, but its properties still need to be proved. Let φ be a temporal
specification of the protocol. Taking into account the stabilisation property, the proto-
col is correct iff (φ ∧ ¬ψ)Stab is not satisfiable over finite domains. By Proposition 1,
there is no difference in satisfiability over finite and general domains for such formulae
and so one may use theorem proving methods developed for monadic monodic temporal
logics over general models to establish this fact. In this case, the proof follow(s) exactly
the form of proof presented in the previous section, with the exception that statement
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C3 : ♦ (∀x.¬Failure(x)) is obtained in a different way. One of the conjuncts of the
stabilisation principle with respect to φ ∧ ¬ψ is

♦ (∀xFailure(x) ≡ �Failure(x) .

Together with the rule

(∀x. (Failure(x)→ �Faulty(x)))

and the constraint

(∀x. (Normal(x) | Failure(x) | Faulty(x)))
this implies C3, as required.

5 Concluding Remarks

In this paper we have introduced two approaches for handling the finiteness of the do-
main in temporal reasoning.

The first approach uses explicit finiteness principles as axioms (or proof rules), and
has potentially wider applicability, not being restricted to protocols with the stabilisa-
tion property. On the other hand, the automation of temporal proof search with finiteness
principles appears to be more difficult and it is still largely an open problem.

In the approach based on the stabilisation principle, all “finiteness reasoning” is car-
ried out at the meta-level and essentially this is used to reduce the problem formulated
for finite domains to the general (not necessarily finite) case. When applicable, this
method is more straightforward for implementation and potentially more efficient. Ap-
plicability, however, is restricted to the protocols which have stabilisation property (and
this property should be demonstrated in advance as a pre-condition).

Finally, we briefly mention some future work. Automated proof techniques for
monadic monodic FOTL have been developed [8,17] and implemented in the TeMP
system [16], yet currently proof search involving the finiteness principles requires im-
provement. Once this has been completed, larger case studies will be tackled. The tech-
niques themselves would also benefit from extension involving probabilistic, real-time
and equational reasoning.
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Abstract. We present a systematic approach to design and verification of fault-
tolerant components with real-time properties as found in embedded systems. A
state machine model of the correct component is augmented with internal tran-
sitions that represent hypothesized faults. Also, constraints on the occurrence or
timing of faults are included in this model. This model of a faulty component is
then extended with fault detection and recovery mechanisms, again in the form of
state machines. Desired properties of the component are model checked for each
of the successive models. The models can be made relatively detailed such that
they can serve directly as blueprints for engineering, and yet be amenable to ex-
haustive verification. The approach is illustrated with a design of a triple modular
fault-tolerant system that is a real case we received from our collaborators in the
aerospace field. We use UPPAAL to model and check this design. Model check-
ing uses concrete parameters, so we extend the result with parametric analysis
using abstractions of the automata in a rigorous verification.
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1 Introduction

Fault-tolerance is often required in components for embedded real-time systems which
have to be highly dependable [14], and although fault-tolerance has been studied since
the beginning of digital computing and there is a well-established terminology for the
area and established mechanisms, see e.g. [3] for an overview, yet it is still difficult to
implement them correctly, because the algorithms are complex and often time depen-
dent. Furthermore, assumptions about the kind and frequency of faults are not stated
explicitly, and often development involves both software engineers and digital systems
engineers.
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The solution we present in this paper is essentially to combine the formalization of
the algorithms as transition systems [15,16] with the modelling and verification power
of mature model checking [4]. Convincing support for the latter idea appears also in
other verifications of fault-tolerant embedded systems [18,11,5].

The overall procedure we suggest to developers of fault-tolerant components is the
following:

1. Develop a model in the form of a network of state machines of the correct compo-
nent and check that it has the desired properties.

2. Model relevant faults and introduce them as internal transitions to error states in
the previous model and produce a fault-affected model. Check systematically that
this fault-affected model fails to have the desired properties; this is a check that the
fault hypotheses are correctly modelled.

3. Introduce into the model the mechanisms for fault detection, error recovery and
masking and check that the desired properties are valid for this design both in the
presence and absence of faults. In this step, one may have to specify constraints on
timing parameters in order to make the verification come through.

4. For certain parameter values, properties are satisfied, and for other values they fail.
Therefore, we are interested in deriving the precise constraints that ensure correct-
ness. However, current model checking tools does not support parameter analysis,
so we need to instantiate the parameters for some values to check whether or not
the properties are fulfilled. We improve on this in two ways: (1) we find constraints
on the parameters that ensure satisfaction of these properties; (2) we abstract the
model using simulation relations which are manually proved to be correct, and we
check the properties on the abstracted models.

The end result is a set of models with parameter constraints that may serve as input
to further detailed design of the component, because state machines models are well-
understood by both digital systems designers and programmers.

1.1 Example Problem

In the remainder of this paper we illustrate the approach on a design of a fault-tolerant
component that appears in many systems. The fundamental component is a computa-
tion unit (CU) that ideally does not suffer from hardware faults and correctly implements
a computation. However, in reality, computers or programs may fail, either because of
hardware failures, or faults in the design or in the implementation of an algorithm. Ob-
viously, a system with a single faulty CU may fail, when a fault occurs. Consequently, if
no fault-tolerant actions are implemented, a fault may cause a system failure that vio-
lates the overall system requirements. It is clear that in a system for critical missions, for
instance in aerospace application, using fault-tolerant components to avoid failures is
important since maintenance and fail safe behaviour is almost impossible to implement
once the mission is on its way.

As a solution we adopt a classical fault-tolerant mechanism that uses multiple ver-
sions of the CU, which preferably are designed and implemented independently. The
necessary redundancy is thus in space, preserving timing properties of the combined
system. Redundancy in the time domain, for instance using recovery block mechanisms,
do not preserve timing properties as easily.
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Although the principles of the mechanism are well known, it is far from easy to
model the faults and the assumptions one makes for the concrete design. Abstraction
techniques have to be applied so that the model of the design can be verified with the
model checking tool. The faults that we are asked to consider are transient, and therefore
we can design a restart (or recovery) mechanism for a CU when it fails. This involves
detecting the occurrence of a fault in a CU, and when it fails, there must be a component
to trigger the restart. We are told by the domain engineers that they are concerned with
three kinds of faults that may occur in a CU.

The first kind of faults cause the CU to enter a deadlock state in which the CU does not
take any action. For this, we equip each CU with a watchdog that is activated periodically
(kicked) during normal operation. When a fault occurs, the CU deadlocks and stops
kicking its watchdog. As a consequence, the watchdog timer grows until it exceeds a
predefined value, (we say that the watchdog overflows), and that shall trigger a restart
of the CU.

A fault of the second kind causes the CU to output incorrect data. To detect such a
value fault, we introduce a component called a voter. With the assumption that at any
time only a minority of the CUs fail (in the concrete case with three CUs at most one
of them can be in an error state), the voter can detect which CU has failed and trigger a
restart. Furthermore, the voter can also mask the incorrect output from the failed CU.

In the third case, a CU fails by entering a livelock state. In this state, the CU fails
to output any result; but it keeps kicking its watchdog periodically. Consequently, the
watchdog timer does not overflow the CU failure cannot be detected by the watchdog.
However, the fault detection in this case can be done by the voter that reads an empty
value from the failed CU. Thus we convert an omission fault into a value fault. Actu-
allty the same technique would apply for deadlock. However, the engineers want to
distinguish the cases.

To avoid that the voter becomes a single point of failure, which would reduce the
overall fault tolerance of the component, we can use more voters. We therefore need
to design a component, called the arbiter, to detect an error in a voter and select the
output from the voter that has not failed. With this design, the arbiter should also take
responsibility to trigger restart of a failed CUs. To illustrate the idea of this design, we
use two voters and show how the arbiter can trigger the restart of a failed CU without
considering the error detection in a voter.

Admittedly, in this paper, we only consider CU faults and do not design the concrete
switching mechanism for voters when one of them fails. Also, the arbiter is a single
point of failure, but it is an extremely simple piece of hardware, thus we and the engi-
neers accept this risk.

1.2 Overview

The component described informally above is in the following designed and verified
using UPPAAL [4] that is available at www.uppaal.com. It is an integrated tool envi-
ronment for formal specification, validation and verification of real time systems mod-
eled as networks of timed automata [2]. The language for the new version of UPPAAL
4.0 includes a subset of the c programming language, and the syntax of timed automata
for specifying timing constraints. The c code embedded in the automaton can be easily
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read and translated by the engineers to for instance the Verilog language for hardware
implementation. Due to these extensions, UPPAAL is sufficiently expressive for the
description of critical parts of system specifications.

The remaining sections are organized as follows: Section 2 describes the system with
a single CU; it also defines the desired properties of the system. We then introduce the
assumed faults into the automaton of the CU to get a fault-affected model. Section 3
presents the design of the fault-tolerant system. In Section 4, we use a network of timed
automata in UPPAAL to model the fault-affected behavior of the system and then, using
different instantiations of the system parameters, we verify the correctness properties. In
order to demonstrate that the system tolerates the assumed faults for all instantiations
of its parameters, we carry out a parametric analysis in Section 6. Finally, Section 7
concludes the paper and points out future work.

2 Modelling Faults and Fault-Tolerance

In this section, we recall the definition of the modelling language for timed automata,
and use it to model the behaviors of a fault-free component. We then extend it to model
faults of the system. We further show the techniques that are used to check if a fault-
affected system actually fails. Hence it is ensured the fault hypotheses are correctly
modelled.

2.1 Timed Automata

Timed automata were introduced in [2] as formal models for real-time systems. Here
we only give a brief description of timed automata and their behaviour. Readers are
referred to [2,4] for more details. We denote by R

+ and N the sets of nonnegative real
numbers and natural numbers, respectively.

We write C ⊆ R
+ for the finite set of clocks, denoted as x, y in the following, andΣ

for the finite alphabet of actions, denoted as a, b.
A clock constraint is a conjunctive formula of atomic constraints of the form x ∼ n

or x − y ∼ n, where ∼∈ {≤, <,=, >,≥} and n ∈ N. We write B(C) for the set of
clock constraints, and an element g may be used as a location invariant or a transition
guard in the timed automata.

Definition 1. A timed automatonA is a tuple 〈L, l0, I, E〉, where

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– I : L→ B(C) assigns invariants to locations,
– E ⊆ L×2B(C)×Σ×2C×L is a set of transitions. A discrete transition 〈l, g, a, r, l′〉

moves from location l to location l′ with action a, when the clock constraint g is
satisfied; r is a set of clocks to be reset, i.e., assignments of the form x = n, where
n ∈ N.

In UPPAAL, we restrict location invariants to constraints that are downward closed, i.e.
∼∈ {≤, <}. Only upper bounds on clocks are allowed in invariants.
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In the semantics,A can also take time steps, where the location is not changed, but all
clocks are advanced with a δ ∈ R

+. Admissible time steps have to satisfy the location
invariant.

UPPAAL allows declaration of ordinary state variables, that act like program vari-
ables, and may be used in guard expressions and are updated in actions. The notation is
similar to the one used for c programs.

The semantics of a network of timed automata is given in [4], in which a synchronous
interaction between two automata is specified by the complementary labelled transi-

tions
c?−→ and

c!−→. The labels are defined in channel declarations and broadcast chan-
nels are allowed as well; the broadcaster with a transition labelled

c!−→ synchronizes

with all enabled transitions of the form
c?−→. If none are enabled, no synchronization

take place.
UPPALL builds a symbolic representation of a computational tree, where each node

in the tree represents a set of states, and the edges represent possible transition steps
in the network. It can therefore check properties of the network by analyzing the paths
and the states in a path in this tree. A state property π is a Boolean expression over the
variables and locations of the network. It is possible in UPPAAL to ask for properties
of the following form:

– A[] π: for all paths and all states π holds invariantly.
– A<> π: for all paths there is a state where π holds, i.e., π is reachable.
– E[] π: for some path and all states of that path π holds.
– E<> π: for some paths there is a state where π holds, i.e., π is possible.
– π1 −→ π2: for all paths if a state satisfying π1 is reached then later in the path there

is a state satisfying π2, in other words π1 leads to π2.

If a property fails to hold for all paths of a model, UPPAAL can produce a finite path
which is a counterexample. Likewise, if the property specifies that some path should
exist, then the verifier can produce a witness.

Example: Correct CU. A CU receives data from some components as its inputs and
computes an output to be used as input for other components. Let cu input be the
input and cu output the output of the CU. In general, the CU computes a function of
the input and some internal state, which we shall ignore without loss of generality, that
is, cu output = f(cu input), for some function f . When a fault occurs, the CU may
compute an incorrect value, that is cu output 
= f(cu input), or may not produce
any output. In the design, an impulse generator is used to first clear the output and then
issue an edge impulse synclk xms every T time units to force the CU to read its inputs,
compute and place the result in cu output.

To simplify the model, we assume that the value of cu output ranges from -1 to 1,
and 1 is the correct value, -1 is the incorrect value, while 0 is the cleared value. Initially,
the value is 1.

The time spent on the computation is small and can be ignored. Fig.1 displays a
system with one non-faulty CU and one impulse generator modelled in UPPAAL. The
automaton Impulse clears the buffer cu output and sends a synclk xms! signal each
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T time units that synchronizes with the automaton CU. In the automaton Impulse, a
clock x is used to record the time elapsed.

This system satisfies the following two requirements: a) Every period of T time units,
the CU computes a new correct value, that is put in cu output. b) The value 1 is kept
for T time units before it is cleared. This can be specified in UPPAAL as the following
four properties:

P1 : A[](Impulse.x >= 0 and Impulse.x <= T)
P2 : A[](Impulse.x > 0 imply cu output == 1)
P3 : cu output == 0 −→ cu output == 1
P4 : cu output == 1 −→ cu output == 0

Note that in P2, cu output stands for the final output of the system.

Theorem 1. Properties P1 – P4 are valid for the network of the two automata in Fig.1.

The proof is done by the verifier of UPPAAL. It answers that all the above properties
are satisfied by the model.

Good

synclk_xms?
cu_output=1

(a)

x<=T

synclk_xms!

x==T
cu_output==0,
x=0 (b)

Fig. 1. Non-faulty CU system: (a) CU automaton (b) Impulse automaton

The annotation C to a location makes it ‘committed’; it means that some enabled
transition is taken immediately when the location is entered without interleaving of
transitions from other automata. This forces the examples to move. The weaker anno-
tation U for urgent could be used as well in this case. It means that no time can pass in
the location.

2.2 Modelling the Faults

A componentS may encounter faults. These faults can be described by a set F of transi-
tions that interfere with the execution of S by possibly changing the values of variables
in S. The transitions in F are nondeterministic transitions from a valid location to an
error location. Depending on the fault behaviours, there might be transitions out of the
error locations that leads to failures or recovery to good states.

Definition 2 (Fault-Affected Automaton). A fault-affected automaton is an automa-
ton with identified faulty transitions to error locations.

– L ∪ ERR is the union of the two finite and disjoint sets of normal and error
locations.

– l0 ∈ L is the initial location, it is a normal state, thus the system starts correctly.
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The remaining definitions of location invariants and transitions are as in Definition 1.

A transition from a location in L∪ERR to a location inERR is called a fault. Let F
bet the set of all fault transitions, then this automaton is called a F -affected automaton.

In general, the design of a fault-tolerant component starts from a fault-free model
S, and then analyzing the possible faults to obtain a fault-affected model M . The error
locations and fault transitions do not change the fault-free model. For an F -affected
automatonM , we have two derived automata:

– M\F is the automaton obtained from M by removing all fault transitions, but still
keeping the error locations,

– M\F ∗ is the automaton obtained from M\F by further inductively removing all
transitions from the error locations, and locations that are only reachable from error
locations and their outgoing transitions.

The F -affected model of S of S must satisfy the following two healthiness conditions

H1. M\F ∗ = S, i.e. they are exactly the same both syntactically and semantically.
H2. M\F≈S, meaning that they are bisimilar.

In particular Condition H2 implies that none of the locations in ERR is reachable in
M\F , i.e. normal transition cannot lead the system into an error state. This should be
model checked by the tool.

Furthermore, the fault-affected model should not satisfy the properties of the fault-
free model. If it does, the faults are insignificant for its behaviour. Thus one should
model check the fault-affected model with these properties to see that they do not hold.
The counterexamples produced by the model checker will contain a fault transition that
identifies faults that cause the error. In general there may be several of these and they
can be checked systematically be removing error locations one by one, until the fault-
free system is reached.

Example Continued: a Faulty CU. In this case, the domain engineers are concerned
with the following faults:

– FAULT0: the CU enters a deadlock state, and it stops doing anything at all.
– FAULT1: the CU enters an error state in which it computes incorrect results.
– FAULT2: the CU enters a livelock state and executes only internal actions without

outputting a result.

Following the technique described above, we define the fault-effected CU shown in
Fig.2. In the fault-free location Good, the CU automaton nondeterministically selects
which fault may occur. If FAULT0 occurs, it moves to the error location Error0 and
the automaton deadlocks. The synclk xms is defined as a broadcast channel, so when
the CU stays in location Error0, the Impulse automaton can still execute the syn-
clk xms!. The location Error1 is reached from location Good when FAULT1 occurs.
In this location, the model outputs incorrect data when the signal synclk xms is issued.
Similarly, if FAULT2 occurs, the CU goes to location Error2, in which it fails to output
data when the signal synclk xms is issued.

Also, we add fault transitions from location Error1 to Error0 and Error2, because
a FAULT1 may be followed by one of the other faults.
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Error0

Error2 Error1

Good

synclk_xms?
synclk_xms?
cu_output=-1

synclk_xms?
cu_output=1

(a)

x<=T

synclk_xms!

x==T
cu_output==0,
x=0 (b)

Fig. 2. Faulty CU system: (a) CU automaton b) Impulse automaton

Theorem 2. None of the properties P1-P4 is satisfied by the network of the two au-
tomata in Fig.2.

The proof is a done using UPPAAL.

2.3 Fault-Tolerance

The design of a fault-tolerant model C adds to the fault-affected model M transitions
from error states to normal states (new normal states are generally required) such that
the specified properties are satisfied. Thus C prevents the faults in M from leading to
failures.

Theorem 2 shows the F -affected network in Fig.2 does not tolerate the faults F .
Thus we need to add mechanisms as we do for our example in the following Section 3.

A fault-tolerant system C should work both when faults are absent and when they
occur. In particular, the design should not assume that faults must occur. Therefore the
fault-tolerant design C should satisfy the following properties:

Fault-Tolerance: If the non-faulty model S satisfies a property P then C satisfies P .
Fault monotonicity: For any subset of error locations E ⊆ ERR and any property P

of S, C \ E satisfies P .

Fault-monotonicity means that tolerance of a fault should not be achieved by “positively
using the effects of another fault” as it is not guaranteed to occur.

This point is illustrated in Fig. 3 that shows two “fault-tolerant” automata M and
M ′. The error locations are Error0 and Error1 that respectively correspond to the
occurrence of FAULT0 and FAULT1.They are simplified versions of the CU automaton.

When we consider a property P : v == 0 −→ v == 1; we can see that the model
with only the normal states satisfies it. UPPAAL will verify that P holds for M . How-
ever, if we remove the location Error0, it no longer holds! In fact, the system M with-
out the location Error0 deadlocks in Error1. It is not fault-monotonic, because it relies
on FAULT0 to occur when FAULT1 has occurred. A well-formed, fault-monotonic sys-
tem is given by M ′. This can be checked by removing error locations systematically
and checking the property P .

A logical characterization of fault-tolerant refinement is given in [15,16] and these
properties are carefully studied.
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Good1

Error1Error0

Good0

v=1

v=0
v=0

v=-1

v=-2v=-1

(a)

Good1

Error1Error0

Good0

v=1

v=0
v=0

v=0v=-2v=-1

(b)

Fig. 3. Fault-affected automaton M and M ′: (a) Faults are not monotonic in M (b) Faults are
monotonic in M ′

2.4 Fault Hypotheses

In most cases, fault-tolerance can only be achieved when one makes assumptions about
the global properties of the faults modelled by F , such as the maximum number of
faulty CUs at a time, and the minimum time between faults. This suggests that the exact
modelling of the F -affected system M includes such fault hypotheses. As discussed in
[15,16], a global behavioural assumption on faults is in general a safety property that
prevents certain transitions from taking place from some states and thus can be modelled
in the guards of the transitions. In fact, since faults do not constrain the actions of the
non-faulty model S, the hypotheses can be given by guards of the fault transitions of F .
This is exemplified in Section 4, Fig. 7.

3 Design of the Triple Modular Fault-Tolerant Component

The assumed faults of the faulty CU are tolerated by the triple modular system shown
in Fig.4. It consists of three CUs, each equipped with a watchdog, and then there are
two voters, one arbiter and one impulse generator. The watchdogs are modeled together
with their CUs.

impulse generator

CU0

watchdog

WD KICKED

synclk xms
synclk 5ms synclk 9ms

voltage level(0;1;2)

cu output(0;1;2)

restart flag by voter(0;1;...5)

voter0

arbiter

arbi output

CU2

watchdog

...

voter1

voter output(0;1)

cu restart(0;1;2)

Fig. 4. The triple modular redundancy system
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3.1 Impulse Generator

The impulse generator issues edge impulses to force the components to process their
inputs. In a cycle, a synchronization impulse synclk xms is generated first to trigger
the three CUs to process their inputs simultaneously. After a period CU PERIOD of
time, a synclk 5xms impulse is generated to trigger the two voters to process their in-
puts from the CUs simultaneously. Impulse synclk 9xms is produced with a delay of
VOTER PERIOD to activate the arbiter to process its inputs from the voters. A synclk xms
impulse is produced again after a period of ARBI PERIOD time to trigger the CUs in the
next cycle. So, all the three types of impulses are generated in every period of T, where
T is equal to CU PERIOD+ VOTER PERIOD+ ARBI PERIOD.

3.2 CU and Watchdog

To make a CU recover from an error state, we introduce a restart mechanism to determine
when a CU needs a restart and which component is responsible for triggering a restart
from an error state.

When a CU restarts it enters a reset phase and stays there for a period of RESET PERIOD
time before it enters a startup phase, which has a duration of START PERIOD. In the hard-
ware design, the voltage change of a special pin of the CU signals this procedure. The
voltage value stays low (0) for the time of RESET PERIOD, before it changes to high (1),
as described in Fig. 5. We use a Boolean array voltage level to denote the pin voltage
levels of the CUs. When voltage level[i] is 0, CUi is in the reset phase, and it is either
in the startup or working phase otherwise. The change of voltage level[i] from 1 to
0 indicates a restart of CUi.

RESET PERIOD

START PERIOD
reset phase

startup phase

Fig. 5. CU startup procedure

To allow a CU to recover from the error state Error0, we introduce a watchdog for
each CU. The timer of the watchdog of the CU starts to count when the CU enters a
startup phase. In all the states, except for the state Error0, the CU kicks the watchdog
after every period of T time units to set the timer value to WD KICKED.

We decide that when the timer of the watchdog overflows, it triggers its CU to restart,
and thus recover from an error due to the occurrence of FAULT0. However if FAULT1
or FAULT2 occurs, the watchdog is still kicked normally. So the watchdogs cannot be
used to detect and recover from occurrences of these faults.

3.3 Voters

To detect errors caused by FAULT1 or FAULT2, we design a voter. The voter receives
inputs from the three CUs. Assume that at any time at most one CU is in an error state,
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the voter votes for the value that is agreed to by at least two CUs, and identifies whether
the failed CU need a restart.

As we said before, a voter may fail. We use two voters, VOTER0 and VOTER1. The
intention is to prevent the voter from being a single point of failure that reduces the
overall dependability of the system.

When VOTER0 and VOTER1 receive a synclk 5xms impulse, they simultaneously
start to process the input data to determine which CU works correctly and select the
correct result. The time spent on data processing is much smaller than the constant
VOTER PERIOD. This enables a voter to complete the computation before the occurrence
of the synclk 9xms impulse. We define voting as follows in which buffer voter output
is used to store the output of a voter.

if (cu_output[0] == cu_output[1] || cu_output[0]==cu_output[2])
voter_output = cu_output[0];

if (cu_output[0] != cu_output[1] && cu_output[0] != cu_output[2])
voter_output = cu_output[1];

VOTER0 is considered the primary, in the sense that if both voters work well, then
the arbiter will select the result of VOTER0 as its output. Only when VOTER0 goes
awry, it selects the result of VOTER1 as the final output.

Furthermore, the voter has to detect whether a CU is in the reset phase or startup phase.
For this, the value of the pin voltage voltage level[i] is read by the voter. Therefore,
in addition to the voting function, each voter has the following functionalities.

Detect CU mode. When VOTERj , where j = 0, 1, reads a correct output from CUi, it
assigns 1 to the Boolean variable cu normal by voter[3× j + i], which indicates
that CUi is in its normal mode. The CU remains in this mode until VOTERj finds
that voltage level[i] changes from 1 to 0. At this moment VOTERj assigns 0 to
cu normal by voter[3× j + i], which means that CUi mode is abnormal. The value
of cu normal by voter[3× j + i] remains 0 until VOTERj reads a correct value
from CUi.

Restart CU. VOTERj uses the Boolean variable restart flag by voter[3× j + i]
to trigger CUi to restart. There is no need for the voter to force a CU to restart whenever it
reads an incorrect value from the CU. That would render the watchdog ineffective, as it
takes some time for its timer to overflow. Therefore we allow a CU to output a sequence
of incorrect values before it is restarted. We introduce two positive integers n1 and n2
to control this. When CUi is in the normal (resp. abnormal) mode, VOTERj restarts only
after having received n1 (resp. n2) incorrect values from CUi in a row.

3.4 Arbiter

When receiving a synclk 9xms impulse, the arbiter acquires the outputs of each voter.
Let j be the index of the voter that the arbiter trusts, and arbi output be the output
of the arbiter. In each cycle, the arbiter assigns voter output[j] to arbi output, and
sends a restart signal cu restart[i] to CUi if restart flag by voter[3× j + i]
equals 1. To insure that the arbiter completes the computation before the arrival of
the next synclk xms impulse, the computation time of the arbiter must be less than
ARBI PERIOD.
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3.5 Design of the Timing Parameters

Taking the real hardware implementation into consideration, for example, a watchdog
timer must not overflow when the CU is in the restart procedure, we have the following
constraints.

WD PERIOD > 2T + START PERIOD (1)

WD PERIOD > T + WD KICKED (2)

A CU can restart when either its watchdog overflows or when it gets a restart signal
from the arbiter. Therefore, even when the CU is in the startup phase, it can re-enter the
reset phase due to a restart signal from the arbiter. This delays the CU to return to normal
working mode. To avoid repeated restarts of the CU, we add the following constraints.

n2 > (RESET PERIOD+ START PERIOD)/T�+ 2 (3)

RESET PERIOD > T (4)

Finally, a voter can detect incorrect output of a CU when FAULT0 occurs. If we set the
value of the constant WD PERIOD too high, or the value of the constant n1 too small, the
restart of the CU is triggered by the signal sent from the arbiter instead of the overflow of
the watchdog. This would make the watchdog ineffective in detecting the occurrences
of FAULT0. That would prevent the engineers from distinguishing the type of faults
which occur. A useful statistics, which is used to improve the software, is thus hidden.
Thus, the above scenario is not desirable, and it is excluded by the following constraint:

n1 > �WD PERIOD/T�+ 1 (5)

As will show in Section 5, this constraint prevents repeated restart of a faulty CU as
well.

4 Model of the Triple Modular Design

The fault tolerant model is now specified by four UPPAAL automata: Impulse, CU,
Voter, and Arbiter. Before we explain the construction, we summarize additional
fault hypotheses.

4.1 Fault Hypotheses

The triple modular system will only work under some assumptions about the occurrence
of faults [15,16]. Thus at any time:

– at most one CU encounters a fault, and
– the minimum time between the occurrences of faults should be long enough to

allow the successful recovery of a CU from an error state, and
– no faults occur in the voters and the arbiter.
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to_send_cu_sync

to_send_arbi_sync

x<=VOTER_PERIOD

to_send_voter_sync

x<=CU_PERIOD

x<=ARBI_PERIOD

synclk_xms!
x == VOTER_PERIOD
synclk_x9ms!
x=0

x == CU_PERIOD
synclk_x5ms!
x=0

x==ARBI_PERIOD

x=0,
clear_fifo()

Fig. 6. Impulse automaton

Note that the arbiter will detect a voter fault, but it cannot do anything about it. Here
a third voter would be needed, but the approach to model three voters would be similar
to the one used here to model three CUs, so we do not include it.

These assumptions will be reflected in the model and some will be checked to hold
with the model checking tool.

4.2 Impulse

Figure 6 shows the Impulse automaton which models how the impulse generator pe-
riodically produces edge impulses. The clock x records the time between sending of
two edge impulses. Every ARBI PERIOD units of time, clear fifo() is executed to set
cu output to 0. Immediately after, i.e. in zero time, the automaton broadcasts a CU
synchronization signal synclk xms! to trigger the three CUs to process their inputs. A
synclk 5xms! is broadcasted CU PERIOD time units after. Finally, a synclk 9xms! is sent
after VOTER PERIOD time units. Then the cycle repeats.

4.3 CU

Fig.7 shows a CUi automaton, where i = 0, 1, 2. It models the following phases:

– The restart phase.
– Decision on what to do after receiving a signal.
– Faults and faulty behaviour.

In the automaton a local clock x is used to measure the duration of the restart process
and works as the timer of watchdog. Initially CUi works well and stays in location Good.

The self-loop in location Good models the scenario when a synchronization impulse
synclk xms occurs, the CU outputs a correct result and kicks its watchdog. This is the
non-faulty model.

An auxiliary global variable cu faulty index indicates which CU is faulty. It is
initially −1, representing that all the CUs are in location Good. When a fault occurs
in CUi, the value of cu faulty index becomes i, and it remains so until restarting
completes, and the automaton enters location Good again.

Notice the guard cu faulty index == −1 on all fault transitions from the normal.
It encodes the assumption that at most one CU fails at a time.
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Recovery

Error1

x<=WD_PERIOD

GoodReset

x<= RESET_PERIOD

Startup

x <= START_PERIOD
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x<=WD_PERIOD
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x<=WD_PERIOD

cu_restart[cu_faulty_index]?

synclk_xms?
cu_output[i]=1,
x=WD_KICKED,
cu_faulty_index=-1

cu_restart[cu_faulty_index]?

synclk_xms?
x=WD_KICKED

synclk_xms?
cu_output[i]=-1,
x=WD_KICKEDcu_restart[cu_faulty_index]?

cu_faulty_index == -1
cu_faulty_index=icu_restart[cu_faulty_index]?

x==WD_PERIOD

voltage_level[i] = 0,
x=0

synclk_xms?
cu_output[i]=1,
x=WD_KICKED
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cu_restart[cu_faulty_index]?

x == RESET_PERIOD
voltage_level[i] = 1,
x=0

cu_faulty_index == -1
cu_faulty_index=i

cu_restart[cu_faulty_index]?

cu_faulty_index == -1
cu_faulty_index=i

cu_restart[cu_faulty_index]?

Fig. 7. CU automaton

When no fault has occurred in any other CU, a fault can non-deterministically occur
in a CU and move it to an error location: Error0, Error1 or Error2.

In location Error0 the automaton stops working, it will move only when it gets a
restart signal or when the the watchdog timer overflows, and then through a committed
location immediately to a reset.

An occurrence of FAULT1 moves the automaton to location Error1. In this location,
the CU kicks its watchdog but outputs incorrect data when synclk xms! is issued. When
the automaton receives a cu restart[i]? signal from the arbiter, the CU moves through
a committed location immediately to a reset.

An occurrence of FAULT2 moves the automaton to location Error2. When syn-
clk xms! is issued, CU kicks its watchdog, but fails to output a value. Similar to the case
of FAULT0 and FAULT1, in this location the automaton may receive a cu restart[i]?
signal from the arbiter for a restart.

Because of the parameter constraints discussed in Subsection 3.5, and because of
the signal synclk xms! which is generated in a T cycle, delay transitions of none of the
locations of Good, Error1 and Error2will lead to watchdog overflow. Therefore, there
are not watchdog overflow transitions in these locations.

The CU reset and startup phases are modelled by the locations Reset and Startup
and the transitions between them. As shown in Fig. 5, the automaton resides in loca-
tion Reset for RESET PERIOD time units and then jumps to location Startup with
voltage level set to 1. It stays in location Startup for START PERIOD time units
before moving to location Recovery. In location Recovery, it resynchronizes on syn-
clk xms, outputs correct data, kicks the watchdog, and finally sets cu faulty index to
−1. This means that CUi has recovered from a fault and it enters location Good.

Since the watchdog timer starts to record the time elapsed when the CU entered a
startup phase, and due to the constraints on the hardware parameters, watchdog timer
overflows in location Reset or Start or Recovery do not occur.
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An over-approximation. In the CU automaton, we have encoded the fault hypothesis
about a single CU failure at a time with the guard cu faulty index == −1. There-
fore, the automaton CUi does not specify the exact duration between two consecutive
faults. Instead, it only models the fact that the minimum time when the next fault can
occur should be long enough to let the CU output a correct result. This allows more
timing behaviours with respect to occurrences of faults in the model.

4.4 Voter

The automaton Voterj is shown in Fig. 8(a), where j = 0, 1. We introduce a lo-
cal variable cu error time[i] to record the number of incorrect values that the voter
read from CUi. Initially the automaton stays in location Idle. When it receives a syn-
clk 5ms signal, it calls two functions: fault check() and vote(). For each CU, func-
tion fault check() computes the following steps.

Idle

synclk_x5ms?
fault_check(),
vote()

(a)
Idle

restart_flag_by_arbi[cu_faulty_index]==1
cu_restart[i]!
restart_flag_by_arbi[cu_faulty_index]=0

synclk_x9ms?
arbitrate()

(b)

Fig. 8. (a) Voter automaton (b) Arbiter automaton

1. It checks if there is a restart of CUi. A local variable lvoltage level[i] is used to
store the value of voltage level[i] from the last cycle.

2. It checks the data read from cu output[i] and decides if CUi needs a restart.

The function vote() completes the voting algorithm. It compares results from the
three CUs, and outputs the majority value to the buffer vote output.

void fault_check()
{ int i;

for(i = 0; i < 3; i++)
restart_flag_by_voter[i + j * 3] =0;

for(i = 0; i < 3; i++)
{ if (lvoltage_level[i]==1 && voltage_level[i]==0) //edge jumps

{ cu_error_time[i] = 0;
cu_normal_by_voter[i]=0; //judge CU i is in abnormal mode

}
lvoltage_level[i] = voltage_level[i]; //lvoltage_level is updated
if(cu_output[i] !=1) //data from CU i is incorrect

{ cu_error_time[i]++;
if (cu_normal_by_voter[i] == 1) //if CU i is in normal mode

{if (cu_error_time[i] >= n1)
{cu_error_time[i] = n1;
restart_flag_by_voter[i + j * 3] = 1; //CU i needs a restart

}
}

else // CU i is in abnormal mode
{if (cu_error_time[i] >= n2)
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{cu_error_time[i] = n2;
restart_flag_by_voter[i + j * 3] = 1; //CU i needs a restart

}
}

}
else // data from CU i is correct

{ cu_error_time[i] = 0;
cu_normal_by_voter[i]=1; //judge CU i is in normal mode

}
}

}

void vote()
{ if (cu_output[0]==cu_output[1])

voter_output[j]=cu_output[0];
else if (cu_output[0]==cu_output[2])

voter_output[j]=cu_output[0];
else voter_output[j]=cu_output[1];

}

4.5 Arbiter

The Arbiter is modelled as the automaton in Fig. 8(b), it uses a local Boolean variable
restart flag by arbi[i] to express if CUi needs to restart. Whenever synclk x9mx is
issued, one self-loop transition executes the function arbitrate() .

void arbitrate()
{ int i;

for (i=0;i<=2;i++)
restart_flag_by_arbi[i]=restart_flag_by_voter[i];

arbi_output=voter_output[0];
}

The other self-loop transition models that if CUcu faulty index should restart, a restart
signal is sent.

4.6 Checking of the Triple Modular Design in UPPAAL

We decide on the following values for the different timing constants; these values sat-
isfy the parametric constraints in Subsection 3.5. These definitions are copied almost
verbatim in the UPPAAL declaration section of our model.

CU_PERIOD: 0.5 ms (time difference between synclk_xms and synclk_5xms)
VOTER_PERIOD: 0.4 ms (time difference between synclk_5xms and synclk_9xms)
ARBI_PERIOD: 0.1 ms (time difference between synclk_9xms and synclk_xms)
RESET_PERIOD 100 ms (the period that CU stays in reset phase)
START_PERIOD: 300 ms (the period that CU stays in startup phase)
WD_KICKED: 450 ms (the value watchdog timer kicked)
WD_PERIOD 500 ms (the maximum time watchdog timer can record)
n1: 30 (the number of incorrect data voter allows if voter judges CU normal)
n2: 550 (the number of incorrect data voter allows if voter judges CU abnormal)

The properties Q1 – Q4 below for the fault-tolerant system ensure the correctness
properties P1 – P4 of the fault-free system in Subsection 2.1. Indeed, the final output of
the fault-tolerant system is no longercu output, but voter output and arbi output.
This correctness is based on the equivalence of any of the CUs.

Q1: A[](Impulse.x >= 0 and Impulse.x <= T)
Q2: A[](voter output[0] == 1 and arbi output == 1)
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Q3: cu output[0] == 0→ cu output[0] == 1
Q4: cu output[0] == 1→ cu output[0] == 0

Checking these properties only takes a few seconds. The verification results in UP-
PAAL reveal that all the above properties are satisfied by the model of the design.

In UPPAAL, we can check the above system using different instantiations of its
parameters. However, each checking can only verify a single instance of the system,
whereas we would like to establish correctness for all instantiations of its parameters.
This motivates the parametric analysis of the system in the following section.

5 Parametric Analysis of the Triple Modular Design

We are interested in using the parameter constraints in Subsection 3.5 to manually prove
the correctness of Q1 − Q4. In terms of several steps of abstraction, we prove that the
desired properties hold under the assumption that the values of the parameters meet the
constraints.

5.1 The Composed System

The full system can now be described as the network of the three CU automaton, the
two Voter automata, the Arbiter automaton, and the Impulse automaton, with all
synchronization actions hidden. It can be computed as a product automaton subject to
the synchronizations. It is shown as the automaton A in Fig 9.

The clock x is used to record the time passing between sending two edge impulses.
The clock y is used to measure the waiting time of the restart process and as the timer
of watchdog. The error locations Error00, Error0C, Error01 and Error02 imply
that FAULT0 occurs in CUcu faulty index. While the error locations Error10, Error1C,
Error11 and Error12 imply that FAULT1 occurs in the CU, and the error locations
Error20, Error2C, Error21 and Error22 imply that FAULT2 occurs in the CU.

The synchronization synclk xms yields τ0, while the synchronization synclk 5xms
yields τ1, and the synchronization synclk 9xms yields τ2. The urgent synchronization
cu restart yields internal action τ3. To ensure that τ3 is immediately executed we
introduce the committed locations from DD0 to DD5, and from these locations we judge
if restart flag by arbi[cu faulty index] equals 1. In this case the actions are
taken from these locations to reset the faulty CU.

To simplify the composed system, when τ0 is taken, we use different functions to
update the outputs of the three CUs. If cu faulty index equals−1, this implies that all
the three CUs work normally, the outputs of the three CUs are described by the function
good cu output(). Otherwise, if FAULT0 or FAULT2 occurs, the outputs of the three
CUs are described by function error02 cu output(); if FAULT1 occurs, the outputs
are described by function error1 cu output().
void error02_cu_output()
{ int i;

for(i = 0; i < 3; i++)
{ if (i!=cu_faulty_index)

cu_output[i] = 1;
}

}
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Fig. 9. The automaton A

void error1_cu_output() { int i;
for(i = 0; i < 3; i++)
{ if (i!=cu_faulty_index)

cu_output[i] = 1;
else cu_output[i] =-1;

}
}
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void good_cu_output() { int i;
for(i = 0; i < 3; i++)

cu_output[i] = 1;
}

Obviously, if A is in the location CUcu faulty index.Recovery, when τ0 occurs, all
the three CUs output a correct value. Thus the outputs of the CUs are implemented by
good cu output().

In order to ease the manual invariant proof in the following subsection, we introduce
an auxiliary Boolean variable taken. It indicates whether the function fault check()
is executed when A enters the location Reset0, Reset1 or Reset2. This variable is
such that:

– it is initially 0,
– when the transition from Reset1 to Reset2 is taken, the value becomes 1, and
– when the transition to location Reset0 or Reset1 or Reset2 is taken, the value

become 0.

We now establish that the composed automaton A satisfies the properties Q1 − Q4
if the parametric constraints are met.

5.2 Parametric Analysis

We want now to prove that the properties Q1, Q2, Q3 and Q4 hold in A. Clearly Q1
holds in A. In order to prove the other properties, we introduce in this section four au-
tomataA1, A2, A3 andA4 based onA, each one of them simplifyingA in order to prove
one property. A1 is a timed automaton, which gather the different kind of faults in A,
while preserving the error locations as well as other information. A2 is also a timed
automaton, in which using the parameter constraints, we omit the restart actions in A1
when a faulty CU is in its restart and recovery process.A3 is further acquired by merging
several locations of A2 in which A2 stays to wait for the occurrence of τ0, τ1 and τ2, as
a single location. Finally, A4 is obtained by removing all timing information in A1.

In the following, we prove Q3 by provingQ30 and Q31 respectively in A1 and A3.

Q30: cu faulty index == −1 and cu output[0] == 0→ cu output[0] == 1
Q31: cu faulty index == 0 and cu output[0] == 0→ cu output[0] == 1

The First Intermediate Automaton A1. Intermediate automaton A1 is displayed in
Fig. 10. The timed automaton is identical to the composed system, except that the error
locations are merged to one location. All the transitions leading from one of the merged
locations now comes from the super location. This is therefore a correct abstraction of
A according to the following definition of timed refinement (abstraction is the converse
of refinement).

Definition 3. Let B and C be two timed automata, s0, t0 be initial states of B and C,
QB, QC be states of B and states of C. A timed simulation from B to C is a binary
relation R ⊆ QB × QC written B � C, provided for all (s, t) ∈ R, s[VC ] = t[VC ],
and
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Fig. 10. Intermediate automaton A1

– (s0, t0) ∈ R
– if (s, t) ∈ R and s

a−→ s′ in B, then t
a−→ t′ in C and (s′, t′) ∈ R,

– if (s, t) ∈ R and s
ε(d)−→ s′ in B, then t

ε(d)−→ t′ in C and (s′, t′) ∈ R
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In connection with proof of refinements below, we use the following conventions:
the location l appearing in the definition of relationR, stands for a state that consists of
the location l as well as a valuation for state variables.

Lemma 1. A � A1.

Proof. The relation of Definition3 is given by R = (s, ψ(s)) for any s in QA, where

∀s ∈ QA ψ(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

OneError0 if s ∈ {Error00, Error10, Error20}
OneError1 if s ∈ {Error01, Error11, Error21}
OneError2 if s ∈ {Error02, Error12, Error22}
OneErrorC if s ∈ {Error0C, Error1C, Error2C}
DD012 if s ∈ {DD0, DD1, DD2}
s otherwise

Let us prove that R is a simulation from A to A1. First, since the initial states are
identical, they clearly belong to R. Now, let s and s′ be two states of A, t a state of A1
and a an action such that s R t and s

a−→ s′ . If s ∈ {Error00, Error10, Error20},
then by definition of R, t = OneError0 and two cases are possible.
i) s = Error00 and A performs an action a to CC0.
In this case, s′ = CC0 and OneError0

a−→ CC0 in A1, and we can conclude by defini-
tion of R.
ii) s ∈ {Error00, Error10, Error20} and A performs an action a, when the timer
expires: x = ARBI PERIOD. In this case, s′ ∈ {Error0C, Error1C, Error2C} and
OneError0

a−→ OneErrorC in A1 and we can conclude by definition of R.
We proceed in the same way for the other states and since it is clear that R is also a

relation for time delay transitions, we can conclude that R is simulation from A to A1.

Lemma 2. Q30 holds in A1.

Proof. Q30 can be straightforwardly proved in A1. When all the three CUs are good,
A1 is deterministic. As function good cu output() is taken infinitely often,Q30 holds
in A1.

Lemma 3. Q4 holds in A1.

Proof. This property clearly holds as there is no infinite sequence of instantanous tran-
sitions in A1 and the function clear fifo() is taken each T cycle.

The Second Intermediate Automaton A2. If we take into account the constraints
defined in Section 3.5, then the transitions from DD3 to CC0, from DD4 to CC0 and from
DD5 to CC0 are never enabled in A1. Indeed we can prove the following invariants:

Lemma 4

I1 : A[] A1.DD3 imply restart flag by arbi[cu faulty index] == 0
I2 : A[] A1.DD4 imply restart flag by arbi[cu faulty index] == 0
I3 : A[] A1.DD5 imply restart flag by arbi[cu faulty index] == 0
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Proof. Let α be the value of clock y that record the time point when taken is changed
from 0 to 1. We first need to introduce some other invariants:

I4 : A[] (A1.OneError0∨ A1.OneError1∨ A1.OneError2)∧ y > T
imply cu output[cu faulty index] 
= 1

I5 : A[] (A1.Reset0 ∨ A1.Reset1∨ A1.Reset2)
imply (cu output[cu faulty index] 
= 1
∧ voltage level[cu faulty index] == 0)

I6 : A[] A1.Reset2∧ taken == 1 ∧ y == α
imply (cu normal by voter[cu faulty index] == 0
∧ cu error time[cu faulty index] == 0)

I7 : A[] A1.Reset2∧ taken == 1
imply restart flag by voter[cu faulty index] == 0

I8 : A[] A1.DD3 ∧ taken == 1
imply restart flag by arbi[cu faulty index] == 0

I9 : A[] (A1.OneError0∨ A1.OneError1∨ A1.OneError2)
imply cu normal by voter[cu faulty index] == 1

I10 : A[] A1.DD3 ∧ taken == 0
imply restart flag by arbi[cu faulty index] == 0

These invariants are verified by the inspection of the automaton, and under these
assumptions, we can prove the invariants I1, I2 and I3.

1. We easily prove I1 by the invariants I8 and I10.
2. In order to prove I2, we need the following invariants:

I11 : A[]A1.Startup2∧ taken == 1
imply restart flag by voter[cu faulty index] == 0

I12 : A[]A1.Startup2 imply restart flag by voter[cu faulty index] == 0

As Error02 cu output() is executed each T cycle when A1 is in reset or startup
process, by I6 and constraint (3), we have I11. Due to constraint (4), I12 is ac-
quired. From I12, obviously we have I2.

3. In order to prove I3, we need the following invariant:

I13 : A[]A1.Recovery2∧ taken == 1
imply restart flag by voter[cu faulty index] == 0

I14 : A[]A1.Recovery2 imply restart flag by voter[cu faulty index] == 0

Still as Error02 cu output() is executed each T cycle when A1 is in reset or
startup process, by I6 and constraint (3), we have I13. Due to constraint (4), I14
is acquired. From I14, obviously we have I3.

We can conclude that the invariants I1, I2 and I3 hold for A1.

Since the three previous invariants hold, we can clearly remove from A1 the tran-
sitions from DD3 to CC0, from DD4 to CC0 and from DD5 to CC0, thus defining the
automatonA2.

Notice that following invariant clearly holds for A2:

I15 : A[] (A2.Recovery0∨ A2.Recovery1∨ A2.Recovery2) imply y ≤ T
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Fig. 11. Intermediate automaton A3

The Third Intermediate Automaton A3. From the automatonA2 defined in the pre-
vious subsection, we define the automatonA3 as follows:

– roughly speaking, each “row” of A2 is merged into one super location,

– the variable taken is removed, and

– the guard from OneRecovery to OneRecoveryC is weakened.

The automaton A3 is described in Fig. 11. Notice that from the invariant I15 previ-
ously defined and the definition of A3, the following invariant clearly holds:

I16 : A[] A3.OneRecovery imply y ≤ T
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Let QA2 , QA3 be the states of automata A2 and A3, ψ1 : QA2 → QA3 be the
following mapping:

∀s ∈ QA2 ψ1(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AGood if s ∈ {Good0, Good0, Good2}
OneError if s ∈ {OneError0, OneError1, OneError2}
OneReset if s ∈ {Reset0, Reset1, Reset2}
OneStartup if s ∈ {Startup0, Startup1, Startup2}
OneRecovery if s ∈ {Recovery0, Recovery1, Recovery2}
DD if s ∈ {DD012, DD3, DD4, DD5}
CC if s ∈ {CC0, CC1, CC2}
AGoodC if s ∈ {GoodC}
OneStartupC if s ∈ {StartupC}
OneRecoveryC if s ∈ {RecoveryC}
s otherwise

Lemma 5. A2 � A3. More specifically the relation R = (s, ψ1(s)) for any s in QA2 ,
defines a simulation from A2 to A3.

Proof. Routine proof similar to the proof of Lemma 1.

Lemma 6. Q31 holds in A3.

Proof. Let s be a state such that s |= cu faulty index == 0 and cu output[0] == 0
and let us prove that cu output[0] will be eventually equal to 1. By definition of A3,
only four cases are possible for s:
i) s = OneRecovery.
Here, the self-loop transitions l1 and l2 and the time-delay transition in OneRecovery
does not set cu output[0] to 1. However, since the maximum time A2 stays in this lo-
cation is T, and since in both transitions l1 and l2, we have guard x > 0 and reset x = 0,
so each occurrence of the transition l1 or l2 implies the increment of the clock y. Thus
for any infinite path from s, we only have a finite number of the self-loop transitions so
that eventually we must reach the location OneRecoveryC, which is immediately left
to output a good value of cu output[0] by function good cu output() and we can
conclude that cu output[0] == 1 eventually holds.
ii) s = OneStartup.
In this case, since A2 stays in this location for a maximum time START PERIOD, and
because only after a non-zero time delay can any self-loop transition takes place, thus
for any infinite path from s, we only have a finite number of the self-loop transitions
and eventually the location OneRecovery is reached and we can conclude by i).
iii) s = OneReset.
Likewise, if A2 stays in OneReset, the location OneStartup is eventually reached and
we can conclude by ii).
iv) s = OneErrorC.
In the same way, if A2 is in the state OneErrorC, the state OneReset is eventually
reached and so we can conclude by iii).

The Fourth Intermediate Automaton A4. Lastly, we define the automatonA4 by re-
moving all the clock variables as well as all the references to these variables in locations
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and transitions of A1. Since the propertyQ2 does not depend on time parameters, if Q2
holds for A4, it also holds for A1.

Lemma 7. Q2 holds for A4.

Proof. Done using UPPAAL.

We are now in position to prove the following proposition:

Proposition 1. The properties Q1, Q2, Q3 and Q4 hold for A.

Proof.

1. As we said in Section 5.2, the propertyQ1 clearly holds for A.
2. By the Lemma 7, we have proved that Q2 holds for A4 and so for A1, since A4

is equal to A1 without time parameters and since Q2 does not depend on time
parameters. Moreover, by Lemma 1 we have A � A1, so we can conclude that Q2
holds for A.

3. By the Lemma 2, Q30 holds forA1 and so, by Lemma 1, it also holds forA. By the
Lemma 6,Q31 holds forA3 and by Lemma 5, we haveA2 � A3 and it follows that
Q31 also holds forA2. Moreover, we have proved by the Lemma 4A2 is equivalent
to A1, since we only remove transitions which are never enabled and so Q31 also
holds for A1. Still by the Lemma 1, we know that Q31 holds for A. Moreover, by
the definition of Q30 andQ31, since they both hold forA, we can conclude that Q3
holds for A.

4. By the Lemma 3, Q4 holds for A1, and by the Lemma 1, we can finally conclude
that Q4 also holds for A.

5.3 The Parameter Constraints Are Necessary

Above, we have proved that the parameter constraints in Subsection 3.5 are sufficient
to prove the desired properties of the system. However, it could be the case that they
are too narrow, therefore a number of counterexamples below shows that they are also
necessary. Such that we can conclude that they are the best we can do, they are both
sufficient and necessary.

From A it is obvious that if there is a restart action in DD3 or DD4 or DD5, then
there exits a loop that consists of location Reset0. This loop may generate an infinite
path and along it the output value of a faulty CU is always different from 1. This vi-
olates property Q3. Therefore, we should avoid the restart action from DD3 or DD4 or
DD5. That is, we should avoid repeated restart of a faulty CU, Constraint (3) is needed
to avoid the restart phenomenon from location DD4 or DD5. When a CU enters abnor-
mal mode, fault check() triggers it to restart if cu error time equals n2. Suppose
the constraint is not satisfied, then consider the case that at some time t, A enters
location Startup0 from Reset0. The value of cu normal by voter[0] becomes 0
when fault check() is first executed since time t . Because fault check() is ex-
ecuted each T cycle, after at most n2× T time units from time point t, the value of
restart flag by arbi[cu faulty index] becomes 1. By the assumption, A stays
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in startup and can take a restart in location DD4, which violates our properties. Simi-
larly, the restart phenomenon from DD5 exists if the constraints is not satisfied. In the
inequality “+2 ” is used to give more robustness against skewed timers.

Constraint (4) is also needed to avoid a restart from location DD4. To illustrate this,
suppose at some time point t, A enters location Reset and the current state s satisfies
the formula:

lvoltage level[cu faulty index] == 1 ∧ voltage level == 0

∧cu normal by voter[cu faulty index] == 1

Assume T > RESET PERIOD, then the automaton may move to Startup0 from
Reset0 with taken being equal to 0. Since both voltage level[cu faulty index]
and lvoltage level[cu faulty index] are set to 1, after some time, fault check()
judges that cu normal by voter[cu faulty index] remains 1. If we have the con-
straint START PERIOD>n1× T, then the restart flag by arbi[cu faulty index]
could be set to 1. So, there exits the scenario that A can transit from DD4 to CC0, which
violates the desired property.

Constraint (5) is required to avoid the restart action from DD3. Consider the case
that Reset2 is reached and cu normal by voter[cu faulty index] equals 1. Ac-
cording to the restart mechanism, when a CU is in the normal mode, fault check()
triggers it to restart, after the CU having continuously produced n1 incorrect values,
that is, cu error time equals n1. If the constraint is not met, when clock x equals
VOTER PERIOD, the execution of function arbitrate from location Reset2 to DD3
may set restart flag by arbi[cu faulty index] to 1. Thus the restart action from
DD3 is not avoided.

6 Conclusion and Future Work

We have presented a systematic approach to the development and the verification of
fault-tolerant components, and illustrated it on a design of a triple modular fault-tolerant
system. The verification uses the model checking tool UPPAAL. The examples were
given by domain engineers in the aerospace field. Our experience shows that formal
modeling and verification are applicable to verification problems in practical fault-
tolerant systems. Such designs are in general hard to test for software and system en-
gineers, and their solution require delicate techniques in modelling from experts in the
area of formal verification.

The results also show that UPPAAL is able to model the system faithfully. Especially,
the c-like syntax in the tool, which in our model includes the functions fault check(),
clear fifo(), vote() and arbitrate(), will certainly be familiar to the domain engi-
neers and can be easily translated to Verilog hardware language during the implemen-
tation.

In the modelling, we ignored the computation time for each component. One rea-
son is that the computation time is relatively small compared with the time difference
between two consecutive activations, so this does not affect the correctness properties.
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The other reason is that when we use a model with multiple clocks to describe the com-
putation time for each component, we encounter the state space explosion problem. To
further reduce state space, as demonstrated by [10], which has been successfully ap-
plied in an Zero Configuration protocol, we may use dead variable reduction to abstract
our model. Dead variable reduction is a well known static analysis technique, that has
for instance been studied in the PhD thesis of Yorav [21]. A variable v is said to be
dead at a location l if on every execution path from l, v is defined before it is used, or
is never used at all. Clearly, systems that only differ in the values of dead variables are
equivalent in a very strong sense (bisimilar). In our model, array cu output is dead in
location Idle in automaton Voter, and can be reset to zero after completing functions
fault check() and vote() upon entering this location. Another example is that the
arrays voter output and restart flag by voter are dead in location Idle in au-
tomaton Arbiter, and can be reset to a default value upon occurrence of the transition
to this location.

The current available version of UPPAAL does not support parametric analysis, an
inductive method therefore have been used in the invariant proof to solve this prob-
lem. However since a manual, operational proof often contains small mistakes, we also
would like to have a proof that is obtained in a more structured and formal way. Thus
a formal proof with theorem proving, probably with constraint solving will be inves-
tigated as a further work. For practical purposes, it may be most safe to bound the
parameters and then find admissible configurations by exhaustive enumeration. All sets
could then be used in a model checking.

It is clear that development of the fault-affected model and the fault hypotheses is
crucial for getting the intended end-product. A small variation in the suggested proce-
dure may be very helpful: each fault transition can be labelled with a fault name. Then
the fault hypotheses can be encoded as a fault generating automaton that synchronizes
with these. In the general case, it will just be a self loop for each fault label, offering
these randomly. This automaton may also assist in checking for fault monotonicity.

For future work, there are still several other directions that we pursue. We have nei-
ther considered the voter switching strategy, nor a faulty voter. In the current system the
arbiter trusts the output of VOTER0 by default. So clearly, defining the switching mech-
anism is a direction in which the effort on modeling and analyzing the fault-tolerant
properties can also be extended.

Also, up to now, we have verified the functionality requirements of the system. In
our future work, we will consider how the dependability (performance) of the system
may be investigated using a model checker and probabilistic simulation for real-time
probabilistic systems.

References

1. Abadi, M., Lamport, L.: The existence of refinement mapping. Theoretical Computer Sci-
ence 82(2), 253–284 (1991)

2. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126(2),
183–235 (1994)

3. Avizienis, A., Laprie, J.-C., Randell, B.: Fundamental Concepts of Dependability. In: Pro-
ceedings of the 3rd IEEE Information Survivability Workshop (ISW 2000), pp. 7–12 (2000)



84 M. Zhang et al.

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo, M., Corradini,
F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

5. Bernardeschi, C., Fantechi, A., Gnesi, S.: Model checking fault tolerant systems. Journal of
Software Testing, Verification and Reliability (STVR) 12(4), 251–275 (2002)

6. Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and Abstraction. ACM Transa-
tions on Programming Languadge and Ststems 16(5), 1512–1542 (1992)

7. Cousot, P., Cousot, R.: On abstraction in software verification. In: Brinksma, E., Larsen, K.G.
(eds.) CAV 2002. LNCS, vol. 2404, pp. 37–56. Springer, Heidelberg (2002)

8. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 19(2), 253–291 (1997)

9. Devillers, M.C.A., Griffioen, W.O.D., Romijn, J.M.T., Vaandrager, F.W.: Verification of a
Leader Election Protocol - Formal Methods Applied to IEEE 1394. Formal Methods in Sys-
tem Design 16(3), 307–320 (2000)

10. Gebremichael, B., Vaandrager, F.W., Zhang, M.: Analysis of the Zeroconf Protocol Using
UPPAAL. In: Proceedings of the 6th Annual ACM & IEEE Conference on Embedded Soft-
ware (EMSOFT 2006), pp. 242–251. ACM Press, New York (2006)

11. Gnesi, S., Lenzini, G., Martinelli, F.: Logical specification and analysis of fault tolerant sys-
tems through partial model checking. In: Proceedings of the International Workshop on Soft-
ware Verification and Validation (SVV 2003). Electronic Notes in Theoretical Computer
Science, vol. 118, pp. 57–70 (2003)

12. Jensen, H.E.: Abstraction-Based Verification of Distributed Systems. Phd thesis, Department
of Computer Science, Aalborg University, Denmark (June 1999)

13. Jensen, H.E., Larsen, K.G., Skou, A.: Scaling up uppaal. In: Joseph, M. (ed.) FTRTFT 2000.
LNCS, vol. 1926, pp. 19–30. Springer, Heidelberg (2000)

14. Johnson, B.W.: Design and analysis of fault-tolerant digital systems. Addison-Wesley Pub-
lishing, Reading (1989)

15. Liu, Z., Joseph, M.: Specification and verification of fault-tolerance timing, and scheduling.
ACM Transactions on Programming Languages and Systems 21(1), 46–89 (1999)

16. Liu, Z., Joseph, M.: Verification of fault-tolerance and real time. In: FTCS 1996, pp. 220–
229. IEEE Computer Society Press, Los Alamitos (1996)

17. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property Preserving Abstrac-
tions for the Verification of Concurrent Systems. Formal Methods in System Design 6(1),
11–44 (1995)

18. Schneider, F., Easterbrook, S.M., Callahan, J.R., Holzmann, G.J.: Validating requirements
for fault tolerant systems using model checking. In: Proceedings of the 3rd International
Conference on Requirements Engineering, pp. 4–13. IEEE Computer Society Press, Los
Alamitos (1998)

19. Simons, D.P.L., Stoelinga, M.: Mechanical verification of the IEEE 1394- a root contention
protocol using Uppaal2k. International Journal on Software Tools for Technlogy Transfer,
469–485 (2001)

20. Stoelinga, M.I.A., Vaandrager, F.W.: Root contention in IEEE 1394. In: Katoen, J.-P. (ed.)
AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 53–74.
Springer, Heidelberg (1999)

21. Yorav, K.: Exploiting syntactic structure for automatic verification. PhD thesis, The Tech-
nion, Israel Insitute of Technology (2000)
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Abstract. Control programs for safety-critical systems are required to tolerate
faults in the devices they control. In this paper we examine a systematic approach
to devising code to detect faulty devices at runtime. The approach is centred
around the use of integrity constraints, which are invariants on the state of a
system’s variables, including its inputs and outputs. Under normal operation in-
tegrity constraints should always hold, but they are designed to fail to hold if
there is a fault. By adding variables to capture the previous state of variables or
the time of significant events, additional integrity constraints can be devised to
check for faults in state transitions or faults with the rate of progress of the sys-
tem. We discuss techniques for devising integrity constraints as well as efficiently
evaluating the constraints. When an error is detected via the failure of an integrity
constraint, the integrity constraint(s) that failed can help diagnose the likely fault.
The techniques are presented by way of a simple case study of controller software
written in the action system style, but the approach is equally applicable to other
state machine approaches such as Event-B and TLA.

Keywords: Integrity constraint; action system; fault detection; real-time
programming.

1 Introduction

Real-time computer systems are increasingly being employed to control safety-critical
applications in which the safety of the system depends on the computer, and for which
the consequences of failure can be severe. For example, real-time systems are used in
railway signaling and in fly-by-wire aircraft. When equipment is operating correctly
the behaviour of the equipment in response to control commands is predictable, but a
device failure may lead to behaviours that are much less predictable and may affect
the operation of other devices. Equipment can malfunction, connections can be broken,
sensors and actuators can fail, human operators can make mistakes, the computer run-
ning the software can fail, and the software itself may be faulty. The challenge is to
design systems and software that can detect and/or tolerate such faults. There are differ-
ent levels of tolerance to faults: a system may continue to perform its desired function
using alternative means; it may degrade and not perform all functions; or it may revert
to a safe state until the fault is rectified.

Our work builds on standard techniques for developing safety-critical systems. In the
early stages of system design it is conventional to perform a preliminary hazard anal-
ysis process, utilising standard techniques, such as hazard and operability analysis, to
identify system hazards and assess them for severity and frequency of occurrence [1,2].

M. Butler et al. (Eds.): Fault Tolerance, LNCS 5454, pp. 85–103, 2009.
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For individual components of the system, including hardware, software, and human
operators, the possible failure modes of each component are recorded.

In current fault-tolerant systems, checks to detect faults are commonly added to the
code, but in an ad hoc manner that is explicitly programmed into the code (making it
complicated). In this paper we focus on a systematic approach to fault detection and di-
agnosis that is centred on integrity constraints, which are conditions that hold in normal
operation, but may fail to hold in the event of a fault. Our goals are to simplify the task
of the system developer and improve the dependability of the generated system.

System modelling. There are a number of well known approaches to providing tolerance
to faults, involving such techniques as consistency checking of the perceived behaviour
of hardware with respect to a model of its expected behaviour, or replication of hardware
and the use of comparison/voting strategies. The system level provides the best place to
examine the application of fault-tolerant architectures and design patterns [3,4,5,6,7].

In an ideal world one can specify a real-time control system by specifying the de-
sired behaviour of the equipment under the control of the system and by stating the
assumptions a system developer can make about how equipment behaves in response to
control commands [8]. In safety-critical systems one needs to distinguish between the
desired behaviour of the system under normal operation and safe operation properties
of the system that need to be maintained both under normal operation and when faults
occur. There may be multiple safety properties with different levels of severity. Such
systems can be specified using multiple levels of rely/guarantee conditions [9].

The emphasis of this paper is on dynamically detecting faulty behaviour of devices.
Our goal is to come up with a systematic method to augment the control software for
a system with code to detect and diagnose faults. Our presentation of the approach is
based around the example of an industrial press, which is introduced in detail in Sect. 2.
The remaining sections each give an overview of a stage in the process, followed by
detailed application to the example. The approach consists of

– examining the possible device faults and hazards of the system (Sect. 3),
– devising integrity constraints for detecting the faults (Sect. 4),
– implementing the code to check the integrity constraints (Sect. 5), and
– examining methods for diagnosing possible faults when integrity constraints fail to

hold (Sect. 6).

2 Industrial Press Example

We model a control program as a state machine using a notation based on action systems
[10,11], which are in turn based on Dijkstra’s guarded command language [12]. As an
example, consider an industrial press in which a large weight is lifted by a motor and
released to fall and press a sheet of metal into a mould to shape it [13]. It has boolean
sensors top, bottom and below pnr, to determine respectively whether the weight is at
the top of its travel, the bottom of its travel, or that it is below the point of no return
(abbreviated pnr), at which stage it can no longer be stopped safely from falling by
the motor without damaging the equipment, with possible consequent operator injury.
When the weight is at the top of its travel it can be locked at the top and will then remain
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at the top without requiring the motor to be on. If the weight is at the top of its travel,
the operator may press two buttons simultaneously to release the weight. The operator
must then hold both buttons while the weight is falling. If either button is released
before the weight reaches the point-of-no-return sensor, the motor is engaged to stop
the weight falling and lift it to the top position. Once the weight has reached the bottom
of its travel, it will be lifted back to the top once the operator releases both buttons. The
controller normally cycles through the sequence of modes Top, Falling, Below PNR,
Bottom, Lifting, and back to Top, but if a button is released while the controller is in
mode Falling, it will switch into mode Abort. Mode Abort behaves in the same way as
mode Lifting in the normal case but we want to distinguish it from mode Lifting because
fault detection in the two modes is different. The distinction between these modes was
added as part of the process of extending the system with fault detection, but we have
included it from the start to avoid having to repeat the whole control program.

The following summarises the inputs (from sensors), outputs (to actuators), and local
variables used by the software. We start variable names with a lowercase letter, and
names of constants (including type names) with an uppercase letter. We distinguish
between an input sensor, e.g., top sensor, and the current sample of the sensor stored in
a local variable, top. The command top : read(top sensor) samples the top sensor and
places the result in the variable top. We explain the auxiliary variable, action deadline,
and the use of deadlines later.

input top sensor, bottom sensor, below pnr sensor,
pressed1 sensor, pressed2 sensor : Boolean;

var top, bottom, below pnr, pressed1, pressed2 : Boolean;
output motor : On | Off ;
output locked : Boolean;
output alarm : Boolean;
var start fall, start lift : Time;
var mode : Top | Falling | Below PNR | Bottom | Lifting |

Abort | Below PNR Init;
aux action deadline : Time

An action system to control a (fault-free) press is given in Fig. 1 and the correspond-
ing initialisation in Fig. 2. After initialisation, the action system is repeatedly executed
via the “do true” loop. At the beginning of each iteration it samples all the sensors
and the current time, and then performs one of a set of possible actions. Each action
has a guard, that determines whether or not the action is enabled. On each repetition
an enabled action is selected and executed. If none of the guards is enabled the final
“otherwise” alternative is executed, which executes the skip (or no-operation) com-
mand; this represents delaying until one of the guards becomes enabled. In general,
more than one action may be enabled, in which case the selection of which action to
execute is nondeterministic (although our example controller is deterministic). Most
actions consist of either a simple assignment or a concurrent assignment.

To avoid inconsistencies in the guard evaluation, any input referenced in a guard is
sampled just once at the start of the loop and that value is used throughout the eval-
uation of all the guards and in the action executed on that iteration. For example, in
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The boxed sections are used in the checking of integrity constraints; ignore them on first reading.

action deadline := τ + Max iteration time;
do true →

-- Sample sensors once at the start of each iteration.
pressed1 : read(pressed1 sensor);
pressed2 : read(pressed2 sensor);
top : read(top sensor);
below pnr : read(below pnr sensor);
bottom : read(bottom sensor);
now : gettime ;
-- Perform a guarded action or skip.
if mode = Top ∧ pressed1 ∧ pressed2 →

(locked := False || mode := Falling); start fall : gettime
[] mode = Falling ∧ ¬ below pnr ∧ ¬ (pressed1 ∧ pressed2) →

(motor := On || mode := Abort); start lift : gettime

[] mode = Falling ∧ below pnr →
mode := Below PNR

[] mode = Below PNR ∧ bottom →
mode := Bottom

[] mode = Below PNR Init ∧ bottom →
(mode := Bottom || alarm := False)

[] mode = Bottom ∧ ¬ pressed1 ∧ ¬ pressed2 →
(motor := On || mode := Lifting); start lift : gettime

[] mode = Lifting ∧ top →
(motor := Off || locked := True || mode := Top)

[] mode = Abort ∧ top →
(motor := Off || locked := True || mode := Top)

otherwise
skip

fi;
check integrity constraints

deadline action deadline;
action deadline := τ + Max iteration time;
suspend

od

Fig. 1. Action system controller for an industrial press

mode Falling in Fig. 1 the two alternative guards both reference the input below pnr.
If below pnr were to be sampled twice, the value for the first alternative could be false
and that for the second true (or vice versa, depending on the order of evaluation of the
guards) leading to both guards being false (or both potentially true).

The action system may be repeated non-stop in a busy-waiting fashion if it is the only
program running on the computer, or, more likely, it may be one of a number of tasks
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on a computer and it is periodically scheduled for execution with a short enough period
between executions to give the desired response time for the system. In a multi-tasking
environment, to indicate that the action system has finished its scheduled iteration, it
calls the system command suspend.

The auxiliary timing variable, action deadline, has been added in order to express
the fact that iterations should have a maximum separation in time. It is initialised to
the maximum iteration time plus the current time, which is represented by the special
variable τ , and there is a deadline command using its value at the end of the loop. The
deadline command guarantees to terminate by the specified time [14]. The deadline
command is a specification construct. No code is generated for it (and hence it takes no
time to execute). To correctly implement a specification containing deadlines, a program
must guarantee that whenever its execution reaches a deadline command, the deadline
has not expired. The use of a deadline command allows one to abstract away from
details of real-time scheduling, while still specifying the desired real-time behaviour.
Reinitialisation of the action deadline occurs immediately after the deadline to ensure
the time limit for the next iteration starts immediately. No code is generated for the use
of the auxiliary variable or the deadline command. They are there purely so that the
timing constraint can be specified within the code. More details on the use of deadlines
for timing constraints can be found elsewhere [15].

-- Initialisation
top : read(top sensor);
below pnr : read(below pnr sensor);
bottom : read(bottom sensor);
alarm := False;
if top →

(motor := Off || locked := True || mode := Top)
[] bottom →

(motor := Off || locked := False || mode := Bottom)
[] below pnr ∧ ¬ bottom →

(motor := Off || locked := False || mode := Below PNR Init || alarm := True);
start fall : gettime ; start fall := start fall − Min time below pnr

[] ¬ top ∧ ¬ below pnr →
(motor := On || locked := False || mode := Abort); start lift : gettime

fi

Fig. 2. Initialisation of controller for an industrial press

For initialisation of the control system we do not assume that the plant is in some
predetermined state, because a power failure may lead to the system being initialised
at any point in its cycle. The initialisation code (Fig. 2) checks the current values of
the sensors and initialises the system to an appropriate mode. If the weight is falling
but above the point of no return, the controller will abort the fall and lift the weight
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Table 1. Device faults and corresponding hazards for the industrial press

Fault Description Hazards
TOn top holds when the weight is not at the top of its travel H1
TOff ¬ top holds when the weight is at the top of its travel H3
POn below pnr holds when the weight is above the point of no return H1
POff ¬ below pnr holds when the weight is below the point of no return H2
BOn bottom holds when the weight is not at the bottom of its travel H2
BOff ¬ bottom holds when the weight is at the bottom of its travel —
LOn locked holds and the weight is not locked at the top H1
LOff ¬ locked holds and the weight is locked at the top —
MOn motor = On and the motor is not actually running/lifting H1, H2
MOff motor = Off and the motor is actually running/lifting H1, H2, H3
ButOni pressedi holds but no one actually pressed the button H1
ButOffi ¬ pressedi holds but it is actually being pressed —

The name of each fault is the perceived value of the state according to the computer, but this
state does not correspond to reality. The fault may lead to the listed hazards.

to the top regardless of the state of the buttons. A mode Below PNR Init (which is
different to Below PNR) has been used to handle the hazardous case when initialisation
takes place while the weight is below the point of no return. The weight is allowed to
fall but an alarm is sounded. Unfortunately on initialisation the control software can’t
determine the direction or velocity of the weight, and hence it has to assume that the
weight is falling with a velocity greater than that at which it can be safely stopped by
the motor. Aside: Adding sensors for the direction and/or velocity of the weight would
allow one to initialise the system more safely as well as improve the fault detection
process discussed below.

3 Possible Faults and Hazards

Given a control system and the plant it is controlling, the next stage is to identify pos-
sible device faults, and the hazards that they can lead to. Because a control system can
only perceive the plant through its sensors, it cannot distinguish a faulty sensor from a
faulty device that is being sensed. Similarly, when the control system sets an actuator, it
has knowledge of what state the actuator was set to, but it does not have direct knowl-
edge of whether the signal got to the device or whether the device responds correctly
to the signal (although it may indirect knowledge of the device’s response via its sen-
sors). Hence in identifying possible faults we focus on the interface between the control
system and the plant it is controlling, i.e., we focus on the sensors and actuators.

For each input sensor, S, and each possible state of that sensor, M, we identify a fault,
SM, which corresponds to the sensor S reading that it is in state M to the control system,
but the device itself is not in the physical state corresponding to M. Similarly, for each
output actuator, A, and possible state of the actuator, M, we identify a fault, AM, which
corresponds to the control system having set the actuator to state M, but the controlled
device does not behave as it should in state M. We follow this naming convention because
it applies when an input or output has a type which has a (small) finite number of values.
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Some possible device faults for the industrial press are summarised in Table 1. For
example, MOn corresponds to the control system having set motor = On, but that this
does not reflect the state in the real world, i.e., the motor is not actually running or it is
running but not lifting the weight.

Hazards. Given a collection of possible faults, we also identify the possible hazards
that each fault can lead to. This helps one understand the severity of a fault, as well as
better understand what will be suitable recovery strategies.

A hazard analysis of the industrial press can be performed, which may come up with
the following possibilities:

H1 an operator may be injured if the weight is allowed to fall while the operator is not
pressing both buttons and the weight is above the point of no return,

H2 there may be a catastrophic equipment failure, possibly leading to operator injury,
if the motor is turned on while the weight is falling and it is below the point of no
return, and

H3 there may be a motor failure if the motor is left on while the weight is at the top of
its travel, which could lead to the weight falling.

The conditions that may lead to hazard H1 are that

1. the weight is at the top of its travel, in which case it should be locked at the top but
it isn’t (LOn),

2. a button is not pressed but the button sensor reads that it is pressed, which can lead
to the weight to be released when it shouldn’t be (ButOni),

3. the weight is above the point of no return but the below pnr sensor is indicating it
is below (POn early),

4. the motor is turned off but actually runs for a while and lifts the weight from the
bottom but then stops running and allows the weight to fall (MOff ),

5. the weight is not at the top of its travel but the top sensor indicates it is (TOn early),
and hence the motor is turned off but the locking of the weight will fail because it
is not at the top (LOn), or

6. the motor fails in the lifting phase and the weight falls (MOn).

The conditions that may lead to hazard H2 are that

1. the below pnr sensor is indicating that the weight is above the point of no return
but it is really below (POff ),

2. the weight has fallen below the point of no return but the motor starts running while
it is turned off (MOff ),

3. the bottom sensor indicates that the weight is at the bottom, but it is still falling
(BOn early), which can lead to the motor be turned on to lift the weight, or

4. the motor is lifting the weight but fails and the weight falls and then the motor starts
lifting again when the weight is travelling too fast (MOn).

The conditions that may lead to hazard H3 are that

1. the motor is actually running when it is turned off (MOff ), or
2. the top sensor indicates that the weight is not at the top of its travel, when it is

(TOff ).
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We note that a power failure can lead to the motor not running when it is supposed
to be turned on (MOn). The locking mechanism for the weight should be designed to
be fail safe in the event of a power failure.

4 Detecting Faults via Integrity Constraints

A device failure may lead to a system state that cannot be reached when the device is
operating correctly. The correct operation of a device, or more generally, a collection of
devices working together, can be characterised by a set of integrity constraints on the
state of the computer system’s variables, including its inputs and outputs. If at any stage
an integrity constraint does not hold, this indicates an error in the system. In order to
devise integrity constraints for a system we need to characterise the healthy behaviour
of the devices.

The advantage of using integrity constraints is that it provides a more systematic
approach to detecting faults. Rather than developing ad hoc code to detect faults, one
can devise a set of integrity constraints, which are checked after every iteration of the
control loop. We can make use of integrity constraints to detect:

– some combination of sensor values that is impossible if all devices and sensors are
operating correctly,

– that a state invariant of the system has been violated,
– that the sensors are indicating values that should not be possible in the current

program state,
– a state transition occured which should not be possible if the system and devices

are functioning correctly,
– that an expected change of state of the system has not occured by the time at which

it was expected,
– that a system state change occurs before it was expected,
– that a common device fault (e.g., a sensor is stuck in one state) has occurred, and
– whether the behaviour of a device is healthy.

In the remainder of this section we discuss approaches to devising integrity con-
straints, and give examples based on the industrial press controller.

Sensors indicating physically impossible states. Some combinations of sensor values
are impossible if the sensors and the devices they are sensing are operating correctly.
For the industrial press example, in normal operation the top sensor should never be on
when either the below pnr or bottom sensors are on, and whenever the bottom sensor is
on the below pnr sensor should also be on. From these we get integrity constraints (1),
(2), and (3) in Fig. 3, which summarises the set of integrity constraints that we use with
the industrial press.

Note that in order to check these integrity constraints the values of the sensors need
to be monitored in states in which they would normally be ignored. The top sensor
coming on while the weight is falling does not necessarily mean that the system is
unsafe. However, it is likely to lead to problems when the weight is being lifted again
that are best avoided by not attempting to lift the weight. These integrity constraints can
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Mode independent constraints.

¬ (top ∧ bottom) (1)

¬ (top ∧ below pnr) (2)

(bottom ⇒ below pnr) (3)

Mode dependent constraints (listed by mode).

mode = Top ⇒ top (4)

mode = Falling ⇒ now ≤ start fall + Max time pnr (5)

mode = Falling ∧ top ⇒ now ≤ start fall + Max time not top (6)

mode = Below PNR ⇒ below pnr (7)

mode = Below PNR ⇒ now ≤ start fall + Max time fall (8)

mode = Below PNR Init ⇒ now ≤ start fall + Max time fall (9)

mode = Lifting ⇒ now ≤ start lift + Max time lift (10)

mode = Lifting ∧ bottom ⇒ now ≤ start lift + Max time not bottom (11)

mode = Lifting ∧ below pnr ⇒ now ≤ start lift + Max time not below pnr (12)

mode = Lifting ∧ ¬ below pnr ⇒ now ≥ start lift + Min time lift to pnr (13)

mode = Lifting ∧ below pnr ⇒ below pnrprev (14)

mode = Bottom ⇒ bottom (15)

mode = Abort ⇒ now ≤ start lift + Max time lift from pnr (16)

Program invariants.

(mode = Lifting ∨ mode = Abort) ⇔ motor = On (17)

mode = Top ⇔ locked (18)

mode = Falling ⇒ pressed1 ∧ pressed2 (19)

Minimum time to transition constraints.

mode = Liftingprev ∧ mode = Top ⇒ now ≥ start lift + Min time top (20)

mode = Fallingprev ∧ mode = Below PNR ⇒ now ≥ start fall + Min time below pnr (21)

mode = Below PNRprev ∧ mode = Bottom ⇒ now ≥ start fall + Min time bottom (22)

Fig. 3. Integrity constraints for the industrial press

be dynamically checked at the end of every iteration. This code can appear at the end of
the loop in the box labelled “check integrity constraints” in Fig. 1. We give the details
of the code in Sect. 5.

Program invariants. If the control system for the industrial press is in the mode Top,
indicating that the weight is at the top of its travel, then locked should be true, and



94 I.J. Hayes

furthermore this is the only mode in which locked should be true. This leads to integrity
constraint (18) in Fig. 3, i.e.,

mode = Top⇔ locked

In this case both mode and locked are under the control of the program and this invariant
is established by the program initialisation and maintained by every iteration of action
system. Checking such an invariant is only checking correct operation of the program
and not the devices it is controlling.

In Fig. 3, integrity constraints (17) and (18) are of this form. Integrity constraint
(19) is also an invariant of the program, but in this case the buttons are inputs; (19) is
maintained as an invariant because the program will switch out of mode Falling as soon
as a button is released.

Consistency between program states and sensors. For some program states only certain
sensor values are valid. For our example, if the controller is in mode Top then the top
sensor should be on; if it is in mode Below PNR then the below pnr sensor should be
on; and if it is in mode Bottom then the bottom sensor should be on. These give us
integrity constraints (4), (7), and (15) in Fig. 3.

Note that these integrity constraints are mode dependent, for example, (4) is written
in the form

mode = Top⇒ . . .

This only needs to be checked in mode Top. We’ll see further examples of mode-
dependent integrity constraints below.

For each mode we can determine all the constraints we expect to hold on sensor values.
As well as the constraints (4), (7), and (15) we get the constraints listed in Fig. 4. However,
checking these constraints would be redundant: they are implied by the existing integrity
constraints and/or program invariants, and hence we have not included them in Fig. 3.
The third case in Fig. 4 is implied by a program invariant because in mode Falling the
program will switch out of that mode when it senses below pnr is true.

State transition integrity constraints. As well as checking the validity of the current
state of the system, integrity constraints may be used to check the validity of transitions

mode = Top ⇒ ¬ below pnr implied by (4) and (2)
mode = Top ⇒ ¬ bottom implied by (4) and (1)

mode = Falling ⇒ ¬ below pnr implied by program invariant
mode = Falling ⇒ ¬ bottom implied by program invariant and (3)

mode = Below PNR ⇒ ¬ top implied by (7) and (2)
mode = Below PNR ⇒ ¬ bottom implied by program invariant

mode = Bottom ⇒ ¬ top implied by (15) and (1)
mode = Bottom ⇒ below pnr implied by (15) and (3)
mode = Lifting ⇒ ¬ top implied by program invariant

Fig. 4. Redundant integrity constraints
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by adding variables to the state that record previous system states. Some forms of device
failure cannot be detected by an integrity constraint on a single state. A failure may lead
to a transition between two states in which both the previous state and current state are
possible valid states, but the transition between them can only take place if a device is
faulty.

To detect such faults, additional variables representing the value of a variable on
the previous iteration, can be added to the system; these variables are indicated by a
subscript of prev. Valid transitions can then be encoded in an integrity constraint. For
example, for the industrial press, if the system is in mode Lifting and is above the point
of no return, the below pnr sensor cannot become true again. This can be captured by
integrity constraint (14) in Fig. 3, i.e.,

mode = Lifting ∧ below pnr⇒ below pnrprev

Note that although state Abort is similar to Lifting, we can’t apply a similar integrity
constraint in mode Abort because the transition to mode Abort may occur when the
weight is just above the point of no return, and even with the motor on, the weight may
fall below the point of no return while it is decelerating.

The additional previous-state variables used for the integrity constraint checking
need to be added to the code and code needs to be generated to keep them up to date.
Additional “earlier” values of variables may also be useful for specifying integrity con-
straints; these can be explicitly added to the code and then used in integrity constraints.

As another example of an integrity constraint that uses previous state variables, if the
top sensor was true on the previous iteration, then the bottom sensor should not be true
for the current iteration because the time for the weight to fall is much larger than the
maximum time allowed between iterations. This gives the following integrity constraint:

¬ (topprev ∧ bottom) (23)

While integrity constraint (23) is feasible, a more thorough check on the operation of
the press can be afforded if we allow integrity constraints that check the rate-of-change
of variables; we address these next.

Invalid system dynamics. Some forms of correctness properties relate to the valid rates
of change of variables and temporal validity of data; i.e., that data is not too old. These
can be checked by integrity constraints if we add “time stamp” variables that record the
times of significant events.

To further describe the behaviour of the press, we can take into account its dynamics.
If the motor is off then the weight falls under gravity. From this we can deduce that
there is some maximum time, Max time pnr, that the weight takes to fall to the point
of no return. Due to the complexities of friction, etc., such constants are likely to be
determined empirically, and they should allow for timing errors due to sampling rates.
If the weight takes longer than Max time pnr to actually fall, there is something wrong.
By checking whether the weight reaches the below pnr sensor within this time, such a
fault can be detected.

If we record the time, start fall, at which the weight starts to fall, then the below pnr
sensor should become true within Max time pnr. This explains the purpose of the boxed
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call to gettime in the transition from mode Top in Fig. 1. A suitable integrity constraint
is (5) in Fig. 3, i.e.,

mode = Falling⇒ now ≤ start fall + Max time pnr,

in which the variable now represents the current time, which was sampled at the start of
the iteration.

The more frequently this condition is checked while the system is in mode Falling,
the more likely it is that this fault will be detected. Note that most of the checks will be
performed after the “otherwise” case in the action system in Fig. 1. Similar checks can
be devised for reaching the bottom sensor in modes Below PNR and Below PNR Init,
or the top sensor in modes Lifting and Abort, giving us integrity constraints (8), (9),
(10), and (16) in Fig. 3.

Minimum time to transitions. The above considered the maximum time allowed to
reach a mode transition, but in many cases the physical timing of device operation
implies that there is a minimum time to a transition. For example, it should take a time
of at least Min time below pnr for the weight to reach the point of no return. This is
captured in integrity constraint (21) in Fig. 3, i.e.,

mode = Fallingprev ∧ mode = Below PNR⇒ now ≥ start fall + Min time below pnr

Because time can only increase, this integrity constraint only needs to be checked once
on the transition from mode Falling to Below PNR. Additional minimum time con-
straint integrity constraints can be devised for the time to fall to the bottom and the time
to lift to the top, i.e., integrity constraints (22) and (20) in Fig. 3. Again these integrity
constraints only need to be checked on the transitions from Below PNR to Bottom and
from Lifting to Top, respectively.

Common device faults. The above gives an indication of how integrity constraints can
be devised by examining the expected behaviour of devices. A complementary approach
is to consider the common faults that devices can exhibit. For example, common sen-
sor faults are for a sensor to become stuck in one state. One can then devise integrity
constraints that will detect such faults. For example, one can check for the top sensor
being stuck in the true state: when the weight is released the top sensor should become
false within some short period of time, Max time not top, representing the maximum
time for the top sensor to become false if the system is operating correctly. This gives
integrity constraint (6) in Fig. 3, i.e.,

mode = Falling ∧ top⇒ now ≤ start fall + Max time not top.

By the time the weight reaches the below pnr sensor, the top sensor should have been
false for quite some time and hence the integrity constraint of ¬ (top ∧ below pnr)
will also eventually detect this fault. However, failure of integrity constraint (6) indi-
cates a problem with the top sensor or that the weight has not been released, whereas
¬ (top ∧ below pnr) could fail because either the top sensor or the below pnr sensor
is faulty. Together they give a finer determination of the likely fault. Similar checks can
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be applied to the other sensors to give integrity constraints (11) and (12) in Fig. 3. A
further integrity constraint (13) can be devised for the below pnr sensor being stuck off
in mode Lifting because there is a minimum time by which the weight should be lifted
above the point of no return.

Monitoring device healthiness. If a device does not satisfy its specification, it may or
may not satisfy the assumptions made of it by the system. If it does satisfy the assump-
tions, the device is still unhealthy and this should be monitored and reported [16]. A
failure to meet its specification may indicate that a device is “worn” and needs replace-
ment, even though the overall system may still be behaving as desired. For example,
the time taken for an operation by a worn device may be too long to meet the device’s
specification, but may still be short enough to meet the assumptions made by the sys-
tem about the device. If the worn device is left in the system, it may eventually lead to
a system failure.

Undetectable faults. If device failures cannot be (easily) detected in the proposed sys-
tem design, this may indicate that the design needs to be extended to allow fault detec-
tion. To better detect faulty inputs from sensors, they may be replicated, and to avoid
common mode failures we may use such techniques as using different types of sensors,
locating the sensors at different physical locations, using different wiring paths, and us-
ing different polarities of signals so that they have different open circuit and noise spike
behaviour, including differential pairs which may indicate that there is no signal. For
example, the failure of a button in the industrial press example is not detectable by the
control system, which is why we have duplicated the button.

For actuators we can also use replication as well as ensuring that we have sensors that
feed back information from which one can determine whether the actuator is behaving
as expected.

Extending the design is especially important for faults that have severe consequences
if they go undetected. Similarly, if a detected fault has multiple possible causes, the
design may need extension to allow the causes to be differentiated, e.g., multiple sensors
may aid in distinguishing the likelihood of sensor failure from device failure. Being
able to differentiate faults is especially important if the recovery actions required for
the different faults are different.

5 Checking Integrity Constraints

Although all the integrity constraints could be treated as a single (large) predicate to be
checked after every transition, it is more effective to decompose it into multiple integrity
constraints, I1, I2, . . . In, each of which is to be checked. This allows better fault diagno-
sis because for a given integrity constraint one can identify a set of faulty behaviours of
devices that could give rise to it becoming false. We can generate straightforward code
to check integrity constraints. Mode-independent integrity constraint are evaluated di-
rectly on every iteration of the control loop, but mode-dependent integrity constraints
are only evaluated if the program is in that mode. Integrity constraints that are program
invariants will only be violated if there is a fault in the computer’s hardware or software.
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I1 := ¬ (top ∧ bottom);
I2 := ¬ (top ∧ below pnr);
I3 := ¬ bottom ∨ below pnr;
if mode = Top →

I4 := top
[] mode = Falling →

I5 := (now ≤ start fall + Max time pnr);
I6 := ¬ top ∨ now ≤ start fall + Max time not top

[] mode = Below PNR →
I7 := below pnr;
I8 := (now ≤ start fall + Max time fall)

[] mode = Below PNR Init →
I9 := (now ≤ start fall + Max time fall)

[] mode = Lifting →
I10 := (now ≤ start lift + Max time lift);
I11 := ¬ bottom ∨ now ≤ start lift + Max time not bottom;
I12 := ¬ below pnr ∨ now ≤ start lift + Max time not below pnr;
I13 := below pnr ∨ now ≥ start lift + Min imte lift to pnr;
I14 := ¬ below pnr ∨ below pnrprev

[] mode = Bottom →
I15 := bottom

[] mode = Abort →
I16 := (now ≤ start lift + Max time lift from pnr)

fi

Fig. 5. Code to check integrity constraints

Integrity constraints requiring a transition to occur after some minimum time only need
to be checked when the transition occurs, not on every iteration of the control loop.

The code to check the integrity constraints for the industrial press in given in Fig. 5.
We check all the integrity constraints in Fig. 3, except that we omit (17), (18) and (19),
because they are are program invariants, and hence do not correspond to device failures.
We use boolean variables I1 through I22 to represent whether each integrity constraint
holds. These variables are assumed to all be initially true so that mode dependent in-
tegrity constraints only need to be evaluated in the corresponding mode.

Integrity constraints (20), (21), and (22) only need to be evaluated on transitions from
mode Lifting to Top, from mode Falling to Below PNR, and from mode Below PNR to
Bottom, respectively. Hence the code to evaluate these integrity constraints is added
directly into the corresponding transitions. The augmented transitions (only) are given
in Fig. 6.

Sampling issues. At this stage we should point out a subtlety with checking integrity
constraint (1) due to the fact that it references more than one input from the environ-
ment. Technically, the integrity constraint requires that top and bottom do not hold at
the same time, but in order to check this one needs to sample both sensors at exactly the
same time; this is not physically possible, because it is impossible to guarantee that the
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...
[] mode = Falling ∧ below pnr →

mode := Below PNR;
I21 := now ≥ start fall + Min time below pnr

[] mode = Below PNR ∧ bottom →
mode := Bottom;
I22 := now ≥ start fall + Min time bottom

...
[] mode = Lifting ∧ top →

(motor := Off || locked := True || mode := Top);
I20 := now ≥ start lift + Min time top

...

Fig. 6. Augmented transition to check integrity constraints

samples are taken at exactly the same time.1 For the checking of this integrity constraint
to be valid we require that the normal behaviour of the system devices is such that

– only one of the sensors is ever true at any one time, and
– there is a minimum time gap, g, between the times either sensor is true, during

which both sensors are false.

Provided that on each iteration both sensors are sampled in a time less than g, the
checking of the integrity constraint will be valid. Note that in the code in Fig. 1 all the
sensors are sampled together, making it easier to ensure that they are sampled within
the minimum time gap, g. Caspi and Salem address this issue in more detail [17].

6 Fault Diagnosis

Each integrity constraint, Ij, has a set of possible causes associated with its failure. To
diagnose an error we can make use of

– which integrity constraints failed;
– the current values of state variables; and
– the values of input variables as used in the guard evaluation.

Further diagnostic information can be incorporated into the program state by additional
variables that keep track of such things as the previous state or a longer history of the
states after transitions (in a software “black-box recorder” buffer).

There may be multiple faults that can cause an integrity constraint error. For exam-
ple, failure of the integrity constraint (2), i.e., ¬ (top ∧ below pnr), may be caused

1 Even if the signals are checked at the hardware level there can be different (admittedly quite
small) circuit delays for the two signals.
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Table 2. Likely faults corresponding to an integrity constraint failure

Mode Negation of integrity constraint Likely faults
1 top ∧ bottom TOn, BOn
2 top ∧ below pnr TOn, POn
3 bottom ∧ ¬ below pnr BOn, POff
4 Top ¬ top TOff , LOn
5 Falling now > start fall + Max time pnr POff , LOff , MOff
6 Falling top ∧ (now > start fall + Max time not top) TOn, LOff , MOff
7 Below PNR ¬ below pnr POff , MOff
8 Below PNR now > start fall + Max time fall BOff , MOff
9 Below PNR Init now > start fall + Max time fall BOff , MOff

10 Lifting now > start lift + Max time lift TOff , MOn
11 Lifting bottom ∧

(now > start lift + Max time not bottom)
BOn, MOn

12 Lifting below pnr ∧
(now > start lift + Max time not below pnr)

POn, MOn

13 Lifting ¬ below pnr ∧
(now < start lift + Max lift to pnr)

POff

14 Lifting below pnr ∧ ¬ below pnrprev POff , POn, MOn
15 Bottom ¬ bottom BOff , MOff
16 Abort now > start lift + Max time lift from pnr TOff , MOn
20 Top now < start lift + Min time top TOn
21 Below PNR now < start fall + Min time pnr POn
22 Bottom now < start fall + Min time bottom BOn

by: a faulty top sensor; a faulty below pnr sensor; or even faulty computer hardware
or software. Where possible, more detailed integrity constraints can be used to differ-
entiate which fault is likely to have caused the particular failure. When causes cannot
be distinguished, which is highly likely for the example above, then the recovery action
has to cover all possibilities: those that have more severe consequences take priority,
but all safety-related consequences should be handled.

Table 2 gives a summary of the likely faults associated with the failure of each in-
tegrity constraint for the industrial press example. Rather than give the integrity con-
straints used in Fig. 3, in Table 2 we give their negations, i.e., the condition that holds
when the integrity constraint fails.

Note that all the faults listed in Table 1 appear as possibilities within Table 2, with
the notable exceptions of faults ButOni and ButOffi. This highlights an issue with the
current design: there is no way for the program to detect a button is faulty. However,
the failure of a single button leads to fail safe behaviour assuming the correct behaviour
of the other button and the operator. If the button sensor is indicating it is not pressed,
when it is actually pressed, we have the following possible behaviours: the weight won’t
be released in state Top; it will be lifted back to the top in state Falling; and it will be
lifted back to the top in state Bottom provided the second button is released. If the button
sensor is indicating it is pressed, when it is actually not pressed, we have the following
possible behaviours: in state Top the weight can be released if the other button is pressed
(i.e., just one button is actually pressed); in state Falling it will continue to fall if the
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other button is pressed (i.e., just one button is actually pressed); and in state Bottom the
weight won’t be lifted even if the other button is released (i.e., both buttons are actually
released).

In these cases the operator is able to detect that the system is not behaving as ex-
pected. If there was only a single button, a button failure would be a significant problem
because it is not detectable and it can lead to a hazard (which is why our design here
has two buttons). In the current design failure of both buttons can lead to a hazard.

The failure of a single integrity constraint may be caused by a number of possible
faults, and hence a single integrity constraint failure may not allow one to diagnose
which fault has occured. If we assume that there is only a single fault, then if multiple
integrity constraints have failed, the likely fault is in the intersection of the sets of
possible faults associated with each failed integrity constraint. For example, the failure
of both integrity constraints (1) and (2) would indicate that the likely fault is TOn,
(although a simultaneous failure of BOn and POn, perhaps due to some common mode
failure, is possible).

In some cases there may be a sequence of failures of integrity constraints over time
which allow one to progressively narrow down the likely faults. For example, if integrity
constraint (6) in Table 2 fails it indicates possible faults of TOn, LOff and MOff in mode
Falling. These faults lead to different recovery actions. If the top sensor has failed on
then the recovery action should be to raise an alarm and allow the weight to continue
to fall, because if we try to lift the weight we won’t know when it is at the top. But if
the lock has failed in the locked position or the motor is turned on when it should be off
we should revert to explicitly locking the weight and raise an alarm. If after a failure of
integrity constraint (6) we continue monitoring integrity constraints then there are two
possibilities:

– integrity constraint (2) may fail, which indicates possible faults of TOn or POn, in
which case, taking into account the earlier failure, the most likely fault is TOn, and
the first action above is appropriate; or

– integrity constraint (5) may fail, which indicates possible faults of POff , LOff or
MOff , in which case the most likely fault is either LOff or MOff , and the second
action above is appropriate.

As the focus of this paper is systematically detecting faults, we leave it as a exercise for
the reader to explore the error responses for the industrial press.

A more thorough analysis of the multiple integrity constraint failures could take into
account the probabilities of each failure in order to determine the most likely cause.

The general approach to fault diagnosis is to start from a failed integrity constraint, I,
and examine the set, S, of faults that may lead to its failure. Then we need to look at the
other integrity constraints whose failure indicates faults in S. From these constraints we
need to look at those that can happen at the same time as I, or may follow in sequence
from I, until we have narrowed the set down to a single fault.

7 Conclusions

Software controlling hardware devices has to be able to cope with failures in the devices
being controlled, or failures of the sensors and actuators through which it controls them.
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This is especially true in safety-critical applications. Code to explicitly detect faults in
devices can complicate the software considerably. In this paper we have examined the
use of integrity constraints as a technique for detecting faults, with the aim being that the
code to detect faults is generated from the integrity constraints. The integrity constraints
considered include:

– those that can only fail if the sensors indicate a physically impossible state,
– invariants on the state of the system,
– those that indicate an inconsistency between the program state and the sensor val-

ues,
– those that indicate an invalid transition between states,
– invalid system dynamics, where transitions do not occur within some maximum

expected time,
– invalid system dynamics, where the time to a transition is less than some minimum

expected time, and
– those that can detect common device or sensor failures.

One advantage of the integrity constraint approach is that once an integrity constraint
has been identified, it can be checked after every iteration. This provides a more thor-
ough and systematic approach to checking for faults than ad hoc development of fault
detection code. The exception here is the case above where a transition occurs before it
is expected to occur; this case only needs to be checked by the code that performs the
transition.

Fault diagnosis can be tailored to make use of which integrity constraints have failed.
For each integrity constraint one can list the likely faults that caused it to fail. The failure
of multiple integrity constraints that have a common cause can help narrow down the
most likely fault. One can also identify faults that cannot be detected. Such undetectable
faults either require new integrity constraints to be devised to check for them or, if this
is not possible, redesign of the system to allow the faults to be detected.

While the methods presented here are phrased in terms of action systems, they could
be applied to other equivalent systems of presenting control systems, such as Event-B
[18] or TLA [19].
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Abstract. Interaction in a multi-agent system is susceptible to failure.
A rigorous development of a multi-agent system must include the treat-
ment of fault-tolerance of agent interactions for the agents to be able
to continue to function independently. Patterns can be used to capture
fault-tolerance techniques. A set of modelling patterns is presented that
specify fault-tolerance in Event-B specifications of multi-agent interac-
tions. The purpose of these patterns is to capture common modelling
structures for distributed agent interaction in a form that is re-usable
on other related developments. The patterns have been applied to a case
study of the contract net interaction protocol.

1 Introduction

A fault-tolerant system is one that can continue to function as it was designed
in the presence of faults [1]. Fault-tolerance can be introduced into the design of
a software system.

Multi-agent systems are systems of distributed software entities that cooper-
ate or compete to achieve individual or shared goals [2]. Agents encapsulate their
behaviour and are motivated by their internal goals. The agents can individu-
ally respond, pro-actively and reactively, to changes in their environment [3]. The
agent metaphor is one approach to creating software systems that are capable
of solving distributed problems.

Formalmethods are the application ofmathematics tomodel andverify software
or hardware systems [4]. Event-B is amathematical approach for developing formal
models of distributed systems that can be used to analyse and reason about the
system [5]. Using a formal method to model a system results in a specification of
the system that is unambiguous and can be formally verified. The model can be
analysed for flaws before the system based on the model is developed [6].

Patterns are intended to make software engineering easier by capturing the
expertise of experienced software developers and making it available in a manner
that can be re-applied in other developments [7]. The purpose of a pattern is
∗
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to capture structures and decisions within a design that are common to similar
modelling and analysis tasks. They can be re-applied when undertaking similar
tasks to in order reduce the duplication of effort.

This paper presents a set of fault-tolerance patterns that have been developed to
help specify fault-tolerance inEvent-Bmodels ofmulti-agent systems.A case study
based on a specification of the contract net interaction protocol by the Foundation
for IntelligentPhysicalAgents (FIPA) [8] illustrates the application of the patterns.

This paper is structured as follows: Section 2 examines the aspects of multi-
agent systems that require fault-tolerance. Section 3 provides an overview of
Event-B. Section 4 examines how fault-tolerance patterns can be used in Event-
B. Section 5 introduces the contract net case study. The following sections de-
scribe each of the patterns in turn. Related work is then examined followed by
a conclusion with an outline of possible future work.

2 Fault-Tolerance in Agent Interaction

A fault-tolerant system is one that can continue to function as it was designed
in the presence of faults [1]. A multi-agent system has to be able to cope with
the faults that can occur in any distributed system.

Fault-tolerance in distributed systems requires that the system can cope with
faults in communication and faults in the behaviour of the distributed compo-
nents. The system must be able to continue to function if a fault leads to a
failure in communication between nodes or to a node ceasing to communicate.
The system must also be able to cope if a node in the system is prevented from
completing a task that it has been delegated.

In this paper we understand a multi-agent system [2] as a grouping of agents
that either cooperate or compete in order to fulfill individual or collective goals.
Multi-agent systems require many dynamic interactions to be able to function.
The agents in the system behave both rationally and autonomously. A fault-
tolerant multi-agent system needs to be able to cope with this behaviour. The
agent’s autonomy can make their behaviour difficult to predict. Rational agents
will stop pursuing a goal if they believe that the goal has already been achieved
or that it cannot be achieved. An agent that is autonomous is not required
to complete any tasks requested by other agents. The task may conflict with
its existing goals and, therefore, not be desirable for the agent to complete.
The heterogeneity and dynamic interactions of a multi-agent system may lead
to agents receiving messages that they do not understand or that are out of
expected order. These are not always faults in the individual agents, but they
are faults in the interactions of the system. The agents must be able to handle
such faults in their interactions and communicate their reactions to these faults.

Development using formal methods can help to ensure correctness by con-
struction [9]. Using formal methods does not guarantee that the developer has
not ommitted some aspects of system behaviour from the model that may lead to
failure. The patterns presented in this paper add events and variables to Event-B
specifications of multi-agent systems to provide tolerance of possible faults that
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can occur because of the distributed and rational nature of multi-agent systems.
The faults dealt with by the patterns are an excessive delay in response, a refusal
in response to a request, the request to cancel a previous request, the failure to
complete a committed task and the receipt of an unexpected communication.

3 Event-B

Event-B is a mathematical approach for developing formal models of systems [10].
An Event-B model is constructed from a collection of modelling elements. These
elements include invariants and events with guards and actions. The modelling
elements have attributes expressed using set theory and predicate logic. The de-
velopment of an Event-B model begins with abstraction and continues with refine-
ment of the abstraction. The abstract machine specifies the initial requirements
of the system. The refinement of a model is the process of adding more detail to
a model. The refinement of an Event-B abstract machine can be carried out in
several steps. More detail is added to the model at each step. Refinement allows
models at different abstraction levels to be related. Development is generally, but
not exclusively, top-down. Refinement may highlight errors or elements missing
from the model that require changes to be made to abstract models.

The focus on atomic events in Event-B creates a representation of a reactive
system [11]. The guard of an event represents the necessary conditions on the
state of the system for the event to be triggered. When the guard is true the
actions of the event may be executed, possibly changing the state and allowing
another event to be triggered.

Event-B is designed for modelling distributed systems [5]. Event-B allows new
events to be added and single events to be refined into multiple concrete events.
This allows a system behaviour to be modelled as a single atomic event and then
refined to a set of events that separately model the behaviour. This refinement
can model individual processes executing in parallel to perform the behaviour
of an abstract event or different events that result in the same actions as the
abstract event. Refinement ensures that refined models are consistent with the
abstract machine. Creating models of reactive and distributed systems makes
Event-B an appropriate formalism as a basis for modelling multi-agent systems.

To create a textual representation of the Event-B models in this paper the
events will be presented using the keywords ANY, WHERE, THEN and END to struc-
ture the model. The event variables of an event will be written between ANY and
WHERE. The guards of the event will be written between WHERE and THEN and the
actions of the event will be written between THEN and END.

4 Modelling Patterns for Fault-Tolerance

Fault-tolerance is not necessarily a feature of a system that is appropriate to
model in detail at the most abstract level. It is often a part of the communication
infrastructure or a component of individual nodes and, therefore, will be mod-
elled in refinement.



Event-B Patterns for Specifying Fault-Tolerance in Multi-agent Interaction 107

Each pattern includes a description, interaction diagram and Event-B extracts
from the contract net case study. The description for each of the patterns includes
a name, fault statement and tolerance pattern statement. The description can
be applied to any event-based specification. The fault statement is the potential
fault for which the application of the pattern will model a solution. The tolerance
pattern statement describes the steps that can be taken to solve the problem in
an event-based specification.

The interaction diagrams show how the fault-tolerance techniques can be in-
cluded in the interactions between the different agent roles. Several of the inter-
action diagrams show the variations required for one-to-many interaction.

The patterns also include Event-B extracts from a case sutdy that how how the
patterns can be applied to a development. These examples make the patterns
specific to Event-B development. The other elements of the pattern are more
generic and could be suitable for other event-based formal methods.

The fault-tolerance techniques modelled by the patterns will help an agent to
continue to provide a service when a fault occurs within a particular interaction.
If a tolerated fault occurs in a conversation between two agents an agent may
fail to fulfill its goal, but the fault should not prevent the agent from performing
its role in another conversation.

The set of fault-tolerance patterns presented in this paper model solutions
for faults that can arise in multi-agent systems. This includes faults that are
found in ordinary distributed systems. The Timeout pattern prevents an agent
from indefinitely waiting for a communication. This allows the agent to cope
with faults in either the communication medium, or other nodes or agents in
the system. The failure of a node to complete a delegated task is modelled by
the Failure pattern. A rational agent altering its goals is modelled by the Cancel
pattern. The Refuse pattern allows the system to cope with an agent deciding
not to participate in an interaction. The Not-Understood pattern models the
reaction of agents to unexpected communications. With the patterns specified
in an Event-B development the developer can then refine the models to include
more detail on how the system or individual agents will manage these faults.

Applying a Pattern

The patterns can be applied to an existing Event-B development of a multi-agent
system to introduce the fault-tolerance techniques to the model. Figure 1 shows
how the patterns can be applied to the refinement chain of an existing Event-B
development i.e., an abstract model and its refinement. The events and variables
that model the abstraction of the pattern can be added to the abstract machine.
The events and variables that model the concrete pattern can then be added to
a refinement of the abstract machine. The developer can decide where in the re-
finement chain they want to extend a refinement model to include the concrete
pattern. Several refinement steps may be required for refinements between the
abstract machine and the model extended by the concrete pattern. The extend
relationship requires the addition to, or modification of, the events and variables
in the model for the pattern to be included. If the events and variables required for
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Fig. 2. Effect of applying patterns

the pattern already exist in the model no additions or modifications are necessary.
The Event-B examples include gluing invariants that relate the abstract variables
to the concrete variables. These can potentially be re-used in the extended refine-
ment chain to help the developer specify the refines relationship.

The Event-B extracts include an abstraction of the pattern and a concrete
pattern. Pattern extracts are demonstrated on the basis of the contract net case
study. The abstraction of the pattern will need to be added to the Event-B
abstract machine. When there are several refinement steps between the abstract
machine and the refinement extended by the concrete pattern it will be necessary
to make refinement steps to the intermediate models.

Not including the concept of refinement in an Event-B modelling pattern
would limit the usefulness of the pattern for providing a complete solution. In-
cluding a complete refinement chain may confuse the developer should their re-
finement chain differ from the one provided. Not providing an abstraction may
make it difficult for the developer to find an appropriate abstraction. This ap-
proach would only provide an incomplete solution and may lead to the incorrect
application of the pattern.

The patterns have each been applied in separate developments to the ini-
tial chain. This ensures that there is no dependency between the patterns and,
therefore, the order in which they are applied has no importance. All of the pat-
terns have also been applied sequentially to the initial chain. This is to provide
assurance that there are no conflicts between the patterns. Figure 2 illustrates
how a collection of patterns can be used to extend an Event-B refinement chain.
Extending the Initial Chain by applying Patterni produces Chain2 and apply-
ing Patternj by further extending Chain2 produces Chain3. Patternj could be
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applied before Patterni to produce the same result (Chain3). A possible direction
for future work is to find a method to prove the orthogonality of the patterns.

5 Case Study

This section describes the contract net interaction protocol. A simplified version
of the protocol has been modelled as an Event-B refinement chain. Each of the
patterns have been applied to the case study models. The contract net case study
involves multiple participants. The developer may need to adapt the patterns
for models of one-to-one interaction.

The contract net interaction protocol is a distributed negotiation process [12].
The goal of the contract net is for the initiating agent to find an agent, or group
of agents, that offer the most advantageous proposal to carry out a required
task. The initiator of the protocol advertises the existence of a task that it needs
completing by broadcasting a call for proposals. The agents that receive the
call for proposals can place a bid to complete the task by sending a proposal.
Participants in the protocol are committed to the bids that they propose. When
the initiator selects a bid or a group of bids the participants are informed of the
decision and those selected will complete the task. The contract is completed
when the participants inform the initiator that the task is completed. The case
study has been developed using the FIPA specification of the contract net [8].

The development presented here includes an abstract model and one refine-
ment model. The abstract model models conversations between agents and the
refinement introduces the agents involved in the conversation to the model. There
will be one initiator agent and one or more other agents participating in the con-
versation. The events of the abstract model show the behaviour of the system
moving the conversation to different states to model the progression of the in-
teraction between the agents. The refinement model shows the agents in the
system and links the agents to the conversations in which they are involved and
moves this relationship between the different states. Initially only successful con-
versations of the contract net interaction protocol are modelled. The abstract
model shown in Figure 3 includes four variables that represent states that the
conversation will move through. The set CONVERSATION is a set of abstract
values that represent the type for conversations. The cfp variable represents the
state after a call for proposals has been initiated by an agent. The responded
variable represents the participating agents responding to the call for proposals.
The selected variable represents the initiator choosing one or more proposals to
accept. The informed variable models the state where the selected agents have
informed the initiator of the successful completion of the task. The variables are
not modelled as disjoint sets. Instead, the order of the conversation is enforced
by specifying the variable for each state as a subset of the previous state.

The events of the abstract machine move the conversation through the dif-
ferent states as the conversation progresses. The callForProposals event adds a
conversation to the cfp state. The respond event takes a conversation that is
in the cfp state and puts it in the responded state. The responded event occurs
once and represents sufficient agents sending proposals. The select event takes
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INVARIANTS

cfp ⊆ CONVERSATION
responded ⊆ cfp
selected ⊆ responded
informed ⊆ selected

EVENTS

callForProposals respond

ANY c WHERE ANY c WHERE

c ∈ CONVERSATION c ∈ cfp
c /∈ cfp c /∈ responded

THEN THEN

cfp := cfp ∪ {c} responded := responded ∪ {c}
END END

select inform

ANY c WHERE ANY c WHERE

c ∈ responded c ∈ selected
c /∈ selected c /∈ informed

THEN THEN

selected := selected ∪ {c} informed := informed ∪ {c}
END END

Fig. 3. Abstract machine of the initial chain

cfpS , proposeS , acceptS , rejectS , informS ∈ CONVERSATION ↔ AGENT,

cfpR ⊆ cfpS, proposeR ⊆ proposeS, acceptR ⊆ acceptS,
acceptS ⊆ proposeR, informR ⊆ informS, rejectR ⊆ rejectS,
informS ⊆ acceptR, proposeS ⊆ cfpR,

selected = dom(acceptS ∪ rejectS), cfp = dom(cfpS)

Fig. 4. Invariants for the refinement of the initial chain

a conversation that is in the responded state and adds it the the selected state.
The inform event takes a conversation that is in the selected state and adds it
to the informed state to complete the conversation.

The refinement of the abstract model incorporates the interaction between
the agents involved in the conversation. The invariants for the refinement model
are shown in Figure 4. The variables of the model represent messages being sent
and received by the agents in the system. The variables that represent a mes-
sage being sent are suffixed with an ‘S’ and those that represent a message being
received are suffixed with an ‘R’. The conversation is between multiple agents
and so the variables are specified as relationships between a set of conversations
and a set of agents. For example, c �→ a ∈ cfpS means that agent a has been
sent a call for proposals message within conversation c and c �→ a ∈ cfpR means
that agent a has received a call for proposals message within conversation c. A
message must be sent before it can be received and this is modelled by specifying
a subset relationship between the sent variables and the received variables, e.g.
cfpR ⊆ cfpS . Some of the variables from the abstract machine are replaced by
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sendCfp REFINES callForProposals receiveCfp

ANY c, as, a WHERE ANY c, a WHERE

c ∈ CONVERSATION c �→ a ∈ cfpS
c /∈ dom(cfpS) c �→ a /∈ cfpR
as ∈ CONVERSATION ↔ AGENT THEN

a ∈ AGENT cfpR := cfpR ∪ {c �→ a}
dom(as) = {c} END

ran(as) = AGENT \ {a}
THEN

cfpS := cfpS ∪ as
END receiveProposal

sendProposal ANY c, a WHERE

ANY c, a WHERE c �→ a ∈ proposeS
c �→ a ∈ cfpR c �→ a /∈ proposeR
c �→ a /∈ proposeS THEN

THEN proposeR := proposeR
proposeS := proposeS ∪ {c �→ a} ∪ {c �→ a}

END END

responded REFINES respond select REFINES select

ANY c WHERE ANY c, as, ar WHERE

c ∈ dom(proposeS) c ∈ dom(proposeR)
c /∈ responded c /∈ dom(acceptS)

THEN c /∈ dom(rejectS)
responded := responded ∪ {c} as ⊆ {c} � proposeR

END ar = {c} � proposeR \ as
receiveAccept c ∈ responded

ANY c, a WHERE THEN

c �→ a ∈ acceptS acceptS := acceptS ∪ as
c �→ a /∈ acceptR rejectS := rejectS ∪ ar

THEN END

acceptR := acceptR ∪ {c �→ a} receiveReject

END ANY c, a WHERE

sendInform c �→ a ∈ rejectS
ANY c, a WHERE c �→ a /∈ rejectR

c �→ a ∈ acceptR THEN

c �→ a /∈ informS rejectR := rejectR
THEN ∪ {c �→ a}

informS := informS ∪ {c �→ a} END

END receiveInform

informed REFINES inform ANY c , a WHERE

ANY c WHERE c �→ a ∈ informS
c ∈ dom(informR) c �→ a /∈ informR
c /∈ informed THEN

THEN informR := informR
informed := informed ∪ {c} ∪ {c �→ a}

END END

Fig. 5. Events of the refinement of the initial chain
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the message variables in the refinement. The last two invariants are the gluing
invariant and specify the refinement relationships between the abstract variables
that represent the state of the conversation and the concrete variables that model
messages being broadcast. The responded and informed variables from the ab-
stract model represent states that are internal to the agents. Because they are
not included in a conversation they are not refined by relationships between the
conversation and agent and no gluing invariant is required.

The events of the refinement are shown in Figure 5. The sendCfp event re-
fines the abstract callForProposals event. It models the broadcast of a call for
proposals message from agent a to all other agents (AGENT \ {a}) by a set of
relationships, as , between a conversation and the agents in the system and adds
it to the cfpS variable. The receiveCfp event models a message being received
by an agent by selecting a relationship, c �→ a, that is in the cfpS variable and
adding it to the cfpR variable. The sendProposal event can occur when there is a
relationship in the cfpR variable and the proposal is sent when the relationship
is added to the proposeS variable. The receiveProposal event adds a relationship
that is in the proposeS variable to the proposeR variable. The responded event is
a refinement of the abstract respond event and represents the initiator receiving
the required responses. The select event broadcasts two different messages. One
group of agents, as , will receive an accept message in response to their proposal
and another group of agents, ar , will receive a reject message. The receiveAccept
and receiveReject events represent those messages being received by the partic-
ipants. The event and variables that model the rejection, receiveReject, rejectS
and rejectR can be ommitted, as they do not affect the rest of the interaction,
but in a multi-agent system it may be useful for an agent to know that it has
been rejected, so it can adapt its behaviour in the future. The sendInform event
models an agent that has received an accept message, sending an inform message
following the successful completion of their task. The receiveInform event repre-
sents this message being received. The final informed event refines the abstract
inform event and models the initiator concluding that the contract has been
successfully completed following the receipt of at least one inform message.

6 Timeout Pattern

Name:Timeout
Fault: An agent may become blocked during a conversation whilst waiting for
replies.
Tolerance Pattern: Specify a state for the conversation that models a dead-
line passing. Add an event to the specification that will change the state of the
conversation from before the deadline to after the deadline. Split the event for
receiving the replies into two. One event will have a guard that is true before
the deadline and one will have a guard that is true after the deadline. The
action of the event after the deadline will inform agents of their failure to meet
the deadline.
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Fig. 6. Timeout: Interaction diagrams

In the case of a communication failure, or the failure of another agent or node
in the system, an agent that continues to wait for a response to a communication
may wait an excessively long time or may never receive the reply. This is not
practical for most systems, especially a multi-agent system that may be expected
to be able to adapt under such circumstances. An agent should be able to decide
to either continue the conversation without waiting for a response or to resolve
its goal in another way, when it becomes likely that a response will not be
forthcoming. An agent may be required to make a decision on how long it should
wait depending on its goals for the efficiency of its current task.

The Timeout pattern prevents an agent from becoming blocked whilst waiting
for a reply. It does this by modelling a deadline after which the behaviour of the
system changes. The interaction diagrams in Figure 6 show the messages that
are exchanged between the roles involved in the conversation.

The Timeout pattern requires that any messages received after the deadline
will lead to the responding agent being informed of their failure to meet the
deadline. The agent that has the role of initiating the request will be responsi-
ble for enforcing the deadline. The assumption is made in the model that the
deadline will be specified by the initiator in the messages sent and that a global
clock is available to all of the agents involved. Diagram A shows a success-
ful one-to-one interaction with the response to a request being received by the
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INVARIANTS

failed ⊆ cfp
EVENTS callForProposals

ANY c WHERE

c ∈ CONVERSATION
c /∈ cfp

THEN

cfp := cfp ∪ {c}
END

failure

ANY c WHERE

c ∈ cfp
c /∈ failed
c /∈ responded

THEN

failed := failed ∪ {c}
END

respond

ANY c WHERE

c ∈ cfp
c /∈ responded

THEN

responded := responded ∪ {c}
END

Fig. 7. Timeout: Abstract events

beforeTimeout ⊆ dom(cfpS)
afterTimeout ⊆ beforeTimeout
proposeRD ⊆ proposeS
rejectSD ⊆ proposeRD
rejectRD ⊆ rejectSD
failedCfp ⊆ afterTimeout
failedCfp ∩ dom(proposeR) = ∅

failed = failedCfp

Fig. 8. Timeout: Refinement invariants

initiator before the deadline. In this case the reply from the initiator will depend
on the initiator’s decision about the response. Diagram B shows the initiator’s
deadline occurring before the response is received and in this case the reply from
the initiator is a rejection of the response. Diagram C shows how a one-to-many
interaction can affect the Timeout pattern. Responses are received from differ-
ent participating agents before and after the deadline has passed. Those received
before the deadline will elicit replies that depend on a decision that is made by
the initiating agent. Those received after will result in a reject notification.

Figure 7 shows the callForProposals, respond and failure events that are re-
quired in the abstract model for the Timeout pattern to be applied. The call-
ForProposals and respond events are already present in the initial chain. The
failure event has been added to model the system responding when no propos-
als are received before the deadline. The pattern for the timeout could be more
general than that taken from the contract net case study. Any request by an
agent that waits for a response could use the Timeout pattern to ensure that
the requesting agent does not wait indefinitely. The abstract pattern in Figure 7
conforms to this general request-response pattern. The invariant conditions for
the refinement are shown in Figure 8. To create the states for before and after
the deadline two variables have been added to the model; beforeTimeout and
afterTimeout. The pattern could have been specified with just the afterTimeout
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variable. Both variables were included to make the effect of the deadline clear
in the model. The beforeTimeout variable is specified as a subset of the do-
main of the cfpS variable so the timeout cannot occur before the conversation
has begun. Variables have been added to the model to represent the proposals
that are received after the deadline, proposeRD, the reject messages sent in
response to these proposals, rejectSD, and then received, rejectRD. The failed-
Cfp variable refines the abstract failed variable to model the state when the
deadline has passed, failedCfp ⊆ afterTimeout , and no proposals have been re-
ceived, failedCfp ∩ dom(proposeR) = ∅.

Events have been added to the initial chain and existing events have been
modified to apply the Timeout pattern. The new and modified events are shown
in Figure 9 where the names of the new events, and the modifications to existing
events, are underlined. The sendCfp event has an additional action that adds
the conversation to the beforeTimeout variable. The guard of the receiveProposal
event has been strengthened so that it can only occur when the conversation is
not in the afterTimeout variable. The new deadline event moves the conversation
from the state beforeTimeout into the state afterTimeout. The new receivePro-
posal2 event can only occur when the conversation is in the afterTimeout vari-
able. The action of the event adds the relationship from the proposeS variable
to the new proposeRD variable. The new sendReject event will take a relation-
ship that is in the proposeRD variable and add it to the rejectSD variable. This
models the initiator responding with a reject message to any proposals received
after the timeout. The new receiveReject2 event will take a relationship that is
in the rejectSD variable and add it to rejectRD variable. Instead of adding this
as a new event a developer could merge it with the existing receiveReject event
from the initial chain. The new failToPropose event refines the abstract failure
event that was added to the abstract model for the Timeout pattern. It can
occur after the deadline has passed and no proposals have been received.

7 Refuse Pattern

Name: Refuse
Fault: An agent cannot support the action requested.
Tolerance Pattern: Add an event for an agent to send a refuse message in
response to a request and an event for an agent to receive a refuse message.

Not all agents that receive a request will be able to fulfill it. The request
may be in conflict with the agent’s own goals. This could be due to the agent
being overloaded, or the agent is competing against the requestor and it would
not be in their interest to help. Software design does not always implement the
concept of a refusal. Object-based systems use the term ‘design by contract’ to
describe an obligation held by an object that it cannot alter at runtime [13]. The
autonomy of agents means that the obligations between agents are weaker than
in design by contract and a multi-agent system must be designed to cope when
an agent refuses to undertake a request.



116 E. Ball and M. Butler

sendCfp REFINES callForProposals receiveProposal

ANY c, as, a WHERE ANY c, a WHERE

c ∈ CONVERSATION c �→ a ∈ proposeS
c /∈ dom(cfpS) c �→ a /∈ proposeR
as ∈ CONVERSATION ↔ AGENT c /∈ afterTimeout
a ∈ AGENT THEN

dom(as) = {c} proposeR := proposeR
ran(as) = AGENT \ {a} ∪ {c �→ a}

THEN END

cfpS := cfpS ∪ as receiveProposal2

beforeTimeout := beforeTimeout ∪ {c} ANY c, a WHERE

END c �→ a ∈ proposeS
deadline c �→ a /∈ proposeR

ANY c WHERE c �→ a /∈ proposeRD
c ∈ beforeTimeout c ∈ afterTimeout
c /∈ afterTimeout THEN

THEN proposeRD := proposeRD
afterTimeout := afterTimeout ∪ {c} ∪ {c �→ a}

END END

sendReject receiveReject2

ANY c , a WHERE ANY c, a WHERE

c �→ a ∈ proposeRD c �→ a ∈ rejectSD
c �→ a /∈ rejectSD c �→ a /∈ rejectRD

THEN THEN

rejectSD := rejectSD ∪ {c �→ a} rejectRD := rejectRD
END ∪ {c �→ a}

END

failToPropose REFINES failure

ANY c WHERE

c /∈ dom(proposeR)
c ∈ afterTimeout
c /∈ failedCfp

THEN

failedCfp := failedCfp ∪ {c}
END

Fig. 9. Timeout: Concrete events

The Refuse pattern allows an agent to respond to a request that it cannot
support, that is not correctly requested or that the requesting agent is not au-
thorised to request. An agent is allowed a choice when responding to a request.
The agent can either agree to fulfill the request or it can refuse.

Figure 10 shows interaction diagrams for the Refuse pattern. Diagram A shows
a one-to-one interaction. The initiator agent sends a request to a participant
agent. The participant agent can respond with either an accept or refuse message.
The initiator will then make a decision and the interaction may fail if the accept
message is not suitable or a refuse message was sent. Diagrams B and C show
one-to-many interaction. Diagram B shows the case where a combination of
accept and refuse messages are received in response to the request. Diagram C
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Fig. 10. Refuse: Interaction diagrams

refuseS ⊆ cfpR
refuseR ⊆ refuseS
refuseS ∩ proposeS = ∅

failedCommit ⊆ dom(refuseR)
failedCommit ∩ dom(proposeR) = ∅

failed = failedCommit

Fig. 11. Refuse: Concrete invariants

shows the case where only refuse messages are received and the only outcome is
a failure of the interaction.

The events that are required in the abstract machine for the Refuse pattern
are the same as those shown in Figure 7 for the Timeout pattern. To model
the Refuse pattern in the refinement of the initial chain three variables and
three events have been added. In the contract net case study the refusals are
modelled so they are equivalent to the proposals. The invariants in Figure 11
specify variables that model sending and receiving refuse messages. An additional
invariant specifies that the proposals and refusals for a conversation cannot be
from the same agent, refuseS ∩proposeS = ∅. The failedCommit variable models
that state of the conversation when all of the replies are refusals. This variable
refines the abstract failed variable.

The events for the pattern are shown in Figure 12. The guard of the send-
Proposal event from the initial chain has been modified to prevent an agent
that has made a refusal for the conversation from also making a proposal. The
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sendProposal sendRefusal

ANY c, a WHERE ANY c, a WHERE

c �→ a ∈ cfpR c �→ a ∈ cfpR
c �→ a /∈ proposeS c �→ a /∈ proposeS
c �→ a /∈ refuseS c �→ a /∈ refuseS

THEN THEN

proposeS := proposeS ∪ {c �→ a} refuseS := refuseS
END ∪ {c �→ a}

END

receiveRefusal failToCommit REFINES failure

ANY c, a WHERE ANY c WHERE

c �→ a ∈ refuseS c ∈ dom(refuseR)
c �→ a /∈ refuseR c /∈ dom(proposeR)

THEN c /∈ failedCommit
refuseR := refuseR ∪ {c �→ a} THEN

END failedCommit :=
failedCommit ∪ {c}

END

Fig. 12. Refuse: Concrete events

sendRefusal event adds a relationship that is in the cfpR variable to the refuseS
variable. The receiveRefusal event takes a relationship that is in the refuseS vari-
able and adds it to the refuseR variable. The failToCommit event models the
case when all of the responses are refusals and the conversation fails. This is a
refinement of the abstract fail event.

8 Cancel Pattern

Name: Cancel
Fault: The requesting agent no longer requires an action to be performed.
Tolerance Pattern: Add an event to the specification for an agent to send a
cancel message to an agent that has agreed to perform an action on its behalf.
Add an event for that agent to receive a cancel message. Further events need
to be added to allow the agent to reply with either an inform, if they have
cancelled the action, or a failure, if they have not, and for those messages to
be received.

Once an agent has requested an action they can then request that it is can-
celled. An agent that exhibits rational behaviour may change its goals because
the goal conflicts with other goals, the agent no longer desires the goal is fulfilled
or the agent no longer believes that the goal can be fulfilled [2]. For the initiating
agent to ensure that its beliefs about its environment are consistent it needs to
know if the agents to whom it has delegated tasks have managed to undo any
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Fig. 13. Cancel: Interaction diagrams

actions they have performed. The responses of the agents may affect the actions
the initiating agent takes in response to its change of goals.

The Cancel pattern allows the agent that initiated the conversation to cancel
the conversation at any point. The Cancel pattern will cancel a single request in
a one-to-one conversation and will broadcast the cancellation in a one-to-many
conversation to cancel all of the requests. Figure 13 shows interaction diagrams
for the Cancel pattern. Diagram A shows a one-to-one interaction. The initiator
agent sends a cancel message to a participant agent. The participant agent can
respond with either an inform message if they have successfully cancelled or a fail
message if they have not. The initiator will then act according to its knowledge
about the state of the system. Diagrams B and C show one-to-many interaction.
Diagram B shows the case where a combination of inform and fail messages are
received in response to the cancel message. Diagram C shows the case where
only fail messages are received and the cancelling of the action fails.

The Cancel pattern requires a new variable and event to be added to the
abstract machine of the initial chain. The abstract pattern in Figure 14 shows
the cancel event moving the conversation into the cancelled state.

The Cancel Pattern is modelled in the refinement as a collection of events
that can occur at any point in the conversation. Events model a cancel message
being sent from the initiating agent and received by the other agents involved.
Events are also required to model the participating agents responding to the
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INVARIANTS

cancelled ⊆ cfp
EVENTS

cancel

ANY c WHERE

c ∈ cfp
c /∈ cancelled

THEN

cancelled := cancelled ∪ {c}
END

Fig. 14. Cancel: Abstract events

cancelS ⊆ cfpS
cancelR ⊆ cancelS
informCancelS ⊆ cancelR
informCancelR ⊆ informCancelS
failCancelS ⊆ cancelR
failCancelR ⊆ failCancelS
informCancelled ⊆ dom(informCancelR)
failCancelled ⊆ dom(failCancelR)
informCancelS ∩ failCancelS = ∅

informCancelled ∩ failCancelled = ∅

cancelled = informCancelled ∪ failCancelled

Fig. 15. Cancel: Refinement invariants

cancel request to inform the initiating agent whether they have managed to
cancel their actions.

Figure 15 shows the invariant conditions from the Event-B extract of the
Cancel pattern. The variables represent the states of the system as messages
are sent and received. The cancelS variable is a subset of the cfpS variable so a
conversation cannot be cancelled before it has begun. All of the other variables
are specified as subsets according to the order of the messages that they represent
being sent and received. InformCancelS and failCancelS are specified so the same
agent cannot send an inform and fail message in the same conversation. The
informCancelled and failCancelled variables are specified so the conversation
cannot be in both states. An invariant condition specifies the intersection of the
two variables as empty. The final invariant condition is the gluing invariant that
relates the abstract cancel variable to a conjunction of the informCancelled and
failCancelled variables.

Figure 16 shows the events that have been added to the initial refinement
model to specify the Cancel pattern. The sendCancel event can be triggered
by the initiating agent at any point in the conversation. The cancel message is
broadcast to every agent involved in the conversation, as = {c} � cfpS . The
receiveCancel event allows the participants to receive the cancel message. The
sendInformCancel and sendFailCancel events model the participants sending a
message to the initiator about the success or failure of the cancellation. The
receiveInformCancel and receiveFailCancel events model the initiator receiving
the message. The last two events, informCancelled and failCancelled, refine the
abstract cancel event and model the initiator evaluatings the success of the
cancellation. The guards for the two events specify that at least one inform or
fail cancel message has been received. The developer may want to strengthen
these guards. For example, the guard of the informCancelled event could be
strengthened to specify that all of the agents have replied with an inform mes-
sage, {c}� informCancelR = AGENT \ {a}, or that no fail messages have been
received, c /∈ dom(failCancelR).
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sendCancel receiveCancel

ANY c , as WHERE ANY c, a WHERE

c ∈ dom(cfpS) c �→ a ∈ cancelS
as = {c} � cfpS c �→ a /∈ cancelR
c /∈ dom(cancelS) THEN

THEN cancelR := cancelR ∪
cancelS := cancelS ∪ as {c �→ a}

END END

sendInformCancel sendFailCancel

ANY c, a WHERE ANY c, a WHERE

c �→ a ∈ cancelR c �→ a ∈ cancelR
c �→ a /∈ informCancelS c �→ a /∈ failCancelS
c �→ a /∈ failCancelS c �→ a /∈ informCancelS

THEN THEN

informCancelS := informCancelS failCancelS := failCancelS
∪ {c �→ a} ∪ {c �→ a}

END END

receiveInformCancel receiveFailCancel

ANY c, a WHERE ANY c, a WHERE

c �→ a ∈ informCancelS c �→ a ∈ failCancelS
c �→ a /∈ informCancelR c �→ a /∈ failCancelR

THEN THEN

informCancelR := informCancelR failCancelR := failCancelR
∪ {c �→ a} ∪ {c �→ a}

END END

informCancelled REFINES cancel failCancelled REFINES cancel

ANY c WHERE ANY c WHERE

c ∈ dom(informCancelR) c ∈ dom(failCancelR)
c /∈ informCancelled c /∈ failCancelled
c /∈ failCancelled c /∈ informCancelled

THEN THEN

informCancelled := informCancelled failCancelled := failCancelled
∪ {c} ∪ {c}

END END

Fig. 16. Cancel: Concrete events

9 Failure Pattern

Name: Failure
Fault: An agent is prevented from carrying out an agreed action.
Tolerance Pattern: Add an event for an agent to send a failure message after
they have committed to perform an action on behalf of another agent. Add an
event for an agent to receive a failure message and an event for the system to
respond to the failure.

An agent that makes a commitment to perform an action may be prevented
from carrying it out. The agent that requested the action should be informed of
this failure so that its beliefs do not become inconsistent.
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Fig. 17. Failure: Interaction diagrams

Figure 17 shows interaction diagrams for the Failure pattern. Diagram A
shows a one-to-one interaction. The initiator agent sends a message that requests
an action to a participant agent. The participant agent can respond with either
an inform message, if they have successfully carried out the action, or a fail
message, if they have not. Diagrams B and C show one-to-many interaction.
Diagram B shows the case where a combination of inform and fail messages are
received in response to the accept message. The initiator will then be able to
evaluate whether the task was carried out successfully. Diagram C shows the
case where only fail messages are received. The Failure pattern is similar to the
Refuse pattern where the responding agent has a choice of two replies that affect
the outcome of the interaction differently. It occurs at a different point in the
conversation. The Refuse pattern is used before a commitment is made and the
Failure pattern is required after a commitment has been made.

Figure 18 shows the events from the abstract machine that are related to the
Failure pattern. The failure pattern specifies the failure of the conversation after
the selection of the proposals has been made. Either the inform event or the
failure event can complete the conversation.

Figure 19 shows the invariants added for the Failure pattern. The Event-
B models the agents involved in the contract net interaction protocol sending
failure messages instead of inform messages after they have had their proposal
accepted. The conversation cannot succeed and fail and this is modelled by
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inform

ANY c WHERE

c ∈ selected
c /∈ informed
c /∈ failed

THEN

informed := informed ∪ {c}
END

failure

ANY c WHERE

c ∈ selected
c /∈ failed
c /∈ failed
c /∈ informed

THEN

failed := failed ∪ {c}
END

Fig. 18. Failure: Abstract Events

failS ⊆ acceptR
failR ⊆ failS
failed1 ⊆ dom(failR)
informed ∩ failed1 = ∅

failed = failed1

Fig. 19. Failure: Refinement invariants

sendFail receiveFail

ANY c, a WHERE ANY c, a WHERE

c �→ a ∈ acceptR c �→ a ∈ failS
c �→ a /∈ failS c �→ a /∈ failR
c �→ a /∈ informS THEN

THEN failR := failR ∪ {c �→ a}
failS := failS ∪ {c �→ a} END

END

failed REFINES failure

ANY c WHERE

c ∈ dom(failR)
c /∈ failed1
c /∈ informed

THEN

failed1 := failed1 ∪ {c}
END

Fig. 20. Failure: Concrete events

an invariant condition that specifies the intersection of the informed and failed
variables as empty.

Figure 20 shows the three events that are added to the initial concrete model.
The sendFail event models a participant having received an accept message that
instructs it to carry out a task, c �→ a ∈ acceptR, sending a failure message in
response. The receiveFail event models the initiator receiving the failure message.
The failed event refines the abstract failure event and can occur after a failure
message has been received.
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10 Not-Understood Pattern

Name:Not-Understood
Fault: An agent receives a message that it does not expect or does not recog-
nise.
Tolerance Pattern: Specify an event for receiving a message with an un-
known or unexpected performative. Specify the action as replying with a not-
understood message. Specify an event for receiving a not-understood message.

The autonomy of the agents means that there is no guarantee of their be-
haviour and the non-hierarchical nature of multi-agent systems often means that
there is no single point of control. For agents in a multi-agent system to maintain
a correct understanding of their environment they need to communicate with the
other agents in the system to be aware of the actions of the other agents. This
can create a large number of messages being passed between agents for them to
be able to negotiate, query and inform. The possible heterogeneity of the agents
means that they may have a different understanding of interaction protocols.
The possibility of receiving arbitrary messages increases with each of these fac-
tors and the system needs to be able to cope with such faults. In a multi-agent
system that has been developed in a top-down manner the faults that may lead
to an arbitrary message being sent should not occur. However, it may be that
some of the system components have been developed separately or that the for-
mal development of the system is limited to modelling the interactions. In these
cases the inclusion of the Not-Understood pattern will provide assurance that
the system can still tolerate the faults outlined above.

The concept of the not-understood message is described in [8]. The not-
understood message communicates that the sending agent has received a message
that it does not understand. A not-understood message can be sent or received
at any point in the conversation.

It is suggested in [8] that the action taken in response to a not-understood
message should be different when the conversation involves broadcast messages
and sub-protocols than that taken as part of a one-to-one conversation. It may
be inappropriate to cancel the conversation when there are multiple agents per-
forming sub-protocols. Each response to a not-understood message should be
evaluated depending on the status of the conversation and is not specified by
the Not-Understood pattern.

The Not-Understood pattern involves agents receiving an arbitrary message,
responding with a not-understood message and agents receiving a not-understood
message. The action taken by the agent to cope with the potential fault is not
modelled and is left for the developer to treat.

Figure 21 shows an interaction diagram for the Not-Understood pattern. The
interaction diagram shows an interaction between any two agent roles. One agent
sends another agent a message that the receiving agent does not understand. The
response from the receiving agent will be to reply with a not-understood message.
The action taken by the agent that receives the not-understood message depends
on their role in the conversation and the stage of the conversation.
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Fig. 21. Not-Understood: Interaction diagram

INVARIANTS

recUnknown ⊆ CONVERSATION
recNotUnderstood ⊆ cfp

EVENTS

arbitraryComm receiveNotUnderstood

ANY c WHERE ANY c WHERE

c ∈ cfp c ∈ cfp
THEN THEN

recUnknown := recUnknown ∪ {c} recNotUnderstood :=
END recNotUnderstood ∪ {c}

END

Fig. 22. Not-Understood: Abstract events

To model the Not-Understood pattern two events have been added to the
initial abstract machine for the contract net case study. The events and variables
are shown in Figure 22. The arbitraryComm event models the unrecognised
message being received. The receiveNotUnderstood event abstractly model an
agent receiving a not-understood message.

Figure 23 shows the extract from the Event-B refinement model that mod-
els the Not-Understood pattern in the Contract Net case study. The unknownR
variable represents an arbitrary message being received and the notUnderstoodS
variable represents a not-understood message being sent in response to the re-
ceipt of an arbitrary message. The notUnderstoodR variable represents a not-
understood message being received.

The receiveArbitraryComm event models the receipt of a message that is not
understood by the receiving agent. The sendNotUnderstood event models a not-
understood message being sent in response to the receipt of this message. The re-
ceiveNotUnderstood event models an agent receiving a not-understood message.
Further refinements of the pattern will model the agent’s reactions to receiving
the not-understood message. An initiator agent may decide to cancel the con-
versation or they may decide that the conversation has failed. The decisions by
the agents will depend on the stage of the conversation when the not-understood
message is received. This is left for the developer to decide and model.
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INVARIANTS

unknownR ⊆ cfpS
notUnderstoodS ⊆ unknownR
recUnknown = dom(notUnderstoodS)
notUnderstoodR ⊆ notUnderstoodS
recNotUnderstood = dom(notUnderstoodR)

EVENTS

receiveArbitraryComm

ANY c, a WHERE

c �→ a ∈ cfpS
THEN

unknownR := unknownR ∪ {c �→ a}
END

sendNotUnderstood REFINES arbitraryComm

ANY c, a WHERE

c �→ a ∈ unknownR
c �→ a /∈ notUnderstoodS

THEN

notUnderstoodS := notUnderstoodS ∪ {c �→ a}
END

receiveNotUnderstood REFINES receiveNotUnderstood

ANY c, a WHERE

c �→ a ∈ notUnderstoodS
c �→ a /∈ notUnderstoodR

THEN

notUnderstoodR := notUnderstoodR ∪ {c �→ a}
END

Fig. 23. Not-Understood: Concrete invariants and events

11 Related Work

This section describes work that is related to the ideas presented in this paper.
This work outlines approaches for constructing patterns in the B-Method and
Event-B. Other work of interest are design patterns for multi-agent systems,
particularly patterns that can be integrated with goal models that are used
in multi-agent system design. Other fault-tolerance techniques for multi-agent
systems have been investigated and are summarised in this section.

The B-Method is used in [14] to specify patterns, such as those identified
in [7], as abstract machines. The pattern machines are instantiated by including
another B model in the machine using the B-Method’s inclusion mechanism.
Pattern models can be composed to create a new pattern by using the inclusion
mechanism to construct a new machine from the separate patterns. These pat-
terns are specified at a single level of abstraction and are based on object-oriented
development methods.
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A set of patterns that solve design problems that are common when using
the B-Method has been produced in [15]. The patterns they present include a
pattern to associate multiple B machines, a pattern to produce unique objects
and patterns for creating sub and super-types of B machines. The patterns are
implemented as either extracts of B machines or a description of how differ-
ent mechanisms from the B-Method can be used to solve a described problem
alongside an example of the patterns use. As with those described above, these
patterns attempt to introduce some object-oriented concepts into B machines,
are at a single level of abstraction and mainly address structural relationships
between machines.

A refinement pattern for modelling time constraints in Event-B is presented
in [16]. A pattern is produced by constructing a generic Event-B model that
specifies the time constraints as a superpostion refinement. This model can be
re-used to produce new refinements of the model to which the pattern is being
applied. The authors suggest that it would be possible to prove the pattern
model and the proof obligations generated by the pattern would not need to be
discharged for the development model.

There are several methods for the use of patterns in the development of multi-
agent systems. They are described and used with informal models. Coordination
patterns, including a pattern of the contract net protocol, are presented in [17],
patterns for mobile agent design are presented in [18], and [19] present pat-
terns for implementing agents in object-oriented architectures. A strategy for
constructing and using design patterns for agent systems that uses goals can
be found in [20]. The patterns can be combined using a pattern language to
construct a multi-agent system design.

The extend relationship used in Figure 1 of this paper is similar to those found
in [21], but has not been formally defined.

The patterns presented in this paper provide fault-tolerance for the agents so
they can continue to provide a service. Further strategies for managing faults in
agent conversations include adapting general fault-tolerance techniques, such as
replication [22], redundancy [23] and checkpoints [24], to multi-agent systems.
Creating patterns for the specification of these fault-tolerance strategies in multi-
agent systems is a possible direction for future work.

12 Summary

Event-B has been developed for modelling reactive and distributed systems and
our experience shows that it is suited to the specification of multi-agent systems.
The patterns presented above allow the developer to incorporate fault-tolerant
behaviour in an Event-B development of a multi-agent system.

The patterns are presented as three elements: a description, interaction dia-
grams and Event-B examples. The Event-B examples make the patterns specific
to Event-B development. The other elements of the pattern are more generic
and could be suitable for other event-based formal methods. The inclusion of
an abstraction of the pattern creates a pattern that can be fully integrated into
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the refinement chain of a development. The Event-B extracts included from the
Contract Net case study show how the patterns can be applied to the model of
a complex multi-agent system. They also provide a re-usable specification of the
pattern at a single level of refinement.

Providing an abstract and concrete pattern example will offer the developer
guidance on how the pattern can be integrated into an Event-B development that
uses refinement. The related work described above use patterns either as a super-
position refinement to an Event-B model or as a component to a model. Integrat-
ing a pattern into the refinement chain of a development offers the advantages of
making the pattern a fundamental part of the development. It is present in the
abstraction of the model and can be analysed at all levels of abstraction.
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Abstract. Telecommunication systems should have a high degree of
availability, i.e., high probability of correct provision of requested
services. To achieve this, correctness of software for such systems and
system fault tolerance should be ensured. In our previous work we pro-
posed an approach to formalisation and extension of Lyra – a top-down
service-oriented method for development of communicating systems.
Lyra is based on transformation and decomposition of models expressed
in UML2. We formalised Lyra in the B Method by proposing a set of
formal specification and refinement patterns reflecting the essential Lyra
models and transformations. At the same time, we also focused on inte-
gration of fault tolerance mechanisms into the entire Lyra development
flow. In this paper, we extend our Lyra formalisation to model parallel
execution of services. This significantly increases both complexity and
flexibility of the presented models.

Keywords: communicating systems, service-oriented development,
fault tolerance, parallel execution, UML, B Method.

1 Introduction

Modern telecommunication systems are usually distributed software-intensive
systems providing a large variety of services to their users. Development of soft-
ware for such systems is inherently complex and error prone. However, software
failures might lead to unavailability or incorrect provision of system services,
which in turn could incur significant financial losses. Hence it is important to
guarantee correctness of software for telecommunication systems.

Nokia Research Center has developed the design method Lyra [7] – a UML2-
based service-oriented method specific to the domain of communicating systems
and communication protocols. The design flow of Lyra is based on the concepts
of decomposition and preservation of the externally observable behaviour. The
system behaviour is modularised and organised into hierarchical layers according
to the external communication and related interfaces. It allows the designers to
derive the distributed network architecture from the functional system require-
ments via a number of model transformations.
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From the beginning Lyra has been developed in such a way that it would be
possible to bring formal methods (such as program refinement, model checking,
model-based testing etc.) into more extensive industrial use. A formalisation of
the Lyra development would allow us to ensure correctness of system design
via automatic and formally verified construction. The achievement of such a
formalisation would be considered as significant added value for industry.

In our previous work [6,5] we proposed a set of formal specification and re-
finement patterns reflecting the essential models and transformations of Lyra.
Our approach is based on stepwise refinement of a formal system model in the
B Method [1] – a formal refinement-based framework with automatic tool sup-
port. Moreover, to achieve system fault tolerance, we extended Lyra to integrate
modelling of fault tolerance mechanisms into the entire development flow. We
demonstrated how to formally specify error recovery by rollbacks as well as rea-
son about error recovery termination.

In this paper we show how to extend our Lyra formalisation to model parallel
execution of services. This presents us with a number of challenges. We show how
to gradually unfold hierarchical structure of service execution in the presence of
parallelism. Moreover, we demonstrate how such an extension affects the fault
tolerance mechanisms incorporated into our formal models. The extension makes
our formal models significantly more complicated. However, it also gives the
developers more flexibility in defining service architecture as well as choosing
possible recovery actions.

2 Previous Work

In this section we give a brief overview of on our previous results [6,5] on for-
malising and verifying the Lyra development process. This work form the basis
for new results presented in the next section.

2.1 Formalising Lyra

Lyra [7] is a model-driven and component-based design method for the devel-
opment of communicating systems and communication protocols, developed in
the Nokia Research Center. The method covers all industrial specification and
design phases from pre-standardisation to final implementation.

Lyra has four main phases: Service Specification, Service Decomposition, Ser-
vice Distribution and Service Implementation. The Service Specification phase
focuses on defining services provided by the system and their users. In the Ser-
vice Decomposition phase the abstract model produced at the previous stage
is decomposed in a stepwise and top-down fashion into a set of service compo-
nents and logical interfaces between them. In the Service Distribution phase, the
logical architecture of services is distributed over a given platform architecture.
Finally, in the Service Implementation phase, the structural elements are inte-
grated into the target environment. Examples of Lyra UML models from the
Service Specification phase of a positioning system are shown on Fig.1.
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Fig. 1. (a) Domain Model. (b) Class Diagram of Positioning. (c) State Diagram.

To formalise the Lyra development process, we choose the B Method as our
formal framework. The B Method [1] is an approach for the industrial develop-
ment of highly dependable software. Recently the B method has been extended
by the Event B framework [2,8], which enables modelling of event-based systems.
Event B is particularly suitable for developing distributed, parallel and reactive
systems. The tool support available for B, e.g. Atelier B [4] and the Rodin plat-
form [10], provides us with the assistance for the entire development process.
The formal development presented in this paper was verified in the Event B
framework using the Rodin platform.

The B Method adopts the top-down approach to system development. The
basic idea underlying stepwise development in B is to design the system im-
plementation gradually, by a number of correctness preserving steps called re-
finements. The refinement process starts from creating an abstract specification
and finishes with generating executable code. The intermediate stages yield the
specifications containing a mixture of abstract mathematical constructs and ex-
ecutable programming artefacts.

While formalising Lyra, we single out a generic concept of a communicat-
ing service component and propose B patterns for specifying and refining it. In
the refinement process a service component is decomposed into a set of service
components of smaller granularity specified according to the proposed pattern.
Moreover, we demonstrate that the process of distributing service components
between network elements can also be captured by the notion of refinement.
Below we present an excerpt from a B specification pattern of an abstract com-
municating service component (ACC).

MACHINE ACC
SEES ACC Data

VARIABLES
in data
out data
res
...
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INVARIANTS
inv1 : in data ∈ DATA
inv2 : out data ∈ DATA
inv3 : res ∈ DATA
...

EVENT input
ANY

param
WHERE

grd1 : param ∈ DATA ∧ ¬(param = NIL)
THEN

act1 : in data := param
END

EVENT calculate
WHEN

grd1 : ¬(in data = NIL)
THEN

act1 : out data :∈ DATA \ {NIL}
END

EVENT output
WHEN

grd1 : ¬(out data = NIL)
THEN

act1 : res := out data
act2 : in data, out data := NIL, NIL

END

END

A B specifcation, called an abstract machine, encapsulates a local state (program
variables) and provides operations on the state. In the Event B framework, such
operations are called events. The events can be defined as

WHEN g THEN S END

or, in case of a parameterised event, as

ANY vl WHERE g THEN S END

where vl is a list of new local variables (parameters), g is a state predicate, and
S is a B statement describing how the program state is affected by the event.

The events describe system reactions when the given WHEN or WHERE
conditions are satisfied. The INVARIANT clause contains the properties of the
system (expressed as predicates on the program state) that should be preserved
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during system execution. The data structures needed for specification of the
system are defined in a separate module called context. For example, the abstract
type DATA and constant NIL used in the above specification are defined in the
context ACC Data, which can be accessed (”seen”) by the abstract machine
ACC.

The presented specification pattern is deliberatively made very simple. It de-
scribes a service component in a very abstract way – a service component simply
receives some request data as the input, non-deterministically calculates non-
empty result, which is then returned as the output. Using this specification as
the starting point of our formal development gives us sufficient freedom to re-
fine it into different kinds of service components. In particular, both the service
components providing single services and the service components responsible for
orchestrating service execution (called service directors) can be developed as re-
finements of the presented specification. Moreover, the defined specification and
refinement patterns can be repeatedly used to gradually unfold the hierachical
structure of service execution.

The proposed approach to formalising Lyra in B allows us to verify correct-
ness of the Lyra decomposition and distribution phases. In development of real
systems we merely have to establish by proof that the corresponding components
in a specific functional or network architecture are valid instantiations of these
patterns. All together this constitutes a basis for automating industrial design
flow of communicating systems.

2.2 Introducing Fault Tolerance in the Lyra Development Flow

Currently the Lyra methodology addresses fault tolerance very abstractly, by
representing not only successful but also failed service provision in the Lyra
UML models. However, it leaves aside modelling of mechanisms for detecting
and recovering from errors – the fault tolerance mechanisms. We argue that,
by integrating explicit representation of the means for fault tolerance into the
entire development process, we establish a basis for constructing systems that
are better resistant to errors, i.e., achieve better system dependability.

In practice, service execution can fail in different ways – service components
(including service directors) can be ”too busy” or not responding, they can
fail to produce the expected results because of subcomponent failure or internal
software error, communication messages between service components can be lost
and so on.

In our top-down approach for system development we start with a very ab-
stract representation of the system. At this point, we implicitly assume that the
low-level mechanisms to detect different kinds of failures are already in place.
Therefore, we can focus on high-level handling of such failures. For example, we
can rely on the assumption that, e.g., timeouts are used to detect lost commu-
nication and produce the corresponding error messages for service components
to react to such situations. The subsequent formal system development by re-
finement allows us to not only gradually unfold the hierarchical system architec-
ture but also introduce implementation details for both handling and detecting
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different kinds of failures. Next we will discuss how to extend the Lyra design
method to integrate modelling of fault tolerance.

In the first development stage of Lyra we set a scene for reasoning about
fault tolerance by modelling not only successful service provision but also service
failure. In the next development stage – Service Decomposition – we elaborate on
representation of the causes of service failures and the means for fault tolerance.

In the Service Decomposition phase we decompose the service provided by a
service component into a number of stages (subservices). The service component
can execute certain subservices itself as well as request other service components
to do it. According to Lyra, the flow of service execution is managed by a spe-
cial service component called Service Director. Service Director co-ordinates the
execution flow by requesting the required subservices from the external service
components.

In general, execution of any stage of a service can fail. In its turn, this might
lead to failure of the entire service provision. Therefore, while specifying Ser-
vice Director, we should ensure that it does not only orchestrates the fault-free
execution flow but also handles erroneous situations. Indeed, as a result of re-
questing a particular subservice, Service Director can obtain a normal response
containing the requested data or a notification about an error. As a reaction to
the occurred error, Service Director might

– retry the execution of the failed subservice,
– repeat the execution of several previous subservices (i.e., roll back in the

service execution flow) and then retry the failed subservice,
– abort the execution of the entire service.

The reaction of Service Director depends on the criticality of an occurred error:
the more critical is the error, the larger part of the execution flow has to be
involved in the error recovery. Moreover, the most critical (i.e., unrecoverable)
errors lead to aborting the entire service. In Fig.2(a) we illustrate a fault free
execution of the service S composed of subservices S1, . . . , SN . Different error
recovery mechanisms used in the presence of errors are shown in Fig.2(b) - 2(d).

Let us observe that each service should be provided within a certain finite
period of time – the maximal service response time Max SRT. In our model
this time is passed as a parameter of the service request. Since each attempt of
subservice execution takes some time, service execution might be aborted even if
only recoverable errors have occurred but the overall service execution time has
already exceeded Max SRT. Therefore, by introducing Max SRT in our model,
we also guarantee termination of error recovery, i.e., disallow infinite retries and
rollbacks, as shown in Fig.2(e).

3 Fault Tolerance in the Presence of Parallelism

Our formal model briefly described in the previous section assumes sequential
execution of subservices. However, in practice, some of subservices can be exe-
cuted in parallel. Such simultaneous service execution directly affects the fault
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Fig. 2. Service decomposition: faults in the execution flow

tolerance mechanisms incorporated into our B models. As a result, they be-
come more complicated. However, at the same time it provides additional, more
flexible options for error recovery that can be attempted by Service Director.

3.1 Modelling Execution Flow

The information about all subservices and their required execution order be-
comes available at the Service Decomposition phase. This knowledge can be
formalised as a sequence of (subsets of) subservices, e.g., as a data structure

Task : seq(P(SERV ICE))

Here SERV ICE is a set of all possible subservices. The sequence Task essen-
tially describes the control flow for the top service in terms of required subser-
vices. At the same time, it also indicates which subservices can be executed in
parallel.1

However, currently the Event B framework does not include sequences as
a part of the supported language. Therefore, we define Task in an equivalent
way – as a partial surjection, for each involved subservice returning its order of
execution:

Task : SERV ICE �� 1..max task

1 In this formalisation we assume that a particular subservice can occur only once in
the execution flow.
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where 1..max task is the interval (set) of integer numbers between 1 and the
predefined constant max task, which specifies the number of steps in the service
execution flow2.

For example, Task can be instantiated as

Task = < {S1, S2}, {S3, S4, S5}, {S6} >

defines the top service as a task that should start by executing the services S1
and S2 in parallel, then continuing by parallel execution of the services S3, S4,
and S5, and, finally, finishing the task by executing the single service S6.

Essentially, the sequence Task defines the data dependencies between subser-
vices. Also, Task can be considered as the most liberal (from point of view of
parallel execution) model of service execution. In the Service Distribution phase
the knowledge about the given network architecture becomes available. This can
reduce the parallelism of the service control flow by making certain services that
can be executed in parallel to be executed in a particular order enforced by the
provided architecture.

Therefore, Task is basically the desired model of service execution that will
serve as the reference point for our formal development. The actual service ex-
ecution flow is modelled in by the sequence Next, which is defined in a similar
way as Task:

Next : SERV ICE �� INDEX

where INDEX is defined as the interval 1..max next. The predefined constant
max next specifies the number of steps (tasks) in the actual service execution
flow.

Since at the Service Decomposition phase we do not know anything about
future service distribution, Next is modelled as an abstract function (sequence),
i.e., without giving its exact definition. However, it should be compatible with
Task. More precisely, if Task requires that certain services Si and Sj should be
executed in a particular order, this order should be preserved in the sequence
modelled by Next. However, Next can split (allowed by Task) parallel execution
of the given services by sequentially executing them in any order.

Thus the function Next abstractly models the actual control flow of the top
service. It is fully defined (instantiated) only in the refinement step corresponding
to the Service Distribution phase. For example, the following instantiation of
Next would be correct with respect to Task defined above:

Next = < {S2}, {S1}, {S4}, {S3, S5}, {S6} >

It is easy to see that, as required by Task, the services S1 and S2 are still
executed before the services S3, S4, and S5, which in turn are executed before
the final service S6.
2 Sequences are often modelled in a reverse way – as total functions mapping an

interval of integers to the set of data items. However, the proposed here equivalent
representation is more suitable for formulating the required properties.
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In general, the compatibility property between Task and Next can be formu-
lated in the following way:

∀s1, s2.{s1, s2} ⊆ dom(Task) ∧ Task(s1) < Task(s2) ⇒ Next(s1)<Next(s2)

The definitions of Task and Next makes it evident that this is essentially an
order preservation property.

The described model connecting the desired service execution flow Task and
the actual execution flow Next covers only simple case when the current service
director is responsible for directly managing all the involved subservices. How-
ever, in practice the service architecture is often of hierarchical nature, when
the current service component (Service Director) can delegate a part of service
execution to other service directors. In other words, we have to take into account
that Service Director itself can become distributed, i.e., different parts of service
execution could be orchestrated by distinct lower level service directors residing
on different network elements. In that case, for every service director, there is
a separate Next sequence modelling the corresponding part of the service exe-
cution flow. All these control flows should complement each other and also be
compatible with Task.

To model such a complex case, we introduce other service directors as special
services that can be requested by the current service director. This allows us to
describe the actual service execution flow as a mixture of single subservices and
special service director services. For example, in the above example Next can
be instantiated as

Next = < {S2}, {SD1}, {S3}, {SD2} >

where SD1, SD2 are lower level service directors that we delegate a part of
service execution. All such special services are introduced as elements of the
special set SD which is a (strict) subset of SERV ICE:

SD ∈ P(SERV ICE) ∧ SD ⊂ SERV ICE

It is not enough to introduce lower level service directors into the service
execution flow. We have to know exactly execution of which subservices they
are responsible for. This can be modelled as a separate data structure SD task
relating single subservices to the introduced service directors:

SD tasks ∈ SERV ICE �→ SD

For the above example, SD tasks can be instantiated as follows:

SD tasks = {S1 �→ SD1, S4 �→ SD1, S5 �→ SD2, S6 �→ SD2}
The domain of SD tasks are all the services that are delegated to lower level
service directors, while the remaining services covered by Next can be called
single services. Mathematically,

dom(Next) = dom(SD tasks) ∪ Single services
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where
dom(SD tasks) = dom(Task)\dom(Next)

and
Single services = dom(Task) ∩ dom(Next)

where S1\S2 is the set subtraction operation.
Combining the function Next with the information provided by the function

SD tasks gives us the approximate execution order of all the involved subser-
vices. For this goal, we introduce the new data structure Ex Order defined as
the following functional composition:

Ex Order = (id(Single services) ∪ SD tasks); Next

where id is the relational identity operator.
In the expression id(Single services) ∪ SD tasks all the single subservices

are mapped to themselves, while the other subservices are mapped to the corre-
sponding service directors responsible for their execution. Composing this func-
tion with Next gives us a new function that maps all the involved subservices
to their corresponding execution order. The order of service execution is only
”approximated” because we cannot know the exact order of service execution
within lower level service directors since they will be modelled in detail later, in
the following refinement steps.

Using the defined mathematical structures, we can now reformulate the com-
patibility condition to cover this more complex case of service architecture:

∀s1, s2.{s1, s2} ⊆ dom(Task) ∧ Not same SD({s1, s2}) ∧

Task(s1) < Task(s2) ⇒ Ex Order(s1) < Ex Order(s2)

where the additional condition Not same SD({s1, s2}) is a shorthand for

{s1, s2} ⊆ dom(SD tasks)⇒ SD tasks(s1) �= SD tasks(s2)

It requires that the subservices in question should not belong to the same (lower
level) service director. The precise execution order within lower level service
directors will be enforced in the later refinement steps focusing on them.

3.2 Modelling Recovery Actions

As we described before, Service Director is a service component responsible for
orchestrating service execution. It monitors execution of the activated subser-
vices and attempts different possible recovery actions when these services fail.
Obviously, introducing parallel execution of subservices (described in the previ-
ous subsection) directly affects the behaviour of Service Director.

Now, at each execution step in the service execution flow, several subservices
can be activated and run simultaneously. Service Director should monitor their
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execution and react asynchronously whenever any of these services sends its re-
sponse. This response can indicate either success or a failure of the corresponding
subservice.

The formal model for fault tolerance presented in Section 2.2 is still valid.
However, taking into account parallel execution of services presents Service Di-
rector with new options for its recovery actions. For example, getting response
from one of active subservices may mean that some or all of the remaining active
subservices should be cancelled (i.e., interrupted). Also, some of the old recovery
action (like retrying of service execution) are now parameterised with a set of
subservices. The parameter indicates which subservices should be affected by
the corresponding recovery actions.

Below we present the current full list of actions that Service Director may
take after it receives and analyses the response from any of active subservices.
Consequently, Service Director might

– Proceed to the next service execution step. In case of successful termination
of all involved subservices (complete success).

– Wait for response from the remaining active subservices. In case of successful
termination of one of few active subservices (partial success).

– Abort the entire service and send a failure response to the user or requesting
component. In case of an unrecoverable error or the service timeout.

– Cancel a set of subservices by sending the cancelling requests to interrupt
their execution (partial abort). In case of a failure which requires to retry or
rollback in the service execution flow.

– Repeat a set of subservices by sending the initial requests to re-execute the
corresponding subservices. In case of a recoverable failure.

– Rollback to a certain point of the service execution flow. In case of a recov-
erable failure.

Similarly like modelling the service execution flow, we cope with arising com-
plexity by introducing abstract data structures and then stating their expected
properties. These abstract data structures will be instantiated with concrete
data during actual development of communication systems.

First, we introduce an abstract function Eval that, for given subservice and
the current state of Service Director, returns the specific action that Service
Director should take in that particular situation. It is defined as

Eval ∈ INDEX × STATE → RESPONSE

Recall that INDEX is defined as the interval 1..max next. RESPONSE is the
enumerated set containing possible outcomes of evaluation, i.e., it is defined as
{SUCCESS, ABORT, CANCEL, REPEAT, ROLLBACK, CONTINUE}.
We assume that the state of Service Director contains the information about
the status of all currently executed parallel subservices. Therefore, the Service
Director ’s decision is not just based on failure or success of a particular subser-
vice, but also takes the whole picture into account.
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In some cases, Service Director needs additional information about, e.g., which
active subservices should be affected (for Cancel and Repeat) or to which ser-
vice execution point to rollback (for Rollback). Again, this information is ab-
stractly introduced by the corresponding functions Cancel, Repeat and Rollback.
They are defined as follows.

Repeat ∈ INDEX × STATE �→ P(SERV ICE)
Cancel ∈ INDEX × STATE �→ P(SERV ICE)
Rollback ∈ (2 .. max next)× STATE �→ 1 .. (max next− 1)

Moreover, these abstract function should be consistent with the main evalu-
ation function Eval. In particular, the domain of Eval is partially partitioned
by the corresponding domains of Cancel, Repeat and Rollback.

Eval[dom(Repeat)] = {REPEAT }
Eval[dom(Cancel)] = {CANCEL}
Eval[dom(Rollback)] = {ROLLBACK}

In the next section we will demonstrate how all the introduced abstract data
structures are used to model Service Director handling simultaneously executed
subservices.

4 Specification of Service Director

In this section we present a specification of Service Director – a component re-
sponsible for orchestrating (possibly parallel) service execution involving several
external subservices. This specification is a refinement of the specification pat-
tern ACC presented earlier. In this refinement step we elaborate on the ”input”
and ”calculate” operations of the above pattern. In addition, we introduce new
events controlling the service execution flow based on the responses from the
involved service components. This is modelled by using the information about
the Lyra Service Decomposition and Service Distribution phases.

At the same time, fault tolerance mechanisms are introduced. In other words,
we model handling of both normal (successful) and abnormal (failure) events
by Service Director. Service Director reacts to these events by analysing asyn-
chronous responses from the corresponding service components and then decid-
ing on the further course of action. The possible recovery actions were described
in the previous section.

The given specification heavily relies on the introduced abstract data struc-
tures modelling the service execution flow and possible recovery actions. The
definitions of these data structures as well as their expected properties were
defined in the previous section.

In the terms of the modelled order of events within a service component, the
behaviour of the ACC component can be graphically represented as

Input→ Calculate→ Output

The refined specification of Service Director adds additional execution steps
before calculating the output. These execution steps model interleaving of time
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progress and handling of responses from other service components by Service
Director. The behaviour of the ServiceDirector then can be represented as

Input→ (Timer→ HandlingResponse)∗ → Calculate→ Output

T imer and HandlingResponse are repeatedly executed until service execution
terminates by either producing the expected results or aborting.
HandlingResponse itself is a composite operation including asynchronous read-
ing of the responses, calculating and storing intermediate results, and, if neces-
sary, enabling possible recovery actions.

Below we present several excerpts from the Service Director specification,
illustrating the most important aspects of its functionality.

4.1 New Variables

The new specification ServiceDirector is a superposition refinement of ACC,
i.e., it inherits all old variables from ACC and also adds new ones to model
execution flow and time.

MACHINE ServiceDirector
REFINES ACC
SEES SD Data

VARIABLES
...
curr state
curr task
results
finished
active
time left
old time left
resp
...

The variable curr state abstractly models the internal state of a service com-
ponent, while the variable curr task contains the index of the current task to
be executed. The task can involve several subservices to be executed in parallel.
curr task is basically an index of service execution sequence modelled by Next.
The variable results stores the intermediate results from all previous (success-
ful) service execution steps. In case of succesful completion of service execution,
these results are then used to calculate the final service result in Calculate.
The variable finished is just a flag indicating whether service execution orches-
trated by Service Director is finished. The variable active contains the currently
active subservices that Service Director is waiting responses from. The variables
time left and old time left are two snapshots of service execution time. They
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are used to ensure that service execution does not exceed the given maximal
service execution time. And, finally, resp contains the result of the last analysed
subservice response, which indicates what the course of action Service Director
is going to take at the moment.

4.2 Refining Input

The input event from the ACC specification is refined by splitting it into two
different events input START and input STOP. It models two distinct sit-
uations in which a service component can get a request. The first situation is
when a service component or a service director is asked to start (or restart) its
execution by a higher level component or user. The other situation is when a
service component is asked to stop (cancel) a request that it is already executing.

The exact nature of a request is indicated by the forwarded parameters that
are analysed in the guards of the corresponding events, e.g., Mode(param) =
START or Mode(param) = STOP . The additional parameter time gives the
maximal service time that cannot be exceeded by service component execu-
tion. It is used to initialise the variables time left and old time left. The in-
put parameters are also used to set correct values to the internal state, e.g.,
curr state := Init state(param), and other variables.

EVENT input START
REFINES input

ANY
param
time

WHERE
grd1 : param ∈ DATA ∧ time ∈ N1
grd2 : ¬(param = NIL) ∧Mode(param) = START

THEN
act1 : in data, curr state := param, Init state(param)
act2 : curr task, active := 1, Next−1[{1}]
act3 : finished, received := FALSE, TRUE
act4 : time left, old time left := time, time
act5 : results, resp := ∅, SUCCESS

END

EVENT input STOP
REFINES input

ANY
param

WHERE
grd1 : param ∈ DATA ∧ ¬(param = NIL) ∧Mode(param) = STOP
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THEN
act1 : in data := param
act3 : finished := TRUE
act5 : resp := ABORT

END

4.3 Refining Calculate

Similarly, we split the calculate event of ACC based on whether service execu-
tion has been succesfully finished or it was aborted. The latter could happen in
the situations when Service Director could not handle failures of some subservice
providers, the maximal service execution time has expired, or Service Director
has been interrupted by an external request (Service Director from a higher level
or the user).

In the case of successful termination, the final output is calculated based on
the internal state of Service Director and the accumulated results from previous
succesful execution steps. In case of abortive termination, the corresponding
error data are returned.

EVENT calculate SUCCESS
REFINES calculate

WHEN
grd1 : ¬(in data = NIL) ∧ finished = TRUE ∧ ¬(resp = ABORT )

THEN
act1 : out data := Output(curr state �→ results)

END

EVENT calculate ABORT
REFINES calculate

WHEN
grd1 : ¬(in data = NIL) ∧ finished = TRUE ∧ resp = ABORT

THEN
act1 : out data := Abort data

END

4.4 Modelling Progress of Time

The progress of time and interuption of service execution by the given timeout
(the maximal service execution time) is modelled by the corresponding timer
events. The first, timer event models the progress of time by nondetermin-
istically decreasing the variable time left. If that is not possible, the second,
timer out event triggers the abortive termination of service execution by set-
ting the corresponding flags.

Such abstract modelling of time progress implicitly assumes the existence of a
constantly ticking clock. If necessary, the explicit variable(s) and event specifying
the behaviour of such a clock may be easily introduced. Then nondeterministic



Formal Reasoning about Fault Tolerance and Parallelism 145

update of the variable time left can be refined into an ordinary assignment by
directly using the accumulated value of the passed (since the last check) time.

The timer events are executed by interleaving them with the events han-
dling received responses from the underlying service components. To ensure
that they are executed in the proper order, the second timestamp variable
old time left is used. The handler events are enabled only when time is passed
(i.e., time left < old time left). The variable old time left is assigned the value
of time left then, which in turn enables the timer events, which are enabled only
when time left = old time left.

Together, time left and old time left are also used to guarantee termination
of all the new event operations introduced in this refinement step. To make a
refinement step valid, we have to suggest a variant – a natural number expression
that is provably decreased by execution of new events. The variant expression
for this refinement step is time left + old time left.

EVENT timer
WHEN

grd1 : ¬(in data = NIL) ∧ finished = FALSE
grd2 : time left = old time left
grd3 : {tt|tt ∈ N1 ∧ tt < time left} �= ∅

THEN
act1 : time left :∈ {tt|tt ∈ N1 ∧ tt < time left}

END

EVENT timer out
WHEN

grd1 : ¬(in data = NIL) ∧ finished = FALSE
grd2 : time left = old time left
grd3 : {tt|tt ∈ N1 ∧ tt < time left} = ∅

THEN
act1 : time left, resp := 0, ABORT
act2 : finished := TRUE

END

...

VARIANT
time left + old time left

4.5 Handling Responses and Recovery Actions

The main goal of Service Director is to co-ordinate the service execution flow by
requesting the required subservices from the external service providers. Accord-
ing to the given service execution order (stored in the abstract function Next),
at each execution step Service Director activates certain subservices that are
executed in parallel. The currently active subservices are stored in the variable



146 L. Laibinis, E. Troubitsyna, and S. Leppänen

active. Then Service Director asynchronously reads their responses and evalu-
ates them in terms of possible further actions. The abstract function Eval is used
for this purpose. As described above, these actions may include continuation of
service execution, retrying or cancelling certain active subservices, rollbacking
in the execution flow, or aborting the whole service.

In a Event B specification, we distribute these service director activities over
a number of separate events. The event read response is responsible for read-
ing responses from the currently active subservices. In addition, we introduce
separate events for handling different classes of responses based on the result of
the evaluation function Eval.

Below we present the event operation read response as well as the events
handling (partial) success, cancelling of subservices, rollbacking to a certain point
of the execution flow, and aborting the whole service.

EVENT read response
ANY

ss
data

WHERE
grd3 : ss ∈ active ∧ data ∈ DATA \ {NIL}
grd1 : received = FALSE
grd2 : active �= ∅

grd4 : time left < old time left
THEN

act1 : curr state := update(ss �→ curr state �→ data)
act2 : active := active \ {ss}
act3 : received := TRUE

END

The event simply updates the internal state of Service Director and then en-
ables the handling events by setting the flag received.

EVENT handle SUCCESS
WHEN

grd1 : ¬(in data = NIL) ∧ finished = FALSE ∧ received = TRUE
grd2 : Eval(curr task �→ curr state) = SUCCESS
grd3 : curr task < max next ∧ time left < old time left

THEN
act1 : results := results ∪ {curr task �→ curr state}
act2 : curr task := curr task + 1
act3 : active := Next−1[{curr task + 1}]
act4 : old time left := time left
act5 : received := FALSE
act6 : resp := SUCCESS

END
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The event is enabled when Service Director successfully finishes the current task
(i.e., service execution step) possibly involving several parallel subservices. The
calculated results are saved in the variable results, and then Service Director
moves to executing of the next task. The subservices to be activated are decided
on the basis of the service execution flow stored in Next.

The additional event handle SUCCESS complete (omitted here) com-
plements handle SUCCESS by covering the situations when curr task =
max next, i.e., when Service Director succesfully finished execution of the whole
service (or the part of the service delegated to it). As a result, the flag finished
becomes TRUE.

EVENT handle CANCEL
WHEN

grd1 : ¬(in data = NIL) ∧ finished = FALSE ∧ received = TRUE
grd2 : Eval(curr task �→ curr state) = CANCEL
grd3 : time left < old time left

THEN
act1 : old time left := time left
act2 : received := FALSE
act3 : resp := CANCEL

END

The event is enabled when there is necessary to cancel some or all currently
active subservices. This might be needed before retrying, rollbacking, or abort-
ing service execution. Note that the set of active services stored in the variable
active is not updated in this operation. This is because the actual services to be
cancelled (determined using the abstract function Cancel) are already a subset
of the currently active services.

EVENT handle ROLLBACK
WHEN

grd1 : ¬(in data = NIL) ∧ finished = FALSE ∧ received = TRUE
grd2 : Eval(curr task �→ curr state) = ROLLBACK
grd5 : time left < old time left

THEN
act1 : curr task := Rollback(curr task �→ curr state)
act2 : results := (1 .. Rollback(curr task �→ curr state)− 1) � results
act3 : active := Next−1[{Rollback(curr task �→ curr state)}]
act4 : old time left := time left
act5 : received := FALSE
act6 : resp := ROLLBACK

END

The event is enabled when, to recover from the current failure, Service Direc-
tor has to rollback to some previous point in the service execution flow. The
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necessary information is stored in the abstract function Rollback. Also, the cor-
responding stored results from the skipped execution steps are removed. The
latter is accomplished by using the relational domain restriction operator �,
which in this case retains only those elements of results that have the indexes
belonging to the interval (1 .. Rollback(curr task �→ curr state)− 1).

EVENT handle ABORT
WHEN

grd1 : ¬(in data = NIL) ∧ finished = FALSE ∧ received = TRUE
grd2 : Eval(curr task �→ curr state) = ABORT
grd3 : time left < old time left

THEN
act1 : finished := TRUE
act2 : old time left := time left
act3 : resp := ABORT

END

The event handles the situation when an unrecoverable failure has occurred
and the execution of the whole service has to be aborted. The flags finished
and resp are set accordingly to trigger the corresponding calculate and output
events modelling the abortive termination of service execution.

We proved a number of invariant properties for the specification described
above. Some important ones are presented below.

INVARIANTS
...
inv7 : finished = TRUE ∧ ¬(resp = ABORT )⇒ curr task = max next
inv8 : resp = ABORT ⇒ finished = TRUE
inv10 : finished = TRUE⇒ resp ∈ {SUCCESS, ABORT }
inv15 : finished = FALSE⇒ time left > 0

The first property states that if service execution is succesfully finished, then the
whole service execution flow (given in Next) must be completed. The second one
requires that generating the ABORT flag at any point of service execution must
lead to immediate termination of the whole service. The third property states
that any service execution should end either by success or abort. Finally, the last
one requires that service execution can continue only if the maximal execution
time is not exceeded. This is also equivalent to saying that expiring of time will
immediately lead to termination of service execution.

In the presented refinement step, the execution of external service providers is
modelled implicitly by nondeterministically setting the received response data in
the event read response. The next refinement step will explicitly introduce the
external service components following the original specification pattern ACC.
As a result, the activating the corresponding subservices and reading their re-
sponses can be modelled by using explicitly introduced communication channels.



Formal Reasoning about Fault Tolerance and Parallelism 149

If some of these new service components represent service directors then the cor-
responding refinement step can be applied again to introduce necessary details.
Therefore, this refinement step itself can be considered as a refinement pattern
that can repeatedly applied in formal development of communicating systems.
The result of such development would be hierarchical architecture of service
components (including service directors) responsible for providing a particular
service.

5 Conclusions and Related Work

In this paper we proposed a formal approach to development of communicating
distributed systems. Our approach formalises and extends Lyra [7] – the UML2-
based design methodology adopted in Nokia. The formalisation is done within
the B Method [1] and its new version EventB [2] – formal frameworks supporting
system development by stepwise refinement. The proposed approach establishes
a basis for automatic translation of UML2-based development of communicating
systems into the refinement process in B. Such automation would enable smooth
integration of formal methods into existing development practice.

The initial formalization of Lyra has been undertaken using model checking
techniques [7]. However, since telecommunicating systems tend to be large and
data intensive, this formalization was prone to the state explosion problem. Our
approach helps to overcome this limitation, since it is based on theorem proving,
verifying the desired properties for all possible situations allowed by a given
model. Moreover, the core of our approach is the stepwise refinement paradigm,
which allows to introduce implementation details gradually and thus deal with
explosion of complexity.

Development of distributed communicating systems has been a topic of ongo-
ing research over several decades. Our review of related work is confined to the
consideration of the recent research conducted within B.

The pioneering work on formal development of distributed systems in
Event B was done by Abrial et al. [3]. They demonstrated how to prove ter-
mination of a complex distributed protocol in Event B. In our work we use the
principles defined in [3] to formalize the service-oriented development of complex
communicating systems.

Yadav and Butler [12] used Event B to design fault tolerant transactions for
replicated distributed database systems. They demonstrated how to formally
verify by refinement that the design of a replicated database confirms to the one
copy database abstraction. Similarly, in our work we use refinement to verify that
the externally observable behaviour of distributed implementation of a service
is equivalent to its centralized abstraction. However, our primary goal was not
only formal verification of service development but also integration of modelling
and refinement in B into the existing UML2-based development flow.

In this paper we focused on integrating fault tolerance mechanisms into the
formalised Lyra development process. One of big challenges is formal modelling
of parallel service execution and its effect on system fault tolerance. The ideas



150 L. Laibinis, E. Troubitsyna, and S. Leppänen

presented in this paper are implemented by extending our previously developed
B models. The formalised Lyra development has been originally verified by com-
pletely proving the corresponding B refinement steps using the Atelier B tool.
Later, the formal development has been moved to the RODIN platform support-
ing the new Event B language developed within the RODIN project [9].

The newly developed Event B tools (i.e. the RODIN platform and its exten-
sions) have been very helpful verifying the formal development. In particular,
for the presented refinement step introducing Service Director , 131 proof obli-
gations were generated. Out of them, 119 (91%) were proved automatically. The
remaining 12 proof obligations were proved using the interactive prover, with a
few simple hints to the prover being sufficient to finish the proof. This allows
us to be optimistic that, after some small tuning, the verification process could
become fully automatic.
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Abstract. In a replicated database system, copies of the database are
kept across several sites for fault-tolerance and availability. Data access
in such systems is usually done within a transactional framework. A read-
only transaction accesses data locally and an update transaction modifies
the database at all sites. Total order broadcast primitives have been
proposed to support transactions and allow fault-tolerant cooperation
between the sites in a distributed system. In this paper, we identify
and analyze the problem of formation of deadlocks among conflicting
update transactions due to race conditions and outline how a system of
total order broadcast prevents deadlocks and transaction failures. Later
we outline how a refinement based approach with Event-B can be used
for formal development of the models of total order broadcast. In this
approach we begin with the abstract model of a total order broadcast and
verify that the required ordering properties are preserved by the system.
Subsequently, in a series of refinement steps we outline how an abstract
total order can correctly be implemented by using a notion of sequence
number. This technique requires us to discharge proof obligations due to
consistency and refinement checking. To discharge the proof obligations
we are required to discover invariants that describes the relationship
between the abstract total order and the underlying mechanism.

1 Introduction

A replicated database system can be defined as a distributed system where
copies of the database are kept across several sites. Data access in a replicated
database can be done within a transactional framework. A distributed transac-
tion may span several sites reading or updating data objects. It is advantageous
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to replicate the data if the transaction workload is predominantly read only. How-
ever, during updates, the complexity of keeping the replicas in a consistent state
arises due to race conditions among conflicting update transactions. A typical
distributed transaction contains a sequence of database operations which must
be processed at all of the participating sites or none of the sites to maintain
the integrity of the database. The strong consistency criterion in the replicated
database requires that the database remains in a consistent state despite trans-
action failures. In addition to providing fault-tolerance, one of the important
issues to be addressed in the design of replica control protocols is consistency.
The one copy equivalence [9] criteria requires that a replicated database is in
a mutually consistent state only if all copies of data objects logically have the
same identical value.

No common global clock or shared memory exist in a distributed system. The
sites communicate by exchange of messages which are delivered to them after
arbitrary time delays. In such systems up-to-date knowledge of the system is not
known to any process or site. This problem can be dealt by relying on group
communication primitives that provide ordering guarantees on the delivery of
messages. The group communication primitives have been proposed as a mecha-
nism for the development of reliable fault-tolerant distributed applications [16].
A total order broadcast is one such primitive that guarantees the delivery of mes-
sages to the sites in the same order. Introduction of the transactions based on
group communication primitives represents an important step towards extending
the power of group communication in an asynchronous distributed system [34].
These primitives have been proposed for processing transactions and manag-
ing replicated databases [21,35,22]. In a replicated database that uses a reliable
broadcast without ordering guarantees, the operations of the conflicting update
transactions may arrive at different sites in different orders. This may lead to the
formation of deadlock among conflicting transactions involving several sites. The
blocking of the transactions at a site is usually resolved through aborting the
transaction by timeouts. The abortion of conflicting transactions can be avoided
by using a total order broadcast which delivers and executes the conflicting
operations at all sites in the same order.

In this paper we present an incremental development of a model of total or-
der broadcast using Event-B [28], which is a variant of B Method [1]. Event-B
is a formal technique for the development of models of distributed systems.
This technique consists of describing rigorously the problem in an abstract
model, introducing solutions or design details in refinement steps to obtain more
concrete specifications, and verifying that the proposed solutions are correct.
The B tools provide a significant automated proof support for generating the
proof obligations and discharging them. This technique requires the discharge
of proof obligations for consistency checking and refinement checking. The tech-
nique is supported by several industrial level B tools such as, Rodin [3] and
Click’n’Prove [4] that provide a significant automated proof support for genera-
tion of the proof obligations, factorizing complex proof obligations into simpler
proofs and discharging them. The majority of the proof obligations are proved by
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the automatic prover of the tools. However, some complex proof obligations re-
quire user guidance through the interactive prover. These proof obligations also
help in the discovery of new system invariants. The proof obligations and the in-
variants help to understand the complexity of the problem and the correctness of
the solutions. They also provide a clear insight into the system and enhance our
understanding of why a design decision should work. The essential features of the
modelling and proof guidelines to obtain an high degree of automated proof for
an Event-B development are outlined in [15]. We have used the Click’n’Prove [4]
B tool for proof obligation generation and to discharge them.

The remainder of this paper is organized as follows: Section 2 outlines the sys-
tem model, Section 3 identifies the problem of formation of deadlocks among the
transactions due to unordered delivery of update messages, Section 4 describes
informal specifications of a total order broadcast and mechanism for implemen-
tation, Section 5 outlines the abstract model of total order broadcast, and shows
how an abstract total order is constructed on the messages. Section 6 present
the invariant properties of the system. We also outline how the proof obligations
generated by the B tool help us discover new invariants. Section 7 illustrates es-
sential features of the refinement chain. Section 8 present related work on group
communication and the application of formal methods to the problem. Finally,
Section 9 concludes the paper.

2 Background

We have presented a rigorous design of distributed transactions for a replicated
database using Event-B in [38]. Our system model consist of a sets of sites and
data objects. Users interact with the database by starting transactions. We con-
sider the case of full replication and assume all data objects are updateable.
The Read Anywhere Write Everywhere [9,30] replica control mechanism is con-
sidered for updating replicas. In our model, update transactions are processed
within the framework of a two phase commit protocol [19] to ensure global
atomicity.

2.1 Transaction Model

A transaction is considered as a sequence of read/write operations executed
atomically, i.e., a transaction will either commit or abort the effect of all database
operations. The following types of transactions are considered for this model of
replicated database.

– Read-Only Transactions : These transactions are submitted locally to the
site and commit after reading the requested data object locally.

– Update Transactions : These transactions update the requested data objects.
The effect of update transactions are global, thus when committed, replicas
of data objects maintained at all sites must be updated. In the case of abort,
none of the sites update the data object.
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Let the sequence of read/write operations issued by the transaction Ti be defined
by a set of objects objectset [Ti] where objectset [Ti] �= ∅. Let the set writeset [Ti]
represents the set of object to be updated such that writeset [Ti] ⊆ objectset [Ti].
A transaction Ti is a read-only transaction if writeset [Ti]= ∅. Similarly a trans-
action Ti is an update transaction if its writeset [Ti] �= ∅.

2.2 Conflicting Transactions

Two update transactions Ti and Tj are in conflict if the sequence of operations
issued by Ti and Tj are defined on set of object objectset [Ti] and objectset [Tj ]
respectively and objectset [Ti] ∩ objectset [Tj ] �= ∅. To meet the strong consistency
requirements, conflicting transactions need to be executed in isolation. We ensure
this property by not starting a transaction at a site if any conflicting update
transaction is active at that site. In our model the transactions are executed as
follows.

– A read-only transaction Ti is executed locally at the initiating site of Ti(also
called the coordinator site of Ti) by acquiring locks on the data object defined
by objectset [Ti].

– A global update transaction Ti is executed by broadcasting an update mes-
sage to the participating sites. On delivery, a participating site Sj initiates
a sub-transaction Tij by acquiring locks on objectset [Ti]. If the objects are
currently locked by another transaction, Tij is blocked. The activity of a
global update transaction at a given site is referred as sub-transaction.

– The coordinator site of Ti waits for the vote commit/abort messages from
all participating site. A global commit/abort message is broadcast by the
coordinator site of Ti only if it receives all local commit message from all
participating sites or at-least one vote-abort message from participating sites.

The commit or abort decision of a global transaction Ti is taken at the coor-
dinator site within the framework of a two phase commit protocol as shown in
Fig. 1 as follows. A global transaction Ti commits if all Tij commit at Sj . The
global transaction Ti aborts if some Tij aborts at Sj .

Coordinator Cohorts 

Update Request Message

Vote-Commit/Abort Message 

Global Commit/Abort Message  

Start Tran

Local Commit/Abort 

Global Commit/Abort

Begin Sub-Transaction 

ExeCommit/Abort Decision 

Fig. 1. Events of Update Transaction
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3 Blocking and Failures of Conflicting Transactions

This section outlines how conflicting update transactions in our model can be
deadlocked. A formal refinement based approach using Event-B to model and
analyze distributed transaction is given in [38]. In our abstract model, an up-
date transaction modifies the abstract one copy database through a single atomic
event. In the refinement, an update transaction consists of a collection of inter-
leaved events updating each replica separately. The transaction mechanism on
the replicated database is designed to provide the illusion of atomic update of
a one copy database. Through the refinement proofs, we verify that the design
of the replicated database conforms to the one copy database abstraction de-
spite transaction failures at a site. The global atomicity of update transactions
is ensured by processing update transactions within the framework of two phase
commit protocol. We assume that the sites communicate by a reliable broadcast
which eventually deliver messages without any ordering guarantees.

In the abstraction, the global state of update transactions is represented
by a variable transstatus in the abstract model of the transactions. The vari-
able transtatus is defined as transtatus ∈ trans → TRANSSTATUS, where
TRANSSTATUS={COMMIT,ABORT,PENDING}. The transstatus maps each
transaction to its global state. An update transaction commits by updating ab-
stract variable database. With respect to an update transaction, activation of
the following events change the global transaction states.

– StartTran(tt) : The activation of this event starts a fresh transaction and
the state of the transaction is set to pending.

– CommitWriteTran(tt) : This event models global commit of an update trans-
action. A pending update transaction commits atomically by updating the
abstract database and it status is set to commit.

– AbortWriteTran(tt) : This event models global abort of an update trans-
action. A pending update transaction aborts by making no change in the
abstract database and its status is set to abort.

In the refined model, a global update transaction can be submitted to any
one site, called the coordinator site for that transaction. Upon submission of an
update transaction, the coordinating site of the transaction broadcasts all oper-
ations of the transaction to the participating sites by an update message. Upon
receiving the update message at a participating site, the transaction manager
at that site starts a sub-transaction. The activity of a global update transac-
tion at a given site is referred as a sub-transaction. The BeginSubTran(tt,ss)
event models starting a sub-transaction of tt at participating site ss. The spec-
ifications of this event is given in the Fig. 2. In this refinement, the state of a
transaction at a site is represented by a variable sitetransstatus. The variable
sitetransstatus maps each transaction, at a site, to transaction states given by a
set SITETRANSTATUS, where SITETRANSTATUS={pending, commit, abort,
precommit}. A transaction t is said to be active at a site s if it has acquired the
locks of the object set at that site.
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BeginSubTran ( tt TRANSACTION ,ss SITE)
  WHEN   tt trans  

(ss  tt)  activetrans 
ss  dom(sitetransstatus)      

       ran(transeffect(tt)) { }
                       objectset(tt)  freeobject[{ss}]

      transstatus(tt)=PENDING 
               tz.(tz  trans  (ss  tz)   activetrans  
        objectset(tt)  objectset(tz) = )

THEN          activetrans := activetrans  {ss  tt}            
                    ||   sitetransstatus(tt)(ss) := pending 
                ||  freeobject := freeobject - {ss}  objectset(tt) 

END;

Fig. 2. Sub Transaction

Our model prevents starting sub-transaction at a site if any conflicting trans-
action is already active at that site. Following guard of BeginSubTran(tt) event
ensures that a sub-transaction of tt is started at site ss when no active transac-
tion tz running at ss is in conflict with tt :

(ss �→ tz) ∈ activetrans⇒ objectset(tt) ∩ objectset(tz) = ∅

The guard ss /∈ dom(sitetransstatus(tt)) prevents starting a sub-transaction
again at the site ss. As a consequence of the occurrence of this event, transaction
tt becomes active at site ss and the sitetransstatus of tt at ss is set to pending.
The guard ran(transeffect(tt)) �= {∅} states that tt is an update transac-
tion, i.e., writeset(tt) �= ∅. Instead of giving the specifications of all events of
the refinement in the similar detail, brief descriptions of the new events in this
refinement are outlined below.

– BeginSubTran(tt) : This event models starting a sub-transaction at a site.
The status of the transaction tt at site ss is set to pending.

– SiteAbortTx(ss,tt) : This event models local abort of a transaction at a site.
The transaction is said to complete execution at the site. The status of the
transaction tt at site ss is set to abort.

– SiteCommitTx(ss,tt) : This event models precommit of a transaction at a
site. The status of the transaction tt at site ss is set to precommit.

– ExeAbortDecision(ss,tt) : This event models abort of a precommitted trans-
action at a site. This event is activated once the transaction has globally
aborted. The status of the transaction tt at site ss is set to abort. The trans-
action is said to complete execution at the site.

– ExeCommitDecision(ss,tt) : This event models commit of a precommitted
transaction at a site. This event is activated once the transaction has globally
committed. The status of the transaction tt at site ss is set to precommit. The
replica at the site is updated with the transaction effects and the transaction
is said to complete execution at this site.
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In our model, update messages from the coordinator site are broadcast using
a reliable broadcast. A reliable broadcast imposes no restriction on the order in
which messages are delivered to the participating sites. This may lead to the
formation of the deadlocks due to race conditions and the sites may abort one
or more of the conflicting transaction by timeouts. For example, consider two
conflicting update transactions Ti and Tj initiated at site Si and Sj respectively.
Both of the transactions may be blocked in the following scenario :

– Si starts transaction Ti and acquire locks on objectset [Ti] at site Si. Site
Si broadcast update message of Ti to participating sites. Similarly, another
site Sj starts a transaction Tj , acquires locks on objectset [Tj ] at site Sj and
broadcast update message of Tj to participating sites.

– The site Si delivers update message of Tj from Sj and Sj delivers update
message of Ti from Si. The Tj is blocked at Si as Si waits for vote-commit
from Sj for Ti. Similarly, Ti is blocked at Sj waiting for vote-commit from
Si for Tj

In order to recover from the above scenario where two conflicting transactions
are blocked, either or both transactions may be aborted by the sites. The abort
of these conflicting update transactions may be avoided if a reliable broadcast
also provides ordering guarantees on the message delivery such that all update
messages are delivered to various participating site including the sender in a total
order. In the remaining sections we formally model and analyze a system of total
order broadcast and verify that the required ordering properties are satisfied.

4 Informal Specifications of a Total Order Broadcast

A reliable broadcast [20] eventually deliver the messages to all participating
sites. A total order [16,20] broadcast is a stronger notion of a reliable broad-
cast that delivers messages to all processes in a same delivery order. A total
order broadcast1 can be defined as a reliable broadcast which satisfies following
requirement.

If processes p and q both deliver messages m1 and m2, then q delivers m1
before m2 if and only if p delivers m1 before m2.

The agreement property of a reliable broadcast and total order requirements
imply that all correct processes eventually deliver the same sequence of mes-
sages [20]. As shown in the Fig. 3 all processes has same delivery order of
messages. However, as shown in Fig. 4 the delivery order violates total order
requirement as delivery order at process P1 and P2 are different.

1 The Total Order Broadcast is also known as Atomic Broadcast. Both of the terms
are used interchangeably. However we prefer the former as the term atomic suggests
the agreement [20] property rather than total order.



Formal Development of a Total Order Broadcast 159

P2

P3

P1 M1

M3M2

Fig. 3. Total Order
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Fig. 4. Violation of Total Order
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P2

P3

Sequencer

computation message (m)

control message (m’)
[seqno(m)]

Fig. 5. Broadcast Broadcast variant

Mechanism for Total Order Implementations: The key issues with re-
spect to the total order broadcast algorithms are how to build a total order and
what information is necessary for defining a total order. In our development we
consider Broadcast Broadcast(BB) [16] variant of a sequencer based system. In
sequencer based system, a specific process takes the role of a sequencer and be-
comes responsible for building a total order. The protocol consists of first broad-
casting m to all destinations including the sequencer, followed by an another
broadcast of its sequence number by the sequencer. All destination processes
deliver messages according to their sequence numbers assigned by the sequencer
process. As shown in the Fig. 5 process P2 broadcast a computation message m.
Upon delivery of m to a sequencer process, sequencer assigns a sequence num-
ber and broadcast its sequence number by a control message(m’). Upon receipt
of the control messages, a destination process deliver its computation message
according to the sequence numbers.
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MACHINE        TotalOrder
SETS                        PROCESS; MESSAGE
VARIABLES           sender, totalorder, delorder, tdeliver
INVARIANT    sender MESSAGE PROCESS

   totalorder MESSAGE MESSAGE 
   delorder PROCESS  (MESSAGE MESSAGE)  
       tdeliver PROCESS MESSAGE

INITIALISATION sender :=      ||    totalorder :=    ||  
                 delorder := PROCESS  { }   ||  tdeliver :=    

Fig. 6. Initial Part : Level-0

5 Abstract Model of Total Order Broadcast

The abstract model of total order broadcast system is given in Fig. 6 and Fig. 7.
The PROCESS and MESSAGE sets define types for the model. The specification
contains of four variables sender, totalorder, tdeliver and delorder.

The sender is defined as a partial function from MESSAGE to PROCESS.
The mapping (m �→ p) ∈ sender indicates that message m was sent by a process
p. The variable totalorder is defined as a relation among the messages. A mapping
of the form (m1 �→m2 ) ∈ totalorder indicate that message m1 is totally ordered
before m2. The variable tdeliver represent the messages delivered following a
total order. A mapping of form (p �→ m) ∈ tdeliver represents that a process p
has delivered m following a total order. In order to represent the delivery order
of messages at a process, variable delorder is used. A mapping (m1 �→ m2 ) ∈
delorder(p) indicate that process p has delivered m1 before m2.

The event Broadcast given in the Fig. 7 models the broadcast of a message.
Similarly, the event Order models the construction of total order on a message
when it is delivered to a process in the system for the first time, i.e., an abstract
global total order is constructed on a message at the first ever delivery of it to
any process in the system. Later in the refinement we show that it is a role of
a sequencer process. The TODeliver models the delivery of the messages to a
process when a total order on the message has been constructed.

5.1 Constructing a Total Order

The event Order models the construction of an abstract total order on mes-
sage mm its first ever delivery to a process pp. The following guards of this
event ensures that the message mm has not been delivered elsewhere and that
each message delivered at any other process has also been delivered to this pro-
cess(pp).

mm /∈ ran(tdeliver)
ran(tdeliver) ⊆ tdeliver[{pp}]

Later in the refinement we show that this is a function of a designated pro-
cess called sequencer. As a consequence of the occurrence of Order event, the
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Broadcast (pp PROCESS , mm MESSAGE ) 
 WHEN   mm dom(sender)

   THEN sender := sender  {mm pp}                   
END;

Order (pp PROCESS ,mm MESSAGE )
     WHEN   mm dom(sender)            
                mm ran(tdeliver)
                ran(tdeliver) tdeliver[{pp}]                  

THEN tdeliver := tdeliver  {pp  mm}   ||             
                     totalorder := totalorder  ( ran(tdeliver)  {mm})  || 
                   delorder(pp) := delorder(pp)  ( tdeliver[{pp}]   {mm})  

END;
TODeliver (pp PROCESS , mm MESSAGE)

     WHEN   mm dom(sender)
                   mm ran ( tdeliver )
       pp mm tdeliver          
                m.( m MESSAGE  (m mm) totalorder  
                         (pp m) tdeliver)
      THEN tdeliver := tdeliver  {pp  mm}    ||           
          delorder(pp) := delorder(pp)  ( tdeliver[{pp}]  {mm}) 

END

Fig. 7. Events : Level-0

message mm is delivered to the process pp and variable totalorder is updated by
mappings in (ran(tdeliver) × mm). This indicates that all messages delivered at
any process in the system are ordered before mm. Similarly, the delivery order
at the process is also updated such that all messages delivered at any process
precedes mm. It can be noticed that the total order for a message is built when
it is delivered to a process for the first time.

The event TODeliver(pp,mm) models the delivery of a message mm to a
process pp respecting the total order. As the guard mm ∈ ran(tdeliver) implies
that the mm has been delivered to at least one process and it also implies that the
total order on the message mm has also been constructed. Later in the refinement
we show that process pp represents a process other than the sequencer process.
The guard of the event ensure that message mm has already been delivered
elsewhere and that all messages which precedes mm in abstract total order has
also been delivered to pp.

5.2 Invariant Properties of Total Order

After building an abstract model of a total order broadcast(Level-0), our goal
was to formally verify that our model preserves the total ordering properties
defined in the Section 4. The agreement and total order requirement imply that
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all correct process eventually deliver all messages in the same order [20]. Thus,
we add following invariant as a primary invariant to our model.

m1 �→ m2 ∈ delorder(p)⇒ m1 �→ m2 ∈ totalorder (1)

This invariant at (1) state that if a process delivers any two messages then their
delivery order at that process corresponds to their abstract total order. Subse-
quently, in order to prove that total order preserves the transitivity property, we
add following as a primary invariant to our model.

m1 �→ m2 ∈ totalorder ∧m2 �→ m3 ∈ totalorder

⇒ m1 �→ m2 ∈ totalorder (2)

Lastly, to verify that the abstract total order is non-symmetric and non-reflexive,
we add following invariant :

m1 �→ m2 ∈ totalorder⇒ m2 �→ m1 /∈ totalorder (3)
m ∈MESSAGE ⇒ m �→ m /∈ totalorder (4)

6 Proof Obligations and Invariant Discovery

In this section, we outline how the proof obligations generated due to the addi-
tion of the primary invariants given at (1), (2), (3) and (4) in Fig. 8 guide us
discovering new invariants.

Verification of Total Ordering Property: In order to verify that our ab-
stract model of total order broadcast satisfies the total order property, we add
Inv-1 given in Fig. 8 to our model. When we add this invariant to our model two
proof obligations were generated associated with the event Order and TODeliver.

 Primary Invariants                     
_________________________________________________________________ 

/*Inv-1*/   (m1 m2) delorder(p)  (m1 m2) totalorder Total Order       
                        
/*Inv-2*/   (m1 m2) totalorder  (m2 m3) totalorder            Transitivity 
                     (m1 m3) totalorder          

/*Inv-3*/   (m1 m2) totalorder  (m2 m1) totalorder Non-symmetric 

/*Inv-4*/   m  MESSAGE  (m m) totalorder                         Non-reflexive 

Fig. 8. Primary Invariants-I : Level-0
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Proof obligation associated with the event Order was discharged using interac-
tive prover, however the proof obligation associated with TODeliver could not
be discharged. Following is the simplified form of a proof obligation generated
by the interactive prover.

TODeliver(PO1)⎡
⎢⎢⎣

p �→ m1 ∈ tdeliver ∧
p �→ m2 /∈ tdeliver ∧
m2 ∈ ran(tdeliver) ∧
⇒ m1 �→ m2 ∈ totalorder

⎤
⎥⎥⎦

This state that if process p has delivered m1 but m2 has been delivered
elsewhere then m1 precedes m2 in total order. In order to discharge this proof
obligation, we add an invariant to our model given as Inv-5 in Fig. 9. Addition of
Inv-5 was sufficient to discharge PO1, however a new proof obligation associated
with TODeliver was generated due to the addition of Inv-5. Following is the
simplified form of the proof obligation.

TODeliver(PO2)⎡
⎢⎢⎣

m1 ∈ ran(tdeliver) ∧
m2 ∈ ran(tdeliver) ∧
m2 �→ m1 /∈ totalorder ∧
⇒ m1 �→ m2 ∈ totalorder

⎤
⎥⎥⎦

This proof obligation require us to prove that if two messages m1 and m2
are delivered to any process(es) in the system then a total order exists among
them, i.e., either m1 precedes m2 or m2 precedes m1 in abstract total or-
der. In order to discharge the proof obligation we add another invariant Inv-6
to our model. Addition of this invariant to the model further generate proof
obligations.

After four round of invariant strengthening we arrive at a set of invariant
given in Fig. 9 which were sufficient to discharge all proof obligations generated
due to addition of invariant Inv-1 is a primary invariant. A brief description of
the properties is given below.

– If a process p has delivered m1 and but not m2, and if m2 was delivered to
at least one process elsewhere in the system then m1 precedes m2 in total
order(Inv-5 ).

– If two messages m1 and m2 has been delivered anywhere in the system then
a total order exist among them, such that, either m1 precedes m2 or m2
precedes m1 in total order. (Inv-6 )

– If a process p has delivered two message m1 and m2 then either m1 precedes
m2 or m2 precedes m1 in totalorder(Inv-7 ).

– Given two processes p1 and p2, then for any two messages m1 and m2 if
the process p2 has delivered both messages and p1 has delivered m1 but
not m2 then m1 precedes m2 in total order(Inv-8 ).
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  Invariants     Required By 
__________________________________________________________________________ 

/*Inv-5*/  (p m1) tdeliver  (p m2) tdeliver    TOdeliver
                            m2  ran(tdeliver) 

(m1 m2) totalorder

/*Inv-6*/ m1 ran(tdeliver) m2 ran(tdeliver)    Order, TOdeliver
 (m2 m1) totalorder

(m1 m2) totalorder

/*Inv-7*/  (p m1) tdeliver  (p m2) tdeliver    Order, TOdeliver
 (m2 m1) totalorder

(m1 m2) totalorder

/*Inv-8 */  (p1 m1) tdeliver  (p1 m2) tdeliver Order, TOdeliver
 (p2 m1) tdeliver  (p2 m2) tdeliver 

(m1 m2) totalorder

Fig. 9. Invariants-II : Level-0

Invariants     Required By 
_______________________________________________________________________ 

/*Inv-9 */       (m1 m2) totalorder  (p m2) tdeliver   Broadcast,Order
                           (p m1) tdeliver     TOdeliver

            
/*Inv-10 */       m  ( dom (totalorder)  ran(totalorder) )               Order
                       m ran(tdeliver)

/*Inv-11 */      m dom(sender) m dom(totalorder) Broadcast, Order
m dom(sender) m ran(totalorder) TOdeliver

         ran(tdeliver)  dom(sender)   

Fig. 10. Invariants-III : Level-0

Verification of Transitivity Property: Our next step was to verify that our
model of total order broadcast also preserves transitive properties on abstract
total order. In order to verify that total order is transitive, we add Inv-2 given in
Fig. 8 to our model. Addition of this invariant generate several proof obligations.
Using the same strategy of invariants strengthening outlined in previous section,
we arrive at a set of invariant that is sufficient to discharge all proof obligations
generated due the addition of Inv-2 as a primary invariants. A full set of invariant
are given in the Fig. 10. A brief description of these properties are outlined below.

– For any two messages m1 and m2 where m1 is totally ordered before m2
then a process p who delivered m2 has also delivered m1 (Inv-9 ).
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– The total order is built for those messages which has been delivered to at
least one process(Inv-10 ).

– A total order can not be build for the messages which were not sent and
each message delivered at any process must be a sent message (Inv-11 ).

Verification of Non-Symmetric and Non-Reflexive Property: In order
to prove the non-symmetric and non-reflexive property on total order we add
primary invariants Inv-3 and Inv-4 given in Fig. 8 to our model. Using process
outlined in the previous section, we are able to discharge the proof obligations
generated due to addition of these primary invariants without having to add a
new invariant.

7 Overview of the Refinement Chain

In the previous sections we outlined abstract model of a total order broadcast
and the invariant properties of abstract total order. In this section we present a
overview of our refinement chain consisting of six levels. A brief outline of each
refinement step is given below.

L0 This consist of abstract model of total order broadcast. In this model, ab-
stract total order is constructed when a message is delivered to a process
for the first time. At all other processes a message is delivered in the total
order. We have already outlined this level in Section 5.

L1 This is a refinement of abstract model which introduces the notion of the
sequencer. In this refinement we outline how a total order on the messages
are constructed by the sequencer.

L2 This is a very simple refinement giving more concrete specification of Order
event. Through this refinement we illustrate that a total order can be built
using the messages delivered to the sequencer rather than all sites.

L3 In this refinement we introduce the notion of computation messages and
sequence numbers. Global sequence number of the computation messages
are generated by the sequencer. The delivery of the messages is done based
on the sequence numbers.

L4 In this refinement we introduce notion of control messages. We also introduce
the relationship of each computation message with the control messages.

L5 A new event Receive Control is introduced. We illustrate that a process other
than sequencer can deliver a computation message only if it has received
control message for it.

7.1 Introducing the Notion of the Sequencer : Level-1

In the first refinement, given in Fig. 11, we introduce the notion of a sequencer.
The sequencer is defined as a constant for this model as sequencer ∈ PROCESS.



166 D. Yadav and M. Butler

As shown in the refined specification of Order event given in Fig. 11, a message
is first delivered to the sequencer process. It can be noticed that the the following
guards in the abstract specification

mm /∈ ran(tdeliver)
ran(tdeliver) ⊆ tdeliver[{pp}]

are replaced by following.

pp = sequencer
(sequencer �→ mm) /∈ tdeliver

Due to the guard pp �= sequencer shown in the specifications of TODeliver, a
message mm is delivered to a process other than the sequencer. The replacement
of the guards in the Order event generate new proof obligations. Using the same
approach of invariant discovery as outlined in Section 5.2, we arrived at a set of
invariants that was sufficient to discharge all proof obligations. These invariants
are given in Fig. 12. A brief description of these invariants are given in the
following steps.

– A message not delivered to the sequencer have not been delivered elsewhere.
(Inv-12 )

– If a total order on any message m has been constructed then it must have
been delivered to the sequencer.(Inv-13,14 )

Order (pp PROCESS ,mm MESSAGE )
     WHEN   pp = sequencer

     mm dom(sender)           
    (sequencer  mm) tdeliver                

THEN tdeliver := tdeliver  {pp  mm}   ||            
                  totalorder := totalorder  ( ran(tdeliver)  {mm}) 

END;
TODeliver (pp PROCESS , mm MESSAGE)

     WHEN   pp  sequencer 
     mm dom(sender)
                  mm ran ( tdeliver )
         pp mm tdeliver         
                  m.( m MESSAGE  (m mm) totalorder  
                         (pp m) tdeliver)
      THEN tdeliver := tdeliver  {pp  mm}              

END

Fig. 11. Total Order Broadcast : Level-1
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  Invariants                             Required By 
______________________________________________________________________ 

/*Inv-12*/     (sequencer m) tdeliver m ran(tdeliver)              Order,TOdeliver

/*Inv-13*/     m dom(totalorder)  (sequencer m) tdeliver Order

/*Inv-14*/     m ran(totalorder)  (sequencer m) tdeliver        Order 

Fig. 12. Invariants-IV : Level-1

Order (pp PROCESS ,mm MESSAGE )
     WHEN pp = sequencer

mm dom(sender)          
(sequencer  mm) tdeliver                

THEN tdeliver := tdeliver  {pp  mm}    ||           
              totalorder := totalorder  ( tdeliver[{sequencer}]  {mm}) 
END;

Fig. 13. Total Order Broadcast : Refined Order Event : Level-2

Invariants            Required By 
__________________________________________________________ 

/*Inv-15*/     ran(tdeliver) =  tdeliver[{sequencer}]          Order

Fig. 14. Invariants-V : Level-2

7.2 Second Refinement : Refinement of Order Event

Through this refinement we illustrate that a total order can be built using
the messages delivered to the sequencer. As shown in the Fig. 11, a total or-
der is generated as totalorder := totalorder ∪ (ran(tdeliver) × {mm}) . It
state that all messages delivered at any process are ordered before the new
message mm.

In the refined Order event the totalorder is constructed as totalorder :=
totalorder∪(tdeliver[{sequencer}]×{mm}). It state that all messages delivered
to the sequencer are ordered before the new message mm.

The specifications of this refinement are given in the Fig. 13. The replacement
of the operations in the event Order generates proof obligations which require
us to prove that the message delivered elsewhere in the system has also been
delivered to the sequencer. In order to discharge the proof obligations we add the
invariant Inv-15 given in the Fig. 14. This invariant was sufficient to discharge
the proof obligations.
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7.3 Third Refinement : Introducing Sequence Numbers

In the third refinement, given in Fig. 15, we introduce the notion of computation
message and the sequence numbers. The new variables computation, seqno and
counter are introduced in the refinement typed as follows :

computation ⊆MESSAGE
seqno ∈ computation �→Natural
counter ∈ Natural

The variable seqno is used to assign sequence number to the computation mes-
sages. The counter, initialized with zero, is maintained by the sequencer process
and incremented by one each time a control message is sent out by the sequencer
process. It can be noted in the specification of TODeliver event that these mes-
sage are delivered to the processes other than the sequencer in their sequence
numbers. Consider the following guard of the abstract TODeliver event.

(m �→ mm) ∈ totalorder ⇒ (pp �→ m) ∈ tdeliver

The above is replaced by following guard in this refinement.

seqno(m) < seqno(mm)⇒ (pp �→ m) ∈ tdeliver

Order (pp PROCESS ,mm MESSAGE  )
     WHEN pp = sequencer
         mm dom(sender)
                       mm computation 

(sequencer  mm) tdeliver                 
THEN totalorder := totalorder  ( tdeliver[{sequencer}]  {mm})  || 

    tdeliver := tdeliver  {pp  mm}   ||               
    seqno := seqno  {mm counter} || 
    counter:= counter + 1

    END; 
 TODeliver (pp PROCESS , mm MESSAGE)
     WHEN pp  sequencer
    mm dom(sender)
             mm ran ( tdeliver )
    pp mm tdeliver           
             m.( m computation  ( seqno(m) < seqno(mm) )
                         (pp m) tdeliver)
      THEN tdeliver := tdeliver  {pp  mm}              

END

Fig. 15. Total Order Broadcast : Level-3
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Invariants           Required By 
____________________________________________________________ 

/*Inv-16*/      m1  m2  totalorder                       Order,TOdeliver
seqno(m1)  < seqno(m2) 

/*Inv-17*/      m  computation  m  dom(seqno) Order,TOdeliver
sequencer  m   tdeliver

Fig. 16. Invariants-VI : Level-3

The change of the guards in the TODeliver event generate new proof obli-
gations. These proof obligations are discharged by adding new invariants given
in the Fig. 16 to the model. Invariant Inv-16 state that if m1 precedes m2 in
abstract total order then the sequence number assigned to m1 is less than the
sequence number assigned to m2. The invariant Inv-17 state that if a compu-
tation message has been assigned a sequence number then sequencer must have
delivered it.

7.4 Fourth Refinement : Introducing Control Messages

In this refinement given in Fig. 17, we introduce the notion of control messages.
A control message is broadcast by the sequencer process for each computation
message. In this refinement, a process broadcasts a computation message mm
to all processes including the sequencer. Upon delivery of this message, the se-
quencer assigns it a sequence number and broadcast its control message. All
process except the sequencer deliver the corresponding computation messages
in the order of the sequence numbers. This refinement consists of following new
state variables typed as follows :

control ⊆MESSAGE
messcontrol ∈ control �� computation

The variables control and computation are used to represent a computation or
a control message. The variable messcontrol is a partial injective function which
defines relationship among a control message and its computation message. A
mapping (m1 �→ m2 ) ∈ messcontrol indicate that message m1 is the control
message related to the computation message m2. The set ran(messcontrol) con-
tains the computation messages for which control messages has been sent by
the sequencer. The guard mm ∈ ran(tdeliver) of TODeliver event is replaced
by the guard mm ∈ ran(messcontrol) in this refinement. This indicate that a
computation message is delivered to a process other than a sequencer only if its
control message has been sent out by the sequencer. The change in the guards
of Order and TODeliver events generate proof obligations which are discharged
by adding following invariant to the model.
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Order (pp PROCESS ,mm MESSAGE,mc MESSAGE  )
     WHEN pp = sequencer

mm dom(sender)
mm computation 
 (sequencer  mm) tdeliver
mc dom(messcontrol) 
mm ran(messcontrol)                 

THEN totalorder := totalorder  ( tdeliver[{sequencer}]  {mm})  || 
    tdeliver := tdeliver  {pp  mm}   || 
                 control  := control  {mc} ||         

                         messcontrol := messcontrol  {mc mm}  || 
    seqno := seqno  {mm counter}  ||                              
     counter:= counter + 1

    END; 
 TODeliver (pp PROCESS , mm MESSAGE)
     WHEN    pp  sequencer 

  mm dom(sender)
mm ran ( messcontrol )

      pp mm tdeliver          
               m.( m computation  ( seqno(m) < seqno(mm) )
                         (pp m) tdeliver)
      THEN tdeliver := tdeliver  {pp  mm}              

END

Fig. 17. Total Order Broadcast : Level-4

Invariants            Required By 
_____________________________________________________________ 

/*Inv-18*/      ran(messcontrol)  ran(tdeliver)          Order,TOdeliver

/*Inv-19*/      ran(messcontrol)  computation          Order,TOdeliver

Fig. 18. Invariants-VII : Level-4

7.5 Fifth Refinement : Introducing Receive Control Event

A new event ReceiveControl is introduced in this refinement. This event model
receiving a control message at a process. A new variable receive is also introduced
in this refinement typed as receive ∈ PROCESS ↔ control. A mapping p �→
m ∈ receive indicate that process p has received a control message m. The
specifications of the refined events are given in Fig. 19.
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ReceiveControl (pp PROCESS , mc MESSAGE ) 
 WHEN mc control 

 (pp  mc) receive
THEN    receive := receive  {pp  mc}

 END
TODeliver (pp PROCESS , mm MESSAGE)

     WHEN pp  sequencer  
                       mm computation   
                      (pp mm)  tdeliver

  (pp messcontrol-1 (mm))  receive
m.( m computation    (seqno(m) seqno(mm)

                         (pp m) tdeliver)
      THEN tdeliver := tdeliver  {pp  mm}              

END

Fig. 19. Total Order Broadcast: Receive Control : Level-5

Invariants                       Required By 
_______________________________________________________________ 

/*Inv-20*/     m  computation  messcomtrol-1(m)  receive      Order,TOdeliver
  m  ran(messcontrol)  

Fig. 20. Invariants-VIII : Level-5

As shown in the TODeliver event at Level-5, the guard mm ∈ ran
(messcontrol) is replaced by the the guard (pp �→ messcontrol−1(mm)) ∈
receive. This guard of the TODeliver event ensures that a process pp deliv-
ers a computation message mm only when its corresponding control message
has been received by the process pp. The change in the guards generate proof
obligations associated with the event TODeliver. In order to discharge these
proof obligations we add the invarinats given in Fig. 20.

8 Related Work

Distributed algorithms can be deceptive, may have complex execution paths
and may allow unanticipated behavior. Rigorous reasoning about such algo-
rithms is required to ensure that an algorithm achieves what it is supposed
to do [25]. The group communication primitives has been proposed to develop
fault-tolerant distributed services. The total order broadcast is one primitive
that deliver messages to the sites in a distributed system in same order. The in-
troduction of transactions based on group communication primitives represents
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an important step towards extending the power and generality of group com-
munication for design and implementation of reliable fault-tolerant distributed
computing applications [34]. The implementations of these group communica-
tion primitives has also been investigated for different distributed systems such
Isis [10], Totem [29], Trans [27], Amoeba [36] and Transis [7]. The protocols
in these systems use varying broadcast primitives and address group mainte-
nance, fault tolerance and consistency services. The transaction mechanism in
the management of replicated data is also considered in [6,8,31,32,34].

Group communication services have been studied as a basic building block
for many fault tolerant distributed services, however the application of formal
methods providing clear specifications and proofs of correctness is rare [16].
In [17], I/O automata are used for formal modelling and verification of a se-
quentially consistent shared object system in a distributed network. In order
to keep the replicated data in a consistent state, a combination of total order
multicast and point to point communication is used. In [18,33] the specification
for group communication primitives are presented using I/O automata under
different conditions such as partitioning among the group and dynamic view
oriented group communication. The proof method supported in this method for
reasoning about the system involves invariant assertions. An invariant assertion
is defined as a property of the state of a system that is true in all execution. A
series of invariants relating state variables and reachable states are proved by
hand using the method of induction. In [37], a formal method is proposed to
prove the total and causal order of multicast protocols. The formal results are
provided in the paper that can be used to prove whether an existing system has
the required property or not. Their solutions are based on the assumption that
a total order is built using the service provided by a causal order protocol. In a
similar work in [26], meta properties are used to express total order broadcast
algorithm. The proof of correctness of the results are done by hand.

Instead, our approach of specifying the system and verification is based on
the technique of abstraction and refinement. This formal approach carries a
step-wise development from initial abstract specifications to a detailed design of
a system in the refinement steps. Through the refinement proofs we verify that
design of detailed system conforms to the abstract specifications. A refinement
based approach to developing distributed systems in B is outlined in [12]. Use of
refinement and decomposition rules in the development of telecommunications
systems is outlined in [11]. The refinement approach of Event-B has also been
used for the formal development of fault-tolerant communication systems [24]
and fault-tolerant agent systems [23]. Other important work carried out using
the refinement approach include verification of the IEEE 1394 tree protocol
distributed algorithm [5], development of a secure communication system [13],
development of a train system [2], verification of one copy equivalence criterion
in a distributed database system [38]. The case study on development of Mondex
purse system in Event-B [15] illustrates modelling strategies and the guidelines
to achieve a high degree of automatic proofs.
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9 Conclusions

In a replicated database, an update transaction modifies the requested data ob-
jects at various sites. A global update transaction may be submitted to any site
and the effects of the update transaction are global, i.e., at commit all replicas
at various sites must be updated. In case of abort, none of the sites update data
objects. We have presented a rigorous design of distributed transactions for a
replicated database in [38]. In this model, update messages from the coordinator
site are assumed to broadcast using a reliable broadcast. A reliable broadcast
imposes no restriction on the order in which messages are delivered to the par-
ticipating sites. Unordered delivery of updates to the participating sites leads
to the formation of deadlocks and the sites may abort conflicting transactions
by timeouts. The failure of such transactions may be avoided if the updates are
broadcast using a total order broadcast that delivers updates to the participating
sites in a same order.

In this paper we have presented formal development of a system of total order
broadcast. In the abstract model we outline how an abstract total order is con-
structed on the messages. Subsequently in a series of refinement steps we outline
how an abstract total order can correctly be implemented by using the notion
of control messages and sequence numbers. Instead of model checking, proving
theorems by hand or proving correctness of the trace behavior, our approach
consists of defining problem in the abstract model and introducing solutions or
design details in the refinement steps. Through refinement checking we verify
that the models in the refinement are valid refinement of abstract models. We
used the Click’n’Prove B tool for proof management. This tool generates the
proof obligations due to refinement and consistency checking, factorizes com-
plex proof obligations in to relatively simpler proofs and helps discharge proof
obligations by the use of automatic and interactive prover.

This case study illustrate how an incremental approach to system development
can be used to obtain more concrete specifications. A powerful tool support
helped us to discover several new invariants that helps to understand why a
total order broadcast can correctly be implemented using sequence numbers. A
clear relationship of computation and control message is outlined to indicate that
our system generate exactly one control message for each computation message.

Table 1. Proof Statistics- Total Order Broadcast

Machine Total POs Completely Automatic Required Interaction
Abstract Model 48 29 19

Refinement1 19 16 03
Refinement2 2 2 00
Refinement3 18 14 04
Refinement4 15 14 01
Refinement5 04 04 00

Overall 106 79 27
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In this case study approximately 75% of the proof obligations were discharged
using automatic prover. The proof obligations generated by the B tool also help
discovering new system invariants. The proofs and the invariants help to precisely
understand why a design decision or a solution proposed in the refinement is
correct. The over all proof statistics is given in Table 1.
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Abstract. In this paper, we present a model-based testing approach
based on user provided testing scenarios. In this approach, when a soft-
ware model is refined to add or modify features, the corresponding testing
scenarios are automatically refined to incorporate these changes. The test
cases, to be applied on the system under test, are generated from these
scenarios. We use the Event-B formalism for software models, while user
scenarios are represented as Communicating Sequential Process (CSP)
expressions. The presented case study demonstrates how our approach
can be used to test different features of a system such as incorporated
fault-tolerance mechanisms.

1 Introduction

Testing is an important but expensive activity in the software development life
cycle. With advancements in the model-based approaches for software develop-
ment, new ways have been explored to generate test-cases from existing software
models of the system, while cutting the cost of testing at the same time. These
new approaches are usually referred to as model-based testing. A software model
is a specification of the system which is developed from the given requirements
early in the development cycle [9]. In the model-based development (MBD), this
model is then refined until a required abstraction level is reached from which the
implementation code can be generated, or written by hand. Model-based test-
ing (MBT) is an approach for deriving tests from the models using automated
techniques. The intended cost reductions arise because

1. the tests can be generated by tools, without hand coding,
2. changes in the model do not need extensive re-writing of test-code,
3. test coverability can be improved because we can define coverability on the

model and guarantee that important parts of the system are tested.

Test selection is an active research area where both formal and informal ap-
proaches exist. In this paper, we propose a testing approach based on user-
provided testing scenarios. In the Model-Based development (MBD), we start
with the initial model that is created to implement the set of use cases explaining
the desired behavior. The use cases are usually described in natural language and
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are used by requirement engineers to represent a part of the requirements given
by customers. Often these use cases also form the basis for the acceptance tests
of the final product. However, there is an abstraction gap between the use cases
and the final acceptance tests. In order to support automatic generation of tests
from given software models, we need to bridge this gap. In this paper, we study
this issue in the context of formal MBD by using Event-B [5,4] as our modelling
language. Event-B supports stepwise system development by refinement. We will
represent formal models of software systems as Event-B specifications. On the
other hand, we express the provided use-cases as scenarios in Communicating
Sequential Process (CSP) [10]. Representing scenarios as CSP expressions gives
us better structure and associated tool support. We show, by making controlled
refinements of our Event-B models, that we can automatically derive the final
tests from the original scenarios. An overview of the approach is given is given in
Fig. 1. This work is based on our earlier approach [16] for scenario-based testing
from B models.

The program refinement approach has been extensively used to model com-
plex software systems, such as control systems, communication systems etc. It
allows us to gradually incorporate implementation details and therefore, helps
us to deal with overall complexity. For such systems, it is really important to be
dependable i.e., to function even in the presence of faults and failures. The re-
finement approach allows us to gradually incorporate fault tolerance mechanisms
describing how the system reacts on abnormal situations. In [11], a methodol-
ogy for developing fault-tolerant systems in a stepwise manner is proposed. Our
work, presented in this paper, is also based on stepwise development and thus
very suitable for testing the desired properties and features of the systems that
were developed in such a way.

The organisation of the paper is as follows. Section 2 gives brief introduction to
Model-based testing (MBT) and details our scenario-based MBT methodology.
In Section 3, we describe the formal framework for our approach and show how
it can be instantiated in specific cases. In Section 4, we illustrate our approach
by a case-study on the development of a fault-tolerant system. Finally, Section
5 contains related work and some concluding remarks.

2 Model-Based Testing

Model-based testing is a general notion used for testing of software systems using
models of the system. In [17], model-based testing is defined as automation of the
design of black-box tests. The system to be tested is referred as System-Under-
Test (SUT). The SUT is an executable implementation which is considered as a
black-box during the testing process, i.e., only inputs and outputs of the system
are visible externally. The SUT is tested by applying test case(s). A test case
is defined as sequence of steps to test the correct behavior of a particular func-
tionality or feature of the system [2]. In model-based testing, the test cases are
generated from the given models of the system.
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2.1 Scenario-Based Approach for Model-Based Testing

Our model-based testing approach is based on stepwise system development [6]
using behavioral models of the system. By a behavioral model, we mean that
the system behavior is modelled as states together with operations (or events)
on the states. In the stepwise development process, an abstract model is first
constructed and then further refined to include more details (e.g., functionalities)
of the system. Generally, these models can be either formal, informal or both.
In this work we only consider formal models. These models are usually created
from the requirements.

In the development process, we start with an abstract model and gradually,
given by a number of refinement steps, obtain a sufficiently detailed model.
The final system, the system under test (SUT), is an implementation of this
detailed model. Ideally, the implementation should be automatically generated,
which would make it correct by construction. However, in practice, due to the
abstraction gap between formal models and executable implementations, this is
not always possible. As a result, an implementation is often hand-coded while
consulting with the formal models. The left hand-side of the Fig.1 graphically
presents this process.

The right hand side of the Fig.1 depicts a parallel process where we start from
the requirements and construct an abstract scenario. This abstract scenario is a
valid behavior of the abstract model present on the same level of abstraction. In
short, we say that the abstract model conforms to the abstract scenario. In later
stages, we refine our abstract scenario along the refinement chain of the system
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Fig. 1. Overview of our Model-based testing approach
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models. Finally, the sufficiently refined scenarios are translated into executable
test cases which are then applied to SUT. Later in this section, we provide more
detailed information about definitions and representation of the scenarios.

In the literature, one can find several definitions of the term scenario. Gen-
erally speaking, as described in [1], a scenario is a description of possible ac-
tions and events in the future. In the field of software engineering, scenarios
have been used to represent various concepts like system requirements, analysis,
user-component interactions, test cases etc. [13]. In this work, we use the term
scenario to represent a test scenario for our system under test (SUT). A test
scenario is one of the possible valid execution paths that the system must follow.
In other words, it is one of the expected functionalities of the system. For ex-
ample, in a hotel reservation system, booking a room is one functionality, while
canceling a pre-booked room is another one. In this article, we use both terms
functionality and scenario interchangeably.

Each scenario usually includes more than one system-level event or procedure,
which are executed in some particular sequence. Since, in a non-trivial system,
there can be many possible execution sequences of the events, identifying all of
the valid sequences may not be an easy task. In our approach, we deal with
this complexity in a stepwise manner. On the abstract level, an initial scenario
is provided by the user. The abstract model of the system conforms to or for-
mally satisfies this scenario, meaning that the scenario is in fact a the valid
behavior of the model. This scenario is a sequence of the abstract event(s) in
their order of execution. Once an abstract scenario has been provided, after-
wards, for each refinement step scenarios are refined automatically. Fig.2 shows
the refinement process where an abstract model Mi is refined by Mi+1 (denoted
by Mi �c Mi+1). This refinement (�c) is a controlled refinement as will be
discussed in detail in section 3.2. Scenario Si is an abstract scenario, formally
satisfiable (|=) by specification model Mi, is provided by the user. In the next
refinement step, scenario Si+1 is constructed automatically from Mi, Mi+1 and
Si in such a way that Si+1 is formally satisfied or conformed by the model Mi+1.
The automatically generated scenario Si+1 represents functionalities, in part or
whole, of the model Mi+1.

In some cases, the model Mi+1 may contain some extra functionalities or
features, such as incorporated fault-tolerance mechanisms, which were omitted
or out of scope of scenario Si. These extra features, denoted by SEF , can be
added in the scenario Si+1 manually. The modified scenario Si+1 ∪ SEF must
be checked (by means of available tools) to be satisfied/conformed by the model
Mi+1. We can follow the same refinement process, now starting with Si+1∪SEF ,
until we get Si+n.

After the final refinement, the system is implemented from the model Mi+n.
This implementation is called system under test (SUT). The scenario Si+n is
unfolded into the executable test cases that are then applied to SUT. In the
section 3, we will demonstrate how scenarios are represented and refined. In the
next section, we present some mathematical preliminaries for our model-based
testing approach.
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2.2 Mathematical Preliminaries

The formal models that we use in this work are labelled transition systems. These
are formally defined in the following:

Definition 1
A labelled transition system (LTS) is a 4-tuple 〈S,L, T, s0〉 where

– S is countable, non-empty set of states ;
– L is a countable set of labels ;
– T ⊆ S × L× S is the transition relation
– s0 ∈ S is the initial state.

The labels in L represent the events in the system. Let l = 〈S,L, T, s0〉 be a
label transition system with s, s

′
in S and let μi ∈ L.

s
μ−→ s′ =def (s, μ, s′) ∈ T

s
μ1...μn−−−−→ s′ =def ∃ s0, . . . , sn : s = s0

μ1−→ s1
μ2−→ . . .

μn−−→ sn = s′

s
μ1...μn−−−−→ =def ∃ s′ : s μ1...μn−−−−→ s′

behavior of LTS is defined in terms of traces where a trace is a finite sequence of
events in the system. The set of all traces over L is denoted by L∗. For an LTS
l = 〈S,L, T, s0〉, the behavior function, denoted by beh(LTS), is defined as

beh(l) =def {σ ∈ L∗ | s0 σ−→ } 
�

Definition 2

1. A test sequence, denoted by t, is a finite sequence of events, μ1, μ2, . . . μn, in
the system defined as

s0
μ1−→ s1

μ2−→ . . .
μn−−→ sn

where n ∈ N and si are system states.
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2. A test scenario , denoted by ts, is collection of test sequences present in the
behavior of LTS l,

ts ⊆ beh(l) 
�

Definition 3

1. The System Under Test (SUT) is an executable implementation of the mod-
els. Abstractly, an SUT can be viewed as a Labelled Transition System (LTS)
having states and events.

2. A test case denoted as tc, is a finite test sequence to be tested on SUT.
Moreover, each test case also includes the expected result(s) of the test case
execution. This result is used to compute the verdict function.

3. A verdict function ν is defined, in terms of Labelled Transition System (LTS)
with test sequence (ts), as

ν(LTS, ts) = Passed iff ts ∈ beh(LTS)

Similarly, in the context of System Under Test (SUT), the verdict function
is used to check if the test case execution has given expected results or not.

ν(SUT, tc) = Passed iff tc ∈ beh(SUT )
Failed otherwise 
�

3 Formal Framework

3.1 Modeling in Event-B

The Event-B [5,4] is a recent extension of the classical B method [3] formalism.
Event-B is particularly well-suited for modeling event-based systems. The com-
mon examples of event-based systems are reactive systems, embedded systems,
network protocols, web-applications and graphical user interfaces.

In Event-B, the specifications are written in Abstract Machine Notation
(AMN). An abstract machine encapsulates state (variables) of the machine and
describes operations (events) on the state. A simple abstract machine has fol-
lowing general form

MACHINE AM
SETS TYPES
VARIABLES v
INVARIANT I
INITIALISATION INIT
EVENTS

E1 = . . .
. . .
EN = . . .

END

A machine is uniquely defined by its name in the MACHINE clause. The
VARIABLE clause defines state variables, which are then initialized in the
INITIALISATION clause. The variables are strongly typed by constraining
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predicates of the machine invariant I given in the INVARIANT clause. The
invariant defines essential system properties that should be preserved during
system execution. The operations of event based systems are atomic and are
defined in the EVENT clause. An event is defined in one of two possible ways

E = WHEN g THEN S END

E = ANY i WHERE C(i) THEN S END

where g is a predicate over the state variables v, and the body S is an Event-B
statement specifying how the variables v are affected by execution of the event.
The second form, with the ANY construct, represents a parameterized event
where i is the parameter and C(i) contains condition(s) over i. The occurrence
of the events represents the observable behavior of the system. The event guard
(g or C(i)) defines the condition under which event is enabled.

Event-B statements are formally defined using the weakest precondition se-
mantics [8]. The defined semantics is used to demonstrate correctness of the
system. To show correctness of an event-based system it is necessary to formally
prove that the invariant is true in initial state and every event preserves the
invariant:

wp(INIT, I) = true, and
gi ∧ I ⇒ wp(Ei, I)

An Event-B machine describes a state-machine that represents particular behav-
ior of the machineM . We can describe it as an instantiation of labelled transition
system, defined in Section 2.2.

Definition 4
An Event-B machine denotes a labelled transition system 〈S,L, T, s0〉 where

– S is set of Event-B states, where the state of an Event-B machine is a par-
ticular assignment of values to the Event-B variables;

– L is a set of event names;
– the transition relation T is constructed from single transitions of the form

s
ev−→ s′

where s and s′ are Event-B states and ev is the name of an event.
– s0 is the state of an Event-B machine after initialization. 
�

3.2 Refinement of Event-Based Systems

The basic idea underlying the formal stepwise development is to design a system
implementation gradually, by a number of correctness preserving steps, called
refinements. The refinement process starts from creating an abstract, albeit im-
plementable, specification and finishes with generating executable code. In gen-
eral, the refinement process can be seen as a way to reduce non-determinism of
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the abstract specification, to replace abstract mathematical data structures by
data structures implementable on a computer, and, hence, gradually introduce
implementation decisions.

We are interested in how refinement affects the external behavior of a system
under construction. Such external behavior can be represented as a trace of ob-
servable events, which then can be used to produce test cases. From this point
of view, we can distinguish two different types of refinement called atomicity
refinement and superposition refinement.

In Atomicity refinement, one event operation is replaced by several opera-
tions, describing the system reactions in different circumstances the event occurs.
Intuitively, it corresponds to a branching in the control flow of the system. Let us
consider an abstract machine AM A and a refinement machine AM AR given
below. It can be observed that an abstract event E is split (replaced) by the
refined events E1 and E2. Any execution of E1 and E2 will correspond to some
execution of abstract event E1. It is also shown graphically in Fig.3(a).

REFINEMENT AM AR
MACHINE AM A REFINES AM A

. . . . . .
EVENTS EVENTS

E = WHEN g E1 ref E = WHEN g ∧ g1 THEN S1 END
THEN S END E2 ref E = WHEN g ∧ g2 THEN S2 END

END END

In Superposition refinement, new implementation details are introduced into
the system in the the form of new events that were invisible in the previous
specification. These new events can not affect the variables of the abstract spec-
ification and only define computations on newly introduced variables. For our
purposes, it is convenient to further distinguish two basic kinds of superposition
refinement, where

– a non-looping event is introduced,
– a looping but terminating event is introduced.

Let us consider an abstract machine AM S and a refinement machine AM SR
as shown below

REFINEMENT AM SR
MACHINE AM S REFINES AM S

. . . . . .
EVENTS EVENTS

E = WHEN g E = WHEN g THEN S END
THEN S END E1 = WHEN g1 THEN S1 END

END END

It can be observed that the refined specification contains both the old and the
new events, E and E1 respectively. To ensure termination of the new event(s),
the VARIANT clause is added in a refinement machine. This VARIANT
clause contains an expression over a well-founded type (e.g., natural numbers).
The new events should decrease the value of the variant, thus guaranteeing that
the new events will eventually return the control as the variant expression can
not be decreased indefinitely. These two types of refinements are also shown
graphically in Fig.3(b) and (c).
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Fig. 3. Basic refinement transformations

Let us note that the presented set of refined types is by no means complete.
However, it is sufficient for our approach based on user defined scenarios.

The event-based development gradually (in a controlled way) reveals more ob-
servable states of the system. Even if the idea of controlled refinement is generic,
the inspiration for it came from [11], where a fault-tolerant agent system was
developed, gradually incorporating fault-tolerance mechanisms. In this way, both
normal and abnormal functionalities (faults/failures) can be modelled. To model
abnormal behavior, the system reactions in the form of specific fault-tolerance
mechanisms are added to the refined models. These mechanisms include mod-
elling of special degraded states, recovery actions, failure modes and so on. In
the development of safety/security-critical or communication systems, handling
of such events often contains the most of the system’s complexity.

3.3 Scenario Refinement and Representation

In section 2.1, we introduced the notion of scenarios. Each such scenario can
be represented as a Communicating Sequential Process (CSP) [10] expression.
Since we develop our system in a controlled way, i.e. using basic refinement trans-
formations described in Section 3.2, we can associate these Event-B refinements
with syntactic transformations of the corresponding CSP expressions. There-
fore, knowing the way model Mi was refined by Mi+1, we can automatically
refine scenario Si into Si+1. To check whether a scenario Si is a valid scenario of
its model Mi, i.e., model Mi satisfies (|=) scenario Si, we use ProB [12] model
checker. ProB supports execution (animation) of Event-B specifications, guided
by CSP expressions. The satisfiability check is performed at each refinement
level as shown in the Fig.2. The refinement of scenario Si is the CSP trace-
refinement [14] denoted by �T .

As we have described before, the scenarios are represented as CSP expressions.
We refine our models in a controlled way targeting at individual events. We
assume that the events are only executed when their guards are enabled. For
simplicity, we omit the guard information from CSP expressions. Here we will
discuss how individual refinement steps affect the scenarios. Let us assume we
are given an abstract specification M0 with three events, namely, A, B and C, and
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A
B1 C

B2 C

Fig. 4. Atomicity Refinement

a scenario S0 representing the execution order of these events: first the event A,
then the event B, and finally the event C. The CSP expression for scenario S0 is
given by

S0 = A→ B→ C→ SKIP

In the next refinement step, the model M0 is refined by M1. This refinement
step may involve any of three types of the supported refinements, as discussed in
Section 3.2. In order to reflect the changes from the refined model into scenarios,
we need to update/refine our CSP expressions accordingly. We will discuss the
scenario refinement step one by one in the following.

Atomicity Refinement. Let us suppose an event B is refined using atomicity
refinement. As a result, it is split into two events namely B1 and B2. It means
that the older event B will be replaced by two new events B1 and B2 modelling
a branching in the control flow. As a CSP expression we can represent the new
refined scenario S1 as

S1 = A→ ((B1 → CONT) 
 (B2 → CONT))
CONT = C→ SKIP

where 
 is an internal choice operator in CSP. We use internal choice operator
instead of external one because all of the events in our system have guards which
are strengthened in a way that at a time only one event is enabled for execution.
This can also be represented graphically as shown in Fig. 4

Superposition refinement. Let us suppose we use superposition refinement
to refine an event C. As a result, a new non-looping event D is introduced in the
system.

The new scenario S1 is represented as a CSP expression in the following:

S1 = A→ B→ D→ C→ SKIP

In the second case, let us suppose we again use superposition refinement to refine
event C. However, this time a new looping event D is introduced into the system.
The corresponding CSP expression is given as

S1 = A→ B→ D→ C→ SKIP

where D is defined as

D = D 
 SKIP

The new scenario can also be represented graphically as Fig. 5.
In the next section, we outline how scenarios are unfolded into test cases.
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Fig. 5. Superposition refinement type II

3.4 Instantiation of Scenarios as Test Cases

Now we need to translate a scenario into a test case. The distinction between
the two is the following. For a scenario, we are mathematically guaranteed that
the model will conform to the scenario and it can be checked, e.g., by model-
checking. For the SUT, we clearly can not give any such guarantee. Thus for each
event in the scenario we need to check that SUT has executed the corresponding
action correctly. For our approach, we use the ProB model checker, which has the
functionality to animate B specifications guided by the provided CSP expression.
After the execution of each event, present in the scenario, information about the
changed system state is stored.

In other words, the execution trace is represented by a sequence of pairs
< e, s′ >, where e is an event and s′ is a post-state (the state after execution of
event e). From now on we will refer to a single pair < e, s′ > as an ESPair.

For a finite number of events e1, e2.....en, present both in the model M and
the System Under Test (SUT), a test case t of length n, defined in terms of test
a sequence in section 2.2, consists of an initial state INIT and a sequence of
ESPairs

t = INIT, {< e1, s
′
1 >,< e2, s

′
2 >, ....... < en, s

′
n >}

Similarly, a scenario, as formally defined in section 2.2 as finite set of related
test cases, i.e., a scenario ts is given as

ts = {t1, t2, .., tn}
As mentioned earlier, ESPair relates an event with its post-state. This infor-
mation is stored during test-case generation. For SUT these stored post-states
become expected outputs of the system and act as a verdict for the testing. After
execution of each event, the expected output is compared with the output of the
SUT. This comparison is done with the help of probing functions. The probing
functions are such functions of SUT that at a given point of their invocation, re-
turn state of the SUT. For a test-case to pass the test, each output should match
the expected output of the respective event. Otherwise, we conclude that a test
case has failed. In the same way, test cases from any refinement step can be used
to test implementation as long as both the implementation and the respective
test cases share the same events and signatures.

4 Testing Development of a Fault-Tolerant System

In this section we will demonstrate our approach on a case study development of
a fault tolerant agent system. The case study was first presented in [11]. Agent
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systems are examples of complex distributed systems. Though agents operate in
unreliable communication environment, often such systems have high reliability
requirements imposed on them. Thus, ability to operate in a volatile error prone
environment and have regularly to cope with abnormal situations that are typical
for agent systems is the essential requirement for designing such systems. The
development of such systems should also facilitate systematic integration of the
fault tolerance mechanisms into agent applications.

The most typical faults that these applications encounter are temporal con-
nectivity losses, which can cause failures of communication between cooperating
agents or between an agent and the server. In [11], the agent and server soft-
ware are developed from the corresponding B specifications, where the fault
tolerance features are gradually integrated into these specifications. Hence, the
development of the fault-tolerance mechanisms becomes a part of the system
development.

For example, while modelling collaboration of agents, we have to define the
agent behavior in the presence of message losses, hardware failures, etc. Generally
speaking, fault tolerance in agent systems is supported by a set of abstractions
used by the application developers and a specialised middleware. The abstrac-
tions are developed to systematically separate the normal system behavior from
the abnormal one. The middleware detects disconnections and, when necessary,
involves agents into error recovery.

The formal development, presented in [11], is used in this section to demon-
strate our model based testing approach. The main refinement steps introducing
the abnormal system behavior (disconnections, hardware failures) and the cor-
responding system reactions (recovery actions, aborting) are reflected in the
corresponding test scenarios.

We start our development with a very simple specification of a mobile agent
system, where an agent performs three basic tasks when connected to the server.
These basic tasks are named as Engage, NormalActivity and Disengage. To incor-
porate the fault-tolerant behavior, the system is repeatedly refined using the ba-
sic refinement types described in Section 3.3. The introduction of fault-tolerance
increases the complexity of the system. Our testing methodology can be applied
to test the new scenarios that result from this complexity. The initial Event-B
machine named AgentSystem specifies the three basic events, mentioned above.

MACHINE AgentSystem

SETS Agents

VARIABLES agents

INVARIANT agents ⊆ Agents

INITIALISATION agents:= ∅
EVENTS

Engage = ANY aa WHERE aa ∈ Agents ∧ aa 
∈ agents

THEN agents := agents ∪ {aa} END;

NormalActivity = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN skip END ;
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Engage

NormalActivity

Disengage

Fig. 6. Execution graph of machine AgentSystem

Disengage = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN agents := agents - {aa} END

END

In the specification AgentSystem, let us note that the event NormalActivity may
happen zero or more times. The sequence of events, as determined by the spec-
ification, is shown in Fig.6. The INIT is an initialisation event.
The given scenario can be expressed as the following Communicating Sequential
Process (CSP) expression

AgentSystem = Engage -> Node1
Node1 = NormalActivity -> Node1
Node1 = Disengage -> SKIP

In the next refinement machine AgentSystem1, the event Disengage is refined
into two new events in order to differentiate between leaving normally or be-
cause of a failure. This refinement step is atomicity refinement as discussed in
Section 3.3. The other events of the specification remain the same. The execution
graph for this refinement is shown in Fig.7.

REFINEMENT AgentSystem1 REFINES AgentSystem

. . .

EVENTS

. . .

NormalLeaving ref Disengage = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN agents := agents - {aa} END

Failure ref Disengage = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN agents := agents - {aa} END

END

The testing scenario for AgentSystem1 is expressed as the following CSP expres-
sion

AgentSystem1 = Engage -> Node1
Node1 = NormalActivity -> Node1
Node1 = NormalLeaving -> SKIP
Node1 = Failure -> SKIP
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NormalActivity

NormalLeaving

Failure
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Fig. 7. Execution graph of machine AgentSystem1

In the next refinement machine AgentSystem2, we introduce temporary loss of
connection for our agents. This new event is called TempFailure. This refine-
ment step introduces a looping event (see superposition refinement in Section
3.3). To guarantee termination of the new event, we introduce a new variable
disconn limit, which is used as a variant.

REFINEMENT AgentSystem2 REFINES AgentSystem1

. . .

VARIABLES agents, disconn limit

INVARIANT disconn limit ∈ NAT

VARIANT disconn limit

EVENTS

. . .

NormalActivity = ANY aa WHERE aa ∈ agents

THEN disconn limit := Disconn limit END;

TempFailure = ANY aa WHERE (aa ∈ agents)

THEN disconn limit := disconn limit - 1 END;

END

The execution flow for AgentSystem2 is given in Fig.8. The CSP expression
for the refined scenario is given as

AgentSystem2 = Engage -> Node1
Node1 = NormalActivity -> Node1
Node1 = TempFailure -> Node1
Node1 = NormalLeaving -> SKIP
Node1 = Failure -> SKIP

NormalActivity

INIT

Engage
NormalLeaving

Failure
Final states

TempFailure

Fig. 8. Execution graph of machine AgentSystem2
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Fig. 9. Execution graph of machine AgentSystem3

In next refinement machine AgentSystem3, a new event Disconnect is introduced.
It is the event that precedes (causes) TempFailure event. This refinement is a
superposition refinement introducing a non-looping event. A new variable timers
is used to ensure order of execution.
REFINEMENT AgentSystem3 REFINES AgentSystem2

. . .

EVENTS

. . .

Disconnect = ANY aa WHERE aa ∈ agents

THEN timers := timers ∪ {aa} END

TempFailure = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)

THEN disconn limit := disconn limit - 1 || timers := timers - {aa} END;

END

The execution flow for AgentSystem3 is shown in Fig.9. The refined scenario is
represented as following CSP expression

AgentSystem3 = Engage -> Node1
Node1 = NormalActivity -> Node1
Node1 = Disconnect -> TempFailure -> Node1
Node1 = NormalLeaving -> SKIP
Node1 = Failure -> SKIP

In the final refinement step, we elaborate on error recovery and time expiration
by splitting the events TempFailure and Failure by atomicity refinement.
REFINEMENT AgentSystem4 REFINES AgentSystem3

. . .

EVENTS

. . .

TimerExpiration ref Failure = ANY aa WHERE

(aa ∈ agents) ∧ (aa ∈ ex agents)

THEN agents := agents - {aa} || ex agents := ex agents - {aa} END;

AgentFailure ref Failure = ANY aa WHERE

(aa ∈ agents) ∧ (aa 
∈ timers) ∧ (aa 
∈ ex agents)

THEN agents := agents - {aa} END;

Connect ref TempFailure = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)

THEN disconn limit := disconn limit - 1 || timers := timers - {aa} END;
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Fig. 10. Execution graph of machine AgentSystem4
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Fig. 11. All possible Event execution scenarios

Timer ref TempFailure = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)

THEN disconn limit := disconn limit - 1 || ex agents := ex agents ∪ {aa} ||
timers := timers - {aa} END

END

The execution graph for AgentSystem4 is shown in Fig.10. This graph shows
all the possible events with their respective states but the order of execution is
controlled by their guards. In addition, the Fig.11 shows all the possible scenarios
based on the information derived from events’ guards and bodies. The dashed
arrows represent possible loops of the event(s) during the execution. In order
to generate concrete test cases from such models, the number of executions of
an event in the loop can be restricted to some finite bound. The value for this
bound depends on user’s coverage criteria.

When testing event-based systems, the system can have demonic choice and
can execute the loop-event forever. One of the possible ways to restrict such
an execution is to introduce variants both in the specification and the imple-
mentation. The variant will ensure finite number of executions of that event. In
the case where implementation does not has such variant and the system may
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continue execution forever then applying test case of finite length will detect a
live-lock in the system. Here it is assumed that no valid implementation has such
infinite execution.

The CSP representations of the AgentSystem4 machine is given in the
following.

AgentSystem4 = Engage -> Node1
Node1 = NormalActivity -> Node1
Node1 = Disconnect -> Node2
Node1 = Failure -> SKIP
Node1 = NormalLeaving -> SKIP
Node1 = TimerExpiration -> SKIP
Node2 = TempFailure -> Node1
Node2 = Timer -> Node1

Since in Event-B, every event is guarded, here, it is assumed that each event is
enabled only when its corresponding guard is enabled. The guard information
can also be expressed within CSP expressions as

(BooleanGuard & EventName)

These CSP expressions are finally unfolded into test cases by the methodology
described in Section 3.4. These test cases are applied on the implementation to
test the fault-tolerance scenarios.

In this case study, we showed how our scenario-based testing approach can
be used in developing a fault-tolerant software application. We described a step-
wise development approach showing how testing scenarios are refined alongside
the refinements in the corresponding models. In this case study example, we
used a chain of Event-B machines where the test cases are finalized from the
single sufficiently refined machine. However, in practice, it is possible to decom-
pose functionalities of the system across multiple components (machines). Our
scenario-based testing approach would also work in that case provided that these
components are developed from an abstract component in a consistent fashion
also obeying the basic refinement types described earlier in the section 3.2 of
this paper.

5 Related Work and Conclusions

The existing tools or techniques for model-based testing using model-oriented
languages (e.g., see [7,15]) are based on the notion of the coverage graph, which
is obtained from symbolic execution of the model. In these approaches, as a
first step, the input space of an operation is partitioned into equivalent classes
to create the corresponding operation instances and then the coverage graph
is constructed. This coverage graph contains the sequence of operations which
are then tested in the implementation. However, in these approaches, the user
scenarios are not represented and tested.
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In our earlier work [16], we presented the scenario-based testing approach for
B models where we designed an algorithm for constructing test sequences across
different refinement [6] models. However, this algorithm is exponential in nature
thus limiting its practical applicability.

In this paper, we presented a model-based testing approach based on auto-
matic refinement of test scenarios. In this work, we also described basic refine-
ment rules, allowing us to do the development in a controlled way, and trans-
form our testing scenarios according to those rules. This approach does not
involve any exponential algorithm thus making it more applicable in practice.
This methodology is well suited for development of complex systems in which
the fault-tolerance mechanisms are incorporated alongside the main system func-
tionality. However, this automatic test case generation method can also be used
in formal software development process in general. The presented methodology
also allows us to have multiple instances of testing scenarios to test different
functionalities or features of the system.

Currently, our approach supports several basic refinement types. However, in
the future, we are going to extend our method by including more refinement
types. We also plan to work on building an execution environment where the
test cases can be executed on the system-under-test in a controlled manner. This
would enable us to interpret the test results for each test case execution. In the
cases, where an error is discovered, the environment should help to trace this
error to a particular place in the corresponding software model.
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Abstract. Scientific and business communities present unprecedented
requirements on provenance, where the provenance of some data item is
the process that led to that data item. Previous work has conceived a
computer-based representation of past executions for determining prove-
nance, termed process documentation, and has developed a protocol,
PReP, to record process documentation in service oriented architectures.
However, PReP assumes a failure free environment. Failures lead to pro-
cess documentation unable to be recorded, losing the evidence that a
process occurred. This is not acceptable in the applications relying on
process documentation and would cause disastrous consequences. This
paper describes our solution, F PReP, a protocol for recording process
documentation in the presence of failures. A complete formalisation of
the protocol using Abstract State Machines is also presented.

1 Introduction

In scientific and business communities, a wide variety of applications have pre-
sented unprecedented requirements [20] for knowing the provenance of their data
products, e.g., where they originated from and what has happened to them since
creation. In chemistry experiments, provenance is used to detail the procedure by
which a material is generated, allowing the material to be patented. In healthcare
applications, in order to audit if proper decisions were made for a patient, there
is a need to trace back the origins of these decisions. In engineering manufactur-
ing, keeping track of the history of generated data in simulations is important
for users to analyse the derivation of their data products. In finance business,
the provenance of some data item establishes the origin and authenticity of the
data item produced by financial transactions, enabling reviewers and auditors
to verify if these transactions are compliant with specific financial regulations.

To meet these requirements, Groth et al. [15] have proposed an open architec-
ture to record and access a computer-based representation of past executions,
termed process documentation, which can be used for determining the provenance
of data. A generic recording protocol, PReP [16], has been developed to provide
interoperable means for recording process documentation in the context of ser-
vice oriented architectures. In this architecture, process documentation consists

M. Butler et al. (Eds.): Fault Tolerance, LNCS 5454, pp. 196–219, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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of a set of assertions (termed p-assertions) made by asserting actors (i.e., either
clients or services) involved in a process (i.e., the execution of a workflow). A
dedicated repository, termed provenance store, is used to maintain p-assertions.
For scalability reason, multiple provenance stores may be employed and process
documentation may end up distributed, linked by pointers recorded along with
p-assertions in each store. Using the pointer chain, distributed process documen-
tation can be retrieved from one store to another.

Recording process documentation in the presence of failures is an issue that
has been lacking attention so far. PReP assumes a system in which no failure
occurs. However, large scale, open distributed systems are not failure-free [8,9].
For example, a service may not be available and network connection may be
broken. The presence of failures may prevent process documentation from being
recorded, losing the evidence that a process occurred. We now draw a parallel
between the documentation of a process and a particular type of evidence in a
legal setting, testimony. The absence of testimony from eyewitnesses to a crime
scene would make it difficult for juries to make a judgement about whether
to believe the set of claims provided by a suspect. Similarly, the unavailability
of process documentation is not acceptable in the above domains that rely on
process documentation to determine the provenance of their data products. It
may also cause disastrous consequences as in the example of a provenance-based
service billing system. In this system, users are charged according to their usage
of services described by process documentation. If a user invoked a service, but
documentation fails to describe this invocation, then the user will be charged
too little, which must be avoided.

To address this problem, we have designed a recording protocol, F PReP,
which provides remedial actions and a novel component, Update Coordinator,
to guarantee the recording of process documentation in the case of failures. The
protocol has been formalised as an abstract state machine and its correctness
has been proved. This paper details the protocol and presents its formalisation.

The rest of the paper is organised as follows: Section 2 introduces some termi-
nology and identifies a set of requirements that the protocol should meet. Section
3 states our failure assumptions and defines protocol messages. In Section 4, we
present a formalisation of the protocol and detail the protocol’s behaviour. Then
we outline the proof of the protocol’s correctness in Section 5. Finally, Section
6 discusses related work, followed by a conclusion in Section 7.

2 Terminology and Requirements

2.1 Terminology

Process documentation describes a past process that led to a result. Such a
process is modelled as a causally connected set of interactions between actors
involved in that process [14]. An interaction is concerned with one application
message exchanged between two actors, i.e., its sender and its receiver. An actor
documents an interaction by making p-assertions to provide a sender or receiver’s
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view of the interaction. Process documentation therefore consists of a set of p-
assertions.

A p-assertion can document the application message exchanged in an inter-
action (interaction p-assertion) or the internal state of an actor (actor state
p-assertion), such as time and memory usage, in the context of an interaction.
It can also be a relationship p-assertion, capturing the internal causal connec-
tions between interactions within the scope of an actor, i.e., the interaction where
an output message is sent (effect interaction) and the interaction where an input
message is received (cause interaction).

PReP specifies that both actors in an interaction must make p-assertions doc-
umenting the interaction for accountability or verification purposes. For scalabil-
ity reason, an actor can use various stores to record p-assertions about different
interactions, though p-assertions about the same interaction must be recorded
in the same place. Besides, the p-assertions made by the two actors in an inter-
action are also allowed to be recorded in two different stores. A notion of link,
i.e., a pointer to a provenance store, has been introduced to connect distributed
documentation [14].

There are two types of links, viewlink and causelink. If the two actors in an
interaction use two different stores, each actor records a viewlink that points to
the provenance store where the opposite party recorded their p-assertions about
that interaction. Therefore, both views of an interaction can be retrieved by
navigating from one provenance store to the other. The causelink is used in re-
lationship p-assertions. If the p-assertions that represent a cause interaction are
recorded in a different provenance store, a causelink is embedded in the relation-
ship p-assertion, indicating which provenance store the p-assertions representing
the cause interaction are stored in. To facilitate the description of our protocol,
we define a term ownlink as a pointer to the provenance store where an actor
records its own p-assertions.

Figure 1 shows an example of how links are recorded. Actor A sends an appli-
cation message M2 to actor B as a consequence of message M1. A uses provenance
stores PR and PA to record p-assertions about the interactions in which M1 and
M2 are exchanged, respectively. B records p-assertions about the receipt of M2
in provenance store PB. In order to exchange a viewlink to B, A includes its
ownlink to PA in M2. B then extracts the link and records it as its viewlink in
PB. As a result, a viewlink from PB to PA is created (shown by the arc VL 1). We
assume that A knows from its configuration that B always stores its p-assertions
in PB. Hence, A records a viewlink to PB in PA. Finally, A makes a relationship
p-assertion between its effect interaction containing M2 and the previous cause
interaction containing M1. In the relationship p-assertion, it adds a causelink to
PR, where the p-assertions related to the cause interaction are stored. A then
records the relationship p-assertion in PA, thus connecting PA to PR shown by
the arc CL.

By recording links, a pointer chain can be formed connecting all the prove-
nance stores hosting the documentation of a process. Using the pointer chain,
distributed documentation can be retrieved from one store to another.
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Fig. 1. A example of link [14]

2.2 Requirements

Miles et al. [20] have presented requirements that a provenance system should
support, such as verifiability, accountability, reproducibility, preservation, scal-
ability, generality, customisability, non-repudiation and distribution. They have
been of particular importance in motivating the design of our protocol. We now
identify several new requirements that are related to failures.

PReP does not specify well-defined behaviour when recording documentation
in the presence of failures. For example, it assumes an actor always obtains an
acknowledgement from a provenance store for receiving a p-assertion and hence
does not consider the situation where the acknowledgement is lost or provenance
store crashes before storing that p-assertion. This may result in incomplete pro-
cess documentation, which requires us to design a robust protocol to meet the
following requirement:

Requirement 1 (Guaranteed Recording). After a process finishes
execution, the entire documentation of that process must eventually be recorded
in provenance store(s).

Distributed process documentation is connected by a chain of pointers (links)
to enable retrievability. Accurate pointers must exist even in the presence of
failures, leading to two requirements.

Requirement 2 (Viewlink Accuracy). Viewlinks recorded for each interac-
tion of a process must eventually be accurate in provenance stores. Each must
point to the store where the other actor in the same interaction recorded p-
assertions documenting that interaction.

Requirement 3 (Causelink Accuracy). Causelinks recorded during a pro-
cess must eventually be accurate in provenance stores. Each must point to the
store where p-assertions about the corresponding cause interaction were recorded.
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Creation and recording p-assertions have already introduced overhead into the
application [13]. The remedial actions specified by the protocol may however take
up computing resources and interfere with applications. In terms of recording
performance, we identify another two requirements:

Requirement 4 (Efficient Recording). Recording p-assertions and taking
remedial actions should be efficient and introduce minimum overhead.

Requirement 5 (Transparent Recording). Recording p-assertions and tak-
ing remedial actions should be transparent to the application.

Among the above requirements, requirements Guaranteed Recording, Viewlink
Accuracy and Causelink Accuracy are concerned with the protocol’s correctness,
which are to be proved in Section 5.

3 Protocol Description

We firstly outline the design philosophy of F PReP and state several assump-
tions, under which F PReP meets the requirements identified in Section 2.2.
Then, we define the protocol’s messages and describe the protocol.

3.1 Design

The goal of our work is to design a general protocol, i.e., application and im-
plementation independent, for recording process documentation in large, open
distributed environments where a large number of provenance stores are present
and failures may occur. Since PReP has provided an application independent so-
lution to recording process documentation, we decided to derive PReP in order
to inherit its generic nature.

There are several challenges in designing a distributed protocol that can cope
with failures. Firstly, we need to state an appropriate failure model and sys-
tematically identify system behaviour in the case of failures. Failures are non-
deterministic in nature and typically very hard to predict. Restricting our scope
to particularly failures is hence necessary. Secondly, the protocol may involve
the co-operation of several parties such as asserting actors, provenance stores,
and if necessary, additional components. Designing such a distributed protocol
is notoriously difficult, since we have to stay in control of not only the normal
system behaviour when there is no failure but also of the complex situations
which can occur when failures happen.

We restrict ourselves to certain failures that may occur during the recording
of p-assertions into a provenance store.

Assumption 1. Provenance stores may crash, i.e., they halt and stop any fur-
ther execution, and can be restarted from their latest consistent state1.
1 The provenance store has been implemented as a stateless web service with a

database storage system. Hence the latest consistent state refers to the initial state
of the service and the latest checkpointed state of the database.
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Assumption 2. Messages to/from provenance stores can be lost, reordered but
not duplicated in communication channels.

We do not consider the failures of asserting actors and the exchange of applica-
tion messages since they are application dependant. Applications should provide
fault tolerance mechanisms to ensure asserting actors’ availability and reliable
exchange of application messages.

Assumption 3. An asserting actor has several provenance stores to use.

Given that we are considering an open system where there are a large number of
provenance stores, it is reasonable to make use of alternative stores to provide
fault tolerance.

We now analyse several failure types in a recording scenario where an asserting
actor sends a p-assertion (pa) to a provenance store (PS) and PS replies the
actor with an acknowledgement (ack) after recording pa in its persistent storage.

– The message pa is lost;
– PS crashes before receiving pa;
– PS crashes after receiving pa and before recording pa;
– PS crashes after recording pa and before replying ack;
– The message ack is lost.

From an asserting actor’s perspective, all these failure types may lead to the
incapability of receiving an ack from a provenance store. An asserting actor can
set a timeout when waiting for an ack message. If the actor does not receive a
response within that time, it knows failures may have occurred; it can then send
the p-assertion again. We note that a low speed network or a provenance store
experiencing slowdown can also result in an expired timeout. Since a p-assertion
may be recorded in a provenance store even in the case of timeout, a provenance
store should be designed to handle duplicate p-assertions due to retransmission,
and always return the same acknowledgement for a specific p-assertion.

We identify several remedial actions that the protocol needs to take in the
presence of failures. The primary one is to resend a p-assertion to a provenance
store due to a timeout. After several reattempts, if the p-assertion still fails to be
acknowledged, an actor may use alternative stores to resubmit the p-assertion
until it is acknowledged. A successful receipt of an acknowledgement tells the
actor that the p-assertion being acknowledged has been recorded in a provenance
store.

Since distributed process documentation is connected using links to enable re-
trievability, the use of alternative provenance stores causes a link to the original
store incorrect. Hence, an asserting actor needs to take other remedial actions.
To satisfy Causelink Accuracy, it can maintain history information of using alter-
native stores during its participation in a process. The protocol checks an actor’s
causelinks when recording relationship p-assertions and updates them according
to the history information. To achieve Viewlink Accuracy, we introduce a novel
component, Update Coordinator, to facilitate viewlink updating. An update co-
ordinator is only involved when an alternative store is used, which means it does
not participate in every interaction, hence introducing small overhead.
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Assumption 4. The update coordinator does not fail.

We can use the traditional fault-tolerance mechanisms such as replication to
ensure its availability. This is feasible since we can have only one coordinator
per process and a coordinator maintains only a small amount of information,
as illustrated later. However, it is infeasible to use the replication mechanism
for provenance stores for two reasons. Firstly, we have assumed an open system
where there are a great number of provenance stores, it is hard to assume each
is facilitated with replicated backups. Secondly, though replication is sophisti-
cated, it comes with a significant cost due to preserving the one-copy equivalence
property [23]. Given that the documentation produced in a process can be on the
order of terabytes [11], replication becomes very expensive and time consuming.
Therefore, compared with replicating provenance stores, the use of alternative
stores is a more general, simple and flexible approach.

To meet requirements Efficient Recording and Transparent Recording, F-PReP
is designed to be an asynchronous protocol, allowing actors to send p-assertions
at any time. This means that actors can choose when to record p-assertions
without delaying their execution. Secondly, all p-assertions about one interac-
tion are submitted in a single batch and hence can be acknowledged using one
acknowledgement message, saving on the overhead of establishing network con-
nections. Thirdly, remedial actions, e.g., selecting alternative stores, are taken
by the protocol irrespective of the application.

3.2 Messages

F PReP is a distributed protocol, specifying the behaviour of actors (i.e., assert-
ing actors, provenance stores and update coordinator) and their communications.
It is defined based on interaction i.e., the exchange of an application message
between a sender and receiver.

There are six messages in the protocol: Application Message (app), Interaction
Record Message (record), Record Ack Message (ack), Repair Message (repair),
Update Message (update), and Update Ack Message (uack). We now define each
message with Figure 2, which provides an example of actors exchanging these
messages.

Application Message. The application message app is exchanged by all ap-
plication actors. It contains application specific data needing to be transferred
between actors. In the context of a provenance system, the application message
is adapted to include interaction contextual information: an interaction key and
the sender’s ownlink.

An interaction key is generated by the sender in an interaction for uniquely
identifying the interaction from all other interactions. The receiver can then use
the same interaction key to record p-assertions about the same interaction.

In Figure 2, we assume that the key for the interaction where the sender, a,
sends an application message to the receiver, b, is i. We also assume the default
provenance stores that a and b use are PS1 and PS2, respectively. In Step 1, a
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4. ack(i, S) 3. record(i, S, a, PS2, pas)

1.app(d, i, PS1)

5. repair(i, S, PS2, PS1’)

8. record(i, R, b, PS1, pas)

6. update(i, S, PS1’)

2. record(i, S, a, PS2, pas)
sender: a 

(vl: PS2)
receiver: b 

(vl: PS1)

PS1 PS1’ PS2

Update Coordinator

(i, S) :<PS2, PS1’>

9. ack(i, R)

7. uack(i, S)

d:  Application Data
i:  Interaction Key

S, R: View Kind
a, b:  Actor Identity
PS1: Store Identity
pas:  P-assertions

Fig. 2. Protocol Message Exchanges

sends an app to b containing application data d, interaction key i and a’s ownlink
to PS1 (Step 1). Upon receiving app, b becomes aware of its viewlink to PS1.
We assume that a’s viewlink to PS2 has been made available to a by means not
explained in the figure; the viewlink can be built into a at deployment time or
transferred to a in a response message or in an extra message from b.

Interaction Record Message. For each interaction, both actors document the
interaction by asserting p-assertions and sending them in an interaction record
message, record, to their respective provenance stores. The message contains: (1)
an interaction key, identifying the interaction being documented; (2) a view kind,
indicating the role of the asserting actor in the interaction, i.e., a sender or a re-
ceiver; (3) an actor identity, representing the asserting actor that documents the
interaction, which is essential for recording attributable process documentation;
(4) a viewlink of the asserting actor for that interaction; (5) a set of p-assertions
that describe the interaction.

In Figure 2, both a and b create a set of p-assertions, pas, about the interac-
tion, i, and send them in record messages with their viewlink to PS2 and PS1,
respectively (Steps 3, 8). We note that the two record messages can be sent in
any order, not restricted by the step numbers in the figure.

The set of p-assertions must contain an interaction p-assertion to document
the exchange of an app message. If app is the consequence of receiving other
messages, then the sender of app must make a relationship p-assertion to capture
the causal connections between these messages.

Due to the asynchronous nature of the protocol, an asserting actor accumu-
lates record messages in a local queue and submits them to a provenance store
at its most convenient time. Before delivering a record message to a provenance
store, an actor checks all the relationship p-assertions in the message and up-
dates incorrect causelinks in order to meet Causelink Accuracy requirement.
These actions are detailed in Section 4.3.
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Record Ack Message. A provenance store acknowledges record message by
means of an acknowledgement message ack, only after it has successfully recorded
the content of record in its persistent storage. An ack message includes an inter-
action key and a view kind, indicating from which view of an interaction, a record
is being acknowledged. Therefore, one ack can acknowledge a set of p-assertions
in a record, which reduces communication overhead.

An asserting actor sets a timeout when waiting for an ack immediately after it
sends a record to a provenance store. This helps the actor take remedial actions
without waiting too long. If an ack is not received before the timeout, then the
actor resends the same record to the actor’s default store or an alternative store.
Only after receiving an ack acknowledging a record can the actor eliminate the
record from its local queue. An ack means that the acknowledged record message
has been processed and recorded in a provenance store persistently.

In Figure 2, a sends a record to its default store PS1 (Step 2) but does not
receive an ack before a timeout. Then it selects another store PS1′ to use (Step
3) and finally receives an ack (Step 4).

Repair Message. An asserting actor sends a repair message, repair, to an up-
date coordinator to request an update of the other actor’s viewlink. It consists
of four elements: (1) an interaction key, indicating in which interaction the op-
posite actor’s viewlink is to be updated; (2) the asserting actor’s view kind in
the interaction; (3) a pointer (DestPS) to the provenance store recording the
opposite actor’s viewlink in the interaction; (4) the actor’s ownlink, pointing to
the provenance store from which the actor received an ack for that interaction.

An actor issues a repair request only if it used an alternative store in an
interaction, which results in the other actor’s viewlink incorrect. In Figure 2,
the sender sends its record to the alternative store PS1′ (Step 3) and receives an
ack (Step 4). As a consequence, the receiver’s viewlink to PS1 becomes incorrect,
hence requiring an update. In order not to interfere with applications to support
Transparent Recording requirement, the protocol does not allow the sender to
directly inform the receiver with its new ownlink, which is now pointing to PS1′.
Instead, the sender requests an update coordinator (Step 5) to help update the
receiver’s provenance store (Step 6).

An update coordinator is necessary since both sender and receiver may issue
a repair request in an interaction. This cannot be achieved by direct update of
the other actor’s provenance store, because at that moment, one does not know
which store the opposite actor is actually using. In Figure 2, if the receiver uses
an alternative store to record its p-assertions, then the sender’s viewlink to PS2
becomes incorrect as well. In that case, the receiver needs to issue another repair
request to the coordinator.

Since an update coordinator is not involved in every interaction, we recommend
that all the application actors participating in a process employ one coordinator.
If using more than one, then any two actors exchanging an application message
must share the same one in order to ensure Viewlink Accuracy requirement.
The identifier of a coordinator can be built in actors or exchanged to other actors
in the application message app. Figure 2 employs the former approach.
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We do not consider the loss of repair messages in channel, which can be solved
by using an extra acknowledgement message and retransmission actions. As-
sumption 4 implies that a repair request can always be processed by an update
coordinator.

Update Message. The update coordinator sends an update message, update,
to a provenance store in order to update a viewlink in that store. The message
contains: (1) an interaction key, indicating for which interaction, the opposite
actor’s viewlink needs to be updated; (2) the view kind of the asserting actor
that issued a repair request for that interaction; (3) the ownlink of the requesting
actor. The DestPS field in the repair message tells the update coordinator where
to send the update message.

In order to deal with the case where both actors in an interaction each issue a
repair request, which can be in any order, the update coordinator maintains re-
quest information: the identity of the destination store, specified by the DestPS
field in the repair message, and the requesting actor’s ownlink. This request in-
formation is indexed by the pair of interaction key and view kind. In Figure 2,
after receiving a repair request from the sender, the coordinator records a tuple
(PS2, PS1′) indexed by the pair (i, S). Then the coordinator sends to store PS2
an update message containing the sender’s ownlink to PS1′ (Step 6). Therefore,
the receiver’s viewlink stored in PS2 is replaced with PS1′ and hence becomes
correct.

If the update coordinator receives two repair messages each from one asserting
actor in an interaction, then it sends out two update messages after performing
operations using the stored request information to ensure that both update mes-
sages are delivered to correct destination stores. We detail the coordinator’s
internal behaviour in Section 4.5.

We note that a provenance store may receive an update and a record message
in any order (Steps 6, 8). The protocol specifies that the viewlink obtained from
update is NOT overwritten by the one from record in order to achieve Viewlink
Accuracy requirement.

Update Ack Message. After updating a viewlink in a provenance store, the
store returns an acknowledgement message uack, containing an interaction key
and a view kind, to the update coordinator acknowledging the respective update
message. Since update or uack messages may be lost in channel according to
Assumption 2, the coordinator sets a timeout when waiting for a uack and an
expired timeout leads to resending the same update message.

4 Protocol Formalisation

F PReP has been formalised through the use of an abstract state machine
(ASM). The ASM notation we adopt has been used previously to describe a
distributed reference counting algorithm [22] and a fault-tolerant directory ser-
vice for mobile agents [21]. The abstract machine characterises the behaviour
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of actors with respect to the messages they send and receive. This behaviour
is specified by the permissible transitions that the ASM is allowed to perform.
Such a formalisation provides a precise, implementation-independent means of
describing the system.

We begin by describing the state space of the ASM, and then proceed to
discuss its transitions. Finally, we detail the behaviour of each kind of actors.

4.1 System State Space

Figure 3 shows the system state space. We identify specific subsets of actors in
the system, namely, the senders, the receivers, provenance stores, and update
coordinators. The set of each of protocol messages is defined formally as an
inductive type. For example, the set of Application Messages is defined by an
inductive type whose constructor is app and whose parameters are from the
set of DATA, IK and OL. The notation DATA refers to the set of application
related data. The set of all protocol messages (M) is defined as the union of these
message sets. Messages are exchanged over a set of communication channels, K.
Since no assumption is made about message order in communication channels,
K is represented as bags of messages between pairs of actors. The power set
notation (P) denotes that there can be more than one of a given element.

We define the set of relationship p-assertions as an inductive type whose
constructor is rel-pa. The names of relationships are given in the set REL. Since
a relationship p-assertion captures causal connections between effect interaction
and cause interaction(s), we use the set EID and CID to index the respective
interactions, each containing the interaction’s key (IK) and the role (VK) that
the actor plays in that interaction. With EID or CID, the p-assertions about a
related interaction can be found in a local provenance store or a remote store
(indicated by a causelink from the set CL). The set of interaction p-assertions
can be constructed by i-pa whose parameter is from the set IK and application
data set DATA. Since actor state p-assertions are not used in the formalisation,
we do not model them to simplify the state space. The set of all kinds of p-
assertions (PA) is defined as the union of these p-assertion sets.

The internal functionality of each kind of actors is modelled as follows.

Sender and Receiver State Space. An asserting actor (indexed by an as-
serter identity) uses various tables (in T ∈ IN, asserter T ∈ ASSERTER,
log T ∈ LOG, queue T ∈ QUEUE, lc ∈ LC and timer T ∈ TIMER) to record
p-assertions into a provenance store. A table maps a key to a tuple. For example,
the table (asserter T ) maps an interaction key (κ ∈ IK) and the actor’s view
kind (v ∈ VK) to a tuple of four elements: the state of an interaction record
message during recording (str ∈ STR), the actor’s ownlink (ol ∈ OL), viewlink
(vl ∈ VL) and the p-assertions created in the interaction (P (PA)).

As all the data that an asserting actor works upon is located in received mes-
sages, these incoming messages and interaction keys identifying these messages
are stored in a table (in T ), which is used when creating p-assertions.
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A = {a1, . . . , an} (Set of Actor Identities)
SID ⊆ A (Sender Identities)
RID ⊆ A (Receiver Identities)
PID ⊆ A (Provenance Store Identities)
CID ⊆ A (Coordinator Identities)

M = app : DATA× IK× OL→M (Set of Protocol Messages)
| record : IK× VK× A× VL× P (PA)→M
| ack : IK× VK→M
| repair : IK× VK× DESTPS× OL→M
| update : IK× VK× OL→M
| uack : IK× VK→M

K = A× A→ Bag(M) (Set of Channels)

R = {m ∈ M|m = record(κ, v, a, vl, pas)} (Set of Interaction Records)
IK = SID× RID×N (Set of Interaction Keys)

VK = {S, R} (Set of ViewKinds)
OL = PID (Set of Ownlinks)
VL = PID (Set of Viewlinks)

DESTPS = PID (Set of Destination Stores)

PA = rel-pa : REL× EID× P (CID)→ PA (Set of P-Assertions)
| i-pa : IK× DATA→ PA

REL = {r1, . . . , rn} (Set of Business Logic Descriptions)
EID = IK× VK (Set of EffectIDs)
CID = CL× IK× VK (Set of CauseIDs)
CL = PID (Set of CauseLinks)

IN = A→ P (IK× DATA) (Set of In Tables)
ASSERTER = A→ IK× VK→ STR⊥ × OL⊥ × VL⊥ × P (PA) (Set of Asserting Actors)

LOG = A→ IK× VK→ CHANGED⊥ × APS⊥ (Set of Log Tables)
QUEUE = A→ Queue(R) (Set of Record Queues)

LC = A→ N (Sender’s Local Counts)
PSLIST = A→ P (PID) (Set of Alternative Store Lists)

STR = {READY, SEND, SENT, ACKED, OK} (States of Interaction Record)
CHANGED = {TRUE, FALSE} (Flags of using alternative PS))

APS = PID (Set of Alternative Stores Used)

TIMER = A→ IK× VK→ STATUS⊥ × TIMEOUT (Set of Timers)
STATUS = {ENABLED, DISABLED} (Set of Timer Statuses)

TIMEOUT = N (Set of Timeouts)

PS = PID→ IK× VK→ A⊥ × VL⊥ × P (PA) (Set of Provenance Stores)

C = CID→ IK× VK→ DESTPS⊥ × OL⊥ (Set of Coordinators)
UPDATE = CID→ IK× VK→ STATE⊥ (Set of Update Tables)

STATE = {UPDATE, SENT, UPDATED, F} (Set of Update States)

SC = IN× ASSERTER× QUEUE× LOG× LC×
TIMER×PS× C× UPDATE×K (Set of Configurations)

Characteristic Variables:
a ∈ A, as ∈ SID, ar ∈ RID, aps ∈ PID, ac ∈ CID, m ∈ M, k ∈ K, d ∈ DATA, κ ∈ IK, v ∈ VK,
ol ∈ OL, vl ∈ VL, adps ∈ DESTPS, pa ∈ PA, pas ∈ P (PA), content ∈ CONTENT, r ∈ REL,
cids ∈ P (CID), cl ∈ CL, in T ∈ IN, asserter T ∈ ASSERTER, log T ∈ LOG, queue T ∈ QUEUE,
lc ∈ LC, psList ∈ PSLIST, str ∈ STR, changed ∈ CHANGED, aps ∈ APS, timer T ∈ TIMER,
status ∈ STATUS, to ∈ TIMEOUT, store T ∈ PS, coord T ∈ C, update T ∈ UPDATE, c ∈ SC

Initial State of Configuration:
ci = 〈in Ti, asserter Ti, log Ti, queue Ti, lci, timer Ti, store Ti, coord Ti, update Ti, ki〉
where:
asserter Ti = λaκv · 〈⊥,⊥,⊥, ∅〉, log Ti = λaκv · 〈⊥,⊥〉, queue Ti = λa · ∅,
lci = λa · 0, timer Ti = λaκ · 〈⊥, 0〉, store Ti = λaκv · 〈⊥,⊥, ∅〉,
coord Ti = λaκv · 〈⊥,⊥〉, update Ti = λaκv · 〈⊥〉, ki = λaiaj · ∅
in Ti = λa · ∅

Fig. 3. System State Space
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The log table (log T ) maintains history information of using alternative stores
in an asserting actor, used for updating causelinks. A flag (changed ∈
CHANGED) is set to TRUE if an alternative store was used. The identifier
of the final store from which an actor received acknowledgment is remembered
in a field (aps ∈ APS). So that an asserting actor knows which store recorded
its p-assertions about an interaction.

After creating interaction records, an actor accumulates them in a local queue,
modelled by the table (queue T ), before shipping them to a provenance store.
The FIFO property of the queue guarantees successful update of causelinks,
detailed later. The notation (LC) defines a function mapping a sender identifier
to a natural number so as to distinguish interactions between the sender and
receiver. The sender needs to ensure that the natural number is locally unique
on the sender side in each interaction. The list of alternative provenance stores
are modelled by the set PSLIST, mapping an actor’s identity to a set of store
identities.

The timer table (timer T ) models the timer used by asserting actors and
update coordinators when waiting for acknowledgement messages. The timer’s
state (status ∈ STATUS) indicates if the timer is enabled or disabled. A timeout
(to ∈ TIMEOUT) is a natural number, which counts down to zero after the
timer is enabled.

PS and Coordinator State Space. The set PS models provenance stores,
each containing a table (store T ) indexed by a provenance store’s identity. The
table maps an interaction key and the view kind of the asserter that created and
recorded p-assertions in the interaction to a tuple: the identity of the asserter,
a viewlink and the set of p-assertions documenting the interaction. The set C
models update coordinators. A update coordinator maintains repair request in-
formation in a table (coord T ) and the states of updating a viewlink in another
table (update T ∈ UPDATE). We will further detail these tables when we de-
scribe the rules of a provenance store and update coordinator.

Given the state space, the ASM is described by an initial state and a set
of transitions. A transition is the application of a rule to one configuration to
achieve another configuration. Figure 3 contains the initial state (ci ∈ SC),
which can be summarised as empty channels, empty tables and any local counters
being initialised to zero in all actors. The ASM proceeds from this initial state
through its execution by going through transitions that lead to new states. These
transitions are defined below by the rules of the state machine.

State Machine Rules. The state machine rules are represented using the
following notation.

rule name(v1, v2, ...) :
condition1(v1, v2, ...)∧ condition2(v1, v2, ...) ∧ ...
→ {

pseudo statement1;
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...
pseudo statementn;
}
Rules are identified by their name and a number of parameters that the rule

operates over. Any number of conditions must be met for a rule to fire. Once a
rule’s conditions are met, the rule fires. The execution of a rule is atomic, so that
no other rule may interrupt or interleave with an executing rule. This maintains
the consistency of the ASM. A new state is achieved after applying all the rule’s
pseudo-statements to the state that met the conditions of the rule.

We use send and receive and table update pseudo-statements. Informally,
send(m, a1, a2) inserts a message m into the communication channel from actor
a1 to actor a2, and receive(m, a1, a2) removes m from the channel. The table
update operation puts a message into a table or changes content state in a
table. We use the notation table T to refer to any table in the system state
space. Formally, send, receive and table update pseudo-statements act as state
transformers and are defined as follows.

– If k is the set of message channels of a state 〈. . . , k〉, then the expression
send(m, a1, a2) denotes the state 〈. . . , k′〉, where2 k′(a1, a2) = k(a1, a2)⊕m,
and k′(ai, aj) = k(ai, aj), ∀(ai, aj) 	= (a1, a2).

– If k is the set of message channels of a state 〈. . . , k〉, then the expression
receive(m, a1, a2) denotes the state 〈. . . , k′〉, where k′(a1, a2) = k(a1, a2)
m,
and k′(ai, aj) = k(ai, aj), ∀(ai, aj) 	= (a1, a2).

– If table T is a component of state 〈. . . , table T, . . .〉, then the expression
table T (. . .).y := V denotes the state 〈. . . , table T ′, . . .〉, where table T ′

(. . .).x = table T (. . .).x if x 	= y, and table T ′(. . .).y := V .

To manipulate an asserting actor’s queue, which is used for accumulating
interaction records, we define the following operations: head(q), enqueue(m, q)
and dequeue(q).

– The expression head(q) returns the head element of queue q.
– The expression enqueue(m, q) denotes q := q ‖m , which means m is added

at the tail of queue q.
– The expression dequeue(q) denotes q := tail(q), which means the head of

queue q is removed.

For convenience, we use notation a ← b to bind a local variable a to a value
b. We then define an assignment operator := for tables. It can assign a value to
a field of a table, or assign a tuple to a table as in the following example. In
this example, the second field of asserter T (a, κ, v), i.e., the ownlink ol, is not
assigned when ∗ is present.

asserter T (a, κ, v) := 〈OK, ∗, PS2, pas〉 ≡
⎧⎨
⎩
asserter T (a, κ, v).str := OK
asserter T (a, κ, v).vl := PS2
asserter T (a, κ, v).pas := pas

2 We use the operators ⊕ and � to denote union and difference on bags.
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Having defined the system state space and ASM rules, we now introduce the
rules for asserters (the senders and receivers), provenance stores and update
coordinators. These rules precisely define these actors’ internal behaviour.

4.2 Asserter Rules in Exchanging Phase

An asserting actor’s behaviour can be summarised as two phases: Exchanging
and Recording. We firstly describe the Exchanging phase and then introduce the
rules of the Recording phase in Section 4.3.

The sender and receiver in an interaction have different rules in the Exchang-
ing phase (Figure 4 and Figure 5). The sender exchanges to the receiver an
application message app including application data (d), an interaction key (κ)
and the sender’s ownlink (i.e., the receiver’s viewlink, vl). After receiving an app
message, the receiver adds κ and d into table (in T ). Both actor document the
exchange of app and an interaction record message is then produced and accu-
mulated in a queue (queue T ). This buffering of interaction records is designed
to meet Transparent Recording and Efficient Recording requirements. It reduces
the performance penalty upon the application by allowing the actor to send
interaction records when convenient. An asserting actor also initialises several
tables, used in the Recording phase.

send app(as, ar, aps, vl, d, r) :
//triggered when d, produced by a function
//described by r, is to be sent by as to ar,
//and when the viewlink, vl, is available.
→ {

κ← newIdentifier(as, ar);
send(app(d, κ, aps), as, ar);
pas← createPA(as, κ, d, r);
enqueue(record(κ, S, as, vl, pas), queue T (as));
asserter T (as, κ, S) := 〈READY, aps, vl, pas〉;
log T (as, κ, S) := 〈FALSE,⊥〉 ;
}

Fig. 4. The Sender’s Rules (Ex-
changing Phase)

receive app(as, ar, aps, d, κ, vl) :
app(d, κ, vl) ∈ k(as, ar)

→ {
receive(app(d, κ, vl), as, ar);
in T (ar) := in T (ar)⊕ 〈κ, d〉;
pas← createPA(as, κ, d,⊥);
enqueue(record(κ, R, ar, vl, pas), queue T (ar));
asserter T (ar, κ, R) := 〈READY, aps, vl, pas〉 ;
log T (ar, κ, R) := 〈FALSE,⊥〉 ;
// business logic
}

Fig. 5. The Receiver’s Rules (Ex-
changing Phase)

The function newIdentifier(as, ar) creates a globally unique interaction key,
as defined by the following pseudo function. This function requires that senders
are responsible for creating interaction keys. This function takes the identities
of the sender and the receiver as inputs. It then obtains the local counter of the
sender and increases it by one. Finally, a new interaction key using the two actor
identities and the local counter is constructed and returned.

Definition
newIdentifier : SID×RID→ IK
newIdentifier(as, ar) :

lc(as) := lc(as) + 1;
return 〈as, ar, lc(as)〉 ;
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In order to define function createPA(a, κ, d, r), we firstly define a function
cause(a, d, r). It takes an actor identity (a), application data (d), and a business
description (r) as input and finds interaction keys of all causes that are related
to the production of d.

Definition
cause : A×DATA×REL→ P (IK)
cause(a, d, r) :

let fr be a function described by r, such that fr(args) = d,
where args = {〈κ, d′〉 | 〈κ, d′〉 ∈ in T (a)};
return {κ | 〈κ, d′〉 ∈ args};

Recall that in Figure 5, the data received from application messages is stored
in table in T . In cause(a, d, r), we assume there exists a function fr that takes
some data d′ from in T as input and produces a result data d. Then cause(a, d, r)
returns the keys of interactions where all the input data is received.

The createPA(a, κ, d, r) function is defined as follows. It takes an actor iden-
tity (a), an interaction key (κ), application data (d), and a business logic de-
scription (r) to create a set of p-assertions documenting the interaction (indexed
by κ) in which d is transferred.

Definition
createPA : A× IK×DATA×REL→ P (PA)
createPA(a, κ, d, r) :

pas← if r = ⊥
{i-pa(κ, d)} ;
{i-pa(κ, d), rel-pa(r, 〈κ, S〉, cids)} ,

where cids = {〈cl, κ′, R〉 | κ′ ∈ cause(a, d, r) and cl = asserter T (a, κ′, R).ol};
return pas;

In createPA(a, κ, d, r), the created p-assertions must at least include an in-
teraction p-assertion documenting the exchange of an application message that
contains κ and d. If d is the consequence of receiving other messages, i.e., r 	= ⊥,
then the sender must make a relationship p-assertion3 to capture the causal
connections between these messages. Function cause(a, d, r) is used here to find
keys of cause interactions when creating a relationship p-assertion. An asserting
actor may create other application dependent p-assertions, which are not shown
in the definition.

4.3 Asserter Rules in Recording Phase

In Recording phase, an asserting actor sends queued record messages to a prove-
nance store and takes remedial actions in response to timeouts. To facilitate pre-
sentation, we assume each asserting actor employs a Recording Manager (RM),
which monitors the actor’s queue and submits record messages to a provenance
store. The behaviour of RM is specified in Figure 6 and summarised now.
3 A relationship p-assertion is always created and recorded in the context of its effect

interaction.



212 Z. Chen and L. Moreau

pre check(a, κ, v, vl, pas) :
queue T (a) 	= ∅ ∧ record(κ, v, a, vl, pas) = head(queue T (a)) ∧ asserter T (a, κ, v).str = READY

→ {
for each pa ∈ pas, such that pa = rel-pa(r′, 〈κ, v〉 , cids′)

do for each cid ∈ cids′

do 〈cl′, κ′, v′〉 ← cid;
if (log T (a, κ′, v′).changed), then

cid′ ← 〈log T (a, κ′, v′).aps, κ′, v′〉;
cids′′ ← cids′  cid⊕ cid′;

pa′ ← rel-pa(r′, 〈κ, v〉 , cids′′);
pas′ ← pas pa ⊕ pa′;

if pas′ 	= ⊥
asserter T (a, κ, v) := 〈∗, ∗, ∗, pas′〉;

asserter T (a, κ, v).str := SEND;
}

send record(a, κ, v, vl, pas, to) :
queue T (a) 	= ∅ ∧ record(κ, v, a, vl, pas) = head(queue T (a)) ∧ asserter T (a, κ, v).str = SEND

→ {
aps ← asserter T (a, κ, v).ol;
send(record(κ, v, a, vl, pas), a, aps);
timer T (a, κ, v) := 〈ENABLED, to〉 ;
asserter T (a, κ, v).str := SENT;
}

timer click(a, κ, v) :
timer T (a, κ, v).status = ENABLED

→ {
timer T (a, κ, v).to := timer T (a, κ, v).to− 1;
}

timeout ack(a, κ, v) :
timer T (a, κ, v).status = ENABLED ∧ timer T (a, κ).to ≤ 0

→ {
a′

ps ← random(psList(a));
log T (a, κ, v).changed := TRUE;
timer T (a, κ, v) := 〈DISABLED, 0〉 ;
asserter T (a, κ, v) := 〈SEND, a′

ps, ∗, ∗〉;
}

receive ack(a, aps, κ, v) :
ack(κ, v) ∈ k(a, aps)

→ {
receive(ack(κ, v), a, aps);
ol← asserter T (a, κ, v).ol;
if (timer T (a, κ, v).to > 0 ∧ aps = ol ∧ asserter T (a, κ, v).str = SENT), then

dequeue(queue T (a));
timer T (a, κ, v) := 〈DISABLED, 0〉 ;
asserter T (a, κ, v).str := ACKED;

}

post check(a, ac, κ, v) :
asserter T (a, κ, v).str = ACKED

→ {
if (log T (a, κ, v).changed), then

aps ← asserter T (a, κ, v).ol;
adps ← asserter T (a, κ, v).vl;
send(repair(κ, v, adps, aps), a, ac);
log T (a, κ, v).aps := aps;

asserter T (a, κ, v).str := OK;
}

Fig. 6. Asserter rules in Recording phase
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– Updating causelinks. Given a record message from the queue (queue T (a)),
RM checks and updates causelinks in all relationship p-assertions included
in the message (rule pre check). A log table (log T ) maintains a history of
the use of alternative provenance stores for each interaction. If the log table
shows that an alternative store was used to record p-assertions about a cause
interaction, then the corresponding causelink is updated.

– Submitting a record message. RM sends a record message to a provenance
store and sets timeout when waiting for an ack message (rule send record).

– Resubmitting a record message. If RM does not receive an ack when the
timeout expires (rule timeout ack), then it infers that failures may have
occurred. In this case, RM may resend the record to the same store or use
an alternative store if retry attempts to the old store also failed. In order to
simplify rules, we do not formalise resending messages to a same provenance
store; instead, a new store is selected once a timeout expires. The function
random(psList(a)) returns an alternative store’s identity, selected from a
list of candidates. There can be various ways of selecting a store from a list
of stores. Here we randomly select one to use.

Only after an ack is received, can RM eliminate the acknowledged record
from the queue (rule receive ack). Checking the state str as well as the
identifier of the provenance store from which an ack is received help detect
duplicate acknowledgements, preserving the correcness of the protocol (rule
receive ack).

– Requesting to update viewlinks. If an alternative store was used to record a
record message, the actor’s ownlink known to the opposite actor in an inter-
action becomes invalid, since the actor’s store has changed. Therefore, RM
requests a update coordinator to update the opposite actor’s viewlink by
sending a repair message (rule post check). We note that for a given inter-
action, an asserting actor at most sends one repair request, which minimises
the overhead of taking remedial actions.

– Updating log table. If an alternative store was used to record a record message,
RM sets log T (a, κ, v).changed to TRUE (rule timeout ack). After a record
message is successfully recorded in a provenance store, RM remembers the
provenance store’s identity in the log table if log T (a, κ, v).changed is TRUE
(rule post check). This information is to be used for updating causelinks as
described above.

We note that the FIFO property of the queue guarantees successful update of
causelinks. This is because rule send app and rule receive app enforce that an
actor always makes p-assertions about a cause interaction, i.e., where it receives
a message, before an effect interaction, i.e., where it sends another message as
consequence of received messages. This implies that the record messages about
cause interactions are always placed into the queue before that about the effect
interaction. Therefore, by monitoring the use of alternative stores when sending
record messages, causelinks can be updated successfully. Although current mod-
elling indicates that there is only one queue per asserting actor, which is highly
sequential, it can be relaxed by adding a process identifier to queue T (a). Then,
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each process that an actor participates in can utilise a queue, which enables
parallel recording.

4.4 Provenance Store Rules

Figure 7 gives provenance store’s rules. A provenance store replies an ack message
only after it has processed a record message (rule receive record). A store checks
if p-assertions about a given interaction exists before processing a record message.
This prevents resubmitted record messages from being recorded multiple times.

receive record(a, aps, κ, v, vl, pas) :
record(κ, v, a, vl, pas) ∈ k(a, aps)

→ {
receive(record(κ, v, a, vl, pas), a, aps);
if (store T (aps, κ, v).pas = ∅), then

store T (aps, κ, v) := 〈a, ∗, pas〉;
if (store T (aps, κ, v).vl = ⊥), then

store T (aps, κ, v).vl := vl;
send(ack(κ, v), aps, a);
}

receive update(aps, ac, κ, v, v, ol) :
update(κ, v, ol) ∈ k(ac, aps)

→ {
receive(update(κ, v, ol), ac, aps);
store T (aps, κ, v).vl := ol;
send(uack(κ, v), aps, ac);
}

Fig. 7. Provenance Store rules

Since a provenance store may receive an update and a record message related
to a same interaction in any order, to achieve requirement Viewlink Accuracy,
the viewlink obtained from record must NOT overwrite any existing one which
may come from an update.

The notation v in rule receive update stands for the opposite view in an
interaction. For example, if v is the view of the sender, then v represents the
view of the receiver.

An actor selects an alternative store to record p-assertions if an ack is not
received within a timeout. However, it may be the case that the original store still
receives and records those p-assertions. This may lead to duplicate information
in several stores though, it does not affect the correctness of the protocol, since
only the p-assertions successfully acknowledged by an ack can be retrieved using
the links updated by the protocol.

4.5 Coordinator Rules

The update coordinator’s rules are shown in Figure 8. Upon receiving a repair
request (rule receive repair), if there exists request information from the op-
posite view with regard to the same interaction, which means the coordinator
has received a repair message from the other actor, then the coordinator replaces
one actor’s destination store with the other’s ownlink, thus making each actor’s
destination store correct. Then the update coordinator dispatches two update
messages to their respective new destination stores by setting update status to
UPDATE (rule send update).

Since a crashing provenance store can be restarted, resending update messages
to a same provenance store can be eventually successful (rule timeout uack
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receive repair(aps, adps, ac, κ, v, v, ol) :
repair(κ, v, adps, ol) ∈ k(aps, ac)

→ {
receive(repair(κ, v, adps, ol), aps, ac);
if (coord T (ac, κ, v) = ⊥), then

coord T (ac, κ, v) := 〈adps, ol〉;
update T (ac, κ, v) := UPDATE;
if (coord T (ac, κ, v) 	= ⊥), then

a′
dps ← coord T (ac, κ, v).ol;

coord T (ac, κ, v) := 〈a′
dps, ∗〉;

coord T (ac, κ, v) := 〈ol, ∗〉;
update T (ac, κ, v) := UPDATE;

}

send update(ac, κ, v, to) :
update T (ac, κ, v) = UPDATE

→ {
〈adps, ol〉 ← coord T (ac, κ, v);
send(update(κ, v, ol), ac, adps);
timer T (ac, κ, v) := 〈ENABLED, to〉 ;
update T (ac, κ, v) := SENT;
}

timer click(ac, κ, v) :
timer T (ac, κ, v).status = ENABLED

→ {
timer T (ac, κ, v).to := timer T (ac, κ, v).to− 1;
}

timeout uack(ac, κ, v) :
timer T (ac, κ, v).status = ENABLED∧
timer T (ac, κ, v).to ≤ 0

→ {
update T (ac, κ, v) := UPDATE;
timer T (ac, κ, v) := 〈DISABLED, 0〉 ;
}

receive uack(aps, ac, κ, v) :
uack(κ, v) ∈ k(aps, ac)

→ {
receive(uack(κ, v), aps, ac);
if (timer T (ac, κ, v).to > 0)then

if (aps = coord T (ac, κ, v).adps), then
timer T (ac, κ, v) := 〈DISABLED, 0〉 ;
update T (ac, κ, v) := UPDATED;

}

Fig. 8. Coordinator rules

sets update T (ac, κ, v) to UPDATE, which will resend update message in rule
send update.). This ensures that all requested viewlinks in provenace stores can
be updated.

In the current design, we do not specify removing request information main-
tained in an update coordinator. Request information with regard to an inter-
action can only be eliminated after the coordinator successfully updates the
provenance store in each view of the interaction. If there exists request informa-
tion for only one view, then the coordinator cannot delete it since it may receive
another repair request from the other view. Given that an actor sends out a
repair message for an interaction within finite time (due to the use of timeouts in
Figure 6), the coordinator can remove any request information with correspond-
ing update status being UPDATED after a reasonably long period of time since
the information is recorded. As illustrated above, request information with an
update status F cannot be removed.

5 Protocol Analysis

Based on the ASM above, we now analyse F PReP. The requirements Guaran-
teed Recording, Viewlink Accuracy and CauseLink Accuracy, identified in Section
2.2, are concerned with the protocol’s correctness. We prove that the three re-
quirements are satisfied when the protocol terminates in each interaction. Given
that a process consists of a set of interactions, if the protocol can ensure that
for each interaction, the three requirements are supported, then the documenta-
tion of the whole process is guaranteed to be recorded and retrievable. We have
proved the protocol terminates under the assumptions stated in Section 3.1. We
now formalise the three requirements as properties and outline the proof of these
properties.
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Theorem 1 (Guaranteed Recording). When the protocol terminates, the
documentation produced by each asserting actor about the interaction is recorded
in provenance stores.
For any reachable configuration c and for any a, κ, v, the following implication
holds when the ASM terminates:

If asserter T (a, κ, v).str 	= ⊥, then

store T (aps, κ, v) = 〈a, vl, asserter T (a, κ, v).pas〉,
such that vl 	= ⊥ and aps = asserter T (a, κ, v).ol. �

Theorem 2 (Viewlink Accuracy). When the protocol terminates, each as-
serter’s viewlink of an interaction is accurate in its provenance store. The
viewlink points to the store where the other actor in the interaction recorded
p-assertions about the same interaction.
For any a, a′, κ, v, then the following implication holds when the ASM termi-
nates:
if asserter T (a, κ, v).str 	= ⊥, then

store T (aps, κ, v).vl = asserter T (a′, κ, v).ol,

such that aps = asserter T (a, κ, S).ol. �

Theorem 3 (Causelink Accuracy). When the protocol terminates, an as-
serter’s causelinks are accurate in its provenance store. Each points to the store
where p-assertions about the corresponding cause interaction are recorded.
For any a, κ, v, then the following must hold when the protocol terminates:

if asserter T (a, κ, v).str 	= ⊥, then

for any pa ∈ store T (aps, κ, v).pas, such that pa = rel-pa(rel, 〈κ, v〉 , cids),
for any c ∈ cids, let 〈cl′, κ′, v′〉 = c,

cl′ = asserter T (a, κ′, v′).ol.

such that aps = asserter T (a, κ, v).ol. �

Due to space restriction, we now outline our proof of these properties. Given
an arbitrary valid configuration of the ASM, our proofs typically proceed by
induction on the length of the transitions that lead to the configuration, and
by a case analysis on the kind of transitions. We show that a property is true
in the initial configuration of the machine and remains true for every possible
transition. This kind of proof is systematic, less error prone and avoids the
complications of temporal reasoning.

6 Related Work

Much research has been seen to support recording process documentation, such
as Chimera [10], myGrid [26], Karma [24], Kepler [3]. All these systems rely on
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their execution environment or specific technologies. The drawback is that the
recorded documentation lacks interoperability and hence cannot be shared by
different organisations. To promote interoperability, Groth et al. [15] proposed
an application and technology independent approach to modelling process doc-
umentation in the context of SOAs and developed a generic recording protocol,
PReP. All the surveyed systems however do not deal with failures. F PReP
preserves the application and technology independent nature and provides well-
defined behaviour while recording documentation in the case of failures.

Redundancy has been widely used to provide fault-tolerance for distributed
systems [4]. It involves replicating data or system functionalities, and repeating
messages or operations. We adopt the redundancy mechanism in our work, e.g.,
replicating update coordinators and retransmitting messages. Provenance stores
are not suitable to be replicated due to the complexity and significant cost of
replicating documentation as explained before.

Atomic transactions typically requires all-or-nothing property to maintain
system consistency [12]. It can be an alternative solution to our work. We now
discuss a scenario where atomic transaction is applied. We assume that an as-
serting actor and its provenance store are the two participants in a transaction
of recording p-assertions. If the provenance store fails, the actor is notified that
the transaction is aborted. Then the actor can select another store to use until
the transaction is complete. In this case, the use of atomic transaction provides
similar functionality as the remedial actions in our protocol, i.e., selecting an
alternative store upon an expired timeout. This approach however is too compli-
cated to be adopted by the fact that each interaction leads to two transactions
(sender/receiver).

Formal methods are mathematically-based techniques for the specification,
development and verification of software and hardware systems. There are three
rigorous methods, Abstract State Machines (ASM) [17], B[2] and Z[1], that share
a common conceptual foundation and are widely used in both academia and
industry for the design and analysis of hardware and software systems.

Applying formal methods to the design and reasoning of fault-tolerance has
been studied in distributed systems, e.g., distributed database systems[25], con-
trol systems[18], and mobile agent systems[19]. The ASM notation we adopt
has been used previously to describe a fault-tolerant directory service for mobile
agents[21] and PReP. Our proof follows a systematic procedure based on math-
ematical induction. While done by hand, we believe it is sufficient to provide
confidence that the protocol does conform to the properties in Section 5. Pre-
vious experience has shown that the ASM formalism is suitable for mechanical
proof derivations, and several algorithms[21] have been carried out using a Coq
theorem prover[5].

7 Conclusion

In this paper, we have presented a generic protocol, F PReP, for recording pro-
cess documentation in the presence of failures. By deriving PReP, F PReP not
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only keeps the generic nature, but also guarantees that process documentation
is recorded in the presence of failures. Also, it enables the retrievability of dis-
tributed documentation in large scale distributed environments where failures
may occur. The protocol is systematically designed and meets the requirements,
identified in Section 2, under the assumptions we state on failures.

Our ASM-based formalisation provides a precise and implementation inde-
pendent means of specifying the protocol. Firstly, it sketches the essence of
the protocol and accurately defines required actor’s behaviour with unnecessary
message fields or messages removed. Secondly, it promotes a rigorous design of
the protocol and helps us better understanding the complex behaviour of actors
in the presence of failures. With such a formal description, we have success-
fully identified several deficiencies in the early design of the protocol. Thirdly,
the code-like specification is independent of any given programming language
or implementation. This enables our protocol to be implemented using differ-
ent languages and technologies. In summary, the use of a formal notation has
significantly improved the design of F PReP.

F PReP has been implemented in Java and integrated into a client side p-
assertion recording library developed by the University of Southampton. Its per-
formance has been evaluated and the result reveals that it introduces acceptable
overhead [7]. We are currently investigating how to create process documentation
when an application has its own fault tolerance schemes to tolerate application
level failures. In future work, we plan to make use of the process documentation
recorded in the presence of failures to diagnose failures.
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Abstract. Discovering and documenting potential abnormal situations and irreg-
ular user behavior that can interrupt normal system interaction is of tremendous
importance in the context of dependable systems development. Exceptions that
are not identified during requirements elicitation might eventually lead to an in-
complete system specification during analysis, and ultimately to an implementa-
tion that lacks certain functionality, or even behaves in an unreliable way. This
paper presents a requirements engineering process, DREP, that systematically
guides the developer to consider reliability and safety concerns of reactive sys-
tems. After the discovery of normal system behavior by means of use cases, the
developer is lead to explore exceptional situations arising in the environment that
change the context in which the system operates and service-related exceptional
situations that threaten to fail user goals. The process requires the developer to
specify means that detect such situations, and to define the recovery measures
that attempt to put the system in a reliable and safe state. The process is iterative,
and refinements are carried out, if necessary, to achieve desired quality levels. To
conclude the requirements phase, an extended use case diagram summarizes the
normal interactions, exceptions, handlers and their relationships. The proposed
process is demonstrated with the 407 Express Toll Route System case study.

1 Introduction

Complex computer systems are increasingly built for highly critical tasks, from military
and aerospace domains to industrial and commercials areas. Failures of such systems
may have severe consequences ranging from loss of business opportunities, physical
damage, to loss of human lives. Systems with such responsibilities should be highly
dependable.

On the software developer’s part, this involves acknowledging that many exceptional
situations may arise during the execution of an application, and providing measures to
handle such situations. When using a standard software development process to develop
systems, there is no guarantee that such situations are considered during the develop-
ment. Whether the system can handle these situations or not depends highly on the
imagination and experience of the developers. In addition, even if the application can
actually deal with these special situtations, the particular way that the developer chose
to address that situation might not be the one that a typical user of the system would
expect if it was not explicitly agreed upon and documented in the requirements. As a
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result, the final application might not function correctly in all possible situations or re-
act in unexpected ways. This can at best annoy or confuse the user, but can also have
more severe repercussions.

When developing dependable systems, nothing should be left to chance. Following
the idea of integrating exception handling into the software life cycle [1,2], this paper
describes an extension to standard use case-based requirements elicitation that leads
the developers to consider dependabaility issues early on. Our approach focusses in
particular on reliability and safety concerns. We believe that thinking about behaviour
or events that affect the reliability or safety of the system has to start at the requirements
phase, because it is up to the stakeholders of the system to decide how they expect
the system to react to exceptional situations. Only with exhaustive and detailed user
feedback is it possible to discover and then specify the complete system behavior in
a subsequent analysis phase, and decide on the need for employing fault masking and
fault tolerance techniques for achieving run-time dependability during design.

This paper describes a use case-driven requirements engineering and analysis pro-
cess, DREP, that leads the developers to consider dependability issues early on during
software development. Our approach focuses in particular on reliability and safety con-
cerns. This paper focuses on the process itself, and hence complements the papers [3,4],
which describe the exceptional use case notation used in the process, and papers [5,6],
which describe our model-driven approach on mapping exceptional use cases to DA-
Charts and Markov chains to perform dependability analysis.

The paper is structured as follows: Section 2 introduces the dependability attributes
and gives a brief overview of exceptions, handlers, and use cases. Section 3 describes
our proposed process, and the ideas are illustrated by means of the 407 highway toll
route case study in Section 4. Section 5 presents DREP in the context of model-driven
engineering. Section 6 describes an academic experiment we conducted with 40 soft-
ware engineering graduate students to validate the applicability and effectiveness of our
proposed process. Section 7 presents related work in this area and Section 8 discusses
future work and draws some conclusions.

2 Background

2.1 Requirements Engineering

Requirements engineering can be categorized as requirements development and require-
ments management. Requirements development involves several activities: discovery
and elicitation of the system functionality, properties and qualities, definition and spec-
ification of the requirements and precise definition of the system boundary, and anal-
ysis of the requirements to ensure that they are correct, complete and that they meet
the stakeholders expectations. If the analysis reveals undesired properties or flaws, the
specification has to be refined. Once the system is implemented, the running system can
be validated against the requirements.

2.2 Use Cases

Use cases are a widely used formalism for discovering and recording behavioral re-
quirements of software systems [7]. A use case describes, without revealing the details
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of the system’s internal workings, the system’s responsibilities and its interactions with
its environment as it performs work in serving one or more requests that, if successfully
completed, satisfy a goal of a particular stakeholder. A use case can contain several sce-
narios including the main success scenario and alternate scenarios. The external entities
in the environment that interact with the system are called actors.

Use cases are stories of actors using a system to meet goals. The actor that interacts
with the system in the pursuit of a well defined goal is referred to as the primary actor.
External entities that are required by the system in order to achieve its functionality are
called secondary actors. Secondary actors include software or hardware that is out of
our control. The system, on the other hand, is the software that we are developing and
which is under our control.

2.3 Dependability

Systems are developed to satisfy a set of requirements that meet a need. A requirement
that is important in mission- and safety-critical systems is that they be highly depend-
able. Dependability [8] is that property of a computer system such that reliance can
justifiably be placed on the service it delivers. Dependability involves satisfying sev-
eral requirements: availability, reliability, safety, maintainability, confidentiality, and
integrity. The dependability requirement varies with the target application, since a con-
straint can be essential for one environment and not so much for others. In this paper,
we focus on the reliability and safety attributes of dependability.

Reliability. The reliability of a system measures its aptitude to provide service and
remain operating as long as required [9]. Reliability of a service is typically measured
in probability of success of the service, once requested, or else in mean time to failure.
If the average time to complete a service is known, it is possible to convert between the
two values.

Safety. The safety of a system is determined by the lack of catastrophic failures it un-
dergoes [9]. The seriousness of the consequences of the failure on the environment can
range from benign to catastrophic. Seriousness of consequences can be measured with
a safety index. For instance, the DO-178B standard for civil aeronautics defines safety
index values from 0 to 4 with the following meaning:

0. Without effects;
1. Minor effects lead to upsetting the stakeholders or increasing the system workload;
2. Major effects lead to minor injuries of users, or minor physical damage or mone-

tary loss;
3. Dangerous effects lead to serious injuries of users, or serious physical damage or

monetary loss;
4. Catastrophic effects lead to loss of human lives, or destruction of the system.
Each application has different safety requirements. It is now up to the developer in

consultation with all the stakeholders to define the number of safety levels to consider,
and their exact definitions.

Fault tolerance is a means of achieving system dependability. As defined in [10],
fault tolerance includes error detection and system recovery. Error detection involves
identification of erroneous state in the system by means of acceptance tests or active
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redundancy. Late or dead processes can be detected using timers that sound an alert
when a deadline for a specific interaction or functionality expires. The error might lead
to a permanent or transient failure. Permanent failures are failures that persist, and lead
to a loss of service until appropriate recovery measures are taken. Transient failures
are failures which disappear over time. System recovery involves correcting such prob-
lems to ensure that the system continues to deliver its services. Forward error recovery
techniques restore the system to a new, possibly degraded, state. This approach requires
knowledge of the errors and hence is application-specific, but is efficient and suitable
in cases of anticipated faults and missed deadlines. A popular forward error recovery
technique, exception handling, is discussed in Section 2.4.

At the use case level, error detection involves detection of exceptional situations by
means of secondary actors such as sensors and time-outs. Recovery at the use case level
involves describing the interactions with the environment that are needed to continue to
deliver the current service, or to offer a degraded service, or to take actions that prevent
a catastrophe. The former two recovery actions increase reliability, whereas the latter
ensures safety.

2.4 Exceptions and Handlers

An exceptional situation, or short exception 1, describes a situation that, if encountered,
requires something exceptional to be done in order to resolve it. Hence, an exception
occurrence during a program execution is a situation in which the standard computa-
tion cannot pursue. For the program execution to continue, an atypical computation is
necessary [11].

A programming language or system with support for exception handling allows users
to signal exceptions and to define handlers [12]. To signal an exception amounts to
detecting the exceptional situation, interrupting the usual processing sequence, looking
for a relevant handler, and then invoking it.

Handlers are defined on (or attached to) entities, such as data structures, or contexts
for one or several exceptions. According to the language, a context may be a program,
a process, a procedure, a statement, an expression, etc. Handlers are invoked when an
exception is signaled during the execution or the use of the associated context or nested
context. To handle means to put the system to a coherent state, i.e. to carry out forward
error recovery, and then to take one of these steps: transfer control to the statement
following the signaling one (resumption model [1]); or discard the context between the
signaling statement and the one to which the handler is attached (termination model
[1]); or signal a new exception to the enclosing context.

3 A Dependability-Focused Requirements Engineering Process

Our Dependability-focused Requirements Engineering Process (DREP) targets the de-
velopment of dependable reactive systems. It defines detailed steps or tasks that lead the

1 It should be noted that the terms exception and handler are used in this paper at a higher level
of abstraction and does not necessarily map to programming language exceptions.
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developer to pay particular attention to system safety and reliability when performing
requirements elicitation, specification and analysis. The following subsections describe
the different activities in detail.

The basic tasks carried out as part of these activities in DREP are outlined in a
hierarchical manner in Fig. 1. To clearly illustrate our extensions, the tasks that are part
of standard use case analysis are shown in boxes with dashed line borders.

3.1 Requirements Elicitation and Discovery

Task 1: Discovering Actors, Goals, and Modes The first task can be divided into several
sub-tasks.

1.1 Brainstorm services/goals and outcomes
1.2 Brainstorm actors
1.3 Classify services/goals and actors
1.4 Decompose services into subgoals
1.5 Brainstorm modes

The first activity in use case based requirements elicitation consists in establishing a
list of actors and stakeholders, with a special emphasis on primary actors, i.e. external
entities in the environment that interact with the system in the pursuit of a well defined
goal. Secondary actors are also documented during this brainstorming activity, if their
use is indeed part of the requirements and is not already part of the solution domain.

For each of the discovered goals, a use case outline is written. This outline consists
in a textual summary of the goal, an explanation of the context in which the primary
actor wants to achieve the goal, and a clear description of the value or service that
the system has to provide to satisfy the primary actor. Complex goals can be split into
several subgoals to form a hierarchy [13], in which case a use case outline is written
for each of the subgoals. The goals are further be classified as normal services or other
special services.

The brainstorming activity can also lead the developer to discover that a given service
might have several acceptable outcomes, i.e., the system can satisfy the goal of the
primary actor in multiple ways.

Finally, during this task, the developer should also consider possible modes of oper-
ation to be offered by the system. An operation mode is defined by the set of services
that the system offers when operating in that mode2. During normal operation, a sys-
tem should try and provide all of the services it is intended to provide at any given
time. There is no need to artificially create different normal modes of operation. Some
systems, however, need more than one normal mode of operation, and allow the user to
switch between these modes by request or to accommodate changes in the environment.
For example, a cell-phone can be put into a child-safe mode, in which the only service
offered is to place local calls.

2 For each service provided in a mode, reliability and safety levels have to be specified as ex-
plained in task 4.
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Fig. 1. Task Structure of DREP
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Task 2: Discovering Context-Affecting Exceptions Task 2 involves carrying out the
following two sub-tasks.

2.1 Brainstorm context-affecting exceptions
2.2 Define new exceptional detection actors

In this step, the developer has to focus on context-affecting exceptional situations,
i.e., situations that change the context in which the system operates. Certain context
changes might require a dependable system to adapt in order to continue to provide re-
liable and safe service. To help discover these situations, the following questions should
be answered:

– What situations / conditions / changes in the environment make it impossible for the
entire system to provide safe service? In such situations, should the system provide
some other service?

– What situations / conditions / changes in the environment prevent the system from
satisfying a primary actor’s goal (or subgoal)? In such situations, can the system
partially fulfill the service?

– What situations take priority over the primary actor’s goal?
– What situations / conditions / changes in the environment could make the primary

actor change his goal? In such situations, how can the primary actor inform the
system of the goal change?

For each exceptional situation that is discovered, a named exception is defined, together
with a small text that describes the situation in more detail. All discovered exceptions
are documented in an exception table.

This activity typically leads to the discovery of new exceptional goals. Often, the
occurrence of the situation cannot be detected by the system without help from the en-
vironment, which means that new exceptional actors have to be introduced. For exam-
ple, in an elevator system where safety is the main concern, in case of a fire outbreak in
the building, the elevator operator or a smoke detector, both exceptional actors, should
activate the fire emergency mode of the elevator control software.

Task 3: Eliciting Handlers for Context-Affecting Exceptions This task can be split into
the following sub-tasks.

3.1 Discover and classify exceptional services
3.2 Decompose exceptional services into subgoals
3.3 Discover new exceptional secondary actors

For each identified exception, a handler use case outline has to be established de-
scribing how the system is supposed to react or recover from that situation. A handler
can be further classified as a safety or reliability handler depending on the concern it
attempts to satisfy. A handler can also be linked to one or several contexts, i.e. use
cases during which the exceptional situation can occur. Upon occurrence of the excep-
tion, the current interaction is interrupted and the exceptional interaction begins. In an
elevator system, for example, in case of a fire outbreak signalled by a smoke detector,
standard elevator operation is interrupted. To ensure safety, the elevators are brought to
the ground floor.
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Task 4: Eliciting Dependability Expectations and Discovering Exceptional Modes This
task can be split into the following sub-tasks.

4.1 Eliciting dependability expectations for each service
4.2 Document provided reliability and safety of mandatory secondary actors
4.3 Discover exceptional modes of operation

For dependable systems, it is at this phase important to discover the requirements
with respect to safety and reliability for each service that the system provides. Mis-
sion and safety-critical systems often have to comply with safety standards, but even if
the requirements do not require compliance with a standard, stakeholders and primary
actors explicitly or implicitly expect a certain degree of safety and reliablility from a
dependable system. To document the desired dependability, reliability and safety anno-
tations have to be added to the use case outlines that, for each goal, specify the desired
probability of successful achievement of the goal, as well as the maximum tolerable
probability of occurrence of a safety violation.

The desired safety and reliability values should be elicited not onlyfor the normal
services of the system, but also for the new exceptional goals discovered in task 2.

It is important to note here that in the real world, 100 percent dependability is never
achievable. If the specified safety and reliability are too high, then it might be impossi-
ble (or too expensive) to implement a system that fulfills the requirements. It is hence
important that the stakeholders decide on acceptable risks at this point.

Next, for each service offered by a mandatory secondary actor, the developer has to
document the service’s reliability and safety properties. If the secondary actor is a piece
of hardware, then the reliability can be found in the specification manual.

Whenever a dependable system has encountered difficulties performing a requested
service due to some exceptional situation, the effect of the encountered problem on fu-
ture service provision of the system has to be evaluated. If the reliability or safety of
future service provision is threatened, then a mode switch is necessary. Switching to a
different operation mode (an exceptional mode) allows the system to signal to the envi-
ronment that the services offered by the system have changed, and reject any requests
for services that cannot be performed with sufficient reliability or safety. We have ad-
dressed exceptional modes of operation in the behavioural models used in DREP, and
details can be found in [14].

While normal modes of operation have been discovered in task 1.5, this task con-
centrates on the discovery of emergency and restricted modes. In an emergency mode,
normal services are suspended and only emergency services, possibly initiated by a new
exceptional actor, are available. The system is in a state in which it cannot provide any
of its normal services anymore, not even in a degraded form. This is usually due to
safety reasons. For example, in case of a fire alarm, an elevator system does not han-
dle user requests anymore, but moves all the elevator cabins to the ground floor. In an
restricted mode, a combination of emergency services and normal services are offered.
The system is in an exceptional state in which only a subset of the normal services are
available and the functions of particular emergency services are also required.

To discover emergency and restricted modes, all context-affecting exceptions identi-
fied in task 2.1 need to be considered. In a new context, some of the services provided
under normal circumstances might not be adequate anymore. Therefore, the developer
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should reflect on the impact of the context change on each of the services provided by
the system. If the safety of normal services is threatened by a situation, then an appro-
priate exceptional or emergency mode should be defined.

If during this task new modes of operation have been defined, then it is important to
specify the expected reliability and safety of each service (see task 4) provided in each
mode.

It is important to note that mode definitions are not based on the developer’s creativ-
ity. Each mode has to be validated with the stakeholders to check if, according to them,
the services provided in the mode form a coherent set, and that the provided levels of
reliability and safety for each service are sufficient.

3.2 Requirements Definition and Specification

Now that the goals and subgoals have been identified, detailed use case descriptions
have to be elaborated for each of them. We suggest to describe use cases with a pre-
defined template as done by others [15], which forces the developer to explicitly docu-
ment all relevant features.

Reactive systems only perform work or produce output after they receive an input
event. Therefore, the main parts of our use case template consist of a numbered list
of individual base interaction steps, each one describing either an input interaction –
an external actor decides to send a message/data/event to the system – or an output
interaction – the system sends a message/data/event to an external actor. If a use case
is decomposed into subfunction-level use cases, a step can also be a reference to a
lower level use case, which in turn describes the base interaction steps that leads to the
completion of the subgoal. In any case however, a use case describing a user goal could
be flattened into a sequence of base interaction steps, if needed.

Task 5: Designing Interactions Interaction design in DREP is comprised of several
sub-tasks.

5.1 Design goal interaction steps
5.2 Specify goal outcomes
5.3 Define new (exceptional) secondary actors
5.4 Design handler interaction steps
5.5 Specify handler outcomes
5.6 Add mode switches to handler steps

The standard way of achieving a goal is described in the main success scenario
part of the template. The ordering of the individual interaction steps are often dictated
by logic, by required usage patterns, by user interfaces, or by protocols enforced by
secondary actors interacting with the system. Where flexibility exists, the stakeholders
should be consulted to choose the most adequate interaction pattern.

When designing the goal interaction steps, it is also necessary to define the service
outcome. The main success scenario of a user goal can end in only one possible way,
and the use case should clearly show this. From the users’ perspective, the goal outcome
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can be one of the following:� success�,� f ailure�, or� goal abandoned�3. If
alternate scenarios are available, it is also necessary to specify the outcome of all such
alternate paths, and to document them in the use case extension section.

When the requested service cannot be provided, a dependable system should strive
to handle the current situation and attempt to provide partial service, if possible. Partial
service, or degraded service outcome as we call it, happens when a service does not
deliver what initially promised, but yet provides something that potentially satisfies the
requester of the service. A degraded outcome is better than a complete failure to deliver
the service.

Intuitively, a service provision can only result in a degraded outcome when an excep-
tional situation has occurred. Reacting to such an exceptional situation, and providing
a well-defined outcome can only be done within a handler use case. Therefore, after
the detailed interaction steps of a handler have been designed, the outcome of the han-
dler should be clearly defined. Handlers can end in � success�, � degraded� or
� f ailure�.

Whenever an exception has lead to the definition of a new mode, then the steps of
the handler that addresses the exception have to be updated to indicate a mode switch.
In general, mode switches should be performed as soon as possible, i.e. as soon as it
becomes apparent that the provision of the current services at the required reliability
and safety level can not be sustained.

Task 6: Defining Service-Related Exceptions and Effects on System Reliability and
Safety This task focuses on discovering service-related exceptions and documenting
dependability values.

6.1 Document expected reliability and safety for actors
6.2 Annotate subgoal and handler steps with reliability and safety
6.3 Define service-related exceptions

The successful completion of a user goal may be threatened due to service-related
exceptional situations. Service-related exceptions have many natures:

– The system state makes the provision of a service impossible4,
– Failure of secondary actors that are necessary for the completion of the user goal,
– Failure of communication links between the system and important secondary ac-

tors,
– Actors violate the system interaction protocol, i.e. they invoke system services in

the wrong order, or at the wrong time.

Possible service-related exceptions can be discovered most effectively following a
bottom-up approach. DREP requires the developer to examine each individual base step

3 To correctly calculate reliability, it is important to separate the situations in which the user
voluntarily abandons the goal from the situations in which the service fails. A service that is
successfully cancelled upon user request represents a correct and reliable system behavior.

4 Addressing these situations is of course not new to our approach. Standard use case driven
requirements engineering techniques usually specify the handling of such situations in an ex-
tension section of the use case.
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of a use case, sub-use case or handler, and reflect on the consequences that a failure of
the step has on reliability, i.e. the achievement of the goal, and on system safety. The
developer should answer the following questions:

– If this step is omitted, will the goal fail? If yes, the step should be annotated with a
reliability tag, together with the probability of success of the step.

– If this step is omitted, is the safety of the system threatened? If yes, the step should
be annotated with a safety tag, together with the corresponding safety level and the
probability of success of the step.

A named exception should be defined for each service-related exceptional situation,
together with a small text that describes the situation in more detail. For example, in an
elevator system, a motor failure, i.e. the situation in which the motor does not react to
commands anymore because of a hardware or communication failure, is a serious threat
to safety and reliability. The identified exception is then added to the exception table of
environmental exceptions for documentation reasons.

3.3 Dependability Requirements Analysis

Task 7: Assessing Safety and Reliability The sub-taks involved in the assessment phase
are listed here.

7.1 Create/revise DA-Chart
7.2 Perform reliability and safety analysis
7.3 Compare dependability analysis results with expected dependability values

In [16], we proposed a model-based approach for analyzing the safety and reliability
of our use cases. Since each interaction step in a use case is annotated with a probabil-
ity reflecting its chances of success, and a safety tag if the failure of the step hampers
the system safety, it is possible to map the use case to a formalism that is well-suited
for dependability analysis. For this purpose, we developed the DA-Charts formalism
[16] which is a probabilistic extension of part of the statecharts formalism. We have
implemented our formalism in the AToM3 tool [17] to provide support for automatic
dependability analysis. The tool allow a developer to create a DA-Chart that corre-
sponds to the use cases established in tasks 1 - 6. The tool also verifies the formalism
constraints and ensures that the mapping rules are adhered to. Based on path analysis of
the DA-Charts, the tool quantitatively determines probabilities of reaching safe or un-
safe states, or achieving the goal, providing a degraded success, or failing. For details
on the DA-Charts formalism and the dependability analysis see [18].

The dependability determined by the tool can now be compared with the depend-
ability required by the stakeholders as determined in task 4. If the analysis reveals an
acceptable level of reliability and safety, then the requirements engineering process is
complete, and a summary specification can be established (see tasks 11 and 12). Oth-
erwise, the requirements need to be refined with handler use cases that address the
service-related exceptions, which is described in tasks 8, 9 and 10.
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3.4 Dependability-Based Refinement

Based on the output of our analysis tool, the service-related exceptions that have signifi-
cant negative effect on the system’s reliability and safety can be identified. To improve
the situation, the following tasks should be performed for each one of them.

Task 8: Specifying Detection Mechanisms Once possible exceptional situations have
been elicited, it is important to carry out the following tasks.

8.1 Add detection actors
8.2 Add detection interaction steps and revisit goal outcomes
8.3 Add detection interaction steps for handlers

Before any recovery actions can be taken by the system, the exceptional situation has
to be detected. The developer should investigate if the current actors and their interac-
tions make the detection possible, and if not, adapt the interaction pattern or even add
secondary detection actors to the system’s environment.

Detection is usually done differently for input and output interactions. Omission
of input to the system can usually be detected using timeouts. Invalid input data can
be detected with checksums, etc. In both cases, no additional detection actors have to
be introduced. The use case has to be updated by adding the discovered exception to
the extension section of the template as an alternative to the essential input step. If
necessary, new use case outcomes might have to be defined.

Output failure is more difficult to handle. Whenever a system output triggers a criti-
cal action of an actor, then the system must make sure that it can detect eventual com-
munication problems or failure of an actor to execute the requested action. This very
often requires additional hardware, e.g. a sensor, to be added to the system. The job of
this new actor is to inform the system that the essential actor successfully executed the
system’s request. This new acknowledgement step has to be added to the main success
scenario after the essential output step in the use case or handler, and an exception rep-
resenting the failure of the output, detected by a timeout while waiting for the acknowl-
edgement, is added to the extension section as an alternative to the acknowledgement
step. For example, an elevator control software might request the motor to stop, but
a communication failure or a motor misbehaviour might keep the motor going. Addi-
tional hardware, for instance, a sensor that detects when the cabin stopped at a floor,
might be necessary to ensure safety or reliability.

Task 9: Specifying Handler Use Cases If the exception puts the user in danger, then
measures must be taken to put the system in a safe state. If the exception threatens the
successful completion of the user goal, reliability is at stake. It should then be investi-
gated if the system can recover and meet the user goal in an alternative way.

In any case, exceptional interaction steps with the environment are performed dur-
ing recovery, and hence must be specified in a separate reliability or safety handler use
case5. Very often, actors – especially humans – are “surprised” when they encounter an

5 Separation of handlers also enables subsequent reuse of handlers. Just like a subfunction-level
use case can encapsulate a subgoal that is part of several user goals, a handler use case can
encapsulate a common way of handling exceptions that might occur while processing different
user goals. Sometimes even, different exceptions can be handled in the same way.
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exceptional situation, and are subsequently more likely to make mistakes when interact-
ing with the system. Exceptional interactions must therefore be as intuitive as possible,
and respect the actor’s needs.

If the goal of the primary actor cannot be achieved, then it is of paramount impor-
tance to inform him of the situation by an appropriate output interaction. In some cases,
it might not be possible to satisfy a user’s goal completely, but a dependable system can
instead offer a degraded form of service. For example, a user might order a product on-
line and request for delivery before a certain date. If the system is unable to satisfy this
request, the user might be offered the option to pick-up the order at the store instead.
The handler use case should then define a new degraded outcome for this situation.

If omission of input from an actor can cause the goal to fail, then, once the omission
has been detected, different options of handling the situation have to be considered. For
instance, prompting the actor for the input again after a given time has elapsed, or using
default input are possible options. Safety considerations might make it even necessary
to temporarily shutdown the system in case of missing input.

Invalid input data is another example of input problem that might cause the goal
to fail. Since most of the time the actors are aware of the importance of their input, a
reliable system should also acknowledge input from an actor, so that the actor realizes
that he is making progress in achieving his goal.

Task 10: Defining Degraded Modes For each of the service-related exceptions identi-
fied in task 6.3 and handled in task 9, the developer should evaluate the effects that the
service-related exception has on future requests for the same service or other services
that could be affected by the exception. In the case where these effects lower the relia-
bility and safety of the service below the required level specified by the current mode,
then a degraded mode should be defined.

A degraded mode of operation (of a normal mode) offers only limited services. Some
services of the normal mode are still provided as is. Some services are provided, but
with a lower degree of reliability and safety. In this case, the service is said to be offered
with degraded quality of service (QoS). For example, a web browser running low on
memory might switch into a mode where only textual elements from webpages are
displayed and graphical elements and other media are suppressed to save memory.

Iteration To complete this iteration, every interaction step of the newly defined handler
of task 9 must again be elaborated (task 5.4), the outcomes must be specified (task 5.5),
and the essential steps tagged with reliability probabilities and safety information (task
6.2). Finally, the developer can re-analyze the updated use cases (task 7) to determine
if the required safety and reliability requirements can now be satisfied.

3.5 Requirements Summary and Documentation

To begin with the requirements documentation, the following tasks are suggested.

Task 11: Use Case Summary

11.1 Create standard use case diagram
11.2 Create exceptional use case diagram
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11.3 Create summary actor list
11.4 Document achievable reliability and safety for services

Whereas individual use cases are text-based, the UML use case diagram provides a
concise high level view of the use cases of a system. It allows developers to graphically
depict the use cases, the actors that interact with the system, and the relationships be-
tween actors and use cases. To begin with in this phase, a standard use case diagram
based on the actors and goals defined earlier should be created.

In a use case diagram, standard use cases appear as ellipses, associated to the ac-
tors whose goals they describe. In [19] we extended use case diagrams and proposed to
identify handler use cases with a < <handler> > stereotype or even a different graphical
symbol in order to differentiate them from standard use cases. We also suggest classi-
fying the handlers as a < <safety handler> > or a < <reliability handler> >. Our
notation for handlers is illustrated in Fig. 8. Having different type of handlers enables
quick identification of functionality that affects safety or reliability of a system, as well
as identification of safety-critical parts of the system. It allows the developer in col-
laboration with the stakeholders to decide, for instance, how much resources should be
allocated to the development of the functionality defined in the handler use cases, or to
prioritize between safety and reliability in case of conflict.

Handler use cases are associated to a base use case, which may be any standard use
case or other handler use case. We suggest to depict this association in the use case
diagram by a directed relationship (dotted arrow) linking the handler use case to its
base use case. This relationship is very similar to the standard UML < <extends> >
relationship. It specifies that the behavior of the base use case may be affected by the
behavior of the handler use case in case an exception is encountered.

In case of an occurrence of an exceptional situation, the base behavior is put on hold
or terminated, and the interaction specified in the handler is started. A handler can tem-
porarily take over the system interaction, for instance to perform some compensation
activity, and then switch back to the normal interaction scenario. In this case, the re-
lationship is tagged with a < <interrupt& continue> > stereotype. Some exceptional
situations, however, cannot be handled smoothly, and cause the current goal to fail. Such
dependencies are tagged with < <interrupt & fail> >. The exceptions that activate
the handler use case are added to the interrupt relationship in a UML comment, similar
to what is done for extension points.

In addition, a list of all primary and secondary actors both normal and exceptional
should be developed. For each service to be provided by the system, it is necessary to
document the reliability and safety that can be achieved.

Task 12: Summary Tables

12.1 Exception summary table
12.2 Mode summary table

For traceability and documentation reasons, all discovered environmental and
service-related exceptions are recorded in a table during tasks 2 and 6. As a summary,
the entries in this table already contains a small textual description of the exceptional
situation should be complemented with the exception contexts in which the exception
can occur, the associated handler(s), and the mechanism for detecting the exception.
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Finally, the mode table is created to summarize all modes of the system. The mode ta-
ble can of course also be created earlier and updated iteratively whenever a new
mode is defined. For each mode the table includes a mode name, a description of the
mode, followed by a list of services that are provided in the mode. For each service, the
service name, the expected minimal reliability, and the expected minimal safety are given.

4 Case Study: 407 Express Toll Route System

We illustrate the process described in Section 3 with the 407 ETR (Express Toll Route)
System. The 407 ETR is a highway that runs east-west just North of Toronto, and was
one of the largest road construction projects in the history of Canada. The road uses a
highly modern Electronic Toll Collection system that allows motorists to pass through
toll routes without stopping or even opening a window. The ETR system is a hard real-
time application requiring high levels of dependability.

Vehicles can be registered with the 407 ETR system, in which case the driver is
issued a small electronic tag, called a transponder, to be attached to the windshield.
When the vehicle enters the highway, it passes under the overhead gantry. The hardware
devices of a gantry include a vehicle detector, a locator antenna, a read/write antenna,
cameras, lights, and a laser scanner. The locator antenna determines if the vehicle is
equipped with a transponder. Next, the read/write antenna reads the account number
from the transponder and the point of entry, time and date is recorded. In addition, the
system uses laser scanners to determine the class of vehicle. The same process occurs
when the vehicle exits the highway. The entry and exit data are then matched and the
transponder account holder is debited.

Unregistered vehicles are identified by their license plate number. The system trig-
gers cameras and lights to take pictures of the rear number plate. At the same time, the
laser scanners are activated to classify the vehicle in order to determine the trip charge.
The owner of the vehicle is identified by electronic access to government records. If
the video correlation and image processing fails to determine the license plate with
sufficient probability, a human operator has to look at the pictures to make the call.

4.1 Elicitation and Discovery

Task 1: Discovering actors, goals, and modes. In the ETR system there is initially
only one primary actor, the Driver. The summary-level use case UseHighway is shown
in Fig. 2. When interacting with the system, the driver has the goal of registering (Reg-
isterVehicle), taking the highway (TakeHighway), payment of bills (PayBill), and can-
celling the registration (CancelRegistration). These goals can be further split into sub-
goals as summarized in Fig. 2.

The 407 ETR system only has one normal mode of operation since there is only one
primary goal, using the highway, that needs to be satisfied at all times.

Task 2: Discovering Context-Affecting Exceptions. In the ETR system, an accident
on the highway or extreme weather leading to critical road conditions, would require the
highway operator, an exceptional actor, to temporarily close parts of the highway. Acti-
vating the emergency behavior is an exceptional goal for the operator, since this happens
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Fig. 2. 407 Standard Use Case Diagram

only in rare occasions. In this task, we identified an environmental exception: High-
wayUnavailable which is signaled by the HighwayOperator exceptional actor when he
receives the request from the Roadside Motorist Assistant Patrol.

Task 3: Eliciting Handlers for Context-Affecting Exceptions. After a discussion with
the stakeholders it has been decided that closing the highway in case of emergencies is
done by activating barriers that prevent new vehicles from entering the highway at the
closed sections. The vehicles on the highway are to be informed of the situation by
displaying messages on message boards. We therefore identified new secondary actors,
the Barrier, and the Message Board.

Task 4. Eliciting Dependability Expectations. We define 3 safety levels for the 407
ETR: level 0 - without effects, level 1 - cars end up in a traffic jam / increased load on
operators, level 2 - cars are damaged / system components are damaged. The reliability
of TakeHighway and PayBill should be high, e.g. 0.999 (one of 10000 cars can fail to
pay for a trip). Other services, e.g. registering and cancelling, require a reliability of
0.995. During an emergency, the chances of a level 2 safety violation should be very
small, e.g. 0.00001, and a level 1 safety violation should be rare, 0.001. The required
reliability of the emergency behavior should be very high, e.g. 0.99999.

Task 5: Discovering and Classifying Normal and Exceptional Modes.
As mentioned earlier, the system only offers one normal mode which includes all

services associated to taking the highway, i.e. TakeHighway, RegisterVehicle, PayBill,
and CancelRegistration.

In task 3, the context-affecting exception HighwayUnavailable was identified since
critical road conditions might require the system to restrict vehicles from entering the
highway. Emergency services such as activating the road barriers are carried out. How-
ever, the exit service needs to be active to allow the vehicles already on the highway
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Use Case: TakeHighway
Level: User Goal
Primary Actor: Driver
Main Success Scenario:

1. Driver enters highway, passing through gantry.
2. Driver exits highway, passing through gantry.
3. System retrieves the driver’s vehicle record based on trip information*.
4. System determines the amount owed based on the trip information and adds the transac-

tion to the vehicle’s records.
5. System informs Driver by sending a signal to the RWAntenna of successful completion

of transaction.
Extensions:

3a. Vehicle is unregistered and does not have a record yet.
3a.1. System sends licence plate information to GovernmentComputer.
3a.2. GovernmentComputer sends vehicle information and owner’s address to System.
3a.3. System creates a new vehicle record. Use case continues at step 4.

3b. Vehicle is unregistered and licence plate is unrecognizable.
3b.1. System displays pictures on OperatorTerminal.
3b.2. OperatorTerminal sends licence plate information to System. Use case continues at

step 3.
5a. Vehicle is not registered. Use case ends in� success�.

Fig. 3. TakeHighway Use Case

to continue. Therefore, when such an exceptional situation arises the system needs to
switch to a restricted mode ExitOnly.

4.2 Requirements Definition and Specification

Due to space constraints, we only discuss the user-goal level TakeHighway, and the
subgoals PassThroughGantry and ProcessRegisteredVehicles.

Task 6: Designing Interactions
The interaction steps required for TakeHighway are detailed in Fig. 3. To take the high-
way, the Driver enters the highway, and then exits it by passing through gantries. If the
vehicle has a transponder, then the device beeps and blinks green after the driver ex-
its the highway. The ProcessRegisteredVehicle use case, shown in Fig. 4, describes how
the system communicates with the transponder, and verifies the class of the vehicle. The
sub-functional level uses cases that describe the processing of unregistered vehicles and
the classification of vehicles are not shown here for space reasons.

The extension section of TakeHighway on purpose describes only alternative ways
to achieve the goal, since exceptional interaction will be shown later.

Fig. 5 shows the handler ActivateBarrier that handles the exception HighwayU-
navailable. Handler use cases have an additional field in the use case template named
Contexts & Exceptions that is used to document by which exception and in what context
the handler is triggered. In our case, a HighwayUnavailable exception occurring puts
the system in a restricted mode, at which time the system only allows exits but does
not allow new goals to start. As a first handling step, the emergency road barriers are
activated. Then the message boards are updated with a warning message. Subsequently
when the road conditions improve, the Operator can deactivate the barriers and grant
access to the highway once again. Since the handler attempts to satisfy user safety, we
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Use Case: ProcessRegisteredVehicle
Level: Sub-Function
Primary Actor: N/A
Main Success Scenario:

1. LocatorAntenna notifies System that it detected an approaching vehicle with transponder.
2. System asks R/WAntenna to obtain account information from transponder.
3. RWAntenna informs System of account information.
4. System records account information for the trip.
5. System turns on the Lights.
6. System triggers the Cameras.
7. Cameras send images to System.
8. System determines licence plate information based on images.

Extensions:
1a. The approaching vehicle does not have a transponder. Use case ends in� f ailure�.

Fig. 4. ProcessRegisteredVehicle Use Case

Handler Use Case: ActivateBarrier
Handler Class: Safety
Context & Exception: TakeHighway{HighwayUnavailable}
Level: Usergoal
Primary Actor: Operator
Main Success Scenario:

System switches into restricted mode ExitOnly.
1. System activates barriers at entry gantries.
2. System displays ”Highway Unavailable” at message boards on highway.
3. Operator informs System that highway is accessible again.
4. System deactivates barriers.
5. System clears message boards.

System switches back to normal mode.

Fig. 5. ActivateBarrier Handler Use Case

label the handler as a safety handler. This is shown in the Handler Class field in the
template.

Task 7: Defining Service-Related Exceptions and Effects on System Reliability and
Safety. We begin in a bottom-up way by examining each step in the ProcessRegistered-
Vehicle use case to determine how essential it’s contribution is in order to achieve the
goal. For example, step 1 involves the locator antenna notifying the system that a vehi-
cle with a transponder is passing by. This is an input interaction, and its omission leads
to an exceptional situation. An antenna defect would cause vehicles to be incorrectly
identified as unregistered vehicles. Therefore, the step is annotated with a reliability tag
together with the failure probability. Next, if the read/write antenna malfunctions, the
registration information associated with the transponder would be inaccessible. Mal-
functioning lights or cameras also hinder the success of the goal, so they are tagged as
well. The exceptions that arise are defined as LocatorAntennaFailure, RWAntennaFail-
ure, LightFailure, and CameraFailure.

In TakeHighway, the government computer might fail to send the requested infor-
mation back to the system. The operator might fail to respond when a picture is sent
to him. The transponder might not react to the acknowledgement signal sent by the
read/write antenna. The service-related exceptions identified in this task that occur in
the TakeHighway context are named as GovernmentComputerUnavailable,
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OperatorFailure, and TransponderUnreachable. Reliability tags are attached to each
of these steps. None of the steps is safety-critical.

We also need to consider the possibility of the handlers failing and the consequences
of such failures. While handling the HighwayUnavailable exception, the barrier might
fail to get activated resulting in a highly unsafe condition. Step 3 in Fig. 5 is therefore
annotated with a safety tag and corresponding probability, and the extensions section is
appended with a BarrierFailure exception.

4.3 Requirements Analysis

Task 8: Assessing Safety and Reliability. The probabilistic analysis of the system
is not elaborated here for space reasons. The interested reader is referred to [16] for
details. It reveals that system safety and reliability cannot be met with the current inter-
action: BarrierFailure has to be handled in order to improve safety, GovernmentCom-
puterUnavailable, OperatorFailure and TransponderUnreachable have to be addressed
in order to improve reliability.

4.4 Dependability-Based Refinement and Iteration

We use the TakeHighway use case and the exceptions occurring in it to illustrate the
tasks in this section.

Task 9: Specifying Detection Mechanisms. We first address the reliability issues in
the TakeHighway use case. To begin with, detecting unavailability of the government
records (exception GovernmentComputerUnavailable) can be done by using a timeout
(the lack of reception of a message), as discussed in Section 3.4. The OperatorFailure
exception can also be detected in a similar manner. To detect the exception Transpon-
derUnreachable, we need to know whether the read/write antenna was able to reach the
transponder. Hence, an additional acknowledgement step is needed. Detecting a failed
entry is done when an exit is detected. Detecting a failed exit is done using a timeout.
The updated use case is shown in Fig. 6.

To increase safety, we need to find a mechanism to detect the failure of the bar-
rier. To this intent, we introduced an additional sensor which detects when a barrier is
closed. A malfunctioning barrier can therefore be detected by the absence of the ac-
knowledgement. The ActivateBarrier handler use case is updated with the detection
and acknowledgement step (not shown for space reasons).

Task 10: Specifying Handler Use Cases. In the case where an exit or entry of a vehicle
is not detected, it is impossible to determine the length of the vehicle’s trip. Therefore,
the driver is billed for a minimal charge, shown in the TakeHighway use case in Fig. 6
with the degraded outcome MinimalTrip (steps 4a.1a and 4b.1a).

If the transponder is unreachable, the driver can not be notified of the success of the
transaction. Therefore the use case ends in the degraded outcome DriverNotNotified
(step 6a).

We know that the government computer is highly reliable and available, and therefore
failures reaching the government computer are probably of temporary nature. Therefore
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Use Case: TakeHighway
Level: User Goal
Primary Actor: Driver
Main Success Scenario:

1. Driver enters highway, passing through gantry.
2. Driver exits highway, passing through gantry.
3. System retrieves the driver’s vehicle record based on trip information*.
4. System determines the amount owed based on the trip information and adds the transac-

tion to the vehicle’s records.
5. System informs Driver by sending a signal to the RWAntenna of successful completion

of transaction. reliability
6. System receives confirmation from RWAntenna that the driver was notified.

Extensions:
3a. Vehicle is unregistered and does not have a record yet.

3a.1. System sends license plate information to GovernmentComputer.
3a.2. GovernmentComputer sends vehicle information and owner’s address to System.

reliability
3a.2a. Exception{GovernmentComputerUnavailable}: use case ends in
� f ailure�.

3a.3. System creates a new vehicle record. Use case continues at step 4.
3b. Vehicle is unregistered and license plate is unrecognizable.

3b.1. System displays pictures on OperatorTerminal.
3b.2. OperatorTerminal sends license plate information to System. Use case continues at

step 3. reliability
3b.2a. Exception{OperatorFailure}: use case ends in� f ailure�.

4a. Exit unsuccessful.
4a.1a. If entry was successful, minimum trip charge is added to vehicle’s records. Use

case ends in� degraded�MinimalTrip.
4a.1b. If entry was unsuccessful as well, use case ends in� f ailure�.

4b. Entry unsuccessful.
4b.1a. If exit was successful, minimum trip charge is added to vehicle’s records. Use case

continues in� degraded�MinimalTrip at step 4.
5a. Vehicle is not registered. Use case ends in� success�.
6a. Exception{TransponderUnreachable}: use case ends in� degraded � DriverNotNoti-

fied.

Fig. 6. Updated TakeHighway Use Case

the service-related exception GovernmentComputerUnavailable is handled by resend-
ing the request. The handler defined for this task is shown in Fig. 7. The OperatorFail-
ure exception can be handled in a similar manner, resending the request to the operator
again or by trying another operator terminal.

In case of a malfunctioning transponder, the client is notified of the problem. He is
given a grace period within which to service the transponder, and during which time
he will not be charged a video toll charge. The handler defined for this purpose, Warn-
Clients, is shown in Fig. 7. The handlers defined in this task are accordingly labelled as
reliability handlers.

In case of the BarrierFailure exception, the system should immediately notify an
operator. The operator can then evaluate the situation and, if necessary, call a service
person and inform the patrol officers. This functionality is described in the safety han-
dler use case CallHighwayPatrol (not shown here for space reasons).

Task 11: Defining Degraded Modes.In the 407 ETR system, even if the hardware of
some entry or exit gantries are malfunctioning, it was decided that the highway should
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Handler Use Case: RetryGovtComp
Handler Class: Reliability
Context & Exception: TakeHighway{GovernmentComputerUnavailable}
Primary Actor: N/A
Secondary Actor:
Main Success Scenario:

1. System resends license plate information to the government computer.
Step 1 is repeated 2 times.

2. Government computer sends vehicle information.

Handler Use Case: WarnClients
Handler Class: Reliability
Context & Exception: TakeHighway{TransponderUnreachable}
Primary Actor: N/A
Main Success Scenario:

1. System ascertains that the transponder is out of order.
2. System notifies operator that the transponder is not responding.
3. System flags transponder account as temporarily unavailable and cancels the video toll

charge.
4. Operator issues a warning letter to the vehicle owner.
5. Owner brings transponder to the office for service.
6. Operator changes status of the account after transponder is serviced.

Extensions:
5a.1 System warns that grace period is over.
5a.2 System cancels discount of video toll charge.

Fig. 7. RetryGovtComp and WarnClients

continue to operate (and charge minimal trips for vehicles that enter or exit through
malfunctioning gantries).

Bad weather conditions might prevent a video camera from capturing clear pictures,
or transmission problems might prevent the captured images from reaching the central
computer. In this case, the detection and recognition services of a video surveillance
system might temporarily be less reliable. In such a situation, the system would switch
to a degraded mode DegradedReliability.

4.5 Requirements Summary

Task 12: Use Case Summary. Fig. 8 shows the use cases, exceptions and handlers
related to TakeHighway by means of an extended use case diagram. All exceptional
interactions are tagged with the < <handler> > stereotype along with the handler class
safety or reliability, and all exceptional situations that trigger these interactions are doc-
umented using notes attached to the < <interrupt> > relationships. For space reasons,
the secondary actors have been omitted from the diagram.

Task 13: Exception Summary Table. The exception table is very straightforward to
create (as described in Section 3.5) and is presented in Table 1.

Task 14: Mode Summary Table. The mode summary table only contains three modes:
the normal operation mode, the restricted mode ExitOnly, and the degraded mode De-
gradedReliability.
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Fig. 8. Reliable and Safe 407 ETR Use Case Diagram

5 DREP and Model-Driven Engineering

The left hand side of Fig. 9 shows a summary of the tasks of our dependability-aware
requirements engineering process.

The arrows illustrate that the developer is expected to go through several iterations
of the process, refining the use cases and handlers if the analysis task reveals that the
required system reliability or safety cannot be achieved within the current environment
with the chosen interactions.

The iteration proceeds as follows. The analysis tool determines how severely each
service-related exception affects system safety and service reliability. Among the
service-related exceptions, the developer should start by addressing an exception that
can be detected (with reasonable effort / costs), and for which a handling strategy that
ensures safety or reliability can be envisioned. The exception to begin with might be
one which requires immediate attention, or is safety-critical (in cases where safety is a
priority). Then tasks 8 and 9 are executed, adding detection capabilities and handlers
to the system. To complete this iteration, every interaction step of the newly defined
handler of task 9 must again be elaborated (task 5.4), the outcomes must be specified
(task 5.5), and the essential steps tagged with reliability probabilities and safety infor-
mation (task 6.2)6. Finally, the developer can re-analyze the updated use cases (task 7)
to determine if the required safety and reliability requirements can now be satisfied.

It should be noted here that the calculated dependability numbers do not represent the
final system safety and reliability. They have to be interpreted as the maximal depend-
ability of the system if it were to be implemented without any flaws (see section 5.2).
Hence the calculated numbers should be higher than the required ones specified for
each service in task 4.

6 If new exceptional goals have been discovered, the developer might even be required to go back
to task 1 to brainstorm new secondary actors that are needed to achieve the new exceptional
goals.
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Table 1. 407 ETR System: Exception Table

Exception Description Context Handler Detection

Government Com-
puter Unavailable

System unable to access vehicle
record

TakeHighway Retry Govt Comp Timeout on government
computer

Operator Terminal
Failure

Operator unable to communicate
with government computer

TakeHighway Retry Operator Timeout on operator

Transponder
Unreachable

System cannot communicate with
the transponder

TakeHighway WarnClient Lack of acknowledgement /
Timeout

Detector Failure System does not get info on incom-
ing vehicles from the vehicle detec-
tor

Process Unregis-
tered Vehicle

Use Redundant
Detector

Locator antenna detects ve-
hicles

Locator Antenna
Failure

System receives no message from
locator antenna; unable to identify
transponders

ProcessRegistered
Vehicle

Use RW Antenna Timeout on antenna

RW Antenna Failure System does not receive transpon-
der account information from the
RW antenna

ProcessRegistered
Vehicle

SwitchTo Spare-
Antenna

Timeout on RW antenna

Light Failure Lights failed to turn on when taking
images

ProcessRegistered
Vehicle, Process
UnregisteredVe-
hicle

Call Service Per-
son

Bad images

Camera Failure System does not receive images
from the camera

Process Regis-
tered Vehicle,
Process Unregis-
tered Vehicle

Call Service Per-
son

Timeout on camera device

Laser Scanner Fail-
ure

System unable to classify due to
lack of message from scanner

Classify Vehicle SwitchTo
SpareScanner

Timeout on scanner

Highway Unavail-
able

System attempts to block access to
parts of the highway

TakeHighway ActivateBarriers Operator request

Barrier Failure The barrier fails to get activated ActivateBarriers Call Highway Pa-
trol

Timeout on barrier

The difference between the calculated and the required values determines how much
effort has to be put into the design and implementation phases. If the difference is small,
then stringent quality assurance, such as formal methods and proofs, extensive testing,
or fault tolerance techniques, has to be employed by the implementors in order to assure
that the internal flaws of the system are minimal. Refinement, i.e. defining new detectors
and handlers, therefore has to continue until the calculated dependability numbers are
sufficiently higher than the required ones.

5.1 Tool Support

In order to use our dependability-aware requirements engineering process efficiently,
tool support is necessary. This is especially true for the probabilistic analysis of system
reliability and safety. DREP relies heavily on the idea of model-driven engineering (as
defined by OMG [20]), in which models of the system under development are built,
and then incrementally modified and transformed as the development progresses from
requirements elicitation to analysis, design and implementation. At each phase, our
process uses the modelling formalisms and notations that are most appropriate to ex-
press the concern at hand. The different modelling formalisms used in our requirements
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Fig. 9. Dependable Requirement Engineering Process Summary and Used Modelling Formalisms

engineering process are shown in the right hand side of Fig. 9. The arrows depict the
model transformations that occur when moving from one phase of the process to the
next.

Currently, our tool [6] supports the creation of DA-Charts. The mapping to Markov
chains and the dependability analysis is automated. We are working on the automated
mapping of use cases to DA-Charts, and are even planning on providing automated
support to map DA-Charts back to use cases. This would allow developers who are
used to the DA-Chart formalism to apply reliability and safety increasing modification
directly to the DA-Charts.

5.2 Discussion and Limitations

Our process helps the developer to discover potential exceptional situations that the
system under development might be exposed to, and then guides the developer to inves-
tigate together with the stakeholder how the system should react in order to provide its
services in the most reliable and safe way. Our approach is based on use cases that even
non-technical people can read and understand, which makes getting feedback from all
concerned stakeholders very easy.

As a result, however, our approach is also limited by the expressiveness of use cases.
Use cases focus strictly on the interactions between the system and the environment.
Hence, our dependability analysis only takes into account how the failures of actors
and communication links affect the reliability and safety of the system under develop-
ment. It does not consider failures internal to the system. The calculated dependability
numbers represent the best achievable safety and reliability of the system if it were im-
plemented without any flaws. If the numbers are too low, the developer should refine the
interactions between the system and the actors, or even add new actors to the environ-
ment, to increase the achievable dependability of the system under development.

At this level of abstraction our approach cannot address internal flaws of the system.
Use cases treat the system under development as a black box, and therefore no internal
details are defined yet. Hence it is impossible to reason about conceptual system state,
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and even less to define invariants or pre- and postconditions on that state for system
services.

To do this, a domain model describing conceptual system state must be created, and
the use case models produced using our approach have to be mapped to operations
that work with that system state. Popular development processes, e.g. the Unified Pro-
cess [21], suggest to use graphical modelling formalisms such as activity diagrams or
sequence diagrams for this purpose, together with OCL [22] constraints to express in-
variants, pre- and postconditions. If formal techniques are to be used to analyze system
properties, a detailed system specification should be derived from our models using an
appropriate formalism, e.g. B [23].

6 Validation

We conducted an empirical study in an academic environment using the 407 ETR case
study to evaluate the applicability and effectiveness of our proposed process. We ran
two separate experiments, both as part of an assignment in an undergraduate/graduate
object-oriented software development course.

In the first experiment, a 3 hour lesson introduced a group of 20 students to use
cases, after which they were asked to write use cases for the 407 ETR system using
the standard use case template described in [15]. This first set of use cases is labelled
standard in the following evaluation. Following the completion of this task, the students
were presented with our exceptional use case notation as proposed in [19] in a one hour
lecture. As a second part of the assignment, the students had to develop and extend
their use cases by analyzing the cases for exceptional situations. They were required
to document their results in an exception table, listing all exceptions discovered, their
contexts, possible detection mechanisms, and handlers. This second set of use cases is
labelled EUC Notation in the following evaluation.

The second experiment was carried out using the same case study, but with a dif-
ferent group of undergraduate/graduate software engineering students. In this case, the
group was again introduced to use cases first (3 hours), but then presented with our
dependability-driven requirements engineering process described in this paper (1 hour).
Subsequently the students were asked to apply our task-based process to the 407 ETR
system and elaborate use cases, handlers and a summarizing exception table following
the guidelines outlined in Section 3.

As illustrated in the previous section, our specification of the 407 ETR included 10
exceptional scenarios. We went over the students submissions and analyzed the excep-
tions discovered by the members of each group. The results of the study are shown in
Fig. 10 and 11.

Fig. 10 illustrates the measured improvements when using our proposed process as
opposed to the standard use cases approach. In the first experiment using the standard
use cases, about 67% of the students did not identify any exceptional situations. None of
the students were able to identify context-affecting exceptions. Using DREP, students
of the second experiment were able to discover an additional 64.45% exceptions on
average, and 96% discovered HighwayUnavailable. It is not surprising that none of the
students using standard use cases discovered the BarrierFailure exception, since this
exception is revealed only after revisiting and analyzing a handler use case.
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Fig. 10. Validation Results: Standard Use Cases versus RE Process

Fig. 11. Validation Results: Exceptional Use Cases versus RE Process

Fig. 11 shows that students who applied our proposed process achieved even better
results than those who just used the exceptional use case notation. Using DREP, the
students of the second experiment were able to discover an additional 21.3% of the
exceptions compared to the students in the first experiment using the exceptional use
case notation only. It is to be noted that, using the exceptional use case notation, the
designer is not lead to carry out the refinement and iteration tasks, and hence the results
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obtained by students of the first experiment were based on one iteration only. Iterations
(as suggested in task 8 and 9) would probably have improved the use cases further.

There was one surprise in the experiment results: using our process, fewer number
of students were able to discover the exceptional situation TransponderUnreachable.
We believe that this is due to the fact that in our process exceptions are discovered by
analyzing the use case interactions step by step. If the standard use case is incomplete
to begin with, i.e. if the analyst forgets a normal interaction, this omission propagates
further on and associated exceptions do not appear. A careful inspection of main success
scenario of the TakeHighway use case of the students of the second experiment revealed
that indeed many students had forgotten to include the acknowledgment step where the
system informs the driver of the successful completion of the transaction.

The successful classroom study can be taken as a good indication that our process has
potential. It would of course be useful to conduct a similar experiment in an industrial
setting. Organizations are often willing to test new ideas in small, low risk projects. But
in our case we propose a process to aid in the development of dependable systems, or in
other words high risk projects, and it seems to be more difficult to convince companies
to try new development techniques.

7 Related Work

We have carried out an extensive literature overview of specialized software develop-
ment methods, domain-specific frameworks and general-purpose middleware that ad-
dress dependability, timeliness, adaptability, or other QoS requirements [24]. To the
best of our knowledge, mainstream development methods currently address such con-
cerns only at the late design and implementation phases. However, several specialized
approaches have been proposed that consider such issues at the early phases.

The frameworks TIRAN and DepAuDE [24] are two significant contributions to
the development of dependable systems, but cater to a specific domain. The TARDIS
project [24] provides a general framework that addresses various non-functional re-
quirements, but does not define a step-by-step development process.

Some approaches have also been proposed that consider exceptions or non-functional
requirements during requirements elicitation, and they are briefly discussed here.

De Lemos et al. [2] emphasize the separation of the treatment of requirements-
related, design-related, and implementation-related exceptions during the software life-
cycle by specifying the exceptions and their handlers in the context where faults are
identified. The description of exceptional behavior is supported by a cooperative object-
oriented approach that allows the representation of collaborative behavior between ob-
jects at different phases of the software development.

Alexander [25] proposes using misuse cases to document and analyze negative sce-
narios, for example scenarios that threaten the security or safety of the system. The
paper describes concepts and modelling constructs along with tool support that can
be used for this purpose. However, the support for eliciting and analyzing exceptional
situations is quite minimal, and requires much imagination and experience. Sindre et
al. [26] define misuse cases, and provide methodological support for eliciting secu-
rity requirements. Ebnenasir et al. [27] propose an approach based on misuse cases for
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modelling of failsafe fault tolerance. The approach introduces faults in a model and
defines unsafe and at risk use cases to allow analysis.

Lamsweerde [28] proposes the KAOS method, which is a goal-oriented approach
for requirements modelling, specification, and analysis. It addresses quality-of-service
issues, and present a high-level approach for specifying requirements and deriving the
design based on refinements. Exceptional behaviour, defined as obstacles, is also ad-
dressed during requirements engineering [29]. To begin with goals are elaborated using
goal graphs, from which the functional requirements are derived. Obstacles are gener-
ated from the goal specifications. The obstacles are then analyzed and refined if needed.
Strategies for resolving the obstacles are then defined, and the goal structure is updated
with the newly introduced goals. Goals and obstacles are expressed in a formal temporal
language, and thus it requires time and expertise to develop correct and complete spec-
ifications. [29] briefly discusses informal obstacle identification but detailed guidelines
are not provided, and informal or semi-formal techniques for resolution and elimination
of obstacles are not offered.

Laibinis et al. [30] uses redundancy patterns as support for integrating fault tolerance
into use cases. They suggest refining use case diagrams with recovery measures using
the standard UML notation. They only focus on error recovery mechanisms, and do not
discuss detection techniques or requirements elicitation methods that need to be used.

Rubira et al. [31] present an approach that incorporates exceptional behavior in
component-based software development by extending the Catalysis method. The re-
quirements phase of Catalysis is also based on use cases, and the extension augments
them with exception handling ideas.

Whittle et al. [32] focuses on representing cross cutting concerns (including non-
functional concerns) during requirements development. The issues of aspect modelling
in scenario-based requirements elicitation are addressed.

Leveson [33] presents the hazard analysis approach which is used as part of the
safety-life-cycle process. The risks are realized by considering different failures classes,
and then discovering the failures in the context of the system under development based
on experience and domain knowledge. The causes of hazards are identified and ana-
lyzed by using techniques such as fault trees. Each hazard is then assigned a criticality
level and a probability to enable risk assessment. In comparison to hazard analysis, we
believe that our approach leads to more complete specifications with respect to safety
and reliability concerns.

Fault trees are also part of the safety-life-cycle process which comprises of several
phases starting from specification of safety requirements, to design and implementation
of safety concerns of critical systems. The initial phase, hazard analysis and risk as-
sessment [33], has goals similar to our exceptional use cases method. Hazard analysis
is carried out to identify the risks, to determine the causes, and then to assess and miti-
gate the risks. The analysis is based on fault trees. The risks are realized by considering
different failures classes, and then discovering the failures in the context of the system
under development. The hazards are then associated with a criticality level and with
the likelihood of occurrence. Such a technique requires much experience and exper-
tise on the developers part. In comparison, our use-case based approach is intuitive and
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provides a systematic process that allows developers to identify exceptional situations
by analysing the set of interactions between the actors and the system.

Our approach is different from the above for several reasons. Firstly, we help the
requirements engineers to elicit, specify, analyze, and refine dependability issues, ex-
ceptions and handlers with a well-defined process that they can follow. DREP focuses
on reliability and safety concerns specifically, and guides analysts to develop a require-
ments specification document that exhaustively addresses dependability expectations of
the stakeholders. Without a process, the only way a developer can discover exceptions
and define recovery measures is based on only his imagination and experience. Sec-
ondly, our process increases dependability by helping the developers detect the need for
adding “feedback” and “acknowledgement” interaction steps to counter communication
problems. Additionally, the process recommends adding hardware to monitor request
execution of secondary actors when necessary. Our handler use cases are stand-alone,
clearly separate exceptional behavior from standard behavior, and can be associated
with multiple exceptions and multiple contexts. DREP also gives support for automatic
dependability analysis with tool support. The process is based on semi-formal con-
structs, and developers do not require expertise in formal specification languages to
define or determine the quality of their requirements. In addition, communicating with
end-users is simpler with use cases.

8 Conclusion

In most software systems today, it is crucial to guarantee that dependability require-
ments are successfully achieved. The discovery of all reliability and safety concerns
is essential for the development of dependable systems. Exceptional situations are less
common and the required behavior of the system in such situations is less obvious, and
hence detailed user feedback on expected system behavior in such situations is very
important. Also, users are more likely to make mistakes when exposed to exceptional
situations, and therefore system interaction during handling of an exceptional situation
is to be designed with great care. Early discovery of dependability concerns allow de-
velopers to discover and then document how the users of the system expect the system
to react in every situation, which ultimately results in a more dependable system and
saves considerable development costs. To this aim, we propose an approach that extends
use case-based requirements elicitation, focussing on system reliability and safety.

Our task-based process begins with eliciting user goals and dependability expecta-
tions, and then discovering context-affecting exceptions. Recovery goals that dictate
the system behaviour in such situations are defined in handler use cases. The process
then goes on to give guidance on designing interactions to satisfy each of the discov-
ered user and handler goals. The defined use cases are then examined step-by-step for
reliability and safety related issues.The identified issues are labelled and documented
as exceptions. As the next phase, the process suggests to analyze the use cases by using
a probabilistic dependability analysis technique. The assessment results might show
the need for increasing the dependability, and hence lead to further refinement. The
refinement tasks require revisiting the use cases and integrating appropriate exception
detection and recovery means. In the final task, the use cases, exceptions, and handlers
are summarized in graphical and textual forms.
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Based on our dependability focused use cases, a specification that considers all ex-
ceptional situations and user expectations can be elaborated during a subsequent analy-
sis phase. This specification can then be used to decide on the need for employing fault
masking and fault tolerance techniques when designing the software architecture and
during detailed design of the system.

For future work, we intend to extend DREP to address other dependability con-
straints like availability and timeliness. We also plan to continue the development of
our tool analysis tool to support DREP by providing a visual modelling environment
for our dependability-focused use cases, and allow automatic mapping to analysis mod-
els for dependability assessment.

References

1. Goodenough, J.B.: Exception handling: Issues and a proposed notation. Communications of
the ACM 18(12), 683–696 (1975)

2. de Lemos, R., Romanovsky, A.: Exception handling in the software lifecycle. IJCSSE 16(2),
167–181 (2001)

3. Shui, A., Mustafiz, S., Kienzle, J.: Exceptional use cases. In: Briand, L.C., Williams, C. (eds.)
MoDELS 2005. LNCS, vol. 3713, pp. 568–583. Springer, Heidelberg (2005)

4. Shui, A., Mustafiz, S., Kienzle, J.: Exception-Aware Requirements Elicitation with Use
Cases. In: Dony, C., Knudsen, J.L., Romanovsky, A., Tripathi, A.R. (eds.) Advanced Top-
ics in Exception Handling Techniques. LNCS, vol. 4119, pp. 221–242. Springer, Heidelberg
(2006)

5. Mustafiz, S., Sun, X., Kienzle, J., Vangheluwe, H.: Model-Driven Assessment of Use Cases
for Dependable Systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 558–573. Springer, Heidelberg (2006)

6. Zia, M., Mustafiz, S., Vangheluwe, H., Kienzle, J.: A Modelling and Simulation Based Pro-
cess for Dependable Systems Design. In: Software and Systems Modeling, pp. 437–451
(April 2007)

7. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process, 2nd edn. Prentice Hall, Englewood Cliffs (2002)

8. Laprie, J.C., Avizienis, A., Kopetz, H. (eds.): Dependability: Basic Concepts and Terminol-
ogy. Springer, New York (1992)

9. Geffroy, J.C., Motet, G.: Design of Dependable Computing Systems. Kluwer Academic Pub-
lishers, Dordrecht (2002)

10. Avizienis, A., Laprie, J., Randell, B.: Fundamental concepts of dependability (2001)
11. Knudsen, J.L.: Better exception-handling in block-structured systems. IEEE Software 4(3),

40–49 (1987)
12. Dony, C.: Exception handling and object-oriented programming: Towards a synthesis. In:

Meyrowitz, N. (ed.) 4th ECOOP 1990. ACM SIGPLAN Notices, vol. 25, pp. 322–330. ACM
Press, New York (1990)

13. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Reading (2000)
14. Mustafiz, S., Kienzle, J., Berlizev, A.: Addressing degraded service outcomes and excep-

tional modes of operation in behavioural models. In: Proceedings of the International Work-
shop on Software Engineering for Resilient Systems (SERENE 2008). ACM, New York
(2008)

15. Sendall, S., Strohmeier, A.: UML-based fusion analysis. In: France, R.B., Rumpe, B. (eds.)
UML 1999. LNCS, vol. 1723, pp. 278–291. Springer, Heidelberg (1999)



250 S. Mustafiz and J. Kienzle

16. Mustafiz, S., Sun, X., Kienzle, J., Vangheluwe, H.: Model-driven assessment of use cases
for dependable systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 558–573. Springer, Heidelberg (2006)

17. de Lara, J., Vangheluwe, H.: AToM3: A tool for multi-formalism and meta-modelling. In:
Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer, Hei-
delberg (2002)

18. Mustafiz, S., Sun, X., Kienzle, J., Vangheluwe, H.: Model-driven assessment of system de-
pendability. In: Software and Systems Modeling (SoSym) (March 2007)

19. Shui, A., Mustafiz, S., Kienzle, J., Dony, C.: Exceptional use cases. In: Briand, L.C.,
Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 568–583. Springer, Heidelberg
(2005)

20. Mukerji, J., Miller, J.: Mda guide v1.0.1 (2003)
21. Jacobson, I., Rumbaugh, J., Booch, G.: The Unified Software Development Process. Object

Technology Series. Addison–Wesley, Reading (1999)
22. Warmer, J., Kleppe, A.: The Object Constraint Language, 2nd edn. Object Technology Series.

Addison–Wesley, Reading (2003)
23. Abrial, J.R.: The B Book - Assigning Programs to Meanings. Cambridge University Press,

Cambridge (1996)
24. Mustafiz, S., Kienzle, J.: A survey of software development approaches addressing depend-

ability. In: Guelfi, N., Reggio, G., Romanovsky, A. (eds.) FIDJI 2004. LNCS, vol. 3409, pp.
78–90. Springer, Heidelberg (2005)

25. Alexander, I.F.: Misuse cases: Use cases with hostile intent. IEEE Software 20(1), 58–66
(2003)

26. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requir.
Eng. 10(1), 34–44 (2005)

27. Ebnenasir, A., Cheng, B.H.C., Konrad, S.: Use case-based modeling and analysis of failsafe
fault-tolerance. In: RE, pp. 336–337. IEEE Computer Society, Los Alamitos (2006)

28. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: RE, p. 249.
IEEE Computer Society, Los Alamitos (2001)

29. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements engineer-
ing. IEEE Trans. Software Eng. 26(10), 978–1005 (2000)

30. Laibinis, L., Troubitsyna, E.: Fault tolerance in use-case modeling. In: Proceedings of RHAS
2005 (September 2005)

31. Rubira, C.M.F., de Lemos, R., Ferreira, G.R.M., Fliho, F.C.: Exception handling in the devel-
opment of dependable component-based systems. Software – Practice & Experience 35(3),
195–236 (2004)
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Abstract. While UML gives an intuitive image of the system, formal methods 
provide the proof of its correctness. We can benefit from both aspects by  
combining UML and formal methods. Even for the combined method we need 
consistent and compact description of the changes made during the system de-
velopment. In the development process certain design patterns can be applied. 
In this paper we introduce progress diagrams to document the design decisions 
and detailing of the system in successive refinement steps. A case study illus-
trates the use of the progress diagrams.  

Keywords: Progress diagram, Statemachines, Stepwise development, Refinement, 
Refinement Patterns, UML, Event-B, Action Systems, Graphical representation. 

1   Introduction 

For complex systems the stepwise development approach of formal methods is bene-
ficial, especially considering issues of ensuring the correctness of the system. How-
ever, formal methods are often difficult for industrial practitioners to use. Therefore, 
they need to be supported by a more approachable platform. The Unified Modelling 
Language (UML) is commonly used within the computer industry, but currently, 
mature formal proof tools are not available. Hence, we use formal methods in combi-
nation with the semi-formal UML. 

For a formal top-down approach we use the Event B formalism [11] and associated 
proof tool to develop the system and prove its correctness. Event-B is based on Action 
Systems [4] as well as the B Method [1], and is related to B Action Systems [22]. With the 
Event-B formalism we have tool support for proving the correctness of the development. In 
order to translate UML models into Event B, the UML-B tool [18, 19] is used. UML-B is a 
specialisation of UML that defines a formal modelling notation combining UML and B.  

The first phase of the design approach is to state the functional requirements of the 
system using natural language illustrated by various UML diagrams, such as statechart 
diagrams and sequence diagrams that depict the behaviour of the system. The system is 
built up gradually in small steps using superposition refinement [3, 10]. We rely on 
patterns in the refinement process, since these are the cornerstones for creating reus-
able and robust software [2, 7]. UML diagrams and corresponding Event B code are 
developed for each step simultaneously. To get a better overview of the design process, 
we introduce the progress diagram, which illustrates only the refinement-affected parts 
of the system and is based on statechart diagrams. Progress diagrams support the  
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construction of large software systems in an incremental and layered fashion. More-
over, they help to master the complexity of the project and to reason about the proper-
ties of the system. We illustrate the use of the diagrams with a case study. 

The rest of the paper is organised as follows. In Section 2 we give an overview of 
our case study, Memento, from a general and functional perspective. An abstract 
specification is presented as a graphical, as well as a formal representation in Section 
3. Section 4 describes stepwise refinement of systems and gives refinement patterns 
and Section 5 introduces the idea of progress diagrams. The system development is 
analysed and illustrated with the progress diagrams relying on the case study in Sec-
tion 6. The related work is presented in Section 7. We conclude with some general 
remarks and our future work in Section 8. 

2   Case Study – Memento Application 

The Memento application [14] that is used as a case study in this paper is a commer-
cial application developed by Unforgiven.pl. It is an organiser and reminder system 
that has evolved into an internet-based application. Memento is designed to be a 
framework for running different modules that interact with each other.  

In the distributed version of Memento every user of the application must have its 
own, unique identifier, and all communication is done via a central application server. 
In addition to its basic reminder and address book functions, Memento can be config-
ured with other function modules, such as a simple chat module. Centralisation via the 
use of a server allows the application to store its data independently of the physical 
user location, which means that the user is able to use his own Memento data on any 
computer that has access to the network. 

The design combines the web-based approach of internet communicators and an 
open architecture without the need for installation at client machines. During its start-up 
the client application attempts to connect to a central server. When the connection is 
established, the preparation phase begins. In this phase the user provides his/her unique 
identifier and password for authorisation. On successful login the server responds by 
sending the data for the account including a list of contacts, news, personal files etc. 
Subsequently the application searches for modules in a working folder and attempts to 
initialise them, so that the user is free to run any of them at any time. During execution 
of the application, commands from the server and the user are processed at once. Me-
mento translates the requested actions of the user to internal commands and then han-
dles them either locally or via the server. Upon a termination command Memento final-
ises all the modules, saves the needed data on the server, logs out the user and closes the 
connection. To minimise the risk of data loss, in case of fatal error, this termination 
procedure is also part of the fatal exception handling routine. 

3   Abstract Specification  

3.1   UML-Models 

We use the Unified Modelling Language™ (UML) [5], as a way of modelling not 
only the application structure, behaviour, and architecture of a system, but also its 
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data structure. UML can be used to overcome the barrier between the informal indus-
try world and the formal one of the researchers. It provides a graphical interface and 
documentation for every stage of the (formal) development process. Although UML 
offers miscellaneous diagrams for different purposes, we focus on two types of these 
in our paper: sequence diagrams and statechart diagrams.  

The sequence diagram is used within the development of the system to show the 
interactions between objects and the order in which these interactions occur. The 
diagram can be derived directly from the requirements. Furthermore, it may give 
information on the transitions of the statemachines. The interaction between entities 
in the sequence diagram can be mapped to self-transitions on the statechart diagram to 
model communication between the modelled entity and its external entities. 

In our case study the external entities are the server and the users interacting with 
the modelled entity Memento. An example of a sequence diagram for the application 
is given in Fig. 1, where part of the requirements (the emphasized text in Section 2) 
concerning the server connection and the program preparation phase is shown. In the 
diagram we describe the initialisation phase of the system, which consists of estab-
lishing a connection (in the connection phase) and then preparing the program (in the 
preparation phase). The first of these actions requires the interaction with the server 
through an internet connection. The second action requires communication with user 
as well. The described interaction (in Fig. 1) is transferred to a statechart diagram as 
transition tryInit (to later be refined to the transitions tryConn and tryPrep as ex-
plained in Section 6). 

In statechart diagrams objects consist of states and behaviours (transitions). The 
state of an object depends on the previous transition and its condition (guard). A 
statechart diagram provides a graphical description of the transitions of an object from 
one state to another in response to events [12, 13]. The diagram can be used to illus-
trate the behaviour of instances of a model element. In other words, a statechart dia-
gram shows the possible states of the object and the transitions between them.  

 

 

Fig. 1. Sequence diagram presenting the object interaction in the initialisation phase 
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The statemachine depicting the abstract behaviour of Memento is shown in Fig. 2. 
The first phase is to initialise the system by communicating with the server. It is mod-
elled with the event tryInit. When initialisation has been successfully completed, the 
transition goReady brings the system to the state ready, where it awaits and processes 
the user and server commands. Upon the command close, the system enters the finali-
sation phase, which leads to the system cleanup and proper termination. 

The detection of errors in each phase is taken into consideration. In the model, the 
errors are captured by transitions targeting the suspended state (susp), where error 
handling (rollback) takes place. The system may return to the state where the error 
was detected, if the error happens to be recoverable. If the error is non-recoverable, 
the fatal termination action is taken and the system operation finishes. Any error de-
tected during or after finalisation phase is always non-recoverable. 

We use the following notation for the transitions in statechart diagrams and in the 
Event-B code in the rest of the paper. The symbols ‘::’ and ‘:∈’ stand for non-
deterministic assignment and are applied interchangeably, in the diagrams and the 
code, respectively. The symbol ‘:=’ is used in assignments, whereas ‘||’ symbol de-
notes that the operands are executed concurrently. All of the mentioned symbols are 
placed in the statement parts. By the use of a junction pseudo state [20] (marked with 
angled brackets ‘<>’) that denotes the old, refined transition, we indicate the refine-
ment relation between new transitions and previous abstract ones.  

3.2   Formal Specification 

In order to be able to reason formally about the abstract specification, we translate it 
to the formal language Event B [11]. An Event-B specification consists of a model 
and its context that depict the dynamic and the static part of the specification, respec-
tively. They are both identified by unique names. The context contains the sets and 
constants of the model with their properties and is accessed by the model through the 
SEES relationship [1]. The dynamic model, on the other hand, defines the state 
 

init ready

susp finalised

tryInit [is_ok=F] / is_ok::BOOL working [cmd=work] / cmd:=no_cmd

goReady [is_ok=T]

fatalFailCleanup [cmd=close]
/ is_fatal:=T || cmd:=no_cmd

doFin [cmd=close]

new_cmd [cmd=no_cmd]
/ cmd::{work, close}

doCleanup [cmd=close & is_fatal=F]

failInit [is_ok=F] / is_fatal::BOOL

recoverInit [is_fatal=F
& is_ok=F] / cmd:=no_cmd

fatalTermination [is_fatal=T]

recoverFin [is_fatal=F & is_ok=T]
/ cmd:=no_cmd

failFin [cmd::{work, close}] / is_fatal::BOOL

fatalTerm  

Fig. 2. The abstract statemachine of Memento 
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variables, as well as the operations on these. Types and properties of the variables are 
given in the invariant. All the variables are assigned an initial value according to the 
invariant. The operations on the variables are given as events of the form WHEN guard 

THEN substitution END in the Event-B specification. When the guard evaluates to true the 
event is said to be enabled. If several events are enabled simultaneously any one of 
them may be chosen non-deterministically for execution. The events are considered to 
be atomic, and hence, only their pre and post states are of interest. In order to be able 
to ensure the correctness of the system, the abstract model should be consistent and 
feasible [11]. 

Each transition of a statechart diagram is translated to an event in Event-B. Below 
we show the Event B-translation of the statemachine concerning the initialisation 
(state init) of the cooperation with the server in Fig. 2:  

MACHINE Memento 
SEES Data 
VARIABLES is_fatal, is_ok, cmd, state 
INVARIANT is_fatal ∈ BOOL ∧ is_ok ∈ BOOL ∧ cmd ∈ CMD ∧ state ∈ STATE ∧  
 (state=init ⇒ cmd=no_cmd) ∧ ... 
INITIALISATION is_fatal:=FALSE || cmd:=no_cmd || is_ok:=FALSE || state:=init 
EVENTS 
 tryInit =  WHEN state=init ∧ is_ok=FALSE  THEN is_ok :∈ BOOL END; 
 failInit =  WHEN state=init ∧ is_ok=FALSE  THEN state:=susp || is_fatal :∈ BOOL END; 
 recoverInit= WHEN state=susp ∧ is_ok=FALSE ∧ is_fatal=FALSE THEN state:=init || cmd:=no_cmd 

END; 
 goReady =  WHEN state=init ∧ is_ok=TRUE  THEN state:=ready END;  
 … 
END 

The variables model a proper initialisation (is_ok), occurrence of a fatal error 
(is_fatal), as well as the command (cmd) and the state of the system (state). Initially 
no command is given and the initialisation phase is marked as not completed (is_ok 
:= FALSE). The guards of the transitions in the statechart diagram in Fig. 2 are trans-
formed to the guards of the events in the Event B model above, whereas the substitu-
tions in the transitions are given as the substitutions of the events. The feasibility and 
the consistency of the specification are then proved using the Event-B prover tool. 

4   System Refinement and Refinement Patterns 

It is convenient not to handle all the implementation issues at the same time, but to 
introduce details of the system to the specification in a stepwise manner. Stepwise 
refinement of a specification is supported by the Event-B formalism. In the refine-
ment process an abstract specification A is transformed into a more concrete and de-
terministic system C that preserves the functionality of A. We use the superposition 
refinement technique [3, 11, 22], where we add new functionality, i.e., new variables 
and substitutions on these, to a specification in a way that preserves the old behaviour. 
The variables are added gradually to the specification with their conditions and prop-
erties. The computation concerning the new variables is introduced in the existing 
events by strengthening their guards and adding new substitutions on these variables. 
New events, assigning the new variables, may also be introduced.  
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4.1   Refinement of the System 

System C is said to be a correct refinement of A if the following proof obligations are 
satisfied [11, 20, 22]: 

1. The initialisation in C should be a refinement of the initialisation in A, and it 
should establish the invariant in C. 

2. Each old event in C should refine an event in A, and preserve the invariant of C.  
3. Each new event in C (that does not refine an event in A) should only concern the 

new variables, and preserve the invariant.  
4. The new events in C should eventually all be disabled, if they are executed in 

isolation, so that one of the old events is executed (non-divergence). 
5. Whenever an event in A is enabled, either the corresponding event in C or one of 

the new events in C should be enabled (strong relative deadlock freeness). 
6. Whenever an error detection event (event leading to the state susp) in A is en-

abled, an error detection event in C should be enabled (partitioning an abstract 
representation of an error type into distinct concrete errors during the refinement 
process [21]). 

The tool support provided by Event-B allows us to prove that the concrete specifi-
cation C is a refinement of the abstract specification A according to the Proof Obliga-
tions (1) - (6) given above. 

4.2   Modelling Refinement Patterns 

In order to guide the refinement process and make it more controllable, refinement 
patterns [12] can be applied. We are using the following notation for the patterns in the 
rest of the paper. A typical event consists of a guard G(V) and an action S(V), where 
G(V) is some supplementary predicate on the variables V, often represented as a con-
junction of several individual guards, and S(V) is some supplementary assignment of 
the variables V. The variables V are of a general type (TYPE). For instance, in the 
Event-B code for the refinement EX3c Gi(y) denotes a guard on variable y of the gen-
eral type TYPE, while Si(y) denotes some assignment of variable y. 

In all the pattern diagrams (except in the choice paths in Fig. 5) we omit the guards 
on the transitions for better readability of the diagrams. The code added in the current 
refinement step is indicated by a darker background. 

4.2.1   Refining the States 
Let us first concentrate on the abstract specification given in Fig. 3a. It is pictured by a 
statechart diagram consisting of two states (st1 and st2), a self transition tr1 for the state 
st1 and a transition tr2 from state st1 to the state st2. We are focusing on data refinement 
and event refinement patterns enabled by the data refinement. The former is shown in the 
statechart diagram in Fig. 3b (splitting states into substates and adding transitions between 
them), while an example of the latter is given in Fig. 3c (splitting existing transitions).  

Splitting the states and adding new transitions are commonly performed in one re-
finement step. The two steps shown in Figures 3b and 3c are shown separately here 
only to depict the details of the complete data and event refinement. Generally, when 
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3b)  

 

3a) 

 

3c) 

 
 

Fig. 3. Refinement patterns – basic data and event refinements  
 

refining the states, we want to add some new features/variables at the same time as we 
split the transitions. 

For the abstract specification depicted in Fig. 3a we have the following Event-B 
specification code: 

MACHINE EX3a 
VARIABLES state 
INVARIANT state ∈ {st1, st2} 
INITIALISATION state:=st1 
EVENTS 
 tr1 =  WHEN state=st1 THEN state:=st1 END; 
 tr2 =  WHEN state=st1 THEN state:=st2 END 
END 

The Event-B code for the pattern concerning the data refinement, i.e. splitting the 
states, is illustrated in the Fig. 3b as follows: 

REFINEMENT EX3b 
REFINES  EX3a 
VARIABLES state, state1 
INVARIANT state ∈ {st1, st2} ∧ state1 ∈ {st1a, st1b} 
INITIALISATION state:=st1 || state1:=st1a 
EVENTS 
 tr1 =  WHEN state=st1  THEN state:= st1 END; 
 trNew =  WHEN state=st1 ∧ state1=st1a THEN state1:=st1b END; 
 tr2 =  WHEN state=st1 ∧ state1=st1b  THEN state:=st2 END 
END 

The pattern for separating an existing transition (event refinement) corresponding 
to the diagram in Fig. 3c is as follows: 

REFINEMENT EX3c 
REFINES EX3a  
VARIABLES state, state1, y, z 
INVARIANT state ∈ {st1, st2} ∧ state1 ∈ {st1a, st1b} ∧ y∈TYPE ∧ z∈TYPE ∧ I(y,z) 
INITIALISATION state:=st1 || state1:=st1a || y:∈TYPE || z:∈TYPE 
EVENTS 
 tr1a (refines tr1) =  WHEN state=st1 ∧ state1=st1a ∧ G1a(y)  
   THEN state:=st1 || state1:=st1a || S1a(y) END; 
 tr1b (refines tr1) =  WHEN state=st1 ∧ state1=st1b ∧ G1b(z)  
   THEN state:=st1 || state1:=st1b || S1b(z) END; 
 trNew =   WHEN state=st1 ∧ state1=st1a ∧ GN(y)  
   THEN state1:=st1b END; 
 tr2 =   WHEN state=st1 ∧ state1=st1b ∧ G2(z)  
   THEN state:=st2 END 
END 
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Each of the refined event uses some of the new variables (y and z) in its guards 
(G(y) and G(z)) and actions (S(y) and S(z)) to reduce non-determinism. The guards 
G1a(y) and Gn(y) are created in such a way that they guarantee progress. In the same 
manner Gn(y) should imply G2(z) or G1b(z), moreover guards G2(z) and G1b(z) should 
also be formed to guarantee the progress of the system. When inserting conditions on 
new properties to the guards, the failure management is in general also refined in a 
corresponding manner in order to design a fault tolerant behaviour. Nevertheless, here 
we concentrate our patterns on the proper and desirable behaviour of the system. An 
example of another pattern of the basic data and event refinement including failure 
management is given by Snook and Waldén [20]. In that pattern a loop is created in 
the superstate. 

In order to give an intuition of the correctness of the patterns, we state how the 
Proof Obligation Rules given in Section 4.1 are satisfied by the patterns. Moreover, 
the Proof Obligations hint at how problems in the program design can be detected 
more easily. 

According to the Proof Obligations (1) and (2) in Section 4.1 the initialisation and 
the events are refined to take the new variables into consideration. The guards of the 
old events may be strengthened and assignments concerning the new variables added. 
During the system development we may also want to refine an existing event by split-
ting it into several separate events. As acknowledged in Proof Obligation (3), the new 
events are only permitted to assign the new variables, but may, however, refer to the 
old variables. The guard of the new event should be composed in such a way that the 
new event, together with the refined events, ensures progress of the system (Proof 
Obligation (5)). 

The new events should not take over the execution (Proof Obligation (4)), which 
can be assured by disallowing the new transitions in the statemachine diagram (corre-
sponding to new events in the Event-B model) from forming a loop. The Event-B 
prover requires an expression, called a ‘variant’, that gives a Natural number that is 
decreased by all of the new transitions between the substates. To deduce a suitable 
variant, graph theory is applied. The states of the statemachine representing the sys-
tem are numbered according to the minimum path length to a refining transition. 
Hence, if the new transitions form a sequence that progresses towards a refining tran-
sition, the function that defines this numbering for each state will be strictly decreased 
as the state changes. If loops are unavoidable in the new events, the auxiliary vari-
ables must be used in the variant in order to provide a suitable variant that decreases 
throughout the loop. Each new transition has to lead to a new state with a lower des-
ignated number or (in case of loops) alter the auxiliary state variables, thereby de-
creasing the variant. To avoid deadlock, a route from every new transition to one that 
refines an old transition should exist. This is a necessary, but not sufficient, condition 
for relative deadlock freeness. If there exists no sequence of new transitions which 
can reach one that refines an old transition, meaning there is no route, then new events 
terminate (without enabling an old event) and a new deadlock is introduced [20]. 

As properties are added to the system, the potential failure management should 
also be refined. If a fault appears at a substate it should be viable to return to that 
substate after recovery. This can be achieved by dividing an abstract failure into more 
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specific failures on the new features in conformance with Proof Obligation (6). Note 
that new failure situations are not introduced in our case, as it is a general pattern that 
can be adjusted to the specific needs.  

4.2.2   Flattening States 
When refining the system by superposition and at the same time splitting the states in 
a hierarchical manner, we have to deal with the states that are nested in the superstate 
due to the consequent refinement steps. This development, although performed in a 
stepwise manner, at some point makes the system model unreadable. Therefore we 
apply the flattening pattern, which removes the most external superstate, leaving the 
substates intact. 

4a) 

 

4b) 

 

Fig. 4. Refinement pattern – flattening of the hierarchical states 

In Fig. 4 we present the flattening pattern applied to the model from Fig. 3c. In Fig. 
4a we model the hierarchical structure of states, i.e. state st1 is a superstate for the 
states st1a and st1b. By applying the flattening pattern, we remove the superstate st1. 
This is possible, when giving an appropriate invariant preserving the relation between 
the states in the model, namely relating the states from the old model to the states in 
the new model. This is correlated with the change of the naming of the variables in 
order to preserve the invariant. 

Note that flattening can only be performed once the parent state is neither the 
source nor target of any transitions. That is, other patterns should first be applied to 
move all the parents’ transitions to its substates so that the parent state is completely 
redundant. 

Here we show the Event-B code for the refined model: 

REFINEMENT EX4b 
REFINES EX4a  
VARIABLES newState, y, z, v 
INVARIANT newState ∈ {fst1a, fst1b, fst2} ∧ newState ∈ NEWSTATE  
 ∧ y∈TYPE ∧ z∈TYPE ∧ v∈TYPE ∧ R4(y,z,v) ∧ 
 newState=fst1a ⇔ (state=st1 ∧ state1=st1a) ∧  
 newState=st1b ⇔ (state=st1 ∧ state1=st1b) ∧ state=st2 � newState=fst2 ∧  
 newState=fst2 � state=st2 ∧ state=st1 � (newState=fst1a � fst1b)  
INITIALISATION newState:=fst1a || v:∈TYPE || y:∈TYPE || z:∈TYPE 
EVENTS 
 tr1a (refines tr1) =  WHEN newState=fst1a ∧ G1a(y) ∧ G1a(z) ∧ G1a(v)  
   THEN newState:=fst1a || S1a(y) || S1a(z) || S1a(v) END; 
 tr1b (refines tr1) =  WHEN newState=fst1b ∧ G1b(y) ∧ G1b(z) ∧ G1b(v)  
   THEN newState:=fst1b || S1b(y) || S1b(z) || S1b(v) END; 
 trNew =   WHEN newState=fst1a ∧ Gnr(y) ∧ Gnr(z) ∧ Gnr(v)  
   THEN newState:=fst1b || Snr(y) || Snr(z) || Snr(v) END; 
 tr2 =   WHEN newState=fst1b ∧ G2r(y) ∧ G2r(z) ∧ G2r(v)  
   THEN newState:=fst2 || S2r(y) || S2r(z) || S2r(v) END 
END 
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Since flattening the state hierarchy is rather a rewriting step than a refinement step, 
the proof obligations in Section 4.1 trivially hold. We rely on the invariant giving the 
relation between the flattened state and the hierarchical states. 

4.2.3   Separating Existing Transitions – Choice Paths 
In order to perform event refinement, particularly to separate existing events, we can 
split the transition into alternative paths using the black diamond-shaped choice sym-
bol (salmiakki) [20], where each choice is responsible for a separate event. The 
guards on the events are strengthened by the choice points. Each choice represents a 
separate event whose guard includes the conjunction of all the segments leading up to 
that path. Thus, the guard enabling a given event is the conjunction of all the condi-
tions of choice paths leading up to the choice point.  

Fig. 5 illustrates a simple pattern for adding features to the specification and ex-
panding its functionality. More specifically, the transition tr1 is refined by two 
branches - transitions tr1a and tr1b. This could, for example, model the refinement of 
a non-deterministic event ‘move’ to the more specific events ‘move_forward’ and 
‘move_backward’. 

5a) 
 

5b) 

 

Fig. 5. Refinement pattern – event refinement: simple choice paths 

The Event-B code corresponding to this pattern for the abstract machine is as follows: 

MACHINE EX5a 
VARIABLES state 
INVARIANT state ∈ {st1, st2 }  
INITIALISATION state:=st1 
EVENTS 
 tr1 =  WHEN state=st1 THEN state:=st2 END 
END 

The refinement can be expressed as the following Event-B machine: 

REFINEMENT EX5b 
REFINES EX5a  
VARIABLES state, q 
INVARIANT state ∈ {st1, st2 } ∧ q ∈ TYPE ∧ I(q) 
INITIALISATION state:=st1 || q :∈ TYPE  
EVENTS 
 tr1a (refines tr1) =  WHEN state=st1 ∧ G1a(q)  THEN state:=st2 || S1a(q)END; 
 tr1b (refines tr1) =  WHEN state=st1 ∧ G1b(q)  THEN state:=st2 || S1b(q) END  
END 

Guards of the transition tr1 are strengthened via choice point, according to 
Proof Obligation (2). When splitting the transition tr1 into two more specific tran-
sitions tr1a and tr1b we should ensure the progress of the system, fulfilling Proof 
Obligation (5). 

 



 Documenting the Progress of the System Development 261 

6a) 

 

6b) 

 

Fig. 6. Refinement pattern – event refinement: choice paths 

With the choice paths pattern we can also show more detailed failure management. 
Fig. 6 depicts the creation of the choice path on the transition tr1, thus detailing the 
error detection. The transition tr1 is refined by strengthening its guards concerning the 
new variable q (G1(q)). The transition tr2undef is refined into transition tr2undef2, 
which stands for the detection of undetermined errors and tr2a which is modelling a 
particular type of failures (¬G1(q)).  

The Event-B code for the abstract machine that we use as an example for choice 
paths pattern (event refinement) is as follows: 

MACHINE EX6a 
VARIABLES state 
INVARIANT state ∈ {st1, st2, susp}  
INITIALISATION state:=st1 
EVENTS 
 tr1 =  WHEN state=st1 THEN state:=st2 END; 
 tr2undef =  WHEN state=st1 THEN state:=susp END 
END 

The refined model is expressed as an Event-B model given below: 

REFINEMENT EX6b 
REFINES EX6a  
VARIABLES state, q 
INVARIANT state ∈ {st1, st2, susp} ∧ q ∈ TYPE ∧ J(q) 
INITIALISATION state:=st1 || state1:=st1a || q :∈ TYPE  
EVENTS 
 tr1 =   WHEN state=st1 ∧ G1(q)   THEN state:=st2 || S1(q) END; 
 tr2undef2 (refines tr2undef) =  WHEN state=st1  THEN state:=susp  END; 
 tr2a (refines tr2undef) =  WHEN state=st1 ∧ ¬G1(q)  THEN state:=susp || S2a(q)  END 
END 

We use the join (black bar symbol) to illustrate refinement of the failure transition 
tr2undef, which is split into two different failures, tr2undef2 and tr2a, in accordance 
with Proof Obligation (6). The guard for transition tr1 is strengthened (Proof Obliga-
tion (2)) by the conjunction of the negation of all the particular failures. In this way 
we can ensure that there will be an enabled event also in the refined model (Proof 
Obligation (5)). 

4.2.4   Orthogonal Regions Pattern 
Furthermore, we can also consider a pattern for adding the same behaviour to several 
states (orthogonal regions [20]) as a type of data and event refinement. This pattern 
can be used in case of architectural redundancy, i.e. when several states have  
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incoming (entry) and outgoing (exit) transitions of similar functionality. Fig. 7 illus-
trates adding an orthogonal region (the lower region) to the superstate susp, which has 
new behaviour common to all the previous states (given in the higher region), appli-
cable to all three kinds of failure. In order for the pattern to be correct, several condi-
tions have to be fulfilled. The orthogonal region should not affect the mechanism of 
error detection. In Fig. 7 we show that the unnamed entry and exit transitions of the 
lower region connect to the named events of the upper region. It must be ensured that, 
when the new region is entered, at least one of the new transitions must be enabled 
(synchronisation condition). Moreover the exit transitions from the upper region are 
synchronised with equivalent transitions of the lower region, i.e., they are guarded by 
the lower region reaching a state that has an exit transition with which it can merge. 

 

Fig. 7. Refinement pattern - superposition of an orthogonal region  

Subsequently we give a machine and its refinement using the orthogonal states. 
The upper region of the state susp forms the abstract machine. 

MACHINE EX7 
VARIABLES state, suspState 
INVARIANT state ∈ {susp, state_ok} ∧ suspState ∈ {susp1, susp2, susp3} 
INITIALISATION state:=susp || suspState:={susp1, susp2, susp3} 
EVENTS 
 fail1 =  WHEN state=state_ok  THEN state:=susp || stateSusp:=susp1 END; 
 recover1 =  WHEN state=susp ∧ suspState=susp1 THEN state:=state_ok  END; 

 terminate1 =  WHEN state=susp ∧ suspState=susp1  THEN state:=fatalTermination  END; 
 … 
END 

In the refinement the old state susp is composed with the orthogonal region. 

REFINEMENT EX7a 
REFINES EX7  
VARIABLES state, suspState, ortState, s 
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INVARIANT state ∈ {susp, state_ok, fatalTermination} ∧ suspState ∈ {susp1, susp2, susp3} ∧  
 ortState ∈ {unknown, known, fixed, unfixable} ∧ s∈TYPE ∧ I(s) 
INITIALISATION state:=susp || suspState:={susp1} || ortState:=unknown || s:∈ TYPE 
EVENTS 
 fail1 =  WHEN state=state_ok ∧ Gf(s)   
  THEN state:=susp || stateSusp:=susp1 || ortState:=unknown END; 
 recover1 =  WHEN state=susp ∧ suspState=susp1 ∧ Gr(s) ∧ ortState=fixed  
  THEN state:=state_ok || Sr(s) END; 
 terminate1 =  WHEN state=susp ∧ suspState=susp1 ∧ ¬Gf(s) ∧ ortState=unfixable  
  THEN state:=fatalTermination || Sf(s) END; 
 … 
 diagnose =  WHEN state=susp ∧ ortState=unknown  THEN ortState:=known END; 
 discard =  WHEN state=susp ∧ ortState=known  THEN orState:=unfixable END; 
 fix =  WHEN state=susp ∧ ortState=known  THEN ortState:=fixed || Sf(s)END 
END 

As the events/transitions introduced in the orthogonal region are new events in the 
refinement, they should only concern new features to satisfy Proof Obligation (3). 
These new transitions should eventually hand over control to the old transitions, 
which is guaranteed by Proof Obligation (4). Hence, we need to generate a variant on 
the distance to an exit transition for these new transitions. In order to fulfil Proof 
Obligation (5) at least one of the new transitions (diagnose followed by discard or fix) 
must be enabled after entering the orthogonal region. This is caused by the fact that 
the recovering transitions and the terminating transitions wait to be enabled until the 
orthogonal region is prepared to synchronise with them. The composed events are 
then refinements of the old events, like for example fail1, fail2, fail3, in conformance 
with Proof Obligation (2). The orthogonal region strengthens the guards of the termi-
nation and recovery events, but at the same time it guarantees that an exit state of the 
orthogonal region will be reached (Proof Obligation (6)). 

As the size of the system grows during the development, it is difficult to get a clear 
overview of the refinement process. In this paper we benefit from progress diagrams 
[16] to give an abstraction and graphical-descriptive view documenting the applied 
patterns in each step. The pattern types are illustrated in more detail with the progress 
diagrams to show the relevant development changes in a legible manner. This is of 
high importance especially when the system evolves into a significantly sized one.  

5   Progress Diagrams 

We exploit the progress diagram [16], which is in the form of a table divided into a 
description part and a diagram part. With this type of table we can point out the de-
sign patterns derived from the most important features and changes done in the re-
finement step. It provides compact information about each refinement step, thereby 
indicating and documenting the progress of the development. The tabular part briefly 
describes the relevant features or design patterns of the system in the development 
step. Moreover, it depicts how states and transitions are refined, as well as new vari-
ables that are added with respect to these features. Progress diagrams do not involve 
any mathematical notation and are, therefore, useful for communicating the develop-
ment steps to non-formal methods colleagues. 

Event-B classifies events as ‘convergent’ if they are new events that are expected 
to eventually relinquish control to an old (refined) event (i.e. it must decrease the 
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variant). Events that are not convergent are classified as ordinary. A third classifica-
tion, ‘anticipating’, refers to events that will be shown to be convergent in a future 
refinement, but we do not use such events in the examples of the patterns.  

We call the transition that starts a sequence of convergent transitions an ‘initiator’. 
To ensure feasibility of the sequence of transitions, the guard of an initiator must 
imply the guard of at least one of the old transitions that it could lead to. We call the 
transition ‘refined’ if it refines an existing transition according to the refinement rules 
(given in Section 4.1 of the paper), leaving the system in an equivalent state to the 
post-state of the transition being refined.  

We envisage a tool which will automatically create a new refinement from the pro-
gress diagram. In order to be able to design and implement such a tool, we extend the 
tabular part of the progress diagram to provide the required information. As a result, 
we add new features in the Refined Transitions part indicating the source and target 
state of the refined transition, as well as the initialisation of the variables added in the 
current refinement step. The diagram part gives a supplementary view of the current 
refinement step and is, in fact, a fragment of the statechart diagram. It can be used as 
assistance for the developer and to support the documentation. 

During the development we profit from the progress diagram, as we concentrate 
only on the refined part of the system. The combination of descriptive and visual 
approaches to show the development of the system gives a compact overview of the 
part that is the current scope of development. This enables us to focus on the details 
that we are most interested in, and provides a legible picture of the (possibly complex) 
system development. The visualisation helps us to better understand the refinement 
steps and proofs that need to be performed.  

When proving the refined system, the progress diagram indicates the needed 
proof obligations. If new states (column “Ref. States”) and variables (column “New 
Var.”) are added, they should be initialised according to the invariant (Proof Obli-
gation (1)). In the progress diagram the refined events are given in the column “Re-
fined Transitions” and have a corresponding event in the column “Transitions” 
(Proof Obligation (2)). Also the convergent events are given in the column “Refined 
Transitions”. However, they do not have a corresponding event in the column 
“Transitions”. They may only assign the variables in column “New Variables” ac-
cording to the invariant (Proof Obligation (3)). Furthermore, the non-divergence of 
the convergent transitions (Proof Obligation (4)) is indicated in the diagram part by 
the fact that these transitions do not form a loop. The columns “Transitions” and 
“Refined Transitions” also illustrate partitioning of the error detection events (Proof 
Obligation (6)). The progress of the refined specification always has to be ensured 
in line with Proof Obligation (5). 

In order to illustrate the idea of progress diagrams in combination with refinement 
patterns, we use the abstract system (shown in Fig. 3a, Section 4.2.1) consisting of 
two states (st1 and st2) and two transitions (tr1 and tr2). We refine it to the concrete 
system shown in Fig. 3b, where the state (st1) is partitioned into substates (st1a and 
st1b) and the anticipating transition trNew is added between the new substates. The 
progress diagram of this sample refinement step is depicted in Fig. 8.  
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Description States Ref. States Transitions Ref.  
Transitions 

New 
Var. 

1st refinement step: 
• creating hierarchical substates (in 

state st1) – data ref. 
• adding new transition concerning the 

substates (trNew) – event ref. 

st1 st1a 
st1b - trNew 

(st1a, st1b) - 

 

Fig. 8. Example of a progress diagram for the pattern 3b from Section 4 

In the progress diagram in Fig. 9 we depict the event refinement by separating ex-
isting transitions. We continue refining the system shown in Fig. 3b in Section 4.2.1, 
by detailing its functionality and splitting the existing self-transition tr1 into self-
transitions tr1a and tr1b, according to the substates separated in the previous step. We 
also assume that with respect to the added transitions in the refined system we simul-
taneously add new variables y and z. The new variables and their initialisation are 
depicted in the rightmost column of the progress diagram. 

 

Description States Ref. 
States 

Transitions Ref.  
Transitions 

New 
Var. 

2nd refinement step: 
• separating the existing transition tr1 

into two transitions (tr1a and tr1b) 
concerning the substates (st1a and 
st1b) – event ref. 

- - tr1 

tr1a 
(st1a, st1a), 

tr1b 
(st1b, st1b) 

y:: 
TYPE 

z:: 
TYPE 

 

Fig. 9. Example of a progress diagram for the pattern 3c from Section 4 

We also consider the flattening pattern to diminish complex hierarchical state structure 
created while performing consecutive refinement steps. In Fig. 10 we show the progress 
diagram for the flattening pattern for the diagram in Fig. 3c given in Section 4.2.2. 

 

Description States Ref. States Transitions Ref.  
Transitions 

New 
Var. 

st1 
(st1a) fst1a 3rd refinement step: 

• removing the superstate (flattening) – 
data ref. st1 

(st1b) fst1b 
- - v:: 

TYPE 

 

Fig. 10. Example of the progress diagram for the flattening pattern  
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The progress diagram of the choice path pattern is depicted in Fig.11 and Fig. 12. 
In Fig. 11 we create a choice path on the transition tr1, by refining the transition tr1 
into two more specific transitions tr1a and tr1b. The guards G1a(q) and G1b(q) are 
created in such a way that we ensure progress of the system.  

 

Description States Ref. 
States 

Transitions Ref.  
Transitions 

New 
Var. 

4th refinement step: 
• adding alternative paths to transitions 

– event ref. (detailing functionality) 
- - tr1 tr1a (st1, st2), 

tr1b (st1, st2) 
q:: 

TYPE 

  

Fig. 11. Example of a progress diagram for the choice paths pattern (specifying functionality)  

The splitting could also be used to model more detailed failure. In Fig. 12 we split 
the transition tr2undef between the states st1 and susp into two transitions, tr2a and 
tr2undef2, by strengthening the guard condition on the refined transition tr2a. The 
guard of the refined transition tr1 is the negation of the refined failure transition tr2a. 

 

Description States Ref. 
States 

Transitions Ref.  
Transitions 

New 
Var. 

5th refinement step: 
• adding alternative paths to transitions 

– event ref. (error detection refine-
ment) 

- - tr2undef 

tr2undef2 
(st1, susp), 

tr2a 
(st1, susp) 

q :: 
TYPE 

  

Fig. 12. Example of a progress diagram for the choice paths pattern (specifying error detection) 

When adding common behaviour to the existing states (superposition of an or-
thogonal region), we want to express which of the new transitions are performing the 
functionality of the old ones. Therefore, we refine existing system (shown in the up-
per part of the superstate in Fig. 7) to a functionally more structured and unified one 
(shown in the lower part of the superstate in Fig. 7). Thereby we create a behavioural 
pattern, where the system before the refinement is synchronised with the system after 
the refinement.  

In the progress diagram in Fig. 13 we depict the orthogonal region as follows. We 
show only the lower region without the previous higher region in the superstate. In the 
tabular part we compare the old superstate with the new one using a bracket notation 
(superstate {subA1, subA2…} {subB1, subB2…}) to indicate the hierarchy of states  
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Description States Ref. States Transitions Ref.  
Transitions 

New 
Var. 

6th refinement step: 
•  adding an 

orthogonal region 
to the states with 
common behav-
iour – data and 
event ref. 

susp 
{susp1 
susp2 
susp3} 

susp 
{susp1, susp2, susp3} 

{unknown(<-fail), 
known, 

fixed(->recover), 
unfixable(->terminate)} 

- 

diagnose 
(unknown, known), 

fix 
(known, fixed), 

discard 
(known, unfixable) 

r:: 
TYPE 

 

 

Fig.13. Example of progress diagram for the orthogonal region pattern  

in regions. We indicate the states that need synchronisations with existing incoming 
and outgoing transitions. Furthermore, we specify the new transitions in the orthogo-
nal region and add some variables according to the refinement step. 

6   Case Study Memento 

Fig. 14 depicts the progress diagram of the first refinement step for the Memento 
system (following the abstract specification presented in Section 3), where states are 
partitioned into substates and transitions are added with respect to these. Partitioning 
the state init indicates that the initialisation phase is divided into a connection phase 
(state conn) and a preparation phase (state prep), that both need cooperation with the 
server. The state susp is treated in a similar way. Namely, the hierarchical substates 
sc, sp, sr and sf are created, implying that there are, in fact, various ways of handling 
the errors, corresponding to the states conn, prep, ready and finalised. Thereby, more 
elaborate information about conditions of error occurrence is added. Note that intro-
ducing hierarchical substates corresponds not only to a more detailed model in the 
structural sense, but also in the functional sense. The transitions (events) tryInit, 
failInit and recoverInit are refined to more detailed ones taking into account the parti-
tioning of the initialisation phase. The self-transition tryInit is refined by two events, 
tryConn and tryPrep, which remain self-transitions for the states conn and prep, re-
spectively. The error handling is refined by events: failConn and recoverConn for the 
substate conn, and failPrep and recoverPrep for the substate prep. The initiator, tran-
sition cont (added between the new substates conn and prep), converges to tryPrep 
and failPrep which are refined transitions of tryInit and failInit respectively. The 
initiator is guarded by the guard (is_ok=FALSE) from tryInit, thus ensuring feasibil-
ity. New variables is_conn, is_prep and wwaited are introduced to control the system 
execution flow. Note that there are separate diagram parts (not shown) for the sub-
states sr and sf. 
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Description States Ref. States Transitions Ref. Transitions New Var. 
tryInit 

(init, init) 
tryConn (conn, conn), 
tryPrep (prep, prep) init conn 

prep 
- cont (conn, prep) 

failInit 
(init, susp) 

failConn (conn, sc), 
failPrep (prep, sp) 

1st refinement step: 
• creating hierarchi-

cal substates (in 
states init and 
susp) 

• adding new 
transitions con-
cerning the sub-
states 

susp sc, sp, 
sr, sf recoverInit  

(susp, init) 
recoverConn (sc, conn), 
recoverPrep (sp, prep) 

is_conn:= 
FALSE, 

is_prep:= 
FALSE, 

wwaited:= 
FALSE 

 

 

Fig. 14. Progress diagram of the first refinement step of Memento 

 

Fig. 15. Statechart diagram of the first refinement step of Memento 

As the refined specification is translated to Event B for proving its correctness, the 
progress diagram provides an overview of the proof obligations needed for the re-
finement step. Since we add new states and variables, we indicate that the old transi-
tions and initialisation need to be refined, according to Proof Obligation (1) and (2). 
For example in Fig. 14 events tryConn and tryPrep refine tryInit. Event cont is a 
convergent event that only assigns the new variable wwaited (Proof Obligation (3)). 



 Documenting the Progress of the System Development 269 

Since this event is the only newly introduced event in this refinement step and it con-
nects two separate states conn and prep, Proof Obligation (4) is fulfilled. Furthermore, 
the error detection event failinit is partitioned into failConn and failPrep in line with 
Proof Obligation (6). The transitions are composed in such a way that they ensure 
progress in the diagram (Proof Obligation (5)). 

The result of the first refinement step is shown in the statechart diagram in Fig. 15. 
When comparing this diagram to the one in Fig. 14, it is worth mentioning that even if 
the former shows the complete system, the diagram is more difficult to read with all 
its details. The progress diagram shows only the relevant changes in a more legible 
way. 

The excerpt of Event-B code depicting the first refinement step of Memento system 
is given below. 

REFINEMENT Memento_Ref 
REFINES Memento 
SEES Data 
VARIABLES is_fatal, is_ok, cmd, state, wwaited, is_conn, is_prep, conn, prep, sc, sp 
INVARIANT is_fatal ∈ BOOL ∧ is_ok ∈ BOOL ∧ cmd ∈ CMD ∧ state ∈ STATE ∧  
 (state=init ⇒ cmd=no_cmd) ∧  
 init_state ∈ {conn, prep} ∧ susp_state ∈ {sc, sp} ∧  
 (state=init ∧ init_state=prep ⇒ is_conn=TRUE) ∧  
 (state=susp ∧ susp_state ∈ {sc,sp} ⇒ cmd=no_cmd) ∧  
 (state=susp ∧ susp_state=sp ⇒ is_conn=TRUE) ∧  
 (is_prep=TRUE ⇒ is_conn=TRUE) ∧ ... 
INITIALISATION is_fatal:=FALSE || cmd:=no_cmd || is_ok:=FALSE || state:=init ||  
  is_conn:=FALSE || is_prep:=FALSE || wwaited:=FALSE || susp_state:=sc || 

init_state:=conn 
EVENTS 

tryConn (refines tryInit) =   
 WHEN state=init ∧ init_state=conn ∧ is_ok=FALSE ∧ is_conn=FALSE ∧ wwaited=FALSE  

THEN is_conn :∈ BOOL || wwaited:=TRUE || is_ok :∈ BOOL END; 
failConn (refines failInit) =  
 WHEN state=init ∧ init_state=conn ∧ is_ok=FALSE ∧ wwaited=TRUE  

THEN state:=susp || susp_state:=sc || is_fatal :∈ BOOL END; 
recoverConn (refines recoverInit) = 
 WHEN state=susp ∧ susp_state=sc ∧ is_ok=FALSE ∧ is_fatal=FALSE  

THEN state:=init || init_state:=conn || cmd:=no_cmd || wwaited:=FALSE END; 
tryPrep (refines tryInit) =  
 WHEN state=init ∧ init_state=prep ∧ is_ok=FALSE ∧ is_prep=FALSE ∧ wwaited=FALSE  

THEN is_prep :∈ BOOL; wwaited:=TRUE; is_ok:=is_prep END; 
failPrep (refines failInit) = 
 WHEN state=init ∧ init_state=prep ∧ wwaited=FALSE ∧ is_prep=FALSE ∧ is_ok=FALSE  

THEN state:=susp || susp_state:=sp || is_fatal :∈ BOOL END; 
recoverPrep (refines recoverInit) = 
 WHEN state=susp ∧ susp_state=sp ∧ is_ok=FALSE ∧ is_fatal=FALSE  

THEN state:=init || init_state:=prep || cmd:=no_cmd || wwaited:=FALSE END; 
goReady =  
 WHEN state=init ∧ is_ok=TRUE ∧ is_conn=TRUE ∧ is_prep=TRUE ∧ init_state=prep  

THEN state:=ready END;  
 … 
END 

In the second refinement step new hierarchical substates are added in the state prep 
along with new transitions that make use of them. These hierarchical substates indi-
cate that the preparation phase is actually composed of two phases (program as well 
as module preparation). This step is similar to the one above and is not further de-
scribed here.  
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Description States Ref. States Transitions Ref. Trans. New Var. 
3rd

 step – adding 
alternative paths 
to transitions  

- - 

failPrepPr 
(prepPr, sp) 

 

failPrepPr1 
(prepPr, sp), 

nIdDS (prepPr, sp), 
nRR (prepPr, sp), 
nRV (prepPr, sp), 
nUV (prepPr, sp) 

idDataSent:=FALSE, 
respRead:=FALSE, 
respValid:=FALSE, 
userValid:=FALSE 

 

Fig. 16. Third refinement step 

The third refinement step (Fig. 16) strengthens the guards of the transitions/events 
(according to the pattern in Fig. 6) and shows a more detailed failure management. 
New variables, concerning communication with the server, are introduced to express 
the details of the program preparation phase. These variables represent sending the 
identification data (idDataSent), reading the response (respRead), and checking 
whether the values for response and user are valid (respValid and userValid). Fur-
thermore, new failure transitions nIdDS, nRR, nRV and nUV corresponding to these 
variables refine the old general failure transition.  

Here, the progress diagram also gives an intuitive representation of the proof obli-
gations, now concerning strengthening the guards of the old events (Proof Obligation 
(2)). This is indicated by the transitions between the choice point symbols in the dia-
gram part of the progress diagram. Moreover, the outgoing transitions of these sym-
bols illustrate intuitively that the relative deadlock freeness (Proof Obligation (5)) is 
preserved. Again the partitioning of the error detection event failPrepPr in the col-
umns “Transitions” and “Refined Transitions” visualises Proof Obligation (6). 

Below we show the partial Event-B code for the third refinement step of our case 
study. 

REFINEMENT Memento_Ref2 
REFINES Memento_Ref1 
SEES Data 
VARIABLES is_fatal, is_ok, cmd, state, wwaited, is_conn, is_prep, conn, prep, sc, sp, sr,  
 prepPr, prepMod, prep_pr, prep_mod, is_prep_pr, idDataSent, respRead, respValid, 

userValid 
INVARIANT is_fatal ∈ BOOL ∧ is_ok ∈ BOOL ∧ cmd ∈ CMD ∧ state ∈ STATE ∧  
 (state=init ⇒ cmd=no_cmd) ∧  
 init_state ∈ {conn, prep} ∧ susp_state ∈ {sc, sp} ∧  
 (state=init ∧ init_state=prep ⇒ is_conn=TRUE) ∧  
 (state=susp ∧ susp_state :∈ {sc, sp, sr} ⇒ cmd=no_cmd) ∧  
 (state=susp ∧ susp_state=sp ⇒ is_conn=TRUE) ∧  
 (is_prep=TRUE ⇒ is_conn=TRUE) ∧  
 idDataSent ∈ BOOL ∧ respRead ∈ BOOL ∧  
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 respValid ∈ BOOL ∧ userValid ∈ BOOL ∧ prep_state:=prep_pr ∧  
 (state=init ∧ init_state=prep ∧ prep_state=prep_mod ⇒ 
  idDataSent=TRUE ∧ respRead=TRUE ∧ respValid=TRUE ∧ userValid=TRUE) ∧ 
 (state=susp ∧ susp_state=sr ⇒ 
  idDataSent=TRUE ∧ respRead=TRUE ∧ respValid=TRUE ∧ userValid=TRUE) ∧ 
  (is_prep_pr=TRUE ⇒  
  idDataSent=TRUE ∧ respRead=TRUE ∧ respValid=TRUE ∧ userValid=TRUE) ... 
INITIALISATION is_fatal:=FALSE || cmd:=no_cmd || is_ok:=FALSE || state:=init ||  
 is_conn:=FALSE || is_prep:=FALSE || wwaited:=FALSE || susp_state:=sc || 

init_state:=conn || prep_state:=prep_pr ||  is_prep_pr:=FALSE || idDataSent:=FALSE 
|| respRead:=FALSE || respValid:=FALSE || userValid:=FALSE 

EVENTS 
 tryPrepPr (refines tryPrep) =    
  WHEN state=init ∧ init_state=prep ∧ is_ok=FALSE ∧ 
  is_prep=FALSE ∧ wwaited=FALSE ∧ is_prep_pr=FALSE ∧ prep_state=prep_pr  
  THEN idDataSent :∈ BOOL; respRead :∈ BOOL; respValid :∈ BOOL; userValid :∈ BOOL;  
  IF (idDataSent=TRUE ∧ respRead=TRUE ∧ respValid=TRUE ∧ userValid=TRUE) 
  THEN is_prep_pr:=TRUE 
  ELSE is_prep_pr:=FALSE END;  
  is_prep:=FALSE; wwaited:=TRUE; is_ok:=is_prep END;  
 failPrepPr (refines failPrep) =  
  WHEN state=init ∧ init_state=prep ∧ wwaited=TRUE ∧ 
  is_prep=FALSE ∧ is_ok=FALSE ∧ is_prep_pr=FALSE ∧ prep_state=prep_pr  
  THEN state:=susp || susp_state:=sp || is_fatal :∈ BOOL END; 
 recoverPrepPr (refines recoverPrep) = 
  WHEN state=susp ∧ susp_state=sp ∧ 
  is_ok=FALSE ∧ is_fatal=FALSE ∧ is_prep_pr=FALSE  
  THEN state:=init || init_state:=prep || prep_state:=prep_pr ||  
  cmd:=no_cmd || wwaited:=FALSE || is_ok:=FALSE || 
  idDataSent:=FALSE || respRead:=FALSE || respValid:=FALSE || userValid:=FALSE END; 

nIdDS (refines failPrepPr) =   
 WHEN state=init ∧ init_state=prep ∧ prep_state=prep_pr ∧ is_prep=FALSE 
 ∧ is_prep_pr=FALSE ∧ is_ok=FALSE ∧ wwaited=TRUE ∧ idDataSent=FALSE 
 THEN state=susp || susp_state=sp || is_fatal :∈ BOOL END; 

 … 
END  

The specification presented on the listing above, although more concrete, is not yet 
implementable. Nonetheless, it provides very good understanding of what actions 
should be taken in order to ensure stability and fault tolerance. 

7   Related Work 

Design patterns in UML and B have been studied previously. Chan et al. [6] work on 
identifying patterns at the specification level, while we are interested in refinement 
patterns. The refinement approach on design patterns was presented by Ilič et al. [9]. 
They focused on using design patterns for integrating requirements into the system 
models via model transformation. This was done with strong support of the Model 
Driven Architecture methodology, which we do not consider in this paper. Instead we 
provide an overview of the development from the patterns. 

Refinement patterns in the Event-B method were also investigated by Alexei Ili-
asov [8], but with respect to the rapid development of dependable systems. The author 
explores a method for mechanised transformation of formal models and merges the-
ory with practice by implementing the tool that supports the formerly created patterns 
language. Since automation is less error-prone than manual coding, applying patterns 
with the use of the created tool is profitable for the dependable systems development. 
We also rely on patterns in order to prevent introducing the errors into the system 
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development, making the construction of the system process more dependable. How-
ever, we are not concerned about creating a language for the patterns. Instead we 
benefit from the progress diagrams through the readability and the intuition they  
provide.  

An approach relating formal and informal development is used in the research of 
Claudia Pons [17], where the formally defined refinement methodology is submerged 
into UML-based development. The method is described by the term “formal-to-
informal”, treated as a complement of the “informal-to-formal” approach standing for 
translating the graphical notation into formal language. The presented methodology is 
based on the Object-Z formal language and UML structures. It presents an object 
decomposition pattern and a non-atomic operation refinement via examples of classes. 
In our research we focus on statemachines instead of classes and combine the formal 
and informal approaches, which in our case are complementary to each other. More-
over, we use Event-B in order to have a tool support for our development. 

Defining standards in semantics for different level of abstractions in system level 
design has been studied by Junyu Peng, Samar Abdi, and Daniel Gajski in [15]. The 
authors’ approach to system development relies on the automation of the refinement 
process via tool support. The main focus in their research is to improve robustness 
and usefulness of the system design, even if the methodology aims at the architecture 
of the system in general. Their effort is towards rapid prototyping and evaluation of 
several design points, while our approach is of a formal nature, focusing on the cor-
rectness of the system created in a stepwise manner. 

8   Conclusions and Future Work 

This paper presents a new approach to documentation of the stepwise refinement of a 
system. Since the specification for each step becomes more and more complex and a 
clear overview of the development is lacking, we focus our approach on illustrating 
the development steps. This kind of documentation is not only helpful for the devel-
opers, but also for those that later will try to reuse the exploited features. The docu-
mentation is also useful for communicating the development to stakeholders outside 
of the development team. Thus, a clear and compact form of progress diagrams is 
appropriate both for industry developers and researchers. 

Formal methods and verification techniques are used in the general design of the 
Memento application to ensure that the development is correct. Our approach uses the 
B Method as a formal framework and allows us to address modelling at different 
levels of abstraction. The progress diagrams give an overview of the refinement steps 
and the needed proofs. Furthermore, the use of progress diagrams during the incre-
mental construction of large software systems helps to manage their complexity and 
provides legible and accessible documentation. 

In future work we will further explore the link between the progress diagrams and 
patterns. We will investigate how suitable the progress diagrams are for identifying 
and differentiating patterns used in the refinement steps. Although progress diagrams 
already appear to be a viable graphical view of the system development, further ex-
perimentation on other case studies is envisaged leading to possible enhancements of 
the progress diagrams.  
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We have considered the possibility of developing tool support for drawing progress 
diagrams and automatically generating a new refinement from the progress diagram 
and the previous level model. The most likely route for tool support is to extend the 
UML-B tool [19], which is already an extension of the Event-B tool set. The complete 
tool set is based on the Eclipse development environment as a ‘rich client platform’. 
UML-B provides a graphical drawing tool for drawing state machine diagrams (as 
well as class diagrams) and converting them automatically into Event-B where the 
Event-B static checker and prover automatically perform verification on the model. 
UML-B uses the ‘Eclipse Modelling Framework’ (EMF) to generate a repository for 
UML-B models from a meta-model diagram. The UML-B meta-model defines the 
abstract syntax of the UML-B language. The drawing tool is based on the ‘Graphical 
Modelling Framework’ (GMF). We envisage a new meta-model for progress dia-
grams, that extends the UML-B meta-model to define the refinement relations, that 
we have described in this paper, mapping individual elements of an existing UML-B 
model to newly created UML-B elements. The diagrammatic part of the progress 
diagram editor would consist of a reduced UML-B Statemachine diagram. The tabular 
part of the progress diagram is an elegant view of the refinement properties but it is 
not the most suitable interface for editing them considering that they are based on the 
existing UML-B meta-classes. Therefore, a new editor interface (diagrammatic, tree 
structured or tabular) will be developed for defining the refinement properties as 
extensions to the referenced existing model elements. The tabular part of the progress 
diagram will be automatically generated as a read-only view of the refinement proper-
ties. A builder will be provided to generate the new refined UML-B model based on 
the progress diagram refinement model. Since the generated model is a UML-B 
model, the existing tools will automatically generate an equivalent Event-B model as 
soon as it is created. 
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Abstract. Current requirements analysis methods focus on the functional prop-
erties of fault free systems. It is known that, regardless of the type of software 
system, many faults are made during engineering and that these faults may con-
duct system errors and then system failures. We believe that faulty engineering 
activities, as well as correct activities, should be given precedence during soft-
ware development. In this paper we present CORA, which is the analysis phase 
for the CORRECT methodology. CORA introduces semi-formal models based 
on UML and OCL that allow for the specification of normal system behaviors, 
as well as abnormal behaviors, together with their associated recovery strategy. 
CORA proposes to specify fault-tolerant systems using a domain model as a 
custom UML class diagram and an activity model as a custom UML activity 
diagram. The deviation and recovery strategies are expressed explicitly in a 
specific section of the CORA Activity Diagram. This paper introduces CORA 
conceptually and it explicitly defines the syntax and semantics of the proposed 
analysis models. We also use a running example to illustrate our approach. 

Keywords: integrated approaches, fault-tolerant systems development, devia-
tions, Semi-formal methodology, MDE, UML. 

1   Introduction 

Contemporary software development is a difficult task because building software is 
highly complex (due to: large size, distribution, cross platform, etc.). As a result, 
systems are prone to developer mistakes and are highly dependant on the hardware 
they use. In critical (safety or business) applications (such as medical systems, bank-
ing systems, etc.), the quality requirement that needs to be possessed by users is fur-
ther increased and software correctness is of utmost importance. Although there are 
development methods [5] for systems that satisfy these requirements, they are often 
costly and involve special skills. Applying such technical methods, even for develop-
ing general and not highly critical software systems, is rarely feasible. We believe that 
by simplifying how dependability techniques are produced within the development 
process (particularly for fault tolerance and abnormal behavior) will help to enhance 
the dependability of software.  
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A widely accepted definition of dependability for computing systems was intro-
duced by Jean-Claude Laprie in 1985 as, “the trustworthiness of the system by which 
reliance can be justifiably placed on the services the system delivers” [10]. Developer 
mistakes or hardware defects are known as faults. If they are executed and manifest, 
faults may lead to an error: an improper internal state of the system. If an error is not 
recovered to normal state and reaches the border of the system, it is a failure of the 
system for the environment (behavior being different from that specified). Fault-
tolerance (FT) is the ability to comply with specifications even in the presence of 
faults. Usually FT is introduced during the design phase [7], however, we agree with 
Beder et al [2] that the earlier FT and dependability are introduced during develop-
ment, the better the outcome. Dealing with abnormal behavior [14] begins at the re-
quirement elicitation phase, where use case based requirements are produced using 
concepts from the exception-handling world (exceptions, handlers, etc.). We also 
utilize some ideas, where degraded use case outcomes are introduced [11][12]. 

The development process of Complex fault tOlerant distRibuted systems: from aR-
chitEctural desCription to Java implemenTation (CORRECT), with its focus on FT 
aspects, has five defined layers: requirements, CORrect Analysis (CORA) (presented 
in this paper), design, implementation, and verification [3]. According to the standard 
ISO/IEC 12207 [5], CORRECT process is only within development and does not 
specify any other system lifecycle processes. The aim of our work is to precisely 
define the analysis phase of the CORRECT process. Our proposal for CORA models 
extends scientiFic engIneering of Distributed Java applIcations (FIDJI) analysis mod-
els [4, 5] and is composed of: 

• Domain Model precisely defines concepts and signals manipulated by use case and 
operations. 

• Activity Model extends and refines the use cases described at the requirements 
elicitation time. Its purpose is to express the system’s behavior in terms of se-
quence of operations, signals and deviations and recovery. CORA Activity Dia-
grams are used to precisely specify each use case with all deviations. 

• Operational Model specifies in detail each operation: informal descriptions, pa-
rameters, return values and pre/post-conditions. 

FIDJI does not consider FT as a primary concept. By integrating deviations and FT 
principles coherently with the FIDJI models, our paper proposes a solution for im-
proving the FIDJI analysis models in order to cope with FT. FIDJI models were cho-
sen as source models because we plan to extend CORA towards a product line 
perspective (developing dependable reusable components) [15]. 

In order to do this, Section 2 describes CORA by defining the terminology used 
and introduces a running example and its requirements. Section 2.1 introduces termi-
nology used, followed by one running example in Section 2.2. Section 2.3 presents 
the notions of deviation and recovery. Section 2.4 illustrates these notions for the 
running example. Then, Section 2.5 presents CORA Domain and Activity Models, 
specified in the running example. Section 2.6 gives a description of the syntax and 
semantics of CORA. Section 3 refers to related work. Section 4 provides conclusion 
and information about future work. 
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2   CORA 

2.1   Terminology 

As we introduce our terminology we take into account that some of our terms preexist 
in different contexts and their semantics is overloaded. Use cases were introduced in 
1997 [4] and have been modified through many works since then; we will define a 
specific type. Concepts and taxonomy of dependable computing [1] provides basic 
terms, which are quite general, and in this section it is shown how they are applied for 
software systems for the models used at the analysis level. The concepts of depend-
ability and FT at the analysis phase are closer to those of UML terminology, where 
“actor” rather than “user” is utilized, etc. Also, the interface of the system is ab-
stracted and only allows message exchange with the environment. 

Goals, Customer, Stakeholder, Failure of Stakeholder’s Goal 

Definitions 
An information system is a set of interacting entities, where the entity being built is 
called system and other entities are actors. 

A system is constructed to satisfy the stakeholder’s needs. A customer is a stake-
holder who decides which of these needs must be realized by the system. The specific 
needs determine the system requirements. System specification is the captured re-
quirements, which are complete, consistent and authoritative. An analyst creates sys-
tem specification from customer requirements using a methodology, like CORA, for 
example. 

Failure of information system (failure of stakeholder’s goal) is when the state of 
the information system breaks a goal’s constraint and the goal is unable to be reached. 
Fault-tolerant activity at the level of the information system is achieved by providing 
additional specification of abnormal system behavior, so that if we have normal be-
havior, information system’s state changes accordingly to the goal. Any deviations 
from this desired behavior will lead to the goal’s breakage. An attempt to avoid this is 
a fault-tolerant activity at the level of the information system. A failure of information 
system occurs when a system provides behavior different from the behavior predi-
cated by the system specification.  

Justification 
We do not give the precise border between requirement elicitation and analysis. How-
ever, we expect that the first phase (requirement elicitation) is to establish all of the 
customer’s needs, even though they are neither precise nor complete and may be con-
tradictory. The requirements used in CORA, as a source for the specification, are cap-
tured in the form of use cases. A method of requirement analysis [11][12] shows step-
by-step how to produce requirement in the form of use case with respect to reliability. 
We have requirements where all concepts, actors and use cases are identified, as well as 
the initial Use Case Model and the Domain Model, which will be modified during 
analysis. During CORA Analysis, precise definition of requirements becomes a system 
specification expressed using CORA models, so that any ambiguities, incompleteness 
and inconsistencies have to be excluded. Because of this, the CORA system model is 
the sole basis for judging whether the system behavior is correct or not. 
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In our example, if a customer (bank) wants to borrow more money than allowed, it 
is a failure of the customer’s goal but not a failure of the system since the system 
specification requests this refusal. It would be a failure of the system if the system 
should allow borrowing beyond the maximum amount.  

Normal, Abnormal and Failure Behavior 
It is not easy to define abnormal behavior for the specification, since everything specified 
somehow becomes “normal.” Thus, every property of the specification is normal behav-
ior unless we explicitly specify that it is abnormal. In our method we distinguish normal 
and abnormal behavior based on the following criteria: if an actor provides its service we 
call the message interaction, normal behavior of the actor, and if an actor cannot provide 
the service, then the part of the message interaction which deviates from normal behav-
ior is called abnormal behavior of the actor. The behavior of the system for providing a 
service for some actor(s) assumes that every actor involved in this service provision has 
normal behavior: this is called normal behavior of the system. Similarly, every additional 
effort of the system aimed at providing service due to abnormal behavior of actor(s) is 
called abnormal behavior of the system. Both normal and abnormal behavior should be 
clearly defined in the system specification. If behavior of the system deviates from the 
specified one, it is called failure behavior of the system. The specification may be en-
hanced with deviation specification, where behavior of the system or environment is 
specified for failures of the system or environment itself. When the system needs to pro-
vide specified abnormal behavior, we should clearly distinguish acceptable deviations. 
We can do this by knowing what happens in the information system and its state (relying 
on customer’s knowledge and feedback) so that when developing the system we can 
define how it should behave with an actor’s abnormal behavior. Unacceptable deviations 
occur when an error (abnormal situation) is detected but not under control (we do not 
know why the error happened). To be consistent with fault tolerance definitions, devia-
tions are errors in the information system, together with the defined recovery for the 
information system.  

Justification 
One of the possible abnormal behaviors might be to send an error message, “service 
cannot be provided,” to the calling actor as a response to another actor’s anticipated 
failure (e.g. sensor’s battery is off). In this case, the system state is known but the 
user’s goal is not reached (failure of the user’s goal). The system behavior satisfies 
the specification stating that in the case of another actor’s failure, the first actor must 
receive a message about the occurrence and, consequently, it is not a failure of the 
system. On the contrary, there can be an error situation in the information system that 
may lead to the information system’s failure when the state of the information system 
is unknown. The customer can decide if this situation is an acceptable deviation or an 
unacceptable deviation (failure). 

Operation and Use Case 

Definition 
Operation is a complete specification of the system behavior as a reaction to receiving 
a message from the environment. The specification includes that system state changes 
and signals are sent to the environment. 
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Use case is a group of operations belonging to one goal (one operation can be used 
by several use cases). Use cases can be nested (using <<include>> and <<exten-
sion>> relations between them) and may have generalization relations. 

2.2   Running Example 

As an academic running example, we will consider a software system that allows 
several banks to borrow money. The task of the system is to determine if a borrower 
is authorized to receive funds (up to a limit), to request a correspondent bank make a 
transfer and to ensure that these things happen successfully. The money transfer is 
conducted outside the system itself. In the proposed models we define several abnor-
mal situations in the environment that the system needs to deal with by way of a 
specification. We precisely define what should happen in each situation. 

Figure 1 a) shows a use case diagram with two actors, Bank and Correspon-
dentBank, together with three use cases; and b) is a simple Domain Model having 
only one class (signals are not shown). We use only Login and Borrow use cases, 
which are enough to illustrate all aspects of the method. We omit an Operational 
Model, which is merely the textual description in informal language at the require-
ment level. 

Borrow

Return

Login

Correspondent Bank
Bank

 

Bank

+login : String
+password : String
+unsuccessfulLogins : Integer = 0
+maxAllowedWrongLogins : Integer = 3
+borrowedLots : Integer = 0
+maxAllowedLots : Integer = 10

 
 a)  b) 

Fig. 1.  Use case diagram and domain model for the running example 

Figure 2 presents the Login use case, where the bank providing the id and pass-
word is authorized by the system. If the number of unsuccessful logins exceeds the 
predefined amount, the account is blocked. 

Figure 3 shows the use case for the scenario used by the borrower. In this scenario, 
system sends a request to CorrespondentBank to send money to the borrower 
and receives a confirmation from CorrespondentBank that the money was sent; 
system will, in turn, send the confirmation to the borrower. 

The use cases are described in a semi-formal manner since every step has Object 
Constraint Language (OCL) postcondition expression. The postconditions written 
inline with textual description are typically incomplete and partial, but usage of them 
helps to define operation names and parameters. Abnormal behavior will be intro-
duced later in the form of deviations specification. Borrow refers to the system in 
the Borrow use case description when used in the postconditions and Borrower is 
the actor, Bank. 
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Name  Login 
ID UC1 Login 
Description  Bank provides its id and login to the system for authorization. 
Primary actors  Bank 

Trigger event  
Login is requested.  
Post: Login^login(id: String; password: String) 

Preconditions  None. 

Postconditions  Bank is logged in or WrongIdOrPassword is sent. 
Main success scenario: 
1. Bank call operation login with id and password. 
Post: Login^login(id: String, password: String) 
2. System checks the login information and, if correct, it sends confirmation Success-
fullyLoggedIn, or otherwise WrongIdOrPassword. If the number of unsuc-
cessful logins exceeds the allowable amount maxAllowedWrongLogins, the account 
is blocked. 

Fig. 2. Login use case (normal behavior) 

Name  Borrow  
ID UC2 Borrow 

Description  
Bank makes a request from the system to borrow money; the system 
requests Correspondent Bank to make the transfer. 

Primary actors  Borrower: Bank 
Secondary actors  CorrespondentBank 

Trigger event  
Borrowing is requested.  
Post: Borrow^borrow(amount: Integer) 

Preconditions  An actor is logged into the system. 

Postconditions  

Money is sent and received. 
Post: Borrow^amountSent() and Borrow^confirm() 
and Borrower^confirm() 

Main success scenario: 
1. Borrower requests an amount to be borrowed as Integer lots. 
Post: Borrow^borrow (amount: Integer) 
2. System checks the limit and if it is acceptable it sends a request to CorrespondentBank to 
make a transfer. 
CorrespondentBank^SendAmount(borrower.accountNumber: String; amount: Integer) 
3. CorrespondentBank confirms sending.  
Borrow^amountSent()  
4. System confirms with the borrower. 
Post: Borrower^AmountSent() 
5. Borrower confirms receiving. 
Post: Borrow^confirm() 

Fig. 3. Borrow use case (normal behavior) 

2.3   Deviation and Recovery 

FT aims at making sure that a system continues to behave as specified, even in the 
presence of faults. FT at the analysis level aims at providing a specification not only 
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describing the normal system behavior, but also behavior that is acceptable to the 
customer even though it is undesirable. A specification describes what a system 
should do: its normal behavior. We want to change specifications in such a way that 
they describe abnormal behavior, as well, and include predefinition about error mes-
sages, etc., ultimately simplify classical FT at the design level. In classical FT, the 
mechanisms used are implicit and hidden from the customer. This means that any 
deviation from the specified behavior is a failure of the system and is not accepted by 
the customer. In FT specification we can say that some deviations remain acceptable 
by the customer with the proper recovery, or that within normal service it may be 
acceptable to have some degraded service. 

To support FT at the analysis level we introduce the notion of deviation. Deviation 
is the expression of the difference between two elements that should be equal. For 
example, the behavior of the real system should be equal to the specified behavior of 
the system, if not, there is a deviation in the behavior. Another example: the invariants 
of the real system must be true. If an invariant expression is not true, it is deviation of 
the invariant. For any deviation defined, we also want to define acceptable recovery 
and thereby extend the specification of normal behavior with deviations and recovery 
accordingly. We use the stereotype <<deviation>> followed by a detection statement, 
along with some additional stereotypes with their statement’s description for the full 
description of FT requirements: 

• <<recovery>> - this required section describes what should be done to tolerate 
detected deviation. 

• <<impact>> - this is an additional optional clause that allows defining of use cases, 
classes or other elements which will be impacted by this deviation. 

• <<continue>> - this optional section defines what should happen after the  
recovery. 

Within the use case we propose to add deviations as additional blocks or lines. 
Figure 4 exemplifies how this is done in our Borrow use case, but because of space 
limitations it leaves only those parts that were changed (compare with Figure 3). 

Comparing our deviation notation to the classical Cockburn template [4], we 
should note that any backup action is a deviation with recovery. However, in written 
use case description during fault-tolerant analysis, new deviations may be introduced. 
Sometimes it is more convenient if they are put near the element deviated (see  
Figure 4). On occasion, exception clause is used to describe abnormal behavior, 
which is also deviation and can be expressed in the form of deviation notation for 
clarity. 

2.4   Running Example with Fault Tolerance Requirements  

During FT analysis we should find possible deviations to answer the question of 
“what can go wrong?” with every step and element of the normal specification. A 
decision of what faults to consider during the development of the system will need to 
be made – not every found deviation should be considered since it is not possible to 
offer a solution at the analysis level – they can be determined by the system type and 
the desired dependability (quality) level. For instance, we do not consider communi-
cation is lost with the user unless our specification abstracts communication at the 
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Trigger event 

Borrowing is requested.  
Post: Borrow^borrow(amount: Integer) 
<<deviation>> amount is not type of Integer 
<<recovery>> Borrower^WrongParameter 

Preconditions An actor is logged into the system. 

Postconditions 

The money is sent and received. 
Post: Borrow^amountSent() and Borrow^confirm() 
and Borrower^confirm() 

… 
3. The CorrespondentBank confirms sending.  
Borrow^amountSent()  

<<deviation>>  
transaction failed 
<<recovery>> Bor-
rower^ef_MoneyTransactionFailure  
<<continue>> UC finishes in failure 

<<deviation>> Bor-
row^claimNotReceived() 
<<recovery>> 
CorrespondentBank^TransactionIsLost() 
<<continue>> UC ends in failure 

… 

Fig. 4. Use case with abnormal behavior 

analysis level, otherwise communication related details appear only during design. At 
the analysis level we can also abstract from the details of the fault and consider omit-
ting a message to the actor. Typically this can be detected with a timeout detected by 
Bank, which in this case, instead of sending confirmation sends a message (illus-
trated in the deviation in Figure 4, on the right). On the left, we define that an error 
message should be sent and that the use case is finished when Correspondent-
Bank is unable to send the requested amount (unknown reasons may be specified 
during the design phase of development).  

For trigger event we add reaction on the situation when Borrower does not use 
proper type for request parameter (such a situation may happen in web services when 
all parameters are passed through textual XML file). For deviation we have informal 
error detection. 

2.5   Running Example with CORA Domain and Use Case Models 

In order to provide an informal introduction to CORA, we present the running exam-
ple using CORA models. We will show the extended Domain Model and two use 
cases: Login and Borrow. We have chosen to omit Return use case, as it is simi-
lar to Borrow and provides no new variation to our example.  

Figure 5 presents the extended Domain Model for the example. There are three 
logical actors: two are the borrowing Bank (logged in and not logged in) and one is 
the CorrespondentBank. Every logical actor class is stereotyped with <<la>> 
and associated to physical actor(s), as well as to the use case classes in which they can 
participate. For example, UnregisteredUser can only participate in Login use 
case (once login is successful, UnregisteredUser becomes Bank), where as 
Bank participates in Login and Borrow use cases.  

 



 Fault Tolerance Requirements Analysis Using Deviations 283 

The operation login instantiates the use case that is defined in the diagram by 
<<autoCreate>> stereotyped dependency. After this operation execution, the use 
case finishes and there are no following operations. Consequently, no information 
about the running use case should be sent to the actor. This is shown by the fact that 
all signals that may be sent to UnregisteredUser are associated only with the 
logical actor class and not with the use case class or actor’s role class. The signals for 
Borrow use case differ from the signals for Login use case, in that Borrow signals 
have additional associations. Signal AmountSent in the Borrow use case carries 
the information of the use case instance shown by its association between the signal 
and the use case classes. Signal TransactionIsLost for the Login use case 
carries the information of the use case instance in the same manner as Borrow, but it 
also contains information of the actor’s role in the use case (which may be changed to 
the use case instance, because there is only one CorrespondentBank participat-
ing in one use case instance).  

There are two operations used in our example that are predefined in CORA: con-
nect and cs_WrongParameter. The first one, connect, defines that the 
PleaseRegister signal is sent to a newly connected actor (similar to how a home 
page appears by default upon connection to websites). The second one, 
cs_WrongParameter, is invoked when a deviation in the parameters received 
from actor is detected by the communication system. In this case, we send the error 
message, WrongParameter, defined in the deviation of the Login use case de-
scription (this behavior is shown explicitly in the Borrow activity diagram).  

There is an association between <<la>> Bank class and <<id>> Bank class 
in Domain Model. The difference between these two classes is that the <<id>> 
Bank class has one instance per every bank registered in the system, whereas the 
<<la>> Bank class has one instance per any Bank logged in (a bank can only login 
if registered). Thus, the association has a multiplicity of 1 at one side and 0..1 at the 
other, not every Bank is connected to the system at all times. Also, <<la>> in-
stances are managed automatically by the Communication System and <<id>> in-
stances may be changed only explicitly. 

For CorrespondentBank the situation is different. It is presumed that Corre-
spondentBank is always accessible and connected to the system and the associa-
tion multiplicity is 1 at both sides. The diagram also requires that every Borrow 
instantiation creates an instance of Correspondent class, so that the secondary 
actor automatically participates in every Borrow use case.   

Only a Bank participating in the use case instance can invoke operations in the role 
class Borrower. The borrow operation may be invoked without passing a use case 
role as one of the parameters (static), but all others must be invoked only in the con-
text of the use case role (or use case instance in our example since the diagram has 
only one Borrower role per use case instance). CorrespondentBank may si-
multaneously participate in many instances of the Borrow use case. However, the 
operation amountSent can be invoked only by CorrespondentBank and 
should be supported with the use case role reference, which it receives together with 
the SendAmount signal. 
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<<system>>

System

+init()
+shutdown()
+processMessage( completeMessage : CompleteMessage ){guarded}

<<uc>>

Login
{def: bank:DomainModel::Bank=DomainModel::Bank}

+login( id : String, password : String )

<<id>>

Bank

+login : String
+password : String
+unsuccessfulLogins : Integer = 0
+maxAllowedWrongLogins : Integer = 3
+borrowedLots : Integer = 0
+maxAllowedLots : Integer = 10
+accountNumber : String

<<signal>>

ef_MoneyTransactionFailure

<<signal>>

ea_AmountIsNotAllowed

<<signal>>

SuccessfullyLoggedIn

<<signal>>

SendAmount

+amount : Integer
+accountNumber : String

Correspondent Bank

<<uc>>

Borrow

+cs_WrongParameter()

<<signal>>

WrongIdOrPassword

<<la>>

CorrespondentBank

<<signal>>

ef_WrongParameter

<<signal>>

TransactionIsLost

<<la>>

UnregisteredUser

+connect()

<<signal>>

AccountBlocked
Borrow

<<signal>>

ef_LoginFailure

Login<<signal>>

PleaseLogin

<<la>>

Bank

<<signal>>

AmountSent

<<signal>>

ef_Failure

Bank

<<role>>

Borrower

+borrow( amount : Integer )
+confirm()
+claimNotRecieved()

Borrower<<role>>

0..1

1

<<role>>

Correspondent

+amountSent()
+transactionFailed()

Correspondent
<<role>>1

*

1

1

<<autoCreate>>

10..1

<<autoCreate>>

0..1

1

0..1

1

 

Fig. 5. CORA Domain Model for bank borrowing system 
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activity Login Login() [   ]

<<normal>>

SuccessfullyLoggedIn
<<degraded>>

WrongIdOrPassword
<<degraded>>

AccountBlocked
<<failure>>

Failure

<<createLink>>

currentUser, bank->select(bank.id=id)

login( id : String, password : String ) id

password

let bank:Bank=Bank->
select(Bank.id=id) in

 bank.unsuccessfulLogins=0

SuccessfullyLoggedIn

<<reclassifyObject>>

UnregisteredUser->Bank

PleaseLoginconnect()

A

A

let aBank:bank=bank->
select(bank.id=id) in

 aBank.unsuccessfulLogins=
aBank.unsuccessfulLogins@pre+1

WrongIdOrPassword AccountBlocked

ef_LoginFailure

Abnormal

Acceptable Failure

Normal

currentUser : UnregisteredUser

password : String

id : String

 [else]

 [else]

 [bank->select(bank.id=id)->Size=0)]

 [bank->select(bank.id=id)->Size=1)]

 [let aBank:bank=bank->
select(bank.id=id) in
 aBank.password=password and
 aBank.unsuccessfulLogins<
 aBank.maxAllowedWrongLogins]

 [bank->select(bank.id=id)->Size=0)]

 [let aBank:bank=bank->
select(bank.id=id) in
aBank.unsuccessfulLogins>=
 aBank.maxAllowedWrongLogins] [else]

 

Fig. 6. Activity diagram for Login use case 

Thus, the extended Domain Model defines which signals may be sent in each use 
case context, what additional information should be sent with them (use case refer-
ence or role reference) and which actor may invoke every operation. Section 2.6.2 
describes this diagram in details. We will continue by defining the use cases using 
CORA Activity Diagrams. 

Figure 6 shows us a precise specification of the use case Login. The diagram is 
split into three regions using activity partitions to separate normal and abnormal be-
havior. There are two AcceptEventActions corresponding to the operations 
connect and login. Once the first operation is invoked, a new user is connected 
as UnregisteredUser and the message PleaseLogin is sent. Operation 
login is typically more complex. Because dependency is stereotyped <<autoCre-
ate>> (see previous diagram), operation login creates a new instance of the use 
case as an instance of class Login. Two operation parameters (id and password) 
are stored as implicit control variables. These are shown by ObjectNodes con-
nected to the action’s OutputPins, and later referred to as id and password in 
OCL expressions. An instance of UnregisteredUser class corresponding to the 
actor is also stored in ObjectNode and referred to as currentUser.   

If there are no instances of Bank class with id attribute matching id parameter 
(an incorrect id is entered), the message WrongIdOrPassword is sent to the 
caller. If there is an instance matching id but not the password, then the unsuccess-
ful login counter is increased and WrongIdOrPassword is sent. And finally, if the 
number of unsuccessful logins exceeds the maximum number allow, the message 
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AccountIsBlocked is sent. The specification in our diagram counts all the unsuc-
cessful logins, even when the account is blocked. In each of these situations, the use 
case is finished in degraded outcomes. If there is a login with correct id and pass-
word and the account is not blocked, the counter is reset and the physical actor be-
comes the logical actor, Bank (reclassification maintains links according to UML 
semantics so that the logical actor remains connected to the original physical actor 
and use case), and a link is created to the DomainModel::Bank instance (required 
by the extended Domain Model). A message SuccessfullyLoggedIn is sent and 
the Login use case finishes successfully. Finally, if a deviation of more than one 
instance of Bank class with the same id is found, the ef_LoginFailure signal 
is sent and the use case finishes with failure outcome.  

The Borrow use case is shown with Figure 7. It illustrates the signal parameter 
passing and gives more detailed abnormal behavior. Instantiated by the borrow 
message from a bank, the system checks the amount requested. If it exceeds the 
amount allowed, the ea_AmountIsNotAllowed signal is sent and the use case 
finishes in the degraded outcome AmountIsNotAllowed. The guard uses keyword 
token to refer the actor instance in verifying the amount for the bank executing the 
scenario. Then, amount and accountNumber are passed on to Correspon-
dentBank by the signal, SendAmount, specifying the amount requested by Bor-
rower and which account to debit. If CorrespondentBank authorizes and sends 
the money, confirming this in the system with the amountSent message, the stored 
borrowedLots is increased with the amount value. However, if the transaction 
fails, the transactionFailed message is sent and the system reports a failure 
with the ef_MoneyTransactionFailure signal being sent to Borrower; the 
use case finishes in failure. The borrower receiving the confirmation from the system 
waits while the money is being transferred. If the transfer is correct, confirm mes-
sage is sent by Borrower and the use case, upon receiving this message finishes 
with the Success outcome. If the money does not arrive at the bank, the bank re-
ports this with the message claimNotReceived. The recovery for this deviation is 
defined by sending the TransactionIsLost signal to CorrespondentBank 
and the use case finishes in failure. If an internal error happens that cannot be toler-
ated and detected by mechanisms defined at the design level for any operation per-
formed in the use case, the ef_Failure signal is sent to both actors.  

The deviation of parameter in the message borrow when it is not an integer type 
(this deviation was introduced in Figure 4 in the trigger section) is specified as an 
overridden predefined operation cs_WrongParameter in the use case class. The 
signal ef_WrongParameter is sent to the bank if this situation occurs. Pre-
processing of a corrupted message will invoke behavior assigned to 
cs_WrongParameter rather than to borrow. CORA defines this.  

In the running example, the CORA specification precisely defines in detail both 
normal and abnormal behavior. Any abnormal situation that was not defined by the 
CORA model of the system must be ignored by the system, according to CORA se-
mantics. We do not show all the possible predefined deviations in our running exam-
ple. The next section defines all the elements used in our running example diagrams, 
along with some others allowed in CORA, and provides their semantics. 
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activity Borrow Borrow() [   ]

<<degraded>>
AmountIsNotAllowed

<<normal>>
Success

<<failure>>
Failure

Deviation

Nonacceptable (failure)Acceptable

ea_AmountIsNotAllowed

ef_MoneyTransactionFailure

cs_WrongParameter()

ef_WrongParameter

claimNotRecieved()

transactionFailed()

TransactionIsLost

when (error)

ef_Failure

self.Bank.Bank.borrowedLots=
self.Bank.Bank.borrowedLots@pre+amount

amountSent()

borrow( amount : Integer )

amount

<<valueSpecification>>

token.actor.oclAsType(Bank).
Bank.accountNumber

SendAmount

amount

accountNumber

AmountSent

confirm()

Normal

 [else]

 [let bank:Bank=token.actor.oclAsType(Bank) in
 bank.Bank.borrowedLots+amount<=
 bank.Bank.maxAllowedLots
 and amount>0]

 

Fig. 7. Activity diagram for Borrow use case 

2.6   CORA Syntax and Semantics 

2.6.1   Message Processing 
We consider three layers in message processing modeling (Figure 8), where the first 
is the environment represented as a set of actors; the second is a communication sys-
tem; and the third is the system itself. The layers, Environment and System, are inter-
related with the Communication System layer. We have to consider the intermediate 
communication level since within fault-tolerant system modeling some faults of the 
communication system may need to be specified along with the recovery. Appropriate 
error handlers should be defined as part of the development process when determining 
system’s abnormal behavior.  

Communication system

Environment

System

u

a

m

 

Fig. 8. Layers in message processing 
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Processing of a received message may change the state of the system and send out-
going messages according to the functional specification. We divide message execu-
tion process into three stages: pre-processing, where incoming messages are checked 
against of the model for consistency and as a result, either the message itself or prede-
fined deviation message will be processed during the next stage; processing, where 
use case activity diagram(s) are utilized for processing the messages (the system state 
is changed and outgoing messages are determined in accordance with the received 
message or predefined deviation message, along with the Activity Model specifica-
tion); and post-processing, where outgoing messages are sent to the appropriate ac-
tor(s). In our model, we consider that outgoing messages can always be sent; we do 
not say that they will always be delivered by the communication system. 

Pre-processing and post-processing are specified in CORA in their standard way 
when the message processing is determined by the system model. CORA Domain 
Model describes which messages can start use case, which cannot and which have 
application in the context of an already initiated use case or role. It also shows which 
message signatures require supplementary data as use case instance, actor’s role, etc. 
The processing of a message is shown on activity diagram(s) and may include recov-
ery to all abnormal situations in communication system (such as if a message has 
incorrect parameters, a message cannot be delivered to actor, etc.) and/or incorrect 
ordering of the messages. 

All messages are sequenced by the communication system but may ultimately be 
processed by the system in a different order if required by the specification. For in-
stance, if the model states that b has to follow c but communication system receives 
messages <a, b, c>, b needs to be deferred so that the system will react as if the mes-
sages came in as <a, c, b>.  

At the requirement elicitation phase, message process is abstracted as if an actor 
(a) sends a message (m) to the system and sending this message is described in the 
context of a use case instance (u), which includes description of this step “actor (a) 
sends a message (m).” Sometimes for complete identification, it is necessary to say 
that the actor plays a specific role (r) in the use case, which has several participating 
actors, when sending the message. For instance, a bank might participate as a bor-
rower and a lender simultaneously in the same use case. To completely identify the 
message, we should use a tuple M=<m, a, u, r> even though in most instances some 
parameters may be reasoned from other parameters. An example of a system where 
all four parameters are used can be illustrated in a game of chess where one actor 
simultaneously plays two matches of chess (playing for both players) and sends a 
message to get information on the last move. If we model one logical actor player 
with two roles possible in the use case, even though the system receives the informa-
tion of use case instance and actor, it is not sufficient enough to determine who 
moved last (player black or player white). When we send the message getMyLast-
Move we want to include the role reference. If the role reference is specified, it im-
plicitly contains the use case and actor instance reference. 

In CORA, a full message is defined by a tuple =<m(p1,…pn), actor, 
use_case, role> where m(p1,…pn) is the message expression, m is the mes-
sage name and p1, …pn are the parameter values; actor is the reference of  
the actor instance, representing the actor who sent the message; use_case is the 
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reference of the use case instance that should execute m(p1,…pn) as next step; and, 
role indicates the role played by actor in use_case. The message tuple is 
managed automatically at any point in the system life cycle. The CORA semantics 
described in the next sections distinguish the necessary identifiers that allow us to 
precisely define the messages. Not all values can be defined for each message, and in 
these cases we use the predefined null value.  

2.6.2   CORA Domain Model 
The CORA Domain Model is presented as a class diagram or as a union of a set of 
class diagrams. It extends Domain Model containing concepts and signals to include 
System class, Logical Actor classes, Use Case classes, Role classes and 
associations between them. 

The next subsections describe different elements that can be used in the diagram. 

System Class 

Syntax 

There is a predefined <<system>> System class in CORA that identifies general 
system properties. The System class has predefined operations init, shutdown 
and processMessage(). The first two, init and shutdown, present only if 
initialization and finalization behavior is specified. The last, processMessage(), 
should be abstract. If it is not abstract, a BehavioralFuture (or descendant) 
which defines full message processing must be assigned to the Method property of 
the operation. This operation must have attribute concurrency set to guarded or 
concurrent.  

Additional operations may be added to System class if they are not related to use 
cases. System specification is operation-based rather than actor or use case based. All 
system operations must be listed in System class and an activity diagram attached to 
System class or individual activity diagrams must be attached to operations to spec-
ify the behavior.  

Semantics 

The init operation is executed just after the system starts. Operation shutdown 
corresponds to switching the system off. Both can have activity diagrams attached 
describing the behavior for initialization and finalization. 

The attribute concurrency set to guarded or sequential for operation 
processMessage() specifies that all incoming messages are sequenced by the 
communication system and processed in such a way that the next one to be processed 
is only done so once the previous one is finished and post-processed (the system can 
actually process messages simultaneously but the resulting system behavior must be 
equivalent as if they were being processed as specified). The attribute concur-
rency set to concurrent means that messages are simultaneously processed with 
the ones following, even with previous messages still processing. In this case, the 
model becomes highly complicated and the usage of this attribute should be avoided. 
If the specification states that by receiving message a1 the system should reply with 
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signal s1 and when receiving message a2 the system should reply with signal s2, then 
the guarded mode defines that only a1, s1, a2, s2 or a2, s2, a1, s1 sequences can oc-
cur. This ensures that other sequencing, like those allowed in concurrent mode, 
a1 a2 s2 s1 or a1 a2 s1 s2 or even a1||a2 s2||s1, does not take place. 

Logical and Physical Actors 
The actors from the use case model are defined as physical actors and logical actors in 
the CORA Domain Model. The physical actors are hidden from the system and are 
managed only by the communication system. The logical actors are also managed by 
the communication system but the system specification has a limited ability to use and 
manipulate logical actor instances (it cannot create or destroy instances, but it can 
reclassify to another logical actor class and refer the instances). 

Syntax 
Physical actors are presented in the diagram with their name as a standard UML sym-
bol for actor. Every logical actor is a named class, marked with <<la>> stereotype 
and associated with the physical actor(s). 

Each logical actor has associations to all the signals it may receive and all use case 
classes within which it may participate. The association between logical actor class 
and use case class is named according to the role played by logical actor in the associ-
ated use case. There may be an association class attached to the association. Actor 
may play different roles in the use case and this is possible by way of different asso-
ciations. 

Logical actor class can have operations defined in it.  

Semantics 
Multiplicity of the association ends has different meaning for physical actors and 
logical actors. At the end of physical actor: 

- 1 means that exactly one physical actor per one logical actor is allowed and it is 
always possible to send a message to the physical actor (otherwise, it is a failure 
of communication);  

- 0..1 has the same definition as 1, but physical actor can be inaccessible (typical 
situation where an internet user, who while interacting with a website, can con-
tinue using the website or go to another website); 

- More than 1 means that system can represent several physical actors as one logi-
cal actor (several real buttons represented by the system as one logical button) 
and a message sent from any of the physical actors is considered to be coming 
from the logical actor. All messages sent to a logical actor are broadcasted among 
all the physical actors. 

At the end of logical actor: 
- 1 means that only one logical actor is allowed for the physical one (like web 

forums not wanting different users working simultaneously from one computer); 
- More than one means that the customer allows user to be presented as different 

logical actors. 

It is devised with CORA that communication system manages the instances of 
logical actor classes and encapsulates physical ones. In specifying the system, we can 
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refer to instances of logical actors and can rely on the communication system to  
control and manipulate references to the actor, use case and role classes within pre-
processing and post-processing of the messages. For example, when developing a 
website we can concentrate on specifying only system behavior and expect the com-
munication system to distinguish actors by sending and matching cookies or by some 
other means detailed during design. The specifications for operations defined within a 
logical actor class are described in the Operations Section below. 

Use Case Class 

Syntax 

Every use case from use case diagram has an activity diagram with the same name as 
the source use case and attached with OwnedBehavior. This is presented in the 
CORA Domain Model as a <<uc>> stereotyped class (it also has UML standard 
<<activity>> stereotype, which is suppressed). 

Every use case class is associated by the realization association with the appropri-
ate use case. This implicitly applies all the relations between use cases which were 
made in use case diagrams, such as include, extend, handler, etc. 

Associations between use case class and actors (see Logical Actor Section) and be-
tween use case and signals (see Signals Section) are shown in the diagram. 

Semantics 

The activity diagram defines the behavior as it was informally defined in use case 
description. Full semantics will be described below in the CORA Activity Model 
section. 

Signals 

Syntax 

All the signals that can be sent to actors must be defined in CORA Domain Model. 
The name of the signal is the name of class with UML standard <<signal>> stereo-
type, and parameters are defined as attributes accordingly.  

The signal is associated to all the actor(s) to which it may be sent. It can also be as-
sociated to use case classes, which can send this signal and/or to use case role classes. 

Semantics 

The meaning of the associations is to define which references are sent as additional 
parameters to the actor. During processing of the message, according to the CORA 
Activity Model, SendSignalAction execution creates instances of signal class 
and creates links to use case (if there is an association between the signal and the use 
case) and to the role instance in the same way. Then, the communication system sends 
the signal to the physical actor together with the references to all the linked objects, 
providing ability for the actor to send the next message with the context in which it 
should be executed. 
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Operations 

Syntax 
Operations can be defined in System class, Logical Actor classes, Use Case 
classes and Role classes. Operations in Logical Actor, Use Case and Role 
can be static or non-static, where in System class they must be non-static. The signa-
ture of the operations is UML 2.0 compliant. Some operations may have 
<<autoCreate>> dependency(ies) to Use Case class(es) or Role class. 

There are several predefined operations in CORA: init, shutdown, proc-
essMessage, cs_UnknownMessage, cs_WrongParameter, 
cs_UnknownActor, cs_ActorMustBeProvided, cs_WrongActor, 
cs_WrongUseCase, cs_WrongRole, cs_UseCaseMustBeProvided, 
cs_RoleMustBeProvided.  

Semantics 
As described in message processing, a full message contains four parameters: the 
message itself and references to use_case, actor and role. 

If an operation is listed in System class it requires the correct message name and 
parameters, otherwise cs_UnknownMessage or cs_WrongParameter is  
processed.  

If an operation is listed in a Logical Actor’s class, it requires the communica-
tion system to determine the actor’s reference and place at AcceptEventAc-
tion(s) corresponding the message name a full message tuple with other parameters 
(apart from the message parameter) set to null, in accordance to activity diagrams. 
If the operation is static, Logical Class reference, rather than instance reference 
should be passed in the tuple because the communication system will only be able to 
determine that the message received belongs to class, as it does not contain informa-
tion about the instance. This situation happens, for example, if the reference cannot be 
sent to actors and consequently would not be required (and received) with the mes-
sage. For example, if there are several sensors connected to the system, by making the 
operation non-static we would require that the system has precise information for 
which sensor sends a value. However, if the system requirement states that it cannot 
distinguish sensors, such a situation is abstracted using static operation defined in 
logical class. If the reference is required but not provided (and cannot be reasoned by 
the communication system) cs_UnknownActor, cs_ActorMustBeProvided 
or cs_WrongActor are processed instead. 

If the operation is listed in Use Case class it has meaning only in the context of 
this use case. If it is static, it may be invoked without supplying the use case  
reference (an operation may trigger the use case by creating a new instance of  
corresponding class), otherwise the reference must be present, or 
cs_UseCaseMustBeProvided or cs_WrongUseCase are processed instead. 

If the operation is listed in Use Case Role class it has meaning only in the con-
text of this role. If it is static, the reference to role class instance is not necessary. If it 
is non-static, the reference must be present with the message and accurate, otherwise 
cs_WrongRole or cs_RoleMustBeProvided are processed. 

The <<autoCreate>> dependency shows which operations are triggers for the 
use case (defined in Use Case or Role class they are static, and may be non-static 
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in Logical Actor class) and prompt the use case instance to be created as an 
initial step of operation processing. Note, that in some complex cases, instantiating of 
Use Case classes and Role classes may be more complex and may be shown ex-
plicitly in CORA Activity Diagram using CreateObjectAction. 

If the same operation signature appears in different activity roles or Logical 
Actor classes, semantically it is not the same operation, since the signature includes 
the references implicitly. Therefore, a normal form of the class diagram may intro-
duce a generalization in order to factorize this operation occurring among activity 
classes or different roles. 

Control Variables 

Syntax 
Control variables are defined as attributes of System class, Logical Actor 
classes, Use Case classes or Role classes. These classes are specific control vari-
ables and are used in our model and marked with <<system>>, <<la>>, <<uc>> 
and <<role>> stereotypes. If a control variable is defined as an attribute of another 
class in Domain Model, the attribute is stereotyped <<cv>>. 

Semantics 
The control variables are used to specify complex behavior of the system. Since they 
are not part of the Domain Model and the designer does not have to design them, they 
are marked with special stereotypes. However, the CORA model requires the system 
to behave in such a way that all the invariants, pre/post-conditions, as well as guards 
which utilize control variables, are satisfied at the runtime. In this paper’s running 
example, we did not need and consequently did not use additional control variables 
apart from the standard CORA classes (Use Case, Logical Actor and Role).  

2.6.3   CORA Activity Model 

Syntax 
CORA Activity Model consists of a set of CORA Activity Diagrams, each one at-
tached to a use case and has three activity partitions: normal (describing normal be-
havior), and abnormal (describing abnormal behavior) divided into two subpartions: 
acceptable and failure (not acceptable). 

Each message, which is described in the Activity Diagram, must have correspond-
ing AcceptEventAction with the trigger attribute set to CallEvent and 
with the operation attribute set to one of the operations defined in the corresponding 
CORA Domain Model diagram. 
AcceptEventAction may have ControlFlow edges linking it to Deci-

sionNode, OpaqueAction, ReclassifyObjectAction, Create-
LinkAction, SendSignalAction, CreateObjectAction (and all other 
actions manipulating objects and links). They in turn can have ControlFlow edges 
linking them to any of the actions listed in the previous statement.  AcceptEven-
tAction may have OutputPin with the parameter of operation. The diagram also 
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uses ObjectFlow edges, which can connect pins, ObjectNodes and Activ-
ityParameterNodes. 

Semantics 
When the system processes the message it puts the message tuple as a token to every 
CORA Activity Diagram containing corresponding AcceptEventAction for the 
message (operation). If the corresponding operation is static and has dependency with 
<<autoCreate>> stereotype, then new instances of Use Case class or Role 
class are created and tuple will contain the references to the newly created objects. 
Then the token goes from one node to another according to general UML 2.0 seman-
tics for activity diagrams. The guards can contain OCL 2.0 expressions and may use 
reserved keyword token to refer the token’s message parameters, use case instance, 
actor instance and role instance (some of them may be null). OpaqueAction, 
with an OCL expression inside, shows the postcondition to this action execution and 
may use standard @pre postfix in the statement. This action can also manipulate 
token parameters. For example, when we have to create a new use case instance, we 
want to replace the token’s use case reference as well. 

Even though OpaqueAction sufficiently expresses any type of information ma-
nipulation in CORA model, some other actions may be used with UML 2.0 prede-
fined semantics. For example, ReclassifyObjectAction is used in our running 
example to express the meaning of registering an actor so that it becomes another 
actor. This makes the model more pictorial and hides the unnecessary details, in com-
parison with OCL expression, which could be used instead. 

If token is consumed by SendSignalAction, then a signal instance corre-
sponding to the action is created for every actor instance linked to the use case in-
stance referred by the token. If the use case instance reference is null, then a signal 
instance is created for every actor instance that has an association to the signal class. 
A link is then created to the corresponding actor and to use case instance or role in-
stance if there are associations between the signal class and use case or role classes. 
During post-processing of the message, the communication system will actually send 
every signal instance to the physical actor together with references to linked instances 
(or the equivalent information which will allow the communication system to later 
form the token with the appropriate use case and other instances references). 

If a node has an ObjectFlow edge with ActivityParameterNode, then a 
token offered by the node passes this edge and places a use case instance at Activ-
ityParameterNode. The use case should be finished with the outcome, which is 
the value of this use case return parameter linked with ActivityParameter-
Node. If the use case instance cannot be consumed by ActivityParameter-
Node, because there are no connected ObjectFlow edges, the use case instance is 
destroyed. However, in the future we may be able to demonstrate that when the activ-
ity diagram is nested to other activity diagrams as an activity instance, the token can 
be consumed by an edge connected to OutputPin corresponding with the Activ-
ityParameterNode of the nesting activity diagram.  

When token has passed a node that has no outgoing edges it is destroyed (but not 
the use case instance). When there are no more tokens, the operation has been exe-
cuted completely and the post-processing of the message is started. 
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2.6.4   CORA Operational Model 
The operational model is implicit in CORA. Each operation can be defined with post-
conditions derived from all CORA Activity Diagrams and the CORA Domain Model. 
The activity diagram containing AcceptEventAction, corresponding to the op-
eration, defines a part of postcondition that can be formed by transforming the tree of 
all the nodes that the action connects to with outgoing edges; in turn, they (recur-
sively) connect to other nodes. These parts, derived from all of the activity diagrams 
using this operation are put together with conjunction operand and thus form the op-
eration postcondition.   

For example, operation amountSent(use_case:Borrow):  

Post:  
use_case.Bank.Bank.borrowedLots= 
use_case.Bank.Bank.borrowedLots@pre+amount and Bor-
rower^AmountSent() 

Note, that this operation uses the implicitly defined control variable amount set 
by operation borrow(amount:Integer), as well as the implicitly defined pa-
rameter use_case:Borrow defined in CORA Domain Model by putting the opera-
tion amountSent() in Role class.  

3   Related Works 

There is work presenting a formal technique for requirement elaboration for capturing 
abnormal behavior in the form of obstacles, using temporal logic formalization of 
goals and domain properties [9]. Compared to our method, it is formal, complete and 
robust but lacks simplicity and visualization. With little training, CORA models can 
be used by any UML expert. 

There is also a method for requirement analysis that uses the OCL and UML activ-
ity diagrams to capture the requirements with the intent of a future test generation 
[13]. This method, however, does not focus on abnormal behavior. 

The Exception-Aware Requirement Elicitation method [14] works with abnormal 
behavior at the level of requirements. It gives informal requirements with captured 
normal and abnormal behavior and shows how to map Exceptional Use Cases to DA-
Charts for analysis and can be used as an input that can then be analyzed and pre-
cisely specified using CORA models. This method is in line with the CORA method. 

4   Perspectives and Conclusion  

Future work on this topic is planned in several directions. First of all, all models of 
CORA should be enhanced with transactional behavior. Secondly, deviations and 
recovery only deal with a part of dependable requirements and should include other 
aspects of dependability like, availability, security, etc. Thirdly, testing is costly in the 
development process and should be simplified through automatic test generation from 
the analysis model. We would like to study the links between fault-tolerant require-
ment specification and test case. 
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Abstract. This paper puts forward a new approach to developing re-
silient ambient applications. In its core is a novel rigorous development
method supported by a formal theory that enables us to produce a well-
structured step-wise design and to ensure disciplined integration of error
recovery measures into the resulting implementation. The development
method, called AgentB, uses the idea of modelling database to support
a coherent development of and reasoning about several model views, in-
cluding the variable, event, role, agent and protocol views. This helps
system developers in separating various modelling concerns and makes
it easier for future tool developers to design a toolset supporting this de-
velopment. Fault tolerance is systematically introduced during the devel-
opment of various model views. The approach is demonstrated through
the development of several application scenarios within an ambient cam-
pus case study conducted at Newcastle University (UK) as part of the
FP6 RODIN project.

1 Introduction

We use the term ambient campus to refer to the ambient intelligence (AmI)1 sys-
tems deployed in an educational setting (a university campus). Ambient campus
applications are tailored to support educational, administrative and research
activities typically found in a campus, including delivering lectures, organising
meetings, and facilitating collaborations among researchers and students.

This paper reports our work on the development of the ambient campus case
study within the RODIN project [1]. This EU-funded project, led by the School
of Computing Science of Newcastle University, aimed to create a methodology
and supporting open tool platform for the cost-effective rigorous development
of dependable complex software systems and services. In the RODIN project,
the ambient campus case study acted as one of the research drivers, where we
investigated how to use formal methods combined with advanced fault-tolerance
techniques in developing dependable AmI applications.
1 A concept developed by the Information Society Technologies Advisory Group

(ISTAG) to the EC Information Society and the Media DG, where humans are
surrounded by unobtrusive computing and networking technology to assist them in
their activities – http://cordis.europa.eu/ist/istag.htm.

M. Butler et al. (Eds.): Fault Tolerance, LNCS 5454, pp. 297–323, 2009.
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Software developed for AmI applications needs to be able to operate in an
unstable environment susceptible to various errors and unexpected changes (such
as network disconnection and re-connection) as well as to deliver context-aware
services. These applications tend to rely on the mobile agent paradigm, which
supports system-structuring using decentralised and distributed entities (agents)
working together in order to achieve their individual aims. Development of multi-
agent applications poses many challenges due to their openness, the inherent
autonomy of their components (i.e. the agents), the asynchrony and anonymity of
their communication, and the specific types of faults they need to be resilient to.
To address these issues, we designed a framework called Cama (Context-Aware
Mobile Agents), which encourages disciplined development of open fault-tolerant
mobile agent applications by supporting a set of abstractions ensuring exception
handling, system structuring and openness. These abstractions are backed by
an effective and easy-to-use middleware allowing high system scalability and
guaranteeing agent compatibility. More details on Cama and its abstractions
can be found in [2,3,4].

The rest of this paper discusses the challenges in developing fault tolerant AmI
systems (Section 2), describes the theory behind our design approach (Section 3),
outlines various approaches to tackling fault-tolerant issues (Section 4), and
illustrates how our design approach was applied in the case study scenarios
(Section 5).

2 Challenges in Developing Fault-Tolerant Ambient
Intelligence Systems

Developers of fault-tolerant AmI systems face many challenging factors, some of
the most important ones are:

– Decentralisation and homogeneity
AmI systems are composed of a number of independent computing nodes.

However, while traditional distributed systems are orchestrated – explicitly,
by a dedicated entity, or implicitly, through an implemented algorithm –
in order to solve a common task, agents in AmI system make independent
decisions about collaboration in order to achieve their individual goals. In
other words, AmI systems do not have inherent hierarchical organisation.
Typically, individual agents are not linked by any relations and they may
not have the same privileges, rights or capabilities.

– Weak Communication Mechanisms
AmI systems commonly employ communication mechanisms which pro-

vide very weak, if any, delivery and ordering guarantees. This is important
from the implementation point of view as AmI systems are often deployed on
wearable computing platforms with limited processing power, and they tend
to use unreliable wireless networks for communication means. This makes
it difficult to distinguish between a crash of an agent, a delay in a mes-
sage delivery and other similar problems caused by network delay. Thus, a
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recovery mechanism should not attempt to make a distinction between net-
work failures and agent crashes unless there is a support for this from the
communication mechanism.

– Autonomy
During its lifetime, an agent usually communicates with a large number

of other agents, which are often developed in a decentralised manner by
independent developers. This is very different from the situation in classical
distributed system where all the system components are part of a closed
system and thus fully trusted. Each agent participating in a multi-agent
application tries to achieve its own goal. This may lead to a situation where
some agents may have conflicting goals. From recovery viewpoint, this means
that no single agent should be given an unfair advantage. Any scenarios
where an agent controls or prescribes a recovery process to another agent
must be avoided.

– Anonymity
Most AmI systems employ anonymous communication where agents do

not have to disclose their names or identity to other agents. This has a num-
ber of benefits: agents do not have to learn the names of other agents prior to
communication; there is no need to create fresh names nor to ensure naming
consistency in the presence of migration; and it is easy to implement group
communication. Anonymity is also an important security feature - no one
can sense an agent’s presence until it produces a message or an event. It is
also harder to tell which messages are produced by which agent. For a recov-
ery mechanism, anonymity means that we are not able to explicitly address
agents which must be involved in the recovery. It may even be impossible
to discover the number of agents that must be involved. Even though it is
straightforward to implement an exchange for agents names, its impact on
agent security and the cost of maintaining consistency usually outweigh the
benefits of having named-agents.

– Message Context
In sequential systems, recovery actions are attached to certain regions, ob-

jects or classes which define a context for a recovery procedure. There is no
obvious counterpart for these structuring units in asynchronously communi-
cating agents. An agent produces messages in a certain order, each being a
result of some calculations. When the data sent along with a message cause
an exception in an agent, the agent may want to notify the original message
producer, for example, by sending an exception. When an exception arrives
at the message producer (which is believed to be the source of the problem),
it is possible that the agent has proceeded with other calculations and the
context in which the message was produced is already destroyed. In addition,
an agent can disappear due to migration or termination.

– Message Semantics
In a distributed system developed in a centralised manner, semantics of

values passed between system components is fixed at the time of the system
design and implementation. In an open agent system, implementation is
decentralised and thus the message semantics must be defined at the stage
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of a multi-agent application design. If an agent is allowed to send exceptions,
the list of exceptions and their semantics must also be defined at the level of
an abstract application model. For a recovery mechanism, this means that
each agent has to deal only with the exception types it can understand,
which usually means having a list of predefined exceptions.

We have to take these issues into account when developing and implementing
fault-tolerant AmI systems. The following section outlines the design approach
intended for constructing the ambient campus case study scenarios.

3 Design Approach

Our overall aim is to develop a fairly detailed model which covers a number of is-
sues critical for ambient systems, including communication, networking failures,
proactive recovery, liveness, termination, and migration.

No existing formal modelling technique can adequately address all the devel-
opment stages of a complex, large-scale agent system. The proposed modelling
method combines high-level behavioural descriptions, detailed functional speci-
fications and agent-level scenarios for an integral approach addressing the issues
of parallelism, distribution, mobility and context.

Different modelling techniques are used to operate on a common general
model. A general system model is projected through a number of views, each
emphasizing some specific aspect of a model. The choice of views was dictated by
the availability of the verification toolkits that can be used to automate analysis
of model properties. Another important role of views is to help a designer to
better understand a model.

Unlike hybrid methods – where two or more notations are used – in our
approach, a whole model is described in single basic notation based on the stan-
dard set theory language. This reduces the possibility of consistency problems
and makes the method more elegant and flexible. The model notation is delib-
erately very schematic, no tool is going to support it and no real system can be
described in it. Instead we propose to use a graphical modelling tool that can
visually layout and manipulate different model parts.

Since it is hard to produce an efficient and scalable verification tool, we try
to reuse the well-established formalisms supported by verifications tools. Our
approach is based on a combination of a process algebra and a state-based mod-
elling method. A CSP-inspired process algebra is used for verification of high-
level system behaviour while the Event-B specification method [5] is employed to
construct detailed functional specifications. The Mobility Plugin model checker
[6] is used to verify hybrid specifications composed of a process algebraic model
and an Event-B machine.

The motivations for this work is the construction of a tool for computer-aided
development of agent systems. Such tool would combine simplicity of visual mod-
elling tools such as UML, the expressive power of specifications languages such
as B ([7]) and Z ([8]) and systematic step-wise development of the refinement.
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The result of such development is a set of specifications of agent roles. Due to
the top-down development, such specifications are interoperable. Role specifica-
tions can be taken apart and implemented or further developed independently
without risking losing interoperability with the other agent roles of the system. In
many cases, executable code can be generated directly from a role specification.

3.1 The AgentB Modelling Database

The AgentB modelling database concept unites the various model types used in
a development. Most of the models are rather simple on their own and thus easy
to read and update. Combining these models together produces a powerful mod-
elling tool, and their combination is never written out as a single specification.
Instead, a software tool is responsible for maintaining links among model parts
to ensure consistency of the whole development.

A refinement of a formal development is constructed by refining different
database parts, one at a time. This is possibly the most attractive feature of the
approach. Instead of tackling a whole model, a modeller can choose a specific
aspect of a model to work on. At any given moment, the focus of a modeller is
on a single database part or a synthetic view constructed from a combination of
several parts. The modelling database has the following structure:

Sys = (S, V,E,R, P, F, C,D,A, I)

where

S - collection of carrier sets and variables. They are used in the functional,
communication and agent database parts.

V - variable model. This includes variables used by functional, communication
and agent models.

E - event model, as a set of possible system events.
R - role model, collection of system roles.
P - a protocol model, in the form of a CSP-like process algebraic expression.

A protocol model is a high-level description of observable system behaviour.
This model does not refer to or update system state. For this reason it is
very convenient to use the protocol part alone to design an initial system
abstraction.

F - functional model. It describes the state updates done by events present in the
system. Functional model of a single event includes a set of local variables,
a guard, and a before-after predicate relating a new system state to an old
one.

C - communication model. It is used to describe how information is passed
between different agents roles, as roles do not normally share variables. The
model helps to distinguish between internal control flow of an agent and
external message passing.

D - distribution model. This model relates elements of the event and variable
models to roles from the role model. An empty distribution model stands for
an implicit single role which contains all the variables and events.
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A - agent model. This model describes locations and agents of a system. The
model helps to address the problems of mobility and context-awareness.

I - a system invariant. Properties expressed by a model invariant must be
preserved at all stages of a system execution. Typically, an invariant con-
sists of typing predicates for system variables, functional model properties,
agent model properties and, possibly, a gluing invariant for linking model
refinements.

Model context contains static information used by a development. It declares
user carrier sets, constants and a context properties: (S,C, P ).

Variable Model. The variable model part describes the state space of the mod-
elled system. This model must be accompanied by the invariant part providing
typing predicates for all the variables.

In a modelling database, the variable model part is used by four other parts –
functional, distribution, communication and agent models. All variables are vis-
ible to these parts. The initialisation event of the functional model is responsible
for computing the initial state of a system. Agent and functional models are the
only parts which can update variable states.

Event Model. Event is an observable action of a system, it has no duration
and thus only one event can be observed at any given moment. An event model
indicates which events may be observed in a correct model implementation. For
example, for event model {a, b}, all the systems with the following observable
behaviours are correct implementations:

〈a, a, a, ...〉
〈b, b, b, ...〉
〈a, a, b, a, b, b, ...〉
〈〉

where by 〈〉 we denote a system which stops immediately when started (a system
doing nothing is a valid implementation of any event model). Any system with
events other than a and b is not a valid model implementation. For instance,
a, a, a, c, ... does not implement the model since c is not included in the event
model.

Role Model. The role model part declares a set of system roles (component
types) and for each role, specifies the minimum number of role instances required
to construct a system and the maximum number of role instances that is sup-
ported by a system. A role model is defined with a tuple made of a set of roles
and two functions defining the restriction on role instance number:

(R, rmin, rmax)

where R is the set of roles, rmin and rmax are functions specifying the minimum
and maximum number of instances for each role:
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rmin : R→ N1
rmax : R→ N1 ∪ {∞}

Protocol Model. Behavioural modelling is a natural choice for high-level mod-
elling of parallel and distributed systems. Behavioural specifications focus on
temporal ordering of events, omitting details of state evolution. The agent sys-
tem paradigm is one example where behavioural model is preferable for high-
level system abstraction although state-based description may be required at
later stages. The protocol model language is based on a subset of CSP notation
(Figure 1).

e → P synchronisation prefix
P ; Q sequential composition
P‖Q parallel composition
P � Q choice
μx · P (x) recursion
skip no-effect process

Fig. 1. The language of protocol model expression

We will often use the following shortcut notation for describing loops:

∗(P ) = P ;P ;P ; ... = μX · (P ; (X � skip))

Reactions In AgentB, we are interested in the modelling of distributed systems.
To make transition into implementation stage easier, we try to achieve distri-
bution at the modelling level. Protocol model is one of the parts that must be
split somehow into pieces to faithfully model a distributed system. For this,
we represent a protocol model as a collection of several independent protocol
models:

P1, P2, ..., Pn

To be able to refer to parts of a protocol model, protocol sub-models are
identified with unique labels:

l1 : P1, l2 : P2, ..., ln : Pn

Here Pi are the protocol model parts and li are the attached labels. For
example, a model of a server providing two different services – reading a file and
saving a file – can be described as:

readfile : P‖
savefile : Q

Each reaction name has a special meaning. Reaction with label � is a protocol
model of a whole system before it is completely decomposed into models of
individual roles. Other reactions labels are only notational decorations and are
not given any interpretation.
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Functional Model. With the functional model part, a modeller specifies how
an event updates the state of a system. This is done by formulating predicates
relating old and new system states. Such a predicate does not have to describe
a unique new state, instead it describes a whole family of possible next states.
Functional model of an event is equipped with a guard. A guard defines the
states when the event can be enabled. If an event execution is attempted in a
state prohibited by its guard, execution is suspended until the system arrives at
a state satisfying the guard.

Functional model of an event computes a new system state in a single atomic
step. It does not use any intermediate steps or intermediate local results and it
is not interleaved with the execution of other events. Functional model always
contains initialisation event. This event is special: it cannot be referred-to any-
where in a model (for example, in a protocol model expression) and this event is
always prior to any other event. The functional model of an event is described
by event guard and event action:

F : Ev 	→ (Grd ×Act)
where

Ev - event identifier, must be an element of the Event model;
Grd - event guard. In addition to typing predicates for parameters and event

enabling conditions, an event guard can also have free variable that must
be typed by the guard. These variables are the local variables of the event.
They are not seen outside the event and cannot be updated by the event
action;

Act - generalised substitution defined on variables from the variable model.

We use generalised substitutions to describe how an action transforms a model
state. The table below lists the substitution styles that are used to describe an
action:

notation relation predicate
v := F (c, s, v, l) v′ = F (c, s, v, l) assignment
skip v′ = v no-effect assignment
v :∈ F (c, s, v, l) v′ ∈ F (c, s, v, l) set choice
V :| F (c, s, V0, V1, l) F (c, s, V0, V1, l) generalised substitution

where v is a variable, F is an expression, V is a vector of variables and V0 and
V1 are the old and new values of V . Expression F may refer to constants c, sets
s, system variables v and local variables l. The first of the substitution type,
:=, is a simple assignment. The assigned variable becomes equal to the value of
expression F . Substitution v :∈ F selects a new value for v such that it belongs
to set F . The most general substitution operator, :|, uses a predicate to link the
new and old model states.

Several substitution types can be combined into a single action with the par-
allel composition operator:

s1‖s2‖...‖sk
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We perceive parallel composition of actions as a simultaneous execution of all
the actions. We can always replace the set of parallel substitutions with a single
generalised substitution.

Communication Model. The communication model allows a modeller to anal-
yse and update communications that may occur in a system. By communication
we understand a pair of ”a sending event” and ”a receiving reaction” (described
by the protocol model part) and a predicate-binding parameters that define
the communication-enabling conditions. As with the functional model part, the
communication model does not have explicit parameters. Parameter passing is
modelled by the conjunction of event and communication guards.

The purpose of this model is to keep the information about communication
separate from other parts. The reason to do this is because we cannot assign
communication to protocol model as it would make it very hard to achieve
decomposition into agent models which is important to our method. Communi-
cation cannot be described in the functional model part as a functional model
is formulated on per-event basis. Introducing communication would destroy this
simple architecture.

Communication is introduced when a system has more than one role. To
make sure that parts of the system that are to be implemented as independent
components are linked in a manner that does not prevent their distribution,
we use communication model to describe possible messages exchanged by such
components.

A communication model associates a set or sets of communications with a
source event (message sender). Each communication is a tuple of a guard and a
destination event:

C : Ev 	→ P(Grd ×Rct)
where Ev is the message source – the event sending the message. Predicate Grd
determines whether a message should be sent and the values for the parameters
should be passed to the designation event. The message target is a reaction
name.

Distribution Model. Distribution model defines how the functionality and
the state of a model are partitioned among the roles of a system. This permits
a system to be realised as a set of independent components. Each variable and
event of a model is associated with a particular role and additional restrictions
are imposed on protocol and functional models. Formally, a distribution model
is described as a tuple of functions partitioning events and variables:

D = (De, Dv)

where function De : Ev � P(R) maps an event into a role to which the event
belong. Function Dv : V � P(R) does the same for a model variable.

Agent Model. An agent model is a tuple of locations set L and agent specifi-
cations A:
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M = (L,A)

An agent specification describes the behaviour of a single agent. At any given
moment, an agent is located at some location from the set L. The set L always
contains the predefined location limbo which is understood as the whole of the
’outside’ world. From this location, new agents appear in a system and via this
location agents may leave a system.

The role of the location concept is to structure an agent system into disjoint
set of communicating agent groups. This addresses the scalability problem of
agents-system. A large and complex system can be described as a composition
of smaller and simpler sub-systems, well isolated from each other.

An agent may communicate with other agents in the same location. Agents
from different locations may also communicate. An agent may decide to change
its position by migrating to a new location. This changes the set of agents it
sees and can communicate to. The structuring of an agent system and agent
grouping is dynamic. An agent can use its current state, produced by interacting
with other agents, to compute the next migration destination. This permits the
description of dynamic agent systems with complex reconfiguration polices.

Specification of an agent behaviour is a process algebraic expression. The
decomposition model makes sure agents are defined in a non-conflicting manner.

The starting point for the construction of an agent system is the assignment
of a set of roles to each agent. An agent with roles R is understood to be a
component implementing the complete functionality of all the roles from R and
is required to provide all the services attributed to these roles.

An agent model is described by two functions: Arl provides the list of roles
implemented by an agent and Asp returns an agent specification.

Arl : Agt 	→ P1(R)
Asp : Agt 	→ Sp

We require that dom(Asp) = dom(Arl) �= �.
An agent specification is described using a small subset of CSP, which features

the following constructs:

Pred?a guarded action
P ;Q sequential composition
P‖Q parallel composition
P �Q choice
Pred?∗(P ) loop

where action a is:

[m, p] invocation of an internal reaction
go(l) migration
evt(p1, p2, ..., pn) execution of an event from a functional model
[m, p] communication process sending event m with parameters p
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The migration action changes the current position of an agent. Invocation
of an internal reaction results in a creation of a new process within an agent.
Such a process is described by a combination of protocol and functional models.
An agent can send a message to another agent provided the destination agent
can be found at the current location. As a reaction to a message, the receiver
creates a new process with the internal reaction invocation action. Finally, an
agent model may call an event defined in the functional model of an agent.

To summarize, the proposed modelling framework has been developed to fit
well with the major characteristics of the agent systems identified in Section 2.
Role, distribution and communication models guarantee agent decentralization
and weak communication. The event-based communication between agents en-
sures their anonymity. Agents are autonomous and do not have to communicate
if this does not fit their goals. The framework supports independent development
of individual agents in such a way that they are interoperable, function in the
distributed settings and can move by changing locations when and where they
want to achieve their individual goals.

4 Fault-Tolerance

To ensure fault tolerance of complex ambient applications, we address the fault-
tolerance issues through the entire development process starting from eliciting
relevant operational and functional requirements. In our approach, system op-
erational and functional requirements – among other information – capture all
possible situations which are abnormal from the point of view of the system
stakeholders (including, system users, support, developers, distributors and own-
ers). First of all, this allows us to state the high level fault assumptions, which,
generally speaking, define what can go wrong with the system – and as such,
needs tolerating – and what we assume will never go wrong (the latter is as
important as the former as it defines the foundation on which fault tolerance
can be built). These requirements guide the modelling of the error detection and
system recovery.

Due to the complex nature of large-scale AmI applications – caused by their
dynamic nature and openness – the traditional fault tolerance structuring tech-
niques, such as procedure-level exception handling, atomic transactions, con-
versations and rollback cannot be applied directly as the systems typically need
combined approaches used for dealing with different threats in different contexts.
Within our modelling approach, fault tolerance becomes a crosscutting concern
integrated into a number of model views and at different phases of incremen-
tal system development. System structuring, ensuring that potential errors are
contained in small scopes (contexts) represented as the first class entities during
system modelling, is in the core of this approach (in the same way as it is in the
core of providing any application fault tolerance [9]).

Fault tolerance is systematically introduced during the development of various
model views. Thus, the event model includes both normal and abnormal events,
where the latter represents various situations ranging from detecting errors to
successful completion of system recovery. Each role model typically constitutes
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a simple scope, which becomes the first level of system recovery, to be conducted
by the individual role, without involving other agents or other roles of the same
agent. In some situations, this type of recovery can be successful considering the
agent’s autonomy and the decentralized nature of the AmI applications.

Unfortunately, our experience shows that in real systems, we often need to
conduct a higher level recovery which involves other agents. There are many rea-
sons for this, including cooperative and interactive nature of these applications,
in which agents come together to achieve their goals, so that they often need
to cooperate to recover and to ensure that during and after recovery, the whole
system is in a consistent state.

Within AgentB, different model views deal with faults and errors in view-
specific ways and use specific fault tolerance measures. The protocol model allows
us to raise and propagate exceptional messages and to conduct application-
specific recovery modelled as a separate part of each protocol (providing a special
form of exception handler – see [10]). The abnormal part of the protocol view
shows message sequences typically exchanged during system recovery.

In the agent models, we introduce fault-tolerance properties at the level of
agents, which are the units of deployment and mobility in the AmI systems, as
well as at the level of groups of cooperating agents. This allows us to represent
fault tolerance at both: the level of individual agents and the level of groups of
agents deployed in the same location. In particular, we can represent the use of
redundancy (e.g. to achieve fault handing by spawning an agent copy to survive
an agent crash) and diversity (to achieve error recovery by employing the same
service provided by independently implemented agents). We can also model fault
tolerance of a group of agents (for example, when they need to leave a location
in emergency or when we need to conduct load balancing operation to avoid
system degradation).

To automate system modelling, we are currently designing a number of fault
tolerance patterns to help system developers introduce some common fault-
tolerance techniques when modelling an agent system [11,12]. These techniques
range from abstract system-level patterns to very specific agent-level patterns
dealing with specific faults and focus on integrating fault tolerance in the specific
modelling views.

Early on, we have extended the blackboard communication pattern [13] with
nested scopes and exception propagation [14]. These two extensions are essen-
tially the modelling and the implementation techniques aiming at representing
recovery actions. In the implementation of fault tolerance, we extensively rely
on the reactive agent architecture. This has two immediate benefits: its imple-
mentation style matches the event modelling style, captured by the event and
functional model views; and recovery of multi-threaded agents becomes similar
to that of the asynchronous reactive architecture.

In spite of some success in modelling different fault tolerance solutions for the
AmI systems, we realise that our approach needs further work, in particular,
in coherent modelling of fault tolerance represented in different model views. In
the work we report here, in most cases we treat fault tolerance in different views
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as being orthogonal and non interfering, assuming that the erroneous state is
always confined to one model view at a time: in this case, error recovery can be
localised in this view. To address the more general cases where the same error
affects several views or recovery from concurrent errors that need coordinated
activities in several views, we will need to define common parts of the views and
some rules of their sharing/transformation.

5 Case Study Scenarios

In our previous work, we implemented two scenarios within the ambient campus
case study using the Cama framework as the core component of the applications
[15,16,4]. The first scenario (ambient lecture) deals with the activities carried
out by the teacher and the students during a lecture – such as questions and
answers, and group work among the students – using various mobile devices
(PDAs and smartphones). The second scenario (presentation assistant) covers
the activities involved in giving and attending a presentation. The presenters
uses a PDA to control the slides during their presentation and they may receive
’quiet’ questions on the topic displayed on the slide from the audience. Each
member of the audience will have the current slide displayed on his/her PDA,
which also provides a feature to type in questions relevant to that slide.

In this section we discuss our work on a more challenging scenario which
involves greater agent mobility as well as the use of the location specific services.
Agents may move physically among multiple locations (rooms), and depending
on the location, different services will be provided for them. In this work, we shift
our focus from implementation to design and we use this scenario to validate our
formal development approach.

In this scenario – we call it the student induction assistant scenario – we
have new students visiting the university campus for the first time. They need
to register to various university departments and services, which are spread
on many locations on campus, but they do not want to spend too much time
looking for offices and standing in queues. They much prefer spending their
time getting to know other students and socialising. So they can delegate the
registration process to their personalised software agent, which then visits virtual
offices of various university departments and institutions, obtains the necessary
information for the registration, and makes decisions based on the student’s
preferences. The agent also records pieces of information collected during this
process so that the students can retrieve all the details about their registration.

Unfortunately, not all the registration stages can be handled automatically.
Certain steps require personal involvement of the student, for example, signing
paperwork in the financial department and manually handling the registration
in some of the departments which do not provide fully-featured agents able to
handle the registration automatically. To help the student to go through the
rest of registration process, his/her software agent creates an optimal plan for
visiting different university departments and even arranges appointments when
needed.
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Walking around on the university campus, these new students pass through
ambients – special locations providing context-sensitive services (see Figure 2).
An ambient has sensors detecting the presence of a student and a means of
communicating to the student. An ambient gets additional information about
students nearby by talking to their software agent. Ambients help students to
navigate within the campus, provide information on campus events and activi-
ties, and assist them with the registration process. The ambient infrastructure
can also be used to guide students to safety in case of emergency, such as fire.

Fig. 2. Student induction assistant scenario: the dots represent free roaming student
agents; the cylinders are static infrastructure agents (equipped with detection sensors);
and the ovals represent ambients – areas where roaming agents can get connection and
location-specific services.

5.1 Application of Our Approach to the Scenario

To proceed further, we need to agree on some major design principles, identify
major challenges and outline the strategy for finding the solution. In order to un-
derstand the scenario better, we apply the agent metaphor. The agent metaphor
is a way to reason about systems (not necessarily information systems) by de-
composing it into agents and agent subsystems. In this paper, we use the term
agent to refer to a component with an independent thread of control and state,
and the term agent system to refer to a system of cooperative agents.

From agent systems’ viewpoint, the scenario is composed of the following three
major parts: physical university campus, virtual university campus and ambi-
ents. In the physical university campus, there are students and university em-
ployees. Virtual campus is populated with student agents and university agents.
Ambients typically have a single controlling agent and a number of visiting
agents. These systems are not isolated, they interact in a complex manner and
information can flow from one part to another.

However, since we are building a distributed system, it is important to get an
implementation as a set of independent but cooperative components (agents).
To achieve this, we apply the following design patterns:

agent decomposition. During the design, we will gradually introduce more
agents by replacing abstract agents with two or more concrete agents.

super agent. It is often hard to make a transition from an abstract agent to a
set of autonomous agents. What before was a simple centralised algorithm
in a set of agents must now be implemented in a distributed manner. To aid
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this transition, we use super agent abstraction, which controls some aspects
of the behaviour of the associated agents. Super agent must be gradually
removed during refinement as it is unimplementable.

scoping. Our system has three clearly distinguishable parts: physical campus,
virtual campus and ambients. We want to isolate these subsystems as much
as possible. To do this, we use the scoping mechanism, which temporarily
isolates cooperating agents. This is a way to achieve the required system
decomposition. The isolation properties of the scoping mechanism also make
it possible to attempt autonomous recovery of a subsystem.

orthogonal composition. As mentioned above, the different parts of our sce-
nario are actually interlinked in a complex manner. To model this connec-
tions, we use the orthogonal composition pattern. In orthogonal composition,
two systems are connected by one or more shared agents. Hence, information
from one system into another can flow only through the agent states. We
will try to constrain this flow as much as possible in order to obtain a more
robust system.

locations definition. To help students and student agents navigate within the
physical campus and the virtual campus, we define location as places asso-
ciated with a particular agent type.

decomposition into roles. The end result of system design is a set of agent
roles. To obtain role specifications, we decompose scopes into a set of roles.

5.2 Formulating the Requirements

From the initial description of the scenario, we formulated a set of requirements
that would assist us in implementing the student induction assistant system, in
particular concerning the registration process. These requirements can also be
found in the RODIN Deliverable D27 [17]. We divided the system requirements
into the following categories:

ENV Facts about the operating environment of the system.
DES Early design decisions captured as requirements.
FUN Requirements to the system functionality.
OPR Requirements to the system behaviour.
SEC Requirements related to the security properties of the system.

Top-Level Requirements. First we attempt a high-level description of the system.
The description captures different aspects of the system: environment, some design
decisions (dictated by the motivation for this case study), and few general functionality
and security requirements.

FUN1 The system helps new students to go through the registration process.

DES1 The system is composed of university campus, virtual campus and ambients.
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OPR1 A student must have a choice between automated and manual registration.

OPR2
Malfunctioning or failure of the automated registration support should not
prevent a student from manual registration.

SEC1 The system should not disclose sensitive information about students.

SEC2
The system must prevent malicious or unauthorised software to disguise itself
as acting on behalf of a student or an employee.

University. University campus forms the environment for the software-based regis-
tration process (Figure 3). The university campus is obviously not something that can
be designed and implemented. However it is important to consider it in the develop-
ment of the scenario as it provides an operating environment for the other two parts
(virtual campus and ambients) which can be implemented in software and hardware.

ENV1 In university campus, students interact with university employees.

ENV2 Students can freely move around while employees do not change their position.

ENV3 Each university employee is permanently associated with a unique location.

Fig. 3. University campus is modelled as a number of university employees (U) and
students (S). Virtual campus has the same structure but is populated with student and
university agents.

Virtual Campus. Virtual campus uses software-based solution to process student
registration automatically. Its organisation is similar to that of a real campus.

DES2 Virtual campus is composed of university agents and student agents.

DES3 In virtual campus, student agents can autonomously change their location.
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DES4 Each university agent is permanently associated with a unique location.

Virtual campus is a meeting place for student agents and university agents. During
registration, student agent talks to different university agents.

FUN2
Student agents and university agents can exchange information related to the
registration process.

Some registration steps require intervention from a student.

OPR3
A registration process may fail due to inability of a particular university agent
to handle the registration.

Before the registration process is initiated, a student agent has to go through several
other stages. This results in a tree of dependencies. The root of the tree represents
a successful registration and its leaves represent the registration stages without any
prerequisites (see Figure 4). Student agent does not know about the tree structure and
so it has to explore it dynamically. Reconstructing the tree for each agent makes the
system more flexible and robust.

OPR4 Each registration stage has number of dependencies.

DES5 Initially, student agent does not know the dependency tree.

a) b)

Fig. 4. a) Registration process starts from a random location (f9 on the figure). The
basic requirements f1, f2, f3 are discovered by tracing back the requirements graph. b)
Student agent attempts to do the registration by satisfying each known requirement. It
does not yet know the full set of registration requirements (unknown steps are greyed).
They are discovered during this process.



314 A. Iliasov, B. Arief, and A. Romanovsky

a) b)

Fig. 5. a) During registration a student agent accumulates registration information. b)
Itinerary for manual continuation of a registration is a path covering all the remaining
registration graph nodes and satisfying a number of constrains. A node of the path is
described by a pair containing when and where should go to resolve a given registration
dependency.

DES6 Student agent autonomously constructs the dependency tree.

Interacting with university agents, student agent records all the information related
to the registration process. This information can be used to restart the registration
process or to be passed to the student in order to do manual registration. In the latter
case, student agent creates a schedule that helps a student to visit different university
offices in the right order and at the right time (see Figure 5).

DES7
Student agent keeps a history of the registration process that can be used to
restart the registration from the point of last completed registration step.

DES8
Student agent can create an itinerary for a student to complete the registration
manually.

DES9 Itinerary must satisfy the registration dependencies.

Ambient. As implied by the scenario, ambients provide services within a predefined
physical location. By services we understand an interaction of an ambient with student’s
software. An interaction is triggered when a student enters a location associated with
a given ambient.

OPR5 Ambients interact with student agents to assist with the registration process.

FUN3 Ambient provides services by interacting with student software.



Step-Wise Development of Resilient Ambient Campus Scenarios 315

FUN4
Interaction with an ambient is triggered when a student enters a location
associated with the ambient.

FUN5
Interaction with an ambient is terminated when a student leaves the location
of the ambient.

Positioning Service. For simplicity, we assume that ambient locations are discreet
– a student is either within a location or outside of it – and do not change over time.

FUN6 Ambient locations are discreet and static.

Discovery of an ambient by a student (or vice versa) does not come for free. It is
achieved using tiny mobile sensor platforms called smart dust [18]. Smart dust devices
– also known as motes – has low-power, short-range radio capability, enabling them to
communicate with other motes within range (Figure 6).

ENV4 Ambients detect students nearby using the mote radio communication.

Each student carries one such mote which broadcasts student’s identity at certain
intervals.

ENV5 Each student carries a mote.

FUN7 Student mote broadcasts student id.

Student motes’ signals are sensed by ambients. Ambient agent is equipped with a
mote radio receiver.

ENV6 Each ambient is equipped with a mote radio receiver.

When an ambient senses that a student mote is within range, it transmits this
information to all other ambients.

FUN8
Position of a student detected by an ambient is made available to all other
ambients.

We will rely on this functionality to implement recovery in emergency situations.

Student. Automated registration must be under the full control of a student. A
student should be able to start, stop and inspect the current state of a registration.

FUN9 Student starts and stops registration process.
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Fig. 6. Composition of motes and ambients system

FUN10
Student may enquire the current state of a registration while registration is in
progress.

FUN11
When registration is finished or interrupted, a student can access the recorded
registration state.

Student Agent. Student agent is a software unit assisting a student in registration.

FUN12
Student agent assists a student in manual registration by creating a schedule
for visiting university employees.

FUN13 Student agent records the state of registration process.

Mobility. The scenario includes several types of mobility. There is physical mobility
of computing platforms owned by students (e.g. mobile phones and PDAs). Students’
agents can migrate to and from a virtual campus world. In this case, agent code and
agent states are transferred to a new platform using code mobility. Finally, agents
migrate within a virtual campus using virtual mobility.

Different styles of mobility have different requirements. Code mobility is a complex
and fail-prone process: it is dangerous to have an agent separated from its state or
having an agent with only partially available state or code. There is also a danger of
an agent disappearing during the migration: the source of migration, believing that
migration was successful, shuts down and removes the local agent copy, while the
destination platform fails to initialise the agent due to transfer problems.

OPR6
Agent either migrates fully to a new platforms or is informed about inability to
migrate and continues at a current platform.
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Physical mobility presents the problems of spontaneous context change. A student
agent may be involved in a collaboration with an ambient when a student decides to
walk away. Clearly, student behaviour cannot be restricted and such abrupt changes
of context and disconnections must be accounted for during the design of agents and
ambients.

OPR7
Interaction between an ambient and a student agent can be interrupted at any
moment.

Virtual mobility is the simplest flavour of mobility as it does not involve any net-
working and nothing is actually moving in space. The only possible failure that can
affect virtual migration is a failure or a shut-down of the hosting platform. However,
such dramatic failure is unlikely to happen during an agent lifetime and thus we do
not consider it at all in this document.

Fault-Tolerance. The system we are designing is a complex distributed system with
a multitude of possible failure sources. In addition to traditional failures associated with
networking, we have to account for failures related to environmental changes which are
beyond the control of our system. Below is the list of faults we are going to address
and which we believe covers the possible failures in our system:

– disconnections and lost messages:

OPR8 Agents must tolerate disconnections and message loss.

– failure of ambients:

OPR9
Student agents must be able to autonomously recover from a terminal
ambient failure.

also, since ambient services are not critical, it is better to avoid failing or misbe-
having ambient:

FUN14
Student agent drops interaction with an ambient if it suspects that the
ambient is malfunctioning.

– failure of university agents. University agents are critical for the completion of the
registration, so it is worth trying to recover cooperatively:

OPR10 Student and university agents cooperate to recover after failure.

It does not make sense to remain in virtual campus if one of the university agents
is failing to interact:

FUN15
Student agent leaves virtual campus when it detects a failing university
agent.

– failure of student agents. Failure of a student agent may be detected by a university
agent, ambience agent or student.
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FUN16
University agent detecting student agent crash should attempt to notify
the agent owner.

And there is a possibility that a student suddenly terminates without leaving any
notice. In this case, we rely on the student to detect this situation and possibly
try again by sending another agent.

FUN17 Student should be able to restart registration process.

5.3 Refinements

In this section, we demonstrate few initial development steps for the case study.
These steps are done in a process-algebraic style, but at a later refinement, the
development method changes into state-based modelling using Event-B. More
details on our modelling approach can be found in [19].

To ensure interoperability among different agent types in our scenario and also
to verify properties (such as eventual termination of the registration process),
we use the combination of CSP process algebra [20], AgentB modelling (Event-B
with some syntactic sugar – outlined in Section 3), and the Mobility Plugin [6].
The AgentB part of the design is responsible for modelling functional properties
of the system; for the verification purposes, it is translatable into proper Event-B
models. With the Mobility plugin, we are able to construct scenarios describing
typical system configurations and verify properties related to system dynam-
ics and termination. For example, we can model-check the migration algorithm
described in Event-B to verify that the algorithm will never omit a location.

The whole development process is lengthy, so we only show some excerpts
here.

Our system is concerned with the registration of a new student. At a very ab-
stract level, the registration process is accomplished in one step:

S0
REF PREFIX−−−−−−−→ S1 sat. FUN1

register .

From the description of the system, we know that the registration process is
made of an automatic or manual parts, either of which properly implements the
registration process

S1
REF ICH−−−−−→ S2 sat. OPR1

auto �→ register
manual �→ register

auto. � manual .

(steps S3 - S6 omitted)

At this stage, we are ready to speak about roles of agents implementing the system.
We introduce two roles: student (s), representing a human operator using a PDA;
and agent (a) which for now stands for all kinds of software in our system.
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S6
REF ROLE−−−−−−→ S7 sat. DES1

s, a ∈ ρS7

(s′send → a′move .; a′communicate .; a′automatic.) � (
(auto fail → manual anew .)�
(auto part → manual cont .))

In the next model, we focus on a sub-model of the system which represents
virtual campus (vc) activities: the communicate process. The process is refined
into a loop where a student agent visits different university agents and speaks
to them. The loop alternates between termination (break) and the registration
process:

communicate . from S7
REF LOOP−−−−−−→ Svc

1 sat. FUN3

done �→ communicate a′+(
auto register . � break

)
; a′done.

(steps Svc
2 - Svc

6 omitted)

By adding more details on the interactions between the student and the uni-
versity agents, we arrive to the following model. The model implements a sim-
ple request-reply protocol where the university agent’s role is given through a
choice from a number of replies. Event reply ok is used when registration is suc-
cessful, event reply docs indicates that there are missing documents and that
student agent must visit some other virtual offices before registration can be
completed. In the case when the registration is not possible without the student
being present in person, the reply pers reply is used.

Svc
6

REF DCPL−−−−−−→ Svc
7

sa′

+⎛
⎜⎜⎜⎜⎝

sa′migrate → sa′ask .; (
(ua′reply ok .; sa′save repl .)ua′�
(ua′reply docs .; sa′doclist .)ua′�
(ua′reply pers .; sa′do pers → sa′break))ua′�
(ua′fail.; sa′leave vc → sa′break))

⎞
⎟⎟⎟⎟⎠; sa′done.

(steps Svc
8 and Svc

9 omitted)

This model prepares the transition to a state-based model with completely de-
coupled agent roles:

Svc
9 −→ Svc

10

([ψ1] � skip)‖
+(

ψ1 → (sa′(migrate → ask .); [ϕ1])
)‖

+(
ϕ1 → ua′((reply ok ; [ϕ2]) � (reply docs ; [ϕ3]) � (reply pers ; [ϕ4])) � (fail ; [ϕ5]))

)‖
+(

ϕ2 → sa′save repl .; [ψ1]
)‖

+(
ϕ3 → sa′doclist .; [ψ1]

)‖
+(

ϕ4 → sa′do pers .
)‖

+(
ϕ5 → sa′leave vc.

)
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The next two refinement steps add further details to the behavioural model.
Refinement step 10 introduces functional model with the modelling decisions
taken by the student and the university agents. Further refinements introduce
details on how a university agent decides what documents to ask and when the
registration process is complete. The student agent keeps track of all visited
locations and is able to remember branching points in order not to visit the
same university agents twice.

Further details on the refinement process can be found in [17,21,19].

5.4 Implemented System and Screenshots

To implement the ambients, we incorporate smart dust devices or motes [18]
into the scenario. In particular, we use off-the-shelf MPR2400 MICAz motes (see
Figure 7) from Crossbow Technology [22]. These motes communicate with each
other using Zigbee radio, and by customising the transmit power of the radio
(in this case, reducing the radio range to around 3-5 meters), we can use them
as a localisation sensor. This enables us to deliver location-specific information
and services to the users.

Fig. 7. MICAz mote used for localisation sensor

Each user carries a mote (programmed with a unique identification number, so
that the mote acts as a badge - sort of speak), as well as a PDA as an interaction
device. Each room is equipped with a smart dust base station (receiver), which is
connected to a controller application. The latter uses the CAMA middleware [3] to
communicate with the PDAs through Wi-Fi. When a user enters a particular room,
his/herPDAshowstherelevant informationand/orservicesavailable for thatroom.

A set of rooms can be prepared to be smart dust aware. This can include
the reception office, in which the users (i.e. students) can start the registration
process or can find out who their tutor is. Figure 8 shows the screen captures
of the PDA used by the student (”Alice”). The picture on the left shows the
situation where Alice is not in any location that supports the scenario. When
she enters the reception room, her PDA adjusts its location and displays the
services available in that room (as can be seen in the picture in the middle). In
this example, Alice opts to find out who her tutor is (the picture on the right).
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Fig. 8. Screen captures of the registration assistant scenario

6 Conclusion

This paper provides an outline of the work that we had carried out in developing
fault-tolerant ambient applications. We introduce a theoretical approach called
AgentB, that is based on the modelling database concept, and is composed of
several simple modelling methods focusing on various aspects of the system.
These modelling techniques allow us to validate the formal development, and
to model and build fault tolerant ambient applications. The approach has been
demonstrated through a rigorous development of an ambient campus student
induction assistant scenario, starting from the definition of a set of requirements,
the modelling and refinement processes, and finally, the implementation of the
system. We developed an agent-based system implementing this scenario, using
the Cama framework and the middleware [2] that we have previously developed.
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Abstract. Achieving high dependability of Service-Oriented Architecture 
(SOA) is crucial for a number of emerging and existing critical domains, such 
as telecommunication, Grid, e-science, e-business, etc. One of the possible ways 
to improve this dependability is by employing service redundancy and diversity 
represented by a number of component web services with the identical or simi-
lar functionality at each level of the composite system hierarchy during service 
composition. Such redundancy can clearly improve web service reliability 
(trustworthiness) and availability. However to apply this approach we need to 
solve a number of problems. The paper proposes several solutions for ensuring 
dependable services composition when using the inherent service redundancy 
and diversity. We discuss several composition models reflecting different de-
pendability objectives (enhancement of service availability, responsiveness or 
trustworthiness), invocation strategies of redundant services (sequential or si-
multaneous) and procedures of responses adjudication. 

1   Introduction 

The Web Services (WS) architecture [1] based on the SOAP, WSDL and UDDI 
specifications is rapidly becoming a de facto standard technology for organization of 
global distributed computing and achieving interoperability between different soft-
ware applications running on various platforms. It is now extensively used in develop-
ing numerous business-critical applications for banking, auctions, Internet shopping, 
hotel/car/flight/train reservation and booking, e-business, e-science, Grid, etc. That is 
why analysis and dependability ensuring of this architecture are emerging areas of 
research and development [1–3]. The WS architecture is in effect a further step in the 
evolution of the well-known component-based system development with off-the-shelf 
(OTS) components. The main advances enabling this architecture have been made by 
the standardisation of the integration process, by a set of interrelated standards such as 
SOAP, WSDL, UDDI, etc.  

Web Services are autonomous systems, the ready-made OTS components belong-
ing to different organizations, without any general or centralised control, that may  
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change their behaviour on the fly. This architecture brings a number of benefits to the 
users but at the same time poses many challenges to researchers and developers. By 
their very nature Web Services are black boxes, as neither source code, nor specifica-
tion, nor information about deployment environment are available; the only known 
information about them is their interfaces. Moreover, their quality is not completely 
known and they may not provide sufficient quality of service; it is often safe to treat 
them as “dirty” boxes, assuming that they always have bugs, do not fit enough, have 
poor specification and documentation. WSs are heterogeneous, as they might be de-
veloped following different standards, fault assumptions, and different conventions 
and may use different technologies. Finally, their construction and composition are 
complicated by the fact that the Internet is a poor communication medium (has low 
quality, not predictable). 

The main motivation for our work is the fact that ensuring and assessing depend-
ability of complex service-oriented systems is complicated when these systems are 
dynamically built or when their components (i.e. Web Services) are dynamically 
replaced by the new ones with the same (or similar) functionality but unknown de-
pendability characteristics. The lack of evidence about the characteristics of the com-
munication medium, components used in the composition and their possible 
dependencies makes it extremely difficult to achieve and predict SOA dependability 
which can vary over a wide range in a random manner. Therefore, users cannot be 
confident in availability, trustworthiness, reasonable response time and others de-
pendability characteristics. Dealing with such uncertainty, mainly coming from the 
SOA nature, is the main challenge.  

This uncertainty should be treated as the threat (similar and in addition to the com-
monly known faults, errors and failures). The paper discusses fault-tolerance solutions 
for building dependable service-oriented systems out of undependable Web Service 
components, which have changeable functional sets and uncertain dependability charac-
teristics, making use of natural redundancy and diversity inherent to such systems. 

In the paper we analyse different dependability-oriented composition models of 
Web Services and also propose solutions guaranteeing that the overall dependability 
(availability, correctness and responsiveness) of the composite system is improving.  

2   Web Services Redundancy and Diversity 

SOA supports construction of the globally distributed massive-scale systems with 
growing number of services. This makes it unique in allowing access to a number of 
services with identical or similar functionalities, provided by different vendors and 
deployed on different platforms all over the Internet. In other words, SOA possesses 
the inherent redundancy and diversity of the existing Web Services [17]. We should 
use this fact to build dependable Service-Oriented Systems out of undependable Web 
Services. Table 1 shows several examples of the existing alternative (redundant) stock 
quotes and currency exchange Web Services  (see [18] for a more detailed discussion 
of these examples). In [12] the authors present a practical experience report on de-
pendability monitoring of three diverse Bioinformatics Web Services performing  
 



326 A. Gorbenko, V. Kharchenko, and A. Romanovsky 

Table 1. An example of alternative (redundant) Web Services 

Alternative (redundant) Stock Quotes Web Services 
stock_wsx.GetQuote: 
   http://www.webservicex.com/stockquote.asmx?WSDL 
stock_gama.GetLatestStockDailyValue: 
   http://www.gama-system.com/webservices/stockquotes.asmx?wsdl 
stock_xmethods.getQuote: 
   http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl 
stock_sm.GetStockQuotes: 
   http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL 

Alternative (redundant) Currency Exchange Web Services 
currency_exchange.getRate: 
   http://www.xmethods.net/sd/CurrencyExchangeService.wsdl 
currency_convert.ConversionRate: 
   http://www.webservicex.com/CurrencyConvertor.asmx?wsdl 

 
similar BLAST1 function. A mediator approach (set of intermediate monitoring  
services) was used to monitor WS dependability metadata and provide it for users. 
This work was a motivation for us to show i) that there are multiple similar WSs, and 
ii) that they can be used simultaneously to achieve better dependability. 

72-87% of the faults in open-source software are independent of the operating en-
vironment (i.e. faults in application software) and are hence permanent [20]. Half of 
the remaining faults are environment depended and permanent. And only 5-14% of 
the faults are environment depended caused by transient conditions. Hence, software 
diversity can be an efficient method of fault-tolerance provisioning and decreasing 
common mode failures caused by software faults [21, 22]. SOA supports inherent 
diversity at the different level: 

1. Application diversity: i) development diversity of application software (different 
developers, languages, implementation technologies and tools, etc); ii) data diversity 
(diversity of data used and data sources); iii) Service diversity (diversity of ‘physical’ 
resources and services, for example, flights available, hotel rooms, etc). 

2. Deployment diversity. Different service providers can use diverse deployment 
environments (different hardware platform, operating systems, web and application 
servers, DBMS, etc.). 

3. Spatial (geographical) diversity. Redundant Web Services can be dispersed all 
over the Internet and different service vendors can use different Internet Service 
Providers. 

To build dependable Service-Oriented Systems, developers (systems integrators) and 
end users should be able to choose and use the most dependable components (i.e. 
Web Services) from the existing ones of similar functionality but diverse nature [23]. 
Other approach we are discussing in this paper is using all available services simulta-
neously with the purpose to improve overall system dependability.  

                                                           
1 http://www.ncbi.nlm.nih.gov/blast/html/BLASThomehelp.html 
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3   Web Services Dependability 

Dependability of a computing system is its ability to timely deliver service that can 
justifiably be trusted [24]. According to this definition we need to deal with the  
following dependability attributes, which are relevant to Web Services, and which can 
be easily measured during WS invocations: (i) availability; (ii) reliability; and (iii) 
response time (performance). There are several other attributes, describing Quality of 
Service (QoS), service level agreements (SLAs) and dependability, including authen-
tication, confidentiality, non-repudiation, service cost, etc. [25], but we do not deal 
with them in this paper.  

Service availability. The degree to which a service is operational and accessible when 
it is required for use determines service’s availability. Availability of a system is a 
measure of the delivery of correct service with respect to the alternation of correct and 
incorrect service [24]. It can be defined by a ratio of the system’s uptime to all execu-
tion time (including downtime). Unfortunately, such technique can be hardly applied 
for determining the availability of Web Services in a loosely coupled SOA. More 
adequate, the availability of a Web Service most likely can be defined by the ratio of 
the total number of service invocations to the number of events when the service was 
unavailable (i.e. an exception “HTTP Status-Code (404): Not Found” was caught by 
client). The easier recovery action here is simple retry. 

Service reliability. System reliability can be measured in terms of probability of fail-
ure-free operation, mean time between failures (MTBF) or failure rate. Reliability 
assessment of Web Services is complicated, taking into account the fact that service 
invocation rate can vary in a wide range for different services and services customers. 
Another problem here is that Web Service returns errors of two main types [9]: 

1. Evident erroneous response which results in exception message. The probability of 
such errors can be measured by the proportion of the total number of service invo-
cation number of exception messages received (apart from exception “HTTP 
Status-Code (404): Not Found” that indicate about service unavailability). If such 
error occurs, user could retry the same service latter or (most likely) invoke an al-
ternative one. 

2. Non-evident erroneous response. It can be present in a form of incorrect data or 
calculation errors which do not entail immediate exception. The last type of error is 
the most dangerous and can lead to unexpected program behaviour and unpredicted 
consequences, and, as a result, service discredit. Detection of such errors is possi-
ble by comparing service response with response from another diverse service. 

Therefore, the key problem services developers and users are faced with is enhancing 
the service trustworthiness (correctness) rather then decreasing probability of excep-
tion (i.e. evident error occurrence).  

Service performance (response time). The service response time can be divided into 
(i) network delay time, (ii) connection waiting time and (iii) execution time. The 
execution time is the duration of performing service functionality, the connection 
waiting time is the time during request waits in application server’s queue, and,  
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finally, network delay time is the delay of request transmissions between service 
consumer and provider.  

The network delay time can be hardly predicted due to the uncertain network fluc-
tuations whereas connection waiting time and execution time depend on service load 
and throughput. 

4   Web Services Composition 

Web service composition is currently an active area of research, with many languages 
being proposed by academic and industrial research groups. IBM Web Service Flow 
Language (WSFL) [4] and Microsoft’s XLANG [5] were two of the earliest lan-
guages to define standards for Web services composition. Both languages extended 
W3C Web Service Description Language (WSDL) [6], which is the standard lan-
guage for describing the syntactic aspects of a Web service. Business Process Execu-
tion Language for Web Services (BPEL4WS) [7] is a recently proposed specification 
that represents the merging of WSFL and XLANG. BPEL4WS combines the graph 
oriented process representation of WSFL and the structural construct based processes 
of XLANG into a unified standard for Web services composition.  

In addition to these commercial XML-based standards, there have been work on a 
unique Web service composition language called Web Ontology Language for Ser-
vices (www.daml.org/services) OWL-S (previously known as DAML-S) [8], which 
provides a richer description of Web service compositions by specifying its semantics.  

In our work we focus on the general patterns (types) of the WS composition and 
identify two typical blueprints of composing WSs: i) “vertical” composition for func-
tionality extension, and ii) “horizontal” composition for dependability improvement 
(dependability-oriented composition).  

The first type of service composition (“vertical”) is used for building the Work-
Flow (WF) of the systems and is already supported by BPEL, BPML, XPDL, JPDL 
and other WF languages. The second one (“horizontal”) deals with a set of redundant 
(and possibly diverse) Web Services with identical or similar functionality. Rather 
than investigate fixed redundancy schemes [28] (like two-out-of-three or three-out-of-
five) in this paper we discuss flexible patterns improving various dependability attrib-
utes (availability, trustworthiness or responsibility) taken separately. 

Bellow we show some illustrative examples of the two types of WSs composition 
and discuss the way in which the horizontal composition improves dependability of 
SOA. We use the web-based Travel Agency as an example of Web Services composi-
tion, this example has been extensively used by other researchers [3, 26, 27].  

4.1   Vertical Composition for Functionality Extension 

The “vertical” composition (Fig. 1-a) extends the Web Services functionality. A new 
Composite Web Service is composed out of several particular services which provide 
different functions. For example, the Travel Agency (TA) Service can be composed of 
a number of services such as Flight Service, Car Rental Service, Hotel Service, etc.  
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a) 

 

b) 

 

Fig. 1. Web Services Composition: a) “vertical”; b) “horizontal” 

The main invocation parameters for such a composite TA Service are trip endpoint 
(country and city), dates (and time) of arrival and departure, user details and prefer-
ences. The TA Service then invokes corresponding services which books 
flight/train/coach tickets, hotel room, rents a car, etc. 

The Composite Web Service can invoke a set of target (composed) services simul-
taneously to reduce the mean execution time or sequentially (if execution of one ser-
vice depends on the result of another one).  

If some of the services fail or cannot satisfy the user’s request (for example, when 
there are no flights available for specified dates) all other services have to be rolled 
back and their results should be cancelled. 

To improve dependability of such composite system various means of fault-
tolerance and error recovery should be applied, including redundancy, exception han-
dling, forward error recovery, etc. 
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4.2   Horizontal Composition for Dependability Improvement 

The “horizontal” composition (Fig. 1-b) uses several alternative (diverse) Web Services 
with the identical or similar functionality, or several operational releases of the same 
service. Such kind of redundancy based on inherent service diversity improves service 
availability and reliability (correctness and trustworthiness) of Web Service composition.  

Architecture with the “horizontal” (dependability-oriented) composition includes a 
“Mediator” component, which adjudicates the responses from all diverse Web Ser-
vices and returns an adjudicated response to the consumer. In the simplest case the 
“Mediator” is a voter (i.e. performs majority voting using the responses from redun-
dant Web Services). It can be also programmed to perform more complex operation 
like aggregation, or provide the best choice according to selection criterions specified 
by user (for example, highest possible exchange rate or minimal asked quotation).  

Papers [10-13] introduce special components (called “Service Resolver”, “Proxy”, 
“Service Container” or “Wrapper”) with the similar functionality.  

5   Middleware-Based Architecture Supporting  
Dependability-Oriented Composition  

5.1   Patterns of Dependability-Oriented Composition 

In [9] we proposed an architecture which uses a dedicated middleware for a managed 
dependable upgrade and the “horizontal” composition of Web Services. The middle-
ware runs several redundant (diverse) Web Services (Fig. 2). It intercepts the user’s 
requests coming through the WS interface, relays them to all the redundant services 
and collects the responses. It is also responsible for dependability measurement and 
publishing the confidence in dependability [9] associated with each service.  

The architecture proposed supports several composition models meeting different 
dependability objectives (such as enhancement of service availability, responsiveness 
or trustworthiness), various strategies for invoking redundant services (sequential or 
simultaneous) and procedures for response adjudication. These models form patterns 
of dependability-oriented composition. The basic ones are: 

 

Fig. 2. Architecture of dependability-oriented composition   
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Simulation results: 

 Case1 Case2 Case3 

P(cr) 0.966 0.936 0.928 

P(ne) 0.010 0.048 0.013 

P(ex) 0.016 0.008 0.032 

P(ua) 0.008 0.008 0.027 

MRT 397.60 397.60 431.40 

 

Vot.
 

- voting; Ex.
 
- exception; Com  - comparison; Proc. - processing; - waiting time 

Fig. 3. Simulation results of the Reliable concurrent execution pattern 

 
Simulation results: 

 Case1 Case2 Case3 

P(cr) 0.961 0.915 0.922 

P(ne) 0.003 0.017 0.005 

P(ex) 0.029 0.060 0.046 

P(ua) 0.008 0.008 0.027 

MRT 141.10 133.85 163.82 

 

 

Fig. 4. Simulation results of the Fast concurrent execution pattern 

1. Reliable concurrent execution for trustworthiness improvement (Fig. 3). All avail-
able redundant (diverse) WSs are invoked concurrently and their responses are 
used by the middleware to produce an adjudicated response to the consumer of the 
WS (i.e. voting procedure). Initial values of measures P(cr), P(ne), P(ua), P(ex) 
and mean response time (MRT) used in three different simulation cases are dis-
cussed in section 5.2.  

2. Fast concurrent execution for responsiveness improvement (Fig. 4). All available 
redundant (diverse) WSs are invoked concurrently and the fastest non-evidently in-
correct response is returned to the service consumer. 

3. Adaptive concurrent execution (Fig. 5). All (or some of) redundant (diverse) WSs 
are executed concurrently. The middleware is configured to wait for up to a certain 
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number of responses to be collected from the redundant services, but no longer 
than a pre-defined timeout.  

4. Sequential execution for minimal service loading (Fig. 6). The subsequent redun-
dant WS is only invoked if the response received from the previous one is evi-
dently incorrect (i.e. exception). 

5.2   Simulation 

Effectiveness of the different composition models depends on the probability of ser-
vice unavailability, occurrence of evident (exceptions raised) and non-evident (erro-
neous results returned) failures. The probability of service unavailability due to  
 

 
Simulation results: 

 Case1 Case2 Case3 

P(cr) 0.966 0.936 0.928 

P(ne) 0.010 0.048 0.013 

P(ex) 0.016 0.008 0.032 

P(ua) 0.008 0.008 0.027 

MRT 289.72 289.08 330.52 

 

 

Fig. 5. Simulation results of the Adaptive concurrent execution pattern 

 
Simulation results: 

 Case1 Case2 Case3 

P(cr) 0.961 0.915 0.922 

P(ne) 0.003 0.017 0.005 

P(ex) 0.029 0.060 0.046 

P(ua) 0.008 0.008 0.027 

MRT 283.99 266.25 387.86 

 

 

Fig. 6. Simulation results of the Sequential execution pattern 
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different reasons (service overload, network failures, and congestions) is several or-
ders greater than probability of failure occurrence. Moreover, different exceptions 
arise during service invocation more frequently than non-evident failures occur. 

To analyse the effectiveness of the proposed patterns we developed a simulation 
model running in the MATLAB 6.0 environment. It used the following initial values 
chosen using the real-life statistics [19]:  

 Case 1 Case 2 Case 3 
P(correct response), P(cr) 0.70 0.70 0.60 
P(non-evident error), P(ne) 0.01 0.05 0.01 
P(exception), P(ex) 0.09 0.05 0.09 
P(service unavailability), P(ua) 0.20 0.20 0.30 

 
Each redundant Web Service was modelled as a black box that is assumed to fail 
independently of all the others but with the same probability [26]. The first two 
cases (cases 1 and 2) correspond to services that have the same availability but 
different probabilities of evident and non-evident error occurrence (we assume 
more trusted services in case 1). The third one simulates trusted service with 
worse availability as compared to Case 1 (possibly, due to narrow network band-
width or frequent congestions). During simulation we also set Mean Response 
Time (MRT) which equals 200 ms and Maximum Waiting Time (time-out) which 
equals 500 ms.  

The simulation results of each proposed patterns of dependability-oriented compo-
sition are shown at the Figures 3 – 6 respectively. Figure 7 gives a summary of all 
simulation cases. 

A practical application of the horizontal composition requires developing new 
workflow patterns and languages constructs, supporting different composition models 
and procedures of multiple results resolving and voting. 

6   Implementation  

6.1   Work-Flow Patterns Supporting Web Services Composition 

The workflow patterns capture typical control flow dependencies encountered during 
workflow modelling. There are more then 20 typical patterns used for description of 
different workflow constructions of “vertical” composition [14]. The basic ones are: 
‘Sequence’, ‘Exclusive Choice’, ‘Simple Merge’, ‘Parallel Split’, ‘Synchronization’, 
‘Discriminator’, ‘Regular Cycle’, etc.  

Each WF language describes a set of elements (activities) used for implementing 
different WF patterns. For example, BPEL4WS defines both primitive (‘invoke’, 
‘receive’, ‘reply’, ‘wait’, ‘assign’, ‘throw’, ‘terminate’, ‘empty’) and structured (‘se-
quence’, ‘switch’, ‘while’, ‘flow’, ‘pick’, ‘scope’) activities.  

The first ones are used for intercommunication and invoking operations on some 
web service. Structured activities present of complex workflow structures and can be 
nested and combined in arbitrary ways. 
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Fig. 7. Summary of simulation results (WSi – particular Web Service; Pattern 1 – the Reliable 
concurrent execution pattern; Pattern 2 – the Fast concurrent execution pattern; Pattern 3 – the 
Adaptive concurrent execution pattern; Pattern 4 – Simulation results of the Sequential execu-
tion pattern) 
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Fig. 8. Workflow pattern Discriminator 

In fact, the only one of the basic WF patterns Discriminator fits for implementing 
the Fast Concurrent Execution pattern providing maximum responsiveness. Discrimi-
nator (see Fig. 8) is a point in the workflow process that waits for one of the incoming 
branches to complete before activating the subsequent activity. The first one that 
comes up with the result should proceed the workflow. The other results will be  
ignored. 

However, only BPML <all> and BPEL <pick> activities support such WF 
pattern [15, 16] (Fig. 9). To support dependability-oriented composition the addi-
tional WF patterns need to be developed and implemented for different WF  
languages. 
The new activities allowing a business process to support redundancy and per-
form voting procedure should also be developed. This is a motivation of our fur-
ther work. 

 
<process name=”PatternDiscriminator”> 
  <sequence> <context> 
      <signal name=”completed_B”/> 
      <process name=”B1”> 
         … 
        <raise signal=”completed_B”/> 
      </process> 
      <process name=”B2”> 
         … 
        <raise signal=” completed_B”/> 
      </process> 
    </context> 
    <action name=”A” …> 
      … 
    </action> 
    <all> 
      <spawn process=”B1”/> 
      <spawn process=”B2”/> 
    </all> 
    <synch signal=”completed_B”/> 
    <action name=”C” …> 
      … 
    </action> 
  </sequence> </process> 

Fig. 9. BPML implementation of the Discriminator pattern  
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<if name="If1"> 
    <condition> ( not( ( $outWS1 = 'error' ) )  
     and ( $outWS1 = $outWS2 ) ) </condition> 
    <sequence name="Sequence4"> 
       <assign name="Assign2"> 
          <copy> 
             <from variable="outWS1"/> 
             <to variable="output"/> 
          </copy> 
       </assign> 
    </sequence> 
    <else> 
       <sequence name="Sequence4"> 
          <invoke name="Invoke3" partnerLink="WS3" .../> 
 ... 

Fig. 10. WS-BPEL If statement implementing responses matching (graphic and text notion) 

6.2   Testbed Workflows 

The patterns of dependability-oriented composition discussed above have been im-
plemented as a set of testbed workflows (see, for example, Fig. 11) by using a graph-
ics-based BpelModule which is a part of IDE NetBeans 6.02.  

We used WS-BPEL 2.03 specification, which introduces two constructs specifi-
cally for extensions (‘extensionActivity’ and ‘extensionAssignActivity’). It also has 
improved fault handling and process termination features.  

New fault handlers having ‘catch’, ‘catchAll’, ‘compensate’, ‘throw’ and ‘rethrow’ 
constructs as well as ‘terminationHandler’ and ‘exitOnStandardFault’ activities were 
added in WS-BPEL. 

A business logic supporting voting and comparison procedures within particular 
pattern is implementing by using if statements.  

Fig. 10 gives an example of how to compare the responses from first two services 
invoked at the first step of the Adaptive concurrent execution pattern (Fig. 5 and 11). 
If the results are equal and are not ‘exception’ (standard error) then the agreed result 
can be returned to the user, otherwise the third service should be invoked to perform 
voting procedure. 

                                                           
2 www.netbeans.org/community/releases/60/  
3 www.oasis-open.org/committees/wsbpel/  
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Fig. 11. Screen shot of WS-BPEL-workflow implementing the Adaptive concurrent execution 
pattern 

7   Conclusions and Future Researches 

We have addressed different models of a Web Services composition which extend func-
tionality (“vertical” composition) or improve dependability (“horizontal” composition). 
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“Vertical” composition uses redundancy based on natural diversity of existing Web 
Services with the identical or similar functionality deployed by third parties. We dis-
cussed middleware-based architecture that provides dependability-oriented composition 
of Web Services. For the best result middleware has to implement on-line monitoring 
and dependability control.  

“Horizontal” composition, which uses redundancy in combination with diversity, is one 
of the promising means of enhancing service availability and providing fault-tolerance. 
Different patterns are applicable here. As it is shown from simulation and experimenta-
tion, all models of dependability-oriented composition significantly improve service avail-
ability (as it was expected) and probability of correct response (see Table 2).  

The Adaptive concurrent execution and Reliable concurrent execution patterns 
give maximal reliability (probability of correct response) and minimal probability of 
exception at the expense of performance deterioration. However the Adaptive concur-
rent execution pattern provides better reliability-to-response-time ratio.  

The Fast concurrent execution and Sequential execution patterns improve service 
correctness (decrease probability of non-evident error). Besides, the first one provides 
minimal response time (less than mean response time of each particular WS). An 
unexpected result was that the Sequential execution pattern improves reliability and 
correctness without performing unnecessary services invocation and, at the same 
time, provides rather good response time. 

Finally, a more complex composition model combining the “vertical” and “horizon-
tal” compositions is also possible. It supports two boundary architectures:  
1. Multilevel mediation (Fig. 12-a) with co-ordination at each level of functional 

composition. 
2. One-level mediation (Fig. 12-b) with co-ordination at only the top level. 

A number of intermediate architectures are also possible. However, questions like 
“How many horizontal composition levels will provide the maximal improvement?”, 
“When mediator (voter) should be placed?” are yet unsolved and are objectives of 
future researches.  

Another question is how to assess and take into account actual services diversity. 
Because it is obvious that different Web Services can refer to the same ‘physical’ 
services or resources like it is shown in the Fig, 12-b where two independent 
TA Services (v.1 and v.2) use the same Car Rental Service ‘Hertz’. 

Table 2. Effectiveness of different patterns of dependability-oriented composition 
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1 Reliable concurrent execution ++  + + -- 
2 Fast concurrent execution + +  + + 
3 Adaptive concurrent execution + +  + - 
4 Sequential execution ++  + + - 

(‘+’ – advantage;  ‘-’ – disadvantage) 
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a) 

 

b) 

 

Fig. 12. Combined “vertical and horizontal” Web Service composition using multilevel (a) and 
one-level (b) mediation 

Applying in practice techniques of the “horizontal” composition and other means of 
improving SOA dependability requires developing new workflow patterns and im-
plementing them in different WF languages.  

In our future work we are going to use WS-BPEL 2.0, which is a new version of 
popular language widely-used in industry for the specification of business processes 
and business interaction protocols. Of a particular interest to us is its support for ex-
tensibility by allowing namespace-qualified attributes to appear in any standard ele-
ment and by allowing new user-specified activities to be defined by using 
‘extensionActivity’ and ‘extensionAssignActivity’ constructions. 
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